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FOREWORD
Summarizing all of mathematics in one book is a daunting and indeed impossible
task. Humankind has been exploring and discovering mathematics for millennia.
Practically, we have relied on math to advance our species, with early arithmetic
and geometry providing the foundations for the first cities and civilizations. And
philosophically, we have used mathematics as an exercise in pure thought to
explore patterns and logic.

As a subject, mathematics is surprisingly hard to pin down with one catch-all
definition. “Mathematics” is not simply, as many people think, “stuff to do with
numbers.” That would exclude a huge range of mathematical topics, including
much of the geometry and topology covered in this book. Of course, numbers are
still very useful tools to understand even the most esoteric areas of mathematics,
but the point is that they are not the most interesting aspect of it. Focusing just on
numbers misses the forest for the threes.

For the record, my own definition of math as “the sort of things that
mathematicians enjoy doing,” while delightfully circular, is largely unhelpful. Big
Ideas Simply Explained is actually not a bad definition. Mathematics could be
seen as the attempt to find the simplest explanations for the biggest ideas. It is the
endeavor of finding and summarizing patterns. Some of those patterns involve the
practical triangles required to build pyramids and divide land; other patterns
attempt to classify all of the 26 sporadic groups of abstract algebra. These are
very different problems in terms of both usefulness and complexity, but both
types of pattern have become the obsession of mathematicians throughout the
ages.

There is no definitive way to organize all of mathematics, but looking at it
chronologically is not a bad way to go. This book uses the historical journey of
humans discovering math as a way to classify it and wrangle it into a linear
progression, which is a valiant but difficult effort. Our current mathematical body
of knowledge has been built up by a haphazard and diverse group of people
across time and cultures.

So something like the short section on magic squares covers thousands of years
and the span of the globe. Magic squares—arrangements of numbers where the
sum in each row, column, and diagonal is always the same—are one of the oldest
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areas of recreational mathematics. Starting in the 9th century BCE in China, the
story then bounces around via Indian texts from 100 CE, Arab scholars in the
Middle Ages, Europe during the Renaissance, and finally modern Sudoku-style
puzzles. Across a mere two pages this book has to cover 3,000 years of history
ending with geomagic squares in 2001. And even in this small niche of
mathematics, there are many magic square developments that there was simply
not enough room to include. The whole book should be viewed as a curated tour
of mathematical highlights.

Studying even just a sample of mathematics is a great reminder of how much
humans have achieved. But it also highlights where mathematics could do better;
things like the glaring omission of women from the history of mathematics cannot
be ignored. A lot of talent has been squandered over the centuries, and a lot of
credit has not been appropriately given. But I hope that we are now improving the
diversity of mathematicians and encouraging all humans to discover and learn
about mathematics.

Because going forward, the body of mathematics will continue to grow. Had this
book been written a century earlier it would have been much the same up until
about page 280. And then it would have ended. No ring theory from Emmy
Noether, no computing from Alan Turing, and no six degrees of separation from
Kevin Bacon. And no doubt that will be true again 100 years from now. The
edition printed a century from now will carry on past page 325, covering patterns
totally alien to us. And because anyone can do math, there is no telling who will
discover this new math, and where or when. To make the biggest advancement in
mathematics during the 21st century, we need to include all people. I hope this
book helps inspire everyone to get involved.

Matt Parker
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INTRODUCTION
The history of mathematics reaches back to prehistory, when early humans found
ways to count and quantify things. In doing so, they began to identify certain
patterns and rules in the concepts of numbers, sizes, and shapes. They discovered
the basic principles of addition and subtraction—for example, that two things
(whether pebbles, berries, or mammoths) when added to another two invariably
resulted in four things. While such ideas may seem obvious to us today, they were
profound insights for their time. They also demonstrate that the history of
mathematics is above all a story of discovery rather than invention. Although it
was human curiosity and intuition that recognized the underlying principles of
mathematics, and human ingenuity that later provided various means of recording
and notating them, those principles themselves are not a human invention. The
fact that 2 + 2 = 4 is true, independent of human existence; the rules of
mathematics, like the laws of physics, are universal, eternal, and unchanging.
When mathematicians first showed that the angles of any triangle in a flat plane
when added together come to 180°, a straight line, this was not their invention:
they had simply discovered a fact that had always been (and will always be) true.

Early applications
The process of mathematical discovery began in prehistoric times, with the
development of ways of counting things people needed to quantify. At its
simplest, this was done by cutting tally marks in a bone or stick, a rudimentary
but reliable means of recording numbers of things. In time, words and symbols
were assigned to the numbers and the first systems of numerals began to evolve, a
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means of expressing operations such as acquisition of additional items, or
depletion of a stock, the basic operations of arithmetic.

As hunter-gatherers turned to trade and farming, and societies became more
sophisticated, arithmetical operations and a numeral system became essential
tools in all kinds of transactions. To enable trade, stocktaking, and taxes in
uncountable goods such as oil, flour, or plots of land, systems of measurement
were developed, putting a numerical value on dimensions such as weight and
length. Calculations also became more complex, developing the concepts of
multiplication and division from addition and subtraction—allowing the area of
land to be calculated, for example.

In the early civilizations, these new discoveries in mathematics, and specifically
the measurement of objects in space, became the foundation of the field of
geometry, knowledge that could be used in building and toolmaking. In using
these measurements for practical purposes, people found that certain patterns
were emerging, which could in turn prove useful. A simple but accurate
carpenter’s square can be made from a triangle with sides of three, four, and five
units. Without that accurate tool and knowledge, the roads, canals, ziggurats, and
pyramids of ancient Mesopotamia and Egypt could not have been built. As new
applications for these mathematical discoveries were found—in astronomy,
navigation, engineering, bookkeeping, taxation, and so on—further patterns and
ideas emerged. The ancient civilizations each established the foundations of
mathematics through this interdependent process of application and discovery, but
also developed a fascination with mathematics for its own sake, so-called pure
mathematics. From the middle of the first millennium BCE, the first pure
mathematicians began to appear in Greece, and slightly later in India and China,
building on the legacy of the practical pioneers of the subject—the engineers,
astronomers, and explorers of earlier civilizations.

Although these early mathematicians were not so concerned with the practical
applications of their discoveries, they did not restrict their studies to mathematics
alone. In their exploration of the properties of numbers, shapes, and processes,
they discovered universal rules and patterns that raised metaphysical questions
about the nature of the cosmos, and even suggested that these patterns had
mystical properties. Often mathematics was therefore seen as a complementary
discipline to philosophy—many of the greatest mathematicians through the ages
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have also been philosophers, and vice versa—and the links between the two
subjects have persisted to the present day.

It is impossible to be a mathematician without being a poet of the soul.

Sofya Kovalevskaya
Russian mathematician

Arithmetic and algebra
So began the history of mathematics as we understand it today—the discoveries,
conjectures, and insights of mathematicians that form the bulk of this book. As
well as the individual thinkers and their ideas, it is a story of societies and
cultures, a continuously developing thread of thought from the ancient
civilizations of Mesopotamia and Egypt, through Greece, China, India, and the
Islamic empire to Renaissance Europe and into the modern world. As it evolved,
mathematics was also seen to comprise several distinct but interconnected fields
of study.

The first field to emerge, and in many ways the most fundamental, is the study of
numbers and quantities, which we now call arithmetic, from the Greek word
arithmos (“number”). At its most basic, it is concerned with counting and
assigning numerical values to things, but also the operations, such as addition,
subtraction, multiplication, and division, that can be applied to numbers. From the
simple concept of a system of numbers comes the study of the properties of
numbers, and even the study of the very concept itself. Certain numbers—such as
the constants π, e, or the prime and irrational numbers—hold a special fascination
and have become the subject of considerable study.
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Another major field in mathematics is algebra, which is the study of structure,
the way that mathematics is organized, and therefore has some relevance in every
other field. What marks algebra from arithmetic is the use of symbols, such as
letters, to represent variables (unknown numbers). In its basic form, algebra is the
study of the underlying rules of how those symbols are used in mathematics—in
equations, for example. Methods of solving equations, even quite complex
quadratic equations, had been discovered as early as the ancient Babylonians, but
it was medieval mathematicians of the Islamic Golden Age who pioneered the use
of symbols to simplify the process, giving us the word “algebra,” which is derived
from the Arabic al-jabr. More recent developments in algebra have extended the
idea of abstraction into the study of algebraic structure, known as abstract algebra.

Geometry is knowledge of the eternally existent.

Pythagoras
Ancient Greek mathematician

Geometry and calculus
A third major field of mathematics, geometry, is concerned with the concept of
space, and the relationships of objects in space: the study of the shape, size, and
position of figures. It evolved from the very practical business of describing the
physical dimensions of things, in engineering and construction projects,
measuring and apportioning plots of land, and astronomical observations for
navigation and compiling calendars. A particular branch of geometry,
trigonometry (the study of the properties of triangles), proved to be especially
useful in these pursuits. Perhaps because of its very concrete nature, for many
ancient civilizations, geometry was the cornerstone of mathematics, and provided
a means of problem-solving and proof in other fields.

This was particularly true of ancient Greece, where geometry and mathematics
were virtually synonymous. The legacy of great mathematical philosophers such
as Pythagoras, Plato, and Aristotle was consolidated by Euclid, whose principles
of mathematics based on a combination of geometry and logic were accepted as
the subject’s foundation for some 2,000 years. In the 1800s, however, alternatives
to classical Euclidean geometry were proposed, opening up new areas of study,
including topology, which examines the nature and properties not only of objects
in space, but of space itself.
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Since the Classical period, mathematics had been concerned with static
situations, or how things are at any given moment. It failed to offer a means of
measuring or calculating continuous change. Calculus, developed independently
by Gottfried Leibniz and Isaac Newton in the 1600s, provided an answer to this
problem. The two branches of calculus, integral and differential, offered a method
of analyzing such things as the slope of curves on a graph and the area beneath
them as a way of describing and calculating change.

The discovery of calculus opened up a field of analysis that later became
particularly relevant to, for example, the theories of quantum mechanics and
chaos theory in the 1900s.

Revisiting logic
The late 19th and early 20th centuries saw the emergence of another field of
mathematics—the foundations of mathematics. This revived the link between
philosophy and mathematics. Just as Euclid had done in the 3rd century BCE,
scholars including Gottlob Frege and Bertrand Russell sought to discover the
logical foundations on which mathematical principles are based. Their work
inspired a re-examination of the nature of mathematics itself, how it works, and
what its limits are. This study of basic mathematical concepts is perhaps the most
abstract field, a sort of meta-mathematics, yet an essential adjunct to every other
field of modern mathematics.

In mathematics, the art of asking questions is more valuable than solving problems.

Georg Cantor
German mathematician
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New technology, new ideas
The various fields of mathematics—arithmetic, algebra, geometry, calculus, and
foundations—are worthy of study for their own sake, and the popular image of
academic mathematics is that of an almost incomprehensible abstraction. But
applications for mathematical discoveries have usually been found, and advances
in science and technology have driven innovations in mathematical thinking.

A prime example is the symbiotic relationship between mathematics and
computers. Originally developed as a mechanical means of doing the “donkey
work” of calculation to provide tables for mathematicians, astronomers and so on,
the actual construction of computers required new mathematical thinking. It was
mathematicians, as much as engineers, who provided the means of building
mechanical, and then electronic computing devices, which in turn could be used
as tools in the discovery of new mathematical ideas. No doubt, new applications
for mathematical theorems will be found in the future too—and with numerous
problems still unsolved, it seems that there is no end to the mathematical
discoveries to be made.

The story of mathematics is one of exploration of these different fields, and the
discovery of new ones. But it is also the story of the explorers, the
mathematicians who set out with a definite aim in mind, to find answers to
unsolved problems, or to travel into unknown territory in search of new ideas—
and those who simply stumbled upon an idea in the course of their mathematical
journey, and were inspired to see where it would lead. Sometimes the discovery
would come as a game-changing revelation, providing a way into unexplored
fields; at other times it was a case of “standing on the shoulders of giants,”
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developing the ideas of previous thinkers, or finding practical applications for
them.

This book presents many of the “big ideas” in mathematics, from the earliest
discoveries to the present day, explaining them in layperson’s language, where
they came from, who discovered them, and what makes them significant. Some
may be familiar, others less so. With an understanding of these ideas, and an
insight into the people and societies in which they were discovered, we can gain
an appreciation of not only the ubiquity and usefulness of mathematics, but also
the elegance and beauty that mathematicians find in the subject.

Mathematics, rightly viewed, possesses not only truth, but supreme beauty.

Bertrand Russell
British philosopher and mathematician
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INTRODUCTION
As early as 40,000 years ago, humans were making tally marks on wood and bone
as a means of counting. They undoubtedly had a rudimentary sense of number
and arithmetic, but the history of mathematics only properly began with the
development of numerical systems in early civilizations. The first of these
emerged in the sixth millennium BCE, in Mesopotamia, western Asia, home to the
world’s earliest agriculture and cities. Here, the Sumerians elaborated on the
concept of tally marks, using different symbols to denote different quantities,
which the Babylonians then developed into a sophisticated numerical system of
cuneiform (wedge-shaped) characters. From about 4000 BCE, the Babylonians
used elementary geometry and algebra to solve practical problems—such as
building, engineering, and calculating land divisions—alongside the arithmetical
skills they used to conduct commerce and levy taxes.

A similar story emerges in the slightly later civilization of the ancient Egyptians.
Their trade and taxation required a sophisticated numerical system, and their
building and engineering works relied on both a means of measurement and some
knowledge of geometry and algebra. The Egyptians were also able to use their
mathematical skills in conjunction with observations of the heavens to calculate
and predict astronomical and seasonal cycles and construct calendars for the
religious and agricultural year. They established the study of the principles of
arithmetic and geometry as early as 2000 BCE.

Greek rigor
The 6th century BCE onward saw a rapid rise in the influence of ancient Greece
across the eastern Mediterranean. Greek scholars quickly assimilated the
mathematical ideas of the Babylonians and Egyptians. The Greeks used a
numerical system of base-10 (with ten symbols) derived from the Egyptians.
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Geometry in particular chimed with Greek culture, which idolized beauty of form
and symmetry. Mathematics became a cornerstone of Classical Greek thinking,
reflected in its art, architecture, and even philosophy. The almost mystical
qualities of geometry and numbers inspired Pythagoras and his followers to
establish a cultlike community, dedicated to studying the mathematical principles
they believed were the foundations of the Universe and everything in it.

Centuries before Pythagoras, the Egyptians had used a triangle with sides of 3, 4,
and 5 units as a building tool to ensure corners were square. They had come
across this idea by observation, and then applied it as a rule of thumb, whereas the
Pythagoreans set about rigorously showing the principle, offering a proof that it is
true for all right-angled triangles. It is this notion of proof and rigor that is the
Greeks’ greatest contribution to mathematics.

Plato’s Academy in Athens was dedicated to the study of philosophy and
mathematics, and Plato himself described the five Platonic solids (the tetrahedron,
cube, octahedron, dodecahedron, and icosahedron). Other philosophers, notably
Zeno of Elea, applied logic to the foundations of mathematics, exposing the
problems of infinity and change. They even explored the strange phenomenon of
irrational numbers. Plato’s pupil Aristotle, with his methodical analysis of logical
forms, identified the difference between inductive reasoning (such as inferring a
rule of thumb from observations) and deductive reasoning (using logical steps to
reach a certain conclusion from established premises, or axioms).

From this basis, Euclid laid out the principles of mathematical proof from
axiomatic truths in his Elements, a treatise that was the foundation of mathematics
for the next two millennia. With similar rigor, Diophantus pioneered the use of
symbols to represent unknown numbers in his equations; this was the first step
toward the symbolic notation of algebra.

A new dawn in the East
Greek dominance was eventually eclipsed by the rise of the Roman Empire. The
Romans regarded mathematics as a practical tool rather than worthy of study. At
the same time, the ancient civilizations of India and China independently
developed their own numerical systems. Chinese mathematics in particular
flourished between the 2nd and 5th centuries CE, thanks largely to the work of Liu
Hui in revising and expanding the classic texts of Chinese mathematics.
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IN CONTEXT
KEY CIVILIZATION
Babylonians

FIELD
Arithmetic

BEFORE
40,000 years ago Stone Age people in Europe and Africa count using tally
marks on wood or bone.

6000–5000 BCE Sumerians develop early calculation systems to measure land
and to study the night sky.

4000–3000 BCE Babylonians use a small clay cone for 1 and a large cone for 60,
along with a clay ball for 10, as their base-60 system evolves.

AFTER
2nd century CE The Chinese use an abacus in their base-10 positional number
system.

7th century In India, Brahmagupta establishes zero as a number in its own right
and not just as a placeholder.

It is given to us to calculate, to weigh, to measure, to observe; this is natural philosophy.

Voltaire
French philosopher

22



The first people known to have used an advanced numeration system were the
Sumerians of Mesopotamia, an ancient civilization living between the Tigris and
Euphrates rivers in what is present-day Iraq. Sumerian clay tablets from as early
as the 6th millennium BCE include symbols denoting different quantities. The
Sumerians, followed by the Babylonians, needed efficient mathematical tools in
order to administer their empires.

What distinguished the Babylonians from neighbors such as Egypt was their use
of a positional (place value) number system. In such systems, the value of a
number is indicated both by its symbol and its position. Today, for instance, in the
decimal system, the position of a digit in a number indicates whether its value is
in ones (less than 10), tens, hundreds, or more. Such systems make calculation
more efficient because a small set of symbols can represent a huge range of
values. By contrast, the ancient Egyptians used separate symbols for ones, tens,
hundreds, thousands, and above, and had no place value system. Representing
larger numbers could require 50 or more hieroglyphs.

Using different bases
The Hindu–Arabic numeration that is employed today is a base-10 (decimal)
system. It requires only 10 symbols—nine digits (1, 2, 3, 4, 5, 6, 7, 8, 9) and a
zero as a placeholder. As in the Babylonian system, the position of a digit
indicates its value, and the smallest value digit is always to the right. In a base-10
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system, a two-digit number, such as 22, indicates (2 × 101) + 2; the value of the 2
on the left is ten times that of the 2 on the right. Placing digits after the number 22
will create hundreds, thousands, and larger powers of 10. A symbol after a whole
number (the standard notation now is a decimal point) can also separate it from its
fractional parts, each representing a tenth of the place value of the preceding
figure. The Babylonians worked with a more complex sexagesimal (base-60)
number system that was probably inherited from the earlier Sumerians and is still
used across the world today for measuring time, degrees in a circle (360° = 6 ×
60), and geographic coordinates. Why they used 60 as a number base is still not
known for sure. It may have been chosen because it can be divided by many other
numbers—1, 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30. The Babylonians also based their
calendar year on the solar year (365.24 days); the number of days in a year was
360 (6 × 60) with additional days for festivals.

In the Babylonian sexagesimal system, a single symbol was used alone and
repeated up to nine times to represent symbols for 1 to 9. For 10, a different
symbol was used, placed to the left of the one symbol, and repeated two to five
times in numbers up to 59. At 60 (60 × 1), the original symbol for one was reused
but placed further to the left than the symbol for 1. Because it was a base-60
system, two such symbols signified 61, while three such symbols indicated 3,661,
that is, 60 × 60 (602) + 60 + 1.

The base-60 system had obvious drawbacks. It necessarily requires many more
symbols than a base-10 system. For centuries, the sexagesimal system also had no
place value holders, and nothing to separate whole numbers from fractional parts.
By around 300 BCE, however, the Babylonians used two wedges to indicate no
value, much as we use a placeholder zero today; this was possibly the earliest use
of zero.
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The Babylonian sun-god Shamash awards a rod and a coiled rope, ancient measuring
devices, to newly trained surveyors, on a clay tablet dating from around 1000 BCE.

Other counting systems
In Mesoamerica, on the other side of the world, the Mayan civilization developed
its own advanced numeration system in the 1st millennium BCE—apparently in
complete isolation. Theirs was a base-20 (vigesimal) number system, which
probably evolved from a simple counting method using fingers and toes. In fact,
base-20 number systems were used across the world, in Europe, Africa, and Asia.
Language often contains remnants of this system. For example, in French, 80 is
expressed as quatre-vingt (4 × 20); Welsh and Irish also express some numbers as
multiples of 20, while in English a score is 20. In the Bible, for instance, Psalm 90
talks of a human lifespan being “threescore years and ten” or as great as
“fourscore years.”

From around 500 BCE until the 16th century when Hindu–Arabic numbers were
officially adopted in China, the Chinese used rod numerals to represent numbers.
This was the first decimal place value system. By alternating quantities of vertical
rods with horizontal rods, this system could indicate ones, tens, hundreds,
thousands, and more powers of 10, much as the decimal system does today. For
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Cuneiform, a word
derived from the Latin
cuneus (“wedge”) to
describe the shape of the
symbols, was inscribed
into wet clay, stone, or
metal.

example, 45 was written with four horizontal bars representing 4 × 101 (40) and
five vertical bars for 5 × 1 (5). However, four vertical rods followed by five
vertical rods indicated 405 (4 × 100, or 102) + 5 × 1—the absence of horizontal
rods meant there were no tens in the number. Calculations were carried out by
manipulating the rods on a counting board. Positive and negative numbers were
represented by red and black rods respectively or different cross sections
(triangular and rectangular). Rod numerals are still used occasionally in China,
just as Roman numerals are sometimes used in Western society.

The Chinese place value system is reflected in the Chinese abacus (suanpan).
Dating back to at least 200 BCE, it is one of the oldest bead-counting devices,
although the Romans used something similar. The Chinese version, which is still
used today, has a central bar and a varying number of vertical wires to separate
ones from tens, hundreds, or more. In each column, there are two beads above the
bar worth five each and five beads below the bar worth one each.

The Japanese adopted the Chinese abacus in the 14th century and developed their
own abacus, the soroban, which has one bead worth five above the central bar and
four beads each worth one below the bar in each column. Japan still uses the
soroban today: there are even contests in which young people demonstrate their
ability to perform soroban calculations mentally, a skill known as anzan.

Cuneiform
In the late 1800s, academics deciphered the
“cuneiform” (wedge-shaped) markings on clay
tablets recovered from Babylonian sites in and
around Iraq. Such marks, denoting letters and words
as well as an advanced number system, were etched
in wet clay with either end of a stylus. Like the
Egyptians, the Babylonians needed scribes to
administer their complex society, and many of the
tablets bearing mathematical records are thought to
be from training schools for scribes.

A great deal has now been discovered about
Babylonian mathematics, which extended to
multiplication, division, geometry, fractions, square
roots, cube roots, equations, and other forms,
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because—unlike Egyptian papyrus scrolls—the clay tablets have survived well.
Several thousand, mostly dating from between 1800 and 1600 BCE, are housed
in museums around the world.

The Babylonian base-60 number system was built from two symbols—the single unit
symbol, used alone and combined for numbers 1 to 9, and the 10 symbol, repeated for 20, 30,
40, and 50.

The Babylonian and Assyrian civilizations have perished…yet Babylonian mathematics is still
interesting, and the Babylonian scale of 60 is still used in astronomy.

G. H. Hardy
British mathematician

Modern numeration
The Hindu–Arabic decimal system used throughout the world today has its
origins in India. In the 1st to 4th centuries CE, the use of nine symbols along with
zero was developed to allow any number to be written efficiently, through the use
of place value. The system was adopted and refined by Arab mathematicians in
the 9th century. They introduced the decimal point, so that the system could also
express fractions of whole numbers.
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Three centuries later, Leonardo of Pisa (Fibonacci) popularized the use of
Hindu–Arabic numerals in Europe through his book Liber Abaci (1202). Yet the
debate about whether to use the new system rather than Roman numerals and
traditional counting methods lasted for several hundred years, before its adoption
paved the way for modern mathematical advances.

With the advent of electronic computers, other number bases became important
—particularly binary, a number system with base 2. Unlike the base-10 system
with its 10 symbols, binary has just two: 1 and 0. It is a positional system, but
instead of multiplying by 10, each column is multiplied by 2, also expressed as 21,
22, 23 and upward. In binary, the number 111 means 1 × 22 + 1 × 21 + 1 × 20, that
is 4 + 2 + 1, or 7 in our decimal number system.

In binary, as in all modern number systems whatever their base, the principles of
place value are always the same. Place value—the Babylonian legacy—remains a
powerful, easily understood, and efficient way to represent large numbers.

The fact that we work in 10s as opposed to any other number is purely a consequence of our
anatomy. We use our ten fingers to count.

Marcus du Sautoy
British mathematician
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The Dresden Codex, the
oldest surviving Mayan
book, dating from the 13th
or 14th century, illustrates

Ebisu, the Japanese god of fishermen and one of the seven gods of fortune, uses a soroban to
calculate his profits in The Red Snapper’s Dream by Utagawa Toyohiro.

Mayan numeral system
The Mayans, who lived in Central America from
around 2000 BCE, used a base-20 (vigesimal) number
system from around 1000 BCE to perform
astronomical and calendar calculations. Like the
Babylonians, they used a calendar of 360 days plus
festivals, to make 365.24 days based on the solar
year; their calendars helped them work out the
growing cycles of crops.

The Mayan system employed symbols: a dot
representing one and a bar representing five. By
using combinations of dots over bars they could
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Mayan number symbols
and glyphs.

generate numerals up to 19. Numbers larger than 19
were written vertically, with the lowest numbers at
the bottom, and there is evidence of Mayan

calculations up to hundreds of millions. An inscription from 36 BCE shows that
they used a shell-shaped symbol to denote zero, which was widely used by the
4th century.

The Mayans’ number system was in use in Central America until the Spanish
conquests in the 16th century. Its influence, however, never spread further.

See also: The Rhind papyrus • The abacus • Negative numbers • Zero • The
Fibonacci sequence • Decimals
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IN CONTEXT
KEY CIVILIZATIONS
Egyptians (c. 2000 BCE), Babylonians (c. 1600 BCE)

FIELD
Algebra

BEFORE
c. 2000 BCE The Berlin papyrus records a quadratic equation solved in ancient
Egypt.

AFTER
7th century CE The Indian mathematician Brahmagupta solves quadratic
equations using only positive integers.

10th century CE Egyptian scholar Abu Kamil Shuja ibn Aslam uses negative
and irrational numbers to solve quadratic equations.

1545 Italian mathematician Gerolamo Cardano publishes his Ars Magna, setting
out the rules of algebra.

Quadratic equations are those involving unknown numbers to the power of 2 but
not to a higher power; they contain x2 but not x3, x4, and so on. One of the main
rudiments of mathematics is the ability to use equations to work out solutions to
real-world problems. Where those problems involve areas or paths of curves such
as parabolas, quadratic equations become very useful, and describe physical
phenomena, such as the flight of a ball or a rocket.
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Ancient roots
The history of quadratic equations extends across the world. It is likely that these
equations first arose from the need to subdivide land for inheritance purposes, or
to solve problems involving addition and multiplication.

One of the oldest surviving examples of a quadratic equation comes from the
ancient Egyptian text known as the Berlin papyrus (c. 2000 BCE). The problem
contains the following information: the area of a square of 100 cubits is equal to
that of two smaller squares. The side of one of the smaller squares is equal to one
half plus a quarter of the side of the other. In modern notation, this translates into
two simultaneous equations: x2 + y2 = 100 and x = (1⁄2 + 1⁄4)y = 3⁄4 y. These can be
simplified to the quadratic equation (3⁄4 y)2 + y2 = 100 to find the length of a side
on each square.

The Egyptians used a method called “false position” to determine the solution. In
this method, the mathematician selects a convenient number that is usually easy to
calculate, then works out what the solution to the equation would be using that
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number. The result shows how to adjust the number to give the correct solution
the equation. For example, in the Berlin papyrus problem, the simplest length to
use for the larger of the two small squares is 4, because the problem deals with
quarters. For the side of the smallest square, 3 is used because this length is 3⁄4 of
the side of the other small square. Two squares created using these false position
numbers would have areas of 16 and 9 respectively, which when added together
give a total area of 25. This is only 1⁄4 of 100, so the areas must be quadrupled to
match the Berlin papyrus equation. The lengths therefore must be doubled from
the false positions of 4 and 3 to reach the solutions: 8 and 6.

Other early records of quadratic equations are found in Babylonian clay tablets,
where the diagonal of a square is given to five decimal places. The Babylonian
tablet YBC 7289 (c. 1800–1600 BCE) shows a method of working out the
quadratic equation x2 = 2 by drawing rectangles and trimming them down into
squares. In the 7th century CE, Indian mathematician Brahmagupta wrote a
formula for solving quadratic equations that could be applied to equations in the
form ax2 + bx = c. Mathematicians at the time did not use letters or symbols, so
he wrote his solution in words, but it was similar to the modern formula shown
above.

In the 8th century, Persian mathematician al-Khwarizmi employed a geometric
solution for quadratic equations known as completing the square. Until the 10th
century, geometric methods were were often used, as quadratic equations were
used to solve real-world problems involving land rather than abstract algebraic
challenges.
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The Berlin papyrus was copied and published by German Egyptologist Hans Schack-
Schackenburg in 1900. It contains two mathematical problems, one of which is a quadratic
equation.

Negative solutions
Indian, Persian, and Arab scholars thus far had used only positive numbers. When
solving the equation x2 + 10x = 39, they gave the solution as 3. However, this is
one of two correct solutions to the problem; -13 is the other. If x is -13, x2 = 169
and 10x = -130. Adding a negative number gives the same result as subtracting its
equivalent positive number, so 169 + -130 = 169 - 130 = 39.

In the 10th century, Egyptian scholar Abu Kamil Shuja ibn Aslam made use of
negative numbers and algebraic irrational numbers (such as the square root of 2)
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as both solutions and coefficients (numbers multiplying an unknown quantity).
By the 1500s, most mathematicians accepted negative solutions and were
comfortable with surds (irrational roots – those that cannot be expressed exactly
as a decimal). They had also started using numbers and symbols, rather than
writing equations in words. Mathematicians now utilized the plus or minus
symbol, ±, in solving quadratic equations. With the equation x2 = 2, the solution

is not just x =  but x = ± . The plus or minus symbol is included because

two negative numbers multiplied together make a positive number. While  × 

 = 2, it is also true that -  ×-  = 2.

In 1545, Italian scholar Gerolamo Cardano published his Ars Magna (The Great
Art, or the Rules of Algebra) in which he explored the problem: “What pair of
numbers have a sum of ten and product of 40?” He found that the problem led to
a quadratic equation which, when he completed the square, gave . No
numbers available to mathematicians at the time gave a negative number when
multiplied by themselves, but Cardano suggested suspending belief and working
with the square root of negative 15 to find the equation’s two solutions. Numbers
such as  would later be known as “imaginary” numbers.

The quadratic formula is a way to solve quadratic equations. By modern convention,
quadratic equations include a number, a, multiplied by x2; a number, b, multiplied by x; and a
number, c, on its own. The illustration above shows how the formula uses a, b, and c to find
the value of x. Quadratic equations often equal 0, because this makes them easy to work out
on a graph; the x solutions are the points where the curve crosses the x axis.

Politics is for the present, but an equation is for eternity.

Albert Einstein

35



Structure of equations
Modern quadratic equations usually look like ax2 + bx + c = 0. The letters a, b,
and c represent known numbers, while x represents the unknown number.
Equations contain variables (symbols for numbers that are unknown),
coefficients, constants (those that do not multiply variables), and operators
(symbols such as the plus and equals sign). Terms are the parts separated by
operators; they can be a number or variable, or a combination of both. The
modern quadratic equation has four terms: ax2, bx, c, and 0.

A graph of the quadratic function y = ax2 + bx + c creates a U-shaped curve called a
parabola. This graph plots the points (in black) of the quadratic function where a = 1, b = 3,
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and c = 2. This expresses the quadratic equation x2 + 3x + 2 = 0. The solutions for x are where
y = 0 and the curve crosses the x axis. These are -2 and -1.

Parabolas
A function is a group of terms that defines a relationship between variables (often
x and y). The quadratic function is generally written as y = ax2 + bx + c, which,
on a graph, produces a curve called a parabola. When real (not imaginary)
solutions to ax2 + bx + c = 0 exist, they will be the roots—the points where the
parabola crosses the x axis. Not all parabolas cut the x axis in two places. If the
parabola touches the x axis only once, this means that there are coincident roots
(the solutions are equal to each other). The simplest equation of this form is y =
x2. If the parabola does not touch or cross the x axis, there are no real roots.
Parabolas prove useful in the real world because of their reflective. properties.
Satellite dishes are parabolic for this reason. Signals received by the dish will
reflect off the parabola and be directed to one single point—the receiver.

Parabolic objects have special reflective properties. With a parabolic mirror, any ray of light
parallel to its line of symmetry will reflect off the surface to the same fixed point (A).

Practical applications
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Quadratic equations are
used by military
specialists to model the
trajectory of projectiles
fired by artillery—such as
this MIM-104 Patriot
surface-to-air missile,
commonly used by the US
Army.

Although they were initially used for working out
geometric problems, today quadratic equations are
important in many aspects of mathematics, science,
and technology. Projectile flight, for example, can
be modeled with quadratic equations. An object
thrown up into the air will fall back down again as a
result of gravity. The quadratic function can predict
projectile motion—the height of the object over
time. Quadratic equations are used to model the
relationship between time, speed, and distance, and
in calculations with parabolic objects such as lenses.
They can also be used to forecast profits and loss in
the world of business. Profit is based on total
revenue minus production cost; companies create a
quadratic equation known as the profit function with
these variables to work out the optimal sale prices to

maximize profits.

See also: Irrational numbers • Negative numbers • Diophantine equations • Zero •
Algebra • The binomial theorem • Cubic equations • Imaginary and complex
numbers
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IN CONTEXT
KEY CIVILIZATION
Ancient Egyptians (c. 1650 BCE)

FIELD
Arithmetic

BEFORE
c. 2480 BCE Stone carvings record flood levels on the River Nile, measured in
cubits—about 201⁄2 in (52 cm)—and palms—about 3 in (7.5 cm).

c. 1800 BCE The Moscow papyrus provides solutions to 25 mathematical
problems, including the calculation of the surface area of a hemisphere and the
volume of a pyramid.

AFTER
c. 1300 BCE The Berlin papyrus is produced. It shows that the ancient Egyptians
used quadratic equations.

6th century BCE The Greek scientist Thales travels to Egypt and studies its
mathematical theories.

The Rhind papyrus in the British Museum in London provides an intriguing
account of mathematics in ancient Egypt. Named after Scottish antiquarian
Alexander Henry Rhind, who purchased the papyrus in Egypt in 1858, it was
copied from earlier documents by a scribe, Ahmose, more than 3,500 years ago. It
measures 121⁄2 in (32 cm) by 781⁄2 in (200 cm) and includes 84 problems
concerned with arithmetic, algebra, geometry, and measurement. The problems,
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recorded in this and other ancient Egyptian artifacts such as the earlier Moscow
papyrus, illustrated techniques for working out areas, proportions, and volumes.

The Eye of Horus, an Egyptian god, was a symbol of power and protection. Parts of it were
also used to denote fractions whose denominators were powers of 2. The eyeball, for
example, represents 1⁄4, while the eyebrow is 1⁄8.

Representing concepts
The Egyptian number system was the first decimal system. It used strokes for
single digits and a different symbol for each power of 10. The symbols were then
repeated to create other numbers. A fraction was shown as a number with a dot
above it. The Egyptian concept of a fraction was closest to a unit fraction—that is,
1⁄n, where n is a whole number. When a fraction was doubled, it had to be
rewritten as one unit fraction added to another unit fraction; for example, 2⁄3 in
modern notation would be 1⁄2 + 1⁄6 in Egyptian notation (not 1⁄3 + 1⁄3 because the
Egyptians did not allow repeats of the same fraction).

The 84 problems in the Rhind papyrus illustrate the mathematical methods in
common use in ancient Egypt. Problem 24, for example, asks what quantity, if
added to its seventh part, becomes 19. This translates as x + x⁄7 = 19. The
approach applied to problem 24 is known as “false position.” This technique—
used well into the Middle Ages—is based on trial and improvement, choosing the
simplest, or “false,” value for a variable and adjusting the value using a scaling
factor (the required quantity divided by the result).
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In the workings for problem 24, one-seventh is easiest to find for the number 7,
so 7 is used first as a “false” value for the variable. The result of the calculation—
7 plus 7⁄7 (or 1)—is 8, not 19, so a scaling factor is needed. To find how far the
guess of 7 is from the required quantity, 19 is divided by 8 (the “false” answer).
This produces a result of 2 + 1⁄4 + 1⁄8 (not 23⁄8, as Egyptian multiplication was
based on doubling and halving fractions), which is the scaling factor that should
be applied. So 7 (the original “false” value) is multiplied by 2 + 1⁄4 + 1⁄8 (the
scaling factor) to give the quantity 16 + 1⁄2 + 1⁄8 (or 165⁄8).

Many problems in the papyrus deal with working out shares of commodities or
land. Problem 41 asks for the volume of a cylindrical store with a diameter of 9
cubits and a height of 10 cubits. The method finds the area of a square whose side
length is 8⁄9 of the diameter, then multiplies this by the height. The figure of 8⁄9 is
used as an approximation for the proportion of the area of a square that would be
taken up by a circle if it were drawn within the square. This method is used in
problem 50 to find the area of a circle: subtract 1⁄9 from the diameter of the circle,
and find the area of the square with the resulting side length.

Ancient Egyptians used vertical lines to denote the numbers 1 to 9. Powers of 10,
particularly those inscribed on stone, were depicted as hieroglyphs—picture symbols.

Level of accuracy
Since the Ancient Greeks, the area of a circle has been found by multiplying the
square of its radius (r2) with the number pi (π), written as πr2. The ancient
Egyptians had no concept of pi, but the calculations in the Rhind papyrus show
that they were close to its value. Their circle area calculation—with the circle
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The Rhind papyrus
scribe used the hieratic
system of writing
numerals. This cursive
style was more compact
and practical than drawing
complex hieroglyphs.

diameter as twice the radius (2r)—can be expressed as (8⁄9 × 2r)2, which,
simplified, is 256⁄81 r2, giving an equivalent for pi of 256⁄81. As a decimal, this is
about 0.6 percent greater than the true value of pi.

Instruction books
The Rhind and Moscow papyri are the most
complete mathematical documents to survive from
the height of the ancient Egyptian civilization. They
were painstakingly copied by scribes well versed in
arithmetic, geometry, and mensuration (the study of
measurements) and are likely to have been used for
training of other scribes. Although they captured
probably the most advanced mathematical
knowledge of the time, they were not seen as works
of scholarship. Instead, they were instruction
manuals for use in trade, accounting, construction,
and other activities that involved measurement and
calculation.

Egyptian engineers, for example, used mathematics
in the building of pyramids. The Rhind papyrus includes a calculation for the
slope of a pyramid using the seked— a measure for the horizontal distance
traveled by a slope for each drop of 1 cubit. The steeper the side of a pyramid,
the fewer the sekeds.

See also: Positional numbers • Pythagoras • Calculating pi • Algebra • Decimals
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IN CONTEXT
KEY CIVILIZATION
Ancient Chinese

FIELD
Number theory

BEFORE
9th century BCE The Chinese I Ching (Book of Changes) lays out trigrams and
hexagrams of numbers for use in divination.

AFTER
1782 Leonhard Euler writes about Latin squares in his Recherches sur une
nouvelle espèce de carrés magiques (Investigations on a new type of magic
square).

1979 The first Sudoku-style puzzle is published by Dell Magazines in New
York.

2001 British electronics engineer Lee Sallows invents magic squares called
“geomagic squares,” which contain geometric shapes rather than numbers.

There are thousands of ways in which to arrange the numbers 1 to 9 in a three-by-
three grid. Only eight of these produce a magic square, where the sum of the
numbers in each row, column, and diagonal—the magic total—is the same. The
sum of the numbers 1 to 9 is 45, as is the sum of all three rows or columns. The
magic total, therefore, is 1⁄3 of 45, or 15. In fact, there is really just one
combination of numbers in a magic square. The other seven are rotations of this
combination.
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Ancient origins
Magic squares are probably the earliest example of “recreational mathematics.”
Their exact origin is unknown, but the first known reference, in the Chinese
legend of Lo Shu (Scroll of the river Lo), dates from 650 BCE. In the legend, a
turtle appears to the great King Yu as he faces a devastating flood. The markings
on the turtle’s back form a magic square, with numbers from 1 to 9 represented by
circular dots. Because of this legend, the arrangement of odd and even numbers
(even numbers are always in the corners of the square) were believed to have
magical properties and was used as a good luck talisman through the ages.

As ideas from China spread along trade routes such as the Silk Road, other
cultures became interested in magic squares. Magic squares are discussed in
Indian texts dating from 100 CE, and Brihat-Samhita (c. 550 CE), a book of
divination, includes the first recorded magic square in India, used to measure out
quantities of perfume. Arab scholars, who created a vital link between the
learning of ancient civilizations and the European Renaissance, introduced magic
squares to Europe in the 14th century.
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An order-four magic square appears beneath the bell in Melencolia I by the German artist
Albrecht Dürer and wittily includes the engraving’s date of 1514.

Different-sized squares
The number of rows and columns in a magic square is called its order. For
example, a three-by-three magic square is said to have an order of three. An
order-two magic square does not exist because it would only work if all the
numbers were identical. As the orders increase, so do the quantities of magic
squares. Order four produces 880 magic squares—with a magic total of 34. There
are hundreds of millions of order-five magic squares, while the quantity of order-
six magic squares has not yet been calculated.

Magic squares have been an enduring source of fascination for mathematicians.
The 15th-century Italian mathematician Luca Pacioli, author of De viribus
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quantitatis (On the Power of Numbers), collected magic squares. In 18th-century
Switzerland, Leonhard Euler also became interested in them, and devised a form
that he named Latin squares. The rows and columns in a Latin square contain
figures or symbols that appear only once in each row and column.

One derivation of the Latin square—Sudoku—has become a popular puzzle.
Devised in the US in the 1970s (where it was called Number Place), Sudoku took
off in Japan in the 1980s, acquiring its now-familiar name, which means “single
digits.” A Sudoku puzzle is a nine-by-nine Latin square with the added restriction
that subdivisions of the square must also contain all nine numbers.

The most magically magical of any magic square ever made by a magician.

Benjamin Franklin
Talking about a magic square that he discovered
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Once you have one magic square, you can add the same quantity to every number in the
square and still end up with a magic square. Similarly, if you multiply all the numbers by the
same quantity, you still have a magic square.

See also: Irrational numbers • Eratosthenes’ sieve • Negative numbers • The
Fibonacci sequence • The golden ratio • Mersenne primes • Pascal’s triangle
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IN CONTEXT
KEY FIGURE
Pythagoras (c. 570 BCE–495 BCE)

FIELD
Applied geometry

BEFORE
c. 1800 BCE The columns of cuneiform numbers on the Plimpton 322 clay tablet
from Babylon include some numbers related to Pythagorean triples.

6th century BCE Greek philosopher Thales of Miletus proposes a non-
mythological explanation of the Universe— pioneering the idea that nature can
be interpreted by reason.

AFTER
c. 380 BCE In the tenth book of his Republic, Plato espouses Pythagoras’s theory
of the transmigration of souls.

c. 300 BCE Euclid produces a formula to find sets of primitive Pythagorean
triples.

The 6th-century BCE Greek philosopher Pythagoras is also antiquity’s most
famous mathematician. Whether or not he was responsible for all the many
achievements attributed to him in math, science, astronomy, music, and medicine,
there is no doubt that he founded an exclusive community that lived for the
pursuit of mathematics and philosophy, and regarded numbers as the sacred
building blocks of the Universe.
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Thales of Miletus, one of the Seven Sages of ancient Greece, possibly inspired the younger
Pythagoras with his geometrical and scientific ideas. They may have met in Egypt.

Angles and symmetry
The Pythagoreans were masters of geometry and knew that the sum of the three
angles of a triangle (180°) is equal to the sum of two right angles (90° + 90°), a
fact which two centuries later was described by Euclid as the triangle postulate.
Pythagoras’s followers were also aware of some of the regular polyhedra; these
are the perfectly symmetrical three-dimensional shapes (such as the cube) that
were later known as the Platonic solids.

Pythagoras himself is primarily associated with the formula that describes the
relationship between the sides of a right-angled triangle. Widely known as
Pythagoras’s theorem, it states that a2 + b2 = c2, where c is the longest side of the
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The smallest, or most
primitive, of the
Pythagorean triples is a
triangle with side lengths
3, 4, and 5. As this graphic
shows, 9 plus 16 equals
25.

triangle (the hypotenuse), and a and b represent the other two, shorter sides that
are adjacent to the right angle. For example, a right-angled triangle with two
shorter sides of lengths 3in and 4in will have a hypotenuse of length 5in. The
length of this hypotenuse is found because 32 + 42 = 52 (9 + 16 = 25). Such sets of
whole-number solutions to the equation a2 + b2 = c2 are known as Pythagorean
triples. Multiplying the triple 3, 4, and 5 by 2 produces another Pythagorean
triple: 6, 8, and 10 (36 + 64 = 100). The set 3, 4, 5 is called a “primitive”
Pythagorean triple because its components share no common divisor larger than
1. The set 6, 8, 10 is not primitive as its components share the common divisor 2.

There is good evidence that the Babylonians and the Chinese were well aware of
the mathematical relationship between sides of a right-angled triangle centuries
before Pythagoras’s birth. However, Pythagoras is believed to have been the first
to prove the truth of the formula that states this relationship, and its validity for all
right-angled triangles, which is why the theorem takes his name.

Pythagorean triples
The sets of three integers that solve the equation a2

+ b2 = c2 are known as Pythagorean triples, although
their existence was known long before Pythagoras.
Around 1800 BCE, the Babylonians recorded sets of
Pythagorean numbers on the Plimpton 322 clay
tablet; these show that triples become more spread
out as the number line progresses. The Pythagoreans
developed methods for finding sets of triples, and
also proved that there are an infinite number of such
sets. After many of Pythagoras’s schools were
destroyed in a 6th-century BCE political purge,
Pythagoreans emigrated to other parts of southern
Italy, spreading their knowledge of triples across the
ancient world. Two centuries later, Euclid developed

a formula to generate triples: a = m2 - n2, b = 2mn, c = m2 + n2. With certain
exceptions, m and n can be any two integers, such as 7 and 4, which produce the
triple 33, 56, 65 (332 + 562 = 652). The formula dramatically sped up the
process of finding new Pythagorean triples.
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The graphic above demonstrates why the Pythagorean equation (a²+ b²= c²) works. Within a
large square there are four right-angled triangles of equal size (sides labeled a, b, and c). They
are arranged so that a tilted square is formed in the middle, by the hypotenuses (c sides) of the
four triangles.

Journeys of discovery
Pythagoras was well-traveled, and the ideas he absorbed from other countries
undoubtedly fueled his mathematical inspiration. Hailing from Samos, which was
not far from Miletus in western Anatolia (present-day Turkey), he may have
studied at the school of Thales of Miletus under the philosopher Anaximander. He
embarked on his travels at the age of 20, and spent many years away. He is
thought to have visited Phoenicia, Persia, Babylon, and Egypt, and may also have
reached India. The Egyptians knew that a triangle with sides of 3, 4, and 5 (the
first Pythagorean triple) would produce a right angle, so their surveyors used
ropes of these lengths to construct perfect right angles for their building projects.
Observing this method firsthand may have encouraged Pythagoras to study and
prove the underlying mathematical theorem. In Egypt, Pythagoras may also have
met Thales of Miletus, a keen geometrician, who calculated the heights of
pyramids and applied deductive reasoning to geometry.

Reason is immortal, all else is mortal.

Pythagoras
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A Pythagorean community
After 20 years of traveling, Pythagoras eventually settled in Croton (now
Crotone), southern Italy, a city with a large Greek population. There, he
established the Pythagorean brotherhood— a community to whom he could teach
both his mathematical and philosophical beliefs. Women were welcome in the
brotherhood, and formed a significant part of its 600 members. When they joined,
members were obliged to give all their possessions and wealth to the brotherhood,
and also swore to keep its mathematical discoveries secret. Under Pythagoras’s
leadership, the community gained considerable political influence.

As well as his theorem, Pythagoras and his close-knit community made
numerous other advances in mathematics, but carefully guarded that knowledge.
Among their discoveries were polygonal numbers: these, when represented by
dots, can form the shapes of regular polygons. For example, 4 is a polygonal
number as 4 dots can form a square, and 10 is a polygonal number as 10 dots can
form a triangle with 4 dots at the base, 3 dots on the next row, 2 on the next, and 1
dot at the top of the triangle (4 + 3 + 2 + 1 = 10).

Two millennia after Pythagoras, in 1638, Pierre de Fermat enlarged on this idea
when he asserted that any number could be written as the sum of up to k k-gonal
numbers; in other words, every single number is the sum of up to 3 triangular
numbers, up to 4 square numbers, or up to 5 pentagonal numbers, and so on. For
example, 19 can be written as the sum of three triangular numbers: 1 + 3 + 15 =
19. Fermat could not prove this conjecture; it was only in 1813 that French
mathematician Augustin-Louis Cauchy completed the proof.

Strength of mind rests in sobriety; for this keeps your reason unclouded by passion.

Pythagoras
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Fascinated by numbers
Another type of number that excited Pythagoras was the perfect number. It was so
called because it is the exact sum of all the divisors less than itself. The first
perfect number is 6, as its divisors 1, 2, and 3 add up to 6. The second is 28 (1 + 2
+ 4 + 7 + 14 = 28), the third 496, and the fourth 8,128. There was no practical
value in identifying such numbers, but their quirkiness and the beauty of their
patterns fascinated Pythagoras and his brotherhood.

By contrast, Pythagoras was said to have an overwhelming fear and disbelief of
irrational numbers, numbers that cannot be expressed as fractions of two integers,
the most famous example being π. Such numbers had no place among the well-
ordered integers and fractions by which Pythagoras claimed the Universe was
governed. One story suggests that his fear of irrational numbers drove his
followers to drown a fellow Pythagorean—Hippasus— for revealing their

existence when attempting to find .

Pythagoras’s reputation for ruthlessness is also highlighted in a story about a
member of the brotherhood who was executed for publicly disclosing that the
Pythagoreans had discovered a new regular polyhedron. The new shape was
formed from 12 regular pentagons, and known as the dodecahedron—one of the
five Platonic solids. Pythagoreans revered the pentagon, and their symbol was the
pentagram, a five-pointed star with a pentagon at its center. Breaking the
brotherhood’s rule of secrecy by revealing their knowledge of the dodecahedron
would therefore have been an especially heinous crime, punishable by death.

The finest type of man gives himself up to discovering the meaning and purpose of life itself…
this is the man I call a philosopher.

Pythagoras
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In The School of Athens, painted by Raphael in 1509–11 for the Vatican in Rome,
Pythagoras is shown with a book, surrounded by scholars eager to learn from him.

I have often admired the mystical way of Pythagoras, and the secret magick of numbers.

Sir Thomas Browne
English polymath

An integrated philosophy
In ancient Greece, mathematics and philosophy were considered complementary
subjects and were studied together. Pythagoras is credited with coining the term
“philosopher,” from the Greek philos (“love”) and sophos (“wisdom”). For
Pythagoras and his successors, the duty of a philosopher was the pursuit of
wisdom.
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Pythagoras’s own brand of philosophy integrated spiritual ideas with
mathematics, science, and reasoning. Among his beliefs was the idea of
metempsychosis, which he may have encountered on his travels in Egypt or
elsewhere in the Middle East. This held that souls are immortal and at death
transmigrate to occupy a new body. In Athens two centuries later, Plato was
entranced by the idea and included it in many of his dialogues. Later, Christianity,
too, embraced the idea of a division between body and soul; and Pythagoras’s
ideas would become a core part of Western thought.

Importantly for mathematics, Pythagoras also believed that everything in the
Universe related to numbers and obeyed mathematical rules. Certain numbers
were endowed with characteristics and spiritual significance in what amounted to
a kind of number worship, and Pythagoras and his followers sought mathematical
patterns in everything around them.

Numbers in harmony
Music was of great importance to Pythagoras. He is said to have considered it a
holy science, rather than something simply to be used for entertainment. It was a
unifying element in his concept of Harmonia, the joining together of the cosmos
and the psyche. This may be why he is credited with discovering the link between
mathematical ratios and harmony. It is said that, while walking past a
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blacksmith’s forge, he noticed that different notes were produced when hammers
of unequal weight were struck against equal lengths of metal. If the weights of the
hammers were in exact and particular proportions, their resulting notes were
harmonic.

The hammers in the forge had individual weights of 6, 8, 9, and 12 units. Those
weighing 6 and 12 units sounded the same notes at different pitches; in today’s
music terminology they would be said to be an octave apart. The frequency of the
note produced by the hammer of weight 6 was double that of the hammer
weighing 12, which corresponds with the ratio of their weights. The hammers of
weights 12 and 9 produced a harmonious sound—a perfect fourth—as their
weights were in the ratio 4:3. The notes made by the hammers of weights 12 and
8 were also harmonious—a perfect fifth—as their weights were in the ratio 3:2. In
contrast, the hammers of weights 9 and 8 were dissonant, as 9:8 is not a simple
mathematical ratio. By noticing that harmonious musical notes were connected to
numerical ratios, Pythagoras was the first to uncover the relationship between
mathematics and music.

Pythagoras was reputedly an excellent lyre player. This drawing of ancient Greek musicians
illustrates two members of the lyre family— the trigonon (left) and the cithara.

Creating a musical scale
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Although scholars have questioned the story of the forge, Pythagoras is also
widely credited with another musical discovery. He is said to have experimented
with notes produced by lyre strings of different lengths. He found that while a
vibrating string produces a note with frequency f, halving the length of the string
produces a note an octave higher, with frequency 2f. When Pythagoras used the
same ratios that produced harmoniously sounding hammers, and applied them to
vibrating strings, he similarly produced notes in harmony with one another.
Pythagoras then constructed a musical scale, starting with one note and the note
an octave above it, filling in the notes between using perfect fifths.

This scale was used until the 1500s, when it was replaced by the even-tempered
scale, in which the notes between the two octaves are more evenly spaced.
Although the Pythagorean scale worked well for music lying within one octave, it
was not suited for more modern music, which was written in different keys and
extended across several octaves.

While there have been many different types of musical scales in use by different
cultures, the long tradition of Western music dates back to the Pythagoreans and
their quest to understand the relationship between music and mathematical
proportions.

The numerology of the Divine Comedy by Dante (1265–1331)—pictured here in a fresco
from the Duomo in Florence, Italy—reflects the influence of Pythagoras, whom Dante
mentions several times in his writings.
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The legacy of Pythagoras
Pythagoras’s status as the most famous mathematician from antiquity is justified
by his contributions to geometry, number theory, and music. His ideas were not
always original, but the rigor with which he and his followers developed them,
using axioms and logic to build a system of mathematics, was a fine legacy for
those who succeeded him.

There is geometry in the humming of the strings, there is music in the spacing of the spheres.

Pythagoras

PYTHAGORAS
Pythagoras was born around 570 BCE on the Greek
island of Samos in the eastern Aegean Sea. His ideas
have influenced many of the greatest scholars in
history, from Plato to Nicolaus Copernicus, Johannes
Kepler, and Isaac Newton. Pythagoras is thought to
have traveled widely, assimilating ideas from scholars
in Egypt and elsewhere in the Middle East before
establishing his community of around 600 people in

Croton, southern Italy, around 518 BCE. This ascetic brotherhood required its
members to live for intellectual pursuits, while following strict rules of diet and
clothing. It is from this time onward that his theorem and other discoveries were
probably set down, although no records remain. At the age of 60, Pythagoras is
said to have married a young member of the community, Theano, and perhaps
had two or three children. Political upheaval in Croton led to a revolt against the
Pythagoreans. Pythagoras may have been killed when his school was set on fire,
or shortly afterward. He is said to have died around 495 BCE.

See also: Irrational numbers • The Platonic solids • Syllogistic logic • Calculating
pi • Trigonometry • The golden ratio • Projective geometry
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IN CONTEXT
KEY FIGURE
Hippasus (5th century BCE)

FIELD
Number systems

BEFORE
19th century BCE Cuneiform inscriptions show that the Babylonians
constructed right-angled triangles and understood their properties.

6th century BCE In Greece, the relationship between the side lengths of a right-
angled triangle is discovered, and is later attributed to Pythagoras.

AFTER
400 BCE Theodorus of Cyrene proves the irrationality of the square roots of the
nonsquare numbers between 3 and 17.

4th century BCE The Greek mathematician Eudoxus of Cnidus establishes a
strong mathematical foundation for irrational numbers.

Any number that can be expressed as a ratio of two integers—a fraction, a
decimal that either ends or repeats in a recurring pattern, or a percentage—is said
to be a rational number. All whole numbers are rational as they can be shown as
fractions divided by 1. Irrational numbers, however, cannot be expressed as a
ratio of two numbers

Hippasus, a Greek scholar, is believed to have first identified irrational numbers
in the 5th century BCE, as he worked on geometrical problems. He was familiar
with Pythagoras’s theorem, which states that the square of the hypotenuse in a
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right-angled triangle is equal to the sum of the squares of the other two sides. He
applied the theorem to a right-angled triangle that has both shorter sides equal to
1. As 12 + 12 = 2, the length of the hypotenuse is the square root of 2.

Hippasus realized, however, that the square root of 2 could not be expressed as
the ratio of two whole numbers—that is, it could not be written as a fraction, as
there is no rational number that can be multiplied by itself to produce precisely 2.
This makes the square root of 2 an irrational number, and 2 itself is termed
nonsquare or square-free. The numbers 3, 5, 7, and many others are similarly
nonsquare and in each case, their square root is irrational. By contrast, numbers
such as 4 (22), 9 (32), and 16 (42) are square numbers, with square roots that are
also whole numbers and therefore rational.

The concept of irrational numbers was not readily accepted, although later Greek
and Indian mathematicians explored their properties. In the 9th century, Arab
scholars used them in algebra.

Hippasus may have encountered irrational numbers while exploring the relationship between
the length of the side of a pentagon and one side of a pentagram formed inside it. He found
that it was impossible to express it as a ratio between two whole numbers.

In decimal terms
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The positional decimal system of Hindu–Arabic numeration allowed further study
of irrational numbers, which can be shown as an infinite series of digits after the
decimal point with no recurring pattern. For example, 0.1010010001… with an
extra zero between each successive pair of 1s, continuing indefinitely, is an
irrational number. Pi (π), which is the ratio of the circumference of a circle to its
diameter, is irrational. This was proved in 1761 by Johann Heinrich Lambert—
earlier estimations of π had been 3 or 22⁄7.

Between any two rational numbers, another rational number can always be
found. The average of the two numbers will also be rational, as will the average of
that number and either of the original numbers. Irrational numbers can also be
found between any two rational numbers. One method is to change a digit in a
recurring sequence. For example, an irrational number can be found between the
recurring numbers 0.124124… and 0.125125… by changing 1 to 3 in the second
cycle of 124, to give 0.124324…, and doing so again at the fifth, then ninth cycle,
increasing the gap between the replacement 3s by one cycle each time.

One of the great challenges of modern number theory has been establishing
whether there are more rational or irrational numbers. Set theory strongly
indicates that there are many more irrational numbers than rational numbers, even
though there are infinite numbers of each.
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HIPPASUS
Details of Hippasus’s early life are sketchy, but it is
thought that he was born in Metapontum, in Magna
Graecia (now southern Italy), around 500 BCE.
According to the philosopher Iamblichus, who wrote a
biography of Pythagoras, Hippasus was a founder of a
Pythagorean sect called the Mathematici, which
fervently believed that all numbers were rational.

Hippasus is usually credited with discovering irrational numbers, an idea that
would have been considered heresy by the sect. According to one story,
Hippasus drowned when his fellow Pythagoreans threw him over the side of a
boat in disgust. Another story suggests that a fellow Pythagorean discovered
irrational numbers, but Hippasus was punished for telling the outside world
about them. The year of Hippasus’s death is not known but is likely to have
been in the 5th century BCE.

Key work

5th century BCE Mystic Discourse

See also: Positional numbers • Quadratic equations • Pythagoras • Imaginary and
complex numbers • Euler’s number
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IN CONTEXT
KEY FIGURE
Zeno of Elea (c. 495–430 BCE)

FIELD
Logic

BEFORE
Early 5th century BCE The Greek philosopher Parmenides founds the Eleatic
school of philosophy in Elea, a Greek colony in southern Italy.

AFTER
350 BCE Aristotle produces his treatise Physics, in which he draws on the
concept of relative motion to refute Zeno’s paradoxes.

1914 British philosopher Bertrand Russell, who described Zeno’s paradoxes as
immeasurably subtle, states that motion is a function of position with respect to
time.
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Zeno of Elea belonged to the Eleatic school of philosophy that flourished in
ancient Greece in the 5th century BCE. In contrast to the pluralists, who believed
that the Universe could be divided into its constituent atoms, Eleatics believed in
the indivisibility of all things.

Zeno wrote 40 paradoxes to show the absurdity of the pluralist view. Four of
these—the dichotomy paradox, Achilles and the tortoise, the arrow paradox, and
the stadium paradox—address motion. The dichotomy paradox shows the
absurdity of the pluralist view that motion can be divided. A body moving a
certain distance, it says, would have to reach the halfway point before it arrived at
the end, and in order to reach that halfway mark, it would first have to reach the
quarter-way mark, and so on ad infinitum. Because the body has to pass through
an infinite number of points, it would never reach its goal.

In the paradox of Achilles and the tortoise, Achilles, who is 100 times faster than
the tortoise, gives the creature a head start of 100 meters in a race. At the sound of
the starting signal, Achilles runs 100 meters to reach the tortoise’s starting point,
while the tortoise runs 1 meter, giving it a 1 meter lead. Undeterred, Achilles runs
another meter; however, in the same time, the tortoise runs one-hundredth of a
meter, so it is still in the lead. This continues, and Achilles never catches up.

The stadium paradox concerns three columns of people, each containing an equal
number of people; one group is at rest, while the other two run past each other at
the same speed in opposite directions. According to the paradox, a person in one

64



moving group can pass two people in the other moving group in a fixed time, but
only one person in the stationary group. The paradoxical conclusion is that half a
given time is equivalent to double that time.

Over the centuries, many mathematicians have refuted the paradoxes. The
development of calculus allowed mathematicians to deal with infinitesimal
quantities without resulting in contradiction.

The paradox of Achilles and the tortoise maintains that a fast object, such as Achilles, will
never catch up with a slow one, such as a tortoise. Achilles will get closer to the tortoise, but
never actually overtake it.

ZENO OF ELEA
Zeno of Elea was born around 495 BCE in the Greek city of Elea (now Velia, in
southern Italy). At a young age, he was adopted by the philosopher Parmenides,
and was said to have been “beloved” by him. Zeno was inducted into the school
of Eleatic thought, founded by Parmenides. At the age of around 40, Zeno
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traveled to Athens, where he met Socrates. Zeno
introduced the Socratic philosophers to Eleatic ideas.

Zeno was renowned for his paradoxes, which
contributed to the development of mathematical rigor.
Aristotle later described him as the inventor of the
dialectical method (a method starting from two
opposing viewpoints) of logical argument. Zeno

collected his arguments in a book, but this did not survive. The paradoxes are
known from Aristotle’s treatise Physics, which lists nine of them.

Although little is known of Zeno’s life, the ancient Greek biographer Diogenes
claimed he was beaten to death for trying to overthrow the tyrant Nearchus. In a
clash with Nearchus, Zeno is reported to have bitten off the man’s ear.

See also: Pythagoras • Syllogistic logic • Calculus • Transfinite numbers • The
logic of mathematics • The infinite monkey theorem
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IN CONTEXT
KEY FIGURE
Plato (c. 428–348 BCE)

FIELD
Geometry

BEFORE
6th century BCE Pythagoras identifies the tetrahedron, cube, and dodecahedron.

4th century BCE Theaetetus, an Athenian contemporary of Plato, discusses the
octahedron and icosahedron.

AFTER
c. 300 BCE Euclid’s Elements fully describes the five regular convex polyhedra.

1596 German astronomer Johannes Kepler proposes a model of the Solar
System, explaining it geometrically in terms of Platonic solids.

1735 Leonhard Euler devises a formula that links the faces, vertices, and edges
of polyhedra.
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The perfect symmetry of the five Platonic solids was probably known to scholars
long before the Greek philosopher Plato popularized the forms in his dialogue
Timaeus, written in c. 360 BCE. Each of the five regular convex polyhedra—3-D
shapes with flat faces and straight edges—has its own set of identical polygonal
faces, the same number of faces meeting at each vertex, as well as equilateral
sides, and same-sized angles. Theorizing on the nature of the world, Plato
assigned four of the shapes to the classical elements: the cube (also known as a
regular hexahedron) was associated with earth; the icosahedron with water; the
octahedron with air; and the tetrahedron with fire. The 12-faced dodecahedron
was associated with the heavens and its constellations.

Composed of polygons
Only five regular polyhedra are possible—each one created either from identical
equilateral triangles, squares, or regular pentagons, as Euclid explained in Book
XIII of his Elements. To create a Platonic solid, a minimum of three identical
polygons must meet at a vertex, so the simplest is a tetrahedron— a pyramid
made up of four equilateral triangles. Octahedra and icosahedra are also formed
with equilateral triangles, while cubes are created from squares, and dodecahedra
are constructed with regular pentagons.

Platonic solids also display duality: the vertices of one polyhedron correspond to
the faces of another. For example, a cube, which has six faces and eight vertices,
and an octahedron (eight faces and six vertices) form a dual pair. A dodecahedron
(12 faces and 20 vertices), and an icosahedron (20 faces and 12 vertices) form
another dual pair. Tetrahedra, which have four faces and four vertices, are said to
be self-dual.

Shapes in the Universe?
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Like Plato, later scholars sought Platonic solids in nature and the Universe. In
1596, Johannes Kepler reasoned that the positions of the six planets then known
(Mercury, Venus, Earth, Mars, Jupiter, and Saturn) could be explained in terms of
the Platonic solids. Kepler later acknowledged he was wrong, but his calculations
led him to discover that planets have elliptical orbits.

In 1735, Swiss mathematician Leonhard Euler noted a further property of
Platonic solids, later shown to be true for all polyhedra. The sum of the vertices
(V) minus the number of edges (E) plus the number of faces (F) always equals 2,
that is, V ˗ E + F = 2.

It is also now known that Platonic solids are indeed found in nature—in certain
crystals, viruses, gases, and the clustering of galaxies.

PLATO
Born around 428 BCE to wealthy Athenian parents,
Plato was a student of Socrates, who was also a family
friend. Socrates’ execution in 399 BCE deeply affected
Plato and he left Greece to travel. During this period
his discovery of the work of Pythagoras inspired a
love of mathematics. Returning to Athens, in 387 BCE

he founded the Academy, inscribing over its entrance
the words “Let no one ignorant of geometry enter

here.” Teaching mathematics as a branch of philosophy, Plato emphasized the
importance of geometry, believing that its forms—especially the five regular
convex polyhedra—could explain the properties of the Universe. Plato found
perfection in mathematical objects, believing they were the key to
understanding the differences between the real and the abstract. He died in
Athens around 348 BCE.

Key works

c. 375 BCE The Republic

c. 360 BCE Philebus

c. 360 BCE Timaeus

See also: Pythagoras • Euclid’s Elements • Conic sections • Trigonometry • Non-
Euclidean geometries • Topology • The Penrose tile
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IN CONTEXT
KEY FIGURE
Aristotle (384–322 BCE)

FIELD
Logic

BEFORE
6th century BCE Pythagoras and his followers develop a systematic method of
proof for geometric theorems.

AFTER
c. 300 BCE Euclid’s Elements describes geometry in terms of logical deduction
from axioms.

1677 Gottfried Leibniz suggests a form of symbolic notation for logic,
anticipating the development of mathematical logic.

1854 George Boole publishes The Laws of Thought, his second book on
algebraic logic.

1884 The Foundations of Arithmetic by German mathematician Gottlob Frege
examines the logical principles underpinning mathematics.
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In the Square of Opposition, S is a subject, such as “sugar,” and P a predicate, such as
“sweet.” A and O are contradictory, as are E and I (if one is true, the other is false, and vice
versa). A and E are contrary (both cannot be true but both can be false); I and O are
subcontrary: both can be true but both cannot be false. I is a subaltern of A and O is a
subaltern of E. In syllogistic logic, this means that if A is true, I must be true, but that if I is
false, A must be false as well.

In Classical Greece, there was no clear distinction between mathematics and
philosophy; the two were considered interdependent. For philosophers, one
important principle was the formulation of cogent arguments that followed a
logical progression of ideas. The principle was based on Socrates’ dialectal
method of questioning assumptions to expose inconsistencies and contradictions.
Aristotle, however, did not find this model entirely satisfactory, so he set about
determining a systematic structure for logical argument. First, he identified the
different kinds of proposition that can be used in logical arguments, and how they
can be combined to reach a logical conclusion. In Prior Analytics, he describes
the propositions as being of broadly four types, in the form of “all S are P,” “no S
are P,” “some S are P,” and “some S are not P,” where S is a subject, such as
sugar, and P the predicate—a quality, such as sweet. From just two such
propositions an argument can be constructed and a conclusion deduced. This is, in
essence, the logical form known as the syllogism: two premises leading to a
conclusion. Aristotle identified the structure of syllogisms that are logically valid,
those where the conclusion follows from the premises, and those that are not,
where the conclusion does not follow from the premises, providing a method for
both constructing and analyzing logical arguments.
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Seeking a rigorous proof
Implicit in his discussion of valid syllogistic logic is the process of deduction,
working from a general rule in the major premise, such as “All men are mortal,”
and a particular case in the minor premise, such as “Aristotle is a man,” to reach a
conclusion that necessarily follows—in this case, “Aristotle is mortal.” This form
of deductive reasoning is the foundation of mathematical proofs.

Aristotle notes in Posterior Analytics that, even in a valid syllogistic argument, a
conclusion cannot be true unless it is based on premises accepted as true, such as
self-evident truths or axioms. With this idea, he established the principle of
axiomatic truths as the basis for a logical progression of ideas—the model for
mathematical theorems from Euclid onward.

ARISTOTLE
The son of a physician at the Macedonian court, Aristotle was born in 384 BCE,
in Stagira, Chalkidiki. At the age of about 17, he left to study at Plato’s
Academy in Athens, where he excelled. Soon after Plato’s death, anti-
Macedonian prejudice forced him to leave Athens. He continued his academic
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work in Assos (now in Turkey). In 343 BCE, Philip II
recalled him to Macedonia to head the school at the
court; one of his students was Philip’s son, later
known as Alexander the Great.

In 335 BCE, Aristotle returned to Athens and founded
the Lyceum, a rival institution to the Academy. In 323
BCE, after Alexander’s death, Athens again became

fiercely anti-Macedonian, and Aristotle retired to his family estate in Chalcis, on
Euboea. He died there in 322 BCE.

Key works

c. 350 BCE Prior Analytics

c. 350 BCE Posterior Analytics

c. 350 BCE On Interpretation

335–323 BCE Nichomachean Ethics

335–323 BCE Politics

See also: Pythagoras • Zeno’s paradoxes of motion • Euclid’s Elements • Boolean
algebra • The logic of mathematics
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IN CONTEXT
KEY FIGURE
Euclid (c. 300 BCE)

FIELD
Geometry

BEFORE
c. 600 BCE The Greek philosopher, mathematician, and astronomer Thales of
Miletus deduces that the angle inscribed inside a semicircle is a right angle. This
becomes Proposition 31 of Euclid’s Elements.

c. 440 BCE The Greek mathematician Hippocrates of Chios writes the first
systematically organized geometry textbook, Elements.

AFTER
c. 1820 Mathematicians such as Carl Friedrich Gauss, János Bolyai, and Nicolai
Ivanovich Lobachevsky begin to move toward hyperbolic non-Euclidean
geometry.

Euclid’s Elements has a strong claim for being the most influential mathematical
work of all time. It dominated human conceptions of space and number for more
than 2,000 years and was the standard geometrical textbook until the start of the
1900s.

Euclid lived in Alexandria, Egypt, in around 300 BCE, when the city was part of
the culturally rich Greek-speaking Hellenistic world that flourished around the
Mediterranean Sea. He would have written on papyrus, which is not very durable;
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all that remains of his work are the copies, translations, and commentaries made
by later scholars.

There is no royal road to geometry.

Euclid

Collection of works
The Elements is a collection of 13 books that range widely in subject matter.
Books I to IV tackle plane geometry—the study of flat surfaces. Book V
addresses the idea of ratio and proportion, inspired by the thinking of the Greek
mathematician and astronomer Eudoxus of Cnidus. Book VI contains more
advanced plane geometry. Books VII to IX are devoted to number theory and
discuss the properties and relationships of numbers. The long and difficult Book
X deals with incommensurables. Now known as irrational numbers, these
numbers cannot be expressed as a ratio of integers. Books XI to XIII examine
three-dimensional solid geometry.

Book XIII of the Elements is actually attributed to another author—Athenian
mathematician and disciple of Plato, Theaetetus, who died in 369 BCE. It covers
the five regular convex solids—the tetrahedron, cube, octahedron, dodecahedron,
and icosahedron, which are often called the Platonic solids—and is the first
recorded example of a classification theorem (one that itemizes all possible
figures given certain limitations).

Euclid is known to have written an account of conic sections, but this work has
not survived. Conic sections are figures formed from the intersection of a plane
and a cone and they may be circular, elliptical, or parabolic in shape.

EUCLID
Details of Euclid’s date and place of birth are
unknown and knowledge of his life is scant. It is
thought that he studied at the Academy in Athens,
which had been founded by Plato. In the 5th century
CE, the Greek philosopher Proclus wrote in his history
of mathematicians that Euclid taught at Alexandria
during the reign of Ptolemy I Soter (323–285 BCE).
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Euclid’s work covers two areas: elementary geometry and general
mathematics. In addition to the Elements, he wrote about perspective, conic
sections, spherical geometry, mathematical astronomy, number theory, and the
importance of mathematical rigor. Several of the works attributed to Euclid
have been lost, but at least five have survived to the 21st century. It is thought
that Euclid died between the mid-4th century and the mid-3rd century BCE.

Key works

Elements

Conics

Catoptrics

Phaenomena

Optics

World of proof
The title of Euclid’s work has a particular meaning that reflects his mathematical
approach. In the 1900s, British mathematician John Fauvel maintained that the
meaning of the Greek word for “element,” stoicheia, changed over time, from “a
constituent of a line,” such as an olive tree in a line of trees, to “a proposition
used to prove another,” and eventually evolved to mean “a starting point for many
other theorems.” This is the sense in which Euclid used it. In the 5th century CE,
the philosopher Proclus talked of an element as “a letter of an alphabet,” with
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combinations of letters creating words in the same way that combinations of
axioms—statements that are self-evidently true—create propositions.

This opening page of Euclid’s Elements shows illuminated Latin text with diagrams and
comes from the first printed edition, produced in Venice in 1482.

Logical deductions
Euclid was not writing in a vacuum; he built upon foundations laid by a number
of influential Greek mathematicians who came before him. Thales of Miletus,
Hippocrates, and Plato (among others) had all begun to move toward the
mathematical mindset that Euclid so brilliantly formalized: the world of proof. It
is this that makes Euclid unique; his writings are the earliest surviving example of
fully axiomatized mathematics. He identified certain basic facts and progressed
from there to statements that were sound logical deductions (propositions). Euclid
also managed to assemble all the mathematical knowledge of his day, and
organize it into a mathematical structure where the logical relationships between
the various propositions were carefully explained.
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Euclid faced a Herculean task when he attempted to systematize the mathematics
that lay before him. In devising his axiomatic system, he began with 23
definitions for terms such as point, line, surface, circle, and diameter. He then put
forward five postulates: any two points can be joined with a straight line segment;
any straight line segment can be extended to infinity; given any straight line
segment, a circle can be drawn having the segment as its radius and one endpoint
as its center; all right angles are equal to one another; and a postulate about
parallel lines (see Euclid’s five postulates).

