
		
			[image: cover.png]
		

	
		
			Practical Node-RED Programming

			Learn powerful visual programming techniques and best practices for the web and IoT

			 

			Taiji Hagino

			BIRMINGHAM—MUMBAI

			Practical Node-RED Programming

			Copyright © 2021 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Associate Group Product Manager: Pavan Ramchandani

			Publishing Product Manager: Kaustubh Manglurkar

			Senior Editor: Sofi Rogers

			Content Development Editor: Rakhi Patel

			Technical Editor: Saurabh Kadave

			Copy Editor: Safis Editing

			Language Support Editor: Safis Editing

			Project Coordinator: Divij Kotian

			Proofreader: Safis Editing

			Indexer: Manju Arasan

			Production Designer: Alishon Mendonca

			First published: March 2021

			Production reference: 1190321

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80020-159-0

			www.packt.com

			To my colleague, Nick O'Leary, and Node-RED Community co-organizers, Atsushi Kojo, Seigo Tanaka, and Kazuhito Yokoi, I would like to thank you for taking time from your busy schedules to help me with the book. I would also like to thank my wife, Akiko, for being my loving partner and supporting me throughout writing this book and always.

			– Taiji Hagino

			Foreword

			Taiji has been deeply involved with the Node-RED User Group Japan since its creation. In his developer advocate role, he has worked with many users to help them build meaningful applications with Node-RED. This book reflects Taiji's skills and experience with the project and will be a great resource for many readers.

			This book will provide you with a good introduction to Node-RED and give you a sense of how quickly you can get started with creating applications. The examples in each chapter will give you a taste of how much can be achieved with very little coding.

			I hope it inspires you to continue building with Node-RED and to explore everything that is possible.

			Nick O'Leary

			Co-creator of Node-RED

			Taiji has extensive development knowledge in the web/cloud, mobile, IoT, blockchain, and so on. We have known each other since the inception of the Node-RED User Group Japan 5 years ago.

			Taiji has been an active contributor to the Node-RED community since the early days of Node-RED, running Node-RED meetups with us. He was a co-author of the book First Node-RED published by the Node-RED User Group Japan 3 years ago.

			For more than 5 years, Node-RED has been evolving to meet the needs of developers around the world. During this time, Taiji has been a key member of IBM and has been active in Developer Advocates and Developer Relations.

			In addition, Taiji has been able to gain a deep understanding of other languages and cultures through his global activities as a developer advocate and in developer relations.

			Taiji has used his knowledge and experience from these global activities to organize the Node-RED Conference Tokyo, a global Node-RED event that has run for two consecutive years, where he has used his global skills to communicate with speakers from overseas and to facilitate the day of the event.

			I believe Taiji will continue to serve as a global career model for Japanese developers and will be a key player in the development of the Node-RED community around the world.

			Atsushi Kojo

			Chief research officer at Uhuru Corporation

			Taiji and I have been working together at the Node-RED User Group Japan for 5 years. He is one of the user group organizers. Taiji is especially looking globally with the aim of sharing technological possibilities, such as setting up a meeting between the organizer of a Japanese user group and the Node-RED development team at IBM Hursley. Recently, we held Node-RED Con Tokyo 2019 and 2020 together. Taiji has also carried out an important role as an online moderator and manager.

			Taiji has written various blogs where he has shared his immense knowledge of Node-RED smartly. The source of his knowledge comes from his great experience as an excellent developer and developer advocate at IBM. He has gained experience with business use cases and development knowledge such as IoT, mobile applications, cloud technologies, databases, and blockchain in his developer relations activity.

			He has a strong understanding of the synergies and difficulties of combining each technology. Many developers find Node-RED attractive because of him. This book represents how knowledgeable he is as a developer.

			Read this book and discover how wonderful it is to combine various technologies such as IoT and the cloud using Node-RED, and expand your possibilities as a developer.

			Seigo Tanaka

			President, 1ft seabass

			Contributors

			About the author

			After becoming a software engineer, Taiji Hagino started Accurate System Ltd. with his amazing software development experience. After working as a system integrator of a subsidiary of a general trading company, he now works as a developer advocate in the IBM Global team, developing DevRel (developer relations), a marketing approach to engineers. He also works as a lecturer at the Faculty of Informatics, University of Tsukuba. Works he has authored include Developer Marketing DevRel Q&A (Impress R&D), First Node-RED, Practical Node-RED Application Manual (Kogakusha), and so on. He has been awarded Microsoft MVP and was previously a musician and a hairdresser.

			I want to thank all the people who have been close to me and supported me throughout writing this book, especially my wife, Akiko, and my family.

			About the reviewers

			Nick O'Leary is an open source developer and leads the OpenJS Node-RED project. He spends his time playing with IoT technologies, having worked on projects ranging from smart meter energy monitoring to retrofitting sensors to industrial manufacturing lines with Raspberry Pis and Arduinos. With a background in pervasive messaging, he is a contributor to the Eclipse Paho project and sits on the OASIS MQTT Technical Committee and the OpenJS Cross Project Council.

			Kazuhito Yokoi works for OSS Solution Center in Hitachi, Ltd. as a software engineer. On GitHub, he is a member of the Node-RED project. Hitachi has used Node-RED in their IoT platform, Lumada. To improve the code quality and add new features, his team joined the Node-RED project as contributors. For 4 years, 19 contributors in his team have added over 700 commits and 80,000 lines to the project. Currently, they are contributing to not only Node-RED but also sub-projects such as a node generator to generate nodes from various sources without coding, and a Node-RED installer to set up Node-RED without CLI operations. He held sessions about Node-RED at the Open Source Summit Japan 2020, Node+JS Interactive 2018, and other global conferences.

		

	
		
			Table of Contents

			Preface

			Section 1: Node-RED Basics

			Chapter 1: Introducing Node-RED and Flow-Based Programming

			What is FBP?

			Workflows

			Flow-based programming (FBP)

			What is Node-RED?

			Overview

			Flow editor and runtime

			History and origin of Node-RED

			Node-RED benefits

			Simplification

			Efficiency

			Common

			High quality

			Open source

			Node-RED library

			Various platforms

			Node-RED and IoT

			Node-RED and IoT

			Summary

			Chapter 2: Setting Up the Development Environment

			Technical requirements

			Installing npm and Node.js for Windows

			Installing npm and Node.js for Mac

			Installing npm and Node.js for Raspberry Pi

			Installing Node-RED for Windows

			Installing Node-RED for Mac

			Installing Node-RED for Raspberry Pi

			Summary

			Chapter 3: Understanding Node-RED Characteristics by Creating Basic Flows

			Technical requirements

			Node-RED Flow Editor mechanisms

			Using the Flow Editor

			Making a flow for a data handling application

			Importing and exporting a flow definition

			Summary

			Chapter 4: Learning the Major Nodes

			Technical requirements

			What is a node?

			How to use nodes

			Common category

			Function category

			Getting several nodes from the library

			Summary

			Section 2: Mastering Node-RED

			Chapter 5: Implementing Node-RED Locally

			Technical requirements

			Running Node-RED on a local machine

			Using the standalone version of Node-RED

			Using IoT on edge devices

			Making a sample flow

			Use case 1 – light sensor

			Use case 2 – temperature/humidity sensor

			Making a flow for use case 1 – light sensor

			Making a flow for use case 2 – temperature/humidity sensor

			Summary

			Chapter 6: Implementing Node-RED in the Cloud

			Technical requirements

			Running Node-RED on the cloud

			What is the specific situation for using Node-RED in the cloud?

			IoT case study spot on the server side

			Use case 1 – Storing data

			Use case 2 – Temperature/humidity sensor

			Making a sample flow

			Making a flow for use case 1 – storing data

			Making a flow for use case 2 – visualizing data

			Summary

			Chapter 7: Calling a Web API from Node-RED

			Technical requirements

			Learning about the RESTful API

			Learning about the input/output parameters of a node

			How to call the web API on a node

			Creating an account

			Creating an API key

			Checking the API endpoint URL

			Checking that the API can run

			Creating the flow calling the API

			How to use the IBM Watson API

			Logging in to IBM Cloud

			Starting Node-RED on IBM Cloud

			Creating the Watson API

			Connecting Node-RED and the Tone Analyzer service

			Creating the flow by calling the Tone Analyzer API

			Testing the flow

			Summary

			Chapter 8: Using the Project Feature with Git

			Technical requirements

			Enabling the project feature

			Using the Git repository

			Accessing project settings

			Connecting a remote repository

			Summary

			Section 3: Practical Matters

			Chapter 9: Creating a ToDo Application with Node-RED

			Technical requirements

			Why you should use Node-RED for web applications

			Creating a database

			How to connect to the database

			Configuring Node-RED

			Cloning the Node-RED Project

			Configuring the Node-RED and CouchDB connection

			Running the application

			Summary

			Chapter 10: Handling Sensor Data on the Raspberry Pi

			Technical requirements

			Getting sensor data from the sensor module on the Raspberry Pi

			Preparing the devices

			Checking Node-RED to get data from the sensor device

			Learning the MQTT protocol and using an MQTT node

			Connecting to an MQTT broker

			Mosquitto

			Preparing Mosquitto on your Raspberry Pi

			Making a flow to get sensor data and send it to the MQTT broker

			Checking the status of data on the localhost

			Summary

			Chapter 11: Visualize Data by Creating a Server-Side Application in the IBM Cloud

			Technical requirements

			Preparing a public MQTT broker service

			Publishing the data from Node-RED on an edge device

			Subscribing and visualizing data on the cloud-side Node-RED

			Preparing Node-RED on the IBM Cloud

			Visualization of the data on the IBM Cloud

			Summary

			Chapter 12: Developing a Chatbot Application Using Slack and IBM Watson

			Technical requirements

			Creating a Slack workspace

			Creating a Watson Assistant API

			Enabling the connection to Slack from Node-RED

			Building a chatbot application

			Summary

			Chapter 13: Creating and Publishing Your Own Node on the Node-RED Library

			Technical requirements

			Creating your own node

			Node program development

			Node packaging

			Testing your own node in a local environment

			Node installation

			Node customization

			Publishing your own node as a module in the Node-RED Library

			Publishing the node you created

			Deleting the node you published

			Installing the node you published

			Summary

			Appendix: Node-RED User Community

			Node-RED Community Slack

			Node-RED Forum

			Japan User Group

			Why subscribe?

			Other Books You May Enjoy

		

	
		
			Preface

			Node-RED is a flow-based programming tool that was made by Node.js. This tool is mainly used for connecting IoT devices and software applications. However, it can cover not only IoT but also standard web applications.

			Node-RED is expanding as a no-code/low-code programming tool. This book covers the basics of how to use it, including new features that have been released from version 1.2, as well as advanced tutorials.

			Who this book is for

			This book is best for those who are learning about software programming for the first time with no-code/low-code programming tools. Node-RED is a flow-based programming tool, and this tool can build web applications for any software applications easily, such as IoT data handling, standard web applications, web APIs, and so on. So, this book will help web application developers and IoT engineers.

			What this book covers

			Chapter 1, Introducing Node-RED and Flow-Based Programming, teaches us what Node-RED is. The content also touches on flow-based programming, explaining why Node-RED was developed and what it is used for. Understanding this new tool, Node-RED, is helpful to improve our programming experience.

			Chapter 2, Setting Up the Development Environment, covers setting up the development environment by installing Node-RED. Node-RED can be installed for any OS Node.js can run, such as Windows, macOS, Rasberry Pi OS, and so on. We install Node-RED on each environment with the command line or using the installer. This chapter covers important notes for specific OSes.

			Chapter 3, Understanding Node-RED Characteristics by Creating Basic Flows, teaches us about the basic usage of Node-RED. In Node-RED, various functions are used with parts called nodes. In Node-RED, we create an application with a concept called a flow, like a workflow. We will create a sample flow by combining basic nodes.

			Chapter 4, Learning the Major Nodes, teaches us how to utilize more nodes. We will not only learn about the nodes provided by Node-RED by default but also how to acquire various nodes published on the internet by the community and how to use them.

			Chapter 5, Implementing Node-RED Locally, teaches us best practices for leveraging Node-RED in our local environment, our desktop environment. Since Node-RED is a tool based on Node.js, it is good at building server-side applications. However, servers aren't just on beyond the network. It is possible to use it more conveniently by using Node-RED in a virtual runtime on the local environment of an edge device such as Raspberry Pi.

			Chapter 6, Implementing Node-RED in the Cloud, teaches us best practices for leveraging Node-RED on a cloud platform. Since Node-RED is a tool based on Node.js, it is good at building server-side applications. It is possible to use it more conveniently by using Node-RED on any cloud platform, so we will make flows with Node-RED on IBM Cloud as one of the use cases with cloud platforms.

			Chapter 7, Calling a Web API from Node-RED, teaches us how to utilize the web API from Node-RED. In order to maximize the appeal of web applications, it is essential to link with various web APIs. Its application development architecture is no exception in Node-RED. Understanding the difference between calling a web API from a regular Node.js application and calling it from Node-RED can help us get the most out of Node-RED.

			Chapter 8, Using the Project Feature with Git, teaches us how to use source code version control tools in Node-RED. With Node-RED, the project function is available in version 1.x and later. The project function can be linked with each source code version control tool based on Git. By versioning the flows with the repository, our development will be accelerated.

			Chapter 9, Creating a ToDo Application with Node-RED, teaches us how to develop standard web applications with Node-RED. The web application here is a simple ToDo application. The architecture of the entire application is very simple and will help us understand how to develop a web application, including the user interface, using Node-RED.

			Chapter 10, Handling Sensor Data on the Raspberry Pi, teaches us application development methods for IoT data processing using Node-RED. Node-RED was originally developed to handle IoT data. Therefore, many of the use cases where Node-RED is still used today are IoT data processing. Node-RED passes the data acquired from sensors for each process we want to do and publishes it.

			Chapter 11, Visualize Data by Creating a Server-Side Application in the IBM Cloud, teaches us about application development methods for IoT data processing using Node-RED on the cloud platform side. We usually use the data from edge devices on any cloud platform for analyzing, visualization, and so on. Node-RED handles the data subscribed from the MQTT broker and visualizes it for any purpose.

			Chapter 12, Developing a Chatbot Application Using Slack and IBM Watson, teaches us how to create a chatbot application. At first glance, Node-RED and chatbots don't seem to be related, but many chatbot applications use Node-RED behind the scenes. The reason is that Node-RED can perform server-side processing on a data-by-data basis like a workflow. Here, we create a chatbot that runs on Slack, which is used worldwide.

			Chapter 13, Creating and Publishing Your Own Node on the Node-RED Library, teaches us how to develop nodes ourselves. For many use cases, we can find the node for the processing we need from the Node-RED Library. This is because many nodes are exposed on the internet thanks to the contributions of many developers. Let's aid a large number of other Node-RED users by developing our own node and publishing it to the Node-RED Library.

			To get the most out of this book

			You will need Node-RED version 1.2 or later, Node.js version 12 or later, npm version 6 or later, and preferably the latest minor version installed on your computer. But this is the case when running Node-RED in a local environment. In the case of running on IBM Cloud, which is one of the tutorials in this book, it depends on the environment of the cloud platform. All code examples have been tested on macOS, Windows, and Raspberry Pi OS, but some chapters have command-line instructions based on macOS.

			
				
					[image:]
				

			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code via the GitHub repository (link available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/-Practical-Node-RED-Programming. In case there's an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781800201590_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Let's attach a page heading to the body with the <h1> tag."

			A block of code is set as follows:

			// generate random number

			var min = 1 ;

			var max = 10 ;

			var a = Math.floor(Math.random() * (max + 1 - min)) + min ;

			// set random number to message

			msg.payload = a;

			// return message

			return msg;

			Any command-line input or output is written as follows:

			$ node --version

			v12.18.1

			$ npm –version

			6.14.5

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "After selecting the name and payment plan, click the Select Region button."

			Tips or important notes	

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Reviews

			Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

			For more information about Packt, please visit packt.com.

		

	
		
			
			

		

		
			Section 1: Node-RED Basics

			In this section, readers will understand what a flow-based programming (FBP) tool is, including Node-RED, along with how to undertake IoT/web programming with it, and will learn how to use the Node-RED flow editor at a basic level.

			In this section, we will cover the following chapters:

			
					Chapter 1, Introducing Node-RED and Flow-Based Programming

					Chapter 2, Setting Up the Development Environment

					Chapter 3, Understanding Node-RED Characteristics by Creating Basic Flows

					Chapter 4, Learning the Major Nodes

			

		

	
		
			Chapter 1: Introducing Node-RED and Flow-Based Programming

			This chapter will help you grow from being a reader to being a Node-RED user. First, you'll learn about the history of Flow-based programming (FBP) tools, not just Node-RED. You will then gain a broad understanding of the entirety of Node-RED as a useful tool for building web applications and the Internet of Things (IoT) data handling, before learning what IoT and Node.js are in terms of Node-RED.

			Providing technical content will help accelerate your software application development, but if you take a look at the history of the Node-RED tool itself, it will help you better understand why you need a FBP tool such as Node-RED. That is what we will be doing in this chapter.

			More specifically, we'll be covering the following topics:

			
					What is FBP?

					What is Node-RED?

					Node-RED benefits

					Node-RED and IoT

			

			Let's get started!

			What is FBP?

			So, what is FBP in the first place? It's the workflows you use in your work that you can easily imagine. Let's recall those workflows.

			Workflows

			In a normal workflow, boxes and wires indicate the process flow. It may be just one business design. Boxes represent processes. Box processing is defined by who, when, where, what, and how much. Sometimes, it's like explicitly writing out the flow of processing, such as by using swim lanes or placing writing definitions inside boxes. In any case, looking at the box should reveal what will be done.

			On the other hand, let's try to summarize this business process as a document. Don't you think it will be complicated? Who will do what as they read it, even if they use some paragraphs well to put it together? When will you do it? It could be confusing:

			
				
					[image: Figure 1.1 – Workflow example

]
				

			

			Figure 1.1 – Workflow example

			Now, let's get back to software programming. FBP is a kind of concept for software programming that defines an application with a data flow. Each part of the process is there as a black box. They communicate data between connected black boxes that have been predefined. FBP is said to be component-oriented because these black-box processes can be connected repeatedly to form several applications without needing to be modified internally. Let's explore FBP in more detail.

			Flow-based programming (FBP)

			I think FBP is a good blend of workflow and dataflow. FBP uses a data factory metaphor to define an application. It sees an application as a network of asynchronous processes that start at some point and do a single sequential process that does one operation at a time until it ends, rather than communicating by using a stream of structured chunks of data. This is called an information packet (IP). This view focuses on the data and its transformation process to produce the output that is needed. Networks are usually defined outside a process as a list of connections that is interpreted by a piece of software called a scheduler.

			Processes communicate via fixed capacity connections. Connections are connected to processes using ports. The port has a specific name that is agreed on by the network definition and the process code. At this point, it is possible to execute the same code by using multiple processes. A particular IP is usually only owned by a single process or transferred between two processes. The port can be either a normal type or an array type.

			FBP applications typically run faster than traditional programs, since FBP processes can continue to run as long as there is room to put in data and output to process. It does not require any special programming and makes optimal use of all the processors on the machine.

			FBP has a high-level, functional style so that the behavior of the system can be easily defined; for example, in a distributed multi-party protocol such as a distributed data flow model, for accurately analyzing the criteria for determining whether a variable or statement behaves correctly:

			
				
					[image: Figure 1.2 – Simple FBP design example

]
				

			

			Figure 1.2 – Simple FBP design example

			Now that you have a solid understanding of FBP, let's learn how Node-RED can be implemented in this way.

			What is Node-RED?

			Node-RED is one of the FBP tools that we have described so far. Developed by IBM's Emerging Technology Services team, Node-RED is now under the OpenJS Foundation.

			Overview

			FBP was invented by J. Paul Morrison in the 1970s. As we mentioned earlier, FBP describes the behavior of the application as a black box network, which in Node-RED is described as a "node." Processing is defined in each node; data is given to it, processing is performed using that data, and that data is passed to the next node. The network plays the role of allowing data to flow between the nodes.

			This kind of programming method is very easy to use to make a model visually and makes it easy to access for several layer users. Anybody can understand what the flow is doing if a problem is broken down into each step. That's why you don't need to the code inside the nodes:

			
				
					[image: Figure 1.3 – Node-RED Flow Editor as an FBP tool

]
				

			

			Figure 1.3 – Node-RED Flow Editor as an FBP tool

			Flow editor and runtime

			Node-RED is not only a programming tool but also an execution platform that wraps up the Node.js runtime for applications that are built using Node-RED.

			We need to use the flow editor to make Node-RED applications for IoT, web services, and more. The flow editor is also a Node.js web application. We will tell you how to use flow editor clearly in Chapter 3, Understanding Node-RED Characteristics by Creating Basic Flows.

			The flow editor, which is the core function of Node-RED, is actually a web application made with Node.js. It works with the Node.js runtime. This flow editor operates within the browser. You must select the node you want to use from the various nodes in the palette and drag it to the workspace. Wiring is the process of connecting the nodes to each other, which creates an application. The user (developer) can deploy the application to the target runtime with just one click.

			The palette that contains various nodes can easily be expanded as you can install new nodes created by developers, meaning you can easily share the flow you created as a JSON file to the world. Before we explore the benefits of Node-RED, let's look at the brief history behind its creation.

			History and origin of Node-RED

			In early 2013, Nick-O'Leary and Dave Conway-Jones from IBM UK's Emerging Technology Services Team created Node-RED.

			Originally, it was a just proof of concept (PoC) to help visualize and understand the mapping between Message Queue Telemetry Transport (MQTT) topics, but soon, it became a very popular tool that could be easily extended to various uses.

			Node-RED became open source in September 2013 and remains to be developed as open source now. It became one of the founding projects of the JS Foundation in October 2016, which has since merged with the Node.js Foundation to create the OpenJS Foundation, doing so in March 2019.

			The OpenJS Foundation supports the growth of JavaScript and web technologies as a neutral organization to lead and keep any projects and fund activities jointly, which is beneficial to the whole of the ecosystem. The OpenJS Foundation currently hosts over 30 open source JavaScript projects, including Appium, Dojo, jQuery, Node.js, and webpack.

			Node-RED has been made available under the Apache 2 license, which makes it favorable to use in a wide range of settings, both personal and commercial:

			
				
					[image: Figure 1.4 – Dave Conway-Jones and Nick O'Leary

]
				

			

			Figure 1.4 – Dave Conway-Jones and Nick O'Leary

			Why is it Called Node-RED?

			The official documentation (https://nodered.org/about/ states that the name was an easy play on words that sounded like "Code Red." This was a dead end, and Node-RED was a big improvement on what it was called in its first few days of conception. The "Node" part reflects both the flow/node programming model, as well as the underlying Node.js runtime.

			Nick and Dave never did come to a conclusion on what the "RED" part stands for. "Rapid Event Developer" was one suggestion, but it's never been compelled to formalize anything. And so, the name "Node-RED" came to life.

			Node-RED benefits

			Let's think a little here. Why do you use cars? I think the answer is very simple and clear. First of all, we can come up with the answer that they are used as a means of transportation in a broad sense. There are other options for transportation, such as walking, bicycle, train, and bus. Then, we have the reasons for choosing a car from among these other options, as follows:

			
					You do not get exhausted.

					You can reach your destination quickly.

					You can move at your own pace.

					You can keep your personal space.

			

			Of course, there are some disadvantages, but I think these are the main reasons for using a car. Although other means of transportation can also serve the same purpose, the important thing is to consider the advantages and disadvantages of each, and use the car as a transportation tool for the reason that you feel is the most suitable to you.

			We can see the same situation in software. As an example, why do you use Word, Excel, and PowerPoint? You'll probably use Word because it's the most efficient way to write a document. However, you could use a word processor separately or handwrite anything. Similarly, instead of Excel, you can use any other means to make spreadsheets. There are also other means if you want to make presentation materials and make them look effective, besides PowerPoint. However, you are likely to choose the optimum tool for your situation.

			Let's recall what Node-RED is for. It is a FBP tool, suitable for making data control applications for web applications and IoT. Its development environment and execution environment are browser-based applications made with Node.js, which makes their development as easy as possible.

			So, what is the reason for using Node-RED, which provides these kinds of features? Do you want to avoid heavy coding? Do you not have coding skills? Yes, of course, these are also reasons to use the program.

			Let's recall the example of a car. In a broad sense, our dilemma (transportation) is replaced here by developing (creating) a Node.js application for describing software tools. The transport options, such as cars, bicycles, trains, buses, ships, planes, and so on, are options, and with software development, we also have numerous options, such as using Node.js scratch, or using various frameworks of Node.js and using Node-RED. As for reasons to choose Node-RED, let's take a look at some essential points.

			Simplification

			When programming with Node-RED, you'll notice its simplicity. As the name no-code/low-code indicates, coding is eliminated and programming is intuitively completed with a minimal number of operations needing to be used.

			Efficiency

			The FBP typified by Node-RED can be completed with almost only GUI operations. Node-RED flow editor takes care of building the application execution environment, library synchronization, the integrated development environment (IDE), and editor preparation so that you can concentrate on development.

			Common

			As represented by object-oriented development, making the source code a common component is one of the most important ideas in development. In normal coding-based development, each common component exists in functions and classes, but in Node-RED, they exist as an easy-to-understand node (just a box). If you don't have a node as a common component you want to use, anyone can create one immediately and publish it to the world.

			High quality

			High quality is the true value of flow-based and visual programming. Each node provided as a component is a complete module that has been unit tested. As a result, app authors can focus on checking the operation at the join level without worrying about the contents of node. This is a big factor that eliminates human error at the single level and ensures high quality.

			Open source

			Node-RED is an open source piece of software. Therefore, it can be used flexibly under the Apache2 license. Some are developing their own services based on Node-RED, while others are changing to their own UI and deploying it as built-in. As we mentioned previously, we have also established a platform where we can publish our own developed node so that anyone can use it.

			Node-RED library

			The library indexes all Node-RED modules published to the public npm repository (https://www.npmjs.com/), assuming they follow the proper packaging guidelines.

			This is the area in which we've seen the most community contribution, with well over 2,000 nodes available – which means there's something for everyone:

			
				
					[image: Figure 1.5 – Node-RED library

]
				

			

			Figure 1.5 – Node-RED library

			Various platforms

			Node-RED can be used on various platforms. That's because Node-RED itself is a Node.js application, as we mentioned previously. If you have a runtime environment for Node.js, you can run it. It is mostly used on Edge devices, cloud services, and in embedded formats.

			You can get a sense of this by understanding the relationship between Node-RED and IoT and the architecture of IoT, which will be explained in the next section.

			Node-RED and IoT

			Again, Node-RED is a virtual environment that combines hardware devices, APIs, and online services in a revolutionary way on a browser. It provides the following features:

			
					Browser-based UI.

					Works with Node.js and is lightweight.

					Encapsulates function and can be used as a node (meaning functions are locked in an abstract capsule) .

					You can create and add your own nodes.

					Easy access to IBM Cloud services.

			

			In other words, it can be said that this tool is suitable for building IoT-related services, such as data control on devices, and linking edge devices and cloud services. Originally, the development concept of Node-RED was for IoT, so this makes sense.

			Now, let's look at the basic structure of IoT so that those who are only vaguely aware of IoT can understand it. It can be said that IoT is basically composed of six layers, as shown in the following diagram:

			
				
					[image: Figure 1.6 – IoT six layers

]
				

			

			Figure 1.6 – IoT six layers

			Let's take a look at these in more detail.

			Device

			The device is a so-called edge device. IoT has various sensors and handles the data that's acquired from them. Since it doesn't make sense to have the data only on the edge device, we need to send that data through the gateway to the network.

			Network

			This is the network that's required to send the data that's been obtained from the device to a server on the internet. It usually refers to the internet. In addition to the internet, there is also a P2P connection via Bluetooth or serial.

			Platform

			The party that receives and uses the data is the platform. We may also have a database for activating and authenticating things, managing communications, and persisting received data.

			Analytics

			This is a layer that analyzes the received data. Broadly speaking, it may be classified as an application. This is the part that prepares the data so that it can be processed into a meaningful form.

			Application

			An application provides a specific service based on data analysis results. It can be a web or mobile application, or it can be a hardware-specific embedded application. It can be said to be the layer that's used by the end user of the IoT solution.

			Now that we have an understanding of IoT, we will examine why Node-RED should be used for it.

			Node-RED and IoT

			While explaining IoT so far, we've made it clear why Node-RED is suitable for IoT. For example, you can understand why FBP tools that have been developed for IoT survive when used with Node-RED. In particular, the following three points should be taken into account:

			
					Since it can be run on edge devices (pre-installed on specific versions of Raspberry Pi OS), it is ideal for data handling at the device layer.

					Since it can be run on the cloud (provided as a default service in IBM Cloud), it is easy to link with storage and analysis middleware.

					Since MQTT and HTTP protocols can be covered, it is very easy to exchange data between the edge device and the server processing cloud.

			

			In this way, Node-RED, which largely covers the elements required for IoT, is now used for a wide range of applications, such as web services and chart display, as well as programming for IoT. Also, as of June 2020, if you look at Google Trends for Node-RED, you can see that the number of users is gradually increasing. As such, Node-RED is a very attractive FBP tool:

			
				
					[image: Figure 1.7 – Google Trends for "Node-RED"

]
				

			

			Figure 1.7 – Google Trends for "Node-RED"

			A typical edge device that can use Node-RED is Raspberry Pi. Of course, it is possible to use Node-RED on other platforms, but it goes well with Raspberry Pi, which also has a pre-installed version of the OS.

			Raspberry Pi OS Supports Node-RED

			Node-RED has also been packaged for the Raspberry Pi OS repositories and appears in their list of recommended software. This allows it to be installed using apt-get install Node-RED and includes the Raspberry Pi OS-packaged version of Node.js, but does not include npm. More information can be found at https://nodered.org/docs/getting-started/raspberrypi.

			IBM Cloud is a typical cloud platform that can use Node-RED. Of course, you can use Node-RED on other clouds, but IBM Cloud provides a service that anyone can easily start.

			Important Note

			Node-RED is available on the IBM Cloud platform as one of its Starter Kits applications in their catalog. It is very easy to start using the flow editor as a web application on IBM Cloud (https://nodered.org/docs/getting-started/ibmcloud).

			Summary

			In this chapter, you learned what FBP and Node-RED are. Due to this, you now understand why Node-RED is currently loved and used by lots of people as an FBP tool. At this point, you may want to build an application using Node-RED. In the next chapter, we'll install Node-RED in our environment and take a look at it in more depth.

		

	
		
			Chapter 2: Setting Up the Development Environment

			In this chapter, you will install the tools that you'll need to use Node-RED. This extends not only to Node-RED itself, but to its runtime, Node.js, and how to update both Node-RED and Node.js.

			Node-RED released its 1.0 milestone version in September 2019. This reflects the maturity of the project, as it is already being widely used in production environments. It continues to be developed and keeps up to date by making changes to the underlying Node.js runtime. You can check the latest status of Node-RED's installation at https://nodered.org/docs/getting-started/.

			There are a number of installation guides on the Node-RED official website, such as local, Raspberry Pi, Docker, and major cloud platforms.

			In this chapter, you will learn how to install Node-RED on your local computer, whether you are running it on Windows, Mac, or on a Raspberry Pi. We will cover the following topics:

			
					Installing npm and Node.js for Windows

					Installing npm and Node.js for Mac

					Installing npm and Node.js for Raspberry Pi

					Installing Node-RED for Windows

					Installing Node-RED for Mac

					Installing Node-RED for Raspberry Pi

			

			By the end of this chapter, we'll have all the necessary tools installed and be ready to move on to building some basic flows with Node-RED.

			For reference, the author's test operation environment is Windows 10 2004 18363.476, macOS Mojave 10.14.6 (18G5033), and Raspberry Pi OS 9.4 stretch.

			Technical requirements

			You will need to install the following for this chapter:

			
					Node.js (v12.18.1)*

					npm (v6.14.5)*

			

			*LTS version at the time of writing for both.

			Installing npm and Node.js for Windows

			If you want to use Node-RED on Windows, you must install npm and Node.js via the following website:

			https://nodejs.org/en/#home-downloadhead.

			You can get the Windows Installer of Node.js directly there. After that, follow these steps:

			
					Access the original Node.js website and download the installer. You can choose both versions – Recommended or Latest Features – but in this book, you should use the Recommended version:
[image: Figure 2.1 – Choosing a Recommended version installer

]
Figure 2.1 – Choosing a Recommended version installer

					Click the msi file you downloaded to start installing Node.js. It includes the current version of npm. Node-RED is running on the Node.js runtime, so it is needed.

					Simply click the buttons of the dialog windows according to the installation wizard, though there are some points to bear in mind during the install.

					Next, you need to accept the End-User License Agreement:[image: Figure 2.2 – End-User License Agreement window

]
Figure 2.2 – End-User License Agreement window
You can also change the install destination folder. In this book, the default folder (C:/Program Files/nodejs/) will be used:
[image: Figure 2.3 – Installing the destination folder

]
Figure 2.3 – Installing the destination folder

					No custom setup is needed on the next screen. You can select Next with only the default features selected:[image: Figure 2.4 – No custom setup is needed

]
Figure 2.4 – No custom setup is needed

					On the following screen, you can click Next without checking anything. However, it's OK to install the tools that can be selected here. This includes the installations and settings the path of these environments (Visual C++, windows-build-tools, and Python):
[image: Figure 2.5 – Tools for Native Modules window

]
Figure 2.5 – Tools for Native Modules window

					Check the versions of your tools with the following commands when the installation for Node.js has finished:$ node --version
v12.18.1
$ npm –version
6.14.5
When the installations of Node.js and npm are complete, you can check their version numbers. With this, you are prepared to install Node-RED.
Important note
Depending on the project, it is common for the operation to be stable with the old Node.js version but for it not to work if you use a different version of Node.js. However, uninstalling your current version of Node.js and installing the desired version of Node.js every time you switch projects takes time. So, if you're using Windows, I recommend using a Node.js version management tool such as nodist (https://github.com/nullivex/nodist). There are other kinds of version control tools for Node.js, so please try to find one that is easy for you to use.

			

			Installing npm and Node.js for Mac

			If you want to use Node-RED on macOS, you must install npm and Node.js via the following website:

			https://nodejs.org/en/#home-downloadhead

			You can get the Mac Installer for Node.js directly there.

			Access the original Node.js website and download the installer. You can choose either the recommended or latest features version, but for this book, you should use the recommended version:

			
				
					[image: Figure 2.6 – Choosing a recommended version installer

]
				

			

			Figure 2.6 – Choosing a recommended version installer

			Click the .pkg file you downloaded to start installing Node.js. It includes the current version of npm. Node-RED is running on the Node.js runtime, so it is needed. Simply click according to the installation wizard, though there are some points in the installation to pay attention to.

			You need to accept the End-User License Agreement:

			
				
					[image: Figure 2.7 – End-User License Agreement window

]
				

			

			Figure 2.7 – End-User License Agreement window

			You can change the installation location. In this book, the default location (Macintosh HD) will be used:

			
				
					[image: Figure 2.8 – Install location

]
				

			

			Figure 2.8 – Install location

			You can check the versions of your tools with the following commands when the installation for Node.js has finished. Once you have finished installing Node.js and npm, you can check their version numbers. You have already prepared to install Node-RED:

			$ node --version

			v12.18.1

			$ npm –version

			6.14.5

			Note

			Depending on the project, it is common for the operation to be stable with the old Node.js version, and that it will not work if you use a different version of Node.js. However, uninstalling the current Node.js version and installing the desired version of Node.js every time you switch projects takes time. So, if you're using macOS, I recommend using a Node.js version management tool such as Nodebrew (https://github.com/hokaccha/nodebrew). There are other kinds of version control tools for Node.js, so please try to find one that is easy for you to use.

			Now that we have covered the installation processes for both Windows and Mac, let's learn how to install npm and Node.js for Raspberry Pi.

			Installing npm and Node.js for Raspberry Pi

			If you want to use Node-RED on Raspberry Pi, congratulations – you are already prepared to install Node-RED. This is because Node.js and npm are installed by default. You can use the existing installation script to install Node-RED, including Node.js and npm. This script will be described later in this chapter, in the Installing Node-RED for Raspberry Pi section, so you can skip this operation for now.

			However, you should check your Node.js and npm versions on your Raspberry Pi. Please type in the following commands:

			$ node --version

			v12.18.1

			$ npm –version

			6.14.5

			If it is not the LTS version or stable version, you can update it via the CLI. Please type in and run the following commands to do this. In this command, on the last line, lts has been used, but you can also put stable instead of lts if you want to install the stable version:

			$ sudo apt-get update

			$ sudo apt-get install -y nodejs npm

			$ sudo npm install npm n -g

			$ sudo n lts

			Now that we have successfully checked the versions of Node.js and npm on our Raspberry Pi and updated them (if applicable), we will move on to installing Node-RED for Windows.

			Important note

			The script the Node-RED project provides takes care of installing Node.js and npm. It is not generally recommended to use the versions that are provided by Raspberry Pi OS due to the strange ways they package them.

			Installing Node-RED for Windows

			In this section, we will explain how to set up Node-RED in a Windows environment. This procedure is for Windows 10, but it will work for Windows 7 and Windows Server 2008 R2 and above as well. Windows 7 or earlier versions of Windows Server 2008 R2 are not currently supported and are not recommended.

			For Windows, installing Node-RED as a global module adds the node-red command to your system path. Run the following command in Command Prompt:

			$ npm install -g --unsafe-perm node-red

			Once you have finished installing Node-RED, you can use Node-RED straight away. Please run the following command. After running this command, you will recognize the URL being used to access the Node-RED flow editor. Usually, localhost (127.0.0.1) with the default port 1880 will be allocated:

			$ node-red

			Welcome to Node-RED

			===================

			…

			[info] Starting flows

			[info] Started flows

			[info] Server now running at http://127.0.0.1:1880/

			Let's access Node-RED on a browser. For this, type in the URL you received from Command Prompt. I strongly recommend using Chrome or Firefox for running Node-RED:

			
				
					[image: Figure 2.9 – Node-RED flow editor

]
				

			

			Figure 2.9 – Node-RED flow editor

			Now, you are ready to program in Node-RED. From Chapter 3, Understanding Node-RED Characteristics by Creating Basic Flows, onward, we will learn how to actually build an application using Node-RED.

			For now, let's move on to installing Node-RED in macOS.

			Installing Node-RED for Mac

			In this section, we will explain how to set up Node-RED in a macOS environment. This procedure is for macOS Mojave. It will likely work for all versions of Mac OS X, but I strongly recommend that you use the current version of macOS.

			For macOS, installing Node-RED as a global module adds the node-red command to your system path. Run the following command in the Terminal. You may need to add sudo at the front of the command, depending on your local settings:

			$ sudo npm install -g --unsafe-perm node-red

			You can also install Node-RED with other tools. This is mainly for Mac/Linux or the kinds of OS that support the following tools:

			
					Docker (https://www.docker.com/), if you have the environment for running Docker.The current Node-RED 1.x repository on Docker Hub has been renamed "nodered/node-red".
Versions up to 0.20.x are available from https://hub.docker.com/r/nodered/node-red-docker.
Important note
When running Node-RED with Docker, you need to ensure that the added nodes and flows will not be lost if the container breaks. This user data can be persisted by mounting the data directory to a volume outside the container. You can also do this by using a bound mount or a named data volume.
Run the following command to install Node-RED with Docker:
$ docker run -it -p 1880:1880 --name mynodered nodered/node-red

					Snap (https://snapcraft.io/docs/installing-snapd) if your OS supports it.If you install it as a Snap package, you can run it in a secure container that doesn't have access to the external features you have to use, such as the following:
	Access main system storage (only read/write to local home directory is allowed).
	Gcc: Required to compile the binary components for the node you want to install.
	Git: Required if you want to take advantage of project features.
	Direct access to GPIO hardware.
	Access to external commands, such as flows executed in Exec nodes.There's less security for containers, but you can also run them in classic mode, which gives you more access.
Run the following command to install Node-RED with Snap:

			

			$ sudo snap install node-red

			Once you have finished installing Node-RED, you can use Node-RED immediately. Please run the following command. After running this command, you can find the URL for accessing the Node-RED flow editor. Usually, localhost (127.0.0.1) with the default port 1880 will be allocated:

			$ node-red

			Welcome to Node-RED

			===================

			…

			[info] Server now running at http://127.0.0.1:1880/

			[info] Starting flows

			[info] Started flows

			Let's access Node-RED on a browser. Type in the URL you received from Command Prompt. I strongly recommend using Chrome or Firefox for running Node-RED:

			
				
					[image: Figure 2.10 – Node-RED flow editor

]
				

			

			Figure 2.10 – Node-RED flow editor

			Now, you are ready to program in Node-RED. In Chapter 3, Understanding Node-RED Characteristics by Creating Basic Flows, we will learn how to actually build an application using Node-RED.

			Our final installation will be for Node-RED on Raspberry Pi.

			Installing Node-RED for Raspberry Pi

			In this section, we will explain how to set up Node-RED in a Raspberry environment. This procedure is for Raspberry Pi OS Buster (Debian 10.x), but it will work for Raspberry Pi OS Jessie (Debian 8.x) and above.

			You can check your version of Raspberry Pi OS easily. Just run the following command on your Terminal:

			$ lsb_release -a

			If you want to also check the version of Debian you have, please run the following command:

			$ cat /etc/debian_version

			You have now prepared to install Node-RED. The following script installs Node-RED, including Node.js and npm. This script can also be used for upgrading your application, which you have already installed.

			Note

			This instruction is subject to change, so it is recommended that you refer to the official documentation as needed.

			This script works on Debian-based operating systems, including Ubuntu and Diet-Pi:

			$ bash <(curl -sL https://raw.githubusercontent.com/node-red/linux-installers/master/deb/update-nodejs-and-nodered)

			You may need to run sudo apt install build-essential git to ensure that npm can build the binary components that need to be installed.

			Node-RED is already packaged as a Raspberry Pi OS repository and is included in the Recommended Software list. It can be installed with the apt-get install Node-RED command, and it also contains a Raspberry Pi OS packaged version of Node.js, but npm is not included.

			While using these packages may seem convenient at first glance, it is highly recommended to use the installation script instead.

			After the installation, you can start Node-RED and access the Node-RED flow editor. We have two ways to start it, as follows:

			
					Run with the CLI: If you want to run Node-RED locally, you can start Node-RED by using the node-red command in your Terminal. Then, you can stop it by pressing Ctrl + C or closing the Terminal window:$ node-red

					Run via Programming menu: Once Node-RED has been installed, you can start it from the Raspberry Pi menu. Click Menu | Programming | Node-RED to open the Terminal and launch Node-RED. Once Node-RED has been launched, you can access the Node-RED flow editor from your browser, just as you would in the CLI:

			

			
				
					[image: Figure 2.11 – Accessing Node-RED via the Raspberry Pi menu

]
				

			

			Figure 2.11 – Accessing Node-RED via the Raspberry Pi menu

			After launching Node-RED from the menu, you should check the Node-RED running process on your Terminal and find the URL of the Node-RED flow editor. It is usually the same URL as the one that can be launched via the CLI directly:

			
				
					[image: Figure 2.12 – Checking the URL to access the Node-RED flow editor

]
				

			

			Figure 2.12 – Checking the URL to access the Node-RED flow editor

			Let's access Node-RED on a browser. You can type in the URL you received from the Command Prompt to do this. If your Raspberry Pi default web browser is Chromium, then there should be no problems with using Node-RED. However, if you wish to use another browser, I strongly recommend installing Chromium for running Node-RED:

			
				
					[image: Figure 2.13 – Node-RED flow editor

]
				

			

			Figure 2.13 – Node-RED flow editor

			And that's it! We have now covered all the installation options for each tool we'll need in order to start using Node-RED.

			Summary

			In this chapter, you've gotten your environment ready so that you can use the Node-RED flow editor. At this point, I believe that you can already access the Node-RED flow editor, so you'll want to learn how to use it. In the next chapter, we'll make a sample flow on it and learn about the major features of the Node-RED flow editor.

		

	
		
			Chapter 3: Understanding Node-RED Characteristics by Creating Basic Flows

			In this chapter, we'll actually create a flow using Node-RED Flow Editor. By creating a simple flow, you will understand how to use the tool and its characteristics. For a better understanding, we will create some sample flows.

			From now on, you will create applications called flows using Node-RED. In this chapter, you will learn how to use Node-RED and how to create an application as a flow. To do this, we will cover the following topics:

			
					Node-RED Flow Editor mechanisms

					Using the Flow Editor

					Making a flow for a data handling application

					Making a flow for a web application

					Importing and exporting a flow definition

			

			By the end of this chapter, you will have mastered how to use Node-RED Flow Editor and know how to build a simple application with it.

			Technical requirements

			To complete this chapter, you will need the following:

			
					Node-RED (v1.1.0 or above).

					The code for this chapter can be found in Chapter03 folder at https://github.com/PacktPublishing/-Practical-Node-RED-Programming.

			

			Node-RED Flow Editor mechanisms

			As you learned in the previous chapters, Node-RED has two logical parts: a development environment called the Flow Editor and an execution environment for executing the application that's been created there. These are called the runtime and the editor, respectively. Let's take a look at them in more detail:

			
					Runtime: This includes a Node.js application runtime. It is responsible for running the deployed flows.

					Editor: This is a web application where the user can edit their flows.

			

			The main installable package includes both components, with a web server to provide Flow Editor as well as a REST Admin API for administering the runtime. Internally, these components can be installed separately and embedded into existing Node.js applications, as shown in the following diagram:

			
				
					[image: Figure 3.1 – Node-RED overview

]
				

			

			Figure 3.1 – Node-RED overview

			Now that you understand the mechanisms of Node-RED, let's immediately learn how to use the Flow Editor.

			Using the Flow Editor

			Let's take a look at the main functions of the Flow Editor.

			The main features of the Flow Editor are as follows:

			
					Node: The main building block of Node-RED applications, they represent well-defined pieces of functionality.

					Flow: A series of nodes wired together that represent the series of steps messages pass through within an application.

					The panel on the left is the palette: A collection of nodes that are available within the editor that you can use to build your application.

					Deploy button: Press this button to deploy your apps once you've edited them.

					Sidebar: A panel for displaying various functions, such as processing parameter settings, specifications, and debugger display.

					Sidebar tabs: Settings for each node, standard output, change management, and so on.

					Main menu: Flow deletion, definition import/export, project management, and so on.

			

			These functions are arranged on the screen of the Flow Editor like so:

			
				
					[image: Figure 3.2 – Node-RED Flow Editor

]
				

			

			Figure 3.2 – Node-RED Flow Editor

			You need to understand what is contained in the Flow menu before you start using Node-RED. Its contents may differ, depending on the version of Node-RED you're using, but it has some setting items such as Project management of flow, Arrange view, Import / export of flow, Installation of node published in library, and so on that are universal. For more information on how to use Node-RED, it's a good idea to refer to the official documentation as needed.

			Important note

			Node-RED User Guide: https://nodered.org/docs/user-guide/.

			The following diagram shows all these Flow Editor menu options inside Node-RED:

			
				
					[image: Figure 3.3 – Node-RED Flow Editor menu

]
				

			

			Figure 3.3 – Node-RED Flow Editor menu

			With that, you are ready to use Node-RED to build an application. So, let's get started!

			First of all, you need to run Node-RED in your environment. Please refer to Chapter 2, Setting Up the Development Environment, to learn how to set it up with your environment, such as Windows, Mac, or Raspberry Pi, if you haven't done so already.

			With Node-RED running, let's move on to the next section, where we'll be making our first flow.

			Making a flow for a data handling application

			In this section, you will create a working application (called a flow in Node-RED). Whether it is the internet of things (IoT) or server processing as a web application, the basic operation that Node-RED performs is sequentially transferring data.

			Here, we'll create a flow where JSON data is generated in a pseudo manner, and the data is finally output to standard output via some nodes on Node-RED.

			There are many nodes on the left-hand side of the palette. Please pay attention to the common categories here. You should be able to easily find the inject node, as shown in the following screenshot:

			
				
					[image: Figure 3.4 – Inject node

]
				

			

			Figure 3.4 – Inject node

			This node can inject a message into the next node. Let's get started:

			
					Drag and drop it onto the palette of Flow 1 (the default flow tab). You will see that the node is labeled with the word timestamp. This is because its default message payload is a timestamp value. We can change the data type, so let's change it to a JSON type.

					Double-click the node and change its settings when the Properties panel of the node is opened: [image: Figure 3.5 – Edit inject node Properties panel

]
Figure 3.5 – Edit inject node Properties panel

					Click the drop-down menu of the first parameter and select {}JSON. You can edit the JSON data by clicking the […] button on the right-hand side.

					Click the […] button, and the JSON editor will open. You can make JSON data with a text-based editor or a visual editor.

					This time, let's make JSON data with an item called {"name" : "Taiji"}. You should replace my name with your name:[image: Figure 3.6 – JSON editor

]
Figure 3.6 – JSON editor
Great – you have successfully made some sample JSON data!

					Click the Done button and close this panel.

					Similarly, place a Debug node on the palette.

					After placing it, wire the Inject and Debug nodes to it. Once you execute this flow, the JSON data that was passed from the Inject node will be output to the debug console (standard output) by the Debug node. You don't need to configure anything on the Debug node:
[image: Figure 3.7 – Placing the Debug node and wiring it

]
Figure 3.7 – Placing the Debug node and wiring it

					Finally, you need to deploy the flow you created. In Node-RED Flow Editor, we can deploy all our flows on the workspace to the Node-RED runtime by clicking the Deploy button in the top-right corner.

					Before running the flow, you should select the Debug tab from the node menu's side panel to enable the debug console, as shown in the following screenshot:[image: Figure 3.8 – Enabling the debug console

]
Figure 3.8 – Enabling the debug console

					Let's run this flow. Click the switch of the Inject node to see the result of executing the flow on the debug console:

			

			
				
					[image: Figure 3.9 – Executing the flow and checking the result

]
				

			

			Figure 3.9 – Executing the flow and checking the result

			This is a very simple and easy data handling flow sample. In the latter half of this book, we will also experiment with data handling by actually connecting IoT devices and passing data obtained from a web API. In this section, it is enough that you understand how to handle data in Node-RED. Next, we're going to experiment with making a flow for a web application.

			Making a flow for a web application

			In this section, you will create a new flow for a web application. We'll create this flow in the same way we created the previous data handling flow.

			You can create it in the workspace of the same flow (Flow 1), but to make things clear and simple, let's create a new workspace for the flow by following these steps:

			
					Select Flows | Add from the Flow menu. Flow 2 will be added to the right-hand side of Flow 1. These flow names, such as "Flow 1" and "Flow 2," are default names that are provided upon creation. You can rename the flow so that it has a more specific name if you want to:[image: Figure 3.10 – Adding a new flow

]
Figure 3.10 – Adding a new flow

					Select the http in node from the network category on the palette, and then drag and drop it onto the palette of Flow 2 (the new flow tab you just added):[image: Figure 3.11 – An http in node

]
Figure 3.11 – An http in node

					Double-click the node to open its Edit dialog.

					Enter the URL (path) of the web application you will create. This path will be used as part of the URL for the web application you will be creating, under the Node-RED URL. In this case, if your Node-RED URL is http://localhost:1880/, your web application URL will be http://localhost:1880/web. An example of this can be seen in the following screenshot:
[image: Figure 3.12 – Setting the path of the URL

]
Figure 3.12 – Setting the path of the URL

					To send a request via HTTP, an HTTP response is required. So, place an http response node on the workspace of your Node-RED. You can find this node in the network category of the palette, next to the http in node. Here, the http response node simply returns the response, so you don't need to open the configuration panel. You can leave it as-is. If you want to include a status code in the response message, you can do so from the settings panel, as shown in the following screenshot:
[image: Figure 3.13 – An http response node

]
Figure 3.13 – An http response node

					After placing an http response node on the palette, add a wire from the http in node to the http response node. This completes the flow for the web application, since we've allowed an HTTP request and response. You will see a light blue dot in the top-right corner of each node, which indicates that they haven't been deployed yet – so please make sure you click the Deploy button:
[image: Figure 3.14 – Wired nodes

]
Figure 3.14 – Wired nodes

					Once it's been successfully deployed, open a new tab in your browser.

					Then, access the URL of the web application shown in the http in node section by entering http://localhost:1880/web.

			

			You should find that only {} is displayed on your screen. This is not a mistake. It is a result of sending an HTTP request and returning a response to it. Right now, since we have not set the content to be passed to the response, an empty JSON is passed as message data. This looks as follows:

			
				
					[image: Figure 3.15 – Web application result

]
				

			

			Figure 3.15 – Web application result

			This isn't great, so let's create some content. Let's do something very simple and implement some simple HTML code. So, where should I code this? The answer is simple. Node-RED has a template node that allows you to specify the HTML code as-is as output. Let's use this:

			
					Drag and drop a template node between the http in node and the http response node on the wire, so that the template node will be connected on it:[image: Figure 3.16 – Placing a "template" node on the wire between our two existing nodes

]
Figure 3.16 – Placing a "template" node on the wire between our two existing nodes

					Next, double-click the template node to open the settings panel. You can code on the Template area of the settings panel. This time, use the following sample HTML. The title is specified for the head. Let's attach a page heading to the body with the <h1> tag. Arrange the contents resembling the menu with the <h2> tag. The code will look like this:<html>
 <head>
 <title>Node-RED Web sample</title>
 </head>
 <body>
 <h1>Hello Node-RED!!</h1>
 <h2>Menu 1</h2>
 <p>It is Node-RED sample webpage.</p>
 <hr>
 <h2>Menu 2</h2>
 <p>It is Node-RED sample webpage.</p>
 </body>
</html>
Note
You can also get this code from this book's GitHub repository at https://github.com/PacktPublishing/-Practical-Node-RED-Programming/tree/master/Chapter03.

					Once you have finished editing the template node, click the Done button to close it. The following screenshot shows what your template node will look like as you edit it:

			

			
				
					[image: Figure 3.17 – Code in the Template area

]
				

			

			Figure 3.17 – Code in the Template area

			With that, we have finished preparing the HTML to be shown on our page. Please make sure you click the Deploy button. Access the web page by going to http://localhost:1880/web once more. You should now see the following output:

			
				
					[image: Figure 3.18 – Web application result

]
				

			

			Figure 3.18 – Web application result

			At this point, you should understand how to make a web application on Node-RED. I imagine it has been nice and easy so far. Now that we have built up some momentum, let's continue learning. In the next section, we will import and export the flow definition that we have created.

			Importing and exporting a flow definition

			In this section, you will import and export the flow definition you have created. Usually, when developing, it is necessary to back up the source code and version control. You may also import source code created by others, or export your own source code and pass it on to others. Node-RED has a similar concept. In Node-RED, it is a normal practice to import and export the flow itself instead of importing or exporting the source code (for example, the template node described previously).

			So, first, let's export the flow we have created so far. This is easy to do:

			
					Simply select Export from the Edit dialog under the Main menu of the Node-RED Flow Editor. When the Export menu is displayed, you can only select the current flow or all your flows. You can also select raw JSON, without indentation, or formatted JSON, with indentation.

					Here, select the current flow and select Formatted.

					Now, you can select how to save the exported JSON data – Copy to clipboard or Download. Here, we'd want to download the JSON data, so click the Download button:[image: Figure 3.19 – Export operation

]
Figure 3.19 – Export operation
You will see a file called flows.json in the downloads location of your machine.

					Open this file in a text editor so that you can check the contents of the JSON file.

			

			With that, we have learned how to export.

			Next, we need to import this definition (flows.json) into our Node-RED Flow Editor. Do this by following these steps:

			
					Simply select Import from the Flow menu in the Node-RED Flow Editor. When the Import menu is displayed, you can select Paste flow json or Select a file based import. You can also select a current flow or a new flow from the flow tab. If you select new flow, a new flow tab will be added automatically.

					Here, please choose Select a file based import and import to new flow. Then, pick the JSON file called flows.json you exported to your local machine.

					Once the file has loaded, click the Import button:[image: Figure 3.20 – Import operation

]
Figure 3.20 – Import operation

					You now have the new tab, named Flow 2, next to the same flow on the old Flow 2 tab. It has been imported completely, but it hasn't been deployed yet, so click the Deploy button, as follows:[image: Figure 3.21 – Adding the new flow

]
Figure 3.21 – Adding the new flow
With that, we've successfully prepared what will be shown on our web page using the flow we imported. Please make sure you click Deploy button.

					Access the web page again by going to http://localhost:1880/web.

			

			Here, you will see that this web page has the same design as the web page you exported. Great work!

			
				
					[image: Figure 3.22 – Result of the web application

]
				

			

			Figure 3.22 – Result of the web application

			Now, let's wrap this chapter up.

			Summary

			In this chapter, you learned how to use Node-RED Flow Editor to make basic flows and import/export flows. Now that you know how to use Node-RED Flow Editor, you'll want to learn about more of its features. Of course, Node-RED doesn't only have basic nodes such as Inject, http, and template, but also more attractive nodes such as switch, change, mqtt, and dashboard. In the next chapter, we'll try to use several major nodes so that we can code JavaScript, catch errors, perform data switching, delay functions, use the CSV parser, and more.

		

	
		
			Chapter 4: Learning the Major Nodes

			In this chapter, you will learn about the major nodes used in Node-RED. Node-RED, which is an open source project, provides some major nodes by default, but it is possible to import and use nodes from the public library as required.

			Node-RED has a lot of nodes. Therefore, this book is not sufficient to explain all of them. So, in this chapter, let's pick up the main nodes and most commonly used basic nodes and learn how to use them, exploring these topics in this chapter:

			
					What is a node?

					How to use nodes

					Getting various nodes from the library

			

			By the end of this chapter, you will have mastered how to use major nodes in the Node-RED flow editor.

			Technical requirements

			To progress in this chapter, you will need the following technical requirements:

			
					Node-RED (v1.1.0 or above).

					The code used in this chapter can be found in Chapter04 folder at https://github.com/PacktPublishing/-Practical-Node-RED-Programming.

			

			What is a node?

			Let's first understand what exactly a node is in Node-RED.

			Node-RED is a tool for programming Node.js applications with Graphical User Interface (GUI) tools. Node-RED also serves as an environment for executing software (Node-RED Flow) programmed on Node-RED.

			Normally, when programming with Node.js, the source code is written with a code editor or Integrated Development Environment (IDE). An executable file is generated by building the written source code (compiling, associating with dependency files, and so on).

			Visual programming on Node-RED basically follows the same process. The difference is that the coding part is the act of placing the node on Node-RED instead of the editor.

			In Node-RED, the basic processing used when programming with Node.js is provided by implemented parts called nodes. In normal object-oriented programming, these parts may often be provided as library files in the form of common parts.

			Since Node-RED is a GUI-based visual programming tool, these common parts are more than just library files. These common parts are shaped like boxes and are called nodes in Node-RED. Also, except for some nodes, generally nodes can set the things that can be variables (arguments, parameters, and so on) as node properties when programming.

			In other words, since there are already programmed parts (nodes), programming is completed simply by placing them in the GUI. The following figure compares pure Node.js programming with flow creation in Node-RED:

			
				
					[image: Figure 4.1 – Node-RED versus Node.js programming

]
				

			

			Figure 4.1 – Node-RED versus Node.js programming

			Now that you understand the concepts of Node-RED and nodes, let's take a closer look at nodes.

			As you can see when you start Node-RED, the basic processing nodes are provided in the Node-RED flow editor by default. This is called a pre-installed node.

			The following are typical categories of pre-installed nodes:

			
					Common: This includes nodes that inject specific data into the flow, nodes that judge the processing status, and nodes that output logs for debugging.

					Function: This includes nodes that can write directly in JavaScript and HTML, nodes that convert parameter variables, and nodes that make conditional branches depending on the contents of those parameters.

					Network: This includes nodes that handle the protocol processing required for communication, such as MQTT, HTTP, and WebSockets.

			

			Of course, the examples given here are just a few. There are actually many more categories and nodes.

			Important note

			The pre-installed nodes also depend on the Node-RED version. It's a good idea to check the official documentation for information on your Node-RED version: https://nodered.org/docs/.

			Nodes are arranged like parts on the Node-RED flow editor and can be used simply by connecting up the wiring. As mentioned earlier, you don't have to code it yourself, except for some nodes.

			Basically, the flow editor has the appearance of a box and has a settings window inside it. In the settings window, you can set the required parameters and configurations for each node:

			
				
					[image: Figure 4.2 – Nodes

]
				

			

			Figure 4.2 – Nodes

			That's all the concepts you need to know about nodes. In the next section, you will learn how to actually use nodes.

			How to use nodes

			In this section, we will learn how to use nodes.

			Visual programming in Node-RED is a little different from other visual programming tools because it uses flow-based programming. But rest assured, it's not difficult at all. If you actually create a few simple flows, you should be able to master how to use nodes in Node-RED.

			So, let's now create a sample flow using some typical preinstalled nodes. The environment is the same for Raspberry Pi, Windows, and macOS systems. Please use your favorite environment.

			Common category

			Let's introduce the nodes that we'll use to make our flow. You can pick all of the nodes up and place them on the palette from the common category.

			Create a sample flow with nodes in the common category. The following four nodes are used:

			
					The inject node

					The complete node

					The catch node

					The debug node

			

			Place and wire up the nodes as shown in the following figure:

			
				
					[image: Figure 4.3 – The flow with our common category nodes

]
				

			

			Figure 4.3 – The flow with our common category nodes

			The data in the inject node is simple JSON data here. Double-click the placed inject node to open the settings panel and set the JSON data. Please refer to the following:

			{"name":"Taiji"}

			You can change the JSON data in the inject node for what you want to send. Also, you should set the properties for the complete node. Open the settings panel and set a node to watch the status.

			Set each node's parameters as follows:

			
					The inject node:Please set the first parameter as msg.payload with the following JSON:
{"name": "Taiji"}
You can set any value here:

			

			
				
					[image: Figure 4.4 – An inject node for inserting data

]
				

			

			Figure 4.4 – An inject node for inserting data

			
					The complete node:Check the first option of the Properties tab to watch the status of the inject node:

			

			
				
					[image: Figure 4.5 – A complete node for watching the status

]
				

			

			Figure 4.5 – A complete node for watching the status

			No properties of other nodes need to be changed.

			After the setting changes, you need to deploy and click the button of the inject node. After that, you can see the JSON data in the right-hand panel of the debug tab.

			You can get the flow definition from the book's GitHub repo at https://github.com/PacktPublishing/-Practical-Node-RED-Programming/blob/master/Chapter04/common-flows.json.

			Function category

			In this section, we will learn how to use some major nodes from the function category, and will make a flow with these nodes.

			Create a sample flow using the nodes in the function category. Here, we will use the following six nodes:

			
					The inject node

					The function node

					The switch node

					The change node

					The template node

					The debug node

			

			Place and wire the nodes as shown in the following figure:

			
				
					[image: Figure 4.6 – The flow with function category nodes

]
				

			

			Figure 4.6 – The flow with function category nodes

			Please follow these steps to make the flow:

			
					Place the inject node and debug node on the palette. These two nodes can be used with their default parameters. No change of settings is required here.

					Place a function node on the palette.

					Open the settings panel of the function node and enter the following code:// generate random number
var min = 1 ;
var max = 10 ;
var a = Math.floor(Math.random() * (max + 1 - min)) + min ;
// set random number to message
msg.payload = a;
// return message
return msg;

					After coding, click on Done to save the settings:[image: Figure 4.7 – Function node settings

]
Figure 4.7 – Function node settings

					Place the switch node on the palette, then open the settings panel of the switch node and set the value rules as follows:	The < field: 6
	The > field: 5This should look as follows:

			

			
				
					[image: Figure 4.8 – The switch node settings

]
				

			

			Figure 4.8 – The switch node settings

			If the input parameter is 5 or less, the output route is 1, and if the input parameter is 6 or more, the output route is 2. This means that the next node depends on the number of input parameters.

			
					Place two template nodes on the palette. The previous function was the switch node, so the data splits depending on the result of the output.

					Open the settings panel of each template node and enter the following code for the first template node connected to output route 1 of the switch node:The number is small: {{payload}} !
The template node will look something like the following screenshot once we add the preceding code:
[image: Figure 4.9 – The first template node settings

]
Figure 4.9 – The first template node settings

					Enter the following code for the second template node, which is connected to output route 2 of the switch node:The number is big: {{payload}} !
It will look something like the following screenshot:
[image: Figure 4.10 – The second template node settings

]
Figure 4.10 – The second template node settings

					Place the change node on the palette, open the settings panel of the change node, and look at the settings box below Rules.

					Select string from the drop-down menu in the box next to to and enter the desired character string in the text box next to this. Here, it says It has been changed to string data!. Please refer to the following screenshot:[image: Figure 4.11 – The change node settings

]
Figure 4.11 – The change node settings

					After changing the settings, you need to deploy and click the button of the inject node.

			

			Once you do this, you can see the data in the debug tab in the right-hand panel, as follows:

			
				
					[image: Figure 4.12 – Showing the results in the debug tab

]
				

			

			Figure 4.12 – Showing the results in the debug tab

			The first debug message is the default inject node value as a timestamp. The second one is the debug message of the debug node placed after the change node. The last one depends on the random number and is formatted by the template node.

			You can get the flow definition from the book's GitHub repo at https://github.com/PacktPublishing/-Practical-Node-RED-Programming/blob/master/Chapter04/function-flows.json.

			Next, let's learn about nodes that are not provided by default.

			Getting several nodes from the library

			You can get several more attractive nodes that have been developed by Node-RED contributors and install them in your Node-RED flow editor. You can find new nodes, share your flows, and see what other people have done with Node-RED. In this section, we will learn how to get several other nodes from the Node-RED library. Let's first access the Node-RED library site: https://flows.nodered.org/. In the following screenshot, you can see how the Node-RED library looks:

			
				
					[image: Figure 4.13 – Node-RED Library

]
				

			

			Figure 4.13 – Node-RED Library

			It's easy to use this library in your own Node-RED environment's flow editor. Let's see how to install a node from the library:

			
					Select Manage palette from the sidebar menu. You will see the User Settings panel open with the Palette tab selected.

					Type watson in the search field, or the name of any other node you want to use. If you find the node you want, click the Install button:[image: Figure 4.14 – Opening the User Settings panel and finding the node you want to use

]
Figure 4.14 – Opening the User Settings panel and finding the node you want to use

					After clicking on the Install button, a pop-up window will appear, on which you will need to click on Install once again. Once you do this and the installation has completed, you will get a pop-up message saying Nodes added to palette.

			

			That's all! You can see all the nodes you have installed in your palette as shown in the following figure:

			
				
					[image: Figure 4.15 – Nodes you have installed are added to your palette

]
				

			

			Figure 4.15 – Nodes you have installed are added to your palette

			Tip

			You can search for useful nodes on the Node-RED Library website. It's possible to search by keywords, and sort the results in terms of most recently added, number of downloads, and ratings. I recommend sorting by number of downloads first because nodes that have been downloaded by lots of developers are likely to be very useful: https://flows.nodered.org/search?type=node&sort=downloads.

			Now you have become a great Node-RED user and have mastered how to use the Node-RED flow editor to make some flows (applications).

			Summary

			In this chapter, you've learned how to use each major node in the Node-RED flow editor. You have successfully made your Node-RED flows! The flow steps you've created here are most of the steps you will need to do to create various flows in the future.

			The important point learned in this chapter is that each node has its own unique features. By combining these like a puzzle, we can create an application similar to one made through regular programming just by creating a flow.

			In the next chapter, let's create a more practical sample flow (application) for IoT edge devices.

		

	
		
			
			

		

		
			Section 2: Mastering Node-RED

			In this section, readers will actually create an application using the Node-RED flow editor. Instead of trying to build advanced applications from the beginning, first they will learn how to create a sample flow for each major environment (that is, stand-alone environments such as the Raspberry Pi, desktop, and cloud).

			In this section, we will cover the following chapters:

			
					Chapter 5, Implementing Node-RED Locally

					Chapter 6, Implementing Node-RED in the Cloud

					Chapter 7, Calling a Web API from Node-RED

					Chapter 8, Using the Project Feature with Git

			

		

	
		
			Chapter 5: Implementing Node-RED Locally

			In this chapter, let's use the standalone version of Node-RED. Node-RED consists of a development environment, an execution environment, and the application itself. You can understand the mechanism by using the standalone version that runs in the local environment.

			Specifically, the most common reason for starting the standalone version of Node-RED is when using it on an IoT edge device. IoT edge devices have sensors that are usually applied to the "Things" part of the "Internet of Things." In this chapter, we will look at the sensing data within the edge device and create a sample flow.

			Let's get started with the following four topics:

			
					Running Node-RED on a local machine

					Using the standalone version of Node-RED

					Using IoT on edge devices

					Making a sample flow

			

			By the end of this chapter, you will have learned how to build a flow for handling sensor data on IoT devices.

			Technical requirements

			To progress through this chapter, you will need the following:

			
					Node-RED (v1.1.0 or above): https://nodered.org/

					Raspberry Pi: https://www.raspberrypi.org/

			

			The code used in this chapter can be found in Chapter05 folder at https://github.com/PacktPublishing/-Practical-Node-RED-Programming.

			Running Node-RED on a local machine

			We can now create the flow for sensing data on an IoT edge device, and in this scenario, the local machine uses Raspberry Pi. The reason for this will be described in the Using the standalone verison of Node-RED section, but in summary, this tutorial is for IoT edge device.

			I have already explained how to start Node-RED on Raspberry Pi, so you should now know how to run it, but if you need a refresher, please refer to the Install Node-RED for Raspberry Pi section in Chapter 2, Setting Up the Development Environment.

			Now, follow these steps to start Node-RED on your Raspberry Pi:

			
					Let's start by executing Node-RED from the Raspberry Pi menu:[image: Figure 5.1 – Running Node-RED from the Raspberry Pi menu

]
Figure 5.1 – Running Node-RED from the Raspberry Pi menu

					You can check the status of Node-RED on your terminal. If Started flows is shown, Node-RED is ready to use:[image: Figure 5.2 – Terminal of Raspberry Pi

]
Figure 5.2 – Terminal of Raspberry Pi

					You can access the Node-RED flow editor with the localhost:1880 URL:

			

			
				
					[image: Figure 5.3 – Node-RED flow editor

]
				

			

			Figure 5.3 – Node-RED flow editor

			Let's learn a few concepts before making use of the flow editor.

			Using the standalone version of Node-RED

			Now we will learn what the standalone version of Node-RED is and how it differs from other versions. We usually use the Node-RED flow editor as a standalone editor; however, we can also use the Node-RED flow editor on any cloud with container technologies such as Docker, Kubernetes, or Cloud Foundry. We will explicitly demonstrate the use of the standalone version with relatively common use cases to learn how to use it.

			Let's think about situations where Node-RED is used.

			Node-RED is a tool for creating applications made with Node.js. It is also the execution environment. If you can write an application in Node.js, that's fine.

			So, why build an application with Node-RED?

			One answer is to black-box each individual unit of data processing. This makes the role of each process very clear and easy to build and maintain.

			Another answer is to avoid human error. Since each process is modularized as a node, you only need to understand the input/output specifications when using that process. This means you can avoid human errors such as coding mistakes and missing test specifications. This can be the advantage of no-code/low-code as well as Node-RED.

			Next, imagine a concrete situation that uses Node-RED with the characteristics just described.

			Think of a business logic that controls data and connects it to the next process. This is a common situation in IoT solutions.

			The standard architecture for IoT solutions is built with edge devices and cloud platforms. It sends the sensor data acquired by the edge device to the cloud and then, on the cloud work to process the data, such as visualizing, analyzing, and persistent.

			In this chapter, I would like to focus on that edge device part.

			It is common for edge devices to want to prepare the acquired sensor data to some extent before sending it to the cloud. The reason for this that if you send all the acquired data, there is a risk that the network will be overloaded.

			So, the standalone Node-RED exercise uses Raspberry Pi, which is a famous IoT infrastructure for consumers.

			In this chapter, we will use the Grove Base HAT for Raspberry Pi and Grove Base modules. This is one of the standards for the IoT edge device platform and so we need to install the Grove Base driver to Raspberry Pi.

			Important Note

			This chapter gives an example using Grove Base HAT, which is relatively inexpensive and can be purchased (the link to this is mentioned in the next section), but any sensor device that can be connected to a Raspberry Pi can handle data on Node-RED.

			When using a module other than the Grove Base HAT sensor device, use the corresponding node and read this chapter. (Implementation is required if there is no corresponding node.)

			You can check the Node-RED library for the existence of a node that corresponds to each device:

			https://flows.nodered.org/

			Let's prepare to use Grove Base HAT on our Raspberry Pi by following these steps:

			
					Let's start by executing the following command on our Raspberry Pi: $ curl -sL https://github.com/Seeed-Studio/grove.py/raw/master/install.sh | sudo bash -s -

					If everything goes well, you will see the following notice:[image: Figure 5.4 – Successful grove.py installation

]
Figure 5.4 – Successful grove.py installation

					The next step is to enable ARM I2C. We can do this by executing the following command: $ sudo raspi-config

					After executing the command, you will see the following configuration window. Please select Interfacing Options:[image: Figure 5.5 – Software configuration tool

]
Figure 5.5 – Software configuration tool

					Select I2C: [image: Figure 5.6 – Enabling I2C

]
Figure 5.6 – Enabling I2C

					Once you select it, a Would you like the ARM I2C interface to be enabled? message will be shown in the same window. Please select Yes to accept it.

			

			You have now successfully enabled I2C. Restart the Raspberry Pi and restart the Node-RED flow editor. In doing this, your Raspberry Pi has been made available to use the I2C interface, and for the next step, we need to connect the sensor devices and Raspberry Pi via the I2C interface.

			Using IoT on edge devices

			Now let's consider a case study on edge devices in IoT.

			IoT has recently been adopted in several industries, for example, in the fields of weather forecasting and agriculture; however, the basic composition is the same. Various data acquired by the edge device is sent to the server-side platform, such as the cloud, and the data is handled and visualized on the server side, which is full of resources. There are various ways to visualize, but in the simplest case, it will be to output the necessary data values to the log as a standard output.

			In this chapter, I would like to consider the edge device part in the use case of IoT. This is about handling the sensor data, acquired using the sensor module, before it goes to the server side for formatting and narrowing down.

			What are the different kinds of sensors?

			The following sensors are often used at the experimental level of IoT:

			
					Temperature

					Humidity

					Gyroscope (acceleration, angular velocity)

					Light

					Sound

					Pressure-sensitive

					Magnetic

			

			Here we will consider the use case of outputting the acquired value to the log using a light sensor and a temperature/humidity sensor.

			In order to get sensor data, you'll need a device. In this sample flow (application), Raspberry Pi is used, but it does not have a sensing function because it is just a foundation. With the old-fashioned board, you had to solder the sensor device/module, but the convenient thing about the Raspberry Pi is that there are many sensor module kits that can be connected with one touch.

			As already introduced, we'll use the Grove series provided by Seeed, which has a sensor module and connection board for Raspberry Pi: https://wiki.seeedstudio.com/Grove_Base_Hat_for_Raspberry_Pi/

			Let's prepare the Grove Base HAT for Raspberry Pi modules.

			Important Note

			If you don't have the Grove Base HAT for Raspberry Pi and want to run this tutorial, please buy it via the official site (https://www.seeedstudio.com/Grove-Base-Hat-for-Raspberry-Pi.html).

			This is what the Grove Base HAT for Raspberry Pi looks like:

			
				
					[image: Figure 5.7 – Grove Base HAT for Raspberry Pi

]
				

			

			Figure 5.7 – Grove Base HAT for Raspberry Pi

			We need to connect the Grove Base HAT and the sensor modules to the Raspberry Pi. To do so, follow these steps:

			
					Place the Grove Base HAT on your Raspberry Pi and screw it in:[image: Figure 5.8 – Setting the Base HAT on your Raspberry Pi

]
Figure 5.8 – Setting the Base HAT on your Raspberry Pi
This is what the Grove - Light Sensor v1.2 - LS06-S phototransistor looks like:
[image: Figure 5.9 – Grove - Light Sensor v1.2

]
Figure 5.9 – Grove - Light Sensor v1.2
You can get it from https://www.seeedstudio.com/Grove-Light-Sensor-v1-2-LS06-S-phototransistor.html.

					Connect the Grove light sensor to the analog port of your Base HAT:[image: Figure 5.10 – Connecting the light sensor to your Base HAT

]
Figure 5.10 – Connecting the light sensor to your Base HAT
Important Note
Please be careful! This vendor, Seeed, has a similar module for temperature/humidity sensor SHT35, but it's not supported by the Grove Base HAT node. You need to use SHT31.
This is what the Grove - Temperature&Humidity Sensor (SHT31) looks like:
[image: Figure 5.11 – Grove – Temperature&Humidity Sensor (SHT31)

]
Figure 5.11 – Grove – Temperature&Humidity Sensor (SHT31)
You can get it from https://www.seeedstudio.com/Grove-Temperature-Humidity-Sensor-SHT31.html.

					Connect the Grove temperature and humidity sensor to the I2C port of your Base HAT:

			

			
				
					[image: Figure 5.12 – Connecting the temperature/humidity sensor to your Base HAT

]
				

			

			Figure 5.12 – Connecting the temperature/humidity sensor to your Base HAT

			And that's it. Now your device is set up and we are ready to go on to the next step! In this part, we have learned about popular, simple use cases of IoT edge devices and next, we will make a flow for these use cases.

			Making a sample flow

			In this section, we will create these two sensor data output flows in the Node-RED flow editor.

			You will use the sensor modules you have prepared to collect data and create a sample flow to visualize it on Node-RED. By using two different sensor modules, we can learn the basics of data handling in Node-RED.

			Use case 1 – light sensor

			The first is a light sensor. Let's create a flow (application) that detects light and outputs the value detected by a fixed-point observation to a log:

			
				
					[image: Figure 5.13 – Use case 1 – getting light sensor data

]
				

			

			Figure 5.13 – Use case 1 – getting light sensor data

			Connect the light sensor module to the Raspberry Pi and use the Node-RED flow editor on the Raspberry Pi to output the data obtained as a standard output.

			Use case 2 – temperature/humidity sensor

			The second one is a temperature/humidity sensor. Let's create an application (flow) that detects temperature and humidity and outputs the value detected by a fixed-point observation to a log:

			
				
					[image: Figure 5.14 – Use case 2 – getting temperature/humidity data

]
				

			

			Figure 5.14 – Use case 2 – getting temperature/humidity data

			Connect the temperature/humidity sensor module to the Raspberry Pi and use the Node-RED flow editor on the Raspberry Pi to output the data obtained as a standard output.

			If you want to spot test these two use cases on your device, you need to connect a sensor that you can use to obtain sensor data.

			You may have to prepare this before creating the flow.

			This time, we will use Grove Base HAT, which is easy to use with Raspberry Pi, and as this setup was completed in the previous step, we are ready to access the data on Raspberry Pi. However, we have not yet prepared Node-RED. It is difficult to access this data with Node-RED as default. One way is to use a Function node and code the script from scratch, which is very difficult but not impossible.

			For handling the sensing data recognized by Raspberry Pi on Node-RED, a "node" dedicated to Grove Base HAT is required.

			The good news is that you can start using the node right away. This is because Seigo Tanaka, a Node-RED User Group Japan board member (https://nodered.jp/) and Node-RED contributor, has already created and released a node for Grove Base HAT. This is the node for the Grove Base HAT for Raspberry Pi:

			node-red-contrib-grove-base-hat

			You can read more about it here: https://www.npmjs.com/package/node-red-contrib-grove-base-hat.

			If you need a refresher on how to install nodes that are published on the node library, please read the Getting several nodes from the library section in Chapter 4, Learning the Major Nodes.

			The reason I refer you back to this is that the next step is to install the node for the Grove Base HAT from the library into your environment.

			Let's enable the use of this Grove Base HAT node in our Node-RED flow editor:

			
					Click the menu at the top right and select Manage palette to open the settings panel:[image: Figure 5.15 – Selecting Manage palette]
Figure 5.15 – Selecting Manage palette

					When the settings panel is opened, type the name of the node you want to use in the search window. We want to use node-red-contrib-grove-base-hat, so please type the following:grove base

					After that, you can see the node-red-contrib-grove-base-hat node in the search window. Click the Install button:[image: Figure 5.16 – Installing the node-red-contrib-grove-base-hat node

]
Figure 5.16 – Installing the node-red-contrib-grove-base-hat node

					After clicking the Install button, you will see a message asking you to read the documentation to find out more information about this node. Read the document if necessary, and then click the Install button on the message box:

			

			
				
					[image: Figure 5.17 – A message window to read the node documentation

]
				

			

			Figure 5.17 – A message window to read the node documentation

			Now you are ready to use the node for Grove Base HAT. Check the palette in the flow editor. At the bottom of the palette, you can see that the Grove Base HAT node has been added:

			
				
					[image: Figure 5.18 – Grove Base HAT nodes on your dashboard

]
				

			

			Figure 5.18 – Grove Base HAT nodes on your dashboard

			There are many sensing modules that can be connected to Grove Base HAT. This time, only the light and temperature/humidity sensors are used, but there are other things that can be seen by looking at the types of nodes.

			The procedure followed for the two use cases created here can also be applied when using other sensors. If you are interested, please try other sensors too. In the next section, we will make a flow for use case 1.

			Making a flow for use case 1 – light sensor

			In use case 1, Node-RED can be used to handle the illuminance obtained from the light sensor as JSON data. That data can be handled as JSON data, then be sent to the server side afterward, and various processes can be easily performed on the edge device.

			The value obtained from the light sensor is received by Node-RED and the output is a debug log (standard output). We can set this using the following steps:

			
					Select the grove light sensor v1_2 node from the palette on the left side of the flow editor and drag and drop it into the workspace to place it:[image: Figure 5.19 – grove light sensor v1_2

]
Figure 5.19 – grove light sensor v1_2
This node allows the value of the sensor device, which is continuously acquired on the Raspberry Pi via the Grove Base HAT, to be handled as a JSON format message object on Node-RED.

					After placing the grove-light-sensor-v1_2 node, place the inject node and debug nodes and wire them so that the grove-light-sensor-v1_2 node you placed is sandwiched between them:[image: Figure 5.20 – Placing nodes and wiring them for the light sensor

]
Figure 5.20 – Placing nodes and wiring them for the light sensor

					Next, check the settings of the grove-light-sensor-v1_2 node. Double-click the node to open the settings panel.

					There is a selection item called Port in the settings panel. A0 is selected by default.This Port setting is to specify which connector on the Grove Base HAT gets data from the connected module.

					Earlier, we connected the Grove light sensor to the Grove Base HAT. If the connection is made according to the procedure in this tutorial, it should be connected to port A2, so select A2 as the node setting value. If you are connecting to another port, select the port you are connecting to:[image: Figure 5.21 – Select A2 as the port if you connected the sensor to A2 of Base HAT

]
Figure 5.21 – Select A2 as the port if you connected the sensor to A2 of Base HAT

					After checking and setting Port on the settings panel, click the Done button in the upper-right corner to close the settings panel.That's it! Don't forget to click the deploy button.

			

			You should remember how to execute a flow from a inject node, because you learned about this in the previous chapter. Click the switch on the inject node to run the flow. The data for the timing when the switch is clicked is outputted as a log, so please try clicking it a couple of times.

			Important Note

			Do not forget to display the debug window to show that the value of the acquired data will be the output to the debug window. Node-RED does not automatically show the debug window even if the debug output is activated.

			The resulting output in the debug window looks like the following:

			
				
					[image: Figure 5.22 – Result of the light sensor flow

]
				

			

			Figure 5.22 – Result of the light sensor flow

			You can see that the result was output to the debug window.

			Congratulations! With this, we have successfully created a basic flow (application) that handles the value of our first light sensor with Node-RED.

			You can also download this flow definition file here: https://github.com/PacktPublishing/-Practical-Node-RED-Programming/blob/master/Chapter05/light-sensor-flows.json.

			Making a flow for use case 2 – temperature/humidity sensor

			In use case 2, Node-RED can be used to handle the temperature and the humidity obtained from the temperature/humidity sensor as JSON data. The data, which can be handled as JSON data, can be sent to the server side afterward, and various processes can be easily performed on the edge device.

			The value obtained from the temperature/humidity sensor is received by Node-RED and is outputted as a debug log (standard output):

			
					Select the grove temperature humidity sensor sht3x node from the palette on the left side of the flow editor and drag and drop it into the workspace to place it:[image: Figure 5.23 – grove temperature humidity sensor sht3x

]
Figure 5.23 – grove temperature humidity sensor sht3x
This node allows the value of the sensor device, which is continuously acquired on the Raspberry Pi via Grove Base HAT, to be handled as a JSON format message object on Node-RED.

					After placing the grove-temperature-humidity-sensor-sht3x node, place the inject and debug nodes, respectively, and wire them so that the grove-temperature-humidity-sensor-sht3x node you placed is sandwiched between them:[image: Figure 5.24 – Placing the nodes and wiring them for the temperature and humidity sensor

]
Figure 5.24 – Placing the nodes and wiring them for the temperature and humidity sensor

					Next, check the settings of the grove-temperature-humidity-sensor-sht3x node and double-click the node to open the settings panel.Actually, this node has no values to set (strictly speaking, the name can be set, but the presence or absence of this setting does not affect the operation):
[image: Figure 5.25 – Already set to the I2C port

]
Figure 5.25 – Already set to the I2C port
You can see on the settings panel that the port is designated as I2C (not changeable). If you have connected the Grove temperature and humidity sensor to the Grove Base HAT according to the procedure in this document, the module should be correctly connected to the I2C port. If it is connected to a port other than I2C, reconnect it properly.

					After checking Port on the settings panel, click the Done button in the upper-right corner to close the settings panel.That's it! Don't forget to click the deploy button.

					Click the switch on the inject node to run the flow. The data for the timing when the switch is clicked is outputted as a log, so please try clicking it a couple of times.Important Note
As noted in the previous section, do not forget to display the debug window to show that the value of the acquired data will be the output to the debug window. Node-RED does not automatically show the debug window even if the debug output is activated.

			

			The resulting output in the debug window looks like the following:

			
				
					[image: Figure 5.26 – Result of the temperature/humidity sensor flow

]
				

			

			Figure 5.26 – Result of the temperature/humidity sensor flow

			You can see that the result was outputted to the debug window.

			Congratulations! With this, we have successfully created a basic flow (application) that handles the value of the second sample, the temperature/humidity sensor, with Node-RED.

			You can also download this flow definition file here: https://github.com/PacktPublishing/-Practical-Node-RED-Programming/blob/master/Chapter05/light-sensor-flows.json.

			Well done! Now you have learned how to handle the data obtained from the illuminance sensor and temperature and humidity sensor in JSON format on Node-RED.

			Summary

			In this chapter, you learned how to create a sample flow (application) by comparing Node-RED to a real IoT use case. We experienced using the sensor module and Raspberry Pi to exchange data with Node-RED, so we had a feel for IoT.

			The flow steps created here will help you create different flows with other sensor modules in the edge device in the future.

			In the next chapter, we will use the IoT use case as we did this time, but we will create a practical sample flow (application) on the cloud side (server side).

		

	
		
			Chapter 6: Implementing Node-RED in the Cloud

			In this chapter, we will learn how to utilize Node-RED, which can be used standalone on a cloud platform (mainly Platform as a Service). Platform as a Service (PaaS) provides an instance that acts as the execution environment for an application, and the application developers only focus on executing the application created by themselves without using their power to build the environment. Node-RED is actually a Node.js application, so you can run it wherever you have a runtime environment for Node.js.

			There are various major mega clouds such as Azure, AWS, and GCP, but Node-RED is prepared as a Starter App (a web application that can be launched on IBM Cloud is called a Starter App) by default in IBM Cloud, so we will use it in this chapter.

			In this chapter, we'll cover the following topics:

			
					Running Node-RED on the cloud

					What is the specific situation for using Node-RED in the cloud?

					IoT case study spot on the server side

					Making a sample flow

			

			By the end of this chapter, you will have mastered how to build a flow for handling sensor data on the cloud.

			Technical requirements

			The code that will be used in this chapter can be found in the Chapter06 folder at https://github.com/PacktPublishing/-Practical-Node-RED-Programming.

			Running Node-RED on the cloud

			This time, we will use IBM Cloud. The reason for this is that IBM Cloud has Node-RED Starter Kit on it. This is a kind of software boilerplate that includes services needed for Node-RED on the cloud, such as a database, CI/CD tools, and more.

			If you have not used IBM Cloud yet, don't worry – IBM provides a free IBM Cloud account (Lite account) with no credit card registration needed. You can register for an IBM Cloud Lite account at http://ibm.biz/packt-nodered.

			Before using Node-RED on IBM Cloud, you need to finish the registration process for your IBM Cloud Lite account.

			Important Note

			In this book, we strongly recommend that you select a Lite account when using IBM Cloud. You can upgrade from a Lite account to a standard account (PAYG/Pay as you go) at your own will. This means you can automatically upgrade to PAYG by registering your credit card.

			Please note that services that can be used free of charge with a Lite account may be charged for with PAYG.

			Now, let's launch Node-RED on IBM Cloud by following these steps:

			Important Note

			The instructions/screenshots provided here are correct at the time of writing. The UI of IBM Cloud changes so often that it might be different from the current UI.

			
					Log in to IBM Cloud (https://cloud.ibm.com) with the account you created previously:[image: Figure 6.1 – Logging in via your Lite account

]
Figure 6.1 – Logging in via your Lite account

					After logging into IBM Cloud, you will see your own dashboard on your screen. If this is your first time using IBM Cloud, no resources will be shown on the dashboard:[image: Figure 6.2 – IBM Cloud dashboard

]
Figure 6.2 – IBM Cloud dashboard
Next, we will create Node-RED on this cloud platform.

					We will create Node-RED as a service on this cloud. Click App Development from the menu at the top left and click the Get a Starter Kit button. This lets you create a new application service:[image: Figure 6.3 – Get a Starter Kit button

]
Figure 6.3 – Get a Starter Kit button

					You can find Node-RED if you type Node-RED into the search text box. Once you've found it, click on the Node-RED panel:[image: Figure 6.4 – Node-RED Starter Kit

]
Figure 6.4 – Node-RED Starter Kit

					After clicking on the Node-RED panel, we need to set some items.You can freely change each item by providing your own values, but in this chapter, the values that have been set here will be used for explanation purposes.
See Figure 6.5 for the settings and values to configure. Please note that once they are set, these items cannot be changed later.

					After setting all the items, click the Create button:[image: Figure 6.5 – Create Node-RED as a Node.js application

]
Figure 6.5 – Create Node-RED as a Node.js application
You have now created the framework for the applications that make up Node-RED. After this, you will be redirected to the App Details screen automatically, where you will be able to see that the Cloudant instance of the linked service has also been provisioned.
However, only the application source code and the instance of the cooperation service are created, and they haven't been deployed to the Node.js execution environment on IBM Cloud yet. The actual deployment will be done when the CI/CD toolchain is enabled.

					When everything is ready, click on the Deploy your app button in the center of the screen to enable it:[image: Figure 6.6 – Deploying your Node-RED application

]
Figure 6.6 – Deploying your Node-RED application

					After clicking the Deploy your app button, move to the application settings window.

					You will be asked to create an IBM Cloud API Key. Don't worry about this, as one will be generated automatically. Click the New button to open a new popup window, and then the OK button on the popup window. Once you do this, an IBM Cloud API Key will be generated:IBM Cloud API Key
The IBM Cloud API Key is used to control your IBM Cloud account and various services (for example, it's Cloud Foundry in this tutorial). You can use this to issue a token for external access to services on IBM Cloud, for example. You can find out more about the IBM Cloud API Key here: https://cloud.ibm.com/docs/account?topic=account-manapikey.
[image: Figure 6.7 – Generating an IBM Cloud API Key

]
Figure 6.7 – Generating an IBM Cloud API Key

					Select the resource spec on the window. This time, we are using IBM Cloud with a Lite account, so we have only 256 MB of memory available for all our services on IBM Cloud. So, if we use 256 MB for the Cloud Foundry Node.js service, we won't be able to use more memory for other services. But Node-RED needs 256 MB to run on IBM Cloud, so please use 256 MB here. It is already allocated 256 MB for the instance by default, so click the Next button, with no parameters changed:
[image: Figure 6.8 – Node.js runtime instance details

]
Figure 6.8 – Node.js runtime instance details
Once you've done this, a DevOps toolchain setting screen will be displayed.

					Click the Create button, with the default values filled in. You can change the DevOps toolchain name to any name you like. This is the name that identifies the toolchain you've created in IBM Cloud:
[image: Figure 6.9 – Configure the DevOps toolchain window

]
Figure 6.9 – Configure the DevOps toolchain window
Now, you are ready to use the environment (Node.js runtime and DevOps toolchain) to run the Node-RED application you created in the previous step. The Node-RED application you created is automatically deployed on the Node.js runtime through the toolchain.

					Confirm that the Status that's displayed in the Delivery Pipelines (pipeline for executing each tool in the DevOps toolchain) area is Success, and click the toolchain's name (Node-REDforPackt, in this case) above it:[image: Figure 6.10 – Checking the status of Node-RED and moving to the Pipeline tool

]
Figure 6.10 – Checking the status of Node-RED and moving to the Pipeline tool
In Delivery Pipelines, check that the statuses of both the BUILD and DEPLOY panels are green and displaying STAGE PASSED.

					Click on View console under LAST EXECUTION RESULT on the DEPLOY panel:[image: Figure 6.11 – Checking the status of each stage and moving to App Console

]
Figure 6.11 – Checking the status of each stage and moving to App Console

					On the console screen of the Node-RED application, confirm that the status is Running, and then click View App URL:[image: Figure 6.12 – Checking that Node-RED is running and opening Flow Editor

]
Figure 6.12 – Checking that Node-RED is running and opening Flow Editor
Great work! You opened the Node-RED flow editor on IBM Cloud. Next, we will start to use the Node-RED flow editor you just opened.
If you got any errors while performing these steps, it would be best for you to delete Cloud Foundry App, Cloudant, and DevOps toolchain and recreate them by following the same steps mentioned previously.

					Set up a Username and Password to access your flow editor on IBM Cloud.After clicking on Visit App URL, you will be redirected to the initial setup dialog so that you can use Node-RED flow editor on IBM Cloud.
You can proceed through this dialog by clicking each Next button, though please note that you should select Secure your editor so only authorised users can access it with Username and Password in order to log in to your own flow editor. This is because this flow editor is on IBM Cloud as a public web application. This means that anybody can access your flow editor if the URL is known. So, I strongly recommend that you select this option and set your own Username and Password values:
[image: Figure 6.13 – Setting a username and password to access flow editor

]
Figure 6.13 – Setting a username and password to access flow editor
We're almost done!

					Click on the Go to your Node-RED flow editor button and then log in with the Username and Password details that you set in the previous step:[image: Figure 6.14 – Logging into your Node-RED flow editor

]
Figure 6.14 – Logging into your Node-RED flow editor
Next, we will check Node-RED flow editor on IBM Cloud and see if it is available.

					Click the inject node and check the result:

			

			
				
					[image: Figure 6.15 – Default sample flow

]
				

			

			Figure 6.15 – Default sample flow

			When you click the inject node, you will see the resulting value on the debug tab:

			
				
					[image: Figure 6.16 – Checking the result

]
				

			

			Figure 6.16 – Checking the result

			Now, you can create a flow in Node-RED on IBM Cloud. The Node-RED flow editor is always running as a Node.js application on IBM Cloud. This means that the Node.js runtime service (instance) is enabled on IBM Cloud. In other words, unlike Node-RED running on Raspberry Pi, this version of Node-RED accesses the flow editor via the internet.

			In the next section, I will explain a little about situations where Node-RED is used on such a cloud.

			What is the specific situation for using Node-RED in the cloud?

			Let's revisit the situation where Node-RED is used in the cloud.

			As we mentioned in the previous chapter, Node-RED is both a tool and an execution environment for creating Node.js applications written in Node.js. As a reason to build an application with Node-RED, I explained that by black boxing individual units of data processing, the role of each process becomes very clear, and it is easy to build and maintain.

			This is the same reason not only on the edge device, but also on the server side (cloud side), for persisting, analyzing, and visualizing the data that's collected by the edge device.

			The biggest feature of Node-RED is that it connects the processing of Node.js in a sequential manner or in parallel with input/output data chunks in the form of messages. It can be said that this is very suitable for IoT data handling.

			Again, as we discussed in the previous chapter, the standard architecture for IoT solutions is built on edge devices and cloud platforms. It sends the sensor data acquired by the edge device to the cloud, makes it persistent, and processes it for the desired processing chain.

			This chapter will focus on that part of the cloud.

			The edge device and the cloud don't actually connect yet. Assuming that the data has been passed to the cloud, let's make the data persistent in the database and visualize it.

			We're going to use a dashboard node that is popular with all developers for Node-RED on IBM Cloud.

			Before you use Node-RED on IBM Cloud, please install a new node; that is, node-red-dashboard.

			Node-RED provides the palette manager, which is easy to install and is used to install extra nodes directly. This is very helpful when you're using lots of nodes. However, it might have issues due to the limited memory of the Node-RED application of an IBM Cloud Lite Account.

			So, here, we need to get the node-red-dashboard node in order to edit the application's package.json file and redeploy the Node-RED application on IBM Cloud.

			You can read about this node at https://flows.nodered.org/node/node-red-dashboard.

			Follow these steps to make changes in the package.json file:

			
					On the Node-RED App details page of IBM Cloud, click source. This will redirect you to a Git repository where you can edit the Node-RED application source code:[image: Figure 6.17 – Accessing your application source

]
Figure 6.17 – Accessing your application source

					Click on package.json on the file list. This file defines the module dependencies of your application:[image: Figure 6.18 – Selecting package.json

]
Figure 6.18 – Selecting package.json

					Click the Edit button and add the following entry to the dependencies section:"node-red-dashboard": "2.x",

					Add any commit message and click on the Commit changes button:

			

			
				
					[image: Figure 6.19 – Editing package.json and adding node-red-dashboard

]
				

			

			Figure 6.19 – Editing package.json and adding node-red-dashboard

			After this, the Continuous Delivery Pipeline will automatically start to build and deploy the Node-RED application. You can check the status on the Delivery Pipeline at any time, just like you did while creating Node-RED Starter App:

			
				
					[image: Figure 6.20 – Rebuilding and redeploying your application automatically

]
				

			

			Figure 6.20 – Rebuilding and redeploying your application automatically

			When you get Deploy Stage failed with the memory limit error for lite account, please stop your Node-RED service on your IBM Cloud dashboard and after that run the Deploy Stage. You can stop your Node-RED service by accessing your IBM Cloud dashboard and clicking on Cloud Foundry apps under Resource summary:

			
				
					[image: Figure 6.21 Selecting Cloud Foundry apps

]
				

			

			Figure 6.21 Selecting Cloud Foundry apps

			After that, click on the stop option on the Node-RED record under the Cloud Foundry apps.

			
				
					[image: Figure 6.22 Clicking the Stop option

]
				

			

			Figure 6.22 Clicking the Stop option

			That's all. You can confirm that the dashboard node has been added by closing the Palette management screen and scrolling down the left-hand side of the flow editor, as shown in the following screenshot:

			
				
					[image: Figure 6.23 – Checking that the dashboard node has been installed

]
				

			

			Figure 6.23 – Checking that the dashboard node has been installed

			There's one more thing: we need to use a database, but IBM Cloud's version of Node-RED has a Cloudant database by default. We will use Cloudant for the case study in the next section.

			Now, you can use Node-RED on IBM Cloud for IoT server-side situations.

			IoT case study spot on the server side

			Now, let's consider a server-side case study for IoT.

			It does not depend on the case of each edge device. It primarily serves to process data and store it in a database for visualization.

			In this chapter, we'll consider the use case of IoT; that is, assuming that the sensor data that's received using the sensor module is received on the server side, and the subsequent processing part.

			The difference from the previous chapter is that in this server-side processing tutorial, the content of the data doesn't make much sense. The main purpose is to save the received data and visualize it as needed, so I would like to define the following two use cases.

			Use case 1 – Storing data

			The first case is to store data. Let's create an application (flow) that stores data you receive from devices. In this section, we don't use real data from devices; we just use the data generated by the inject node instead:

			
				
					[image: Figure 6.24 – Use case 1 overview

]
				

			

			Figure 6.24 – Use case 1 overview

			Now, let's look at the second use case.

			Use case 2 – Temperature/humidity sensor

			The second case is to show data as graphs or charts. Let's create an application (flow) that publishes data you received from devices, on the dashboard. We won't be using real data from any devices, just the data that's been generated by the inject node:

			
				
					[image: Figure 6.25 – Use case 2 overview

]
				

			

			Figure 6.25 – Use case 2 overview

			As we mentioned earlier, we will use Cloudant for the database for case 1 and the dashboard for the graph display for case 2. These have already been prepared.

			Making a sample flow

			Now, let's create these two server-side case flows on the Node-RED flow editor.

			Please check again that the Cloudant node and the Dashboard node have already been installed on your flow editor. If you don't have them, please install these nodes by following the steps mentioned in the What is the specific situation for using Node-RED on the cloud? section of this chapter.

			Now, you need to prepare a specific database for this tutorial on Cloudant. Follow these steps:

			
					Access your IBM Cloud dashboard and click View all from the Resource summary area:[image: Figure 6.26 – IBM Cloud dashboard view

]
Figure 6.26 – IBM Cloud dashboard view

					You will find the Cloudant service that you created using Node-RED. Please click the service's name:[image: Figure 6.27 – Selecting the Cloudant service from the Resource list

]
 Figure 6.27 – Selecting the Cloudant service from the Resource list

					Click the Launch Dashboard button at the top left of IBM Cloud:[image: Figure 6.28 – Launching the Cloudant dashboard

]
Figure 6.28 – Launching the Cloudant dashboard

					After launching the Cloudant dashboard, please click Create Database and enter a name for your database. You can name it whatever you want; here, we have used packt_db. After that, click the Create button:

			

			
				
					[image: Figure 6.29 – Creating a new database on Cloudant

]
				

			

			Figure 6.29 – Creating a new database on Cloudant

			Now that you have created the database for this tutorial, you can use it at any time!

			Making a flow for use case 1 – storing data

			With IoT, server-side processing starts from the point where it is received from the edge device. However, as we mentioned earlier, we will focus on storing the data in the database, so we will be using dummy data that will be generated by the inject node. The chunk of data that's received as a message is persisted in the Cloudant database on Node-RED.

			We can make the flow by following these steps:

			
					Place an inject node and a cloudant out node from the palette on the left-hand side of the flow editor by dragging and dropping them into the workspace: [image: Figure 6.30 – Placing the Inject node and cloudant out node

]
Figure 6.30 – Placing the Inject node and cloudant out node
The inject node generates dummy data, while the cloudant out node stores the input value as-is in the Cloudant database.

					After that, we will also create a flow to retrieve data from Cloudant, but first, let's just create the flow for saving data. Wire these nodes:[image: Figure 6.31 – Wiring these two nodes

]
Figure 6.31 – Wiring these two nodes

					Next, modify the settings of the inject node. Double-click the node to open the Settings panel.

					Select JSON for the first parameter; that is, msg.payload, and click the right-hand side […] button to open the JSON editor:[image: Figure 6.32 – JSON on the first parameter of the inject node

]
Figure 6.32 – JSON on the first parameter of the inject node
You can use both types of editor here; that is, the Text editor or the Visual editor. You can add any values to the JSON style, but here's what we have used for the JSON data:
{"temp":"29.18", "humi":"55.72"}
You can switch between the Text editor and the Visual editor using tabs. Please refer to the following image:
[image: Figure 6.33 – Two types of JSON editor are available

]
Figure 6.33 – Two types of JSON editor are available
There's no need to edit msg.topic.

					After setting the JSON data, click the Done button in the top-right corner to close the Settings panel.

					Then, edit the settings for the cloudant out node. This is simple: just enter packt_db as the database name. This name is the database you named on the Cloudant dashboard.The first parameter, Service, is set automatically; it is your Cloudant service on IBM Cloud. The third parameter, Operation, does not need to be changed from its default value.

					After setting the database name, click the Done button in the top-right corner to close the Settings panel:[image: Figure 6.34 – Setting the database name on the cloudant out node

]
Figure 6.34 – Setting the database name on the cloudant out node

					That's it! Don't forget to click the Deploy button.

					Click the button on the inject node to run the flow. The data will be stored on the Cloudant database when the button has been clicked.

			

			At this point, we can't check the data on Cloudant via the Node-RED flow editor; we can only check it on the Cloudant dashboard:

			
				
					[image: Figure 6.35 – Result on the Cloudant dashboard

]
				

			

			Figure 6.35 – Result on the Cloudant dashboard

			Now, let's make a flow that gets the data from Cloudant by following these steps:

			
					Place an inject node, a cloudant in node, and a debug node from the palette on the left-hand side of the flow editor by dragging and dropping them into the workspace from the previous flow.The inject node just executes this flow as a trigger, so there's no need to change the parameters in it. The cloudant in node gets the data from your Cloudant database. The debug node outputs a log on the debug tab.

					Wire these nodes:[image: Figure 6.36 – Placing new three nodes and wiring them to get data

]
Figure 6.36 – Placing new three nodes and wiring them to get data

					Next, modify the settings of the cloudant in node by double-clicking the node to open its Settings panel.

					Just like the cloudant out node, enter packt_db as the database's name and select all documents for the third parameter' that is, Search by.The first parameter, Service, is set automatically; it is your Cloudant service on IBM Cloud.

					After setting the database name and search target, click the Done button in the top-right corner to close the Settings panel:[image: Figure 6.37 – Setting the database name and searching for a target on cloudant in the node

]
Figure 6.37 – Setting the database name and searching for a target on cloudant in the node

					That's it! Don't forget to click the Deploy button.

					Click the button on the inject node to run the flow. You will get the data from the Cloudant database when you do so.You will see that the result was output to the debug window:

			

			
				
					[image: Figure 6.38 – Result of getting the data from Cloudant

]
				

			

			Figure 6.38 – Result of getting the data from Cloudant

			Congratulations! With this, we have successfully created a basic flow (application) that stores sensor data on a database with Node-RED.

			You can also download this flow definition file here: https://github.com/PacktPublishing/-Practical-Node-RED-Programming/blob/master/Chapter06/cloudant-flows.json

			Important Note

			This flow has no values for the Cloudant service name in cloudant in/out flows. Please check if your service name is set on that automatically once this flow definition has been imported.

			You now understand how to handle data on Node-RED. We'll visualize that data in the next section.

			Making a flow for use case 2 – visualizing data

			The first use case was for storing sensor data in a database, while the second one was for visualizing sensor data on Node-RED. In IoT, after acquiring sensor data, we must visualize it in some form. The focus here is on retrieving and visualizing the data stored in use case 1. We will do this by following these steps:

			
					Place an inject node, a function node, and a chart node from the palette on the left-hand side of the flow editor by dragging and dropping them into the workspace. Then, wire these nodes:[image: Figure 6.39 – Placing the nodes and wiring them to show data

]
Figure 6.39 – Placing the nodes and wiring them to show data
The Inject node just executes this flow as a trigger, so there's no need to change the parameters in it. The function node generates numeric data to be shown on the Node-RED as a chart. Finally, the chart node makes it possible for the data to appear on the chart.

					Code in the function node to generate numeric data that can be passed to the chart node.

					Double-click the node to open the settings panel. Then, add the following code to the function node you placed:// Set min and max for random number
var min = -10 ;
var max = 10 ;
// Generate random number and return it
msg.payload = Math.floor(Math.random() * (max + 1 - min)) + min ;
return msg;
This is what it looks like:
[image: Figure 6.40 – Code for generating a random number

]
Figure 6.40 – Code for generating a random number

					After coding this script, click the Done button in the top-right corner to close the Settings panel.

					Then, edit the settings for the chart node. When the Settings panel opens, click the pencil button to the right of the Group parameter. The dashboard group settings screen will open. You can use the default name if you wish, but we named it Packt Chart here.

					After entering a name, click the Add button in the top right to return to the chart node's settings panel; make sure the Group parameter is Packt Chart. Now, click the Done button at the top right:[image: Figure 6.41 – Setting a parameter on the chart node

]
Figure 6.41 – Setting a parameter on the chart node

					That's it! Don't forget to click the Deploy button.

					Click the left button on the inject node to run the flow. The data that is generated by the function node will be sent to the chart node when the button is clicked.You can check the result on the dashboard window.

					Click the Dashboard button at the top right of the flow editor and click the Open window button. These two buttons are icons, so please refer to the following screenshot to see which buttons you must click:[image: Figure 6.42 – Clicking the dashboard icon button and opening the window icon button

]
Figure 6.42 – Clicking the dashboard icon button and opening the window icon button

					The line chart will be empty in the new window. Please click the switch of the inject node a few times. After that, you will see the line chart filled in with values:

			

			
				
					[image: Figure 6.43 – Line chart with values

]
				

			

			Figure 6.43 – Line chart with values

			Congratulations! With this, we have successfully created a basic flow (application) that shows sensor data as a chart with Node-RED.

			You can also download this flow definition file here: https://github.com/PacktPublishing/-Practical-Node-RED-Programming/blob/master/Chapter06/dashboard-flows.json.

			Summary

			In this chapter, you learned how to create a server-side sample flow (application) by following a real IoT use case. These were simple tutorials, but I am sure it will be beneficial for you so that you understand how to make flows for IoT server-side applications.

			The flow steps we created here will help you create different flows for other server-side applications in the future.

			In the next chapter, we will use the same IoT use case we used in this chapter, but we will create a practical sample flow (application) that will call a web API.

		

	
		
			Chapter 7: Calling a Web API from Node-RED

			In this chapter, let's call a web API from Node-RED. Basically, in Node-RED, processing is performed as per the created flow, but it is JSON data that connects processing. In that sense, it is very compatible with web APIs.

			Let's get started with the following four topics:

			
					Learning about the RESTful API

					Learning about the input/output parameters of a node

					How to call the web API on a node

					How to use the IBM Watson API

			

			By the end of this chapter, you will have mastered how to call any type of web API from Node-RED.

			Technical requirements

			To progress through this chapter, you will need the following:

			
					Node-RED (v1.1.0 or above)

			

			The code used in this chapter can be found in Chapter07 folder at https://github.com/PacktPublishing/-Practical-Node-RED-Programming.

			Learning about the RESTful API

			Many of you reading this book may already be familiar with web APIs. However, let's review the RESTful API in order to call a web API with Node-RED.

			REST stands for Representational State Transfer. RESTful API basically refers to the invocation interface in HTTP of a web system that is implemented according to "REST principles." So, in a broad sense, it's safe to say that the REST API and RESTful API are the same things. So, what exactly is the RESTful API? We will learn the outline and principles of the RESTful API, and the advantages and disadvantages of using the RESTful API, in this section.

			REST was proposed by Roy Fielding, one of the HTTP protocol creators, around the year 2000, and is a set (or way of thinking) of design principles suitable for linking multiple software when building a distributed application. In addition, the RESTful API is an API designed according to the following four REST principles:

			
					Addressability: It has the property of being able to directly point to a resource through a URI. All information should be represented by a unique URI so that you can see at a glance the API version, whether to acquire data, update, and so on.

					Statelessness: All HTTP requests must be completely separated. State management such as sessions should not be performed.

					Connectivity: This refers to the ability to include a "link to other information" in one piece of information. By including a link, you can "connect to other information."

					Unified interface: Use HTTP methods for all operations such as information acquisition, creation, update, and deletion. The HTTP methods, in this case, are acquisition ("GET"), creation ("POST"), update ("PUT"), and deletion ("DELETE").

			

			These are the four principles. As you can see from these four principles, a major feature of REST is that it makes more effective use of HTTP technology and has a high affinity with web technology. Therefore, it is currently used for developing various web services and web applications.

			With the recent widespread use of smartphones, it is becoming more obvious that business systems can be used not only on PCs but also on mobiles. In addition, not just one system but a system that can be linked with multiple systems and various web services will not be selected by users. RESTful APIs are receiving a great deal of attention as an indispensable tool for solving these problems.

			As the following figure shows, a web API can be called from anywhere via the internet:

			
				
					[image: Figure 7.1 – RESTful API diagram

]
				

			

			Figure 7.1 – RESTful API diagram

			Now, let's recall what Node-RED is. Its workflow tool-like style is like a standalone tool, but Node-RED is certainly one of web applications too. In other words, it's an application that works very well with the RESTful API described here.

			Next, let's cover again what kinds of parameters Node-RED nodes have.

			Learning about the input/output parameters of a node

			Of the many nodes that Node-RED has, not many are suitable for calling web APIs (REST APIs). A typical node used when calling the web API is the http request node.

			To call an external API on Node-RED, simply set the endpoint URL of the API to the URL property of the http request node.

			For example, when it is necessary to set a parameter in the endpoint URL when calling an API, it is possible to set the output value of the previous node connected. The method is very easy. Instead of a literal string, you can just set the {{payload}} variable in the value setting part of the parameter.

			In {{payload}}, the character string inherited from the previous processing node is entered.

			Take the following example (note that this URL does not exist): http://api-test.packt.com/foo?username={{payload}}&format=json:

			
				
					[image: Figure 7.2 – Setting the API endpoint URL with {{payload}} as a parameter

]
				

			

			Figure 7.2 – Setting the API endpoint URL with {{payload}} as a parameter

			The process of the http request node cannot be executed by the http request node alone. Before the http request node, it is necessary to connect the trigger process, such as the inject node. At that time, if there is a parameter you want to pass to the API call, that is, the http request node, please set it in msg.payload.

			If the API you want to call in the http request node is POST, the JSON data to be included in the request will be satisfied as a request parameter by creating it in the preprocessing node, storing it in msg.payload as it is, and connecting it to the http request node.

			By using the http request node like this, API cooperation can be easily realized. API calls are important for linking multiple services on Node-RED. For example, the function node of Node-RED is basically processed by JavaScript, but by making a program developed in other development languages, such as Java, into an API, it can be used by calling from Node-RED.

			How to call the web API on a node

			So far, we've learned what a RESTful API is and which node is appropriate for an API call.

			In this part, let's create a flow that actually calls the API from Node-RED and learn how to call the API and how to handle the result value from the API.

			There are a few things to think about first, such as which API to call. Fortunately, various APIs are published on the internet.

			This time, I would like to use the OpenWeatherMap API. In OpenWeatherMap, for example, the following APIs for data acquisition are prepared:

			
					Current weather data

					Hourly forecast 4 days

					Daily forecast 16 days

					Climatic forecast 30 days

					Weather alerts

					And more...

			

			For more information, please see the official website of OpenWeatherMap: https://openweathermap.org/.

			Okay, let's prepare to use the OpenWeatherMap API.

			Creating an account

			To use the OpenWeatherMap API, we need to create an account. Please access the following URL: https://openweathermap.org/.

			If you already have an account, please log in without taking the following steps.

			For those who are using it for the first time, please click the Sign In button, and then click the Create an Account link. It is easy to register. Just follow the guidance and confirm the email sent to you by OpenWeatherMap after registration. This is what the creating an account page looks like:

			
				
					[image: Figure 7.3 – Creating an OpenWeatherMap account

]
				

			

			Figure 7.3 – Creating an OpenWeatherMap account

			Next, let's create an API key.

			Creating an API key

			When you log in to OpenWeatherMap, you can see the API keys tab, so please click it. You already have a default API key but please create a specific API key for this tutorial. Enter any key string and click the Generate button.

			Please note that the API keys shown in this book are created by me as a sample and cannot be used. Be sure to create a new API key in your account:

			
				
					[image: Figure 7.4 – Generating API key

]
				

			

			Figure 7.4 – Generating API key

			Important note

			After creating the API key, the key will not be activated for 10 minutes to a couple of hours. If a web response error such as 401 is returned even when you access the API endpoint URL described in the next section, the specified API key may not have been activated, so please wait and try again.

			Checking the API endpoint URL

			To check your API endpoint URL, follow these steps:

			
					Click the API button on the menu bar. You can see some APIs there.

					In this tutorial, we will use Current Weather Data, so please click the API doc button under Current Weather Data:[image: Figure 7.5 – Opening API doc of Current Weather Data

]
Figure 7.5 – Opening API doc of Current Weather Data

					This API has some types of parameters such as By city, By city ID, By zip code, and so on. Please select By city name with the parameter city name and API key. API doc, city name, state code, and country code are from ISO 3166. The URLs under the API call area are endpoint URLs for using this API. Please copy this URL to the clipboard:

			

			
				
					[image: Figure 7.6 – API endpoint URL with parameters

]
				

			

			Figure 7.6 – API endpoint URL with parameters

			Next, let's see whether we can run this API or not.

			Checking that the API can run

			Let's try to use this API. You just have to open your browser, paste the URL, and replace the city name and API key with yours. You can choose any city name, but the API key is the specific one you created in the previous section:

			
				
					[image:]
				

			

			Figure 7.7 – Calling the API and getting the result

			I have now confirmed that this API works correctly. Now let's call this API from Node-RED and use it.

			Creating the flow calling the API

			Now let's create a flow that calls the OpenWeatherMap API on Node-RED. Start Node-RED in your environment. You can use either standalone Node-RED or Node-RED on IBM Cloud:

			
				
					[image: Figure 7.8 – The flow to use the API

]
				

			

			Figure 7.8 – The flow to use the API

			For this, the flow is very simple and easy to make. Please follow these steps to make the flow:

			
					Place one inject node and two debug nodes on the palette. These nodes can be used as default. No change in the settings is required here.

					Place the http request node on the palette, then open the settings panel of the http request node and set the API endpoint URL with your parameters (city name and API key) in the URL textbox of the settings panel, as shown in the following figure:[image: Figure 7.9 – Setting the API endpoint URL with your parameters

]
Figure 7.9 – Setting the API endpoint URL with your parameters

					Place a json node on the palette. This node can be used with the defaults. No changes in the settings are required here. But, just in case, let's make sure that the Action property of the json node is set to Convert between JSON String & Object. This is an option that will convert the JSON data passed as the input parameter into a JavaScript object:[image: Figure 7.10 – Checking the Action property

]
Figure 7.10 – Checking the Action property

					Wire all nodes as shown in the following figure:[image: Figure 7.11 – Wiring all nodes

]
Figure 7.11 – Wiring all nodes
Please wire the timestamp node and the http request node. The http request node output is wired to the json node and the debug node. Lastly, please wire the json node output to another debug node.

					After changing the settings and wiring all the nodes, you need to deploy and click the switch of the inject node. You can now see the data on the debug window in the right-side panel:

			

			
				
					[image: Figure 7.12 – Result data (JSON) on the debug window

]
				

			

			Figure 7.12 – Result data (JSON) on the debug window

			You can also see the result data as a JSON object on the same debug window as in the following screenshot:

			
				
					[image: Figure 7.13 – Result data (object) on the debug window

]
				

			

			Figure 7.13 – Result data (object) on the debug window

			Congratulations! You have succeeded in making a sample flow by calling the OpenWeatherMap API. If you didn't succeed in making this flow completely, you can also download this flow definition file here: https://github.com/PacktPublishing/-Practical-Node-RED-Programming/blob/master/Chapter07/open-weather-flows.json.

			In the next section, we will learn about the convenience of using the IBM Watson API with Node-RED on IBM Cloud.

			How to use the IBM Watson API

			In the previous section, you learned how to call the API and handle the resulting values from the API.

			In this section too, we will create a flow that actually calls the API from Node-RED, but we will learn how to call the Watson API provided by IBM. We will also create a flow that actually calls the API from Node-RED, but we will learn how to call the Watson API provided by IBM.

			Why Watson? Watson is a brand of artificial intelligence services and APIs provided by IBM.

			All Watson APIs can be used from IBM Cloud. So, by running Node-RED on IBM Cloud, you can effectively use Watson's services. This has advantages such as when calling the Watson API from Node-RED, implementation of authentication can be omitted.

			Watson can be called from environments other than IBM Cloud, so it can be called directly from a Raspberry Pi or can be used from either cloud platforms such as AWS and Azure or on-premises environments. See the following figure, showing what a Watson API looks like:

			
				
					[image: Figure 7.14 – Watson API diagram

]
				

			

			Figure 7.14 – Watson API diagram

			For more information, see the IBM Watson official website: https://www.ibm.com/watson.

			Okay, let's see how easy it is to use the Watson API on Node-RED on IBM Cloud.

			Logging in to IBM Cloud

			If you've followed the steps from the first chapter, you should already have an IBM Cloud account. Just log in to IBM Cloud (https://cloud.ibm.com).

			If you do not have an IBM Cloud account, create one from the following URL and log in to IBM Cloud. See Chapter 6, Implementing Node-RED in the Cloud, for detailed instructions: http://ibm.biz/packt-nodered.

			Starting Node-RED on IBM Cloud

			In the previous section, we created a sample flow using standalone Node-RED or Node-RED on IBM Cloud. Of course, you can use the standalone version of Node-RED to call the Watson API, but some benefits will be lost. So, we will work with Node-RED on IBM Cloud in this part.

			As in the previous step, if you have not used Node-RED on IBM Cloud yet, please return to Chapter 6, Implementing Node-RED in the Cloud, and run through it to activate Node-RED on IBM Cloud before moving on to the next step.

			Creating the Watson API

			Next, create Watson's service on IBM Cloud. Strictly speaking, this means creating an instance as a service so that you can call the Watson API service provided on IBM Cloud as your own API.

			Watson has several APIs, such as voice recognition, image recognition, natural language analysis, sentiment analysis, and so on. This time, I would like to use the sentiment analysis API.

			Follow these steps to create a Watson Tone Analyzer API service:

			
					Search for Watson from the catalog. On the dashboard, please click the Catalog menu item and search for tone analyzer, and then select the Tone Analyzer panel:[image: Figure 7.15 – Searching Watson services

]
Figure 7.15 – Searching Watson services

					Please refer to the following list and Figure 7.16 to fill in each property:a. Region: Dallas (you can select any region, but Dallas is recommended)
b. Pricing plan: Lite (free pricing)
c. Service name: Default (you can modify this to any name you want to use)
d. Resource group: Default (you can't select anything else for a Lite account)
e. Tags: N/A

					After entering/selecting all the properties, click the Create button:[image: Figure 7.16 – Creating a Tone Analyzer service

]
 Figure 7.16 – Creating a Tone Analyzer service

					You can see the status as Active on the Tone Analyzer instance dashboard when it is created and activated. Please check the API key and URL. API keys and URLs are used when the API is called from any application. However, these are not used in this tutorial because Node-RED on IBM Cloud can call the Watson API without authentication coding. You can check the API key and URL from the Manage menu on this screen:

			

			
				
					[image: Figure 7.17 – Checking your credentials

]
				

			

			 Figure 7.17 – Checking your credentials

			In the next section, we will connect Node-RED and the Tone Analyzer service.

			Connecting Node-RED and the Tone Analyzer service

			As you already know, Node-RED can call the Watson API without coding for authentication. We need to connect Node-RED and the Watson API instance before using Node-RED with the Watson API. In the last step, we created the Tone Analyzer API instance, so let's connect these two instances as follows:

			
					Click the IBM Cloud logo button at the top left to move to the main dashboard.

					Click the View all button on the Resource summary panel.

					Click the Node-RED instance (application) name in the Cloud Foundry apps area:[image: Figure 7.18 – Selecting the Node-RED service you created

]
 Figure 7.18 – Selecting the Node-RED service you created

					Click the Connections menu and then the Create connection button:[image: Figure 7.19 – Creating a connection for Node-RED and Watson

]
Figure 7.19 – Creating a connection for Node-RED and Watson

					 Check the Tone Analyzer service and click the Next button:[image: Figure 7.20 – Clicking the Next button to select the connecting service

]
Figure 7.20 – Clicking the Next button to select the connecting service

					No modification is needed for the access role and service ID. Click the Connect button:[image: Figure 7.21 – Clicking the Connect button to complete the connection

]
 Figure 7.21 – Clicking the Connect button to complete the connection

					We need to restage Node-RED to activate the connection. Click the Restage button:[image: Figure 7.22 – Clicking the Restage button to start restaging the Node-RED service

]
Figure 7.22 – Clicking the Restage button to start restaging the Node-RED service

					Please wait until the restaging of your Node-RED instance is completed. Once completed, you will get a successful connection with the Running status. After that, please open the Node-RED flow editor via the Visit App URL link:

			

			
				
					[image: Figure 7.23 – Checking the status of the Node.js runtime for the Node-RED service

]
				

			

			Figure 7.23 – Checking the status of the Node.js runtime for the Node-RED service

			You have succeeded in preparing the Node-RED and Watson API flow. Next, let's create the flow by calling the Tone Analyzer API.

			Creating the flow by calling the Tone Analyzer API

			Now, let's create a flow that calls the Watson Tone Analyzer API on Node-RED. You already started Node-RED on IBM Cloud. Either standalone Node-RED or Node-RED on IBM Cloud can be used.

			To proceed with this tutorial, you need to install the following two nodes:

			
					node-red-node-twitter: This is a node that acquires and posts tweets to Twitter:

			

			
				
					[image: Figure 7.24 – Installing node-red-node-twitter

]
				

			

			Figure 7.24 – Installing node-red-node-twitter

			
					node-red-node-sentiment: This is a node that adds a sentiment object in the passed msg.payload. It is used when passing parameters to the Watson Tone Analyzer API:

			

			
				
					[image: Figure 7.25 – Installing node-red-node-sentiment

]
				

			

			Figure 7.25 – Installing node-red-node-sentiment

			Search for these nodes in the palette and install them to your Node-RED flow editor. After that, make a flow as shown in the following figure:

			
				
					[image: Figure 7.26 – The flow to use the Tone Analyzer API

]
				

			

			Figure 7.26 – The flow to use the Tone Analyzer API

			In this flow, the function node processes the text, tone, and sentiment included in the result value obtained from Twitter so that they are output as separate debugs. This is to make the results easier to see.

			This flow is a little more complicated than the flow you created in the previous step. Please follow these steps to make the flow:

			
					Make a Twitter ID (Twitter account) and create an application on your Twitter Developer account to authenticate for accessing tweets via your Twitter account.

					Access Overview under Projects & Apps on Twitter Developer, and then click the Create an app button:[image: Figure 7.27 – Creating an app on Twitter Developer

]
Figure 7.27 – Creating an app on Twitter Developer

					Set the App name with any strings, and click the Complete button.[image: Figure 7.28 – Setting a name of your app

]
Figure 7.28 – Setting a name of your app

					After that, please check the Access token & access token secret area. You will see the tokens. Please note and save your access token and access token secret. These will be used for the setting of the twitter in node too:
[image: Figure 7.29 – Note your token and token secret

]
Figure 7.29 – Note your token and token secret

					Place the twitter in node on your workspace, and double-click it to open the settings window:[image: Figure 7.30 – Placing the twitter in node

]
Figure 7.30 – Placing the twitter in node

					Click the edit (pencil icon) button on the settings window to edit your Twitter information:[image: Figure 7.31 – Editing the Twitter properties

]
Figure 7.31 – Editing the Twitter properties

					Set your Twitter ID, API key, and token.The values for API key, API key secret, Access token, and Access token secret should be taken from your text editor from step 8.

					After setting these settings, please click the Add button to return to the main settings window of the twitter in node:[image: Figure 7.32 – Configuring your Twitter information

]
Figure 7.32 – Configuring your Twitter information

					Select all public tweets for Search, and set for to #nodered as the hashtag. You can set any name for Name.

					Finally, click the Done button to finish adding these settings and close the window:[image: Figure 7.33 – Finalizing the settings of the twitter in node

]
Figure 7.33 – Finalizing the settings of the twitter in node

					Place the sentiment node on your workspace. It will be wired after the twitter in node. For this node, no properties are needed to be set or changed:
[image: Figure 7.34 – Placing the sentiment node

]
Figure 7.34 – Placing the sentiment node

					Place the tone analyzer v3 node after the sentiment node sequentially on your workspace:[image: Figure 7.35 – Placing the tone analyzer v3 node

]
Figure 7.35 – Placing the tone analyzer v3 node

					Open the settings panel of the tone analyzer v3 node and set the Method and URL properties as follows:a. Name: Any string you want to name
b. Method: General Tone
c. version_date: Multiple Tones
d. Tones: All
e. Sentences: True
f. Content type: Text:
[image: Figure 7.36 – Configuring the tone analyzer v3 node properties

]
Figure 7.36 – Configuring the tone analyzer v3 node properties

					Place the function node after the tone analyzer v3 node sequentially on your workspace:[image: Figure 7.37 – Placing the function node

]
Figure 7.37 – Placing the function node

					Open the settings panel of the function node and code JavaScript with the following source code:msg.payload = {
 "text" : msg.payload,
 "tone" : msg.response,
 "sentiment" : msg.sentiment
};
return msg;
Please refer to the following screenshot for the coding for the function node:
[image: Figure 7.38 – JavaScript source code for the function node

]
Figure 7.38 – JavaScript source code for the function node
You can get the code here: https://github.com/PacktPublishing/-Practical-Node-RED-Programming/blob/master/Chapter07/format-payload.js.

					Finally, put three debug nodes in parallel after this function node. Each debug node's settings are as follows:	msg.payload.text: For the debug tab
	msg.payload.tone: For the debug tab
	msg.payload.sentiment: For the debug tabSee Figure 7.26 for the wiring instructions. We have finished making configurations for the nodes of the flow.

			

			Testing the flow

			The flow is now complete. When you click the deploy button and the twitter in node connects to Twitter using your account, it will automatically retrieve the tweets that meet your criteria and process the subsequent flow.

			This is done automatically, so you don't have to take any special action.

			Here, it is set to get all tweets that have #nodered as a hashtag. If you don't get many tweets, it means that a tweet that contains the specified hashtag has not been created, so please change the hashtag set in the twitter in node and try again.

			All the processing results of this flow will be displayed in the debug tab.

			It is msg.payload.text that extracts the tweet body from the acquired tweets and displays it:

			
				
					[image: Figure 7.39 – Result of getting the tweet body

]
				

			

			Figure 7.39 – Result of getting the tweet body

			It is msg.payload.tone that extracts and displays emotions detected in the acquired tweets:

			
				
					[image: Figure 7.40 – Result of tone analysis from the tweet

]
				

			

			Figure 7.40 – Result of tone analysis from the tweet

			It is msg.payload.sentiment that judges whether the sentiment is positive or negative in the acquired tweets:

			
				
					[image: Figure 7.41 – Result of the sentiment of a tweet

]
				

			

			Figure 7.41 – Result of the sentiment of a tweet

			Congratulations! You have succeeded in making a sample flow by calling the Watson API. If you didn't succeed in making this flow completely, you can also download this flow definition file here: https://github.com/PacktPublishing/-Practical-Node-RED-Programming/blob/master/Chapter07/get-sentiment-twitter-flows.json.

			Summary

			In this chapter, we learned how to create a sample flow (application) that calls two types of web APIs. We are gradually getting used to creating complicated flows. Use cases for calling web APIs are frequently found in Node-RED. The flow creation methods we learned about here will help us to create more complex flows in the future.

			In the next chapter, let's learn about a project feature that can be integrated with repositories such as GitHub, which is a function added from Node-RED version 1.0.

		

	
		
			

			Chapter 8: Using the Project Feature with Git

			What you will learn in this chapter is a very useful Project feature. The project feature of Node-RED is a kind of version management tool with Git on a Node-RED flow editor. This is actually disabled by default. Enabling this allows you to manage your flows in a new way. I believe many developers are familiar with Git services such as GitHub and GitLab. The project feature of Node-RED uses Git and GitHub for version control, so I think it's very easy to understand.

			Here are the topics that we will be covering in this chapter:

			
					Enabling the project feature

					Using the Git repository

					Connecting a remote repository

			

			By the end of this chapter, you will be able to understand how to use the project feature, how to connect your own Git repository to your Node-RED flow editor, and how to manage flows as projects with version control tool Git.

			By the end of this chapter, you will have mastered how to use the project feature and make your applications with it. You can use it in any hosted Git service such as GitHub or GitLab.

			Technical requirements

			To progress in this chapter, you will require the following:

			
					A GitHub account, which you can create via the official website: https://github.com/.

					A Git client tool, which you need to install via the official website: https://git-scm.com/downloads.

			

			Enabling the project feature

			For example, in situations where you want to manage your own flow while sharing it with others, or you want to update the flow created by others, it is difficult to develop when a team uses only the Node-RED flow editor.

			The project function of Node-RED is a method/function for managing the files that are relevant with each flow you make. It covers all the files needed to create applications with Node-RED shareable.

			These are supported by the Git repository. That is, all files are versioned. This allows developers to collaborate with other users.

			On Node-RED version 1.x, the project feature is disabled by default, so it must be enabled in the config file named settings.js.

			Important note

			When creating a project in the local environment of Node-RED, the flow created so far may be overwritten with a blank sheet. You can download the JSON files of the flow configurations for all the flows created in this document via the internet, but if the flow you created yourself exists in Node-RED in the local environment, it is recommended to export the flow configuration file.

			All of the flow definitions and JSON files that we created in this book are available to download here: https://github.com/PacktPublishing/-Practical-Node-RED-Programming.

			Now let's try the project function. We will use a standalone version of Node-RED on a local environment such as macOS or Windows. In order to use the project feature, we first need to enable it. Let's enable it by following these steps:

			
					It is necessary to rewrite the settings.js file to enable/disable the project function. Look for this file first. The settings.js file can be found in the Node-RED user directory where all of the user configurations are stored.By default, on a Mac, this file is available under the following path:
/Users/<User Name>/.node-red/settings.js.
By default, on Windows, this file is available under the following path:
C:\Users\<User Name>\.node-red\settings.js

					Edit the settings.js file. It is OK to open settings.js with any text editors. I have used vi here. Open settings.js with the following command:$ vi /Users/<User Name>/.node-red/settings.js
Important note
Please replace the command with the one specific to your environment.

					Edit your settings.js file and set the projects.enabled element to true in the editorTheme block within the module.exports block in order for the project feature to be enabled:module.exports = {
 uiPort: process.env.PORT || 1880,
 …
 editorTheme: {
 projects: {
 enabled: true
 }
 },
 …
}

					Save and close the settings.js file.

					Restart Node-RED to enable the settings we modified by running the following command:$ node-red
We have now successfully enabled the project feature of Node-RED.

			

			To use this feature, you need to have access to Git and ssh-keygen command-line tools. Node-RED checks them at startup and notifies you if any tools are missing.

			If the settings are completed without any problems and you have restarted Node-RED, the project feature will be available. Next, let's set up the Git repository to use.

			Using the Git repository

			We enabled the project feature in the previous section. Reopen the flow editor and you will be prompted to create your first project using the contents of the flow you created at that time. This will be the welcome screen:

			
				
					[image: Figure 8.1 – Welcome screen

]
				

			

			Figure 8.1 – Welcome screen

			We need to set up a version control client such as Git. As already explained, the project function of Node-RED uses Git as a version control tool. As with regular Git, you can manage file changes on a project-by-project basis and synchronize with remote repositories as required.

			Git keeps track of who made the change. It works with your username and email address. The username does not have to be your real name; you can use any name you like.

			If your local device already has a Git client configured, Node-RED will look up those settings.

			First, perform version control in your local environment. It takes advantage of the features of the Git client installed in your local environment. If you do not have Git installed, please install it in advance.

			Now, follow these next steps to create a project on your Node-RED flow editor:

			
					First, let's create a project. This is very easy. Enter a project name and a description in the project creation window.

					Name the flow file. By default, it is already named flow.json. In other words, Node-RED automatically migrates the flow currently configured on the flow editor to a new project as it is. It is OK to keep the default name. Of course, you may choose to rename it here if you so wish.
If you publish your project on a public site such as GitHub, it's a good idea to encrypt your credentials file.
If you choose to encrypt, you must create a key to use for encryption. This key is not included in the project, so if you share the project with someone, you will need to provide the credential file decryption key separately to the user who cloned the project.

					After adding the required information, click the Create Project button:[image: Figure 8.2 – Projects screen

]
Figure 8.2 – Projects screen
Congratulations! You have created your first project.

					Next, check the project history. We can use the version control feature on our Node-RED flow editor. You can access the project history panel by clicking the project history button in the top-right corner:[image: Figure 8.3 – Project history panel

]
Figure 8.3 – Project history panel

					You can see no changed items on this panel. To check whether the change history feature is enabled, make a flow on this workspace.If you are a regular user of Git or GitHub, you should be able to understand the meaning and role of each item just by looking at the structure of this panel. If there is a change in the file structure or contents under the project, the target file will be displayed in the Local Changes area. When you move the change to the commit stage (that is, when you add it), the display of the target file moves to the Changes to commit area. If you enter a commit message and complete the commit, the version will be incremented by one.
This is exactly the same as what the Git client does.

					Create a flow and keep it simple. You can make any flow of your choice, for example, here I have used an inject node and a debug node. Place these two nodes, wire them, and then click the Deploy button:[image: Figure 8.4 – Sample flow to check the project history feature

]
Figure 8.4 – Sample flow to check the project history feature
Following deployment of this flow, you can see the flow.json file in the Local Changes area. This means that a flow consisting of an inject node and a debug node has been added (deployed) on the flow editor, and the flow.json file, which is the configuration file for this entire flow, has been updated. As a result, flow.json has been recognized as a file to be changed in Git management:
[image: Figure 8.5 – Node-RED recognizes that flow.json has been changed

]
Figure 8.5 – Node-RED recognizes that flow.json has been changed

					Now, let's follow Git etiquette and proceed with the process. First, put the changed file on the commit stage. This is the git add command of Git.

					Click the Stage all changes button at the top right of the Local Changes area:[image: Figure 8.6 – Clicking the Stage all changes button to add the file

]
Figure 8.6 – Clicking the Stage all changes button to add the file
You can see that the flow.json file has moved from the Local Changes area to the commit area.

					Next, let's commit the changes in flow.json. Click the commit button at the top right of the Changes to commit area. This is exactly the equivalent of Git's git commit command:[image: Figure 8.7 – Clicking the commit button to commit the file

]
Figure 8.7 – Clicking the commit button to commit the file

					After clicking the commit button, the commit comment window will be opened. Please enter a commit comment here and then click the Commit button:[image: Figure 8.8 – Clicking the Commit button to complete the commit process

]
Figure 8.8 – Clicking the Commit button to complete the commit process

					The commit is now complete. Finally, let's check the Commit History area. You can see that a new version has been created as a change history:

			

			
				
					[image: Figure 8.9 – New history has been added

]
				

			

			Figure 8.9 – New history has been added

			As you learned, after creating your project, it will be possible to use the Node-RED editor the same as usual.

			Now, let's add a new user interface to the Node-RED flow editor for project functionality.

			Accessing project settings

			The project you are working on will appear at the top of the right-hand pane. Next to the project name, there is also a Show project settings button:

			
				
					[image: Figure 8.10 – Project information on the info panel

]
				

			

			Figure 8.10 – Project information on the info panel

			You can also access the Project Settings screen from the Projects | Project Settings option under the main menu:

			
				
					[image: Figure 8.11 – How to access Project Settings via the main menu

]
				

			

			Figure 8.11 – How to access Project Settings via the main menu

			When the Project Settings panel is shown, you will see that it has three tabs for each setting:

			
					Project: Editing the README.md file of this project

					Dependencies: Managing the list of nodes for your project

					Settings: Managing the project settings and the remote repositories:

			

			
				
					[image: Figure 8.12 – The Project Settings panel

]
				

			

			Figure 8.12 – The Project Settings panel

			If you want to check and modify the Git settings, you can access the settings panel via the main menu:

			
				
					[image: Figure 8.13 – Git config on the User Settings panel

]
				

			

			Figure 8.13 – Git config on the User Settings panel

			Now you know how to version control in your local environment. The next step entails understanding how to connect a remote repository such as a GitHub service.

			Connecting a remote repository

			Now, let's learn how to connect Node-RED to a remote repository such as GitHub. Here, we will use the GitHub service for the remote repository. This is like connecting local Git and remote GitHub via Node-RED. This is nothing special. It is familiar to people who use Git/GitHub on a regular basis, but it's very similar to the situation where GitHub is used as a client tool. It is very easy for you to manage the version with Node-RED.

			Create a remote repository of your Node-RED project on GitHub with the help of the following steps:

			
					First, go to your GitHub account and create a repository. It's a good idea to use a project name similar to your local repository. We won't go into details of how to use GitHub here, but since it is a service that can be used intuitively, I believe that anyone can use it without any problems:
[image: Figure 8.14 – Creating a repository on your GitHub

]
Figure 8.14 – Creating a repository on your GitHub

					Configure the project settings of your Node-RED. To do this, return to the Node-RED flow editor and then go to Project Settings to connect the local and remote repositories. When the Project Settings panel is opened, click the add remote button to configure the remote repository information:[image: Figure 8.15 – Clicking the add remote button on the Project Settings panel

]
Figure 8.15 – Clicking the add remote button on the Project Settings panel

					Please enter the repository URL you created on GitHub and then click the Add remote button:[image: Figure 8.16 – Setting your GitHub repository's URL

]
Figure 8.16 – Setting your GitHub repository's URL

					Click the Close button at the top right of the settings panel to complete this configuration.

					Next, merge the repositories. The remote repository on GitHub is now linked to the Git repository in your local environment. But they are not yet in sync. All you have to do is pull the remote locally and merge it. To do this, select the history panel on the side information menu, and then click the Manage remote branch button on the Commit History panel to connect to your remote repository:
[image: Figure 8.17 – Setting your GitHub repository's URL

]
Figure 8.17 – Setting your GitHub repository's URL

					Select your remote branch. Usually, the origin/master branch is selected:[image: Figure 8.18 – Selecting your remote branch

]
Figure 8.18 – Selecting your remote branch
Here, there is a difference between remote and local because we have already created the flow locally and versioned it with local Git. In this case, you need to pull the remote content locally before you can push the local content to the remote.

					Click the pull button:[image: Figure 8.19 – Pulling the commits from the remote repository

]
Figure 8.19 – Pulling the commits from the remote repository
A message indicating a conflict will be displayed en route, but proceed with the merge as it is. During the merge, you will be asked whether you want to apply the remote changes or the local changes. In that case, apply the changes on the local side to complete the merge.
Following the operation, you will see that your local branch has been merged with your remote branch on the Commit History panel:
[image: Figure 8.20 – Merged remote and local repositories

]
Figure 8.20 – Merged remote and local repositories

					After this, select the Manage remote branch button (the up and down arrows):[image: Figure 8.21 – Clicking the Manage remote branch button

]
Figure 8.21 – Clicking the Manage remote branch button

					Select the branch you want to push and then click the push button to send (push) these changes to a remote repository:

			

			
				
					[image: Figure 8.22 – Sending the changes to the remote repository

]
				

			

			Figure 8.22 – Sending the changes to the remote repository

			Congratulations! Now you have learned how to use the project feature on Node-RED and you can also connect a remote repository from your local repository of Node-RED.

			Summary

			In this chapter, you learned how to enable the project feature of Node-RED and integrate local version control using Git with a remote repository created on GitHub. This will be very useful when you develop a team using Node-RED in the future.

			In the next chapter, we will use this project feature to clone the repository of a to-do application locally. By studying this chapter and the next chapter together, you should have a greater in-depth understanding of the project feature.

		

	
		
			
			

		

		
			Section 3: Practical Matters

			In this section, readers will master making realistic and usable applications with Node-RED. The actual application in Node-RED passes the data by separately performing the detailed processing of Node.js. After all the hands-on tutorials in this section, you will have mastered how to use Node-RED.

			In this section, we will cover the following chapters:

			
					Chapter 9, Creating a ToDo Application with Node-RED

					Chapter 10, Handling Sensor Data on the Raspberry Pi

					Chapter 11, Visualizing Data by Creating a Server-Side Application in IBM Cloud

					Chapter 12, Developing a Chatbot Application Using Slack and IBM Watson

					Chapter 13, Creating and Publishing Your Own Node on the Node-RED Library

			

		

	
		
			Chapter 9: Creating a ToDo Application with Node-RED

			In this chapter, we are going to create a simple ToDo application in Node-RED. This is simple and straightforward and is a good tutorial on creating an application (flow) in Node-RED. We are going to use the project feature explained in the previous chapter, so this chapter will also double as a review of that function.

			Let's get started with the following four topics:

			
					Why you should use Node-RED for web applications

					Creating a database

					How to connect to a database

					Running the application

			

			By the end of this chapter, you will have mastered how to make a simple web application with a database on Node-RED.

			Technical requirements

			To progress through this chapter, you will need the following:

			
					Node.js 12.x or above (https://nodejs.org/).

					CouchDB 3.x (https://couchdb.apache.org/).

					A GitHub account, available from https://github.com/.

					The code used in this chapter can be found in Chapter09 at https://github.com/PacktPublishing/-Practical-Node-RED-Programming.

			

			Why you should use Node-RED for web applications

			So far, this book has explained that Node-RED is an easy-to-use tool for the Internet of Things (IoT). There are many cases where Node-RED is used as a solution in the IoT field.

			However, recently, Node-RED has been recognized as a tool for creating web applications as well as IoT.

			I think one of the reasons is that the ideas of no-code and low-code have become widespread in the world. Nowadays, the number of people who know flow-based programming tools and visual programming tools is increasing, and they are being used in various fields.

			It would be natural for Node-RED, which is made with Node.js, to be used for web applications.

			The project function that we learned in the previous chapter, in collaboration with Git/GitHub, may also be a part of the flow of web application development culture.

			In this chapter, we will create a ToDo application that is very suitable as a piece of development for tutorials.

			The overall picture of the application to be created is as follows:

			
				
					[image: Figure 9.1 – An overview of the application we'll create

]
				

			

			Figure 9.1 – An overview of the application we'll create

			Figure 9.1 outlines the application's overview. The application will be accessed from a client PC browser. The user interface of this application is made with Node.js frameworks, TodoMVC and Todo-Backend. The data-handling programming is built on Node-RED by connecting CouchDB as the storage for this data.

			In this application, the user interface and backend application are not built on Node-RED.

			The application is implemented on your localhost directly as a Node.js application. We will cover this in a later step, where we will set it to redirect to the localhost Node.js application when accessing the localhost port where Node-RED is running.

			There are two frameworks used for this application that we should be aware of before we move toward the hands-on example. We will make our ToDo application with Node-RED in this hands-on tutorial. The application is implemented via these two Node.js frameworks:

			
					TodoMVC: http://todomvc.com/

			

			
				
					[image: Figure 9.2 – TodoMVC

]
				

			

			Figure 9.2 – TodoMVC

			
					Todo-Backend: https://todobackend.com/

			

			
				
					[image: Figure 9.3 – Todo-Backend

]
				

			

			Figure 9.3 – Todo-Backend

			As you can see from the fact that it is possible to create a Node-RED flow by linking web application frameworks, Node-RED works very well with the web applications implemented in Node.js and the frameworks around it. This hands-on tutorial will help you understand why Node-RED is so popular for developing web applications in a no-code/low-code fashion.

			Next, we will move to the hands-on steps.

			Creating a database

			We introduced the big picture of the application in the previous section, but more specifically, this application uses CouchDB for the database. In this hands-on tutorial, we will create an application with Node-RED running on localhost. Therefore, you need to install CouchDB on your own local machine as well.

			Let's install it by following these steps:

			
					Access the CouchDB website at https://couchdb.apache.org/ and then click the DOWNLOAD button:[image: Figure 9.4 – Click the DOWNLOAD button

]
Figure 9.4 – Click the DOWNLOAD button

					Select a file depending on the system running on local machine:[image: Figure 9.5 – Select file

]
Figure 9.5 – Select file

					Expand the ZIP file you downloaded and run the application file to start CouchDB once the file has finished downloading:[image: Figure 9.6 – Start CouchDB

]
Figure 9.6 – Start CouchDB

					Running the CouchDB application file launches a browser and opens the CouchDB management console. If it doesn't open automatically, you can also open it manually from the application menu:[image: Figure 9.7 – Open the CouchDB admin console

]
Figure 9.7 – Open the CouchDB admin console

					In the CouchDB management console, create a new database. Create it with the name todos. No partition is needed. Finally, click the Create button to complete:[image: Figure 9.8 – Create a new database named "todos"

]
Figure 9.8 – Create a new database named "todos"
You will now be able to see the database named todos on your CouchDB admin console:
[image: Figure 9.9 – Check the database you created

]
Figure 9.9 – Check the database you created

					Create an admin user to access this database from your application. To do this, access User Management from the side menu of the CouchDB Management Console, select the Create Server Admin tab, and set the user account and password. Here, admin is set as the username and adminpass is set as the password:

			

			
				
					[image: Figure 9.10 – Create a server admin user account]
				

			

			Figure 9.10 – Create a server admin user account

			This completes all the settings related to CouchDB. Next, let's move on to setting up our Node-RED side.

			How to connect to the database

			Now that the database has actually been created, we will move toward the hands-on tutorial, where we will clone the Node-RED flow from GitHub, and implement the connection to that database from the Node-RED flow. Use the project feature you learned in the previous chapter to connect to your GitHub repository, load the prepared flow definition file, and implement it on Node-RED in your local environment. Since you have already done this in the previous chapter, it is not necessary to create a new flow this time.

			Configuring Node-RED

			The first thing you need to do is change the localhost path (URL) of the Node-RED flow editor. Currently, you can access the flow editor at localhost:1880, but in order to change the path (URL) of the web application created by this hands-on tutorial to localhost:1880, we need to change the path of the flow editor to localhost:1880/admin.

			This is because you have to move the root path of the Node-RED flow editor to access the Node.js ToDo application running on the same port on your localhost.

			To configure Node-RED, follow these steps:

			
					Open the settings file (~/.node-red/settings.js).

					Find the httpAdminRoot setting in the settings.js file you opened. This changes the path you access the Node-RED flow editor on. By default it uses the root path /, however, we want to use that for our application, so we can use this setting to move the editor. It is commented out by default, so uncomment it by removing the // at the start of the line:
[image: Figure 9.11 – Uncomment httpAdminRoot to enable the flow editor path

]
Figure 9.11 – Uncomment httpAdminRoot to enable the flow editor path

					You have now moved the flow editor to /admin. Restart Node-RED on your local machine and access the http://localhost:1880/admin URL to run your Node-RED flow editor.

			

			Next, let's clone the project.

			Cloning the Node-RED Project

			This hands-on tutorial provides an example of a Node-RED project for you to use. Before cloning it into your local Node-RED instance, you should first fork the project so you have your own copy of it to use.

			After forking it, you need to clone the project into your Node-RED instance.

			To clone your project, follow these steps:

			
					Open the example project at https://github.com/taijihagino/node-red-todo-app.

					Click the fork button to create your own copy of the repository.

					Copy the URL of the repository you forked.

					Access the Node-RED editor via http://127.0.0.1:1880/admin/.

					Click the Clone Repository button in the Projects Welcome screen. If you've already closed that screen, you can reopen it with Projects | New from the main menu:[image: Figure 9.12 – Click New under the Projects menu to clone the repo

]
Figure 9.12 – Click New under the Projects menu to clone the repo

					On the Projects screen, provide your repository URL, your username, and password. These are used when committing changes to the project. If your local Git client is already configured, it will pick those values. It is fine to leave the Credentials encryption key field blank:[image: Figure 9.13 – Provide your GitHub repository information

]
Figure 9.13 – Provide your GitHub repository information

					This will clone the repository into a new local project and start running it. In the workspace, you can see flows that implement each part of the application's REST API.You will see some errors on all of the cloudant nodes, but the reasons for these errors come from the connection settings. These settings will be made in later steps so it is not a problem for now:
[image: Figure 9.14 – The flow overview you cloned

]
Figure 9.14 – The flow overview you cloned

					The project also includes some static resources that need to be served by the runtime. To do this, some changes to how you access this web application need to be made in your settings file.First, you must locate your newly-cloned project on the local filesystem. It will be in <node-red root>/projects/<name-of-project>. Within that folder, you will find a folder named public. This contains the static resources for the project of this ToDo application, such as the following, for example:
/Users/taiji/.node-red/projects/node-red-todo-app
The following image is an example of this. Please use it as a reference when checking your own file path:
[image: Figure 9.15 – The ToDo application project folder

]
Figure 9.15 – The ToDo application project folder

					Edit your settings file (~/.node-red/settings.js) and find the httpStatic property in this file. Uncomment it by removing the // at the start of the line and set its value using the absolute path to the public folder. The path in the following image is just an example; please replace it with your path:[image: Figure 9.16 – Uncomment httpStatic and set your application project path

]
Figure 9.16 – Uncomment httpStatic and set your application project path

					Restart Node-RED.

			

			By restarting Node-RED, the changed settings.js contents will be reloaded and applied.

			Next, let's configure the Node-RED and CouchDB connection.

			Configuring the Node-RED and CouchDB connection

			As you know, we are using a cloudant node to connect to CouchDB, correct?

			Cloudant is a JSON database based on Apache CouchDB. Cloudant has CouchDB-style replication and synchronization capabilities, so you can connect to CouchDB using the cloudant node provided by Node-RED.

			As mentioned earlier, the cloudant node on Node-RED is experiencing an error. This is because the connection information to CouchDB on your local system is not set correctly when cloned from GitHub.

			Here, we will correct the settings of the cloudant node on Node-RED.

			Now, carry out the settings according to the following steps:

			
					Double-click any cloudant node to open the settings screen. If you set one of the cloudant nodes there, the settings of all cloudant nodes on the same flow will be updated, so it doesn't matter which cloudant node you choose:[image: Figure 9.17 – Open the settings screen with a double-click on any cloudant node

]
Figure 9.17 – Open the settings screen with a double-click on any cloudant node

					Click the pencil mark button on the right side of Server on the cloudant node settings screen to open the connection information settings screen for CouchDB:[image: Figure 9.18 – Click the pencil mark button

]
Figure 9.18 – Click the pencil mark button

					When the connection information settings screen for CouchDB opens, go to Host and set it to http://localhost:5984 (if you have CouchDB installed on a different port, replace it as appropriate) and set the Username to the server admin user of CouchDB that you set earlier. For Password, enter the server admin password.

					After entering all of this, click the Update button on the upper right to return to the previous screen:[image: Figure 9.19 – Set your CouchDB URL and server admin user/password

]
Figure 9.19 – Set your CouchDB URL and server admin user/password

					Click the Done button and return to the workspace of your Node-RED flow editor. You will see a message reading connected on all of the cloudant nodes next to a green square:

			

			
				
					[image: Figure 9.20 – Check that all of the cloudant nodes are error-free

]
				

			

			Figure 9.20 – Check that all of the cloudant nodes are error-free

			Perfect, you have succeeded in configuring the settings for starting the ToDo application in Node-RED. Next, let's run this ToDo application.

			Running the application

			If everything is working, you should be able to open http://localhost:1880 in the browser and see the application.

			Now, let's confirm that the ToDo application works by following these steps:

			
					Access http://localhost:1880 to open your ToDo application. If you get the Node-RED flow editor when you open localhost:1880, the setting httpAdminRoot is not enabled, so please check your settings.js file again.
When you access this URL, the following screen should be displayed:
[image: Figure 9.21 – Open your ToDo application

]
Figure 9.21 – Open your ToDo application

					Any ToDo item is fine for this test, so enter any words as a sample task. Here, I typed Report my tasks:[image: Figure 9.22 – Enter a sample ToDo item

]
Figure 9.22 – Enter a sample ToDo item

					If you press the Enter key while entering a value in the text box, that value will be registered as a ToDo item. In the following screenshot, we can see that it looks like it has been registered in the application:[image: Figure 9.23 – The ToDo item you entered has been registered

]
Figure 9.23 – The ToDo item you entered has been registered
Let's check if the ToDo item that showed as registered on the screen is registered in the database.

					Open the CouchDB admin console. If you forget how to open it, you can open it with the Open Admin Console option from the CouchDB application menu. If you reopen the management console, or if the time has passed, you may be asked to log in. In that case, log in with the server admin username and password you set.

					Select Database option in the side menu, and click todos. You will see the record you registered on your ToDo application. Click the record to show more details:[image: Figure 9.24 – Check the record on your todos database

]
Figure 9.24 – Check the record on your todos database

					You will see the detail of the record you selected. The data is the exact item you registered via the ToDo application, that is, Report my tasks:

			

			
				
					[image: Figure 9.25 – Check the result

]
				

			

			Figure 9.25 – Check the result

			Congratulations! This completes the hands-on tutorial for cloning a ToDo application from GitHub and implementing it in Node-RED.

			The point of this tutorial was to use the project function of Node-RED to clone and execute the application project from the GitHub repository.

			This hands-on tutorial helped us learn that we don't necessarily have to implement user interfaces and server-side business logic in web applications made with Node-RED. We saw how one of the features of Node-RED is that the user interfaces and server-side business logic of the web application that we built are located outside of Node-RED, while only data handling functionalities such as accessing the database are done internally by Node-RED.

			The GitHub repository we used contains two things, that is, Node-RED flow, which handles data, and the ToDo application, which runs outside Node-RED. The point here was to use the project function of Node-RED to clone and execute the application project from the GitHub repository.

			Summary

			In this chapter, in the form of a hands-on tutorial, we experienced how to actually run a web application on Node-RED using the project feature. Of course, this is just one way to create a web application (including a UI, using a template node, and so on) on Node-RED. However, remembering this pattern will definitely be useful for your future development tasks.

			In the next chapter, we will look at a hands-on scenario where we will be sending sensor data from an edge device to the server side (cloud) with Node-RED.

		

	
		
			Chapter 10: Handling Sensor Data on the Raspberry Pi

			In this chapter, we will learn how the processing of data from an edge device takes place in the Internet of Things (IoT) using Node-RED. We will not only cover data handling but also sending data to a server application from an edge device. For the device, I would like to use a Raspberry Pi. After completing the tutorials in this chapter, you will be able to handle sensor data acquired by edge devices.

			Let's get started with the following four topics:

			
					Getting sensor data from the sensor module on the Raspberry Pi

					Learning the MQTT protocol and using an MQTT node

					Connecting to an MQTT broker

					Checking the status of data on localhost

			

			Technical requirements

			To progress in this chapter, you will need the following:

			
					A Raspberry Pi, available from https://www.raspberrypi.org/

					The code used in this chapter can be found in Chapter10 folder at https://github.com/PacktPublishing/-Practical-Node-RED-Programming

			

			Getting sensor data from the sensor module on the Raspberry Pi

			In this chapter, we will learn how to handle the data acquired from the sensor device with Node-RED on the Raspberry Pi and publish the data to an MQTT broker.

			For the sensor device, we will use the temperature/humidity sensor used in Chapter 5, Implementing Node-RED Locally. See each step in Chapter 5, Implementing Node-RED Locally, for details about connectivity and how to enable the sensor device on the Raspberry Pi.

			Prepare to connect your temperature/humidity sensor to your Raspberry Pi. This is the edge device. You have already purchased and configured your edge device in Chapter 5, Implementing Node-RED Locally. Light sensors are not used in this chapter:

			
					Edge device: Raspberry Pi 3 (https://www.raspberrypi.org/)

					Sensor module: Grove Base HAT for Raspberry Pi, Grove Temperature and Humidity Sensor (SHT31) (https://www.seeedstudio.com/Grove-Base-Hat-for-Raspberry-Pi.html, https://www.seeedstudio.com/Grove-Temperature-Humidity-Sensor-SHT31.html)

			

			Preparing the devices

			Please prepare the device to gather the temperature/humidity sensor data on your Raspberry Pi as follows:

			
					Connect the sensor module to your Raspberry Pi.When all the devices are ready, connect the Raspberry Pi and Grove Base HAT, and connect the Grove Temperature and Humidity Sensor (SHT31) to the I2C port (any I2C port is OK):
[image: Figure 10.1 – Connecting the temperature/humidity sensor to your Raspberry Pi

]
Figure 10.1 – Connecting the temperature/humidity sensor to your Raspberry Pi

					Connect your Raspberry Pi to the internet.We will go on to connect to the server side from the Raspberry Pi, so please ensure that you are connected to the internet via Wi-Fi. Of course, you can also access the internet by connecting to a modem using a LAN cable. The Raspberry Pi has a LAN cable port by default, so all you have to do is plug in the LAN cable:

			

			
				
					[image: Figure 10.2 – Connecting your Raspberry Pi to the internet

]
				

			

			Figure 10.2 – Connecting your Raspberry Pi to the internet

			And that's all we need to proceed. Next, we will see how to get the data from the sensor node.

			Checking Node-RED to get data from the sensor device

			As you have already learned in Chapter 5, Implementing Node-RED Locally, it should be easy to get the data from the Grove Base temperature/humidity sensor module.

			The following are the steps to get the data from the sensor node:

			
					Make a simple flow to get the data. Select three nodes, that is, an inject node, a grove-temperature-humidity-sensor-sht3x node, and a debug node, from the palette on the left side of the flow editor and drag and drop them into the workspace to place them.

					After placing them, please wire them sequentially as shown in the following diagram:[image: Figure 10.3 – Placing and wiring nodes

]
Figure 10.3 – Placing and wiring nodes

					Check the settings of the grove-temperature-humidity-sensor-sht3x node. To check the settings, double-click the grove-temperature-humidity-sensor-sht3x node to bring up the settings screen. There are no values or items to be set on this settings screen. You just need to make sure that the port is indicated as I2C. After checking, close the settings screen.
Make sure you see a blue square icon and the text I2C underneath the grove-temperature-humidity-sensor-sht3x node. This indicates that the Grove Base temperature/humidity sensor module is successfully connected to your Raspberry Pi. If the color of this icon turns red, it means that the module is not properly connected to the I2C port, so please reconnect the hardware correctly:
[image: Figure 10.4 – Checking the port is set as I2C

]
Figure 10.4 – Checking the port is set as I2C

					Execute the flow and check the results by clicking the Deploy button in the upper right corner of the flow editor to complete the deployment.

					Once the deployment is successful, click the switch on the inject node to start the flow:

			

			
				
					[image: Figure 10.5 – Deploy and click the button on the inject node

]
				

			

			Figure 10.5 – Deploy and click the button on the inject node

			It has worked successfully if you can confirm that the values of the sensor data collected are displayed in JSON in the debug tab of the flow editor. This way, data can be obtained from the sensor module:

			
				
					[image: Figure 10.6 – Making sure that the data is visible from the sensor module

]
				

			

			Figure 10.6 – Making sure that the data is visible from the sensor module

			Now we know that Node-RED on the Raspberry Pi can handle sensor data. Let's learn the process of publishing this data to an MQTT broker.

			Learning the MQTT protocol and using an MQTT node

			Now that the sensor data has been successfully acquired, let's send that data to the server.

			We usually select a protocol suitable for the content being transmitted; for example, when exchanging mail, we use SMTP. Currently, HTTP is used as a general-purpose protocol on the internet.

			For example, HTTP is used for various communications on the internet, such as displaying web pages in a browser and exchanging data between servers. HTTP is a protocol created for exchanging content on the internet. In many cases, network devices such as routers and firewalls on the internet are set to allow HTTP communication to be used for various purposes, and HTTP is compatible with the internet.

			In the IoT world, MQTT is often used as a general protocol instead of HTTP. This means that the MQTT protocol is the standard of the IoT world, just as the HTTP protocol is the standard of the web world.

			MQTT (short for MQ Telemetry Transport) is a communication protocol that was first created by IBM and Eurotech in 1999. In 2013, standardization of this protocol was promoted by an international standardization organization called OASIS.

			MQTT is intended to be used over TCP/IP. In short, it specializes in machine-to-machine (M2M) communication over the internet, and communication between machines and other resources on the internet. The machines referred to here are microcomputer boards, such as PCs and small Linux boards (including the Raspberry Pi).

			M2M has evolved over the years since 1999, the word IoT has appeared, and MQTT is now very often adopted when conventional machines communicate via the internet. Therefore, MQTT is the best protocol for IoT. One of the reasons that MQTT is important is that it offers a lightweight protocol to handle data in narrowband networks and on low-performance devices:

			
				
					[image: Figure 10.7 – Conceptual diagram of typical M2M communication

]
				

			

			Figure 10.7 – Conceptual diagram of typical M2M communication

			From the preceding information, you can see why the MQTT protocol is used in IoT. Now let's think about how Node-RED can transmit data using the MQTT protocol.

			Node-RED provides the following two MQTT related nodes by default:

			
					mqtt in: The mqtt in node connects to the MQTT broker and subscribes to messages on the specified topic.

					mqtt out: The mqtt out node connects to the MQTT broker and publishes messages:

			

			
				
					[image: Figure 10.8 – An mqtt in node and mqtt out node

]
				

			

			Figure 10.8 – An mqtt in node and mqtt out node

			You can find these under the network category on the side panel of the Node-RED flow editor.

			If you want to set the server address and topic for the MQTT broker and use publish and subscribe, it is fine to use these two nodes.

			Let's now try to send the sensor data to a local MQTT broker.

			Connecting to an MQTT broker

			Now, let's send the sensor data on the Raspberry Pi to an MQTT broker via Node-RED. Here we will use the popular MQTT broker Mosquitto. In this chapter, we will go as far as preparing the device to send the device data to the server. The task of actually receiving and processing data on the server side will be demonstrated in a hands-on example in the next chapter. Therefore, here we will use Mosquitto just for checking the data transmission is performed correctly.

			Mosquitto

			Mosquitto is released under the open source BSD license and provides broker functionality for MQTT V3.1/v3.1.1.

			It works on major Linux distributions such as RedHat Enterprise Linux, CentOS, Ubuntu, and OpenSUSE, as well as Windows. It also works on small computers such as the Raspberry Pi.

			In this chapter, we will verify that the sensor data of the edge device can be sent via an MQTT broker to the localhost of the Raspberry Pi. This is very easy. I am confident that if we can send the data to MQTT broker in this way, we will be able to see the sensor data of the edge device immediately on the server side.

			The following is a general configuration diagram showing an example use of Mosquitto:

			
				
					[image: Figure 10.9 – Mosquitto overview

]
				

			

			Figure 10.9 – Mosquitto overview

			In this chapter, we will implement the Node-RED flow from the edge device to send data to Mosquitto on your Raspberry Pi. Data visualization using IBM Cloud will be implemented in the next chapter.

			Important note

			Mosquitto is a very important and useful tool and is a platform for implementing the IoT mechanism in Node-RED. Developing a deeper understanding of Mosquitto will help you to make Node-RED more widely available.

			You can learn more about the Mosquitto at https://mosquitto.org/.

			Now, let's prepare Mosquitto on your Raspberry Pi.

			Preparing Mosquitto on your Raspberry Pi

			In this section, we will enable Mosquitto so that it can run on the Raspberry Pi. The flow is simple. Just install Mosquitto and start the service. Follow these steps on your Raspberry Pi to prepare:

			
					To install Mosquitto, execute this command on the terminal:$ sudo apt install mosquitto

					To start the Mosquitto service, execute this command on the terminal: sudo systemctl start mosquitto
After starting, you can check the status of the Mosquitto service with the following command:
sudo systemctl status mosquitto
This is how it looks in the terminal:
[image: Figure 10.10 – Mosquitto running status

]
Figure 10.10 – Mosquitto running status

					To install the Mosquitto client tool, execute this command on the terminal:$ sudo apt install mosquitto-clients

					To check the publish and subscribe functionality, run Subscriber on your Raspberry Pi with the following command. Here we set packt as the topic:$ sudo apt install mosquitto-clients
$ mosquitto_sub -d -t packt
This is how it looks in the terminal:
[image: Figure 10.11 – Start subscribing to Mosquitto with the topic packt

]
Figure 10.11 – Start subscribing to Mosquitto with the topic packt

					Publish some text to this broker with the following command on another terminal:$ mosquitto_pub -d -t packt -m "Hello Packt!"
This is how it looks in the terminal:

			

			
				
					[image: Figure 10.12 – Publishing a message to Mosquitto with the topic packt

]
				

			

			Figure 10.12 – Publishing a message to Mosquitto with the topic packt

			You will see the message you published on the terminal subscribing.

			You are now ready to use Mosquitto. Next, we will implement Pub/Sub on Node-RED on your Raspberry Pi.

			Making a flow to get sensor data and send it to the MQTT broker

			Now, launch the Node-RED flow editor on your Raspberry Pi and follow these steps to create a flow:

			
					Place the mqtt out node after the grove-temperature-humidity-sensor-sht3x node on the flow that you created in the previous Checking Node-RED can get the data from the sensor device section, and place the mqtt in node and debug node separate from mqtt out flow. Please wire them as shown in the following figure:[image: Figure 10.13 – Placing these nodes and wiring them

]
Figure 10.13 – Placing these nodes and wiring them

					Edit the mqtt out node by double-clicking on it and set the values in the Properties tab as follows to connect to the Mosquitto MQTT broker you have run:	Server: localhost
	Port: 1883*It is possible to edit the Server and Port values by clicking the pencil icon.

	Topic: packt
	Qos: 1
	Retain: trueThis is how the settings window should look:

			

			
				
					[image: Figure 10.14 – Setting the properties of the mqtt out node

]
				

			

			Figure 10.14 – Setting the properties of the mqtt out node

			
					Edit the mqtt in node by double-clicking it so the settings window appears. Set the values on the Properties tab as follows to subscribe to the topic from the Mosquitto MQTT broker you have run:	Server: localhost
	Port: 1883*It is possible to edit the Server and Port values by clicking the pencil icon.

	Topic: packt
	Qos: 1
	Output: auto-detect (string or buffer)This is how the settings window should look:

			

			
				
					[image: Figure 10.15 – Setting the properties of the mqtt in node

]
				

			

			Figure 10.15 – Setting the properties of the mqtt in node

			And with that, we have completed making the flow to subscribe to and publish the topic packt via the Mosquitto MQTT broker on your Raspberry Pi localhost. Next, we will check the status of our data on localhost.

			Checking the status of data on the localhost

			In this section, we will check whether the sensor data sent from your Raspberry Pi can be received by Mosquitto via Node-RED on your Raspberry Pi with the following steps:

			
					Run the flow you created in the previous section on the Node-RED instance on your Raspberry Pi.

					Click the switch of the inject node to run this flow and publish the Grove temperature and humidity sensor data:[image: Figure 10.16 – Run the flow to publish the data

]
Figure 10.16 – Run the flow to publish the data

					Check that the data was subscribed.There are currently two flows in this Node-RED instance. One is the flow of publishing data to the Mosquitto MQTT broker, and the other is the flow of subscribing to data from that broker. The subscribed flow is normally in a standby state, so when the data is published, the subscribed data is automatically output to the debug tab.

					Check the debug tab. You should see the data you published:

			

			
				
					[image: Figure 10.17 – Check the result of the publishing and subscribing\

]
				

			

			Figure 10.17 – Check the result of the publishing and subscribing\

			Congratulations! Now you know how to handle the sensor data acquired by the Raspberry Pi and Grove Base sensor module on the edge device and send it to an MQTT broker.

			Summary

			In this chapter, in the form of a hands-on tutorial, we experienced how to handle sensor data on an edge device and send it to an MQTT broker. This is one of the ways to create an edge device-side application for IoT with Node-RED.

			In the next chapter, we will look at a hands-on example of receiving sensor data and visualizing it on the server side (the cloud) via Node-RED.

		

	
		
			Chapter 11: Visualize Data by Creating a Server-Side Application in the IBM Cloud

			In this chapter, we will create a server application to visualize data that has been sent from an edge device in the IoT, using Node-RED. For a server-side application, I would like to use the IBM Cloud here. By following the tutorials in this chapter, you will master how to visualize sensor data on a server application.

			Let's get started with the following topics:

			
					Preparing a public MQTT broker service

					Publishing the data from Node-RED on an edge device

					Subscribing and visualizing data on the cloud-side Node-RED

			

			By the end of this chapter, you will have mastered how to visualize sensor data on cloud platforms.

			Technical requirements

			To progress in this chapter, you will require the following:

			
					An IBM Cloud account: https://cloud.ibm.com/

					A CloudMQTT account: https://cloudmqtt.com/

					The code used in this chapter can be found in Chapter11 folder at https://github.com/PacktPublishing/-Practical-Node-RED-Programming.

			

			Preparing a public MQTT broker service

			Recall the previous chapter, Chapter 10, Handling Sensor Data on the Raspberry Pi. We sent the data of the temperature/humidity sensor, which was connected to the edge device (Raspberry Pi), to the cloud and confirmed that the data could be observed on the cloud side.

			In the previous chapter, we checked how to operate an MQTT broker using a service called Mosquitto. This was in order to focus on sending data from edge devices to an MQTT broker.

			However, this was a mechanism where everything was done locally on the Raspberry Pi. Essentially, when trying to implement an IoT mechanism, MQTT brokers should be in a public location and accessible from anywhere via the internet.

			It is possible to host your own Mosquitto MQTT broker in the public cloud, but that adds some extra complexity in terms of setting up and maintaining it. There are a number of public MQTT services available that can make it easier to get started.

			In this chapter, we will use a service called CloudMQTT for the MQTT broker, but you can replace the MQTT broker part with your favorite service. You can also publish your own MQTT broker, such as Mosquitto, on IaaS instead of using SaaS:

			
				
					[image: Figure 11.1 – CloudMQTT overview

]
				

			

			Figure 11.1 – CloudMQTT overview

			Important note

			An MQTT broker is a server that receives messages from the publisher and sends them to subscribers.

			The server that delivers messages in PubSub is called the MQTT broker.

			PubSub is an amalgamation of the words Publisher and Subscriber:

			a) A publisher is a person who delivers a message.

			b) A subscriber is a person who subscribes to a message.

			You can think of it as a server that receives messages from clients and distributes them to clients.

			MQTT differs from ordinary socket communication in that it communicates on a one-to-many basis. In other words, it has a mechanism to distribute the message of one client to many people. This system allows us to deliver messages to many people simultaneously in real time.

			We will now learn how to prepare for CloudMQTT. As mentioned previously, CloudMQTT is an MQTT broker published as SaaS. If you don't use CloudMQTT and want to use another SaaS MQTT broker or publish an MQTT broker on IaaS, you can skip this step. However, the basic configuration information for using an MQTT broker remains the same, so I believe this step will help you configure any MQTT broker.

			Perform the following steps to create an MQTT broker service on CloudMQTT:

			
					Log in to CloudMQTT at https://cloudmqtt.com/.When you access the website, click the Log in button at the top right of the window:
[image: Figure 11.2 – CloudMQTT website

]
Figure 11.2 – CloudMQTT website
If you already have your CloudMQTT account, log in to your account by entering your email address and password:
[image: Figure 11.3 – Logging in to CloudMQTT

]
Figure 11.3 – Logging in to CloudMQTT
If you don't yet have your account, please create a new account via the Sign up button at the bottom of the window:
[image: Figure 11.4 – Creating your account

]
Figure 11.4 – Creating your account

					Create an instance.After logging in, click the Create New Instance button in the top-right corner of the window:
[image: Figure 11.5 – Creating a new instance

]
Figure 11.5 – Creating a new instance

					Select a name and payment plan.This name is for your MQTT broker service. You can give it any name you want. I have used Packt MQTT Broker.
Unfortunately, the free plan, Cute Cat, is no longer available. So, we will select the cheapest plan, Humble Hedgehog, here. This plan costs $5/month.
It's up to you to use this paid service. If you want to avoid billing, you need to look for a free MQTT broker service.
After selecting the name and payment plan, click the Select Region button:
[image: Figure 11.6 – Selecting a name and payment plan

]
Figure 11.6 – Selecting a name and payment plan

					Select a region and data center.This service is running on AWS. So, you can select a region where the data center is placed. You can select any region. Here, we are using US-East-1.

					After making the selection, click the Review button:[image: Figure 11.7 – Selecting a region and data center

]
Figure 11.7 – Selecting a region and data center

					Next, finalize creation of the MQTT broker instance.Please check the payment plan, service name, service provider, and data center region. After that, click the Create instance button to finalize creation of this instance:

			

			
				
					[image: Figure 11.8 – Finalizing MQTT broker instance creation

]
				

			

			Figure 11.8 – Finalizing MQTT broker instance creation

			Publishing the data from Node-RED on an edge device

			In this section, we will configure our Raspberry Pi. To get started, launch the Raspberry Pi and open the Node-RED flow editor. This Node-RED flow editor should still have a flow to send the sensor data implemented in Chapter 10, Handling Sensor Data on the Raspberry Pi, to the server. If you have deleted this flow, or if you have not created it, please re-execute it by referring to Chapter 10, Handling Sensor Data on the Raspberry Pi. Double-click the mqtt out node that makes up the flow to open the settings window. We used Mosquitto last time, but this time we will connect to CloudMQTT.

			Perform the following steps to configure Node-RED on the Raspberry Pi to connect to CloudMQTT:

			
					Access the flow you created in Chapter 10, Handling Sensor Data on the Raspberry Pi.In this chapter, we only use a flow with the mqtt out node because this scenario is just for sending data to a Raspberry Pi:
[image: Figure 11.9 – Accessing the flow we created in the previous chapter

]
Figure 11.9 – Accessing the flow we created in the previous chapter

					Edit the mqtt out node.We now need to edit the connecting configuration. Open the settings window of the mqtt out node by double-clicking on it:
[image: Figure 11.10 – Opening the settings window of the mqtt out node

]
Figure 11.10 – Opening the settings window of the mqtt out node
Set the configuration to connect to CloudMQTT.
Set the Topic, Qos, and Retain values as follows:
	Topic: packt
	Qos: 1
	Retain: true

					Click the Edit button (pencil mark) to the right of Server to open the credential properties:[image: Figure 11.11 – Clicking the Edit button to open the Properties settings

]
Figure 11.11 – Clicking the Edit button to open the Properties settings

					On the Server settings panel, select the Connection tab and fill in each property as follows:	Server: driver.cloudmqtt.com
	Port: 18913The other properties in the Connection tab are not supposed to be changed and must be kept at their default values.
You can refer to the following screenshot for the Connection tab settings:

			

			
				
					[image: Figure 11.12 – MQTT broker server settings

]
				

			

			Figure 11.12 – MQTT broker server settings

			
					Next, select the Security tab to edit the configuration to connect the MQTT broker and fill in each property as follows:	Username: The user that you got from CloudMQTT.
	Password: The password that you got from CloudMQTT.You can refer to the following screenshot for the Security tab settings:

			

			
				
					[image: Figure 11.13 – MQTT broker user and password settings

]
				

			

			Figure 11.13 – MQTT broker user and password settings

			You can check these properties at the CloudMQTT admin menu. This menu can be accessed via the Instances list of the CloudMQTT dashboard: https://customer.cloudmqtt.com/instance

			
				
					[image: Figure 11.14 – CloudMQTT Instances list

]
				

			

			Figure 11.14 – CloudMQTT Instances list

			This completes the settings on the Raspberry Pi side. Next, let's set up the Node-RED flow editor so that data can be acquired (subscribed) with Node-RED on the cloud side.

			Subscribing and visualizing data on the cloud-side Node-RED

			In this section, we will see how to visualize the received data with Node-RED on the cloud side. This uses one of the dashboard nodes as we learned in Chapter 6, Implementing Node-RED in the Cloud, but this time, we'll choose Gauge's UI to make it look a little better.

			The cloud-side Node-RED used this time runs on the IBM Cloud (PaaS), but CloudMQTT, which created the service as an MQTT broker earlier, is a cloud service that differs from the IBM Cloud.

			In this chapter, we will learn that an MQTT broker exists so that it can be accessed from various places, and that both publishers (data distributors) and subscribers (data receivers) can use it without being aware of where it is.

			Preparing Node-RED on the IBM Cloud

			Now, let's create a Node-RED flow connected to CloudMQTT by performing the following steps. Here, we will use Node-RED on the IBM Cloud. Please note that it is not Node-RED on the Raspberry Pi:

			
					Open the Node-RED flow editor, log in to your IBM Cloud, and call the Node-RED service you have already created from your dashboard.

					Either click on View all or Cloud Foundry services on the Resource summary tile on the dashboard. Clicking on either option will take you to a list of resources on the IBM Cloud you created:[image: Figure 11.15 – Opening the resource list

]
Figure 11.15 – Opening the resource list
If you have not created a Node-RED service on your IBM Cloud, please refer to Chapter 6, Implementing Node-RED in the Cloud, to create one before moving ahead.

					Under the Cloud Foundry apps displayed on the Resource list screen, click on the Node-RED service you created to open the Node-RED flow editor:[image: Figure 11.16 – Selecting the Node-RED service you created

]
Figure 11.16 – Selecting the Node-RED service you created

					Then, click Visit App URL to access the Node-RED flow editor:[image: Figure 11.17 – Clicking Visit App URL

]
Figure 11.17 – Clicking Visit App URL

					When the top screen of the Node-RED flow editor is displayed, click the Go to your Node-RED flow editor button to open the Node-RED flow editor:[image: Figure 11.18 – Clicking the Go to your Node-RED flow editor button

]
Figure 11.18 – Clicking the Go to your Node-RED flow editor button

					Make a flow to visualize the data.When you accessed your Node-RED flow editor on your IBM Cloud, create a flow as follows. Place the mqtt in node, json node, two change nodes, and gauge node after each change node. If you want to get the debug log for this flow, please add the debug node after any node. In this example, two debug nodes are placed after the mqtt in node and the first change node.
You already have the dashboard nodes, including the gauge node. If you don't have them, please go back to the Make a flow for use case 2 – visualizing data tutorial in Chapter 6, Implementing Node-RED in the Cloud, to get the dashboard nodes:
[image: Figure 11.19 – Making a flow

]
Figure 11.19 – Making a flow

					Edit the mqtt in node. Double-click on the mqtt in node to open the settings window. Set Topic, Qos, and Output with the following values:	Topic: packt
	Qos: 1
	Output: auto-detect (string or buffer)

					Click the Edit button (pencil icon) to the right of Server to open the credential properties:[image: Figure 11.20 – Clicking the Edit button to open the Properties settings

]
Figure 11.20 – Clicking the Edit button to open the Properties settings

					On the Server settings panel, select the Connection tab, and fill in each property with the following values:	Server: driver.cloudmqtt.com
	Port: 18913The other properties of the Connection tab are not supposed to be changed and must be kept at their default values.
You can refer to the following screenshot for the Connection tab settings:

			

			
				
					[image: Figure 11.21 – MQTT broker server settings

]
				

			

			Figure 11.21 – MQTT broker server settings

			
					Next, select the Security tab to edit the configuration to connect the MQTT server and fill in each property with the following values:	Username: The user that you got from CloudMQTT.
	Password: The password that you got from CloudMQTT. You can refer to the following screenshot for the Security tab settings:

			

			
				
					[image: Figure 11.22 – MQTT broker user and password settings

]
				

			

			Figure 11.22 – MQTT broker user and password settings

			As you may have already noticed, these properties have the same values that you set for the mqtt out node on the Raspberry Pi Node-RED. Please refer to the CloudMQTT dashboard if necessary.

			
					Now, edit the json node. Double-click on the json node to open the settings window. Select Convert between JSON String & Object on Action, and set msg.payload on Property: [image: Figure 11.23 – Setting the json node properties

]
Figure 11.23 – Setting the json node properties

					Edit the settings of the change node. Double-click on the first change node to open the Settings window and then set msg.payload.temperature in the box entitled to under the Rules area. Then, click the Done button to close the settings window:[image: Figure 11.24 – Setting the properties of the first change node

]
Figure 11.24 – Setting the properties of the first change node

					Also, edit the settings of the second change node. Double-click on the second change node to open the Settings window. Set msg.payload.humidity in the box entitled to in the Rules area and then click the Done button to close the settings window:[image: Figure 11.25 – Setting the properties of the second change node

]
Figure 11.25 – Setting the properties of the second change node

					Edit the settings of the first gauge node. Double-click on the first gauge node to open the Settings window and then click the Edit button (pencil icon) to the right of Group to open the properties: [image: Figure 11.26 – Clicking the Edit button to open the Properties settings

]
Figure 11.26 – Clicking the Edit button to open the Properties settings

					In the dashboard's group setting panel, fill in each property with the following values:	Name: Raspberry Pi Sensor data* It's OK to provide any name here. This name will be displayed on the chart web page that we'll create.
Other properties are not supposed to be changed and must be kept at their default values. You can refer to the following screenshot:

			

			
				
					[image: Figure 11.27 – Setting the group name

]
				

			

			Figure 11.27 – Setting the group name

			
					Go back to the main panel of the gauge node settings and fill in each property with the following values:	Type: Gauge
	Label: Temperature
	Units: °C (if you prefer to use Fahrenheit, please use °F)
	Range: -15 ~ 50 (if you prefer to use Fahrenheit, please adjust the range accordingly)Other properties are not supposed to be changed from their default values. You can refer to the following screenshot for the settings:

			

			
				
					[image: Figure 11.28 – Setting the gauge node properties

]
				

			

			Figure 11.28 – Setting the gauge node properties

			
					Edit the settings of the second gauge node. Double-click on the second gauge node to open the Settings window and then select the same Group name you created in the previous step. Fill in each property with the following values:	Type: Gauge
	Label: Humidity
	Units: %
	Range: 0 ~ 100Other properties are not supposed to be changed from their default values. You can refer to the following screenshot for the settings:

			

			
				
					[image: Figure 11.29 – Setting the gauge node properties

]
				

			

			Figure 11.29 – Setting the gauge node properties

			Please make sure to deploy the flow on your Node-RED.

			This completes the Node-RED configuration on the IBM Cloud. This means that this flow is already subscribing (awaiting the data) with the topic packt for the CloudMQTT service. Next, it's time to publish and subscribe to the data.

			Visualization of the data on the IBM Cloud

			On the edge device side, on the Raspberry Pi, we are ready to publish the sensor data to CloudMQTT with the topic packt. On the cloud side, the flow is already with the packt topic for the CloudMQTT service.

			For a Raspberry Pi, perform the following steps to publish your data:

			
					Publish the data from your Raspberry Pi.Access your Node-RED flow editor on your Raspberry Pi. Click the button of the inject node to run this flow for publishing grove temperature and humidity sensor data:
[image: Figure 11.30 – Running the flow for publishing data

]
Figure 11.30 – Running the flow for publishing data

					Check receipt of the data on the IBM Cloud.You will be able to receive (subscribe) the data via CloudMQTT. You can check it on the debug tab on your Node-RED flow editor on the IBM Cloud:
[image: Figure 11.31 – Checking the subscribing of the data

]
Figure 11.31 – Checking the subscribing of the data

					Open the chart web page via the chart tab on your Node-RED flow editor on the IBM Cloud and then click the open button (diagonal arrow icon) to open it:

			

			
				
					[image: Figure 11.32 – Opening the chart web page

]
				

			

			Figure 11.32 – Opening the chart web page

			You will see the web page gauge chart with the data displayed:

			
				
					[image: Figure 11.33 – The chart web page is displayed

]
				

			

			Figure 11.33 – The chart web page is displayed

			Congratulations! Now you know how to observe the data sent from the Raspberry Pi on the server and visualize it as a chart.

			If you want the flow configuration file to make this flow on your Node-RED, you can get it here: https://github.com/PacktPublishing/-Practical-Node-RED-Programming/blob/master/Chapter11/getting-sensordata-with-iotplatform.json.

			Summary

			In this chapter, we experienced how to receive the sensor data sent from an edge device and visualize it on the server side.

			In this chapter, we used CloudMQTT and Node-RED on the IBM Cloud. Node-RED can run on any cloud platform and on-premises, and you can try to make this kind of application in any environment. That's why remembering this pattern will definitely be useful for your future development with other cloud IoT platforms.

			In the next chapter, we will look at a hands-on scenario of making a chatbot application with Node-RED. This will introduce you to a new way of using Node-RED.

		

	
		
			Chapter 12: Developing a Chatbot Application Using Slack and IBM Watson

			In this chapter, we will create a chatbot application, using Node-RED. For the chatbot application UI, we'll use Slack, and we'll use IBM Watson AI for skills. After completing the tutorials in this chapter, you will learn how to combine Node-RED with an external API to create an application. This will help you create extensible web applications with Node-RED in the future.

			Let's get started with the following topics:

			
					Creating a Slack workspace

					Creating a Watson Assistant API

					Enabling a connection to Slack from Node-RED

					Building a chatbot application

			

			By the end of this chapter, you will have mastered how to make a Slack chatbot application with Node-RED.

			Technical requirements

			To progress in this chapter, you will need the following:

			
					An IBM Cloud account: https://cloud.ibm.com/.

					The code used in this chapter can be found in Chapter12 folder at https://github.com/PacktPublishing/-Practical-Node-RED-Programming .

			

			Creating a Slack workspace

			This hands-on tutorial uses Slack as the UI for your chatbot application. Node-RED is responsible for controlling the exchange of messages in the background of the chatbot application.

			The overall view of this chatbot application is as follows:

			
				
					[image: Figure 12.1 – Application overview

]
				

			

			Figure 12.1 – Application overview

			First of all, create a Slack workspace for use in this application with the following steps. If you already have a Slack workspace, you can use your existing one. In that case, skip the following steps and create a channel called learning-node-red in your workspace:

			
					Access https://slack.com/create, enter your email address, and click the Next button:[image: Figure 12.2 – Enter your email address

]
Figure 12.2 – Enter your email address

					Check the six-digit verification code from the email you received from Slack:[image: Figure 12.3 – Check the six-digit code

]
Figure 12.3 – Check the six-digit code

					Enter the verification code in the window that is displayed after you click Next with your email address. After entering your verification code, you will be redirected to the next window automatically:[image: Figure 12.4 – Enter the verification code

]
Figure 12.4 – Enter the verification code

					Give your workspace a name and click the Next button:[image: Figure 12.5 – Give your workspace a name

]
Figure 12.5 – Give your workspace a name

					Create a channel in your workspace. You can use the general channel as it is, but let's create a channel to implement the chatbot. Here, we will create a channel named Learning Node-RED: [image: Figure 12.6 – Your workspace name

]
Figure 12.6 – Your workspace name

					Click skip for now without adding teammates:[image: Figure 12.7 – No teammates are needed for this tutorial

]
Figure 12.7 – No teammates are needed for this tutorial

					Click See Your Channel in Slack to open the workspace you created:

			

			
				
					[image: Figure 12.8 – Click See Your Channel in Slack

]
				

			

			Figure 12.8 – Click See Your Channel in Slack

			You have created the workspace for this tutorial:

			
				
					[image: Figure 12.9 – You have created the workspace

]
				

			

			Figure 12.9 – You have created the workspace

			Important note

			The channel on which the chatbot resides should preferably be a channel that only you participate in unless you have a public purpose. This is because the chatbot's movement can be noisy for participants who do not like (or are not interested in) the chatbot.

			At this point, you've got your workspace and channels ready to run your chatbot in Slack. Next, we will create a mechanism that will be the engine of the chatbot.

			Creating a Watson Assistant API

			This hands-on tutorial uses IBM's Watson Assistant API as the engine for chatbots. Watson Assistant can use natural language analysis to interpret the intent and purpose of natural conversation and return an appropriate answer.

			Details about Watson Assistant can be found at the following URL: https://www.ibm.com/cloud/watson-assistant-2/.

			To use the Watson Assistant API, you need to create an instance of the Watson Assistant API on IBM Cloud. Follow these steps to create it:

			
					Log in to your IBM Cloud dashboard, and search Assistant in the Catalog. Click the Assistant tile on the results of your search:[image: Figure 12.10 – Search for Watson Assistant

]
Figure 12.10 – Search for Watson Assistant

					Create a Watson Assistant API service. Select a region for the Watson Assistant service data center. Dallas is stable so here we selected Dallas.

					Select Lite for the pricing plan. Other items such as service name and resource group can be left at their default values.

					Click the Create button:[image: Figure 12.11 – Create a Watson Assistant service

]
Figure 12.11 – Create a Watson Assistant service

					Launch the Watson Assistant tool. Click the Launch Watson Assistant button to open the Watson Assistant console:[image: Figure 12.12 – Launch the Watson Assistant console

]
Figure 12.12 – Launch the Watson Assistant console

					Create a Skill in your Watson Assistant service.You will be moved to the My first skill screen automatically when you open the Watson Assistant console for the first time.
Normally, you would create a Watson Assistant skill here, but this hands-on tutorial will focus on Node-RED rather than how to use Watson Assistant. Therefore, a skill in Watson Assistant is created by importing the definition file prepared in advance.
If you want to create your own skill, that's fine. In that case, the official Watson Assistant documentation will help: https://cloud.ibm.com/apidocs/assistant/assistant-v2.

					Click Assistants on the side menu of the Watson Assistant console, and click the Create assistant button:[image: Figure 12.13 – Create Assistant menu

]
Figure 12.13 – Create Assistant menu
This time, I prepared a skill that will randomly return a joke phrase when told tell me a joke.

					Create an assistant for this frame, set the assistant's name to Respond Joke Phrase, and click the Create assistant button: [image: Figure 12.14 – Create assistant

]
Figure 12.14 – Create assistant

					Import Dialog. When your assistant is created, the settings screen of the created assistant is displayed. In the Dialog area on that settings screen, click the Add dialog skill button:[image: Figure 12.15 – Add dialog skill

]
Figure 12.15 – Add dialog skill

					Select the Import skill tab and select the JSON file for the skill you want to import. Download this JSON file at https://github.com/PacktPublishing/-Practical-Node-RED-Programming/blob/master/Chapter12/skill-Respond-Joke-Phrase.json.

					Click the Import button when the JSON file is selected:[image: Figure 12.16 – Import the dialog skill file

]
Figure 12.16 – Import the dialog skill file
You will see Respond Joke Phrase in the Dialog area:
[image: Figure 12.17 – Dialog skill imported

]
Figure 12.17 – Dialog skill imported

					This completes the skill import. You can return simple greetings and joke phrases, so try out the conversation with the Try it feature provided in the Watson Assistant console:

			

			
				
					[image: Figure 12.18 – Try it

]
				

			

			Figure 12.18 – Try it

			The chat window will be opened when you click the Try it button. Try typing the conversation that follows in the chat window:

			"Hello"; "Hi"; "Tell me jokes"; "Do you know any jokes?"; and so on…

			
				
					[image: Figure 12.19 – Test conversation

]
				

			

			Figure 12.19 – Test conversation

			If you don't get a good answer, try another phrase. Watson Natural Language Understanding divides conversations spoken in Watson Assistant's Try it out window into classes of intents or entities. If a conversation is not divided into the desired classes, you can train the Assistant API in the Try it out window.

			Now that you've created an auto-answer conversation using Watson Assistant, there's one more thing to do, that is, confirmation of the Skill ID. This is the ID you will need later to operate Watson Assistant as an API from Node-RED.

			Check the Skill ID from the Skills screen by following these steps:

			
					Click View API Details under the Skills menu at the top right of the Skill tile you created:[image: Figure 12.20 – Access the View API Details menu

]
Figure 12.20 – Access the View API Details menu

					Make a note of the Skill ID displayed:

			

			
				
					[image: Figure 12.21 – Check and note the Skill ID

]
				

			

			Figure 12.21 – Check and note the Skill ID

			We have now created a chatbot service that automatically responds to chats. Next, let's integrate this with the Slack user interface.

			Enabling the connection to Slack from Node-RED

			Next, let's move on to the preparation of a Slack node on your Node-RED environment. Launch the Node-RED flow editor created on IBM Cloud.

			What you do in this step is to install a node to connect to Slack in your Node-RED environment. The method is easy. All you have to do is find and install the node from the Manage palette window, which you've done several times in other chapters.

			Follow these steps to proceed:

			Important note

			I believe that the Node-RED flow editor on your IBM Cloud has already been created as a service (as a Node.js application), but if you haven't done so already, refer to Chapter 6, Implementing Node-RED in the Cloud, to create a Node-RED service on IBM Cloud, before proceeding with this chapter.

			
					You need to install the node-red-contrib-slack node to use Slack from Node-RED, so click Manage palette:[image: Figure 12.22 – Open the Manage palette window

]
Figure 12.22 – Open the Manage palette window

					Search the node-red-contrib-slack node and click the Install button:[image: Figure 12.23 – Install the node-red-contrib-slack node

]
Figure 12.23 – Install the node-red-contrib-slack node

					You will see four nodes that belong to node-red-contrib-slack on your palette. You have to prepare Slack nodes for building this sample application:[image: Figure 12.24 – Slack nodes will appear on your palette

]
Figure 12.24 – Slack nodes will appear on your palette

					Make a bot in your Slack workspace by accessing the Slack App Directory via Settings & administration | Manage apps on your Slack application (desktop or web):[image: Figure 12.25 – Select Manage apps

]
Figure 12.25 – Select Manage apps

					After moving to the Slack App Directory website, click the slack app directory logo at the top left of the website to access the Slack App Directory main page:[image: Figure 12.26 – Access the Slack App Directory

]
Figure 12.26 – Access the Slack App Directory
You can also access the Slack App Directory top page with the following URL: https://<your workspace>.slack.com/apps.
The following URL is just an example: https://packtnode-red.slack.com/apps.
This URL is generated automatically depending on each workspace name on Slack.

					Click the Get Essential Apps button to move to the application search window:[image: Figure 12.27 – Click the Get Essential Apps button

]
Figure 12.27 – Click the Get Essential Apps button

					Search the word bots and click Bots on the results: [image: Figure 12.28 – Search for Bots and select it

]
Figure 12.28 – Search for Bots and select it

					Click the Add to Slack button on the Bots app screen:[image: Figure 12.29 – Add the Bots app to your workspace

]
Figure 12.29 – Add the Bots app to your workspace

					Set the Username of this bot application using any name you like. In this example, we named it packt-bot.

					Click the Add bot integration button:[image: Figure 12.30 – Set your bot name

]
Figure 12.30 – Set your bot name

					On the next screen, the API token for using the bot will be generated and displayed. Make a note of this so that you do not forget it. This API token is used when creating a flow with Node-RED:Important note
Be careful when sharing bot user tokens with applications. Do not publish bot user tokens in public code repositories. This is because anyone can access the bot with this API token.
[image: Figure 12.31 – Confirm your API token

]
Figure 12.31 – Confirm your API token

					Click the Save Integration button to finish the bot app integration:

			

			
				
					[image: Figure 12.32 – Bot app integration is finished

]
				

			

			Figure 12.32 – Bot app integration is finished

			Now you are ready. Let's move on to the flow creation procedure.

			Building a chatbot application

			So far, you've created a chatbot engine in Watson Assistant, created a Slack workspace, and integrated the Bot app, which you can use in that Slack workspace.

			Here, we will combine these services with Node-RED and create a mechanism with Node-RED so that the bot will answer when talking in Slack's workspace.

			Follow these steps to create a flow:

			
					Connect Watson Assistant to Node-RED. Access your Node-RED service dashboard via Resource list on IBM Cloud. Select the Connections tab and click the Create connection button:[image: Figure 12.33 – Create a new connection on Node-RED

]
Figure 12.33 – Create a new connection on Node-RED

					Select the Watson Assistant service you created and click the Next button:[image: Figure 12.34 – Create a new connection on Node-RED

]
Figure 12.34 – Create a new connection on Node-RED

					Click the Connect button with the default options to finish the connection setup. Doing this operation will restart the Node-RED application, which will take a few minutes to complete:[image: Figure 12.35 – Finish creating the new connection on Node-RED

]
Figure 12.35 – Finish creating the new connection on Node-RED

					Make the flow to handle conversations on Slack.You already have Slack nodes and Watson nodes that are available to use for this hands-on tutorial.

					Place a slack-rtm-in node, two function nodes, an assistant node, slack-rtm-out, and a debug node. After placing them, wire them sequentially as in the following figure:[image: Figure 12.36 – Place the nodes and wire them

]
Figure 12.36 – Place the nodes and wire them

					Set the parameters for each node.Follow this procedure to set the parameters on each node. For the nodes that need to be coded, code them as follows:
	The slack-rtm-in node:a) Click the edit button (pencil icon) to open the Properties panel:

			

			
				
					[image: Figure 12.37 – Open the Properties panel

]
				

			

			Figure 12.37 – Open the Properties panel

			b) Enter the Token value you generated on your Slack Bots app. You can set any name for this configuration. In the example here, it's named packt-bot:

			
				
					[image: Figure 12.38 – Set the properties of the configuration to connect the Slack app

]
				

			

			Figure 12.38 – Set the properties of the configuration to connect the Slack app

			When you go back to the main panel of this node, you will see the configuration has been set in the Slack Client property.

			c) Click the Done button to close this setting:

			
				
					[image: Figure 12.39 – Finish setting the properties of the slack-rtm-in node

]
				

			

			Figure 12.39 – Finish setting the properties of the slack-rtm-in node

			
					The function node (first one):a) In the first function node, enter the following:
global.set("channel",msg.payload.channel);
msg.topic = "message";
msg.payload = msg.payload.text;
return msg
You can also refer to the following figure:

			

			
				
					[image: Figure 12.40 – First function node coding

]
				

			

			Figure 12.40 – First function node coding

			In this function node, the message that is posted on Slack is taken out from the JSON data sent from Slack and put in msg.payload again.

			Another important process is to store the channel information sent from Slack in the Global variable in Node-RED. The channel information stored here will be used later when sending a response message back to Slack.

			
					The assistant node:In the previous step, you connected Watson Assistant to Node-RED. This means that you can call the Assistant API from Node-RED without using an API key or secret.
When I double-click the assistant node to open the settings panel, I don't see any properties such as API keys. If you see them in your settings panel, it means that the Watson Assistant and Node-RED connection process is failing. In that case, perform the connection process again.
There is only one property to set here. Set the Watson Assistant Skill ID you wrote down earlier as the Workspace ID property in the assistant node's settings panel:

			

			
				
					[image: Figure 12.41 – Set the Skill ID as the Workspace ID

]
				

			

			Figure 12.41 – Set the Skill ID as the Workspace ID

			This completes the settings for the assistant node. Save your settings and close the settings panel.

			
					The function node (the second one):In the first function node, enter the following code:
var g_channel=global.get("channel");
msg.topic = "message";
msg.payload = {
 channel: g_channel,
 text: msg.payload.output.text[0]
}
return msg
You can also refer to the following figure:

			

			
				
					[image: Figure 12.42 – Second function node coding

]
				

			

			Figure 12.42 – Second function node coding

			The second function node stores the autoresponder message returned from Watson Assistant in msg.payload.text, and gets the Slack channel information saved in the first function node and stores it in msg.payload.channel.

			
					The slack-rtm-out node:Next is the slack-rtm-out node, which is easy to set up:
a) Double-click on the slack-rtm-out node to open the settings panel.
b) You will see that the configuration named packt-bot you created is already placed in this node property. If it is not set yet, please select it from the drop-down list manually. Once you click on Done, the settings will be complete:

			

			
				
					[image: Figure 12.43 – Check the property settings of the slack-rtm-out node

]
				

			

			Figure 12.43 – Check the property settings of the slack-rtm-out node

			
					The debug node:The debug node here simply outputs the log. No settings are required.

			

			
					Check the bot application on Slack.An auto-answer chatbot has been created using Slack. Let's try the conversation.

					On the channel you created in your Slack workspace, add the bot app you integrated and click the Add an app link on the channel:[image: Figure 12.44 – