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FOREWORD

Summarizing all of mathematics in one book is a daunting and indeed impossible

task. Humankind has been exploring and discovering mathematics for millennia.
Practically, we have relied on math to advance our species, with early arithmetic
and geometry providing the foundations for the first cities and civilizations. And
philosophically, we have used mathematics as an exercise in pure thought to
explore patterns and logic.

As a subject, mathematics is surprisingly hard to pin down with one catch-all
definition. “Mathematics” is not simply, as many people think, “stuff to do with
numbers.” That would exclude a huge range of mathematical topics, including
much of the geometry and topology covered in this book. Of course, numbers are
still very useful tools to understand even the most esoteric areas of mathematics,
but the point is that they are not the most interesting aspect of it. Focusing just on
numbers misses the forest for the threes.

For the record, my own definition of math as “the sort of things that
mathematicians enjoy doing,” while delightfully circular, is largely unhelpful. Big
Ideas Simply Explained is actually not a bad definition. Mathematics could be
seen as the attempt to find the simplest explanations for the biggest ideas. It is the
endeavor of finding and summarizing patterns. Some of those patterns involve the
practical triangles required to build pyramids and divide land; other patterns
attempt to classify all of the 26 sporadic groups of abstract algebra. These are
very different problems in terms of both usefulness and complexity, but both
types of pattern have become the obsession of mathematicians throughout the
ages.

There is no definitive way to organize all of mathematics, but looking at it
chronologically is not a bad way to go. This book uses the historical journey of
humans discovering math as a way to classify it and wrangle it into a linear
progression, which is a valiant but difficult effort. Our current mathematical body
of knowledge has been built up by a haphazard and diverse group of people
across time and cultures.

So something like the short section on magic squares covers thousands of years
and the span of the globe. Magic squares—arrangements of numbers where the
sum in each row, column, and diagonal is always the same—are one of the oldest



areas of recreational mathematics. Starting in the 9th century BCE in China, the
story then bounces around via Indian texts from 100 CE, Arab scholars in the
Middle Ages, Europe during the Renaissance, and finally modern Sudoku-style
puzzles. Across a mere two pages this book has to cover 3,000 years of history
ending with geomagic squares in 2001. And even in this small niche of
mathematics, there are many magic square developments that there was simply
not enough room to include. The whole book should be viewed as a curated tour
of mathematical highlights.

Studying even just a sample of mathematics is a great reminder of how much
humans have achieved. But it also highlights where mathematics could do better;
things like the glaring omission of women from the history of mathematics cannot
be ignored. A lot of talent has been squandered over the centuries, and a lot of
credit has not been appropriately given. But I hope that we are now improving the
diversity of mathematicians and encouraging all humans to discover and learn
about mathematics.

Because going forward, the body of mathematics will continue to grow. Had this
book been written a century earlier it would have been much the same up until
about page 280. And then it would have ended. No ring theory from Emmy
Noether, no computing from Alan Turing, and no six degrees of separation from
Kevin Bacon. And no doubt that will be true again 100 years from now. The
edition printed a century from now will carry on past page 325, covering patterns
totally alien to us. And because anyone can do math, there is no telling who will
discover this new math, and where or when. To make the biggest advancement in
mathematics during the 21st century, we need to include all people. I hope this
book helps inspire everyone to get involved.

Matt Parker
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INTRODUCTION

The history of mathematics reaches back to prehistory, when early humans found
ways to count and quantify things. In doing so, they began to identify certain
patterns and rules in the concepts of numbers, sizes, and shapes. They discovered
the basic principles of addition and subtraction—for example, that two things
(whether pebbles, berries, or mammoths) when added to another two invariably
resulted in four things. While such ideas may seem obvious to us today, they were
profound insights for their time. They also demonstrate that the history of
mathematics is above all a story of discovery rather than invention. Although it
was human curiosity and intuition that recognized the underlying principles of
mathematics, and human ingenuity that later provided various means of recording
and notating them, those principles themselves are not a human invention. The
fact that 2 + 2 = 4 is true, independent of human existence; the rules of
mathematics, like the laws of physics, are universal, eternal, and unchanging.
When mathematicians first showed that the angles of any triangle in a flat plane
when added together come to 180°, a straight line, this was not their invention:
they had simply discovered a fact that had always been (and will always be) true.

Early applications

The process of mathematical discovery began in prehistoric times, with the
development of ways of counting things people needed to quantify. At its
simplest, this was done by cutting tally marks in a bone or stick, a rudimentary
but reliable means of recording numbers of things. In time, words and symbols
were assigned to the numbers and the first systems of numerals began to evolve, a

12



means of expressing operations such as acquisition of additional items, or
depletion of a stock, the basic operations of arithmetic.

As hunter-gatherers turned to trade and farming, and societies became more
sophisticated, arithmetical operations and a numeral system became essential
tools in all kinds of transactions. To enable trade, stocktaking, and taxes in
uncountable goods such as oil, flour, or plots of land, systems of measurement
were developed, putting a numerical value on dimensions such as weight and
length. Calculations also became more complex, developing the concepts of
multiplication and division from addition and subtraction—allowing the area of
land to be calculated, for example.

In the early civilizations, these new discoveries in mathematics, and specifically
the measurement of objects in space, became the foundation of the field of
geometry, knowledge that could be used in building and toolmaking. In using
these measurements for practical purposes, people found that certain patterns
were emerging, which could in turn prove useful. A simple but accurate
carpenter’s square can be made from a triangle with sides of three, four, and five
units. Without that accurate tool and knowledge, the roads, canals, ziggurats, and
pyramids of ancient Mesopotamia and Egypt could not have been built. As new
applications for these mathematical discoveries were found—in astronomy,
navigation, engineering, bookkeeping, taxation, and so on—further patterns and
ideas emerged. The ancient civilizations each established the foundations of
mathematics through this interdependent process of application and discovery, but
also developed a fascination with mathematics for its own sake, so-called pure
mathematics. From the middle of the first millennium BCE, the first pure
mathematicians began to appear in Greece, and slightly later in India and China,
building on the legacy of the practical pioneers of the subject—the engineers,
astronomers, and explorers of earlier civilizations.

Although these early mathematicians were not so concerned with the practical
applications of their discoveries, they did not restrict their studies to mathematics
alone. In their exploration of the properties of numbers, shapes, and processes,
they discovered universal rules and patterns that raised metaphysical questions
about the nature of the cosmos, and even suggested that these patterns had
mystical properties. Often mathematics was therefore seen as a complementary
discipline to philosophy—many of the greatest mathematicians through the ages
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have also been philosophers, and vice versa—and the links between the two
subjects have persisted to the present day.

It is impossible to be a mathematician without being a poet of the soul.
Sofya Kovalevskaya

Russian mathematician

Arithmetic and algebra

So began the history of mathematics as we understand it today—the discoveries,
conjectures, and insights of mathematicians that form the bulk of this book. As
well as the individual thinkers and their ideas, it is a story of societies and
cultures, a continuously developing thread of thought from the ancient
civilizations of Mesopotamia and Egypt, through Greece, China, India, and the
Islamic empire to Renaissance Europe and into the modern world. As it evolved,
mathematics was also seen to comprise several distinct but interconnected fields
of study.

The first field to emerge, and in many ways the most fundamental, is the study of
numbers and quantities, which we now call arithmetic, from the Greek word
arithmos (“number”). At its most basic, it is concerned with counting and
assigning numerical values to things, but also the operations, such as addition,
subtraction, multiplication, and division, that can be applied to numbers. From the
simple concept of a system of numbers comes the study of the properties of
numbers, and even the study of the very concept itself. Certain numbers—such as
the constants m, e, or the prime and irrational numbers—hold a special fascination
and have become the subject of considerable study.
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Another major field in mathematics is algebra, which is the study of structure,
the way that mathematics is organized, and therefore has some relevance in every
other field. What marks algebra from arithmetic is the use of symbols, such as
letters, to represent variables (unknown numbers). In its basic form, algebra is the
study of the underlying rules of how those symbols are used in mathematics—in
equations, for example. Methods of solving equations, even quite complex
quadratic equations, had been discovered as early as the ancient Babylonians, but
it was medieval mathematicians of the Islamic Golden Age who pioneered the use
of symbols to simplify the process, giving us the word “algebra,” which is derived
from the Arabic al-jabr. More recent developments in algebra have extended the
idea of abstraction into the study of algebraic structure, known as abstract algebra.

Geometry is knowledge of the eternally existent.
Pythagoras

Ancient Greek mathematician

Geometry and calculus

A third major field of mathematics, geometry, is concerned with the concept of
space, and the relationships of objects in space: the study of the shape, size, and
position of figures. It evolved from the very practical business of describing the
physical dimensions of things, in engineering and construction projects,
measuring and apportioning plots of land, and astronomical observations for
navigation and compiling calendars. A particular branch of geometry,
trigonometry (the study of the properties of triangles), proved to be especially
useful in these pursuits. Perhaps because of its very concrete nature, for many
ancient civilizations, geometry was the cornerstone of mathematics, and provided
a means of problem-solving and proof in other fields.

This was particularly true of ancient Greece, where geometry and mathematics
were virtually synonymous. The legacy of great mathematical philosophers such
as Pythagoras, Plato, and Aristotle was consolidated by Euclid, whose principles
of mathematics based on a combination of geometry and logic were accepted as
the subject’s foundation for some 2,000 years. In the 1800s, however, alternatives
to classical Euclidean geometry were proposed, opening up new areas of study,
including topology, which examines the nature and properties not only of objects
in space, but of space itself.
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Since the Classical period, mathematics had been concerned with static
situations, or how things are at any given moment. It failed to offer a means of
measuring or calculating continuous change. Calculus, developed independently
by Gottfried Leibniz and Isaac Newton in the 1600s, provided an answer to this
problem. The two branches of calculus, integral and differential, offered a method
of analyzing such things as the slope of curves on a graph and the area beneath
them as a way of describing and calculating change.

The discovery of calculus opened up a field of analysis that later became
particularly relevant to, for example, the theories of quantum mechanics and
chaos theory in the 1900s.

Revisiting logic

The late 19th and early 20th centuries saw the emergence of another field of
mathematics—the foundations of mathematics. This revived the link between
philosophy and mathematics. Just as Euclid had done in the 3rd century BCE,
scholars including Gottlob Frege and Bertrand Russell sought to discover the
logical foundations on which mathematical principles are based. Their work
inspired a re-examination of the nature of mathematics itself, how it works, and
what its limits are. This study of basic mathematical concepts is perhaps the most
abstract field, a sort of meta-mathematics, yet an essential adjunct to every other
field of modern mathematics.

In mathematics, the art of asking questions is more valuable than solving problems.
Georg Cantor

German mathematician
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New technology, new ideas

The various fields of mathematics—arithmetic, algebra, geometry, calculus, and
foundations—are worthy of study for their own sake, and the popular image of
academic mathematics is that of an almost incomprehensible abstraction. But
applications for mathematical discoveries have usually been found, and advances
in science and technology have driven innovations in mathematical thinking.

A prime example is the symbiotic relationship between mathematics and
computers. Originally developed as a mechanical means of doing the “donkey
work” of calculation to provide tables for mathematicians, astronomers and so on,
the actual construction of computers required new mathematical thinking. It was
mathematicians, as much as engineers, who provided the means of building
mechanical, and then electronic computing devices, which in turn could be used
as tools in the discovery of new mathematical ideas. No doubt, new applications
for mathematical theorems will be found in the future too—and with numerous
problems still unsolved, it seems that there is no end to the mathematical
discoveries to be made.

The story of mathematics is one of exploration of these different fields, and the
discovery of new ones. But it is also the story of the explorers, the
mathematicians who set out with a definite aim in mind, to find answers to
unsolved problems, or to travel into unknown territory in search of new ideas—
and those who simply stumbled upon an idea in the course of their mathematical
journey, and were inspired to see where it would lead. Sometimes the discovery
would come as a game-changing revelation, providing a way into unexplored
fields; at other times it was a case of “standing on the shoulders of giants,”
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developing the ideas of previous thinkers, or finding practical applications for
them.

This book presents many of the “big ideas” in mathematics, from the earliest
discoveries to the present day, explaining them in layperson’s language, where
they came from, who discovered them, and what makes them significant. Some
may be familiar, others less so. With an understanding of these ideas, and an
insight into the people and societies in which they were discovered, we can gain
an appreciation of not only the ubiquity and usefulness of mathematics, but also
the elegance and beauty that mathematicians find in the subject.

Mathematics, rightly viewed, possesses not only truth, but supreme beauty.
Bertrand Russell

British philosopher and mathematician
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INTRODUCTION

As early as 40,000 years ago, humans were making tally marks on wood and bone
as a means of counting. They undoubtedly had a rudimentary sense of number
and arithmetic, but the history of mathematics only properly began with the
development of numerical systems in early civilizations. The first of these
emerged in the sixth millennium BCE, in Mesopotamia, western Asia, home to the
world’s earliest agriculture and cities. Here, the Sumerians elaborated on the
concept of tally marks, using different symbols to denote different quantities,
which the Babylonians then developed into a sophisticated numerical system of
cuneiform (wedge-shaped) characters. From about 4000 BCE, the Babylonians
used elementary geometry and algebra to solve practical problems—such as
building, engineering, and calculating land divisions—alongside the arithmetical
skills they used to conduct commerce and levy taxes.

A similar story emerges in the slightly later civilization of the ancient Egyptians.
Their trade and taxation required a sophisticated numerical system, and their
building and engineering works relied on both a means of measurement and some
knowledge of geometry and algebra. The Egyptians were also able to use their
mathematical skills in conjunction with observations of the heavens to calculate
and predict astronomical and seasonal cycles and construct calendars for the
religious and agricultural year. They established the study of the principles of
arithmetic and geometry as early as 2000 BCE.

Greek rigor

The 6th century BCE onward saw a rapid rise in the influence of ancient Greece
across the eastern Mediterranean. Greek scholars quickly assimilated the
mathematical ideas of the Babylonians and Egyptians. The Greeks used a
numerical system of base-10 (with ten symbols) derived from the Egyptians.
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Geometry in particular chimed with Greek culture, which idolized beauty of form
and symmetry. Mathematics became a cornerstone of Classical Greek thinking,
reflected in its art, architecture, and even philosophy. The almost mystical
qualities of geometry and numbers inspired Pythagoras and his followers to
establish a cultlike community, dedicated to studying the mathematical principles
they believed were the foundations of the Universe and everything in it.

Centuries before Pythagoras, the Egyptians had used a triangle with sides of 3, 4,
and 5 units as a building tool to ensure corners were square. They had come
across this idea by observation, and then applied it as a rule of thumb, whereas the
Pythagoreans set about rigorously showing the principle, offering a proof that it is
true for all right-angled triangles. It is this notion of proof and rigor that is the
Greeks’ greatest contribution to mathematics.

Plato’s Academy in Athens was dedicated to the study of philosophy and
mathematics, and Plato himself described the five Platonic solids (the tetrahedron,
cube, octahedron, dodecahedron, and icosahedron). Other philosophers, notably
Zeno of Elea, applied logic to the foundations of mathematics, exposing the
problems of infinity and change. They even explored the strange phenomenon of
irrational numbers. Plato’s pupil Aristotle, with his methodical analysis of logical
forms, identified the difference between inductive reasoning (such as inferring a
rule of thumb from observations) and deductive reasoning (using logical steps to
reach a certain conclusion from established premises, or axioms).

From this basis, Euclid laid out the principles of mathematical proof from
axiomatic truths in his Elements, a treatise that was the foundation of mathematics
for the next two millennia. With similar rigor, Diophantus pioneered the use of
symbols to represent unknown numbers in his equations; this was the first step
toward the symbolic notation of algebra.

A new dawn in the East

Greek dominance was eventually eclipsed by the rise of the Roman Empire. The
Romans regarded mathematics as a practical tool rather than worthy of study. At
the same time, the ancient civilizations of India and China independently
developed their own numerical systems. Chinese mathematics in particular
flourished between the 2nd and 5th centuries CE, thanks largely to the work of Liu
Hui in revising and expanding the classic texts of Chinese mathematics.
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IN CONTEXT
KEY CIVILIZATION

Babylonians

FIELD
Arithmetic

BEFORE

40,000 years ago Stone Age people in Europe and Africa count using tally
marks on wood or bone.

6000-5000 BCE Sumerians develop early calculation systems to measure land
and to study the night sky.

4000-3000 BCE Babylonians use a small clay cone for 1 and a large cone for 60,
along with a clay ball for 10, as their base-60 system evolves.
AFTER

2nd century Ce The Chinese use an abacus in their base-10 positional number
system.

7th century In India, Brahmagupta establishes zero as a number in its own right
and not just as a placeholder.

It is given to us to calculate, to weigh, to measure, to observe; this is natural philosophy.
Voltaire

French philosopher
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The first people known to have used an advanced numeration system were the
Sumerians of Mesopotamia, an ancient civilization living between the Tigris and
Euphrates rivers in what is present-day Iraq. Sumerian clay tablets from as early
as the 6th millennium BCE include symbols denoting different quantities. The
Sumerians, followed by the Babylonians, needed efficient mathematical tools in
order to administer their empires.

What distinguished the Babylonians from neighbors such as Egypt was their use
of a positional (place value) number system. In such systems, the value of a
number is indicated both by its symbol and its position. Today, for instance, in the
decimal system, the position of a digit in a number indicates whether its value is
in ones (less than 10), tens, hundreds, or more. Such systems make calculation
more efficient because a small set of symbols can represent a huge range of
values. By contrast, the ancient Egyptians used separate symbols for ones, tens,
hundreds, thousands, and above, and had no place value system. Representing
larger numbers could require 50 or more hieroglyphs.

Using different bases

The Hindu—Arabic numeration that is employed today is a base-10 (decimal)
system. It requires only 10 symbols—nine digits (1, 2, 3,4, 5,6, 7, 8, 9) and a
zero as a placeholder. As in the Babylonian system, the position of a digit
indicates its value, and the smallest value digit is always to the right. In a base-10
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system, a two-digit number, such as 22, indicates (2 x 101) + 2; the value of the 2
on the left is ten times that of the 2 on the right. Placing digits after the number 22
will create hundreds, thousands, and larger powers of 10. A symbol after a whole
number (the standard notation now is a decimal point) can also separate it from its
fractional parts, each representing a tenth of the place value of the preceding
figure. The Babylonians worked with a more complex sexagesimal (base-60)
number system that was probably inherited from the earlier Sumerians and is still
used across the world today for measuring time, degrees in a circle (360° = 6 x
60), and geographic coordinates. Why they used 60 as a number base is still not
known for sure. It may have been chosen because it can be divided by many other
numbers—1, 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30. The Babylonians also based their
calendar year on the solar year (365.24 days); the number of days in a year was
360 (6 x 60) with additional days for festivals.

In the Babylonian sexagesimal system, a single symbol was used alone and
repeated up to nine times to represent symbols for 1 to 9. For 10, a different
symbol was used, placed to the left of the one symbol, and repeated two to five
times in numbers up to 59. At 60 (60 x 1), the original symbol for one was reused
but placed further to the left than the symbol for 1. Because it was a base-60
system, two such symbols signified 61, while three such symbols indicated 3,661,
that is, 60 x 60 (60%) + 60 + 1.

The base-60 system had obvious drawbacks. It necessarily requires many more
symbols than a base-10 system. For centuries, the sexagesimal system also had no
place value holders, and nothing to separate whole numbers from fractional parts.
By around 300 BCE, however, the Babylonians used two wedges to indicate no
value, much as we use a placeholder zero today; this was possibly the earliest use
of zero.
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The Babylonian sun-god Shamash awards a rod and a coiled rope, ancient measuring
devices, to newly trained surveyors, on a clay tablet dating from around 1000 BCE.

Other counting systems

In Mesoamerica, on the other side of the world, the Mayan civilization developed
its own advanced numeration system in the 1st millennium BCE—apparently in
complete isolation. Theirs was a base-20 (vigesimal) number system, which
probably evolved from a simple counting method using fingers and toes. In fact,
base-20 number systems were used across the world, in Europe, Africa, and Asia.
Language often contains remnants of this system. For example, in French, 80 is
expressed as quatre-vingt (4 x 20); Welsh and Irish also express some numbers as
multiples of 20, while in English a score is 20. In the Bible, for instance, Psalm 90
talks of a human lifespan being “threescore years and ten” or as great as
“fourscore years.”

From around 500 BCE until the 16th century when Hindu—Arabic numbers were
officially adopted in China, the Chinese used rod numerals to represent numbers.
This was the first decimal place value system. By alternating quantities of vertical
rods with horizontal rods, this system could indicate ones, tens, hundreds,
thousands, and more powers of 10, much as the decimal system does today. For
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example, 45 was written with four horizontal bars representing 4 x 10! (40) and
five vertical bars for 5 x 1 (5). However, four vertical rods followed by five
vertical rods indicated 405 (4 x 100, or 10%) + 5 x 1—the absence of horizontal
rods meant there were no tens in the number. Calculations were carried out by
manipulating the rods on a counting board. Positive and negative numbers were
represented by red and black rods respectively or different cross sections
(triangular and rectangular). Rod numerals are still used occasionally in China,
just as Roman numerals are sometimes used in Western society.

The Chinese place value system is reflected in the Chinese abacus (suanpan).
Dating back to at least 200 BCE, it is one of the oldest bead-counting devices,
although the Romans used something similar. The Chinese version, which is still
used today, has a central bar and a varying number of vertical wires to separate
ones from tens, hundreds, or more. In each column, there are two beads above the
bar worth five each and five beads below the bar worth one each.

The Japanese adopted the Chinese abacus in the 14th century and developed their
own abacus, the soroban, which has one bead worth five above the central bar and
four beads each worth one below the bar in each column. Japan still uses the
soroban today: there are even contests in which young people demonstrate their
ability to perform soroban calculations mentally, a skill known as anzan.

Cuneiform

In the late 1800s, academics deciphered the
“cuneiform” (wedge-shaped) markings on clay
tablets recovered from Babylonian sites in and
around Iraq. Such marks, denoting letters and words
as well as an advanced number system, were etched
in wet clay with either end of a stylus. Like the
Egyptians, the Babylonians needed scribes to
Cuneiform, a word administer their complex society, and many of the

leitved B e ILEdn tablets bearing mathematical records are thought to

cuneus (“wedge”) to be from training schools for scribes.
describe the shape of the

R A great deal has now been discovered about
symbols, was inscribed

into wet clay, stone, or Babylonian mathematics, which extended to
metal. multiplication, division, geometry, fractions, square

roots, cube roots, equations, and other forms,
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because—unlike Egyptian papyrus scrolls—the clay tablets have survived well.
Several thousand, mostly dating from between 1800 and 1600 BCE, are housed
in museums around the world.

The Babylonian base-60 number system was built from two symbols—the single unit
symbol, used alone and combined for numbers 1 to 9, and the 10 symbol, repeated for 20, 30,
40, and 50.

The Babylonian and Assyrian civilizations have perished...yet Babylonian mathematics is still
interesting, and the Babylonian scale of 60 is still used in astronomy.

G. H. Hardy

British mathematician

Modern numeration

The Hindu—Arabic decimal system used throughout the world today has its
origins in India. In the 1st to 4th centuries Ck, the use of nine symbols along with
zero was developed to allow any number to be written efficiently, through the use
of place value. The system was adopted and refined by Arab mathematicians in
the 9th century. They introduced the decimal point, so that the system could also
express fractions of whole numbers.
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Three centuries later, Leonardo of Pisa (Fibonacci) popularized the use of
Hindu—Arabic numerals in Europe through his book Liber Abaci (1202). Yet the
debate about whether to use the new system rather than Roman numerals and
traditional counting methods lasted for several hundred years, before its adoption
paved the way for modern mathematical advances.

With the advent of electronic computers, other number bases became important
—particularly binary, a number system with base 2. Unlike the base-10 system
with its 10 symbols, binary has just two: 1 and 0. It is a positional system, but
instead of multiplying by 10, each column is multiplied by 2, also expressed as 2%,
22, 23 and upward. In binary, the number 111 means 1 x 22+ 1 x 21 + 1 x 29 that
is4 + 2+ 1, or 7 in our decimal number system.

In binary, as in all modern number systems whatever their base, the principles of
place value are always the same. Place value—the Babylonian legacy—remains a
powerful, easily understood, and efficient way to represent large numbers.

The fact that we work in 10s as opposed to any other number is purely a consequence of our
anatomy. We use our ten fingers to count.

Marcus du Sautoy

British mathematician
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Ebisu, the Japanese god of fishermen and one of the seven gods of fortune, uses a soroban to
calculate his profits in The Red Snapper’s Dream by Utagawa Toyohiro.

Mayan numeral system

The Dresden Codex, the
oldest surviving Mayan
book, dating from the 13th
or 14th century, illustrates

The Mayans, who lived in Central America from
around 2000 BCE, used a base-20 (vigesimal) number
system from around 1000 BCE to perform
astronomical and calendar calculations. Like the
Babylonians, they used a calendar of 360 days plus
festivals, to make 365.24 days based on the solar
year; their calendars helped them work out the
growing cycles of crops.

The Mayan system employed symbols: a dot
representing one and a bar representing five. By
using combinations of dots over bars they could
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Mayan number symbols generate numerals up to 19. Numbers larger than 19
G s were written vertically, with the lowest numbers at
the bottom, and there is evidence of Mayan

calculations up to hundreds of millions. An inscription from 36 BCE shows that
they used a shell-shaped symbol to denote zero, which was widely used by the

4th century.

The Mayans’ number system was in use in Central America until the Spanish
conquests in the 16th century. Its influence, however, never spread further.

See also: The Rhind papyrus ¢ The abacus ¢ Negative numbers ¢ Zero ¢ The
Fibonacci sequence ¢ Decimals
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IN CONTEXT

KEY CIVILIZATIONS
Egyptians (c. 2000 BCE), Babylonians (c. 1600 BCE)

FIELD
Algebra

BEFORE
c. 2000 BCE The Berlin papyrus records a quadratic equation solved in ancient
Egypt.

AFTER

7th century cE The Indian mathematician Brahmagupta solves quadratic
equations using only positive integers.

10th century ce Egyptian scholar Abu Kamil Shuja ibn Aslam uses negative
and irrational numbers to solve quadratic equations.

1545 Italian mathematician Gerolamo Cardano publishes his Ars Magna, setting
out the rules of algebra.

Quadratic equations are those involving unknown numbers to the power of 2 but
not to a higher power; they contain x? but not x3, x*, and so on. One of the main
rudiments of mathematics is the ability to use equations to work out solutions to
real-world problems. Where those problems involve areas or paths of curves such
as parabolas, quadratic equations become very useful, and describe physical
phenomena, such as the flight of a ball or a rocket.
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Ancient roots

The history of quadratic equations extends across the world. It is likely that these
equations first arose from the need to subdivide land for inheritance purposes, or
to solve problems involving addition and multiplication.

One of the oldest surviving examples of a quadratic equation comes from the
ancient Egyptian text known as the Berlin papyrus (c. 2000 BCE). The problem
contains the following information: the area of a square of 100 cubits is equal to
that of two smaller squares. The side of one of the smaller squares is equal to one
half plus a quarter of the side of the other. In modern notation, this translates into
two simultaneous equations: x> + y* = 100 and x = (%, + %,)y = %, y. These can be
simplified to the quadratic equation (%} y)? + y* = 100 to find the length of a side

on each square.

The Egyptians used a method called “false position” to determine the solution. In
this method, the mathematician selects a convenient number that is usually easy to
calculate, then works out what the solution to the equation would be using that
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number. The result shows how to adjust the number to give the correct solution
the equation. For example, in the Berlin papyrus problem, the simplest length to
use for the larger of the two small squares is 4, because the problem deals with
quarters. For the side of the smallest square, 3 is used because this length is ¥, of
the side of the other small square. Two squares created using these false position
numbers would have areas of 16 and 9 respectively, which when added together
give a total area of 25. This is only ¥/ of 100, so the areas must be quadrupled to
match the Berlin papyrus equation. The lengths therefore must be doubled from
the false positions of 4 and 3 to reach the solutions: 8 and 6.

Other early records of quadratic equations are found in Babylonian clay tablets,
where the diagonal of a square is given to five decimal places. The Babylonian
tablet YBC 7289 (c. 1800-1600 Bce) shows a method of working out the
quadratic equation x? = 2 by drawing rectangles and trimming them down into
squares. In the 7th century cg, Indian mathematician Brahmagupta wrote a
formula for solving quadratic equations that could be applied to equations in the
form ax? + bx = c. Mathematicians at the time did not use letters or symbols, so
he wrote his solution in words, but it was similar to the modern formula shown
above.

In the 8th century, Persian mathematician al-Khwarizmi employed a geometric
solution for quadratic equations known as completing the square. Until the 10th
century, geometric methods were were often used, as quadratic equations were
used to solve real-world problems involving land rather than abstract algebraic
challenges.
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The Berlin papyrus was copied and published by German Egyptologist Hans Schack-
Schackenburg in 1900. It contains two mathematical problems, one of which is a quadratic
equation.

Negative solutions

Indian, Persian, and Arab scholars thus far had used only positive numbers. When
solving the equation x? + 10x = 39, they gave the solution as 3. However, this is
one of two correct solutions to the problem; -13 is the other. If x is -13, x%2 =169
and 10x = -130. Adding a negative number gives the same result as subtracting its
equivalent positive number, so 169 + -130 = 169 - 130 = 39.

In the 10th century, Egyptian scholar Abu Kamil Shuja ibn Aslam made use of
negative numbers and algebraic irrational numbers (such as the square root of 2)
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as both solutions and coefficients (numbers multiplying an unknown quantity).
By the 1500s, most mathematicians accepted negative solutions and were
comfortable with surds (irrational roots — those that cannot be expressed exactly
as a decimal). They had also started using numbers and symbols, rather than
writing equations in words. Mathematicians now utilized the plus or minus
symbol, +, in solving quadratic equations. With the equation x> = 2, the solution

is not just x = butx =+ . The plus or minus symbol is included because
two negative numbers multiplied together make a positive number. While X
= 2, it is also true that - X- =2.

In 1545, Italian scholar Gerolamo Cardano published his Ars Magna (The Great
Art, or the Rules of Algebra) in which he explored the problem: “What pair of
numbers have a sum of ten and product of 40?” He found that the problem led to
a quadratic equation which, when he completed the square, gave . No
numbers available to mathematicians at the time gave a negative number when
multiplied by themselves, but Cardano suggested suspending belief and working
with the square root of negative 15 to find the equation’s two solutions. Numbers
such as would later be known as “imaginary” numbers.

The quadratic formula is a way to solve quadratic equations. By modern convention,
quadratic equations include a number, a, multiplied by x%; a number, b, multiplied by x; and a
number, ¢, on its own. The illustration above shows how the formula uses a, b, and c to find
the value of x. Quadratic equations often equal 0, because this makes them easy to work out
on a graph; the x solutions are the points where the curve crosses the x axis.

Politics is for the present, but an equation is for eternity.

Albert Einstein
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Structure of equations

Modern quadratic equations usually look like ax? + bx + ¢ = 0. The letters a, b,
and ¢ represent known numbers, while x represents the unknown number.
Equations contain variables (symbols for numbers that are unknown),
coefficients, constants (those that do not multiply variables), and operators
(symbols such as the plus and equals sign). Terms are the parts separated by
operators; they can be a number or variable, or a combination of both. The
modern quadratic equation has four terms: ax?, bx, c, and 0.

A graph of the quadratic function y = ax? + bx + ¢ creates a U-shaped curve called a
parabola. This graph plots the points (in black) of the quadratic function wherea =1, b = 3,
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and c = 2. This expresses the quadratic equation x> + 3x + 2 = 0. The solutions for x are where
y = 0 and the curve crosses the x axis. These are -2 and -1.

Parabolas

A function is a group of terms that defines a relationship between variables (often
x and y). The quadratic function is generally written as y = ax? + bx + ¢, which,
on a graph, produces a curve called a parabola. When real (not imaginary)
solutions to ax? + bx + ¢ = 0 exist, they will be the roots—the points where the
parabola crosses the x axis. Not all parabolas cut the x axis in two places. If the
parabola touches the x axis only once, this means that there are coincident roots
(the solutions are equal to each other). The simplest equation of this form isy =
x. If the parabola does not touch or cross the x axis, there are no real roots.
Parabolas prove useful in the real world because of their reflective. properties.
Satellite dishes are parabolic for this reason. Signals received by the dish will
reflect off the parabola and be directed to one single point—the receiver.

Parabolic objects have special reflective properties. With a parabolic mirror, any ray of light
parallel to its line of symmetry will reflect off the surface to the same fixed point (A).

Practical applications
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Quadratic equations are
used by military
specialists to model the
trajectory of projectiles
fired by artillery—such as
this MIM-104 Patriot
surface-to-air missile,
commonly used by the US
Army.

maximize profits.

Although they were initially used for working out
geometric problems, today quadratic equations are
important in many aspects of mathematics, science,
and technology. Projectile flight, for example, can
be modeled with quadratic equations. An object
thrown up into the air will fall back down again as a
result of gravity. The quadratic function can predict
projectile motion—the height of the object over
time. Quadratic equations are used to model the
relationship between time, speed, and distance, and
in calculations with parabolic objects such as lenses.
They can also be used to forecast profits and loss in
the world of business. Profit is based on total
revenue minus production cost; companies create a
quadratic equation known as the profit function with
these variables to work out the optimal sale prices to

See also: Irrational numbers * Negative numbers ¢ Diophantine equations * Zero *

Algebra * The binomial theorem ¢ Cubic equations * Imaginary and complex

numbers
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IN CONTEXT

KEY CIVILIZATION
Ancient Egyptians (c. 1650 BCE)

FIELD
Arithmetic

BEFORE

c. 2480 BCE Stone carvings record flood levels on the River Nile, measured in
cubits—about 20Y in (52 cm)—and palms—about 3 in (7.5 cm).

c. 1800 BCcE The Moscow papyrus provides solutions to 25 mathematical
problems, including the calculation of the surface area of a hemisphere and the
volume of a pyramid.

AFTER

c. 1300 BCE The Berlin papyrus is produced. It shows that the ancient Egyptians
used quadratic equations.

6th century BCE The Greek scientist Thales travels to Egypt and studies its
mathematical theories.

The Rhind papyrus in the British Museum in London provides an intriguing
account of mathematics in ancient Egypt. Named after Scottish antiquarian
Alexander Henry Rhind, who purchased the papyrus in Egypt in 1858, it was
copied from earlier documents by a scribe, Ahmose, more than 3,500 years ago. It
measures 12% in (32 cm) by 784 in (200 cm) and includes 84 problems

concerned with arithmetic, algebra, geometry, and measurement. The problems,
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recorded in this and other ancient Egyptian artifacts such as the earlier Moscow
papyrus, illustrated techniques for working out areas, proportions, and volumes.

The Eye of Horus, an Egyptian god, was a symbol of power and protection. Parts of it were
also used to denote fractions whose denominators were powers of 2. The eyeball, for
example, represents %/, while the eyebrow is 4.

Representing concepts

The Egyptian number system was the first decimal system. It used strokes for
single digits and a different symbol for each power of 10. The symbols were then
repeated to create other numbers. A fraction was shown as a number with a dot
above it. The Egyptian concept of a fraction was closest to a unit fraction—that is,
1/n, where n is a whole number. When a fraction was doubled, it had to be
rewritten as one unit fraction added to another unit fraction; for example, 2/3 in
modern notation would be %, + ¥/ in Egyptian notation (not %4 + %; because the

Egyptians did not allow repeats of the same fraction).

The 84 problems in the Rhind papyrus illustrate the mathematical methods in
common use in ancient Egypt. Problem 24, for example, asks what quantity, if
added to its seventh part, becomes 19. This translates as x + %, = 19. The
approach applied to problem 24 is known as “false position.” This technique—
used well into the Middle Ages—is based on trial and improvement, choosing the
simplest, or “false,” value for a variable and adjusting the value using a scaling
factor (the required quantity divided by the result).
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In the workings for problem 24, one-seventh is easiest to find for the number 7,
so 7 is used first as a “false” value for the variable. The result of the calculation—
7 plus 7/ (or 1)—is 8, not 19, so a scaling factor is needed. To find how far the
guess of 7 is from the required quantity, 19 is divided by 8 (the “false” answer).
This produces a result of 2 + %, + ¥4 (not 2%, as Egyptian multiplication was
based on doubling and halving fractions), which is the scaling factor that should
be applied. So 7 (the original “false” value) is multiplied by 2 + ¥/, + 4 (the
scaling factor) to give the quantity 16 + %, + 14 (or 16%).

Many problems in the papyrus deal with working out shares of commodities or
land. Problem 41 asks for the volume of a cylindrical store with a diameter of 9
cubits and a height of 10 cubits. The method finds the area of a square whose side
length is &, of the diameter, then multiplies this by the height. The figure of & is
used as an approximation for the proportion of the area of a square that would be
taken up by a circle if it were drawn within the square. This method is used in
problem 50 to find the area of a circle: subtract 4 from the diameter of the circle,

and find the area of the square with the resulting side length.

Ancient Egyptians used vertical lines to denote the numbers 1 to 9. Powers of 10,
particularly those inscribed on stone, were depicted as hieroglyphs—picture symbols.

Level of accuracy

Since the Ancient Greeks, the area of a circle has been found by multiplying the
square of its radius (r?) with the number pi (), written as mr?. The ancient
Egyptians had no concept of pi, but the calculations in the Rhind papyrus show
that they were close to its value. Their circle area calculation—with the circle
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diameter as twice the radius (2r)—can be expressed as (%4 x 2r)2, which,

simplified, is 2°%;, r?, giving an equivalent for pi of 2°%;,. As a decimal, this is

about 0.6 percent greater than the true value of pi.

Instruction books

The Rhind papyrus
scribe used the hieratic
system of writing
numerals. This cursive
style was more compact
and practical than drawing
complex hieroglyphs.

the fewer the sekeds.

The Rhind and Moscow papyri are the most
complete mathematical documents to survive from
the height of the ancient Egyptian civilization. They
were painstakingly copied by scribes well versed in
arithmetic, geometry, and mensuration (the study of
measurements) and are likely to have been used for
training of other scribes. Although they captured
probably the most advanced mathematical
knowledge of the time, they were not seen as works
of scholarship. Instead, they were instruction
manuals for use in trade, accounting, construction,
and other activities that involved measurement and
calculation.

Egyptian engineers, for example, used mathematics

in the building of pyramids. The Rhind papyrus includes a calculation for the
slope of a pyramid using the seked— a measure for the horizontal distance
traveled by a slope for each drop of 1 cubit. The steeper the side of a pyramid,

See also: Positional numbers * Pythagoras * Calculating pi * Algebra * Decimals

42




IN CONTEXT
KEY CIVILIZATION

Ancient Chinese

FIELD
Number theory

BEFORE

9th century BCE The Chinese I Ching (Book of Changes) lays out trigrams and
hexagrams of numbers for use in divination.

AFTER

1782 Leonhard Euler writes about Latin squares in his Recherches sur une

nouvelle espece de carrés magiques (Investigations on a new type of magic
square).

1979 The first Sudoku-style puzzle is published by Dell Magazines in New
York.

2001 British electronics engineer Lee Sallows invents magic squares called
“geomagic squares,” which contain geometric shapes rather than numbers.

There are thousands of ways in which to arrange the numbers 1 to 9 in a three-by-
three grid. Only eight of these produce a magic square, where the sum of the
numbers in each row, column, and diagonal—the magic total—is the same. The
sum of the numbers 1 to 9 is 45, as is the sum of all three rows or columns. The
magic total, therefore, is Y4 of 45, or 15. In fact, there is really just one
combination of numbers in a magic square. The other seven are rotations of this
combination.
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Ancient origins

Magic squares are probably the earliest example of “recreational mathematics.”
Their exact origin is unknown, but the first known reference, in the Chinese
legend of Lo Shu (Scroll of the river Lo), dates from 650 BCE. In the legend, a
turtle appears to the great King Yu as he faces a devastating flood. The markings
on the turtle’s back form a magic square, with numbers from 1 to 9 represented by
circular dots. Because of this legend, the arrangement of odd and even numbers
(even numbers are always in the corners of the square) were believed to have
magical properties and was used as a good luck talisman through the ages.

As ideas from China spread along trade routes such as the Silk Road, other
cultures became interested in magic squares. Magic squares are discussed in
Indian texts dating from 100 ck, and Brihat-Samhita (c. 550 ck), a book of
divination, includes the first recorded magic square in India, used to measure out
quantities of perfume. Arab scholars, who created a vital link between the
learning of ancient civilizations and the European Renaissance, introduced magic
squares to Europe in the 14th century.
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An order-four magic square appears beneath the bell in Melencolia I by the German artist
Albrecht Diirer and wittily includes the engraving’s date of 1514.

Different-sized squares

The number of rows and columns in a magic square is called its order. For
example, a three-by-three magic square is said to have an order of three. An
order-two magic square does not exist because it would only work if all the
numbers were identical. As the orders increase, so do the quantities of magic
squares. Order four produces 880 magic squares—with a magic total of 34. There
are hundreds of millions of order-five magic squares, while the quantity of order-
six magic squares has not yet been calculated.

Magic squares have been an enduring source of fascination for mathematicians.
The 15th-century Italian mathematician Luca Pacioli, author of De viribus
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quantitatis (On the Power of Numbers), collected magic squares. In 18th-century
Switzerland, Leonhard Euler also became interested in them, and devised a form
that he named Latin squares. The rows and columns in a Latin square contain
figures or symbols that appear only once in each row and column.

One derivation of the Latin square—Sudoku—has become a popular puzzle.
Devised in the US in the 1970s (where it was called Number Place), Sudoku took
off in Japan in the 1980s, acquiring its now-familiar name, which means “single
digits.” A Sudoku puzzle is a nine-by-nine Latin square with the added restriction
that subdivisions of the square must also contain all nine numbers.

The most magically magical of any magic square ever made by a magician.
Benjamin Franklin

Talking about a magic square that he discovered
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Once you have one magic square, you can add the same quantity to every number in the
square and still end up with a magic square. Similarly, if you multiply all the numbers by the
same quantity, you still have a magic square.

See also: Irrational numbers ¢ Eratosthenes’ sieve * Negative numbers ¢ The
Fibonacci sequence * The golden ratio * Mersenne primes * Pascal’s triangle
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IN CONTEXT

KEY FIGURE
Pythagoras (c. 570 BCE—495 BCE)

FIELD
Applied geometry

BEFORE

c. 1800 BCE The columns of cuneiform numbers on the Plimpton 322 clay tablet
from Babylon include some numbers related to Pythagorean triples.

6th century BCE Greek philosopher Thales of Miletus proposes a non-
mythological explanation of the Universe— pioneering the idea that nature can
be interpreted by reason.

AFTER

c. 380 BCE In the tenth book of his Republic, Plato espouses Pythagoras’s theory
of the transmigration of souls.

c. 300 BcE Euclid produces a formula to find sets of primitive Pythagorean
triples.

The 6th-century BCE Greek philosopher Pythagoras is also antiquity’s most
famous mathematician. Whether or not he was responsible for all the many
achievements attributed to him in math, science, astronomy, music, and medicine,
there is no doubt that he founded an exclusive community that lived for the
pursuit of mathematics and philosophy, and regarded numbers as the sacred
building blocks of the Universe.
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Thales of Miletus, one of the Seven Sages of ancient Greece, possibly inspired the younger
Pythagoras with his geometrical and scientific ideas. They may have met in Egypt.

Angles and symmetry

The Pythagoreans were masters of geometry and knew that the sum of the three
angles of a triangle (180°) is equal to the sum of two right angles (90° + 90°), a
fact which two centuries later was described by Euclid as the triangle postulate.
Pythagoras’s followers were also aware of some of the regular polyhedra; these
are the perfectly symmetrical three-dimensional shapes (such as the cube) that
were later known as the Platonic solids.

Pythagoras himself is primarily associated with the formula that describes the
relationship between the sides of a right-angled triangle. Widely known as
Pythagoras’s theorem, it states that a> + b> = ¢?, where c is the longest side of the
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triangle (the hypotenuse), and a and b represent the other two, shorter sides that
are adjacent to the right angle. For example, a right-angled triangle with two
shorter sides of lengths 3in and 4in will have a hypotenuse of length 5in. The
length of this hypotenuse is found because 32 + 4% = 52 (9 + 16 = 25). Such sets of

whole-number solutions to the equation a? + b? = ¢?

are known as Pythagorean
triples. Multiplying the triple 3, 4, and 5 by 2 produces another Pythagorean
triple: 6, 8, and 10 (36 + 64 = 100). The set 3, 4, 5 is called a “primitive”
Pythagorean triple because its components share no common divisor larger than

1. The set 6, 8, 10 is not primitive as its components share the common divisor 2.

There is good evidence that the Babylonians and the Chinese were well aware of
the mathematical relationship between sides of a right-angled triangle centuries
before Pythagoras’s birth. However, Pythagoras is believed to have been the first
to prove the truth of the formula that states this relationship, and its validity for all
right-angled triangles, which is why the theorem takes his name.

Pythagorean triples

The sets of three integers that solve the equation a’

+ b? = ¢? are known as Pythagorean triples, although
their existence was known long before Pythagoras.
Around 1800 BcE, the Babylonians recorded sets of
Pythagorean numbers on the Plimpton 322 clay
tablet; these show that triples become more spread
out as the number line progresses. The Pythagoreans

The smallest, or most developed methods for finding sets of triples, and

primitive, of the also proved that there are an infinite number of such
Pythagorean triples is a sets. After many of Pythagoras’s schools were
triangle with side lengths destroyed in a 6th-century BCE political purge,

3, 4, and 5. As this graphic
shows, 9 plus 16 equals
25.

Pythagoreans emigrated to other parts of southern
Italy, spreading their knowledge of triples across the
ancient world. Two centuries later, Euclid developed

2 _n?, b=2mn, c = m? + n?. With certain

a formula to generate triples: a = m
exceptions, m and n can be any two integers, such as 7 and 4, which produce the
triple 33, 56, 65 (332 + 562 = 652). The formula dramatically sped up the

process of finding new Pythagorean triples.

50



The graphic above demonstrates why the Pythagorean equation (a?+ b?= ¢?) works. Within a
large square there are four right-angled triangles of equal size (sides labeled a, b, and c). They
are arranged so that a tilted square is formed in the middle, by the hypotenuses (c sides) of the
four triangles.

Journeys of discovery

Pythagoras was well-traveled, and the ideas he absorbed from other countries
undoubtedly fueled his mathematical inspiration. Hailing from Samos, which was
not far from Miletus in western Anatolia (present-day Turkey), he may have
studied at the school of Thales of Miletus under the philosopher Anaximander. He
embarked on his travels at the age of 20, and spent many years away. He is
thought to have visited Phoenicia, Persia, Babylon, and Egypt, and may also have
reached India. The Egyptians knew that a triangle with sides of 3, 4, and 5 (the
first Pythagorean triple) would produce a right angle, so their surveyors used
ropes of these lengths to construct perfect right angles for their building projects.
Observing this method firsthand may have encouraged Pythagoras to study and
prove the underlying mathematical theorem. In Egypt, Pythagoras may also have
met Thales of Miletus, a keen geometrician, who calculated the heights of
pyramids and applied deductive reasoning to geometry.

Reason is immortal, all else is mortal.

Pythagoras
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A Pythagorean community

After 20 years of traveling, Pythagoras eventually settled in Croton (now
Crotone), southern Italy, a city with a large Greek population. There, he
established the Pythagorean brotherhood— a community to whom he could teach
both his mathematical and philosophical beliefs. Women were welcome in the
brotherhood, and formed a significant part of its 600 members. When they joined,
members were obliged to give all their possessions and wealth to the brotherhood,
and also swore to keep its mathematical discoveries secret. Under Pythagoras’s
leadership, the community gained considerable political influence.

As well as his theorem, Pythagoras and his close-knit community made
numerous other advances in mathematics, but carefully guarded that knowledge.
Among their discoveries were polygonal numbers: these, when represented by
dots, can form the shapes of regular polygons. For example, 4 is a polygonal
number as 4 dots can form a square, and 10 is a polygonal number as 10 dots can
form a triangle with 4 dots at the base, 3 dots on the next row, 2 on the next, and 1
dot at the top of the triangle (4 + 3 + 2 + 1 = 10).

Two millennia after Pythagoras, in 1638, Pierre de Fermat enlarged on this idea
when he asserted that any number could be written as the sum of up to k k-gonal
numbers; in other words, every single number is the sum of up to 3 triangular
numbers, up to 4 square numbers, or up to 5 pentagonal numbers, and so on. For
example, 19 can be written as the sum of three triangular numbers: 1 + 3 + 15 =
19. Fermat could not prove this conjecture; it was only in 1813 that French
mathematician Augustin-Louis Cauchy completed the proof.

Strength of mind rests in sobriety; for this keeps your reason unclouded by passion.

Pythagoras
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Fascinated by numbers

Another type of number that excited Pythagoras was the perfect number. It was so
called because it is the exact sum of all the divisors less than itself. The first
perfect number is 6, as its divisors 1, 2, and 3 add up to 6. The second is 28 (1 + 2
+ 4+ 7 + 14 = 28), the third 496, and the fourth 8,128. There was no practical
value in identifying such numbers, but their quirkiness and the beauty of their
patterns fascinated Pythagoras and his brotherhood.

By contrast, Pythagoras was said to have an overwhelming fear and disbelief of
irrational numbers, numbers that cannot be expressed as fractions of two integers,
the most famous example being . Such numbers had no place among the well-
ordered integers and fractions by which Pythagoras claimed the Universe was
governed. One story suggests that his fear of irrational numbers drove his
followers to drown a fellow Pythagorean—Hippasus— for revealing their

existence when attempting to find

Pythagoras’s reputation for ruthlessness is also highlighted in a story about a
member of the brotherhood who was executed for publicly disclosing that the
Pythagoreans had discovered a new regular polyhedron. The new shape was
formed from 12 regular pentagons, and known as the dodecahedron—one of the
five Platonic solids. Pythagoreans revered the pentagon, and their symbol was the
pentagram, a five-pointed star with a pentagon at its center. Breaking the
brotherhood’s rule of secrecy by revealing their knowledge of the dodecahedron
would therefore have been an especially heinous crime, punishable by death.

The finest type of man gives himself up to discovering the meaning and purpose of life itself...
this is the man I call a philosopher.

Pythagoras
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In The School of Athens, painted by Raphael in 1509-11 for the Vatican in Rome,
Pythagoras is shown with a book, surrounded by scholars eager to learn from him.

I have often admired the mystical way of Pythagoras, and the secret magick of numbers.
Sir Thomas Browne

English polymath

An integrated philosophy

In ancient Greece, mathematics and philosophy were considered complementary
subjects and were studied together. Pythagoras is credited with coining the term
“philosopher,” from the Greek philos (“love”) and sophos (“wisdom™). For
Pythagoras and his successors, the duty of a philosopher was the pursuit of
wisdom.
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Pythagoras’s own brand of philosophy integrated spiritual ideas with
mathematics, science, and reasoning. Among his beliefs was the idea of
metempsychosis, which he may have encountered on his travels in Egypt or
elsewhere in the Middle East. This held that souls are immortal and at death
transmigrate to occupy a new body. In Athens two centuries later, Plato was
entranced by the idea and included it in many of his dialogues. Later, Christianity,
too, embraced the idea of a division between body and soul; and Pythagoras’s
ideas would become a core part of Western thought.

Importantly for mathematics, Pythagoras also believed that everything in the
Universe related to numbers and obeyed mathematical rules. Certain numbers
were endowed with characteristics and spiritual significance in what amounted to
a kind of number worship, and Pythagoras and his followers sought mathematical
patterns in everything around them.

Numbers in harmony

Music was of great importance to Pythagoras. He is said to have considered it a
holy science, rather than something simply to be used for entertainment. It was a
unifying element in his concept of Harmonia, the joining together of the cosmos
and the psyche. This may be why he is credited with discovering the link between
mathematical ratios and harmony. It is said that, while walking past a
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blacksmith’s forge, he noticed that different notes were produced when hammers
of unequal weight were struck against equal lengths of metal. If the weights of the
hammers were in exact and particular proportions, their resulting notes were
harmonic.

The hammers in the forge had individual weights of 6, 8, 9, and 12 units. Those
weighing 6 and 12 units sounded the same notes at different pitches; in today’s
music terminology they would be said to be an octave apart. The frequency of the
note produced by the hammer of weight 6 was double that of the hammer
weighing 12, which corresponds with the ratio of their weights. The hammers of
weights 12 and 9 produced a harmonious sound—a perfect fourth—as their
weights were in the ratio 4:3. The notes made by the hammers of weights 12 and
8 were also harmonious—a perfect fifth—as their weights were in the ratio 3:2. In
contrast, the hammers of weights 9 and 8 were dissonant, as 9:8 is not a simple
mathematical ratio. By noticing that harmonious musical notes were connected to
numerical ratios, Pythagoras was the first to uncover the relationship between
mathematics and music.

Pythagoras was reputedly an excellent lyre player. This drawing of ancient Greek musicians
illustrates two members of the lyre family— the trigonon (left) and the cithara.

Creating a musical scale
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Although scholars have questioned the story of the forge, Pythagoras is also
widely credited with another musical discovery. He is said to have experimented
with notes produced by lyre strings of different lengths. He found that while a
vibrating string produces a note with frequency f, halving the length of the string
produces a note an octave higher, with frequency 2f. When Pythagoras used the
same ratios that produced harmoniously sounding hammers, and applied them to
vibrating strings, he similarly produced notes in harmony with one another.
Pythagoras then constructed a musical scale, starting with one note and the note
an octave above it, filling in the notes between using perfect fifths.

This scale was used until the 1500s, when it was replaced by the even-tempered
scale, in which the notes between the two octaves are more evenly spaced.
Although the Pythagorean scale worked well for music lying within one octave, it
was not suited for more modern music, which was written in different keys and
extended across several octaves.

While there have been many different types of musical scales in use by different
cultures, the long tradition of Western music dates back to the Pythagoreans and
their quest to understand the relationship between music and mathematical
proportions.

The numerology of the Divine Comedy by Dante (1265-1331)—pictured here in a fresco
from the Duomo in Florence, Italy—reflects the influence of Pythagoras, whom Dante
mentions several times in his writings.
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The legacy of Pythagoras

Pythagoras’s status as the most famous mathematician from antiquity is justified
by his contributions to geometry, number theory, and music. His ideas were not
always original, but the rigor with which he and his followers developed them,
using axioms and logic to build a system of mathematics, was a fine legacy for
those who succeeded him.

There is geometry in the humming of the strings, there is music in the spacing of the spheres.

Pythagoras

PYTHAGORAS

Pythagoras was born around 570 BCE on the Greek
island of Samos in the eastern Aegean Sea. His ideas
have influenced many of the greatest scholars in
history, from Plato to Nicolaus Copernicus, Johannes
Kepler, and Isaac Newton. Pythagoras is thought to
have traveled widely, assimilating ideas from scholars
in Egypt and elsewhere in the Middle East before
establishing his community of around 600 people in
Croton, southern Italy, around 518 BCE. This ascetic brotherhood required its
members to live for intellectual pursuits, while following strict rules of diet and
clothing. It is from this time onward that his theorem and other discoveries were
probably set down, although no records remain. At the age of 60, Pythagoras is
said to have married a young member of the community, Theano, and perhaps
had two or three children. Political upheaval in Croton led to a revolt against the
Pythagoreans. Pythagoras may have been killed when his school was set on fire,
or shortly afterward. He is said to have died around 495 BCE.

See also: Irrational numbers ¢ The Platonic solids ¢ Syllogistic logic * Calculating
pi * Trigonometry * The golden ratio * Projective geometry
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IN CONTEXT

KEY FIGURE
Hippasus (5th century BCE)

FIELD

Number systems

BEFORE

19th century BCE Cuneiform inscriptions show that the Babylonians
constructed right-angled triangles and understood their properties.

6th century BCE In Greece, the relationship between the side lengths of a right-
angled triangle is discovered, and is later attributed to Pythagoras.

AFTER

400 BCE Theodorus of Cyrene proves the irrationality of the square roots of the
nonsquare numbers between 3 and 17.

4th century BCE The Greek mathematician Eudoxus of Cnidus establishes a
strong mathematical foundation for irrational numbers.

Any number that can be expressed as a ratio of two integers—a fraction, a
decimal that either ends or repeats in a recurring pattern, or a percentage—is said
to be a rational number. All whole numbers are rational as they can be shown as
fractions divided by 1. Irrational numbers, however, cannot be expressed as a
ratio of two numbers

Hippasus, a Greek scholar, is believed to have first identified irrational numbers
in the 5th century BCE, as he worked on geometrical problems. He was familiar
with Pythagoras’s theorem, which states that the square of the hypotenuse in a
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right-angled triangle is equal to the sum of the squares of the other two sides. He
applied the theorem to a right-angled triangle that has both shorter sides equal to
1. As 12 + 12 = 2, the length of the hypotenuse is the square root of 2.

Hippasus realized, however, that the square root of 2 could not be expressed as
the ratio of two whole numbers—that is, it could not be written as a fraction, as
there is no rational number that can be multiplied by itself to produce precisely 2.
This makes the square root of 2 an irrational number, and 2 itself is termed
nonsquare or square-free. The numbers 3, 5, 7, and many others are similarly
nonsquare and in each case, their square root is irrational. By contrast, numbers
such as 4 (2%), 9 (3%), and 16 (4?) are square numbers, with square roots that are
also whole numbers and therefore rational.

The concept of irrational numbers was not readily accepted, although later Greek
and Indian mathematicians explored their properties. In the Sth century, Arab
scholars used them in algebra.

Hippasus may have encountered irrational numbers while exploring the relationship between
the length of the side of a pentagon and one side of a pentagram formed inside it. He found
that it was impossible to express it as a ratio between two whole numbers.

In decimal terms
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The positional decimal system of Hindu—Arabic numeration allowed further study
of irrational numbers, which can be shown as an infinite series of digits after the
decimal point with no recurring pattern. For example, 0.1010010001... with an
extra zero between each successive pair of 1s, continuing indefinitely, is an
irrational number. Pi (1), which is the ratio of the circumference of a circle to its
diameter, is irrational. This was proved in 1761 by Johann Heinrich Lambert—
earlier estimations of m had been 3 or 2%,

Between any two rational numbers, another rational number can always be
found. The average of the two numbers will also be rational, as will the average of
that number and either of the original numbers. Irrational numbers can also be
found between any two rational numbers. One method is to change a digit in a
recurring sequence. For example, an irrational number can be found between the
recurring numbers 0.124124... and 0.125125... by changing 1 to 3 in the second
cycle of 124, to give 0.124324..., and doing so again at the fifth, then ninth cycle,
increasing the gap between the replacement 3s by one cycle each time.

One of the great challenges of modern number theory has been establishing
whether there are more rational or irrational numbers. Set theory strongly
indicates that there are many more irrational numbers than rational numbers, even
though there are infinite numbers of each.
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HIPPASUS

Details of Hippasus’s early life are sketchy, but it is
thought that he was born in Metapontum, in Magna
Graecia (now southern Italy), around 500 BCE.
According to the philosopher lamblichus, who wrote a
biography of Pythagoras, Hippasus was a founder of a
Pythagorean sect called the Mathematici, which
fervently believed that all numbers were rational.

Hippasus is usually credited with discovering irrational numbers, an idea that
would have been considered heresy by the sect. According to one story,
Hippasus drowned when his fellow Pythagoreans threw him over the side of a
boat in disgust. Another story suggests that a fellow Pythagorean discovered
irrational numbers, but Hippasus was punished for telling the outside world
about them. The year of Hippasus’s death is not known but is likely to have
been in the 5th century BCE.

Key work

5th century BCE Mystic Discourse

See also: Positional numbers * Quadratic equations * Pythagoras * Imaginary and
complex numbers ¢ Euler’s number
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IN CONTEXT

KEY FIGURE
Zeno of Elea (c. 495-430 BCE)

FIELD

Logic

BEFORE

Early 5th century BCE The Greek philosopher Parmenides founds the Eleatic
school of philosophy in Elea, a Greek colony in southern Italy.

AFTER

350 BCE Aristotle produces his treatise Physics, in which he draws on the
concept of relative motion to refute Zeno’s paradoxes.

1914 British philosopher Bertrand Russell, who described Zeno’s paradoxes as
immeasurably subtle, states that motion is a function of position with respect to
time.
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Zeno of Elea belonged to the Eleatic school of philosophy that flourished in
ancient Greece in the 5th century BCE. In contrast to the pluralists, who believed
that the Universe could be divided into its constituent atoms, Eleatics believed in
the indivisibility of all things.

Zeno wrote 40 paradoxes to show the absurdity of the pluralist view. Four of
these—the dichotomy paradox, Achilles and the tortoise, the arrow paradox, and
the stadium paradox—address motion. The dichotomy paradox shows the
absurdity of the pluralist view that motion can be divided. A body moving a
certain distance, it says, would have to reach the halfway point before it arrived at
the end, and in order to reach that halfway mark, it would first have to reach the
quarter-way mark, and so on ad infinitum. Because the body has to pass through
an infinite number of points, it would never reach its goal.

In the paradox of Achilles and the tortoise, Achilles, who is 100 times faster than
the tortoise, gives the creature a head start of 100 meters in a race. At the sound of
the starting signal, Achilles runs 100 meters to reach the tortoise’s starting point,
while the tortoise runs 1 meter, giving it a 1 meter lead. Undeterred, Achilles runs
another meter; however, in the same time, the tortoise runs one-hundredth of a
meter, so it is still in the lead. This continues, and Achilles never catches up.

The stadium paradox concerns three columns of people, each containing an equal
number of people; one group is at rest, while the other two run past each other at
the same speed in opposite directions. According to the paradox, a person in one
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moving group can pass two people in the other moving group in a fixed time, but

only one person in the stationary group. The paradoxical conclusion is that half a
given time is equivalent to double that time.

Over the centuries, many mathematicians have refuted the paradoxes. The
development of calculus allowed mathematicians to deal with infinitesimal
quantities without resulting in contradiction.

The paradox of Achilles and the tortoise maintains that a fast object, such as Achilles, will

never catch up with a slow one, such as a tortoise. Achilles will get closer to the tortoise, but
never actually overtake it.

ZENO OF ELEA

Zeno of Elea was born around 495 BCE in the Greek city of Elea (now Velia, in
southern Italy). At a young age, he was adopted by the philosopher Parmenides,
and was said to have been “beloved” by him. Zeno was inducted into the school
of Eleatic thought, founded by Parmenides. At the age of around 40, Zeno
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traveled to Athens, where he met Socrates. Zeno
introduced the Socratic philosophers to Eleatic ideas.

Zeno was renowned for his paradoxes, which
contributed to the development of mathematical rigor.
Aristotle later described him as the inventor of the
dialectical method (a method starting from two
opposing viewpoints) of logical argument. Zeno
collected his arguments in a book, but this did not survive. The paradoxes are
known from Aristotle’s treatise Physics, which lists nine of them.

Although little is known of Zeno’s life, the ancient Greek biographer Diogenes
claimed he was beaten to death for trying to overthrow the tyrant Nearchus. In a

clash with Nearchus, Zeno is reported to have bitten off the man’s ear.

See also: Pythagoras * Syllogistic logic ¢ Calculus ¢ Transfinite numbers ¢ The
logic of mathematics * The infinite monkey theorem
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IN CONTEXT

KEY FIGURE
Plato (c. 428-348 BCE)

FIELD

Geometry
BEFORE
6th century BCE Pythagoras identifies the tetrahedron, cube, and dodecahedron.

4th century BCE Theaetetus, an Athenian contemporary of Plato, discusses the
octahedron and icosahedron.

AFTER
c. 300 BcE Euclid’s Elements fully describes the five regular convex polyhedra.

1596 German astronomer Johannes Kepler proposes a model of the Solar
System, explaining it geometrically in terms of Platonic solids.

1735 Leonhard Euler devises a formula that links the faces, vertices, and edges
of polyhedra.
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The perfect symmetry of the five Platonic solids was probably known to scholars
long before the Greek philosopher Plato popularized the forms in his dialogue
Timaeus, written in c. 360 BCE. Each of the five regular convex polyhedra—3-D
shapes with flat faces and straight edges—has its own set of identical polygonal
faces, the same number of faces meeting at each vertex, as well as equilateral
sides, and same-sized angles. Theorizing on the nature of the world, Plato
assigned four of the shapes to the classical elements: the cube (also known as a
regular hexahedron) was associated with earth; the icosahedron with water; the
octahedron with air; and the tetrahedron with fire. The 12-faced dodecahedron
was associated with the heavens and its constellations.

Composed of polygons

Only five regular polyhedra are possible—each one created either from identical
equilateral triangles, squares, or regular pentagons, as Euclid explained in Book
XIII of his Elements. To create a Platonic solid, a minimum of three identical
polygons must meet at a vertex, so the simplest is a tetrahedron— a pyramid
made up of four equilateral triangles. Octahedra and icosahedra are also formed
with equilateral triangles, while cubes are created from squares, and dodecahedra
are constructed with regular pentagons.

Platonic solids also display duality: the vertices of one polyhedron correspond to
the faces of another. For example, a cube, which has six faces and eight vertices,
and an octahedron (eight faces and six vertices) form a dual pair. A dodecahedron
(12 faces and 20 vertices), and an icosahedron (20 faces and 12 vertices) form
another dual pair. Tetrahedra, which have four faces and four vertices, are said to
be self-dual.

Shapes in the Universe?
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Like Plato, later scholars sought Platonic solids in nature and the Universe. In
1596, Johannes Kepler reasoned that the positions of the six planets then known
(Mercury, Venus, Earth, Mars, Jupiter, and Saturn) could be explained in terms of
the Platonic solids. Kepler later acknowledged he was wrong, but his calculations
led him to discover that planets have elliptical orbits.

In 1735, Swiss mathematician Leonhard Euler noted a further property of
Platonic solids, later shown to be true for all polyhedra. The sum of the vertices
(V) minus the number of edges (E) plus the number of faces (F) always equals 2,
thatis, V-E + F = 2.

It is also now known that Platonic solids are indeed found in nature—in certain
crystals, viruses, gases, and the clustering of galaxies.

PLATO

Born around 428 BCE to wealthy Athenian parents,
Plato was a student of Socrates, who was also a family
friend. Socrates’ execution in 399 BCE deeply affected
Plato and he left Greece to travel. During this period
his discovery of the work of Pythagoras inspired a
love of mathematics. Returning to Athens, in 387 BCE
he founded the Academy, inscribing over its entrance
the words “Let no one ignorant of geometry enter
here.” Teaching mathematics as a branch of philosophy, Plato emphasized the
importance of geometry, believing that its forms—especially the five regular
convex polyhedra—could explain the properties of the Universe. Plato found
perfection in mathematical objects, believing they were the key to
understanding the differences between the real and the abstract. He died in
Athens around 348 BCE.

Key works

c. 375 BCE The Republic
c. 360 BCE Philebus

c. 360 BCE Timaeus

See also: Pythagoras ¢ Euclid’s Elements * Conic sections ¢ Trigonometry * Non-
Euclidean geometries *« Topology * The Penrose tile
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IN CONTEXT

KEY FIGURE
Aristotle (384-322 BCE)

FIELD

Logic

BEFORE

6th century BCE Pythagoras and his followers develop a systematic method of
proof for geometric theorems.

AFTER

¢. 300 BCE Euclid’s Elements describes geometry in terms of logical deduction
from axioms.

1677 Gottfried Leibniz suggests a form of symbolic notation for logic,
anticipating the development of mathematical logic.

1854 George Boole publishes The Laws of Thought, his second book on
algebraic logic.

1884 The Foundations of Arithmetic by German mathematician Gottlob Frege
examines the logical principles underpinning mathematics.
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In the Square of Opposition, S is a subject, such as “sugar,” and P a predicate, such as
“sweet.” A and O are contradictory, as are E and I (if one is true, the other is false, and vice
versa). A and E are contrary (both cannot be true but both can be false); I and O are
subcontrary: both can be true but both cannot be false. I is a subaltern of A and O is a
subaltern of E. In syllogistic logic, this means that if A is true, I must be true, but that if I is
false, A must be false as well.

In Classical Greece, there was no clear distinction between mathematics and
philosophy; the two were considered interdependent. For philosophers, one
important principle was the formulation of cogent arguments that followed a
logical progression of ideas. The principle was based on Socrates’ dialectal
method of questioning assumptions to expose inconsistencies and contradictions.
Aristotle, however, did not find this model entirely satisfactory, so he set about
determining a systematic structure for logical argument. First, he identified the
different kinds of proposition that can be used in logical arguments, and how they
can be combined to reach a logical conclusion. In Prior Analytics, he describes
the propositions as being of broadly four types, in the form of “all S are P,” “no S
are P,” “some S are P,” and “some S are not P,” where S is a subject, such as
sugar, and P the predicate—a quality, such as sweet. From just two such
propositions an argument can be constructed and a conclusion deduced. This is, in
essence, the logical form known as the syllogism: two premises leading to a
conclusion. Aristotle identified the structure of syllogisms that are logically valid,
those where the conclusion follows from the premises, and those that are not,
where the conclusion does not follow from the premises, providing a method for
both constructing and analyzing logical arguments.
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Seeking a rigorous proof

Implicit in his discussion of valid syllogistic logic is the process of deduction,
working from a general rule in the major premise, such as “All men are mortal,”
and a particular case in the minor premise, such as “Aristotle is a man,” to reach a
conclusion that necessarily follows—in this case, “Aristotle is mortal.” This form
of deductive reasoning is the foundation of mathematical proofs.

Aristotle notes in Posterior Analytics that, even in a valid syllogistic argument, a
conclusion cannot be true unless it is based on premises accepted as true, such as
self-evident truths or axioms. With this idea, he established the principle of
axiomatic truths as the basis for a logical progression of ideas—the model for
mathematical theorems from Euclid onward.

ARISTOTLE

The son of a physician at the Macedonian court, Aristotle was born in 384 BCE,
in Stagira, Chalkidiki. At the age of about 17, he left to study at Plato’s
Academy in Athens, where he excelled. Soon after Plato’s death, anti-
Macedonian prejudice forced him to leave Athens. He continued his academic
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work in Assos (now in Turkey). In 343 BcCE, Philip II
recalled him to Macedonia to head the school at the
court; one of his students was Philip’s son, later
known as Alexander the Great.

In 335 BCE, Aristotle returned to Athens and founded
the Lyceum, a rival institution to the Academy. In 323
BCE, after Alexander’s death, Athens again became
fiercely anti-Macedonian, and Aristotle retired to his family estate in Chalcis, on
Euboea. He died there in 322 BCE.

Key works

c. 350 BCE Prior Analytics

c. 350 BCE Posterior Analytics

c. 350 BCE On Interpretation
335-323 BCE Nichomachean Ethics
335-323 BCE Politics

See also: Pythagoras * Zeno’s paradoxes of motion * Euclid’s Elements * Boolean
algebra * The logic of mathematics
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IN CONTEXT

KEY FIGURE
Euclid (c. 300 BCE)

FIELD

Geometry

BEFORE

c. 600 BCE The Greek philosopher, mathematician, and astronomer Thales of
Miletus deduces that the angle inscribed inside a semicircle is a right angle. This
becomes Proposition 31 of Euclid’s Elements.

c. 440 BCE The Greek mathematician Hippocrates of Chios writes the first
systematically organized geometry textbook, Elements.

AFTER

c. 1820 Mathematicians such as Carl Friedrich Gauss, Janos Bolyai, and Nicolai
Ivanovich Lobachevsky begin to move toward hyperbolic non-Euclidean
geometry.

Euclid’s Elements has a strong claim for being the most influential mathematical
work of all time. It dominated human conceptions of space and number for more
than 2,000 years and was the standard geometrical textbook until the start of the
1900s.

Euclid lived in Alexandria, Egypt, in around 300 BCE, when the city was part of
the culturally rich Greek-speaking Hellenistic world that flourished around the
Mediterranean Sea. He would have written on papyrus, which is not very durable;
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all that remains of his work are the copies, translations, and commentaries made

by later scholars.

There is no royal road to geometry.

Euclid

Collection of works

The Elements is a collection of 13 books that range widely in subject matter.
Books I to IV tackle plane geometry—the study of flat surfaces. Book V
addresses the idea of ratio and proportion, inspired by the thinking of the Greek
mathematician and astronomer Eudoxus of Cnidus. Book VI contains more
advanced plane geometry. Books VII to IX are devoted to number theory and
discuss the properties and relationships of numbers. The long and difficult Book
X deals with incommensurables. Now known as irrational numbers, these
numbers cannot be expressed as a ratio of integers. Books XI to XIII examine
three-dimensional solid geometry.

Book XIII of the Elements is actually attributed to another author—Athenian
mathematician and disciple of Plato, Theaetetus, who died in 369 BCE. It covers
the five regular convex solids—the tetrahedron, cube, octahedron, dodecahedron,
and icosahedron, which are often called the Platonic solids—and is the first
recorded example of a classification theorem (one that itemizes all possible
figures given certain limitations).

Euclid is known to have written an account of conic sections, but this work has
not survived. Conic sections are figures formed from the intersection of a plane
and a cone and they may be circular, elliptical, or parabolic in shape.

EUCLID

Details of Euclid’s date and place of birth are
unknown and knowledge of his life is scant. It is
thought that he studied at the Academy in Athens,
which had been founded by Plato. In the 5th century
CE, the Greek philosopher Proclus wrote in his history
of mathematicians that Euclid taught at Alexandria
during the reign of Ptolemy I Soter (323-285 BCE).
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Euclid’s work covers two areas: elementary geometry and general
mathematics. In addition to the Elements, he wrote about perspective, conic
sections, spherical geometry, mathematical astronomy, number theory, and the
importance of mathematical rigor. Several of the works attributed to Euclid
have been lost, but at least five have survived to the 21st century. It is thought
that Euclid died between the mid-4th century and the mid-3rd century BCE.

Key works

Elements
Conics
Catoptrics
Phaenomena

Optics

World of proof

The title of Euclid’s work has a particular meaning that reflects his mathematical
approach. In the 1900s, British mathematician John Fauvel maintained that the
meaning of the Greek word for “element,” stoicheia, changed over time, from “a
constituent of a line,” such as an olive tree in a line of trees, to “a proposition
used to prove another,” and eventually evolved to mean “a starting point for many
other theorems.” This is the sense in which Euclid used it. In the 5th century CE,
the philosopher Proclus talked of an element as “a letter of an alphabet,” with
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combinations of letters creating words in the same way that combinations of
axioms—statements that are self-evidently true—create propositions.

This opening page of Euclid’s Elements shows illuminated Latin text with diagrams and
comes from the first printed edition, produced in Venice in 1482.

Logical deductions

Euclid was not writing in a vacuum; he built upon foundations laid by a number
of influential Greek mathematicians who came before him. Thales of Miletus,
Hippocrates, and Plato (among others) had all begun to move toward the
mathematical mindset that Euclid so brilliantly formalized: the world of proof. It
is this that makes Euclid unique; his writings are the earliest surviving example of
fully axiomatized mathematics. He identified certain basic facts and progressed
from there to statements that were sound logical deductions (propositions). Euclid
also managed to assemble all the mathematical knowledge of his day, and
organize it into a mathematical structure where the logical relationships between
the various propositions were carefully explained.
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Euclid faced a Herculean task when he attempted to systematize the mathematics
that lay before him. In devising his axiomatic system, he began with 23
definitions for terms such as point, line, surface, circle, and diameter. He then put
forward five postulates: any two points can be joined with a straight line segment;
any straight line segment can be extended to infinity; given any straight line
segment, a circle can be drawn having the segment as its radius and one endpoint
as its center; all right angles are equal to one another; and a postulate about
parallel lines (see Euclid’s five postulates).

He then went on to add five axioms, or common notions; if A = B and B = C,
thenA=C;ifA=BandC=D,A+C=B+D;ifA=Band C=D, thenA-C =
B - D; if A coincides with B, then A and B are equal; and the whole of A is
greater than part of A.

To prove Proposition 1, Euclid drew a line with endpoints labeled A and B.
Taking each endpoint as a center, he then drew two intersecting circles, so that
each had the radius AB. This used his third postulate. Where the circles met, he
called that point C, and he could draw two more lines AC and BC, calling on his
first postulate. The radius of the two circles is the same, so AC = AB and BC =
AB; this means that AC = BC, which is Euclid’s first axiom (things that are equal
to the same thing are also equal to one another). It follows that AB = BC = CA,
meaning that he had drawn an equilateral triangle on AB.

In Latin translations of Elements, deductions end with the letters QEF (quod erat
faciendum, meaning “which was to be [and has been] done.” Logical proofs end
with QED (quod erat demonstrandum, meaning “which was to be [and has been]
demonstrated”).

The equilateral triangle construction is a good example of Euclid’s method. Each
step has to be justified by reference to the definitions, the postulates, and the
axioms. Nothing else can be taken as obvious, and intuition is regarded as
potentially suspect.

Euclid’s very first proposition was criticized by later writers. They noted, for
instance, that Euclid did not justify or explain the existence of C, the point of
intersection of the two circles. Although apparent, it is not mentioned in his
preliminary assumptions. Postulate 5 talks about a point of intersection, but that is
between two lines, and not two circles. Similarly, one of the definitions describes
a triangle as a plane figure bounded by three lines, which all lie in that plane.
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However, it seems that Euclid did not explicitly show that the lines AB, BC, and
CA lie in the same plane.

Postulate 5 is also known as the “parallel postulate” because it can be used to
prove properties of parallel lines. It says that if a straight line crossing two straight
lines (A, B) creates interior angles on one side that total less than two right angles
(180°), lines A and B will eventually cross on that side, if extended indefinitely.
Euclid did not use it until Proposition 29, in which he stated that one condition for
a straight line crossing two parallel lines was that the interior angles on the same
side were equal to two right angles. The fifth postulate is more elaborate than the
other four, and Euclid himself seems to have been wary of it.

A vital part of any axiomatic system is to have enough axioms, and postulates in
the case of Euclid, to derive every true proposition, but to avoid superfluous
axioms that can be derived from others. Some asked whether the parallel postulate
could be proved as a proposition using Euclid’s common notions, definitions, and
the other four postulates; if it could, the fifth was unnecessary. Euclid’s
contemporaries and later scholars made unsuccessful attempts to construct such a
proof. Finally, in the 1800s, the fifth postulate was ruled both necessary for
Euclid’s geometry and independent of his other four postulates.
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To construct an equilateral triangle, for Proposition 1, Euclid drew a line and centered a
circle on its endpoints, here A and B. By drawing a line from each endpoint to C, where the
circles intersect, he created a triangle with sides AB, AC, and BC of equal length.

Geometry is knowledge of what always exists.

Plato

Beyond Euclidean geometry

The Elements also examines spherical geometry, an area explored by two of
Euclid’s successors, Theodosius of Bithynia and Menelaus of Alexandria. While
Euclid’s definition of “a point” addresses a point on the plane, a point can also be
understood as a point on a sphere.

This raises the question of how Euclid’s five postulates can be applied to the
sphere. In spherical geometry, almost all the axioms look different from the
postulates set out in Euclid’s Elements. The Elements gave rise to what is called
Euclidean geometry; spherical geometry is the first example of a non-Euclidean
geometry. The parallel postulate is not true for spherical geometry, where all pairs
of lines have points in common, nor for hyperbolic geometry, where they can
meet infinite numbers of times.

The first 16 propositions in Book 1

Proposition 1 On a given finite straight line, to construct an equilateral triangle.

Proposition 2 To place at a given point (as an extremity) a straight line equal to a
given straight line.

Proposition 3 Given two unequal straight lines, to cut off from the greater a straight
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Proposition 4

Proposition 5

Proposition 6

Proposition 7

Proposition 8

Proposition 9
Proposition 10

Proposition 11
Proposition 12
Proposition 13

Proposition 14

Proposition 15

Proposition 16

line equal to the less.

If two sides of one triangle are equal in length to two sides of another
triangle, and if the angles contained by each pair of equal sides are
equal, then the base of one triangle will equal the base of the other,
the two triangles will be of equal area, and the remaining angles in
one triangle will be equal to those in the other triangle.

In an isosceles triangle, the angles at the base are equal to one another,
and, if the equal straight lines are extended below the base, the angles
under the base will also be equal to one another.

If in a triangle two angles are equal to one another, the sides separated
from the third side by these angles will also be equal.

Given two straight lines constructed on a straight line (from its
extremities) and meeting in a point, there cannot be constructed on the
same straight line (from its extremities), and on the same side of it,
two other straight lines meeting in another point and equal to the
former two respectively, namely each to that which starts at the same
extremity.

If two sides of one triangle are equal in length to two sides of another
triangle, and the base of one triangle is equal to the base of the other,
the angles of the two triangles will also be equal.

To bisect a given rectilineal angle.
To bisect a given finite straight line.

To draw a straight line at right angles to a given straight line from a
given point on it.

To a given infinite straight line, from a given point which is not on it,
to draw a perpendicular straight line.

If a straight line set up on a straight line makes angles, it will make
either two right angles or angles equal to two right angles.

If with any straight line, and at a point on it, two straight lines not
lying on the same side and meeting at the point make adjacent angles
equal to two right angles, the two straight lines will be in a straight
line with one another.

If two straight lines cut one another, they make the vertical angles
equal to one another.

In any triangle, if one of the sides is extended, the angle between the
triangle and the extended side is greater than any of the angles inside
the triangle.

See also: Pythagoras * The Platonic solids ¢ Syllogistic logic ¢ Conic sections *

The problem of maxima ¢ Non-Euclidean geometries
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IN CONTEXT

KEY CIVILIZATION
Ancient Greeks (c. 300 BCE)

FIELD

Number systems

BEFORE

c. 18,000 BCE In Central Africa, numbers are recorded on bone as carved marks.
c. 3000 BCE South American Indians record numbers by tying knots in string.

c. 2000 Bce The Babylonians develop positional numbers.

AFTER

1202 Leonardo of Pisa (Fibonacci) commends the Hindu—Arabic number
system in Liber Abaci.

1621 In England, William Oughtred invents the slide rule, which simplifies the
use of logarithms.

1972 Hewlett Packard invents an electronic scientific calculator for personal

use.

The abacus is a counting device and calculator that has been in use since ancient
times. It comes in many forms, but all of them work on the same principles:
values of different sizes are represented by “counters” arranged in columns or
rOws.

Early abaci
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The word “abacus” may hint at its origins. It is a Latin word derived from the
ancient Greek, abax, which means “slab” or “board”— a surface that would have
been covered in sand and used as a drawing board. The oldest surviving abacus is
the Salamis Tablet, a marble slab made c. 300 BcCE that is etched with horizontal
lines. Pebbles were placed on these lines to count out values. The bottom line
represented O to 4; the line above counted 5s, and the lines above that 10s, 50s,
and so on. The tablet was discovered on the Greek island of Salamis in 1846.

Some scholars believe that the Salamis Tablet was actually Babylonian. The
Greek abax may have come from the Phoenician or Hebrew word for “dust”
(abaq) and may refer to far older counting tables developed in Mesopotamian
civilizations, where counters were set out on grids drawn in sand. The Babylonian
positional number system, developed c. 2000 BCE, may have been inspired by the
abacus.

The Romans upgraded the Greek counting table into a device that greatly
simplified calculations. The horizontal rows of the Greek abacus became vertical
columns in the Roman abacus, in which were set small pebbles—or calculi in
Latin, from which we get the word “calculation.”

A type of abacus was also in use in the pre-Columbian civilizations of Central
America. Based on a five-digit vigesimal, or base-20, counting system, it used
corn kernels threaded on strings to represent numbers. No device has survived,
but scholars think that the ancient Olmec people invented it 3,000 years ago. By
about 1000 cE, the Aztec people knew it as the nepohualtzintzin—the “personal
accounts counter”—and wore it on the wrist as a bracelet.
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The suanpan shown here is set to the number 917,470,346. The suanpan is traditionally a 2:5
abacus—each column has two “heaven” beads, each with a value of 5, and 5 “earth” beads,
each with a value of 1, giving a potential value of 15 units. This allows for calculations
involving the Chinese base-16 system, which uses 15 units rather than the 9 used in the
decimal system. Numbers can be added together by entering the units of one number, starting
from the right, then adjusting the beads as further numbers are entered. For subtraction, the
units of the first number are entered, then bead values are adjusted downward in each column
as further subtracted numbers are entered.

Double base

Around the 2nd century CE, abaci had become a common tool in China. The
Chinese abacus, or suanpan, matched the design of the Roman version, but rather
than use pebbles set in a metal frame, it employed wooden counters on rods—the
template for modern abaci. Whether the Roman or Chinese abaci came first is
unclear, but their similarities may be a coincidence, inspired by the way people
count using the five fingers of one hand. Both abaci have two decks—the lower
deck counting to five, and the upper deck counting the fives.

By the second millennium cE, the suanpan and its counting methods were
becoming widespread across Asia. In the 1300s, it was exported to Japan, where it
was called the soroban. This was slowly refined and by the 1900s, the soroban
was a 1:4 abacus (with 1 upper bead on each rod, and 4 lower beads).
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A female personification of Arithmetic judges a contest between the Roman mathematician
Boéthius, who uses numbers, and the Greek Pythagoras, who uses a counting board.

The Soroban Championship

Japanese schoolchildren still use the soroban (Japanese abacus) in mathematics
lessons as a way of developing mental arithmetic skills. The soroban is also
used for far more complex calculations. Expert soroban users can usually do
such calculations more quickly than someone punching the values into an
electronic calculator.

Every year, the best abacists from across Japan take part in the Soroban
Championship. They are tested on their speed and accuracy in a knockout
system similar to a spelling bee. One of the highlights of the event is Flash
Anzan™, a feat of mental arithmetic in which the players imagine operating an
abacus to add 15 three-digit numbers—no physical abacus is allowed. The
contestants watch the numbers appear on a big screen, flashing by faster with
each round. The 2017 world record for Flash Anzan was 15 numbers added
together in 1.68 seconds.
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See also: Positional numbers * Pythagoras * Zero ¢ Decimals * Calculus
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IN CONTEXT

KEY FIGURE
Archimedes (c. 287—c. 212 BCE)

FIELD
Number theory

BEFORE

c. 1650 BCE The Rhind papyrus, written by Middle Kingdom Egyptian scribes
as a mathematics guide, includes estimates of the value of m.

AFTER

5th century cE In China, Zu Chongzhi calculates i to seven decimal places.

1671 Scottish mathematician James Gregory develops the arctangent method for
computing . Gottfried Leibniz makes the same discovery in Germany three
years later.

2019 In Japan, Emma Haruka Iwao uses a cloud computing service to calculate
7 to more than 31 trillion decimal places.
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The fact that pi (7r)—the ratio of the circumference of a circle to its diameter,
roughly given as 3.141—cannot be expressed exactly as a decimal no matter how
many decimal places are calculated has fascinated mathematicians for centuries.
Welsh mathematician William Jones was the first to use the Greek letter m to
represent the number in 1706, but its importance for calculating the circumference
and area of a circle and the volume of a sphere has been understood for millennia.

Pi is not merely the ubiquitous factor in high school geometry problems; it is stitched across the
whole tapestry of mathematics.

Robert Kanigel

American science writer

Ancient texts

Determining pi’s exact value is not straightforward and the quest continues to find
pi’s decimal representation to as many places as possible. Two of the earliest
estimates for m are given in the ancient Egyptian documents known as the Rhind
and Moscow papyri. The Rhind papyrus, thought to have been intended for
trainee scribes, describes how to calculate the volumes of cylinders and pyramids
and also the area of a circle. The method used to find the area of a circle was to
find the area of a square with sides that are %, of the circle’s diameter. Using this
method implies that 7 is approximately 3.1605 calculated to four decimal places,
which is just 0.6 per cent greater than the most accurate known value of .

In ancient Babylon, the area of a circle was found by multiplying the square of
the circumference by %;,, implying that the value of t was 3. This value appears
in the Bible (1 Kings 7:23): “And he made the Sea of cast bronze, ten cubits from
one brim to the other; it was completely round. Its height was five cubits, and a
line of thirty cubits measured its circumference.”

In c. 250 BCE, the Greek scholar Archimedes developed an algorithm for
determining the value of m based on constructing regular polygons that exactly fit
within (inscribed), or enclosed (circumscribed), a circle. He calculated upper and
lower limits for t by using Pythagoras’s theorem—that the area of the square of
the hypoteneuse (the side opposite the right angle) in a right-angled triangle is
equal to the sum of the areas of the squares of the other two sides—to establish
the relationship between the lengths of the sides of regular polygons when the
number of sides was doubled. This enabled him to extend his algorithm to 96-
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sided polygons. Determining the area of a circle using a polygon with many sides
had been proposed at least 200 years before Archimedes, but he was the first
person to consider polygons that were both inscribed and circumscribed.

ARCHIMEDES

Born in c. 287 BCE in Syracuse, Sicily, the Greek
polymath Archimedes excelled as a mathematician
and engineer, and is also remembered for his “eureka”
moment, when he realized that the volume of water
displaced by an object is equal to the volume of that
object. Among his claimed inventions is the
Archimedes’ screw, a revolving screw-shaped blade in
a cylinder, which pushes water up a gradient.

In mathematics, he used practical approaches to establish the ratio of the
volumes of a cylinder, sphere, and cone with the same maximum radius and
height to be 3:2:1. Many consider Archimedes to be a pioneer of calculus,
which was not developed until the 1600s. He was killed by a Roman soldier
during the Siege of Syracuse in 212 BCE, despite orders that his life be spared.

Key works

c. 250 BCE On the Measurement of a Circle

c. 225 BCE On the Sphere and the Cylinder

c. 225 BCE On Spirals

Squaring the circle

Another method for estimating n, “squaring the circle,” was a popular challenge
for mathematicians in ancient Greece. It involved constructing a square with the
same area as a given circle. Using only a pair of compasses and a straight edge,
the Greeks would superimpose a square on a circle and then use their knowledge
of the area of a square to approximate to the area of a circle. The Greeks were not
successful with this method, and in the 1800s, squaring the circle was proved to
be impossible, due to m’s irrational nature. This is why attempts to achieve an
impossible task are sometimes known as “squaring the circle.”
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Another way mathematicians have attempted to square the circle is to slice it into
sections and rearrange them into a rectangular shape. The area of the rectangle is r
x 1/4,(2nr) = r x r x mr?2 (where r is the radius of the circle and 2nr is its
diameter). The area of a circle is also nr2. The smaller the segments used, the
closer the shape is to a rectangle.

Although polygons had long been used to estimate the circumference of circles, Archimedes
was the first to use inscribed (inside the circle) and circumscribed (outside the circle) regular
polygons to find upper and lower limits for m.

The works of Archimedes are, without exception, works of mathematical exposition.
Thomas L. Heath

Historian and mathematician

The quest spreads

More than 300 years after the death of Archimedes, Ptolemy (c. 100—170 cE)
determined 1 to be 3:8:30 (base-60), that is, 3 + %, + %3 99 = 3.1416, which is
just 0.007 percent greater than the closest known value of n. In China, 3 was often
used as the value of m, until became common from the 2nd century ct. The
latter is 2.1 percent greater than . In the 3rd century, Wang Fau stated that a
circle with a circumference of 142 had a diameter of 45—that is 4%/ = 3.15, just
1.4 percent more than m—while Liu Hui used a 3,072-sided polygon to estimate 1t
as 3.1416. In the 5th century, Zu Chongzhi and his son used a 24,576-sided
polygon to calculate  as 3%} 3 = 3.14159292, a level of accuracy (to seven

decimal places) not achieved in Europe until the 1500s.

In India, the mathematician—astronomer Aryabhata included a method for
obtaining m in his Aryabhatiyam astronomical treatise of 499 ce: “Add 4 to 100,
multiply by 8, and then add 62,000. By this rule the calculation of the
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circumference of a circle with a diameter of 20,000 can be approached.” This
works out as [8(100 + 4) + 62,000] +~ 20,000 = 62,832 + 20,000 = 3.1416.

Brahmagupta (c. 598-668 ck) derived square root approximations of m using
regular polygons with 12, 24, 48, and 96 sides: , , , and

respectively. Having established that n*> = 9.8696 to four decimal places,
he simplified these calculations to t = . During the 9Sth century, Arab
mathematician al-Khwarizmi used 3V, , and 92832 100 as values for m,
attributing the first value to Greece and the other two to India. English cleric
Adelard of Bath translated al-Khwarizmi’s work in the 12th century, renewing an
interest in the search for m in Europe. In 1220, Leonardo of Pisa (Fibonacci), who
popularized Hindu-Arabic numerals in his book Liber Abaci (The Book of
Calculation), 1202, computed 7 to be 864/275 = 3.141, a small improvement on
Archimedes’s approximation, but not as accurate as the calculations of Ptolemy,
Zu Chongzhi, or Aryabhata. Two centuries later, Italian polymath Leonardo da
Vinci (1452-1519) proposed making a rectangle whose length was the same as a
circle’s circuamference and whose height was half its radius to determine the area
of the circle.

Archimedes’ method used in ancient Greece for calculating m was still being
used in the late 16th century. In 1579, French mathematician Francois Viete used
393 regular polygons each with 216 sides to calculate m to 10 decimal places. In
1593, Flemish mathematician Adriaan van Roomen (Romanus) used a polygon
with 230 sides to compute 7t to 17 decimal places; three years later, German—
Dutch professor of mathematics Ludolph van Ceulen calculated 1 to 35 decimal
places.

The development of arctangent series by Scottish astronomer—mathematician
James Gregory in 1671, and independently by Gottfried Leibniz in 1674,
provided a new approach for finding m. An arctangent (arctan) series is a way of
determining the angles in a triangle from knowledge of the length of its sides, and
involves radian measure, where a full turn is 2m radians (equivalent to 360°).

Unfortunately, hundreds of terms are needed to compute 1 to even a few decimal
places using this series. Many mathematicians attempted to find more efficient
methods to calculate 1t using arctan, including Leonhard Euler in the 1700s. Then,
in 1841, British mathematician William Rutherford computed 208 digits of nt
using arctan series.
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The advent of calculators and electronic computers in the 1900s made finding the
digits of m much easier. In 1949, 2,037 digits of m were calculated in 70 hours.
Four years later, it took around 13 minutes to compute 3,089 digits. In 1961,
American mathematicians Daniel Shanks and John Wrench used arctan series to
compute 100,625 digits in under eight hours. In 1973, French mathematicians
Jean Guillaud and Martin Bouyer achieved 1 million decimal places, and in 1989,
a billion decimal places were computed by Ukrainian—American brothers David
and Gregory Chudnovsky.

In 2016, Peter Trueb, a Swiss particle physicist, used the y-cruncher software to
calculate m to 22.4 trillion digits. A new world record was set when computer
scientist Emma Haruka Iwao calculated 1 to more than 31 trillion decimal places
in March 2019.

By arranging the segments of a circle in a near-rectangular shape, it can be shown that the
area of a circle is mr?. The height of the “rectangle” is approximately equal to the radius r of
the circle, and the width is half of the circumference (half of 2nr, which is nr).

There is no end with pi. I would love to try with more digits.
Emma Haruka Iwao

Japanese computer scientist
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The perimeter to height ratio of the Great Pyramid of Giza, in Egypt, is almost exactly m,
which might suggest that ancient Egyptian architects were aware of the number.

Applying pi

Space scientists constantly use m in their
calculations. For example, the length of orbits at
different altitudes above a planet’s surface can be
worked out by using the basic principle that if the
diameter of a circle is known, its circumference can
Astrophysicists use Tt in be calculated by multiplying by n. In 2015, NASA

their calculations to scientists applied this method to compute the time it
determine the orbital paths

- took the spacecraft Dawn to orbit Ceres, a dwarf
and characteristics of

planetary bodies such as planet in the asteroid belt between Mars and Jupiter.

Saturn. When scientists at NASA's Jet Propulsion

Laboratory in California wanted to know how much
hydrogen might be available beneath the surface of Europa, one of Jupiter's
moons, they estimated the hydrogen produced in a given unit area by first
calculating Europa’s surface area, which is 4rr?, as it is for any sphere. Since
they knew Europa’s radius, calculating its surface area was easy.

It is also possible to work out the distance traveled during one rotation of Earth
by a person standing at a point on its surface using m, providing the latitude of
the person’s position is known.
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See also: The Rhind papyrus ¢ Irrational numbers * Euclid’s Elements ¢
Eratosthenes’ sieve « Zu Chongzhi ¢ Calculus * Euler’s number « Buffon’s needle
experiment
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IN CONTEXT

KEY FIGURE
Eratosthenes (c. 276—c. 194 BCE)

FIELD
Number theory

BEFORE

c. 1500 BcE The Babylonians distinguish between prime and composite
numbers.

c. 300 BCE In Elements (Book IX proposition 20), Euclid proves that there are
infinitely many prime numbers.
AFTER

Early 1800s Carl Friedrich Gauss and French mathematician Adrien-Marie
Legendre independently produce a conjecture about the density of primes.

1859 Bernhard Riemann states a hypothesis about the distribution of prime
numbers. The hypothesis has been used to prove many other theories about
prime numbers, but it has not yet been proved.
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In addition to calculating Earth’s circumference and the distances from Earth to
the Moon and Sun, the Greek polymath Eratosthenes devised a method for
finding prime numbers. Such numbers, divisible only by 1 and themselves, had
intrigued mathematicians for centuries. By inventing his “sieve” to eliminate
nonprimes—using a number grid and crossing off multiples of 2, 3, 5, and above
—Fratosthenes made prime numbers considerably more accessible.

Prime numbers have exactly two factors: 1 and the number itself. The Greeks
understood the importance of primes as the building blocks of all positive
integers. In his Elements, Euclid stated many properties of both composite
numbers (integers above one that can be made by multiplying other integers) and
primes. These included the fact that every integer can be written as a product of
prime numbers or is itself a prime. A few decades later, Eratosthenes developed
his method, which can be extended to uncover all primes. Using a number grid for
1 to 100 (see right), it is clear that 1 is not a prime number as its only factor is 1.
The first prime number—and also the only even prime—is 2. As all other even
numbers are divisible by 2, they cannot be primes, so all other primes must be
odd. The next prime, 3, has only two factors, so all the other multiples of 3 cannot
be primes. The number 4 (2 X 2) has already had its multiples removed, since they
are all even. The next prime is 5, so all other multiples of 5 cannot be prime. The
number 6 and all its multiples have been removed from the list of potential
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primes, as they are even multiples of 3. The next prime is 7, and removing its
multiples eliminates 49, 77, and 91. All the multiples of 9 have gone, as they are
multiples of 3, and all the multiples of 10 have been removed, because they are
the even multiples of 5. The multiples of 11 up to 100 have already been
removed, and so on for all successive numbers. There are only 25 prime numbers
up to 100—starting with 2, 3, 5, 7, and 11, and ending with 97—all identified by
simply removing every multiple of 2, 3, 5, and 7.

Eratosthenes’ method starts with a table of consecutive numbers. First, 1 is crossed out.
Then all multiples of 2 are crossed out except 2 itself. The same is then done for multiples of
3, 5, and 7. Multiples of any number higher than 7 are already crossed out, since 8, 9, and 10
are composites of 2, 3, and 5.

The search continues

Prime numbers attracted the attention of mathematicians from the 1600s onward,
when figures such as Pierre de Fermat, Marin Mersenne, Leonhard Euler, and
Carl Friedrich Gauss probed further into their properties.

Even in the age of computers, determining whether a large number is prime
remains highly challenging. Public key cryptography—the use of two large
primes to encrypt a message—is the basis of all internet security. If hackers ever
do figure out a simple way of determining the prime factorization of very large
numbers, a new system will need to be devised.

ERATOSTHENES

Born around 276 BCE in Cyrene, a Greek city in Libya, Eratosthenes studied in

Athens and became a mathematician, astronomer, geographer, music theorist,
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literary critic, and poet. He was the chief librarian at
the Library of Alexandria, the greatest academic
institution of the ancient world. He is known as the
father of geography for founding and naming the
subject as an academic discipline and developing
much of the geographical language used today.

Eratosthenes also recognized that Earth is a sphere
and calculated its circumference by comparing the angles of elevation of the
Sun at noon at Aswan in southern Egypt and at Alexandria in the north of the
country. In addition, he produced the first world map that featured meridian
lines, the Equator, and even polar zones. He died around 194 BCE.

Key works

Mensuram orae ad terram (On the Measurement of the Earth)

Geographika (Geography)

See also: Mersenne primes * The Riemann hypothesis ¢« The prime number
theorem ¢ Finite simple groups
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IN CONTEXT

KEY FIGURE
Apollonius of Perga (c. 262—190 BCE)

FIELD

Geometry

BEFORE

c. 300 BCE Euclid’s 13-volume Elements sets out the propositions that form the
basis of plane geometry.

c. 250 BCE In On Conoids and Spheroids, Archimedes deals with the solids
created by the revolution of conic sections about their axes.

AFTER

c. 1079 ck Persian polymath Omar Khayyam uses intersecting conics to solve
algebraic equations.

1639 In France, 16-year-old Blaise Pascal asserts that where a hexagon is
inscribed in a circle, the opposite sides of the hexagon meet at three points on a
straight line.

Of the many pioneering mathematicians produced by ancient Greece, Apollonius
of Perga was one of the most brilliant. He began studying mathematics after
Euclid’s great work Elements had emerged and he employed the Euclidian
method of taking “axioms”—statements taken to be true—as starting points for
further reasoning and proofs.

Apollonius wrote on many subjects, including optics (how light rays travel) and
astronomy, as well as geometry. Much of his work survives only in fragments, but
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his most influential, Conics, is relatively intact. It was written in eight volumes, of
which seven survive: books 1-4 in Greek, and books 57 in Arabic. The work
was designed to be read by mathematicians already well versed in geometry.

I have sent my son... to bring you... the second book of my Conics. Read it carefully and
communicate it to such others as are worthy of it.

Apollonius of Perga

A new geometry

Early Greek mathematicians such as Euclid focused on the line and circle as the
purest geometric forms. Apollonius viewed these in three-dimensional terms: if a
circle is combined with all lines that emanate from it, above or below its plane,
and those lines pass through the same fixed point—the vertex—a cone is created.
By slicing that cone in different ways, a series of curves, known as conic sections,
can be produced.

In Conics, Apollonius expounded in minute detail this new world of geometric
construction, studying and defining the properties of conic sections. He based his
workings on the assumption of two cones joined at the same vertex, with the area
of their circular bases potentially stretching to infinity. To three of the conic
sections he gave the names ellipse, parabola, and hyperbola. An ellipse occurs
when a plane intersects a cone on a slant. A parabola emerges if the cut is parallel
to the edge of the cone, and a hyperbola results when the plane is vertical.
Although he saw the circle as one of the four conic sections, it is really an ellipse
with the plane perpendicular to the axis of the cone.

[Conic sections are] the necessary key with which to attain the knowledge of the most important
laws of nature.

Alfred North Whitehead

British mathematician

Paving the way for others

In his description of these four geometric objects, Apollonius used no algebraic
formulae and no numbers. However, his view of a conic curve as a set of ordered
parallel lines emanating from an axis looked toward the later creation of
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coordinate system geometry. He did not achieve the kind of precision that would
come 1,800 years later with the work of French mathematicians René Descartes
and Pierre de Fermat, but he did get close to coordinate representations of his
conic curves. Some things held Apollonius back: he did not use negative
numbers, nor did he explicitly work with zero. So while the two-dimensional
Cartesian geometry developed by Descartes worked across four quadrants—with
both positive and negative coordinates—Apollonius effectively worked in just
one.

Apollonius’s studies inspired many of the advances in geometry seen in the
Islamic world during the Middle Ages. His work was then rediscovered in Europe
during the Renaissance, leading mathematicians to develop the analytic geometry
that helped to fuel the scientific revolution.

When a plane intersects a cone, it creates a conic section. As well as the sections described
by Apollonius, this can be a single point, where the plane cuts across the apex (top vertex), or
straight lines cutting through the apex at an angle.

APOLLONIUS OF PERGA

Little is known about the life of Apollonius. He was born in ¢.262 BCE in Perga,
a center for the worship of the goddess Artemis, in southern Anatolia (now part
of Turkey). After crossing the Mediterranean to Egypt, he was taught by
Euclidean scholars in the great cultural city of Alexandria.
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It is thought that all eight volumes of Conics were compiled while Apollonius
was in Egypt. The first volumes produced little that was not known to Euclid,
but the later works were a significant advance in geometry.

Beyond his work with conic sections, Apollonius is credited with estimating
the value of pi more accurately than his contemporary Archimedes, and with
being the first to state that

Key work

c. 200 BCE Conics

See also: Euclid’s Elements * Coordinates ¢ The area under a cycloid ¢ Projective
geometry * The complex plane « Non-Euclidean geometries ¢ Proving Fermat’s
last theorem
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IN CONTEXT

KEY FIGURE
Hipparchus (c. 190-120 BCE)

FIELD

Geometry

BEFORE
c. 1800 BcE The Babylonian Plimpton 322 tablet contains a list of Pythagorean

triples, long before Pythagoras devised his formula a? + b® = 2.

c. 1650 BCE The Egyptian Rhind papyrus includes a method for calculating the
slope of a pyramid.

6th century BCE In ancient Greece, Pythagoras discovers his theorem relating to
the geometry of triangles.

AFTER

500 ck In India, the first trigonometric tables are used.

1000 ck In the Islamic world, mathematicians are using all the various ratios
between the sides and angles of triangles.

Trigonometry, a term based on the Greek words for “triangle” and “measure,” is
of immense importance in both the historical development of mathematics and in
the modern world. Trigonometry is one of the most useful of all the mathematical
disciplines, enabling people to navigate the world, to understand electricity, and
to measure the height of mountains.

Since antiquity, civilizations have appreciated the need for right angles in
architecture. This led mathematicians to analyze the properties of right-angled
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triangles: all right-angled triangles contain two shorter sides (which may or may
not be of equal length) and a diagonal, or hypotenuse, which is longer than either
of the others; all triangles contain three angles; and right-angled triangles have
one angle of 90°.

The Plimpton tablet

In the early 1900s, an examination of triangles, dating back to around 1800 BCE,
was discovered on an ancient Babylonian clay tablet. The tablet, bought by
American publisher George Plimpton in 1923 and known as Plimpton 322, is
etched with numerical information relating to right-angled triangles. Its exact
significance is debated, but the information appears to include Pythagorean triples
(three positive numbers representing the lengths of sides of a right-angled
triangle), alongside another set of numbers that resemble the ratios of the squares
of sides. The tablet’s original purpose is unknown, but it may have been used as a
practical manual for measuring dimensions.

At around the same time as the ancient Babylonians, Egypt’s mathematicians
were developing an interest in geometry. This was driven not just by their
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monumental building program, but also by the annual flooding of the Nile River,
which required them to mark out the areas of fields each time the floods subsided.
Egyptian interest is evident in the Rhind papyrus, a scroll that contains a set of
tables relating to fractions. One of these tables poses the question: “If a pyramid is
250 cubits high and the side of its base is 360 cubits long, what is its seked?” The
word seked means slope, so the problem is purely trigonometrical.

Even if he did not invent it, Hipparchus is the first person of whose systematic use of
trigonometry we have documentary evidence.

Sir Thomas Heath

British historian of mathematics

Hipparchus sets out rules

Influenced by Babylonian theories on angles, the ancient Greeks developed
trigonometry as a branch of mathematics that was governed by definite rules
rather than the tables of numbers relied on by the earliest mathematicians. In the
2nd century BCE, the astronomer and mathematician Hipparchus, generally
regarded as the founder of trigonometry, was particularly interested in triangles
inscribed within circles and spheres, and the relationship between angles and
lengths of chords (straight lines drawn between two points on a circle—or on any
curve). Hipparchus compiled what was effectively the first true table of
trigonometric values.
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In the medieval period, astrolabes applied trigonometric principles to measure the position
of celestial bodies. Hipparchus is credited with inventing the device.

Ptolemy’s contribution

Around 300 years later, in the Egyptian city of Alexandria, the gifted Greco-
Roman polymath Claudius Ptolemaeus, better known as Ptolemy, wrote a
mathematical treatise called the Syntaxis Mathematikos (later renamed the
Almagest by Islamic scholars). In this work, Ptolemy further developed the ideas
of Hipparchus on triangles and chords of circles, building formulae that would
allow the prediction of the position of the Sun and other “heavenly bodies” based
on the assumption of circular orbits around Earth. Ptolemy, like the
mathematicians before him, used the Babylonian system of numbers known as the
sexagesimal system, based on the number 60.

Ptolemy’s work was developed further in India, where the growing discipline of
trigonometry was regarded as part of astronomy. The Indian mathematician
Aryabhata (474-550 cE) pursued the study of chords to produce the first table of
what is now known as the sine function (all the possible values of sine/cosine
ratios for determining the unknown length of the side of a triangle when the
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lengths of the hypotenuse—the triangle’s longest side—and the side opposite the
angle are known).

In the 7th century CcE, another great Indian mathematician and astronomer,
Brahmagupta, made his own contributions to geometry and trigonometry,
including what is now known as Brahmagupta’s formula. This is used to find the
area of cyclic quadrilaterals, which are four-sided shapes inscribed within a circle.
This area can also be found with a trigonometric method if the quadrilateral is
split into two triangles.

Trigonometry, like other branches of mathematics, was not the work of any one man, or nation.

Carl Benjamin Boyer

American historian of mathematics

Islamic trigonometry

Brahmagupta had already created a table of sine values, but in the 9th century CE,
Persian astronomer and mathematician Habash al-Hasib (“Habash the
Calculator”) produced some of the first sine, cosine, and tangent tables to
calculate the angles and sides of triangles. Around the same time, al-Battani
(Albatenius) developed Ptolemy’s work on the sine function and applied it to
astronomical calculations. He recorded highly accurate observations of celestial
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objects from Raqgah, Syria. The motivation among Arab scholars for developing
trigonometry was not just for astronomy, but also for religious purposes, since it
was important that Muslims knew the position of the holy city of Mecca from
anywhere in the world.

In the 12th century CE, Indian mathematician and astronomer Bhaskara II
invented the study of spherical trigonometry. This explores triangles and other
shapes on the surface of a sphere rather than on a plane.

In later centuries, trigonometry became invaluable in navigation as well as
astronomy. Bhaskara II’s work, along with the ideas in Ptolemy’s Almagest, were
valued by the Islamic scholars of the medieval world, who had begun studying
trigonometry well before Bhaskara II.

A logarithmic table is a small table by the use of which we can obtain knowledge of all
geometrical dimensions and motions in space.

John Napier

Aid to astronomy

Along with the developments in trigonometry, there was a gradual and
corresponding shift in the way people viewed the heavens. From passively
observing and recording the patterns in the movement of celestial bodies, scholars
began to model that movement mathematically so that they could predict future
astronomical events with ever greater accuracy. The study of trigonometry purely
as an aid to astronomy persisted well into the 1500s, when new developments in
Europe began to gain momentum. De Triangulis Omnimodis (On Triangles of all
Kinds) was published in 1533. Written by German mathematician Johannes
Miiller von Konigsberg, known as Regiomontanus, it was a compendium of all
known theorems for finding sides and angles of both planar (2-D) and spherical
triangles (those formed on the surface of a 3-D sphere). The publication of this
work marked a turning point for trigonometry. It was no longer merely a branch
of astronomy, but a key component of geometry.

Trigonometry was to develop even further; although geometry was its natural
home, it was also increasingly applied to solve algebraic equations. French
mathematician Francois Viete showed how algebraic equations could be solved
using trigonometric functions, in conjunction with the new system of imaginary
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numbers that had been invented by Italian mathematician Rafael Bombelli in
1572.

At the end of the 1500s, Italian physicist and astronomer Galileo Galilei used
trigonometry to model the trajectories of projectiles on which gravity was acting.
The same equations are still used to project the motion of rockets and missiles
into the atmosphere today. Also in the 1500s, Dutch cartographer and
mathematician Gemma Frisius used trigonometry to determine distances, thus
enabling accurate maps to be created for the first time.

To find the unknown angle (0) in a right-angled triangle, the sine formula is used when the
lengths of the opposite (opposite 8) and the hypotenuse are known; the cosine formula is used
when the lengths of the adjacent and hypotenuse are known; and the tangent formula is used
when the lengths of the opposite and adjacent are known.

New developments

Developments in trigonometry gathered pace in the 1600s. Scottish
mathematician John Napier’s discovery of logarithms in 1614 enabled the
compilation of accurate sine, cosine, and tangent tables. In 1722, Abraham de
Moivre, a French mathematician, went a step further than Vieté and showed how
trigonometric functions could be used in the analysis of complex numbers. The
latter comprised a real part and an imaginary part, and were to be of great
significance in the development of mechanical and electrical engineering.
Leonhard Euler used de Moivre’s findings to derive the “most elegant equation in
mathematics”: e + 1 = 0, also known as Euler’s identity.
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In the 1700s, Joseph Fourier applied trigonometry to his research into different
forms of waves and vibrations. The “Fourier trigonometry series” has been used
widely in scientific fields such as optics, electromagnetism, and, more recently,
quantum mechanics. From its early beginnings, when the Babylonians and ancient
Egyptians pondered the lengths of shadows cast by a stick in the ground, through
architecture and astronomy to modern applications, trigonometry has formed a
part of the language of mathematics in modeling the Universe.

A network of triangulation stations such as this stone “trig point” in Wales was launched by
the Ordnance Survey in 1936 to accurately map the island of Great Britain.

HIPPARCHUS

Hipparchus was born in Nicaea (now Iznik in Turkey)
in 190 BCE. Although little is known of his life, he
achieved fame as an astronomer from the studies he
carried out while living on the island of Rhodes. His
findings were immortalized in Ptolemy’s Almagest,
where he is described as “a lover of truth.”

The only work of Hipparchus to survive was his
commentary on the Phaenomena of the poet Aratus and the mathematician and
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astronomer Eudoxus, criticizing the inaccuracy of their descriptions of
constellations. Hipparchus’s most notable contribution to astronomy was his
work Sizes and Distances (now lost, but used by Ptolemy), on the orbits of the
Sun and Moon, which enabled him to calculate the dates of the equinoxes and
solstices. He also compiled a star catalogue, which may be the one used by
Ptolemy in Almagest. Hipparchus died in 120 BCE.

Key work

2nd century BCE Sizes and Distances
See also: The Rhind papyrus ¢ Pythagoras ¢ Euclid’s Elements * Imaginary and

complex numbers * Logarithms ¢ Pascal’s triangle ¢ Viviani’s triangle theorem ¢
Fourier analysis
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IN CONTEXT

KEY CIVILIZATION
Ancient Chinese (c. 1700 BcE—c. 600 CE)

FIELD

Number systems

BEFORE

c. 1000 BCE In China, bamboo rods are first used to denote numbers, including
negatives.

AFTER

628 ce The Indian mathematician Brahmagupta provides rules for arithmetic
with negative numbers.

1631 In Practice of the Art of Analysis, published 10 years after his death,
British mathematician Thomas Harriott accepts negative numbers in algebraic
notation.

While practical notions of negative quantities were used from ancient times,
particularly in China, negative numbers took far longer to be accepted within
mathematics. Ancient Greek thinkers and many later European mathematicians
regarded negative numbers—and the concept of something being less than
nothing—as absurd. Only in the 1600s did European mathematicians begin to
fully accept negative numbers.

Chinese rod system
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The earliest ideas of negative quantities seem to have arisen in commercial
accounting: the seller received money for what had been sold (a positive
quantity), and the buyer spent the same amount, resulting in a deficit (a negative
quantity). For their commercial arithmetic, the ancient Chinese used small
bamboo rods, laid out on a large board. Positive and negative quantities were
represented by rods of different colors and could be added together. The Chinese
military strategist Sun Tzu, who lived around 500 BCE, used such rods to make
calculations before battles.

By 150 BCE, the rod system had developed into alternating horizontal and vertical
rods in sets of up to five. Later, during the Sui dynasty (581-618 ck), the Chinese
also used triangular rods for positive quantities and rectangular rods for negative
quantities. The system was employed for trading and tax calculations: amounts
received were represented by red rods, and debts by black rods. When rods of
different colors were added together, they canceled each other out—Ilike income
erasing a debt. The polarized nature of positive numbers (red rods) and negative
numbers (black rods) was also in tune with the Chinese concept that opposing but
complementary forces—yin and yang—governed the Universe.

In the Chinese rod numeral system, red indicates positive numbers, while black indicates
negative numbers. To make the number being represented as clear as possible, horizontal and
vertical symbols are used alternately—for example, the number 752 would use a vertical 7,
then a horizontal 5, followed by a vertical 2. Blank spaces represent zero.

Fluctuating fortunes
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Over a period of several centuries, starting around 200 BCE, the ancient Chinese
produced a book of collected scholarship called The Nine Chapters on the
Mathematical Art. This work, which encapsulated the essence of their
mathematical knowledge, included algorithms that assumed negative quantities
were possible—for example, as solutions to problems on profit and loss.

In contrast, the mathematics of ancient Greece was based on geometry and
geometrical magnitudes, or their ratios. As these quantities—actual lengths, areas,
and volumes—can only be positive, the idea of a negative number did not make
sense to Greek mathematicians.

By the time of Diophantus, around 250 cE, linear and quadratic equations were
used to solve problems, but any unknown quantity was still represented
geometrically—by a length. So the idea of negative numbers as solutions to these
equations was still seen as an absurdity.

An important advance in the arithmetical use of negative numbers came around
400 years later from India, in the work of the mathematician Brahmagupta (c.
598-668). He set out arithmetic rules for negative quantities, and even used a
symbol to indicate negative numbers. Like the ancient Chinese, Brahmagupta
looked at numbers in financial terms, as “fortunes” (positive) and “debts”
(negative), and stated the following rules for multiplying with positive and
negative quantities:

The product of two fortunes is a fortune. The product of two debts is a fortune.
The product of a debt and a fortune is a debt. The product of a fortune and a
debt is a debt.

It makes no sense to find the product of two piles of coins, as only the actual
quantities can be multiplied, not the money itself (just as you cannot multiply
apples by apples). Brahmagupta was therefore performing arithmetic with
positive and negative quantities, while using fortunes and debts as a way to try to
understand what negative numbers represented.

The Persian mathematican and poet al-Khwarizmi (c. 780—c. 850)— whose
theories, particularly on algebra, influenced later European mathematicians—was
familiar with the rules of Brahmagupta and understood the use of negative
numbers for dealing with debts. However, he could not accept the use of negative
numbers in algebra, believing them to be meaningless. Instead, al-Khwarizmi
followed geometric methods to solve linear or quadratic equations.
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Temperature readings on the Celsius scale display negative numbers to show when
something such as an ice crystal is colder than 0°C—the point at which water freezes.

A negative multiplied by a negative makes a positive. This is why all positive numbers have
two square roots (a positive and a negative) and negative numbers have no real square roots—
because a positive number squared is positive, and a negative number squared is also positive.
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Accepting the negative

Throughout the Middle Ages, European mathematicians remained unsure of
negative quantities as numbers. This was still the case in 1545 when Italian
polymath Gerolamo Cardano published his Ars Magna (The Great Art), in which
he explained how to solve linear, quadratic, and cubic equations. He could not
exclude negative solutions to his equations and even used a sign, “m,” to denote a
negative number. He could not, however, accept the value of negative numbers,
calling them “fictitious.” René Descartes (1596—1650) also accepted negative
quantities as solutions to equations but referred to them as “false roots” rather
than true numbers.

English mathematician John Wallis (1616-1703) gave some meaning to negative
numbers by extending the number line below zero. This way of seeing numbers as
points on a line finally led to the acceptance of negative numbers on equal terms
with positive numbers, and by the end of the 1800s, they had been formally
defined within mathematics, separate from notions of quantities. Today, negative
numbers are used in many areas, ranging from banking and temperature scales to
the charge on subatomic particles. Any ambiguity about their status in
mathematics is long gone.

Negative numbers are evidence of inconsistency or absurdity.
Augustus De Morgan

British mathematician
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Investors rush to withdraw their money from the Seamen’s Savings Bank in New York in
1857. The panic was caused by American banks loaning out many millions of dollars (a
negative quantity) without the reserves (a positive quantity) to back this up.

Mathematics in ancient China
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Jiuzhang suanshu, or The Nine Chapters on the Mathematical Art, reveals the
mathematical methods known to the ancient Chinese. It is written as a collection
of 246 practical problems and their solutions.

The first five chapters are mostly about geometry (areas, lengths, and volumes)
and arithmetic (ratios, and square and cube roots). Chapter six covers taxes, and
includes the ideas of direct, inverse, and compound proportions, most of which
did not appear in Europe until around the 1500s. Chapters seven and eight deal
with solutions to linear equations, including the rule of “double false position,”
whereby two test (or “false”) values for the solution to a linear equation are
used in repeated steps to yield the actual solution. The final chapter concerns
applications of the “Gougu” (equivalent to Pythagoras’s theorem), and the
solving of quadratic equations.

See also: Positional numbers * Diophantine equations * Zero ¢ Algebra ¢
Imaginary and complex numbers
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IN CONTEXT

KEY FIGURE
Diophantus (c. 200—c. 284 cE)

FIELD
Algebra

BEFORE

c. 800 BCE The Indian scholar Baudhayana finds solutions to some
“Diophantine” equations.

AFTER

c. 1600 Francgois Viete lays the foundations for solutions of Diophantine
equations.

1657 Pierre de Fermat writes his last theorem (about a Diophantine equation) in
his copy of Arithmetica.

1900 The 10th problem on David Hilbert’s list of unsolved research problems is
the quest to find an algorithm to solve all Diophantine equations.

1970 Mathematicians in Russia show that there is no algorithm that can solve all
Diophantine equations.
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In the 3rd century cE, the Greek mathematician Diophantus, a pioneer of number
theory and arithmetic, created a prodigious work called Arithmetica. In 13
volumes, only six of which have survived, he explored 130 problems involving
equations and was the first person to use a symbol for an unknown quantity—a
cornerstone of algebra. It is only in the past 100 years that mathematicians have
fully explored what are now known as Diophantine equations. Today, the
equations are considered to be one of the most interesting areas of number theory.

Diophantine equations are a type of polynomial—an equation in which the
powers of the variables (unknown quantities) are integers, such as x> + y* = z°.
The aim of Diophantine equations is to find all the variables, but solutions must
be integers or rational numbers (those that can be written as one integer divided
by another, such as %4). In Diophantine equations, the coefficients—integers such
as the 4 in 4x, that multiply a variable—are also rational numbers. Diophantus
only used positive numbers, but mathematicians now look for negative solutions

as well.

The symbolism that Diophantus introduced for the first time... provided a short and readily
comprehensible means of expressing an equation.

Kurt Vogel

German mathematical historian

The quest for solutions
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Many of the problems now called Diophantine equations were known well before
Diophantus’s time. In India, mathematicians explored some of them from around
800 BCE, as the ancient Shulba Sutras texts reveal. In the 6th century BCE,
Pythagoras created his quadratic equation for calculating the sides of a right-
angled triangle; its x*> + y* = z> form is a Diophantine equation.

Diophantine equations of the kind x" + y" = z" may look simple to calculate, but
only those with squares are solvable. If the power (n in the equation) is greater
than 2, the equation has no integer solutions for x, y, and z—as Fermat asserted in
a marginal note in 1657 and British mathematician Andrew Wiles finally proved
in 1994.

The Arithmetica of Diophantus strongly influenced 17th-century mathematicians as the
study of modern algebra developed. This volume of the book was published in Latin in 1621.
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A source of fascination

Diophantine equations are vast in number and form, and mostly very difficult to
solve. In 1900, David Hilbert suggested that the question of whether or not they
could all be solved was one of the greatest challenges facing mathematicians.

The equations are now grouped in three classes: those with no solution, those
with a finite number of solutions, and those with an infinite number of solutions.
Rather than finding solutions, however, mathematicians are often more interested
in discovering whether solutions exist at all. In 1970, Russian mathematician Yuri
Matiyasevich settled Hilbert’s query, which he and three others had studied for
years, concluding that no general algorithm to solve a Diophantine equation
exists. Yet studies continue, as the fascination of these equations is largely
theoretical. Mathematicians, who are driven by curiosity, believe there is still
more to discover.

DIOPHANTUS

Little is known about the life of the Greek mathematician and philosopher

Diophantus, but he was probably born in Alexandria, Egypt, in c. 200 ct. His
13-volume Arithmetica was well-received—the Alexandrian mathematician
Hypatia wrote about the first six volumes—but fell into relative obscurity until
the 1500s, when interest in his ideas was revived.

The Greek Anthology, a compilation of mathematical games and verses
published around 500 cE, contains one number problem purporting to be an
epitaph to Diophantus that appeared on his tombstone. Written as a puzzle, it
suggests he married at the age of 35, and five years later had a son, who died at
the age of 40 when he was half his father’s age. Diophantus is then said to have
lived a further four years, dying at the age of 84.

Key work

c. 250 cE Arithmetica

See also: The Rhind papyrus ¢ Pythagoras « Hypatia ¢ The equals sign and other
symbology ¢ 23 problems for the 20th century * The Turing machine * Proving
Fermat’s last theorem
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IN CONTEXT

KEY FIGURE
Hypatia of Alexandria (c. 355415 CE)

FIELDS

Arithmetic, geometry

BEFORE
6th century BCE Pythagoras’s wife Theano and other women actively
participate in the Pythagorean community.

c. 100 BcE Mathematician and astronomer Aglaonike of Thessaly wins renown
for her ability to predict lunar eclipses.

AFTER

1748 Italian mathematician Maria Agnesi writes the first textbook to explain
differential and integral calculus.

1874 Russian mathematician Sofia Kovalevskaya is the first woman to be
awarded a doctorate in mathematics.

2014 Iranian mathematician Maryam Mirzakhani is the first woman to win the
Fields Medal.

History mentions only a few pioneering female mathematicians in the ancient
world, among them Hypatia of Alexandria. An inspirational teacher, she was
appointed head of the city’s Platonist school in 400 ck.

Hypatia is not known to have contributed any original research, but she is
credited with editing and writing commentaries on several classic mathematical,
astronomical, and philosophical texts. It is likely that she helped her father,
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Theon, a respected Alexandrian scholar, to produce his definitive edition of
Euclid’s Elements, and his Almagest and Handy Tables of Ptolemy. She also
continued his project of preserving and expanding the classic texts, in particular
providing commentaries on Diophantus’s 13-volume Arithmetica, and
Apollonius’s work on conic sections. Hypatia may have intended these editions to
serve as textbooks for students, as she offered commentaries providing
clarification, and developed some of the concepts further.

Hypatia won great renown for her teaching, scientific knowledge, and wisdom,
but in 415 she was killed by Christian zealots for her “pagan” philosophy. As
attitudes toward women in academia became less tolerant, mathematics and
astronomy would be almost exclusively male preserves until the Enlightenment
opened up new opportunities for women in the 1700s.

The Alexandrian scholar Hypatia, depicted here in an 1889 painting by Julius Kronberg,
was revered as a heroic martyr after her murder. She later became a symbol for feminists.

See also: Euclid’s Elements * Conic sections * Diophantine equations « Emmy
Noether and abstract algebra
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IN CONTEXT

KEY FIGURE
Zu Chongzhi (429-501 ck)

FIELD

Geometry

BEFORE
c. 1650 BCE The area of a circle is calculated using m as (1%)? ~ 3.1605 in the
Rhind papyrus.

¢. 250 BCE Archimedes finds an approximate value for m using a polygon
algorithm method.

AFTER

¢. 1500 Indian astronomer Nilakantha Somayaji uses an infinite series (the sum
of terms of an infinite sequence, such as ¥, + ¥/, + 14 + /) to compute m.

1665—-66 Isaac Newton calculates m to 15 digits.

1975-76 Iterative algorithms allow computer calculations of n to millions of
digits.

Like their counterparts in Greece, mathematicians in ancient China realized the
importance of rt (pi)—the ratio of a circle’s circumference to its diameter—in
geometric and other calculations. Various values for m were suggested from the
1st century cE onward. Some were sufficiently accurate for practical purposes, but
several Chinese mathematicians sought more precise methods for determining m.
In the 3rd century, Liu Hui approached the task using the same method as
Archimedes—drawing regular polygons with increasing numbers of sides inside
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and outside a circle. He found that a 96-sided polygon allowed a calculation of 1t
as 3.14, but by repeatedly doubling the number of sides up to 3,072, he reached a
value of 3.1416.

More precision

In the 5th century, astronomer and mathematician Zu Chongzhi, who was
renowned for his meticulous calculations, set about obtaining an even more
accurate value for m. Using a 12,288-sided polygon, he calculated that m is
between 3.1415926 and 3.1415927, and suggested two fractions to express the
ratio: the Yuelii, or approximate ratio, of 22/7, which had been in use for some
time; and his own calculation, the Milii, or close ratio, of 3°% ;5. This later became
known as “Zu’s ratio.” Zu’s calculations of m were not bettered until European
mathematicians set about the task during the Renaissance, almost a millennium
later.

I cannot help thinking that Zu Chongzhi was a genius of Antiquity.

Takebe Katahiro

Japanese mathematician

See also: The Rhind papyrus ¢ Irrational numbers ¢ Calculating pi ¢ Euler’s
identity * Buffon’s needle experiment
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INTRODUCTION

As the Roman Empire collapsed and Europe entered the Middle Ages, the center
of scientific and mathematical scholarship shifted from the eastern Mediterranean
to China and India. From about the 5th century ck, India began a “Golden Age”
of mathematics, building on its own long tradition of scholarship, but also on
ideas brought in by the Greeks. Indian mathematicians made significant advances
in the fields of geometry and trigonometry, which had practical applications in
astronomy, navigation, and engineering, but the most far-reaching innovation was
the development of a character to represent the number zero.

The use of a specific symbol— a simple circle, rather than a blank space or
placeholder—to denote zero is attributed to the brilliant mathematician
Brahmagupta, who described the rules of its use in calculation. In fact, the
character may already have been in use for some time. It would have fitted well
with India’s numeral system, which is the prototype of our modern Hindu—Arabic
numerals. Yet it is thanks to Islam that these and other ideas from India’s Golden
Age (which continued until the 12th century) went on to influence the history of
mathematics.

Persian powerhouse

After the death of the Prophet Mohammed in 632, Islam rapidly became a major
political as well as religious power in the Middle East and beyond, spreading
from Arabia across Persia and into Asia as far as the Indian subcontinent. The
new religion had a high regard for philosophy and scientific enquiry, and the
“House of Wisdom,” a center of learning and research established in Baghdad,
attracted scholars from all over the expanding Islamic Empire.

This thirst for knowledge prompted the study of ancient texts, especially those of
the great Greek philosophers and mathematicians. Islamic scholars not only
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preserved and translated the ancient Greek texts, but provided commentaries on
them and developed their own original concepts. Open to new ideas, they also
adopted many of the Indian innovations, in particular their numeral system. The
Islamic world, like India, entered a “Golden Age” of learning that lasted until the
1300s, and produced a succession of influential mathematicians—such as al-
Khwarizmi, a key figure in the development of algebra (the word “algebra”
derives from the Arabic term for rejoining), and other scholars whose
contributions to the binomial theorem and the treatment of quadratic and cubic
equations were groundbreaking.

From East to West

In Europe, mathematical study was under the control of the Church, and was
confined to a few early translations of some of Euclid’s work. Progress was
hindered by the continued use of the cumbersome Roman system of numerals,
necessitating the use of the abacus for calculation. However, from the 12th
century onward, during the Crusades, contact with the Islamic world increased,
and some recognized the wealth of scientific knowledge Islamic scholars had
amassed. Christian scholars now gained access to Greek and Indian philosophical
and mathematical texts, and to the work of the Islamic scholars. Al-Khwarizmi’s
treatise on algebra was translated into Latin in the 12th century by Robert of
Chester, and soon after, complete translations of Euclid’s Elements and other
important texts began to appear in Europe.

Mathematical renaissance

City-states in Italy were quick to trade with the Islamic Empire, and it was an
Italian, Leonardo of Pisa, nicknamed Fibonacci, who spearheaded the revival of
mathematics in the West. He adopted the Hindu-Arabic numeral system, and the
use of symbols in algebra, and contributed many original ideas, including the
Fibonacci arithmetical sequence.

With the growth in trade in the later Middle Ages, mathematics—especially the
fields of arithmetic and algebra—became increasingly important. Advances in
astronomy also demanded sophisticated calculations. Mathematical education was
now taken more seriously. With the invention of the movable-type printing press
in the 1400s, books of all sorts, including the Treviso Arithmetic, became widely

130



available, spreading the newfound knowledge across Europe. These books
inspired a “scientific revolution” that would accompany the cultural rebirth
known as the Renaissance.
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IN CONTEXT

KEY FIGURE
Brahmagupta (c. 598668 CE)

FIELD
Number theory

BEFORE

c. 700 BCE On a clay tablet, a Babylonian scribe indicates a placeholder zero
with three hooks; it is later written as two slanted wedge marks.

36 BCE A shell-shaped zero is recorded on a Mayan stela (stone slab) in Central
America.

c. 300 ck Parts of the Indian Bakshali text reveal many circular placeholder
Zeros.
AFTER

1202 In his book Liber Abaci, Leonardo of Pisa (Fibonacci) introduces zero to
Europeans.

17th century Zero is finally established as a number and is in widespread use.

A number that represents the absence of something is a difficult concept, which
may be why zero took so long to become widely accepted. Several ancient
civilizations, including the Babylonians and the Sumerians, could claim to have
invented zero, but its use as a number was pioneered in the 7th century CE, by
Brahmagupta, an Indian mathematician.
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The development of zero

Any system for recording numbers eventually reaches a point at which it becomes
positional; that is to say, digits are ordered according to their value to cope with
increasingly large numbers. All place value (positional) systems require a way of
denoting “there is nothing here.” The Babylonians (1894—-539 BCE), for example,
who at first used context to differentiate between, say, 35 and 305, eventually
used a double wedge mark rather like inverted commas to indicate the empty
value. In this way, zero entered the world as a form of punctuation.

The problem for historians has been finding evidence for early civilizations using
zero and recognizing it as such, which has been made more difficult by the fact
that zero fell in and out of use over time. In about 300 BCE, for example, the
Greeks were starting to develop a more sophisticated form of mathematics based
on geometry, with quantities being represented by the lengths of lines. There was
no need for zero, or indeed negative numbers (numbers less than 0), as the Greeks
did not have a positional number system (lengths cannot be nonexistent or
negative).

As the Greeks developed the use of mathematics in astronomy, they began to use
an “O” to represent zero, although it is not clear why. In his astronomical manual
Almagest, written in the 2nd century ck, the Greco-Roman scholar Ptolemy used a
circular symbol positionally between digits and at the end of a number, but did
not consider it a number in its own right.

In Central America, during the 1st millenium ck, the Mayans used a place value
system, which included zero as a numeral, denoted by a shell shape. It was one of
three symbols used by the Mayans for arithmetic; the other two were a dot
representing 1 and a bar for 5. While the Mayans could calculate up to hundreds
of millions, their geographical isolation meant that their mathematics never spread
to other cultures.

In India, mathematics advanced rapidly in the early centuries of the 1st
millennium ck. By the 3rd and 4th centuries, a place value system had long been
in use, and by the 7th century—the time of Brahmagupta—the use of a circular
symbol as a placeholder was already well established there.
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An abax, a table or board covered in sand, was used by the Greeks to count. Some scholars
have suggested that “O” was used because it was the shape left when a counter was removed.

BRAHMAGUPTA

Born in 598 CE, astronomer and mathematician Brahmagupta lived in
Bhillamala, northwest India—a center of learning in those fields. He became
head of the leading astronomical observatory at Ujjain, and incorporated new
work on number theory and algebra into his studies on astronomy.
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Brahmagupta’s use of the decimal number system and the algorithms he
devised spread throughout the world and informed the work of later
mathematicians. His rules for calculating with positive and negative numbers,
which he called “fortunes” and “debts,” are still cited today. Brahmagupta died
in 668, only a few years after completing his second book.

Key works

628 Brahmasphutasiddhanta (The Correctly Established Doctrine of Brahma)
665 Khandakhadyaka (Morsel of Food)

The Nadi Yali yantra is part of an 18th-century observatory in Ujjain, India. A center of
mathematics and astronomy since Brahmagupta worked there in the 7th century, it lies on the
intersection of a former zero meridian of longitude and the Tropic of Cancer.
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Zero as a number

Brahmagupta established rules for calculating with zero. He began by defining it
as the result of subtracting a number from itself— for example, 3 - 3 = 0. That
established zero as a number in its own right as opposed to simply a figurative
notation or placeholder. He then explored the effect of calculating with zero.
Brahmagupta showed that if he added zero to a negative number, the result was
equal to that negative number. Similarly, adding zero to a positive number
produced the same positive number. Brahmagupta also described subtracting zero
from both a negative and a positive number, and noted again that it left the
numbers unchanged.

Brahmagupta went on to describe the effect of subtracting numbers from zero.
He calculated that a positive number subtracted from zero becomes a negative
number and a negative number subtracted from zero becomes a positive number.
This calculation brought negative numbers into the same number system as
positive numbers. Like zero, negative numbers were an abstract concept rather
than positive values such as lengths or quantities.

First-century Indian numerals did not use zero. By the 9th century, Brahmagupta’s zero
(highlighted in pink) was widely used in India, from where it spread via the Arab world to
Europe. There, it met some initial opposition from Christian religious leaders, who found the
concept of zero satanic because they associated nothingness with the devil.

Black holes are where God divided by zero.
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Steven Wright

American comedian

Multiplying and dividing

Brahmagupta went on to examine zero in relation to multiplication and described
how the product of multiplying any number with zero is zero, including zero
multiplied by zero. The next step was to explain division by zero, which was
more problematic. Recording the result of dividing a number, n, by zero as ",
Brahmagupta suggested that a number is unchanged when it is divided by zero.
However, this was later found to be impossible, as is demonstrated by multiplying
any number by zero (division being defined as finding the missing number in a
multiplication). The result cannot be the original number, as any number
multiplied by zero equals zero.

Mathematicians now describe division by zero as “undefined.” Some have
suggested that the required answer to "}, is “infinity,” but infinity is not a number
and cannot be used in calculations. Dividing zero itself by zero has proved even
trickier. The result could be zero, if zero divided by any number is thought to be
zero. It could also be 1, as any number divided by itself is 1.

The spread of Islam through parts of India in the 8th century led to Indian
mathematicians sharing their knowledge, including the concept of zero, with
scholars in the Arab world. In the 9th century, the Islamic mathematician al-
Khwarizmi wrote a treatise on Hindu—Arabic numbers, which described the place
value system including zero. Yet 300 years later when Leonardo of Pisa (better
known as Fibonacci) introduced Hindu—Arabic numerals to Europe, he was still
wary of zero and treated it as an operator like + and - rather than a number. Even
in the 1500s, Italian polymath Gerolamo Cardano solved quadratic and cubic
equations without zero. Europeans finally accepted zero in the 1600s, when
English mathematician John Wallis incorporated zero in his number line.

Zero is the most magical number we know. It is the number we’re striving toward every day.

Bill Gates

A vital concept
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Mathematics without zero would mean many of the articles in this book could not
have been written: there would be no negative numbers, no coordinate systems,
no binary systems (and hence no computers), no decimals, and no calculus,
because it would not be possible to describe infinitesimally small quantities.
Advances in engineering would have been severely restricted. Zero is perhaps the
most important number of all.

The Treviso Arithmetic

The figure zero first became known in Italy from the
Arte dell’ Abbaco (Art of Calculation, also known as
The Treviso Arithmetic), published anonymously in
1478 and the first printed mathematics textbook in

Europe. It was revolutionary because it was written
This grid method of

O in everyday Venetian for merchants and anyone else
multiplication from the

Treviso Arithmetic who wanted to solve calculation problems. It
multiplies the number outlined the Hindu—Arabic decimal place value
56,289 by 1,234. Zero is system and described how the number system
used as a placeholder in worked. The unknown author makes 0 the 10th

the calculation and in the e o "
number and calls it a “cipher” or “nulla”—

final solution—
70,072,626. The book also ~ Something that has no value unless it is written to the

illustrated other methods right of other numbers to increase their value.

f multiplication. . inti is i
Ol muitipiication In the Treviso description, zero is just a placeholder

number, which itself was still a new notion. The idea of zero as a number was
not accepted for centuries. It was also of little interest to the readers of the Arte
dell’ Abbaco, most of whom wanted to learn how to use numbers in practical
business calculations in everyday trading.

See also: Positional numbers * Negative numbers ¢ Binary numbers  The law of
large numbers * The complex plane
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IN CONTEXT

KEY FIGURE
Al-Khwarizmi (c. 780—c. 850)

FIELD
Algebra

BEFORE
1650 BCE The Egyptian Rhind papyrus includes solutions to linear equations.
300 BCE Euclid’s Elements lays the foundations of geometry.

3rd century CE Greek mathematician Diophantus uses symbols to represent
unknown quantities.

7th century CE Brahmagupta solves the quadratic equation.

AFTER
1202 Leonardo of Pisa’s Liber Abaci uses the Hindu-Arabic number system.

1591 Francois Viete introduces symbolic algebra, in which letters are used to
abbreviate terms in equations.

The origins of algebra— a mathematical method for calculating unknown
quantities—can be traced back to ancient Babylonians and Egyptians, as
equations on cuneiform tablets and papyri reveal. Algebra evolved from the need
to solve practical problems, often of a geometrical nature, requiring the
determination of a length, area, or volume. Mathematicians gradually developed
rules to handle a wider range of general problems. To work out lengths and areas,
equations involving variables (unknown quantities) and squared terms were
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devised. Using tables, the Babylonians could also calculate volumes, such as the
space within a grain store.

A search for new methods

Over the centuries, as mathematics developed, problems became longer and more
complex, and scholars sought new ways to shorten and simplify them. Although
early Greek mathematics was largely geometry-based, Diophantus developed new
algebraic methods in the 3rd century CE, and was the first to use symbols for
unknown quantities. However, it would be more than a thousand years before
standard algebraic notation was accepted.

After the fall of the Roman Empire, mathematics in the Mediterranean area
declined, but the spread of Islam from the 7th century had a revolutionary impact
on algebra. In 762 ck, Caliph al-Mansur established a capital in Baghdad, which
swiftly became a major center of culture, learning, and commerce. Its status was
enhanced by the acquisition and translation of manuscripts from earlier cultures,
including works by the Greek mathematicians Euclid, Apollonius, and
Diophantus, as well as Indian scholars such as Brahmagupta. They were housed
in a great library, the House of Wisdom, which became a center for research and
the dissemination of knowledge.
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The early algebraists

Scholars at the House of Wisdom produced their own research, and in 830,
Muhammad Ibn Musa al-Khwarizmi presented his work to the library—The
Compendious Book on Calculation by Completion and Balancing. It
revolutionized ways of calculating algebraic problems, introducing principles that
are the foundation of modern algebra. As in earlier periods, the types of problems
discussed were largely geometrical. The study of geometry was important in the
Islamic world, partly because the human form was forbidden in religious art and
architecture, so many Islamic designs were based on geometric patterns.
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Al-Khwarizmi introduced some fundamental algebraic operations, which he
described as reduction, rejoining, and balancing. The process of reduction
(simplifying an equation) could be done by rejoining (al-jabr)—moving
subtracted terms to the other side of an equation—and then balancing the two
sides of the equation. The word “algebra” comes from al-jabr.

Al-Khwarizmi was not working in a total vacuum, as he had the translated works
of earlier Greek and Indian mathematicians at his disposal. He introduced the
Indian decimal place-value system to the Islamic world, which later led to the
adoption of the Hindu-Arabic numeral system widely used today.

Al-Khwarizmi began by studying linear equations, so-called because they create
a straight line when plotted on a graph. Linear equations involve only one
variable, which is expressed only to the power of 1, rather than squared or to any
higher power.

Quadratic equations

Al-Khwarizmi did not employ symbols; he wrote his equations in words,
supported by diagrams. For example, he wrote out the equation (%3 + 1)(%, + 1) =
20 as: “A quantity: I multiplied a third of it and a dirham by a fourth of it and a
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dirham; it becomes twenty,” a dirham being a single coin, used by al-Khwarizmi
to signify a single unit. According to al-Khwarizmi, by using his completion and
balancing methods, all quadratic equations—those in which the highest power of

X is x2

—can be simplified to one of six basic forms. In modern notation, these
would be: ax? = bx; ax? = c; ax? + bx = ¢; ax? + ¢ = bx; ax> = bx + ¢; and b? = c.
In these six types, the letters a, b, and c all represent known numbers, and x

represents the unknown quantity.

Al-Khwarizmi approached more complex problems too, producing a geometrical
method for solving quadratic equations that used the technique known as
“completing the square” . He went on to search for a general solution to cubic
equations—in which the highest power of x is x>—but was unable to find one.
However, his pursuit of this goal showed how mathematics had progressed since
the time of the ancient Greeks. For centuries, algebra had just been a tool to solve
geometric problems, but now became a discipline in its own right, where
calculating increasingly difficult equations was the end goal.

The principal object of Algebra... is to determine the value of quantities which were before
unknown... by considering attentively the conditions given... expressed in known numbers.

Leonhard Euler

Rational answers

Many of the equations that al-Khwarizmi was dealing with had solutions that
could not be expressed rationally and completely using the Hindu-Arabic decimal

system. Although numbers such as —the square root of 2—had been known
since ancient Greek times and from even earlier Babylonian clay tablets, in 825
CE, al-Khwarizmi was the first to make the distinction between rational numbers
—which can be made into fractions—and irrational numbers, which have an
indefinite string of decimals with no recurring pattern. Al-Khwarizmi described
rational numbers as “audible” and irrational numbers as “inaudible.”

Al-Khwarizmi’s work was developed further by Egyptian mathematician Abu
Kamil Shuja ibn Aslam (c. 850-930 cE), whose Book of Algebra was designed to
be an academic treatise for other mathematicians, rather than for educated people
who had a more amateur interest. Abu Kamil embraced irrational numbers as
possible solutions to quadratic equations, rather than rejecting them as awkward
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anomalies. In his Book of Rare Things in the Art of Calculation, Abu Kamil
attempted to solve indeterminate equations (those with more than one solution).
He further explored this topic in his Book of Birds, in which he posed a
miscellany of bird-related algebra problems, including: “How many ways can one
buy 100 birds in the market with 100 dirhams?”

Algebra is but written geometry and geometry is but figured algebra.
Sophie Germain

French mathematician

Geometric solutions

Up until the era of the Arab “algebraists”—from al-Khwarizmi in the 9th century
to the death of the Moorish mathematician al-Qalasadi in 1486—the key
developments within algebra were underpinned by geometrical representations.
For example, al-Khwarizmi’s method of “completing the square” in order to solve
quadratic equations relies on consideration of the properties of a real square; later
scholars worked in a similar way. Mathematician and poet Omar Khayyam, for
example, was interested in solving problems using the relatively new discipline of
algebra, but employed both geometrical and algebraic methods. His Treatise on
Demonstration of Problems of Algebra (1070) notably includes a fresh
perspective on the difficulties within Euclid’s postulates, a set of geometric rules
that are assumed to be true without requiring a proof. Picking up on earlier work
by al-Karaji, Khayyam also develops ideas about binomial coefficients, which
determine how many ways there are to select a number of items from a larger set.
He solved cubic equations, too, inspired by al-Khwarizmi’s use of Euclid’s
geometrical constructions for working out quadratic equations.
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Al-Khwarizmi showed how to solve quadratic equations by a method known as “completing
the square.” This example shows how to find x in the equation x* + 10x = 39.

Polynomials

During the 10th and early 11th centuries, a more abstract theory of algebra was
developed, which was not reliant on geometry—an important factor in
establishing its academic status. Al-Karaji was instrumental in this development.
He established a set of procedures for performing arithmetic on polynomials—
expressions that contain a mixture of algebraic terms. He created rules for
calculating with polynomials, in much the same way that there were rules for
adding, subtracting, or multiplying numbers. This allowed mathematicians to
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work on increasingly complex algebraic expressions in a more uniform way, and
reinforced algebra’s essential links with arithmetic.

Mathematical proof is a vital part of modern algebra and one of the tools of proof
is called mathematical induction. Al-Karaji used a basic form of this principle,
whereby he would show an algebraic statement to be true for the simplest case
(say n = 1), then use that fact to show that it must also be true for n = 2 and so on,
with the inevitable conclusion that the statement must hold true for all possible
values of n.

One of al-Karaji’s successors was the 12th-century scholar Ibn Yahya al-
Maghribi al-Samaw’al. He noted that the new way of thinking of algebra as a
kind of arithmetic with generalized rules involved the algebraist “operating on the
unknown using all the arithmetical tools, in the same way as the arithmetician
operates on the known.” Al-Samaw’al continued al-Karaji’s work on
polynomials, but also developed the laws of indices, which led to much later work
on logarithms and exponentials, and was a significant step forward in
mathematics.

An ounce of algebra is worth a ton of verbal argument.
John B. S. Haldane

British mathematical biologist

Islamic mathematicians gather in the library of a mosque in an illustration from a
manuscript by the 12th-century poet and scholar Al-Hariri of Basra.
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Plotting equations

Cubic equations had challenged mathematicians since the time of Diophantus of
Alexandria. Al-Khwarizmi and Khayyam had made significant progress in
understanding them—work further developed by Sharaf al-Din al-Tusi, a 12th-
century scholar, probably born in Iran, whose mathematics appears to have been
inspired by the work of earlier Greek scholars, especially Archimedes. Al-Tusi
was more interested in determining types of cubic equation than al-Khwarizmi
and Khayyam had been. He also developed an early understanding of graphical
curves, articulating the significance of maximum and minimum values. His work
strengthened the connection between algebraic equations and graphs—between
mathematical symbols and visual representations.

As the sun eclipses the stars by its brilliancy, so the man of knowledge will eclipse the fame of
others in assemblies of the people if he proposes algebraic problems, and still more if he solves
them.

Brahmagupta

A new algebra

The discoveries and rules set down by medieval Arab scholars still form the basis
of algebra today. The works of al-Khwarizmi and his successors were key to
establishing algebra as a discipline in its own right. It was not until the 1500s,
however, that mathematicians began to abbreviate equations by using letters to
stand for known and unknown variables. French mathematician Francois Viete
was key to this development. In his works, he pioneered the move away from the
Arabic algebra of procedures toward what is known as symbolic algebra.

In his Introduction to the Analytic Arts (1591), Viete suggested that
mathematicians should use letters to symbolize the variables in an equation:
vowels to represent unknown quantities and consonants to represent the known.
Although this convention was eventually replaced by René Descartes—in which
letters at the beginning of the alphabet represent known numbers and letters at the
end represent the unknown—Viete nonetheless was responsible for simplifying
algebraic language far beyond what the Arab scholars had imagined. The
innovation allowed mathematicians to write out increasingly complex and
detailed abstract equations, without using geometry. Without symbolic algebra, it
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would be difficult to imagine how modern mathematics would have ever
developed.

Islamic algebraists wrote equations as text with accompanying diagrams, as in the 14th-
century Treatise on the Question of Arithmetic Code by Master Ala-El-Din Muhammed El
Ferjumedhi.

AL-KHWARIZMI

Born in c. 780 cE near what is now Khiva, Uzbekistan,
Muhammad Ibn Musa al-Khwarizmi moved to
Baghdad, where he became a scholar at the House of
Wisdom.

Al-Khwarizmi is regarded as the “father of algebra”
for his systematic rules for solving linear and
quadratic equations. These were outlined in his major

work on calculation by “completion and balancing”—methods he devised that
are still used today. Other achievements include his text on Hindu numerals,
which, in its Latin translation, introduced Europe to Hindu-Arabic numerals. He
wrote a book on geography, helped construct a world map, took part in a project
to determine the circumference of Earth, developed the astrolabe (an earlier
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Greek tool for navigation), and compiled a set of astronomical tables. Al-
Khwarizmi died around 850.

Key works

c. 820 On the Calculation with Hindu Numerals
c. 830 The Compendious Book on Calculation by Completion and Balancing

See also: Quadratic equations * The Rhind papyrus * Diophantine equations °
Cubic equations * The algebraic resolution of equations * The fundamental
theorem of algebra
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IN CONTEXT

KEY FIGURE
Al-Karaji (c. 980—c. 1030)

FIELD
Number theory

BEFORE

c. 250 ck In Arithmetica, Diophantus lays down ideas about algebra later taken
up by al-Karaji.

c. 825 cE The Persian astronomer and mathematician al-Khwarizmi develops
algebra.

AFTER

1653 In Traité du triangle arithmétique (Treatise on the Arithmetical Triangle),
Blaise Pascal reveals the triangular pattern of coefficients in the bionomial
theorem in what is later called Pascal’s triangle.

1665 Isaac Newton develops the general binomial series from the binomial
theorem, forming part of the basis for his work on calculus.

At the heart of many mathematical operations lies an important basic theorem—
the binomial theorem. It provides a shorthand summary of what happens when
you multiply out a binomial, which is a simple algebraic expression consisting of
two known or unknown terms added together or subtracted. Without the binomial
theorem, many mathematical operations would be almost impossible to achieve.
The theorem shows that when binomials are multiplied out, the results follow a
predictable pattern that can be written as an algebraic expression or displayed on a

150



triangular grid (known as Pascal’s triangle after Blaise Pascal, who explored the
pattern in the 1600s).
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Making sense of binomials

The binomial pattern was first observed by mathematicians in ancient Greece and
India, but the man credited with its discovery is the Persian mathematician al-
Karaji, one of many scholars who flourished in Baghdad from the 8th to the 14th
century. Al-Karaji explored the multiplication of algebraic terms. He defined
single terms called monomials”—x, x2, x3, and so on—and showed how they can
be multiplied or divided. He also looked at “polynomials” (expressions with

3

multiple terms), such as 6y? + x3 - x + 17. But it was his discovery of the formula

for multiplying out binomials that had the most impact.

The binomial theorem concerns powers of binomials. For example, multiplying
out the binomial (a + b)? by converting it to (a + b) (a + b) and multiplying each
term in the first parentheses by each term in the second parentheses results in (a +
b)? = a® + 2ab + b?. The calculation for the power 2 is manageable, but for greater
powers, the resulting expression becomes increasingly complicated. The binomial
theorem simplifies the problem by unlocking the pattern in the coefficients—
numbers, such as 2 in 2ab, by which the unknown terms are multiplied. As al-
Karaji discovered, the coefficients can be laid out in a grid, with the columns
showing the coefficients needed for multiplying out each power. The coefficients
in a column are calculated by adding together pairs of numbers in the preceding
column. To determine the powers in the expansion, you take the degree of the
binomial as n. In (a + b)?, n = 2.

Al-Karaji created a table to work out the coefficients of binomial equations. The first five
lines of it are shown here. The top line is for powers, with the coefficients for each power
listed in the column below. The first and final numbers are always 1. Each other number is the
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sum of its adjacent number in the preceding column and the number above that adjacent
number.

Algebra breaks free

Al-Karaji’s discovery of the binomial theorem helped to open the way for the full
development of algebra, by allowing mathematicians to manipulate complicated
algebraic expressions. The algebra developed by al-Khwarizmi 150 years or so
previously had used a system of symbols to work out unknown quantities and was
limited in scope. It was tied to the rules of geometry, and the solutions were
geometric dimensions, such as angles and side lengths. Al-Karaji’s work showed
how algebra could instead be based entirely on numbers, liberating it from
geometry.

The binomial theorem and a Bach fugue are, in the long run, more important than all the battles
of history.

James Hilton

British novelist

AL-KARAJI

Born around 980 ck, Abu Bakr ibn Muhammad ibn al-Husayn al-Karaji most
likely got his name from the city of Karaj, near Tehran, but he lived most of his
life in Baghdad, at the court of the caliph. It was here around 1015 that he
probably wrote his three key mathematics texts. The work in which al-Karaji

developed the binomial theorem is now lost, but later commentators preserved
his ideas. Al-Karaji was also an engineer, and his book Extraction of Hidden
Waters is the first known manual on hydrology.

Later in life, al-Karaji moved to “mountain countries” (possibly the Elburz
mountains near Karaj), where he spent his time working on practical projects for
drilling wells and building aqueducts. He died around 1030 cE.

Key works

Glorious on algebra
Wonderful on calculation

Sufficient on calculation
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See also: Positional numbers * Diophantine equations * Zero ¢ Algebra ¢ Pascal’s
triangle * Probability ¢ Calculus * The fundamental theorem of algebra
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IN CONTEXT

KEY FIGURE
Omar Khayyam (1048-1131)

FIELD
Algebra

BEFORE

3rd century BCE Archimedes solves cubic equations using the intersection of
two conics.

7th century ce Chinese scholar Wang Xiaotong solves a range of cubic
equations numerically.

AFTER

16th century Mathematicians in Italy create jealously guarded methods to solve
cubic equations in the fastest time.

1799-1824 Italian scholar Paolo Ruffini and Norwegian mathematician Niels
Henrik Abel show that no algebraic formulas exist for equations involving terms
to the power of 5 and higher.

In the ancient world, scholars considered problems in a geometric way. Simple
linear equations (which describe a line), such as 4x + 8 = 12, where x is to the
power of 1, could be used to find a length, while a squared variable (x?) in a
quadratic equation could represent an unknown area—a two-dimensional space.
The next step up is the cubic equation, where the x3 term is an unknown volume
—a three-dimensional space.
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The Babylonians could solve quadratic equations in 2000 BCE, but it took another
3,000 years until Persian poet-scientist Omar Khayyam found an accurate method
for solving cubic equations, using curves called conic sections—such as circles,
ellipses, hyperbolas, or parabolas—formed by the intersection of a plane and a
cone.

Problems with cubes

The ancient Greeks, who used geometry to work out complex problems, puzzled
over cubes. A classic conundrum was how to produce a cube that was twice the
volume of another cube. For example, if the sides of a cube are each equal to 1 in
length, what length sides do you need for a cube twice the volume? In modern
terms, if a cube with side length 1 has a volume of 13, what side length cubed (x%)
produces twice that volume; that is, since 13 = 1, what is x if x3 = 2? The ancient
Greeks used a ruler and compasses to attempt constructing a solution to this cubic
equation but they never succeeded. Khayyam saw that such tools were not enough
to solve all cubic equations, and set out his use of conic sections and other
methods in his treatise on algebra.

157



Using modern conventions, cubic equations can be expressed simply, such as x>
+ bx = c. Without the economy of modern notation, Khayyam expressed his

2 as “squares,” x as “lengths,” and

equations in words, describing x> as “cubes”, x
numbers as “amounts.” For example, he described x> + 200x = 20x? + 2,000 as a
problem of finding a cube that “with two hundred times its side” is equal to
“twenty squares of its side and two thousand.” For a simpler equation, such as x>
+ 36x = 144, Khayyam’s method was to draw a geometric diagram. He found that
he could break down the cubic equation into two simpler equations: one for a
circle, and the other for a parabola. By working out the value of x for which both
these simpler equations are true simultaneously, he could solve the original cubic
equation. This is shown in the graph below. At the time, mathematicians did not
have these graphical methods and Khayyam would have constructed the circle

and parabola geometrically.

Khayyam had also explored the properties of conic sections, and had deduced
that a solution to the cubic equation could be found by giving the circle in the
diagram a diameter of 4. This measure was arrived at by dividing ¢ by b, or ¥
in the example below. The circle passed through the origin (0,0) and its center
was on the x axis at (2,0). Using this diagram, Khayyam drew a perpendicular
line from the point where the circle and parabola intersected down to the x axis.
The point where the line crossed the x axis (where y = 0) gives the value for x in
the cubic equation. In the case of x3 + 36x = 144, the answer is x = 3.14 (rounded
to two decimal places).

Khayyam did not use coordinates and axes (which were invented about 600 years
later). Instead, he would have drawn the shapes as accurately as possible and
carefully measured the lengths on their diagrams. He would then have found an
approximate numerical solution using trigonometric tables, which were common
in astronomy. For Khayyam, the solution would always have been a positive
number. There is an equally valid negative answer, as shown by the minus
numbers in the graph below, but although the concept of negative numbers was
recognized in Indian mathematics, it was not generally accepted until the 1600s.

OMAR KHAYYAM

Born in Nishapur, Persia (now Iran), in 1048, Omar Khayyam was educated in

philosophy and the sciences. Although he won renown as an astronomer and
mathematician, when his patron Sultan Malik Shah died in 1092, he was forced
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into hiding. Finally rehabilitated 20 years later, he
lived quietly and died in 1131.

In mathematics, Khayyam is best remembered for his
work on cubic equations, but he also produced an
important commentary on Euclid’s fifth postulate,
known as the parallel postulate. As an astronomer, he
helped to construct a highly accurate calendar that was

used until the 1900s. Ironically, Khayyam is now best known for a work of
poetry for which he may not have been the sole author—the Rubaiyat, which
was translated into English by Edward Fitzgerald in 1859.

Key works

c. 1070 Treatise on Demonstration of Problems of Algebra

1077 Commentaries on the difficult postulates of Euclid’s book

A parabola (pink) for the equation x = 6y intersects the circle (blue) (x-2)? + y? = 4. A line
from G, the point of intersection, to H on the x axis, gives the value for x (3.14) in the cubic
equation x3 + 36x = 144,

Khayyam’s contribution
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While Archimedes, working in the 3rd century BCE, may well have examined the
intersection of conic sections in a bid to solve cubic equations, what marks
Khayyam out is his systematic approach. This enabled him to produce a general
theory. He extended his mix of geometry and algebra to solve cubic equations
using circles, hyperbolas, and ellipses, but never explained how he constructed
them, simply saying he “used instruments.”

Khayyam was among the first to realize that a cubic equation could have more
than one root, and therefore more than one solution. As can be shown on a
modern graph that plots a cubic equation as a curve snaking above and below the
X axis, a cubic equation has up to three roots. Khayyam suspected two, but would
not have considered negative values. He did not like having to use geometry as
well as algebra to find a solution, and hoped that his geometrical efforts would
one day be replaced by arithmetic.

Khayyam anticipated the work of 16th-century Italian mathematicians, who
solved cubic equations without direct recourse to geometry. Scipione del Ferro
produced the first algebraic solution to cubic equations, discovered in his
notebook after his death. He and successors Niccolo Tartaglia, Lodovico Ferrari,
and Gerolamo Cardano all worked on algebraic formulae to solve cubic
equations. Cardano published Ferro’s solution in his book Ars Magna in 1545.
Their solutions were algebraic but differed from those of today, partly because
zero and negative numbers were little used at the time.

I have shown how to find the sides of the square-square, quatro-cube, cubo-cube... to any
length, which has not been [done] before now.

Omar Khayyam

Toward modern algebra

Mathematicians who continued the quest for cubic equation solutions included
Rafael Bombelli. He was among the first to state that a cubic root could be a
complex number, that is, a number that makes use of an “imaginary” unit derived
from the square root of a negative number, something not possible with “real”
numbers. In the late 1500s, Frenchman Francois Viete created more modern
algebraic notation, using substitution and simplifying to reach his solutions. By
1637, René Descartes had published a solution to the quartic equation (involving
x*), reducing it to a cubic equation and then to two quadratic equations to solve it.
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Today, a cubic equation can be written in the form ax> + bx> + cx +d = 0,
provided a itself is not 0. Where the coefficients (a, b, and ¢, which multiply the
variable x) are real numbers, rather than complex numbers, the equation will have
at least one real root and up to three roots in total.

Khayyam’s method is still taught today. His painstaking work advanced early
algebra, while later mathematicians have continued to refine its expression and
scope.

Algebras are geometric facts which are proved by propositions.

Omar Khayyam

A passion for geometric forms is evident in Islamic architecture, seen here in the tile
patterns, curved arches, and domes of the Masjid-i Kabud, the “Blue Mosque,” in Tabriz,
Iran.

The length of the year

In 1074, the ruling sultan of Persia, Jalal al-Din Malik Shah I, commissioned
Omar Khayyam to reform the lunar calendar used since the 7th century,
replacing it with a solar calendar. A new observatory was built in the capital
Isfahan, and Khayyam assembled a team of eight astronomers to assist him with
the work.

The year—computed to a highly accurate 365.24 days—began at the vernal
equinox in March, when the center of the visible Sun is directly above the
equator. Each month was worked out by the passage of the sun into the
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corresponding zodiac region, which required both computations and actual
observations. Because solar transit times could vary by 24 hours, months were
between 29 and 32 days long, but their length could differ from year to year.
The new Jalali calendar, named after the sultan, was adopted on March 15, 1079
and was only modified in 1925.

See also: Quadratic equations * Euclid’s Elements ¢ Conic sections * Imaginary
and complex numbers * The complex plane
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IN CONTEXT
KEY FIGURE

Leonardo of Pisa, also known as Fibonacci (1170—c. 1250)

FIELD
Number theory

BEFORE

200 Bce The number sequence later known as the Fibonacci sequence is cited
by the Indian mathematician Pingala in relation to Sanskrit poetic meters.

700 ck The Indian poet and mathematician Virahanka writes about the
sequence.

AFTER

17th century In Germany, Johannes Kepler notices that the ratio of successive
terms in the sequence converges.

1891 Edouard Lucas coins the name Fibonacci sequence in Théorie des
Nombres (Number Theory).

One sequence of numbers occurs time and again in the natural world. In this
sequence, every number is the sum of the previous two (0, 1, 1, 2, 3, 5, 8, 13, 21,
34, and so on). Originally referred to by the Indian scholar Pingala in around 200
BCE, it was later called the Fibonacci sequence after L.eonardo Pisano (Leonardo
of Pisa), an Italian mathematician known as Fibonacci. Fibonacci explored the
sequence in his 1202 book Liber Abaci (The Book of Calculation). The sequence
has important forecasting applications in nature, geometry, and business.
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A problem with rabbits

One of the problems Fibonacci raised in Liber Abaci concerned the growth of
rabbit populations. Starting with a single pair of rabbits, he asked his readers to
work out how many pairs there would be in each successive month. Fibonacci
made several assumptions: no rabbit ever died; rabbit pairs mated every month,
but only after they were two months old, the age of maturity; and each pair
produced one male and one female offspring every month. For the first two
months, he said, there would only be the original pair: by the end of three months,
there would be a total of two pairs; and at the end of four months, there would be
three pairs, as only the original pair was old enough to breed.

Thereafter, the population grows more quickly. In the fifth month, both the
original pair and their first offspring produce baby rabbits, although the second
pair of offspring is still too young. This results in a total of five pairs of rabbits.
The process continues in successive months, resulting in a number sequence in
which each number is the sum of the previous two: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, and so on — a sequence that became known as the Fibonacci sequence.
As with many mathematical problems, it is based on a hypothetical situation:
Fibonacci’s assumptions about how the rabbits behave are unrealistic.

FIBONACCI

Born Leonardo Pisano, probably in Pisa, Italy, in 1170, Fibonacci did not
become known as Fibonacci (“son of Bonacci”) until long after his death.
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Leonardo traveled widely with his diplomat father and
studied at a school of accounting in Bugia, North
Africa. There he came across the Hindu—Arabic
symbols used to represent the numbers 1 to 9.
Impressed by these numerals’ simplicity compared
with the lengthy Roman numerals used in Europe, he
discussed them in Liber Abaci (The Book of
Calculation), which he wrote in 1202.

Leonardo also traveled to Egypt, Syria, Greece, Sicily, and Provence, exploring
different number systems. His work was widely read and came to the attention
of the Holy Roman Emperor, Frederick II. Fibonacci died c. 1240-50.

Key works
1202 Liber Abaci (The Book of Calculation)

1220 Practica Geometriae (Practical Geometry)

1225 Liber Quadratorum (The Book of Squares)

Generations of bees

An example of the Fibonacci sequence cropping up in nature concerns bees in a
beehive. A male bee, or drone, develops from the unfertilized egg of a queen bee.
Since the egg is unfertilized, the drone has only one parent, its “mother.” Drones
have different roles in the beehive, one of which is to mate with the queen and
fertilize her eggs. Fertilized eggs develop into female bees, which can either be
queens or workers. This means that one generation back the drone has only one
ancestor, its mother; two generations back it has two ancestors, or
“grandparents”—the mother and father of its mother; and three generations back,
it has three “great grandparents”—its grandmother’s two parents and its
grandfather’s mother. Further back, there are five members of the previous
generation, eight of the one before that, and so on. The pattern is clear: the
number of members in each generation of ancestors forms the Fibonacci
sequence. The sum of the number of parents of a male and a female from the
same generation of bees is three. Their parents total five grandparents, whose own
parents add up to eight great-grandparents. When the pattern is traced back to
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earlier generations, the Fibonacci sequence continues, with 13, 21, 34, 55
ancestors, and so on.

Each month, some rabbits mature and others breed. In the first six months, the number of
pairs has increased in the sequence 1, 1, 2, 3, 5, and 8. Future generations over the next four
months can be forecast to contain 13, 21, 34, and 55 pairs of rabbits.

The Fibonacci sequence turns out to be the key to understanding how nature designs.
Guy Murchie

American writer

Plant life

The Fibonacci sequence can also be seen in the arrangement of leaves and seeds
in some plants. Pine cones and pineapples, for example, display Fibonacci
numbers in the spiral formation of their exterior scales. Many flowers have three,
five, or eight petals—numbers that belong to the Fibonacci sequence. Ragwort
flowers have 13 petals, chicory often has 21, and different types of daisy have 34
or 55. However, many other flowers have four or six petals, so while numbers
from the sequence are common, other patterns are also found.

Each Fibonacci number is the sum of the previous two, so the first two have to
be stated before the third can be calculated. The Fibonacci sequence can be
defined by a recurrence relation—an equation that defines a number in a sequence
in terms of its previous numbers. The first Fibonacci number is written as f;, the

second as f, and so on. The equation is f,, = fi.1) * f(n-2), Where n is greater than
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1. If you are trying to find the fifth Fibonacci number (f), for example, you must
add together f, and f5.

[If] a spider climbs so many feet up a wall each day and slips back a fixed number each night,
how many days does it take him to climb the wall?

Fibonacci

Fibonacci ratios

Calculating the ratios of successive terms in the Fibonacci sequence is particularly
interesting. Dividing each number by the previous number in the sequence
produces the following: ¥, =1,%,=2,%, = 1.5, % = 1.666..., % = 1.6, 134 =
1.625, 21,5 = 1.61538..., 3¥,, = 1.61904... By continuing this process
indefinitely, it can be shown that the numbers approach 1.618, approximately.
This is referred to as the golden ratio or the golden mean. The same number is
also significant in a curve called the golden spiral, which gets wider by a factor of
1.618 for every quarter turn it makes. This spiral crops up commonly in nature:
for example, the seeds of pine cones, sunflowers, and coneflowers tend to grow in
golden spirals.
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The scales of a pine cone, viewed from above, can be seen to run in two sets of spirals. Both
sets run from the outside to the center: one clockwise, and the other counterclockwise. The
numbers of spirals in each set are 13 (clockwise) and 8 (counterclockwise)—two Fibonacci
numbers.

Arts and analysis

The Fibonacci sequence can also be found in poetry, art, and music. A pleasing
rhythm in poetry, for example, is produced when successive lines have 1, 1, 2, 3,
5, and 8 syllables, and there is a long tradition of 6-line, 20-syllable poetry
structured in this way. Around 200 BCE, Pingala was aware of this pattern in
Sanskrit poetry, and the Roman poet Virgil used it in the 1st century BCE.

The sequence has also been used in music. French composer Claude Debussy
(1862-1918) employed Fibonacci numbers in several compositions. In the
dramatic climax of his Cloches a travers les feuilles (Bells Through the Leaves),
the ratio of total bars in the piece to climax bars is approximately 1.618.
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Although it is often associated with the arts, the Fibonacci sequence has also

proved a useful tool in finance. Today, ratios derived from the sequence are used

as an analytical tool to forecast the point at which stock market prices will stop

rising or falling.

A piano keyboard scale from C to C spans 13 keys, eight white and five black. The black
keys are in groups of two and three. These numbers all form part of the Fibonacci sequence.

Practical solutions

A page from the original
manuscript of Liber Abaci
shows the Fibonacci
sequence listed on the
right.

Fibonacci’s work was intended to have a useful
purpose. In Liber Abaci (1202), for example, he
described how to solve many of the problems
encountered in commerce, including calculating
profit margins and converting currencies. In
Practica Geometriae (1220), he solved problems
associated with surveying, such as finding the height
of a tall object using similar triangles (triangles that
have identical angles, but different sizes). In his
Liber Quadratorum (1225), he tackled several topics
in number theory, including finding Pythagorean

triples—groups of three integers that represent the lengths of the sides of right-
angled triangles. In these triangles, the square of the length of the longest side
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(the hypotenuse) equals the sum of the squares of the lengths of the two shorter
sides. Fibonacci found that, starting with 5, every second number in his
sequence (13, 34, 89, 233, 610, and so on) is the length of the hypotenuse of a
right-angled triangle when the lengths of the two shorter sides are integers.

See also: Positional numbers * Pythagoras * Trigonometry * Algebra * The golden
ratio * Pascal’s triangle « Benford’s law
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IN CONTEXT

KEY FIGURE
Sissa ben Dahir (3rd or 4th century CE)

FIELD
Number theory

BEFORE

c. 300 BcE Euclid introduces the concept of a power to describe squares

c. 250 BCE Archimedes uses the law of exponents, which states that multiplying
exponents can be achieved by adding the powers.

AFTER

1798 British economist Thomas Malthus predicts that the human population
will grow exponentially while the food supply will increase more slowly,
causing a catastrophe.

1965 American co-founder of Intel Gordon Moore observes how the number of
transistors on a microchip doubles roughly every 18 months.

The first written record of the wheat on a chessboard problem was made in 1256
by Muslim historian Ibn Khallikan, though it is probably a retelling of an earlier
version that arose in India in the 5th century. According to the story, the inventor
of chess, Sissa ben Dahir, was summoned to an audience with his ruler, King
Sharim. The king was so delighted with the game of chess that he offered to grant
Sissa any reward that he wanted. Sissa asked for some grains and explained the
quantity he desired using the squares on the 8 x 8 chessboard. One grain of wheat
(or rice, in some versions of the story) was to be placed on the bottom left square
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of the chessboard. Moving right, the number of grains would then be doubled, so
the second square had two grains, the third had four, and so on, moving left to
right along each row to the 64th square at the top right.

Puzzled by what seemed to be a paltry reward, the king ordered that the grains be
counted out. The 8th square had 128 grains, the 24th had more than 8 million, and
the 32nd, the last square on the chessboard’s first half, had over 2 billion. By
then, the king’s granary was running low, and he realized that the next square
alone, number 33, would need 4 billion grains, or one large field’s worth. His
advisers calculated that the final square would need 9.2 million trillion grains, and
the total number of grains on the chessboard would be
18,446,744,073,709,551,615 (254 — 1). The story has two alternative endings: in
one, the king made Sissa his chief adviser; in the other, Sissa was executed for
making the king look foolish.

Sissa’s concept is an example of what is known as a geometric series, in which
every successive term is the previous one multiplied by two: 1 + 2 + 4 + 8 + 16,
and so on. From 2 onward, these numbers are all powers of 2: 1 + 2 + 22 + 23 +
24, and so on. The superscript number, the exponent, shows how many times the
other number, in this case 2, is multiplied by itself. The last term in the series, 253,
is 2 multiplied by itself 63 times.

172



Bacteria dividing is an example of exponential growth; when a single cell divides, it creates
two cells that divide to make four, and so on. This allows bacteria to spread very quickly.

Power of exponents

The growth of the values in this series is described as exponential. Exponents can
be viewed as instructions for how many times 1 should be multiplied by a given
number. For example, 23 means that 1 will be multiplied by 2 three times: 1 x 2 X
2 x 2 = 8, while 2! means that 1 will be multiplied by 2 just once: 1 x 2 = 2. The
first square of the chessboard contains 1 grain, so 1 is the first term of this series.
The number 1 can be written as 2°, because it is equivalent to 1 multiplied by 2
zero times, leaving 1 unaffected. In fact, any number to the power of 0 equals 1
for this reason.

Exponential growth and decay relate to many aspects of everyday life. For
example, a radioactive isotope decays into another atomic form at an exponential
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rate, and that results in a half-life, where half the material takes the same amount
of time to decay, irrespective of the starting quantity.

Sissa’s concept of wheat on a chessboard is an early example of how quickly numbers can
increase with exponential growth.(Numbers from 1 million onward are approximate.) The
wheat on this chessboard would total over 18 million trillion grains.

The second half of the chessboard

Recent thinkers have used the chessboard problem as a metaphor for the rate of
change in technology over recent years. In 2001, computer scientist Ray
Kurzweil wrote an influential essay describing the exponential growth in
technology over previous years. He predicted that, like the wheat on the second
half of the chessboard, the rate of technological development would rapidly
grow out of control, following the model of doubling its previous growth with
every leap forward.

Kurzweil argued that this rate of growth in technology would eventually lead to
the singularity, which is defined in physics as a point at which a function takes
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an infinite value. When applied to technology, the singularity marks the point at
which the cognitive ability of artificial intelligence will surpass that of humans.

See also: Zeno’s paradoxes of motion ¢ Syllogistic logic * Logarithms * Euler’s
number ¢ Catalan’s conjecture
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INTRODUCTION

Throughout the Middle Ages, the Catholic Church wielded considerable political
power across Europe, and had a virtual monopoly of learning, but in the 1400s, its
authority was being challenged. A new cultural movement, known as the
Renaissance (“rebirth”), was inspired by renewed interest in the arts and
philosophy of the Graeco-Roman Classical period.

The Renaissance thirst for discovery also accelerated a “Scientific Revolution”—
classic texts of mathematics, philosophy, and science had become widely
available, and inspired a new generation of thinkers. So too did the Protestant
Reformation that challenged the hegemony of the Catholic Church in the 1500s.

Renaissance art also influenced mathematics. Luca Pacioli, an early Renaissance
mathematician, investigated the mathematics of the golden ratio that was so
important in Classical art, and the innovative use of perspective in painting
inspired Girard Desargues to explore the mathematics behind it and develop the
field of projective geometry. Practical considerations also prompted progress:
commerce required more sophisticated means of accounting, and international
trade drove advances in navigation, which demanded a deeper understanding of
trigonometry.

Mathematical innovation

A major advance in the business of calculation came with the adoption of the
Hindu-Arabic number system and an increase in the use of symbols to represent
functions such as equals, multiplication, and division. Another significant
development was the formalization of a number system of base-10, and Simon
Stevin’s introduction of the decimal point in 1585.

To meet the era’s practical needs, mathematicians devised tables of relevant
calculations, and John Napier developed a means of calculating with logarithms
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in the 1600s. The first mechanical aids to calculation were invented during this
period, such as William Oughtred’s slide rule, and Gottfried Leibniz’s mechanical
calculating device, which was a first step toward true computing devices.

Other mathematicians took a more theoretical path, inspired by the ideas in the
newly available texts. In the 1500s, the solution of cubic and quartic equations
occupied Italian mathematicians such as Gerolamo Cardano, while Marin
Mersenne devised a method of finding prime numbers, and Rafael Bombelli laid
down rules for using imaginary numbers. In the 1600s, the pace of mathematical
discovery accelerated as never before, and several pioneering modern
mathematicians emerged. Among these was philosopher, scientist, and
mathematician René Descartes, whose methodical approach to problem-solving
set the scene for the modern scientific era. His major contribution to mathematics
was the invention of a system of coordinates to specify the position of a point in
relation to axes, establishing the new field of analytic geometry, in which lines
and shapes are described in terms of algebraic equations.

Another late-Renaissance mathematician who has become almost a household
name is Pierre de Fermat, whose claim to fame rests largely on his enigmatic last
theorem, which remained unsolved until 1994. Less well known are his
contributions to the development of calculus, number theory, and analytic
geometry. He and fellow mathematician Blaise Pascal corresponded about
gambling and games of chance, laying the foundations for the field of probability.

The birth of calculus

One of the key mathematical concepts of the 1600s was developed independently
by two scientific giants of the time, Gottfried Leibniz and Isaac Newton.
Following on from the work of Gilles de Roberval in finding the area under a
cycloid, Leibniz and Newton worked on the problems of calculation of such
things as continuous change and acceleration, which had puzzled mathematicians
ever since Zeno of Elea had presented his famous paradoxes of motion in ancient
Greece. Their solution to the problem was the theorem of calculus, a set of rules
for calculating using infinitesimals. For Newton, calculus was a practical tool for
his work in physics and especially on the motion of planets, but Leibniz
recognized its theoretical importance and refined the rules of differentiation and
integration.
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IN CONTEXT

KEY FIGURE
Luca Pacioli (1445-1517)

FIELD
Applied geometry

BEFORE

447-432 BCE Designed by the Greek sculptor Phidias, the Parthenon is later said
to approximate the golden ratio.

c. 300 BcE Euclid makes the first known written reference to the golden ratio in
his Elements.

1202 ck Fibonacci introduces his famous sequence.

AFTER

1619 Johannes Kepler proves that the numbers in the Fibonacci sequence
approach the golden ratio.

1914 Mark Barr, an American mathematician, is credited with using the Greek
letter phi (¢) for the golden ratio.

[The golden proportion] is a scale of proportions which makes the bad difficult [to produce] and
the good easy.

Albert Einstein

The Renaissance was a time of intellectual creativity, in which disciplines such as
art, philosophy, religion, science, and mathematics were considered to be much
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closer to each other than they are today. One area of interest was in the
relationship between mathematics, proportion, and beauty. In 1509, Italian priest
and mathematician Luca Pacioli wrote Divina Proportione (The Divine
Proportion), which discussed the mathematical and geometric underpinnings of
perspective in architecture and the visual arts. The book was illustrated by
Pacioli’s friend and colleague Leonardo da Vinci, a leading artist and polymath of
the Renaissance.

Since the Renaissance, the mathematical analysis of art by means of the “golden

b AN 13

ratio,” “golden mean”—or, as Pacioli called it, the Divine Proportion—has come
to symbolize geometrical perfection. The ratio can be found by dividing a straight
line into two parts, so that the ratio of the longer length (a) to the smaller length
(b) is the same as the ratio of the whole line (a + b) divided by the longer length
(a). So: (a + b) + a=a + b. The value of this ratio is a mathematical constant
denoted by the Greek letter ¢ (“phi”). The name ¢ comes from the ancient Greek
sculptor Phidias (500432 BCE), who is believed to have been one of the first to
recognize the aesthetic possibilities of the golden ratio. He allegedly used the ratio

in the design of the Parthenon in Athens.

Like m (3.1415...), ¢ is an irrational number (a number that cannot be expressed
as a fraction) and can therefore be expanded to an infinite number of decimals in a
nonrepeating random pattern. Its approximate value is 1.618. It is one of the
wonders of mathematics that this seemingly unremarkable number should
produce such aesthetically pleasing proportions in art, architecture, and nature.
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Discovering phi

Some believe that proportions related to ¢ can be found in ancient Greek
architecture—and even earlier in ancient Egyptian culture, with the Great
Pyramid built at Giza in c. 2560 BCE, which has a base to height ratio of 1.5717.
Yet there is no evidence that ancient architects were conscious of this ideal ratio.
Approximations to the golden ratio may have been the result of an unconscious
tendency rather than any deliberate mathematical intention.

The Pythagoreans, a semi-mystical group of mathematicians and philosophers
associated with Pythagoras of Samos (570—495 BCE) had the pentagram, or five-
pointed star, as their symbol. Where one side of the pentagram crosses another, it
divides each side into two parts, the ratio of which is ¢. The Pythagoreans were
convinced that the Universe was based on numbers; they also believed that all
numbers could be described as the ratio of two integers. According to
Pythagorean doctrine, any two lengths are both integer multiples of some fixed
smaller length. In other words, their ratio is a rational number, so it can be
expressed as the ratio of integers. Supposedly, when one of Pythagoras’s
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followers, Hippasus, discovered that this was not true, his fellow Pythagoreans
drowned him in disgust.

LUCA PACIOLI

Luca Pacioli was born in 1445 in Tuscany. After
moving to Rome in his youth, he received training
from the artist—-mathematician Piero della Francesca as
well as the renowned architect Leon Battista Alberti,
and gained knowledge of geometry, artistic
perspective, and architecture. He became a teacher
and traveled throughout Italy. He also took his vows
as a Franciscan friar, combining monastic pursuits with teaching. In 1496,
Pacioli moved to Milan to work as a payroll clerk. While there, he also gave
mathematics tuition, one of his students being L.eonardo da Vinci, who
illustrated Pacioli’s Divina Proportione. Pacioli also devised a method of
accounting that is still in use today. He died in 1517, in Sansepolcro, Tuscany.

Key works

1494 Summa de arithmetica, geometria, proportioni et proportionalita
(Summary of arithmetic, geometry, proportions, and proportionality)

1509 Divina Proportione (The Divine Proportion)

Written records

The earliest written references to the golden ratio are found in the work of the
Alexandrian mathematician Euclid, c. 300 BCE. Euclid’s Elements discussed the
Platonic solids described earlier by Plato (such as the tetrahedron), and
demonstrated the golden ratio (which Euclid called the “extreme and mean ratio”)
in their proportions. Euclid showed how to construct the golden ratio using a ruler
and compass.

The good, of course, is always beautiful, and the beautiful never lacks proportion.

Plato

Phi and Fibonacci
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The golden ratio is also closely related to another well-known mathematical
phenomenon— the set of numbers known as the Fibonacci sequence. It was
introduced by Leonardo of Pisa, or Fibonacci, in his 1202 book Liber Abaci (The
Book of Calculation). Subsequent numbers in the Fibonacci sequence are found
by adding the previous two together: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89....

It took until 1619 for German mathematician and astronomer Johannes Kepler to
show that the golden ratio is revealed if a number in the Fibonacci sequence is
divided by the one that precedes it. The further along the sequence this calculation
is attempted, the closer the answer is to ¢. For example, 6,765 + 4,181 = 1.61803.
Both Fibonacci’s sequence and the golden ratio appear to exist widely in nature.
For example, many species of flower have a Fibonacci number of petals, and the
scales of a pine cone, viewed from below, are arranged in 8 clockwise spirals and
13 counterclockwise spirals.

Another golden ratio approximated in nature is the golden spiral, which gets
wider by a factor of ¢ for every quarter turn it makes. The golden spiral can be
drawn by splitting a golden rectangle (a rectangle with side lengths in the golden
ratio) into successively smaller squares and golden rectangles, and inscribing
quarter circles inside the squares. Natural spiral shapes, such as the nautilus shell,
have a resemblance to the golden spiral, but do not strictly fit the proportions.

The golden spiral was first described by French philosopher, mathematician, and
polymath René Descartes in 1638 and was studied by Swiss mathematician Jacob
Bernoulli. It was classified as a type of “logarithmic spiral” by French
mathematician Pierre Varignon because the spiral can be generated by a
logarithmic curve.

183



Leonardo da Vinci supposedly used golden rectangles in his composition of The Last Supper
(1494-98). Other Renaissance artists—such as Raphael and Michelangelo—also used the
ratio.

Art and architecture

While the golden ratio can be found in music and poetry, it is more often
associated with the art of the Renaissance in the 15th and 16th centuries. Da
Vinci’s painting The Last Supper (1494-98) is said to incorporate the golden
ratio. His famous drawing of the “Vitruvian Man”—a “perfectly proportioned”
man inscribed in a circle and square—for Divina Proportione is also said to
contain many instances of the golden ratio in the proportions of the ideal human
body. In reality, the Vitruvian Man, which illustrated the theories of ancient
Roman architect Vitruvius, does not quite align with golden proportions. Despite
this, many people have subsequently attempted to relate the golden ratio to the
notion of attractiveness in people (see box).

The problem with using the golden ratio to define human beauty is that if you’re looking hard
enough for a pattern, you’ll almost certainly find one.

Hannah Fry

British mathematician

Against the golden ratio
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In the 1800s, German psychologist Adolf Zeising argued that the perfect human
body aligned with the golden ratio; it could be found by measuring the person’s
total height and dividing this by the height from their feet to their navel. In 2015,
Stanford mathematics professor Keith Devlin argued that the golden ratio is a
“150-year scam.” He blamed Zeising’s work for the idea that the golden ratio has
historically had a relationship to aesthetics. Devlin argues that Zeising’s ideas
have led people to look back at historical art and architecture and retrospectively
apply the golden ratio. Similarly, in 1992, American mathematician George
Markowsky suggested that supposed discoveries of the golden ratio in the human
body were a result of imprecise measurements.

A golden spiral can be inscribed within a golden rectangle. It is created by splitting the
rectangle into squares and a smaller golden rectangle, then repeating the process in the smaller
rectangle. If quarter circles are then inscribed in the squares, it creates a golden spiral.

Modern uses

Although ¢’s historical use is debated, the golden ratio can still be traced in
modern works, such as Salvador Dali’s Sacrament of the Last Supper (1955), in
which the shape of the painting itself is a golden rectangle. Beyond the arts, the
golden ratio has also appeared in modern geometry, particularly in the work of
British mathematician Roger Penrose, whose Fibonacci tiles incorporate the
golden ratio in their structure. Standard aspect ratios for television and computer
monitor screens, such as the 16:9 display, also come close to @, as do modern
bank cards, which are almost perfect golden rectangles.
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The ratio of beauty

The mask created by
Stephen Marquardt has
been criticized for
defining beauty based on
white, Western models.

Studies indicate that facial symmetry plays a major
role in determining a person’s perceived
attractiveness. However, the proportions defined by
the golden ratio appear to play an even greater role.
People whose faces have proportions that
approximate to the golden ratio (the ratio of the
length of the head to its width, for instance) are often
cited as being more attractive than those whose faces
do not. Studies to date, however, are inconclusive
and often contradictory; there is little scientific basis
for believing that the golden ratio makes a face more
attractive.

Stephen Marquardt, an American plastic surgeon,

created a “mask” (see above) based on applying the golden ratio to the human

face. The more closely a face aligns with the mask, the more beautiful it

supposedly is. Some, however, see the mask—used as a template for plastic

surgery—as an unethical, unfounded use of mathematics.

See also: Pythagoras * Irrational numbers * The Platonic solids ¢ Euclid’s

Elements * Calculating pi ¢ The Fibonacci sequence * Logarithms ¢ The Penrose

tile
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IN CONTEXT

KEY FIGURES
Hudalrichus Regius (early 1500s), Marin Mersenne (1588-1648)

FIELD
Number theory

BEFORE

c¢. 300 BcE Euclid proves the fundamental theorem of arithmetic that every
integer greater than 1 can be expressed as a product of primes in only one way.

c. 200 BCE Eratosthenes devises a method for calculating prime numbers.

AFTER

1750 Leonhard Euler confirms that the Mersenne number 23! — 1 is prime.

1876 French mathematician Fdouard Lucas verifies that 2127 — 1 is a Mersenne
prime.

2018 The largest known prime to date is found to be 282589933 — 1,

Prime numbers—numbers that can only be divided by themselves or 1—have
fascinated scholars since the ancient Greeks of Pythagoras’s school first studied
them, not least because they can be thought of as the building blocks of all natural
numbers (positive integers). Until 1536, mathematicians believed that all prime
numbers for n, when employed in the equation 2n - 1, would lead to another
prime as the solution. However, in his Utriusque Arithmetices Epitome (Epitome
of Both Arithmetics), published in 1536, a scholar known to us only as
Hudalrichus Regius pointed out that 2 - 1 = 2,047. This is not a prime number,
as 2,047 = 23 x 89.
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Mersenne’s influence

Regius’s work on primes was continued by others who proposed new hypotheses
with 2™ - 1. The most significant was that of French monk Marin Mersenne in
1644). He stated that 2"-1 was valid whenn=2, 3, 5,7, 13, 17, 19, 31, 67, 127,
and 257. Mersenne’s work rekindled interest in the topic, and primes generated by
2™ - 1 are now known as Mersenne primes (M,,).

The use of computers has made it possible to find more Mersenne primes. Two
of Mersenne’s n values (67 and 257) were proved incorrect, but in 1947, three
new primes were found: n = 61, 89, and 107 (Mg, Mgg, M;(7), and in 2018, the
Great Internet Mersenne Prime Search uncovered the 51st known Mersenne
prime.

The beauty of number theory [is] related to the contradiction between the simplicity of the
integers and the complicated structure of the primes.

Andreas Knauf

German mathematician

See also: Euclid’s Elements * Eratosthenes’ sieve « The Riemann hypothesis °
The prime number theorem
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IN CONTEXT

KEY FIGURE
Pedro Nunes (1502-78)

FIELD
Graph theory

BEFORE
150 ce The Greco-Roman mathematician Ptolemy establishes the concepts of

latitude and longitude.
c. 1200 The magnetic compass is used by navigators in China, Europe, and the
Arab world.

1522 Portuguese navigator Ferdinand Magellan’s ship completes the first
voyage around the world.

AFTER

1569 Flemish mapmaker Gerardus Mercator’s map projection allows navigators
to plot rhumb-line courses as straight lines on the map.

1617 A spiral rhumb line is named a “loxodrome” by Dutch mathematician
Willebrord Snell.

From around 1500, as ships began to cross the world’s oceans, navigators met a
problem——plotting a course across the world that took account of the Earth’s
curved surface. The problem was solved by the introduction of the rhumb line by
Portuguese mathematician Pedro Nunes in his Treatise on the Sphere (1537).
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The rhumb spiral

A rhumb line cuts across every meridian (line of longitude) at the same angle.
Because meridians get closer toward the poles, rhumb lines bend around into a
spiral. Such spirals were called loxodromes by Dutch mathematician Willebrord
Snell in 1617; they became a key concept in the geometry of space.

The rhumb line helps navigators because it gives a single compass bearing for a
voyage. In 1569, Mercator maps—on which lines of longitude are drawn parallel,
so that all rhumb lines are straight—were introduced. This further enabled people
to plot a course just by drawing a straight line on the map. The shortest distance
across the globe is not a rhumb, however, but a “great circle”—any circle that
centers on the center of the Earth. It only became practical to follow a great circle
course with the invention of GPS.

A loxodrome starts at the North or South Pole, and spirals around the globe, crossing each
meridian at the same angle. A rhumb line is all or part of this spiral.

See also: Coordinates « Huygens’s tautochrone curve ¢ Graph theory * Non-
Euclidean geometries
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IN CONTEXT

KEY FIGURE
Robert Recorde (c. 1510-58)

FIELD

Number systems

BEFORE

250 ce Greek mathematician Diophantus uses symbols to represent variables
(unknown quantities) in Arithmetica.

1478 The Treviso Arithmetic explains in simple language how to perform
addition, subtraction, multiplication, and division calculations.

AFTER

1665 In England, Isaac Newton develops infinitesimal calculus, which
introduces ideas such as limits, functions, and derivatives. These processes
require new symbols for abbreviation.

1801 Carl Friedrich Gauss introduces the symbol for congruence—equal size
and shape.

In the 16th century, when Welsh doctor and mathematician Robert Recorde began
his work, there was little consensus on the notation used in arithmetic. Hindu—
Arabic numerals, including zero, were already established, but there was little to
represent calculations.

In 1543, Recorde’s The Grounde of Artes introduced the symbols for addition (+)
and subtraction (-) to mathematics in England. These signs had first appeared in
print in Mercantile Arithmetic (1489), by German mathematician Johannes
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Widman, but were probably already used by German merchants before Widman’s
book was published. These symbols slowly replaced the letters “p” for plus and
“m” for minus as they were taken up by scholars, first in Italy, then in England.

In 1557, Recorde went on to recommend a new symbol of his own. In The
Whetstone of Witte, he used a pair of identical parallel lines (=) to represent
“equals,” claiming that “no two things can be more equal” than these. Recorde
suggested that symbols would save mathematicians from having to write out
calculations in words. The equals sign was widely adopted, and the 17th century
also saw the creation of many of the other symbols used today, such as those for
multiplication (%) and division (=).

Robert Recorde tested the equals sign (=) in his own calculations, as seen here in one of his
exercise books. Recorde’s sign was noticeably longer than the modern form.

Notating algebra
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While the earliest algebraic techniques date back more than two millennia to the
Babylonians, most calculations before the 16th century were recorded in words—
sometimes abbreviated, but not in a uniform way. English mathematician Thomas
Harriot and French mathematician Francois Viete, who each made important
contributions to developments in algebra, used letters to produce consistent
symbolic notation. In their system, the most noticeable difference from today’s
notation is the use of a repeated letter to indicate a power. For example, a® was
aaa and x* was XxxXx.

A modern system

French mathematician Nicholas Chuquet used superscripts in 1484 to represent
exponents (“to the power of”), but did not record them as such; for example, 6x>
was 6.2. It took more than 150 years for superscripts to become common; René
Descartes used recognizable examples in 1637 when writing 3x + 5x3, yet
continued to write x? as xx. Only in the early 1800s, when the influential German
mathematician Carl Gauss favored using x?, did superscript notation begin to
stick. Descartes also made a contribution with his use of x, y, and z for the
unknowns in equations, and a, b, and ¢ for known figures.

Algebraic notation may have taken a long time to catch on, but when a symbol
made sense and helped mathematicians work through problems, it became the
norm. Improved contact between mathematicians in different parts of the world in
the 1600s also led to such notations being adopted much more swiftly.
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To avoid the tedious repetition of these words, is equal to, I will set, as I do often in work use, a
pair of parallels.

Robert Recorde

ROBERT RECORDE

Born in Tenby, Wales, around 1510, Recorde grew up
to study medicine first at Oxford University, then at
Cambridge, where he qualified as a physician in 1545.
He taught mathematics at both universities and wrote
the first English book on algebra in 1543. In 1549,
after a period practicing medicine in London, Recorde
was made controller of the Bristol mint. However,
after he refused to issue funds to William Herbert, the
future Earl of Pembroke, for his army, the mint was closed.

In 1551, Recorde was given charge of the Dublin mint, which included silver
mines in Germany. When he failed to show a profit, the mines were also closed.
Recorde later tried to sue Pembroke for misconduct, but was instead
countersued for libel. Sent to a London prison in 1557 for failure to pay the fine,
Recorde died there in 1558.

Key works

1543 Arithmetic: or the Grounde of Artes
1551 The Pathway to Knowledge
1557 The Whetstone of Witte

See also: Positional numbers * Negative numbers ¢ Algebra * Decimals ¢
Logarithms * Calculus
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IN CONTEXT

KEY FIGURE
Rafael Bombelli (1526-72)

FIELD
Algebra

BEFORE

1500s In Italy, Scipione del Ferro, Tartaglia, Antonio Fior, and Ludovico Ferrari
compete publicly to solve cubic equations.

1545 Gerolamo Cardano’s Ars Magna, a book of algebra, includes the first
published calculation involving complex numbers.

AFTER
1777 Leonhard Euler introduces the notation i for
1806 Jean-Robert Argand publishes a geometrical interpretation of complex

numbers, leading to the Argand diagram.

In the late 1500s, Italian mathematician Rafael Bombelli broke new ground when
he laid down the rules for using imaginary and complex numbers in his book
Algebra. An imaginary number, when squared, produces a negative result,
defying the usual rules that any number (positive or negative) results in a positive
number when squared. A complex number is the sum of any real number (on the
number line) and an imaginary number. Complex numbers take the form a + bi,

wherea and b are real and i =
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Over the centuries, scholars have needed to extend the concept of the number in
order to solve different problems. Imaginary and complex numbers were new
tools in this endeavor, and Bombelli’s Algebra advanced understanding of how
these and other numbers work. To solve the simplest equations, such as x + 1 = 2,
only natural numbers (positive integers) are needed. To solve x + 2 = 1, however,
x must be a negative integer, while solving x?> + 2 = 1 requires the square root of a
negative number. This did not exist with the numbers at Bombelli’s disposal, so

had to be invented—Ieading to the concept of the imaginary unit ( ).
Negative numbers were still mistrusted in the 1500s; imaginary and complex
numbers were not widely accepted for many decades.

Some people believe in imaginary friends. I believe in imaginary numbers.
R. M. ArceJaeger

American author

Fierce rivalry

The idea of complex numbers first emerged early in Bombelli’s lifetime as Italian
mathematicians sought to find solutions to cubic equations as efficiently as
possible, without relying on the geometrical methods devised by Persian
polymath Omar Khayyam in the 12th century. As most quadratic equations could
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be solved with an algebraic formula, the search was on for a similar formula that
worked for cubic equations. Scipione del Ferro, a mathematics professor at
Bologna University, took a major step forward when he discovered an algebraic
method for solving some cubic equations, but the quest for a comprehensive
formula continued.

Italian mathematicians of this era would publicly challenge one another to solve
cubic equations and other problems in the least possible time. Achieving fame in
such contests became essential for any scholar who wanted to gain a post as a
mathematics professor at a prestigious university. As a result, many
mathematicians kept their methods secret rather than sharing them for the
common good. Del Ferro tackled equations of the form x3 + cx = d. He passed his
technique on to only two people, Antonio Fior and Annibale della Nave, swearing
them to secrecy. Del Ferro soon had competition from Niccolo Fontana (known
as Tartaglia, or “the stutterer”). An itinerant teacher of considerable mathematical
ability, but with few financial resources, Tartaglia discovered a general method
for solving cubic equations independently of del Ferro. When del Ferro died in
1526, Fior decided the time had come for him to unleash del Ferro’s formula
upon the world. He challenged Tartaglia to a cubic duel, but was beaten by
Tartaglia’s superior methods. Gerolamo Cardano heard of this and persuaded
Tartaglia to share his methods with him. As with del Ferro, the condition was that
the method should never be published.

I shall call [the imaginary unit] ‘plus of minus’ when added and when subtracted, ‘minus of
minus.’

Rafael Bombelli

Beyond positive numbers

At this time all equations were solved using positive numbers. Working with
Tartaglia’s method, Cardano had to grapple with the notion that using the square
roots of negative numbers might help solve cubic equations. He was evidently
prepared to experiment with the method, but appears not to have been convinced.
He called such negative solutions “fictitious” and “false” and described the
intellectual effort involved in finding them as “mental torture.” His Ars Magna
shows his use of the negative square root. He wrote: “Multiply 5 + by 5
, making 25 -(-15), which is + 15. Hence this product is 40.” This is the
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first recorded calculation involving complex numbers, but the significance of this
breakthrough escaped Cardano; he branded his work “subtle” and “useless.”

Rafael Bombelli set out the rules for operations on complex numbers. He used the term
“plus of minus” to describe a positive imaginary unit and “minus of minus” to describe a
negative imaginary unit. Multiplying a positive imaginary unit by a negative imaginary unit,
for example, equals a positive integer; while multiplying a negative imaginary unit by a
negative imaginary unit equals a negative integer.

Explaining the numbers

Rafael Bombelli assimilated the tussles between the various mathematicians
solving cubic equations. He read Cardano’s Ars Magna with great admiration. His
own work, Algebra, was a more accessible version, and was a thorough and
innovative survey of the subject. It investigated the arithmetic of negative
numbers, and included some economical notation that represented a major
advance on what had gone before.

The work outlines the basic rules for calculating with positive and negative
quantities, such as: “Plus times plus makes plus; Minus times minus makes plus.”
It then sets out new rules for adding, subtracting, and multiplying imaginary
numbers in terminology that differs from that used by mathematicians today. For
example, he stated that “Plus of minus multiplied by plus of minus makes
minus”—meaning a positive imaginary number multiplied by a positive
imaginary number equals a negative number: X = -n. Bombelli also
gave practical examples of how to apply his rules for complex numbers to cubic
equations, where solutions require finding the square root of some negative
number. Although Bombelli’s notation was advanced for his time, the use of
algebraic symbols was still in its infancy. Two centuries later, Swiss
mathematician Leonhard Euler introduced the symbol i to denote the imaginary
unit.

The shortest route between two truths in the real domain passes through the complex domain.
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Jacques Hadamard

French mathematician

Applying complex numbers

Imaginary and complex numbers joined the ranks of other sets, such as natural
numbers, real numbers, rational numbers, and irrational numbers, that were used
to solve equations and perform a range of other increasingly sophisticated
mathematical tasks.

Over the decades, sets of such numbers acquired their own universal symbols
that could be used in formulae. For instance, the bold capital N is used for natural
numbers from the set {0, 1, 2, 3, 4...}, enclosed in curly brackets to denote a set.
In 1939, American mathematician Nathan Jacobson established the bold capital C
to signify the set of complex numbers, {a + bi}, where a and b are real and i =

Complex numbers enable all polynomial equations to be solved completely, but
have also proved immensely useful in many other branches of mathematics—
even in number theory (the study of integers, especially positive numbers). By
treating the integers as complex numbers (the sum of a real value and an
imaginary value), number theorists can use powerful techniques of complex
analysis (a study of functions with complex numbers) to investigate the integers.
The Riemann zeta function, for example, is a function of complex numbers that
provides information about primes. In other practical areas, physicists use
complex numbers in the study of electromagnetism, fluid dynamics, and quantum
mechanics, while engineers need them for designing electronic circuits, and for
studying audio signals.

There is an ancient and innate sense in people that numbers ought not to misbehave.

Douglas Hofstadter

Cognitive scientist
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A series of cups shows blue food dye being dripped over an ice cube (left). As the ice cube
melts, the heavier blue dye sinks. Complex numbers are used to model the velocity (speed and
direction) of such fluids.

RAFAEL BOMBELLI

Born in Bologna, Italy, in 1526, Rafael Bombelli was the eldest of six children;
his father was a wool merchant. Although Bombelli did not receive a college
education, he was taught by an engineer—architect and became an engineer
himself, specializing in hydraulics. He also developed an interest in
mathematics, studying the work of ancient and contemporary mathematicians.
While waiting for a drainage project to recommence, he embarked on his major
work, Algebra, which laid out a primitive but thorough arithmetic of complex
numbers for the first time.

Greatly impressed by a copy of Diophantus’s Arithmetica found in the Vatican
library, Bombelli helped to translate it into Italian — work that led him to revise
Algebra. Three volumes were published in 1572, the year he died; the last two
incomplete volumes were published in 1929.

Key work
1572 Algebra

See also: Quadratic equations * Irrational numbers * Negative numbers ¢ Cubic
equations * The algebraic resolution of equations ¢ The fundamental theorem of
algebra * The complex plane
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IN CONTEXT

KEY FIGURE
Simon Stevin (1548-1620)

FIELD

Number systems

BEFORE

830 ce Al-Kindi’s four-volume On the use of Indian numerals spreads the place
value system based on the Hindu numerals throughout the Arab world.

1202 Leonardo of Pisa’s Liber Abaci (The Book of Calculation) brings the
Arabic number system to Europe.

AFTER
1799 The metric system is introduced for French currency and measures during
the French Revolution.

1971 Britain introduces decimalization, dispensing with pounds, shillings, and
pence, which stemmed from the Latin system.

Fractions—so named for the Latin word fractio, meaning “break”—were used
from around 1800 BCE in Egypt to express parts of a whole. At first they were
limited to unit fractions, which are those with a 1 as the numerator (top number).
The ancient Egyptians had symbols for %4 and %, but other fractions were
expressed as the sum of unit fractions, for example as 74 + /{5 + /. This system
worked well for recording amounts but not for doing calculations. It was not until
after Simon Stevin’s De Thiende (The Art of Tenths) was published in 1585 that a
decimal system became commonplace.
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By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on
more advanced problems.

Alfred North Whitehead

British mathematician

The importance of 10

Simon Stevin, a Flemish engineer and mathematician in the late 16th and early
17th century, used many calculations in his work. He simplified these by using
fractions with a base system of tenth powers. Stevin correctly predicted that a
decimal system would eventually be universal.

Cultures throughout history had used many different bases for expressing parts
of a whole. In ancient Rome, fractions were based on a system of twelfths, and
written out in words: %, was called uncia, %}, was semis, and %, was semiuncia,
but this cumbersome system made it difficult for people to do any calculations. In
Babylon, fractions were expressed using their base-60 number system, but in
writing, it was difficult to distinguish which numbers represented integers and
which were part of the whole.

For many centuries, Europeans used Roman numerals to record numbers and to
do calculations. Medieval Italian mathematician Leonardo of Pisa (also known as
Fibonacci) came across the Indian place-value number system while he was
traveling in the Arab world. He quickly realized its usefulness and efficiency for
both recording and calculating with whole numbers. His Liber Abaci (1202),
which brought many useful Arabic ideas to the west, also introduced a new
notation for fractions to Europe that would form the basis of the notation used
today. Fibonacci employed a horizontal bar to divide the numerator and
denominator (bottom number), but followed the Arabic practice of writing the
fraction to the left of the integer, rather than to the right.

SIMON STEVIN

Born in 1548 in Bruges, now in Belgium, Simon Stevin worked as a

bookkeeper, cashier, and clerk before entering the University of Leiden in 1583.
There he met Prince Maurice, the heir of William of Orange, and they became
friends. Stevin tutored the prince in mathematics and also advised him on
military strategy, leading to some significant victories over the Spanish. In
1600, Prince Maurice asked Stevin, who was also an outstanding engineer, to
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found a School of Engineering at the University in
1600. As quarter-master general from 1604, Stevin
was responsible for several innovative military and
engineering ideas that were adopted across Europe. He
authored many books on a variety of subjects,
including mathematics. He died in 1620.

Key works

1583 Problemata geometrica (Geometric Problems)
1585 De Thiende (The Art of Tenths)
1585 De Beghinselen der Weeghconst (Principles of the Art of Weighing)

Introducing decimals

Finding that conventional fractions were both time-consuming and prone to
errors, Stevin began using a decimal system. The idea of “decimal fractions”—
which have powers of 10 as the denominator—had been used five centuries
before Stevin, in the Middle East, but it was Stevin who made decimals
commonplace in Europe, both for recording and calculating with parts of a whole.
He suggested a notation system for decimal fractions, replicating the advantages
of the Indian place-value system for whole numbers.

In Stevin’s new notation, numbers that would previously have been written as
the sum of fractions—for example, 32 + %, + %09 + 7 goo—could now be
written as a single number. Stevin placed circles after each number; these were
shorthand for the denominator of the original decimal fraction. The whole 32
would be followed by a 0, because 32 is an integer, whereas the 6/100, for
example, was expressed as 6 and a 2 inside a circle. This 2 denoted the power of
10 of the original denominator, as 100 is 10%. In the same vein, the 7} oo became
a 7 followed by a 3 inside a circle. The entire sum could be written out following
this pattern. The symbol that is placed between the whole-number part and the
fractional part of a number is called the decimal separator. Stevin’s zero inside a
circle later evolved into a dot, now called the decimal point. The dot was
positioned on the midline (at a middle height) in Stevin’s notation but has now
moved to be on the baseline to avoid confusion with the dot notation sometimes
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used for multiplication. Stevin’s circled numbers for tenth powers were also done
away with, meaning that 32 + % + %9 + 7 oo could now be written as 32.567.

Decimals [are] a kind of arithmetic invented by the tenth progression, consisting in characters of
cyphers.

Simon Stevin

Stevin’s notation used circles to indicate the power of ten of the denominator of the
converted fraction. This represents how Stevin would have written the number now expressed
as 32.567.
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The decimal system makes it easier to divide and multiply fractions, especially by 10. Shown
here with the example of 32.567 (or 32 + % + %0 + 7/1,000), numbers shift one column to
the left or right, crossing over the decimal separator.

Different systems

The decimal point has never become universally accepted. Many countries use a
comma as the decimal separator instead of a point. There would be no problem
with the two common notations if not for the use of delimiters—symbols that
separate groups of three digits in the whole-number section of a very large or
sometimes very small number. For example, in the UK, the commas in the
number 2,500,000 are delimiters and are used to make it easier both to read the
number and to recognize its size. The UK uses a point for the decimal separator
and a comma as a delimiter. Elsewhere in the world, if a comma is used for the
decimal separator, a point is then used as the delimiter. In Vietnam, for example,
a price of two hundred thousand Vietnamese dong is often written as 200.000.

Usually, the context is sufficient for people to interpret the notation correctly, but
this can go badly wrong. In an attempt to solve this problem, the 22nd General
Conference on weights and measures—a meeting of delegates from 60 nations of
the International Bureau of Weights and Measures—decided in 2003 that,
although either a point or comma on the line could be used as the decimal
separator, the delimiter was to be a space rather than either of the previous
symbols. This notation is yet to become universal.
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In Spain, the decimal separator is a comma, as seen in the prices at this market stall in
Catalonia. In handwritten Spanish, an upper comma (similar to an apostrophe) is also
common.

Benefits of decimals

The same processes of addition, subtraction, multiplication, and division of whole
numbers can be used with decimal numbers, resulting in a far simpler way of
performing basic arithmetic than the previous method, which relied on learning a
different set of rules for calculations with fractions. When multiplying fractions,
for example, the numerators would be multiplied separately from the
denominators, and the resulting fraction would then be reduced. With decimal
fractions, multiplying and dividing by powers of 10 is straightforward—as in the
example of 32.567, the decimal separator can be simply moved left or right.

Stevin believed that the universal introduction of decimal coinage, weights, and
measures would only be a matter of time. The introduction of decimal measures
for length and weight (using meters and kilograms) arrived in Europe some 200
years later, during the French Revolution. When it introduced the metric system,
France also tried to introduce a decimal system for time; there would be 10 hours
in a day, 100 minutes in each hour, and 100 seconds in each minute. The attempt
was so unpopular that it was dropped after just one year. The Chinese had
introduced various forms of decimal time over some 3,000 years, but finally
abandoned it in 1645 CE.

In the US, the use of a decimal system for measurement and coinage was
championed by Thomas Jefferson. His 1784 paper persuaded Congress to
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introduce a decimal system for money using dollars, dimes, and cents. In fact, the
name “dime” originates from Disme, the French title of The Art of Tenths. Yet
Jefferson’s view did not hold sway for measurement, and inches, feet, and yards
are still used today. While many European currencies were decimalized in the
1800s, it was not until 1971 that decimal currency was introduced in the UK.

This marble plaque on the rue de Vaugirard, Paris, is one of 16 original meter markers
installed in 1791, after the French Académie des Sciences defined the meter for the first time.

Perhaps the most important event in the history of science... [is] the invention of the decimal
system...

Henri Lebesgue

French mathematician

Terminating and recurring decimals

Fractions are converted to decimals by dividing the numerator by the
denominator. If the denominator is only divisible by 2 or 5 and no other prime
numbers—as is the case for 10—then the decimal will terminate. For example,
%4 can be expressed as 0.075, and this value is exact because 40 is only
divisible by the primes 2 and 5.

Other fractions become recurring decimals—meaning that they do not end. For
example, %, is decimalized as 0.18181818..., denoted as to show that
both the 1 and 8 recur. The length of the recurring cycle (two numbers in the
case of ) can be predicted as it will be a factor of the denominator minus 1
(so if the denominator of the fraction is 11, the number of digits in the cycle is a
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factor of 10). These differ from irrational numbers, which do not terminate and
have no pattern of recurrence. Irrational numbers cannot be expressed as a
fraction of two integers.

See also: Positional numbers ¢ Irrational numbers * Negative numbers ¢ The
Fibonacci sequence ¢ Binary numbers
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IN CONTEXT

KEY FIGURE
John Napier (1550-1617)

FIELD

Number systems

BEFORE

14th century The Indian mathematician Madhava of Kerala constructs an
accurate table of trigonometric sines to aid calculation of angles in right-angled
triangles.

1484 In France, Nicolas Chuquet writes an article about calculation using
geometric series.

AFTER

1622 English mathematician and clergyman William Oughtred invents the slide
rule using logarithmic scales.

1668 In Logarithmo-technia, German mathematician Nicholas Mercator first
uses the term “natural logarithms.”

For thousands of years, most calculations were carried out by hand, using devices
such as counting boards or the abacus. Multiplication was especially long-winded
and much more difficult than addition. In the scientific revolution of the 16th and
17th centuries, the lack of a reliable calculating tool hampered progress in areas
such as navigation and astronomy, where the potential for error was greater
because of the lengthy calculations involved.
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Solving by series

In the 1400s, French mathematician Nicolas Chuquet investigated how the
relationships between arithmetic and geometric sequences could aid calculation.
In an arithmetic sequence, each number differs from the one preceding it by a
constant quantity, such as 1, 2, 3,4, 5, 6... (going up by 1), or 3, 6, 9, 12... (going
up by 3). In a geometric sequence, each number after the first term is determined
by multiplying the previous number by a fixed amount, called the “common
ratio.” For example, the sequence 1, 2, 4, 8, 16 has a common ratio of 2. Setting
down a geometric sequence (such as 1, 2, 4, 8...) and above it an arithmetic
sequence (such as 1, 2, 3, 4...), it can be seen that the top numbers are the
exponents to which 2 is raised to arrive at the series below. It was a much more
sophisticated version of this scheme that lay at the heart of the tables of
logarithms developed by Scottish landowner John Napier.

Generating logarithms

Napier was fascinated by numbers and spent much of his time finding ways of
making calculations easier. In 1614, he published the first description and table of
logarithms; a logarithm of a given number is the exponent or power to which
another fixed number (the base) is raised to produce that given number. The use
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of such tables facilitated complex calculations and advanced the development of
trigonometry.

As Napier recognized, the basic principle of calculating was simple enough: he
could replace the tedious task of multiplication by the simpler operation of
addition. Each number would have its equivalent “artificial number” as he
initially termed it. (Napier later settled on the name “logarithm,” derived by
combining the Greek words logos, meaning proportion, and arithmos, meaning
number.) Adding the two logarithms, and then converting the answer back to an
ordinary number, produces the result of multiplying the original numbers. For
division, one logarithm is subtracted from another and the result is converted
back.

To generate his logarithms, Napier imagined two particles traveling along two
parallel lines. The first line was of infinite length, while the second was of fixed
length. Each particle left the same starting position at the same time and at the
same velocity. The particle on the infinite line traveled with uniform motion, so it
covered equal distances in equal times. The velocity of the second particle was
proportional to the distance remaining to the end of the line. Halfway between the
starting point and the end of the line, the second particle is traveling at half the
velocity it started with; at the three-quarter point, it is traveling with a quarter of
its initial velocity; and so on. This means that the second particle is never going to
reach the end of the line, and equally, the first particle, on its infinite line, will
never arrive at the end of its journey. At any instant there is a unique
correspondence between the positions of the two particles. The distance the first
particle has traveled is the logarithm of the distance the second particle has yet to
go. The first particle’s progress can be viewed as an arithmetic progression, while
that of the second particle is geometric.

The lower row of this table is a geometric sequence (progressing powers of 2), while the top
row is an arithmetic sequence that reveals the exponents (powers) by which 2 is raised to
arrive at the numbers in the lower row. (Anything to the power of 0 is 1.) To multiply the
numbers 16 and 32 in the lower row, their exponents (4 + 5) can be added together to produce
29 (=512).
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JOHN NAPIER

Born into a wealthy family in 1550 at Merchiston
Castle, near Edinburgh, John Napier would later
become 8th Laird of Merchiston. Aged just 13, he
entered St. Andrews University and became
passionately interested in theology. Before graduating,
however, he left to study in Europe, although few
details of this time are known.

Napier returned to Scotland in 1571 and devoted
much time to his estates, where he devised new methods of agriculture to
improve his land and livestock. A fervent Protestant, he also wrote a prominent
book attacking Catholicism. His keen interest in astronomy, and a desire to find
simpler ways to perform the calculations that it required, led to his invention of
logarithms. He also created Napier’s Bones, a calculation device using
numbered rods. Napier died at Merchiston Castle in 1617.

Key works

1614 Mirifici Logarithmorum Canonis Descriptio (A Description of the
Marvellous Rule of Logarithms)

1617 Rabdologiae

Improving the method

It took Napier 20 years to complete his calculations and to publish his first
logarithm tables as Mirifici Logarithmorum Canonis Descriptio (A Description of
the Marvellous Rule of Logarithms). Henry Briggs, professor of mathematics at
the University of Oxford, recognized the significance of Napier’s tables but
thought they were unwieldy.

Briggs visited Napier in 1616 and again in 1617. Following their discussions, the
two agreed that the logarithm of 1 should be redefined as 0 and the logarithm of
10 as 1. This approach made logarithms much easier to use. Briggs also helped
with the calculation of logarithms of ordinary numbers based on the logarithm of
10 being 1 and spent several years recalculating the tables. The results were
published in 1624 with the logarithms calculated to 14 decimal places. The base-
10 logarithms calculated by Briggs are known as log;, or common logarithms.

212



The earlier table to the power of 2 (see Generating logarithms) can be thought of
as a simple base-2, or log, table.

I found at length some excellent brief rules.

John Napier

The impact of logarithms

Logarithms had an immediate impact on science, and on astronomy in particular.
German astronomer Johannes Kepler had published his first two laws of planetary
motion in 1605, but only after the invention of log tables was he able to make the
breakthrough to discover his third law. This describes how the time it takes for a
planet to complete one orbit of the Sun is related to its average orbital distance.
When he published this finding in 1620 in his book Ephemerides novae motuum
coelestium, Kepler dedicated it to Napier.
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Napier’s book describing logarithms was published in 1614, as its title page shows. The
principles behind his logarithm tables were published in 1619, two years after his death.

The exponential function

Later in the 1600s, logarithms revealed something of further significance. While
studying number series, Italian mathematician Pietro Mengoli showed that the
alternating series 1 -, + ¥4 -1/ + 1L _... has a value of around 0.693147, which
he demonstrated to be the natural logarithm of 2. A natural logarithm (In)—so-
called because it occurs naturally, revealing the time required to reach a certain
level of growth—nhas a special base, later known as e, with an approximate value
of 2.71828. This number is hugely significant in mathematics due to its links with
natural growth and decay.
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It was through work such as that of Mengoli that the important concept of the
exponential function came to light. This function is used to represent exponential
growth—where the rate of growth of a quantity is proportional to its size at any
particular moment, so the bigger it is, the faster it grows—which is relevant to
fields such as finance and statistics, and most areas of science. The exponential
function is given in the form f(x) = b*, where b is greater than 0, but does not
equal 1, and x can be any real number. In mathematical terms, logarithms are the
inverse of exponentials (powers of a number) and can be to any base.

The slide rule, used here in 1941 by a member of the Women’s Auxiliary Air Force, is
marked with logarithmic scales that facilitate multiplication, division, and other functions.
Invented in 1622, it was a vital mathematical tool before the advent of pocket calculators.

By shortening the labors, [Napier] doubled the life of the astronomer.

Pierre-Simon Laplace

A basis for Euler’s work

The push for accurate log tables spurred mathematicians such as Nicholas
Mercator to pursue further research in this area. In Logarithmo-technica,
published in 1668, he set out a series formula for the natural logarithm In(1 + x) =
X - X%y + X% - x¥, +... This was an extension of Mengoli’s formulation, in which
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the value of x was 1. In 1744, more than 130 years after Napier produced his first

logarithm table, Swiss mathematician Leonhard Euler published a full treatment

of e* and its relationship to the natural logarithm.

Logarithmic scales

The pH logarithmic scale
measures alkalinity and
acidity. A pH of 2 is 10
times more acidic than a
pH of 3 and 100 times
more acidic than pH 4.

threshold, defined as 0 dB,
assigned a decibel value of 10; a sound 100 times louder has a decibel value of

When measuring physical variables, such as sound,
flow, or pressure, where values may change
exponentially, rather than by regular increments, a
logarithmic scale is often used. Such scales use the
logarithm of a value instead of the actual value of
whatever is being measured. Each step on a
logarithmic scale is a multiple of the preceding step.
For example, on a log, scale, every unit up the scale
represents a 10-fold increase in whatever is being
measured.

In acoustics, sound intensity is measured in
decibels. The decibel scale takes the hearing
as its reference level. A sound 10 times louder is

20; a sound 1,000 times louder a value of 30, and so on. This logarithmic scale
fits well with the way we hear things, as a sound must become 10 times more
intense to sound twice as loud to the human ear.

See also: Wheat on a chessboard ¢ The problem of maxima ¢ Euler’s number ©

The prime number theorem
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IN CONTEXT

KEY FIGURE
Johannes Kepler (1571-1630)

FIELD

Geometry

BEFORE

¢. 240 BCE In Method of Mechanical Theorems, Archimedes uses indivisibles to
estimate the areas and volumes of curvilinear shapes.

AFTER

1638 Pierre de Fermat circulates his Method for determining Maxima and
Minima and Tangents for Curved Lines.

1671 In Treatise on the Method of Series and Fluxions, Isaac Newton produces
new analytical methods for solving problems such as the maxima and minima of
functions.

1684 Gottfried Leibniz publishes New Method for Maximums and Minimumes,
his first work on calculus.

Astronomer Johannes Kepler is best known for his discovery of the elliptical
shape of the planets’ orbits and his three laws of planetary motion, but he also
made a major contribution to mathematics. In 1615, he devised a way of working
out the maximum volumes of solids with curved shapes, such as barrels.

Kepler’s interest in this field began in 1613, when he married his second wife.
He was intrigued when the wine merchant at the wedding feast measured the wine
in the barrel by sticking a rod diagonally through a hole in the top and checking
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how far up the stick the wine went. Kepler wondered whether this worked equally
well for all shapes of barrel and, concerned that he may have been cheated,
decided to analyze the issue of volumes. In 1615, he published his results in Nova
stereometria doliorum vinariorum (New solid geometry of wine barrels).

Kepler looked at ways of calculating the areas and volumes of curved shapes.
Since ancient times, mathematicians had discussed using “indivisibles”—
elements so tiny they cannot be divided. In theory these can be fitted into any
shape and added up. The area of a circle could be determined, for example, by
using slender pie-slice triangles.

To find the volume of a barrel or any other 3-D shape, Kepler imagined it as a
stack of thin layers. The total volume is the sum of the volumes of the layers. In a
barrel, for example, each layer is a shallow cylinder.
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Infinitesimals

The problem with cylinders is that if they have thickness, their straight sides will
not fit into the curve of a barrel, while cylinders without thickness have no
volume. Kepler’s solution was to accept the notion of “infinitesimals”—the
thinnest slices that can exist without vanishing. This idea had already been
mooted by ancient Greeks such as Archimedes. Infinitesimals bridge the gap
between continuous things and things broken into discrete units.
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Kepler then used his cylinder method to find the barrel shapes with the
maximum volume. He worked with triangles defined by the cylinders’ height,
diameter, and a diagonal from top to bottom. He investigated how, if the diagonal
was fixed, like the merchant’s rod, changing the barrel height would change its
volume. It turned out that the maximum volume is held in short, squat barrels
with a height just under 1.5 times the diameter—Ilike the barrels at his wedding. In
contrast, the tall barrels from Kepler’s homeland on the Rhine River held much
less wine.

Kepler also noticed that the closer to the maximum the shape gets, the less the
rate at which the volume increases: an observation that contributed to the birth of
calculus, opening up the exploration into maxima and minima. Calculus is the
mathematics of continuous change, and maxima and minima are the turning
points, or limits in any change—the peak and trough of any graph.

Pierre de Fermat’s analysis of maxima and minima, which quickly followed
Kepler’s, opened the way for the development of calculus by Isaac Newton and
Gottfried Leibniz later in the 17th century.

The merchant’s rod is submerged to an equal extent when pushed at a diagonal into these
two barrels, so he charges the same price for both. However, the elongated shape of the
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second barrel means it has a smaller volume, containing less wine but for the same price as
the first.

JOHANNES KEPLER

Born near Stuttgart, Germany, in 1571, Johannes
Kepler witnessed the “Great Comet” of 1577 and a
lunar eclipse, and remained interested in astronomy
throughout his life.

Kepler taught at the Protestant seminary in Graz,
Austria. In 1600, non-Catholics were expelled from
Graz and Kepler moved to Prague, where his friend
Tycho Brahe lived. Following the death of his first
wife and son, he moved to Linz in Austria, where his main job as imperial
mathematician was to make astronomical tables.

Kepler was convinced that God had made the Universe according to a
mathematical plan. He is best known for his work in astronomy, especially his
laws of planetary motion and his astronomical tables. A year after his death in
1630, the transit of Mercury was observed as he had predicted.

Key works

1609 New Astronomy

1615 New Solid Geometry of Wine Barrels
1619 Harmonies of the World

1621 Epitome of Copernican Astronomy

See also: Euclid’s Elements * Calculating pi * Trigonometry « Coordinates °
Calculus « Newton’s laws of motion
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IN CONTEXT

KEY FIGURE
René Descartes (1596-1650)

FIELD

Geometry

BEFORE

2nd century BCE Apollonius of Perga explores positions of points within lines
and curves.

c. 1370 French philosopher Nicole Oresme represents qualities and quantities as
lines defined by coordinates.

1591 French mathematician Francois Viete introduces symbols for variables in
algebraic notation.

AFTER

1806 Jean-Robert Argand uses a coordinate plane to represent complex
numbers.

1843 Irish mathematician William Hamilton adds two new imaginary units,
creating quaternions, which are plotted in four-dimensional space.

In geometry (the study of shapes and measurements), coordinates are employed to
define a single point—an exact position—using numbers. Several different
systems of coordinates are in use, but the dominant one is the Cartesian system,
named after Renatus Cartesius, the Latinized name of French philosopher René
Descartes. Descartes presented his coordinate geometry in La Géométrie
(Geometry, 1637), one of three appendices to his philosophical work Discours de
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la Méthode (Discourse on the Method), in which he proposed methods for
arriving at truth in the sciences. The other two appendices were on light and the
weather.

Problems which can be constructed by means of circles and straight lines only.
René Descartes

describing geometry

Building blocks

Coordinate geometry transformed the study of geometry, which had barely
evolved since Euclid had written Elements in ancient Greece some 2,000 years
earlier. It also revolutionized algebra by turning equations into lines (and lines
into equations). By using Cartesian coordinates, scholars could visualize
mathematical relationships. Lines, surfaces, and shapes could also be interpreted
as a series of defined points, which changed the way people thought about natural
phenomena. In the case of events such as volcanic eruptions or droughts, plotting
elements such as intensity, duration, and frequency could help to identify trends.

RENE DESCARTES

The son of a minor noble, René Descartes was born in

Touraine, France, in 1596. His mother died shortly
after his birth, and he was sent to live with his
grandmother. He later attended a Jesuit college, then
went to study law in Poitiers. In 1618, he left France
for the Netherlands and joined the Dutch States Army
as a mercenary.

Around this time, Descartes began to formulate philosophical ideas and
mathematical theorems. Returning to France in 1623, he sold his property there
in order to secure a lifelong income, then moved back to the Netherlands to
study. In 1649, he was invited by Christina, Queen of Sweden, to tutor her and
to launch a new academy. His weak constitution could not resist the cold winter.
In February 1650, Descartes caught pneumonia and died.

Key works
1630-33 Le Monde (The World) 1630-33 L’Homme (Man)
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1637 Discours de la Méthode (Discourse on the Method)
1637 La Géomeétrie (Geometry)
1644 Principia philosophia (Principles of Philosophy)

Finding a new method

There are two accounts of how Descartes came to develop the coordinate system.
One suggests that the idea dawned on him as he watched a fly moving over the
ceiling of his bedroom. He realized he could plot its position, using numbers to
describe where it was in relation to the two adjacent walls. Another account
relates that the idea came to him in dreams in 1619, when he was serving as a
mercenary in southern Germany. It was at this time, too, that he is thought to have
figured out the relationship between geometry and algebra that is the basis of the
coordinate system.

The simplest Cartesian coordinate system is one-dimensional; it indicates
positions along a straight line. One endpoint of the line is set as the zero point,
and all other points on the line are counted from there in equal lengths, or
fractions of a length. Just a single coordinate number is needed to describe an
exact point on the line—as when measuring a distance with a ruler from zero to a
unit of length. More commonly, coordinates are used to describe points on two-
dimensional surfaces that have a length and width, or within a three-dimensional
space, which also has depth. To achieve this, more than one number line is
needed—each starting at the same zero point, or origin. For a point on a plane (a
flat two-dimensional surface), two number lines are needed. The horizontal line,
called the x-axis, and the vertical y-axis are always perpendicular to each other;
the origin is the only place they will ever meet. The term for the x-axis is
abscissa, while the y-axis is the ordinate. Two numbers, one from each axis,
“coordinate” to pinpoint an exact position.

When taking a graph reading, these two numbers are now presented as a tuple—a
strictly ordered sequence listed inside brackets. The abscissa (value of x) always
precedes the ordinate (value of y) to create the tuple (x,y). Although they were
conceived before negative numbers were fully accepted, coordinates now often
include both negative and positive values—negative values below and to the left
of the origin; positive values above and to the right of the origin. Together, the
two axes create a field of points called a coordinate plane, which extends outward
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in two dimensions with the origin (0,0) at the center. Any point on that plane,
which could stretch to infinity, can be described exactly using a pair of numbers.

I realized that it was necessary... to start again right from the foundations if I wanted to
establish anything in the sciences that was stable and likely to last.

René Descartes

225



This edition of La Géometrie (in Latin because that was the language of scholars) was
printed in 1639. Descartes originally published the book in French so it could be read by less
well-educated people.

Plotting 3-D space

For a three-dimensional space, the coordinates require a third number, ordered in
the tuple (x, y, z). The z refers to a third axis, which is perpendicular to the plane
formed by the x and y axes (see 3-D Cartesian coordinates). Each pair of axes
creates its own coordinate plane; these intersect at right angles to each other, thus
dividing the space into eight zones called octants. The coordinates within each
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octant follow one of eight sequences of values for x, y, and z, ranging from all
negative values to all positive values, with six possible negative and positive
combinations in between.

Each problem that I solved became a rule which served afterwards to solve other problems.

René Descartes

Curved lines

La Géométrie sets out what soon became the foundation of the coordinate system.
Descartes, however, was primarily interested in finding out how coordinates
could help him use algebra to better understand lines, especially curved lines. In
so doing he created a new field of mathematics, called analytic geometry, where
shapes are described in terms of their coordinates and the relationships between a
pair of variables, x and y. This was very different from Euclid’s “synthetic
geometry,” in which shapes are defined by the way they are constructed using a
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ruler and pair of compasses. The ancient method was limiting; Descartes’ new
method opened up all sorts of new possibilities.

La Géométrie contains much discussion about curves, which were the subject of
renewed interest in the 1600s—partly because treatises by ancient Greek
mathematicians had been newly translated, but also because curves featured
prominently in fields of scientific exploration such as astronomy and mechanics.

Coordinates make it possible to convert curves and shapes into algebraic
equations, which can be shown visually. A straight line that runs diagonally from
the origin, equidistant from both axes, can be described using algebra as y = x,
and has coordinates (0,0); (1,1); (2,2), and so on. The line y = 2x would follow a
steeper path along a line including the coordinates (0,0); (1,2); (2,4), for instance.
A line running parallel to y = 2x would pass through the y axis at a point other
than the origin, such as at (0,2). The formula for this particular line isy = 2x + 2
and that includes the points (0,2); (1,4); (2,6).

Cartesian coordinates help to reveal the great power of algebra to generalize
relationships. All the straight lines described above have the same general
equation: y = mx + ¢, where the coefficient m is the slope of the line, indicating
how much bigger (or smaller) y is compared to x. The constant ¢, meanwhile,
shows where the line meets the y axis when x is equal to zero.

With me, everything turns into mathematics.

René Descartes
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A geometric shape such as the curve of a roller-coaster can be mapped on to a graph and
described in relation to the x and y axes. The straight section of the curve has the equation y =
X.

The circle equation

In analytic geometry, all circles centered on the origin can be defined as r =

, known as the circle equation. This is because a circle can be thought
of as all the points that lie at an equal distance from a central point (that distance
being the radius of the circle). If that central point is (0,0) on an x, y graph, the
circle equation emerges, by drawing on Pythagoras’s theorem. The circle’s radius
can be conceived as the hypotenuse of a right-angled triangle with short sides x

and y, so r> = x> + y?, which can be rewritten as r = . The circle can
then be plotted on axes using different values of x and y that give the same value
of r. For example, if r is 2, then the circle crosses the x axis at (2,0) and (-2,0),
and it crosses the y axis at (0,2) and (0,-2). All the other points on the circle can
be seen as one corner of a right-angled triangle moving around in a circle. As the
corner moves around the circle, the short sides of the triangle vary in length, but
the hypoteneuse does not because it is always the radius of the circle. The line
formed by a point moving in this defined way is called a locus. This idea was
developed by the Greek geometer Apollonius of Perga about 1,750 years before
Descartes’ birth.
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Any point P, with coordinates (x, y), on the circumference of a circle can be connected to the
center of the circle (0, 0) by a straight line (the circle’s radius) that forms the hypotenuse of a
right-angled triangle with sides of length x and y. The equation of the circle is r* = x> + y?.

Exchange of ideas

In addition to drawing on theorems formulated by the ancient Greeks, Descartes
exchanged ideas with other French mathematicians, among them Pierre de
Fermat, with whom he frequently corresponded. Descartes and Fermat both made
use of algebraic notation, the x and y system that Francgois Viéte had introduced at
the end of the 1500s. Fermat also independently developed a coordinate system,
but he did not publish it. Descartes was aware of Fermat’s ideas, no doubt using
them to improve his own. Fermat also helped Dutch mathematician Frans van
Schooten to understand Descartes’ ideas. Van Schooten translated La Géométrie
into Latin and also popularized the use of coordinates as a mathematical
technique.
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A modified form of polar coordinates that gives an aircraft’s destination in terms of angle
and distance can be used as an alternative to GPS.

New dimensions

Van Schooten and Fermat had both suggested extending Cartesian coordinates
into the third dimension. Today, mathematicians and physicists use coordinates to
go much further than that and to imagine a space with any number of dimensions.
Although it is almost impossible to visualize such a space, mathematicians can
use these tools to describe lines moving in four, five, or as many spatial
dimensions as they desire.

Coordinates can also be used to examine the relationship between two quantities.
This idea was pioneered as long ago as the 1370s, when a French monk called
Nicole Oresme used rectangular coordinates and the geometric forms created by
his results to understand, for instance, the relationship of elements such as speed
and time, or the links between heat intensity and the degree of expansion due to
heat.

Some quantities can be represented using coordinates known as vectors, and
exist in a purely mathematical “vector space.” Vectors are quantities with two
values, which can be plotted as a magnitude (the length of a line) and a direction.
Velocity is a vector as it has exactly those values (a quantity of speed and a
direction of motion), while other vectors, such as Oresme’s heat and expansion,
are visualized in this way to make it easier to add and subtract different sets of
values or to manipulate them in another way.
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Mathematicians in the 1800s also found new purposes for Cartesian coordinates.
They used them to represent complex numbers (sums of imaginary numbers, such

as , and real numbers) or quaternions (the system that extends complex
numbers) as vectors plotted in two, three, or more dimensions.

The triumph of Cartesian ideas in mathematics... is in no small degree due to the Leiden
professor Frans van Schooten.

Dirk Struik

Dutch mathematician

The key coordinates

The Cartesian coordinate system is by no means the only one. Geographic
coordinates plot points on the globe as angles from preset great circles—the
Equator and the Greenwich Meridian. A similar system, using celestial
coordinates, describes the location of stars in an imaginary sphere centered on
Earth and extended infinitely into space. Polar coordinates, determined by
distance and angles from the center of Earth, are also useful for certain types of
calculation.

Cartesian coordinates remain an ubiquitous tool, however, able to plot anything
from simple survey data to the movements of atoms. Without them,
breakthroughs such as analytical calculus (which divides quantities into
infinitesimally small amounts) and advances in space-time and non-Euclidean
geometries could not have happened. Cartesian coordinates have had an immense
impact in mathematics, and in many fields of science and the arts, from
engineering and economics to robotics and computer animation.

Mathematics is a more powerful instrument of knowledge than any other that has been
bequeathed to us by human agency.

René Descartes
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3-D Cartesian coordinates can be used to plot an object that has, for instance, width, depth,
and height. Three axes (X, y, z) are set at right angles to each other. Where they meet is the

origin (O).

Polar coordinates

The polar coordinate
system is often used to
calculate the movement of
objects around, or in
relation to, a central point.

In mathematics, polar coordinates, which define
points on a plane using two numbers, are the closest
rivals to Descartes’ system. The first number, the
radial coordinate r, is the distance from the central
point—called the pole, not the origin. The second
number, the angular coordinate (0), is the angle that
is defined as 0° from a single polar axis. To compare
it with the Cartesian system, the polar axis would be
the Cartesian x axis, and the polar coordinates (1,0°)
would replace the Cartesian coordinates (1,0). The
polar version of the Cartesian point (0,1) is (1,90°).

Polar coordinates are used to help manipulate

complex numbers plotted on a plane, especially for multiplication. Multiplying
complex numbers is simplified when they are treated as polar coordinates, a

process that involves multiplying the radial coordinates and adding the angular

ones.
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See also: Pythagoras ¢ Conic sections * Trigonometry * Rhumb lines ¢ Viviani’s
triangle theorem * The complex plane ¢ Quaternions
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IN CONTEXT

KEY FIGURES
Bonaventura Cavalieri (1598-1647), Gilles Personne de Roberval (1602-75)

FIELD
Applied geometry

BEFORE

c. 240 BCE Archimedes investigates the volume and surface area of spheres in
his Method Concerning Mechanical Theorems.

1503 French mathematician Charles de Bovelles gives the first description of a
cycloid in Introductio in geometriam (Introduction to Geometry).

AFTER

1656 Dutch mathematician Christiaan Huygens bases his invention of the
pendulum clock on the curve of a cycloid.

1693 De Roberval’s solution to the area of a cycloid is published more than 60
years after its discovery and 18 years after his death.

The ancient Greeks puzzled over problems relating to areas and volumes of
figures bounded by curves. They compared the areas of shapes by transforming
each one into a square with the same area as the original shape, then compared the
sizes of the squares. This was easy for shapes with straight edges, but curvilinear
shapes caused problems.

These problems remained unresolved until 1629, when Italian mathematician and
Jesuit priest Bonaventura Cavalieri found a method for calculating the areas and
volumes of curved shapes by slicing them into parallel pieces (Cavalieri’s
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principle), although he did not publish his results until six years later. In 1634,
Gilles Personne de Roberval used this method to work out that the area beneath a
cycloid (the arc traced by the rim of a rolling wheel) is three times the area of the
circle used to generate the cycloid.

This wheel has rolled over a piece of gum. The graph shows the path of the gum as the wheel
rotates, creating a cycloid shape, which, as de Roberval discovered, has an area three times
that of the wheel.

Squaring the circle

The ancient Greek mathematician Archimedes had used an ingenious method of
exhaustion to determine the area between a parabola and a straight line. It entailed
inscribing a triangle of known area to fit inside the parabola, then inscribing ever
smaller triangles in all the gaps that remained. By adding together the areas of the
triangles, Archimedes obtained a close approximation of the area he sought. The
straight-edge-and-compass methods of his day, however, had their limitations.
When he tried to calculate the surface area of a 3-D sphere using quadrature, a
process which involves constructing a square of an area equal to a circle, he
failed. He knew the surface area of the sphere was four times that of a circle of
the same radius, but could not find a square that would give the surface area.

A pretty result which I had not noticed before.
René Descartes

on de Roberval’s method for finding the area under a cycloid

New spins on the problem
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The first description of a cycloid was published by Charles de Bovelles in 1503.
Italian polymath Galileo gave the cycloid its name (from the Greek for “circular”)
and tried to calculate its area by cutting up models of a cycloid and a circle,
weighing the pieces, and comparing the results.

Around 1628, Frenchman Marin Mersenne challenged his fellow
mathematicians, including de Roberval, René Descartes, and Pierre de Fermat, to
find both the area under the arch of a cycloid and a tangent to a point on the
curve. When de Roberval told Descartes of his success, the latter dismissed it as
“so small a result.” Descartes, in turn, discovered the tangent to a cycloid in 1638,
and challenged de Roberval and Fermat to do the same. Only Fermat succeeded.

In 1658, English architect Christopher Wren calculated the length of an arc of a
cycloid as four times the diameter of the generating circle. The same year, Blaise
Pascal calculated the area of any vertical slice of a cycloid. He also imagined
rotating these vertical slices about a horizontal axis, and worked out the surface
area and volume of the disks swept out by this rotation. Pascal’s use of infinitely
small slices of shapes to solve the properties of cycloids would lead to the
“fluxions” introduced by Isaac Newton as he developed early calculus.

Since this shark-fin shape (left) and triangle (right) are the same height and the same width
at equivalent points along their height, Cavalieri’s principle states that they can be sliced into
parallel pieces that have similar area.

GILLES PERSONNE DE ROBERVAL

Born in 1602, in a field near Roberval in northern France, where his mother was
bringing in the harvest, Gilles Personne de Roberval was tutored in classics and
mathematics by the local priest. In 1628, he moved to Paris, where he joined
Marin Mersenne’s circle of intellectuals.

In 1632, de Roberval became professor of mathematics at the College Gervais,
and two years later he won a competition for a highly prestigious post at the
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College Royale. He lived frugally, but managed to buy a farm for his extended
family and leased out plots to generate income. He continued to practice
mathematics all his life. In 1669, he invented a set of scales known as the
Roberval balance. He died in 1675.

Key work

1693 Traite des Indivisibles (Treaty on Indivisibles)

See also: Euclid’s Elements * Calculating pi * Mersenne primes * The problem of
maxima ¢ Pascal’s triangle * Huygens’s tautochrone curve ¢ Calculus
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IN CONTEXT

KEY FIGURE
Girard Desargues (1591-1661)

FIELD
Applied geometry

BEFORE

c. 300 BCE Euclid’s Elements sets down ideas that will later constitute Euclidean
geometry.

c¢. 200 BCE In Conics, Apollonius describes the properties of conic sections.

1435 Italian architect Leon Battista Alberti codifies the principles of perspective
in De Pictura (On Painting).

AFTER

1685 In Sectiones Conice, French mathematician and painter Philippe de la
Hire defines the hyperbola, parabola, and ellipse.

1822 French mathematician and engineer Jean-Victor Poncelet writes a treatise
on projective geometry.

Unlike traditional Euclidean geometry, where all 2-D figures and objects belong
in the same plane, projective geometry is concerned with how the apparent shape
of an object is altered by the perspective from which that object is viewed. The
17th-century French mathematician Girard Desargues was a founder of such
geometry.

The idea of perspective had been addressed two centuries earlier by Renaissance
artists and architects. Fillipo Brunelleschi had rediscovered the principles of linear
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perspective known to the ancient Greeks and Romans, and explored them in his
architectural plans, sculptures, and paintings. Fellow architect Leon Battista
Alberti used “vanishing points” to create a sense of 3-D perspective and wrote
about the use of perspective in art.

These two triangles are in perspective from a viewpoint called the center of perspectivity (P).
Lines connecting the corresponding vertices of the triangles (X to x; Y to y, and Z to z) will
always meet at P. If XYZ were a real triangular object, it would appear as the triangle xyz
when viewed from P. Desargues’ theorem states that lines extending from the corresponding
sides of each triangle will always meet on a line known as the axis of perspectivity.

Perspective makes the parallel lines on sides of this flat-roofed building appear as though
they will eventually meet. This meeting point is called a vanishing point.

Good architecture should be a projection of life itself.
Walter Gropius

German architect

From maps to math

As Western explorers sailed to new lands, they needed accurate maps depicting
the spherical world in two dimensions. In 1569, Flemish cartographer Gerardus
Mercator devised a method now known as “cylindrical map projection.” This can
be envisaged as the surface of the globe transferred onto a surrounding cylinder.
When the cylinder is cut from top to bottom and rolled out, it becomes a two-
dimensional map.
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In the 1630s, Desargues began investigating which properties were unchanged
(invariant) when an image is projected onto a surface (perspective mapping).
While its dimensions and angles may change, collinearity is preserved; this means
that if three points XYZ are on a straight line, with Y between X and Z, then their
images xyz are also on a straight line with y between x and z. An image of any
triangle is another triangle. The corresponding sides of each triangle can be
extended to meet at three points on a line (axis of perspectivity), and a line from
each vertex to its corresponding vertex and beyond will meet at a point (the center
of perspectivity).

Desargues realized that all conic sections are equivalent in this way under
projection. A single invariant property, such as collinearity, needs only to be
proved for a single case, rather than tested on each conic. Pascal’s “mystic
hexagram” theorem, for instance, states that the intersections of lines connecting
pairs of six points on a conic all lie on a straight line. It can be shown by
connecting six points on a circle, a proof valid for other conics, too.

Desargues then considered what happens as the vertex of the projection cone
moves further away. Parallel rays come from a point at infinity (such as the Sun).
By adding these points at infinity to the Euclidean plane, each pair of lines meets
at a point, including parallel lines, which meet at infinity.

The method was developed into a full geometry by Poncelet in 1822. Today,
projective geometry is used by architects and engineers in CAD technology, and
in computer animation for films and gaming.
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When six arbitrary points are drawn on a circle and connected as shown (Ab, aB; Ac, Ca;
Cb, cB), a straight line can be drawn through the points where lines of the same color cross.
Using projection, this is true for an ellipse, too.

GIRARD DESARGUES

Born in 1591, Girard Desargues lived in Lyon all his life. He came from a
family of wealthy lawyers who owned several properties, including a manor and
a small chateau with fine vineyards. Desargues made several visits to Paris and,
through Marin Mersenne, became friends with Descartes and Pascal.

Desargues worked initially as a tutor and later as an engineer and architect. He
was an excellent geometer and shared his ideas with his mathematical friends.
Some of his pamphlets were later expanded into published papers. He wrote on
perspective and applied mathematics to practical projects, such as designing a
spiral staircase and a new form of pump. Desargues died in 1661. His work was
rediscovered and republished in 1864.

Key works

1636 Perspective

1639 Rough Drdft of Attaining the Outcome of Intersecting a Cone with a Plane

See also: Pythagoras ¢ Euclid’s Elements * Conic sections * The area under a
cycloid ¢ Pascal’s triangle « Non-Euclidean geometries
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IN CONTEXT

KEY FIGURE
Blaise Pascal (1623-62)

FIELDS
Probability, number theory

BEFORE
975 Indian mathematician Halayudha gives the first surviving description of

numbers in Pascal’s triangle.

c. 1050 In China, Jia Xian, describes the triangle later known as Yang Hui’s
triangle.

c. 1120 Omar Khayyam creates an early version of Pascal’s triangle.

AFTER

1713 Jacob Bernoulli’s Ars Conjectandi (The Art of Conjecturing) develops
Pascal’s triangle.

1915 Wactaw Sierpinski describes the fractal pattern of triangles later known as
Sierpinski triangles.

Mathematics is often about the identification of number patterns, and one of the
most remarkable number patterns of all is Pascal’s triangle. Pascal’s triangle is an
equilateral triangle built from a very simple arrangement of numbers in ever-
widening rows. Each number is the sum of the two adjacent numbers in the row
above. Pascal’s triangle can be any size, ranging from just a few rows in depth to
any number.
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While it might seem that such a simple rule for arranging numbers could only
lead to simple patterns, Pascal’s triangle is fertile ground for several branches of
higher mathematics, including algebra, number theory, probability, and
combinatorics (the mathematics of counting and arranging). Many important
sequences have been found in the triangle, and mathematicians believe that it may
reflect some truths about relationships that we have yet to understand between
numbers.

The triangle is most commonly named after French philosopher and
mathematician Blaise Pascal, who explored it in detail in his Treatise on the
Arithmetical Triangle in 1653. In Italy, however, it is known as Tartaglia’s
triangle after mathematician Niccolo Tartaglia, who wrote about it in the 1400s.
In fact, the origins of the triangle date back to ancient India in 450 BCE (see The
ancient triangle).

There are two types of mind... the mathematical, and... the intuitive. The former arrives at its
views slowly, but they are... rigid; the latter is endowed with greater flexibility.

Blaise Pascal
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Pascal’s triangle is created by adding together two adjacent numbers (as shown by the
arrows) to give the sum in the next row. Each row begins and ends with the number 1.

Probability theory

Pascal’s contribution to the triangle was notable because he set out a clear
framework for exploring its properties. In particular, he used the triangle to help
lay the foundations of probability theory in his correspondence with fellow
French mathematician Pierre de Fermat. Before Pascal, mathematicians such as
Luca Pacioli, Gerolamo Cardano, and Tartaglia had written about how to work
out the chances of dice rolling particular numbers or hands of cards coming out a
certain way. Their understanding was shaky at best, and it was Pascal’s work with
the triangle that pulled the strands together.

Dividing stakes

Pascal was asked to look into probability in 1652 by a notorious French gambler.
Antoine Gombaud, the Chevalier de Méré, wanted to know how to divide stakes
fairly if a game of chance was suddenly broken off. If a game would normally end
only when one player had won a certain number of rounds, for instance, de Méré
wanted to know if the division of the stakes should reflect how many rounds each
player had won. Pascal combined the numbers step by step to represent the rounds
played. The natural consequence was an ever-widening triangle. As Pascal
showed, the numbers in the triangle count the number of ways various
occurrences can combine to produce a given result.
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The probability of an event is defined as the proportion of times it will happen. A
dice has six faces, so the probability of it landing on any particular face when you
roll it is %;. In other words, it is a question of noting how many ways the event
can occur, and dividing this by the total number of possibilities. While this is easy
enough for a single dice, with multiple dice, or 52 playing cards, the calculations
become complicated. However, Pascal found that the triangle could be used to
find the number of possible combinations when you choose a number of objects
from a particular number of available options.

BLAISE PASCAL

Born in Clermont-Ferrand, France, in 1623, Blaise
Pascal was a mathematics prodigy. As a teenager, his
father took him to Marin Mersenne’s mathematical
salon in Paris. Around the age of 21, Pascal developed
a mechanical adding and subtraction machine, the first
ever marketed. As well as his mathematical
contributions, Pascal played an important role in many
scientific developments of the 1600s, including
explorations of fluids and the nature of a vacuum, which contributed to the
understanding of the idea of air pressure: the scientific unit of pressure is called
the Pascal. In 1661, he launched what may have been the world’s first public
transportation service in Paris, with linked five-person coaches. He died from
unexplained causes in 1662, aged just 39.

Key works

1653 Traite du triangle arithmétique (Treatise on the Arithmetical Triangle)

1654 Potestatum Numericarum Summa (Sums of Powers of Numbers)

Binomial calculations

As Pascal realized, the answer lay in binomials—expressions with two terms,
such as x + y. Each row of Pascal’s triangle gives the binomial coefficients for a
particular power. The zeroth row (the top of the triangle) is used for the binomial
to the power of 0: (x + y)° = 1. For the binomial to the power of 1, (x + y)! = 1x +
1y, so the coefficients (1 and 1) correspond to the first row of the triangle (the
zeroth row is not counted as a row). The binomial (x + y)? = 1x? + 2xy + 1y has
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the coefficients 1, 2, and 1, as on the second row of Pascal’s triangle. As binomial
expansion leads to ever longer expressions, the coefficients continue to match a
corresponding line on the triangle. For example, in the binomial (x + y)3 = 1x3 +
3x%y + 3xy? + 1y3, the coefficients match the third row of the triangle. The
probabilities are calculated by dividing the number of possibilities by the total of
all the coefficients in the row that reflects the total number of objects: for
example, in a family of three children (the total number of objects), the
probability of one girl and two boys is 3/8 (the sum of all the coefficients in the
third row of the triangle is 8, and there are three ways of having one girl in a
family of three children).

Pascal’s triangle made it simple to find probabilities. As Pascal’s triangle can
continue forever, this works with any powers. The relationship between binomial
coefficients and the numbers in Pascal’s triangle reveals a fundamental truth
about numbers and probability.

The Bat Country, a jungle gym project by American artist Gwen Fisher, is a Sierpinski
tetrahedron featuring softball bats and balls. This tetrahedron is a 3-D structure made of
Sierpinski triangles.

Visual patterns
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Pascal’s simple number pattern proved to be the launchpad, with Fermat’s work,
for the mathematics of probability, but its relevance does not stop there. For a
start, it provides a quick way of multiplying out binomial expressions to high
powers, which would otherwise take a very long time. Mathematicians are
continually finding new surprises in it. Some of the patterns in Pascal’s triangle
are extremely simple. The outside edge is entirely made up of the number 1, and
the next set of numbers, in the first diagonal, is a simple number line of 1, 2, 3, 4,
5, and so on.

One particularly appealing property of Pascal’s triangle is the “hockey stick”
pattern, which can be used for addition. If you take a diagonal down from any of
the outer 1s, then stop anywhere, you can then find the total sum of all of the
numbers in the diagonal by taking one step further in the opposite direction. For
example, starting at the fourth 1 on the left edge and going down diagonally to the
right, if you stop at the number 10, then the total of the numbers passed so far (1 +
4 + 10) can be found by going one diagonal step down to the left: 15.

Coloring in all of the numbers divisible by a particular number creates a fractal
pattern, while coloring all of the even numbers creates a pattern of triangles
identified by Polish mathematician Wactaw Sierpinski in 1915. This pattern can
be made without Pascal’s triangle by breaking an equilateral triangle into ever
smaller triangles by connecting the midpoints of each of the triangles’ three sides.
The division can continue indefinitely. Today, Sierpinski triangles are popular for
use in knitting patterns and in origami, where a Sierpinksi triangle is converted
into three dimensions to create a Sierpinski tetrahedron.

I cannot judge my work while I am doing it. I have to do as painters do, stand back and view it
from a distance, but not too great a distance.

Blaise Pascal

Number theory

There are also many more complex patterns hidden within the triangle. One of the
patterns found in Pascal’s triangle is the Fibonacci sequence, which lies on a
shallow diagonal (see below). Another link to number theory is the discovery that
the sum of all the numbers in the rows above a given row is always one less than
the sum of the numbers in the given row. When the sum of all the numbers above
a given row is a prime, it is a Mersenne prime—a prime number that is one less
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than a power of 2, such as 3 (22 - 1), 7 (23 - 1), and 31 (2° - 1). The first list of
these primes was made by Pascal’s contemporary, Marin Mersenne. Today, the

largest known Mersenne prime is 282-°89.933 _1_If Pascal’s triangle were drawn at

a sufficiently large scale, this number would be found there.

The numbers on the left form the Fibonacci sequence, which can be calculated by adding the

numbers on the shallow diagonals (indicated here by the color shading) of Pascal’s triangle.

The ancient triangle

Myanmar’s Hsinbyume
pagoda represents the
mythical Mount Meru,
whose staircase inspired
another name for Pascal’s
triangle.

Mathematicians knew about Pascal’s triangle long
before the 1600s. In Iran, it is known as Khayyam’s
triangle after Omar Khayyam, but he was just one of
many Islamic mathematicians to have studied it
between the 7th and 13th century—a golden age for
learning. In China, too, c. 1050, Jia Xian created a
similar triangle to show coefficients. His triangle
was taken up and popularized by Yang Hui in the
1200s, which is why it is known in China as Yang
Hui’s triangle. It is illustrated in the 1303 book by
Zhu Shijie entitled Precious Mirror of the Four
Elements.

The most ancient references to Pascal’s triangle, however, come from India. It

appears in Indian texts from 450 BCE as a guide to poetic metre, by the name of

“The Staircase of Mount Meru.” The mathematicians of ancient India also
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realized that the shallow diagonal lines of numbers in the triangle showed what
are now known as Fibonacci numbers.

See also: Quadratic equations * The binomial theorem ¢ Cubic equations ¢ The
Fibonacci sequence * Mersenne primes * Probability « Fractals
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IN CONTEXT

KEY FIGURES
Blaise Pascal (1623-62), Pierre de Fermat (1601-65)

FIELD
Probability

BEFORE

1620 Galileo publishes Sopra le Scoperte dei Dadi (On the Outcomes of Dice),
calculating the chances of certain totals when throwing dice.

AFTER

1657 Christiaan Huygens writes a treatise on probability theory and its
applications to games of chance.

1718 Abraham de Moivre publishes The Doctrine of Chances.

1812 Pierre-Simon Laplace applies probability theory to scientific problems in
Théorie analytique des probabilités (Theory of Probabilities).

Before the 1500s, predicting the outcome of a future event with any degree of
accuracy was thought to be impossible. However, in Renaissance Italy, scholar
Gerolamo Cardano produced in-depth analyses of outcomes involving dice. In the
1600s, such problems attracted the attention of French mathematicians Blaise
Pascal and Pierre de Fermat. More renowned for findings such as Pascal’s triangle
and Fermat’s last theorem, the two men took the mathematics of probability to a
new level, laying the foundations for probability theory.

Forecasting the outcomes of games of chance proved a useful way of
approaching probability, which, by definition, measures the likelihood of
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something occurring. For example, the chances of throwing a six with a die can
be estimated by throwing the die a given number of times and dividing the
amount of sixes thrown by the total number of throws. The result, called relative
frequency, gives the probability of throwing a six, which can be expressed as a
fraction, a decimal, or a percentage. This, however, is an observed finding, based
on actual experiments. Theoretical probability of any single event is calculated by
dividing the number of desired outcomes by the total number of possible
outcomes. With one roll of a six-sided die, the probability of throwing a six is %;

the probability of throwing any other number is %.

Probability theory is nothing but common sense reduced to calculation.

Pierre-Simon Laplace

Estimating the odds

One popular game in 17th-century France involved two players taking turns to
throw four dice in a bid to obtain at least one “ace,” or six. The players
contributed equal stakes and agreed, in advance, that the first one to win a certain
number of rounds would take the whole stake. Writer and amateur mathematician
Antoine Gombaud, who styled himself Chevalier de Méré, understood the 1/6 odds
of an ace with one throw of a die, and sought to calculate the odds of throwing a
double ace using a pair of dice.

De Méré suggested that the chance of getting two aces from two throws of a dice
was Y4, that is, %; as likely as getting an ace with one die in one roll. To make
these odds the same, he argued that a pair of dice should be rolled six times for
each roll of the single die. To have the same chance of rolling a double ace as you
would from getting one ace when four dice are thrown, the pair should be thrown
6 x 4 = 24 times. De Méré consistently lost the bet and was compelled to deduce
that a double ace from 24 throws of a pair of dice was less likely than one ace
from four throws of a single die.

In 1654, de Méré consulted his friend Pascal about this problem, and about the
further question of how a stake should be divided between the players when a
game was interrupted before completion. This was known as the “problem of
points,” and it had a long history. In 1494, Italian mathematician Luca Pacioli had
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suggested that the stakes should be divided in proportion to the number of rounds
already won by each player.

In the mid-1500s, Niccolo Tartaglia, another prominent mathematician, had
noted that such a division would be unfair if the game was interrupted, say, after
only one round. His solution was to base the division of the pot on the ratio
between the size of the lead and the length of the game, but this also gave
unsatisfactory results for games with many rounds. Tartaglia remained unsure
whether the problem was solvable in a way that would convince all players of its
fairness.

Probability is easily measured in the cases shown here. It is zero if the element in question
(blue candies) is absent, and 0.5 (or Y, or 50 percent) if half of all candies are blue. When
events are certain, probability = 1 (or 100 percent).

PIERRE DE FERMAT

Born in in 1601 in Beaumont-de-Lomagne in France,

Pierre de Fermat moved to Orléans in 1623 to study
law and soon began to pursue his interest in
mathematics. Like other scholars of his day, he
studied geometry problems from the ancient world
and applied algebraic methods to try to solve them. In
1631, Fermat moved to Toulouse and worked as a
lawyer.

In his spare time, Fermat continued his mathematical investigations, circulating
his ideas in letters to friends, such as Blaise Pascal. In 1653, he was struck down
by plague but survived to do some of his best work. As well as his ideas on
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probability, Fermat pioneered differential calculus, but is best remembered for

his contribution to number theory and Fermat’s last theorem. He died in Castres
in 1665.

Key works

1629 De tangentibus linearum curvarum (Tangents of Curves)

1637 Methodus ad disquirendam maximam et minimam (Methods of
Investigating Maxima and Minima)

The Pascal-Fermat letters

During the 1600s, it was common for mathematicians to meet at academies—
scientific societies. In France, the leading academy was that of the Abbé Marin
Mersenne, a Jesuit priest and mathematician who held weekly meetings at his
Paris home. Pascal attended these meetings, but he and Fermat had never met.
Nonetheless, having pondered de Méré’s problems, Pascal chose to write to
Fermat, communicating his thoughts on these and related issues and asking for
Fermat’s own views. This was the first of the letters between Pascal and Fermat in
which the mathematical theory of probability was developed.
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On a standard roulette wheel, there is a /3, chance of the ball landing on any given number
for a single spin of the wheel. This number gets closer to 1 the greater the number of spins.

Player versus banker

The Pascal-Fermat letters were sent via Pierre de Carcavi, a mutual friend. Seven
letters exchanged in 1654 reveal the two men’s thoughts on the points problem,
which they examined in different scenarios. They discuss a game between a
player attempting to throw at least one ace in eight throws and a “banker” who
takes the pot if the player is unsuccessful. If the game is interrupted before an ace
has been thrown, Pascal seems to suggest that the stakes should be allocated
according to the players’ expectations of winning. At the start of the game, the
probability of eight rolls of the die without success is (%) ~ 0.233, and the
probability of throwing at least one ace is (1—0.233), or 0.7677. The game
clearly favors the one who makes the throws, rather than the “banker.”

Choice means probability, and probability means mathematicians can get to work.
Hannah Fry

British mathematician

Laying down the theory

In other letters, Pascal and Fermat discuss other cases of interrupted games, such
as when the play alternates between two players until one is successful. Fermat
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notes that what matters is the number of throws remaining when the game stops.
He points out that a player with a 7-5 lead in a game to 10 aces has the same
chance of eventually winning as a player with a 17-15 lead in a game to 20.

Pascal gives an example with two opponents playing a sequence of games, each
with an equal chance of winning, where the first to win three games wins the
stake. Each player has staked 32 pistoles, so the stake is 64 pistoles. Over the
course of three games, the first player wins twice and the other once. If they now
play a fourth game and the first player wins, then he will take the 64 pistoles; if
the other wins it, they will have each won two games and are equally likely to win
the final game. If they stop at this point, each should take back his stake of 32
pistoles.

Pascal’s step-by-step methods and Fermat’s considered replies provide some of
the earliest examples of using expectations when reasoning about probability. The
correspondence between the two laid down basic principles of probability theory,
and games of chance would continue to prove fertile ground for early theorists.
Dutch physicist and mathematician Christiaan Huygens wrote a treatise translated
as “On reasoning in games of chance,” which was the first book on probability
theory.

An early version of the law of large numbers (LLIN)—a theorem examining the
results of performing the same action (such as throwing a die) a number of times
—was part of Swiss mathematician Jacob Bernoulli’s Ars Conjectandi (The Art of
Conjecturing, 1713). In the late 18th and early 19th century, Pierre-Simon
Laplace applied probability theory to practical and scientific problems, setting out
his methods in his Théorie Analytique des Probabilités (Analytic Theory of
Probabilities) in 1812.

Probability theory

While ancient and medieval law graded probability in the assessment of judicial
evidence, there was no theory on which to base it. Similarly, in Renaissance
times, when insurance was calculated for ships, premiums were based on an
intuitive estimate of risk. Odds were a feature of gaming, but Gerolamo
Cardano was the first to apply mathematics to the study of probability. Games
of chance were the focus of such studies even after the deaths of both Pascal and
Fermat, although their letters on the subject contributed much to subsequent
theory.
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In the late 1700s, Pierre-Simon Laplace extended the scope of probability
theory to science, and introduced his mathematical tools for predicting the
probability of many incidents, including natural phenomena. He also recognized
its application in statistics. Probability theory is also used in many other fields,
such as psychology, economics, engineering, and sports.

See also: The law of large numbers * Bayes’ theorem * Buffon’s needle
experiment * The birth of modern statistics
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IN CONTEXT

KEY FIGURE
Vincenzo Viviani (1622-1703)

FIELD

Geometry

BEFORE

c. 300 BCE Euclid defines a triangle in his book Elements and proves many
theorems concerning triangles.

c. 50 ce Heron of Alexandria defines a formula for finding the area of a triangle
from its side lengths.

AFTER

1822 German geometer Karl Wilhelm Feuerbach publishes a proof for the nine-
point circle, which passes through the midpoint of each side of a triangle.

1826 Swiss geometer Jakob Steiner describes the triangle center that has the
minimum sum of distances from the triangle's three vertices.

Italian mathematician Vincenzo Viviani studied under Galileo in Florence. After
Galileo’s death in 1642, Viviani gathered together his master’s work, editing the
first collected edition in 1655-56.

Viviani’s research included work on the speed of sound, which he measured to
within 82 ft (25 m) per second of its true value. He is best known, however, for
his triangle theorem, which states that the sum of the distances between any point
in an equilateral triangle and that triangle’s sides is equal to the altitude (height)
of the triangle.
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Proving the theorem

Starting with an equilateral triangle of base (side) a, and an altitude of h, a point
is made inside the triangle. Perpendicular lines (p, q, and r) are drawn from that

point to each of the three sides, meeting each side at 90°. The triangle is divided
into three smaller triangles by drawing a line from the point to each corner of the
main triangle. The area of a triangle is 7/, x base x height, so if the lengths of the
perpendiculars are p, q, and r, the areas of the triangles add up to %, (p + q + r)a.
This is also the area of the large triangle, which is %, ha, andsoh=p + q + r. If
you were to break a stick of length h into three, there would always be a point in
the triangle from which the pieces form the perpendiculars p, q, and r.

The altitude in an equilateral triangle, such as the above, is always equal to the combined
length of lines drawn from any point in the triangle perpendicular to its three sides.

See also: Pythagoras * Euclid’s Elements * Trigonometry ¢ Projective geometry °
Non-Euclidean geometries
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IN CONTEXT

KEY FIGURE
Christiaan Huygens (1629-95)

FIELD

Geometry

BEFORE

1503 French mathematician Charles de Bovelles is the first to describe a
cycloid.

1602 Galileo discovers that the time taken for a pendulum to complete a swing
does not depend on the swing’s width.

AFTER

1690 Swiss mathematician Jacob Bernoulli draws on Huygens’s imperfect
solution to the tautochrone problem to solve the brachistochrone problem—
finding a curve of the fastest descent.

Early 1700s The longitude problem is resolved by British clockmaker John
Harrison and others—using springs rather than pendulums.

In 1656, Dutch physicist and mathematician Christiaan Huygens created the
pendulum clock, a clock with a swinging weight that was constant. He wanted to
resolve the navigational problem of determining a ship’s longitude. This was
impossible without precise calculations of time, so it required an accurate clock to
cope with the rolling motion of the waves, which caused wide variations in
pendulum swing, leading to time discrepancies.
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Seeking the right curve

The key lay in finding a curved path for the pendulum to follow (known as a
tautochrone curve), whereby the time the pendulum takes to return to its lowest
point is constant whatever its highest point. Huygens identified the cycloid, a
curve that was steep at the top and shallow at the bottom. The curved path of any
pendulum would have to be adjusted so it traveled in a cycloid. Huygens’s idea
was to constrain the pendulum by adding cycloid-shaped “cheeks.” In theory, the
time of each movement would now be the same from any starting point.
However, friction introduced a larger error than the one Huygens was trying to
resolve. It was only in the 1750s that the Italian Joseph-Louis Lagrange arrived at
a solution, where the height of the curve needs to be in proportion to the square of
the length of the arc traveled by the pendulum.

I was... struck by the remarkable fact that in geometry all bodies gliding along the cycloid...
descend from any point in precisely the same time.

Herman Melville
Moby Dick (1851)

See also: The area under a cycloid * Pascal’s triangle *« The law of large numbers
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IN CONTEXT

KEY FIGURES
Isaac Newton (1642-1727), Gottfried Leibniz (1646-1716)

FIELD

Calculus

BEFORE

287-212 BCE Archimedes uses the method of exhaustion to calculate areas and
volumes, introducing the concept of infinitesimals.

c. 1630 Pierre de Fermat uses a new technique for finding tangents to curves,

locating their maximum and minimum points.

AFTER

1740 Leonhard Euler applies the ideas of calculus to synthesize calculus,
complex algebra, and trigonometry.

1823 French mathematician Augustin-Louis Cauchy formalizes the fundamental
theorem of calculus.
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The development of calculus, the branch of mathematics that deals with how
things change, was one of the most significant advances in the history of
mathematics. Calculus can show how the position of a moving vehicle changes
over time, how the brightness of a light source dims as it moves further away, or
how the position of a person’s eyes alters as they follow a moving object. It can
ascertain where changing phenomena reach a maximum or minimum value, and
at what rate they travel between the two.

Alongside rates of change, another important aspect of calculus is summation
(the process of adding things), which developed from the need to calculate areas.
Eventually, the study of areas and volumes was formalized into what became
known as integration, while calculating rates of change was termed
differentiation.

By providing a better understanding of the behavior of phenomena, calculus can
be used to predict and influence their future state. In much the same way as
algebra and arithmetic are tools for working with numerical or generalized
quantities, calculus has its own rules, notations, and applications, and its
development between the 17th and 19th centuries led to rapid progress in fields
such as engineering and physics.

Nothing takes place in the world whose meaning is not that of some maximum or minimum.

Leonhard Euler

Ancient origins
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The ancient Babylonians and Egyptians were particularly interested in
measurement. It was important for them to be able to calculate the dimensions of
fields for growing and irrigating crops and to work out the volume of buildings to
store grain. They developed early notions of area and volume, although these
tended to be in the form of very specific examples, such as in the Rhind papyrus,
where one problem involves the area of a round field with a diameter of 9 khet (a
khet being an ancient Egyptian unit of length). The rules laid down in the Rhind
papyrus led ultimately to what would become known more than 3,000 years later
as integral calculus.

The concept of infinity is central to calculus. In ancient Greece, Zeno’s
paradoxes of motion, a set of philosophical problems devised by the philosopher
Zeno of Elea in the 5th century BCE, posited that motion was impossible because
there are an infinite number of halfway points in any given distance. In around
370 BCE, the Greek mathematician Eudoxus of Cnidus proposed a method of
calculating the area of a shape by filling it with identical polygons of known area,
and then making the polygons infinitely smaller. It was thought that their
combined area would eventually converge toward the true area of the shape.

This so-called “method of exhaustion” was taken up by Archimedes in around
225 BCE. He approximated the area of a circle by enclosing it within polygons
with increasing numbers of sides. As the number of sides increases, the polygons
(of known area) more closely resemble the circle. Taking this idea to the limit,
Archimedes imagined a polygon with sides of infinitesimally smaller length. The
recognition of infinitesimals was a pivotal moment in the development of
calculus: previously insoluble puzzles, such as Zeno’s paradoxes of motion, could
now be solved.

For by the ultimate velocity is meant that, with which the body is moved, neither before it
arrives at its last place, when the motion ceases nor after but at the very instant when it arrives.

Isaac Newton
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As civilizations developed, accurate measurement became essential. This ancient Egyptian
tomb painting shows surveyors using rope to calculate the dimensions of a wheat field.

Fresh ideas

Mathematicians in medieval China and India made further advances in dealing
with infinite sums. In the Islamic world, too, the development of algebra meant
that, rather than spelling out a calculation millions of times for all possible
variations, generalized symbols could be used to prove that a case is true for all
numbers to infinity.

Mathematics had suffered a long period of stagnation in Europe but, as the
Renaissance took hold in the 1300s, renewed interest in the subject led to fresh
ideas about motion and the laws governing distance and speed. French
mathematician and philosopher Nicole Oresme studied the velocity of an
accelerating object against time, and he realized that the area under a graph
depicting this relationship was equivalent to the distance traveled by the object.
This notion would be formalized in the late 1600s by Isaac Newton and Isaac
Barrow in England, Gottfried Leibniz in Germany, and Scottish mathematician
James Gregory. Oresme’s work was inspired by that of the “Oxford Calculators,”
a 14th-century group of scholars based at Merton College, Oxford, who
developed the mean speed theorem, which Oresme later proved. It states that if
one body is moving with a uniformly accelerated motion and a second body is
moving with a uniform speed equal to the mean speed of the first body, and both
bodies are moving for the same duration, they will cover the same distance. The
Merton scholars were devoted to solving physical and philosophical problems
using calculations and logic, and were interested in the quantitive analysis of
phenomena such as heat, color, light, and velocity. They were inspired by the
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trigonometry of Arab astronomer al-Battani (858929 ck) and the logic and
physics of Aristotle.

This illustration of Kepler’s Platonic solid model of the Solar System appeared in a book
published in 1596. Kepler used infinitesimally small strips to measure the distance covered in
an orbit. This method was the forerunner of integration.

New developments

The incremental steps toward the development of calculus gathered pace toward
the end of the 16th century. In around 1600, French mathematician Frangois Viete
promoted the use of symbols in algebra (which had previously been described in
words), while Flemish mathematician Simon Stevin initiated the concept of
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mathematical limits, whereby the sum of amounts could converge to a limiting
value, much like the area of Archimedes’ polygons converged to the area of a
circle.

At much the same time, German mathematician and astronomer Johannes Kepler
was researching the motion of the planets, including calculating the area enclosed
by a planetary orbit, which he recognized as elliptical rather than circular. Using
ancient Greek methods, he worked out the area by dividing the ellipse into strips
of infinitesimal width.

A forerunner of the more formal integration to come, Kepler’s method was
further developed in 1635 by Italian mathematician Bonaventura Cavalieri in
Geometria indivisibilibus continuorum nova quadam ratione promota (Geometry,
Advanced in a New Way by the Indivisibles of the Continua). Cavalieri worked
out a “method of indivisibles,” which was a more rigorous method of determining
the size of shapes. More developments followed in the 1600s with the work of
English theologian and mathematician Isaac Barrow and Italian physicist
Evangelista Torricelli, followed by that of Pierre de Fermat and René Descartes,
whose analysis of curves advanced the new area of graphical algebra. Fermat also
located maxima and minima, the greatest and least values of a curve.
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Fluxion model

In 1665-66, English mathematician Isaac Newton developed his “method of
fluxions,” a method for calculating variables that changed over time, which was a
milestone in the history of calculus. Like Kepler and Galileo, Newton was
interested in studying moving bodies and was particularly eager to unify the laws
governing the motion of celestial bodies with motion on Earth.

In Newton’s fluxion model, he considered a point moving along a curve as being
divided into two perpendicular components (x and y), and then considered the
velocities of those components. This work laid the foundation for what became
known as differential calculus (or differentiation), which together with the related
field of integral calculus led to the fundamental theorem of calculus (see box,
right). The idea of differential calculus is that the rate at which a variable changes
at a point is equal to the gradient of a tangent at that point. This can be pictured by
drawing a tangent (a straight line that touches a curve at only one point). The
gradient or steepness of this line will be the rate of change of the curve at that
point. Newton recognized that at the maxima and minima, the gradient of the
curve was zero, because when something is at its highest or lowest point, it is
momentarily not changing. Newton went on to develop his theory further by
considering the converse problem—if the rate at which a variable changes is
known, is it possible to calculate the shape of the variable itself? This “anti-
differentiation” entailed working out areas under the curve.

Differentiation can be used to find the rate of change at a given point in time. The blue line
shows the rate of change overall and the orange tangent shows the rate of change at a given
point.
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The fundamental theorem of calculus

The study of calculus is underpinned by the
fundamental theorem of calculus, specifying the
relationship between differentiation and integration,
both of which rely on the concept of infinitesimals.
First articulated by James Gregory in his 1668
Geometriae Pars Universalis (The Universal Part of
Geometry), it was then generalized by Isaac Barrow

James Gregory (1638— in 1670, and formalized in 1823 by Augustin-Louis

75) was the first person to Cauchy.
formulate the fundamental

The theorem has two parts. The first states that
theorem of calculus.

integration and differentiation are opposites—for
any continuous function (one that can be defined for all values), there exists an
“anti-derivative” (or “integral”), whose derivative (a measure of the rate of
change) is the function itself. The second part of the theorem states that if values
are inserted into the anti-derivative F(x), the result—the definite integral of the
function f(x)—makes it possible to calculate areas under the curve of the
function f(x).

Newton v. Leibniz

Around the time that Newton was developing his calculus, German
mathematician Gottfried Leibniz was working on his own version, based on the
consideration of infinitesimal changes in the two coordinates defining a point on a
curve. Leibniz used very different notation from Newton’s, and in 1684 published
a paper on what would later become known as differential calculus. Two years
later, he published another paper, this time about integration, again using different
notation from that of Newton. In an unpublished manuscript dated October 29,
1675, Leibniz was the first person to use the “integral” symbol [, which is used
and recognized universally today.

There was much debate about who discovered modern calculus first: Newton or
Leibniz. It led to protracted bitterness between the two rivals and across much of
the mathematical community. Although Newton devised his theory of fluxions in
1665—66, he did not publish it until 1704, when it was added as an appendix to his
work Opticks. Leibniz began to devise his version of calculus around 1673, and
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published it in 1684. Newton’s subsequent Principia is said by some to have been
influenced by Leibniz’s work.

By 1712, Leibniz and Newton were openly accusing one another of plagiarism.
The modern consensus is that Leibniz and Newton developed their ideas on the
subject independently.

Significant contributions to calculus were also made in Switzerland by the
brothers Jacob and Johann Bernoulli, who coined the term “integral” in 1690.
Scottish mathematician Colin Maclaurin published his Treatise on Fluxions in
1742, promoting and furthering Newton’s methods, and attempting to make them
more rigorous. In this work, Maclaurin applies calculus to the study of infinite
series of algebraic terms. Meanwhile Swiss mathematician Leonhard Euler, a
close friend of Johann Bernoulli’s sons, was influenced by their ideas on the
subject. In particular, he applied the idea of infinitesimals to what is known as the
exponential function, eX. This ultimately led to “Euler’s identity”, ™+ 1 = 0, an
equation that connects five of the most fundamental mathematical quantities (e, i,
m, 0, and 1) in a very simple way.

As the 18th century progressed, calculus proved increasingly useful as a tool for
describing and understanding the physical world. In the 1750s, Euler, working in
collaboration with French mathematician Joseph-Louis Lagrange, used calculus to
provide an equation—the Euler—Lagrange equation—for understanding both fluid
(gas and liquid) and solid mechanics. In the early 1800s, French physicist and
mathematician Pierre-Simon Laplace developed electromagnetic theory with the
help of calculus.

Assuming I know our instantaneous speed at every possible moment, can I then use that
information to determine how far we’ve traveled? Calculus says I can.

Jennifer Ouellette

American science writer
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Isaac Newton’s Opticks, a treatise about the reflections and refractions of light, published in
1704, contains the first details of his work in the area of calculus.

When the values successively assigned to the same variable indefinitely approach a fixed value,
so as to end by differing from it as little as desired, this fixed value is called the limit.

Augustin-Louis Cauchy

Formalizing the theories

The various developments in calculus were formalized in 1823 when Augustin-
Louis Cauchy formally stated the fundamental theorem of calculus. In essence,
this states that the process of differentiation (working out rates of change of a
variable represented by a curve) is the inverse of the process of integration
(calculating the area beneath a curve). Cauchy’s formalization allowed calculus to
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be regarded as a unified whole, dealing with infinitesimals in a consistent way
using universally agreed notation.

The field of calculus was further developed later in the 1800s. In 1854, German
mathematician Bernhard Riemann formulated criteria for which functions would
be integrable or not, based on defining finite upper and lower limits for the

function.

Invented by Newton for differentiation.

J Invented by Leibniz for integration.
dy/dx Invented by Leibniz for differentiation.
f' Invented by Lagrange for differentiation.

Ubiquitous applications

Many advances in physics and engineering have relied on calculus. Albert
Einstein used it in his theories of special and general relativity in the early 20th
century, and it has been applied extensively in quantum mechanics (dealing with
the motion of subatomic particles). Schrédinger’s wave equation, a differential
equation published in 1925 by Austrian physicist Erwin Schrédinger, models a
particle as a wave whose state can only be determined by using probability. This
was groundbreaking in a scientific world that had up until then been governed by
certainty.

Calculus has many important applications today; it is used, for instance, in search
engines, construction projects, medical advances, economic models, and weather
forecasts. It is difficult to imagine a world without this all-pervasive branch of
mathematics, as it would most certainly be one without computers. Many would
argue that calculus is the most important mathematical discovery in the last 400
years.

GOTTFRIED LEIBNIZ

Born in Leipzig, Germany, in 1646, Gottfried Leibniz was raised in an academic

family. His father was a professor of moral philosophy, while his mother was

the daughter of a professor of law. In 1667, after
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completing his university studies, Leibniz became an
advisor on law and politics to the Elector of Mainz, a
role that enabled him to travel and meet other
European scholars. After his employer’s death in
1673, he took up the role of librarian to the Duke of
Brunswick in Hanover.

Leibniz was a celebrated philosopher as well as a
mathematician. He never married and died in 1716 to
little fanfare. His successes had been overshadowed by his calculus dispute with
Newton and were only recognized several years after his death.

Key works
1666 On the Art of Combination
1684 New Method for Maximums and Minimums

1703 Explanation of Binary Arithmetic

See also: The Rhind papyrus ¢ Zeno’s paradoxes of motion ¢ Calculating pi °
Decimals ¢ The problem of maxima ¢ The area under a cycloid ¢ Euler’s number *
Euler’s identity
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IN CONTEXT

KEY FIGURE
Gottfried Leibniz (1646-1716)

FIELDS
Number theory, logic

BEFORE

c. 2000 BCE Ancient Egyptians use a binary system of doubling and halving to
carry out multiplication and division.

c. 1600 English mathematician and astrologer Thomas Harriot experiments with
number systems, including binary.

AFTER
1854 George Boole uses binary arithmetic to develop Boolean algebra.

1937 Claude Shannon shows how Boolean algebra could be implemented using
electronic circuits and binary code.

1990 A 16-bit binary code is used to code pixels on a computer screen, allowing
it to display more than 65,000 colors.

In everyday life we are used to the base-10 counting system with its familiar ten
digits, 0 to 9. When we count from 10 onward, we put a 1 in the “tens” column
and a 0 in the “units” column, and so on, adding columns for hundreds,
thousands, and beyond. The binary system is a base-2 counting system and
employs just two symbols, 0 and 1. Rather than increasing in multiples of 10,
each column represents a power of 2. So the binary number 1011 is not 1,011 but
11 (from right to left: one 1, one 2, no 4s, and one 8).
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Binary choices are black and white; in any column there is only ever 1 or 0. This
simple “on or off” concept has proved vital in computing, for example, where
every number can be represented by a series of switchlike on/off actions.

Binary numbers are written as 1s and 0s, using a base-2 system. This chart shows how to
write the numbers 1 to 10, from the base-10 system, as both binary numbers and binary
visuals—which is how a computer would process them—where 1 is “on” and 0 is “off.”

Binary power revealed

In 1617, Scottish mathematician John Napier announced a binary calculator based
on a chessboard. Each square had a value, and that square’s value was “on” or
“off” depending on whether a counter was placed on the square. The calculator
could multiply, divide, and even find square roots, but was considered a mere
curiosity.

Around the same time, Thomas Harriot was experimenting with number systems,
including the binary system. He was able to convert base-10 numbers to binary
and back again, and could also calculate using binary numbers. However,
Harriot’s ideas remained unpublished until long after his death in 1621.

The potential of binary numbers was finally realized by German mathematician
and philosopher Gottfried Leibniz. In 1679, he described a calculating machine
that worked on binary principles, with open or closed gates to let marbles fall
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through. Computers work in a similar way, using switches and electricity rather
than gates and marbles.

Leibniz outlined his ideas on the binary system in 1703 in Explanation of Binary
Arithmetic, showing how 0s and 1s could represent numbers and so simplify even
the most complex operations into a basic binary form. He had been influenced by
correspondence with missionaries in China, who introduced him to the I Ching,
an ancient Chinese book of divination. The book divided reality into the two
opposing poles of yin and yang—one represented as a broken line, the other as an
unbroken line. These lines were displayed as six-line hexagrams, combined into a
total of 64 different patterns. Leibniz saw links between this binary approach to
divination and his work with binary numbers.

Above all, Leibniz was driven by his religious faith. He wanted to use logic to
answer questions about God’s existence and believed that the binary system
captured his view of the Universe’s creation, with 0 representing nothingness and
1 representing God.

Reckoning by twos, that is, by 0 and 1... is the most fundamental way of reckoning for science,
and offers up new discoveries, which are... useful, even for the practice of numbers.

Gottfried Leibniz

The teaching and commentaries on the I Ching of ancient Chinese philosopher Confucius
(551-479 BCE) influenced the work of Leibniz and other 17th—18th-century scientists.
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Bacon’s cipher

English philosopher and courtier Francis Bacon (1561-1626) was a great
dabbler in cryptography, or the science of deciphering codes. He developed
what he called a “biliteral” cipher, which used the letters a and b to generate the
entire alphabet— a = aaaaa, b = aaaab, c = aaaba, d = aaabb, and so on. If you
substitute O for a and 1 for b, this becomes a binary sequence. It is an easy code
to break, but Bacon realized that a and b do not have to be letters—they can be
any two different objects— “... as by bells, by trumpets, by lights and torches...
and any instruments of like nature.” It was an ingeniously adaptable cipher,
which Bacon could use to “make anything signify anything.” A secret message
could be hidden in a group of objects or numbers, or even musical notation.
Samuel Morse’s dot—dash telegraph code, which revolutionized communication
in the 1800s, and the on/off encoding in a modern computer both have parallels
with Bacon’s cipher.

See also: Positional numbers * The Rhind papyrus ¢ Decimals ¢ Logarithms ¢ The
mechanical computer ¢ Boolean algebra * The Turing machine ¢ Cryptography
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INTRODUCTION

By the late 1600s, Europe had become established as the cultural and scientific
center of the world. The Scientific Revolution was well under way, inspiring a
new, rational approach not only to the sciences, but to all aspects of culture and
society. The Age of Enlightenment, as this period came to be known, was a time
of significant sociopolitical change, and produced an enormous increase in the
spread of knowledge and education during the 1700s. It was also a period of
considerable progress in mathematics.

Swiss giants

Building on the work of Newton and Leibniz, whose ideas were finding practical
application in physics and engineering, the brothers Jacob and Johann Bernoulli
further developed the theory of calculus in their “calculus of variations” and
several other mathematical concepts discovered in the 1600s. The elder brother,
Jacob, is recognized for his work on number theory, but he also helped develop
probability theory, introducing the law of large numbers.

Along with their mathematically gifted children, the Bernoullis were the leading
mathematicians of the early 1700s, making their home town of Basel in
Switzerland a center of mathematical study. It was here that Leonhard Euler, the
next, and arguably greatest, Enlightenment mathematician, was born and
educated. Euler was a contemporary and friend of Daniel and Nicholas Bernoulli,
Johann’s sons, and at an early age proved himself a worthy successor to Jacob
and Johann. Aged only 20, he suggested a notation for the irrational number e, for
which Jacob Bernoulli had calculated an approximate value.

Euler published numerous books and treatises, and worked in every field of
mathematics, often recognizing the links between apparently separate concepts of
algebra, geometry, and number theory, which were to become the basis for further
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fields of Mathematical study. For example, his approach to the seemingly simple
problem of planning a route through the city of Kénigsberg, crossing each of its
seven bridges only once, uncovered much deeper concepts of topology, inspiring
new areas of research.

Euler’s contributions to all fields of mathematics, but in particular calculus,
graph theory, and number theory, were enormous, and he was also influential in
standardizing mathematical notation. He is especially remembered for the elegant
equation known as “Euler’s identity,” which highlights the connection between
fundamental mathematical constants such as e and .

Other mathematicians

The Bernoullis and Euler tended to eclipse the achievements of the many other
mathematicians of the 1700s. Among them was Christian Goldbach, a German
contemporary of Euler’s. In the course of his career, Goldbach had befriended
other influential mathematicians, including Leibniz and the Bernoullis, and
corresponded regularly with them about their theories. In a letter to Euler, he
proposed the conjecture for which he is best known, that every even integer
greater than 2 can be expressed as the sum of two primes, which remains
unproven to this day.

Others contributed to the development of the growing field of probability theory.
Georges-Louis Leclerc, Comte de Buffon, for example, applied the principles of
calculus to probability, and demonstrated the link between pi and probability,
while another Frenchman, Abraham de Moivre described the concept of normal
distribution, and Englishman Thomas Bayes proposed a theorem of the
probability of events based on knowledge of the past.

In the latter part of the 18th century, France became the European center of
mathematical enquiry, with Joseph-Louis Lagrange in particular emerging as a
significant figure. Lagrange had made his name working with Euler, but later
made important contributions to polynomials and number theory.

New frontiers

As the century drew to a close, Europe was reeling from political revolutions that
had toppled the monarchy in France and given birth to the United States of
America. A young German, Carl Friedrich Gauss, published his fundamental
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theorem of algebra, marking the beginning of a spectacular career and a new
period in the history of mathematics.
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IN CONTEXT

KEY FIGURE
Isaac Newton (1642-1727)

FIELD
Applied mathematics

BEFORE
¢.330 BCE Aristotle believes it takes force to maintain motion.
¢.1630 Galileo Galilei conducts experiments on motion and finds that friction is

a retarding force.

1674 Robert Hooke writes An attempt to prove the motion of the Earth and
hypothesizes what will become Newton’s first law.

AFTER

1905 Albert Einstein presents his theory of relativity, which challenges
Newton’s view of the force of gravity.

1977 Voyager 1 is launched. With no friction or drag in space, the craft keeps
going due to Newton’s first law, and exits the Solar System in 2012.

In using mathematics to explain the movement of the planets and of objects on
Earth, Isaac Newton fundamentally changed the way we see the Universe. He
published his findings in 1687 in the three-volume Philosophiae Naturalis
Principia Mathematica (Mathematical Principles of Natural Philosophy), often
called the Principia for short.
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Newton’s second and third law help explain how scales work. When we weigh ourselves,
our weight (the mass of an object multiplied by gravity) is a force, now measured in newtons.
Newtons can be converted into measurements of mass, such as pounds.

How the planets move

By 1667, Newton had already developed early versions of his three laws of
motion and knew about the force needed to enable a body to move in a circular
path. He used his knowledge of forces and German astronomer Johannes Kepler’s
laws of planetary motion to deduce how elliptical orbits were related to the laws
of gravitational attraction. In 1686, English astronomer Edmond Halley persuaded
Newton to write up his new physics and its applications to planetary motion.

In his Principia, Newton used mathematics to show that the consequences of
gravity were consistent with what had been observed experimentally. He analyzed
the motion of bodies under the action of forces and posited gravitational attraction
to explain the movement of the tides, projectiles, and pendulums, and the orbits of
planets and comets.
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IL.aws of motion

Newton began Principia by stating his three laws of motion. The first says that a
force is needed to create motion, and that this force may be from the gravitational
attraction between two bodies or an applied force (such as when a snooker cue
strikes a ball). The second law explains what is happening when objects are in
motion. Newton said that the rate of change of momentum (mass - velocity) of a
body is equal to the force acting on it. If a graph is plotted showing velocity
against time, then the gradient at any point is the rate of acceleration (any change
in velocity).

Newton’s third law says that if two objects are in contact, the reaction forces
between them cancel out, each pushing on the other with an equal force, but in
opposing directions. An object resting on a table pushes down on it, and the table
pushes back with an equal force. If this were not true, the object would move.
Until Einstein’s theory of relativity, the whole of mechanical physics was based
on Newton’s three laws of motion.

ISAAC NEWTON

Isaac Newton was born on Christmas Day in 1642 in
Lincolnshire, England, and was brought up in early
childhood by his grandmother. Newton studied at
Trinity College, Cambridge, where he showed a
fascination for science and philosophy. During the
Great Plague in 1665-1666, the university was forced
to close, and it was during this period that he
formulated his ideas on fluxions (rates of change at a
given point in time).
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Newton made significant discoveries in the fields of gravitation, motion, and
optics, where he developed a rivalry with eminent English scientist Robert
Hooke. One of several government positions he held was Master of the Royal
Mint, where he oversaw the switch of the British currency from the silver to the
gold standard. He was also President of the Royal Society. Newton died in
1727.

Key work

1687 Philosophiae Naturalis Principia Mathematica (Mathematical Principles
of Natural Philosophy)

See also: Syllogistic logic * The problem of maxima ¢ Calculus * Emmy Noether
and abstract algebra
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IN CONTEXT

KEY FIGURE
Jacob Bernoulli (1655-1705)

FIELD
Probability

BEFORE

c. 1564 Gerolamo Cardano writes Liber de ludo aleae (The Book on Games of
Chance), the first work on probability.

1654 Pierre de Fermat and Blaise Pascal develop probability theory.
AFTER

1733 Abraham de Moivre proposes what becomes the central limit theorem—as
a sample size increases, the results will more closely match normal distribution,
or the bell curve.

1763 Thomas Bayes develops a way of predicting the chance of an outcome by
taking into account the starting conditions related to that outcome.

The law of large numbers is one of the foundations of probability theory and
statistics. It guarantees that, over the long term, the outcomes of future events can
be predicted with reasonable accuracy. This, for example, gives financial
companies the confidence to set prices for insurance and pension products,
knowing their chances of having to pay out, and ensures that casinos will always
make a profit from their gambling customers—eventually.

According to the law, as you make more observations of an event occurring, the
measured probability (or chance) of that outcome gets ever closer to the
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theoretical chance as calculated before any observations began. In other words,
the average result from a large number of trials will be a close match to the
expected value as calculated using probability theory—and increasing the number
of trials will result in that average becoming an even closer match.

The law was named by French mathematician Siméon Poisson in 1835, but its
origin is credited to Swiss mathematician Jacob Bernoulli. His breakthrough,
which he called the “golden theorem,” was published by his nephew in 1713 in
the book Ars Conjectandi (The Art of Conjecturing).

Although not the first person to recognize the relationship between collecting
data and predicting results, Bernoulli developed the first proof of this relationship
by considering a game with two possible outcomes—a win or a loss. The
theoretical chance of winning the game is W, and Bernoulli suspected that the
fraction of games (f) that resulted in a win would converge on W as the number of
games increased. He proved this by showing that the probability of f being greater
or less than W by a specified amount approached 0 (meaning impossible) as the
game was repeated.

We define the art of conjecture... as the art of evaluating... the probabilities of things, so that in
our judgments and actions we can always base ourselves on what has been found to be the best.

Jacob Bernoulli

The false probability
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A coin toss is an example of the law of large numbers. Assuming that the chance
of a heads or tails result is equal, the law dictates that after many tosses, half (or
very near it) will have landed on heads, and half on tails. However, in the early
stages, heads and tails are likely to be more unbalanced. For example, the first 10
tosses could be seven heads and three tails. It might then seem most likely that the
next toss will produce a tail. That, however, is the “gambler’s fallacy”—where a
person assumes that the outcomes of each game (toss) are connected. A gambler
might assume that toss number 11 is likely to be a tail because the number of
heads and tails must balance out, but the probability of heads or tails is the same
in every toss, and the outcome of one toss occurs independently of any other. This
is the starting point of all probability theory. After 1,000 tosses, the imbalance
apparent in those first 10 tosses becomes negligible.

When a referee flips a coin, there is no advantage, according to the law of large numbers, in
a team captain basing a heads or tails choice on what has been called in previous games.

JACOB BERNOULLI

Born in Basel, Switzerland, in 1655, Jacob Bernoulli studied theology, but
developed an interest in mathematics. In 1687, he became a professor of
mathematics at the University of Basel, a position he held for the rest of his life.

In addition to his work on probability, Bernoulli is remembered for discovering
the mathematical constant e by calculating the growth of funds that received
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compound interest continuously in infinitesimal
increments. He was also involved in the development
of calculus, taking the side of Gottfried Leibniz
against Isaac Newton in their rival claims to have
invented a new mathematical field. Bernoulli worked
on calculus with his younger brother Johann.
However, Johann became jealous of his brother’s
achievements and their relationship broke down
several years before Jacob died in 1705.

Key works

1713 Ars Conjectandi (The Art of Conjecturing)
1744 Opera (Collected Works)

See also: Probability « Normal distribution ¢ Bayes’ theorem * The Poisson
distribution ¢ The birth of modern statistics
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IN CONTEXT

KEY FIGURE
Leonhard Euler (1707-83)

FIELD
Number theory
BEFORE

1618 Logarithms calculated from the number now known as e are listed in an
appendix to a book on logarithms by John Napier.

1683 Jacob Bernoulli uses e in his work on compound interest.

1733 Abraham de Moivre discovers “normal distribution”: the way that values
for most data cluster at a central point and taper off at the extremes. Its equation
involves e.

AFTER
1815 Joseph Fourier’s proof that e is irrational is published.

1873 French mathematician Charles Hermite proves that e is transcendental.
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The mathematical constant that became known as e, or Euler’s number—2.718...
to an infinite number of decimal places—first appeared in the early 1600s, when
logarithms were invented to help simplify complex calculations. Scottish
mathematician John Napier compiled tables of logarithms to base 2.718..., which
worked particularly well for calculations involving exponential growth. These
were later dubbed “natural logarithms” because they can be used to
mathematically describe many processes in nature, but with algebraic notation
still in its infancy, Napier saw logarithms only as an aid to calculation involving
the ratio of distances covered by moving points.

In the late 1600s, Swiss mathematician Jacob Bernoulli used 2.718... to calculate
compound interest, but it was Leonhard Euler, a student of Bernoulli’s brother
Johann, who first called the number e. Euler calculated e to 18 decimal places,
writing his first work on e, the Meditatio (Meditation), in 1727. However, it was
not published until 1862. Euler explored e further in his 1748 Introductio
(Introduction).

LEONHARD EULER

Born in 1707, in Basel, Switzerland, Euler grew up in nearby Riehen. Taught
initially by his father, a Protestant minister who had some mathematical training
and was also a friend of the Bernoulli family, Euler developed a passion for
mathematics. Although he entered university to study for the ministry, he
switched to mathematics with the support of Johann Bernoulli. Euler went on to
work in Switzerland and Russia, and became the most prolific mathematician of

291



all time, contributing greatly to calculus, geometry,
and trigonometry, among other fields. This was
despite steadily losing his sight from 1738 and
becoming blind in 1771. Working to the very end, he
died in 1783 in St. Petersburg.

Key works

1748 Introductio in analysin infinitorium (Introduction to Analysis of the
Infinite)

1862 Meditatio in experimenta explosione tormentorum nuper instituta
(Meditation upon experiments made recently on the firing of Cannon)

Compound interest

One of the earliest appearances of e was in calculating compound interest—where
the interest on a savings account, for example, is paid into the account to increase
the amount saved, rather than being paid out to the investor. If the interest is
calculated on a yearly basis, an investment of $100 at an interest rate of 3% per
year would produce $100 x 1.03 = $103 after one year. After two years, it would
be 100 x 1.03 x 1.03 = $106.09, and after 10 years it would be $100 x 1.031% =
$134.39. The formula for this is A = P (1 + r)%, where A is the final amount, P is
the original investment (principal), r is the interest rate (as a decimal), and t is the
number of years.

If interest is calculated more often than annually, the calculation changes. For
example, if interest is calculated monthly, the monthly rate is /;, of the yearly
rate. 3 + 12 = 0.25, so the investment after a year would be $100 x 1.0025'2 =
$103.04. If interest is calculated daily, the rate is 3 + 365 = 0.008... and the
amount after one year is $100 x 1.00008...3%> = $103.05. The formula for this is
A = P(1 + /M where n is the number of times the interest is calculated in each
year. As the time intervals at which interest is calculated get smaller, the amount
of interest yielded at the end of a year approaches A = Pe". Bernoulli came close
to working this out in his calculations, when he identified e as the limit of (1 +
1/ )" as n approaches infinity (n — ). The formula (1 + /)" gives closer values
for e as n increases. For example, n = 1 gives a value for e of 2, n = 10 gives a
value for e of 2.5937... and n = 100 gives a value for e of 2.7048....
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When Euler calculated a value for e correct to 18 decimal places, he probably
used the sequence e =1+ 1+ %, + V. + 14, + ¥, + 14, going up to 20 terms.
He arrived at these denominators by using the factorial for each integer. The
factorial of an integer is the product of the integer and all the integers below it: 2
2%x1),3(3%x2%x1),4(4%x3%x2x%x1),5(5%x4%x3x%x2x1)andso on, adding
one more term in the product each time. This can be shownase=1+1+ 1, +

Y%, +%,, in factorial notation.

Euler calculated e to 18 decimal places, but noted that the decimals continued
indefinitely. This means that e is irrational. In 1873, French mathematician
Charles Hermite proved that e is also non-algebraic—it is not a number with a
terminating decimal that can be used in a regular polynomial equation. This
makes it a “transcendental” number—a real number that cannot be computed by
solving an equation.

Compounding interest yields a bigger total sum. The examples below show how a $10
principal investment accrues interest if the yearly interest rate is 100 percent, versus
compound interest paid at shorter intervals.
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The exponential function can be used to calculate compound interest. The function produces
the curve y = e*, which cuts the y axis at (0,1), and gets exponentially steeper. This graph also
shows the tangent to the curve.

The growth curve

Compound interest is an example of exponential growth. Such growth can be
plotted on a graph and will appear as a curve. In the 1600s, English cleric Thomas
Malthus posited that population also increases exponentially if there are no
checks on its growth, such as war, famine, or food shortages. This means that the
population continues to grow at the same rate, leading to ever-larger totals.
Constant population growth can be calculated with the formula P = Pye™ where

Py is the original population number, r is the growth rate, and t is time.

Plotted on a graph, e shows other special properties. The graph of y = e* (the
exponential function) is a curve whose tangent (the straight line that touches but
does not intersect the curve) at the coordinates (0,1) also has a gradient
(steepness) of precisely 1. This is because the derivative (rate of change) of e* is,
in fact, e, and the derivative is used to find the tangent. The tangent is used to
calculate the rate of change at a specific point on a curve. Because the derivative
is e, the slope (a measure of direction and steepness) of the tangent line will
always be the same as the y value.

For the sake of brevity, we will always represent this number, 2.718281828... by the letter e.

Leonhard Euler
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Derangements

The various ways in which a set of items can be ordered are called permutations.
For example, the set 1, 2, 3 can be arranged as 1, 3, 2,0r 2, 1,3, 0r 2, 3, 1, or 3, 1,
2, or 3, 2, 1. There are six total ways, including the original, as the number of
permutations in a set is equal to the factorial of the highest integer, in this case 3!
(short for 3 x 2 x 1). Euler’s number is also significant in a type of permutation
called a derangement. In a derangement, none of the items can remain in their
original position. For four items, the number of possible permutations is 24, but to
find the derangements of 1, 2, 3, 4, all other arrangements beginning with 1 must
first be eliminated. There are three derangements starting with 2: 2, 1, 4, 3; 2, 3, 4,
1; and 2, 4, 1, 3. There are also three derangements starting with 3 and three
starting with 4, making nine in total. With five items, the total number of
permutations is 120, and with six it is 720, making the task of finding all
derangements a substantial one.

Euler’s number makes it possible to calculate the number of derangements in any
set. This number equals the number of permutations divided by e, rounded to the
nearest whole number. For example, for the set of 1, 2, 3, where there are six
permutations, 6 +~ e = 2.207... or 2, to the nearest whole number. Euler analyzed
derangements of 10 numbers for Frederick the Great of Prussia, who hoped to
create a lottery to pay off his debts. For 10 numbers, Euler found that the
probability of getting a derangement is Y/, to an accuracy of six decimal places.

[Frederick the Great is] always at war; in summer with the Austrians, in winter with
mathematicians.

Jean le Rond d’Alembert

French mathematician

Other uses

Euler’s number is relevant in many other calculations—for example, in splitting
up (partitioning) a number to discover which numbers in the partition have the
largest product. With the number 10, partitions include 3 and 7, with a product of
21; or 6 and 4 to produce 24; or 5 and 5 to give 25, which is the maximum
product for a partition of 10 using two numbers. With three numbers, 3, 3, 4 has a
product of 36, but moving into fractional numbers, 3% x 3% x 31/ = 1000/ =
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37.037... the largest for three numbers. For a four-way partition, 2%, x 2%, x 21/,
x 2Y, = 39.0625, but in a five-way split, 2 x 2 x 2 x 2 x 2 = 32, In short, (1%)2 =
25, (1%4)3 =37.037..., (1%,)4 = 39.0625, and (1%)5 = 32. This smaller result for a
five-way. partition suggests that the optimal number of splits for 10 is between 3
and 4. Euler’s number can help to find both the maximum product, as e('%,) =
39.598..., and number of partitions: 1%, = 3.678....

To carbon-date organic material, researchers test a sample—here from an ancient human
bone—and use Euler’s number to calculate its age from the rate of radioactive decay.

The catenary

The Gateway Arch in St.

Louis, Missouri is a
flattened catenary arch,
designed by Finnish-

Sometimes defined as the shape a hanging chain
takes if it is only supported at its ends, a catenary is
a curve with the formulay = , x (eX + e-Y).
Catenaries are often found in nature and in
technology. For example, a square sail under
pressure from the wind takes the form of a catenary.
Arches in the shape of an inverted catenary are often
used in architecture and construction due to their
strength.
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American architect Eero For a long time, the catenary’s shape was believed
SEEL s 7 to be the same as that of a parabola. Dutch
mathematician Christiaan Huygens—who coined the

name catenary from the Latin catena (“chain”) in 1690—showed that, unlike a
parabola, a catenary curve could not be given by a polynomial equation. Three
mathematicians—Huygens, Gottfried Leibniz, and Johann Bernoulli—
calculated a formula for the catenary, coming to the same conclusion. Their
results were published together in 1691. In 1744, Euler described a catenoid—
shaped like a waisted cylinder and produced by rotating a catenary around an
axis.

See also: Positional numbers ° Irrational numbers ¢ Calculating pi « Decimals *
Logarithms * Probability « The law of large numbers * Euler’s identity
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IN CONTEXT

KEY FIGURES
Abraham de Moivre (1667—-1754), Carl Friedrich Gauss (1777-1855)

FIELDS
Statistics, probability

BEFORE

1710 British physician John Arbuthnot publishes a statistical proof of divine
providence in relation to the number of men and women in a population.

AFTER

1920 Karl Pearson, a British statistician, expresses regret about describing the
Gaussian curve as the “normal curve” because it gives the impression that all
other probability distributions were “abnormal.”

1922 In the US, the New York Stock Exchange introduces the use of normal
distribution to model the risks of investments.

In the 18th century, French mathematician Abraham de Moivre made an
important step forward in statistics; building on Jacob Bernoulli’s discovery of
binomial distribution, de Moivre showed that events cluster around the mean (b
on graph below). This phenomenon is known as normal distribution.

Binomial distribution (used to describe outcomes based on one of two
possibilities) was first shown by Bernoulli in Ars Conjectandi (The Art of
Conjecturing), published in 1743. When a coin is flipped, there are two possible
outcomes: “success” and “failure.” This type of test, with two equally likely
outcomes, is called a Bernoulli trial. Binomial probabilities arise when a fixed
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number, n, of such Bernoulli trials, each with the same success probability, p, are
carried out and the total number of successes is counted. The resulting
distribution is written as b(n, p). Binomial distribution b(n, p) can take values
from O to n, centered on a mean of np.

The bell curve is a visual illustration of normal distribution. The highest point of the curve
(b) represents the mean, which the values cluster around. Values become less frequent the
further they are from the mean, so are least frequent at points a and c.

Finding the mean

In 1721, Scottish baronet Alexander Cuming gave de Moivre a problem
concerning the expected winnings in a game of chance. De Moivre concluded that
it came down to finding the mean deviation (the average difference between the
overall mean and each value in a set of figures) of binomial distribution. He wrote
up his results in Miscellanea Analytica.

De Moivre had realized that binomial outcomes cluster around their mean—on a
graph, they plot an uneven curve that gets closer to the shape of a bell (normal
distribution) the more data is collected. In 1733, de Moivre was satisfied that he
had found a simple way of approximating binomial probabilities using normal
distribution, thus creating a bell curve for binomial distribution on a graph. He
wrote up his findings as a short paper, then included it in the 1738 edition of his
Doctrine of Chances.
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Using normal distribution

From the mid-1700s, the bell curve cropped up as a model for all kinds of data. In
1809, Carl Friedrich Gauss pioneered normal distribution as a useful statistical
tool in its own right. French mathematician Pierre-Simon Laplace used normal
distribution to model curves for random errors, such as measurement errors, in
one of the first applications of a normal curve.

In the 1800s, many statisticians studied variation in experimental results. British
statistician Francis Galton used a device called the quincunx (or Galton board) to
study random variation. The board consisted of a triangular array of pegs through
which beads dropped from top to bottom, where they collected in a series of
vertical tubes. Galton measured how many beads were in each tube and described
the resulting distribution as “normal.” His work—along with that of Karl Pearson
—popularized the use of the term “normal” to describe what was also known as a
“Gaussian” curve.

Today, normal distribution is widely used to model statistical data, with
applications ranging from population studies to investment analysis.

ABRAHAM DE MOIVRE

Born in 1667, Abraham de Moivre was raised as a Protestant in Catholic France,
and lived there until 1685, when Louis XIV expelled the Huguenots. Briefly
imprisoned for his religious beliefs, de Moivre emigrated to England upon his
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release. He became a private mathematics tutor in
London. He had hoped for a university teaching
position, but he still faced some discrimination as a
Frenchman in England. Nevertheless, de Moivre
impressed and befriended many eminent scientists of
the time, including Isaac Newton, and was elected as a
fellow of the Royal Society in 1697. As well as his
work on distribution, de Moivre was best known for his work on complex
numbers. He died in London in 1754.

Key works

1711 De Mensura Sortis (On the Measurement of Chance)
1721-30 Miscellanea Analytica (Miscellany of Analysis)
1738 The Doctrine of Chances (1st edition)

1756 The Doctrine of Chances (3rd edition)

See also: Probability « The law of large numbers * The fundamental theorem of
algebra ¢ Laplace’s demon ¢ The Poisson distribution ¢ The birth of modern
statistics
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IN CONTEXT

KEY FIGURE
Leonhard Euler (1707-83)

FIELDS
Number theory, topology

BEFORE

1727 Euler develops the constant e, which is used in describing exponential
growth and decay.

AFTER

1858 August Mobius extends Euler’s graph theory formula to surfaces that are
joined to form a single surface.

1895 Henri Poincaré publishes his paper Analysis situs, in which graph theory is
generalized to create a new area of mathematics known as topology (the study
of properties of geometrical figures that are not affected by continuous
deformation).

Graph theory and topology began with Leonhard Euler’s attempt to find a
solution to a mathematical puzzle—whether it was possible to make a circuit of
the seven bridges in Koénigsberg (now Kaliningrad, Russia) without crossing any
bridge twice. The river flowed around an island and then forked. Realizing that
the problem related to the geometry of position, Euler developed a new type of
geometry to show that it was impossible to devise such a route. Distances
between points were not relevant: the only thing that counted was the connections
between points.
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Euler modeled the Konigsberg bridges problem by making each of the four land
areas a point (node or vertex) and making the bridges arcs (curves or edges) that
joined the various points. This gave him a “graph” that represented the
relationships between the land and the bridges.

First graph theorem

Euler began from the premise that each bridge could be crossed only once and
each time a land area was entered it also needed to be exited, which required two
bridges in order to avoid crossing any bridge twice. Each land area therefore
needed to connect to an even number of bridges, with the possible exception of
the start and finish (if they were different locations). However, in the graph
representing Konigsberg, A is the endpoint of five bridges and B, C, and D are
each the endpoint of three. A successful route needs land areas (nodes or vertices)
to have an even number of bridges (arcs) to enter and exit by. Only the start and
end points can have an odd number. If more than two nodes have an odd number
of arcs, then a route using each bridge only once is impossible. By showing this,
Euler provided the first theorem in graph theory.

The word “graph” is most often used to describe a Cartesian system of
coordinates with points plotted using x and y axes. More generally, a graph
consists of a discrete set of nodes (or vertices) connected by arcs (or edges). The
number of arcs meeting at a node is called its degree. For the Konigsberg graph,
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A has degree 5 and B, C, and D each have degree 3. A path that travels each arc
once and only once is called an Eulerian path (or a semi-Eulerian path if the start
and end are at different nodes).

The Konigsberg bridges problem can be expressed as the question: “Is there an
Eulerian or a semi-Eulerian path for the graph of Kénigsberg?” Euler’s answer is
that such a graph must have at most two nodes of odd degree, but the Koénigsberg
graph has four odd degree nodes.

Read Euler, read Euler. He is our master in everything.

Pierre-Simon Laplace

Network theory

Arcs on a graph may be “weighted” (given degrees of significance) by assigning
numerical values to them—for example, to represent the different lengths of roads
on a map. A weighted graph is also called a network. Networks are used to model
relationships between objects in many disciplines—including computer science,
particle physics, economics, cryptography, sociology, biology, and climatology—
usually with a view to optimizing a particular property, such as the shortest
distance between two points.

One application of networks is to address the so-called “traveling salesperson
problem.” This involves finding the shortest route for a salesperson to travel from
their home to a series of cities and back again. The puzzle was allegedly first set
as a challenge on the back of a cereal box. In spite of advances in computing, no
method exists that guarantees to always find the best solution, because the time
this takes grows exponentially as the given number of cities increases.
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The city of Konigsberg had seven bridges linking two parts of the city to its two islands.
Euler’s graph shows that it is impossible to construct a route that visits each island and
crosses each bridge only once.

See also: Coordinates * Euler’s number ¢ The complex plane *« The M&bius strip °
Topology * The butterfly effect « The four-color theorem
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IN CONTEXT

KEY FIGURE
Christian Goldbach (1690-1764)

FIELD
Number theory

BEFORE
c. 200 ck Diophantus of Alexandria writes his Arithmetica in which he lays out

key issues about numbers.

1202 Fibonacci identifies what becomes known as the Fibonacci sequence of
numbers.

1643 Pierre de Fermat pioneers number theory.

AFTER
1742 Leonhard Euler refines the Goldbach conjecture.

1937 Soviet mathematician Ivan Vinogradov proves the ternary Goldbach
problem, a version of the conjecture.

In 1742, Russian mathematician Christian Goldbach wrote to Leonhard Euler, the
leading mathematician of the time. Goldbach believed he had observed something
remarkable—that every even integer can be split into two prime numbers, such as
6 (3+ 3)or8 (3 +5). Euler was convinced that Goldbach was right, but he could
not prove it. Goldbach also proposed that every odd integer above 5 is the sum of
three primes, and concluded that every integer from 2 upward can be created by
adding together primes; these additional proposals are dubbed “weak” versions of
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the original “strong” conjecture, as they would follow naturally if the strong
conjecture were true.

Manual and electronic methods have, as yet, failed to find any even number that
does not conform to the original strong conjecture. In 2013, a computer tested
every even number up to 4 x 10'® without finding one. The bigger the number,
the more pairs of primes can create it, so it seems highly likely that the conjecture
is valid and no exception will be found. Mathematicians, however, require a
definitive proof.

Over centuries, different “weak” versions of the conjecture have been proved,
but no one to date has proved the strong conjecture, which seems destined to
defeat even the brightest minds.

UCLA'’s Terence Tao, winner of the Fields Medal in 2006 and the Breakthrough Prize in
mathematics in 2015, published a rigorous proof of a weak Goldbach conjecture in 2012.

See also: Mersenne primes * The law of large numbers ¢« The Riemann hypothesis
* The prime number theorem
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IN CONTEXT

KEY FIGURE
Leonhard Euler (1707-83)

FIELD
Number theory

BEFORE

1714 Roger Cotes, the English mathematician who proofread Newton’s
Principia, creates an early formula similar to Euler’s, but using imaginary
numbers and a complex logarithm (a type of logarithm used when the base is a
complex number).

AFTER

1749 Abraham de Moivre uses Euler’s formula to prove his theorem, which
links complex numbers and trigonometry.

1934 Soviet mathematician Alexander Gelfond shows that em is transcendental,
that is, irrational and still irrational when raised to any power.

Formulated by Leonhard Euler in 1747, the equation known as Euler’s identity,
e™ + 1 = 0, encompasses the five most important numbers in mathematics: 0
(zero), which is neutral for addition and subtraction; 1, which is neutral for
multiplication and division; e (2.718..., the number at the heart of exponential

growth and decay); i ( , the fundamental imaginary number); and n (3.142...,
the ratio of a circle’s circumference to its diameter, which occurs in many
equations in mathematics and physics). Two of these numbers, e and i, were
introduced by Euler himself. His genius lay in combining all five milestone
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numbers with three simple operations: raising a number to a power (for example,
54 or 5 x 5 x 5 x 5), multiplication, and addition.

Complex powers

Mathematicians such as Euler asked themselves if it would be meaningful to raise
a number to a complex power—a complex number being a number that combines
a real number with an imaginary one, such as a + bi, where a and b are any real
numbers. When Euler raised the constant e to the power of the imaginary number
i multiplied by m, he discovered that it equals —1. Adding 1 to both sides of the
equation produces Euler’s identity, ™ + 1 = 0. The equation’s simplicity has led
mathematicians to describe it as “elegant,” a description reserved for proofs that
are profound yet also unusually succinct.

It is simple... yet incredibly profound; it comprises the five most important mathematical
constants.

David Percy

British mathematician

See also: Calculating pi * Trigonometry * Imaginary and complex numbers °
Logarithms * Euler’s number

309



IN CONTEXT

KEY FIGURE
Thomas Bayes (1702—-61)

FIELD
Probability

BEFORE

1713 Jacob Bernoulli’s Ars Conjectandi (The Art of Conjecturing), published
after his death, sets out his new mathematical theory of probability.

1718 Abraham de Moivre defines the statistical independence of events in his

book The Doctrine of Chances.

AFTER

1774 In his Memoir on the Probability of the Causes of Events, Pierre-Simon
Laplace introduces the principle of inverse probability.

1992 The International Society for Bayesian Analysis (ISBA) is founded to
promote the application and development of Bayes’ theorem.
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In 1763, Richard Price, a Welsh minister and mathematician, published a paper
called “An Essay Towards Solving a Problem in the Doctrine of Chances.” Its
author, the Reverend Thomas Bayes, had died two years earlier, leaving the paper
to Price in his will. It was a breakthrough in the modeling of probability and is
still used today in areas as diverse as locating lost aircraft and testing for disease.

Jacob Bernoulli’s book Ars Conjectandi (1713) showed that as the number of
identically distributed, randomly generated variables increases, so their observed
average gets closer to their theoretical average. For example, if you toss a coin for
long enough, the number of times it comes up heads will get closer and closer to
half the total of tosses —a probability of 0.5.

In 1718, Abraham de Moivre grappled with the mathematics underpinning
probability. He demonstrated that, provided the sample size was large enough, the
distribution of a continuous random variable—people’s heights, for example—
averaged out into a bell-shaped curve, later named the “normal distribution” by
German mathematician Carl Gauss.
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If a disease affects 5 percent of the population (event A) and is diagnosed using a test with 90
percent accuracy (event B), you might assume that the probability (P) of having the disease if
you test positive—P(A|B)—is 90 percent. However, Bayes’ theorem factors in the false
results produced by the test’s 10 percent inaccuracy—P(B).

Working out probabilities

Most real-world events, however, are more complicated than the toss of a coin.
For probability to be useful, mathematicians needed to determine how an event’s
outcome could be used to draw conclusions about the probabilities that led to it.
This reasoning based on the causes of observed events—rather than using direct
probabilities, such as the 50 percent chance of a heads coin toss—became known
as inverse probability. Problems that deal with the probabilities of causes are
called inverse probability problems and might involve, for example, observing a
bent coin landing on heads 13 times out of 20 and then trying to determine
whether the probability of that coin landing on heads lies somewhere between 0.4
and 0.6.

To show how to calculate inverse probabilities, Bayes considered two
interdependent events—“event A” and “event B”. Each has a probability of
occurring—P(A) and P(B)— with P for each being a number between 0 and 1. If
event A occurs, it alters the probability of event B happening, and vice versa. To
denote this, Bayes introduced “conditional probabilities.” These are given as
P(A|B), the probability of A given B, and P(BJ|A), the probability of B given A.
Bayes managed to solve the problem of how all four probabilities related to one
another with the equation: P(A|B) = P(A) x P(B|A)/P(B).

THOMAS BAYES

The son of a Nonconformist minister, Thomas Bayes was born in 1702 and

grew up in London. He studied logic and theology at the University of
Edinburgh and followed his father into the ministry, spending much of his life
leading a Presbyterian chapel in Tunbridge Wells, Kent.

Although little is known of Bayes’ life as a mathematician, in 1736 he
anonymously published An Introduction to the Doctrine of Fluxions, and a
Defence of the Mathematicians Against the Objections of the Author of the
Analyst, in which he defended Isaac Newton’s calculus foundations against the
criticisms of the philosopher Bishop George Berkeley. Bayes was made a fellow
of the Royal Society in 1742 and died in 1761.
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Key work

1736 An Introduction to the Doctrine of Fluxions, and a Defence of the
Mathematicians Against the Objections of the Author of the Analyst

See also: Probability * The law of large numbers « Normal distribution °
Laplace’s demon * The Poisson distribution ¢ The birth of modern statistics ¢« The
Turing machine » Cryptography
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IN CONTEXT

KEY FIGURE
Joseph-Louis Lagrange (1736-1813)

FIELD
Algebra

BEFORE
628 Brahmagupta publishes a formula for solving many quadratic equations.

1545 Gerolamo Cardano creates formulae for resolving cubic and quartic
equations.

1749 Leonhard Euler proves that polynomial equations of degree n have exactly
n complex roots (where n = 2, 3, 4, 5, or 6).

AFTER

1799 Carl Gauss publishes the first proof of the fundamental theorem of
algebra.

1824 In Norway, Niels Henrik Abel completes Paolo Ruffini’s 1799 proof that
there is no general formula for the quintic equation.

Polynomial equations involving numbers and a single unknown quantity (x, and
powers of x such as x* and x%) are a powerful tool for solving real-world
problems. An example of a polynomial equation is x> + x + 41 = 0. While such
equations can be solved approximately by repeated numerical calculations,
solving them exactly (algebraically) was not achieved until the 1700s. The quest
led to many mathematical innovations, including new types of numbers—such as
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negative and complex numbers—as well as modern algebraic notation and group
theory.

Searching for solutions

The Babylonians and ancient Greeks used geometrical methods to solve problems
that are now usually expressed by quadratic equations. In medieval times, more
abstract algorithmic approaches were established, and by the 1500s,
mathematicians knew certain relations between the coefficients of a polynomial
equation and its roots, and had devised formulas to solve cubic (highest power 3)
and quartic equations (highest power 4). In the 1600s, a general theory of
polynomial equations, now called the fundamental theorem of algebra, took
shape. This stated that an equation of degree n (where the highest power of x is
x™) has exactly n roots or solutions, which may be real or complex numbers.
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An algebraic equation is made up of variables and coefficients. The highest power of the
equation determines how many solutions it has: in this case, there are three solutions.

Roots and permutations

In his Reflections on the algebraic resolution of equations (1771), French-Italian
mathematician Joseph-Louis Lagrange introduced a general approach for solving
polynomial equations. His work was theoretical—he investigated the structure of
polynomial equations to find the circumstances under which a formula could be
found for solving them. Lagrange combined the technique of using a related,
lower-degree polynomial equation whose coefficients were related to the
coefficients of the original equation with a striking innovation—he considered the
possible permutations (reorderings) of the roots. Lagrange’s insight into the
symmetries that arose from these permutations showed why the cubic and quartic
equations could be solved by formulas, and showed (due to the different
permutations of symmetries and roots) why a formula for the quintic equation
needed a different approach.

Within 20 years of Lagrange’s work, Italian mathematician Paolo Ruffini began
to prove that there was no general formula for the quintic equation. Lagrange’s
investigation into permutations (and symmetries) formed the basis of the even
more abstract and general group theory advanced by French mathematician
Evariste Galois, who used it to prove why it is impossible to resolve equations of
degree 5 or higher algebraically—that is, why there is no general formula for
solving such equations.

JOSEPH-LOUIS LAGRANGE

Born Giuseppe Lodovico Lagrangia in Turin in 1736, Lagrange embraced his
family’s French heritage and went by the French version of his name. As a
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young mathematician, self-taught, he worked on the
tautochrone problem and developed a new formal
method to find the function that solved such problems.
At the age of 19, he wrote to Leonhard Euler, who
recognized his talent. Lagrange applied his method,
which Euler named the calculus of variations, to study
a wide range of physical phenomena, including the
vibration of strings. In 1766, at Euler’s
recommendation, he was made Director of Mathematics at the Berlin Academy,
and in 1787 he moved to the Académie des Sciences in Paris. Despite being an
academic and a foreigner, Lagrange survived the French Revolution and Reign
of Terror, and died in Paris in 1813.

Key works

1771 Reflections on the algebraic resolution of equations
1788 Analytical Mechanics

1797 Theory of analytic functions

See also: Quadratic equations * Algebra * The binomial theorem ¢ Cubic
equations * Huygens’s tautochrone curve * The fundamental theorem of algebra *
Group theory
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IN CONTEXT

KEY FIGURE
Georges Louis Leclerc, Comte de Buffon (1707-88)

FIELD
Probability

BEFORE

1666 Liber de ludo aleae (On Games of Chance) by Italian mathematician
Gerolamo Cardano is published.

1718 Abraham de Moivre publishes The Doctrine of Chances, the first textbook
on probability.

AFTER

1942-46 The Manhattan Project, a US-led body for developing nuclear
weapons, makes extensive use of Monte Carlo methods (computational
processes that model risk by generating random variables).

Late 1900s Quantum Monte Carlo methods are used to explore particle
interactions in microscopic systems.

In 1733, the mathematician and naturalist George Leclerc, the Comte de Buffon,
raised—and answered—a fascinating question. If a needle is dropped onto a
series of parallel lines, all the same width apart, what is the likelihood that the
needle will cross one of the lines? Now known as Buffon’s needle experiment, it
was one of the earliest probability calculations.

An elegant illustration
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Buffon originally used the needle experiment to estimate 7 (pi)—the ratio of a
circle’s circumference to its diameter. He did this by dropping a needle of length I
many times onto a series of parallel lines distance d apart, where d is greater than
the needle’s length (d > I). Buffon then counted the number of times the needle
crossed the line as a proportion of total attempts (p) and came up with the formula
that 7 is approximately equal to twice the length of the needle I, divided by the
distance (d) multiplied by the proportion of needles crossing the line: m % 21 + dp.
The probability of the needle crossing a line can be calculated by multiplying
each side of the formula by p, then dividing each side by m to get p % 21 + nd.

The relationship with i can be used in a number of probability problems. One
example involves a quarter circle, inscribed in a square, which curves from the
top left corner of the square to the bottom right. The bottom horizontal edge of the
square is the x axis and the left vertical edge is the y axis, with a value of 0 in the
lower left corner and 1 in the corners at each end of the curve. When two numbers
between 0 and 1 are chosen at random as the x and y coordinates, whether the
point will lie inside the quarter circle (success) or outside it (failure) can be

deduced by examining , where a is the x coordinate and b is the y
coordinate. The result is > 1 for points outside the curve and < 1 for points within
it. The point is chosen at random, so could be anywhere in the square. Points on
the line of the quarter circle can be counted as a success. The chance of “success”
is rr? (the area of a circle) + 4. If the radius is 1, r* = 1, so the area is just m; for a
quarter circle, divide m by 4 to get approximately 0.78. The whole area is the area
of the square, which is 1 x 1 = 1, so the probability of landing in the shaded area

is approximately 0.78 + 1 = 0.78.
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Using pi, the probability of a randomly chosen point falling within the quarter circle in this
square can be calculated as roughly 78 percent.

The Monte Carlo method

This problem is an example of a wider class of experiments that employ a
statistical approach called the Monte Carlo method, a code name coined by
Polish-American scientist Stanislaw Ulam and his colleagues for the random
sampling used during secret work on nuclear weapons in World War II. Monte
Carlo methods went on to be useful in modern applications, especially once
computers made it far less time-consuming to repeat a probability experiment
over and over again.
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Buffon’s needle experiment demonstrated how probability can be connected to pi. Buffon

classed needles as “successful” (pink) if they crossed a line when dropped, or “unsuccessful”
(blue) if they didn’t, then calculated the probability of “success.”

In wind energy yield analysis, the predicted energy output of a wind farm during its lifetime

is calculated, giving different levels of uncertainty, by using Monte Carlo probability
methods.

GEORGES-LOUIS LECLERC, COMTE DE BUFFON

Born in Montbard, France, in 1707, Georges-Louis Leclerc was urged by his
parents to pursue a career in law, but was more interested in botany, medicine,
and mathematics, which he studied at the University of Angers, France. At the
age of 20, he explored the binomial theorem.
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Independently wealthy, Buffon was able to write and
study tirelessly, corresponding with many of the
scientific elite of his day. His interests were wide-
ranging, and his output was immense—on topics
ranging from ship-building to natural history and
astronomy. The comte also translated a number of
scientific works.

Appointed keeper of the Jardin du Roi, the royal botanical gardens in Paris, in
1739, Buffon enriched its collections and doubled its size. He held the post until
his death in Paris in 1788.

Key works

1749-1786 Histoire naturelle (Natural History)
1778 Les époques de la nature
(The Epochs of Nature

See also: Calculating pi * Probability *« The law of large numbers ¢ Bayes’
theorem * The birth of modern statistics
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IN CONTEXT

KEY FIGURE
Carl Gauss (1777-1855)

FIELD
Algebra

BEFORE

1629 Albert Girard states that a polynomial of degree n will have n roots.
1746 The first attempt at a proof of the fundamental theorem of algebra (FTA)
is made by Jean d’Alembert.

AFTER

1806 Robert Argand publishes the first rigorous proof of the FTA that allows
polynomials with complex coefficients.

1920 Alexander Ostrowski proves the remaining assumptions in Gauss’s proof
of the FTA.

1940 Hellmuth Kneser gives the first constructive variant of the Argand FTA
proof that allows for the roots to be found.

This method of solving problems by honest confession of one’s ignorance is called Algebra.
Mary Everest Boole

British mathematician

An equation asserts that one quantity is equal to another, and provides a means of
determining an unknown number. Since Babylonian times, scholars have sought
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solutions to equations, periodically encountering seemingly insoluble examples.
In the 5th century BCe, Hippasus’s attempts to resolve x? = 2 and his realization

that was irrational (neither a whole number nor a fraction) are said to have
led to his death for betraying Pythagorean beliefs. Some 800 years later,
Diophantus had no knowledge of negative numbers, so could not accept an
equation where x is negative, such as 4 = 4x + 20, where x is -4.

Polynomials and roots

In the 1700s, one of the most studied areas of mathematics involved polynomial
equations. These are often used to solve problems in mechanics, physics,
astronomy, and engineering, and involve powers of an unknown value, such as x°.
The “root” of a polynomial equation is a specific numerical value that will replace
the unknown value to make the polynomial equal 0. In 1629, French
mathematician Albert Girard showed that a polynomial of degree n will have n
roots. The quadratic equation x> + 4x - 12 = 0, for example, has two roots, x = 2
and x = -6, both of which produce the answer 0. It has two roots because of the x?
term — 2 is the equation’s highest power. If any quadratic equation is drawn on a
graph, these roots can be easily found: they are where the line touches the x axis.
Although his theorem was useful, Girard’s work was hindered by the fact that he
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had no concept of complex numbers. These would be key to producing a
fundamental theorem of algebra (FTA) for solving all possible polynomials.

Gerolamo Cardano encountered negative roots while working on cubic equations in the
1500s. His acceptance of these as valid solutions was an important step in algebra.

Complex numbers

The collection of all positive and negative, rational and irrational numbers
together make up the real numbers. Some polynomials, however, do not have
real-number roots. This was a problem faced by Italian mathematician Gerolamo
Cardano and his peers in the 1500s; while working on cubic equations, they found
that some of their solutions involved square roots of negative numbers. This
seemed impossible, because a negative number multiplied by itself produces a
positive result.

The problem was solved in 1572 when another Italian, Rafael Bombelli, set out

the rules for an extended number system that included numbers such as
alongside the real numbers. In 1751, Leonhard Euler investigated the imaginary

roots of polynomials, and called the “imaginary unit,” or i. All imaginary
numbers are multiples of i. Combining the real and the imaginary, such as a + bi

(where a and b are any real numbers, and i = ), creates what is called a
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complex number.

Once mathematicians had accepted the necessity of negative and complex
numbers for solving certain equations, the question remained as to whether
finding roots of higher-degree polynomials would require the introduction of yet
new types of number. Euler and other mathematicians, notably Carl Gauss in
Germany, would seek to address this question, eventually concluding that the
roots of any polynomial are either real or complex numbers—no further types of
number are needed.

Imaginary numbers are a fine and wonderful refuge of the divine spirit.

Gottfried Leibniz

CARL GAUSS

Born in Brunswick, Germany, in 1777, Carl Gauss
showed his mathematical talents early: aged only
three, he corrected an error in his father’s payroll
calculations, and by the age of five he was taking care
of his father’s accounts. In 1795, he entered Gottingen
University and in 1798, he constructed a regular
heptadecagon (a polygon with 17 sides) using only a
ruler and compasses—the biggest advance in polygon
construction since Euclid’s geometry some 2,000 years earlier. Gauss’s
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Arithmetical Investigations, written at the age of 21 and published in 1801, was
key to defining number theory. Gauss also made advances in astronomy (such
as the rediscovery of the astroid Ceres), cartography, the study of
electromagnetism, and the design of optical instruments. However, he kept
many of his ideas to himself; a great number were discovered in his unpublished
papers after his death in 1855.

Key work

1801 Disquisitiones Arithmeticae (Arithmetical Investigations)

Early research

The FTA can be stated in a number of ways, but its most common formulation is
that every polynomial with complex coefficients will have at least one complex
root. It can also be stated that all polynomials of degree n containing complex
coefficients have n complex roots.

The first significant attempt at proving the FTA was made in 1746 by French
mathematician Jean le Rond d’Alembert in his “Recherches sur le calcul intégral”
(“Research on integral calculus”). D’ Alembert’s proof argued that if a polynomial
P(x) with real coefficients has a complex root, x = a + ib, then it also has a
complex root, x = a - ib. To prove this theorem, he used a complicated idea now
known as “d’Alembert’s lemma.” In mathematics, a lemma is an intermediary
proposition used to solve a bigger theorem. However, d’ Alembert did not prove
his lemma satisfactorily; his proof was correct, but contained too many holes to
satisfy his fellow mathematicians.

Later attempts to prove the FTA included those of Leonhard Euler and Joseph-
Louis Lagrange. While useful to later mathematicians, these were also
unsatisfactory. In 1795, Pierre-Simon Laplace tried an FTA proof using the
polynomial’s “discriminant,” a parameter determined from its coefficients which
indicates the nature of its roots, such as real or imaginary. His proof contained an
unproved assumption that d’ Alembert had avoided—that a polynomial will
always have roots.

There are only two kinds of certain knowledge: awareness of our own existence and the truths of
mathematics.

Jean d’Alembert
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Jean d’Alembert was the first to attempt to prove the FTA. In France, it is called the
d’ Alembert—Gauss theorem, acknowledging the influence of d’ Alembert on Gauss.

Gauss’s proof

In 1799, at the age of 21, Carl Friedrich Gauss published his doctoral thesis. It
began with a summary and criticism of d’Alembert’s proof, among others. Gauss
pointed out that each of these earlier proofs had assumed part of what they were
trying to prove. One such assumption was that polynomials of odd degree (such
as cubics and quintics) always have a real root. This is true, but Gauss argued that
the point needed to be proved. His first proof was based on assumptions about
algebraic curves. Although these were plausible, they were not rigorously proved
in Gauss’s work. It was not until 1920, when Ukrainian mathematician Alexander
Ostrowski published his proof, that Gauss’s assumptions could all be justified.
Arguably, Gauss’s first, geometric proof suffered for being premature—in 1799,
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the concepts of continuity and of the complex plane, which would have helped
him explain his ideas, had not yet been developed.

Argand’s additions

Gauss published an improved proof of the FTA in 1816 and a further refinement
at his golden jubilee lecture (celebrating 50 years since his doctorate) in 1849.
Unlike his first geometric approach, his second and third proofs were more
algebraic and technical in nature. Gauss published four proofs of the FTA, but did
not fully resolve the problem. He failed to address the obvious next step: although
he had established that every real number equation would have a complex number
solution, he had not considered equations built from complex numbers such as x>
=1

In 1806, Swiss mathematician Jean-Robert Argand found a particularly elegant
solution. Any complex number, z, can be written in the form a + bi, where a is the
real part of z and bi is the imaginary part. Argand’s work allowed complex
numbers to be represented geometrically. If the real numbers are drawn along the
x axis and the imaginary numbers are drawn along the y axis, then the whole
plane between them becomes the realm of the complex numbers. Argand proved
that the solution for every equation built from complex numbers could be found
among the complex numbers on his diagram and that there was therefore no need
to extend the number system. Argand’s was the first truly rigorous proof of the
FTA.

I have had my results for a long time, but I do not yet know how to arrive at them.

Carl Gauss

Legacy of the theorem

The proofs by Gauss and Argand established the validity of complex numbers as
roots of polynomials. The FTA stated that anyone faced with solving an equation
built from real numbers could be sure that they would find their solution within
the realm of complex numbers. These groundbreaking ideas formed the
foundations of complex analysis.

Mathematicians since Argand have continued to work on proving the FTA using
new methods. In 1891, for example, German Karl Weierstrass created a method—
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now known as the Durand—Kerner method, due to its rediscovery by
mathematicians in the 1960s—for simultaneously finding all of the roots of a
polynomial.

Applications of the FTA

Research on the fundamental theorem of algebra has
led to breakthroughs in other fields. In the 1990s,
British mathematicians Terrence Sheil-Small and
Alan Wilmshurst extended the FTA to harmonic
polynomials. These may have an infinite number of
roots, but in some cases, there are a finite number. In

2006, American mathematicians Dmitry Khavinson
An Einstein ring, first

discovered in 1998, is the and Genevra Neumann proved that there was an

deformation of light from upper limit to the number of roots of a certain class
a source into a ring of harmonic polynomials. After publishing their
through gravitational results, they were told that their proof settled a
lensing.

conjecture by South Korean astrophysicist Sun Hong
Rhie. Her conjecture concerned images of distant astronomical light sources.
Massive objects in the Universe bend passing light rays from distant sources in
a phenomenon called gravitational lensing, creating multiple images seen
through a telescope. Rhie posited that there would be a maximum number of
images produced; this turned out to be exactly the upper bound found by
Khavinson and Neumann.

See also: Quadratic equations * Negative numbers * Algebra * Cubic equations ®

Imaginary and complex numbers ¢ The algebraic resolution of equations * The
complex plane
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INTRODUCTION

Progress in mathematics accelerated through the 1800s, with science and
mathematics now becoming respected academic studies. As the Industrial
Revolution spread and 1848’s “Year of Revolution” saw nationalism surge across
old empires, there was a renewed drive to understand the workings of the
Universe in scientific terms, rather than through religion or philosophy. Pierre-
Simon Laplace, for example, applied the theories of calculus to celestial
mechanics. He proposed a form of scientific determinism, saying that with the
relevant knowledge of moving particles, the behavior of everything in the
Universe could be predicted.

Another characteristic of 19th-century mathematics was its increasing tendency
toward the theoretical. This trend was fostered by the influential work of Carl
Friedrich Gauss, regarded by many in the field as the greatest of all
mathematicians. He dominated the study of mathematics for much of the first half
of the century, making contributions to the fields of algebra, geometry, and
number theory, and giving his name to such concepts as Gaussian distribution,
Gaussian function, Gaussian curvature, and Gaussian error curve.

New fields

Gauss was also a pioneer of non-Euclidean geometries, which epitomized the
revolutionary spirit of 19th-century mathematics. The subject was taken up by
Nicolai Lobachevsky and Janos Bolyai, who independently developed theories of
hyperbolic geometry and curved spaces, resolving the problem of Euclid’s
parallel postulate. This opened up a completely new approach to geometry,
paving the way for the nascent field of topology (the study of space and surfaces)
which was also influenced by the possibility of more than three dimensions
offered by William Hamilton’s discovery of quaternions.
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Perhaps the best known of the pioneers of topology is August Mébius, inventor
of the Mdbius strip, which had the unusual property of being a two-dimensional
surface with only one side. Non-Euclidean geometries were further developed by
Bernhard Riemann, who identified and defined different types of geometry in
multiple dimensions.

Riemann did not confine his studies to geometry, however. As well as his work
on calculus, he made important contributions to number theory, following in the
footsteps of Gauss. The Riemann hypothesis, derived from the Riemann zeta
function concerning complex numbers, is as yet unsolved. Other notable
discoveries in number theory at this time include the creation of set theory and the
description of an “infinity of infinities” of Georg Cantor, Eugene Catalan’s
conjecture about the powers of natural numbers, and the application of elliptic
functions to number theory proposed by Carl Gustav Jacob Jacobi.

Jacobi was, like Riemann, multi-talented, often linking different fields of
mathematics in new ways. His primary interest was in algebra, another area of
mathematics that was becoming increasingly abstract during the 1800s. The
groundwork for the growing field of abstract algebra was laid by Evariste Galois,
who, although he died young, also developed group theory while determining a
general algebraic method for solving polynomial equations.

New technologies

Not all mathematics in this period was purely theoretical—and even some of the
abstract concepts soon found more practical applications. Siméon Poisson, for
example, used his knowledge of pure mathematics to develop ideas such as the
Poisson distribution, a key concept in the field of probability theory. Charles
Babbage, on the other hand, responded to practical demand for a means of
accurate and quick calculation with his mechanical calculating device, the
“Difference Engine.” In so doing, he laid the groundwork for the invention of
computers. Babbage’s work in turn inspired Ada Lovelace to devise the
forerunner of modern computer algorithms.

Meanwhile, there were other developments in mathematics that were to have far-
reaching implications for later technological progress. Using algebra as his
starting point, George Boole devised a form of logic based on a binary system,
and using the operators AND, OR, and NOT. These became the foundation of
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modern mathematical logic, but just as importantly paved the way for the
language of computers almost a century later.
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IN CONTEXT

KEY FIGURE
Jean-Robert Argand (1768-1822)

FIELD
Number theory

BEFORE

1545 Italian scholar Gerolamo uses negative square roots to solve cubic
equations in his book Ars Magna.

1637 French philosopher and mathematician René Descartes develops a way to
plot algebraic expressions as coordinates on a grid.
AFTER

1843 Irish mathematician William Hamilton extends the complex plane by
adding two more imaginary units to create quaternions—expressions that are
plotted in a 4-D space.

1859 By merging two complex planes, Bernhard Riemann develops a 4-D
surface to help him analyze complex functions.
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After centuries of suspicion, mathematicians finally embraced the concept of
negative numbers in the 1700s. They did so by using imaginary numbers in
algebra. In 1806, the key contribution of Swiss-born mathematician Jean-Robert
Argand was to plot complex numbers (made up of a real and imaginary
component) as coordinates on a plane created by two axes—x for real numbers
and y for imaginary numbers. This complex plane provided the first geometrical
interpretation of the distinctive properties of complex numbers.

There can be very little... science and technology that is not dependent on complex numbers.
Keith Devlin

British mathematician

Algebraic roots

Imaginary numbers had emerged in the 1500s when Italian mathematicians such
as Gerolamo Cardano and Niccolo Fontana Tartaglia found that solving cubic
equations required a square root of a negative number. The square of a real
number cannot be negative—any real number multiplied by itself results in a
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positive—so they decided to treat as a new unit that operated separately
from the real numbers. Leonhard Euler first used i to denote the imaginary unit (

) in his attempts to prove the fundamental theorem of algebra (FTA). This
theorem states that all polynomial equations of degree n have n roots. This means
that if x? is the highest power in an algebraic expression made up of a single
variable (such as x) and real coefficients (numbers multiplying the variable), the
expression has a degree of two, and also two roots; roots are values of x that make
the polynomial equal to zero. Many seemingly simple polynomials, however,
such as x? + 1, do not equal zero if x is a real number. Plotting x* + 1 on a graph
with an x and y axis creates a neat curve that never passes through the origin, or
(0,0) point. To make the FTA work for x> + 1, Gauss and others used real
numbers combined with imaginary numbers to create complex numbers. All
numbers are in essence complex. For example, the real number 1 is the complex
number 1 + 0i, while the number i is 0 + i. The equation x> + 1 can equal zero
when x is i or -i.

An Argand diagram uses the x and y axes to represent real numbers and imaginary numbers,
combining them to plot complex numbers. This diagram shows two numbers: 3 + 5i and 7 +
2i.

Argand’s discovery

As Argand began to plot complex numbers, he discovered that the imaginary
number i does not get bigger if raised to higher powers. Instead, it follows a four-
step pattern that repeats infinitely: i' = i; i = —1; i° = —i, i* = 1; i° = i, and so on.
This can be visualized on the complex plane. Multiplying real numbers by
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imaginary numbers produces 90° rotations through the complex plane. So 1 x i =
i, which does not appear on the real number x axis at all, but on the imaginary y
axis. Continuing to multiply by i results in more 90° rotations, which is why every
four multiplications arrive back at the start point.

Plots of complex numbers— or Argand diagrams—make complicated
polynomials easier to solve. The complex plane is now a powerful tool that works
far beyond the interests of number theory.

JEAN-ROBERT ARGAND

Little is known of Jean-Robert Argand’s early life. He was born in Geneva in

1768, but appears to have had no formal education in mathematics. In 1806, he
moved to Paris to manage a bookshop, and self-published the work containing
the geometrical interpretation of complex numbers for which he is known.
(Norwegian cartographer Casper Wessel is now known to have used similar
constructions in 1799.) Argand’s essay was republished in a mathematics
journal in 1813, and in the next year, he used the complex plane to produce the
first rigorous proof of the fundamental theorem of algebra. Argand published
eight more articles before his death in Paris in 1822.

Key work

1806 Essai sur une maniere de représenter les quantités imaginaires dans les
constructions géométriques (Essay on a method of representing imaginary
quantities geometrically)

See also: Quadratic equations ¢ Cubic equations * Imaginary and complex
numbers ¢ Coordinates * The fundamental theorem of algebra
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IN CONTEXT

KEY FIGURE
Joseph Fourier (1768-1830)

FIELD
Applied mathematics

BEFORE

1701 In France, Joseph Sauveur suggests that vibrating strings oscillate with
many waves of different lengths at the same time.

1753 Swiss mathematician Daniel Bernoulli shows that a vibrating string
consists of an infinite number of harmonic oscillations.

AFTER

1965 In the US, James Cooley and John Tukey develop the Fast Fourier
Transform (FFT), an algorithm that is able to speed up Fourier analysis.

2000s Fourier analysis is used to create a number of speech recognition
programs for computers and smartphones.

The sound created by vibrating strings has been a topic of research for more than
2,500 years. In about 550 BCE, Pythagoras discovered that if you take two taut
strings of the same material and the same tension, but one is twice the length of
the other, the short string will vibrate with twice the frequency of the longer string
and the resulting notes will be an octave apart.

Two centuries later, Aristotle suggested that sound traveled through the air in
waves, although he incorrectly thought that higher-pitched sounds traveled faster
than lower-pitched ones. In the 1600s, Galileo recognized that sounds are
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produced by vibrations: the higher the frequency of the vibrations, the higher the
pitch of the sound we perceive.

Sounds are made of a complex series of tones. Fourier analysis can separate out pure tones,
which can be represented as sine waves on a graph, from each other. Tones have frequency,
which determines pitch, and amplitude, which determines volume.

Heat and harmony

By the end of the 1600s, physicists including Joseph Sauveur were making great
strides in studying the relationships between the waves in stretched strings and the
pitch and frequency of sounds that they produced. In the course of their research,
mathematicians showed that any string will support a potentially infinite series of
vibrations, starting from the fundamental (the string’s lowest natural frequency)
and including its harmonics (integer multiples of the fundamental). The pure tone
of a single pitch is produced by a smooth repetitive oscillation called a sine wave
(see graph). The sound quality of a musical instrument results principally from
the number and relative intensities of the harmonics present in the sound, or its
harmonic content. The result is a variety of waves interfering with each other.

Joseph Fourier was attempting to solve the problem of how heat diffused through
a solid object. He developed an approach that would allow him to calculate the
temperature at any location within an object, at any time after a source of heat had
been applied to one of its edges.

Fourier’s studies of heat distribution showed that no matter how complex a
waveform, it could be broken down into its constituent sine waves, a process that
is now called Fourier analysis. Since heat in the form of radiation is a wave,
Fourier’s discoveries about heat distribution had applications to the study of
sound. A sound wave can be understood in terms of the amplitudes of its
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constituent sine waves, a set of numbers that is sometimes referred to as the
harmonic spectrum.

Today, Fourier analysis plays a key role in many applications including digital
file compression, analyzing MRI scans, speech recognition software, musical
pitch correction software, and determining the composition of planetary
atmospheres.

Fourier analysis of the way materials vibrate allows engineers to construct buildings that
resonate at different frequencies from a typical earthquake and thus avoid the kind of damage
that occurred in Mexico City in 2017.

JOSEPH FOURIER

Jean-Baptiste Joseph Fourier was born in Auxerre,

France, in 1768. A tailor’s son, he went to military
school, where his keen interest in mathematics led him
to become a successful teacher of the subject.

Fourier’s career was disrupted by two arrests—one
for criticizing the French Revolution, the other for
supporting it—but in 1798, he accompanied

Napoleon’s forces into Egypt as a diplomat. Napoleon later made him a baron,
and then a count. After Napoleon’s fall in 1815, Fourier moved to Paris to
become director of the Statistical Bureau of the Seine, where he pursued his
studies in mathematical physics, including work on the Fourier series (a series
of sine waves that characterize sounds). In 1822, Fourier was made the secretary
of the French Academy of Sciences, a post he held until his death in 1830.
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Fourier’s career was disrupted by two arrests—one for criticizing the French
Revolution, the other for supporting it—but in 1798, he accompanied
Napoleon’s forces into Egypt as a diplomat. Napoleon later made him a baron,
and then a count. After Napoleon’s fall in 1815, Fourier moved to Paris to
become director of the Statistical Bureau of the Seine, where he pursued his
studies in mathematical physics, including work on the Fourier series (a series
of sine waves that characterize sounds). In 1822, Fourier was made the secretary
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IN CONTEXT

KEY FIGURE
Pierre-Simon Laplace (1749-1827)

FIELD
Mathematical philosophy

BEFORE

1665 Calculus is developed by Isaac Newton to analyze and describe the motion
of falling bodies and other complex mechanical systems.

AFTER

1872 Ludwig Boltzmann uses statistical mechanics to show how the
thermodynamics of a system always results in an increase in entropy.

1963 Edward Lorenz describes the Lorenz attractor, a model that produces
chaotic results with every tiny change to the initial parameters.

1872 American mathematician David Wolpert disproves Laplace’s demon by
treating the “intellect” as a computer.

In 1814, Pierre-Simon Laplace, a French mathematician who combined
mathematics and science with philosophy and politics, presented a thought
experiment now known as Laplace’s demon. Laplace never used the word
“demon” himself; it was introduced in later retellings, evoking a supernatural
being made godlike by mathematics.

Laplace imagined an intellect that could analyze movements of all atoms in the
Universe in order to accurately predict their future paths. His experiment was an
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exploration of determinism, a philosophical concept that says that all future
events are determined by causes in the past.

The orrery, a “clockwork universe” showing the movement of the celestial bodies in the
Solar System, became a popular device after the publication of Newton’s universal theory of
gravity.

Mechanical analysis

Laplace was inspired by classical mechanics—a field of mathematics describing
the behavior of moving bodies, based on Isaac Newton’s laws of motion. In a
Newtonian universe, atoms (and even light particles) follow the laws of motion,
and bounce around in a jumble of trajectories. Laplace’s “intellect” would be
capable of capturing and analyzing all of their movements; it would create a
single formula that uses present movements to ascertain past and predict future
ones.

Laplace’s theory had a startling philosophical consequence. It can only work if
the Universe follows a predictable mechanical path, so that everything from the
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spin of galaxies to the tiny atoms in nerve cells controlling thoughts could be
mapped out into the future. This would mean that every aspect of a person’s life
up until their death has already been predetermined; they have no free will and no
agency over their thoughts and deeds.

Chance and statistics

Although mathematics helped to create such a crushing vision of reality, it also
helped to dismiss it. By the 1850s, the study of heat and energy—
thermodynamics—was ushering in a new model, the atomic world. To do this, it
needed to describe the motion of atoms and molecules inside matter. Classical
mechanics was not up to the task. Instead, physicists used a technique invented by
Swiss mathematician Daniel Bernoulli in 1738, which used probability theory to
model the movement of independent units within a space. Refined by Austrian
physicist Ludwig Boltzmann, this technique became known as statistical
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mechanics. It described the atomic world in terms of random chance—something
at odds with the mechanical determinism of Laplace’s demon. By the 1920s, the
idea of a probabilistic Universe was solidified with the development of quantum
physics, which has uncertainty at its heart.

PIERRE-SIMON LAPLACE

Born into an aristocratic family in 1749, Laplace lived
through the French Revolution and the Reign of

Terror, in which many of his friends were killed. In

1799, he became Minister of the Interior under

Napoleon Bonaparte, but was dismissed after only six

weeks for being too analytical and ineffectual. Laplace

later sided with the Bourbons (the French royal

family) and was rewarded with the return of his
original title of marquis when the monarchy was restored.

Laplace’s demon was a side note to a career that also encompassed physics and
astronomy, where Laplace was the first to postulate the concept of a black hole.
His many contributions to mathematics were in classical mechanics, probability
theory, and algebraic transformations. Laplace died in Paris in 1827.

Key works

1798-1828 Celestial Mechanics

1812 Analytic Theory of Probability

1814 A Philosophical Essay on Probabilities

See also: Probability * Calculus « Newton’s laws of motion ¢ The butterfly effect
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IN CONTEXT

KEY FIGURE
Siméon Poisson (1781-1840)

FIELD
Probability

BEFORE

1662 English merchant John Graunt publishes Natural and Political
Observations upon the Bills of Mortality, marking the birth of statistics.

1711 Abraham de Moivre’s De Mensura Sortis (On the Measurement of
Chance), describes what is later known as the Poisson distribution.

AFTER

1898 Russian statistician Ladislaus Bortkiewicz uses the Poisson distribution to
study the number of Prussian soldiers killed by horse kicks.

1946 British statistician R. D. Clarke publishes a study, based on the Poisson
distribution, of patterns of V-1 and V-2 flying bomb impacts on London.

In statistics, the Poisson distribution is used to model the number of times a
randomly occurring event happens in a given interval of time or space. Introduced
in 1837 by French mathematician Siméon Poisson, and based on the work of
Abraham de Moivre, it can help to forecast a wide range of possibilities.

Take, for example, a chef who needs to forecast the number of baked potatoes
that will be ordered in her café. She needs to decide how many potatoes to pre-
cook each day. She knows the daily average order, and decides to prepare n
potatoes where there is at least 90 percent certainty that n will match demand.
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To use the Poisson distribution to calculate n, conditions must be met: orders
must occur randomly, singly, and uniformly—on average, the same number of
potatoes are ordered each day. If these conditions apply, the chef can find the
value of n—how many potatoes to pre-bake. The average number of events per
unit of space or time (lambda, or A) is key. If A = 4 (the average number of
potatoes ordered in one day), and the number of potato orders on any one day is
B, the probability that B is less than or equal to 6 is 89 percent, while the
probability that B is less than or equal to 7 is 95 percent. The chef must be at least
90 percent sure that demand will be met, so n will be 7 here.

Siméon Poisson is credited with finding the Poisson distribution, but this may be an example
of Stigler’s Law—no scientific discovery is credited to the true discoverer.

See also: Probability * Euler’s number * Normal distribution ¢ The birth of

modern statistics
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IN CONTEXT

KEY FIGURE
Friedrich Wilhelm Bessel (1784—-1846)

FIELD
Applied geometry

BEFORE
1609 Johannes Kepler shows that the orbits of the planets are ellipses.

1732 Daniel Bernoulli uses what later become known as Bessel functions to
study the vibrations of a swinging chain.

1764 Leonhard Euler analyzes a vibrating membrane using what are later
understood to be Bessel functions.

AFTER

1922 British mathematician George Watson writes his hugely influential A
treatise on the theory of Bessel functions.

In the early 1800s, German mathematician and astronomer Friedrich Wilhelm
Bessel gave solutions to a particular differential equation, the so-called Bessel
equation. He systematically investigated these functions (solutions) in 1824. Now
known as Bessel functions, they are useful to scientists and engineers. Central to
the analysis of waves, such as electromagnetic waves moving along wires, they
are also used to describe the diffraction of light, the flow of electricity or heat in a
solid cylinder, and the motions of fluids.

Movement of the planets
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The origins of Bessel functions lie in the pioneering work of German
mathematician and astronomer Johannes Kepler in the early 1600s on the motions
of the planets. His meticulous analysis of observations led him to realize that the
orbits of the planets around the Sun are elliptical, not circular, and he described
the three key laws of planetary motion. Mathematicians later used Bessel
functions to make breakthroughs in various fields. Daniel Bernoulli found
equations for the oscillations of a pendulum, and Leonhard Euler developed
corresponding equations for the vibration of a stretched membrane. Euler and
others also used Bessel functions to find solutions to the “three-body problem,”
concerned with the motion of a body, such as a planet or moon, being acted upon
by the gravitational fields of two other bodies.

Bessel’s functions are very beautiful functions, in spite of their having practical applications.
E. W. Hobson

British mathematician

See also: The problem of maxima ¢ Calculus * The law of large numbers ¢ Euler’s
number ¢ Fourier analysis
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IN CONTEXT

KEY FIGURES
Charles Babbage (1791-1871), Ada Lovelace (1815-52)

FIELD

Computer science

BEFORE
1617 Scottish mathematician John Napier invents a manual calculating device.
1642-44 In France, Blaise Pascal creates a calculating machine.

1801 French weaver Joseph-Marie Jacquard demonstrates the first
programmable machine — a loom controlled by a punchcard.

AFTER

1944 British codebreaker Max Newman builds Colossus, the first digital
electronic programmable computer.

British mathematician and inventor Charles Babbage anticipated the computer age
by more than a century with two ideas for mechanical calculators and “thinking”
machines. The first he called the Difference Engine, a calculating machine that
would work automatically, using a combination of brass cogs and rods. Babbage
only managed to part-build the machine, but even this was able to process
complex calculations accurately in moments.

The second, more ambitious, idea was the Analytical Engine. It was never built,
but was envisaged as a machine that could respond to new problems and solve
them without human intervention. The project received crucial input from Ada
Lovelace, a brilliant young mathematician. Lovelace anticipated many of the key
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mathematical aspects of computer programming and foresaw how the machine
could be used to analyze any kinds of symbol.

Charles Babbage was spurred to start his work on a mechanical calculator by the errors he
found in astronomical tables produced by poorly paid and unreliable workers.

Automatic calculation

In the 17th and 18th centuries, mathematicians such as Gottfried Leibniz and
Blaise Pascal had created mechanical calculating aids, but these were limited in
power and also prone to error as human input was needed at every step.
Babbage’s idea was to create a calculating machine that worked automatically,
eliminating human error. He called his machine the Difference Engine because it
allowed complex multiplications and divisions to be reduced to additions and
subtractions—*“differences”—that could be handled by scores of interlocking
cogs. It would even print out the results.

No previous calculator had ever worked with numbers larger than four digits.
Yet the Difference Engine was designed to handle numbers of up to 50 digits by
means of more than 25,000 moving parts.
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To set up the machine for a calculation, each number was represented by a
column of cogwheels, and each cogwheel was marked with digits from 0 to 9. A
number was set by turning the cogwheels in the column to show the correct digit
on each. The machine would then work through the entire calculation
automatically.

Babbage built several small working models with just seven number columns but
remarkable calculating power. In 1823, he managed to persuade the British
government to part-fund the project, with the promise that it would make
producing official tables much quicker, cheaper, and more accurate. However, the
full machine was hugely expensive to develop, and tested the technological
capability of the day to its limits. After two decades’ work, the government
canceled the project in 1842,

Meanwhile, in drawings and calculations, Babbage had also been working on his
idea for an Analytical Engine. His papers suggest that the machine, if built, could
have been close to what we now call a computer. His design anticipated virtually
all of the key components of the modern computer, including the central
processing unit (CPU), memory storage, and integrated programs.

One problem facing Babbage was what to do with numbers carried over into the
next column when adding up columns of digits. At first, he used a separate
mechanism for each carryover, but that proved too complicated. Then he split his
machine into two parts, the “Mill” and the “Store,” which made it possible to
separate the addition and carryover processes. The Mill was where the
arithmetical operations were performed; the Store was where numbers were held
before processing and then received back from the Mill after processing. The Mill
was Babbage’s version of a computer’s CPU, while the Store acted as its
memory.

The idea of telling a machine what it should do—programming—came from a
French weaver, Joseph-Marie Jacquard. He developed a loom that used cards
punched with holes to tell it how to weave complex patterns in silk. In 1836,
Babbage realized he too could use punched cards—to control his own machine
but also to record results and calculation sequences.

At each increase of knowledge, as well as on the contrivance of every new tool, human labor
becomes abridged.

Charles Babbage
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This replica of the demonstration model Babbage made in 1832 of Difference Engine No. 1
has three columns, each with its numbered cogwheels. Two are for calculation, one for the
result.
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A supporting genius

One of the greatest advocates for Babbage’s work was his fellow mathematician
Ada Lovelace, who wrote of the Analytical Engine that it would “weave algebraic
patterns just as the Jacquard loom weaves flowers and leaves.” As a teenager in
1832, Lovelace had seen one of the Difference Engine models working and had
been instantly entranced. In 1843, she arranged the publication of her translation
of a pamphlet about the Analytical Engine written by Italian engineer Luigi
Menabrea, to which she added extensive explanatory notes.

Many of these notes covered systems that would become part of modern
computing. In “Note G,” Lovelace described possibly the first computer
algorithm, “to show an implicit function can be worked out by the engine without
human head and hands first.” She also theorized that the engine could solve
problems by repeating a series of instructions—a process known today as
“looping.” Lovelace envisaged a program card, or set of cards, that returned
repeatedly to its original position to work on the next data card or set. In this way,
Lovelace argued, the machine could solve a system of linear equations or generate
extensive tables of prime numbers. Perhaps the greatest insight in her notes was
Lovelace’s vision of machines as mechanical brains with wide applications. “The
engine can arrange and combine its numerical quantities exactly as if they were
letters or any other general symbols,” she wrote, realizing that any kind of
symbol, not just numbers, could be manipulated and processed by machines. This
is the difference between calculation and computation—and the basis of the
modern computer. Lovelace also foresaw how such machines would be limited by
the quality of the input. Arguably, the first programmable computer— rather than
calculator—was created by Konrad Zuse in 1938.
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The object of the Analytical Engine is twofold. First, the complete manipulation of number.
Second, the complete manipulation of algebraical symbols.

Charles Babbage

Delayed legacy

Lovelace’s plans to develop Babbage’s work were curtailed by her early death, by
which time Babbage himself was tired, ill, and disillusioned by the lack of
support for his Difference Engine. The high-precision mechanics required to build
the machine were beyond what any engineer could achieve at the time. Largely
forgotten until they were republished in 1953, Lovelace’s notes confirm that she
and Babbage foresaw many of the features of the computer now found in every
home and office.

The more I study [the Analytical Engine], the more insatiable I feel my genius for it to be.

Ada Lovelace

ADA LOVELACE

Born Augusta Byron in London in 1815, Ada, Countess of Lovelace, was the
only legitimate child of the poet Lord Byron. Byron left England a few months
after her birth, and Lovelace never saw her father again. Her mother, Lady

Byron, was mathematically gifted—Byron called her his “Princess of
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Parallelograms”— and insisted Lovelace study
mathematics, too.

Lovelace became renowned for her talents in
mathematics and languages. She met Charles Babbage
when she was 17 and was fascinated by his work. Two
years later, she married William King, Earl of
Lovelace, with whom she had three children, but she

continued to study mathematics and follow the progress of Babbage, who called
her “the Enchantress of Number.”

Lovelace wrote exhaustive notes on Babbage’s Analytical Engine. She set out
many ideas about what was to become computing, earning herself a reputation
as the first computer programmer. Lovelace died in 1852 of uterine cancer; in
line with her wishes, she was buried next to her father.

See also: Binary numbers ¢ Matrices * The infinite monkey theorem ¢ The Turing
machine ¢ Information theory ¢ The four-color theorem
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IN CONTEXT

KEY FIGURE
Carl Gustav Jacob Jacobi (1804-51)

FIELDS
Number theory, geometry

BEFORE

1655 John Wallis applies calculus to the length of an elliptic curve; the elliptic
integral he derives is defined by an infinite series of terms.

1799 Carl Gauss determines the key characteristics of elliptic functions, but his
work is not published until 1841.

1827-28 Niels Abel independently derives and publishes the same findings as
Gauss.
AFTER

1862 German mathematician Karl Weierstrass develops a general theory of
elliptic functions, showing that they can be applied to problems in both algebra
and geometry.
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The “squashed circle” of an ellipse is one of the most recognizable curves in
math. Ellipses have a long history in mathematics. They were studied by the
ancient Greeks as one of the conic sections. Slicing through a cone horizontally
creates a circle; slicing at a steeper angle creates an ellipse (and then open curves
called a parabola and a hyperbola). An ellipse is a closed curve that is defined as
the set of all points in a plane, the sum of whose distances from two fixed points
—each one called a focus—is always the same number. (A circle is a special
ellipse with just one central focus, not two.) In 1609, German astronomer and
mathematician Johannes Kepler demonstrated that the orbits of the planets were
elliptical, with the Sun being located at one of the foci.

I learnt with as much astonishment as satisfaction that two young geometers...succeeded in their
own individual work in considerably improving the theory of elliptic functions.

Adrien-Marie Legendre

New tools

Just as the mathematics of a circle could be used to model and predict natural
phenomena that varied and repeated in a rhythmic (or periodic) way, such as the
up-and-down motion of a simple sound wave, the mathematics of the ellipse can
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be used to do the same for phenomena that follow more complex periodic
patterns, such as electromagnetic fields or the orbital motion of planets.

The genesis of such tools, the elliptic functions, began in England with 17th-
century mathematicians John Wallis and Isaac Newton. Working independently,
they developed a method for calculating the arc length, or length of a section, of
any ellipse. With later contributions, their technique was developed into the
elliptic functions and became a way of analyzing many kinds of complex curves
and oscillating systems beyond the simple ellipse.

Practical applications

In 1828, Norwegian Neils Abel and German Carl Jacobi, again working
independently, showed wider applications for elliptic functions in both
mathematics and physics. For example, these functions appear in the 1995 proof
of Fermat’s last theorem, and the latest public-key cryptography systems. Since
Abel died at 26, just months after making his major discoveries, many of these
applications were developed by Jacobi. Jacobi’s elliptic functions are complex,
but a more simple form, the p-function, was introduced in 1862 by German
mathematician Karl Weierstrass. P-functions are used in classical and quantum
mechanics.
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Elliptic functions are used to define the trajectories of spacecraft such as the Dawn probe,
which explored the dwarf planet Ceres and the asteroid Vesta in the asteroid belt.

CARL GUSTAYV JACOB JACOBI

Born in Potsdam, Prussia, in 1804, Carl Gustav Jacob

Jacobi was initially tutored by an uncle. Having
learned all that school could teach him by the age of
12, he had to wait until he was 16 to be allowed to
attend Berlin University, and spent the intervening
years teaching himself mathematics. He continued to
do so when he found the university courses too basic.
He graduated within a year, and in 1832 he became a
professor at the University of Kénigsberg. Falling ill in 1843, Jacobi returned to
Berlin, where he was supported by a pension from the king of Prussia. In 1848,
he ran unsuccessfully for parliament as a liberal candidate and the offended king
temporarily withdrew his support. In 1851, aged just 46, Jacobi contracted
smallpox and died.

Key work
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1829 Fundamenta nova theoria functionum ellipticarum (The foundations of a
new theory of elliptic functions)

See also: Huygens’s tautochrone curve ¢ Calculus * Newton’s laws of motion *
Cryptography ¢ Proving Fermat’s last theorem
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IN CONTEXT

KEY FIGURE
Janos Bolyai (1802—-60)

FIELD

Geometry

BEFORE

1733 In Italy, mathematician Giovanni Saccheri fails to prove Euclid’s parallel
postulate from his other four postulates.

1827 Carl Friedrich Gauss publishes his Disquisitiones generales circa
superficies curvas (General Investigations of Curved Surfaces), defining the
“intrinsic curvature” of a space, which can be deduced from within the space.

AFTER

1854 Bernhard Riemann describes the kind of surface that has hyperbolic
geometry.

1915 Einstein describes gravity as curvature in spacetime in his general theory
of relativity.

The parallel postulate (PP) is the fifth of five postulates from which Euclid
deduced his theorems of geometry in his Elements. The PP was controversial
among the ancient Greeks, since it did not seem as self-evident as Euclid’s other
postulates, nor was there an obvious way of verifying it. However, without the
PP, many elementary theorems in geometry could not be proved. Over the next
2,000 years, mathematicians would stake their reputations on attempts to resolve
the issue. In the 5th century CE, the philosopher Proclus argued that the PP was a
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theorem that could be derived from the other postulates and should therefore be
struck out.

During the Golden Age of Islam (8th—14th century), mathematicians attempted
to prove the PP. Persian polymath Nasir al-Din al-Tusi showed that the PP is
equivalent to stating that the sum of angles in any triangle is 180°, but the PP
nonetheless remained controversial. In the 1600s, new translations of Elements
reached Europe, and Giovanni Saccheri showed that if the PP was untrue, then the
sum of angles in a triangle was always either less than or greater than 180°.

By the early 1800s, Hungarian Janos Bolyai and Russian Nicolai Lobachevsky
independently proved the validity of a “hyperbolic” non-Euclidean geometry in
which the PP did not hold but the other four of Euclid’s postulates did. Bolyai
claimed to have “created another world out of nothing,” but the idea was not well
received in its time. Gauss acknowledged its validity, but claimed to have
discovered it first. Gauss’s idea of the “intrinsic curvature” of a surface or space
was an important tool in establishing this new world, but he left little evidence of
having developed non-Euclidean geometry himself. He did, however, consider
that the Universe might be non-Euclidean. Subsequent advances by Bernhard
Riemann, Eugenio Beltrami, Felix Klein, David Hilbert, and others mean that
today, non-Euclidean geometries are no longer seen as exotic, and physicists have
given serious consideration to whether our Universe is indeed flat (Euclidean) or
curved.
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Leave the science of parallels alone. I was ready to... remove the flaw from geometry [but]
turned back when I saw that no man can reach the bottom of this night.

Wolfgang Bolyai

Father of Janos Bolyai

Artistic explorations

Hyperbolic geometry also features in art. Models devised by Henri Poincaré
inspired many graphic works by M. C. Escher, while some mathematicians,
notably Daina Taimina, have used art and craft techniques to make these “new
worlds” intuitively graspable.
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Crochet models of hyperbolic surfaces created by Daina Taimina are more tactile than paper
models. She claims that the crocheting process helps develop geometrical intuition.

DAINA TAIMINA

Born in Latvia in 1954, Daina Taimina began her
career in the fields of computer science and the history
of mathematics. After teaching for 20 years at the
University of Latvia, she moved to Cornell University
in the United States in 1996, where a chance
encounter opened up a new area of interest. Taimina
attended a geometry workshop led by David
Henderson in which he demonstrated how to make a paper model of a
hyperbolic surface. Henderson himself had learned the technique from
pioneering American topologist William Thurston.

Taimina went on to make her own models of hyperbolic surfaces using crochet
to assist in her teaching. The models were a success, breaking the stereotype of
mathematics as a field unrelated to arts and crafts. Taimina has since embarked
on a second career as a mathematician—artist.

Key work

2004 Experiencing Geometry with David W. Henderson

366



See also: Euclid’s Elements * Projective geometry * Topology * 23 problems for
the 20th century *» Minkowski space
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IN CONTEXT

KEY FIGURE
Evariste Galois (1811-32)

FIELDS
Algebra, number theory

BEFORE

1799 Italian mathematician Paolo Ruffini considers the sets of permutations of
roots as an abstract structure.

1815 Augustin-Louis Cauchy, a French mathematician, develops his theory of
permutation groups.

AFTER

1846 Galois’ work is published posthumously by fellow Frenchman Joseph
Liouville.

1854 British mathematician Arthur Cayley extends the work of Galois to a full
theory of abstract groups.

1872 German mathematician Felix Klein defines geometry in terms of group
theory.

Group theory is a branch of algebra that pervades modern mathematics. Its
genesis was largely due to French mathematician Evariste Galois, who developed
it in order to understand why only some polynomial equations could be solved
algebraically. In so doing, he not only gave a definitive answer to a historical
quest that had begun in ancient Babylon, but also laid the foundations of abstract
algebra.
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Galois’ approach to this problem was to relate it to a question in another area of
mathematics. This can be a powerful strategy when the other area is well
understood. In this case, however, Galois first had to develop the theory of the
“simpler” area (the theory of groups) in order to tackle the more difficult problem
(solubility of equations). The link he made between the two areas is now called
Galois theory.

Arithmetic of symmetries

A group is an abstract object—it consists of a set of elements and an operation
that combines them, subject to some axioms. When these elements include
shapes, groups can be thought of as encoding symmetry. Simple symmetries—
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such as those of a regular polygon—are intuitively graspable. For example, an
equilateral triangle with the vertices A, B, and C can be rotated in three ways
(through 120°, 240°, or 360°) around its center, and be reflected in three different
lines. Each of these six transformations fits the triangle onto itself—it looks
exactly the same, except that the vertices are permuted (rearranged). A clockwise
rotation of 120° sends vertex A to where B was, B to C, and C to A, while a
reflection in the vertical line through A swaps vertices B and C. The three
rotations and the reflections give all possible symmetries of the triangle ABC.

One way to see the symmetries of the triangle is to consider all of the possible
permutations of the vertices. A rotation or reflection can send the vertex A to one
of three points (including itself). From each of these possibilities, the vertex B has
two available destinations. The destination of the third vertex is now determined
because the triangle is rigid, so there are 3 x 2 = 6 possibilities. The symmetry
groups of polygons can be thought of as permutations of a set of elements. The
symmetry group of the equilateral triangle is a member of a small group called
Ds.

EVARISTE GALOIS

Born in 1811, Evariste Galois lived a brief but fiery

and brilliant life. He was already familiar as a teenager
with the works of Lagrange, Gauss, and Cauchy, but
failed (twice) to enter the prestigious Ecole
Polytechnique—possibly due to his mathematical and
political impetuousness, though no doubt affected by
the suicide of his father.

In 1829, Galois enrolled at the Ecole Préparatoire,
only to be expelled in 1830 for his politics. A staunch republican, he was
arrested in 1831 and imprisoned for eight months. Shortly after his release in
1832, he became involved in a duel—it is unclear whether this was over a love
affair or politics. Badly wounded, he died the next day, leaving behind just a
handful of mathematical papers which contain the foundations of group theory,
finite field theory, and what is now called Galois theory.

Key works

1830 Sur la théorie des nombres (On Number Theory)
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1831 Premier Mémoire (First Memoir)

The equilateral triangle has six symmetries. They are rotation (p) through 120°, 240°, and
360° and reflection (o) through a vertical line through A, B, or C. The diagram above shows
the results of applying one symmetry after another to e, the identity element (rotation through
0°), and how they are written—p?a (the last equilateral triangle in the diagram) means “rotate
through 120 degrees twice and reflect.”

Axioms of group theory

Group theory has four main axioms. The first is the identity axiom; it states that a
unique element exists that does not change any element in the group when
combined with it. With the ABC triangle, the identity is the rotation of 0°. The
second axiom is the inverse axiom. It says that every element has a unique inverse
element; combining the two yields the identity element.

The third axiom concerns associativity, which means that the result of operations
on elements does not depend on the order in which they are applied. For example,
if you combine any set of three elements with a multiplication operator, you can
perform the operations in any order. So if the elements 1, 2, and 3 are members of
a group, then (1 x2)x3=2x3=6,and 1 X (2x3)=1x6=6, all giving the
same result.

The fourth axiom is closure, meaning that a group should have no elements
outside the group as a result of performing the operations. One example of a
group obeying all four axioms is the set of integers {...,-3,-2,-1,0,1, 2, 3, ...}
with the operation of addition. The unique identity element is 0, and the inverse of
any integer n is -n as n + -n = 0 = -n + n. The addition of integers is associative,
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and the set is also closed, because adding any of the integers together gives
another integer.

Groups can also have a further attribute known as commutativity. If a group is
commutative, it is known as an Abelian group. This means that its elements can
be swapped around without changing the result. Integers added in any order will
give the same result (6 + 7 = 13 and 7 + 6 = 13), so the set of integers with the
operation of addition is an Abelian group.

The possible rotations of a Rubik’s Cube form a mathematical group with
43,252,003,274,489,856,000 elements, but solving the cube from any position requires no
more than 26 turns of 90°.

Wherever groups disclosed themselves, or could be introduced, simplicity crystallized out of
comparative chaos.

Eric Temple Bell

Scottish mathematician

Galois groups and fields

Groups are just one kind of abstract algebraic structure among many. Closely
related structures include rings and fields, which are also defined in terms of a set
with operations and axioms. A field contains two operations; complex numbers
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(with the operations of addition and multiplication) are a field. The field of
complex numbers is the territory in which solutions to polynomial equations are
found.

Galois theory relates the solvability of a polynomial equation (whose roots are
elements of a field) to a group—specifically, to the permutation group that
encodes possible rearrangements of its roots. Galois showed that this group, now
called a Galois group, must have one kind of structure if the equation is
algebraically solvable, and a different kind of structure if it is not. Galois groups
of quartic equations and simpler polynomials are solvable, but those of higher
degree polynomials are not. Modern algebra is an abstract study of groups, rings,
fields, and other algebraic structures.

Group theory continues to develop in its own right and has many applications.
Group theory is used to study symmetries in chemistry and physics, for example,
and can be used in public key cryptography, which secures much of today’s
digital communication.

We need a super- mathematics in which the operations are as unknown as the quantities they
operate on... such a super-mathematics is the Theory of Groups.

Arthur Eddington

British astrophysicist

Group theory in physics

The Universe, as we understand it through physics,
is full of symmetries, and group theory is proving a
powerful tool for both understanding and prediction.
Physicists use the Lie groups, named after the 19th-
century Norwegian mathematician Sophus Lie. Lie
groups are continuous, not discrete—for example,

they model the infinite number of rotational
The ATLAS detector at

the CERN accelerator is
designed to study rather than the finite number of transformations of a

symmetries, such as those associated with a circle,

subatomic particles, polygon.
including those predicted

In 1915, German algebraist Emmy Noether
by group theory.

demonstrated how Lie groups related to
conservation laws (such as the conservation of energy). By the 1960s, physicists
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began to use group theory to classify subatomic particles. But the mathematical
groups they used included a combination of symmetries that no known particles
had. Scientists tried looking for a particle with that combination of symmetries,

and found the Omega minus particle. More recently, the Higgs boson has filled
another such gap.

See also: The algebraic resolution of equations * Emmy Noether and abstract
algebra * Finite simple groups
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IN CONTEXT

KEY FIGURE
William Rowan Hamilton (1805-65)

FIELD

Number systems

BEFORE

1572 Italy’s Rafael Bombelli creates complex numbers by combining real
numbers, based on the unit 1, with imaginary numbers, based on the unit i.

1806 Jean-Robert Argand creates a geometrical interpretation of complex
numbers by plotting them as coordinates to create the complex plane.

AFTER

1888 Charles Hinton invents the tesseract, which is an extension of the cube
into four spatial dimensions. A tesseract has four cubes, six squares, and four
edges meeting at every corner.

An extension of complex numbers, quaternions are used to model, control, and
describe motion in three dimensions, which is essential in, for example, creating
the graphics of a video game, planning a space probe’s trajectory, and calculating
the direction in which a smartphone is pointing. Quaternions were the brainchild
of William Rowan Hamilton, an Irish mathematician who was interested in how
to model movement mathematically in three-dimensional space. In 1843, in a
flash of inspiration, he realized that the “third dimension problem” could not be
solved with a three-dimensional number, but needed a four-dimensional one (a
quaternion).
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Movements and rotations

Complex numbers are two-dimensional: they are made up of a real and an
imaginary part, for example, 1 + 2i. As a result, the two parts of any complex
number can act as coordinates, and the number can be plotted on a surface or
plane. The two-dimensional complex plane extends the one-dimensional number
line by combining real numbers with imaginary units. The plotting of complex
numbers then enables the calculation of motion and rotation in two dimensions.
Any linear motion from point A to B can be expressed as the addition of two
complex numbers. Adding more numbers creates a sequence of movements
across the plane. To describe rotation, complex numbers are multiplied together.
Every multiplication by i, the imaginary unit, results in a 90° rotation, and a
rotation of any other angle is due to some factor or fraction of i.

Once complex numbers were understood, the next challenge for mathematicians
was to create a number that worked the same way in a three-dimensional space.
The logical answer was to add a third number line, j, which ran at 90 degrees to
both the real and imaginary number lines, but no one could figure out how such a
number added, multiplied, and so on.
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Since quaternions can model and control the motion of objects in three dimensions, they are
particularly useful in virtual reality games.

Four dimensions

Hamilton’s solution was to add a fourth nonreal unit, k. This created a quaternion,
with a basic structure of a + bi + ¢j + dk, where a, b, c, and d are real numbers.
The two additional quaternion units, j and k, share similar properties to i and are
imaginary. A quaternion can define a vector, or a line in three-dimensional space,
and can describe an angle and direction of rotation around that vector. Like the
complex plane, simple quaternion mathematics, combined with basic
trigonometry, offers a way to describe all kinds of movements within three-
dimensional space.

An undercurrent of thought was going on in my mind which gave at last a result... An electric
circuit seemed to close; and a spark flashed forth, the herald of many long years.

William Rowan Hamilton

WILLIAM ROWAN HAMILTON

Born in Dublin in 1805, Hamilton became interested in mathematics from the
age of eight after meeting Zerah Colburn, a touring American mathematical
child prodigy. At the age of 22, while still studying at Trinity College, Dublin,
he was appointed both professor of astronomy at the university and Royal

Astronomer of Ireland.
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Hamilton’s expertise in Newtonian mechanics
enabled him to calculate the paths of heavenly bodies.
He later updated Newtonian mechanics into a system
that enabled further advances to be made in
electromagnetism and quantum mechanics. In 1856,
he tried to capitalize on his skills by launching the
icosian game, in which players search for a path
connecting the points of a dodecahedron without
returning to the same point twice. Hamilton sold the rights to the game for £25.
He died in 1865, following a severe attack of gout.

Key works

1853 Lectures on Quaternions

1866 Elements of Quaternions

See also: Imaginary and complex numbers ¢ Coordinates * Newton’s laws of
motion * The complex plane
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IN CONTEXT

KEY FIGURE
Eugene Catalan (1814-94)

FIELD
Number theory

BEFORE

c. 1320 French philosopher and mathematician Levi ben Gershon (Gersonides)
shows that the only powers of 2 and 3 that differ by 1 are 8 = 23 and 9 = 3°.

1738 Leonhard Euler proves that 8 and 9 are the only consecutive square or
cube numbers.

AFTER

1976 Dutch number theorist Robert Tijdeman proves that, if more consecutive
powers exist, there are only a finite number of them.

2002 Preda Mihailescu proves Catalan’s conjecture, 158 years after it was
formulated in 1844.

Many problems in number theory are easy to pose, but extremely difficult to
prove. Fermat’s last theorem, for example, remained a conjecture (unproven
claim) for 357 years. Like Fermat’s conjecture, Catalan’s conjecture is a
deceptively simple claim about powers of positive integers that was proved long
after its initial statement.

In 1844, Eugéne Catalan claimed that there is only one solution to the equation
x™ - y" =1, where x, y, m, and n are natural numbers (positive integers) and m
and n are greater than 1. The solutionisx =3, m =2,y =2, and n = 3, since 32
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23 = 1.