He then went on to add five axioms, or common notions; if A = B and B = C,
then A = C; if A = B and C = D, A + C = B + D; if A = B and C = D, then A - C =
B - D; if A coincides with B, then A and B are equal; and the whole of A is
greater than part of A.

To prove Proposition 1, Euclid drew a line with endpoints labeled A and B.
Taking each endpoint as a center, he then drew two intersecting circles, so that
each had the radius AB. This used his third postulate. Where the circles met, he
called that point C, and he could draw two more lines AC and BC, calling on his
first postulate. The radius of the two circles is the same, so AC = AB and BC =
AB; this means that AC = BC, which is Euclid’s first axiom (things that are equal
to the same thing are also equal to one another). It follows that AB = BC = CA,
meaning that he had drawn an equilateral triangle on AB.

In Latin translations of Elements, deductions end with the letters QEF (quod erat
faciendum, meaning “which was to be [and has been] done.” Logical proofs end
with QED (quod erat demonstrandum, meaning “which was to be [and has been]
demonstrated”).

The equilateral triangle construction is a good example of Euclid’s method. Each
step has to be justified by reference to the definitions, the postulates, and the
axioms. Nothing else can be taken as obvious, and intuition is regarded as
potentially suspect.

Euclid’s very first proposition was criticized by later writers. They noted, for
instance, that Euclid did not justify or explain the existence of C, the point of
intersection of the two circles. Although apparent, it is not mentioned in his
preliminary assumptions. Postulate 5 talks about a point of intersection, but that is
between two lines, and not two circles. Similarly, one of the definitions describes
a triangle as a plane figure bounded by three lines, which all lie in that plane.
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However, it seems that Euclid did not explicitly show that the lines AB, BC, and
CA lie in the same plane.

Postulate 5 is also known as the “parallel postulate” because it can be used to
prove properties of parallel lines. It says that if a straight line crossing two straight
lines (A, B) creates interior angles on one side that total less than two right angles
(180°), lines A and B will eventually cross on that side, if extended indefinitely.
Euclid did not use it until Proposition 29, in which he stated that one condition for
a straight line crossing two parallel lines was that the interior angles on the same
side were equal to two right angles. The fifth postulate is more elaborate than the
other four, and Euclid himself seems to have been wary of it.

A vital part of any axiomatic system is to have enough axioms, and postulates in
the case of Euclid, to derive every true proposition, but to avoid superfluous
axioms that can be derived from others. Some asked whether the parallel postulate
could be proved as a proposition using Euclid’s common notions, definitions, and
the other four postulates; if it could, the fifth was unnecessary. Euclid’s
contemporaries and later scholars made unsuccessful attempts to construct such a
proof. Finally, in the 1800s, the fifth postulate was ruled both necessary for
Euclid’s geometry and independent of his other four postulates.
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To construct an equilateral triangle, for Proposition 1, Euclid drew a line and centered a
circle on its endpoints, here A and B. By drawing a line from each endpoint to C, where the
circles intersect, he created a triangle with sides AB, AC, and BC of equal length.

Geometry is knowledge of what always exists.

Plato

Beyond Euclidean geometry
The Elements also examines spherical geometry, an area explored by two of
Euclid’s successors, Theodosius of Bithynia and Menelaus of Alexandria. While
Euclid’s definition of “a point” addresses a point on the plane, a point can also be
understood as a point on a sphere.

This raises the question of how Euclid’s five postulates can be applied to the
sphere. In spherical geometry, almost all the axioms look different from the
postulates set out in Euclid’s Elements. The Elements gave rise to what is called
Euclidean geometry; spherical geometry is the first example of a non-Euclidean
geometry. The parallel postulate is not true for spherical geometry, where all pairs
of lines have points in common, nor for hyperbolic geometry, where they can
meet infinite numbers of times.

The first 16 propositions in Book 1

Proposition 1 On a given finite straight line, to construct an equilateral triangle.

Proposition 2 To place at a given point (as an extremity) a straight line equal to a
given straight line.

Proposition 3 Given two unequal straight lines, to cut off from the greater a straight
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line equal to the less.

Proposition 4 If two sides of one triangle are equal in length to two sides of another
triangle, and if the angles contained by each pair of equal sides are
equal, then the base of one triangle will equal the base of the other,
the two triangles will be of equal area, and the remaining angles in
one triangle will be equal to those in the other triangle.

Proposition 5 In an isosceles triangle, the angles at the base are equal to one another,
and, if the equal straight lines are extended below the base, the angles
under the base will also be equal to one another.

Proposition 6 If in a triangle two angles are equal to one another, the sides separated
from the third side by these angles will also be equal.

Proposition 7 Given two straight lines constructed on a straight line (from its
extremities) and meeting in a point, there cannot be constructed on the
same straight line (from its extremities), and on the same side of it,
two other straight lines meeting in another point and equal to the
former two respectively, namely each to that which starts at the same
extremity.

Proposition 8 If two sides of one triangle are equal in length to two sides of another
triangle, and the base of one triangle is equal to the base of the other,
the angles of the two triangles will also be equal.

Proposition 9 To bisect a given rectilineal angle.

Proposition 10 To bisect a given finite straight line.

Proposition 11 To draw a straight line at right angles to a given straight line from a
given point on it.

Proposition 12 To a given infinite straight line, from a given point which is not on it,
to draw a perpendicular straight line.

Proposition 13 If a straight line set up on a straight line makes angles, it will make
either two right angles or angles equal to two right angles.

Proposition 14 If with any straight line, and at a point on it, two straight lines not
lying on the same side and meeting at the point make adjacent angles
equal to two right angles, the two straight lines will be in a straight
line with one another.

Proposition 15 If two straight lines cut one another, they make the vertical angles
equal to one another.

Proposition 16 In any triangle, if one of the sides is extended, the angle between the
triangle and the extended side is greater than any of the angles inside
the triangle.

See also: Pythagoras • The Platonic solids • Syllogistic logic • Conic sections •
The problem of maxima • Non-Euclidean geometries
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IN CONTEXT
KEY CIVILIZATION
Ancient Greeks (c. 300 BCE)

FIELD
Number systems

BEFORE
c. 18,000 BCE In Central Africa, numbers are recorded on bone as carved marks.

c. 3000 BCE South American Indians record numbers by tying knots in string.

c. 2000 BCE The Babylonians develop positional numbers.

AFTER
1202 Leonardo of Pisa (Fibonacci) commends the Hindu–Arabic number
system in Liber Abaci.

1621 In England, William Oughtred invents the slide rule, which simplifies the
use of logarithms.

1972 Hewlett Packard invents an electronic scientific calculator for personal
use.

The abacus is a counting device and calculator that has been in use since ancient
times. It comes in many forms, but all of them work on the same principles:
values of different sizes are represented by “counters” arranged in columns or
rows.

Early abaci
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The word “abacus” may hint at its origins. It is a Latin word derived from the
ancient Greek, abax, which means “slab” or “board”— a surface that would have
been covered in sand and used as a drawing board. The oldest surviving abacus is
the Salamis Tablet, a marble slab made c. 300 BCE that is etched with horizontal
lines. Pebbles were placed on these lines to count out values. The bottom line
represented 0 to 4; the line above counted 5s, and the lines above that 10s, 50s,
and so on. The tablet was discovered on the Greek island of Salamis in 1846.

Some scholars believe that the Salamis Tablet was actually Babylonian. The
Greek abax may have come from the Phoenician or Hebrew word for “dust”
(abaq) and may refer to far older counting tables developed in Mesopotamian
civilizations, where counters were set out on grids drawn in sand. The Babylonian
positional number system, developed c. 2000 BCE, may have been inspired by the
abacus.

The Romans upgraded the Greek counting table into a device that greatly
simplified calculations. The horizontal rows of the Greek abacus became vertical
columns in the Roman abacus, in which were set small pebbles—or calculi in
Latin, from which we get the word “calculation.”

A type of abacus was also in use in the pre-Columbian civilizations of Central
America. Based on a five-digit vigesimal, or base-20, counting system, it used
corn kernels threaded on strings to represent numbers. No device has survived,
but scholars think that the ancient Olmec people invented it 3,000 years ago. By
about 1000 CE, the Aztec people knew it as the nepohualtzintzin—the “personal
accounts counter”—and wore it on the wrist as a bracelet.
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The suanpan shown here is set to the number 917,470,346. The suanpan is traditionally a 2:5
abacus—each column has two “heaven” beads, each with a value of 5, and 5 “earth” beads,
each with a value of 1, giving a potential value of 15 units. This allows for calculations
involving the Chinese base-16 system, which uses 15 units rather than the 9 used in the
decimal system. Numbers can be added together by entering the units of one number, starting
from the right, then adjusting the beads as further numbers are entered. For subtraction, the
units of the first number are entered, then bead values are adjusted downward in each column
as further subtracted numbers are entered.

Double base
Around the 2nd century CE, abaci had become a common tool in China. The
Chinese abacus, or suanpan, matched the design of the Roman version, but rather
than use pebbles set in a metal frame, it employed wooden counters on rods—the
template for modern abaci. Whether the Roman or Chinese abaci came first is
unclear, but their similarities may be a coincidence, inspired by the way people
count using the five fingers of one hand. Both abaci have two decks—the lower
deck counting to five, and the upper deck counting the fives.

By the second millennium CE, the suanpan and its counting methods were
becoming widespread across Asia. In the 1300s, it was exported to Japan, where it
was called the soroban. This was slowly refined and by the 1900s, the soroban
was a 1:4 abacus (with 1 upper bead on each rod, and 4 lower beads).
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A female personification of Arithmetic judges a contest between the Roman mathematician
Boëthius, who uses numbers, and the Greek Pythagoras, who uses a counting board.

The Soroban Championship
Japanese schoolchildren still use the soroban (Japanese abacus) in mathematics
lessons as a way of developing mental arithmetic skills. The soroban is also
used for far more complex calculations. Expert soroban users can usually do
such calculations more quickly than someone punching the values into an
electronic calculator.

Every year, the best abacists from across Japan take part in the Soroban
Championship. They are tested on their speed and accuracy in a knockout
system similar to a spelling bee. One of the highlights of the event is Flash
Anzan™, a feat of mental arithmetic in which the players imagine operating an
abacus to add 15 three-digit numbers—no physical abacus is allowed. The
contestants watch the numbers appear on a big screen, flashing by faster with
each round. The 2017 world record for Flash Anzan was 15 numbers added
together in 1.68 seconds.
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See also: Positional numbers • Pythagoras • Zero • Decimals • Calculus
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IN CONTEXT
KEY FIGURE
Archimedes (c. 287–c. 212 BCE)

FIELD
Number theory

BEFORE
c. 1650 BCE The Rhind papyrus, written by Middle Kingdom Egyptian scribes
as a mathematics guide, includes estimates of the value of π.

AFTER
5th century CE In China, Zu Chongzhi calculates π to seven decimal places.

1671 Scottish mathematician James Gregory develops the arctangent method for
computing π. Gottfried Leibniz makes the same discovery in Germany three
years later.

2019 In Japan, Emma Haruka Iwao uses a cloud computing service to calculate
π to more than 31 trillion decimal places.
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The fact that pi (π)—the ratio of the circumference of a circle to its diameter,
roughly given as 3.141—cannot be expressed exactly as a decimal no matter how
many decimal places are calculated has fascinated mathematicians for centuries.
Welsh mathematician William Jones was the first to use the Greek letter π to
represent the number in 1706, but its importance for calculating the circumference
and area of a circle and the volume of a sphere has been understood for millennia.

Pi is not merely the ubiquitous factor in high school geometry problems; it is stitched across the
whole tapestry of mathematics.

Robert Kanigel
American science writer

Ancient texts
Determining pi’s exact value is not straightforward and the quest continues to find
pi’s decimal representation to as many places as possible. Two of the earliest
estimates for π are given in the ancient Egyptian documents known as the Rhind
and Moscow papyri. The Rhind papyrus, thought to have been intended for
trainee scribes, describes how to calculate the volumes of cylinders and pyramids
and also the area of a circle. The method used to find the area of a circle was to
find the area of a square with sides that are 8⁄9 of the circle’s diameter. Using this
method implies that π is approximately 3.1605 calculated to four decimal places,
which is just 0.6 per cent greater than the most accurate known value of π.

In ancient Babylon, the area of a circle was found by multiplying the square of
the circumference by 1⁄12, implying that the value of π was 3. This value appears
in the Bible (1 Kings 7:23): “And he made the Sea of cast bronze, ten cubits from
one brim to the other; it was completely round. Its height was five cubits, and a
line of thirty cubits measured its circumference.”

In c. 250 BCE, the Greek scholar Archimedes developed an algorithm for
determining the value of π based on constructing regular polygons that exactly fit
within (inscribed), or enclosed (circumscribed), a circle. He calculated upper and
lower limits for π by using Pythagoras’s theorem—that the area of the square of
the hypoteneuse (the side opposite the right angle) in a right-angled triangle is
equal to the sum of the areas of the squares of the other two sides—to establish
the relationship between the lengths of the sides of regular polygons when the
number of sides was doubled. This enabled him to extend his algorithm to 96-
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sided polygons. Determining the area of a circle using a polygon with many sides
had been proposed at least 200 years before Archimedes, but he was the first
person to consider polygons that were both inscribed and circumscribed.

ARCHIMEDES
Born in c. 287 BCE in Syracuse, Sicily, the Greek
polymath Archimedes excelled as a mathematician
and engineer, and is also remembered for his “eureka”
moment, when he realized that the volume of water
displaced by an object is equal to the volume of that
object. Among his claimed inventions is the
Archimedes’ screw, a revolving screw-shaped blade in

a cylinder, which pushes water up a gradient.

In mathematics, he used practical approaches to establish the ratio of the
volumes of a cylinder, sphere, and cone with the same maximum radius and
height to be 3:2:1. Many consider Archimedes to be a pioneer of calculus,
which was not developed until the 1600s. He was killed by a Roman soldier
during the Siege of Syracuse in 212 BCE, despite orders that his life be spared.

Key works

c. 250 BCE On the Measurement of a Circle

c. 225 BCE On the Sphere and the Cylinder

c. 225 BCE On Spirals

Squaring the circle
Another method for estimating π, “squaring the circle,” was a popular challenge
for mathematicians in ancient Greece. It involved constructing a square with the
same area as a given circle. Using only a pair of compasses and a straight edge,
the Greeks would superimpose a square on a circle and then use their knowledge
of the area of a square to approximate to the area of a circle. The Greeks were not
successful with this method, and in the 1800s, squaring the circle was proved to
be impossible, due to π’s irrational nature. This is why attempts to achieve an
impossible task are sometimes known as “squaring the circle.”
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Another way mathematicians have attempted to square the circle is to slice it into
sections and rearrange them into a rectangular shape. The area of the rectangle is r
× 1⁄2(2πr) = r × πr × πr² (where r is the radius of the circle and 2πr is its
diameter). The area of a circle is also πr². The smaller the segments used, the
closer the shape is to a rectangle.

Although polygons had long been used to estimate the circumference of circles, Archimedes
was the first to use inscribed (inside the circle) and circumscribed (outside the circle) regular
polygons to find upper and lower limits for π.

The works of Archimedes are, without exception, works of mathematical exposition.

Thomas L. Heath
Historian and mathematician

The quest spreads
More than 300 years after the death of Archimedes, Ptolemy (c. 100–170 cE)
determined π to be 3:8:30 (base-60), that is, 3 + 8⁄60 + 30⁄3,600 = 3.1416, which is
just 0.007 percent greater than the closest known value of π. In China, 3 was often
used as the value of π, until  became common from the 2nd century CE. The
latter is 2.1 percent greater than π. In the 3rd century, Wang Fau stated that a
circle with a circumference of 142 had a diameter of 45—that is 142⁄45 = 3.15, just
1.4 percent more than π—while Liu Hui used a 3,072-sided polygon to estimate π
as 3.1416. In the 5th century, Zu Chongzhi and his son used a 24,576-sided
polygon to calculate π as 355⁄113 = 3.14159292, a level of accuracy (to seven
decimal places) not achieved in Europe until the 1500s.

In India, the mathematician–astronomer Aryabhata included a method for
obtaining π in his Aryabhatiyam astronomical treatise of 499 CE: “Add 4 to 100,
multiply by 8, and then add 62,000. By this rule the calculation of the
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circumference of a circle with a diameter of 20,000 can be approached.” This
works out as [8(100 + 4) + 62,000] ÷ 20,000 = 62,832 ÷ 20,000 = 3.1416.

Brahmagupta (c. 598–668 CE) derived square root approximations of π using

regular polygons with 12, 24, 48, and 96 sides: , , , and 
 respectively. Having established that π2 = 9.8696 to four decimal places,

he simplified these calculations to π = . During the 9th century, Arab
mathematician al-Khwarizmi used 31⁄7, , and 62,832⁄20,000 as values for π,
attributing the first value to Greece and the other two to India. English cleric
Adelard of Bath translated al-Khwarizmi’s work in the 12th century, renewing an
interest in the search for π in Europe. In 1220, Leonardo of Pisa (Fibonacci), who
popularized Hindu-Arabic numerals in his book Liber Abaci (The Book of
Calculation), 1202, computed π to be 864⁄275 = 3.141, a small improvement on
Archimedes’s approximation, but not as accurate as the calculations of Ptolemy,
Zu Chongzhi, or Aryabhata. Two centuries later, Italian polymath Leonardo da
Vinci (1452–1519) proposed making a rectangle whose length was the same as a
circle’s circumference and whose height was half its radius to determine the area
of the circle.

Archimedes’ method used in ancient Greece for calculating π was still being
used in the late 16th century. In 1579, French mathematician François Viète used
393 regular polygons each with 216 sides to calculate π to 10 decimal places. In
1593, Flemish mathematician Adriaan van Roomen (Romanus) used a polygon
with 230 sides to compute π to 17 decimal places; three years later, German–
Dutch professor of mathematics Ludolph van Ceulen calculated π to 35 decimal
places.

The development of arctangent series by Scottish astronomer–mathematician
James Gregory in 1671, and independently by Gottfried Leibniz in 1674,
provided a new approach for finding π. An arctangent (arctan) series is a way of
determining the angles in a triangle from knowledge of the length of its sides, and
involves radian measure, where a full turn is 2π radians (equivalent to 360°).

Unfortunately, hundreds of terms are needed to compute π to even a few decimal
places using this series. Many mathematicians attempted to find more efficient
methods to calculate π using arctan, including Leonhard Euler in the 1700s. Then,
in 1841, British mathematician William Rutherford computed 208 digits of π
using arctan series.
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The advent of calculators and electronic computers in the 1900s made finding the
digits of π much easier. In 1949, 2,037 digits of π were calculated in 70 hours.
Four years later, it took around 13 minutes to compute 3,089 digits. In 1961,
American mathematicians Daniel Shanks and John Wrench used arctan series to
compute 100,625 digits in under eight hours. In 1973, French mathematicians
Jean Guillaud and Martin Bouyer achieved 1 million decimal places, and in 1989,
a billion decimal places were computed by Ukrainian–American brothers David
and Gregory Chudnovsky.

In 2016, Peter Trueb, a Swiss particle physicist, used the y-cruncher software to
calculate π to 22.4 trillion digits. A new world record was set when computer
scientist Emma Haruka Iwao calculated π to more than 31 trillion decimal places
in March 2019.

By arranging the segments of a circle in a near-rectangular shape, it can be shown that the
area of a circle is πr2. The height of the “rectangle” is approximately equal to the radius r of
the circle, and the width is half of the circumference (half of 2πr, which is πr).

There is no end with pi. I would love to try with more digits.

Emma Haruka Iwao
Japanese computer scientist
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Astrophysicists use π in
their calculations to
determine the orbital paths
and characteristics of
planetary bodies such as
Saturn.

The perimeter to height ratio of the Great Pyramid of Giza, in Egypt, is almost exactly π,
which might suggest that ancient Egyptian architects were aware of the number.

Applying pi
Space scientists constantly use π in their
calculations. For example, the length of orbits at
different altitudes above a planet’s surface can be
worked out by using the basic principle that if the
diameter of a circle is known, its circumference can
be calculated by multiplying by π. In 2015, NASA
scientists applied this method to compute the time it
took the spacecraft Dawn to orbit Ceres, a dwarf
planet in the asteroid belt between Mars and Jupiter.

When scientists at NASA's Jet Propulsion
Laboratory in California wanted to know how much

hydrogen might be available beneath the surface of Europa, one of Jupiter's
moons, they estimated the hydrogen produced in a given unit area by first
calculating Europa’s surface area, which is 4πr2, as it is for any sphere. Since
they knew Europa’s radius, calculating its surface area was easy.

It is also possible to work out the distance traveled during one rotation of Earth
by a person standing at a point on its surface using π, providing the latitude of
the person’s position is known.
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See also: The Rhind papyrus • Irrational numbers • Euclid’s Elements •
Eratosthenes’ sieve • Zu Chongzhi • Calculus • Euler’s number • Buffon’s needle
experiment
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IN CONTEXT
KEY FIGURE
Eratosthenes (c. 276–c. 194 BCE)

FIELD
Number theory

BEFORE
c. 1500 BCE The Babylonians distinguish between prime and composite
numbers.

c. 300 BCE In Elements (Book IX proposition 20), Euclid proves that there are
infinitely many prime numbers.

AFTER
Early 1800s Carl Friedrich Gauss and French mathematician Adrien-Marie
Legendre independently produce a conjecture about the density of primes.

1859 Bernhard Riemann states a hypothesis about the distribution of prime
numbers. The hypothesis has been used to prove many other theories about
prime numbers, but it has not yet been proved.
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In addition to calculating Earth’s circumference and the distances from Earth to
the Moon and Sun, the Greek polymath Eratosthenes devised a method for
finding prime numbers. Such numbers, divisible only by 1 and themselves, had
intrigued mathematicians for centuries. By inventing his “sieve” to eliminate
nonprimes—using a number grid and crossing off multiples of 2, 3, 5, and above
—Eratosthenes made prime numbers considerably more accessible.

Prime numbers have exactly two factors: 1 and the number itself. The Greeks
understood the importance of primes as the building blocks of all positive
integers. In his Elements, Euclid stated many properties of both composite
numbers (integers above one that can be made by multiplying other integers) and
primes. These included the fact that every integer can be written as a product of
prime numbers or is itself a prime. A few decades later, Eratosthenes developed
his method, which can be extended to uncover all primes. Using a number grid for
1 to 100 (see right), it is clear that 1 is not a prime number as its only factor is 1.
The first prime number—and also the only even prime—is 2. As all other even
numbers are divisible by 2, they cannot be primes, so all other primes must be
odd. The next prime, 3, has only two factors, so all the other multiples of 3 cannot
be primes. The number 4 (2 × 2) has already had its multiples removed, since they
are all even. The next prime is 5, so all other multiples of 5 cannot be prime. The
number 6 and all its multiples have been removed from the list of potential
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primes, as they are even multiples of 3. The next prime is 7, and removing its
multiples eliminates 49, 77, and 91. All the multiples of 9 have gone, as they are
multiples of 3, and all the multiples of 10 have been removed, because they are
the even multiples of 5. The multiples of 11 up to 100 have already been
removed, and so on for all successive numbers. There are only 25 prime numbers
up to 100—starting with 2, 3, 5, 7, and 11, and ending with 97—all identified by
simply removing every multiple of 2, 3, 5, and 7.

Eratosthenes’ method starts with a table of consecutive numbers. First, 1 is crossed out.
Then all multiples of 2 are crossed out except 2 itself. The same is then done for multiples of
3, 5, and 7. Multiples of any number higher than 7 are already crossed out, since 8, 9, and 10
are composites of 2, 3, and 5.

The search continues
Prime numbers attracted the attention of mathematicians from the 1600s onward,
when figures such as Pierre de Fermat, Marin Mersenne, Leonhard Euler, and
Carl Friedrich Gauss probed further into their properties.

Even in the age of computers, determining whether a large number is prime
remains highly challenging. Public key cryptography—the use of two large
primes to encrypt a message—is the basis of all internet security. If hackers ever
do figure out a simple way of determining the prime factorization of very large
numbers, a new system will need to be devised.

ERATOSTHENES
Born around 276 BCE in Cyrene, a Greek city in Libya, Eratosthenes studied in
Athens and became a mathematician, astronomer, geographer, music theorist,
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literary critic, and poet. He was the chief librarian at
the Library of Alexandria, the greatest academic
institution of the ancient world. He is known as the
father of geography for founding and naming the
subject as an academic discipline and developing
much of the geographical language used today.

Eratosthenes also recognized that Earth is a sphere
and calculated its circumference by comparing the angles of elevation of the
Sun at noon at Aswan in southern Egypt and at Alexandria in the north of the
country. In addition, he produced the first world map that featured meridian
lines, the Equator, and even polar zones. He died around 194 BCE.

Key works

Mensuram orae ad terram (On the Measurement of the Earth)

Geographika (Geography)

See also: Mersenne primes • The Riemann hypothesis • The prime number
theorem • Finite simple groups
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IN CONTEXT
KEY FIGURE
Apollonius of Perga (c. 262–190 BCE)

FIELD
Geometry

BEFORE
c. 300 BCE Euclid’s 13-volume Elements sets out the propositions that form the
basis of plane geometry.

c. 250 BCE In On Conoids and Spheroids, Archimedes deals with the solids
created by the revolution of conic sections about their axes.

AFTER
c. 1079 CE Persian polymath Omar Khayyam uses intersecting conics to solve
algebraic equations.

1639 In France, 16-year-old Blaise Pascal asserts that where a hexagon is
inscribed in a circle, the opposite sides of the hexagon meet at three points on a
straight line.

Of the many pioneering mathematicians produced by ancient Greece, Apollonius
of Perga was one of the most brilliant. He began studying mathematics after
Euclid’s great work Elements had emerged and he employed the Euclidian
method of taking “axioms”—statements taken to be true—as starting points for
further reasoning and proofs.

Apollonius wrote on many subjects, including optics (how light rays travel) and
astronomy, as well as geometry. Much of his work survives only in fragments, but
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his most influential, Conics, is relatively intact. It was written in eight volumes, of
which seven survive: books 1–4 in Greek, and books 5–7 in Arabic. The work
was designed to be read by mathematicians already well versed in geometry.

I have sent my son… to bring you… the second book of my Conics. Read it carefully and
communicate it to such others as are worthy of it.

Apollonius of Perga

A new geometry
Early Greek mathematicians such as Euclid focused on the line and circle as the
purest geometric forms. Apollonius viewed these in three-dimensional terms: if a
circle is combined with all lines that emanate from it, above or below its plane,
and those lines pass through the same fixed point—the vertex—a cone is created.
By slicing that cone in different ways, a series of curves, known as conic sections,
can be produced.

In Conics, Apollonius expounded in minute detail this new world of geometric
construction, studying and defining the properties of conic sections. He based his
workings on the assumption of two cones joined at the same vertex, with the area
of their circular bases potentially stretching to infinity. To three of the conic
sections he gave the names ellipse, parabola, and hyperbola. An ellipse occurs
when a plane intersects a cone on a slant. A parabola emerges if the cut is parallel
to the edge of the cone, and a hyperbola results when the plane is vertical.
Although he saw the circle as one of the four conic sections, it is really an ellipse
with the plane perpendicular to the axis of the cone.

[Conic sections are] the necessary key with which to attain the knowledge of the most important
laws of nature.

Alfred North Whitehead
British mathematician

Paving the way for others
In his description of these four geometric objects, Apollonius used no algebraic
formulae and no numbers. However, his view of a conic curve as a set of ordered
parallel lines emanating from an axis looked toward the later creation of
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coordinate system geometry. He did not achieve the kind of precision that would
come 1,800 years later with the work of French mathematicians René Descartes
and Pierre de Fermat, but he did get close to coordinate representations of his
conic curves. Some things held Apollonius back: he did not use negative
numbers, nor did he explicitly work with zero. So while the two-dimensional
Cartesian geometry developed by Descartes worked across four quadrants—with
both positive and negative coordinates—Apollonius effectively worked in just
one.

Apollonius’s studies inspired many of the advances in geometry seen in the
Islamic world during the Middle Ages. His work was then rediscovered in Europe
during the Renaissance, leading mathematicians to develop the analytic geometry
that helped to fuel the scientific revolution.

When a plane intersects a cone, it creates a conic section. As well as the sections described
by Apollonius, this can be a single point, where the plane cuts across the apex (top vertex), or
straight lines cutting through the apex at an angle.

APOLLONIUS OF PERGA
Little is known about the life of Apollonius. He was born in c.262 BCE in Perga,
a center for the worship of the goddess Artemis, in southern Anatolia (now part
of Turkey). After crossing the Mediterranean to Egypt, he was taught by
Euclidean scholars in the great cultural city of Alexandria.
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It is thought that all eight volumes of Conics were compiled while Apollonius
was in Egypt. The first volumes produced little that was not known to Euclid,
but the later works were a significant advance in geometry.

Beyond his work with conic sections, Apollonius is credited with estimating
the value of pi more accurately than his contemporary Archimedes, and with
being the first to state that

Key work

c. 200 BCE Conics

See also: Euclid’s Elements • Coordinates • The area under a cycloid • Projective
geometry • The complex plane • Non-Euclidean geometries • Proving Fermat’s
last theorem
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IN CONTEXT
KEY FIGURE
Hipparchus (c. 190–120 BCE)

FIELD
Geometry

BEFORE
c. 1800 BCE The Babylonian Plimpton 322 tablet contains a list of Pythagorean
triples, long before Pythagoras devised his formula a2 + b2 = c2.

c. 1650 BCE The Egyptian Rhind papyrus includes a method for calculating the
slope of a pyramid.

6th century BCE In ancient Greece, Pythagoras discovers his theorem relating to
the geometry of triangles.

AFTER
500 CE In India, the first trigonometric tables are used.

1000 CE In the Islamic world, mathematicians are using all the various ratios
between the sides and angles of triangles.

Trigonometry, a term based on the Greek words for “triangle” and “measure,” is
of immense importance in both the historical development of mathematics and in
the modern world. Trigonometry is one of the most useful of all the mathematical
disciplines, enabling people to navigate the world, to understand electricity, and
to measure the height of mountains.

Since antiquity, civilizations have appreciated the need for right angles in
architecture. This led mathematicians to analyze the properties of right-angled
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triangles: all right-angled triangles contain two shorter sides (which may or may
not be of equal length) and a diagonal, or hypotenuse, which is longer than either
of the others; all triangles contain three angles; and right-angled triangles have
one angle of 90°.

The Plimpton tablet
In the early 1900s, an examination of triangles, dating back to around 1800 BCE,
was discovered on an ancient Babylonian clay tablet. The tablet, bought by
American publisher George Plimpton in 1923 and known as Plimpton 322, is
etched with numerical information relating to right-angled triangles. Its exact
significance is debated, but the information appears to include Pythagorean triples
(three positive numbers representing the lengths of sides of a right-angled
triangle), alongside another set of numbers that resemble the ratios of the squares
of sides. The tablet’s original purpose is unknown, but it may have been used as a
practical manual for measuring dimensions.

At around the same time as the ancient Babylonians, Egypt’s mathematicians
were developing an interest in geometry. This was driven not just by their
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monumental building program, but also by the annual flooding of the Nile River,
which required them to mark out the areas of fields each time the floods subsided.
Egyptian interest is evident in the Rhind papyrus, a scroll that contains a set of
tables relating to fractions. One of these tables poses the question: “If a pyramid is
250 cubits high and the side of its base is 360 cubits long, what is its seked?” The
word seked means slope, so the problem is purely trigonometrical.

Even if he did not invent it, Hipparchus is the first person of whose systematic use of
trigonometry we have documentary evidence.

Sir Thomas Heath
British historian of mathematics

Hipparchus sets out rules
Influenced by Babylonian theories on angles, the ancient Greeks developed
trigonometry as a branch of mathematics that was governed by definite rules
rather than the tables of numbers relied on by the earliest mathematicians. In the
2nd century BCE, the astronomer and mathematician Hipparchus, generally
regarded as the founder of trigonometry, was particularly interested in triangles
inscribed within circles and spheres, and the relationship between angles and
lengths of chords (straight lines drawn between two points on a circle—or on any
curve). Hipparchus compiled what was effectively the first true table of
trigonometric values.
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In the medieval period, astrolabes applied trigonometric principles to measure the position
of celestial bodies. Hipparchus is credited with inventing the device.

Ptolemy’s contribution
Around 300 years later, in the Egyptian city of Alexandria, the gifted Greco-
Roman polymath Claudius Ptolemaeus, better known as Ptolemy, wrote a
mathematical treatise called the Syntaxis Mathematikos (later renamed the
Almagest by Islamic scholars). In this work, Ptolemy further developed the ideas
of Hipparchus on triangles and chords of circles, building formulae that would
allow the prediction of the position of the Sun and other “heavenly bodies” based
on the assumption of circular orbits around Earth. Ptolemy, like the
mathematicians before him, used the Babylonian system of numbers known as the
sexagesimal system, based on the number 60.

Ptolemy’s work was developed further in India, where the growing discipline of
trigonometry was regarded as part of astronomy. The Indian mathematician
Aryabhata (474–550 CE) pursued the study of chords to produce the first table of
what is now known as the sine function (all the possible values of sine/cosine
ratios for determining the unknown length of the side of a triangle when the
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lengths of the hypotenuse—the triangle’s longest side—and the side opposite the
angle are known).

In the 7th century CE, another great Indian mathematician and astronomer,
Brahmagupta, made his own contributions to geometry and trigonometry,
including what is now known as Brahmagupta’s formula. This is used to find the
area of cyclic quadrilaterals, which are four-sided shapes inscribed within a circle.
This area can also be found with a trigonometric method if the quadrilateral is
split into two triangles.

Trigonometry, like other branches of mathematics, was not the work of any one man, or nation.

Carl Benjamin Boyer
American historian of mathematics

Islamic trigonometry
Brahmagupta had already created a table of sine values, but in the 9th century CE,
Persian astronomer and mathematician Habash al-Hasib (“Habash the
Calculator”) produced some of the first sine, cosine, and tangent tables to
calculate the angles and sides of triangles. Around the same time, al-Battani
(Albatenius) developed Ptolemy’s work on the sine function and applied it to
astronomical calculations. He recorded highly accurate observations of celestial
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objects from Raqqah, Syria. The motivation among Arab scholars for developing
trigonometry was not just for astronomy, but also for religious purposes, since it
was important that Muslims knew the position of the holy city of Mecca from
anywhere in the world.

In the 12th century CE, Indian mathematician and astronomer Bhaskara II
invented the study of spherical trigonometry. This explores triangles and other
shapes on the surface of a sphere rather than on a plane.

In later centuries, trigonometry became invaluable in navigation as well as
astronomy. Bhaskara II’s work, along with the ideas in Ptolemy’s Almagest, were
valued by the Islamic scholars of the medieval world, who had begun studying
trigonometry well before Bhaskara II.

A logarithmic table is a small table by the use of which we can obtain knowledge of all
geometrical dimensions and motions in space.

John Napier

Aid to astronomy
Along with the developments in trigonometry, there was a gradual and
corresponding shift in the way people viewed the heavens. From passively
observing and recording the patterns in the movement of celestial bodies, scholars
began to model that movement mathematically so that they could predict future
astronomical events with ever greater accuracy. The study of trigonometry purely
as an aid to astronomy persisted well into the 1500s, when new developments in
Europe began to gain momentum. De Triangulis Omnimodis (On Triangles of all
Kinds) was published in 1533. Written by German mathematician Johannes
Müller von Königsberg, known as Regiomontanus, it was a compendium of all
known theorems for finding sides and angles of both planar (2-D) and spherical
triangles (those formed on the surface of a 3-D sphere). The publication of this
work marked a turning point for trigonometry. It was no longer merely a branch
of astronomy, but a key component of geometry.

Trigonometry was to develop even further; although geometry was its natural
home, it was also increasingly applied to solve algebraic equations. French
mathematician François Viète showed how algebraic equations could be solved
using trigonometric functions, in conjunction with the new system of imaginary
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numbers that had been invented by Italian mathematician Rafael Bombelli in
1572.

At the end of the 1500s, Italian physicist and astronomer Galileo Galilei used
trigonometry to model the trajectories of projectiles on which gravity was acting.
The same equations are still used to project the motion of rockets and missiles
into the atmosphere today. Also in the 1500s, Dutch cartographer and
mathematician Gemma Frisius used trigonometry to determine distances, thus
enabling accurate maps to be created for the first time.

To find the unknown angle (θ) in a right-angled triangle, the sine formula is used when the
lengths of the opposite (opposite θ) and the hypotenuse are known; the cosine formula is used
when the lengths of the adjacent and hypotenuse are known; and the tangent formula is used
when the lengths of the opposite and adjacent are known.

New developments
Developments in trigonometry gathered pace in the 1600s. Scottish
mathematician John Napier’s discovery of logarithms in 1614 enabled the
compilation of accurate sine, cosine, and tangent tables. In 1722, Abraham de
Moivre, a French mathematician, went a step further than Vieté and showed how
trigonometric functions could be used in the analysis of complex numbers. The
latter comprised a real part and an imaginary part, and were to be of great
significance in the development of mechanical and electrical engineering.
Leonhard Euler used de Moivre’s findings to derive the “most elegant equation in
mathematics”: eiπ + 1 = 0, also known as Euler’s identity.
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In the 1700s, Joseph Fourier applied trigonometry to his research into different
forms of waves and vibrations. The “Fourier trigonometry series” has been used
widely in scientific fields such as optics, electromagnetism, and, more recently,
quantum mechanics. From its early beginnings, when the Babylonians and ancient
Egyptians pondered the lengths of shadows cast by a stick in the ground, through
architecture and astronomy to modern applications, trigonometry has formed a
part of the language of mathematics in modeling the Universe.

A network of triangulation stations such as this stone “trig point” in Wales was launched by
the Ordnance Survey in 1936 to accurately map the island of Great Britain.

HIPPARCHUS
Hipparchus was born in Nicaea (now Iznik in Turkey)
in 190 BCE. Although little is known of his life, he
achieved fame as an astronomer from the studies he
carried out while living on the island of Rhodes. His
findings were immortalized in Ptolemy’s Almagest,
where he is described as “a lover of truth.”

The only work of Hipparchus to survive was his
commentary on the Phaenomena of the poet Aratus and the mathematician and
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astronomer Eudoxus, criticizing the inaccuracy of their descriptions of
constellations. Hipparchus’s most notable contribution to astronomy was his
work Sizes and Distances (now lost, but used by Ptolemy), on the orbits of the
Sun and Moon, which enabled him to calculate the dates of the equinoxes and
solstices. He also compiled a star catalogue, which may be the one used by
Ptolemy in Almagest. Hipparchus died in 120 BCE.

Key work

2nd century BCE Sizes and Distances

See also: The Rhind papyrus • Pythagoras • Euclid’s Elements • Imaginary and
complex numbers • Logarithms • Pascal’s triangle • Viviani’s triangle theorem •
Fourier analysis
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IN CONTEXT
KEY CIVILIZATION
Ancient Chinese (c. 1700 BCE–c. 600 CE)

FIELD
Number systems

BEFORE
c. 1000 BCE In China, bamboo rods are first used to denote numbers, including
negatives.

AFTER
628 CE The Indian mathematician Brahmagupta provides rules for arithmetic
with negative numbers.

1631 In Practice of the Art of Analysis, published 10 years after his death,
British mathematician Thomas Harriott accepts negative numbers in algebraic
notation.

While practical notions of negative quantities were used from ancient times,
particularly in China, negative numbers took far longer to be accepted within
mathematics. Ancient Greek thinkers and many later European mathematicians
regarded negative numbers—and the concept of something being less than
nothing—as absurd. Only in the 1600s did European mathematicians begin to
fully accept negative numbers.

Chinese rod system
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The earliest ideas of negative quantities seem to have arisen in commercial
accounting: the seller received money for what had been sold (a positive
quantity), and the buyer spent the same amount, resulting in a deficit (a negative
quantity). For their commercial arithmetic, the ancient Chinese used small
bamboo rods, laid out on a large board. Positive and negative quantities were
represented by rods of different colors and could be added together. The Chinese
military strategist Sun Tzu, who lived around 500 BCE, used such rods to make
calculations before battles.

By 150 BCE, the rod system had developed into alternating horizontal and vertical
rods in sets of up to five. Later, during the Sui dynasty (581–618 CE), the Chinese
also used triangular rods for positive quantities and rectangular rods for negative
quantities. The system was employed for trading and tax calculations: amounts
received were represented by red rods, and debts by black rods. When rods of
different colors were added together, they canceled each other out—like income
erasing a debt. The polarized nature of positive numbers (red rods) and negative
numbers (black rods) was also in tune with the Chinese concept that opposing but
complementary forces—yin and yang—governed the Universe.

In the Chinese rod numeral system, red indicates positive numbers, while black indicates
negative numbers. To make the number being represented as clear as possible, horizontal and
vertical symbols are used alternately—for example, the number 752 would use a vertical 7,
then a horizontal 5, followed by a vertical 2. Blank spaces represent zero.

Fluctuating fortunes
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Over a period of several centuries, starting around 200 BCE, the ancient Chinese
produced a book of collected scholarship called The Nine Chapters on the
Mathematical Art. This work, which encapsulated the essence of their
mathematical knowledge, included algorithms that assumed negative quantities
were possible—for example, as solutions to problems on profit and loss.

In contrast, the mathematics of ancient Greece was based on geometry and
geometrical magnitudes, or their ratios. As these quantities—actual lengths, areas,
and volumes—can only be positive, the idea of a negative number did not make
sense to Greek mathematicians.

By the time of Diophantus, around 250 CE, linear and quadratic equations were
used to solve problems, but any unknown quantity was still represented
geometrically—by a length. So the idea of negative numbers as solutions to these
equations was still seen as an absurdity.

An important advance in the arithmetical use of negative numbers came around
400 years later from India, in the work of the mathematician Brahmagupta (c.
598–668). He set out arithmetic rules for negative quantities, and even used a
symbol to indicate negative numbers. Like the ancient Chinese, Brahmagupta
looked at numbers in financial terms, as “fortunes” (positive) and “debts”
(negative), and stated the following rules for multiplying with positive and
negative quantities:

The product of two fortunes is a fortune. The product of two debts is a fortune.
The product of a debt and a fortune is a debt. The product of a fortune and a
debt is a debt.

It makes no sense to find the product of two piles of coins, as only the actual
quantities can be multiplied, not the money itself (just as you cannot multiply
apples by apples). Brahmagupta was therefore performing arithmetic with
positive and negative quantities, while using fortunes and debts as a way to try to
understand what negative numbers represented.

The Persian mathematican and poet al-Khwarizmi (c. 780–c. 850)— whose
theories, particularly on algebra, influenced later European mathematicians—was
familiar with the rules of Brahmagupta and understood the use of negative
numbers for dealing with debts. However, he could not accept the use of negative
numbers in algebra, believing them to be meaningless. Instead, al-Khwarizmi
followed geometric methods to solve linear or quadratic equations.
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Temperature readings on the Celsius scale display negative numbers to show when
something such as an ice crystal is colder than 0°C—the point at which water freezes.

A negative multiplied by a negative makes a positive. This is why all positive numbers have
two square roots (a positive and a negative) and negative numbers have no real square roots—
because a positive number squared is positive, and a negative number squared is also positive.
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Accepting the negative
Throughout the Middle Ages, European mathematicians remained unsure of
negative quantities as numbers. This was still the case in 1545 when Italian
polymath Gerolamo Cardano published his Ars Magna (The Great Art), in which
he explained how to solve linear, quadratic, and cubic equations. He could not
exclude negative solutions to his equations and even used a sign, “m,” to denote a
negative number. He could not, however, accept the value of negative numbers,
calling them “fictitious.” René Descartes (1596–1650) also accepted negative
quantities as solutions to equations but referred to them as “false roots” rather
than true numbers.

English mathematician John Wallis (1616–1703) gave some meaning to negative
numbers by extending the number line below zero. This way of seeing numbers as
points on a line finally led to the acceptance of negative numbers on equal terms
with positive numbers, and by the end of the 1800s, they had been formally
defined within mathematics, separate from notions of quantities. Today, negative
numbers are used in many areas, ranging from banking and temperature scales to
the charge on subatomic particles. Any ambiguity about their status in
mathematics is long gone.

Negative numbers are evidence of inconsistency or absurdity.

Augustus De Morgan
British mathematician
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Investors rush to withdraw their money from the Seamen’s Savings Bank in New York in
1857. The panic was caused by American banks loaning out many millions of dollars (a
negative quantity) without the reserves (a positive quantity) to back this up.

Mathematics in ancient China
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Jiuzhang suanshu, or The Nine Chapters on the Mathematical Art, reveals the
mathematical methods known to the ancient Chinese. It is written as a collection
of 246 practical problems and their solutions.

The first five chapters are mostly about geometry (areas, lengths, and volumes)
and arithmetic (ratios, and square and cube roots). Chapter six covers taxes, and
includes the ideas of direct, inverse, and compound proportions, most of which
did not appear in Europe until around the 1500s. Chapters seven and eight deal
with solutions to linear equations, including the rule of “double false position,”
whereby two test (or “false”) values for the solution to a linear equation are
used in repeated steps to yield the actual solution. The final chapter concerns
applications of the “Gougu” (equivalent to Pythagoras’s theorem), and the
solving of quadratic equations.

See also: Positional numbers • Diophantine equations • Zero • Algebra •
Imaginary and complex numbers
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IN CONTEXT
KEY FIGURE
Diophantus (c. 200–c. 284 CE)

FIELD
Algebra

BEFORE
c. 800 BCE The Indian scholar Baudhayana finds solutions to some
“Diophantine” equations.

AFTER
c. 1600 François Viète lays the foundations for solutions of Diophantine
equations.

1657 Pierre de Fermat writes his last theorem (about a Diophantine equation) in
his copy of Arithmetica.

1900 The 10th problem on David Hilbert’s list of unsolved research problems is
the quest to find an algorithm to solve all Diophantine equations.

1970 Mathematicians in Russia show that there is no algorithm that can solve all
Diophantine equations.
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In the 3rd century CE, the Greek mathematician Diophantus, a pioneer of number
theory and arithmetic, created a prodigious work called Arithmetica. In 13
volumes, only six of which have survived, he explored 130 problems involving
equations and was the first person to use a symbol for an unknown quantity—a
cornerstone of algebra. It is only in the past 100 years that mathematicians have
fully explored what are now known as Diophantine equations. Today, the
equations are considered to be one of the most interesting areas of number theory.

Diophantine equations are a type of polynomial—an equation in which the
powers of the variables (unknown quantities) are integers, such as x3 + y4 = z5.
The aim of Diophantine equations is to find all the variables, but solutions must
be integers or rational numbers (those that can be written as one integer divided
by another, such as 8⁄3). In Diophantine equations, the coefficients—integers such
as the 4 in 4x, that multiply a variable—are also rational numbers. Diophantus
only used positive numbers, but mathematicians now look for negative solutions
as well.

The symbolism that Diophantus introduced for the first time… provided a short and readily
comprehensible means of expressing an equation.

Kurt Vogel
German mathematical historian

The quest for solutions
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Many of the problems now called Diophantine equations were known well before
Diophantus’s time. In India, mathematicians explored some of them from around
800 BCE, as the ancient Shulba Sutras texts reveal. In the 6th century BCE,
Pythagoras created his quadratic equation for calculating the sides of a right-
angled triangle; its x2 + y2 = z2 form is a Diophantine equation.

Diophantine equations of the kind xn + yn = zn may look simple to calculate, but
only those with squares are solvable. If the power (n in the equation) is greater
than 2, the equation has no integer solutions for x, y, and z—as Fermat asserted in
a marginal note in 1657 and British mathematician Andrew Wiles finally proved
in 1994.

The Arithmetica of Diophantus strongly influenced 17th-century mathematicians as the
study of modern algebra developed. This volume of the book was published in Latin in 1621.
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A source of fascination
Diophantine equations are vast in number and form, and mostly very difficult to
solve. In 1900, David Hilbert suggested that the question of whether or not they
could all be solved was one of the greatest challenges facing mathematicians.

The equations are now grouped in three classes: those with no solution, those
with a finite number of solutions, and those with an infinite number of solutions.
Rather than finding solutions, however, mathematicians are often more interested
in discovering whether solutions exist at all. In 1970, Russian mathematician Yuri
Matiyasevich settled Hilbert’s query, which he and three others had studied for
years, concluding that no general algorithm to solve a Diophantine equation
exists. Yet studies continue, as the fascination of these equations is largely
theoretical. Mathematicians, who are driven by curiosity, believe there is still
more to discover.

DIOPHANTUS
Little is known about the life of the Greek mathematician and philosopher
Diophantus, but he was probably born in Alexandria, Egypt, in C. 200 CE. His
13-volume Arithmetica was well-received—the Alexandrian mathematician
Hypatia wrote about the first six volumes—but fell into relative obscurity until
the 1500s, when interest in his ideas was revived.

The Greek Anthology, a compilation of mathematical games and verses
published around 500 CE, contains one number problem purporting to be an
epitaph to Diophantus that appeared on his tombstone. Written as a puzzle, it
suggests he married at the age of 35, and five years later had a son, who died at
the age of 40 when he was half his father’s age. Diophantus is then said to have
lived a further four years, dying at the age of 84.

Key work

C. 250 CE Arithmetica

See also: The Rhind papyrus • Pythagoras • Hypatia • The equals sign and other
symbology • 23 problems for the 20th century • The Turing machine • Proving
Fermat’s last theorem
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IN CONTEXT
KEY FIGURE
Hypatia of Alexandria (c. 355–415 CE)

FIELDS
Arithmetic, geometry

BEFORE
6th century BCE Pythagoras’s wife Theano and other women actively
participate in the Pythagorean community.

c. 100 BCE Mathematician and astronomer Aglaonike of Thessaly wins renown
for her ability to predict lunar eclipses.

AFTER
1748 Italian mathematician Maria Agnesi writes the first textbook to explain
differential and integral calculus.

1874 Russian mathematician Sofia Kovalevskaya is the first woman to be
awarded a doctorate in mathematics.

2014 Iranian mathematician Maryam Mirzakhani is the first woman to win the
Fields Medal.

History mentions only a few pioneering female mathematicians in the ancient
world, among them Hypatia of Alexandria. An inspirational teacher, she was
appointed head of the city’s Platonist school in 400 CE.

Hypatia is not known to have contributed any original research, but she is
credited with editing and writing commentaries on several classic mathematical,
astronomical, and philosophical texts. It is likely that she helped her father,
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Theon, a respected Alexandrian scholar, to produce his definitive edition of
Euclid’s Elements, and his Almagest and Handy Tables of Ptolemy. She also
continued his project of preserving and expanding the classic texts, in particular
providing commentaries on Diophantus’s 13-volume Arithmetica, and
Apollonius’s work on conic sections. Hypatia may have intended these editions to
serve as textbooks for students, as she offered commentaries providing
clarification, and developed some of the concepts further.

Hypatia won great renown for her teaching, scientific knowledge, and wisdom,
but in 415 she was killed by Christian zealots for her “pagan” philosophy. As
attitudes toward women in academia became less tolerant, mathematics and
astronomy would be almost exclusively male preserves until the Enlightenment
opened up new opportunities for women in the 1700s.

The Alexandrian scholar Hypatia, depicted here in an 1889 painting by Julius Kronberg,
was revered as a heroic martyr after her murder. She later became a symbol for feminists.

See also: Euclid’s Elements • Conic sections • Diophantine equations • Emmy
Noether and abstract algebra
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IN CONTEXT
KEY FIGURE
Zu Chongzhi (429–501 CE)

FIELD
Geometry

BEFORE
c. 1650 BCE The area of a circle is calculated using π as (16⁄9)2 ≈ 3.1605 in the
Rhind papyrus.

c. 250 BCE Archimedes finds an approximate value for π using a polygon
algorithm method.

AFTER
c. 1500 Indian astronomer Nilakantha Somayaji uses an infinite series (the sum
of terms of an infinite sequence, such as 1⁄2 + 1⁄4 + 1⁄8 + 1⁄16) to compute π.

1665–66 Isaac Newton calculates π to 15 digits.

1975–76 Iterative algorithms allow computer calculations of π to millions of
digits.

Like their counterparts in Greece, mathematicians in ancient China realized the
importance of π (pi)—the ratio of a circle’s circumference to its diameter—in
geometric and other calculations. Various values for π were suggested from the
1st century CE onward. Some were sufficiently accurate for practical purposes, but
several Chinese mathematicians sought more precise methods for determining π.
In the 3rd century, Liu Hui approached the task using the same method as
Archimedes—drawing regular polygons with increasing numbers of sides inside
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and outside a circle. He found that a 96-sided polygon allowed a calculation of π
as 3.14, but by repeatedly doubling the number of sides up to 3,072, he reached a
value of 3.1416.

More precision
In the 5th century, astronomer and mathematician Zu Chongzhi, who was
renowned for his meticulous calculations, set about obtaining an even more
accurate value for π. Using a 12,288-sided polygon, he calculated that π is
between 3.1415926 and 3.1415927, and suggested two fractions to express the
ratio: the Yuelü, or approximate ratio, of 22⁄7, which had been in use for some
time; and his own calculation, the Milü, or close ratio, of 355⁄113. This later became
known as “Zu’s ratio.” Zu’s calculations of π were not bettered until European
mathematicians set about the task during the Renaissance, almost a millennium
later.

I cannot help thinking that Zu Chongzhi was a genius of Antiquity.

Takebe Katahiro
Japanese mathematician

See also: The Rhind papyrus • Irrational numbers • Calculating pi • Euler’s
identity • Buffon’s needle experiment
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INTRODUCTION
As the Roman Empire collapsed and Europe entered the Middle Ages, the center
of scientific and mathematical scholarship shifted from the eastern Mediterranean
to China and India. From about the 5th century CE, India began a “Golden Age”
of mathematics, building on its own long tradition of scholarship, but also on
ideas brought in by the Greeks. Indian mathematicians made significant advances
in the fields of geometry and trigonometry, which had practical applications in
astronomy, navigation, and engineering, but the most far-reaching innovation was
the development of a character to represent the number zero.

The use of a specific symbol— a simple circle, rather than a blank space or
placeholder—to denote zero is attributed to the brilliant mathematician
Brahmagupta, who described the rules of its use in calculation. In fact, the
character may already have been in use for some time. It would have fitted well
with India’s numeral system, which is the prototype of our modern Hindu–Arabic
numerals. Yet it is thanks to Islam that these and other ideas from India’s Golden
Age (which continued until the 12th century) went on to influence the history of
mathematics.

Persian powerhouse
After the death of the Prophet Mohammed in 632, Islam rapidly became a major
political as well as religious power in the Middle East and beyond, spreading
from Arabia across Persia and into Asia as far as the Indian subcontinent. The
new religion had a high regard for philosophy and scientific enquiry, and the
“House of Wisdom,” a center of learning and research established in Baghdad,
attracted scholars from all over the expanding Islamic Empire.

This thirst for knowledge prompted the study of ancient texts, especially those of
the great Greek philosophers and mathematicians. Islamic scholars not only
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preserved and translated the ancient Greek texts, but provided commentaries on
them and developed their own original concepts. Open to new ideas, they also
adopted many of the Indian innovations, in particular their numeral system. The
Islamic world, like India, entered a “Golden Age” of learning that lasted until the
1300s, and produced a succession of influential mathematicians—such as al-
Khwarizmi, a key figure in the development of algebra (the word “algebra”
derives from the Arabic term for rejoining), and other scholars whose
contributions to the binomial theorem and the treatment of quadratic and cubic
equations were groundbreaking.

From East to West
In Europe, mathematical study was under the control of the Church, and was
confined to a few early translations of some of Euclid’s work. Progress was
hindered by the continued use of the cumbersome Roman system of numerals,
necessitating the use of the abacus for calculation. However, from the 12th
century onward, during the Crusades, contact with the Islamic world increased,
and some recognized the wealth of scientific knowledge Islamic scholars had
amassed. Christian scholars now gained access to Greek and Indian philosophical
and mathematical texts, and to the work of the Islamic scholars. Al-Khwarizmi’s
treatise on algebra was translated into Latin in the 12th century by Robert of
Chester, and soon after, complete translations of Euclid’s Elements and other
important texts began to appear in Europe.

Mathematical renaissance
City-states in Italy were quick to trade with the Islamic Empire, and it was an
Italian, Leonardo of Pisa, nicknamed Fibonacci, who spearheaded the revival of
mathematics in the West. He adopted the Hindu-Arabic numeral system, and the
use of symbols in algebra, and contributed many original ideas, including the
Fibonacci arithmetical sequence.

With the growth in trade in the later Middle Ages, mathematics—especially the
fields of arithmetic and algebra—became increasingly important. Advances in
astronomy also demanded sophisticated calculations. Mathematical education was
now taken more seriously. With the invention of the movable-type printing press
in the 1400s, books of all sorts, including the Treviso Arithmetic, became widely
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available, spreading the newfound knowledge across Europe. These books
inspired a “scientific revolution” that would accompany the cultural rebirth
known as the Renaissance.
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IN CONTEXT
KEY FIGURE
Brahmagupta (c. 598–668 CE)

FIELD
Number theory

BEFORE
c. 700 BCE On a clay tablet, a Babylonian scribe indicates a placeholder zero
with three hooks; it is later written as two slanted wedge marks.

36 BCE A shell-shaped zero is recorded on a Mayan stela (stone slab) in Central
America.

c. 300 CE Parts of the Indian Bakshali text reveal many circular placeholder
zeros.

AFTER
1202 In his book Liber Abaci, Leonardo of Pisa (Fibonacci) introduces zero to
Europeans.

17th century Zero is finally established as a number and is in widespread use.

A number that represents the absence of something is a difficult concept, which
may be why zero took so long to become widely accepted. Several ancient
civilizations, including the Babylonians and the Sumerians, could claim to have
invented zero, but its use as a number was pioneered in the 7th century CE, by
Brahmagupta, an Indian mathematician.
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The development of zero
Any system for recording numbers eventually reaches a point at which it becomes
positional; that is to say, digits are ordered according to their value to cope with
increasingly large numbers. All place value (positional) systems require a way of
denoting “there is nothing here.” The Babylonians (1894–539 BCE), for example,
who at first used context to differentiate between, say, 35 and 305, eventually
used a double wedge mark rather like inverted commas to indicate the empty
value. In this way, zero entered the world as a form of punctuation.

The problem for historians has been finding evidence for early civilizations using
zero and recognizing it as such, which has been made more difficult by the fact
that zero fell in and out of use over time. In about 300 BCE, for example, the
Greeks were starting to develop a more sophisticated form of mathematics based
on geometry, with quantities being represented by the lengths of lines. There was
no need for zero, or indeed negative numbers (numbers less than 0), as the Greeks
did not have a positional number system (lengths cannot be nonexistent or
negative).

As the Greeks developed the use of mathematics in astronomy, they began to use
an “O” to represent zero, although it is not clear why. In his astronomical manual
Almagest, written in the 2nd century CE, the Greco-Roman scholar Ptolemy used a
circular symbol positionally between digits and at the end of a number, but did
not consider it a number in its own right.

In Central America, during the 1st millenium CE, the Mayans used a place value
system, which included zero as a numeral, denoted by a shell shape. It was one of
three symbols used by the Mayans for arithmetic; the other two were a dot
representing 1 and a bar for 5. While the Mayans could calculate up to hundreds
of millions, their geographical isolation meant that their mathematics never spread
to other cultures.

In India, mathematics advanced rapidly in the early centuries of the 1st
millennium CE. By the 3rd and 4th centuries, a place value system had long been
in use, and by the 7th century—the time of Brahmagupta—the use of a circular
symbol as a placeholder was already well established there.
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An abax, a table or board covered in sand, was used by the Greeks to count. Some scholars
have suggested that “O” was used because it was the shape left when a counter was removed.

BRAHMAGUPTA
Born in 598 CE, astronomer and mathematician Brahmagupta lived in
Bhillamala, northwest India—a center of learning in those fields. He became
head of the leading astronomical observatory at Ujjain, and incorporated new
work on number theory and algebra into his studies on astronomy.
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Brahmagupta’s use of the decimal number system and the algorithms he
devised spread throughout the world and informed the work of later
mathematicians. His rules for calculating with positive and negative numbers,
which he called “fortunes” and “debts,” are still cited today. Brahmagupta died
in 668, only a few years after completing his second book.

Key works

628 Brahmasphutasiddhanta (The Correctly Established Doctrine of Brahma)

665 Khandakhadyaka (Morsel of Food)

The Nadi Yali yantra is part of an 18th-century observatory in Ujjain, India. A center of
mathematics and astronomy since Brahmagupta worked there in the 7th century, it lies on the
intersection of a former zero meridian of longitude and the Tropic of Cancer.
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Zero as a number
Brahmagupta established rules for calculating with zero. He began by defining it
as the result of subtracting a number from itself— for example, 3 - 3 = 0. That
established zero as a number in its own right as opposed to simply a figurative
notation or placeholder. He then explored the effect of calculating with zero.
Brahmagupta showed that if he added zero to a negative number, the result was
equal to that negative number. Similarly, adding zero to a positive number
produced the same positive number. Brahmagupta also described subtracting zero
from both a negative and a positive number, and noted again that it left the
numbers unchanged.

Brahmagupta went on to describe the effect of subtracting numbers from zero.
He calculated that a positive number subtracted from zero becomes a negative
number and a negative number subtracted from zero becomes a positive number.
This calculation brought negative numbers into the same number system as
positive numbers. Like zero, negative numbers were an abstract concept rather
than positive values such as lengths or quantities.

First-century Indian numerals did not use zero. By the 9th century, Brahmagupta’s zero
(highlighted in pink) was widely used in India, from where it spread via the Arab world to
Europe. There, it met some initial opposition from Christian religious leaders, who found the
concept of zero satanic because they associated nothingness with the devil.

Black holes are where God divided by zero.
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Steven Wright
American comedian

Multiplying and dividing
Brahmagupta went on to examine zero in relation to multiplication and described
how the product of multiplying any number with zero is zero, including zero
multiplied by zero. The next step was to explain division by zero, which was
more problematic. Recording the result of dividing a number, n, by zero as n⁄0,
Brahmagupta suggested that a number is unchanged when it is divided by zero.
However, this was later found to be impossible, as is demonstrated by multiplying
any number by zero (division being defined as finding the missing number in a
multiplication). The result cannot be the original number, as any number
multiplied by zero equals zero.

Mathematicians now describe division by zero as “undefined.” Some have
suggested that the required answer to n⁄0 is “infinity,” but infinity is not a number
and cannot be used in calculations. Dividing zero itself by zero has proved even
trickier. The result could be zero, if zero divided by any number is thought to be
zero. It could also be 1, as any number divided by itself is 1.

The spread of Islam through parts of India in the 8th century led to Indian
mathematicians sharing their knowledge, including the concept of zero, with
scholars in the Arab world. In the 9th century, the Islamic mathematician al-
Khwarizmi wrote a treatise on Hindu–Arabic numbers, which described the place
value system including zero. Yet 300 years later when Leonardo of Pisa (better
known as Fibonacci) introduced Hindu–Arabic numerals to Europe, he was still
wary of zero and treated it as an operator like + and ˗ rather than a number. Even
in the 1500s, Italian polymath Gerolamo Cardano solved quadratic and cubic
equations without zero. Europeans finally accepted zero in the 1600s, when
English mathematician John Wallis incorporated zero in his number line.

Zero is the most magical number we know. It is the number we’re striving toward every day.

Bill Gates

A vital concept
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This grid method of
multiplication from the
Treviso Arithmetic
multiplies the number
56,289 by 1,234. Zero is
used as a placeholder in
the calculation and in the
final solution—
70,072,626. The book also
illustrated other methods
of multiplication.

Mathematics without zero would mean many of the articles in this book could not
have been written: there would be no negative numbers, no coordinate systems,
no binary systems (and hence no computers), no decimals, and no calculus,
because it would not be possible to describe infinitesimally small quantities.
Advances in engineering would have been severely restricted. Zero is perhaps the
most important number of all.

The Treviso Arithmetic
The figure zero first became known in Italy from the
Arte dell’ Abbaco (Art of Calculation, also known as
The Treviso Arithmetic), published anonymously in
1478 and the first printed mathematics textbook in
Europe. It was revolutionary because it was written
in everyday Venetian for merchants and anyone else
who wanted to solve calculation problems. It
outlined the Hindu–Arabic decimal place value
system and described how the number system
worked. The unknown author makes 0 the 10th
number and calls it a “cipher” or “nulla”—
something that has no value unless it is written to the
right of other numbers to increase their value.

In the Treviso description, zero is just a placeholder
number, which itself was still a new notion. The idea of zero as a number was
not accepted for centuries. It was also of little interest to the readers of the Arte
dell’ Abbaco, most of whom wanted to learn how to use numbers in practical
business calculations in everyday trading.

See also: Positional numbers • Negative numbers • Binary numbers • The law of
large numbers • The complex plane
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IN CONTEXT
KEY FIGURE
Al-Khwarizmi (c. 780–c. 850)

FIELD
Algebra

BEFORE
1650 BCE The Egyptian Rhind papyrus includes solutions to linear equations.

300 BCE Euclid’s Elements lays the foundations of geometry.

3rd century CE Greek mathematician Diophantus uses symbols to represent
unknown quantities.

7th century CE Brahmagupta solves the quadratic equation.

AFTER
1202 Leonardo of Pisa’s Liber Abaci uses the Hindu-Arabic number system.

1591 François Viète introduces symbolic algebra, in which letters are used to
abbreviate terms in equations.

The origins of algebra— a mathematical method for calculating unknown
quantities—can be traced back to ancient Babylonians and Egyptians, as
equations on cuneiform tablets and papyri reveal. Algebra evolved from the need
to solve practical problems, often of a geometrical nature, requiring the
determination of a length, area, or volume. Mathematicians gradually developed
rules to handle a wider range of general problems. To work out lengths and areas,
equations involving variables (unknown quantities) and squared terms were
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devised. Using tables, the Babylonians could also calculate volumes, such as the
space within a grain store.

A search for new methods
Over the centuries, as mathematics developed, problems became longer and more
complex, and scholars sought new ways to shorten and simplify them. Although
early Greek mathematics was largely geometry-based, Diophantus developed new
algebraic methods in the 3rd century CE, and was the first to use symbols for
unknown quantities. However, it would be more than a thousand years before
standard algebraic notation was accepted.

After the fall of the Roman Empire, mathematics in the Mediterranean area
declined, but the spread of Islam from the 7th century had a revolutionary impact
on algebra. In 762 CE, Caliph al-Mansur established a capital in Baghdad, which
swiftly became a major center of culture, learning, and commerce. Its status was
enhanced by the acquisition and translation of manuscripts from earlier cultures,
including works by the Greek mathematicians Euclid, Apollonius, and
Diophantus, as well as Indian scholars such as Brahmagupta. They were housed
in a great library, the House of Wisdom, which became a center for research and
the dissemination of knowledge.
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The early algebraists
Scholars at the House of Wisdom produced their own research, and in 830,
Muhammad Ibn Musa al-Khwarizmi presented his work to the library—The
Compendious Book on Calculation by Completion and Balancing. It
revolutionized ways of calculating algebraic problems, introducing principles that
are the foundation of modern algebra. As in earlier periods, the types of problems
discussed were largely geometrical. The study of geometry was important in the
Islamic world, partly because the human form was forbidden in religious art and
architecture, so many Islamic designs were based on geometric patterns.
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Al-Khwarizmi introduced some fundamental algebraic operations, which he
described as reduction, rejoining, and balancing. The process of reduction
(simplifying an equation) could be done by rejoining (al-jabr)—moving
subtracted terms to the other side of an equation—and then balancing the two
sides of the equation. The word “algebra” comes from al-jabr.

Al-Khwarizmi was not working in a total vacuum, as he had the translated works
of earlier Greek and Indian mathematicians at his disposal. He introduced the
Indian decimal place-value system to the Islamic world, which later led to the
adoption of the Hindu-Arabic numeral system widely used today.

Al-Khwarizmi began by studying linear equations, so-called because they create
a straight line when plotted on a graph. Linear equations involve only one
variable, which is expressed only to the power of 1, rather than squared or to any
higher power.

Quadratic equations
Al-Khwarizmi did not employ symbols; he wrote his equations in words,
supported by diagrams. For example, he wrote out the equation (x⁄3 + 1)(x⁄4 + 1) =
20 as: “A quantity: I multiplied a third of it and a dirham by a fourth of it and a

142



dirham; it becomes twenty,” a dirham being a single coin, used by al-Khwarizmi
to signify a single unit. According to al-Khwarizmi, by using his completion and
balancing methods, all quadratic equations—those in which the highest power of
x is x2 —can be simplified to one of six basic forms. In modern notation, these
would be: ax2 = bx; ax2 = c; ax2 + bx = c; ax2 + c = bx; ax2 = bx + c; and b2 = c.
In these six types, the letters a, b, and c all represent known numbers, and x
represents the unknown quantity.

Al-Khwarizmi approached more complex problems too, producing a geometrical
method for solving quadratic equations that used the technique known as
“completing the square” . He went on to search for a general solution to cubic
equations—in which the highest power of x is x3—but was unable to find one.
However, his pursuit of this goal showed how mathematics had progressed since
the time of the ancient Greeks. For centuries, algebra had just been a tool to solve
geometric problems, but now became a discipline in its own right, where
calculating increasingly difficult equations was the end goal.

The principal object of Algebra… is to determine the value of quantities which were before
unknown… by considering attentively the conditions given… expressed in known numbers.

Leonhard Euler

Rational answers
Many of the equations that al-Khwarizmi was dealing with had solutions that
could not be expressed rationally and completely using the Hindu-Arabic decimal

system. Although numbers such as —the square root of 2—had been known
since ancient Greek times and from even earlier Babylonian clay tablets, in 825
CE, al-Khwarizmi was the first to make the distinction between rational numbers
—which can be made into fractions—and irrational numbers, which have an
indefinite string of decimals with no recurring pattern. Al-Khwarizmi described
rational numbers as “audible” and irrational numbers as “inaudible.”

Al-Khwarizmi’s work was developed further by Egyptian mathematician Abu
Kamil Shuja ibn Aslam (c. 850–930 CE), whose Book of Algebra was designed to
be an academic treatise for other mathematicians, rather than for educated people
who had a more amateur interest. Abu Kamil embraced irrational numbers as
possible solutions to quadratic equations, rather than rejecting them as awkward
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anomalies. In his Book of Rare Things in the Art of Calculation, Abu Kamil
attempted to solve indeterminate equations (those with more than one solution).
He further explored this topic in his Book of Birds, in which he posed a
miscellany of bird-related algebra problems, including: “How many ways can one
buy 100 birds in the market with 100 dirhams?”

Algebra is but written geometry and geometry is but figured algebra.

Sophie Germain
French mathematician

Geometric solutions
Up until the era of the Arab “algebraists”—from al-Khwarizmi in the 9th century
to the death of the Moorish mathematician al-Qalasadi in 1486—the key
developments within algebra were underpinned by geometrical representations.
For example, al-Khwarizmi’s method of “completing the square” in order to solve
quadratic equations relies on consideration of the properties of a real square; later
scholars worked in a similar way. Mathematician and poet Omar Khayyam, for
example, was interested in solving problems using the relatively new discipline of
algebra, but employed both geometrical and algebraic methods. His Treatise on
Demonstration of Problems of Algebra (1070) notably includes a fresh
perspective on the difficulties within Euclid’s postulates, a set of geometric rules
that are assumed to be true without requiring a proof. Picking up on earlier work
by al-Karaji, Khayyam also develops ideas about binomial coefficients, which
determine how many ways there are to select a number of items from a larger set.
He solved cubic equations, too, inspired by al-Khwarizmi’s use of Euclid’s
geometrical constructions for working out quadratic equations.
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Al-Khwarizmi showed how to solve quadratic equations by a method known as “completing
the square.” This example shows how to find x in the equation x2 + 10x = 39.

Polynomials
During the 10th and early 11th centuries, a more abstract theory of algebra was
developed, which was not reliant on geometry—an important factor in
establishing its academic status. Al-Karaji was instrumental in this development.
He established a set of procedures for performing arithmetic on polynomials—
expressions that contain a mixture of algebraic terms. He created rules for
calculating with polynomials, in much the same way that there were rules for
adding, subtracting, or multiplying numbers. This allowed mathematicians to
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work on increasingly complex algebraic expressions in a more uniform way, and
reinforced algebra’s essential links with arithmetic.

Mathematical proof is a vital part of modern algebra and one of the tools of proof
is called mathematical induction. Al-Karaji used a basic form of this principle,
whereby he would show an algebraic statement to be true for the simplest case
(say n = 1), then use that fact to show that it must also be true for n = 2 and so on,
with the inevitable conclusion that the statement must hold true for all possible
values of n.

One of al-Karaji’s successors was the 12th-century scholar Ibn Yahya al-
Maghribi al-Samaw’al. He noted that the new way of thinking of algebra as a
kind of arithmetic with generalized rules involved the algebraist “operating on the
unknown using all the arithmetical tools, in the same way as the arithmetician
operates on the known.” Al-Samaw’al continued al-Karaji’s work on
polynomials, but also developed the laws of indices, which led to much later work
on logarithms and exponentials, and was a significant step forward in
mathematics.

An ounce of algebra is worth a ton of verbal argument.

John B. S. Haldane
British mathematical biologist

Islamic mathematicians gather in the library of a mosque in an illustration from a
manuscript by the 12th-century poet and scholar Al-Hariri of Basra.

146



Plotting equations
Cubic equations had challenged mathematicians since the time of Diophantus of
Alexandria. Al-Khwarizmi and Khayyam had made significant progress in
understanding them—work further developed by Sharaf al-Din al-Tusi, a 12th-
century scholar, probably born in Iran, whose mathematics appears to have been
inspired by the work of earlier Greek scholars, especially Archimedes. Al-Tusi
was more interested in determining types of cubic equation than al-Khwarizmi
and Khayyam had been. He also developed an early understanding of graphical
curves, articulating the significance of maximum and minimum values. His work
strengthened the connection between algebraic equations and graphs—between
mathematical symbols and visual representations.

As the sun eclipses the stars by its brilliancy, so the man of knowledge will eclipse the fame of
others in assemblies of the people if he proposes algebraic problems, and still more if he solves
them.

Brahmagupta

A new algebra
The discoveries and rules set down by medieval Arab scholars still form the basis
of algebra today. The works of al-Khwarizmi and his successors were key to
establishing algebra as a discipline in its own right. It was not until the 1500s,
however, that mathematicians began to abbreviate equations by using letters to
stand for known and unknown variables. French mathematician François Viète
was key to this development. In his works, he pioneered the move away from the
Arabic algebra of procedures toward what is known as symbolic algebra.

In his Introduction to the Analytic Arts (1591), Viète suggested that
mathematicians should use letters to symbolize the variables in an equation:
vowels to represent unknown quantities and consonants to represent the known.
Although this convention was eventually replaced by René Descartes—in which
letters at the beginning of the alphabet represent known numbers and letters at the
end represent the unknown—Viète nonetheless was responsible for simplifying
algebraic language far beyond what the Arab scholars had imagined. The
innovation allowed mathematicians to write out increasingly complex and
detailed abstract equations, without using geometry. Without symbolic algebra, it

147



would be difficult to imagine how modern mathematics would have ever
developed.

Islamic algebraists wrote equations as text with accompanying diagrams, as in the 14th-
century Treatise on the Question of Arithmetic Code by Master Ala-El-Din Muhammed El
Ferjumedhi.

AL-KHWARIZMI
Born in c. 780 CE near what is now Khiva, Uzbekistan,
Muhammad Ibn Musa al-Khwarizmi moved to
Baghdad, where he became a scholar at the House of
Wisdom.

Al-Khwarizmi is regarded as the “father of algebra”
for his systematic rules for solving linear and
quadratic equations. These were outlined in his major

work on calculation by “completion and balancing”—methods he devised that
are still used today. Other achievements include his text on Hindu numerals,
which, in its Latin translation, introduced Europe to Hindu-Arabic numerals. He
wrote a book on geography, helped construct a world map, took part in a project
to determine the circumference of Earth, developed the astrolabe (an earlier
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Greek tool for navigation), and compiled a set of astronomical tables. Al-
Khwarizmi died around 850.

Key works

c. 820 On the Calculation with Hindu Numerals

c. 830 The Compendious Book on Calculation by Completion and Balancing

See also: Quadratic equations • The Rhind papyrus • Diophantine equations •
Cubic equations • The algebraic resolution of equations • The fundamental
theorem of algebra
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IN CONTEXT
KEY FIGURE
Al-Karaji (c. 980–c. 1030)

FIELD
Number theory

BEFORE
c. 250 CE In Arithmetica, Diophantus lays down ideas about algebra later taken
up by al-Karaji.

c. 825 CE The Persian astronomer and mathematician al-Khwarizmi develops
algebra.

AFTER
1653 In Traité du triangle arithmétique (Treatise on the Arithmetical Triangle),
Blaise Pascal reveals the triangular pattern of coefficients in the bionomial
theorem in what is later called Pascal’s triangle.

1665 Isaac Newton develops the general binomial series from the binomial
theorem, forming part of the basis for his work on calculus.

At the heart of many mathematical operations lies an important basic theorem—
the binomial theorem. It provides a shorthand summary of what happens when
you multiply out a binomial, which is a simple algebraic expression consisting of
two known or unknown terms added together or subtracted. Without the binomial
theorem, many mathematical operations would be almost impossible to achieve.
The theorem shows that when binomials are multiplied out, the results follow a
predictable pattern that can be written as an algebraic expression or displayed on a
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triangular grid (known as Pascal’s triangle after Blaise Pascal, who explored the
pattern in the 1600s).
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Making sense of binomials
The binomial pattern was first observed by mathematicians in ancient Greece and
India, but the man credited with its discovery is the Persian mathematician al-
Karaji, one of many scholars who flourished in Baghdad from the 8th to the 14th
century. Al-Karaji explored the multiplication of algebraic terms. He defined
single terms called monomials”—x, x2, x3, and so on—and showed how they can
be multiplied or divided. He also looked at “polynomials” (expressions with
multiple terms), such as 6y2 + x3 - x + 17. But it was his discovery of the formula
for multiplying out binomials that had the most impact.

The binomial theorem concerns powers of binomials. For example, multiplying
out the binomial (a + b)2 by converting it to (a + b) (a + b) and multiplying each
term in the first parentheses by each term in the second parentheses results in (a +
b)2 = a2 + 2ab + b2. The calculation for the power 2 is manageable, but for greater
powers, the resulting expression becomes increasingly complicated. The binomial
theorem simplifies the problem by unlocking the pattern in the coefficients—
numbers, such as 2 in 2ab, by which the unknown terms are multiplied. As al-
Karaji discovered, the coefficients can be laid out in a grid, with the columns
showing the coefficients needed for multiplying out each power. The coefficients
in a column are calculated by adding together pairs of numbers in the preceding
column. To determine the powers in the expansion, you take the degree of the
binomial as n. In (a + b)2, n = 2.

Al-Karaji created a table to work out the coefficients of binomial equations. The first five
lines of it are shown here. The top line is for powers, with the coefficients for each power
listed in the column below. The first and final numbers are always 1. Each other number is the
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sum of its adjacent number in the preceding column and the number above that adjacent
number.

Algebra breaks free
Al-Karaji’s discovery of the binomial theorem helped to open the way for the full
development of algebra, by allowing mathematicians to manipulate complicated
algebraic expressions. The algebra developed by al-Khwarizmi 150 years or so
previously had used a system of symbols to work out unknown quantities and was
limited in scope. It was tied to the rules of geometry, and the solutions were
geometric dimensions, such as angles and side lengths. Al-Karaji’s work showed
how algebra could instead be based entirely on numbers, liberating it from
geometry.

The binomial theorem and a Bach fugue are, in the long run, more important than all the battles
of history.

James Hilton
British novelist

AL-KARAJI
Born around 980 CE, Abu Bakr ibn Muhammad ibn al-Husayn al-Karaji most
likely got his name from the city of Karaj, near Tehran, but he lived most of his
life in Baghdad, at the court of the caliph. It was here around 1015 that he
probably wrote his three key mathematics texts. The work in which al-Karaji
developed the binomial theorem is now lost, but later commentators preserved
his ideas. Al-Karaji was also an engineer, and his book Extraction of Hidden
Waters is the first known manual on hydrology.

Later in life, al-Karaji moved to “mountain countries” (possibly the Elburz
mountains near Karaj), where he spent his time working on practical projects for
drilling wells and building aqueducts. He died around 1030 CE.

Key works

Glorious on algebra

Wonderful on calculation

Sufficient on calculation
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See also: Positional numbers • Diophantine equations • Zero • Algebra • Pascal’s
triangle • Probability • Calculus • The fundamental theorem of algebra
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IN CONTEXT
KEY FIGURE
Omar Khayyam (1048–1131)

FIELD
Algebra

BEFORE
3rd century BCE Archimedes solves cubic equations using the intersection of
two conics.

7th century CE Chinese scholar Wang Xiaotong solves a range of cubic
equations numerically.

AFTER
16th century Mathematicians in Italy create jealously guarded methods to solve
cubic equations in the fastest time.

1799–1824 Italian scholar Paolo Ruffini and Norwegian mathematician Niels
Henrik Abel show that no algebraic formulas exist for equations involving terms
to the power of 5 and higher.

In the ancient world, scholars considered problems in a geometric way. Simple
linear equations (which describe a line), such as 4x + 8 = 12, where x is to the
power of 1, could be used to find a length, while a squared variable (x2) in a
quadratic equation could represent an unknown area—a two-dimensional space.
The next step up is the cubic equation, where the x3 term is an unknown volume
—a three-dimensional space.
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The Babylonians could solve quadratic equations in 2000 BCE, but it took another
3,000 years until Persian poet-scientist Omar Khayyam found an accurate method
for solving cubic equations, using curves called conic sections—such as circles,
ellipses, hyperbolas, or parabolas—formed by the intersection of a plane and a
cone.

Problems with cubes
The ancient Greeks, who used geometry to work out complex problems, puzzled
over cubes. A classic conundrum was how to produce a cube that was twice the
volume of another cube. For example, if the sides of a cube are each equal to 1 in
length, what length sides do you need for a cube twice the volume? In modern
terms, if a cube with side length 1 has a volume of 13, what side length cubed (x3)
produces twice that volume; that is, since 13 = 1, what is x if x3 = 2? The ancient
Greeks used a ruler and compasses to attempt constructing a solution to this cubic
equation but they never succeeded. Khayyam saw that such tools were not enough
to solve all cubic equations, and set out his use of conic sections and other
methods in his treatise on algebra.
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Using modern conventions, cubic equations can be expressed simply, such as x3

+ bx = c. Without the economy of modern notation, Khayyam expressed his
equations in words, describing x3 as “cubes”, x2 as “squares,” x as “lengths,” and
numbers as “amounts.” For example, he described x3 + 200x = 20x2 + 2,000 as a
problem of finding a cube that “with two hundred times its side” is equal to
“twenty squares of its side and two thousand.” For a simpler equation, such as x3

+ 36x = 144, Khayyam’s method was to draw a geometric diagram. He found that
he could break down the cubic equation into two simpler equations: one for a
circle, and the other for a parabola. By working out the value of x for which both
these simpler equations are true simultaneously, he could solve the original cubic
equation. This is shown in the graph below. At the time, mathematicians did not
have these graphical methods and Khayyam would have constructed the circle
and parabola geometrically.

Khayyam had also explored the properties of conic sections, and had deduced
that a solution to the cubic equation could be found by giving the circle in the
diagram a diameter of 4. This measure was arrived at by dividing c by b, or 144⁄36

in the example below. The circle passed through the origin (0,0) and its center
was on the x axis at (2,0). Using this diagram, Khayyam drew a perpendicular
line from the point where the circle and parabola intersected down to the x axis.
The point where the line crossed the x axis (where y = 0) gives the value for x in
the cubic equation. In the case of x3 + 36x = 144, the answer is x = 3.14 (rounded
to two decimal places).

Khayyam did not use coordinates and axes (which were invented about 600 years
later). Instead, he would have drawn the shapes as accurately as possible and
carefully measured the lengths on their diagrams. He would then have found an
approximate numerical solution using trigonometric tables, which were common
in astronomy. For Khayyam, the solution would always have been a positive
number. There is an equally valid negative answer, as shown by the minus
numbers in the graph below, but although the concept of negative numbers was
recognized in Indian mathematics, it was not generally accepted until the 1600s.

OMAR KHAYYAM
Born in Nishapur, Persia (now Iran), in 1048, Omar Khayyam was educated in
philosophy and the sciences. Although he won renown as an astronomer and
mathematician, when his patron Sultan Malik Shah died in 1092, he was forced
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into hiding. Finally rehabilitated 20 years later, he
lived quietly and died in 1131.

In mathematics, Khayyam is best remembered for his
work on cubic equations, but he also produced an
important commentary on Euclid’s fifth postulate,
known as the parallel postulate. As an astronomer, he
helped to construct a highly accurate calendar that was

used until the 1900s. Ironically, Khayyam is now best known for a work of
poetry for which he may not have been the sole author—the Rubaiyat, which
was translated into English by Edward Fitzgerald in 1859.

Key works

c. 1070 Treatise on Demonstration of Problems of Algebra

1077 Commentaries on the difficult postulates of Euclid’s book

A parabola (pink) for the equation x2 = 6y intersects the circle (blue) (x˗2)2 + y2 = 4. A line
from G, the point of intersection, to H on the x axis, gives the value for x (3.14) in the cubic
equation x3 + 36x = 144.

Khayyam’s contribution
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While Archimedes, working in the 3rd century BCE, may well have examined the
intersection of conic sections in a bid to solve cubic equations, what marks
Khayyam out is his systematic approach. This enabled him to produce a general
theory. He extended his mix of geometry and algebra to solve cubic equations
using circles, hyperbolas, and ellipses, but never explained how he constructed
them, simply saying he “used instruments.”

Khayyam was among the first to realize that a cubic equation could have more
than one root, and therefore more than one solution. As can be shown on a
modern graph that plots a cubic equation as a curve snaking above and below the
x axis, a cubic equation has up to three roots. Khayyam suspected two, but would
not have considered negative values. He did not like having to use geometry as
well as algebra to find a solution, and hoped that his geometrical efforts would
one day be replaced by arithmetic.

Khayyam anticipated the work of 16th-century Italian mathematicians, who
solved cubic equations without direct recourse to geometry. Scipione del Ferro
produced the first algebraic solution to cubic equations, discovered in his
notebook after his death. He and successors Niccolò Tartaglia, Lodovico Ferrari,
and Gerolamo Cardano all worked on algebraic formulae to solve cubic
equations. Cardano published Ferro’s solution in his book Ars Magna in 1545.
Their solutions were algebraic but differed from those of today, partly because
zero and negative numbers were little used at the time.

I have shown how to find the sides of the square-square, quatro-cube, cubo-cube… to any
length, which has not been [done] before now.

Omar Khayyam

Toward modern algebra
Mathematicians who continued the quest for cubic equation solutions included
Rafael Bombelli. He was among the first to state that a cubic root could be a
complex number, that is, a number that makes use of an “imaginary” unit derived
from the square root of a negative number, something not possible with “real”
numbers. In the late 1500s, Frenchman François Viète created more modern
algebraic notation, using substitution and simplifying to reach his solutions. By
1637, René Descartes had published a solution to the quartic equation (involving
x4), reducing it to a cubic equation and then to two quadratic equations to solve it.
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Today, a cubic equation can be written in the form ax3 + bx2 + cx + d = 0,
provided a itself is not 0. Where the coefficients (a, b, and c, which multiply the
variable x) are real numbers, rather than complex numbers, the equation will have
at least one real root and up to three roots in total.

Khayyam’s method is still taught today. His painstaking work advanced early
algebra, while later mathematicians have continued to refine its expression and
scope.

Algebras are geometric facts which are proved by propositions.

Omar Khayyam

A passion for geometric forms is evident in Islamic architecture, seen here in the tile
patterns, curved arches, and domes of the Masjid-i Kabud, the “Blue Mosque,” in Tabriz,
Iran.

The length of the year
In 1074, the ruling sultan of Persia, Jalal al-Din Malik Shah I, commissioned
Omar Khayyam to reform the lunar calendar used since the 7th century,
replacing it with a solar calendar. A new observatory was built in the capital
Isfahan, and Khayyam assembled a team of eight astronomers to assist him with
the work.

The year—computed to a highly accurate 365.24 days—began at the vernal
equinox in March, when the center of the visible Sun is directly above the
equator. Each month was worked out by the passage of the sun into the
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corresponding zodiac region, which required both computations and actual
observations. Because solar transit times could vary by 24 hours, months were
between 29 and 32 days long, but their length could differ from year to year.
The new Jalali calendar, named after the sultan, was adopted on March 15, 1079
and was only modified in 1925.

See also: Quadratic equations • Euclid’s Elements • Conic sections • Imaginary
and complex numbers • The complex plane
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IN CONTEXT
KEY FIGURE
Leonardo of Pisa, also known as Fibonacci (1170–c. 1250)

FIELD
Number theory

BEFORE
200 BCE The number sequence later known as the Fibonacci sequence is cited
by the Indian mathematician Pingala in relation to Sanskrit poetic meters.

700 CE The Indian poet and mathematician Virahanka writes about the
sequence.

AFTER
17th century In Germany, Johannes Kepler notices that the ratio of successive
terms in the sequence converges.

1891 Édouard Lucas coins the name Fibonacci sequence in Théorie des
Nombres (Number Theory).

One sequence of numbers occurs time and again in the natural world. In this
sequence, every number is the sum of the previous two (0, 1, 1, 2, 3, 5, 8, 13, 21,
34, and so on). Originally referred to by the Indian scholar Pingala in around 200
BCE, it was later called the Fibonacci sequence after Leonardo Pisano (Leonardo
of Pisa), an Italian mathematician known as Fibonacci. Fibonacci explored the
sequence in his 1202 book Liber Abaci (The Book of Calculation). The sequence
has important forecasting applications in nature, geometry, and business.
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A problem with rabbits
One of the problems Fibonacci raised in Liber Abaci concerned the growth of
rabbit populations. Starting with a single pair of rabbits, he asked his readers to
work out how many pairs there would be in each successive month. Fibonacci
made several assumptions: no rabbit ever died; rabbit pairs mated every month,
but only after they were two months old, the age of maturity; and each pair
produced one male and one female offspring every month. For the first two
months, he said, there would only be the original pair: by the end of three months,
there would be a total of two pairs; and at the end of four months, there would be
three pairs, as only the original pair was old enough to breed.

Thereafter, the population grows more quickly. In the fifth month, both the
original pair and their first offspring produce baby rabbits, although the second
pair of offspring is still too young. This results in a total of five pairs of rabbits.
The process continues in successive months, resulting in a number sequence in
which each number is the sum of the previous two: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, and so on – a sequence that became known as the Fibonacci sequence.
As with many mathematical problems, it is based on a hypothetical situation:
Fibonacci’s assumptions about how the rabbits behave are unrealistic.

FIBONACCI
Born Leonardo Pisano, probably in Pisa, Italy, in 1170, Fibonacci did not
become known as Fibonacci (“son of Bonacci”) until long after his death.
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Leonardo traveled widely with his diplomat father and
studied at a school of accounting in Bugia, North
Africa. There he came across the Hindu–Arabic
symbols used to represent the numbers 1 to 9.
Impressed by these numerals’ simplicity compared
with the lengthy Roman numerals used in Europe, he
discussed them in Liber Abaci (The Book of

Calculation), which he wrote in 1202.

Leonardo also traveled to Egypt, Syria, Greece, Sicily, and Provence, exploring
different number systems. His work was widely read and came to the attention
of the Holy Roman Emperor, Frederick II. Fibonacci died c. 1240–50.

Key works

1202 Liber Abaci (The Book of Calculation)

1220 Practica Geometriae (Practical Geometry)

1225 Liber Quadratorum (The Book of Squares)

Generations of bees
An example of the Fibonacci sequence cropping up in nature concerns bees in a
beehive. A male bee, or drone, develops from the unfertilized egg of a queen bee.
Since the egg is unfertilized, the drone has only one parent, its “mother.” Drones
have different roles in the beehive, one of which is to mate with the queen and
fertilize her eggs. Fertilized eggs develop into female bees, which can either be
queens or workers. This means that one generation back the drone has only one
ancestor, its mother; two generations back it has two ancestors, or
“grandparents”—the mother and father of its mother; and three generations back,
it has three “great grandparents”—its grandmother’s two parents and its
grandfather’s mother. Further back, there are five members of the previous
generation, eight of the one before that, and so on. The pattern is clear: the
number of members in each generation of ancestors forms the Fibonacci
sequence. The sum of the number of parents of a male and a female from the
same generation of bees is three. Their parents total five grandparents, whose own
parents add up to eight great-grandparents. When the pattern is traced back to
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earlier generations, the Fibonacci sequence continues, with 13, 21, 34, 55
ancestors, and so on.

Each month, some rabbits mature and others breed. In the first six months, the number of
pairs has increased in the sequence 1, 1, 2, 3, 5, and 8. Future generations over the next four
months can be forecast to contain 13, 21, 34, and 55 pairs of rabbits.

The Fibonacci sequence turns out to be the key to understanding how nature designs.

Guy Murchie
American writer

Plant life
The Fibonacci sequence can also be seen in the arrangement of leaves and seeds
in some plants. Pine cones and pineapples, for example, display Fibonacci
numbers in the spiral formation of their exterior scales. Many flowers have three,
five, or eight petals—numbers that belong to the Fibonacci sequence. Ragwort
flowers have 13 petals, chicory often has 21, and different types of daisy have 34
or 55. However, many other flowers have four or six petals, so while numbers
from the sequence are common, other patterns are also found.

Each Fibonacci number is the sum of the previous two, so the first two have to
be stated before the third can be calculated. The Fibonacci sequence can be
defined by a recurrence relation—an equation that defines a number in a sequence
in terms of its previous numbers. The first Fibonacci number is written as f1, the
second as f2, and so on. The equation is fn = f(n-1) + f(n-2), where n is greater than
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1. If you are trying to find the fifth Fibonacci number (f5), for example, you must
add together f4 and f3.

[If] a spider climbs so many feet up a wall each day and slips back a fixed number each night,
how many days does it take him to climb the wall?

Fibonacci

Fibonacci ratios
Calculating the ratios of successive terms in the Fibonacci sequence is particularly
interesting. Dividing each number by the previous number in the sequence
produces the following: 1⁄1 = 1, 2⁄1 = 2, 3⁄2 = 1.5, 5⁄3 = 1.666…, 8⁄5 = 1.6, 13⁄8 =
1.625, 21⁄13 = 1.61538…, 34⁄21 = 1.61904… By continuing this process
indefinitely, it can be shown that the numbers approach 1.618, approximately.
This is referred to as the golden ratio or the golden mean. The same number is
also significant in a curve called the golden spiral, which gets wider by a factor of
1.618 for every quarter turn it makes. This spiral crops up commonly in nature:
for example, the seeds of pine cones, sunflowers, and coneflowers tend to grow in
golden spirals.
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The scales of a pine cone, viewed from above, can be seen to run in two sets of spirals. Both
sets run from the outside to the center: one clockwise, and the other counterclockwise. The
numbers of spirals in each set are 13 (clockwise) and 8 (counterclockwise)—two Fibonacci
numbers.

Arts and analysis
The Fibonacci sequence can also be found in poetry, art, and music. A pleasing
rhythm in poetry, for example, is produced when successive lines have 1, 1, 2, 3,
5, and 8 syllables, and there is a long tradition of 6-line, 20-syllable poetry
structured in this way. Around 200 BCE, Pingala was aware of this pattern in
Sanskrit poetry, and the Roman poet Virgil used it in the 1st century BCE.

The sequence has also been used in music. French composer Claude Debussy
(1862–1918) employed Fibonacci numbers in several compositions. In the
dramatic climax of his Cloches à travers les feuilles (Bells Through the Leaves),
the ratio of total bars in the piece to climax bars is approximately 1.618.
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A page from the original
manuscript of Liber Abaci
shows the Fibonacci
sequence listed on the
right.

Although it is often associated with the arts, the Fibonacci sequence has also
proved a useful tool in finance. Today, ratios derived from the sequence are used
as an analytical tool to forecast the point at which stock market prices will stop
rising or falling.

A piano keyboard scale from C to C spans 13 keys, eight white and five black. The black
keys are in groups of two and three. These numbers all form part of the Fibonacci sequence.

Practical solutions
Fibonacci’s work was intended to have a useful
purpose. In Liber Abaci (1202), for example, he
described how to solve many of the problems
encountered in commerce, including calculating
profit margins and converting currencies. In
Practica Geometriae (1220), he solved problems
associated with surveying, such as finding the height
of a tall object using similar triangles (triangles that
have identical angles, but different sizes). In his
Liber Quadratorum (1225), he tackled several topics
in number theory, including finding Pythagorean

triples—groups of three integers that represent the lengths of the sides of right-
angled triangles. In these triangles, the square of the length of the longest side
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(the hypotenuse) equals the sum of the squares of the lengths of the two shorter
sides. Fibonacci found that, starting with 5, every second number in his
sequence (13, 34, 89, 233, 610, and so on) is the length of the hypotenuse of a
right-angled triangle when the lengths of the two shorter sides are integers.

See also: Positional numbers • Pythagoras • Trigonometry • Algebra • The golden
ratio • Pascal’s triangle • Benford’s law
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IN CONTEXT
KEY FIGURE
Sissa ben Dahir (3rd or 4th century CE)

FIELD
Number theory

BEFORE
c. 300 BCE Euclid introduces the concept of a power to describe squares

c. 250 BCE Archimedes uses the law of exponents, which states that multiplying
exponents can be achieved by adding the powers.

AFTER
1798 British economist Thomas Malthus predicts that the human population
will grow exponentially while the food supply will increase more slowly,
causing a catastrophe.

1965 American co-founder of Intel Gordon Moore observes how the number of
transistors on a microchip doubles roughly every 18 months.

The first written record of the wheat on a chessboard problem was made in 1256
by Muslim historian Ibn Khallikan, though it is probably a retelling of an earlier
version that arose in India in the 5th century. According to the story, the inventor
of chess, Sissa ben Dahir, was summoned to an audience with his ruler, King
Sharim. The king was so delighted with the game of chess that he offered to grant
Sissa any reward that he wanted. Sissa asked for some grains and explained the
quantity he desired using the squares on the 8 × 8 chessboard. One grain of wheat
(or rice, in some versions of the story) was to be placed on the bottom left square
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of the chessboard. Moving right, the number of grains would then be doubled, so
the second square had two grains, the third had four, and so on, moving left to
right along each row to the 64th square at the top right.

Puzzled by what seemed to be a paltry reward, the king ordered that the grains be
counted out. The 8th square had 128 grains, the 24th had more than 8 million, and
the 32nd, the last square on the chessboard’s first half, had over 2 billion. By
then, the king’s granary was running low, and he realized that the next square
alone, number 33, would need 4 billion grains, or one large field’s worth. His
advisers calculated that the final square would need 9.2 million trillion grains, and
the total number of grains on the chessboard would be
18,446,744,073,709,551,615 (264 – 1). The story has two alternative endings: in
one, the king made Sissa his chief adviser; in the other, Sissa was executed for
making the king look foolish.

Sissa’s concept is an example of what is known as a geometric series, in which
every successive term is the previous one multiplied by two: 1 + 2 + 4 + 8 + 16,
and so on. From 2 onward, these numbers are all powers of 2: 1 + 2 + 22 + 23 +
24, and so on. The superscript number, the exponent, shows how many times the
other number, in this case 2, is multiplied by itself. The last term in the series, 263,
is 2 multiplied by itself 63 times.
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Bacteria dividing is an example of exponential growth; when a single cell divides, it creates
two cells that divide to make four, and so on. This allows bacteria to spread very quickly.

Power of exponents
The growth of the values in this series is described as exponential. Exponents can
be viewed as instructions for how many times 1 should be multiplied by a given
number. For example, 23 means that 1 will be multiplied by 2 three times: 1 × 2 ×
2 × 2 = 8, while 21 means that 1 will be multiplied by 2 just once: 1 × 2 = 2. The
first square of the chessboard contains 1 grain, so 1 is the first term of this series.
The number 1 can be written as 20, because it is equivalent to 1 multiplied by 2
zero times, leaving 1 unaffected. In fact, any number to the power of 0 equals 1
for this reason.

Exponential growth and decay relate to many aspects of everyday life. For
example, a radioactive isotope decays into another atomic form at an exponential
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rate, and that results in a half-life, where half the material takes the same amount
of time to decay, irrespective of the starting quantity.

Sissa’s concept of wheat on a chessboard is an early example of how quickly numbers can
increase with exponential growth.(Numbers from 1 million onward are approximate.) The
wheat on this chessboard would total over 18 million trillion grains.

The second half of the chessboard
Recent thinkers have used the chessboard problem as a metaphor for the rate of
change in technology over recent years. In 2001, computer scientist Ray
Kurzweil wrote an influential essay describing the exponential growth in
technology over previous years. He predicted that, like the wheat on the second
half of the chessboard, the rate of technological development would rapidly
grow out of control, following the model of doubling its previous growth with
every leap forward.

Kurzweil argued that this rate of growth in technology would eventually lead to
the singularity, which is defined in physics as a point at which a function takes

174



an infinite value. When applied to technology, the singularity marks the point at
which the cognitive ability of artificial intelligence will surpass that of humans.

See also: Zeno’s paradoxes of motion • Syllogistic logic • Logarithms • Euler’s
number • Catalan’s conjecture
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INTRODUCTION
Throughout the Middle Ages, the Catholic Church wielded considerable political
power across Europe, and had a virtual monopoly of learning, but in the 1400s, its
authority was being challenged. A new cultural movement, known as the
Renaissance (“rebirth”), was inspired by renewed interest in the arts and
philosophy of the Graeco-Roman Classical period.

The Renaissance thirst for discovery also accelerated a “Scientific Revolution”—
classic texts of mathematics, philosophy, and science had become widely
available, and inspired a new generation of thinkers. So too did the Protestant
Reformation that challenged the hegemony of the Catholic Church in the 1500s.

Renaissance art also influenced mathematics. Luca Pacioli, an early Renaissance
mathematician, investigated the mathematics of the golden ratio that was so
important in Classical art, and the innovative use of perspective in painting
inspired Girard Desargues to explore the mathematics behind it and develop the
field of projective geometry. Practical considerations also prompted progress:
commerce required more sophisticated means of accounting, and international
trade drove advances in navigation, which demanded a deeper understanding of
trigonometry.

Mathematical innovation
A major advance in the business of calculation came with the adoption of the
Hindu-Arabic number system and an increase in the use of symbols to represent
functions such as equals, multiplication, and division. Another significant
development was the formalization of a number system of base-10, and Simon
Stevin’s introduction of the decimal point in 1585.

To meet the era’s practical needs, mathematicians devised tables of relevant
calculations, and John Napier developed a means of calculating with logarithms
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in the 1600s. The first mechanical aids to calculation were invented during this
period, such as William Oughtred’s slide rule, and Gottfried Leibniz’s mechanical
calculating device, which was a first step toward true computing devices.

Other mathematicians took a more theoretical path, inspired by the ideas in the
newly available texts. In the 1500s, the solution of cubic and quartic equations
occupied Italian mathematicians such as Gerolamo Cardano, while Marin
Mersenne devised a method of finding prime numbers, and Rafael Bombelli laid
down rules for using imaginary numbers. In the 1600s, the pace of mathematical
discovery accelerated as never before, and several pioneering modern
mathematicians emerged. Among these was philosopher, scientist, and
mathematician René Descartes, whose methodical approach to problem-solving
set the scene for the modern scientific era. His major contribution to mathematics
was the invention of a system of coordinates to specify the position of a point in
relation to axes, establishing the new field of analytic geometry, in which lines
and shapes are described in terms of algebraic equations.

Another late-Renaissance mathematician who has become almost a household
name is Pierre de Fermat, whose claim to fame rests largely on his enigmatic last
theorem, which remained unsolved until 1994. Less well known are his
contributions to the development of calculus, number theory, and analytic
geometry. He and fellow mathematician Blaise Pascal corresponded about
gambling and games of chance, laying the foundations for the field of probability.

The birth of calculus
One of the key mathematical concepts of the 1600s was developed independently
by two scientific giants of the time, Gottfried Leibniz and Isaac Newton.
Following on from the work of Gilles de Roberval in finding the area under a
cycloid, Leibniz and Newton worked on the problems of calculation of such
things as continuous change and acceleration, which had puzzled mathematicians
ever since Zeno of Elea had presented his famous paradoxes of motion in ancient
Greece. Their solution to the problem was the theorem of calculus, a set of rules
for calculating using infinitesimals. For Newton, calculus was a practical tool for
his work in physics and especially on the motion of planets, but Leibniz
recognized its theoretical importance and refined the rules of differentiation and
integration.
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IN CONTEXT
KEY FIGURE
Luca Pacioli (1445–1517)

FIELD
Applied geometry

BEFORE
447–432 BCE Designed by the Greek sculptor Phidias, the Parthenon is later said
to approximate the golden ratio.

c. 300 BCE Euclid makes the first known written reference to the golden ratio in
his Elements.

1202 CE Fibonacci introduces his famous sequence.

AFTER
1619 Johannes Kepler proves that the numbers in the Fibonacci sequence
approach the golden ratio.

1914 Mark Barr, an American mathematician, is credited with using the Greek
letter phi (ϕ) for the golden ratio.

[The golden proportion] is a scale of proportions which makes the bad difficult [to produce] and
the good easy.

Albert Einstein

The Renaissance was a time of intellectual creativity, in which disciplines such as
art, philosophy, religion, science, and mathematics were considered to be much
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closer to each other than they are today. One area of interest was in the
relationship between mathematics, proportion, and beauty. In 1509, Italian priest
and mathematician Luca Pacioli wrote Divina Proportione (The Divine
Proportion), which discussed the mathematical and geometric underpinnings of
perspective in architecture and the visual arts. The book was illustrated by
Pacioli’s friend and colleague Leonardo da Vinci, a leading artist and polymath of
the Renaissance.

Since the Renaissance, the mathematical analysis of art by means of the “golden
ratio,” “golden mean”—or, as Pacioli called it, the Divine Proportion—has come
to symbolize geometrical perfection. The ratio can be found by dividing a straight
line into two parts, so that the ratio of the longer length (a) to the smaller length
(b) is the same as the ratio of the whole line (a + b) divided by the longer length
(a). So: (a + b) ÷ a = a ÷ b. The value of this ratio is a mathematical constant
denoted by the Greek letter ϕ (“phi”). The name ϕ comes from the ancient Greek
sculptor Phidias (500–432 BCE), who is believed to have been one of the first to
recognize the aesthetic possibilities of the golden ratio. He allegedly used the ratio
in the design of the Parthenon in Athens.

Like π (3.1415…), ϕ is an irrational number (a number that cannot be expressed
as a fraction) and can therefore be expanded to an infinite number of decimals in a
nonrepeating random pattern. Its approximate value is 1.618. It is one of the
wonders of mathematics that this seemingly unremarkable number should
produce such aesthetically pleasing proportions in art, architecture, and nature.
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Discovering phi
Some believe that proportions related to ϕ can be found in ancient Greek
architecture—and even earlier in ancient Egyptian culture, with the Great
Pyramid built at Giza in c. 2560 BCE, which has a base to height ratio of 1.5717.
Yet there is no evidence that ancient architects were conscious of this ideal ratio.
Approximations to the golden ratio may have been the result of an unconscious
tendency rather than any deliberate mathematical intention.

The Pythagoreans, a semi-mystical group of mathematicians and philosophers
associated with Pythagoras of Samos (570–495 BCE) had the pentagram, or five-
pointed star, as their symbol. Where one side of the pentagram crosses another, it
divides each side into two parts, the ratio of which is ϕ. The Pythagoreans were
convinced that the Universe was based on numbers; they also believed that all
numbers could be described as the ratio of two integers. According to
Pythagorean doctrine, any two lengths are both integer multiples of some fixed
smaller length. In other words, their ratio is a rational number, so it can be
expressed as the ratio of integers. Supposedly, when one of Pythagoras’s
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followers, Hippasus, discovered that this was not true, his fellow Pythagoreans
drowned him in disgust.

LUCA PACIOLI
Luca Pacioli was born in 1445 in Tuscany. After
moving to Rome in his youth, he received training
from the artist–mathematician Piero della Francesca as
well as the renowned architect Leon Battista Alberti,
and gained knowledge of geometry, artistic
perspective, and architecture. He became a teacher
and traveled throughout Italy. He also took his vows

as a Franciscan friar, combining monastic pursuits with teaching. In 1496,
Pacioli moved to Milan to work as a payroll clerk. While there, he also gave
mathematics tuition, one of his students being Leonardo da Vinci, who
illustrated Pacioli’s Divina Proportione. Pacioli also devised a method of
accounting that is still in use today. He died in 1517, in Sansepolcro, Tuscany.

Key works

1494 Summa de arithmetica, geometria, proportioni et proportionalita
(Summary of arithmetic, geometry, proportions, and proportionality)

1509 Divina Proportione (The Divine Proportion)

Written records
The earliest written references to the golden ratio are found in the work of the
Alexandrian mathematician Euclid, c. 300 BCE. Euclid’s Elements discussed the
Platonic solids described earlier by Plato (such as the tetrahedron), and
demonstrated the golden ratio (which Euclid called the “extreme and mean ratio”)
in their proportions. Euclid showed how to construct the golden ratio using a ruler
and compass.

The good, of course, is always beautiful, and the beautiful never lacks proportion.

Plato

Phi and Fibonacci
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The golden ratio is also closely related to another well-known mathematical
phenomenon— the set of numbers known as the Fibonacci sequence. It was
introduced by Leonardo of Pisa, or Fibonacci, in his 1202 book Liber Abaci (The
Book of Calculation). Subsequent numbers in the Fibonacci sequence are found
by adding the previous two together: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89….

It took until 1619 for German mathematician and astronomer Johannes Kepler to
show that the golden ratio is revealed if a number in the Fibonacci sequence is
divided by the one that precedes it. The further along the sequence this calculation
is attempted, the closer the answer is to ϕ. For example, 6,765 ÷ 4,181 = 1.61803.
Both Fibonacci’s sequence and the golden ratio appear to exist widely in nature.
For example, many species of flower have a Fibonacci number of petals, and the
scales of a pine cone, viewed from below, are arranged in 8 clockwise spirals and
13 counterclockwise spirals.

Another golden ratio approximated in nature is the golden spiral, which gets
wider by a factor of ϕ for every quarter turn it makes. The golden spiral can be
drawn by splitting a golden rectangle (a rectangle with side lengths in the golden
ratio) into successively smaller squares and golden rectangles, and inscribing
quarter circles inside the squares. Natural spiral shapes, such as the nautilus shell,
have a resemblance to the golden spiral, but do not strictly fit the proportions.

The golden spiral was first described by French philosopher, mathematician, and
polymath René Descartes in 1638 and was studied by Swiss mathematician Jacob
Bernoulli. It was classified as a type of “logarithmic spiral” by French
mathematician Pierre Varignon because the spiral can be generated by a
logarithmic curve.
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Leonardo da Vinci supposedly used golden rectangles in his composition of The Last Supper
(1494–98). Other Renaissance artists—such as Raphael and Michelangelo—also used the
ratio.

Art and architecture
While the golden ratio can be found in music and poetry, it is more often
associated with the art of the Renaissance in the 15th and 16th centuries. Da
Vinci’s painting The Last Supper (1494–98) is said to incorporate the golden
ratio. His famous drawing of the “Vitruvian Man”—a “perfectly proportioned”
man inscribed in a circle and square—for Divina Proportione is also said to
contain many instances of the golden ratio in the proportions of the ideal human
body. In reality, the Vitruvian Man, which illustrated the theories of ancient
Roman architect Vitruvius, does not quite align with golden proportions. Despite
this, many people have subsequently attempted to relate the golden ratio to the
notion of attractiveness in people (see box).

The problem with using the golden ratio to define human beauty is that if you’re looking hard
enough for a pattern, you’ll almost certainly find one.

Hannah Fry
British mathematician

Against the golden ratio

184



In the 1800s, German psychologist Adolf Zeising argued that the perfect human
body aligned with the golden ratio; it could be found by measuring the person’s
total height and dividing this by the height from their feet to their navel. In 2015,
Stanford mathematics professor Keith Devlin argued that the golden ratio is a
“150-year scam.” He blamed Zeising’s work for the idea that the golden ratio has
historically had a relationship to aesthetics. Devlin argues that Zeising’s ideas
have led people to look back at historical art and architecture and retrospectively
apply the golden ratio. Similarly, in 1992, American mathematician George
Markowsky suggested that supposed discoveries of the golden ratio in the human
body were a result of imprecise measurements.

A golden spiral can be inscribed within a golden rectangle. It is created by splitting the
rectangle into squares and a smaller golden rectangle, then repeating the process in the smaller
rectangle. If quarter circles are then inscribed in the squares, it creates a golden spiral.

Modern uses
Although ϕ’s historical use is debated, the golden ratio can still be traced in
modern works, such as Salvador Dalí’s Sacrament of the Last Supper (1955), in
which the shape of the painting itself is a golden rectangle. Beyond the arts, the
golden ratio has also appeared in modern geometry, particularly in the work of
British mathematician Roger Penrose, whose Fibonacci tiles incorporate the
golden ratio in their structure. Standard aspect ratios for television and computer
monitor screens, such as the 16:9 display, also come close to ϕ, as do modern
bank cards, which are almost perfect golden rectangles.
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The mask created by
Stephen Marquardt has
been criticized for
defining beauty based on
white, Western models.

The ratio of beauty
Studies indicate that facial symmetry plays a major
role in determining a person’s perceived
attractiveness. However, the proportions defined by
the golden ratio appear to play an even greater role.
People whose faces have proportions that
approximate to the golden ratio (the ratio of the
length of the head to its width, for instance) are often
cited as being more attractive than those whose faces
do not. Studies to date, however, are inconclusive
and often contradictory; there is little scientific basis
for believing that the golden ratio makes a face more
attractive.

Stephen Marquardt, an American plastic surgeon,
created a “mask” (see above) based on applying the golden ratio to the human
face. The more closely a face aligns with the mask, the more beautiful it
supposedly is. Some, however, see the mask—used as a template for plastic
surgery—as an unethical, unfounded use of mathematics.

See also: Pythagoras • Irrational numbers • The Platonic solids • Euclid’s
Elements • Calculating pi • The Fibonacci sequence • Logarithms • The Penrose
tile
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IN CONTEXT
KEY FIGURES
Hudalrichus Regius (early 1500s), Marin Mersenne (1588–1648)

FIELD
Number theory

BEFORE
c. 300 BCE Euclid proves the fundamental theorem of arithmetic that every
integer greater than 1 can be expressed as a product of primes in only one way.

c. 200 BCE Eratosthenes devises a method for calculating prime numbers.

AFTER
1750 Leonhard Euler confirms that the Mersenne number 231 − 1 is prime.

1876 French mathematician Édouard Lucas verifies that 2127 − 1 is a Mersenne
prime.

2018 The largest known prime to date is found to be 282,589,933 − 1.

Prime numbers—numbers that can only be divided by themselves or 1—have
fascinated scholars since the ancient Greeks of Pythagoras’s school first studied
them, not least because they can be thought of as the building blocks of all natural
numbers (positive integers). Until 1536, mathematicians believed that all prime
numbers for n, when employed in the equation 2n - 1, would lead to another
prime as the solution. However, in his Utriusque Arithmetices Epitome (Epitome
of Both Arithmetics), published in 1536, a scholar known to us only as
Hudalrichus Regius pointed out that 211 - 1 = 2,047. This is not a prime number,
as 2,047 = 23 × 89.
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Mersenne’s influence
Regius’s work on primes was continued by others who proposed new hypotheses
with 2n - 1. The most significant was that of French monk Marin Mersenne in
1644). He stated that 2n-1 was valid when n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127,
and 257. Mersenne’s work rekindled interest in the topic, and primes generated by
2n - 1 are now known as Mersenne primes (Mn).

The use of computers has made it possible to find more Mersenne primes. Two
of Mersenne’s n values (67 and 257) were proved incorrect, but in 1947, three
new primes were found: n = 61, 89, and 107 (M61, M89, M107), and in 2018, the
Great Internet Mersenne Prime Search uncovered the 51st known Mersenne
prime.

The beauty of number theory [is] related to the contradiction between the simplicity of the
integers and the complicated structure of the primes.

Andreas Knauf
German mathematician

See also: Euclid’s Elements • Eratosthenes’ sieve • The Riemann hypothesis •
The prime number theorem

188



IN CONTEXT
KEY FIGURE
Pedro Nunes (1502–78)

FIELD
Graph theory

BEFORE
150 CE The Greco-Roman mathematician Ptolemy establishes the concepts of
latitude and longitude.

c. 1200 The magnetic compass is used by navigators in China, Europe, and the
Arab world.

1522 Portuguese navigator Ferdinand Magellan’s ship completes the first
voyage around the world.

AFTER
1569 Flemish mapmaker Gerardus Mercator’s map projection allows navigators
to plot rhumb-line courses as straight lines on the map.

1617 A spiral rhumb line is named a “loxodrome” by Dutch mathematician
Willebrord Snell.

From around 1500, as ships began to cross the world’s oceans, navigators met a
problem—plotting a course across the world that took account of the Earth’s
curved surface. The problem was solved by the introduction of the rhumb line by
Portuguese mathematician Pedro Nunes in his Treatise on the Sphere (1537).
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The rhumb spiral
A rhumb line cuts across every meridian (line of longitude) at the same angle.
Because meridians get closer toward the poles, rhumb lines bend around into a
spiral. Such spirals were called loxodromes by Dutch mathematician Willebrord
Snell in 1617; they became a key concept in the geometry of space.

The rhumb line helps navigators because it gives a single compass bearing for a
voyage. In 1569, Mercator maps—on which lines of longitude are drawn parallel,
so that all rhumb lines are straight—were introduced. This further enabled people
to plot a course just by drawing a straight line on the map. The shortest distance
across the globe is not a rhumb, however, but a “great circle”—any circle that
centers on the center of the Earth. It only became practical to follow a great circle
course with the invention of GPS.

A loxodrome starts at the North or South Pole, and spirals around the globe, crossing each
meridian at the same angle. A rhumb line is all or part of this spiral.

See also: Coordinates • Huygens’s tautochrone curve • Graph theory • Non-
Euclidean geometries
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IN CONTEXT
KEY FIGURE
Robert Recorde (c. 1510–58)

FIELD
Number systems

BEFORE
250 CE Greek mathematician Diophantus uses symbols to represent variables
(unknown quantities) in Arithmetica.

1478 The Treviso Arithmetic explains in simple language how to perform
addition, subtraction, multiplication, and division calculations.

AFTER
1665 In England, Isaac Newton develops infinitesimal calculus, which
introduces ideas such as limits, functions, and derivatives. These processes
require new symbols for abbreviation.

1801 Carl Friedrich Gauss introduces the symbol for congruence—equal size
and shape.

In the 16th century, when Welsh doctor and mathematician Robert Recorde began
his work, there was little consensus on the notation used in arithmetic. Hindu–
Arabic numerals, including zero, were already established, but there was little to
represent calculations.

In 1543, Recorde’s The Grounde of Artes introduced the symbols for addition (+)
and subtraction (˗) to mathematics in England. These signs had first appeared in
print in Mercantile Arithmetic (1489), by German mathematician Johannes
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Widman, but were probably already used by German merchants before Widman’s
book was published. These symbols slowly replaced the letters “p” for plus and
“m” for minus as they were taken up by scholars, first in Italy, then in England.

In 1557, Recorde went on to recommend a new symbol of his own. In The
Whetstone of Witte, he used a pair of identical parallel lines (=) to represent
“equals,” claiming that “no two things can be more equal” than these. Recorde
suggested that symbols would save mathematicians from having to write out
calculations in words. The equals sign was widely adopted, and the 17th century
also saw the creation of many of the other symbols used today, such as those for
multiplication (×) and division (÷).

Robert Recorde tested the equals sign (=) in his own calculations, as seen here in one of his
exercise books. Recorde’s sign was noticeably longer than the modern form.

Notating algebra
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While the earliest algebraic techniques date back more than two millennia to the
Babylonians, most calculations before the 16th century were recorded in words—
sometimes abbreviated, but not in a uniform way. English mathematician Thomas
Harriot and French mathematician François Viète, who each made important
contributions to developments in algebra, used letters to produce consistent
symbolic notation. In their system, the most noticeable difference from today’s
notation is the use of a repeated letter to indicate a power. For example, a3 was
aaa and x4 was xxxx.

A modern system
French mathematician Nicholas Chuquet used superscripts in 1484 to represent
exponents (“to the power of”), but did not record them as such; for example, 6x2

was 6.2. It took more than 150 years for superscripts to become common; René
Descartes used recognizable examples in 1637 when writing 3x + 5x3, yet
continued to write x2 as xx. Only in the early 1800s, when the influential German
mathematician Carl Gauss favored using x2, did superscript notation begin to
stick. Descartes also made a contribution with his use of x, y, and z for the
unknowns in equations, and a, b, and c for known figures.

Algebraic notation may have taken a long time to catch on, but when a symbol
made sense and helped mathematicians work through problems, it became the
norm. Improved contact between mathematicians in different parts of the world in
the 1600s also led to such notations being adopted much more swiftly.
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To avoid the tedious repetition of these words, is equal to, I will set, as I do often in work use, a
pair of parallels.

Robert Recorde

ROBERT RECORDE
Born in Tenby, Wales, around 1510, Recorde grew up
to study medicine first at Oxford University, then at
Cambridge, where he qualified as a physician in 1545.
He taught mathematics at both universities and wrote
the first English book on algebra in 1543. In 1549,
after a period practicing medicine in London, Recorde
was made controller of the Bristol mint. However,
after he refused to issue funds to William Herbert, the

future Earl of Pembroke, for his army, the mint was closed.

In 1551, Recorde was given charge of the Dublin mint, which included silver
mines in Germany. When he failed to show a profit, the mines were also closed.
Recorde later tried to sue Pembroke for misconduct, but was instead
countersued for libel. Sent to a London prison in 1557 for failure to pay the fine,
Recorde died there in 1558.

Key works

1543 Arithmetic: or the Grounde of Artes

1551 The Pathway to Knowledge

1557 The Whetstone of Witte

See also: Positional numbers • Negative numbers • Algebra • Decimals •
Logarithms • Calculus
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IN CONTEXT
KEY FIGURE
Rafael Bombelli (1526–72)

FIELD
Algebra

BEFORE
1500s In Italy, Scipione del Ferro, Tartaglia, Antonio Fior, and Ludovico Ferrari
compete publicly to solve cubic equations.

1545 Gerolamo Cardano’s Ars Magna, a book of algebra, includes the first
published calculation involving complex numbers.

AFTER
1777 Leonhard Euler introduces the notation i for .

1806 Jean-Robert Argand publishes a geometrical interpretation of complex
numbers, leading to the Argand diagram.

In the late 1500s, Italian mathematician Rafael Bombelli broke new ground when
he laid down the rules for using imaginary and complex numbers in his book
Algebra. An imaginary number, when squared, produces a negative result,
defying the usual rules that any number (positive or negative) results in a positive
number when squared. A complex number is the sum of any real number (on the
number line) and an imaginary number. Complex numbers take the form a + bi,

where a and b are real and i = .
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Over the centuries, scholars have needed to extend the concept of the number in
order to solve different problems. Imaginary and complex numbers were new
tools in this endeavor, and Bombelli’s Algebra advanced understanding of how
these and other numbers work. To solve the simplest equations, such as x + 1 = 2,
only natural numbers (positive integers) are needed. To solve x + 2 = 1, however,
x must be a negative integer, while solving x2 + 2 = 1 requires the square root of a
negative number. This did not exist with the numbers at Bombelli’s disposal, so

had to be invented—leading to the concept of the imaginary unit ( ).
Negative numbers were still mistrusted in the 1500s; imaginary and complex
numbers were not widely accepted for many decades.

Some people believe in imaginary friends. I believe in imaginary numbers.

R. M. ArceJaeger
American author

Fierce rivalry
The idea of complex numbers first emerged early in Bombelli’s lifetime as Italian
mathematicians sought to find solutions to cubic equations as efficiently as
possible, without relying on the geometrical methods devised by Persian
polymath Omar Khayyam in the 12th century. As most quadratic equations could
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be solved with an algebraic formula, the search was on for a similar formula that
worked for cubic equations. Scipione del Ferro, a mathematics professor at
Bologna University, took a major step forward when he discovered an algebraic
method for solving some cubic equations, but the quest for a comprehensive
formula continued.

Italian mathematicians of this era would publicly challenge one another to solve
cubic equations and other problems in the least possible time. Achieving fame in
such contests became essential for any scholar who wanted to gain a post as a
mathematics professor at a prestigious university. As a result, many
mathematicians kept their methods secret rather than sharing them for the
common good. Del Ferro tackled equations of the form x3 + cx = d. He passed his
technique on to only two people, Antonio Fior and Annibale della Nave, swearing
them to secrecy. Del Ferro soon had competition from Niccolò Fontana (known
as Tartaglia, or “the stutterer”). An itinerant teacher of considerable mathematical
ability, but with few financial resources, Tartaglia discovered a general method
for solving cubic equations independently of del Ferro. When del Ferro died in
1526, Fior decided the time had come for him to unleash del Ferro’s formula
upon the world. He challenged Tartaglia to a cubic duel, but was beaten by
Tartaglia’s superior methods. Gerolamo Cardano heard of this and persuaded
Tartaglia to share his methods with him. As with del Ferro, the condition was that
the method should never be published.

I shall call [the imaginary unit] ‘plus of minus’ when added and when subtracted, ‘minus of
minus.’

Rafael Bombelli

Beyond positive numbers
At this time all equations were solved using positive numbers. Working with
Tartaglia’s method, Cardano had to grapple with the notion that using the square
roots of negative numbers might help solve cubic equations. He was evidently
prepared to experiment with the method, but appears not to have been convinced.
He called such negative solutions “fictitious” and “false” and described the
intellectual effort involved in finding them as “mental torture.” His Ars Magna
shows his use of the negative square root. He wrote: “Multiply 5 +  by 5 

, making 25 ˗(˗15), which is + 15. Hence this product is 40.” This is the
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first recorded calculation involving complex numbers, but the significance of this
breakthrough escaped Cardano; he branded his work “subtle” and “useless.”

Rafael Bombelli set out the rules for operations on complex numbers. He used the term
“plus of minus” to describe a positive imaginary unit and “minus of minus” to describe a
negative imaginary unit. Multiplying a positive imaginary unit by a negative imaginary unit,
for example, equals a positive integer; while multiplying a negative imaginary unit by a
negative imaginary unit equals a negative integer.

Explaining the numbers
Rafael Bombelli assimilated the tussles between the various mathematicians
solving cubic equations. He read Cardano’s Ars Magna with great admiration. His
own work, Algebra, was a more accessible version, and was a thorough and
innovative survey of the subject. It investigated the arithmetic of negative
numbers, and included some economical notation that represented a major
advance on what had gone before.

The work outlines the basic rules for calculating with positive and negative
quantities, such as: “Plus times plus makes plus; Minus times minus makes plus.”
It then sets out new rules for adding, subtracting, and multiplying imaginary
numbers in terminology that differs from that used by mathematicians today. For
example, he stated that “Plus of minus multiplied by plus of minus makes
minus”—meaning a positive imaginary number multiplied by a positive
imaginary number equals a negative number:  ×  = ˗n. Bombelli also
gave practical examples of how to apply his rules for complex numbers to cubic
equations, where solutions require finding the square root of some negative
number. Although Bombelli’s notation was advanced for his time, the use of
algebraic symbols was still in its infancy. Two centuries later, Swiss
mathematician Leonhard Euler introduced the symbol i to denote the imaginary
unit.

The shortest route between two truths in the real domain passes through the complex domain.

198



Jacques Hadamard
French mathematician

Applying complex numbers
Imaginary and complex numbers joined the ranks of other sets, such as natural
numbers, real numbers, rational numbers, and irrational numbers, that were used
to solve equations and perform a range of other increasingly sophisticated
mathematical tasks.

Over the decades, sets of such numbers acquired their own universal symbols
that could be used in formulae. For instance, the bold capital N is used for natural
numbers from the set {0, 1, 2, 3, 4…}, enclosed in curly brackets to denote a set.
In 1939, American mathematician Nathan Jacobson established the bold capital C
to signify the set of complex numbers, {a + bi}, where a and b are real and i = 

.

Complex numbers enable all polynomial equations to be solved completely, but
have also proved immensely useful in many other branches of mathematics—
even in number theory (the study of integers, especially positive numbers). By
treating the integers as complex numbers (the sum of a real value and an
imaginary value), number theorists can use powerful techniques of complex
analysis (a study of functions with complex numbers) to investigate the integers.
The Riemann zeta function, for example, is a function of complex numbers that
provides information about primes. In other practical areas, physicists use
complex numbers in the study of electromagnetism, fluid dynamics, and quantum
mechanics, while engineers need them for designing electronic circuits, and for
studying audio signals.

There is an ancient and innate sense in people that numbers ought not to misbehave.

Douglas Hofstadter
Cognitive scientist
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A series of cups shows blue food dye being dripped over an ice cube (left). As the ice cube
melts, the heavier blue dye sinks. Complex numbers are used to model the velocity (speed and
direction) of such fluids.

RAFAEL BOMBELLI
Born in Bologna, Italy, in 1526, Rafael Bombelli was the eldest of six children;
his father was a wool merchant. Although Bombelli did not receive a college
education, he was taught by an engineer–architect and became an engineer
himself, specializing in hydraulics. He also developed an interest in
mathematics, studying the work of ancient and contemporary mathematicians.
While waiting for a drainage project to recommence, he embarked on his major
work, Algebra, which laid out a primitive but thorough arithmetic of complex
numbers for the first time.

Greatly impressed by a copy of Diophantus’s Arithmetica found in the Vatican
library, Bombelli helped to translate it into Italian – work that led him to revise
Algebra. Three volumes were published in 1572, the year he died; the last two
incomplete volumes were published in 1929.

Key work

1572 Algebra

See also: Quadratic equations • Irrational numbers • Negative numbers • Cubic
equations • The algebraic resolution of equations • The fundamental theorem of
algebra • The complex plane
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IN CONTEXT
KEY FIGURE
Simon Stevin (1548–1620)

FIELD
Number systems

BEFORE
830 CE Al-Kindi’s four-volume On the use of Indian numerals spreads the place
value system based on the Hindu numerals throughout the Arab world.

1202 Leonardo of Pisa’s Liber Abaci (The Book of Calculation) brings the
Arabic number system to Europe.

AFTER
1799 The metric system is introduced for French currency and measures during
the French Revolution.

1971 Britain introduces decimalization, dispensing with pounds, shillings, and
pence, which stemmed from the Latin system.

Fractions—so named for the Latin word fractio, meaning “break”—were used
from around 1800 BCE in Egypt to express parts of a whole. At first they were
limited to unit fractions, which are those with a 1 as the numerator (top number).
The ancient Egyptians had symbols for 2⁄3 and 3⁄4, but other fractions were
expressed as the sum of unit fractions, for example as 1⁄3 + 1⁄13 + 1⁄17. This system
worked well for recording amounts but not for doing calculations. It was not until
after Simon Stevin’s De Thiende (The Art of Tenths) was published in 1585 that a
decimal system became commonplace.
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By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on
more advanced problems.

Alfred North Whitehead
British mathematician

The importance of 10
Simon Stevin, a Flemish engineer and mathematician in the late 16th and early
17th century, used many calculations in his work. He simplified these by using
fractions with a base system of tenth powers. Stevin correctly predicted that a
decimal system would eventually be universal.

Cultures throughout history had used many different bases for expressing parts
of a whole. In ancient Rome, fractions were based on a system of twelfths, and
written out in words: 1⁄12 was called uncia, 6⁄12 was semis, and 1⁄24 was semiuncia,
but this cumbersome system made it difficult for people to do any calculations. In
Babylon, fractions were expressed using their base-60 number system, but in
writing, it was difficult to distinguish which numbers represented integers and
which were part of the whole.

For many centuries, Europeans used Roman numerals to record numbers and to
do calculations. Medieval Italian mathematician Leonardo of Pisa (also known as
Fibonacci) came across the Indian place-value number system while he was
traveling in the Arab world. He quickly realized its usefulness and efficiency for
both recording and calculating with whole numbers. His Liber Abaci (1202),
which brought many useful Arabic ideas to the west, also introduced a new
notation for fractions to Europe that would form the basis of the notation used
today. Fibonacci employed a horizontal bar to divide the numerator and
denominator (bottom number), but followed the Arabic practice of writing the
fraction to the left of the integer, rather than to the right.

SIMON STEVIN
Born in 1548 in Bruges, now in Belgium, Simon Stevin worked as a
bookkeeper, cashier, and clerk before entering the University of Leiden in 1583.
There he met Prince Maurice, the heir of William of Orange, and they became
friends. Stevin tutored the prince in mathematics and also advised him on
military strategy, leading to some significant victories over the Spanish. In
1600, Prince Maurice asked Stevin, who was also an outstanding engineer, to
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found a School of Engineering at the University in
1600. As quarter-master general from 1604, Stevin
was responsible for several innovative military and
engineering ideas that were adopted across Europe. He
authored many books on a variety of subjects,
including mathematics. He died in 1620.

Key works

1583 Problemata geometrica (Geometric Problems)

1585 De Thiende (The Art of Tenths)

1585 De Beghinselen der Weeghconst (Principles of the Art of Weighing)

Introducing decimals
Finding that conventional fractions were both time-consuming and prone to
errors, Stevin began using a decimal system. The idea of “decimal fractions”—
which have powers of 10 as the denominator—had been used five centuries
before Stevin, in the Middle East, but it was Stevin who made decimals
commonplace in Europe, both for recording and calculating with parts of a whole.
He suggested a notation system for decimal fractions, replicating the advantages
of the Indian place-value system for whole numbers.

In Stevin’s new notation, numbers that would previously have been written as
the sum of fractions—for example, 32 + 5⁄10 + 6⁄100 + 7⁄1,000—could now be
written as a single number. Stevin placed circles after each number; these were
shorthand for the denominator of the original decimal fraction. The whole 32
would be followed by a 0, because 32 is an integer, whereas the 6⁄100, for
example, was expressed as 6 and a 2 inside a circle. This 2 denoted the power of
10 of the original denominator, as 100 is 102. In the same vein, the 7⁄1,000 became
a 7 followed by a 3 inside a circle. The entire sum could be written out following
this pattern. The symbol that is placed between the whole-number part and the
fractional part of a number is called the decimal separator. Stevin’s zero inside a
circle later evolved into a dot, now called the decimal point. The dot was
positioned on the midline (at a middle height) in Stevin’s notation but has now
moved to be on the baseline to avoid confusion with the dot notation sometimes
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used for multiplication. Stevin’s circled numbers for tenth powers were also done
away with, meaning that 32 + 5⁄10 + 6⁄100 + 7⁄1,000 could now be written as 32.567.

Decimals [are] a kind of arithmetic invented by the tenth progression, consisting in characters of
cyphers.

Simon Stevin

Stevin’s notation used circles to indicate the power of ten of the denominator of the
converted fraction. This represents how Stevin would have written the number now expressed
as 32.567.

204



The decimal system makes it easier to divide and multiply fractions, especially by 10. Shown
here with the example of 32.567 (or 32 + 5⁄10 + 6⁄100 + 7⁄1,000), numbers shift one column to
the left or right, crossing over the decimal separator.

Different systems
The decimal point has never become universally accepted. Many countries use a
comma as the decimal separator instead of a point. There would be no problem
with the two common notations if not for the use of delimiters—symbols that
separate groups of three digits in the whole-number section of a very large or
sometimes very small number. For example, in the UK, the commas in the
number 2,500,000 are delimiters and are used to make it easier both to read the
number and to recognize its size. The UK uses a point for the decimal separator
and a comma as a delimiter. Elsewhere in the world, if a comma is used for the
decimal separator, a point is then used as the delimiter. In Vietnam, for example,
a price of two hundred thousand Vietnamese dong is often written as 200.000.

Usually, the context is sufficient for people to interpret the notation correctly, but
this can go badly wrong. In an attempt to solve this problem, the 22nd General
Conference on weights and measures—a meeting of delegates from 60 nations of
the International Bureau of Weights and Measures—decided in 2003 that,
although either a point or comma on the line could be used as the decimal
separator, the delimiter was to be a space rather than either of the previous
symbols. This notation is yet to become universal.
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In Spain, the decimal separator is a comma, as seen in the prices at this market stall in
Catalonia. In handwritten Spanish, an upper comma (similar to an apostrophe) is also
common.

Benefits of decimals
The same processes of addition, subtraction, multiplication, and division of whole
numbers can be used with decimal numbers, resulting in a far simpler way of
performing basic arithmetic than the previous method, which relied on learning a
different set of rules for calculations with fractions. When multiplying fractions,
for example, the numerators would be multiplied separately from the
denominators, and the resulting fraction would then be reduced. With decimal
fractions, multiplying and dividing by powers of 10 is straightforward—as in the
example of 32.567, the decimal separator can be simply moved left or right.

Stevin believed that the universal introduction of decimal coinage, weights, and
measures would only be a matter of time. The introduction of decimal measures
for length and weight (using meters and kilograms) arrived in Europe some 200
years later, during the French Revolution. When it introduced the metric system,
France also tried to introduce a decimal system for time; there would be 10 hours
in a day, 100 minutes in each hour, and 100 seconds in each minute. The attempt
was so unpopular that it was dropped after just one year. The Chinese had
introduced various forms of decimal time over some 3,000 years, but finally
abandoned it in 1645 CE.

In the US, the use of a decimal system for measurement and coinage was
championed by Thomas Jefferson. His 1784 paper persuaded Congress to
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introduce a decimal system for money using dollars, dimes, and cents. In fact, the
name “dime” originates from Disme, the French title of The Art of Tenths. Yet
Jefferson’s view did not hold sway for measurement, and inches, feet, and yards
are still used today. While many European currencies were decimalized in the
1800s, it was not until 1971 that decimal currency was introduced in the UK.

This marble plaque on the rue de Vaugirard, Paris, is one of 16 original meter markers
installed in 1791, after the French Académie des Sciences defined the meter for the first time.

Perhaps the most important event in the history of science… [is] the invention of the decimal
system…

Henri Lebesgue
French mathematician

Terminating and recurring decimals
Fractions are converted to decimals by dividing the numerator by the
denominator. If the denominator is only divisible by 2 or 5 and no other prime
numbers–as is the case for 10—then the decimal will terminate. For example,
3⁄40 can be expressed as 0.075, and this value is exact because 40 is only
divisible by the primes 2 and 5.

Other fractions become recurring decimals—meaning that they do not end. For
example, 2⁄11 is decimalized as 0.18181818…, denoted as  to show that
both the 1 and 8 recur. The length of the recurring cycle (two numbers in the
case of ) can be predicted as it will be a factor of the denominator minus 1
(so if the denominator of the fraction is 11, the number of digits in the cycle is a
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factor of 10). These differ from irrational numbers, which do not terminate and
have no pattern of recurrence. Irrational numbers cannot be expressed as a
fraction of two integers.

See also: Positional numbers • Irrational numbers • Negative numbers • The
Fibonacci sequence • Binary numbers
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IN CONTEXT
KEY FIGURE
John Napier (1550–1617)

FIELD
Number systems

BEFORE
14th century The Indian mathematician Madhava of Kerala constructs an
accurate table of trigonometric sines to aid calculation of angles in right-angled
triangles.

1484 In France, Nicolas Chuquet writes an article about calculation using
geometric series.

AFTER
1622 English mathematician and clergyman William Oughtred invents the slide
rule using logarithmic scales.

1668 In Logarithmo-technia, German mathematician Nicholas Mercator first
uses the term “natural logarithms.”

For thousands of years, most calculations were carried out by hand, using devices
such as counting boards or the abacus. Multiplication was especially long-winded
and much more difficult than addition. In the scientific revolution of the 16th and
17th centuries, the lack of a reliable calculating tool hampered progress in areas
such as navigation and astronomy, where the potential for error was greater
because of the lengthy calculations involved.
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Solving by series
In the 1400s, French mathematician Nicolas Chuquet investigated how the
relationships between arithmetic and geometric sequences could aid calculation.
In an arithmetic sequence, each number differs from the one preceding it by a
constant quantity, such as 1, 2, 3, 4, 5, 6… (going up by 1), or 3, 6, 9, 12… (going
up by 3). In a geometric sequence, each number after the first term is determined
by multiplying the previous number by a fixed amount, called the “common
ratio.” For example, the sequence 1, 2, 4, 8, 16 has a common ratio of 2. Setting
down a geometric sequence (such as 1, 2, 4, 8…) and above it an arithmetic
sequence (such as 1, 2, 3, 4…), it can be seen that the top numbers are the
exponents to which 2 is raised to arrive at the series below. It was a much more
sophisticated version of this scheme that lay at the heart of the tables of
logarithms developed by Scottish landowner John Napier.

Generating logarithms
Napier was fascinated by numbers and spent much of his time finding ways of
making calculations easier. In 1614, he published the first description and table of
logarithms; a logarithm of a given number is the exponent or power to which
another fixed number (the base) is raised to produce that given number. The use
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of such tables facilitated complex calculations and advanced the development of
trigonometry.

As Napier recognized, the basic principle of calculating was simple enough: he
could replace the tedious task of multiplication by the simpler operation of
addition. Each number would have its equivalent “artificial number” as he
initially termed it. (Napier later settled on the name “logarithm,” derived by
combining the Greek words logos, meaning proportion, and arithmos, meaning
number.) Adding the two logarithms, and then converting the answer back to an
ordinary number, produces the result of multiplying the original numbers. For
division, one logarithm is subtracted from another and the result is converted
back.

To generate his logarithms, Napier imagined two particles traveling along two
parallel lines. The first line was of infinite length, while the second was of fixed
length. Each particle left the same starting position at the same time and at the
same velocity. The particle on the infinite line traveled with uniform motion, so it
covered equal distances in equal times. The velocity of the second particle was
proportional to the distance remaining to the end of the line. Halfway between the
starting point and the end of the line, the second particle is traveling at half the
velocity it started with; at the three-quarter point, it is traveling with a quarter of
its initial velocity; and so on. This means that the second particle is never going to
reach the end of the line, and equally, the first particle, on its infinite line, will
never arrive at the end of its journey. At any instant there is a unique
correspondence between the positions of the two particles. The distance the first
particle has traveled is the logarithm of the distance the second particle has yet to
go. The first particle’s progress can be viewed as an arithmetic progression, while
that of the second particle is geometric.

The lower row of this table is a geometric sequence (progressing powers of 2), while the top
row is an arithmetic sequence that reveals the exponents (powers) by which 2 is raised to
arrive at the numbers in the lower row. (Anything to the power of 0 is 1.) To multiply the
numbers 16 and 32 in the lower row, their exponents (4 + 5) can be added together to produce
2 9 (= 512).
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JOHN NAPIER
Born into a wealthy family in 1550 at Merchiston
Castle, near Edinburgh, John Napier would later
become 8th Laird of Merchiston. Aged just 13, he
entered St. Andrews University and became
passionately interested in theology. Before graduating,
however, he left to study in Europe, although few
details of this time are known.

Napier returned to Scotland in 1571 and devoted
much time to his estates, where he devised new methods of agriculture to
improve his land and livestock. A fervent Protestant, he also wrote a prominent
book attacking Catholicism. His keen interest in astronomy, and a desire to find
simpler ways to perform the calculations that it required, led to his invention of
logarithms. He also created Napier’s Bones, a calculation device using
numbered rods. Napier died at Merchiston Castle in 1617.

Key works

1614 Mirifici Logarithmorum Canonis Descriptio (A Description of the
Marvellous Rule of Logarithms)

1617 Rabdologiae

Improving the method
It took Napier 20 years to complete his calculations and to publish his first
logarithm tables as Mirifici Logarithmorum Canonis Descriptio (A Description of
the Marvellous Rule of Logarithms). Henry Briggs, professor of mathematics at
the University of Oxford, recognized the significance of Napier’s tables but
thought they were unwieldy.

Briggs visited Napier in 1616 and again in 1617. Following their discussions, the
two agreed that the logarithm of 1 should be redefined as 0 and the logarithm of
10 as 1. This approach made logarithms much easier to use. Briggs also helped
with the calculation of logarithms of ordinary numbers based on the logarithm of
10 being 1 and spent several years recalculating the tables. The results were
published in 1624 with the logarithms calculated to 14 decimal places. The base-
10 logarithms calculated by Briggs are known as log10 or common logarithms.
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The earlier table to the power of 2 (see Generating logarithms) can be thought of
as a simple base-2, or log2 table.

I found at length some excellent brief rules.

John Napier

The impact of logarithms
Logarithms had an immediate impact on science, and on astronomy in particular.
German astronomer Johannes Kepler had published his first two laws of planetary
motion in 1605, but only after the invention of log tables was he able to make the
breakthrough to discover his third law. This describes how the time it takes for a
planet to complete one orbit of the Sun is related to its average orbital distance.
When he published this finding in 1620 in his book Ephemerides novae motuum
coelestium, Kepler dedicated it to Napier.
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Napier’s book describing logarithms was published in 1614, as its title page shows. The
principles behind his logarithm tables were published in 1619, two years after his death.

The exponential function
Later in the 1600s, logarithms revealed something of further significance. While
studying number series, Italian mathematician Pietro Mengoli showed that the
alternating series 1 ˗ 1⁄2 + 1⁄3 ˗ 1⁄4 + 1⁄5 ˗… has a value of around 0.693147, which
he demonstrated to be the natural logarithm of 2. A natural logarithm (ln)—so-
called because it occurs naturally, revealing the time required to reach a certain
level of growth—has a special base, later known as e, with an approximate value
of 2.71828. This number is hugely significant in mathematics due to its links with
natural growth and decay.
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It was through work such as that of Mengoli that the important concept of the
exponential function came to light. This function is used to represent exponential
growth—where the rate of growth of a quantity is proportional to its size at any
particular moment, so the bigger it is, the faster it grows—which is relevant to
fields such as finance and statistics, and most areas of science. The exponential
function is given in the form f(x) = bx, where b is greater than 0, but does not
equal 1, and x can be any real number. In mathematical terms, logarithms are the
inverse of exponentials (powers of a number) and can be to any base.

The slide rule, used here in 1941 by a member of the Women’s Auxiliary Air Force, is
marked with logarithmic scales that facilitate multiplication, division, and other functions.
Invented in 1622, it was a vital mathematical tool before the advent of pocket calculators.

By shortening the labors, [Napier] doubled the life of the astronomer.

Pierre-Simon Laplace

A basis for Euler’s work
The push for accurate log tables spurred mathematicians such as Nicholas
Mercator to pursue further research in this area. In Logarithmo-technica,
published in 1668, he set out a series formula for the natural logarithm ln(1 + x) =
x - x2⁄2 + x3⁄3 - x4⁄4 +… This was an extension of Mengoli’s formulation, in which
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The pH logarithmic scale
measures alkalinity and
acidity. A pH of 2 is 10
times more acidic than a
pH of 3 and 100 times
more acidic than pH 4.

the value of x was 1. In 1744, more than 130 years after Napier produced his first
logarithm table, Swiss mathematician Leonhard Euler published a full treatment
of ex and its relationship to the natural logarithm.

Logarithmic scales
When measuring physical variables, such as sound,
flow, or pressure, where values may change
exponentially, rather than by regular increments, a
logarithmic scale is often used. Such scales use the
logarithm of a value instead of the actual value of
whatever is being measured. Each step on a
logarithmic scale is a multiple of the preceding step.
For example, on a log10 scale, every unit up the scale
represents a 10-fold increase in whatever is being
measured.

In acoustics, sound intensity is measured in
decibels. The decibel scale takes the hearing

threshold, defined as 0 dB, as its reference level. A sound 10 times louder is
assigned a decibel value of 10; a sound 100 times louder has a decibel value of
20; a sound 1,000 times louder a value of 30, and so on. This logarithmic scale
fits well with the way we hear things, as a sound must become 10 times more
intense to sound twice as loud to the human ear.

See also: Wheat on a chessboard • The problem of maxima • Euler’s number •
The prime number theorem
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IN CONTEXT
KEY FIGURE
Johannes Kepler (1571–1630)

FIELD
Geometry

BEFORE
c. 240 BCE In Method of Mechanical Theorems, Archimedes uses indivisibles to
estimate the areas and volumes of curvilinear shapes.

AFTER
1638 Pierre de Fermat circulates his Method for determining Maxima and
Minima and Tangents for Curved Lines.

1671 In Treatise on the Method of Series and Fluxions, Isaac Newton produces
new analytical methods for solving problems such as the maxima and minima of
functions.

1684 Gottfried Leibniz publishes New Method for Maximums and Minimums,
his first work on calculus.

Astronomer Johannes Kepler is best known for his discovery of the elliptical
shape of the planets’ orbits and his three laws of planetary motion, but he also
made a major contribution to mathematics. In 1615, he devised a way of working
out the maximum volumes of solids with curved shapes, such as barrels.

Kepler’s interest in this field began in 1613, when he married his second wife.
He was intrigued when the wine merchant at the wedding feast measured the wine
in the barrel by sticking a rod diagonally through a hole in the top and checking
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how far up the stick the wine went. Kepler wondered whether this worked equally
well for all shapes of barrel and, concerned that he may have been cheated,
decided to analyze the issue of volumes. In 1615, he published his results in Nova
stereometria doliorum vinariorum (New solid geometry of wine barrels).

Kepler looked at ways of calculating the areas and volumes of curved shapes.
Since ancient times, mathematicians had discussed using “indivisibles”—
elements so tiny they cannot be divided. In theory these can be fitted into any
shape and added up. The area of a circle could be determined, for example, by
using slender pie-slice triangles.

To find the volume of a barrel or any other 3-D shape, Kepler imagined it as a
stack of thin layers. The total volume is the sum of the volumes of the layers. In a
barrel, for example, each layer is a shallow cylinder.
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Infinitesimals
The problem with cylinders is that if they have thickness, their straight sides will
not fit into the curve of a barrel, while cylinders without thickness have no
volume. Kepler’s solution was to accept the notion of “infinitesimals”—the
thinnest slices that can exist without vanishing. This idea had already been
mooted by ancient Greeks such as Archimedes. Infinitesimals bridge the gap
between continuous things and things broken into discrete units.
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Kepler then used his cylinder method to find the barrel shapes with the
maximum volume. He worked with triangles defined by the cylinders’ height,
diameter, and a diagonal from top to bottom. He investigated how, if the diagonal
was fixed, like the merchant’s rod, changing the barrel height would change its
volume. It turned out that the maximum volume is held in short, squat barrels
with a height just under 1.5 times the diameter—like the barrels at his wedding. In
contrast, the tall barrels from Kepler’s homeland on the Rhine River held much
less wine.

Kepler also noticed that the closer to the maximum the shape gets, the less the
rate at which the volume increases: an observation that contributed to the birth of
calculus, opening up the exploration into maxima and minima. Calculus is the
mathematics of continuous change, and maxima and minima are the turning
points, or limits in any change—the peak and trough of any graph.

Pierre de Fermat’s analysis of maxima and minima, which quickly followed
Kepler’s, opened the way for the development of calculus by Isaac Newton and
Gottfried Leibniz later in the 17th century.

The merchant’s rod is submerged to an equal extent when pushed at a diagonal into these
two barrels, so he charges the same price for both. However, the elongated shape of the
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second barrel means it has a smaller volume, containing less wine but for the same price as
the first.

JOHANNES KEPLER
Born near Stuttgart, Germany, in 1571, Johannes
Kepler witnessed the “Great Comet” of 1577 and a
lunar eclipse, and remained interested in astronomy
throughout his life.

Kepler taught at the Protestant seminary in Graz,
Austria. In 1600, non-Catholics were expelled from
Graz and Kepler moved to Prague, where his friend
Tycho Brahe lived. Following the death of his first

wife and son, he moved to Linz in Austria, where his main job as imperial
mathematician was to make astronomical tables.

Kepler was convinced that God had made the Universe according to a
mathematical plan. He is best known for his work in astronomy, especially his
laws of planetary motion and his astronomical tables. A year after his death in
1630, the transit of Mercury was observed as he had predicted.

Key works

1609 New Astronomy

1615 New Solid Geometry of Wine Barrels

1619 Harmonies of the World

1621 Epitome of Copernican Astronomy

See also: Euclid’s Elements • Calculating pi • Trigonometry • Coordinates •
Calculus • Newton’s laws of motion
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IN CONTEXT
KEY FIGURE
René Descartes (1596–1650)

FIELD
Geometry

BEFORE
2nd century BCE Apollonius of Perga explores positions of points within lines
and curves.

c. 1370 French philosopher Nicole Oresme represents qualities and quantities as
lines defined by coordinates.

1591 French mathematician François Viète introduces symbols for variables in
algebraic notation.

AFTER
1806 Jean-Robert Argand uses a coordinate plane to represent complex
numbers.

1843 Irish mathematician William Hamilton adds two new imaginary units,
creating quaternions, which are plotted in four-dimensional space.

In geometry (the study of shapes and measurements), coordinates are employed to
define a single point—an exact position—using numbers. Several different
systems of coordinates are in use, but the dominant one is the Cartesian system,
named after Renatus Cartesius, the Latinized name of French philosopher René
Descartes. Descartes presented his coordinate geometry in La Géométrie
(Geometry, 1637), one of three appendices to his philosophical work Discours de
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la Méthode (Discourse on the Method), in which he proposed methods for
arriving at truth in the sciences. The other two appendices were on light and the
weather.

Problems which can be constructed by means of circles and straight lines only.

René Descartes
describing geometry

Building blocks
Coordinate geometry transformed the study of geometry, which had barely
evolved since Euclid had written Elements in ancient Greece some 2,000 years
earlier. It also revolutionized algebra by turning equations into lines (and lines
into equations). By using Cartesian coordinates, scholars could visualize
mathematical relationships. Lines, surfaces, and shapes could also be interpreted
as a series of defined points, which changed the way people thought about natural
phenomena. In the case of events such as volcanic eruptions or droughts, plotting
elements such as intensity, duration, and frequency could help to identify trends.

RENÉ DESCARTES
The son of a minor noble, René Descartes was born in
Touraine, France, in 1596. His mother died shortly
after his birth, and he was sent to live with his
grandmother. He later attended a Jesuit college, then
went to study law in Poitiers. In 1618, he left France
for the Netherlands and joined the Dutch States Army
as a mercenary.

Around this time, Descartes began to formulate philosophical ideas and
mathematical theorems. Returning to France in 1623, he sold his property there
in order to secure a lifelong income, then moved back to the Netherlands to
study. In 1649, he was invited by Christina, Queen of Sweden, to tutor her and
to launch a new academy. His weak constitution could not resist the cold winter.
In February 1650, Descartes caught pneumonia and died.

Key works

1630–33 Le Monde (The World) 1630–33 L’Homme (Man)
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1637 Discours de la Méthode (Discourse on the Method)

1637 La Géométrie (Geometry)

1644 Principia philosophia (Principles of Philosophy)

Finding a new method
There are two accounts of how Descartes came to develop the coordinate system.
One suggests that the idea dawned on him as he watched a fly moving over the
ceiling of his bedroom. He realized he could plot its position, using numbers to
describe where it was in relation to the two adjacent walls. Another account
relates that the idea came to him in dreams in 1619, when he was serving as a
mercenary in southern Germany. It was at this time, too, that he is thought to have
figured out the relationship between geometry and algebra that is the basis of the
coordinate system.

The simplest Cartesian coordinate system is one-dimensional; it indicates
positions along a straight line. One endpoint of the line is set as the zero point,
and all other points on the line are counted from there in equal lengths, or
fractions of a length. Just a single coordinate number is needed to describe an
exact point on the line—as when measuring a distance with a ruler from zero to a
unit of length. More commonly, coordinates are used to describe points on two-
dimensional surfaces that have a length and width, or within a three-dimensional
space, which also has depth. To achieve this, more than one number line is
needed—each starting at the same zero point, or origin. For a point on a plane (a
flat two-dimensional surface), two number lines are needed. The horizontal line,
called the x-axis, and the vertical y-axis are always perpendicular to each other;
the origin is the only place they will ever meet. The term for the x-axis is
abscissa, while the y-axis is the ordinate. Two numbers, one from each axis,
“coordinate” to pinpoint an exact position.

When taking a graph reading, these two numbers are now presented as a tuple—a
strictly ordered sequence listed inside brackets. The abscissa (value of x) always
precedes the ordinate (value of y) to create the tuple (x,y). Although they were
conceived before negative numbers were fully accepted, coordinates now often
include both negative and positive values—negative values below and to the left
of the origin; positive values above and to the right of the origin. Together, the
two axes create a field of points called a coordinate plane, which extends outward
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in two dimensions with the origin (0,0) at the center. Any point on that plane,
which could stretch to infinity, can be described exactly using a pair of numbers.

I realized that it was necessary… to start again right from the foundations if I wanted to
establish anything in the sciences that was stable and likely to last.

René Descartes
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This edition of La Géometrie (in Latin because that was the language of scholars) was
printed in 1639. Descartes originally published the book in French so it could be read by less
well-educated people.

Plotting 3-D space
For a three-dimensional space, the coordinates require a third number, ordered in
the tuple (x, y, z). The z refers to a third axis, which is perpendicular to the plane
formed by the x and y axes (see 3-D Cartesian coordinates). Each pair of axes
creates its own coordinate plane; these intersect at right angles to each other, thus
dividing the space into eight zones called octants. The coordinates within each
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octant follow one of eight sequences of values for x, y, and z, ranging from all
negative values to all positive values, with six possible negative and positive
combinations in between.

Each problem that I solved became a rule which served afterwards to solve other problems.

René Descartes

Curved lines
La Géométrie sets out what soon became the foundation of the coordinate system.
Descartes, however, was primarily interested in finding out how coordinates
could help him use algebra to better understand lines, especially curved lines. In
so doing he created a new field of mathematics, called analytic geometry, where
shapes are described in terms of their coordinates and the relationships between a
pair of variables, x and y. This was very different from Euclid’s “synthetic
geometry,” in which shapes are defined by the way they are constructed using a

227



ruler and pair of compasses. The ancient method was limiting; Descartes’ new
method opened up all sorts of new possibilities.

La Géométrie contains much discussion about curves, which were the subject of
renewed interest in the 1600s—partly because treatises by ancient Greek
mathematicians had been newly translated, but also because curves featured
prominently in fields of scientific exploration such as astronomy and mechanics.

Coordinates make it possible to convert curves and shapes into algebraic
equations, which can be shown visually. A straight line that runs diagonally from
the origin, equidistant from both axes, can be described using algebra as y = x,
and has coordinates (0,0); (1,1); (2,2), and so on. The line y = 2x would follow a
steeper path along a line including the coordinates (0,0); (1,2); (2,4), for instance.
A line running parallel to y = 2x would pass through the y axis at a point other
than the origin, such as at (0,2). The formula for this particular line is y = 2x + 2
and that includes the points (0,2); (1,4); (2,6).

Cartesian coordinates help to reveal the great power of algebra to generalize
relationships. All the straight lines described above have the same general
equation: y = mx + c, where the coefficient m is the slope of the line, indicating
how much bigger (or smaller) y is compared to x. The constant c, meanwhile,
shows where the line meets the y axis when x is equal to zero.

With me, everything turns into mathematics.

René Descartes
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A geometric shape such as the curve of a roller-coaster can be mapped on to a graph and
described in relation to the x and y axes. The straight section of the curve has the equation y =
x.

The circle equation
In analytic geometry, all circles centered on the origin can be defined as r = 

, known as the circle equation. This is because a circle can be thought
of as all the points that lie at an equal distance from a central point (that distance
being the radius of the circle). If that central point is (0,0) on an x, y graph, the
circle equation emerges, by drawing on Pythagoras’s theorem. The circle’s radius
can be conceived as the hypotenuse of a right-angled triangle with short sides x
and y, so r2 = x2 + y2, which can be rewritten as r = . The circle can
then be plotted on axes using different values of x and y that give the same value
of r. For example, if r is 2, then the circle crosses the x axis at (2,0) and (˗2,0),
and it crosses the y axis at (0,2) and (0,˗2). All the other points on the circle can
be seen as one corner of a right-angled triangle moving around in a circle. As the
corner moves around the circle, the short sides of the triangle vary in length, but
the hypoteneuse does not because it is always the radius of the circle. The line
formed by a point moving in this defined way is called a locus. This idea was
developed by the Greek geometer Apollonius of Perga about 1,750 years before
Descartes’ birth.
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Any point P, with coordinates (x, y), on the circumference of a circle can be connected to the
center of the circle (0, 0) by a straight line (the circle’s radius) that forms the hypotenuse of a
right-angled triangle with sides of length x and y. The equation of the circle is r2 = x2 + y2.

Exchange of ideas
In addition to drawing on theorems formulated by the ancient Greeks, Descartes
exchanged ideas with other French mathematicians, among them Pierre de
Fermat, with whom he frequently corresponded. Descartes and Fermat both made
use of algebraic notation, the x and y system that François Viète had introduced at
the end of the 1500s. Fermat also independently developed a coordinate system,
but he did not publish it. Descartes was aware of Fermat’s ideas, no doubt using
them to improve his own. Fermat also helped Dutch mathematician Frans van
Schooten to understand Descartes’ ideas. Van Schooten translated La Géométrie
into Latin and also popularized the use of coordinates as a mathematical
technique.
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A modified form of polar coordinates that gives an aircraft’s destination in terms of angle
and distance can be used as an alternative to GPS.

New dimensions
Van Schooten and Fermat had both suggested extending Cartesian coordinates
into the third dimension. Today, mathematicians and physicists use coordinates to
go much further than that and to imagine a space with any number of dimensions.
Although it is almost impossible to visualize such a space, mathematicians can
use these tools to describe lines moving in four, five, or as many spatial
dimensions as they desire.

Coordinates can also be used to examine the relationship between two quantities.
This idea was pioneered as long ago as the 1370s, when a French monk called
Nicole Oresme used rectangular coordinates and the geometric forms created by
his results to understand, for instance, the relationship of elements such as speed
and time, or the links between heat intensity and the degree of expansion due to
heat.

Some quantities can be represented using coordinates known as vectors, and
exist in a purely mathematical “vector space.” Vectors are quantities with two
values, which can be plotted as a magnitude (the length of a line) and a direction.
Velocity is a vector as it has exactly those values (a quantity of speed and a
direction of motion), while other vectors, such as Oresme’s heat and expansion,
are visualized in this way to make it easier to add and subtract different sets of
values or to manipulate them in another way.
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Mathematicians in the 1800s also found new purposes for Cartesian coordinates.
They used them to represent complex numbers (sums of imaginary numbers, such

as , and real numbers) or quaternions (the system that extends complex
numbers) as vectors plotted in two, three, or more dimensions.

The triumph of Cartesian ideas in mathematics… is in no small degree due to the Leiden
professor Frans van Schooten.

Dirk Struik
Dutch mathematician

The key coordinates
The Cartesian coordinate system is by no means the only one. Geographic
coordinates plot points on the globe as angles from preset great circles—the
Equator and the Greenwich Meridian. A similar system, using celestial
coordinates, describes the location of stars in an imaginary sphere centered on
Earth and extended infinitely into space. Polar coordinates, determined by
distance and angles from the center of Earth, are also useful for certain types of
calculation.

Cartesian coordinates remain an ubiquitous tool, however, able to plot anything
from simple survey data to the movements of atoms. Without them,
breakthroughs such as analytical calculus (which divides quantities into
infinitesimally small amounts) and advances in space-time and non-Euclidean
geometries could not have happened. Cartesian coordinates have had an immense
impact in mathematics, and in many fields of science and the arts, from
engineering and economics to robotics and computer animation.

Mathematics is a more powerful instrument of knowledge than any other that has been
bequeathed to us by human agency.

René Descartes
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The polar coordinate
system is often used to
calculate the movement of
objects around, or in
relation to, a central point.

3-D Cartesian coordinates can be used to plot an object that has, for instance, width, depth,
and height. Three axes (x, y, z) are set at right angles to each other. Where they meet is the
origin (O).

Polar coordinates
In mathematics, polar coordinates, which define
points on a plane using two numbers, are the closest
rivals to Descartes’ system. The first number, the
radial coordinate r, is the distance from the central
point—called the pole, not the origin. The second
number, the angular coordinate (θ), is the angle that
is defined as 0° from a single polar axis. To compare
it with the Cartesian system, the polar axis would be
the Cartesian x axis, and the polar coordinates (1,0°)
would replace the Cartesian coordinates (1,0). The
polar version of the Cartesian point (0,1) is (1,90°).

Polar coordinates are used to help manipulate
complex numbers plotted on a plane, especially for multiplication. Multiplying
complex numbers is simplified when they are treated as polar coordinates, a
process that involves multiplying the radial coordinates and adding the angular
ones.
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See also: Pythagoras • Conic sections • Trigonometry • Rhumb lines • Viviani’s
triangle theorem • The complex plane • Quaternions
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IN CONTEXT
KEY FIGURES
Bonaventura Cavalieri (1598–1647), Gilles Personne de Roberval (1602–75)

FIELD
Applied geometry

BEFORE
c. 240 BCE Archimedes investigates the volume and surface area of spheres in
his Method Concerning Mechanical Theorems.

1503 French mathematician Charles de Bovelles gives the first description of a
cycloid in Introductio in geometriam (Introduction to Geometry).

AFTER
1656 Dutch mathematician Christiaan Huygens bases his invention of the
pendulum clock on the curve of a cycloid.

1693 De Roberval’s solution to the area of a cycloid is published more than 60
years after its discovery and 18 years after his death.

The ancient Greeks puzzled over problems relating to areas and volumes of
figures bounded by curves. They compared the areas of shapes by transforming
each one into a square with the same area as the original shape, then compared the
sizes of the squares. This was easy for shapes with straight edges, but curvilinear
shapes caused problems.

These problems remained unresolved until 1629, when Italian mathematician and
Jesuit priest Bonaventura Cavalieri found a method for calculating the areas and
volumes of curved shapes by slicing them into parallel pieces (Cavalieri’s
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principle), although he did not publish his results until six years later. In 1634,
Gilles Personne de Roberval used this method to work out that the area beneath a
cycloid (the arc traced by the rim of a rolling wheel) is three times the area of the
circle used to generate the cycloid.

This wheel has rolled over a piece of gum. The graph shows the path of the gum as the wheel
rotates, creating a cycloid shape, which, as de Roberval discovered, has an area three times
that of the wheel.

Squaring the circle
The ancient Greek mathematician Archimedes had used an ingenious method of
exhaustion to determine the area between a parabola and a straight line. It entailed
inscribing a triangle of known area to fit inside the parabola, then inscribing ever
smaller triangles in all the gaps that remained. By adding together the areas of the
triangles, Archimedes obtained a close approximation of the area he sought. The
straight-edge-and-compass methods of his day, however, had their limitations.
When he tried to calculate the surface area of a 3-D sphere using quadrature, a
process which involves constructing a square of an area equal to a circle, he
failed. He knew the surface area of the sphere was four times that of a circle of
the same radius, but could not find a square that would give the surface area.

A pretty result which I had not noticed before.

René Descartes
on de Roberval’s method for finding the area under a cycloid

New spins on the problem
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The first description of a cycloid was published by Charles de Bovelles in 1503.
Italian polymath Galileo gave the cycloid its name (from the Greek for “circular”)
and tried to calculate its area by cutting up models of a cycloid and a circle,
weighing the pieces, and comparing the results.

Around 1628, Frenchman Marin Mersenne challenged his fellow
mathematicians, including de Roberval, René Descartes, and Pierre de Fermat, to
find both the area under the arch of a cycloid and a tangent to a point on the
curve. When de Roberval told Descartes of his success, the latter dismissed it as
“so small a result.” Descartes, in turn, discovered the tangent to a cycloid in 1638,
and challenged de Roberval and Fermat to do the same. Only Fermat succeeded.

In 1658, English architect Christopher Wren calculated the length of an arc of a
cycloid as four times the diameter of the generating circle. The same year, Blaise
Pascal calculated the area of any vertical slice of a cycloid. He also imagined
rotating these vertical slices about a horizontal axis, and worked out the surface
area and volume of the disks swept out by this rotation. Pascal’s use of infinitely
small slices of shapes to solve the properties of cycloids would lead to the
“fluxions” introduced by Isaac Newton as he developed early calculus.

Since this shark-fin shape (left) and triangle (right) are the same height and the same width
at equivalent points along their height, Cavalieri’s principle states that they can be sliced into
parallel pieces that have similar area.

GILLES PERSONNE DE ROBERVAL
Born in 1602, in a field near Roberval in northern France, where his mother was
bringing in the harvest, Gilles Personne de Roberval was tutored in classics and
mathematics by the local priest. In 1628, he moved to Paris, where he joined
Marin Mersenne’s circle of intellectuals.

In 1632, de Roberval became professor of mathematics at the Collège Gervais,
and two years later he won a competition for a highly prestigious post at the
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Collège Royale. He lived frugally, but managed to buy a farm for his extended
family and leased out plots to generate income. He continued to practice
mathematics all his life. In 1669, he invented a set of scales known as the
Roberval balance. He died in 1675.

Key work

1693 Traité des Indivisibles (Treaty on Indivisibles)

See also: Euclid’s Elements • Calculating pi • Mersenne primes • The problem of
maxima • Pascal’s triangle • Huygens’s tautochrone curve • Calculus
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IN CONTEXT
KEY FIGURE
Girard Desargues (1591–1661)

FIELD
Applied geometry

BEFORE
c. 300 BCE Euclid’s Elements sets down ideas that will later constitute Euclidean
geometry.

c. 200 BCE In Conics, Apollonius describes the properties of conic sections.

1435 Italian architect Leon Battista Alberti codifies the principles of perspective
in De Pictura (On Painting).

AFTER
1685 In Sectiones Conicæ, French mathematician and painter Philippe de la
Hire defines the hyperbola, parabola, and ellipse.

1822 French mathematician and engineer Jean-Victor Poncelet writes a treatise
on projective geometry.

Unlike traditional Euclidean geometry, where all 2-D figures and objects belong
in the same plane, projective geometry is concerned with how the apparent shape
of an object is altered by the perspective from which that object is viewed. The
17th-century French mathematician Girard Desargues was a founder of such
geometry.

The idea of perspective had been addressed two centuries earlier by Renaissance
artists and architects. Fillipo Brunelleschi had rediscovered the principles of linear
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perspective known to the ancient Greeks and Romans, and explored them in his
architectural plans, sculptures, and paintings. Fellow architect Leon Battista
Alberti used “vanishing points” to create a sense of 3-D perspective and wrote
about the use of perspective in art.

These two triangles are in perspective from a viewpoint called the center of perspectivity (P).
Lines connecting the corresponding vertices of the triangles (X to x; Y to y, and Z to z) will
always meet at P. If XYZ were a real triangular object, it would appear as the triangle xyz
when viewed from P. Desargues’ theorem states that lines extending from the corresponding
sides of each triangle will always meet on a line known as the axis of perspectivity.

Perspective makes the parallel lines on sides of this flat-roofed building appear as though
they will eventually meet. This meeting point is called a vanishing point.

Good architecture should be a projection of life itself.

Walter Gropius
German architect

From maps to math
As Western explorers sailed to new lands, they needed accurate maps depicting
the spherical world in two dimensions. In 1569, Flemish cartographer Gerardus
Mercator devised a method now known as “cylindrical map projection.” This can
be envisaged as the surface of the globe transferred onto a surrounding cylinder.
When the cylinder is cut from top to bottom and rolled out, it becomes a two-
dimensional map.
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In the 1630s, Desargues began investigating which properties were unchanged
(invariant) when an image is projected onto a surface (perspective mapping).
While its dimensions and angles may change, collinearity is preserved; this means
that if three points XYZ are on a straight line, with Y between X and Z, then their
images xyz are also on a straight line with y between x and z. An image of any
triangle is another triangle. The corresponding sides of each triangle can be
extended to meet at three points on a line (axis of perspectivity), and a line from
each vertex to its corresponding vertex and beyond will meet at a point (the center
of perspectivity).

Desargues realized that all conic sections are equivalent in this way under
projection. A single invariant property, such as collinearity, needs only to be
proved for a single case, rather than tested on each conic. Pascal’s “mystic
hexagram” theorem, for instance, states that the intersections of lines connecting
pairs of six points on a conic all lie on a straight line. It can be shown by
connecting six points on a circle, a proof valid for other conics, too.

Desargues then considered what happens as the vertex of the projection cone
moves further away. Parallel rays come from a point at infinity (such as the Sun).
By adding these points at infinity to the Euclidean plane, each pair of lines meets
at a point, including parallel lines, which meet at infinity.

The method was developed into a full geometry by Poncelet in 1822. Today,
projective geometry is used by architects and engineers in CAD technology, and
in computer animation for films and gaming.
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When six arbitrary points are drawn on a circle and connected as shown (Ab, aB; Ac, Ca;
Cb, cB), a straight line can be drawn through the points where lines of the same color cross.
Using projection, this is true for an ellipse, too.

GIRARD DESARGUES
Born in 1591, Girard Desargues lived in Lyon all his life. He came from a
family of wealthy lawyers who owned several properties, including a manor and
a small chateau with fine vineyards. Desargues made several visits to Paris and,
through Marin Mersenne, became friends with Descartes and Pascal.

Desargues worked initially as a tutor and later as an engineer and architect. He
was an excellent geometer and shared his ideas with his mathematical friends.
Some of his pamphlets were later expanded into published papers. He wrote on
perspective and applied mathematics to practical projects, such as designing a
spiral staircase and a new form of pump. Desargues died in 1661. His work was
rediscovered and republished in 1864.

Key works

1636 Perspective

1639 Rough Draft of Attaining the Outcome of Intersecting a Cone with a Plane

See also: Pythagoras • Euclid’s Elements • Conic sections • The area under a
cycloid • Pascal’s triangle • Non-Euclidean geometries
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IN CONTEXT
KEY FIGURE
Blaise Pascal (1623–62)

FIELDS
Probability, number theory

BEFORE
975 Indian mathematician Halayudha gives the first surviving description of
numbers in Pascal’s triangle.

c. 1050 In China, Jia Xian, describes the triangle later known as Yang Hui’s
triangle.

c. 1120 Omar Khayyam creates an early version of Pascal’s triangle.

AFTER
1713 Jacob Bernoulli’s Ars Conjectandi (The Art of Conjecturing) develops
Pascal’s triangle.

1915 Wacław Sierpinski describes the fractal pattern of triangles later known as
Sierpinski triangles.

Mathematics is often about the identification of number patterns, and one of the
most remarkable number patterns of all is Pascal’s triangle. Pascal’s triangle is an
equilateral triangle built from a very simple arrangement of numbers in ever-
widening rows. Each number is the sum of the two adjacent numbers in the row
above. Pascal’s triangle can be any size, ranging from just a few rows in depth to
any number.
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While it might seem that such a simple rule for arranging numbers could only
lead to simple patterns, Pascal’s triangle is fertile ground for several branches of
higher mathematics, including algebra, number theory, probability, and
combinatorics (the mathematics of counting and arranging). Many important
sequences have been found in the triangle, and mathematicians believe that it may
reflect some truths about relationships that we have yet to understand between
numbers.

The triangle is most commonly named after French philosopher and
mathematician Blaise Pascal, who explored it in detail in his Treatise on the
Arithmetical Triangle in 1653. In Italy, however, it is known as Tartaglia’s
triangle after mathematician Niccolò Tartaglia, who wrote about it in the 1400s.
In fact, the origins of the triangle date back to ancient India in 450 BCE (see The
ancient triangle).

There are two types of mind… the mathematical, and… the intuitive. The former arrives at its
views slowly, but they are… rigid; the latter is endowed with greater flexibility.

Blaise Pascal
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Pascal’s triangle is created by adding together two adjacent numbers (as shown by the
arrows) to give the sum in the next row. Each row begins and ends with the number 1.

Probability theory
Pascal’s contribution to the triangle was notable because he set out a clear
framework for exploring its properties. In particular, he used the triangle to help
lay the foundations of probability theory in his correspondence with fellow
French mathematician Pierre de Fermat. Before Pascal, mathematicians such as
Luca Pacioli, Gerolamo Cardano, and Tartaglia had written about how to work
out the chances of dice rolling particular numbers or hands of cards coming out a
certain way. Their understanding was shaky at best, and it was Pascal’s work with
the triangle that pulled the strands together.

Dividing stakes
Pascal was asked to look into probability in 1652 by a notorious French gambler.
Antoine Gombaud, the Chevalier de Méré, wanted to know how to divide stakes
fairly if a game of chance was suddenly broken off. If a game would normally end
only when one player had won a certain number of rounds, for instance, de Méré
wanted to know if the division of the stakes should reflect how many rounds each
player had won. Pascal combined the numbers step by step to represent the rounds
played. The natural consequence was an ever-widening triangle. As Pascal
showed, the numbers in the triangle count the number of ways various
occurrences can combine to produce a given result.

245



The probability of an event is defined as the proportion of times it will happen. A
dice has six faces, so the probability of it landing on any particular face when you
roll it is 1⁄6. In other words, it is a question of noting how many ways the event
can occur, and dividing this by the total number of possibilities. While this is easy
enough for a single dice, with multiple dice, or 52 playing cards, the calculations
become complicated. However, Pascal found that the triangle could be used to
find the number of possible combinations when you choose a number of objects
from a particular number of available options.

BLAISE PASCAL
Born in Clermont-Ferrand, France, in 1623, Blaise
Pascal was a mathematics prodigy. As a teenager, his
father took him to Marin Mersenne’s mathematical
salon in Paris. Around the age of 21, Pascal developed
a mechanical adding and subtraction machine, the first
ever marketed. As well as his mathematical
contributions, Pascal played an important role in many
scientific developments of the 1600s, including

explorations of fluids and the nature of a vacuum, which contributed to the
understanding of the idea of air pressure: the scientific unit of pressure is called
the Pascal. In 1661, he launched what may have been the world’s first public
transportation service in Paris, with linked five-person coaches. He died from
unexplained causes in 1662, aged just 39.

Key works

1653 Traité du triangle arithmétique (Treatise on the Arithmetical Triangle)

1654 Potestatum Numericarum Summa (Sums of Powers of Numbers)

Binomial calculations
As Pascal realized, the answer lay in binomials—expressions with two terms,
such as x + y. Each row of Pascal’s triangle gives the binomial coefficients for a
particular power. The zeroth row (the top of the triangle) is used for the binomial
to the power of 0: (x + y)0 = 1. For the binomial to the power of 1, (x + y)1 = 1x +
1y, so the coefficients (1 and 1) correspond to the first row of the triangle (the
zeroth row is not counted as a row). The binomial (x + y)2 = 1x2 + 2xy + 1y2 has
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the coefficients 1, 2, and 1, as on the second row of Pascal’s triangle. As binomial
expansion leads to ever longer expressions, the coefficients continue to match a
corresponding line on the triangle. For example, in the binomial (x + y)3 = 1x3 +
3x2y + 3xy2 + 1y3, the coefficients match the third row of the triangle. The
probabilities are calculated by dividing the number of possibilities by the total of
all the coefficients in the row that reflects the total number of objects: for
example, in a family of three children (the total number of objects), the
probability of one girl and two boys is 3/8 (the sum of all the coefficients in the
third row of the triangle is 8, and there are three ways of having one girl in a
family of three children).

Pascal’s triangle made it simple to find probabilities. As Pascal’s triangle can
continue forever, this works with any powers. The relationship between binomial
coefficients and the numbers in Pascal’s triangle reveals a fundamental truth
about numbers and probability.

The Bat Country, a jungle gym project by American artist Gwen Fisher, is a Sierpinski
tetrahedron featuring softball bats and balls. This tetrahedron is a 3-D structure made of
Sierpinski triangles.

Visual patterns
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Pascal’s simple number pattern proved to be the launchpad, with Fermat’s work,
for the mathematics of probability, but its relevance does not stop there. For a
start, it provides a quick way of multiplying out binomial expressions to high
powers, which would otherwise take a very long time. Mathematicians are
continually finding new surprises in it. Some of the patterns in Pascal’s triangle
are extremely simple. The outside edge is entirely made up of the number 1, and
the next set of numbers, in the first diagonal, is a simple number line of 1, 2, 3, 4,
5, and so on.

One particularly appealing property of Pascal’s triangle is the “hockey stick”
pattern, which can be used for addition. If you take a diagonal down from any of
the outer 1s, then stop anywhere, you can then find the total sum of all of the
numbers in the diagonal by taking one step further in the opposite direction. For
example, starting at the fourth 1 on the left edge and going down diagonally to the
right, if you stop at the number 10, then the total of the numbers passed so far (1 +
4 + 10) can be found by going one diagonal step down to the left: 15.

Coloring in all of the numbers divisible by a particular number creates a fractal
pattern, while coloring all of the even numbers creates a pattern of triangles
identified by Polish mathematician Wacław Sierpinski in 1915. This pattern can
be made without Pascal’s triangle by breaking an equilateral triangle into ever
smaller triangles by connecting the midpoints of each of the triangles’ three sides.
The division can continue indefinitely. Today, Sierpinski triangles are popular for
use in knitting patterns and in origami, where a Sierpinksi triangle is converted
into three dimensions to create a Sierpinski tetrahedron.

I cannot judge my work while I am doing it. I have to do as painters do, stand back and view it
from a distance, but not too great a distance.

Blaise Pascal

Number theory
There are also many more complex patterns hidden within the triangle. One of the
patterns found in Pascal’s triangle is the Fibonacci sequence, which lies on a
shallow diagonal (see below). Another link to number theory is the discovery that
the sum of all the numbers in the rows above a given row is always one less than
the sum of the numbers in the given row. When the sum of all the numbers above
a given row is a prime, it is a Mersenne prime—a prime number that is one less
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Myanmar’s Hsinbyume
pagoda represents the
mythical Mount Meru,
whose staircase inspired
another name for Pascal’s
triangle.

than a power of 2, such as 3 (22 - 1), 7 (23 - 1), and 31 (25 - 1). The first list of
these primes was made by Pascal’s contemporary, Marin Mersenne. Today, the
largest known Mersenne prime is 282,589,933 -1. If Pascal’s triangle were drawn at
a sufficiently large scale, this number would be found there.

The numbers on the left form the Fibonacci sequence, which can be calculated by adding the
numbers on the shallow diagonals (indicated here by the color shading) of Pascal’s triangle.

The ancient triangle
Mathematicians knew about Pascal’s triangle long
before the 1600s. In Iran, it is known as Khayyam’s
triangle after Omar Khayyam, but he was just one of
many Islamic mathematicians to have studied it
between the 7th and 13th century—a golden age for
learning. In China, too, c. 1050, Jia Xian created a
similar triangle to show coefficients. His triangle
was taken up and popularized by Yang Hui in the
1200s, which is why it is known in China as Yang
Hui’s triangle. It is illustrated in the 1303 book by
Zhu Shijie entitled Precious Mirror of the Four
Elements.

The most ancient references to Pascal’s triangle, however, come from India. It
appears in Indian texts from 450 BCE as a guide to poetic metre, by the name of
“The Staircase of Mount Meru.” The mathematicians of ancient India also
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realized that the shallow diagonal lines of numbers in the triangle showed what
are now known as Fibonacci numbers.

See also: Quadratic equations • The binomial theorem • Cubic equations • The
Fibonacci sequence • Mersenne primes • Probability • Fractals

250



IN CONTEXT
KEY FIGURES
Blaise Pascal (1623–62), Pierre de Fermat (1601–65)

FIELD
Probability

BEFORE
1620 Galileo publishes Sopra le Scoperte dei Dadi (On the Outcomes of Dice),
calculating the chances of certain totals when throwing dice.

AFTER
1657 Christiaan Huygens writes a treatise on probability theory and its
applications to games of chance.

1718 Abraham de Moivre publishes The Doctrine of Chances.

1812 Pierre-Simon Laplace applies probability theory to scientific problems in
Théorie analytique des probabilités (Theory of Probabilities).

Before the 1500s, predicting the outcome of a future event with any degree of
accuracy was thought to be impossible. However, in Renaissance Italy, scholar
Gerolamo Cardano produced in-depth analyses of outcomes involving dice. In the
1600s, such problems attracted the attention of French mathematicians Blaise
Pascal and Pierre de Fermat. More renowned for findings such as Pascal’s triangle
and Fermat’s last theorem, the two men took the mathematics of probability to a
new level, laying the foundations for probability theory.

Forecasting the outcomes of games of chance proved a useful way of
approaching probability, which, by definition, measures the likelihood of
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something occurring. For example, the chances of throwing a six with a die can
be estimated by throwing the die a given number of times and dividing the
amount of sixes thrown by the total number of throws. The result, called relative
frequency, gives the probability of throwing a six, which can be expressed as a
fraction, a decimal, or a percentage. This, however, is an observed finding, based
on actual experiments. Theoretical probability of any single event is calculated by
dividing the number of desired outcomes by the total number of possible
outcomes. With one roll of a six-sided die, the probability of throwing a six is 1⁄6;
the probability of throwing any other number is 5⁄6.

Probability theory is nothing but common sense reduced to calculation.

Pierre-Simon Laplace

Estimating the odds
One popular game in 17th-century France involved two players taking turns to
throw four dice in a bid to obtain at least one “ace,” or six. The players
contributed equal stakes and agreed, in advance, that the first one to win a certain
number of rounds would take the whole stake. Writer and amateur mathematician
Antoine Gombaud, who styled himself Chevalier de Méré, understood the 1⁄6 odds
of an ace with one throw of a die, and sought to calculate the odds of throwing a
double ace using a pair of dice.

De Méré suggested that the chance of getting two aces from two throws of a dice
was 1⁄36, that is, 1⁄6 as likely as getting an ace with one die in one roll. To make
these odds the same, he argued that a pair of dice should be rolled six times for
each roll of the single die. To have the same chance of rolling a double ace as you
would from getting one ace when four dice are thrown, the pair should be thrown
6 × 4 = 24 times. De Méré consistently lost the bet and was compelled to deduce
that a double ace from 24 throws of a pair of dice was less likely than one ace
from four throws of a single die.

In 1654, de Méré consulted his friend Pascal about this problem, and about the
further question of how a stake should be divided between the players when a
game was interrupted before completion. This was known as the “problem of
points,” and it had a long history. In 1494, Italian mathematician Luca Pacioli had
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suggested that the stakes should be divided in proportion to the number of rounds
already won by each player.

In the mid-1500s, Niccolò Tartaglia, another prominent mathematician, had
noted that such a division would be unfair if the game was interrupted, say, after
only one round. His solution was to base the division of the pot on the ratio
between the size of the lead and the length of the game, but this also gave
unsatisfactory results for games with many rounds. Tartaglia remained unsure
whether the problem was solvable in a way that would convince all players of its
fairness.

Probability is easily measured in the cases shown here. It is zero if the element in question
(blue candies) is absent, and 0.5 (or 1⁄2, or 50 percent) if half of all candies are blue. When
events are certain, probability = 1 (or 100 percent).

PIERRE DE FERMAT
Born in in 1601 in Beaumont-de-Lomagne in France,
Pierre de Fermat moved to Orléans in 1623 to study
law and soon began to pursue his interest in
mathematics. Like other scholars of his day, he
studied geometry problems from the ancient world
and applied algebraic methods to try to solve them. In
1631, Fermat moved to Toulouse and worked as a
lawyer.

In his spare time, Fermat continued his mathematical investigations, circulating
his ideas in letters to friends, such as Blaise Pascal. In 1653, he was struck down
by plague but survived to do some of his best work. As well as his ideas on
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probability, Fermat pioneered differential calculus, but is best remembered for
his contribution to number theory and Fermat’s last theorem. He died in Castres
in 1665.

Key works

1629 De tangentibus linearum curvarum (Tangents of Curves)

1637 Methodus ad disquirendam maximam et minimam (Methods of
Investigating Maxima and Minima)

The Pascal–Fermat letters
During the 1600s, it was common for mathematicians to meet at academies—
scientific societies. In France, the leading academy was that of the Abbé Marin
Mersenne, a Jesuit priest and mathematician who held weekly meetings at his
Paris home. Pascal attended these meetings, but he and Fermat had never met.
Nonetheless, having pondered de Méré’s problems, Pascal chose to write to
Fermat, communicating his thoughts on these and related issues and asking for
Fermat’s own views. This was the first of the letters between Pascal and Fermat in
which the mathematical theory of probability was developed.
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On a standard roulette wheel, there is a 1⁄37 chance of the ball landing on any given number
for a single spin of the wheel. This number gets closer to 1 the greater the number of spins.

Player versus banker
The Pascal–Fermat letters were sent via Pierre de Carcavi, a mutual friend. Seven
letters exchanged in 1654 reveal the two men’s thoughts on the points problem,
which they examined in different scenarios. They discuss a game between a
player attempting to throw at least one ace in eight throws and a “banker” who
takes the pot if the player is unsuccessful. If the game is interrupted before an ace
has been thrown, Pascal seems to suggest that the stakes should be allocated
according to the players’ expectations of winning. At the start of the game, the
probability of eight rolls of the die without success is (5⁄6)8 ≈ 0.233, and the
probability of throwing at least one ace is (1—0.233), or 0.7677. The game
clearly favors the one who makes the throws, rather than the “banker.”

Choice means probability, and probability means mathematicians can get to work.

Hannah Fry
British mathematician

Laying down the theory
In other letters, Pascal and Fermat discuss other cases of interrupted games, such
as when the play alternates between two players until one is successful. Fermat
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notes that what matters is the number of throws remaining when the game stops.
He points out that a player with a 7–5 lead in a game to 10 aces has the same
chance of eventually winning as a player with a 17–15 lead in a game to 20.

Pascal gives an example with two opponents playing a sequence of games, each
with an equal chance of winning, where the first to win three games wins the
stake. Each player has staked 32 pistoles, so the stake is 64 pistoles. Over the
course of three games, the first player wins twice and the other once. If they now
play a fourth game and the first player wins, then he will take the 64 pistoles; if
the other wins it, they will have each won two games and are equally likely to win
the final game. If they stop at this point, each should take back his stake of 32
pistoles.

Pascal’s step-by-step methods and Fermat’s considered replies provide some of
the earliest examples of using expectations when reasoning about probability. The
correspondence between the two laid down basic principles of probability theory,
and games of chance would continue to prove fertile ground for early theorists.
Dutch physicist and mathematician Christiaan Huygens wrote a treatise translated
as “On reasoning in games of chance,” which was the first book on probability
theory.

An early version of the law of large numbers (LLN)—a theorem examining the
results of performing the same action (such as throwing a die) a number of times
—was part of Swiss mathematician Jacob Bernoulli’s Ars Conjectandi (The Art of
Conjecturing, 1713). In the late 18th and early 19th century, Pierre-Simon
Laplace applied probability theory to practical and scientific problems, setting out
his methods in his Théorie Analytique des Probabilités (Analytic Theory of
Probabilities) in 1812.

Probability theory
While ancient and medieval law graded probability in the assessment of judicial
evidence, there was no theory on which to base it. Similarly, in Renaissance
times, when insurance was calculated for ships, premiums were based on an
intuitive estimate of risk. Odds were a feature of gaming, but Gerolamo
Cardano was the first to apply mathematics to the study of probability. Games
of chance were the focus of such studies even after the deaths of both Pascal and
Fermat, although their letters on the subject contributed much to subsequent
theory.
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In the late 1700s, Pierre-Simon Laplace extended the scope of probability
theory to science, and introduced his mathematical tools for predicting the
probability of many incidents, including natural phenomena. He also recognized
its application in statistics. Probability theory is also used in many other fields,
such as psychology, economics, engineering, and sports.

See also: The law of large numbers • Bayes’ theorem • Buffon’s needle
experiment • The birth of modern statistics
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IN CONTEXT
KEY FIGURE
Vincenzo Viviani (1622–1703)

FIELD
Geometry

BEFORE
c. 300 BCE Euclid defines a triangle in his book Elements and proves many
theorems concerning triangles.

c. 50 CE Heron of Alexandria defines a formula for finding the area of a triangle
from its side lengths.

AFTER
1822 German geometer Karl Wilhelm Feuerbach publishes a proof for the nine-
point circle, which passes through the midpoint of each side of a triangle.

1826 Swiss geometer Jakob Steiner describes the triangle center that has the
minimum sum of distances from the triangle's three vertices.

Italian mathematician Vincenzo Viviani studied under Galileo in Florence. After
Galileo’s death in 1642, Viviani gathered together his master’s work, editing the
first collected edition in 1655–56.

Viviani’s research included work on the speed of sound, which he measured to
within 82 ft (25 m) per second of its true value. He is best known, however, for
his triangle theorem, which states that the sum of the distances between any point
in an equilateral triangle and that triangle’s sides is equal to the altitude (height)
of the triangle.
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Proving the theorem
Starting with an equilateral triangle of base (side) a, and an altitude of h, a point
is made inside the triangle. Perpendicular lines (p, q, and r) are drawn from that
point to each of the three sides, meeting each side at 90°. The triangle is divided
into three smaller triangles by drawing a line from the point to each corner of the
main triangle. The area of a triangle is 1⁄2 × base × height, so if the lengths of the
perpendiculars are p, q, and r, the areas of the triangles add up to 1⁄2 (p + q + r)a.
This is also the area of the large triangle, which is 1⁄2 ha, and so h = p + q + r. If
you were to break a stick of length h into three, there would always be a point in
the triangle from which the pieces form the perpendiculars p, q, and r.

The altitude in an equilateral triangle, such as the above, is always equal to the combined
length of lines drawn from any point in the triangle perpendicular to its three sides.

See also: Pythagoras • Euclid’s Elements • Trigonometry • Projective geometry •
Non-Euclidean geometries
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IN CONTEXT
KEY FIGURE
Christiaan Huygens (1629–95)

FIELD
Geometry

BEFORE
1503 French mathematician Charles de Bovelles is the first to describe a
cycloid.

1602 Galileo discovers that the time taken for a pendulum to complete a swing
does not depend on the swing’s width.

AFTER
1690 Swiss mathematician Jacob Bernoulli draws on Huygens’s imperfect
solution to the tautochrone problem to solve the brachistochrone problem—
finding a curve of the fastest descent.

Early 1700s The longitude problem is resolved by British clockmaker John
Harrison and others—using springs rather than pendulums.

In 1656, Dutch physicist and mathematician Christiaan Huygens created the
pendulum clock, a clock with a swinging weight that was constant. He wanted to
resolve the navigational problem of determining a ship’s longitude. This was
impossible without precise calculations of time, so it required an accurate clock to
cope with the rolling motion of the waves, which caused wide variations in
pendulum swing, leading to time discrepancies.
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Seeking the right curve
The key lay in finding a curved path for the pendulum to follow (known as a
tautochrone curve), whereby the time the pendulum takes to return to its lowest
point is constant whatever its highest point. Huygens identified the cycloid, a
curve that was steep at the top and shallow at the bottom. The curved path of any
pendulum would have to be adjusted so it traveled in a cycloid. Huygens’s idea
was to constrain the pendulum by adding cycloid-shaped “cheeks.” In theory, the
time of each movement would now be the same from any starting point.
However, friction introduced a larger error than the one Huygens was trying to
resolve. It was only in the 1750s that the Italian Joseph-Louis Lagrange arrived at
a solution, where the height of the curve needs to be in proportion to the square of
the length of the arc traveled by the pendulum.

I was… struck by the remarkable fact that in geometry all bodies gliding along the cycloid…
descend from any point in precisely the same time.

Herman Melville
Moby Dick (1851)

See also: The area under a cycloid • Pascal’s triangle • The law of large numbers
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IN CONTEXT
KEY FIGURES
Isaac Newton (1642–1727), Gottfried Leibniz (1646–1716)

FIELD
Calculus

BEFORE
287–212 BCE Archimedes uses the method of exhaustion to calculate areas and
volumes, introducing the concept of infinitesimals.

c. 1630 Pierre de Fermat uses a new technique for finding tangents to curves,
locating their maximum and minimum points.

AFTER
1740 Leonhard Euler applies the ideas of calculus to synthesize calculus,
complex algebra, and trigonometry.

1823 French mathematician Augustin-Louis Cauchy formalizes the fundamental
theorem of calculus.
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The development of calculus, the branch of mathematics that deals with how
things change, was one of the most significant advances in the history of
mathematics. Calculus can show how the position of a moving vehicle changes
over time, how the brightness of a light source dims as it moves further away, or
how the position of a person’s eyes alters as they follow a moving object. It can
ascertain where changing phenomena reach a maximum or minimum value, and
at what rate they travel between the two.

Alongside rates of change, another important aspect of calculus is summation
(the process of adding things), which developed from the need to calculate areas.
Eventually, the study of areas and volumes was formalized into what became
known as integration, while calculating rates of change was termed
differentiation.

By providing a better understanding of the behavior of phenomena, calculus can
be used to predict and influence their future state. In much the same way as
algebra and arithmetic are tools for working with numerical or generalized
quantities, calculus has its own rules, notations, and applications, and its
development between the 17th and 19th centuries led to rapid progress in fields
such as engineering and physics.

Nothing takes place in the world whose meaning is not that of some maximum or minimum.

Leonhard Euler

Ancient origins
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The ancient Babylonians and Egyptians were particularly interested in
measurement. It was important for them to be able to calculate the dimensions of
fields for growing and irrigating crops and to work out the volume of buildings to
store grain. They developed early notions of area and volume, although these
tended to be in the form of very specific examples, such as in the Rhind papyrus,
where one problem involves the area of a round field with a diameter of 9 khet (a
khet being an ancient Egyptian unit of length). The rules laid down in the Rhind
papyrus led ultimately to what would become known more than 3,000 years later
as integral calculus.

The concept of infinity is central to calculus. In ancient Greece, Zeno’s
paradoxes of motion, a set of philosophical problems devised by the philosopher
Zeno of Elea in the 5th century BCE, posited that motion was impossible because
there are an infinite number of halfway points in any given distance. In around
370 BCE, the Greek mathematician Eudoxus of Cnidus proposed a method of
calculating the area of a shape by filling it with identical polygons of known area,
and then making the polygons infinitely smaller. It was thought that their
combined area would eventually converge toward the true area of the shape.

This so-called “method of exhaustion” was taken up by Archimedes in around
225 BCE. He approximated the area of a circle by enclosing it within polygons
with increasing numbers of sides. As the number of sides increases, the polygons
(of known area) more closely resemble the circle. Taking this idea to the limit,
Archimedes imagined a polygon with sides of infinitesimally smaller length. The
recognition of infinitesimals was a pivotal moment in the development of
calculus: previously insoluble puzzles, such as Zeno’s paradoxes of motion, could
now be solved.

For by the ultimate velocity is meant that, with which the body is moved, neither before it
arrives at its last place, when the motion ceases nor after but at the very instant when it arrives.

Isaac Newton
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As civilizations developed, accurate measurement became essential. This ancient Egyptian
tomb painting shows surveyors using rope to calculate the dimensions of a wheat field.

Fresh ideas
Mathematicians in medieval China and India made further advances in dealing
with infinite sums. In the Islamic world, too, the development of algebra meant
that, rather than spelling out a calculation millions of times for all possible
variations, generalized symbols could be used to prove that a case is true for all
numbers to infinity.

Mathematics had suffered a long period of stagnation in Europe but, as the
Renaissance took hold in the 1300s, renewed interest in the subject led to fresh
ideas about motion and the laws governing distance and speed. French
mathematician and philosopher Nicole Oresme studied the velocity of an
accelerating object against time, and he realized that the area under a graph
depicting this relationship was equivalent to the distance traveled by the object.
This notion would be formalized in the late 1600s by Isaac Newton and Isaac
Barrow in England, Gottfried Leibniz in Germany, and Scottish mathematician
James Gregory. Oresme’s work was inspired by that of the “Oxford Calculators,”
a 14th-century group of scholars based at Merton College, Oxford, who
developed the mean speed theorem, which Oresme later proved. It states that if
one body is moving with a uniformly accelerated motion and a second body is
moving with a uniform speed equal to the mean speed of the first body, and both
bodies are moving for the same duration, they will cover the same distance. The
Merton scholars were devoted to solving physical and philosophical problems
using calculations and logic, and were interested in the quantitive analysis of
phenomena such as heat, color, light, and velocity. They were inspired by the
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trigonometry of Arab astronomer al-Battani (858–929 CE) and the logic and
physics of Aristotle.

This illustration of Kepler’s Platonic solid model of the Solar System appeared in a book
published in 1596. Kepler used infinitesimally small strips to measure the distance covered in
an orbit. This method was the forerunner of integration.

New developments
The incremental steps toward the development of calculus gathered pace toward
the end of the 16th century. In around 1600, French mathematician François Viète
promoted the use of symbols in algebra (which had previously been described in
words), while Flemish mathematician Simon Stevin initiated the concept of
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mathematical limits, whereby the sum of amounts could converge to a limiting
value, much like the area of Archimedes’ polygons converged to the area of a
circle.

At much the same time, German mathematician and astronomer Johannes Kepler
was researching the motion of the planets, including calculating the area enclosed
by a planetary orbit, which he recognized as elliptical rather than circular. Using
ancient Greek methods, he worked out the area by dividing the ellipse into strips
of infinitesimal width.

A forerunner of the more formal integration to come, Kepler’s method was
further developed in 1635 by Italian mathematician Bonaventura Cavalieri in
Geometria indivisibilibus continuorum nova quadam ratione promota (Geometry,
Advanced in a New Way by the Indivisibles of the Continua). Cavalieri worked
out a “method of indivisibles,” which was a more rigorous method of determining
the size of shapes. More developments followed in the 1600s with the work of
English theologian and mathematician Isaac Barrow and Italian physicist
Evangelista Torricelli, followed by that of Pierre de Fermat and René Descartes,
whose analysis of curves advanced the new area of graphical algebra. Fermat also
located maxima and minima, the greatest and least values of a curve.
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Fluxion model
In 1665–66, English mathematician Isaac Newton developed his “method of
fluxions,” a method for calculating variables that changed over time, which was a
milestone in the history of calculus. Like Kepler and Galileo, Newton was
interested in studying moving bodies and was particularly eager to unify the laws
governing the motion of celestial bodies with motion on Earth.

In Newton’s fluxion model, he considered a point moving along a curve as being
divided into two perpendicular components (x and y), and then considered the
velocities of those components. This work laid the foundation for what became
known as differential calculus (or differentiation), which together with the related
field of integral calculus led to the fundamental theorem of calculus (see box,
right). The idea of differential calculus is that the rate at which a variable changes
at a point is equal to the gradient of a tangent at that point. This can be pictured by
drawing a tangent (a straight line that touches a curve at only one point). The
gradient or steepness of this line will be the rate of change of the curve at that
point. Newton recognized that at the maxima and minima, the gradient of the
curve was zero, because when something is at its highest or lowest point, it is
momentarily not changing. Newton went on to develop his theory further by
considering the converse problem—if the rate at which a variable changes is
known, is it possible to calculate the shape of the variable itself? This “anti-
differentiation” entailed working out areas under the curve.

Differentiation can be used to find the rate of change at a given point in time. The blue line
shows the rate of change overall and the orange tangent shows the rate of change at a given
point.
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James Gregory (1638–
75) was the first person to
formulate the fundamental
theorem of calculus.

The fundamental theorem of calculus
The study of calculus is underpinned by the
fundamental theorem of calculus, specifying the
relationship between differentiation and integration,
both of which rely on the concept of infinitesimals.
First articulated by James Gregory in his 1668
Geometriae Pars Universalis (The Universal Part of
Geometry), it was then generalized by Isaac Barrow
in 1670, and formalized in 1823 by Augustin-Louis
Cauchy.

The theorem has two parts. The first states that
integration and differentiation are opposites—for

any continuous function (one that can be defined for all values), there exists an
“anti-derivative” (or “integral”), whose derivative (a measure of the rate of
change) is the function itself. The second part of the theorem states that if values
are inserted into the anti-derivative F(x), the result—the definite integral of the
function f(x)—makes it possible to calculate areas under the curve of the
function f(x).

Newton v. Leibniz
Around the time that Newton was developing his calculus, German
mathematician Gottfried Leibniz was working on his own version, based on the
consideration of infinitesimal changes in the two coordinates defining a point on a
curve. Leibniz used very different notation from Newton’s, and in 1684 published
a paper on what would later become known as differential calculus. Two years
later, he published another paper, this time about integration, again using different
notation from that of Newton. In an unpublished manuscript dated October 29,
1675, Leibniz was the first person to use the “integral” symbol ∫, which is used
and recognized universally today.

There was much debate about who discovered modern calculus first: Newton or
Leibniz. It led to protracted bitterness between the two rivals and across much of
the mathematical community. Although Newton devised his theory of fluxions in
1665–66, he did not publish it until 1704, when it was added as an appendix to his
work Opticks. Leibniz began to devise his version of calculus around 1673, and
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published it in 1684. Newton’s subsequent Principia is said by some to have been
influenced by Leibniz’s work.

By 1712, Leibniz and Newton were openly accusing one another of plagiarism.
The modern consensus is that Leibniz and Newton developed their ideas on the
subject independently.

Significant contributions to calculus were also made in Switzerland by the
brothers Jacob and Johann Bernoulli, who coined the term “integral” in 1690.
Scottish mathematician Colin Maclaurin published his Treatise on Fluxions in
1742, promoting and furthering Newton’s methods, and attempting to make them
more rigorous. In this work, Maclaurin applies calculus to the study of infinite
series of algebraic terms. Meanwhile Swiss mathematician Leonhard Euler, a
close friend of Johann Bernoulli’s sons, was influenced by their ideas on the
subject. In particular, he applied the idea of infinitesimals to what is known as the
exponential function, ex. This ultimately led to “Euler’s identity”, eiπ+ 1 = 0, an
equation that connects five of the most fundamental mathematical quantities (e, i,
π, 0, and 1) in a very simple way.

As the 18th century progressed, calculus proved increasingly useful as a tool for
describing and understanding the physical world. In the 1750s, Euler, working in
collaboration with French mathematician Joseph-Louis Lagrange, used calculus to
provide an equation—the Euler–Lagrange equation—for understanding both fluid
(gas and liquid) and solid mechanics. In the early 1800s, French physicist and
mathematician Pierre-Simon Laplace developed electromagnetic theory with the
help of calculus.

Assuming I know our instantaneous speed at every possible moment, can I then use that
information to determine how far we’ve traveled? Calculus says I can.

Jennifer Ouellette
American science writer
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Isaac Newton’s Opticks, a treatise about the reflections and refractions of light, published in
1704, contains the first details of his work in the area of calculus.

When the values successively assigned to the same variable indefinitely approach a fixed value,
so as to end by differing from it as little as desired, this fixed value is called the limit.

Augustin-Louis Cauchy

Formalizing the theories
The various developments in calculus were formalized in 1823 when Augustin-
Louis Cauchy formally stated the fundamental theorem of calculus. In essence,
this states that the process of differentiation (working out rates of change of a
variable represented by a curve) is the inverse of the process of integration
(calculating the area beneath a curve). Cauchy’s formalization allowed calculus to
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be regarded as a unified whole, dealing with infinitesimals in a consistent way
using universally agreed notation.

The field of calculus was further developed later in the 1800s. In 1854, German
mathematician Bernhard Riemann formulated criteria for which functions would
be integrable or not, based on defining finite upper and lower limits for the
function.

The notation of modern calculus

Invented by Newton for differentiation.

∫ Invented by Leibniz for integration.

dy/dx Invented by Leibniz for differentiation.

f' Invented by Lagrange for differentiation.

Ubiquitous applications
Many advances in physics and engineering have relied on calculus. Albert
Einstein used it in his theories of special and general relativity in the early 20th
century, and it has been applied extensively in quantum mechanics (dealing with
the motion of subatomic particles). Schrödinger’s wave equation, a differential
equation published in 1925 by Austrian physicist Erwin Schrödinger, models a
particle as a wave whose state can only be determined by using probability. This
was groundbreaking in a scientific world that had up until then been governed by
certainty.

Calculus has many important applications today; it is used, for instance, in search
engines, construction projects, medical advances, economic models, and weather
forecasts. It is difficult to imagine a world without this all-pervasive branch of
mathematics, as it would most certainly be one without computers. Many would
argue that calculus is the most important mathematical discovery in the last 400
years.

GOTTFRIED LEIBNIZ
Born in Leipzig, Germany, in 1646, Gottfried Leibniz was raised in an academic
family. His father was a professor of moral philosophy, while his mother was

the daughter of a professor of law. In 1667, after

272



completing his university studies, Leibniz became an
advisor on law and politics to the Elector of Mainz, a
role that enabled him to travel and meet other
European scholars. After his employer’s death in
1673, he took up the role of librarian to the Duke of
Brunswick in Hanover.

Leibniz was a celebrated philosopher as well as a
mathematician. He never married and died in 1716 to

little fanfare. His successes had been overshadowed by his calculus dispute with
Newton and were only recognized several years after his death.

Key works

1666 On the Art of Combination

1684 New Method for Maximums and Minimums

1703 Explanation of Binary Arithmetic

See also: The Rhind papyrus • Zeno’s paradoxes of motion • Calculating pi •
Decimals • The problem of maxima • The area under a cycloid • Euler’s number •
Euler’s identity
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IN CONTEXT
KEY FIGURE
Gottfried Leibniz (1646–1716)

FIELDS
Number theory, logic

BEFORE
c. 2000 BCE Ancient Egyptians use a binary system of doubling and halving to
carry out multiplication and division.

c. 1600 English mathematician and astrologer Thomas Harriot experiments with
number systems, including binary.

AFTER
1854 George Boole uses binary arithmetic to develop Boolean algebra.

1937 Claude Shannon shows how Boolean algebra could be implemented using
electronic circuits and binary code.

1990 A 16-bit binary code is used to code pixels on a computer screen, allowing
it to display more than 65,000 colors.

In everyday life we are used to the base-10 counting system with its familiar ten
digits, 0 to 9. When we count from 10 onward, we put a 1 in the “tens” column
and a 0 in the “units” column, and so on, adding columns for hundreds,
thousands, and beyond. The binary system is a base-2 counting system and
employs just two symbols, 0 and 1. Rather than increasing in multiples of 10,
each column represents a power of 2. So the binary number 1011 is not 1,011 but
11 (from right to left: one 1, one 2, no 4s, and one 8).
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Binary choices are black and white; in any column there is only ever 1 or 0. This
simple “on or off” concept has proved vital in computing, for example, where
every number can be represented by a series of switchlike on/off actions.

Binary numbers are written as 1s and 0s, using a base-2 system. This chart shows how to
write the numbers 1 to 10, from the base-10 system, as both binary numbers and binary
visuals—which is how a computer would process them—where 1 is “on” and 0 is “off.”

Binary power revealed
In 1617, Scottish mathematician John Napier announced a binary calculator based
on a chessboard. Each square had a value, and that square’s value was “on” or
“off” depending on whether a counter was placed on the square. The calculator
could multiply, divide, and even find square roots, but was considered a mere
curiosity.

Around the same time, Thomas Harriot was experimenting with number systems,
including the binary system. He was able to convert base-10 numbers to binary
and back again, and could also calculate using binary numbers. However,
Harriot’s ideas remained unpublished until long after his death in 1621.

The potential of binary numbers was finally realized by German mathematician
and philosopher Gottfried Leibniz. In 1679, he described a calculating machine
that worked on binary principles, with open or closed gates to let marbles fall
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through. Computers work in a similar way, using switches and electricity rather
than gates and marbles.

Leibniz outlined his ideas on the binary system in 1703 in Explanation of Binary
Arithmetic, showing how 0s and 1s could represent numbers and so simplify even
the most complex operations into a basic binary form. He had been influenced by
correspondence with missionaries in China, who introduced him to the I Ching,
an ancient Chinese book of divination. The book divided reality into the two
opposing poles of yin and yang—one represented as a broken line, the other as an
unbroken line. These lines were displayed as six-line hexagrams, combined into a
total of 64 different patterns. Leibniz saw links between this binary approach to
divination and his work with binary numbers.

Above all, Leibniz was driven by his religious faith. He wanted to use logic to
answer questions about God’s existence and believed that the binary system
captured his view of the Universe’s creation, with 0 representing nothingness and
1 representing God.

Reckoning by twos, that is, by 0 and 1… is the most fundamental way of reckoning for science,
and offers up new discoveries, which are… useful, even for the practice of numbers.

Gottfried Leibniz

The teaching and commentaries on the I Ching of ancient Chinese philosopher Confucius
(551–479 BCE) influenced the work of Leibniz and other 17th–18th-century scientists.
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Bacon’s cipher
English philosopher and courtier Francis Bacon (1561–1626) was a great
dabbler in cryptography, or the science of deciphering codes. He developed
what he called a “biliteral” cipher, which used the letters a and b to generate the
entire alphabet— a = aaaaa, b = aaaab, c = aaaba, d = aaabb, and so on. If you
substitute 0 for a and 1 for b, this becomes a binary sequence. It is an easy code
to break, but Bacon realized that a and b do not have to be letters—they can be
any two different objects— “… as by bells, by trumpets, by lights and torches…
and any instruments of like nature.” It was an ingeniously adaptable cipher,
which Bacon could use to “make anything signify anything.” A secret message
could be hidden in a group of objects or numbers, or even musical notation.
Samuel Morse’s dot–dash telegraph code, which revolutionized communication
in the 1800s, and the on/off encoding in a modern computer both have parallels
with Bacon’s cipher.

See also: Positional numbers • The Rhind papyrus • Decimals • Logarithms • The
mechanical computer • Boolean algebra • The Turing machine • Cryptography
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INTRODUCTION
By the late 1600s, Europe had become established as the cultural and scientific
center of the world. The Scientific Revolution was well under way, inspiring a
new, rational approach not only to the sciences, but to all aspects of culture and
society. The Age of Enlightenment, as this period came to be known, was a time
of significant sociopolitical change, and produced an enormous increase in the
spread of knowledge and education during the 1700s. It was also a period of
considerable progress in mathematics.

Swiss giants
Building on the work of Newton and Leibniz, whose ideas were finding practical
application in physics and engineering, the brothers Jacob and Johann Bernoulli
further developed the theory of calculus in their “calculus of variations” and
several other mathematical concepts discovered in the 1600s. The elder brother,
Jacob, is recognized for his work on number theory, but he also helped develop
probability theory, introducing the law of large numbers.

Along with their mathematically gifted children, the Bernoullis were the leading
mathematicians of the early 1700s, making their home town of Basel in
Switzerland a center of mathematical study. It was here that Leonhard Euler, the
next, and arguably greatest, Enlightenment mathematician, was born and
educated. Euler was a contemporary and friend of Daniel and Nicholas Bernoulli,
Johann’s sons, and at an early age proved himself a worthy successor to Jacob
and Johann. Aged only 20, he suggested a notation for the irrational number e, for
which Jacob Bernoulli had calculated an approximate value.

Euler published numerous books and treatises, and worked in every field of
mathematics, often recognizing the links between apparently separate concepts of
algebra, geometry, and number theory, which were to become the basis for further

279



fields of Mathematical study. For example, his approach to the seemingly simple
problem of planning a route through the city of Königsberg, crossing each of its
seven bridges only once, uncovered much deeper concepts of topology, inspiring
new areas of research.

Euler’s contributions to all fields of mathematics, but in particular calculus,
graph theory, and number theory, were enormous, and he was also influential in
standardizing mathematical notation. He is especially remembered for the elegant
equation known as “Euler’s identity,” which highlights the connection between
fundamental mathematical constants such as e and π.

Other mathematicians
The Bernoullis and Euler tended to eclipse the achievements of the many other
mathematicians of the 1700s. Among them was Christian Goldbach, a German
contemporary of Euler’s. In the course of his career, Goldbach had befriended
other influential mathematicians, including Leibniz and the Bernoullis, and
corresponded regularly with them about their theories. In a letter to Euler, he
proposed the conjecture for which he is best known, that every even integer
greater than 2 can be expressed as the sum of two primes, which remains
unproven to this day.

Others contributed to the development of the growing field of probability theory.
Georges-Louis Leclerc, Comte de Buffon, for example, applied the principles of
calculus to probability, and demonstrated the link between pi and probability,
while another Frenchman, Abraham de Moivre described the concept of normal
distribution, and Englishman Thomas Bayes proposed a theorem of the
probability of events based on knowledge of the past.

In the latter part of the 18th century, France became the European center of
mathematical enquiry, with Joseph-Louis Lagrange in particular emerging as a
significant figure. Lagrange had made his name working with Euler, but later
made important contributions to polynomials and number theory.

New frontiers
As the century drew to a close, Europe was reeling from political revolutions that
had toppled the monarchy in France and given birth to the United States of
America. A young German, Carl Friedrich Gauss, published his fundamental
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theorem of algebra, marking the beginning of a spectacular career and a new
period in the history of mathematics.
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IN CONTEXT
KEY FIGURE
Isaac Newton (1642–1727)

FIELD
Applied mathematics

BEFORE
c.330 BCE Aristotle believes it takes force to maintain motion.

c.1630 Galileo Galilei conducts experiments on motion and finds that friction is
a retarding force.

1674 Robert Hooke writes An attempt to prove the motion of the Earth and
hypothesizes what will become Newton’s first law.

AFTER
1905 Albert Einstein presents his theory of relativity, which challenges
Newton’s view of the force of gravity.

1977 Voyager 1 is launched. With no friction or drag in space, the craft keeps
going due to Newton’s first law, and exits the Solar System in 2012.

In using mathematics to explain the movement of the planets and of objects on
Earth, Isaac Newton fundamentally changed the way we see the Universe. He
published his findings in 1687 in the three-volume Philosophiae Naturalis
Principia Mathematica (Mathematical Principles of Natural Philosophy), often
called the Principia for short.
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Newton’s second and third law help explain how scales work. When we weigh ourselves,
our weight (the mass of an object multiplied by gravity) is a force, now measured in newtons.
Newtons can be converted into measurements of mass, such as pounds.

How the planets move
By 1667, Newton had already developed early versions of his three laws of
motion and knew about the force needed to enable a body to move in a circular
path. He used his knowledge of forces and German astronomer Johannes Kepler’s
laws of planetary motion to deduce how elliptical orbits were related to the laws
of gravitational attraction. In 1686, English astronomer Edmond Halley persuaded
Newton to write up his new physics and its applications to planetary motion.

In his Principia, Newton used mathematics to show that the consequences of
gravity were consistent with what had been observed experimentally. He analyzed
the motion of bodies under the action of forces and posited gravitational attraction
to explain the movement of the tides, projectiles, and pendulums, and the orbits of
planets and comets.
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Laws of motion
Newton began Principia by stating his three laws of motion. The first says that a
force is needed to create motion, and that this force may be from the gravitational
attraction between two bodies or an applied force (such as when a snooker cue
strikes a ball). The second law explains what is happening when objects are in
motion. Newton said that the rate of change of momentum (mass ˗ velocity) of a
body is equal to the force acting on it. If a graph is plotted showing velocity
against time, then the gradient at any point is the rate of acceleration (any change
in velocity).

Newton’s third law says that if two objects are in contact, the reaction forces
between them cancel out, each pushing on the other with an equal force, but in
opposing directions. An object resting on a table pushes down on it, and the table
pushes back with an equal force. If this were not true, the object would move.
Until Einstein’s theory of relativity, the whole of mechanical physics was based
on Newton’s three laws of motion.

ISAAC NEWTON
Isaac Newton was born on Christmas Day in 1642 in
Lincolnshire, England, and was brought up in early
childhood by his grandmother. Newton studied at
Trinity College, Cambridge, where he showed a
fascination for science and philosophy. During the
Great Plague in 1665–1666, the university was forced
to close, and it was during this period that he
formulated his ideas on fluxions (rates of change at a

given point in time).
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Newton made significant discoveries in the fields of gravitation, motion, and
optics, where he developed a rivalry with eminent English scientist Robert
Hooke. One of several government positions he held was Master of the Royal
Mint, where he oversaw the switch of the British currency from the silver to the
gold standard. He was also President of the Royal Society. Newton died in
1727.

Key work

1687 Philosophiae Naturalis Principia Mathematica (Mathematical Principles
of Natural Philosophy)

See also: Syllogistic logic • The problem of maxima • Calculus • Emmy Noether
and abstract algebra
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IN CONTEXT
KEY FIGURE
Jacob Bernoulli (1655–1705)

FIELD
Probability

BEFORE
c. 1564 Gerolamo Cardano writes Liber de ludo aleae (The Book on Games of
Chance), the first work on probability.

1654 Pierre de Fermat and Blaise Pascal develop probability theory.

AFTER
1733 Abraham de Moivre proposes what becomes the central limit theorem—as
a sample size increases, the results will more closely match normal distribution,
or the bell curve.

1763 Thomas Bayes develops a way of predicting the chance of an outcome by
taking into account the starting conditions related to that outcome.

The law of large numbers is one of the foundations of probability theory and
statistics. It guarantees that, over the long term, the outcomes of future events can
be predicted with reasonable accuracy. This, for example, gives financial
companies the confidence to set prices for insurance and pension products,
knowing their chances of having to pay out, and ensures that casinos will always
make a profit from their gambling customers—eventually.

According to the law, as you make more observations of an event occurring, the
measured probability (or chance) of that outcome gets ever closer to the
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theoretical chance as calculated before any observations began. In other words,
the average result from a large number of trials will be a close match to the
expected value as calculated using probability theory—and increasing the number
of trials will result in that average becoming an even closer match.

The law was named by French mathematician Siméon Poisson in 1835, but its
origin is credited to Swiss mathematician Jacob Bernoulli. His breakthrough,
which he called the “golden theorem,” was published by his nephew in 1713 in
the book Ars Conjectandi (The Art of Conjecturing).

Although not the first person to recognize the relationship between collecting
data and predicting results, Bernoulli developed the first proof of this relationship
by considering a game with two possible outcomes—a win or a loss. The
theoretical chance of winning the game is W, and Bernoulli suspected that the
fraction of games (f) that resulted in a win would converge on W as the number of
games increased. He proved this by showing that the probability of f being greater
or less than W by a specified amount approached 0 (meaning impossible) as the
game was repeated.

We define the art of conjecture… as the art of evaluating… the probabilities of things, so that in
our judgments and actions we can always base ourselves on what has been found to be the best.

Jacob Bernoulli

The false probability
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A coin toss is an example of the law of large numbers. Assuming that the chance
of a heads or tails result is equal, the law dictates that after many tosses, half (or
very near it) will have landed on heads, and half on tails. However, in the early
stages, heads and tails are likely to be more unbalanced. For example, the first 10
tosses could be seven heads and three tails. It might then seem most likely that the
next toss will produce a tail. That, however, is the “gambler’s fallacy”—where a
person assumes that the outcomes of each game (toss) are connected. A gambler
might assume that toss number 11 is likely to be a tail because the number of
heads and tails must balance out, but the probability of heads or tails is the same
in every toss, and the outcome of one toss occurs independently of any other. This
is the starting point of all probability theory. After 1,000 tosses, the imbalance
apparent in those first 10 tosses becomes negligible.

When a referee flips a coin, there is no advantage, according to the law of large numbers, in
a team captain basing a heads or tails choice on what has been called in previous games.

JACOB BERNOULLI
Born in Basel, Switzerland, in 1655, Jacob Bernoulli studied theology, but
developed an interest in mathematics. In 1687, he became a professor of
mathematics at the University of Basel, a position he held for the rest of his life.

In addition to his work on probability, Bernoulli is remembered for discovering
the mathematical constant e by calculating the growth of funds that received
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compound interest continuously in infinitesimal
increments. He was also involved in the development
of calculus, taking the side of Gottfried Leibniz
against Isaac Newton in their rival claims to have
invented a new mathematical field. Bernoulli worked
on calculus with his younger brother Johann.
However, Johann became jealous of his brother’s
achievements and their relationship broke down

several years before Jacob died in 1705.

Key works

1713 Ars Conjectandi (The Art of Conjecturing)

1744 Opera (Collected Works)

See also: Probability • Normal distribution • Bayes’ theorem • The Poisson
distribution • The birth of modern statistics
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IN CONTEXT
KEY FIGURE
Leonhard Euler (1707–83)

FIELD
Number theory

BEFORE
1618 Logarithms calculated from the number now known as e are listed in an
appendix to a book on logarithms by John Napier.

1683 Jacob Bernoulli uses e in his work on compound interest.

1733 Abraham de Moivre discovers “normal distribution”: the way that values
for most data cluster at a central point and taper off at the extremes. Its equation
involves e.

AFTER
1815 Joseph Fourier’s proof that e is irrational is published.

1873 French mathematician Charles Hermite proves that e is transcendental.
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The mathematical constant that became known as e, or Euler’s number—2.718…
to an infinite number of decimal places—first appeared in the early 1600s, when
logarithms were invented to help simplify complex calculations. Scottish
mathematician John Napier compiled tables of logarithms to base 2.718…, which
worked particularly well for calculations involving exponential growth. These
were later dubbed “natural logarithms” because they can be used to
mathematically describe many processes in nature, but with algebraic notation
still in its infancy, Napier saw logarithms only as an aid to calculation involving
the ratio of distances covered by moving points.

In the late 1600s, Swiss mathematician Jacob Bernoulli used 2.718… to calculate
compound interest, but it was Leonhard Euler, a student of Bernoulli’s brother
Johann, who first called the number e. Euler calculated e to 18 decimal places,
writing his first work on e, the Meditatio (Meditation), in 1727. However, it was
not published until 1862. Euler explored e further in his 1748 Introductio
(Introduction).

LEONHARD EULER
Born in 1707, in Basel, Switzerland, Euler grew up in nearby Riehen. Taught
initially by his father, a Protestant minister who had some mathematical training
and was also a friend of the Bernoulli family, Euler developed a passion for
mathematics. Although he entered university to study for the ministry, he
switched to mathematics with the support of Johann Bernoulli. Euler went on to
work in Switzerland and Russia, and became the most prolific mathematician of
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all time, contributing greatly to calculus, geometry,
and trigonometry, among other fields. This was
despite steadily losing his sight from 1738 and
becoming blind in 1771. Working to the very end, he
died in 1783 in St. Petersburg.

Key works

1748 Introductio in analysin infinitorium (Introduction to Analysis of the
Infinite)

1862 Meditatio in experimenta explosione tormentorum nuper instituta
(Meditation upon experiments made recently on the firing of Cannon)

Compound interest
One of the earliest appearances of e was in calculating compound interest—where
the interest on a savings account, for example, is paid into the account to increase
the amount saved, rather than being paid out to the investor. If the interest is
calculated on a yearly basis, an investment of $100 at an interest rate of 3% per
year would produce $100 × 1.03 = $103 after one year. After two years, it would
be 100 × 1.03 × 1.03 = $106.09, and after 10 years it would be $100 × 1.0310 =
$134.39. The formula for this is A = P (1 + r)t, where A is the final amount, P is
the original investment (principal), r is the interest rate (as a decimal), and t is the
number of years.

If interest is calculated more often than annually, the calculation changes. For
example, if interest is calculated monthly, the monthly rate is 1⁄12 of the yearly
rate. 3 ÷ 12 = 0.25, so the investment after a year would be $100 × 1.002512 =
$103.04. If interest is calculated daily, the rate is 3 ÷ 365 = 0.008… and the
amount after one year is $100 × 1.00008…365 = $103.05. The formula for this is
A = P(1 + r⁄n)nt, where n is the number of times the interest is calculated in each
year. As the time intervals at which interest is calculated get smaller, the amount
of interest yielded at the end of a year approaches A = Per. Bernoulli came close
to working this out in his calculations, when he identified e as the limit of (1 +
1⁄n)n as n approaches infinity (n → ∞). The formula (1 + 1⁄n)n gives closer values
for e as n increases. For example, n = 1 gives a value for e of 2, n = 10 gives a
value for e of 2.5937… and n = 100 gives a value for e of 2.7048….
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When Euler calculated a value for e correct to 18 decimal places, he probably
used the sequence e = 1 + 1 + 1⁄2 + 1⁄6 + 1⁄24 + 1⁄120 + 1⁄720, going up to 20 terms.
He arrived at these denominators by using the factorial for each integer. The
factorial of an integer is the product of the integer and all the integers below it: 2
(2 × 1), 3 (3 × 2 × 1), 4 (4 × 3 × 2 × 1), 5 (5 × 4 × 3 × 2 × 1) and so on, adding
one more term in the product each time. This can be shown as e = 1 + 1 + 1⁄2! +
1⁄3! +1⁄4! in factorial notation.

Euler calculated e to 18 decimal places, but noted that the decimals continued
indefinitely. This means that e is irrational. In 1873, French mathematician
Charles Hermite proved that e is also non-algebraic—it is not a number with a
terminating decimal that can be used in a regular polynomial equation. This
makes it a “transcendental” number—a real number that cannot be computed by
solving an equation.

Compounding interest yields a bigger total sum. The examples below show how a $10
principal investment accrues interest if the yearly interest rate is 100 percent, versus
compound interest paid at shorter intervals.
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The exponential function can be used to calculate compound interest. The function produces
the curve y = ex, which cuts the y axis at (0,1), and gets exponentially steeper. This graph also
shows the tangent to the curve.

The growth curve
Compound interest is an example of exponential growth. Such growth can be
plotted on a graph and will appear as a curve. In the 1600s, English cleric Thomas
Malthus posited that population also increases exponentially if there are no
checks on its growth, such as war, famine, or food shortages. This means that the
population continues to grow at the same rate, leading to ever-larger totals.
Constant population growth can be calculated with the formula P = P0ert where
P0 is the original population number, r is the growth rate, and t is time.

Plotted on a graph, e shows other special properties. The graph of y = ex (the
exponential function) is a curve whose tangent (the straight line that touches but
does not intersect the curve) at the coordinates (0,1) also has a gradient
(steepness) of precisely 1. This is because the derivative (rate of change) of ex is,
in fact, ex, and the derivative is used to find the tangent. The tangent is used to
calculate the rate of change at a specific point on a curve. Because the derivative
is ex, the slope (a measure of direction and steepness) of the tangent line will
always be the same as the y value.

For the sake of brevity, we will always represent this number, 2.718281828… by the letter e.

Leonhard Euler
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Derangements
The various ways in which a set of items can be ordered are called permutations.
For example, the set 1, 2, 3 can be arranged as 1, 3, 2, or 2, 1, 3, or 2, 3, 1, or 3, 1,
2, or 3, 2, 1. There are six total ways, including the original, as the number of
permutations in a set is equal to the factorial of the highest integer, in this case 3!
(short for 3 × 2 × 1). Euler’s number is also significant in a type of permutation
called a derangement. In a derangement, none of the items can remain in their
original position. For four items, the number of possible permutations is 24, but to
find the derangements of 1, 2, 3, 4, all other arrangements beginning with 1 must
first be eliminated. There are three derangements starting with 2: 2, 1, 4, 3; 2, 3, 4,
1; and 2, 4, 1, 3. There are also three derangements starting with 3 and three
starting with 4, making nine in total. With five items, the total number of
permutations is 120, and with six it is 720, making the task of finding all
derangements a substantial one.

Euler’s number makes it possible to calculate the number of derangements in any
set. This number equals the number of permutations divided by e, rounded to the
nearest whole number. For example, for the set of 1, 2, 3, where there are six
permutations, 6 ÷ e = 2.207… or 2, to the nearest whole number. Euler analyzed
derangements of 10 numbers for Frederick the Great of Prussia, who hoped to
create a lottery to pay off his debts. For 10 numbers, Euler found that the
probability of getting a derangement is 1⁄e to an accuracy of six decimal places.

[Frederick the Great is] always at war; in summer with the Austrians, in winter with
mathematicians.

Jean le Rond d’Alembert
French mathematician

Other uses
Euler’s number is relevant in many other calculations—for example, in splitting
up (partitioning) a number to discover which numbers in the partition have the
largest product. With the number 10, partitions include 3 and 7, with a product of
21; or 6 and 4 to produce 24; or 5 and 5 to give 25, which is the maximum
product for a partition of 10 using two numbers. With three numbers, 3, 3, 4 has a
product of 36, but moving into fractional numbers, 31⁄3 × 31⁄3 × 31⁄3 = 1000⁄27 =
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The Gateway Arch in St.
Louis, Missouri is a
flattened catenary arch,
designed by Finnish-

37.037… the largest for three numbers. For a four-way partition, 21⁄2 × 21⁄2 × 21⁄2
× 21⁄2 = 39.0625, but in a five-way split, 2 × 2 × 2 × 2 × 2 = 32. In short, (10⁄2)2 =
25, (10⁄3)3 = 37.037..., (10⁄4)4 = 39.0625, and (10⁄5)5 = 32. This smaller result for a
five-way. partition suggests that the optimal number of splits for 10 is between 3
and 4. Euler’s number can help to find both the maximum product, as e(10⁄e) =
39.598…, and number of partitions: 10⁄e = 3.678….

To carbon-date organic material, researchers test a sample—here from an ancient human
bone—and use Euler’s number to calculate its age from the rate of radioactive decay.

The catenary
Sometimes defined as the shape a hanging chain
takes if it is only supported at its ends, a catenary is
a curve with the formula y = 1⁄2 × (ex + e-x).
Catenaries are often found in nature and in
technology. For example, a square sail under
pressure from the wind takes the form of a catenary.
Arches in the shape of an inverted catenary are often
used in architecture and construction due to their
strength.
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American architect Eero
Saarinen in 1947.

For a long time, the catenary’s shape was believed
to be the same as that of a parabola. Dutch
mathematician Christiaan Huygens—who coined the

name catenary from the Latin catena (“chain”) in 1690—showed that, unlike a
parabola, a catenary curve could not be given by a polynomial equation. Three
mathematicians—Huygens, Gottfried Leibniz, and Johann Bernoulli—
calculated a formula for the catenary, coming to the same conclusion. Their
results were published together in 1691. In 1744, Euler described a catenoid—
shaped like a waisted cylinder and produced by rotating a catenary around an
axis.

See also: Positional numbers • Irrational numbers • Calculating pi • Decimals •
Logarithms • Probability • The law of large numbers • Euler’s identity
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IN CONTEXT
KEY FIGURES
Abraham de Moivre (1667–1754), Carl Friedrich Gauss (1777–1855)

FIELDS
Statistics, probability

BEFORE
1710 British physician John Arbuthnot publishes a statistical proof of divine
providence in relation to the number of men and women in a population.

AFTER
1920 Karl Pearson, a British statistician, expresses regret about describing the
Gaussian curve as the “normal curve” because it gives the impression that all
other probability distributions were “abnormal.”

1922 In the US, the New York Stock Exchange introduces the use of normal
distribution to model the risks of investments.

In the 18th century, French mathematician Abraham de Moivre made an
important step forward in statistics; building on Jacob Bernoulli’s discovery of
binomial distribution, de Moivre showed that events cluster around the mean (b
on graph below). This phenomenon is known as normal distribution.

Binomial distribution (used to describe outcomes based on one of two
possibilities) was first shown by Bernoulli in Ars Conjectandi (The Art of
Conjecturing), published in 1743. When a coin is flipped, there are two possible
outcomes: “success” and “failure.” This type of test, with two equally likely
outcomes, is called a Bernoulli trial. Binomial probabilities arise when a fixed
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number, n, of such Bernoulli trials, each with the same success probability, p, are
carried out and the total number of successes is counted. The resulting
distribution is written as b(n, p). Binomial distribution b(n, p) can take values
from 0 to n, centered on a mean of np.

The bell curve is a visual illustration of normal distribution. The highest point of the curve
(b) represents the mean, which the values cluster around. Values become less frequent the
further they are from the mean, so are least frequent at points a and c.

Finding the mean
In 1721, Scottish baronet Alexander Cuming gave de Moivre a problem
concerning the expected winnings in a game of chance. De Moivre concluded that
it came down to finding the mean deviation (the average difference between the
overall mean and each value in a set of figures) of binomial distribution. He wrote
up his results in Miscellanea Analytica.

De Moivre had realized that binomial outcomes cluster around their mean—on a
graph, they plot an uneven curve that gets closer to the shape of a bell (normal
distribution) the more data is collected. In 1733, de Moivre was satisfied that he
had found a simple way of approximating binomial probabilities using normal
distribution, thus creating a bell curve for binomial distribution on a graph. He
wrote up his findings as a short paper, then included it in the 1738 edition of his
Doctrine of Chances.
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Using normal distribution
From the mid-1700s, the bell curve cropped up as a model for all kinds of data. In
1809, Carl Friedrich Gauss pioneered normal distribution as a useful statistical
tool in its own right. French mathematician Pierre-Simon Laplace used normal
distribution to model curves for random errors, such as measurement errors, in
one of the first applications of a normal curve.

In the 1800s, many statisticians studied variation in experimental results. British
statistician Francis Galton used a device called the quincunx (or Galton board) to
study random variation. The board consisted of a triangular array of pegs through
which beads dropped from top to bottom, where they collected in a series of
vertical tubes. Galton measured how many beads were in each tube and described
the resulting distribution as “normal.” His work—along with that of Karl Pearson
—popularized the use of the term “normal” to describe what was also known as a
“Gaussian” curve.

Today, normal distribution is widely used to model statistical data, with
applications ranging from population studies to investment analysis.

ABRAHAM DE MOIVRE
Born in 1667, Abraham de Moivre was raised as a Protestant in Catholic France,
and lived there until 1685, when Louis XIV expelled the Huguenots. Briefly
imprisoned for his religious beliefs, de Moivre emigrated to England upon his
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release. He became a private mathematics tutor in
London. He had hoped for a university teaching
position, but he still faced some discrimination as a
Frenchman in England. Nevertheless, de Moivre
impressed and befriended many eminent scientists of
the time, including Isaac Newton, and was elected as a
fellow of the Royal Society in 1697. As well as his

work on distribution, de Moivre was best known for his work on complex
numbers. He died in London in 1754.

Key works

1711 De Mensura Sortis (On the Measurement of Chance)

1721–30 Miscellanea Analytica (Miscellany of Analysis)

1738 The Doctrine of Chances (1st edition)

1756 The Doctrine of Chances (3rd edition)

See also: Probability • The law of large numbers • The fundamental theorem of
algebra • Laplace’s demon • The Poisson distribution • The birth of modern
statistics
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IN CONTEXT
KEY FIGURE
Leonhard Euler (1707–83)

FIELDS
Number theory, topology

BEFORE
1727 Euler develops the constant e, which is used in describing exponential
growth and decay.

AFTER
1858 August Möbius extends Euler’s graph theory formula to surfaces that are
joined to form a single surface.

1895 Henri Poincaré publishes his paper Analysis situs, in which graph theory is
generalized to create a new area of mathematics known as topology (the study
of properties of geometrical figures that are not affected by continuous
deformation).

Graph theory and topology began with Leonhard Euler’s attempt to find a
solution to a mathematical puzzle—whether it was possible to make a circuit of
the seven bridges in Königsberg (now Kaliningrad, Russia) without crossing any
bridge twice. The river flowed around an island and then forked. Realizing that
the problem related to the geometry of position, Euler developed a new type of
geometry to show that it was impossible to devise such a route. Distances
between points were not relevant: the only thing that counted was the connections
between points.
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Euler modeled the Königsberg bridges problem by making each of the four land
areas a point (node or vertex) and making the bridges arcs (curves or edges) that
joined the various points. This gave him a “graph” that represented the
relationships between the land and the bridges.

First graph theorem
Euler began from the premise that each bridge could be crossed only once and
each time a land area was entered it also needed to be exited, which required two
bridges in order to avoid crossing any bridge twice. Each land area therefore
needed to connect to an even number of bridges, with the possible exception of
the start and finish (if they were different locations). However, in the graph
representing Königsberg, A is the endpoint of five bridges and B, C, and D are
each the endpoint of three. A successful route needs land areas (nodes or vertices)
to have an even number of bridges (arcs) to enter and exit by. Only the start and
end points can have an odd number. If more than two nodes have an odd number
of arcs, then a route using each bridge only once is impossible. By showing this,
Euler provided the first theorem in graph theory.

The word “graph” is most often used to describe a Cartesian system of
coordinates with points plotted using x and y axes. More generally, a graph
consists of a discrete set of nodes (or vertices) connected by arcs (or edges). The
number of arcs meeting at a node is called its degree. For the Königsberg graph,
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A has degree 5 and B, C, and D each have degree 3. A path that travels each arc
once and only once is called an Eulerian path (or a semi-Eulerian path if the start
and end are at different nodes).

The Königsberg bridges problem can be expressed as the question: “Is there an
Eulerian or a semi-Eulerian path for the graph of Königsberg?” Euler’s answer is
that such a graph must have at most two nodes of odd degree, but the Königsberg
graph has four odd degree nodes.

Read Euler, read Euler. He is our master in everything.

Pierre-Simon Laplace

Network theory
Arcs on a graph may be “weighted” (given degrees of significance) by assigning
numerical values to them—for example, to represent the different lengths of roads
on a map. A weighted graph is also called a network. Networks are used to model
relationships between objects in many disciplines—including computer science,
particle physics, economics, cryptography, sociology, biology, and climatology—
usually with a view to optimizing a particular property, such as the shortest
distance between two points.

One application of networks is to address the so-called “traveling salesperson
problem.” This involves finding the shortest route for a salesperson to travel from
their home to a series of cities and back again. The puzzle was allegedly first set
as a challenge on the back of a cereal box. In spite of advances in computing, no
method exists that guarantees to always find the best solution, because the time
this takes grows exponentially as the given number of cities increases.
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The city of Königsberg had seven bridges linking two parts of the city to its two islands.
Euler’s graph shows that it is impossible to construct a route that visits each island and
crosses each bridge only once.

See also: Coordinates • Euler’s number • The complex plane • The Möbius strip •
Topology • The butterfly effect • The four-color theorem
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IN CONTEXT
KEY FIGURE
Christian Goldbach (1690–1764)

FIELD
Number theory

BEFORE
c. 200 CE Diophantus of Alexandria writes his Arithmetica in which he lays out
key issues about numbers.

1202 Fibonacci identifies what becomes known as the Fibonacci sequence of
numbers.

1643 Pierre de Fermat pioneers number theory.

AFTER
1742 Leonhard Euler refines the Goldbach conjecture.

1937 Soviet mathematician Ivan Vinogradov proves the ternary Goldbach
problem, a version of the conjecture.

In 1742, Russian mathematician Christian Goldbach wrote to Leonhard Euler, the
leading mathematician of the time. Goldbach believed he had observed something
remarkable—that every even integer can be split into two prime numbers, such as
6 (3 + 3) or 8 (3 + 5). Euler was convinced that Goldbach was right, but he could
not prove it. Goldbach also proposed that every odd integer above 5 is the sum of
three primes, and concluded that every integer from 2 upward can be created by
adding together primes; these additional proposals are dubbed “weak” versions of
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the original “strong” conjecture, as they would follow naturally if the strong
conjecture were true.

Manual and electronic methods have, as yet, failed to find any even number that
does not conform to the original strong conjecture. In 2013, a computer tested
every even number up to 4 × 1018 without finding one. The bigger the number,
the more pairs of primes can create it, so it seems highly likely that the conjecture
is valid and no exception will be found. Mathematicians, however, require a
definitive proof.

Over centuries, different “weak” versions of the conjecture have been proved,
but no one to date has proved the strong conjecture, which seems destined to
defeat even the brightest minds.

UCLA’s Terence Tao, winner of the Fields Medal in 2006 and the Breakthrough Prize in
mathematics in 2015, published a rigorous proof of a weak Goldbach conjecture in 2012.

See also: Mersenne primes • The law of large numbers • The Riemann hypothesis
• The prime number theorem
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IN CONTEXT
KEY FIGURE
Leonhard Euler (1707–83)

FIELD
Number theory

BEFORE
1714 Roger Cotes, the English mathematician who proofread Newton’s
Principia, creates an early formula similar to Euler’s, but using imaginary
numbers and a complex logarithm (a type of logarithm used when the base is a
complex number).

AFTER
1749 Abraham de Moivre uses Euler’s formula to prove his theorem, which
links complex numbers and trigonometry.

1934 Soviet mathematician Alexander Gelfond shows that eπ is transcendental,
that is, irrational and still irrational when raised to any power.

Formulated by Leonhard Euler in 1747, the equation known as Euler’s identity,
eiπ + 1 = 0, encompasses the five most important numbers in mathematics: 0
(zero), which is neutral for addition and subtraction; 1, which is neutral for
multiplication and division; e (2.718..., the number at the heart of exponential

growth and decay); i ( , the fundamental imaginary number); and π (3.142...,
the ratio of a circle’s circumference to its diameter, which occurs in many
equations in mathematics and physics). Two of these numbers, e and i, were
introduced by Euler himself. His genius lay in combining all five milestone
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numbers with three simple operations: raising a number to a power (for example,
54, or 5 × 5 × 5 × 5), multiplication, and addition.

Complex powers
Mathematicians such as Euler asked themselves if it would be meaningful to raise
a number to a complex power—a complex number being a number that combines
a real number with an imaginary one, such as a + bi, where a and b are any real
numbers. When Euler raised the constant e to the power of the imaginary number
i multiplied by π, he discovered that it equals –1. Adding 1 to both sides of the
equation produces Euler’s identity, eiπ + 1 = 0. The equation’s simplicity has led
mathematicians to describe it as “elegant,” a description reserved for proofs that
are profound yet also unusually succinct.

It is simple… yet incredibly profound; it comprises the five most important mathematical
constants.

David Percy
British mathematician

See also: Calculating pi • Trigonometry • Imaginary and complex numbers •
Logarithms • Euler’s number
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IN CONTEXT
KEY FIGURE
Thomas Bayes (1702–61)

FIELD
Probability

BEFORE
1713 Jacob Bernoulli’s Ars Conjectandi (The Art of Conjecturing), published
after his death, sets out his new mathematical theory of probability.

1718 Abraham de Moivre defines the statistical independence of events in his
book The Doctrine of Chances.

AFTER
1774 In his Memoir on the Probability of the Causes of Events, Pierre-Simon
Laplace introduces the principle of inverse probability.

1992 The International Society for Bayesian Analysis (ISBA) is founded to
promote the application and development of Bayes’ theorem.
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In 1763, Richard Price, a Welsh minister and mathematician, published a paper
called “An Essay Towards Solving a Problem in the Doctrine of Chances.” Its
author, the Reverend Thomas Bayes, had died two years earlier, leaving the paper
to Price in his will. It was a breakthrough in the modeling of probability and is
still used today in areas as diverse as locating lost aircraft and testing for disease.

Jacob Bernoulli’s book Ars Conjectandi (1713) showed that as the number of
identically distributed, randomly generated variables increases, so their observed
average gets closer to their theoretical average. For example, if you toss a coin for
long enough, the number of times it comes up heads will get closer and closer to
half the total of tosses —a probability of 0.5.

In 1718, Abraham de Moivre grappled with the mathematics underpinning
probability. He demonstrated that, provided the sample size was large enough, the
distribution of a continuous random variable—people’s heights, for example—
averaged out into a bell-shaped curve, later named the “normal distribution” by
German mathematician Carl Gauss.
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If a disease affects 5 percent of the population (event A) and is diagnosed using a test with 90
percent accuracy (event B), you might assume that the probability (P) of having the disease if
you test positive—P(A|B)—is 90 percent. However, Bayes’ theorem factors in the false
results produced by the test’s 10 percent inaccuracy—P(B).

Working out probabilities
Most real-world events, however, are more complicated than the toss of a coin.
For probability to be useful, mathematicians needed to determine how an event’s
outcome could be used to draw conclusions about the probabilities that led to it.
This reasoning based on the causes of observed events—rather than using direct
probabilities, such as the 50 percent chance of a heads coin toss—became known
as inverse probability. Problems that deal with the probabilities of causes are
called inverse probability problems and might involve, for example, observing a
bent coin landing on heads 13 times out of 20 and then trying to determine
whether the probability of that coin landing on heads lies somewhere between 0.4
and 0.6.

To show how to calculate inverse probabilities, Bayes considered two
interdependent events—“event A” and “event B”. Each has a probability of
occurring—P(A) and P(B)— with P for each being a number between 0 and 1. If
event A occurs, it alters the probability of event B happening, and vice versa. To
denote this, Bayes introduced “conditional probabilities.” These are given as
P(A|B), the probability of A given B, and P(B|A), the probability of B given A.
Bayes managed to solve the problem of how all four probabilities related to one
another with the equation: P(A|B) = P(A) × P(B|A)/P(B).

THOMAS BAYES
The son of a Nonconformist minister, Thomas Bayes was born in 1702 and
grew up in London. He studied logic and theology at the University of
Edinburgh and followed his father into the ministry, spending much of his life
leading a Presbyterian chapel in Tunbridge Wells, Kent.

Although little is known of Bayes’ life as a mathematician, in 1736 he
anonymously published An Introduction to the Doctrine of Fluxions, and a
Defence of the Mathematicians Against the Objections of the Author of the
Analyst, in which he defended Isaac Newton’s calculus foundations against the
criticisms of the philosopher Bishop George Berkeley. Bayes was made a fellow
of the Royal Society in 1742 and died in 1761.
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Key work

1736 An Introduction to the Doctrine of Fluxions, and a Defence of the
Mathematicians Against the Objections of the Author of the Analyst

See also: Probability • The law of large numbers • Normal distribution •
Laplace’s demon • The Poisson distribution • The birth of modern statistics • The
Turing machine • Cryptography

313



IN CONTEXT
KEY FIGURE
Joseph-Louis Lagrange (1736–1813)

FIELD
Algebra

BEFORE
628 Brahmagupta publishes a formula for solving many quadratic equations.

1545 Gerolamo Cardano creates formulae for resolving cubic and quartic
equations.

1749 Leonhard Euler proves that polynomial equations of degree n have exactly
n complex roots (where n = 2, 3, 4, 5, or 6).

AFTER
1799 Carl Gauss publishes the first proof of the fundamental theorem of
algebra.

1824 In Norway, Niels Henrik Abel completes Paolo Ruffini’s 1799 proof that
there is no general formula for the quintic equation.

Polynomial equations involving numbers and a single unknown quantity (x, and
powers of x such as x2 and x3) are a powerful tool for solving real-world
problems. An example of a polynomial equation is x2 + x + 41 = 0. While such
equations can be solved approximately by repeated numerical calculations,
solving them exactly (algebraically) was not achieved until the 1700s. The quest
led to many mathematical innovations, including new types of numbers—such as
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negative and complex numbers—as well as modern algebraic notation and group
theory.

Searching for solutions
The Babylonians and ancient Greeks used geometrical methods to solve problems
that are now usually expressed by quadratic equations. In medieval times, more
abstract algorithmic approaches were established, and by the 1500s,
mathematicians knew certain relations between the coefficients of a polynomial
equation and its roots, and had devised formulas to solve cubic (highest power 3)
and quartic equations (highest power 4). In the 1600s, a general theory of
polynomial equations, now called the fundamental theorem of algebra, took
shape. This stated that an equation of degree n (where the highest power of x is
xn) has exactly n roots or solutions, which may be real or complex numbers.
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An algebraic equation is made up of variables and coefficients. The highest power of the
equation determines how many solutions it has: in this case, there are three solutions.

Roots and permutations
In his Reflections on the algebraic resolution of equations (1771), French-Italian
mathematician Joseph-Louis Lagrange introduced a general approach for solving
polynomial equations. His work was theoretical—he investigated the structure of
polynomial equations to find the circumstances under which a formula could be
found for solving them. Lagrange combined the technique of using a related,
lower-degree polynomial equation whose coefficients were related to the
coefficients of the original equation with a striking innovation—he considered the
possible permutations (reorderings) of the roots. Lagrange’s insight into the
symmetries that arose from these permutations showed why the cubic and quartic
equations could be solved by formulas, and showed (due to the different
permutations of symmetries and roots) why a formula for the quintic equation
needed a different approach.

Within 20 years of Lagrange’s work, Italian mathematician Paolo Ruffini began
to prove that there was no general formula for the quintic equation. Lagrange’s
investigation into permutations (and symmetries) formed the basis of the even
more abstract and general group theory advanced by French mathematician
Évariste Galois, who used it to prove why it is impossible to resolve equations of
degree 5 or higher algebraically—that is, why there is no general formula for
solving such equations.

JOSEPH-LOUIS LAGRANGE
Born Giuseppe Lodovico Lagrangia in Turin in 1736, Lagrange embraced his
family’s French heritage and went by the French version of his name. As a
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young mathematician, self-taught, he worked on the
tautochrone problem and developed a new formal
method to find the function that solved such problems.
At the age of 19, he wrote to Leonhard Euler, who
recognized his talent. Lagrange applied his method,
which Euler named the calculus of variations, to study
a wide range of physical phenomena, including the
vibration of strings. In 1766, at Euler’s

recommendation, he was made Director of Mathematics at the Berlin Academy,
and in 1787 he moved to the Académie des Sciences in Paris. Despite being an
academic and a foreigner, Lagrange survived the French Revolution and Reign
of Terror, and died in Paris in 1813.

Key works

1771 Reflections on the algebraic resolution of equations

1788 Analytical Mechanics

1797 Theory of analytic functions

See also: Quadratic equations • Algebra • The binomial theorem • Cubic
equations • Huygens’s tautochrone curve • The fundamental theorem of algebra •
Group theory
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IN CONTEXT
KEY FIGURE
Georges Louis Leclerc, Comte de Buffon (1707–88)

FIELD
Probability

BEFORE
1666 Liber de ludo aleae (On Games of Chance) by Italian mathematician
Gerolamo Cardano is published.

1718 Abraham de Moivre publishes The Doctrine of Chances, the first textbook
on probability.

AFTER
1942–46 The Manhattan Project, a US-led body for developing nuclear
weapons, makes extensive use of Monte Carlo methods (computational
processes that model risk by generating random variables).

Late 1900s Quantum Monte Carlo methods are used to explore particle
interactions in microscopic systems.

In 1733, the mathematician and naturalist George Leclerc, the Comte de Buffon,
raised—and answered—a fascinating question. If a needle is dropped onto a
series of parallel lines, all the same width apart, what is the likelihood that the
needle will cross one of the lines? Now known as Buffon’s needle experiment, it
was one of the earliest probability calculations.

An elegant illustration
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Buffon originally used the needle experiment to estimate π (pi)—the ratio of a
circle’s circumference to its diameter. He did this by dropping a needle of length l
many times onto a series of parallel lines distance d apart, where d is greater than
the needle’s length (d > l). Buffon then counted the number of times the needle
crossed the line as a proportion of total attempts (p) and came up with the formula
that π is approximately equal to twice the length of the needle l, divided by the
distance (d) multiplied by the proportion of needles crossing the line: π ≈ 2l ÷ dp.
The probability of the needle crossing a line can be calculated by multiplying
each side of the formula by p, then dividing each side by π to get p ≈ 2l ÷ πd.

The relationship with π can be used in a number of probability problems. One
example involves a quarter circle, inscribed in a square, which curves from the
top left corner of the square to the bottom right. The bottom horizontal edge of the
square is the x axis and the left vertical edge is the y axis, with a value of 0 in the
lower left corner and 1 in the corners at each end of the curve. When two numbers
between 0 and 1 are chosen at random as the x and y coordinates, whether the
point will lie inside the quarter circle (success) or outside it (failure) can be
deduced by examining , where a is the x coordinate and b is the y
coordinate. The result is > 1 for points outside the curve and < 1 for points within
it. The point is chosen at random, so could be anywhere in the square. Points on
the line of the quarter circle can be counted as a success. The chance of “success”
is πr2 (the area of a circle) ÷ 4. If the radius is 1, r2 = 1, so the area is just π; for a
quarter circle, divide π by 4 to get approximately 0.78. The whole area is the area
of the square, which is 1 × 1 = 1, so the probability of landing in the shaded area
is approximately 0.78 ÷ 1 = 0.78.

319



Using pi, the probability of a randomly chosen point falling within the quarter circle in this
square can be calculated as roughly 78 percent.

The Monte Carlo method
This problem is an example of a wider class of experiments that employ a
statistical approach called the Monte Carlo method, a code name coined by
Polish-American scientist Stanislaw Ulam and his colleagues for the random
sampling used during secret work on nuclear weapons in World War II. Monte
Carlo methods went on to be useful in modern applications, especially once
computers made it far less time-consuming to repeat a probability experiment
over and over again.
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Buffon’s needle experiment demonstrated how probability can be connected to pi. Buffon
classed needles as “successful” (pink) if they crossed a line when dropped, or “unsuccessful”
(blue) if they didn’t, then calculated the probability of “success.”

In wind energy yield analysis, the predicted energy output of a wind farm during its lifetime
is calculated, giving different levels of uncertainty, by using Monte Carlo probability
methods.

GEORGES-LOUIS LECLERC, COMTE DE BUFFON
Born in Montbard, France, in 1707, Georges-Louis Leclerc was urged by his
parents to pursue a career in law, but was more interested in botany, medicine,
and mathematics, which he studied at the University of Angers, France. At the
age of 20, he explored the binomial theorem.
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Independently wealthy, Buffon was able to write and
study tirelessly, corresponding with many of the
scientific elite of his day. His interests were wide-
ranging, and his output was immense—on topics
ranging from ship-building to natural history and
astronomy. The comte also translated a number of
scientific works.

Appointed keeper of the Jardin du Roi, the royal botanical gardens in Paris, in
1739, Buffon enriched its collections and doubled its size. He held the post until
his death in Paris in 1788.

Key works

1749–1786 Histoire naturelle (Natural History)

1778 Les époques de la nature

(The Epochs of Nature

See also: Calculating pi • Probability • The law of large numbers • Bayes’
theorem • The birth of modern statistics
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IN CONTEXT
KEY FIGURE
Carl Gauss (1777–1855)

FIELD
Algebra

BEFORE
1629 Albert Girard states that a polynomial of degree n will have n roots.

1746 The first attempt at a proof of the fundamental theorem of algebra (FTA)
is made by Jean d’Alembert.

AFTER
1806 Robert Argand publishes the first rigorous proof of the FTA that allows
polynomials with complex coefficients.

1920 Alexander Ostrowski proves the remaining assumptions in Gauss’s proof
of the FTA.

1940 Hellmuth Kneser gives the first constructive variant of the Argand FTA
proof that allows for the roots to be found.

This method of solving problems by honest confession of one’s ignorance is called Algebra.

Mary Everest Boole
British mathematician

An equation asserts that one quantity is equal to another, and provides a means of
determining an unknown number. Since Babylonian times, scholars have sought
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solutions to equations, periodically encountering seemingly insoluble examples.
In the 5th century BCE, Hippasus’s attempts to resolve x2 = 2 and his realization

that  was irrational (neither a whole number nor a fraction) are said to have
led to his death for betraying Pythagorean beliefs. Some 800 years later,
Diophantus had no knowledge of negative numbers, so could not accept an
equation where x is negative, such as 4 = 4x + 20, where x is -4.

Polynomials and roots
In the 1700s, one of the most studied areas of mathematics involved polynomial
equations. These are often used to solve problems in mechanics, physics,
astronomy, and engineering, and involve powers of an unknown value, such as x2.
The “root” of a polynomial equation is a specific numerical value that will replace
the unknown value to make the polynomial equal 0. In 1629, French
mathematician Albert Girard showed that a polynomial of degree n will have n
roots. The quadratic equation x2 + 4x - 12 = 0, for example, has two roots, x = 2
and x = -6, both of which produce the answer 0. It has two roots because of the x2

term – 2 is the equation’s highest power. If any quadratic equation is drawn on a
graph, these roots can be easily found: they are where the line touches the x axis.
Although his theorem was useful, Girard’s work was hindered by the fact that he
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had no concept of complex numbers. These would be key to producing a
fundamental theorem of algebra (FTA) for solving all possible polynomials.

Gerolamo Cardano encountered negative roots while working on cubic equations in the
1500s. His acceptance of these as valid solutions was an important step in algebra.

Complex numbers
The collection of all positive and negative, rational and irrational numbers
together make up the real numbers. Some polynomials, however, do not have
real-number roots. This was a problem faced by Italian mathematician Gerolamo
Cardano and his peers in the 1500s; while working on cubic equations, they found
that some of their solutions involved square roots of negative numbers. This
seemed impossible, because a negative number multiplied by itself produces a
positive result.

The problem was solved in 1572 when another Italian, Rafael Bombelli, set out

the rules for an extended number system that included numbers such as 
alongside the real numbers. In 1751, Leonhard Euler investigated the imaginary

roots of polynomials, and called  the “imaginary unit,” or i. All imaginary
numbers are multiples of i. Combining the real and the imaginary, such as a + bi

(where a and b are any real numbers, and i = ), creates what is called a
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complex number.

Once mathematicians had accepted the necessity of negative and complex
numbers for solving certain equations, the question remained as to whether
finding roots of higher-degree polynomials would require the introduction of yet
new types of number. Euler and other mathematicians, notably Carl Gauss in
Germany, would seek to address this question, eventually concluding that the
roots of any polynomial are either real or complex numbers—no further types of
number are needed.

Imaginary numbers are a fine and wonderful refuge of the divine spirit.

Gottfried Leibniz

CARL GAUSS
Born in Brunswick, Germany, in 1777, Carl Gauss
showed his mathematical talents early: aged only
three, he corrected an error in his father’s payroll
calculations, and by the age of five he was taking care
of his father’s accounts. In 1795, he entered Göttingen
University and in 1798, he constructed a regular
heptadecagon (a polygon with 17 sides) using only a
ruler and compasses—the biggest advance in polygon

construction since Euclid’s geometry some 2,000 years earlier. Gauss’s
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Arithmetical Investigations, written at the age of 21 and published in 1801, was
key to defining number theory. Gauss also made advances in astronomy (such
as the rediscovery of the astroid Ceres), cartography, the study of
electromagnetism, and the design of optical instruments. However, he kept
many of his ideas to himself; a great number were discovered in his unpublished
papers after his death in 1855.

Key work

1801 Disquisitiones Arithmeticae (Arithmetical Investigations)

Early research
The FTA can be stated in a number of ways, but its most common formulation is
that every polynomial with complex coefficients will have at least one complex
root. It can also be stated that all polynomials of degree n containing complex
coefficients have n complex roots.

The first significant attempt at proving the FTA was made in 1746 by French
mathematician Jean le Rond d’Alembert in his “Recherches sur le calcul intégral”
(“Research on integral calculus”). D’Alembert’s proof argued that if a polynomial
P(x) with real coefficients has a complex root, x = a + ib, then it also has a
complex root, x = a - ib. To prove this theorem, he used a complicated idea now
known as “d’Alembert’s lemma.” In mathematics, a lemma is an intermediary
proposition used to solve a bigger theorem. However, d’Alembert did not prove
his lemma satisfactorily; his proof was correct, but contained too many holes to
satisfy his fellow mathematicians.

Later attempts to prove the FTA included those of Leonhard Euler and Joseph-
Louis Lagrange. While useful to later mathematicians, these were also
unsatisfactory. In 1795, Pierre-Simon Laplace tried an FTA proof using the
polynomial’s “discriminant,” a parameter determined from its coefficients which
indicates the nature of its roots, such as real or imaginary. His proof contained an
unproved assumption that d’Alembert had avoided—that a polynomial will
always have roots.

There are only two kinds of certain knowledge: awareness of our own existence and the truths of
mathematics.

Jean d’Alembert

327



Jean d’Alembert was the first to attempt to prove the FTA. In France, it is called the
d’Alembert–Gauss theorem, acknowledging the influence of d’Alembert on Gauss.

Gauss’s proof
In 1799, at the age of 21, Carl Friedrich Gauss published his doctoral thesis. It
began with a summary and criticism of d’Alembert’s proof, among others. Gauss
pointed out that each of these earlier proofs had assumed part of what they were
trying to prove. One such assumption was that polynomials of odd degree (such
as cubics and quintics) always have a real root. This is true, but Gauss argued that
the point needed to be proved. His first proof was based on assumptions about
algebraic curves. Although these were plausible, they were not rigorously proved
in Gauss’s work. It was not until 1920, when Ukrainian mathematician Alexander
Ostrowski published his proof, that Gauss’s assumptions could all be justified.
Arguably, Gauss’s first, geometric proof suffered for being premature—in 1799,
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the concepts of continuity and of the complex plane, which would have helped
him explain his ideas, had not yet been developed.

Argand’s additions
Gauss published an improved proof of the FTA in 1816 and a further refinement
at his golden jubilee lecture (celebrating 50 years since his doctorate) in 1849.
Unlike his first geometric approach, his second and third proofs were more
algebraic and technical in nature. Gauss published four proofs of the FTA, but did
not fully resolve the problem. He failed to address the obvious next step: although
he had established that every real number equation would have a complex number
solution, he had not considered equations built from complex numbers such as x2

= i.

In 1806, Swiss mathematician Jean-Robert Argand found a particularly elegant
solution. Any complex number, z, can be written in the form a + bi, where a is the
real part of z and bi is the imaginary part. Argand’s work allowed complex
numbers to be represented geometrically. If the real numbers are drawn along the
x axis and the imaginary numbers are drawn along the y axis, then the whole
plane between them becomes the realm of the complex numbers. Argand proved
that the solution for every equation built from complex numbers could be found
among the complex numbers on his diagram and that there was therefore no need
to extend the number system. Argand’s was the first truly rigorous proof of the
FTA.

I have had my results for a long time, but I do not yet know how to arrive at them.

Carl Gauss

Legacy of the theorem
The proofs by Gauss and Argand established the validity of complex numbers as
roots of polynomials. The FTA stated that anyone faced with solving an equation
built from real numbers could be sure that they would find their solution within
the realm of complex numbers. These groundbreaking ideas formed the
foundations of complex analysis.

Mathematicians since Argand have continued to work on proving the FTA using
new methods. In 1891, for example, German Karl Weierstrass created a method—
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An Einstein ring, first
discovered in 1998, is the
deformation of light from
a source into a ring
through gravitational
lensing.

now known as the Durand–Kerner method, due to its rediscovery by
mathematicians in the 1960s—for simultaneously finding all of the roots of a
polynomial.

Applications of the FTA
Research on the fundamental theorem of algebra has
led to breakthroughs in other fields. In the 1990s,
British mathematicians Terrence Sheil-Small and
Alan Wilmshurst extended the FTA to harmonic
polynomials. These may have an infinite number of
roots, but in some cases, there are a finite number. In
2006, American mathematicians Dmitry Khavinson
and Genevra Neumann proved that there was an
upper limit to the number of roots of a certain class
of harmonic polynomials. After publishing their
results, they were told that their proof settled a
conjecture by South Korean astrophysicist Sun Hong

Rhie. Her conjecture concerned images of distant astronomical light sources.
Massive objects in the Universe bend passing light rays from distant sources in
a phenomenon called gravitational lensing, creating multiple images seen
through a telescope. Rhie posited that there would be a maximum number of
images produced; this turned out to be exactly the upper bound found by
Khavinson and Neumann.

See also: Quadratic equations • Negative numbers • Algebra • Cubic equations •
Imaginary and complex numbers • The algebraic resolution of equations • The
complex plane
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INTRODUCTION
Progress in mathematics accelerated through the 1800s, with science and
mathematics now becoming respected academic studies. As the Industrial
Revolution spread and 1848’s “Year of Revolution” saw nationalism surge across
old empires, there was a renewed drive to understand the workings of the
Universe in scientific terms, rather than through religion or philosophy. Pierre-
Simon Laplace, for example, applied the theories of calculus to celestial
mechanics. He proposed a form of scientific determinism, saying that with the
relevant knowledge of moving particles, the behavior of everything in the
Universe could be predicted.

Another characteristic of 19th-century mathematics was its increasing tendency
toward the theoretical. This trend was fostered by the influential work of Carl
Friedrich Gauss, regarded by many in the field as the greatest of all
mathematicians. He dominated the study of mathematics for much of the first half
of the century, making contributions to the fields of algebra, geometry, and
number theory, and giving his name to such concepts as Gaussian distribution,
Gaussian function, Gaussian curvature, and Gaussian error curve.

New fields
Gauss was also a pioneer of non-Euclidean geometries, which epitomized the
revolutionary spirit of 19th-century mathematics. The subject was taken up by
Nicolai Lobachevsky and János Bolyai, who independently developed theories of
hyperbolic geometry and curved spaces, resolving the problem of Euclid’s
parallel postulate. This opened up a completely new approach to geometry,
paving the way for the nascent field of topology (the study of space and surfaces)
which was also influenced by the possibility of more than three dimensions
offered by William Hamilton’s discovery of quaternions.
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Perhaps the best known of the pioneers of topology is August Möbius, inventor
of the Möbius strip, which had the unusual property of being a two-dimensional
surface with only one side. Non-Euclidean geometries were further developed by
Bernhard Riemann, who identified and defined different types of geometry in
multiple dimensions.

Riemann did not confine his studies to geometry, however. As well as his work
on calculus, he made important contributions to number theory, following in the
footsteps of Gauss. The Riemann hypothesis, derived from the Riemann zeta
function concerning complex numbers, is as yet unsolved. Other notable
discoveries in number theory at this time include the creation of set theory and the
description of an “infinity of infinities” of Georg Cantor, Eugène Catalan’s
conjecture about the powers of natural numbers, and the application of elliptic
functions to number theory proposed by Carl Gustav Jacob Jacobi.

Jacobi was, like Riemann, multi-talented, often linking different fields of
mathematics in new ways. His primary interest was in algebra, another area of
mathematics that was becoming increasingly abstract during the 1800s. The
groundwork for the growing field of abstract algebra was laid by Évariste Galois,
who, although he died young, also developed group theory while determining a
general algebraic method for solving polynomial equations.

New technologies
Not all mathematics in this period was purely theoretical—and even some of the
abstract concepts soon found more practical applications. Siméon Poisson, for
example, used his knowledge of pure mathematics to develop ideas such as the
Poisson distribution, a key concept in the field of probability theory. Charles
Babbage, on the other hand, responded to practical demand for a means of
accurate and quick calculation with his mechanical calculating device, the
“Difference Engine.” In so doing, he laid the groundwork for the invention of
computers. Babbage’s work in turn inspired Ada Lovelace to devise the
forerunner of modern computer algorithms.

Meanwhile, there were other developments in mathematics that were to have far-
reaching implications for later technological progress. Using algebra as his
starting point, George Boole devised a form of logic based on a binary system,
and using the operators AND, OR, and NOT. These became the foundation of
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modern mathematical logic, but just as importantly paved the way for the
language of computers almost a century later.
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IN CONTEXT
KEY FIGURE
Jean-Robert Argand (1768–1822)

FIELD
Number theory

BEFORE
1545 Italian scholar Gerolamo uses negative square roots to solve cubic
equations in his book Ars Magna.

1637 French philosopher and mathematician René Descartes develops a way to
plot algebraic expressions as coordinates on a grid.

AFTER
1843 Irish mathematician William Hamilton extends the complex plane by
adding two more imaginary units to create quaternions—expressions that are
plotted in a 4-D space.

1859 By merging two complex planes, Bernhard Riemann develops a 4-D
surface to help him analyze complex functions.
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After centuries of suspicion, mathematicians finally embraced the concept of
negative numbers in the 1700s. They did so by using imaginary numbers in
algebra. In 1806, the key contribution of Swiss-born mathematician Jean-Robert
Argand was to plot complex numbers (made up of a real and imaginary
component) as coordinates on a plane created by two axes—x for real numbers
and y for imaginary numbers. This complex plane provided the first geometrical
interpretation of the distinctive properties of complex numbers.

There can be very little… science and technology that is not dependent on complex numbers.

Keith Devlin
British mathematician

Algebraic roots
Imaginary numbers had emerged in the 1500s when Italian mathematicians such
as Gerolamo Cardano and Niccolò Fontana Tartaglia found that solving cubic
equations required a square root of a negative number. The square of a real
number cannot be negative—any real number multiplied by itself results in a
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positive—so they decided to treat  as a new unit that operated separately
from the real numbers. Leonhard Euler first used i to denote the imaginary unit (

) in his attempts to prove the fundamental theorem of algebra (FTA). This
theorem states that all polynomial equations of degree n have n roots. This means
that if x2 is the highest power in an algebraic expression made up of a single
variable (such as x) and real coefficients (numbers multiplying the variable), the
expression has a degree of two, and also two roots; roots are values of x that make
the polynomial equal to zero. Many seemingly simple polynomials, however,
such as x2 + 1, do not equal zero if x is a real number. Plotting x2 + 1 on a graph
with an x and y axis creates a neat curve that never passes through the origin, or
(0,0) point. To make the FTA work for x2 + 1, Gauss and others used real
numbers combined with imaginary numbers to create complex numbers. All
numbers are in essence complex. For example, the real number 1 is the complex
number 1 + 0i, while the number i is 0 + i. The equation x2 + 1 can equal zero
when x is i or -i.

An Argand diagram uses the x and y axes to represent real numbers and imaginary numbers,
combining them to plot complex numbers. This diagram shows two numbers: 3 + 5i and 7 +
2i.

Argand’s discovery
As Argand began to plot complex numbers, he discovered that the imaginary
number i does not get bigger if raised to higher powers. Instead, it follows a four-
step pattern that repeats infinitely: i1 = i; i2 = –1; i3 = –i, i4 = 1; i5 = i, and so on.
This can be visualized on the complex plane. Multiplying real numbers by
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imaginary numbers produces 90° rotations through the complex plane. So 1 × i =
i, which does not appear on the real number x axis at all, but on the imaginary y
axis. Continuing to multiply by i results in more 90° rotations, which is why every
four multiplications arrive back at the start point.

Plots of complex numbers— or Argand diagrams—make complicated
polynomials easier to solve. The complex plane is now a powerful tool that works
far beyond the interests of number theory.

JEAN-ROBERT ARGAND
Little is known of Jean-Robert Argand’s early life. He was born in Geneva in
1768, but appears to have had no formal education in mathematics. In 1806, he
moved to Paris to manage a bookshop, and self-published the work containing
the geometrical interpretation of complex numbers for which he is known.
(Norwegian cartographer Casper Wessel is now known to have used similar
constructions in 1799.) Argand’s essay was republished in a mathematics
journal in 1813, and in the next year, he used the complex plane to produce the
first rigorous proof of the fundamental theorem of algebra. Argand published
eight more articles before his death in Paris in 1822.

Key work

1806 Essai sur une manière de représenter les quantités imaginaires dans les
constructions géométriques (Essay on a method of representing imaginary
quantities geometrically)

See also: Quadratic equations • Cubic equations • Imaginary and complex
numbers • Coordinates • The fundamental theorem of algebra
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IN CONTEXT
KEY FIGURE
Joseph Fourier (1768–1830)

FIELD
Applied mathematics

BEFORE
1701 In France, Joseph Sauveur suggests that vibrating strings oscillate with
many waves of different lengths at the same time.

1753 Swiss mathematician Daniel Bernoulli shows that a vibrating string
consists of an infinite number of harmonic oscillations.

AFTER
1965 In the US, James Cooley and John Tukey develop the Fast Fourier
Transform (FFT), an algorithm that is able to speed up Fourier analysis.

2000s Fourier analysis is used to create a number of speech recognition
programs for computers and smartphones.

The sound created by vibrating strings has been a topic of research for more than
2,500 years. In about 550 BCE, Pythagoras discovered that if you take two taut
strings of the same material and the same tension, but one is twice the length of
the other, the short string will vibrate with twice the frequency of the longer string
and the resulting notes will be an octave apart.

Two centuries later, Aristotle suggested that sound traveled through the air in
waves, although he incorrectly thought that higher-pitched sounds traveled faster
than lower-pitched ones. In the 1600s, Galileo recognized that sounds are

339



produced by vibrations: the higher the frequency of the vibrations, the higher the
pitch of the sound we perceive.

Sounds are made of a complex series of tones. Fourier analysis can separate out pure tones,
which can be represented as sine waves on a graph, from each other. Tones have frequency,
which determines pitch, and amplitude, which determines volume.

Heat and harmony
By the end of the 1600s, physicists including Joseph Sauveur were making great
strides in studying the relationships between the waves in stretched strings and the
pitch and frequency of sounds that they produced. In the course of their research,
mathematicians showed that any string will support a potentially infinite series of
vibrations, starting from the fundamental (the string’s lowest natural frequency)
and including its harmonics (integer multiples of the fundamental). The pure tone
of a single pitch is produced by a smooth repetitive oscillation called a sine wave
(see graph). The sound quality of a musical instrument results principally from
the number and relative intensities of the harmonics present in the sound, or its
harmonic content. The result is a variety of waves interfering with each other.

Joseph Fourier was attempting to solve the problem of how heat diffused through
a solid object. He developed an approach that would allow him to calculate the
temperature at any location within an object, at any time after a source of heat had
been applied to one of its edges.

Fourier’s studies of heat distribution showed that no matter how complex a
waveform, it could be broken down into its constituent sine waves, a process that
is now called Fourier analysis. Since heat in the form of radiation is a wave,
Fourier’s discoveries about heat distribution had applications to the study of
sound. A sound wave can be understood in terms of the amplitudes of its
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constituent sine waves, a set of numbers that is sometimes referred to as the
harmonic spectrum.

Today, Fourier analysis plays a key role in many applications including digital
file compression, analyzing MRI scans, speech recognition software, musical
pitch correction software, and determining the composition of planetary
atmospheres.

Fourier analysis of the way materials vibrate allows engineers to construct buildings that
resonate at different frequencies from a typical earthquake and thus avoid the kind of damage
that occurred in Mexico City in 2017.

JOSEPH FOURIER
Jean-Baptiste Joseph Fourier was born in Auxerre,
France, in 1768. A tailor’s son, he went to military
school, where his keen interest in mathematics led him
to become a successful teacher of the subject.

Fourier’s career was disrupted by two arrests—one
for criticizing the French Revolution, the other for
supporting it—but in 1798, he accompanied

Napoleon’s forces into Egypt as a diplomat. Napoleon later made him a baron,
and then a count. After Napoleon’s fall in 1815, Fourier moved to Paris to
become director of the Statistical Bureau of the Seine, where he pursued his
studies in mathematical physics, including work on the Fourier series (a series
of sine waves that characterize sounds). In 1822, Fourier was made the secretary
of the French Academy of Sciences, a post he held until his death in 1830.
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Fourier’s career was disrupted by two arrests—one for criticizing the French
Revolution, the other for supporting it—but in 1798, he accompanied
Napoleon’s forces into Egypt as a diplomat. Napoleon later made him a baron,
and then a count. After Napoleon’s fall in 1815, Fourier moved to Paris to
become director of the Statistical Bureau of the Seine, where he pursued his
studies in mathematical physics, including work on the Fourier series (a series
of sine waves that characterize sounds). In 1822, Fourier was made the secretary

342



IN CONTEXT
KEY FIGURE
Pierre-Simon Laplace (1749–1827)

FIELD
Mathematical philosophy

BEFORE
1665 Calculus is developed by Isaac Newton to analyze and describe the motion
of falling bodies and other complex mechanical systems.

AFTER
1872 Ludwig Boltzmann uses statistical mechanics to show how the
thermodynamics of a system always results in an increase in entropy.

1963 Edward Lorenz describes the Lorenz attractor, a model that produces
chaotic results with every tiny change to the initial parameters.

1872 American mathematician David Wolpert disproves Laplace’s demon by
treating the “intellect” as a computer.

In 1814, Pierre-Simon Laplace, a French mathematician who combined
mathematics and science with philosophy and politics, presented a thought
experiment now known as Laplace’s demon. Laplace never used the word
“demon” himself; it was introduced in later retellings, evoking a supernatural
being made godlike by mathematics.

Laplace imagined an intellect that could analyze movements of all atoms in the
Universe in order to accurately predict their future paths. His experiment was an

343



exploration of determinism, a philosophical concept that says that all future
events are determined by causes in the past.

The orrery, a “clockwork universe” showing the movement of the celestial bodies in the
Solar System, became a popular device after the publication of Newton’s universal theory of
gravity.

Mechanical analysis
Laplace was inspired by classical mechanics—a field of mathematics describing
the behavior of moving bodies, based on Isaac Newton’s laws of motion. In a
Newtonian universe, atoms (and even light particles) follow the laws of motion,
and bounce around in a jumble of trajectories. Laplace’s “intellect” would be
capable of capturing and analyzing all of their movements; it would create a
single formula that uses present movements to ascertain past and predict future
ones.

Laplace’s theory had a startling philosophical consequence. It can only work if
the Universe follows a predictable mechanical path, so that everything from the
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spin of galaxies to the tiny atoms in nerve cells controlling thoughts could be
mapped out into the future. This would mean that every aspect of a person’s life
up until their death has already been predetermined; they have no free will and no
agency over their thoughts and deeds.

Chance and statistics
Although mathematics helped to create such a crushing vision of reality, it also
helped to dismiss it. By the 1850s, the study of heat and energy—
thermodynamics—was ushering in a new model, the atomic world. To do this, it
needed to describe the motion of atoms and molecules inside matter. Classical
mechanics was not up to the task. Instead, physicists used a technique invented by
Swiss mathematician Daniel Bernoulli in 1738, which used probability theory to
model the movement of independent units within a space. Refined by Austrian
physicist Ludwig Boltzmann, this technique became known as statistical
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mechanics. It described the atomic world in terms of random chance—something
at odds with the mechanical determinism of Laplace’s demon. By the 1920s, the
idea of a probabilistic Universe was solidified with the development of quantum
physics, which has uncertainty at its heart.

PIERRE-SIMON LAPLACE
Born into an aristocratic family in 1749, Laplace lived
through the French Revolution and the Reign of
Terror, in which many of his friends were killed. In
1799, he became Minister of the Interior under
Napoleon Bonaparte, but was dismissed after only six
weeks for being too analytical and ineffectual. Laplace
later sided with the Bourbons (the French royal
family) and was rewarded with the return of his

original title of marquis when the monarchy was restored.

Laplace’s demon was a side note to a career that also encompassed physics and
astronomy, where Laplace was the first to postulate the concept of a black hole.
His many contributions to mathematics were in classical mechanics, probability
theory, and algebraic transformations. Laplace died in Paris in 1827.

Key works

1798–1828 Celestial Mechanics

1812 Analytic Theory of Probability

1814 A Philosophical Essay on Probabilities

See also: Probability • Calculus • Newton’s laws of motion • The butterfly effect

346



IN CONTEXT
KEY FIGURE
Siméon Poisson (1781–1840)

FIELD
Probability

BEFORE
1662 English merchant John Graunt publishes Natural and Political
Observations upon the Bills of Mortality, marking the birth of statistics.

1711 Abraham de Moivre’s De Mensura Sortis (On the Measurement of
Chance), describes what is later known as the Poisson distribution.

AFTER
1898 Russian statistician Ladislaus Bortkiewicz uses the Poisson distribution to
study the number of Prussian soldiers killed by horse kicks.

1946 British statistician R. D. Clarke publishes a study, based on the Poisson
distribution, of patterns of V-1 and V-2 flying bomb impacts on London.

In statistics, the Poisson distribution is used to model the number of times a
randomly occurring event happens in a given interval of time or space. Introduced
in 1837 by French mathematician Siméon Poisson, and based on the work of
Abraham de Moivre, it can help to forecast a wide range of possibilities.

Take, for example, a chef who needs to forecast the number of baked potatoes
that will be ordered in her café. She needs to decide how many potatoes to pre-
cook each day. She knows the daily average order, and decides to prepare n
potatoes where there is at least 90 percent certainty that n will match demand.
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To use the Poisson distribution to calculate n, conditions must be met: orders
must occur randomly, singly, and uniformly—on average, the same number of
potatoes are ordered each day. If these conditions apply, the chef can find the
value of n—how many potatoes to pre-bake. The average number of events per
unit of space or time (lambda, or λ) is key. If λ = 4 (the average number of
potatoes ordered in one day), and the number of potato orders on any one day is
B, the probability that B is less than or equal to 6 is 89 percent, while the
probability that B is less than or equal to 7 is 95 percent. The chef must be at least
90 percent sure that demand will be met, so n will be 7 here.

Siméon Poisson is credited with finding the Poisson distribution, but this may be an example
of Stigler’s Law—no scientific discovery is credited to the true discoverer.

See also: Probability • Euler’s number • Normal distribution • The birth of
modern statistics
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IN CONTEXT
KEY FIGURE
Friedrich Wilhelm Bessel (1784–1846)

FIELD
Applied geometry

BEFORE
1609 Johannes Kepler shows that the orbits of the planets are ellipses.

1732 Daniel Bernoulli uses what later become known as Bessel functions to
study the vibrations of a swinging chain.

1764 Leonhard Euler analyzes a vibrating membrane using what are later
understood to be Bessel functions.

AFTER
1922 British mathematician George Watson writes his hugely influential A
treatise on the theory of Bessel functions.

In the early 1800s, German mathematician and astronomer Friedrich Wilhelm
Bessel gave solutions to a particular differential equation, the so-called Bessel
equation. He systematically investigated these functions (solutions) in 1824. Now
known as Bessel functions, they are useful to scientists and engineers. Central to
the analysis of waves, such as electromagnetic waves moving along wires, they
are also used to describe the diffraction of light, the flow of electricity or heat in a
solid cylinder, and the motions of fluids.

Movement of the planets
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The origins of Bessel functions lie in the pioneering work of German
mathematician and astronomer Johannes Kepler in the early 1600s on the motions
of the planets. His meticulous analysis of observations led him to realize that the
orbits of the planets around the Sun are elliptical, not circular, and he described
the three key laws of planetary motion. Mathematicians later used Bessel
functions to make breakthroughs in various fields. Daniel Bernoulli found
equations for the oscillations of a pendulum, and Leonhard Euler developed
corresponding equations for the vibration of a stretched membrane. Euler and
others also used Bessel functions to find solutions to the “three-body problem,”
concerned with the motion of a body, such as a planet or moon, being acted upon
by the gravitational fields of two other bodies.

Bessel’s functions are very beautiful functions, in spite of their having practical applications.

E. W. Hobson
British mathematician

See also: The problem of maxima • Calculus • The law of large numbers • Euler’s
number • Fourier analysis
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IN CONTEXT
KEY FIGURES
Charles Babbage (1791–1871), Ada Lovelace (1815–52)

FIELD
Computer science

BEFORE
1617 Scottish mathematician John Napier invents a manual calculating device.

1642–44 In France, Blaise Pascal creates a calculating machine.

1801 French weaver Joseph-Marie Jacquard demonstrates the first
programmable machine – a loom controlled by a punchcard.

AFTER
1944 British codebreaker Max Newman builds Colossus, the first digital
electronic programmable computer.

British mathematician and inventor Charles Babbage anticipated the computer age
by more than a century with two ideas for mechanical calculators and “thinking”
machines. The first he called the Difference Engine, a calculating machine that
would work automatically, using a combination of brass cogs and rods. Babbage
only managed to part-build the machine, but even this was able to process
complex calculations accurately in moments.

The second, more ambitious, idea was the Analytical Engine. It was never built,
but was envisaged as a machine that could respond to new problems and solve
them without human intervention. The project received crucial input from Ada
Lovelace, a brilliant young mathematician. Lovelace anticipated many of the key
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mathematical aspects of computer programming and foresaw how the machine
could be used to analyze any kinds of symbol.

Charles Babbage was spurred to start his work on a mechanical calculator by the errors he
found in astronomical tables produced by poorly paid and unreliable workers.

Automatic calculation
In the 17th and 18th centuries, mathematicians such as Gottfried Leibniz and
Blaise Pascal had created mechanical calculating aids, but these were limited in
power and also prone to error as human input was needed at every step.
Babbage’s idea was to create a calculating machine that worked automatically,
eliminating human error. He called his machine the Difference Engine because it
allowed complex multiplications and divisions to be reduced to additions and
subtractions—“differences”—that could be handled by scores of interlocking
cogs. It would even print out the results.

No previous calculator had ever worked with numbers larger than four digits.
Yet the Difference Engine was designed to handle numbers of up to 50 digits by
means of more than 25,000 moving parts.
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To set up the machine for a calculation, each number was represented by a
column of cogwheels, and each cogwheel was marked with digits from 0 to 9. A
number was set by turning the cogwheels in the column to show the correct digit
on each. The machine would then work through the entire calculation
automatically.

Babbage built several small working models with just seven number columns but
remarkable calculating power. In 1823, he managed to persuade the British
government to part-fund the project, with the promise that it would make
producing official tables much quicker, cheaper, and more accurate. However, the
full machine was hugely expensive to develop, and tested the technological
capability of the day to its limits. After two decades’ work, the government
canceled the project in 1842.

Meanwhile, in drawings and calculations, Babbage had also been working on his
idea for an Analytical Engine. His papers suggest that the machine, if built, could
have been close to what we now call a computer. His design anticipated virtually
all of the key components of the modern computer, including the central
processing unit (CPU), memory storage, and integrated programs.

One problem facing Babbage was what to do with numbers carried over into the
next column when adding up columns of digits. At first, he used a separate
mechanism for each carryover, but that proved too complicated. Then he split his
machine into two parts, the “Mill” and the “Store,” which made it possible to
separate the addition and carryover processes. The Mill was where the
arithmetical operations were performed; the Store was where numbers were held
before processing and then received back from the Mill after processing. The Mill
was Babbage’s version of a computer’s CPU, while the Store acted as its
memory.

The idea of telling a machine what it should do—programming—came from a
French weaver, Joseph-Marie Jacquard. He developed a loom that used cards
punched with holes to tell it how to weave complex patterns in silk. In 1836,
Babbage realized he too could use punched cards—to control his own machine
but also to record results and calculation sequences.

At each increase of knowledge, as well as on the contrivance of every new tool, human labor
becomes abridged.

Charles Babbage
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This replica of the demonstration model Babbage made in 1832 of Difference Engine No. 1
has three columns, each with its numbered cogwheels. Two are for calculation, one for the
result.
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A supporting genius
One of the greatest advocates for Babbage’s work was his fellow mathematician
Ada Lovelace, who wrote of the Analytical Engine that it would “weave algebraic
patterns just as the Jacquard loom weaves flowers and leaves.” As a teenager in
1832, Lovelace had seen one of the Difference Engine models working and had
been instantly entranced. In 1843, she arranged the publication of her translation
of a pamphlet about the Analytical Engine written by Italian engineer Luigi
Menabrea, to which she added extensive explanatory notes.

Many of these notes covered systems that would become part of modern
computing. In “Note G,” Lovelace described possibly the first computer
algorithm, “to show an implicit function can be worked out by the engine without
human head and hands first.” She also theorized that the engine could solve
problems by repeating a series of instructions—a process known today as
“looping.” Lovelace envisaged a program card, or set of cards, that returned
repeatedly to its original position to work on the next data card or set. In this way,
Lovelace argued, the machine could solve a system of linear equations or generate
extensive tables of prime numbers. Perhaps the greatest insight in her notes was
Lovelace’s vision of machines as mechanical brains with wide applications. “The
engine can arrange and combine its numerical quantities exactly as if they were
letters or any other general symbols,” she wrote, realizing that any kind of
symbol, not just numbers, could be manipulated and processed by machines. This
is the difference between calculation and computation—and the basis of the
modern computer. Lovelace also foresaw how such machines would be limited by
the quality of the input. Arguably, the first programmable computer— rather than
calculator—was created by Konrad Zuse in 1938.
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The object of the Analytical Engine is twofold. First, the complete manipulation of number.
Second, the complete manipulation of algebraical symbols.

Charles Babbage

Delayed legacy
Lovelace’s plans to develop Babbage’s work were curtailed by her early death, by
which time Babbage himself was tired, ill, and disillusioned by the lack of
support for his Difference Engine. The high-precision mechanics required to build
the machine were beyond what any engineer could achieve at the time. Largely
forgotten until they were republished in 1953, Lovelace’s notes confirm that she
and Babbage foresaw many of the features of the computer now found in every
home and office.

The more I study [the Analytical Engine], the more insatiable I feel my genius for it to be.

Ada Lovelace

ADA LOVELACE
Born Augusta Byron in London in 1815, Ada, Countess of Lovelace, was the
only legitimate child of the poet Lord Byron. Byron left England a few months
after her birth, and Lovelace never saw her father again. Her mother, Lady
Byron, was mathematically gifted—Byron called her his “Princess of
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Parallelograms”— and insisted Lovelace study
mathematics, too.

Lovelace became renowned for her talents in
mathematics and languages. She met Charles Babbage
when she was 17 and was fascinated by his work. Two
years later, she married William King, Earl of
Lovelace, with whom she had three children, but she

continued to study mathematics and follow the progress of Babbage, who called
her “the Enchantress of Number.”

Lovelace wrote exhaustive notes on Babbage’s Analytical Engine. She set out
many ideas about what was to become computing, earning herself a reputation
as the first computer programmer. Lovelace died in 1852 of uterine cancer; in
line with her wishes, she was buried next to her father.

See also: Binary numbers • Matrices • The infinite monkey theorem • The Turing
machine • Information theory • The four-color theorem
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IN CONTEXT
KEY FIGURE
Carl Gustav Jacob Jacobi (1804–51)

FIELDS
Number theory, geometry

BEFORE
1655 John Wallis applies calculus to the length of an elliptic curve; the elliptic
integral he derives is defined by an infinite series of terms.

1799 Carl Gauss determines the key characteristics of elliptic functions, but his
work is not published until 1841.

1827–28 Niels Abel independently derives and publishes the same findings as
Gauss.

AFTER
1862 German mathematician Karl Weierstrass develops a general theory of
elliptic functions, showing that they can be applied to problems in both algebra
and geometry.
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The “squashed circle” of an ellipse is one of the most recognizable curves in
math. Ellipses have a long history in mathematics. They were studied by the
ancient Greeks as one of the conic sections. Slicing through a cone horizontally
creates a circle; slicing at a steeper angle creates an ellipse (and then open curves
called a parabola and a hyperbola). An ellipse is a closed curve that is defined as
the set of all points in a plane, the sum of whose distances from two fixed points
—each one called a focus—is always the same number. (A circle is a special
ellipse with just one central focus, not two.) In 1609, German astronomer and
mathematician Johannes Kepler demonstrated that the orbits of the planets were
elliptical, with the Sun being located at one of the foci.

I learnt with as much astonishment as satisfaction that two young geometers…succeeded in their
own individual work in considerably improving the theory of elliptic functions.

Adrien-Marie Legendre

New tools
Just as the mathematics of a circle could be used to model and predict natural
phenomena that varied and repeated in a rhythmic (or periodic) way, such as the
up-and-down motion of a simple sound wave, the mathematics of the ellipse can
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be used to do the same for phenomena that follow more complex periodic
patterns, such as electromagnetic fields or the orbital motion of planets.

The genesis of such tools, the elliptic functions, began in England with 17th-
century mathematicians John Wallis and Isaac Newton. Working independently,
they developed a method for calculating the arc length, or length of a section, of
any ellipse. With later contributions, their technique was developed into the
elliptic functions and became a way of analyzing many kinds of complex curves
and oscillating systems beyond the simple ellipse.

Practical applications
In 1828, Norwegian Neils Abel and German Carl Jacobi, again working
independently, showed wider applications for elliptic functions in both
mathematics and physics. For example, these functions appear in the 1995 proof
of Fermat’s last theorem, and the latest public-key cryptography systems. Since
Abel died at 26, just months after making his major discoveries, many of these
applications were developed by Jacobi. Jacobi’s elliptic functions are complex,
but a more simple form, the p-function, was introduced in 1862 by German
mathematician Karl Weierstrass. P-functions are used in classical and quantum
mechanics.
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Elliptic functions are used to define the trajectories of spacecraft such as the Dawn probe,
which explored the dwarf planet Ceres and the asteroid Vesta in the asteroid belt.

CARL GUSTAV JACOB JACOBI
Born in Potsdam, Prussia, in 1804, Carl Gustav Jacob
Jacobi was initially tutored by an uncle. Having
learned all that school could teach him by the age of
12, he had to wait until he was 16 to be allowed to
attend Berlin University, and spent the intervening
years teaching himself mathematics. He continued to
do so when he found the university courses too basic.
He graduated within a year, and in 1832 he became a

professor at the University of Königsberg. Falling ill in 1843, Jacobi returned to
Berlin, where he was supported by a pension from the king of Prussia. In 1848,
he ran unsuccessfully for parliament as a liberal candidate and the offended king
temporarily withdrew his support. In 1851, aged just 46, Jacobi contracted
smallpox and died.

Key work
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1829 Fundamenta nova theoria functionum ellipticarum (The foundations of a
new theory of elliptic functions)

See also: Huygens’s tautochrone curve • Calculus • Newton’s laws of motion •
Cryptography • Proving Fermat’s last theorem
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IN CONTEXT
KEY FIGURE
János Bolyai (1802–60)

FIELD
Geometry

BEFORE
1733 In Italy, mathematician Giovanni Saccheri fails to prove Euclid’s parallel
postulate from his other four postulates.

1827 Carl Friedrich Gauss publishes his Disquisitiones generales circa
superficies curvas (General Investigations of Curved Surfaces), defining the
“intrinsic curvature” of a space, which can be deduced from within the space.

AFTER
1854 Bernhard Riemann describes the kind of surface that has hyperbolic
geometry.

1915 Einstein describes gravity as curvature in spacetime in his general theory
of relativity.

The parallel postulate (PP) is the fifth of five postulates from which Euclid
deduced his theorems of geometry in his Elements. The PP was controversial
among the ancient Greeks, since it did not seem as self-evident as Euclid’s other
postulates, nor was there an obvious way of verifying it. However, without the
PP, many elementary theorems in geometry could not be proved. Over the next
2,000 years, mathematicians would stake their reputations on attempts to resolve
the issue. In the 5th century CE, the philosopher Proclus argued that the PP was a
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theorem that could be derived from the other postulates and should therefore be
struck out.

During the Golden Age of Islam (8th–14th century), mathematicians attempted
to prove the PP. Persian polymath Nasir al-Din al-Tusi showed that the PP is
equivalent to stating that the sum of angles in any triangle is 180°, but the PP
nonetheless remained controversial. In the 1600s, new translations of Elements
reached Europe, and Giovanni Saccheri showed that if the PP was untrue, then the
sum of angles in a triangle was always either less than or greater than 180°.

By the early 1800s, Hungarian János Bolyai and Russian Nicolai Lobachevsky
independently proved the validity of a “hyperbolic” non-Euclidean geometry in
which the PP did not hold but the other four of Euclid’s postulates did. Bolyai
claimed to have “created another world out of nothing,” but the idea was not well
received in its time. Gauss acknowledged its validity, but claimed to have
discovered it first. Gauss’s idea of the “intrinsic curvature” of a surface or space
was an important tool in establishing this new world, but he left little evidence of
having developed non-Euclidean geometry himself. He did, however, consider
that the Universe might be non-Euclidean. Subsequent advances by Bernhard
Riemann, Eugenio Beltrami, Felix Klein, David Hilbert, and others mean that
today, non-Euclidean geometries are no longer seen as exotic, and physicists have
given serious consideration to whether our Universe is indeed flat (Euclidean) or
curved.
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Leave the science of parallels alone. I was ready to… remove the flaw from geometry [but]
turned back when I saw that no man can reach the bottom of this night.

Wolfgang Bolyai
Father of János Bolyai

Artistic explorations
Hyperbolic geometry also features in art. Models devised by Henri Poincaré
inspired many graphic works by M. C. Escher, while some mathematicians,
notably Daina Taimina, have used art and craft techniques to make these “new
worlds” intuitively graspable.
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Crochet models of hyperbolic surfaces created by Daina Taimina are more tactile than paper
models. She claims that the crocheting process helps develop geometrical intuition.

DAINA TAIMINA
Born in Latvia in 1954, Daina Taimina began her
career in the fields of computer science and the history
of mathematics. After teaching for 20 years at the
University of Latvia, she moved to Cornell University
in the United States in 1996, where a chance
encounter opened up a new area of interest. Taimina
attended a geometry workshop led by David

Henderson in which he demonstrated how to make a paper model of a
hyperbolic surface. Henderson himself had learned the technique from
pioneering American topologist William Thurston.

Taimina went on to make her own models of hyperbolic surfaces using crochet
to assist in her teaching. The models were a success, breaking the stereotype of
mathematics as a field unrelated to arts and crafts. Taimina has since embarked
on a second career as a mathematician–artist.

Key work

2004 Experiencing Geometry with David W. Henderson
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See also: Euclid’s Elements • Projective geometry • Topology • 23 problems for
the 20th century • Minkowski space
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IN CONTEXT
KEY FIGURE
Évariste Galois (1811–32)

FIELDS
Algebra, number theory

BEFORE
1799 Italian mathematician Paolo Ruffini considers the sets of permutations of
roots as an abstract structure.

1815 Augustin-Louis Cauchy, a French mathematician, develops his theory of
permutation groups.

AFTER
1846 Galois’ work is published posthumously by fellow Frenchman Joseph
Liouville.

1854 British mathematician Arthur Cayley extends the work of Galois to a full
theory of abstract groups.

1872 German mathematician Felix Klein defines geometry in terms of group
theory.

Group theory is a branch of algebra that pervades modern mathematics. Its
genesis was largely due to French mathematician Évariste Galois, who developed
it in order to understand why only some polynomial equations could be solved
algebraically. In so doing, he not only gave a definitive answer to a historical
quest that had begun in ancient Babylon, but also laid the foundations of abstract
algebra.
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Galois’ approach to this problem was to relate it to a question in another area of
mathematics. This can be a powerful strategy when the other area is well
understood. In this case, however, Galois first had to develop the theory of the
“simpler” area (the theory of groups) in order to tackle the more difficult problem
(solubility of equations). The link he made between the two areas is now called
Galois theory.

Arithmetic of symmetries
A group is an abstract object—it consists of a set of elements and an operation
that combines them, subject to some axioms. When these elements include
shapes, groups can be thought of as encoding symmetry. Simple symmetries—
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such as those of a regular polygon—are intuitively graspable. For example, an
equilateral triangle with the vertices A, B, and C can be rotated in three ways
(through 120°, 240°, or 360°) around its center, and be reflected in three different
lines. Each of these six transformations fits the triangle onto itself—it looks
exactly the same, except that the vertices are permuted (rearranged). A clockwise
rotation of 120° sends vertex A to where B was, B to C, and C to A, while a
reflection in the vertical line through A swaps vertices B and C. The three
rotations and the reflections give all possible symmetries of the triangle ABC.

One way to see the symmetries of the triangle is to consider all of the possible
permutations of the vertices. A rotation or reflection can send the vertex A to one
of three points (including itself). From each of these possibilities, the vertex B has
two available destinations. The destination of the third vertex is now determined
because the triangle is rigid, so there are 3 × 2 = 6 possibilities. The symmetry
groups of polygons can be thought of as permutations of a set of elements. The
symmetry group of the equilateral triangle is a member of a small group called
D3.

ÉVARISTE GALOIS
Born in 1811, Évariste Galois lived a brief but fiery
and brilliant life. He was already familiar as a teenager
with the works of Lagrange, Gauss, and Cauchy, but
failed (twice) to enter the prestigious École
Polytechnique—possibly due to his mathematical and
political impetuousness, though no doubt affected by
the suicide of his father.

In 1829, Galois enrolled at the École Préparatoire,
only to be expelled in 1830 for his politics. A staunch republican, he was
arrested in 1831 and imprisoned for eight months. Shortly after his release in
1832, he became involved in a duel—it is unclear whether this was over a love
affair or politics. Badly wounded, he died the next day, leaving behind just a
handful of mathematical papers which contain the foundations of group theory,
finite field theory, and what is now called Galois theory.

Key works

1830 Sur la théorie des nombres (On Number Theory)
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1831 Premier Mémoire (First Memoir)

The equilateral triangle has six symmetries. They are rotation (ρ) through 120°, 240°, and
360° and reflection (σ) through a vertical line through A, B, or C. The diagram above shows
the results of applying one symmetry after another to e, the identity element (rotation through
0°), and how they are written—ρ2σ (the last equilateral triangle in the diagram) means “rotate
through 120 degrees twice and reflect.”

Axioms of group theory
Group theory has four main axioms. The first is the identity axiom; it states that a
unique element exists that does not change any element in the group when
combined with it. With the ABC triangle, the identity is the rotation of 0°. The
second axiom is the inverse axiom. It says that every element has a unique inverse
element; combining the two yields the identity element.

The third axiom concerns associativity, which means that the result of operations
on elements does not depend on the order in which they are applied. For example,
if you combine any set of three elements with a multiplication operator, you can
perform the operations in any order. So if the elements 1, 2, and 3 are members of
a group, then (1 × 2) × 3 = 2 × 3 = 6, and 1 × (2 × 3) = 1 × 6 = 6, all giving the
same result.

The fourth axiom is closure, meaning that a group should have no elements
outside the group as a result of performing the operations. One example of a
group obeying all four axioms is the set of integers {…, -3, -2, -1, 0, 1, 2, 3, …}
with the operation of addition. The unique identity element is 0, and the inverse of
any integer n is ˗n as n + ˗n = 0 = ˗n + n. The addition of integers is associative,
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and the set is also closed, because adding any of the integers together gives
another integer.

Groups can also have a further attribute known as commutativity. If a group is
commutative, it is known as an Abelian group. This means that its elements can
be swapped around without changing the result. Integers added in any order will
give the same result (6 + 7 = 13 and 7 + 6 = 13), so the set of integers with the
operation of addition is an Abelian group.

The possible rotations of a Rubik’s Cube form a mathematical group with
43,252,003,274,489,856,000 elements, but solving the cube from any position requires no
more than 26 turns of 90°.

Wherever groups disclosed themselves, or could be introduced, simplicity crystallized out of
comparative chaos.

Eric Temple Bell
Scottish mathematician

Galois groups and fields
Groups are just one kind of abstract algebraic structure among many. Closely
related structures include rings and fields, which are also defined in terms of a set
with operations and axioms. A field contains two operations; complex numbers
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The ATLAS detector at
the CERN accelerator is
designed to study
subatomic particles,
including those predicted
by group theory.

(with the operations of addition and multiplication) are a field. The field of
complex numbers is the territory in which solutions to polynomial equations are
found.

Galois theory relates the solvability of a polynomial equation (whose roots are
elements of a field) to a group—specifically, to the permutation group that
encodes possible rearrangements of its roots. Galois showed that this group, now
called a Galois group, must have one kind of structure if the equation is
algebraically solvable, and a different kind of structure if it is not. Galois groups
of quartic equations and simpler polynomials are solvable, but those of higher
degree polynomials are not. Modern algebra is an abstract study of groups, rings,
fields, and other algebraic structures.

Group theory continues to develop in its own right and has many applications.
Group theory is used to study symmetries in chemistry and physics, for example,
and can be used in public key cryptography, which secures much of today’s
digital communication.

We need a super- mathematics in which the operations are as unknown as the quantities they
operate on… such a super-mathematics is the Theory of Groups.

Arthur Eddington
British astrophysicist

Group theory in physics
The Universe, as we understand it through physics,
is full of symmetries, and group theory is proving a
powerful tool for both understanding and prediction.
Physicists use the Lie groups, named after the 19th-
century Norwegian mathematician Sophus Lie. Lie
groups are continuous, not discrete—for example,
they model the infinite number of rotational
symmetries, such as those associated with a circle,
rather than the finite number of transformations of a
polygon.

In 1915, German algebraist Emmy Noether
demonstrated how Lie groups related to

conservation laws (such as the conservation of energy). By the 1960s, physicists
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began to use group theory to classify subatomic particles. But the mathematical
groups they used included a combination of symmetries that no known particles
had. Scientists tried looking for a particle with that combination of symmetries,
and found the Omega minus particle. More recently, the Higgs boson has filled
another such gap.

See also: The algebraic resolution of equations • Emmy Noether and abstract
algebra • Finite simple groups
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IN CONTEXT
KEY FIGURE
William Rowan Hamilton (1805–65)

FIELD
Number systems

BEFORE
1572 Italy’s Rafael Bombelli creates complex numbers by combining real
numbers, based on the unit 1, with imaginary numbers, based on the unit i.

1806 Jean-Robert Argand creates a geometrical interpretation of complex
numbers by plotting them as coordinates to create the complex plane.

AFTER
1888 Charles Hinton invents the tesseract, which is an extension of the cube
into four spatial dimensions. A tesseract has four cubes, six squares, and four
edges meeting at every corner.

An extension of complex numbers, quaternions are used to model, control, and
describe motion in three dimensions, which is essential in, for example, creating
the graphics of a video game, planning a space probe’s trajectory, and calculating
the direction in which a smartphone is pointing. Quaternions were the brainchild
of William Rowan Hamilton, an Irish mathematician who was interested in how
to model movement mathematically in three-dimensional space. In 1843, in a
flash of inspiration, he realized that the “third dimension problem” could not be
solved with a three-dimensional number, but needed a four-dimensional one (a
quaternion).
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Movements and rotations
Complex numbers are two-dimensional: they are made up of a real and an
imaginary part, for example, 1 + 2i. As a result, the two parts of any complex
number can act as coordinates, and the number can be plotted on a surface or
plane. The two-dimensional complex plane extends the one-dimensional number
line by combining real numbers with imaginary units. The plotting of complex
numbers then enables the calculation of motion and rotation in two dimensions.
Any linear motion from point A to B can be expressed as the addition of two
complex numbers. Adding more numbers creates a sequence of movements
across the plane. To describe rotation, complex numbers are multiplied together.
Every multiplication by i, the imaginary unit, results in a 90° rotation, and a
rotation of any other angle is due to some factor or fraction of i.

Once complex numbers were understood, the next challenge for mathematicians
was to create a number that worked the same way in a three-dimensional space.
The logical answer was to add a third number line, j, which ran at 90 degrees to
both the real and imaginary number lines, but no one could figure out how such a
number added, multiplied, and so on.
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Since quaternions can model and control the motion of objects in three dimensions, they are
particularly useful in virtual reality games.

Four dimensions
Hamilton’s solution was to add a fourth nonreal unit, k. This created a quaternion,
with a basic structure of a + bi + cj + dk, where a, b, c, and d are real numbers.
The two additional quaternion units, j and k, share similar properties to i and are
imaginary. A quaternion can define a vector, or a line in three-dimensional space,
and can describe an angle and direction of rotation around that vector. Like the
complex plane, simple quaternion mathematics, combined with basic
trigonometry, offers a way to describe all kinds of movements within three-
dimensional space.

An undercurrent of thought was going on in my mind which gave at last a result… An electric
circuit seemed to close; and a spark flashed forth, the herald of many long years.

William Rowan Hamilton

WILLIAM ROWAN HAMILTON
Born in Dublin in 1805, Hamilton became interested in mathematics from the
age of eight after meeting Zerah Colburn, a touring American mathematical
child prodigy. At the age of 22, while still studying at Trinity College, Dublin,
he was appointed both professor of astronomy at the university and Royal
Astronomer of Ireland.
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Hamilton’s expertise in Newtonian mechanics
enabled him to calculate the paths of heavenly bodies.
He later updated Newtonian mechanics into a system
that enabled further advances to be made in
electromagnetism and quantum mechanics. In 1856,
he tried to capitalize on his skills by launching the
icosian game, in which players search for a path
connecting the points of a dodecahedron without

returning to the same point twice. Hamilton sold the rights to the game for £25.
He died in 1865, following a severe attack of gout.

Key works

1853 Lectures on Quaternions

1866 Elements of Quaternions

See also: Imaginary and complex numbers • Coordinates • Newton’s laws of
motion • The complex plane
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IN CONTEXT
KEY FIGURE
Eugène Catalan (1814–94)

FIELD
Number theory

BEFORE
c. 1320 French philosopher and mathematician Levi ben Gershon (Gersonides)
shows that the only powers of 2 and 3 that differ by 1 are 8 = 23 and 9 = 32.

1738 Leonhard Euler proves that 8 and 9 are the only consecutive square or
cube numbers.

AFTER
1976 Dutch number theorist Robert Tijdeman proves that, if more consecutive
powers exist, there are only a finite number of them.

2002 Preda Mihăilescu proves Catalan’s conjecture, 158 years after it was
formulated in 1844.

Many problems in number theory are easy to pose, but extremely difficult to
prove. Fermat’s last theorem, for example, remained a conjecture (unproven
claim) for 357 years. Like Fermat’s conjecture, Catalan’s conjecture is a
deceptively simple claim about powers of positive integers that was proved long
after its initial statement.

In 1844, Eugène Catalan claimed that there is only one solution to the equation
xm - yn = 1, where x, y, m, and n are natural numbers (positive integers) and m
and n are greater than 1. The solution is x = 3, m = 2, y = 2, and n = 3, since 32 -
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23 = 1. In other words, squares, cubes, and higher powers of natural numbers are
almost never consecutive. Five hundred years before, Gersonides had proved a
special case of the claim. He used only powers of 2 and 3, solving the equations
3n − 2m = 1 and 2m − 3n = 1. In 1738, Leonhard Euler similarly proved a case in
which the only powers allowed were squares and cubes. Euler did this by solving
the equation x2 − y3 = 1. This was closer to Catalan's conjecture, but did not allow
for the possibility that larger powers or exponents could result in consecutive
numbers.

Becoming a theorem
Catalan himself said that he could not prove his conjecture completely. Other
mathematicians tackled the problem, but it was only in 2002 that Romanian
mathematician Preda Mihăilescu solved the outstanding issues and turned
conjecture into theorem.

It might seem that Catalan’s conjecture must be false, since simple calculations
quickly yield examples of powers that are almost consecutive. For example, 33 -
52 = 2, and 27 - 53 = 3. On the other hand, even these near-solutions are rare. One
approach to proving the conjecture appeared to involve making many
calculations: in 1976, Robert Tijdeman found an upper bound (maximum size) for
x, y, m, and n. This proved that there is only a finite number of powers that can be
consecutive. The truth of Catalan’s conjecture could now be tested by checking
each of these powers. Unfortunately, Tijdeman’s upper bound is astronomically
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large, making such computation practically unfeasible even for modern
computers.

Mihăilescu’s proof of Catalan’s conjecture does not involve any such
computation. Mihăilescu built on 20th-century advances (by Ke Zhao, J. W. S.
Cassels, and others) that had proved m and n must be odd primes for any further
solutions of xm - yn = 1. His proof is not as formidable as Andrew Wiles’s proof
of Fermat’s last theorem, but it is still highly technical.

If squared and cubed numbers are lined up in order of their values, the difference between
each value becomes clear. The difference between 23 and 32 is 1, and Catalan’s conjecture
states that this is the only pair of squares, cubes, or higher powers that differ by 1.

EUGÈNE CATALAN
Born in Bruges, Belgium, in 1814, Eugène Catalan studied under French
mathematician Joseph Liouville at the École Polytechnique in Paris. Catalan
was a republican from an early age and a participant in the 1848 revolution. His
political beliefs led to his expulsion from a number of academic posts.

Catalan was particularly interested in geometry and combinatorics (counting
and arranging), and his name is associated with the Catalan numbers. This
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sequence (1, 2, 5, 14, 42…) counts, among other
things, the ways that polygons can be divided into
triangles.

Although he considered himself French, Catalan won
recognition in Belgium, where he lived from his
appointment as professor of analysis at the University
of Liège in 1865 until his death in 1894.

Key works

1860 Traité élémentaire des séries (Elementary Treatise on Series)

1890 Intégrales eulériennes ou elliptiques (Eulerian or Elliptic Integrals)

See also: Pythagoras • Diophantine equations • The Goldbach conjecture •
Taxicab numbers • Proving Fermat’s last theorem
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IN CONTEXT
KEY FIGURE
James Joseph Sylvester (1814–97)

FIELDS
Algebra, number theory

BEFORE
200 BCE The ancient Chinese text The Nine Chapters on the Mathematical Art
presents a method for solving equations using matrices.

1545 Gerolamo Cardano publishes techniques using determinants.

1801 Carl Friedrich Gauss uses a matrix of six simultaneous equations to
compute the orbit of the asteroid Pallas.

AFTER
1858 Arthur Cayley formally defines matrix algebra, and proves results for 2 ×
2 and 3 × 3 matrices.

Matrices are rectangular arrays (grids) of elements (numbers or algebraic
expressions), arranged in rows and columns enclosed by square brackets. The
rows and columns can be extended indefinitely, which enables matrices to store
vast amounts of data in an elegant and compact manner. Although a matrix
contains many elements, it is treated like one unit. Matrices have applications in
mathematics, physics, and computer science, such as in computer graphics and
describing the flow of a fluid.

The earliest known evidence for such arrays comes from the ancient Mayan
civilization of Central America, c. 2600 BCE. Some historians believe the Maya
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people manipulated numbers in rows and columns to solve equations, and cite
gridlike decorations on their monuments and priestly robes as evidence. Others,
however, doubt these patterns represent actual matrices.

The first verified instance of the use of matrices comes from ancient China. In
the second century BCE, the textbook The Nine Chapters on the Mathematical Art
described how to set out a counting board and use a matrixlike method to solve
linear simultaneous equations with several unknown values. This method was
similar to the elimination system introduced by German mathematician Carl
Gauss in the 1800s, which is still used today for solving simultaneous equations.

The dimensions of a matrix are important, as operations such as addition and subtraction
require the matrices involved to have the same dimensions. The 2 × 2 matrices below are
square matrices, meaning that they have the same number of rows as they have columns. The
graphic below shows how matrices are added together by adding the elements in
corresponding positions.

Matrix arithmetic
In 1850, British mathematician James Joseph Sylvester first used the term
“matrix” to describe an array of numbers. Shortly after Sylvester introduced the
term, his friend and colleague Arthur Cayley formalized the rules for
manipulating matrices. Cayley showed that the rules of matrix algebra are
different from those in standard algebra. Two matrices of the same size (with the
same number of elements in their respective rows and columns) are added by
simply adding corresponding elements. Matrices with different dimensions cannot
be added. Matrix multiplication is, however, quite different from multiplication of
numbers. Not all matrices can be multiplied together; in matrix multiplication, AB
can only be calculated if the row count of B is the same as the column count of A.
Matrix multiplication is noncommutative, meaning that even where both A and B
are square matrices, AB is not equal to BA.
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The arrays found in Mayan relics suggest to some historians that the Maya used matrices to
solve linear equations. However, others believe they were merely replicating patterns in
nature, such as on a turtle’s shell.

Square matrices
Because of their symmetry, square matrices have particular properties. For
example, a square matrix can be repeatedly multiplied by itself. A square matrix
of size n × n with the value 1 along the diagonal starting top left, and the value 0
everywhere else, is called the identity matrix (In).

Every square matrix has an associated value called its determinant, which
encodes many of the matrix’s properties and can be computed by arithmetic
operations on the matrix’s elements. Square matrices whose elements are complex
numbers, and whose determinants are not zero, form an algebraic structure called
a group. Theorems that are true for groups are therefore also true for such
matrices, and advances in group theory can be applied to matrices. Groups can
also be represented as matrices, enabling difficult problems in group theory to be
expressed in terms of matrix algebra, which is more easily solved. Representation
theory, as this field is known, is applied in number theory and analysis, and in
physics.
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Multiplying two matrices together is achieved by multiplying the horizontals in the first
matrix by the vertical numbers in the second (the centered dot indicates multiplication) and
adding the results. In matrix algebra, switching around the order in which the two matrices are
multiplied produces a different result as shown here with the multiplication of two square
matrices (A and B).

Determinants
The determinant of a matrix was named by Gauss, due to the fact that it
determines whether the system of equations represented by the matrix has a
solution. As long as the determinant is not zero, the system will have a unique
solution. If the determinant is zero, the system may have either no solution or
many.

In the 1600s, Japanese mathematician Seki Takakaze had shown how to calculate
the determinants of matrices up to size 5 × 5. Over the following century,
mathematicians uncovered the rules for finding determinants of larger and larger
arrays. In 1750, Swiss mathematician Gabriel Cramer stated a general rule (now
called Cramer’s rule) for the determinant of a matrix with m rows and n columns,
but he failed to give the proof of this rule.

In 1812, French mathematicians Augustin-Louis Cauchy and Jacques Binet
proved that when two square matrices of the same size are multiplied, the
determinant of this product is, in fact, the same as the product of their individual
determinants: detAB = (detA) = (detB). This rule simplified the process of finding
the determinant of a very large matrix by breaking it down into the determinants
of two smaller matrices.
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A linear transformation in 2 dimensions maps lines through the origin to other lines through
the origin, and parallel lines to parallel lines. Linear transformations include rotations,
reflections, enlargements, stretches, and shears (lines that slide parallel to a fixed line, in
proportion to their distance from the fixed line). The image of any point (x, y) is found by
multiplying the matrix by the column vector representing the point (x, y). In the examples
above, the original shape is the pink square, with vertices (0, 0), (2, 0), (2, 2) and (0, 2), and
the image is the green quadrilateral.

Transformation matrices
Matrices can be used to represent linear geometric transformations (see above)
such as reflections, rotations, translations, and scalings. Transformations in two
dimensions are encoded by 2 × 2 matrices, while 3-D transformations involve 3 ×
3 matrices. The determinant of a transformation matrix contains information
about the area or volume of the transformed figure. Today, computer aided design
(CAD) software makes extensive use of matrices for this purpose.
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Modern applications
Matrices can store vast amounts of data compactly, making them essential across
math, physics, and computing. Graph theory uses matrices to encode how a set of
vertices (points) is connected by edges (lines). One formulation of quantum
physics, called matrix mechanics, makes extensive use of matrix algebra, and
particle physicists and cosmologists use transformation matrices and group theory
to study the symmetries of the Universe.

Matrices are used to represent electrical circuits for solving problems about
voltage and current. They are also important in computer science and
cryptography. Stochastic matrices, whose elements represent probabilities, are
used by search engine algorithms for ranking web pages. Programmers use
matrices as keys when encrypting messages; letters are assigned individual
numerical values, which are then multiplied by the numbers in the matrix. The
larger the matrix used, the more secure the encryption is.

I have not thought it necessary to undertake the labor of a formal proof of the theorem in the
general case of a matrix of any degree.

Arthur Cayley

JAMES JOSEPH SYLVESTER
Born in 1814, James Joseph Sylvester began his
studies at University College London, but left when he
was accused by another student of wielding a knife.
He then went to Cambridge and came second in the
university examinations, but was not allowed to
graduate because, as a Jew, he would not swear
allegiance to the Church of England.

Sylvester taught briefly in the US, but faced similar
difficulties there. Returning to London, he studied law and was admitted to the
bar in 1850. He also began to work on matrices with fellow British
mathematician Arthur Cayley. In 1876, Sylvester returned to the US as a math
professor at Johns Hopkins University, Maryland, where he founded the
American Journal of Mathematics. Sylvester died in London in 1897.

Key works
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1850 On a New Class of Theorems

1852 On the principle of the calculus of forms

1876 Treatise on elliptic functions

See also: Algebra • Coordinates • Probability • Graph theory • Group theory •
Cryptography
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IN CONTEXT
KEY FIGURE
George Boole (1815–64)

FIELD
Logic

BEFORE
350 BCE Aristotle’s philosophy discusses syllogisms.

1697 Gottfried Leibniz tries, unsuccessfully, to use algebra to formalize logic.

AFTER
1881 John Venn introduces Venn diagrams to explain Boolean logic.

1893 Charles Sanders Peirce uses truth tables to show outcomes of Boolean
algebra.

1937 Claude Shannon uses Boolean logic as the basis for computer design in his
A Symbolic Analysis of Relay and Switching Circuits.

Mathematics had never more than a secondary interest for him, and even logic he cared for
chiefly as a means of clearing the ground.

Mary Everest Boole
British mathematician and wife of George Boole

Logic is the bedrock of mathematics. It provides us with the rules of reasoning
and gives us a basis for deciding on the validity of an argument or proposition. A
mathematical argument uses the rules of logic to ensure that if a basic proposition
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is true, then any and all statements constructed from that proposition will also be
true.

The earliest attempt to set out the principles of logic was carried out by the
Greek philosopher Aristotle around 350 BCE. His analysis of the various forms of
arguments marked the beginning of logic as a subject for study in its own right. In
particular, Aristotle looked at a type of argument known as a syllogism,
consisting of three propositions. The first two propositions, called the premises,
logically entail the third proposition, the conclusion. Aristotle’s ideas about logic
were unrivaled and unchallenged in Western thought for more than 2,000 years.

Aristotle approached logic as a branch of philosophy, but in the 1800s, scholars
began to study logic as a mathematical discipline. This involved moving from
arguments expressed in words to a symbolic logic where arguments could be
expressed using abstract symbols. One of the pioneers of this shift to
mathematical logic was British mathematician George Boole, who sought to
apply methods from the emerging field of symbolic algebra to logic.

Algebraic logic
Boole’s investigations into logic began in an unconventional way. In 1847, a
friend, British logician Augustus De Morgan, became involved in a dispute with a
philosopher about who deserved the credit for a particular idea. Boole was not
directly involved, but the event spurred him to set down his ideas concerning how
logic could be formalized with mathematics, in his 1847 essay Mathematical
Analysis of Logic.
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Boole wanted to discover a way to frame logical arguments so that they could be
manipulated and solved mathematically. In order to achieve this, he developed a
type of linguistic algebra, in which the operations of ordinary algebra, such as
addition and multiplication, were replaced by the connectors that were used in
logic. As in algebra, Boole’s use of symbols and connectives allowed for the
simplification of logical expressions.

The three key operations of Boole’s algebra were AND, OR, and NOT; Boole
believed these were the only operations necessary to perform comparisons of sets,
as well as basic mathematical functions. For example, in logic, two statements
may be connected by AND, as in “this animal is covered in hair” AND “this animal
feeds its young with milk,” or by OR, as in “this animal can swim” OR “this animal
has feathers.” The statement “A AND B” is true when A and B are both
individually true, whereas the statement “A OR B” is true if one or both of A and
B is true. In Boolean terms, such statements can be given as, for example: (A OR

B) = (B OR A); NOT (NOT A) = A; or even NOT (A OR B) = (NOT A) AND (NOT B).

Boole’s binaries
In 1854, Boole published his most important work, An investigation into the laws
of thought. Boole had studied the algebraic properties of numbers and realized
that the set {0, 1}, together with operations such as addition and multiplication,
could be used to form a consistent algebraic language. Boole proposed that
logical propositions could have only two values—true or false—and could not be
anything in between.

In Boole’s logical algebra, truth and falsity were reduced to binary values: 1 for
true and 0 for false. Starting out with an initial statement that was either true or
false, Boole could then construct further statements and use the AND, OR, and NOT

operations in order to determine whether or not these further statements were true.

Boolean algebra makes it possible to prove logical statements by performing algebraic
calculations.

Ian Stewart
British mathematician

One plus one is one
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Despite the resemblance, Boole’s true and false binary of 1 and 0 is not the same
as binary numbers. Boolean numbers are entirely different from the mathematics
of real numbers. The “laws” of Boole’s algebra allow statements that would not
be permitted by other forms of algebra. In Boole’s algebra, there are only two
possible values for any quantity, either 1 or 0. There is also no such thing as
subtraction in Boole’s algebra. For example, if statement A, “my dog is hairy,” is
true, it has a value of 1, and if statement B, “my dog is brown” is true, it also has
a value of 1. A and B can be combined to make the statement “my dog is hairy OR

my dog is brown,” which is also true, and also has a value of 1. In Boolean
algebra, OR behaves like + (aside from 1 + 1 = 1) and AND behaves like × (see
Logic gates).

The furthest thing from my mind has been those efforts which try to establish an artificial
similarity [between logic and algebra].

Gottlob Frege

Visualizing results
One way of visualizing Boole’s algebra is in the form of diagrams invented by
British logician John Venn. In his work Symbolic Logic (1881), Venn developed
Boole’s theories employing what became known as Venn diagrams. These depict
relations of inclusion (AND) and exclusion (NOT) between sets. They consist of
intersecting circles, each one representing a distinct set. A two-circle Venn
diagram represents propositions such as: “All A are B,” while a three-circle
diagram represents propositions involving three sets (such as x, Y, and Z).

The results of a statement in Boolean algebra can also be assessed using a truth
table, in which all possible input combinations are tried and written out. These
truth tables were first used by American logician Charles Saunders Peirce in
1893, nearly 30 years after Boole’s death. For example, the statement A AND B
can only be considered true if both A and B are true. If one or both of A and B are
false, then A AND B is false. Therefore, out of the four possible combinations of A
and B, only one results in a true answer. On the other hand, for A OR B, there are
three possible combinations in which that statement is true, as it will only be false
if both A and B are false. More complex statements can also be assessed by
drawing truth tables. For example, A AND (B OR NOT C) is true when A and B are
both true and C is false, and is false when A is false and both B and C are true.
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Out of eight possible combinations of true and false, there are three in which the
statement is true and five in which it is false.

These Venn diagrams represent three of the most basic functions in Boolean algebra: the
functions for AND, OR, and NOT. The three-circle diagram represents a combination of two
functions: (x AND Y) OR Z.

Limitations
One drawback in Boole’s system of algebra was that it contained no method of
quantification: there was no simple way of expressing a statement such as “for all
x,” for example. The first symbolic logic with quantification was produced in
1879 by German logician Gottlob Frege, who objected to Boole’s attempts to turn
logic into algebra. Frege’s work was followed by Charles Sanders Peirce and
another German logician, Ernst Schröder, who introduced quantification into
Boole’s algebra and produced substantial works using Boole’s system.
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This logic module is used for teaching how logic gates function in electronic circuits. The
gates can be connected to lights or buzzers which go on and off depending on the output.

Boole’s legacy
It was not until some 70 years after Boole’s death that the potential of his ideas
was fully grasped. American engineer Claude Shannon used Boole’s
Mathematical Analysis of Logic to establish the basis of modern digital computer
circuits. While working on the electrical circuitry for one of the world’s first
computers, Shannon realized that Boole’s two-value binary system could be the
basis of logic gates (physical devices that move based on Boolean functions) in
the circuitry. Aged just 21, Shannon published the ideas that would form the basis
of future computer design in A Symbolic Analysis of Relay and Switching
Circuits, published in 1937.

The building blocks of codes now used to program computer software are based
on the logic formulated by Boole. Boolean logic is also at the heart of how
internet search engines work. In the early days of the internet, the AND, OR, and
NOT commands were commonly used to filter results to find the specific thing
being searched for, but advances in technology allow people today to search using
more natural language. The Boolean commands have simply become silent: a
search for “George Boole,” for example, has an implied AND between the two
words, so that only web pages containing both names will appear in the results.

395



Logic gates, which are physical electronic devices implementing Boolean functions, form an
important part of computer circuitry. This table shows the various symbols for each type of
logic gate. Truth tables show the possible outcomes of various inputs into the gate.

GEORGE BOOLE
Born in Lincoln in 1815, George Boole was the son of a shoemaker who passed
his love of science and mathematics on to him. When his father’s business
collapsed, the 16-year-old George took up a post as an assistant schoolmaster to
support his family. He began to study mathematics seriously, starting by reading

a book on calculus. He later published work in the
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Cambridge Mathematical Journal, but still could not
afford to study for a degree.

In 1849, as a result of his correspondence with
Augustus De Morgan, Boole was appointed professor
of mathematics at the new Queen’s College in Cork,
Ireland, where he remained until his premature death
at the age of 49.

Key works

1847 Mathematical Analysis of Logic

1854 An investigation into the laws of thought

1859 Treatise on differential equations

1860 Treatise on the calculus of finite differences

See also: Syllogistic logic • Binary numbers • The algebraic resolution of
equations • Venn diagrams • The Turing machine • Information theory • Fuzzy
logic
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IN CONTEXT
KEY FIGURE
August Möbius (1790–1868)

FIELD
Applied geometry

BEFORE
3rd century CE A Roman mosaic of Aion, Greek god of eternal time, features a
zodiac shaped like a Möbius strip.

1847 Johann Listing publishes Vorstudien zur Topologie (Introductory Studies
in Topology).

AFTER
1882 Felix Klein describes the Kleinsche Flasche (Klein bottle), a shape
composed of two Möbius strips.

1957 In the US, the B. F. Goodrich Company produces a patent for a conveyor
belt based on the Möbius strip.

2015 Möbius strips are used in laser beam research, with potential application in
nanotechnology.
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A Möbius strip can be made from a simple length of paper. It can be colored in with a crayon
in one continuous movement without taking the crayon away from the paper. The shape has a
single surface; this can be tested by following the surface of the shape with the eye.

Named after 19th-century German mathematician August Möbius, a Möbius strip
can be created in seconds by twisting a strip of paper through 180°, then joining
its two ends together. The shape that results has some unexpected properties,
which have advanced our understanding of complex geometrical figures—a
branch of study called topology.

The 19th century was a creative period for mathematics, and the exciting new
field of topology spawned many new geometrical shapes. Much of this impetus
came from German mathematicians, including Möbius and Johann Listing. In
1858, the two men independently investigated the twisted strip, which Listing is
said to have discovered first.

Once formed, the Möbius strip has only one surface—an ant crawling along that
surface would be able to cover both sides of the paper in one continuous
movement without crossing the edge of the paper. In geometry, it is considered a
classic example of a “nonorientable” surface. This means that when you trace
your finger around the complete strip, the left and right sides of the paper are
reversed. The Möbius strip is the simplest nonorientable, two-dimensional surface
that can be created in three-dimensional space.

Experimenting with the Möbius strip produces other unexpected results. For
instance, if you draw a line around the center of the strip and then cut along it, the
shape does not divide in half. Rather, it produces a longer, continuous twisted
loop. Alternatively, draw a line about a third of the way across the width of the
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strip, then turn the scissors 90° and cut along its length: the result is one twisted
loop linked to a second, thinner twisted loop that is twice as long.

A Roman mosaic dating from c. 200 CE includes what may be the earliest representation of a
Möbius strip, which is thought to represent the eternal nature of time.

Space, industry, and art
The Möbius strip shape sometimes occurs naturally, such as in the movement of
magnetically charged particles within the Van Allen radiation belts that surround
Earth and in the molecular structure of some proteins. Its properties have been put
to use in everyday applications, too. In the early 20th century, the Möbius strip
shape was used in continuous-loop recording tapes to provide double the
playback time. There are also Möbius strip roller-coasters, such as the Grand
National at Blackpool Pleasure Beach in northern England.

The Möbius strip’s form has inspired artists and architects. Dutch artist M.C.
Escher created a notable woodcut of ants endlessly patrolling the shape.
Impressive Möbius strip buildings are being constructed to minimize the impact
of the sun’s rays. The shape is used in the universal symbol for recycling and also
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suggested in the mathematical symbol for infinity (∞), echoing the eternity image
in the ancient Roman mosaic.

Our lives are Möbius strips, misery and wonder simultaneously. Our destinies are infinite, and
infinitely recurring.

Joyce Carol Oates
American novelist

AUGUST MÖBIUS
Born near Naumberg in Saxony, Germany, in 1790,
August Ferdinand Möbius was the son of a dance
teacher. At the age of 18, he entered the University of
Leipzig to study mathematics, physics, and
astronomy, and later studied in Göttingen under the
great German mathematician Carl Friedrich Gauss. In
1816, Möbius was appointed professor of astronomy
at Leipzig and stayed there for the rest of his life,

writing treatises on Halley’s Comet and other aspects of astronomy.

Möbius is associated with a number of mathematical concepts, including
Möbius transformations, the Möbius function, the Möbius plane, and the
Möbius inversion formula. He also conjectured a geometrical projection known
as a Möbius net. Möbius died in Leipzig in 1868.

Key works

1827 The Calculus of Centers of Gravity

1837 Textbook of Statics

1843 The Elements of Celestial Mechanics

See also: Graph theory • Topology • Minkowski space • Fractals
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IN CONTEXT
KEY FIGURE
Bernhard Riemann (1826–66)

FIELD
Number theory

BEFORE
1748 Leonhard Euler defines the Euler product, linking a version of what will
become the zeta function to the sequence of prime numbers.

1848 Russian mathematician Pafnuty Chebyshev presents the first significant
study of the prime counting function π(n).

AFTER
1901 Swedish mathematician Helge von Koch proves that the best possible
version of the prime counting function relies on the Riemann hypothesis.

2004 Distributed computing is used to prove that the first 10 trillion “nontrivial
zeros” lie on the critical line.
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In 1900, David Hilbert listed 23 outstanding mathematical problems. One of them
was the Riemann hypothesis, which is still agreed to be one of the most important
unsolved problems in mathematics. It concerns the prime numbers—numbers that
are only divisible by themselves or 1. Proving the Riemann hypothesis would
solve many other theorems.

The most noticeable thing about prime numbers is that the larger they are, the
more widely spread out they get. Of the numbers between 1 and 100, 25 are prime
(1 in 4); between 1 and 100,000, 9,592 are prime (about 1 in 10). These values are
expressed through the prime counting function, π(n), but π here is not related to
the mathematical constant pi. Inputting n into π gives the number of primes
between 1 and n. For example, the number of primes up to 100 gives π(100) = 25.

Finding the pattern
For centuries, mathematicians’ fascination with primes has led them to seek a
formula that would predict the values of this function. Aged just 14, Carl Gauss
found a rough answer, and he was soon able to find an improved version of the
prime counting function that could predict the number of primes between 1 and
1,000,000 as 78,628, which is accurate to 0.2 percent.

The failure of the Riemann hypothesis would create havoc in the distribution of prime numbers.

Enrico Bombieri
Italian mathematician
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A new formula
In 1859, Bernhard Riemann constructed a new formula for π(n), which would
give the most accurate estimates possible. One of the inputs needed for this
formula is a series of complex numbers defined by what is now called the
Riemann zeta function, ζ(s).

The numbers that are needed to confirm Riemann’s formula for π(n) are those
complex numbers (s) for which ζ(s) = 0. Some of these—the “trivial zeros”—are
easy to find; they are all the negative even integers (-2, -4, -6, and so on). Finding
the others (the “nontrivial zeros”— all other values for which ζ(s) = 0) is more
difficult. Riemann only calculated three. He believed that nontrivial zeros have
one thing in common: when they are plotted on the complex plane, they all lie on
“the critical line,” where the real part of the number is 0.5. This belief is called the
Riemann hypothesis.

The uranium atom is one example of a heavy atom whose nucleus follows the same
statistical behavior as prime numbers, making it extremely difficult to predict.

A solution
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In 2018, British mathematician Michael Atiyah, then aged 89, said he had found a
simple proof for the Riemann hypothesis. He died a few months later, the proof
unverified.

Although proving the Riemann hypothesis would validate the zeta function's
status as the best predictor of the distribution of primes, it still would not allow
prime numbers to be fully predicted. Their distribution is to some extent chaotic.
But the hypothesis does pin down the blend of predictability and randomness the
primes obey. This blend is exactly that exhibited by the energy levels of the
nuclei of heavy atoms, according to quantum theory. This profound connection
means the hypothesis may one day be proved not by a mathematician, but by a
physicist.

BERNHARD RIEMANN
The son of a pastor, Bernhard Riemann was born in
Germany in 1826. Initially fascinated by theology, he
was persuaded to change his degree to mathematics by
Carl Gauss, under whom he then studied at the
University of Göttingen. The result was a series of
breakthroughs that remain influential today.

In addition to his work on primes, Riemann helped to
formulate the rules for applying calculus to complex functions (functions using
complex numbers). His revolutionary understanding of space was used by
Einstein in developing relativity theory. Despite his success, Riemann struggled
financially. He could finally afford to marry when he was awarded a full
professorship by Göttingen in 1862. Just a month later, he fell ill and his health
deteriorated until he died of tuberculosis in 1866.

Key work

1868 Über die Hypothesen, welche der Geometrie zu Grunde liegen (On the
Hypotheses Which Lie at the Foundation of Geometry)

See also: • Mersenne primes • Imaginary and complex numbers • The complex
plane • The prime number theorem
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IN CONTEXT
KEY FIGURE
Georg Cantor (1845–1918)

FIELD
Number theory

BEFORE
450 BCE Zeno of Elea uses a series of paradoxes to explore the nature of
infinity.

1844 French mathematician Joseph Liouville proves that a number can be
transcendental—have an infinite number of digits arranged with no repeating
pattern and without an algebraic root.

AFTER
1901 Bertrand Russell’s barber paradox exposes the weakness of set theory’s
ability to define numbers.

1913 The infinite monkey theorem explains that given infinite time, random
input will eventually produce all possible outcomes.

Infinity was a concept that mathematicians had long instinctively mistrusted. It
was only in the late 1800s that Georg Cantor was able to explain it with
mathematical rigor. He found there was more than one kind of infinity—an
infinite variety, in fact—and that some were larger than others. In order to
describe these differing infinities, he introduced “transfinite” numbers.

While he was studying set theory, Cantor aimed to create definitions for every
number to infinity. This need arose from the discovery of transcendental numbers,
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such as π and e, which are irrational, infinitely long, and are not themselves an
algebraic root. Between every algebraic number—including the integers,

fractions, and certain irrational numbers (such as )—there is an infinite
number of transcendentals.

Counting infinities
To help identify where a number is located, Cantor drew a distinction between
two kinds of numbers: cardinals, which are the counting numbers 1, 2, 3… that
denote the size of a set; and ordinals, such as 1st, 2nd, or 3rd, which list order.

Cantor created a new transfinite cardinal number—aleph (ℵ), the first letter of
the Hebrew alphabet—to denote a set containing an infinite number of elements.
The set of integers that includes the natural numbers, negative integers, and zero,
was given the cardinality of ℵ0, the smallest transfinite cardinal, as these are
theoretically countable numbers but are actually impossible to count completely.
A set with a cardinality of ℵ0 starts with a first item, and ends with a ω (omega)
item, a transfinite ordinal number. The number of items in a set with a cardinality
of ℵ0 is ω.
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Adding to that set makes a new set of ω + 1. A set of all countable ordinals, such
as ω + 1, ω + 1 + 2, ω + 1 + 2 + 3…, will contain ω1 items. This set cannot be
counted, making this infinity larger than countable ones, so it is said to have a
cardinality of ℵ1.

The set of all ℵ1 sets contains ω2 items, with a cardinality of ℵ2. In this way,
Cantor’s set theory creates infinities nestled inside each, expanding forever.

These concentric rings show the different types of numbers, which correspond to different
types of infinities. Each ring describes a set of numbers. For example, the set of natural
numbers is a small subset of rational numbers, which in turn combine with the set of irrational
numbers to make the full set of real numbers.

GEORG CANTOR
Born in St. Petersburg, Russia, in 1845, Georg Cantor
moved with his family to Germany in 1856. An
outstanding scholar (and violinist), he studied in
Berlin and Göttingen. He was later made a professor
of mathematics at the University of Halle.

Although much admired by today’s mathematicians,
Cantor was something of a pariah among his

contemporaries. His theory of transfinite numbers clashed with traditional
mathematical beliefs and the criticisms of leading mathematicians damaged his
career. His work was also criticized by the clergy, but Cantor, who was deeply
religious, saw his research as a glorification of God.
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Overwhelmed by depression, Cantor was institutionalized for much of his later
life. He began to receive plaudits in the early 1900s, but lived out his old age in
poverty. He died of a heart attack in 1918.

Key work

1915 Contributions to the founding of the theory of transfinite numbers

See also: Irrational numbers • Zeno’s paradoxes of motion • Negative numbers •
Imaginary and complex numbers • Calculus • The logic of mathematics • The
infinite monkey theorem
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IN CONTEXT
KEY FIGURE
John Venn (1834–1923)

FIELD
Statistics

BEFORE
c. 1290 Catalan mystic Ramon Llull devises classification systems using
devices such as trees, ladders, and wheels.

c. 1690 Gottfried Leibniz creates classification circles.

1762 Leonhard Euler describes the use of logic circles, now known as “Euler
circles.”

AFTER
1963 American mathematician David W. Henderson outlines the connection
between symmetrical Venn diagrams and prime numbers.

2003 In the US, Jerrold Griggs, Charles Killian, and Carla Savage show that
symmetrical Venn diagrams exist for all primes.

In 1880, British mathematician John Venn introduced the idea of the Venn
diagram in his paper “On the Diagrammatic and Mechanical Representation of
Propositions and Reasonings.” The Venn diagram is a way of grouping things in
overlapping circles (or other curved shapes) to show the relationship between
them.
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Overlapping circles
The Venn diagram considers two or three different sets or groups of things with
something in common, such as all living things, or all planets of the solar system.
Each set is given its own circle and the circles are overlapped. Objects in each set
are then arranged in the circles so that objects that belong in more than one set are
placed where the circles overlap.

Two-circle Venn diagrams can represent categorical propositions, such as “All A
are B,” “No A are B,” “Some A are B,” and “Some A are not B.” Three-circle
diagrams can also represent syllogisms, in which there are two categorical
premises and a categorical conclusion. For example: “All French people are
European. Some French people eat cheese. Therefore, some Europeans eat
cheese.”

As well as being a widely used tool for sorting data in everyday life, in contexts
ranging from school classrooms to boardrooms, Venn diagrams are an integral
part of set theory, due to their distinctive ability to express relationships.

Great ideas are the ones that lie in the intersection of the Venn diagram of ‘is a good idea’ and
‘looks like a bad idea.’

Sam Altman
American entrepreneur

See also: Syllogistic logic • Probability • Calculus • Euler’s number • The logic of
mathematics
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IN CONTEXT
KEY FIGURE
Édouard Lucas (1842–91)

FIELD
Number theory

BEFORE
1876 Édouard Lucas proves that the Mersenne number 2127 - 1 is prime. This is
still the largest prime ever found without using a computer.

AFTER
1894 Lucas’s work on recreational mathematics is posthumously published in
four volumes.

1959 American writer Erik Frank Russell publishes “Now Inhale,” a short story
about an alien allowed to play a version of the Tower of Hanoi before his
execution.

1966 In an episode of the BBC’s Doctor Who, the villain, The Celestial
Toymaker, forces the Doctor to play a ten-disk version of the game.

French mathematician Édouard Lucas is believed to have invented his Tower of
Hanoi game in 1883. The aim of the puzzle is simple. The challenger is presented
with three poles, one of which holds three disks in order of size, with the largest
disk on the bottom. The three disks must be moved one disk at a time so as to
recreate the starting arrangement on a different pole using the smallest possible
number of moves, with the restriction that players can only place a disk on top of
a larger disk or on to an empty pole.
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Solving the puzzle
With just three disks, the Tower of Hanoi can be solved in just seven moves. With
any number of disks, the formula 2n ˗ 1 will give the minimum number of moves
(where n is equal to the number of disks). One solution to the challenge employs
binary numbers (0 and 1). Each disk is represented by a binary digit, or bit. A
value of 0 indicates that a disk is on the starting pole; 1 shows that it is on the
final pole. The sequence of bits changes at each move.

According to legend, if monks at a certain temple in either India or Vietnam
(depending on the version of the tale) succeed in moving 64 disks from one pole
to another in line with the rules, the world will end. However, even using the best
strategy and moving one disk per second, they would take 585 billion years to
complete the game.

A form of the Tower of Hanoi is a popular toy for small children. Versions with eight disks
are often used to test developmental skills of older children.

See also: Wheat on a chessboard • Mersenne primes • Binary numbers

413



IN CONTEXT
KEY FIGURE
Henri Poincaré (1854–1912)

FIELD
Geometry

BEFORE
1736 Leonhard Euler solves the historical topological problem of “The Seven
Bridges of Königsberg.”

1847 Johann Listing coins the term “topology” as a mathematical subject.

AFTER
1925 Russian mathematician Pavel Aleksandrov establishes the basis for
studying the essential properties of topological spaces.

2006 Grigori Perelman’s proof of the Poincaré conjecture is confirmed.

Topology is, in simple terms, the study of shapes without measurements. In
classical geometry, if a pair of shapes has equal corresponding lengths and angles,
and you can slide, reflect, or rotate one of the shapes into the other, they are
congruent— a mathematical way of saying they are identical. To a topologist,
however, two shapes are identical—or invariant, in topological terminology—if
they can be molded one into the other by continuous stretching, twisting, or
bending, but with no cutting, piercing, or sticking together. This has led to
topology being called “rubber-sheet geometry.”

For more than 2,000 years, from the time of Euclid, c. 300 BCE, geometry was
concerned with classifying shapes by their lengths and angles. In the 18th and
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early 19th centuries, some mathematicians began to look at geometric objects
differently, considering the global properties of shapes beyond the confines of
lines and angles. Out of this grew the mathematical field of topology, which by
the early 1900s had moved far from the notion of “shape” to embrace abstract
algebraic structures. The most ambitious and influential exponent of this was
French mathematician Henri Poincaré, who used complex topology to throw new
light on the “shape” of the Universe itself.

Birth of a new geometry
In 1750, Leonhard Euler revealed that he had been working on a formula for
polyhedra—three-dimensional figures with four or more planes, such as a cube or
pyramid—that involved their vertices, edges, and faces rather than lines and
angles. What he postulated became known as Euler’s polyhedral formula: V + F -
E = 2, where V is the number of vertices, F the number of faces, and E the
number of edges. The formula suggested that all polyhedra shared basic
characteristics.

However, in 1813, another Swiss mathematician, Simone L’Huilier, noted that
Euler’s formula was not true for all polyhedra; it was false for polyhedra with
holes and for nonconvex polyhedra—shapes with some diagonals (linked by
vertices) not contained within or on the surface. L’Huilier devised a system
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whereby every shape had its own “Euler characteristic”— (V - E + F)—and
shapes with the same Euler characteristic were related regardless of how much
they might be manipulated.

The term “topology”—derived from the Greek topos, meaning “a place”—was
introduced to the mathematical world by German mathematician Johann Listing
in 1847 in his treatise Vorstudien zur Topologie (Introductory Studies in
Topology), although he had used the word in correspondence at least 10 years
earlier. In particular, Listing was interested in shapes that did not satisfy Euler’s
formula or defied the conventions of having distinct “outside” and “inside”
surfaces. He even devised a version of the Möbius strip—a surface that has only
one side and one edge—a few months before August Möbius.

Around the same period, another German mathematician, Bernhard Riemann,
devised new geometrical coordinate systems that extended beyond the limits of
the 2-D and 3-D systems devised by René Descartes. Riemann’s new framework
enabled mathematicians to explore shapes in four dimensions or higher, including
seemingly “impossible” shapes.

One such shape was the “Klein bottle,” devised in 1882 by German
mathematician Felix Klein. He imagined joining two Möbius strips together to
create a shape that has only one surface, is nonorientable (has no “left” or
“right”), and, unlike a Möbius strip, has no edge or boundary curve. As it has no
intersections, the shape can only truly exist in four-dimensional space. If the
shape is represented in 3-D, it has to intersect itself, which is where it starts to
look like a bottle. Topologists applied the term “2-manifold” to shapes such as the
Möbius strip and Klein bottle to describe their surfaces, which are two-
dimensional surfaces embedded within a space of higher dimension (the Möbius
strip can exist inside three dimensional space, but the Klein bottle can only exist
properly in four).
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Euler’s formula, V + F - E = 2, works for most polyhedra, including a cube. Its values of V
= 8, F = 6, and E = 12, when fed into the formula, produce the calculation 8 + 6 - 12 which
equals 2.

Algebraic topology allows us to read qualitative forms and their transformations.

Stephanie Strickland
American poet

To a topologist, a coffee mug is identical in shape to a doughnut, because by pulling,
stretching, and bending one, you could mold one into the shape of the other.

A universal conjecture
The shape of the Universe has long been a source of speculation. We appear to
inhabit a 3-D world, but to make any sense of its shape we need to take ourselves
outside this, into four dimensions. In the same way, to gain a sense of the shape of
a 2-D surface, we need to look down on it in three dimensions. A starting point
would be to imagine that we inhabit a Universe that is a 3-D surface embedded
within four dimensions. Taking this one step further, you could consider that this
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3-D surface is actually a sphere embedded in a 4-D space, also known as a “3-
sphere.” A “2-sphere” is equivalent to a “normal” sphere (such as a ball) in a 3-D
space.

In 1904, Henri Poincaré went even further, producing a theory that would help to
lay a topological basis for understanding the shape of the Universe. He proposed
what became known as the Poincaré conjecture: “every simply connected, closed
3-manifold is homeomorphic to the 3-sphere.” A “3-manifold” is a shape that
appears 3-D when its surface is enlarged but exists within higher dimensions, and
“simply connected” means that it has no holes—like an orange but not a
doughnut. A “closed” shape is finite, with no boundaries—like a sphere. Finally,
“homeomorphic” describes shapes that can be molded into each other, such as a
mug and a doughnut. A doughnut and an orange, however, are not homeomorphic
because of the hole in the doughnut.

According to Poincaré, if it could be could shown that the Universe did not
contain holes, then you could model it as a “3-sphere.” To establish whether it
contained holes, you could, in theory, conduct an experiment with string. Imagine
you are an explorer traveling around the Universe from a set point, and unraveling
a ball of string as you go. When you get back to your starting point, you see the
end of the string that you started with. You take both ends, and start to gather in
the string, pulling both ends. If the Universe is “simply connected,” then you
would be able to gather in the whole string, like a loop following the smooth
contours of a sphere; if you had passed through holes or gaps, then the string
could get “snagged.” For example, if the Universe were shaped like a doughnut,
and, in your travels, you wrapped your string around its girth, the string would get
caught. You would not be able to gather in the string without pulling it beyond the
Universe.
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The BlackDog™ robot is designed to carry loads over rough terrain. The robot’s moves are
computed using algebraic topology that can predict and model the surrounding “space.”

Shaping the future
Topology developments still continued during the 1900s. In 1905, French
mathematician Maurice Fréchet devised the idea of a metric space—a set of
points along with a “metric” that defines the distance between them.

Also at the turn of the 20th century, German mathematician David Hilbert
invented the idea of a space that took the Euclidean spaces of two and three
dimensions and generalized them to infinite dimensions. Mathematics could then
be done in any dimension in much the same way as in a 3-D coordinate system.
This area of topological mathematics has become known as “infinite-dimensional
topology.”

The field of topology is now vast, embracing abstract algebraic structures far
removed from a simple notion of “shape.” It has wide-ranging applications in
areas such as genetics and molecular biology, such as helping to unravel the
“knots” created around DNA by certain enzymes.

Probably no branch of mathematics has experienced a more surprising growth.

Raymond Louis Wilder
American mathematician
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HENRI POINCARÉ
Born in 1854, in Nancy, France, Henri Poincaré
showed such early promise that he was described by a
teacher as a “monster of mathematics.” He graduated
in the subject from the Paris École Polytechnique and
earned his doctorate from the University of Paris. In
1886, he was appointed as chair of mathematical
physics and probability at the Sorbonne in Paris,
where he spent the rest of his career.

In 1887, Poincaré won a prize from King Oscar II of Sweden for his partial
solution of the many variables involved in determining the stable orbit of three
planets around one another. A self-confessed mistake threw his calculations for
the stable orbit into doubt, but in turn paved the way for the study of “chaos
theory.” He died in 1912.

Key works

1892–99 Les Méthodes nouvelles de la mécanique céleste (New Methods of
Celestial Mechanics)

1895 Analysis Situs (Topology)

1903 La Science et l’hypothèse (Science and Hypothesis)

See also: Euclid’s Elements • Coordinates • The Möbius strip • Minkowski space
• Proving the Poincaré conjecture
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IN CONTEXT
KEY FIGURE
Jacques Hadamard (1865–1963)

FIELD
Number theory

BEFORE
1798 French mathematician Adrien-Marie Legendre offers an approximate
formula to determine how many prime numbers there are below or equal to a
given value.

1859 Bernhard Riemann outlines a possible proof for the prime number
theorem, but the necessary mathematics to complete it does not yet exist.

AFTER
1903 German mathematician Edmund Landau simplifies Hadamard’s proof of
the prime number theorem.

1949 Paul Erdős in Hungary and Atle Selberg in Norway both find a proof of
the theorem using only number theory.

The prime numbers—those positive whole numbers that have only two factors,
themselves and 1—have long fascinated mathematicians. If the first step was to
find them, and they are frequent among the small numbers, the next step was to
identify a pattern to describe their distribution. More than 2,000 years before,
Euclid had proved that there are infinitely many primes, but it was only at the end
of the 1700s that Legendre stated his conjecture—a formula to describe the
distribution of primes. This became known as the prime number theorem. In
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1896, Jacques Hadamard in France and Charles-Jean de la Vallée Poussin in
Belgium both proved the theorem, quite independently.

It is evident that primes decrease in frequency as numbers get larger. Of the first
20 positive whole numbers, eight are prime— 2, 3, 5, 7, 11, 13, 17, and 19.
Between the numbers 1,000 and 1,020, there are only three prime numbers
(1,009, 1,013, 1,019), and between 1,000,000 and 1,000,020, the only prime is
1,000,003. This seems reasonable; the higher the number, the more numbers that
could be divisors exist below it.

Many notable mathematicians have puzzled over how primes are distributed. In
1859, German mathematician Bernhard Riemann worked toward a proof in his
paper On the Number of Primes Less Than a Given Magnitude. He believed that
complex analysis, a branch of mathematics in which ideas of function are applied
to complex numbers (combinations of real numbers, such as 1, and imaginary

numbers, such as ), would lead to a resolution. He was right; the study of
complex analysis developed, fueling the proofs of Hadamard and Poussin.

What the theorem says
The prime number theorem is designed to calculate how many primes there are
less than or equal to a real number x. It states that π(x) is approximately equal to x
÷ ln(x) as x gets larger and tends to infinity. Here π(x) denotes the prime counting
function (how many primes) and is unrelated to the number pi, and ln(x) is the
natural logarithm of x. To explain the theorem slightly differently, for a large

422



number x, the average gap between primes from 1 to x is approximately ln(x). Or,
for any number between 1 and x, the probability of it being a prime is
approximately 1 ÷ ln(x).

The prime numbers are the building blocks for numbers in mathematics, just as
the elements are for compounds in chemistry. Fundamental to understanding this
is the Riemann hypothesis—an unsolved conjecture—which, if true, could reveal
a huge amount more about prime numbers.

Primes tend to decrease in frequency as numbers get larger. Although there are two primes
between 30 and 40, and three between 40 and 50, the accuracy of the prime number theorem
increases at higher numbers.

The prime numbers… grow like weeds among the natural numbers, seeming to obey no other
law than that of chance.

Don Zagier
American mathematician

JACQUES HADAMARD
Born in Versailles, France, in 1865, Jacques-Salomon
Hadamard became interested in mathematics thanks to
an inspiring teacher. He obtained his doctorate in Paris
in 1892 and the same year won the Grand Prix des
Sciences Mathématiques for his work on primes. He
moved to Bordeaux to lecture at the university, and
there proved the prime number theorem.

In 1894, Alfred Dreyfus, a Jewish relative of
Hadamard’s wife, was falsely accused of selling state secrets and was sentenced
to life in prison. Hadamard, who was also Jewish, worked tirelessly on behalf of
Dreyfus and he was eventually freed. Hadamard’s brilliant career was marred
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by personal loss; two of his sons died in World War I, and another in World
War II. The death of his grandson Étienne in 1962 was a final blow. Hadamard
died a year later.

Key works

1892 Determination of the Number of Primes Less than a Given Number

1910 Lesson on the Calculus of Variations

See also: Euclid’s Elements • Mersenne primes • Imaginary and complex
numbers • The Riemann hypothesis
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INTRODUCTION
In 1900, as the arms race that led to World War I intensified, German
mathematician David Hilbert attempted to anticipate the directions that
mathematics would take in the 20th century. His list of the 23 unsolved problems
he considered crucial was influential in identifying the fields of mathematics that
could be fruitfully explored by mathematicians.

New century, new fields
One area of exploration was the foundations of mathematics. In seeking to
establish the logical basis of mathematics, Bertrand Russell described a paradox
that highlighted a contradiction in Georg Cantor’s naive set theory, leading to a
reappraisal of the subject. These ideas were taken up by André Weil and others,
using the pseudonym Nicolas Bourbaki. Starting from the basics, they met in the
1930s and 40s, rigorously formalizing all branches of mathematics in terms of set
theory.

Others, notably Henri Poincaré, explored the newly established field of topology,
the offshoot of geometry dealing with surfaces and space. His famous conjecture
concerns the 2-dimensional surface of a 3-dimensional sphere. Unlike many of his
peers in the 1900s, Poincaré did not confine himself to any one single field of
mathematics. As well as pure mathematics, he made significant discoveries in
theoretical physics, including his proposed principle of relativity. Similarly,
Hermann Minkowski—whose primary interest was in geometry and the
geometrical method applied to problems in number theory—explored the notion
of multiple dimensions, and suggested spacetime as a possible fourth dimension.
Emmy Noether, one of the first female mathematicians of the modern era to gain
recognition, came to the field of theoretical physics from a perspective of abstract
algebra.
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The computer age
In the first half of the 1900s, applied mathematics was largely concerned with
theoretical physics, especially the implications of Einstein’s theories of relativity,
but the latter part of the century was increasingly dominated by advances in
computer sciences. Interest in computing had begun in the 1930s, in the search for
a solution to Hilbert’s Entscheidungsproblem (decision problem) and the
possibility of an algorithm to determine the truth or falsity of a statement. One of
the first to tackle the problem was Alan Turing, who went on to develop code-
cracking machines during World War II that were the forerunners of modern
computers. He later proposed a test of artificial intelligence.

With the advent of electronic computers, mathematics was in demand to provide
methods of designing and programming computer systems. But computers also
provided a powerful tool for mathematicians. Hitherto unsolved mathematical
problems such as the four-color theorem often involved lengthy calculations,
which could now be done quickly and accurately by computer. Although Poincaré
had laid the foundations of chaos theory, Edward Lorenz was able to establish the
principles more firmly with the aid of computer models. His visual images of
attractors and oscillators, along with Benoit Mandelbrot’s fractals, became icons
of these new fields of study.

With the advent of computers, the secure transfer of data became an issue, and
mathematicians devised complex cryptosystems using the factorization of large
prime numbers. Launched in 1989, the World Wide Web facilitated the rapid
transmission of knowledge, and computers became a part of everyday life,
especially in the field of information technology.

New logic, new millennium
For a while, it seemed electronic computing could potentially provide answers to
almost all problems. But computing science was based on a binary system of
logic first proposed by George Boole in the 1800s, and the polar opposites of on-
off, true-false, 0-1, and so on could not describe how things are in the real world.
To overcome this, Lotfi Zadeh suggested a system of “fuzzy” logic, in which
statements can be partly true or false, in a range between 0 (absolutely false) and
1 (absolutely true).

427



In 2000, 21st-century mathematics was heralded in a similar spirit to that of the
20th century, when the Clay Mathematics Institute announced seven Millennium
Prize Problems, offering a $1 million prize for any of their solutions. As yet, only
the Poincaré conjecture has been solved; Grigori Perelman’s proof was confirmed
in 2006.
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IN CONTEXT
KEY FIGURE
David Hilbert (1862–1943)

FIELDS
Logic, geometry

BEFORE
1859 Bernhard Riemann proposes the Riemann hypothesis, a famous problem
that will later be Number 8 on Hilbert’s list and remains unresolved today.

1878 Georg Cantor advances the continuum hypothesis, later Number 1 on
Hilbert’s list.

AFTER
2000 The Clay Institute issues a list of seven Millennium Prize mathematical
problems, offering a million dollars for each problem solved.

2008 In a bid to stimulate major new mathematical breakthroughs, the US
Defense Advanced Research Projects Agency (DARPA) announces its list of 23
unsolved problems.
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It requires a special technical brilliance and self-confidence to predict relevant
problems for the next hundred years, but this is what German mathematician
David Hilbert did in 1900. Hilbert possessed a substantial grasp of most fields of
mathematics. At the International Mathematical Congress in Paris in 1900, he
confidently announced his choice of 23 questions that he believed should occupy
mathematicians’ thoughts in the decades to come. This proved prescient; the math
world rose to the challenge.

The range of problems
Many of Hilbert’s questions are highly technical, but some are more accessible.
Number 3, for instance, asks if one of any two polyhedra of the same volume can
always be cut into finitely many bits that can be reassembled to create the other
polyhedron. This was soon resolved in 1900 by German-born American
mathematician Max Dehn, who concluded that it could not.

The continuum hypothesis, the first problem on Hilbert’s list, pointed out that the
set of natural numbers (the positive integers) was infinite, but so was the set of
real numbers between 0 and 1. As a result of the work of German mathematician
Georg Cantor, it was agreed that the first infinity was “smaller” than the second.

The continuum hypothesis also stated that there was no infinity lying between
these two infinities. Cantor himself was sure this was true, but he could not prove
it. In 1940, Austrian–American logician Kurt Gödel showed it could not be
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proved that such an infinity exists, and, in 1963, American mathematician Paul
Cohen showed it could not be proved that such an infinity does not exist.
Hilbert’s first problem is substantially resolved, although set theory (the study of
the properties of sets) is a complex subject, and much more work on it remains to
be done.

Of Hilbert’s 23 problems, 10 are considered resolved, seven have been partially
solved, two have been classed as too vague to ever be definitively solved, three
remain unsolved, and one (also unsolved) is really a physics problem. Among the
unsolved problems is the Riemann hypothesis, which some observers think will
remain unsolved for the foreseeable future.

The infinite! No other question has ever moved so profoundly the spirit of man.

David Hilbert

Challenges for the future
Hilbert’s remarkable achievement was to accurately predict what would concern
mathematicians in the 1900s and beyond. When American mathematician and
Fields Medal winner Steve Smale came up with his own list of 18 questions in
1998, it included Hilbert’s eighth and 16th problems. Two years later, the
Riemann hypothesis was also one of the Clay Institute’s Millennium Prize
problems. Today’s mathematicians face further challenges, but aspects of
Hilbert’s problems – especially those that are still unsolved – remain relevant.

Problem solving and theory building go hand in hand. That’s why Hilbert risked offering a list
of unsolved problems instead of presenting new methods or results.

Rüdiger Thiele
German mathematician

DAVID HILBERT
Born in Prussia in 1862 to German parents, David Hilbert entered the University
of Königsberg in 1880 and later taught there before becoming professor of
mathematics at the University of Göttingen in 1895. In this role, he turned
Göttingen into one of the mathematical hubs of the world and taught a number
of young mathematicians who later made their own mark.
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Hilbert was renowned for his broad understanding of
many areas of mathematics, and had a keen interest in
mathematical physics, too. Exhausted by anemia, he
retired in 1930, and Göttingen’s math faculty soon
declined after the Nazi purges of Jewish colleagues.
Despite his great contribution to mathematics,
Hilbert’s death in 1943, during World War II, went
largely unnoticed.

Key works

1897 Commentary on Numbers

1900 “The Problems of Mathematics” (Paris lecture)

1932–35 Collected Works

1934–39 Foundations of Mathematics (with Paul Bernays)

See also: Diophantine equations • Euler’s number • The Goldbach conjecture •
The Riemann hypothesis • Transfinite numbers
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IN CONTEXT
KEY FIGURE
Francis Galton (1822–1911)

FIELD
Number theory

BEFORE
1774 Pierre-Simon Laplace shows the expected pattern of distribution around
the norm.

1809 Carl Friedrich Gauss develops the least squares method of finding the best
fit line for a scatter of data.

1835 Adolphe Quetelet advocates the use of the bell curve to model social data.

AFTER
1900 Karl Pearson proposes the chi-squared test to determine the significance of
differences between expected and observed frequencies.

Statistics is the branch of mathematics that is concerned with analyzing and
interpreting large quantities of data. Its foundations were laid in the late 1800s,
principally by British polymaths Francis Galton and Karl Pearson.

Statistics investigates whether the pattern of recorded data is significant or
random. Its origins lie in the efforts of 18th-century mathematicians such as
Pierre-Simon Laplace to identify observational errors in astronomy. In any set of
scientific data, most errors are likely to be very small, and only a few are likely to
be very large. So when observations are plotted on a graph, they create a bell-
shaped curve with a peak created by the most likely result, or “norm,” in the
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middle. In 1835, Belgian mathematician Adolphe Quetelet posited that
characteristics, such as body mass, within a human population follow a bell curve
pattern, in which values around the mean are most frequent. Higher and lower
values are less frequent. He devised the Quetelet Index (now called the BMI) to
indicate body mass.

Typically, plotting two variables, such as height and age, on a graph creates a
messy scatter of data points that cannot be linked by a neat line. However, in
1809, German mathematician Carl Friedrich Gauss found an equation to create a
“best fit” line, which would show the relationship between the variables. Gauss
used a method called “least squares,” which involves adding up the squares of the
data; this is still used by statisticians. By the 1840s, mathematicians such as
Auguste Bravais were looking at the level of error that could be accepted for this
line, and tried to pin down the significance of the midpoint or “median” of a set of
data.
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Francis Galton invented the quincunx (sometimes called the Galton board) to model the bell
curve. His original design had beads dropping over pegs.

Correlation and regression

435



It was first Galton, then Pearson, who began to draw these threads together.
Galton was inspired by his cousin Charles Darwin’s work on evolution, and his
aim was to show how likely it was that factors such as height, physiognomy, and
even intelligence and criminal tendencies might be passed from one generation to
the next. Galton and Pearson’s ideas are tainted by the doctrine of eugenics and
racial improvement, but the techniques that they developed have found
applications elsewhere.

Galton was a rigorous scientist, determined to analyze data to show
mathematically how probable outcomes are. In his innovative 1888 book Natural
Inheritance, Galton showed how two sets of data can be compared to show if
there is a significant relationship between them. His approach involved
establishing two related concepts that are now at the heart of statistical analysis:
correlation and regression.

Correlation measures the degree to which two random variables, such as height
and weight, correspond. It often looks for a linear relationship—that is, a
relationship that gives a simple line on a graph, with one variable changing in step
with the other. Correlation does not imply a causal relationship between the two
variables; it simply means they vary together. Regression, on the other hand,
looks for the best equation for the graph line for two variables, so that changes in
one variable can be predicted from changes to the other.
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Galton built an “anthropometric laboratory” to collect information on human
characteristics, including head size and quality of vision. It generated huge amounts of data
that he had to analyze statistically.

Galton noticed that very tall parents tend to have children who are shorter than their parents,
while very short parents tend to have children who are slightly taller than their parents. The
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second generation will be closer in height than the first, an example of regression to the mean.

Standard deviation
Although Galton’s main interest was human heredity, he created a broad range of
data sets. Famously, he measured the size of seeds produced by sweet pea plants
grown from seven sets of seeds. Galton found that the smallest pea seeds had
larger offspring and the largest seeds produced smaller offspring. He had
discovered the phenomenon of “regression to the mean,” a tendency for
measurements to even out, always drifting toward the mean over time.

Inspired by Galton’s work, Pearson set out to develop the mathematical
framework for correlation and regression. After exhaustive tests that involved
tossing coins and drawing lottery tickets, Pearson came up with the key idea of
“standard deviation,” which shows how much on average observed values differ
from expected. To arrive at this figure, he found the mean, which is the sum of all
the values divided by how many values there are. Pearson then found the variance
—the average of the squared differences from the mean. The differences are
squared in order to avoid problems with negative numbers, and the standard
deviation is the square root of the variance. Pearson realized that by uniting the
mean and the standard deviation, he could calculate Galton’s regression precisely.

No observational problem will not be solved by more data.

Vera Rubin
American astronomer

Chi-squared test
In 1900, after an extensive study of betting data from the gaming tables of Monte
Carlo, Pearson described the chi-squared test, now one of the cornerstones of
statistics. Pearson’s aim was to determine whether the difference between
observed values and expected values is significant, or simply the result of chance.

Using his data on gambling, Pearson calculated a table of probability values,
called chi-squared (x2), in which 0 shows no significant difference from expected
(the “null hypothesis”), whereas larger values show a significant difference.
Pearson painstakingly worked out his table by hand, but chi-squared tables are
now produced using computer software. For each set of data, a chi-squared value
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can be found from the sum of all the differences between observed and expected
values. The chi-squared values are checked against the table to find the
significance of the variations in the data within limits set by the researcher and
known as “degrees of freedom.”

The combination of Galton’s correlation and regression, and Pearson’s standard
deviation and chi-squared test, formed the foundations of modern statistics. These
ideas have since been refined and developed, but they remain at the heart of data
analysis. This is crucial in many aspects of modern life, from comprehending
economic behavior to planning new transportation links and improving public
health services.

KARL PEARSON
Karl Pearson was born in London in 1857. An atheist,
freethinker, and socialist, he became one of the
greatest statisticians of the 1900s, but he was also a
champion of the discredited science of eugenics.

After graduating with a degree in mathematics from
Cambridge University, Pearson became a teacher
before making his mark in statistics. In 1901, he

founded the statistical journal Biometrika with Francis Galton and evolutionary
biologist Walter F. R. Weldon, followed by the world’s first university
department of statistics at University College, London, in 1911. His views often
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After graduating with a degree in mathematics from Cambridge University,
Pearson became a teacher before making his mark in statistics. In 1901, he
founded the statistical journal Biometrika with Francis Galton and evolutionary
biologist Walter F. R. Weldon, followed by the world’s first university
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IN CONTEXT
KEY FIGURE
Bertrand Russell (1872–1970)

FIELD
Logic

BEFORE
c. 300 BCE Euclid’s Elements contains an axiomatic approach to geometry.

1820s French mathematician Augustin Cauchy clarifies the rules for calculus,
inaugurating a new rigor in mathematics.

AFTER
1936 Alan Turing studies the computability of mathematical functions, with a
view to analyzing which problems in mathematics can be decided and which
cannot.

1975 American logician Harvey Friedman develops the “reverse mathematics”
program, which starts with theorems and works backward to axioms.
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The common perception that mathematics is logical, with fixed rules, evolved
over millennia, dating back to ancient Greece with the works of Plato, Aristotle,
and Euclid. A rigorous definition of the laws of arithmetic and geometry had
emerged by the 1800s, with the work of George Boole, Gottlob Frege, Georg
Cantor, Giuseppe Peano, and, in 1899, David Hilbert’s Foundations of Geometry.
However, in 1903, Bertrand Russell published The Principles of Mathematics,
which revealed a flaw in the logic of one area of mathematics. In the book, he
explored a paradox, known as Russell’s paradox (or the Russell–Zermelo
paradox, after German mathematician Ernst Zermelo, who made a similar
discovery in 1899).

The paradox implied that set theory, which deals with the properties of sets of
numbers or functions, and was fast becoming the bedrock of mathematics,
contained a contradiction. To explain the problem, Russell used an analogy
known as the barber paradox in which a barber shaves every man in town aside
from those who shave themselves, creating two sets of people: those who shave
themselves and those shaved by the barber. However, this begs the question: if
the barber shaves himself, to which of the two sets does the barber belong?

Russell’s barber paradox contradicted Frege’s Basic Laws of Arithmetic
concerning the logic of mathematics, which Russell had pointed out in a letter to
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Frege in 1902. Frege declared that he was “thunderstruck,” and he never found an
adequate solution to the paradox.

A theory of types
Russell went on to produce his own response to his paradox, developing a “theory
of types,” which placed restrictions on the established model of set theory (known
as “naive set theory”) by creating a hierarchy so that “the set of all sets” would be
treated differently from its constituent smaller sets. In so doing, Russell managed
to circumvent the paradox completely. He utilized this new set of logical
principles in the momentous Principia Mathematica, written with Alfred North
Whitehead and published in three volumes from 1910 to 1913.

Every good mathematician is at least half a philosopher, and every good philosopher is at least
half a mathematician.

Gottlob Frege

Logical gaps
In 1931, Kurt Gödel, an Austrian mathematician and philosopher, published his
incompleteness theorem (following on from his completeness theorem of a few
years earlier). The 1931 theorem concluded that there will always exist some
statements regarding numbers that may be true, but can never be proved.
Furthermore, expanding mathematics by simply adding more axioms will lead to
further “incompleteness.” This meant that the efforts of Russell, Hilbert, Frege,
and Peano to develop complete logical frameworks for mathematics were
destined to have logical gaps, however watertight they tried to make them.

Gödel’s theorem also implied that some as-yet unproven theorems in
mathematics, such as the Goldbach conjecture, may never be proved. This has
not, however, deterred mathematicians in their resolute efforts to prove Gödel
wrong.

BERTRAND RUSSELL
The son of a lord, Bertrand Russell was born in Monmouthshire, Wales, in
1872. He studied mathematics and philosophy at Cambridge University, but was
dismissed from an academic post there in 1916 for anti-war activities. A

prominent pacifist and social critic, in 1918 he was
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jailed for six months, during which he wrote his
Introduction to Mathematical Philosophy.

Russell taught in the US in the 1930s, although his
appointment at a college in New York was revoked
due to a judicial declaration that his opinions rendered
him morally unfit. He was awarded the Nobel Prize in
Literature in 1950, and in 1955 he and Albert Einstein

released a joint manifesto calling for a ban on nuclear weapons. He later
opposed the Vietnam War. Russell died in 1970.

Key works

1903 The Principles of Mathematics

1908 Mathematical Logic as Based on the Theory of Types

1910–13 Principia Mathematica (with Alfred North Whitehead)

See also: The Platonic solids • Syllogistic logic • Euclid’s Elements • The
Goldbach conjecture • The Turing machine
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IN CONTEXT
KEY FIGURE
Hermann Minkowski (1864–1909)

FIELD
Geometry

BEFORE
c. 300 BCE In his book Elements, Euclid establishes the geometry of 3-D space.

1904 In his book The Fourth Dimension, British mathematician Charles Hinton
coins the term “tesseract” for a four-dimensional cube.

1905 French scientist Henri Poincaré has the idea of making time the fourth
dimension in space.

1905 Albert Einstein states his theory of special relativity.

AFTER
1916 Einstein writes the key paper outlining his theory of general relativity, in
which he explains gravity as a curvature of spacetime.

There are three dimensions in our familiar view of the world—length, width, and
height—and they can largely be described mathematically by the geometry of
Euclid. But in 1907, German mathematician Hermann Minkowski delivered a
lecture in which he added time, an invisible fourth dimension, to create the
concept of spacetime. This has played a key part in understanding the nature of
the Universe. It has provided a mathematical framework for Einstein's theory of
relativity, allowing scientists to develop and expand this theory.
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It was in the 1700s that scientists first began questioning whether three-
dimensional Euclidean geometry could describe the entire Universe.
Mathematicians started to develop non-Euclidean geometric frameworks, while
some considered time as a potential dimension. Light provided the mathematical
prompt. In the 1860s, Scottish scientist James Clerk Maxwell found that the speed
of light is the same whatever the speed of its source. Mathematicians then
developed his equations to try to understand how the finite speed of light fit into
the coordinate system of space and time.

A black hole occurs when spacetime warps so much that its curvature becomes infinite at the
hole’s center. Even light is not fast enough to escape the hole’s immense gravitational pull.

Mathematics of relativity
In 1904, Dutch mathematician Henrik Lorentz developed a set of equations,
called “transformations,” to show how mass, length, and time change as a spatial
object approaches the speed of light. A year later, Albert Einstein produced his
theory of special relativity, which proved that the speed of light is the same
throughout the Universe. Time is a relative, not an absolute, quantity—running at
different speeds in different places and woven together with space.

Minkowski turned Einstein’s theory into mathematics. He showed how space
and time are parts of a four-dimensional spacetime, where each point in space and
time has a position. He represented movement between positions as a theoretical
line, a “worldline,” which could be plotted on a graph, with space and time as the
axes. A static object produces a vertical worldline, and the worldline of a moving
object is at an angle (see below). The worldline angle of an object moving at the

446



speed of light is 45°. According to Minkowski, no worldline can exceed this
angle, but in reality, there are three axes of space, plus the axis of time, so the 45°
worldline is really a “hypercone,” a 4-dimensional figure. All physical reality is
held within it, as nothing can travel faster than light.

Henceforth, space by itself, and time by itself shall fade to mere shadows, and only some union
of the two will preserve independent reality.

Hermann Minkowski

HERMANN MINKOWSKI
Born in Aleksotas (now in Lithuania) in 1864,
Minkowski moved with his family to Königsberg in
Prussia in 1872. As a boy, he showed an aptitude for
math and began his studies at the University of
Königsberg aged 15. By 19, he had won the Paris
Grand Prix for mathematics, and at 23, he became a
professor at the University of Bonn. In 1897 he taught
the young Albert Einstein in Zurich.

Following a move to Göttingen in 1902, Minkowski became fascinated by the
mathematics of physics, especially the interaction of light and matter. When
Einstein unveiled his theory of special relativity in 1905, Minkowski was
spurred on to develop his own theory, in which space and time form part of a
four-dimensional reality. This concept inspired Einstein’s theory of general
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relativity in 1915, but by then, Minkowski was dead—killed at 44 years old by a
ruptured appendix.

Key work

1907 Raum und Zeit (Space and Time)

See also: Euclid’s Elements • Newton’s laws of motion • Laplace’s demon •
Topology • Proving the Poincaré conjecture
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IN CONTEXT
KEY FIGURE
Srinivasa Ramanujan (1887–1920)

FIELD
Number theory

BEFORE
1657 In France, mathematician Bernard Frénicle de Bessy cites the properties of
1,729, the original “taxicab” number.

1700s Swiss mathematician Leonhard Euler calculates that 635,318,657 is the
smallest number that can be expressed as the sum of two fourth powers
(numbers to the power of 4) in two ways.

AFTER
1978 Belgian mathematician Pierre Deligne receives the Fields Medal for his
work on number theory, including the proof of a conjecture in the theory of
modular forms that was first made by Ramanujan.

A“taxicab” number, Ta(n), is the smallest number that can be expressed as the
sum of two positive cubed integers (whole numbers) in n (number of) different
ways. They owe their name to an anecdote from 1919, when British
mathematician G. H. Hardy went to Putney, London, to visit his protégé Srinivasa
Ramanujan, who was unwell. Arriving in a cab with the number 1,729, Hardy
remarked, “Rather a dull number, don’t you think?” Ramanujan disagreed, then
explained that 1,729 is the smallest number that is the sum of two positive cubes
in two different ways. Hardy’s frequent retelling of this story ensured that 1,729

449



would become one of the best-known numbers in mathematics. Ramanujan was
not the first to make note of this number’s unique properties; French
mathematician Bernard Frénicle de Bessy had also written about them in the
1600s.

Extending the concept
The taxicab story inspired later mathematicians to examine the property that
Ramanujan had recognized and to expand its application. The hunt was on for the
smallest number that could be expressed as the sum of two positive cubes in
three, four, or more different ways. A further question was whether Ta(n) exists
for all values of n; in 1938, Hardy and British mathematician Edward Wright
proved that it does (an existence proof), but developing a method of finding Ta(n)
in each case has proved elusive.

Extending the concept further, the expression Ta(j, k, n) seeks the smallest
positive number that is the sum of any number of different positive integers (j),
each to any power (k) in n distinct ways. For example, Ta(4, 2, 2) requires the
smallest number that is the sum of four squares (or two fourth powers) in two
different ways: 635,318,657.
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The existence of Ta(n) was proved theoretically in 1938 for all values of n, but the search is
still on for larger taxicab numbers. Even with the benefits of computer calculations,
mathematicians have not yet moved beyond Uwe Hollerbach’s discovery of Ta(6).

Continuing relevance
Taxicab numbers were only one area of Hardy and Ramanujan’s work. Their
main focus was prime numbers. Hardy was excited by Ramanujan’s claim that he
had found a function of x that exactly represented the number of prime numbers
less than x; Ramanujan was unable, however, to offer a rigorous proof.

Taxicab numbers have little practical use, but they still inspire scholars as
curiosities. Mathematicians now also seek “cabtaxi” numbers: based on the
taxicab formula, these allow calculations using both positive and negative cubes.

An equation means nothing to me unless it expresses a thought of God.

Srinivasa Ramanujan

SRINIVASA RAMANUJAN
Born in Madras, India in 1887, Ramanujan displayed
an extraordinary aptitude for mathematics at an early
age. Finding it hard to get full recognition locally, he
took the bold step of sending some of his results to G.
H. Hardy, then a professor at Trinity College,
Cambridge. Hardy declared that they had to be the
work of a mathematician “of the highest class,” and
had to be true, because no one could invent them. In
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1913, Hardy invited Ramanujan to work with him in Cambridge. The
collaboration was hugely productive: in addition to the taxicab numbers,
Ramanujan also developed a formula for obtaining the value of pi to a high
level of accuracy.

However, Ramanujan suffered from poor health. He returned to India in 1919
and died a year later—probably as a result of amoebic dysentery contracted
years earlier. He left behind several notebooks, which mathematicians are still
studying today.

Key work

1927 Collected papers of Srinivasa Ramanujan

See also: Cubic equations • Elliptic functions • Catalan’s conjecture • The prime
number theorem

452



IN CONTEXT
KEY FIGURE
Émile Borel (1871–1956)

FIELD
Probability

BEFORE
45 BCE The Roman philosopher Cicero argues that a random combination of
atoms forming Earth is highly improbable.

1843 Antoine Augustin Cournot makes a distinction between physical and
practical certainty.

AFTER
1928 British physicist Arthur Eddington develops the idea that improbable is
impossible.

2003 Scientists at Plymouth University in the UK test Borel’s theory with real
monkeys and a computer keyboard.

2011 American programmer Jesse Anderson’s million virtual monkey software
generates the complete works of Shakespeare.

In the early 1900s, French mathematician Émile Borel explored improbability—
when events had a very small chance of ever occurring. Borel concluded that
events with a sufficiently small probability will never occur. He was not the first
to study the probability of unlikely events. In the 4th century BCE, the ancient
Greek philosopher Aristotle suggested in Metaphysics that Earth was created by
atoms coming together entirely by chance. Three centuries later, the Roman
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philosopher Cicero argued that this was so unlikely that it was essentially
impossible.

Defining impossibility
Over the past two millennia, various thinkers have probed the balance between
the improbable and the impossible. In the 1760s, French mathematician Jean
d’Alembert questioned whether it was possible to have a very long string of
occurrences in a sequence in which occurrence and non-occurrence are equally
likely—for example, whether a person flipping a coin might get “heads” two
million times in a row. In 1843, French mathematician Antoine Augustin Cournot
questioned the possibility of balancing a cone on its tip. He argued that it is
possible but highly unlikely, and made the distinction between a physical
certainty—an event that can happen physically, like the balancing cone—and a
practical certainty, which is so unlikely that in practical terms it is considered
impossible. In what is sometimes known as Cournot’s principle, Cournot
suggested that an event with a very small probability will not happen.

The physically impossible event is therefore the one that has infinitely small probability, and
only this remark gives substance… to the theory of mathematical probability.

Antoine Augustin Cournot
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Infinite monkeys
Borel’s law, which he called the law of single chance, gave a scale to practical
certainty. For events on a human scale, Borel considered events with a probability
of less than 10-6 (or 0.000001) to be impossible. He also came up with a famous
example to illustrate impossibility: monkeys hitting typewriter keys at random
will eventually type the complete works of Shakespeare. This outcome is highly
improbable, but mathematically, over an infinite time (or with an infinite number
of monkeys), it must happen. Borel noted that, while it cannot be mathematically
proven that it is impossible for monkeys to type Shakespeare, it is so unlikely that
mathematicians should consider it impossible. This idea of monkeys typing the
works of Shakespeare captured people’s imagination and Borel’s law came to be
known as the infinite monkey theorem.

Borel’s theory is often applied to stock markets, where the level of chaos means that in some
cases random selection performs better than selection based on traditional economic theories.

ÉMILE BOREL
Born in 1871 in Saint-Affrique, France, Émile Borel was a mathematics prodigy
and graduated top of his class from the École Normale Supérieure in 1893.
After lecturing in Lille for four years, he returned to the École, where he
dazzled fellow mathematicians with a series of brilliant papers.
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Borel is best known for his infinite monkey theorem,
but his lasting achievement was in laying the
foundations for the modern understanding of complex
functions—what a variable must be altered by to
achieve a particular output. During World War I,
Borel worked for the War Office and later became
minister of the navy. Imprisoned when the Germans

invaded France in World War II, he was released and fought for the Resistance,
earning himself the Croix de Guerre. He died in 1956 in Paris.

Key works

1913 Le Hasard (Chance)

1914 Principes et formules classiques du calcul des probabilités (Principles and
classic formulas of probability)

See also: Probability • The law of large numbers • Normal distribution •
Laplace’s demon • Transfinite numbers
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IN CONTEXT
KEY FIGURE
Emmy Noether (1882–1935)

FIELD
Algebra

BEFORE
1843 German mathematician Ernst Kummer develops the concept of ideal
numbers—ideals in the ring of integers.

1871 Richard Dedekind builds on Kummer’s idea to formulate definitions of
rings and ideals more generally.

1890 David Hilbert refines the concept of the ring.

AFTER
1930 Dutch mathematician Bartel Leendert Van der Waerden writes the first
comprehensive treatment of abstract algebra.

1958 British mathematician Alfred Goldie proves that Noetherian rings can be
understood and analyzed in terms of simpler ring types.

In the 1800s, analysis and geometry were the leading fields of mathematics, while
algebra was considerably less popular. Throughout the Industrial Revolution,
applied mathematics was prioritized over areas of study that were more
theoretical. This all changed in the early 1900s with the rise of “abstract” algebra,
which became one of the key fields of mathematics, largely thanks to the
innovations of German mathematician Emmy Noether.
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Noether was not the first to focus on abstract algebra. Work on algebra theory
had been developed by mathematicians such as Joseph-Louis Lagrange, Carl
Friedrich Gauss, and British mathematician Arthur Cayley, but gained traction
when German mathematician Richard Dedekind began to study algebraic
structures. He conceptualized the ring—a set of elements with two operations,
such as addition and multiplication. A ring can be broken into parts called
“ideals”—a subset of elements. For example, the set of odd integers are an ideal
in the ring of integers.

My methods are really methods of working and thinking; this is why they have crept in
everywhere anonymously.

Emmy Noether

Significant works
Noether began her work on abstract algebra shortly before World War I with her
exploration of invariant theory, which explained how some algebraic expressions
stay the same while other quantities change. In 1915, this work led her to make a
major contribution to physics; she proved that the laws of conservation of energy
and mass each correspond to a different type of symmetry. The conservation of
electric charge, for example, is related to rotational symmetry. Now called
Noether’s theorem, it was praised by Einstein for the way it addressed his theory
of general relativity.

In the early 1920s, Noether’s work focused on rings and ideals. In a key paper in
1921, Idealtheorie in Ringbereichen (Ideal Theory in Rings), she studied ideals in
a particular set of “commutative rings,” in which the numbers can be swapped
around when they are multiplied without affecting the result. In a 1924 paper, she
proved that in these commutative rings, every ideal is the unique product of prime
ideals. One of the most brilliant mathematicians of her time, Noether laid the
foundations for the development of the entire field of abstract algebra with her
contributions to ring theory.
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EMMY NOETHER
Born in 1882, Emmy Noether struggled to find
education, recognition, and even basic employment in
early 20th century academia as a Jewish woman in
Germany. Although her mathematical skill won her a
position at the University of Erlangen—where her
father also taught mathematics— from 1908 to 1923
she received no pay. She later faced similar
discrimination in Göttingen, where her colleagues had
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to fight to have her officially included in the faculty. In 1933, the rise of the
Nazis led to her dismissal, and she moved to the US, working at Bryn Mawr
College and at the Institute for Advanced Study until her death in 1935.

Key works

1921 Idealtheorie in Ringbereichen (Ideal Theory in Rings)

1924 Abstrakter Aufbau der Idealtheorie im algebraischen Zahlkörper (Abstract
Construction of Ideal Theory in Algebraic Fields)

See also: Algebra • The binomial theorem • The algebraic resolution of equations
• The fundamental theorem of algebra • Group theory • Matrices • Topology
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IN CONTEXT
KEY FIGURES
André Weil (1906–1998), Henri Cartan (1904–2008)

FIELDS
Number theory, algebra

BEFORE
1637 René Descartes creates coordinate geometry, allowing points on a flat
surface to be described.

1874 Georg Cantor creates set theory, describing how sets and their subsets
interrelate.

1895 Henri Poincaré lays the foundations of algebraic topology in Analysis Situs
(Analysis of Position).

AFTER
1960s The New Mathematics movement, which focuses on set theory, becomes
popular in American and European schools.

1995 Andrew Wiles publishes his final proof of Fermat’s last theorem.

Russian mathematical genius Nicolas Bourbaki was one of the most prolific and
influential mathematicians of the 1900s. His monumental work Éléments de
Mathématique (Elements of Mathematics, 1960), occupies a key place in
university libraries and countless students of mathematics have learned the tools
of their trade from his work.

Bourbaki, however, never existed. He was a fiction created in the 1930s by
young French mathematicians who were striving to fill the vacuum left by the
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devastation of World War I. While other countries had kept academics at home,
French mathematicians had joined their countrymen in the trenches and a
generation of teachers had been killed. French mathematics was stuck with
antiquated textbooks and teachers.

Renewing mathematics
Some young teachers believed that French mathematics had fallen victim to a lack
of rigor and precision. They were distrustful of the creative guesswork, as they
saw it, of older mathematicians such as Henri Poincaré in developing chaos
theory and mathematics for physics.

In 1934, two young lecturers at the University of Strasbourg, André Weil and
Henri Cartan, took matters into their own hands. They invited six fellow former
students from the École Normale Supérieur to lunch in Paris, hoping to persuade
them to take part in an ambitious project to write a new treatise that would
revolutionize mathematics.

The group—which included Claude Chevalley, Jean Delsarte, Jean Dieudonné,
and René de Possel—agreed to create a new body of work that covered all fields
of mathematics. Meeting regularly and marshaled by Dieudonné, the group
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produced book after book, led by Éléments de Mathématique. Their work was
likely to be controversial, so they adopted the pseudonym Nicolas Bourbaki.

The group aimed to strip mathematics back to basics and provide a foundation
from which it could go forward. While their work sparked a brief fad in the
1960s, it proved too radical for teachers and pupils alike. The group was often at
odds with cutting-edge mathematics and physics, and was so focused on pure
math that applied math was of little interest to them. Topics containing
uncertainty, such as probability, had no place in Bourbaki’s work.

Even so, the group made important contributions across a wide range of
mathematical topics, particularly in set theory and algebraic geometry. The group,
which acts in secrecy and whose members must resign at age 50, still exists,
although Bourbaki now publishes infrequently. The most recent two volumes
were published in 1998 and 2012.

The Bourbaki group poses for a photo at the first Bourbaki congress in July 1935. Among
them are Henri Cartan (standing far left) and André Weil (standing fourth from left).

Bourbaki’s legacy
Topology and set theory—the meeting between numbers and shapes—were for
Bourbaki at the very root of mathematics and lay at the heart of the group’s
work. René Descartes had first made the link between shapes and numbers in
the 1600s with coordinate geometry, turning geometry into algebra. Bourbaki
helped make the link the other way, turning algebra into geometry to create
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algebraic geometry, which is perhaps their lasting legacy. It was at least partly
Bourbaki’s work on algebraic geometry that led British mathematician Andrew
Wiles to finally prove Fermat’s last theorem; he published his proof in 1995.

Some mathematicians believe algebraic geometry has great untapped potential
for the future. It already has real-world applications such as in programming
codes in cell phones and smart cards.

See also: Coordinates • Topology • The butterfly effect • Proving Fermat’s last
theorem • Proving the Poincaré conjecture
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IN CONTEXT
KEY FIGURE
Alan Turing (1912–54)

FIELD
Computer science

BEFORE
1837 In the UK, Charles Babbage designs the Analytical Engine, a mechanical
computer using the decimal system. If it had been constructed, it would have
been the first “Turing-complete” device.

AFTER
1937 Claude Shannon designs electrical switching circuits that use Boolean
algebra to make digital circuits that follow rules of logic.

1971 American mathematician Stephen Cook poses the P versus NP problem,
which tries to understand why some mathematical problems can quickly be
verified but would take billions of years to prove, despite computers’ immense
calculating power.

If a machine is expected to be infallible, it cannot also be intelligent.

Alan Turing

Alan Turing is often cited as the “father of digital computing,” yet the Turing
machine that earned him that accolade was not a physical device but a
hypothetical one. Instead of constructing a prototype computer, Turing used a
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thought experiment in order to solve the Entscheidungsproblem (decision
problem) that had been posed by German mathematician David Hilbert in 1928.
Hilbert was interested in whether logic could be made more rigorous by being
simplified into a set of rules, or axioms, in the same way that arithmetic,
geometry, and other fields of mathematics were thought possible to simplify at
the time. Hilbert wanted to know if there was a way to predetermine whether an
algorithm—a method for solving a specific mathematical problem using a given
set of instructions in a given order—would arrive at a solution to the problem.

In 1931, Austrian mathematician Kurt Gödel demonstrated that mathematics
based on formal axioms could not prove everything that was true according to
those axioms. What Gödel called the “incompleteness theorem” found that there
was a mismatch between mathematical truth and mathematical proof.

Ancient roots
Algorithms have ancient origins. One of the earliest examples is the method used
by the Greek geometer Euclid to calculate the greatest common divisor of two
numbers—the largest number that divides both of them without leaving a
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remainder. Another early example is Eratosthenes’ sieve, attributed to the 3rd-
century BCE Greek mathematician. It is an algorithm for sorting primes from
composite (not prime) numbers. The algorithms of Eratosthenes and Euclid work
perfectly and can be proven always to do so, but they did not conform to a formal
definition. It was the need for this that led Turing to create his “virtual machine.”

In 1937, Turing published his first paper as a fellow of King’s College,
Cambridge, “On Computable Numbers, with an Application to the
Entscheidungsproblem.” It showed that there is no solution to Hilbert’s decision
problem: some algorithms are not computable, but there is no universal
mechanism for identifying them before trying them.

Turing reached this conclusion using his hypothetical machine, which came in
two parts. First there was a tape, as long as it needed to be, divided into sections,
each section carrying a coded character. This character could be anything, but the
simplest version used 1s and 0s. The second part was the machine itself, which
read the data from each section of the tape (either by the head or tape moving).
The machine would be equipped with a set of instructions (an algorithm) that
controlled the behavior of the machine. The machine (or tape) could move left,
right, or stay where it was, and it could rewrite the data on the tape, switching a 0
to 1 or vice versa. Such a machine could carry out any conceivable algorithm.

Turing was interested in whether any algorithm put into the machine would
cause the machine to halt. Halting would signify that the algorithm had arrived at
a solution. The question was whether there was a way of knowing which
algorithms (or virtual machines), would halt and which would not; if Turing could
find out, he would answer the decision problem.

A man provided with paper, pencil, and rubber, and subject to strict discipline, is in effect a
universal machine.

Alan Turing
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Clerks at work in Hut 8, Bletchley Park, UK, during World War II. At one point, Turing led
the work of Hut 8, which deciphered communiqués between Adolf Hitler and his forces.

ALAN TURING
Born in London in 1912, Alan Turing was described
as a genius by his teachers. After graduating with a
first-class degree in mathematics from the University
of Cambridge in 1934, he went on to study at
Princeton in the US.

Returning to the UK in 1938, Turing joined the
Government Code and Cypher School at Bletchley
Park. After war broke out in 1939, he and others

developed the Bombe, an electromechanical device that deciphered enemy
messages. Following the war, Turing worked at Manchester University, where
he designed the Automatic Computing Engine (ACE) and developed further
digital devices.

In 1952, Turing was convicted of homosexuality, then a crime in the UK. He
was also barred from working on codebreaking for the government. To avoid
prison, Turing agreed to hormone treatment to reduce his libido. In 1954, he
committed suicide.

Key work

1939 “Report on the Applications of Probability to Cryptography”
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The halting problem
Turing approached this problem as a thought experiment. He began by imagining
a machine that was able to say whether any algorithm (A) would halt (provide an
answer and stop running) when given an input to which the answer was either Yes
or No. Turing was not concerned with the physical mechanics of such a machine.
Once he had conceptualized such a machine, however, he could theoretically take
any algorithm and test it using the machine to see if it halted.

In essence, the Turing machine (M) is an algorithm that tests another algorithm
(A) to see if it is solvable. It does this by asking: does A halt (have a solution)? M
then reaches an answer of Yes or No. Turing then imagined a modified version of
this machine (M*), which would be set up so that if the answer was Yes (A does
halt), then M* would do the opposite—it would loop forever (and not halt). If the
answer was No (A does not halt), then M* would halt.

Turing then took this thought experiment further by imagining that you could use
the machine M* to test whether its own algorithm, M*, would halt. If the answer
was Yes, the algorithm M* will halt, then the machine M* would not halt. If the
answer was No, the algorithm M* never halts, then the machine M* would halt.
Turing’s thought experiment had, therefore, created a paradox which could be
used as a form of mathematical proof. It proved that, because it was impossible to
know if the machine would ever halt or not, then the answer to the decision
problem was No: there was no universal test for the validity of algorithms.

The Turing machine consists of a head that reads data from an infinitely long tape. The
machine’s algorithm might either instruct the head or the tape to move—to go left, right, or
stay still. The memory keeps track of changes and feeds them back into the algorithm.

469



We need to feed [information] through a processor. A human must turn information into
intelligence or knowledge. We’ve tended to forget that no computer will ever ask a new question.

Grace Hopper
American computer scientist

Computer architecture
The Turing machine had not finished its job. Turing and others realized that this
simple concept could be used as a “computer.” At the time, the term “computer”
was used to describe a person who carried out complex mathematical
calculations. A Turing machine would do so using an algorithm to rewrite an
input (the data on the tape) into an output. In terms of computing ability, the
algorithms at work in a Turing machine are the strongest type ever devised.
Modern computers and the programs that run on them are effectively working as
Turing machines, and so are said to be “Turing complete.”

As a leading figure in mathematics and logic, Turing made important
contributions to the development of real computers, not just virtual ones.
However, it was Hungarian mathematician John von Neumann who contrived a
real-life version of Turing’s hypothetical device using a central processing unit
(CPU) that converted an input to an output by calling up information stored in an
internal memory and sending back new information to be saved. He proposed his
configuration, known as the “von Neumann architecture,” in 1945, and today, a
similar process is used in almost every computing device.
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A Turing Bombe, used to decipher coded messages, has been rebuilt at the museum at
Bletchley Park, the British code-breaking center during World War II.

Binary code
Turing did not initially envisage that his machine would use only binary data. He
merely thought it would use code with a finite set of characters. However, binary
was the language of the first Turing-complete machine ever built, the Z3.
Constructed in 1941 by German engineer Konrad Zuse, the Z3 used
electromechanical relays, or switches, to represent 1s and 0s of binary data.
Initially referred to as “discrete variables,” in 1948 the 1s and 0s in computer code
were renamed “bits,” short for binary digits. This term was coined by Claude
Shannon, a leading figure in information theory—the field of mathematics
examining how information could be stored and transmitted as digital codes.

Early computers used multiple bits as “addresses” for sections of memory—
showing where the processor should look for data. These chunks of bits became
known as “bytes,” spelled this way to avoid confusion with “bits.” In the early
decades of computing, bytes generally contained 4 or 6 bits, but the 1970s saw the
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rise of Intel’s 8-bit microprocessors, and byte became the unit for 8 bits. The 8-bit
byte was convenient because 8 bits have 28 permutations (256), and can encode
numbers from 0 to 255.

Armed with a binary code arranged in sets of eight digits—and later even longer
strings—software could be produced for any conceivable application. Computer
programs are simply algorithms; the inputs from a keyboard, microphone, or
touchscreen are processed by these algorithms into outputs, such as text on a
device’s screen.

The principles of the Turing machine are still used in modern computers and
look set to continue until quantum computing changes how information is
processed. A classical computer bit is either 1 or 0, never anything in between. A
quantum bit, or “qubit,” uses superposition to be both a 1 and 0 at the same time,
which boosts computing power enormously.

The popular view that scientists proceed inexorably from well-established fact to well-
established fact, never being influenced by any unproved conjecture, is quite mistaken.

Alan Turing

The Turing test
In 1950, Turing developed a test of a machine’s ability to exhibit intelligent
behavior equivalent to, or indistinguishable from, that of a human. In his view,
if a machine appeared to be thinking for itself, then it was.

The annual Loebner Prize in Artificial Intelligence (AI) was inaugurated in
1990 by American inventor Hugh Loebner and the Cambridge Center for
Behavioral Studies, Massachusetts. Every year, computers using AI try to win
the prize. The AIs must fool human judges into thinking they are human rather
than a computer program. AIs who progress to the final take it in turns to
communicate with one of four judges. Each judge is also communicating with a
human and must decide whether the AI or the human is most humanlike.

Over the years the test has had many critics, who question its ability to truly
judge the intelligence of an AI effectively or see the competition as a stunt that
does not advance knowledge in the field of AI.

See also: Euclid’s Elements • Eratosthenes’ sieve • 23 Problems for the 20th
century • Information theory • Cryptography
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IN CONTEXT
KEY FIGURE
Frank Benford (1883–1948)

FIELD
Number theory

BEFORE
1881 Canadian astronomer Simon Newcomb notices that the pages most often
referred to in logarithm tables are for numbers starting with 1.

AFTER
1972 Hal Varian, an American economist, suggests using Benford’s law to
detect fraud.

1995 American mathematician Ted Hill proves that Benford’s law can be
applied to statistical distributions.

2009 Statistical analysis of the Iranian presidential election results shows that
they do not conform to Benford’s law, suggesting that the election may have
been rigged.

It might be expected that in any large set of numbers, those that start with the digit
3 would occur with roughly the same frequency as those that start with any other
digit. However, many sets of numbers—a list of populations for US villages,
towns, and cities, for example—show a distinctly different pattern. Often in a set
of naturally occurring numbers, around 30 percent of the numbers have a leading
digit of 1, around 17 percent have a leading digit of 2, and less than 5 percent
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have a leading digit of 9. In 1938, American physicist Frank Benford wrote a
paper on this phenomenon; mathematicians later referred to it as Benford’s law.

Recurring pattern
Benford’s law is evident in many situations, from the lengths of rivers to share
prices and mortality rates. Some types of data fit the law better than others.
Naturally occurring data that extends over several orders of magnitude, from
hundreds to millions, for example, fulfils the law better than data that is more
closely grouped. The numbers in the Fibonacci sequence follow Benford’s law, as
do the powers of many integers. Numbers that act as a name or label, such as bus
or telephone numbers, do not fit.

When numbers are made up, they tend to have a more equal distribution of
leading digits than if they followed Benford’s law. This has enabled investigators
to use the law to detect financial fraud.

Funnily, of the 20 data sets that Benford collected, six of the sample sizes have leading digit 1.
Notice anything strange about that?

Rachel Fewster
Statistical ecologist, New Zealand

See also: The Fibonacci sequence • Logarithms • Probability • Normal
distribution
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IN CONTEXT
KEY FIGURE
Claude Shannon (1916–2001)

FIELD
Computer science

BEFORE
1679 Gottfried Leibniz develops the ancient idea of binary numbering.

1854 George Boole introduces the algebra that will form the basis for
computing.

1877 Austrian physicist Ludwig Boltzman develops the link between entropy
(measure of randomness) and probability.

1928 In the US, Ralph Hartley, an electronics engineer, sees information as a
measurable quantity.

AFTER
1961 German physicist Rolf Landauer shows that the manipulation of
information increases entropy.

In 1948, Claude Shannon, an American mathematician and electronics engineer,
published a paper called A Mathematical Theory of Communication. This
launched the information age by unlocking the mathematics of information and
showing how it could be transmitted digitally.

At the time, messages could only be transmitted using a continuous, analog
signal. The main drawback to this was that waves become weaker the further they
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travel, and increasing background interference creeps in. Eventually, this “white
noise” overwhelms the original message.

Shannon’s solution was to divide information into the smallest possible chunks,
or “bits” (binary digits). The message is converted into a code made of 0s and 1s
—every 0 is a low voltage and every 1 is a high voltage. In creating this code,
Shannon drew on binary mathematics, the idea that figures can be represented by
just 0s and 1s, which had been developed by Gottfried Leibniz.

Although Shannon was not the first to send information digitally, he fine-tuned
the technique. For him, it was not simply about solving the technical problems of
transmitting information efficiently. By showing that information could be
expressed as binary digits, he launched the theory of information—with
implications stretching into every field of science, and into every home or office
with a computer.

Shannon demonstrates Theseus, his electromechanical “mouse,” which used a “brain” of
telephone relays to find its way around a maze.

See also: Calculus • Binary numbers • Boolean algebra
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IN CONTEXT
KEY FIGURE
Michael Gurevitch (1930–2008)

FIELD
Number theory

BEFORE
1929 Hungarian writer Frigyes Karinthy coins the phrase “six degrees of
separation.”

AFTER
1967 American sociologist Stanley Milgram designs a “small world
experiment” to investigate people’s degrees of separation and connectedness.

1979 Manfred Kochen of IBM and Ithiel de Sola Pool at MIT publish a
mathematical analysis of social networks.

1998 In the US, sociologist Duncan J. Watts and mathematician Steven Strogatz
produce the Watts–Strogatz random graph model to measure connectedness.
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Networks are used to model relationships between objects or people in many
disciplines, including computer science, particle physics, economics,
cryptography, biology, sociology, and climatology. One type of network is a “six
degrees of separation” social network diagram, which measures how connected
people are to each other.

In 1961, Michael Gurevitch, an American postgraduate student, published a
landmark study of the nature of social networks. In 1967, Stanley Milgram
studied how many intermediate acquaintance links were needed to connect
strangers in the US. He had people in Nebraska send a letter intended to
eventually reach a specific (random) person in Massachusetts. Each recipient then
sent the letter on to a person they knew to get it closer to its target destination.
Milgram studied how many people each of the letters went through to reach their
targets. On average, the letters that reached the target needed six intermediaries.

This “small world theory” predated Milgram. In a 1929 short story Chains,
Frigyes Karinthy suggested that people’s average connection-number across the
world might be six when the connecting factor is friendship. Karinthy, who was a
writer, not a mathematician, coined the phrase “six degrees of separation.”
Mathematicians have since tried to model the average degree of separation.
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Duncan Watts and Steven Strogatz showed that if you have a random network
with N nodes, each of which has K links to other nodes, then the average path
length between two nodes is ln N divided by ln K (where ln means the natural
logarithm). If there are 10 nodes, each with four connections to other nodes, then
the average distance between two nodes chosen at random will be ln10⁄ln4 ≈ 1.66.

The six degrees of separation theory shows how any two seemingly unconnected people
can be connected in no more than six steps by their friends and acquaintances. This number
may decrease with the growth of social media.

Other social networks
In the 1980s, friends of Hungarian mathematician Paul Erdős, who was well
known for working collaboratively, coined the term “Erdős number” to indicate
his degree of separation from other published mathematicians. Erdős’s coauthors
had an Erdős number of 1, anyone who had worked with one of his coauthors had
an Erdős number of 2, and so on. This concept captured the public’s imagination
following an interview with American actor Kevin Bacon, in which he said he
had worked with every actor in Hollywood or with someone who had worked
with them. The term “Bacon number” was coined to indicate an actor’s degree of
separation from Bacon. In rock music, connections to members of the heavy
metal group Black Sabbath are indicated by the “Sabbath number.” To filter out
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the truly well-connected, there is the Erdős-Bacon-Sabbath number (the sum of
someone’s Erdős, Bacon, and Sabbath numbers). Only a few individuals have
single-digit EBS numbers.

In 2008, Microsoft conducted research to show that everyone on Earth is
separated from every other person by only 6.6 people on average. As social media
brings us ever closer, this number may reduce even further.

It is my hope that Six Degrees [a philanthropic project] will… [bring] a social conscience to
social networking.

Kevin Bacon

See also: Logarithms • Graph theory • Topology • The birth of modern statistics •
The Turing machine • Social mathematics • Cryptography
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IN CONTEXT
KEY FIGURE
Edward Lorenz (1917–2008)

FIELD
Probability

BEFORE
1814 Pierre-Simon Laplace ponders the consequences of a deterministic
universe where knowing all present conditions can be used to predict the future
for all eternity.

1890 Henri Poincaré shows there is no general solution to the three-body
problem, which predicts the motion of three celestial bodies kept in contact by
gravity. Mostly, the bodies do not move in rhythmic, repeating patterns.

AFTER
1975 Benoit Mandelbrot uses computer graphics to create more complex
fractals (shapes that self-repeat). The Lorenz attractor, which revealed the
butterfly effect, is a fractal.
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The idea that a butterfly flapping its wings in one part of the world could alter atmospheric
conditions and eventually produce a tornado elsewhere has captured the popular imagination.

In 1972, Edward Lorenz, an American meteorologist and mathematician,
delivered a talk titled “Does the flap of a butterfly’s wings in Brazil set off a
tornado in Texas?” This was the origin of the term “butterfly effect,” which refers
to the idea that a tiny change in atmospheric conditions (which could be caused
by anything, not just a butterfly) is enough to alter weather patterns somewhere
else in the future. If the butterfly had not made its small contribution to the initial
conditions, then the tornado or other weather event would not have occurred at
all, or would have struck some place other than Texas.

The title of the lecture was not chosen by Lorenz himself, but by physicist Philip
Merilees, the convener of the American Association for the Advancement of
Science’s annual meeting in Boston. Lorenz had been late to provide information
about his proposed talk, so Merilees had improvised, basing his choice of words
on what he knew of Lorenz’s work and an earlier comment that “one flap of a
seagull’s wings” could be enough to change the weather forecast.

A butterfly flaps its wings in the Amazonian jungle, and subsequently a storm ravages half of
Europe.

Terry Pratchett and Neil Gaiman
British authors

Chaos theory
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The butterfly effect is a popular introduction to chaos theory, which looks at the
way complex systems are highly sensitive to initial conditions and are thus
extremely unpredictable. Chaos theory has practical relevance to areas such as
population dynamics, chemical engineering, and financial markets, and helps in
the development of artificial intelligence.

Lorenz began investigating climate modeling in the 1950s. By the early 1960s,
he was attracting attention for the unexpected results of a toy climate model
(“toy” meaning that it was a simplistic model made to demonstrate processes
concisely). The model predicted the way the atmosphere would evolve in terms of
three data points, such as air pressure, temperature, and wind speed. Lorenz found
that the results were chaotic. He compared two sets of results, each starting with
near-identical sets of data, noting that the atmospheric conditions developed along
near-identical lines at first, but then changed in completely different ways. He
also found that while every starting point in his model rendered unique results,
they were all confined within certain limits.

In a Lorenz attractor, small changes in starting conditions result in huge changes to the
paths each line takes, yet the lines still fall within the confines of the same shape, providing
order within the chaos.

The amazing thing is that chaotic systems don’t always stay chaotic.

Connie Willis
American writer
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Strange attractor
The computing power available to Lorenz in the early 1960s was unable to plot
the modeled atmospheric variables in a three-dimensional space, where the values
on the x, y, and z axes represented, for example, air temperature, pressure, and
humidity (or triplets of other weather data). In 1963, when it became possible to
plot this data, the shape created became known as the Lorenz attractor. Each
starting point evolves into a looping line that swings from one quadrant of the
space to another—indicating, for example, a change from wet and windy weather
to hot, dry conditions, and all states in between. Each starting point leads to a
unique evolution, but all the lines, whatever the start point, fall into the same
region of the space. After many iterations, run for long periods, that region
becomes a beautiful looping surface. The individual lines within the attractor are
highly unstable in their trajectories; those that start in the same area often move
far apart at a later point, and lines with very different starting points may end up
tracking each other closely for long periods. However, the attractor shows that as
a whole, the system is stable. There is no possible starting point within the
attractor that can lead to a trajectory that escapes from it. This apparent
contradiction is at the heart of chaos theory.

Chaos: when the present determines the future, but the approximate present does not
approximately determine the future.

Edward Lorenz

Finding the right path
The roots of chaos theory lie in early attempts to understand and predict motion,
especially of heavenly bodies. For example, in the 1600s, Galileo formulated laws
about the way pendulums swing and how objects fall; Johannes Kepler showed
how planets sweep through space as they orbit the Sun; and Isaac Newton
combined this knowledge with physical laws covering gravity and motion. Along
with Gottfried Leibniz, Newton is credited with developing calculus, a system of
mathematics designed to analyze and predict the behaviors of more complex
systems. Using calculus, the relationships between any complex variables can —
in theory—be predicted by solving a particular differential equation.
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These physical laws and analytical tools can demonstrate that the Universe is
deterministic— if the exact location and condition of an object and all the forces
acting upon it are known, it is possible to determine its future location and
condition with perfect accuracy.

The three-body problem
Nevertheless, Newton found a flaw with this deterministic view of the Universe.
He reported difficulties in analyzing the movements of three bodies bound
together by gravity—even when those bodies were as seemingly stable as the
Earth, Moon, and Sun. Later attempts to analyze the movement of the Moon to
improve navigation were plagued by inaccuracies. In 1890, French mathematician
Henri Poincaré showed that there was no generalized, predictable way in which
three bodies move around each other. In a few cases, where the bodies start in
very specific places, the motion is periodic—it repeats the same paths over and
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over again. Mostly, Poincaré argued, the three bodies do not retrace their paths,
and their movement is called aperiodic.

Mathematicians hoping to solve this “three-body problem” have abstracted it to
consider imaginary bodies moving around surfaces and spaces with specific
curvature. The curvature of an imaginary body can be a mathematical
representation of the forces (such as gravity) acting on it. The path the imaginary
body takes in each case is called the geodesic path. In a simple case, such as the
movement of a pendulum or the orbit of a planet around a star, this imaginary
body oscillates (moves back and forth) around a fixed point on the surface,
following a repeating path and creating what is called a limit cycle. In the case of
a damped pendulum (one that is losing energy because of friction), the oscillatory
motion will diminish until the imaginary body reaches the fixed point—when it
stops moving.

When considering the motion of an imaginary body with respect to several
others, the geodesic path becomes very complicated. If it were possible to set the
start conditions precisely, it would be possible to create every conceivable path.
Some would be periodic, repeating a path of whatever complexity over and over
again. Others would be unstable initially but would settle into a limit cycle
eventually. A third kind would fly off to infinity—perhaps right away, or perhaps
after a period of apparent stability.

Determinism was equated with predictability before Lorenz. After Lorenz, we came to see
that… in the long run, things could be unpredictable.

Stephen Strogatz
American mathematician

Approximations
Although it has been studied by physicists and mathematicians alike, the three-
body problem is largely theoretical. When it comes to a real physical system,
there is no way to be absolutely precise about the starting conditions. This is the
essence of chaos theory. Even though the system is deterministic, every
measurement of that system is an approximation. Therefore, any mathematical
model based on those uncertain measurements will very possibly develop in a
different way from the real thing. Even a small uncertainty is enough to create
chaos.
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The geodesic path of a planet orbiting a star in a predictable way is shown in the left-hand
image. The image on the right shows how the presence of three other celestial bodies—
perhaps nearby planets or other stars—complicates the planet’s path, making it unpredictable,
or chaotic.

EDWARD LORENZ
Born in 1917, in West Hartford, Connecticut, Edward
Lorenz studied mathematics at Dartford College and
Harvard University, gaining a masters degree at
Harvard in 1940. After training as a meteorologist, he
served with the US Army Air Corps in World War II.
After the war, Lorenz studied meteorology at the
Massachusetts Institute of Technology and began to

develop ways to predict the behavior of the atmosphere. At that time,
meteorologists used linear statistical modeling to forecast weather, and they
often failed.

In developing a nonlinear model of the atmosphere, Lorenz stumbled across the
area of chaos theory that would later be dubbed the butterfly effect. He showed
that even the most powerful computers could not produce accurate long-term
weather forecasts. Lorenz remained physically and mentally active until just
before his death in 2008.

Key work

1963 Deterministic Nonperiodic Flow
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See also: The problem of maxima • Probability • Calculus • Newton’s laws of
motion • Laplace’s demon • Topology • Fractals
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IN CONTEXT
KEY FIGURE
Lotfi Zadeh (1921–2017)

FIELD
Logic

BEFORE
350 BCE Aristotle develops a system of logic that dominates Western scientific
reasoning until the 1800s.

1847 George Boole invents a form of algebra in which variables can have one
of only two values (true or false), paving the way for symbolic, mathematical
logic.

1930 Polish logicians Jan Łukasiewiecz and Alfred Tarski define a logic with
infinitely many truth values.

AFTER
1980s Japanese electronics companies use fuzzy logic control systems in
industrial and domestic appliances.

The binary logic of any computer is clear: given valid inputs, it will provide
appropriate outputs. However, binary computer systems are not always well
suited for dealing with real-world inputs that are ambiguous or unclear. In the
case of handwriting recognition, for example, a binary system would not be
sufficiently subtle. A system controlled by fuzzy logic, however, allows for
degrees of truth that can better analyze complex phenomena, including human
actions and thought processes. Fuzzy logic is an offshoot of the fuzzy set theory
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developed in 1965 by Lotfi Zadeh, an Iranian–American computer scientist.
Zadeh claimed that as a system becomes more complex, precise statements about
it become meaningless; the only meaningful statements about it are imprecise.
Such situations demand a many-valued (fuzzy) reasoning system.

Standard set theory allows an element to either belong or not belong to a set, but
fuzzy set theory allows degrees of membership or a continuum. Similarly, fuzzy
logic allows a range of truth values for a proposition—not just completely true or
completely false, the two values of Boolean logic. Fuzzy truth values also require
fuzzy logical operators—for example, the fuzzy version of the AND operator of
Boolean algebra is the MIN operator, which outputs the minimum of the two
inputs.

The classes of objects encountered in the real physical world do not have precisely defined
criteria of membership.

Lotfi Zadeh

Creating fuzzy sets
A basic computer program that mimics the simple human task of soft-boiling an
egg might apply a single rule: boil the egg for five minutes. A more sophisticated
program would, like a human, take the weight of the egg into account. It might
divide eggs into two sets—small eggs of 1.76 oz (50 g) or less, and large ones
over 1.76 oz—and boil the former for four minutes, and the latter for six. Fuzzy
logicians call these crisp sets: each egg either does or does not belong.

To achieve a perfectly cooked egg, however, the boiling time must be adjusted to
match the weight of the egg. While an algorithm could use traditional logic to
divide a set of eggs into precise weight ranges and assign exact cooking times,
fuzzy logic achieves this result with a more general approach. The first step is to
make the data fuzzy—every egg is regarded as both large and small, belonging to
both sets to different degrees. For example, a 1.76 oz egg would have a
membership degree of 0.5 for both sets, while an 2.82 oz (80 g) egg would be
“large” with degree nearly 1, and also “small” with degree nearly 0. A fuzzy rule
is then applied, with large eggs boiled for six minutes and small eggs for four.
Through a process called fuzzy inference, the algorithm applies the rule to each
egg based on its fuzzy set membership. The system will deduce that an 2.82 oz
egg should be boiled for both four and six minutes (with degrees of almost 0 and
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A humanoid robot using
AI works at the front desk
of a Henn-na hotel in
Tokyo, which claims to be
the world’s first hotel with
robotic staff.

almost 1 respectively). This output is then defuzzified to give a crisp logical
output that can be used by the control system. As a result, the 2.82 oz egg would
be assigned a boiling time of nearly 6 minutes.

Fuzzy logic is now a ubiquitous part of computer-controlled systems. It has
many applications, from forecasting weather to trading stocks, and plays a vital
role in programming artificial intelligence systems.

Fuzzy logic recognizes a continuum of truth values instead of the Boolean binary values of
“yes” (1) or “no” (0). These fuzzy values resemble probabilities, but are fundamentally quite
distinct—they indicate the degree to which a proposition is true, not how likely it is.

Artificial intelligence
Fuzzy control systems can work effectively with
uncertainties in the everyday world, and are
therefore used in artificial intelligence (AI) systems.
The fuzziness of AI helps to give the illusion of a
self-directing intelligence, but in reality fuzzy logic
processes data to smooth out uncertainty. AI is
therefore entirely the product of a pre-programmed
set of rules.

Techniques such as machine learning, in which AIs
program themselves by a process of trial and error,
and expert systems, in which the AI draws upon a
database of knowledge provided by human

programmers, have greatly extended the abilities of AI. Nevertheless most AI is
“narrow,” in that it is tasked with doing one job very well, generally better than
a human can, but it cannot learn to do anything else and is unaware of what it
does not know. A general AI that can direct its own learning in the same way as
evolved intelligence (such as human intelligence) is the next goal of computer
science.
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See also: Syllogistic logic • Binary numbers • Boolean algebra • Venn diagrams •
The logic of mathematics • The Turing machine
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IN CONTEXT
KEY FIGURE
Robert Langlands (1936–)

FIELD
Number theory

BEFORE
1796 Carl Gauss proves the quadratic reciprocity theorem, relating the
solvability of quadratic equations to prime numbers.

1880–84 Henri Poincaré develops the concept of automorphic forms—tools that
allow us to keep track of complicated groups.

1927 Austrian mathematician Emil Artin extends the reciprocity theorem to
groups.

AFTER
1994 Andrew Wiles uses a special case of Langlands’ conjectures to translate
Fermat’s last theorem from a problem in number theory to one in geometry,
enabling him to solve it.

In 1967, the young Canadian–American mathematician Robert Langlands
suggested a set of profound links between two major and seemingly unconnected
areas of mathematics—number theory and harmonic analysis. Number theory is
the mathematics of integers, in particular prime numbers. Harmonic analysis (in
which Langlands specialized) is the mathematical study of waveforms, exploring
how they can be broken down to sine waves. These fields seem fundamentally
different: while sine waves are continuous, integers are discrete.
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Langlands’ letter
In a 17-page handwritten letter to number theorist André Weil in 1967, Langlands
offered several conjectures linking number theory and harmonic analysis.
Realizing its significance, Weil had the letter typed up and circulated among
number theorists through the late 1960s and ’70s. Once they had been made
public, Langlands’ conjectures became influential across mathematics, and
continue to shape research 50 years later.

Modular (“clock”) arithmetic involves number systems with finite sets of numbers. On a
12-hour clock, for example, if you count on four hours from 10 o’clock, you get 2 o’clock; 10
+ 4 = 2, because the remainder of 14 ÷ 12 is 2. In the Langlands program, numbers are usually
manipulated by modular arithmetic.

Uncovering links
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Langlands’ ideas involve highly technical mathematics. In basic terms, his areas
of interest are Galois groups and functions called automorphic forms. Galois
groups turn up in number theory and are a generalization of the groups that
Évariste Galois used in order to study roots of polynomials.

Langlands’ conjectures are significant in that they allowed problems from
number theory to be reframed in the language of harmonic analysis. The
Langlands Program has been described as a mathematical Rosetta Stone, helping
to translate ideas from one area of mathematics into another. Langlands himself
has helped to develop the means for working on the Program, including
generalizing functoriality—a way of comparing the structures of different groups.

Langlands’ marriage of harmonic analysis and number theory could lead to a
wealth of new tools, just as the 19th-century unification of electricity and
magnetism into electromagnetism provided a new understanding of the physical
world. By finding new links between mathematical fields that seem profoundly
different, the Program has revealed some of the structures at the heart of
mathematics. In the 1980s, Ukrainian mathematician Vladimir Drinfel’d
expanded the Program’s scope to show that there might be a Langlands-type
connection between specific topics within harmonic analysis and others within
geometry. In 1994, Andrew Wiles used one of Langlands’ conjectures to help
solve Fermat’s last theorem.

ROBERT LANGLANDS
Born near Vancouver, Canada, in 1936, Robert
Langlands did not plan to go to study at a university
until a teacher “took up an hour of class time” to
publicly implore him to make use of his talents. He
was also a gifted linguist, but at 16, he enrolled at the
University of British Columbia, Canada, to study
mathematics. He later moved to the US, where he was

awarded a doctorate from Yale University in 1960. Langlands taught at
Princeton, Berkeley, and Yale before moving to the Institute for Advanced
Study (IAS), where he still occupies Einstein’s old office.

Langlands began studying the relationship between integers and periodic
functions as part of research into patterns in prime numbers. He was awarded
the Abel Prize in 2018 for his “visionary” Program.
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Key works

1967 Euler Products

1967 Letter to André Weil

1976 On the Functional Equations Satisfied by Eisenstein Series

2004 Beyond Endoscopy

See also: Fourier analysis • Elliptic functions • Group theory • The prime number
theorem • Emmy Noether and abstract algebra • Proving Fermat’s last theorem
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IN CONTEXT
KEY FIGURE
Paul Erdős (1913–96)

FIELD
Number theory

BEFORE
1929 Hungarian author Frigyes Karinthy postulates the concept of six degrees
of separation in his short story, Láncszemek (Chains).

1967 American social psychologist Stanley Milgram conducts experiments on
the interconnectedness of social networks.

AFTER
1996 The Bacon number is introduced on an American TV show. It indicates
the number of degrees of separation an actor has from American actor Kevin
Bacon.

2008 Microsoft conducts the first experimental study into the effects of social
media on connectedness.

Hungarian mathematician Paul Erdős wrote and cowrote around 1,500 academic
papers in his lifetime. He worked with more than 500 others in the global
mathematical community across different branches of mathematics, including
number theory (the study of integers) and combinatorics— a field of mathematics
concerned with the number of permutations that are possible in a collection of
objects. His motto, “Another roof, another proof,” referred to his habit of staying
at the homes of fellow mathematicians in order to “collaborate” for a while.
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The Erdős number, first used in 1971, indicates how far a mathematician is
removed from Erdős in their published work. To qualify for an Erdős number, a
person has to have written a mathematical paper—someone who coauthored a
paper with Erdős would have an Erdős number of 1. Someone who worked with a
coauthor (but not with Erdős directly) would have an Erdős number of 2, and so
on. Albert Einstein has an Erdős number of 2; Paul Erdős’s number is 0.

Oakland University runs the Erdős Number Project, which analyzes
collaboration among research mathematicians. The average Erdős number is
around 5. The rarity of an Erdős number higher than 10 indicates the degree of
collaboration within the mathematical community.

Erdős has an amazing ability to match problems with people. Which is why so many
mathematicians benefit from his presence.

Béla Bollobás
Hungarian–British mathematician

See also: Diophantine equations • Euler’s number • Six degrees of separation •
Proving Fermat’s last theorem
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IN CONTEXT
KEY FIGURE
Roger Penrose (1931–)

FIELD
Applied geometry

BEFORE
4000 BCE Sumerian buildings incorporate tessellations into wall decorations.

1619 Johannes Kepler conducts the first documented study of tessellations.

1891 Russian crystallographer Evgraf Fyodorov proves there are only 17
possible groups that form periodic tilings of the plane.

AFTER
1981 Dutch mathematician Nicolaas Govert de Bruijn explains how to construct
Penrose tilings from five families of parallel lines.

1982 Israeli engineer Dan Shechtman discovers quasi-crystals whose structure
is similar to Penrose tilings.

Tile patterns have been a feature of art and construction for millennia, especially
in the Islamic world. The need to fill two-dimensional space as efficiently as
possible led to the study of tessellations—the fitting together of polygons with no
gaps or overlap. Some natural structures, such as a honeycomb, tessellate.

There are three regular shapes that tessellate on their own, without the need for
another shape: the square, equilateral triangle, and regular hexagon. However,
many irregular shapes also tessellate, and semiregular tessellations involve more
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than one regular shape. The pattern of such tessellations usually repeats. This is
known as a “periodic tessellation.”

Nonperiodic tessellations, in which the pattern does not repeat, are harder to find,
although some regular shapes can be combined to create nonperiodic
tessellations. British mathematician Roger Penrose investigated whether any
polygons could only lead to nonperiodic tessellations. In 1974, he created tiles
using kite and dart shapes. The kite and dart must be exactly the same shape as
the ones shown (above); the area of the kite to that of the dart is expressed by the
golden ratio. Although no part of the tiling matches another part exactly, the
pattern does repeat on a larger scale in a similar way to a fractal.

Penrose tiling consists of kites and darts, producing a nonperiodic tessellation. Shapes with
five-fold symmetry, such as pentagons and stars, can also be identified.

See also: The golden ratio • The problem of maxima • Fractals
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IN CONTEXT
KEY FIGURE
Benoit Mandelbrot (1924–2010)

FIELDS
Geometry, topology

BEFORE
c. 4th century BCE Euclid sets out the foundations of geometry in Elements.

AFTER
1999 The study of “allometric scaling” applies fractal growth to metabolic
processes within biological systems, leading to valuable medical applications.

2012 In Australia, the largest 3-D map of the sky suggests that the Universe is
fractal up to a point, with clusters of matter within larger clusters, but ultimately
matter is distributed evenly.

2015 Fractal analysis is applied to electrical power networks, leading to the
modeling of the frequency of power failure.

A geometry able to include mountains and clouds now exists… Like everything in science this
new geometry has very, very deep and long roots.

Benoit Mandelbrot

After Euclid, scholars and mathematicians modeled the world in terms of simple
geometry: curves and straight lines; the circle, ellipse, and polygons; and the five
Platonic solids—the cube, the tetrahedron, the octahedron, the dodecahedron, and
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the icosahedron. For much of the past 2,000 years, the prevailing assumption has
been that most natural objects—mountains, trees, and so on—can be
deconstructed into combinations of these shapes to ascertain their size. However,
in 1975, Polish-born mathematician Benoit Mandelbrot drew attention to fractals
—nonuniform shapes that echo larger and smaller shapes in a structure such as a
jagged mountaintop. Fractals, a word derived from the Latin fractus, meaning
“broken,” would eventually lead to the topic of fractal geometry.

A computer graphic shows a fractal pattern derived from the Mandelbrot set. Mesmerizingly
beautiful, such images produced with fractal-generating software make popular screen savers.

A new geometry
Although it was Mandelbrot who brought fractals to the attention of the world, he
was building on the findings of earlier mathematicians. In 1872, German
mathematician Karl Weierstrass had formalized the mathematical concept of
“continuous function,” meaning that changes in the input result in roughly equal
changes in the output. Composed entirely of corners, the Weierstrass function has
no smoothness anywhere, however much it is magnified. This was seen at the
time as a mathematical abnormality that, unlike the sensible Euclidean shapes,
had no real-world relevance.
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In 1883, another German mathematician, Georg Cantor, built on work by British
mathematician Henry Smith to demonstrate how to create a line that is nowhere
continuous and has zero length. He did so by drawing a straight line, removing
the middle third (leaving two lines and a gap), and then repeating the process ad
infinitum. The result is a line composed entirely of disconnected points. Like the
Weierstrass function, this “Cantor set” was considered unsettling by the
mathematical establishment, who branded these new shapes “pathological”—
meaning “lacking usual properties.”

In 1904, Swedish mathematician Helge von Koch constructed a shape known as
the Koch curve or “Koch snowflake,” which repeated a triangular motif at an ever
smaller size. This was followed in 1916 by the Sierpinski triangle, or Sierpinski
gasket, composed entirely of triangular holes.

All these shapes possess self-similarity, which is a key property of fractal
geometry. This means that enlargement of a portion of the shape reveals smaller
replicas with equal detail. Mathematicians realized that this was a fundamental
property of natural growth—a repetition of a pattern on many scales, from the
macro to the micro.

In 1918, German mathematician Felix Hausdorff proposed the existence of
fractional dimensions. Whereas the simple line, plane, and solid occupy one, two,
and three dimensions respectively, these new shapes could be given non-whole-
number dimensions. For example, the British coastline could, in theory, be
measured with a one-dimensional rope, but inlets would require string, and
crevices require thread. This implies that the coastline cannot be measured in one
dimension. The British coastline has a Hausdorff dimension of 1.26, like the
Koch curve.
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BENOIT MANDELBROT
Born into a Jewish family in Warsaw in 1924, Benoit
Mandelbrot left Poland in 1936 to escape the Nazis.
His family went first to Paris and then to the south of
France. After World War II, Mandelbrot gained
scholarships to study in France and then the US,
before returning to Paris, where he was awarded a
doctorate in mathematical sciences from the city’s
university in 1952.

In 1958, Mandelbrot joined IBM in New York, where his role as a researcher
gave him the space and facilities to develop new ideas. In 1975, he coined the
term “fractal,” and in 1980 he unveiled the Mandelbrot set, a structure that
became synonymous with the new science of fractal geometry. The topic gained
popular appeal in 1982 with the publication of his book The Fractal Geometry
of Nature. Mandelbrot received many honors and prizes for his work, including
France’s Légion d’honneur in 1989. He died in 2010.

Key work

1982 The Fractal Geometry of Nature

Dynamic self-similarities
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French mathematician Henri Poincaré found that dynamical systems (systems that
change over time) also had fractal properties of self-similarity. By their nature,
dynamical states are “nondeterministic”: two systems that are nearly identical can
lead to very different behaviors even when the initial conditions are also almost
identical. This phenomenon is popularly known as the “butterfly effect,” after the
frequently cited example of the massive effect a single butterfly can theoretically
have on a weather system when it causes a small disturbance by flapping its
wings. The differential equations devised by Poincaré to prove his theory implied
the existence of dynamical states that possess self-similarity much like fractal
structures. Large-scale weather systems, such as major cyclonic flows, for
instance, repeat themselves on much smaller scales, right down to gusts of wind.

In 1918, French mathematician Gaston Julia, a former student of Poincaré,
explored the concept of self-similarity when he began to map the complex plane
(the coordinate system based on complex numbers) under a process called
iteration—entering a value into a function, obtaining an output, and then plugging
that back into the function. Along with George Fatou, who undertook similar
research independently, Julia found that by taking a complex number, squaring it,
adding a constant (a fixed number or a letter standing for a fixed number) to it,
and then repeating the process, some initial values would diverge to infinity while
others would converge to a finite value. Julia and Fatou mapped these different
values on a complex plane, noting which ones converged and which ones
diverged. The boundaries between these regions were self-replicating, or fractal.
With the limited computational power available at the time, Julia and Fatou were
unable to see the true significance of their discovery, but they had found what
would become known as the Julia set.

The Mandelbrot set
In the late 1970s, Benoit Mandelbrot used the term “fractal” for the first time.
Mandelbrot had become interested in the work of Julia and Fatou while working
at the IT company IBM. With the computer facilities available at IBM, he was
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able to analyze the Julia set in great detail, noting that some values of the constant
(c) gave “connected” sets, in which each of the points is joined to another, and
others were disconnected. Mandelbrot mapped each value of c on the complex
plane, coloring the connected sets and the disconnected sets in different colors.
This led, in 1980, to the creation of the Mandelbrot set.

Beautifully complex, the Mandelbrot set displays self-similarity at all scales:
magnification reveals smaller replicas of the Mandelbrot set itself. In 1991,
Japanese mathematician Mitsuhiro Shishikura proved that the boundary of the
Mandelbrot set has a Hausdorff dimension of 2.

Infinite complexity is suggested by the self-similarities of a Romanesco cauliflower. The
natural world is full of fractals, from ferns and sunflowers to ammonites and seashells.

Application of fractals
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Under the Wave off
Kanagawa by Japanese
artist Katsushika Hokusai
(1760–1849) employs the
concept of self-similarity
to dramatic effect.

Fractal geometry has allowed mathematicians to describe the irregularity of the
real world. Many natural objects exhibit self-similarity, including mountains,
rivers, coastlines, clouds, weather systems, blood circulatory systems, and even
cauliflowers. Being able to model these diverse phenomena using fractal
geometry enables us to better understand their behavior and evolution, even if that
behavior is not entirely deterministic.

Fractals have applications in medical research, such as understanding the
behavior of viruses and the development of tumors. They are also used in
engineering, particularly in the development of polymer and ceramic materials.
The structure and evolution of the Universe can also be modeled on fractals, as
can the fluctuations of economic markets. As the range of applications grows,
along with ever-increasing computational capacity, fractals are becoming integral
to our understanding of the seemingly chaotic world in which we live.

Fractals and the arts
Self-similarity on infinite scales is explored in
philosophy and the arts, often to produce a
meditative effect. It is a key tenet of Buddhist
meditation and mandalas (symbols used in rituals to
represent the Universe), and is also used to suggest
the infinite nature of God in Islamic decoration, such
as tilework. Self-similarity is even suggested in the
poem “Auguries of Innocence” by the 19th-century
British poet William Blake, which begins with the
line “To see a world in a grain of sand.”

The work of the Japanese artist Katsushika
Hokusai, with its swirling repeated motifs, is often cited as an example of fractal
use in art, as is the architecture of Catalan artist Antoni Gaudí.

The musical “rave” scene in the US and UK in the late 1980s and early ’90s
was linked to a surge of interest in fractal art. Nowadays there are many fractal-
generating computer programs, making it possible for the general public to
create fractals.

See also: The Platonic solids • Euclid’s Elements • The complex plane • Non-
Euclidean geometries • Topology
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IN CONTEXT
KEY FIGURES
Kenneth Appel (1932–2013), Wolfgang Haken (1928–)

FIELD
Topology

BEFORE
1852 South African law student Francis Guthrie asserts that four colors are
needed to color a map so that adjacent areas are not the same color.

1890 British mathematician Percy Heawood proves that five colors are
sufficient to color any map.

AFTER
1997 In the US, Neil Robertson, Daniel P. Sanders, Robin Thomas, and Paul
Seymour provide a simpler proof of the four-color theorem.

2005 Microsoft researcher Georges Gonthier proves the four-color theorem with
general purpose theorem-proving software.

Cartographers have long known that any map, however complicated, can be
colored in with just four colors, so that no two nations or regions sharing a border
are the same color. Although five colors can seem to be necessary, there is always
a way of recoloring the map using only four colors. Mathematicians searched for
a proof for this deceptively simple theorem for more than 120 years, making it
one of the most enduring unsolved theorems in mathematics.

The first person to formulate the four-color theorem is thought to have been
Francis Guthrie, a South African law student. He had colored a map of the
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English counties using just four colors and believed that the same could be done
with any map, however complex. In 1852, he asked his brother Frederick, who
was studying under mathematician Augustus De Morgan in London, if his theory
could be proved. Admitting that he could not prove the theorem, De Morgan
shared it with Irish mathematician William Hamilton. Hamilton went on to
attempt to prove the theorem himself, but did not succeed.

False start
In 1879, British mathematician Alfred Kempe claimed a proof for the four-color
theorem in the scientific journal Nature. Kempe received plaudits for this work,
and two years later became a Fellow of the Royal Society partly on the strength of
his proof. However, in 1890, fellow British mathematician Percy Heawood found
a hole in Kempe’s proof, and Kempe himself acknowledged that he had made a
mistake that he could not rectify. Heawood did prove correctly that no more than
five colors were needed to color any map.

Mathematicians continued to work on the problem, and gradual progress was
made. In 1922, Philip Franklin proved that any map with 25 regions or fewer was
four-colorable. The figure of 25 was slowly increased; Norwegian mathematician
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Øystein Ore and American mathematician Joel Stemple together achieved 39 in
1970, and Frenchman Jean Mayer lifted the figure to 95 in 1976.

Any combination of shapes in a plane, however complex the pattern, can be colored in using
just four colors so that no two adjacent shapes have the same color.

New hope
The introduction of supercomputers, computers capable of handling huge
amounts of data, in the 1970s revived interest in solving the four-color theorem.
Although German mathematician Heinrich Heesch suggested a method for doing
this, he did not have sufficient access to a supercomputer to test it. Wolfgang
Haken, a former student of Heesch’s, became interested in the problem, and
began to make progress after meeting computer programmer Kenneth Appel at
the University of Illinois. The pair finally cracked the problem in 1977. Relying
completely on computing power—the first proof in the history of mathematics to
do so—they examined around 2,000 cases, involving billions of calculations and
using 1,200 hours of computer time.
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The IBM System/370
computer c. 1970 was one
of the first computers to
use virtual memory, a
working memory system
that allowed it to process
large amounts of data.

Computer proofs
When Appel and Haken proved the four-color
theorem in 1977, it was the first time that a computer
had been used to prove a mathematical theorem.
This was controversial among mathematicians, who
were used to solving problems through logic that
could be checked by their peers. Appel and Haken
had used the computer to carry out a proof by
exhaustion—all possibilities were meticulously
checked one by one, a feat that would have been
impossible to do manually. The question was
whether a long calculation that could not be checked
by humans, followed by a simple verdict of “yes, the
theorem has been proved,” could be accepted. Many

mathematicians argued that it could not. Proof by computers remains
controversial, but advances in technology have increased confidence in their
reliability.

See also: Euler’s number • Graph theory • The complex plane • Proving Fermat’s
last theorem
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IN CONTEXT
KEY FIGURES
Ron Rivest (1947–), Adi Shamir (1952–), Leonard Adleman (1945–)

FIELD
Computer science

BEFORE
9th century CE Al-Kindi develops frequency analysis.

1640 Pierre de Fermat states his “little theorem” (on primality), which is still
used as a test when searching for primes to use in public key encryption.

AFTER
2004 Elliptic curves are first used in cryptography; they use smaller keys but
offer the same security as the RSA algorithm.

2009 An anonymous computer scientist mines the first Bitcoin, a
cryptocurrency without a central bank. All transactions are encrypted but public.

Cryptography is the development of means of secret communication. It has
become a ubiquitous feature of modern life, with almost every connection
between one digital device and another starting with a “handshake,” in which the
devices agree on a way of securing their connection. That handshake is often the
result of the work of three mathematicians: Ron Rivest, Adi Shamir, and Leonard
Adleman. In 1977, they developed the RSA algorithm (named for their initials),
an encryption procedure that won them the Turing Award in 2002. The RSA
algorithm is special because it ensures that any third party monitoring the
connection will be completely unable to figure out any private details.
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One main reason people have needed to encrypt communications is to ensure
financial transactions can happen without banking information falling into the
wrong hands. However, encryption is used against all kinds of third-party
“adversary”—a rival company, an enemy power, or a security service.
Cryptography is an ancient practice. Mesopotamian clay tablets from c. 1500 BCE

were often encrypted to protect recipes for pottery glazes and other such
commercially valuable information.

The work did not really need mathematics, but mathematicians tended to be good at it.

Joan Clarke
British cryptanalyst

Cipher and key
The term “cryptography” comes from the Greek for “hidden writing study.” For
much of history it was used to secure written messages. The unencrypted message
is known as the plaintext, while the encrypted version is called the ciphertext. For
example, “HELLO” might become “IFMMP.” Going from plaintext to this
ciphertext requires a cipher and a key. A cipher is an algorithm (a systematic,
repeatable method)—in this case, to substitute each letter with one in another
position in the alphabet. The key is +1, because each of the letters in plaintext is
substituted with the letter +1 along in the alphabet. If the key were ˗6, then the
cipher would turn the same plaintext “HELLO” into “BZFFI.” This simple
substitution system is known as the Caesar cipher (or Caesar shift) after the
Roman dictator Julius Caesar, who used it in the 1st century BCE. The Caesar
cipher is an example of symmetric encryption, as the same cipher and key are
used (in reverse) to decipher the message.
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Cipher wheels, such as this British example from 1802, sped up the decryption of Caesar
ciphers. Once the key was uncovered, the two individual wheels could be set accordingly.

Deciphering processes
Given enough paper and time, it is relatively easy to figure out a Caesar cipher by
trying out every possible substitution. In modern terms this is known as a “brute
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force” technique. More complex ciphers and keys make brute force more time-
consuming—and, before computers, effectively unworkable for messages long
enough to hold large amounts of information.

Longer messages were vulnerable to another decryption technique called
frequency analysis. Initially developed by the Arab mathematician al-Kindi in the
9th century, this technique made use of the frequency of each letter of the
alphabet in a particular language. The most common letter in the English
language is “e,” so a cryptanalyst would find the most common letter in the
ciphertext and designate that as e. The next most common letter is “t,” then “a,”
and so on. Common groupings of letters, such as “th” and “ion” could also
provide a way into revealing the cipher. Given a large enough ciphertext, this
system worked on any substitution cipher, no matter how elaborate the
encryption.

There are two ways of combatting frequency analysis. The first is to obscure the
plaintext by using a “code.” Cryptography uses a specific definition of this term.
A code changes an entire word or phrase in the plaintext before it is encrypted.
An encoded plaintext might read “buy lemons on Thursday,” where “buy” is code
for “kill” and “lemons” is code for a particular target on a hit list—perhaps with
all targets encoded as fruits. Without the list of code words, deciphering the
message’s full meaning is impossible.
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The Enigma machine was used in German espionage between 1923 and 1945. The three
rotor wheels sit behind the lampboard, and the plugboard is at the front.

The Enigma code
Another method of increasing the security of encryption is to use a polyalphabetic
cipher, where a letter in plaintext can be substituted for several different letters in
ciphertext, thus removing the possibility of frequency analysis. Such ciphers were
first developed in the 1500s, but the most famous one was the encryption
produced by the Enigma machines used by the Axis forces in World War II.

The Enigma machine was a formidable encryption device. In essence, it was a
battery connected to 26 lightbulbs, or lamps—one for each letter of the alphabet.
When a signaler pressed a letter on the keyboard, a corresponding letter lit up on
the lampboard. Pressing the same key a second time always lit a different lamp
(never the same letter as the key) because the connections between battery and
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lampboard were altered by three rotors that clicked around with every key press.
Added complexity was introduced by the plugboard, which swapped 10 pairs of
letters, thus scrambling the message further. To encrypt and decrypt an Enigma
message, both machines needed to be set up in the correct way. This involved the
correct three rotors being inserted and set to the right starting positions, and the
10 plugs being connected correctly on the board. The settings became the
encryption key. A three-rotor Enigma had over 158,962,555,217 billion possible
settings, which were changed daily.

Enigma’s flaw was that it could not encrypt a letter as itself. This allowed Allied
codebreakers to try frequently used phrases, such as “Heil Hitler” and “Weather
Report” to attempt to figure out that day’s key. Ciphertext without any of the
letters in those words was a potential ciphertext of them. Allied codebreakers used
the Turing Bombe, an electromechanical device that mimicked Enigma machines
to break the encryption by brute force, using shortcuts developed by British
mathematician Alan Turing and others. The British encryption device, the Typex,
was a modified version of Enigma that could encode a letter as itself. The Nazis
gave up trying to crack it.

Computer technology is on the verge of providing the ability for [people] to communicate and
interact with each other in a totally anonymous manner.

Peter Ludlow
American philosopher

Asymmetric encryption
With symmetric encryption, messages are only as secure as the key. This must be
exchanged by physical means—written in a military code book or whispered in
the ear of a spy at a secluded rendezvous. If a key falls into the wrong hands, the
encryption fails.

The rise of computer networks has allowed people to communicate easily over
great distances without ever meeting. However, the most commonly used
network, the internet, is public, so any symmetric key shared over a connection
would be available to unintended parties, making it useless. The RSA algorithm
was an early development in building asymmetric encryption, where a sender and
receiver use two keys: one private and the other public. If two people, Alice and
Bob, wish to communicate in secret, Alice can send Bob her public key. It is
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made up of two numbers, n and a. She keeps a private key, z, to herself. Bob uses
n and a to encrypt a plaintext message (M), which is a string of numbers (or
letters ciphered into numbers). Each plaintext number is raised to the power of a,
and then divided by n. The division is a modulo operation (abbreviated to modn),
meaning the answer is just the remainder. So, for example, if n were 10 and Ma

were 12, that would give the answer 2. If Ma were 2, it would also give an answer
of 2, because 10 goes into 2 zero times with a remainder of 2. The answer to Ma

modn is the ciphertext (C), and in this example it is 2. Someone spying could
know the public key, n and a, but would have no idea whether M is 2, 12, or
1,002 (all divisible by 10 with a remainder of 2). Only Alice can find out using
her private key, z, because Cz modn = M.

The crucial number in this algorithm is n, which is formed by multiplying two
prime numbers: p and q. Then a and z are calculated from p and q using a formula
which ensures that the modulo calculations work. The only way to crack the code
is to figure out what p and q are and then calculate z. To do that, a codebreaker
must figure out the prime factors of n, but today’s RSA algorithms use values for
n with 600 digits or more. It would take a supercomputer thousands of years to
work out p and q by trial and error, making RSA and similar protocols practically
unbreakable.

Public key encryption scrambles data with an encryption key available to anyone. The data
can only be unscrambled with a private key, known only to its owner. This method is
effective for small amounts of data, but is too time-consuming for large amounts.

Finding primes in random ways
The RSA algorithm and other public key encryption systems require a large
collection of primes to act as p and q. If the system relies heavily on too few

primes, then it is possible for attackers to figure out
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Lava lamps can be
hooked up to computers in
order to generate a
selection of random
numbers based on their
movements.

some of the values for p and q being used in
everyday encryption. The solution is to have a
supply of fresh primes. These are found by
generating random numbers and testing their
primality with Pierre de Fermat’s “little theorem”: if
a number (p) is prime, when another number (n) is
raised to the power of p, and n is subtracted from the
result, the answer is a multiple of p.

Computers are not easily programmed to create
truly random sequences of numbers, so companies
use physical phenomena to generate them.
Computers are programmed to follow the

movements of lava lamps, measure radioactive decay, or listen to white noise
made by radio transmissions, turning that input into random numbers to use for
encryption.

See also: Group theory • The Riemann hypothesis • The Turing machine •
Information theory • Proving Fermat’s last theorem
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IN CONTEXT
KEY FIGURE
Daniel Gorenstein (1923–92)

FIELD
Number theory

BEFORE
1832 Évariste Galois defines the concept of a simple group.

1869–89 Camille Jordan, a French mathematician, and Otto Hölder, a German,
prove that all finite groups can be built from finite simple groups.

1976 Croatian mathematician Swonimir Janko introduces the sporadic simple
group Janko Group 4, the last finite simple group to be discovered.

AFTER
2004 American mathematicians Michael Aschbacher and Stephen D. Smith
complete the classification of finite simple groups begun by Daniel Gorenstein.

Simple groups have been described as algebra’s atoms. The Jordan-Hölder
theorem, proven around 1889, asserts that, just as all positive integers can be
constructed from prime numbers, so all finite groups can be built from finite
simple groups. In mathematics, a group is not simply a collection of things, but a
specification of how the group members can be used to generate more members,
for example, by multiplication, subtraction, or addition. In the early 1960s,
American mathematician Daniel Gorenstein began to pioneer the classification of
groups and issued his complete classification of finite simple groups in 1979.
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There are similarities between simple groups and symmetry in geometry. Just as
a cube rotated through 90 degrees looks the same as it did before it was rotated,
the transformations (rotational and reflexive) associated with a regular 2-D or 3-D
shape can be arranged into a type of simple group known as a symmetry group.

Infinite and finite groups
Some groups are infinite, as in the group of all integers under addition, which is
infinite because numbers can be added infinitely. However, the numbers –1, 0,
and 1 with the multiplication operation form a finite group; multiplying any
members of the group produces only –1, 0, or 1. All the members of a group and
the rules for generating it can be visualized using a Cayley graph

A group is simple if it cannot be broken down into smaller groups. While the
number of simple groups is infinite, the number of types of simple group is not—
at least, not when simple groups of finite size are considered. In 1963, American
mathematician John G. Thompson proved that, with the exception of trivial
groups (for example, 0 + 0 = 0, or 1 × 1 = 1), all simple groups have an even
number of elements. This led Daniel Gorenstein to propose a more difficult task:
the classification of every finite simple group.
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This Cayley graph shows all 60 elements (different orientations) of the group A5 (the group
of rotational symmetries of a regular icosahedron, a three-dimensional shape with 20 faces),
and how they relate to each other. Since A5 has a finite number of elements, it is a finite
group. A5 is also a simple group. It has two generators (elements that can be combined to
give any other element of the group).

The Monster
There are precise descriptions of 18 families of finite simple groups, with each
family related to symmetries of certain types of geometrical structure. There are
also 26 individual groups called sporadic groups, the largest of which is called the
Monster, which has 196,883 dimensions and approximately 8 × 1053 elements.
Every finite simple group either belongs to one of the 18 families or is one of the
26 sporadic groups.

DANIEL GORENSTEIN
Born in Boston, Massachusetts, in 1923, Daniel Gorenstein had taught himself
calculus by the age of 12 and later attended Harvard University. There, he
became acquainted with finite groups, which would become his life’s work.
After graduating in 1943, he stayed at Harvard for several years, first to teach
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mathematics to military personnel during World War II, then to earn his PhD
under mathematician Oscar Zariski.

In 1960–61, Gorenstein attended a nine-month program in group theory at the
University of Chicago, which inspired him to propose a classification of finite
simple groups. He continued to work on this project until his death in 1992.

Key works

1968 Finite groups

1979 “The classification of finite simple groups”

1982 Finite simple groups

1986 “Classifying the finite simple groups”

See also: The Platonic solids • Algebra • Projective geometry • Group theory •
Cryptography • Proving Fermat’s last theorem
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IN CONTEXT
KEY FIGURE
Andrew Wiles (1953–)

FIELD
Number theory

BEFORE
1637 Pierre de Fermat states that there are no sets of positive whole numbers x,
y, and z that satisfy the equation xn + yn = zn, where n is greater than 2.
However, he does not provide the proof.

1770 Swiss mathematician Leonhard Euler shows that Fermat’s last theorem is
true when n = 3.

1955 In Japan, Yutaka Taniyama and Goro Shimura propose that every elliptic
curve has a modular form.

AFTER
2001 The Taniyama–Shimura conjecture is established. It becomes known as
the modularity theorem.

When he died in 1665, French mathematician Pierre de Fermat left behind a well-
thumbed copy of Arithmetica by the 3rd-century CE Greek mathematician
Diophantus, its margins marked with Fermat’s ideas. All the questions posed in
Fermat’s marginal scribbles were later solved, except for one. He left a tantalizing
note in the margin: “I have discovered a truly marvelous proof, which this margin
is too small to contain here.”
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Fermat’s note related to Diophantus’s discussion of Pythagoras’s theorem—that
in a right-angled triangle the square of the hypotenuse (the side opposite the right
angle) is equal to the sum of the squares on the other two sides, or x2 + y2 = z2.
Fermat knew that this equation had an infinity of integer solutions for x, y, and z,
such as 3, 4, and 5 (9 + 16 = 25) and 5, 12, and 13 (25 + 144 = 169), known as
“Pythagorean triples.” He then wondered if other triples could be found to the
power of 3, 4, or any integer beyond 2. The conclusion Fermat reached was that
no integer greater than 2 could stand for n. Fermat wrote: “It is impossible for a
cube to be the sum of two cubes, a fourth power [number to the power of 4] to be
the sum of two fourth powers, or in general for any number that is a power greater
than the second to be the sum of two like powers.” Fermat never revealed the
proof he claimed to have for his theory and so it remained unsolved, becoming
known as Fermat’s last theorem.

Many mathematicians attempted to reconstruct Fermat’s claimed proof after his
death, or to find their own. But despite the seeming simplicity of the problem, no
one was successful, although a century later Leonhard Euler did prove the theory
where n = 3.

Finding a solution
Fermat’s last theorem remained one of the great unsolved problems in
mathematics for more than 300 years, until it was proved by British
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mathematician Andrew Wiles in 1994. Wiles had first read about Fermat’s
challenge when he was ten. He had been amazed that he, just a boy, could make
sense of it, and yet the best mathematical minds in the world had failed to prove
it. It made him want to study mathematics at the University of Oxford, and then to
get his PhD at Cambridge. There, he chose elliptic curves as the area of study for
his doctoral thesis—a subject that seemed to have little to do with his interest in
Fermat. Yet it was this branch of mathematics that would enable Wiles to prove
Fermat’s last theorem.

In the mid-1950s, Japanese mathematicians Yutaka Taniyama and Goro Shimura
had made the bold step of linking two apparently unrelated branches of
mathematics. They claimed that every elliptic curve (an algebraic structure) could
be associated with a unique modular form, one of a class of highly symmetrical
structures belonging to number theory.

The potential importance of their conjecture was gradually understood over the
next three decades and it became part of an ongoing program to link different
mathematical disciplines. However, no one had any idea how to prove it.

In 1985, German mathematician Gerhard Frey made a link between the
conjecture and Fermat’s last theorem. Working from a hypothetical solution to the
Fermat equation, he constructed a curious elliptic curve that appeared not to be
modular. He argued that such a curve could only exist if the Taniyama–Shimura
conjecture were false, in which case Fermat’s last theorem would also be false.
On the other hand, if the Taniyama–Shimura conjecture were true, Fermat’s last
theorem would follow. In 1986, Ken Ribet, a professor at Princeton University, in
New Jersey, managed to prove Frey’s conjectured link.
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Wiles’s investigation of Fermat’s last theorem began with his study of elliptic curves, which
are described by the equation y2 = x3 + Ax + B, where A and B are constants (fixed).

Proving the unprovable
Ribet’s proof electrified Wiles. Here was the chance he had been waiting for—if
he could prove the seemingly impossible Taniyama–Shimura conjecture, then he
would also prove Fermat’s last theorem. Unlike most mathematicians, who like to
work collaboratively, Wiles decided to pursue this goal on his own, telling no one
except his wife. He felt that to talk openly about working on Fermat would stir up
excitement in the mathematics community, and perhaps lead to unwanted
competition. However, as the proof reached its final stages, in the seventh year of
working on it, Wiles realized he needed help.

At the time, Wiles was employed at the Institute for Advanced Study (IAS) in
Princeton, home to some of the world’s finest mathematicians. These colleagues
were completely astounded when Wiles revealed that he had been working on
Fermat while still carrying out his daily tasks of lecturing, writing, and teaching.

Wiles recruited the help of these colleagues for the final step in compiling his
proof. He turned to American mathematician Nick Katz to check his reasonings.
Katz could find no errors, so Wiles decided to go public. In June 1993, at a
conference at the University of Cambridge, Wiles delivered his results. Tension
rose as he piled his results one on top of the other, with only one end in view. He
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delivered his final line, “Which proves Fermat’s last theorem,” smiled, and added,
“I think I’ll leave it there.”

Some mathematics problems look simple. There’s no reason why these problems shouldn’t be
easy, and yet they turn out to be extremely intricate.

Andrew Wiles

Fixing an error
The next day, the world’s press was full of the story, transforming Wiles into the
world’s most famous mathematician. Everyone wanted to know how this problem
had finally been solved. Wiles was delighted, but then came a twist; there was a
problem with his proof.

The results had to be verified before they could be published—and Wiles’s proof
covered scores of pages. Among the reviewers was Wiles’s friend Nick Katz. For
a whole summer Katz went through the proof line by line, querying and
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questioning until the meaning was clear. One day, he thought he had spotted a
hole in the argument. He emailed Wiles, who replied, but not to Katz’s
satisfaction. More emails followed, before the truth emerged—Katz had found a
flaw at the heart of Wiles’s work. A vital point in the proof contained an error that
undermined Wiles’s method.

Suddenly Wiles’s approach was brought into question. Had he worked with
others rather than alone, the error might have been identified earlier. The world
believed that Wiles had resolved Fermat’s last theorem, and it was waiting for the
finished, published proof. Wiles was under immense pressure. His mathematical
achievements so far had been impressive, but his reputation was at stake. Day
after day, Wiles tried different approaches to the problem, which proved futile—
as his fellow IAS mathematician Peter Sarnak said, “It was like pinning down a
carpet in one corner of a room, only for the carpet to pop up in another.”
Eventually, Wiles turned to a friend, British algebra specialist Richard Taylor,
and they worked together on the proof for the next nine months.

Wiles was close to having to admit that he had claimed a proof prematurely.
Then, in September 1994, he had a revelation. If he took his present problem-
solving method and added its strengths to an earlier approach of his, then one
might fix the other, allowing him to solve the problem. It seemed a small insight,
but it made all the difference. Within weeks, Wiles and Taylor had plugged the
gap in the proof. Nick Katz and the wider mathematical community were now
convinced there were no mistakes, and Wiles emerged for a second time as the
conqueror of Fermat’s last theorem—this time on solid ground.

I had this rare privilege of being able to pursue in my adult life what had been my childhood
dream.

Andrew Wiles

After the theorem
Fermat was amazingly far-sighted in his original conjecture, but it is unlikely that
the “marvelous proof” he claimed to have discovered existed. The idea that every
mathematician since the 1600s could have missed a proof that a mathematician
from Fermat’s time could have discovered is inconceivable. In addition, Wiles
solved the theorem using advanced mathematical tools and ideas invented long
after Fermat.

529



In many ways, it is not the proving of Fermat’s last theorem that has
significance, but rather the proofs used by Wiles. A seemingly impossible
problem about integers had been solved by marrying number theory to algebraic
geometry, using new and existing techniques. This in turn opened up new ways of
looking at how to prove many other mathematical conjectures.

ANDREW WILES
The son of an Anglican priest who later became a
professor of divinity, Wiles was born in Cambridge in
1953, and was a passionate problem-solver in
mathematics from an early age. Awarded his first
degree in mathematics at Merton College, Oxford, and
his doctorate at Clare College, Cambridge, he took up
a post at the Institute for Advanced Study in Princeton

in 1981, and was appointed professor there the following year.

While in the US, Wiles made contributions to some of the most elusive
problems in his field, including the Taniyama–Shimura conjecture. He also
began his long solo attempt to prove Fermat’s last theorem. His eventual
success led to him receiving the Abel Prize—the highest honor in mathematics
—in 2016.

Wiles has also taught in Bonn and Paris, and at the University of Oxford,
where he was appointed Regius Professor of Mathematics in 2018. A new
mathematics building at Oxford—as well as an asteroid—9999 Wiles—have
been named after him.

See also: Pythagoras • Diophantine equations • Probability • Elliptic functions •
Catalan’s conjecture • 23 problems for the 20th century • Finite simple groups
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IN CONTEXT
KEY FIGURE
Grigori Perelman (1966–)

FIELDS
Geometry, topology

BEFORE
1904 Henri Poincaré states his conjecture on the equivalence of shapes in 4-D
space.

1934 British mathematician Henry Whitehead stirs interest in Poincaré’s
conjecture by publishing an erroneous proof.

1960 American mathematician Stephen Smale proves the conjecture is true in
the fifth and higher dimensions.

1982 Poincaré’s conjecture is proved in four dimensions by American
mathematician Michael Freedman.

AFTER
2010 When Perelman rejects the Clay Millennium Prize, the £1 million award is
used to set up the Poincaré Chair for gifted young mathematicians.
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In 2000, the Clay Mathematics Institute in the US celebrated the millennium with
seven prize problems. Among them was the Poincaré conjecture, which had
challenged mathematicians for nearly a century. Within a few years, it was solved
—by a little-known Russian mathematician, Grigori Perelman.

Poincaré’s conjecture, conceived by the French mathematician in 1904, is stated
as: “Every simply connected, closed 3-manifold is homeomorphic to the 3-
sphere.” In topology, a field that studies the geometrical properties, structure, and
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spatial relations of shapes, a sphere (a 3-D object in geometry) is said to be a 2-
manifold with a 2-D surface existing within a 3-D space—a solid ball, for
example. A 3-manifold, such as the 3-sphere, is a purely theoretical concept: it
has a 3-D surface and exists in a 4-D space. The description “simply connected”
means that the figure has no holes, unlike a bagel or hoop shape (torus), and
“closed” means the shape is limited by boundaries, unlike the open endlessness of
an infinite plane. In topology, two figures are homeomorphic if they can be
distorted or stretched into the same shape. While the question of whether every
closed 3-manifold could be deformed to take the shape of a 3-sphere is
hypothetical, Perelman has claimed that it holds the key to understanding the
shape of the Universe.

Finding a solid proof
Initially, it proved easier to substantiate the conjecture for manifolds of the fourth,
fifth, and higher dimensions than it was for 3-manifolds. In 1982, American
mathematician Richard Hamilton attempted to prove the conjecture using Ricci
flow, a mathematical process that potentially allows any 4-D shape to be distorted
to an increasingly smooth version, and ultimately to a 3-sphere. However, the
flow failed to handle spikelike “singularities”—deformities including “cigars”
and infinitely dense “necks.”

Perelman, who learned much from Hamilton during a two-year fellowship at
Berkeley in the early 1990s, continued to study Ricci flow and its application to
the Poincaré conjecture when he returned to Russia. He masterfully overcame the
limitations that Hamilton encountered by using a technique called surgery, in
effect cutting out the singularities, and was able to prove the conjecture.
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A 3-sphere is the 3-D equivalent of a spherical surface, that is a two-dimensional surface, or
2-sphere, such as the ball shown here. To appreciate the shape of the ball, it has to be viewed
in 3-D space. To see a 3-sphere requires 4-D space.

Surprising the math world
Perelman had achieved success quietly. Unconventionally, he posted his first 39-
page paper on the subject online in 2002, emailing a summary to 12
mathematicians in the US. He published two more installments a year later.
Others reconstructed his results and explained them in the Asian Journal of
Mathematics. Finally, his proof was fully accepted by the mathematical
community in 2006.

Since then, Perelman’s work has been closely studied, fuelling new
developments in topology, including a more powerful version of his and
Hamilton’s technique for using Ricci flow to smooth singularities.

Perelman’s proof… solved a problem that for more than a century was an indigestible seed at
the core of topology.

Dana Mackenzie
American science writer

GRIGORI PERELMAN
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Born in 1966 in St. Petersburg, Grigori Perelman
developed a passion for mathematics from his mother,
who taught the subject. Aged 16, he won a gold medal
at the International Mathematical Olympiad in
Budapest, achieving a perfect score. A successful
academic career followed, including a spell at several
research institutes in the US, where he solved a major
geometry problem called the Soul conjecture. While

there, he met Richard Hamilton, whose work influenced his proof of the
Poincaré conjecture.

The reclusive Perelman did not enjoy the fame his proof brought him. He
turned down the two greatest accolades for a mathematician: the Fields Medal
in 2006 and the Clay Mathematics Institute prize (and its $1 million award) in
2010, saying it belonged as much to Hamilton.

Key works

2002 “The entropy formula for the Ricci flow and its geometric applications”

2003 “Finite extinction time for the solutions to the Ricci flow on certain 3-
manifolds”

See also: The Platonic solids • Graph theory • Topology • Minkowski space •
Fractals
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DIRECTORY
In addition to the mathematicians covered in the preceding chapters of this book,
many other men and women have made an impact on the development of
mathematics. From the ancient Egyptians, Babylonians, and Greeks to the
medieval scholars of Persia, India, and China and the city-state rulers of
Renaissance Europe, those looking to build, trade, fight wars, and manipulate
money realized that measuring and calculating were crucial. By the 19th and 20th
centuries, mathematics had become a global discipline, with its practitioners
involved in all the sciences. Math remains crucial in the 21st century as space
exploration, medical innovations, artificial intelligence, and the digital revolution
press ahead, and more secrets about the Universe are revealed.

THALES OF MILETUS
C. 624–C. 545 BCE

Thales lived in Miletus, an ancient Greek city in what is now Turkey. A student
of mathematics and astronomy, he broke with the tradition of using mythology as
a way of explaining the world. Thales used geometry to calculate the height of
pyramids and the distance of ships from the shore. The theorem named after him
states that where the longest side of a triangle contained within a circle is the
diameter of the circle, that triangle has to be a right-angled triangle. The
astronomical discoveries attributed to Thales include his forecast of the 585 BCE

solar eclipse.

See also: Pythagoras • Euclid’s Elements • Trigonometry

HIPPOCRATES OF CHIOS
C. 470–C. 410 BCE

Originally a merchant on the Greek island of Chios, Hippocrates later moved to
Athens, where he first studied, then practiced mathematics. References by later
scholars suggest that he was responsible for the first systematic compilation of
geometrical knowledge. He was able to calculate the area of crescent-shaped
figures contained within intersecting circles (lunes). The Lune of Hippocrates, as
it was later called, is bounded by the arcs of two circles, the smaller of which has
as its diameter a chord spanning a right angle on the larger circle.
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See also: Pythagoras • Euclid’s Elements • Trigonometry

EUDOXUS OF CNIDUS
C. 390–C. 337 BCE

Eudoxus lived in the Greek city of Cnidus (now in Turkey). He developed the
“method of exhaustion” to prove statements about areas and volumes by
successive approximations. For example, he was able to show that the areas of
circles relate to each other according to the squares of their radii; that the volumes
of spheres relate to each other according to the cubes of their radii; and that the
volume of a cone is one-third that of a cylinder of the same height.

See also: The Rhind papyrus • Euclid’s Elements • Calculating pi

HERO OF ALEXANDRIA
C. 10–C. 75 CE

A native of Alexandria in the Roman province of Egypt, Hero (or Heron) was an
engineer, inventor, and mathematician. He published descriptions of a steam-
powered device called an aeolipile, a wind wheel that could operate an organ, and
a vending machine that dispensed “holy” water. His mathematical
accomplishments included describing a method for computing the square roots
and cubic roots of numbers. He also devised a formula for finding the area of a
triangle from the lengths of its sides.

See also: Euclid’s Elements • Trigonometry • Cubic equations

ARYABHATA
476–550 CE

A Hindu mathematician and astronomer, Aryabhata worked in Kusumapara, an
Indian center of learning. His verse treatise Aryabhatiya contains sections on
algebra and trigonometry, including an approximation for pi (π) of 3.1416,
accurate to four decimal places. Aryabhata also correctly believed pi to be
irrational. He calculated Earth’s circumference as a distance close to the current
accepted figure. He also defined some trigonometric functions, produced
complete and accurate sine and cosine tables, and calculated solutions to
simultaneous quadratic equations.

See also: Quadratic equations • Calculating pi • Trigonometry • Algebra
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BHASKARA I
C. 600–C. 680

Little is known about Bhaskara I, although he may have been born in the
Saurastra region on India’s west coast. He became one of the most important
scholars of the astronomy school founded by Aryabhata, and wrote a
commentary, Aryabhatiyabhasya, on Aryabhata’s earlier Aryabhatiya treatise.
Bhaskara I was the first person to write numbers in the Hindu-Arabic decimal
system with a circle for zero. In 629, he also found a remarkably accurate
approximation of the sine function.

See also: Trigonometry • Zero

IBN AL-HAYTHAM
C. 965–C. 1040

Also known as Alhazen, Ibn al-Haytham was an Arab mathematician and
astronomer, born in Basra, now in Iraq, who worked at the court of the Fatimid
Caliphate in Cairo. He was a pioneer of the scientific method that maintained that
hypotheses should be tested by experiment and not just assumed to be true.
Among his achievements, he established the beginnings of a link between algebra
and geometry, building on the work of Euclid and trying to complete the lost
eighth volume of Apollonius of Perga’s Conics.

See also: Euclid’s Elements • Conic sections

BHASKARA II
1114–85

One the greatest of the medieval Indian mathematicians, Bhaskara II was born in
Vijayapura, Karnataka, and is believed to have become the head of the
astronomical observatory at Ujjain in Madhya Pradesh. He introduced some
preliminary concepts of calculus; established that dividing by zero yields infinity;
found solutions to quadratic, cubic, and quartic equations (including negative and
irrational solutions); and suggested ways to unlock Diophantine equations of the
second order (to the power of two), which would not be solved in Europe until the
1700s.

See also: Quadratic equations • Diophantine equations • Cubic equations
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NASIR AL-DIN AL-TUSI
1201–74

Born in Tus, the Persian mathematician al-Tusi devoted his life to study after he
lost his father at a young age. He became one of the great scholars of his day,
making important discoveries in math and astronomy. He established
trigonometry as a discipline, and in his Commentary on the Almagest—an
introduction to trigonometry—described methods for calculating sine tables.
Although taken prisoner by invading Mongols in 1255, al-Tusi was appointed a
scientific advisor by his captors and later established an astronomical observatory
in the Mongol capital Maragheh, now in Iran.

See also: Trigonometry

KAMAL AL-DIN AL-FARISI
C. 1260–C. 1320

Al-Farisi was born in Tabriz, Persia (now Iran). He was a student of polymath
Qutb al-Din al-Shirazi, himself a pupil of Nasir al-Din al-Tusi (see above), and,
like them, was a member of the Maragheh school of mathematician–astronomers.
His explorations of number theory included amicable numbers and factorization.
He also applied the theory of conic sections (circles, ellipses, parabolas, and
hyperbolas) to solve optical problems, and explained that the different colors of a
rainbow were produced by the refraction of light.

See also: Conic sections • The binomial theorem

NICOLE ORESME
C. 1320–82

Born in Normandy, France, probably to a peasant family, Oresme studied at the
College of Navarre, where pupils from poor backgrounds were subsidized by the
royal estate. He later became dean of Rouen Cathedral. Oresme devised a
coordinate system with two axes to represent the change of one quality with
respect to another—for example, how temperature changes with distance. He
worked on fractional exponents and infinite series and was the first to prove the
divergence of harmonic series, but his proof was lost and the theory was not
proven again until the 1600s. He also argued that Earth could be rotating in space,
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rather than the Church-approved view that the celestial bodies circled around
Earth.

See also: Algebra • Coordinates • Calculus

NICCOLÒ FONTANA TARTAGLIA
1499–1557

As a child, Tartaglia was attacked by French soldiers invading Venice. He
survived, but with serious facial injuries and a speech impediment, which earned
him the nickname “Tartaglia,” or stutterer. Essentially self-taught, he became a
civil engineer, designing fortifications. Tartaglia realized that an understanding of
the trajectory of cannonballs was critical for his designs, which led him to pioneer
the study of ballistics. His published mathematical works included a formula for
solving cubic equations, an encyclopedic math treatment—Treatise on Numbers
and Measures—and translations of Euclid and Archimedes.

See also: The Platonic solids • Trigonometry • Cubic equations • The complex
plane

GEROLAMO CARDANO
1501–76

A contemporary of Niccolò Tartaglia, Cardano was born in Lombardy and
became an outstanding physician, astronomer, and biologist, as well as a
renowned mathematician. He studied at the universities of Pavia and Padua in
what is now Italy, was awarded a doctorate in medicine, and worked as a
physician before becoming a teacher of mathematics. Cardano published a
solution to cubic and quartic equations, acknowledged the existence of imaginary
numbers (based on the square root of –1), and is alleged to have forecast the exact
date of his own death.

See also: Algebra • Cubic equations • Imaginary and complex numbers

JOHN WALLIS
1616–1703

Although Wallis studied medicine at Cambridge University and was later
ordained a priest, he retained the interest in arithmetic he first developed as a
schoolboy in Kent, England. A supporter of the Parliamentarian cause, Wallis
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deciphered Royalist dispatches during the English Civil War. In 1644, he was
appointed professor of geometry at the University of Oxford and became a
champion of arithmetic algebra. His contributions toward the development of
calculus include originating the idea of the number line, introducing the symbol
for infinity, and developing standard notation for powers. He was one of the small
group of scholars whose meetings led to the establishment of the Royal Society of
London in 1662.

See also: Conic sections • Algebra • The binomial theorem • Calculus

GUILLAUME DE L’HÔPITAL
1661–1704

Born in Paris, l’Hôpital was interested in math from a young age and was elected
to the French Academy of Sciences in 1693. Three years later, he published the
first textbook on infinitesimal calculus: Analyse des infiniment petits pour
l’intelligence des lignes courbes (Analysis of the Infinitesimally Small for the
Understanding of Curved Lines). Although l’Hôpital was an accomplished
mathematician, many of his ideas were not original. In 1694, he had offered the
Swiss mathematician Johann Bernoulli 300 livres a year for information on his
latest discoveries and an agreement that he would not share them with other
mathematicians. Many of these ideas were published by l’Hôpital in Infinitesimal
Calculus.

See also: Calculus

JEAN LE ROND D’ALEMBERT
1717–83

The illegitimate son of a celebrated Paris hostess, d’Alembert was brought up by
a glazier’s wife. Funded by his estranged father, he studied law and medicine,
then turned to mathematics. In 1743, he stated that Newton’s third law of motion
is as true for freely moving bodies as it is for fixed bodies (d’Alembert’s
principle). He also developed partial differential equations, explained the
variations in the orbits of Earth and other planets, and researched integral
calculus. Like other French philosophes, such as Voltaire and Jean-Jacques
Rousseau, d’Alembert believed in the supremacy of human reason over religion.
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See also: Calculus • Newton’s laws of motion • The algebraic resolution of
equations

MARIA GAETANA AGNESI
1718–99

Born in Milan, then under Austrian Hapsburg rule, Agnesi was a child prodigy
who, as a teenager, lectured friends of her father on a wide range of scientific
subjects. In 1748, Agnesi became the first woman to write a math textbook, the
two-volume Instituzioni analitiche (Analytical Institutions), which covered
arithmetic, algebra, trigonometry, and calculus. Two years later, recognizing her
achievement, Pope Benedict XIV awarded her the chair of mathematics and
natural philosophy at the University of Bologna, making her the first woman
professor of math at any university. The equation describing a particular bell-
shaped curve called the “witch of Agnesi” is named in her honor, although
“witch” was a mistranslation from the Italian word for “curve.”

See also: Trigonometry • Algebra • Calculus

JOHANN LAMBERT
1728–77

Lambert was a Swiss-German polymath, born in Mulhouse (now in France), who
taught himself math, philosophy, and Asian languages. He worked as a tutor
before becoming a member of the Munich Academy in 1759 and the Berlin
Academy five years later. Among his mathematical achievements, he provided
rigorous proof that pi is an irrational number, and introduced hyperbolic functions
into trigonometry. He produced theorems on conic sections, simplified the
calculation of the orbits of comets, and created several new map projections.
Lambert also invented the first practical hygrometer, used to measure the
humidity of air.

See also: Calculating pi • Conic sections • Trigonometry

GASPARD MONGE
1746–1818

The son of a merchant, by the age of 17, Monge was teaching physics in Lyon,
France. He later worked as a draftsman at the École Royale, Mézières, and in
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1780 became a member of the Academy of Sciences. Monge was active in public
life, embracing the ideals of the French Revolution. He was appointed Minister of
the Marine in 1792, and also worked to reform France’s education system,
helping to found the École Polytechnique in Paris in 1794 and contributing to the
founding of the metric system of measurement in 1795. Described as the “father
of engineering drawing,” Monge invented descriptive geometry, the mathematical
basis of technical drawing, and orthographic projection.

See also: Decimals • Projective geometry • Pascal’s triangle

ADRIEN-MARIE LEGENDRE
1752–1833

Legendre taught physics and math at the École Militaire in Paris from 1775 to
1780. During this period, he also worked on the Anglo-French Survey, using
trigonometry to calculate the distance between the Paris Observatory and
London’s Royal Greenwich Observatory. During the French Revolution, he lost
his private fortune, but in 1794 he published Eléments de géométrie (Elements of
Geometry), which remained a key geometry textbook for the next century, and he
was then appointed a math examiner at the École Polytechnique. In number
theory, he conjectured the quadratic reciprocity law and the prime number
theorem. He also produced the least-squares method for estimating a quantity
based on consideration of measurement errors, and gave his name to three forms
of elliptic integrals—the Legendre transform, transformation, and polynomials.

See also: Calculus • The fundamental theorem of algebra • Elliptic functions

SOPHIE GERMAIN
1776–1831

During the chaos of the French Revolution, 13-year-old Sophie Germain was
confined to her wealthy father’s house in Paris and began to study the
mathematics books in his library. As a woman she was ineligible to study at the
École Polytechnique, but she obtained lecture notes and corresponded with the
mathematician Joseph-Louis Lagrange. In her work on number theory, Germain
also corresponded with Adrien-Marie Legendre (see above) and Carl Gauss, and
her ideas on Fermat’s last theorem helped Legendre to prove the theorem where n
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= 2. In 1816, she was the first woman to win a prize from the Academy of
Sciences in Paris, for a paper on the elasticity of metal plates.

See also: The fundamental theorem of algebra • Proving Fermat’s last theorem

NIELS ABEL
1802–29

Abel was a Norwegian mathematician who died tragically young. After
graduating from the University of Christiana (now Oslo) in 1822, he traveled
widely in Europe, visiting leading mathematicians. He returned to Norway in
1828, but died from tuberculosis the following year at the age of 26, days before a
letter arrived offering him a prestigious math professorship at the University of
Berlin. Abel’s most important mathematics contribution was to prove that there is
no general algebraic formula for solving all quintic (fifth-degree) equations. To
make his proof, he invented a type of group theory where the order of the
elements within a group is immaterial. This is now known as an abelian group.
The annual Abel Prize for mathematics is awarded in his honor.

See also: The fundamental theorem of algebra • Elliptic functions • Group theory

JOSEPH LIOUVILLE
1809–82

Born in northern France, Liouville graduated from the École Polytechnique, Paris,
in 1827 and took up a teaching post there in 1838. His academic work spanned
number theory, differential geometry, mathematical physics, and astronomy, and
in 1844 he was the first to prove the existence of transcendental numbers.
Liouville wrote more than 400 papers and in 1836 founded the Journal de
Mathématiques Pures et Appliquées (Journal of Pure and Applied Mathematics),
the world’s second-oldest mathematical journal, which is still published monthly.

See also: Calculus • The fundamental theorem of algebra • Non-Euclidean
geometries

KARL WEIERSTRASS
1815–97

Born in Westphalia, Germany, Weierstrass developed an interest in mathematics
at an early age. His parents wanted their son to have a career in administration, so
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he was sent to study law and economics at his university, but left without gaining
a degree. He then trained as a teacher, ultimately becoming a professor of
mathematics at the Humboldt University of Berlin. Weierstrass was a pioneer in
the development of mathematical analysis and in the modern theory of functions,
and rigorously reformulated calculus. An influential teacher, he included among
his pupils the young Russian émigré and pioneering mathematician Sofya
Kovalevskaya.

See also: Calculus • The fundamental theorem of algebra

FLORENCE NIGHTINGALE
1820–1910

Named after her Italian birthplace, Florence Nightingale was a British social
reformer and pioneer of modern nursing, who based much of her work on the use
of statistics. In 1854, after the outbreak of the Crimean War, Nightingale went to
work among wounded soldiers at The Barrack Hospital in Scutari, Turkey. There,
she campaigned tirelessly for better hygiene, earning the nickname “The lady
with the lamp.” Back in Britain, Nightingale became an innovator in the use of
graphs to display statistical data. She developed the Coxcomb chart, a variation
on the pie chart, using circle segments of different sizes to display variations in
data, such as the causes of mortality among soldiers. Her actions helped to
establish a Royal Commission on health in the army in 1856. In 1907, she was the
first woman to receive the Order of Merit, Britain’s highest civilian honor.

See also: The birth of modern statistics

ARTHUR CAYLEY
1821–95

Born in Richmond, Surrey, Cayley was probably the leading British pure
mathematician of the 1800s. Graduating from Trinity College, Cambridge, he
embarked on a career as a conveyancing lawyer. In 1860, however, he gave up his
lucrative law practice to take up a pure math professorship at Cambridge, on a far
more modest salary. Cayley was a pioneer of group theory and matrix algebra,
devised the theories of higher singularities and invariants, worked in higher-
dimensional geometry, and extended the quaternions of William Hamilton to
create octonions.
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See also: Non-Euclidean geometries • Group theory • Quaternions • Matrices

RICHARD DEDEKIND
1831–1916

Dedekind was one of Carl Gauss’s students at the University of Göttingen,
Germany. After graduating, he worked as an unsalaried lecturer before teaching at
the Zurich Polytechnic, Switzerland. Returning to Germany, in 1862 he started
work at the Technical High School in Braunschweig, where he remained for the
rest of his working life. He proposed the Dedekind cut, now a standard definition
of real numbers, and defined concepts of set theory, such as similar sets and
infinite sets.

See also: The fundamental theorem of algebra • Group theory • Boolean algebra

MARY EVEREST BOOLE
1832–1916

Mary Everest’s love of math began young when she studied the books in the
study of her clergyman father, whose friends included polymath Charles Babbage,
the inventor of the Difference Engine. At 18, Mary met renowned mathematician
George Boole (who, like her, was self-taught) in Ireland. They married five years
later, but George died soon after the birth of their fifth child. In 1864, with five
daughters to raise and no financial support, Mary returned to London, where she
worked as a librarian at Queen’s College, a girls’ school, and later gained a
reputation as an eminent children’s teacher. She also wrote books that made math
more accessible to young students, including Philosophy and Fun of Algebra
(1909).

See also: Algebra • The fundamental theorem of algebra

GOTTLOB FREGE
1848–1925

The son of the principal of a girls’ school in Wismar, northern Germany, Frege
studied mathematics, physics, chemistry, and philosophy at the universities of
Jena and Göttingen. He then spent his whole working life teaching mathematics
in Jena. He lectured in all areas of mathematics, specializing in calculus, but
wrote mostly on the philosophy of the subject, bringing the two disciplines
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together to almost single-handedly invent modern mathematical logic. He once
commented that “Every good mathematician is at least half a philosopher, and
every good philosopher at least half a mathematician.” Frege mixed little with
students or colleagues and remained largely unrecognized in his lifetime, although
he was a major influence on the work of Bertrand Russell, Ludwig Wittgenstein,
and other mathematical logicians.

See also: The logic of mathematics • Fuzzy logic

SOFYA KOVALEVSKAYA
1850–91

Moscow-born Kovalevskaya was the first woman in Europe to gain a doctorate in
mathematics, the first woman to join the editorial board of a scientific journal, and
the first woman to be appointed a professor of math. She achieved all this despite
being barred from a university education in her native Russia because of her
gender. Aged 17, Sofya eloped with paleontologist Vladimir Kovalevsky to
Germany, where she studied at the University of Heidelberg and then Berlin,
where she received tuition from German mathematician Karl Weierstrass. Her
doctorate was awarded for three papers, the most significant being on partial
differential equations. Sofya ended her career as a professor of math at the
University of Stockholm, where she died of influenza aged just 41.

See also: Calculus • Newton’s laws of motion

GIUSEPPE PEANO
1858–1932

Brought up on a farm in the northern Italian region of Piedmont, Peano studied at
the University of Turin, where he gained his doctorate in math in 1880. Almost
immediately, he began to teach infinitesimal calculus at the same institution,
where he was appointed a full professor in 1889. Peano’s first textbook, on
calculus, was published in 1884, and in 1891 he began work on the five-volume
Formulario Mathematico (Formulation of Mathematics), which contained the
fundamental theorems of math in a symbolic language largely developed by him.
Many of the symbols and abbreviations are still in use today. He devised axioms
for natural numbers (Peano axioms), developed natural logic and set theory
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notation, and contributed to the modern method of mathematical induction, used
as a proof technique.

See also: Calculus • Non-Euclidean geometries • The logic of mathematics

NIELS VON KOCH
1870–1924

Born in Stockholm, Sweden, Koch studied at the universities of Stockholm and
Uppsala, later becoming professor of mathematics at Stockholm. He is best
known for the fractal—Von Koch’s “snowflake” curve—he described in a 1906
paper. This fractal is constructed from an equilateral triangle in which the central
third of each side is replaced by the base of another equilateral triangle, with this
process continuing indefinitely. If all the triangles face outward, the resulting
curve takes on the appearance of a snowflake.

See also: Fractals

ALBERT EINSTEIN
1879–1955

Einstein was an outstandingly gifted physicist and mathematician. Born in
Germany, he moved with his family to Italy when young and studied in
Switzerland. In 1905, he was awarded his doctorate by the University of Zurich
and published groundbreaking papers on Brownian motion, the photoelectric
effect, special and general relativity, and the equivalence of matter and energy. In
1921, he was awarded the Nobel Prize for his contribution to physics, and he
continued to develop the understanding of quantum mechanics in the years that
followed. Because of his Jewish background, he did not return to Germany after
Hitler came to power in 1933, but settled in the United States, becoming a citizen
there in 1940.

See also: Newton’s laws of motion • Non-Euclidean geometries • Topology •
Minkowski space

L. E. J. BROUWER
1881–1966

Luitzen Egbertus Jan Brouwer (known to his friends as “Bertus”) was born in
Overschie, Netherlands. He graduated in mathematics in 1904 from the
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University of Amsterdam, where he also taught from 1909 to 1951. Brouwer
criticized the logical foundations of mathematics as espoused by David Hilbert
and Bertrand Russell and helped to found mathematical intuitionism, based on the
view of math governed by self-evident laws. He also transformed the study of
topology by associating it with algebraic structures, in his fixed-point theorem.

See also: Topology • 23 problems for the 20th century • The logic of mathematics

EUPHEMIA LOFTON HAYNES
1890–1980

Born in Washington, DC, Lofton Haynes was the first African-American woman
to gain a doctorate in mathematics. After graduating from Smith College,
Massachusetts, with a math degree in 1914, she then embarked on a teaching
career, and in 1930 established the math department at Miner Teachers College,
which later merged with the University of the District of Columbia. Her doctorate
was awarded by The Catholic University of America in 1943 for a dissertation on
set theory. In 1959, Lofton Haynes received a Papal medal for her contributions
to education and community activism, and in 1966 she was the first woman to
chair the District of Columbia State Board of Education.

See also: The logic of mathematics

MARY CARTWRIGHT
1900–98

The daughter of an English country vicar, Cartwright was one of the first
mathematicians to investigate what would later be known as chaos theory. She
graduated from the University of Oxford in 1923 with a degree in mathematics.
Seven years later, her doctoral thesis was examined by mathematician John E.
Littlewood, with whom she would have a long academic collaboration, especially
on the study of functions and differential equations. In 1947, Cartwright became
the first female mathematician to be elected a Fellow of the Royal Society in
London. She had a long association with Girton College, Cambridge, from 1930
to 1968, during which time she taught, researched, and served as Mistress of the
college.

See also: The butterfly effect
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JOHN VON NEUMANN
1903–57

The son of affluent Jewish parents in Budapest, Hungary, von Neumann was a
child prodigy, able to divide eight-digit numbers in his head at the age of six. He
began to publish major mathematical papers in his late teens and started teaching
math at the University of Berlin aged 24. In 1933, he moved to the United States
to take up a post at the Institute of Advanced Learning, Princeton, New Jersey,
and became a US citizen in 1937. During a lifetime of mathematical study, von
Neumann contributed to virtually every area of the discipline. He was a pioneer of
game theory, based on the “two-person zero-sum game,” whereby one side wins
what the other loses. The theory provided insights into complex systems in daily
life such as economics, computing, and the military. He also created a design
model for modern computer architecture, and worked in quantum and nuclear
physics, contributing to the atomic bomb during World War II.

See also: The logic of mathematics • The Turing machine

GRACE HOPPER
1906–92

Born Grace Murray in New York City, Hopper was a pioneering computer
programmer. After gaining a doctorate from Yale University in 1934, she taught
for several years before the outbreak of World War II. When her application to
enlist in the US Navy was rejected, she joined the Naval Reserve and began her
transition to computer science. After the war, while employed as a senior
mathematician at a computer company, she developed the Common Business-
Oriented Language (COBOL), which became the most widely used programming
language. Hopper retired from the Navy Reserve in 1966, but was called back on
active duty the following year, not retiring until 1986, by which time she held the
rank of rear admiral. She coined the word “bug” for a computer glitch after a
moth flew into circuits on which she was working.

See also: The mechanical computer • The Turing machine

MARJORIE LEE BROWNE
1914–79
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Only the third African-American woman to earn a PhD in math, Browne was born
in Tennessee at a time when it was hard for women of color to pursue an
academic career. With the support of her father, a railroad clerk, she graduated
from Howard University, Washington DC, in 1935, and, after teaching briefly in
New Orleans, continued her studies at the University of Michigan, gaining her
doctorate in 1949. Two years later, she was appointed chair of the mathematics
department at North Carolina Central University. Marjorie gained a reputation for
being an excellent teacher, and for her research, especially in topology.

See also: Topology

JOAN CLARKE
1917–96

London-born Clarke achieved a double first in math at the University of
Cambridge on the eve of World War II but was denied a full degree because of
her gender. Her mathematical prowess had been recognized, however, and when
the Bletchley Park project was established to decipher the German Enigma Code,
Clarke was recruited. At Bletchley, she became one of the leading cryptanalysts,
working closely with Alan Turing, to whom she was engaged for a short time.
Although they did the same work as the male code-breakers, Clarke and the other
Bletchley women were paid less. The Bletchley Park operation was hugely
successful, cutting short the length of the war and saving countless lives. After the
war, Clarke worked at the British government’s surveillance center, GCHQ.
Because so much of Clarke’s work was secret, the full extent of her
accomplishments is still unknown.

See also: The Turing machine • Cryptography

KATHERINE JOHNSON
1918–

A child math prodigy, Katherine Johnson (born Coleman) was a pioneer of
computing and the American space program. Her calculations on flight
trajectories were critical in enabling Alan Shepard to become the first American
in space (1961), John Glenn to be the first American to orbit Earth (1962), Apollo
11 to land on the Moon (1969), and the Space Shuttle program to launch (1981).
Johnson graduated in 1937 from West Virginia State College and became one of
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the first African-Americans to enroll in a graduate program at West Virignia
University. She worked for the National Advisory Committee for Aeronautics
(NACA) from 1953 as part of a group of African-American women
mathematicians known as the West Area Computers, who later inspired the film
Hidden Figures (2016). Johnson then worked for the National Aeronautics and
Space Administration (NASA) from 1958 as part of its Space Task Group. In
2015, President Obama awarded Johnson the Presidential Medal of Freedom.

See also: Calculus • Newton’s laws of motion • Non-Euclidean geometries

JULIA BOWMAN ROBINSON
1919–85

Born Julia Bowman in St. Louis, Missouri, Robinson gained her mathematics
doctorate at the University of California, Berkeley, in 1948. She developed a
fundamental theorem of elementary game theory (see John von Neumann) in
1951, but is best known for her work on solving the tenth of David Hilbert’s list
of 23 mathematical problems, drawn up in 1900—whether there is an algorithm
that could find a solution to any Diophantine equation (one that uses whole
numbers and finite unknowns). Robinson proved, along with other
mathematicians, such as Yuri Matiyasevich, that such an algorithm could not
exist. Robinson was appointed a professor at Berkeley in 1975, and in 1976 she
was the first woman to be elected to the American National Academy of Sciences.

See also: Diophantine equations • 23 problems for the 20th century

MARY JACKSON
1921–2005

An aerospace engineer, Mary Jackson (born Winston) worked on the US space
program and campaigned for better opportunities in engineering for women and
people of color. After graduating in math and physical sciences from Hampton
University, Virginia, Jackson taught for a while, then in 1951 started work in the
West Area Computing Unit of the National Advisory Committee for Aeronautics
(NACA). The unit, known as the West Area Computers, comprised female
African-American mathematicians, including Katherine Johnson. From 1958—
when Jackson became NASA’s first female black engineer—to 1963, she worked
on Project Mercury, the program that put the first Americans into space.
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See also: Calculus • Newton’s laws of motion • Non-Euclidean geometries

ALEXANDER GROTHENDIECK
1928–2014

Considered by many to be the greatest pure mathematician of the second half of
the 20th century, Grothendieck was unorthodox in every respect. Born in
Germany to anarchist parents, at the age of 10 he fled the Nazi regime as a
refugee to France, where he spent most of his life. His huge output—much of it
never published—included revolutionary advances in algebraic geometry, the
devising of the theory of schemes, and contributions to algebraic topology,
number theory, and category theory. Grothendieck’s radical political activities
included delivering math lectures just outside Hanoi while the city was being
bombed during the Vietnam War.

See also: Non-Euclidean geometries • Topology

JOHN NASH
1928–2015

American mathematician John Nash is best known for establishing the
mathematical principles of game theory (see John von Neumann). After
graduating from Carnegie Mellon University in 1948 and being awarded a
doctorate from Princeton University in 1950, he joined the Massachusetts
Institute of Technology (MIT), where he researched partial differential equations
and began the work on game theory that won him the Nobel Prize for Economics
in 1994. For much of his life, Nash fought paranoid schizophrenia, as dramatized
in the film A Beautiful Mind (2001).

See also: Calculus • The logic of mathematics

PAUL COHEN
1934–2007

New Jersey-born Cohen was awarded the Fields Medal (the mathematical
equivalent of a Nobel Prize) in 1966 for solving the first of David Hilbert’s list of
23 unresolved mathematical problems—that there is no set whose number of
elements is between that of the integers and that of the real numbers. Cohen
graduated and later received his doctorate, in 1958, from the University of
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Chicago before moving to the Massachusetts Institute of Technology (MIT),
Princeton University, and finally Stanford University, where he became professor
emeritus in 2004.

See also: 23 problems for the 20th century

CHRISTINE DARDEN
1942–

Along with Katherine Johnson and Mary Jackson, Darden is one of the African-
American women whose work as mathematicians made key contributions to the
work of NASA’s space programs. After graduating from Hampton University,
Darden taught at Virginia State University before moving in 1967 to NASA’s
Langley Research Center. There, she built her reputation as an aeronautical
engineer, specializing in supersonic flight. In 1989, she was appointed leader of
the Sonic Boom Team, working on designs to reduce noise pollution and other
negative effects of supersonic flight.

See also: Calculus • Newton’s laws of motion • Non-Euclidean geometries

KAREN KESKULLA UHLENBECK
1942–

In 2019, Uhlenbeck became the first woman to be awarded the Abel Prize for
Mathematics. Born in Cleveland, Ohio, in 1942, she gained a PhD in mathematics
from Brandeis University, Waltham, Massachusetts in 1968, and went on to
achieve notable breakthroughs in mathematical physics, geometrical analysis, and
topology. A champion of gender equality in science and mathematics, in 1990 she
became the first woman since Emmy Noether to give a plenary speech at the
International Congress of Mathematics. In 1994, she founded the Women and
Mathematics Program at the Institute of Advanced Study in Princeton, New
Jersey.

See also: Topology

EVELYN NELSON
1943–87

The Krieger–Nelson Prize, awarded by the Canadian Mathematical Society for
outstanding research by a female mathematician, is named in honor of Evelyn
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Nelson and fellow Canadian Cecilia Krieger. Nelson began a career of teaching
and research at McMaster University after obtaining her doctorate there in 1970.
She published more than 40 research papers in a 20-year career that was cut short
by cancer. Her main contributions were to universal algebra (the study of
algebraic theories and their models) and algebraic logic, applying these to the
field of computer science.

See also: The fundamental theorem of algebra • The logic of mathematics

YURI MATIYASEVICH
1947–

While studying for his doctorate at the Steklov Institute of Mathematics in
Leningrad (now St. Petersburg), Matiyasevich became fascinated by the challenge
of solving David Hilbert’s tenth problem. Just as he was about to give up, he read
the paper “Unsolvable Diophantine problems” (1969) by American
mathematician Julia Robinson, and a solution fell into place. In 1970,
Matiyasevich provided the final proof that the tenth problem is unsolvable
because there is no general method of determining whether Diophantine equations
have a solution. In 1995, he was appointed professor at St. Petersburg University,
first as chair of software engineering and later as chair of algebra and number
theory.

See also: Diophantine equations • 23 problems for the 20th century

RADIA PERLMAN
1951–

Virginia-born Perlman has been described as the “mother of the internet.” While a
student at the Massachusetts Institute of Technology (MIT), she worked on a
program that introduced children as young as three to computer programming.
After graduating with a masters degree in mathematics in 1976, Perlman worked
for a government contractor that developed software. Then, in 1984, while
working for the Digital Equipment Corporation (DEC), she invented the Spanning
Tree Protocol (STP), which ensures there is only one active path between two
network devices; this would later prove crucial for the development of the
internet. Perlman has taught at MIT and the universities of Washington and
Harvard, and continues to work on computer network and security protocols.
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See also: The mechanical computer • The Turing machine

MARYAM MIRZAKANI
1977–2017

At the age of 17, Mirzakani became the first Iranian woman to win a gold medal
in the International Mathematical Olympiad. She graduated from Tehran’s Sharif
University of Technology, before earning a doctorate from Harvard University in
2004 and taking up a professorship at Princeton University. Ten years later,
Mirzakani was both the first woman and the first Iranian to receive the Fields
Medal—for her contribution to the study of Riemann surfaces. She was working
at Stanford University when she died of breast cancer, aged 40.

See also: Non-Euclidean geometries • The Riemann hypothesis • Topology
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GLOSSARY
In this glossary, terms defined within another entry are identified with italic type.

Abstract algebra  The branch of algebra, developed mainly in the 1900s, that
investigates abstract mathematical structures such as groups and rings.

Acute angle  An angle that is less than 90 degrees.

Algebra  A branch of mathematics that involves the use of letters to stand for
unknown or variable numbers in calculations.

Algebraic geometry  The use of graphs to plot lines and curves that represent
algebraic functions, such as y = x2.

Algebraic numbers  All the rational numbers and those irrational numbers that
can be obtained by calculating the roots of a rational number. An irrational
number that is not algebraic (such as pi or e) is called a transcendental number.

Algorithm  A defined sequence of mathematical or logical instructions, or rules,
devised to solve a class of problems. Algorithms are widely used in mathematics
and computer science for calculation, organizing data, and a multitude of other
tasks.

Amicable numbers  Any pair of whole numbers, where the factors of each one
add up to form the other. The smallest pair are 220 and 284.

Analysis  The branch of mathematics that studies limits and handles infinitely
large and small quantities, especially to solve problems in calculus.

Analytic geometry  See algebraic geometry.

Apex  The vertex that is furthest from the base in a 3-D shape.

Applied mathematics  The use of mathematics to solve problems in science and
technology. It includes techniques for solving particular kinds of equations.

Arc  A curved line that forms part of the circumference of a circle.

Area  The amount of space inside any 2-D shape. Area is measured in square
units, such as square inches (in2).

Associative law  This states that if you add, for example, 1 + 2 + 3, the numbers
can be added in any order. The law works for ordinary addition and
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multiplication, but not for subtraction or division.

Average  The typical or middle value of a set of data. For the different kinds of
averages, see mean, median, and mode.

Axiom  A rule, especially one that is fundamental to an area of mathematics.

Axis  (plural axes) A fixed reference line, such as the vertical y-axis and
horizontal x-axis on a graph.

Base  (1) In a number system, the base is the number around which the system is
organized. The main number system we use today is the base-10 or decimal
system, where the numerals 0 to 9 are used and the next number is written 10,
indicating one ten and no units. See also place value system. (2) In logarithms, a
fixed base (usually 10 or Euler’s number e) is used; the logarithm of any given
number x is the power to which that base must be raised to produce x.

Binary notation  Writing numbers using the binary system, in which the only
numerals used are 0 and 1. For example, the number 6 is written as 110 in the
binary system. Here, the leftmost 1 has the value of 4 (2 × 2), the middle 1 means
one 2, and the zero means no single units: 4 + 2 + 0 makes 6.

Binomial  An expression consisting of two terms added together, e.g. x + y.
When a binomial expression is raised to a power, for example (x + y)3, the result
when multiplied out gives (in this case) x3 + 3x2y + 3xy2 + y3. This process is
called binomial expansion, and the numbers multiplying the terms (3s in this
case) are called binomial coefficients. The binomial theorem is a rule for working
out binomial coefficients in complex cases. See also polynomial.

Calculus  A branch of mathematics that deals with continuously changing
quantities. It includes differential calculus, which is concerned with rates of
change, and integral calculus, which calculates areas and volumes under curves or
curved surfaces.

Cardinal numbers  Numbers that denote a quantity, such as 1, 2, 3 (in contrast
to ordinal numbers).

Chord  A straight line that cuts across a circle, but does not go through its
center.

Cipher  Any systematic method of coding messages so that they cannot be
understood without being deciphered first.
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Circumference  The distance all the way around the outside edge of a circle.

Coefficient  A number or expression, usually a constant, that is placed before
another number (especially a variable) and multiplies it. For example, in the
expressions ax2 and 3x, a and 3 are coefficients.

Coincident  In geometry, two or more lines or figures that, when superimposed
on each other, share all points and occupy exactly the same space.

Combinatorics  A branch of mathematics that studies the ways in which sets of
numbers, shapes, or other mathematical objects can be combined.

Commutative law  The law that states that 1 + 2 = 2 + 1, for example, and that
the order in which the numbers are set down doesn’t matter. It works for ordinary
addition and multiplication, but not for subtraction and division.

Complex number  A number that is a combination of a real number and an
imaginary number.

Complex plane  The infinite 2-D plane on which complex numbers can be
plotted.

Composite number  A whole number that is not prime, but can be created by
multiplying together smaller numbers.

Cone  A 3-D shape with a circular base and a side that narrows upward toward a
point (apex).

Congruent  Having the same size and shape. (Used when comparing
geometrical shapes.)

Conjecture  A mathematical statement or claim that has not yet been proved or
disproved. A pair of related conjectures can be strong or weak: if the strong
conjecture is proved, then the weak conjecture is also proved, but not vice versa.

Constant  A quantity in a mathematical expression that does not vary—often
symbolized by a letter such as a, b, or c.

Convergence  A property of some infinite mathematical series where not only is
each term smaller than the last, but the terms, when added up, approach a finite
answer. The value of numbers such as pi can be estimated using convergent
series.
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Coordinates  Combinations of numbers that describe the position of a point,
line, or shape on a graph or a geographical position on a map. In mathematical
contexts, they are written (for a 2-D case) in the form (x,y), where x is the
horizontal position and y the vertical position.

Cosine  (abbreviation cos) A function in trigonometry similar to a sine, except
that it is defined as the ratio of the length of the side of a right-angled triangle
adjacent to a given angle to the length of the triangle’s hypotenuse.

Cube  A 3-D geometrical figure whose faces are six identical squares. A cube
number is one that is obtainable by multiplying a smaller number together twice
— for example 8, which is 2 × 2 × 2 (23). This multiplication resembles the way
the volume of a cube is calculated, by multiplying its length × height × depth.

Cubic equation  An equation containing at least one variable multiplied by
itself twice (for example, y × y × y, also written as y3), but no variable multiplied
more times than this.

Cubit  A measure of length used in the ancient world, based on the length of the
human forearm.

Cylinder  A 3-D shape, such as a tin can, with two identical circular ends joined
by one curved surface.

Deduction  A process by which a problem is solved by drawing on known or
assumed mathematical principles. See also induction.

Degree  (1) A measure of angle in geometry: rotating a full circle involves
turning 360 degrees. (2) The degree or order of a polynomial is the highest-power
term within it: for example, a polynomial is “of degree 3” or “of order 3” if it
contains a cubed term, such as x3, as its highest power. Similarly, in differential
equations, the term that has been differentiated most times in a given equation
determines its degree or order.

Denominator  The lower number in a fraction, such as the 4 in 3⁄4.

Derivative  See differentiation.

Diameter  A straight line touching two points on the edge of a circle and passing
through the center.

Differential equation  An equation that represents a function including the
derivative(s) of a given variable.
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Differentiation  In calculus, the process of working out the rate of change of a
given mathematical function. The result of the calculation is another function
called the differential or derivative of the first function.

Divergence  A term applied mainly to infinite series that do not approach closer
and closer to an end-number. See also convergence.

Divisor  The number or quantity by which another number or quantity is being
divided.

Dodecahedron  A 3-D polyhedron made up of 12 pentagonal (5-sided) faces. A
regular dodecahedron is one of the five Platonic solids.

Ellipse  A shape like a circle, but stretched out symmetrically in one direction.

Encryption  The process of converting data or a message to a secure, coded
form.

Equation  A statement that two mathematical expressions or quantities are equal
to each other. An equation is the usual way of expressing a mathematical
function. When an equation is true of all the values of a variable (for example, the
equation y × y × y = y3), it is called an identity.

Equilateral triangle  A triangle in which all three sides are the same length and
all three angles the same size.

Existence proof  A mathematical proof that something exists, obtained either by
constructing an example or by general deduction.

Expansion  In algebra, the expansion of an expression is the opposite of
factorization. For example, (x + 2)(x + 3) can be expanded to x2 + 5x + 6, by
multiplying each term in the first pair of parentheses by each term in the second
pair of parentheses.

Exponent  The superscript number that indicates the power to which a number
or quantity has been raised, such as the 2 in x2 (x × x). Also called an index.

Exponential function  A mathematical function where, as a quantity gets larger,
its rate of increase also gets faster. The result is often called exponential growth.

Expression  Any meaningful combination of mathematical symbols, such as 2x
+ 5.

Face  A flat surface of any 3-D shape.
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Factor  A number or expression that divides exactly into another number or
expression. For example, 1, 2, 3, 4, 6, and 12 are all factors of 12.

Factorial  The product of any positive integer and all the positive integers that
are smaller than it. For example, factorial 5, also written 5! (with an exclamation
mark) is 5 × 4 × 3 × 2 × 1 = 120.

Factorization  Expressing a number or mathematical expression in terms of
factors that when multiplied together give the original number or expression.

Formula  A mathematical rule that describes a relationship between quantities.

Fractals  Self-similar curves or shapes of different sizes that form complex
patterns that have the same general appearance at any magnification. Many
natural phenomena, such as clouds and rock formations, approximate to fractals.

Function  A mathematical relationship where the value of one variable is
worked out uniquely from the value of other numbers, using a particular rule. For
example, in the function y = x2 + 3, the value of y is calculated by squaring x and
then adding 3. The same function can also be written f(x) = x2 + 3, where f(x)
stands for “function of x.”

Geometry  The branch of mathematics that studies shapes, lines, points, and
their relationships. See also non-Euclidean geometries.

Gradient  The slope of a line.

Graph  (1) A chart on which data is plotted using, for instance, lines, points,
curves, or bars. (2) In graph theory, a graph is a collection of points, called
vertices, and lines, called edges, that can be used to model theoretical and real
networks, relations, and processes in a range of scientific and social fields.

Graph theory  A branch of mathematics that studies how graphs made up of
points and lines are connected.

Group  A mathematical set, together with an operation which, when performed
on members of the set, yields an answer that is still a member of the set. For
example, the set of integers forms a group when addition is the operation. Groups
can be finite or infinite, and their study is called group theory.

Harmonic series  The mathematical series 1 + 1⁄2 + 1⁄3 + 1⁄4 + 1⁄5 +… . The
individual terms in the series define the different ways that a stretched string, for
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example, or air in a tube, can vibrate to produce sound. The resulting series of
musical pitches forms the basis of the musical scale.

Hyperbola  A mathematical curve that looks something like a parabola, but in
which the two extensions of the curve approach two imaginary straight lines at
angles to each other without ever touching or crossing the lines.

Hypotenuse  The longest side of a right-angled triangle, located on the opposite
side from the right angle.

Icosahedron  A 3-D polyhedron made up of 20 triangular faces. A regular
icosahedron is one of the five Platonic solids.

Ideal  In abstract algebra, a mathematical ring that is a component of a larger
ring.

Identity element  In a set of numbers or other mathematical objects, an
operation carried out on the set, such as multiplication or addition, always has an
identity element—a number or expression that leaves other terms unchanged after
the operation has been carried out. The identity element in ordinary
multiplication, for example, is 1, as 1 × x = x, and in the addition of real numbers,
it is 0, as 0 + x = x.

Imaginary number  Any number that is a multiple of , which does not
exist as a real number. It is expressed as the symbol i.

Incommensurable  Something that cannot be measured exactly in terms of
something else.

Index  (plural indices) Another word for an exponent.

Induction  A way of obtaining a general conclusion in mathematics by
establishing that if a statement is true for one step in a process, it is also true for
the next step in a process and all those that follow. See also deduction.

Infinite  Indefinitely large and without limit. In mathematics, there are different
kinds of infinity: the set of natural numbers, for example, is countably infinite
(countable one by one, even though the end is never reached), while the real
numbers are uncountably infinite.

Infinite series  A mathematical series with an infinite number of terms: see
series.

564



Infinitesimal calculus  Another term for calculus, generally used in the past
when calculus was viewed as involving the adding up of infinitesimals (infinitely
small but nonzero quantities).

Input  Any variable, which when combined with a function, produces an output.

Integer  Any of the negative or positive whole numbers. (Fractions are not
integers.)

Integral  (1) Relating to integers. (2) A mathematical expression used in integral
calculus, or the result of performing an integration.

Integration  The process of performing a calculation in integral calculus.

Inverse  A mathematical expression or operation that is the opposite of another
one and undoes it. For example, division is the inverse of multiplication.

Irrational number  Any number that cannot be expressed as one whole number
divided by another and is not an imaginary number.

Isosceles triangle  A triangle with two sides the same length and two angles the
same size.

Iteration  Performing the same operation again and again to achieve a desired
result.

Limit  The end number that is approached as certain calculations are iterated to
infinity.

Linear equation  An equation that contains no variable multiplied by itself (for
example, no x2 or x3). Linear equations result in straight lines when they are
plotted as graphs.

Linear transformation  Also called linear mapping, a mapping between vector
spaces.

Logarithm  The logarithm of a number is the power to which another number
(called the base—usually either 10 or Euler’s number e)—must be raised to give
the original number. For example, 100.301 = 2, and so 0.301 is the logarithm (to
the base 10) of 2. A logarithm to the base e (2.71828…) is called a natural
logarithm and is indicated by the prefix ln or loge. The advantage of logarithms is
that when numbers need to be multiplied, the calculation can be simplified by
adding their logarithms instead.

565



Logic  The study of reasoning, that is, how conclusions can be deduced correctly
from given starting information (premises) by following valid rules.

Manifold  A kind of abstract mathematical space that in any particular small
region resembles ordinary 3-D space. It is a concept within topology.

Mapping  Establishing a relationship between members of one mathematical set
and another. It is often but not always used to mean a one-to-one mapping, where
each member of one set is associated with one member of the other set, and vice
versa.

Matrix  (plural matrices) A square or rectangular array of numbers or other
mathematical quantities that can be treated as a single object in calculations.
Matrices have special rules for addition and multiplication. Their many uses
include solving several equations simultaneously, describing vectors, calculating
transformations in the shape and position of geometrical figures, and representing
real-world data.

Mean  An average found by adding up the values of a set of data and dividing
by the number of values. For example, the mean of the four numbers 1, 4, 6, and
13 is 1 + 4 + 6 + 13 = 24 divided by 4 = 6.

Median  The middle value of a set of data, when the values are put in order from
lowest to highest.

Meridian  An imaginary line on Earth’s surface joining the North Pole and
South Pole through any given locality. Lines of longitude are meridians.

Mode  The value that occurs most often in a set of data.

Modular arithmetic  Also called clock arithmetic, a form of arithmetic where,
after counting up to a certain point, 0 is reached, and the process is repeated.

Natural logarithm  See logarithm.

Natural number  Any of the positive whole numbers. See also integer.

Non-Euclidean geometries  A key postulate of traditional geometry, as
described by Euclid in ancient times, is that parallel lines never meet (often
expressed as meeting at infinity). Geometries in which this and other Euclidean
postulates are not valid are called non-Euclidean.
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Number line  A horizontal line with numbers written on it that is used for
counting and calculating. The lowest numbers are on the left, the highest on the
right. All real numbers can be placed on a number line.

Number system  Any system of writing down and expressing numbers. The
Hindu–Arabic system used today is based on the ten numerals 0 to 9: when 10 is
reached, 1 is written again, but with a 0 after it. This system is both a place value
system and a base-10 or decimal system.

Number theory  A branch of mathematics that studies the properties of numbers
(especially whole numbers), their patterns, and their relationships. It includes the
study of prime numbers.

Numerator  The upper number in a fraction, such as the 3 in 3⁄4.

Obtuse angle  An angle between 90 and 180 degrees.

Octahedron  A 3-D polyhedron made up of eight triangular faces. A regular
octahedron is one of the five Platonic solids.

Operation  Any standard mathematical procedure such as addition or
multiplication. The symbols used for such operations are called operators.

Order  See degree.

Ordinal numbers  Numbers that denote a position, such as 1st, 2nd, or 3rd. See
also cardinal numbers.

Origin  The point at which the x and y axes of a graph intersect.

Oscillation  A regular to-and-fro movement between one position or value to
another and back again.

Output  The result when an input is combined with a function.

Parabola  A curve that is similar to one end of an ellipse, except that the arms of
a parabola diverge.

Parabolic  Relating to a parabola, or to a function based on it, such as a
quadratic function, which produces a parabola-shaped graph.

Parallel  Of a line, going in exactly the same direction as another line.

Parallelogram  A quadrilateral where each side has the same length as the side
opposite to it and the two sides are also parallel. A square, rectangle, and rhombus

567



are types of parallelogram.

Partial differential equation A differential equation containing several
variables, in which the differentiation is applied to only one of the variables at a
time.

Periodic function  A function whose value repeats periodically, as seen, for
example, in the graph of a sine function, which is in the form of a repeating series
of waves.

Perpendicular  At right angles to something else.

Pi  (π) The ratio of a circle’s circumference to its diameter, approximately 22⁄7,
or 3.14159. It is a fundamental transcendental number that appears in many
branches of mathematics.

Place value system  The standard system for writing numbers, where the value
of a digit depends on its place in a larger number. The 2 in 120, for example, has
a place value of 20, but in 210 it stands for 200.

Placeholder  A numeral, usually zero, used in a place value system to
differentiate 1 from 100, for example, but that does not necessarily imply an exact
measurement as in phrases such as “about 100 miles away.”

Plane  A flat surface.

Plane geometry  The geometry of 2-D figures on a flat surface.

Platonic solid  One of the five polyhedra that form completely regular and
symmetrical shapes: each face is an identical polygon and all the angles between
the faces are the same. The five Platonic solids are the tetrahedron, cube,
octahedron, dodecahedron, and icosahedron.

Polygon  Any flat shape with three or more straight sides, such as a triangle or
pentagon.

Polyhedron  Any 3-D shape whose faces are polygons.

Polynomial  A mathematical expression made up of two or more terms added
together. A polynomial expression usually includes different powers of a
variable, together with constants, for example, x3 + 2x + 4.

Positional number  An individual numeral whose value depends on its position
within a larger number. See place value system.
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Postulate  In mathematics, a statement whose truth is taken for granted or
thought to be obvious, but is not supported by a proof.

Power  The number of times a quantity or number has been multiplied by itself.
For example, four ys multiplied together (y × y × y × y) is called “y raised to the
power of 4” and written y4.

Power series  A mathematical series where each term has a greater power than
the previous one, such as x + x2 + x3 + x4 +… .

Prime number  A natural number that can be divided exactly only by itself and
1.

Probability  The branch of mathematics that studies the likelihood of different
outcomes occurring in the future.

Product  The result of one number or quantity being multiplied by another.

Proof  Any method of showing beyond doubt that a mathematical statement or
result is true. There are different kinds, including proof by induction and existence
proofs.

Proportion  The relative size of something compared with something else. For
example, if two quantities are in inverse proportion, the larger one of them
becomes, the smaller the other one will become; for example, if one quantity is
multiplied by 3, the other is divided by 3.

Pure mathematics  Topics in mathematics that are studied for their own sake
rather than for any practical application. See also applied mathematics.

Quadratic equation  An equation containing at least one variable multiplied by
itself once (for example y × y, also written y2), but containing no variables raised
to higher powers.

Quadrilateral  Any flat 2-D shape with four straight sides.

Quartic  Referring to equations or expressions of the fourth degree, where the
highest power contained in them is 4—for example, x4.

Quaternion  A mathematical object that is a development of the idea of a
complex number, but uses four components added together, rather than just two.

Quintic  Referring to equations or expressions of the fifth degree, where the
highest power contained in them is 5, for example, x5.
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Quotient  The result that is obtained when one number is divided by another.

Radian  A measure of angles that is an alternative to degrees and is based on the
length of the radius and circumference of a circle. Turning around by 2 × pi (2π)
radians is the same as turning 360 degrees (that is, in a complete circle).

Radius  Any straight line from the center of a circle or sphere to its
circumference.

Rational number  A number that can be expressed as a fraction of one whole
number over another. See also irrational number.

Real number  Any number that is either a rational number or an irrational
number. Real numbers include fractions and negative numbers, but not imaginary
or complex numbers.

Reciprocal  A number or expression that is the inverse of another one, meaning
that the result of multiplying them together is 1. For example, the reciprocal of 3
is 1⁄3.

Recurring  Any number that is repeated without limit. For example, 1⁄3
expressed in decimals is 0.333333…, which can also be described in words as
“zero point three recurring.”

Rhombus  A quadrilateral with all four sides the same length; informally, a
diamond shape. A square is a special kind of rhombus, with all angles 90 degrees.

Right angle  An angle that is 90 degrees (a quarter turn), such as the angle
between vertical and horizontal lines.

Ring  A mathematical structure that is like a group except that it includes two
operations rather than one. For example, the set of all integers forms a ring when
taken together with the operations addition and multiplication, because
performing these operations on members of the set produces an answer that is still
a member of the set.

Root  (1) The root of a number, which is another number that when multiplied
gives the original number. For example, 4 and 8 are roots of 64, with 8 being the
square root (8 × 8 = 64) and 4 the cube root (4 × 4 × 4 = 64). (2) The root of an
equation is its solution.
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Scalar  A quantity that has magnitude (size), but not direction, in contrast to a
vector.

Scalene triangle  A triangle where none of the sides and none of the angles are
the same size.

Segment  (1) Part of a line, with definite end points. (2) In a circle, the area
between a chord and the outside edge (circumference).

Sequence  An arrangement of numbers or mathematical terms placed one after
the other and usually following a set pattern.

Series  A list of mathematical terms added together. Series usually follow a
mathematical rule, and even if the series is infinite, it may add up to a finite
number. See also sequence.

Set  Any collection of numbers, or mathematical structures based on numbers.
Sets can be finite or infinite (for example, the set of all integers).

Set theory  The theory of sets and a branch of mathematics which now forms
the underlying basis of many other branches of mathematics.

Sexagesimal  A number system used by the ancient Babylonians based on the
number 60, and still used in a modified form for time, angles, and geographic
coordinates.

Simultaneous equations  A set of several equations that include the same
unknown quantities, such as x, y, and z. Usually, the equations must be calculated
together to solve the value of the unknowns.

Sine  (abbreviation sin) An important function in trigonometry, and defined as
the ratio of the length of the side opposite a given angle in a right-angled triangle
to the length of the triangle’s hypotenuse. This ratio starts at 0 and varies with the
size of the angle, repeating its pattern after 360 degrees. The graph of a sine
function is also the shape of many waves, including light waves.

Slope  The angle of a line to the horizontal, or an angle of a tangent to a curve to
the horizontal.

Square number  A whole number that can be formed by multiplying a smaller
whole number by itself once. For example, 25 is a square number as it is 5 × 5
(52).
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Statistics  (1) Measurable data collected in an orderly way for any purpose. (2)
The branch of mathematics that develops and applies methods for analyzing and
studying such data.

Surd  An expression that includes a root that is an irrational number such as 

. It is left in root form as it cannot be simplified or written exactly as a
decimal.

Surface area  The area of a flat or curved surface, or of the outside of a 3-D
object.

Tangent  (1) A line which grazes the outside of a curve, just touching it at one
point. (2) In trigonometry, the tangent function, abbreviated as tan, is defined as
the ratio of the side length opposite a given angle to the side length adjacent to
that angle, in a right-angled triangle.

Term  In an algebraic expression, one or more numbers or variables, usually
separated by a plus (+) or minus (˗) sign, or in a sequence, by a comma. In x + 4y
˗ 2, for example, x, 4y, and 2 are all terms.

Tessellation  A pattern that is formed on a flat 2-D surface by repeated copies of
one or more regular geometrical shapes that cover the surface without any gaps in
between. This is also called a tiling.

Tesseract  A 4-D shape with four edges at every vertex, whereas a cube has
three edges at every vertex, and a square has two.

Tetrahedron  A 3-D polyhedron that is made up of four triangular faces. A
regular tetrahedron is one of the five Platonic solids.

Theorem  A significant proven result on a mathematical topic, especially one
that is not self-evident. An unproved statement is called a conjecture.

Topology  The branch of mathematics that studies surfaces and objects by
examining how their parts are connected rather than according to their exact
geometrical shapes. For example, a doughnut and a teacup are topologically
similar because they are both shapes that have one hole going through them
(going through the handle, in the case of the teacup).

Transcendental number  Any irrational number that is not an algebraic
number. The number pi (π) and Euler’s number e are both transcendental
numbers.
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Transfinite number  Another term for an infinite number. It is used particularly
when infinities of different sizes or infinite collections of objects are compared.

Transformation  The conversion of a given shape or mathematical expression
into another related one, using a particular rule.

Translation  A function that moves an object a certain distance in a direction
without affecting its shape, size, or orientation.

Trigonometry  Originally, the study of the way the ratios between different
sides of a right-angled triangle change when other angles in the triangle change,
and later extended to all triangles. The way the ratios change is described by
trigonometric functions, which are now fundamental to many branches of
mathematics.

Variable  A mathematical quantity that can take on different values, often
symbolized by a letter such as x or y.

Vector  A mathematical or physical quantity that has both magnitude and
direction. In diagrams, vectors are often represented by bold arrows.

Vector space  A complex abstract mathematical structure that involves the
multiplication of vectors by each other and by scalars.

Venn diagram  A diagram that shows sets of data as overlapping circles. The
overlaps show what the sets have in common.

Vertex  (plural vertices) A corner or angle, where two or more lines, curves, or
edges meet.

Volume  The amount of space inside a 3-D object.

Whole number  Any of the negative and positive counting numbers. For
example, –1, 0, 19, 55, and so on. It is another term for integer.
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Samuel Johnson, English writer
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Regiomontanus, German mathematician and astronomer
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Martin Cohen, British philosopher

THE MIDDLE AGES

Algebra is a scientific art

Omar Khayyam, Persian mathematician and poet

The ubiquitous music of the spheres

Guy Murchie, American writer

The power of doubling

Ibn Khallikan, Islamic scholar and biographer
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The geometry of art and life

Matila Ghyka, Romanian novelist and mathematician

Like a large diamond
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Chris Caldwell, American mathematician

A device of marvelous invention

Evangelista Torricelli, Italian physicist and mathematician

Chance is bridled and governed by law

Boëthius, Roman senator

With calculus I can predict the future

Steven Strogatz, American mathematician

THE ENLIGHTENMENT

One of those strange numbers that are creatures of their own

Ian Stewart, British mathematician

The most beautiful equation

Keith Devlin, British mathematician

No theory is perfect

Nate Silver, American statistician

Simply a question of algebra

Robert Simpson Woodward, American engineer, physicist, and mathematician

Algebra often gives more than is asked of her

Jean d’Alembert, French mathematician and philosopher
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The imp that knows the positions of every particle in the Universe

Steven Pinker, Canadian psychologist

An indispensable tool in applied mathematics

Walter Fricke, German astronomer and mathematician

A new kind of function
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W. W. Rouse Ball, British mathematician and lawyer

Just like a pocket map
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The matrix is everywhere

from the film The Matrix

The music of the primes

Marcus du Sautoy, British mathematician and author

Some infinities are bigger than others

John Green, American author

Lost in that silent, measured space

Paolo Giordano, Italian author

MODERN MATHEMATICS

Statistics is the grammar of science

Karl Pearson, British mathematician and statistician

Rather a dull number

G. H. Hardy, English mathematician

A million monkeys banging on a million typewriters

Robert Wilensky, American computer scientist

She changed the face of algebra

Hermann Weyl, German mathematician

A blueprint for the digital age

Robert Gallagher, American engineer

A small positive vibration can change the entire cosmos

Amit Ray, Indian author
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A grand unifying theory of mathematics

Edward Frenkel, Russian–American mathematician

Endless variety and unlimited complication

Roger Penrose, British mathematician

Jewels strung on an as-yet invisible thread

Ronald Solomon, American mathematician

A truly marvelous proof

Pierre de Fermat, French lawyer and mathematician
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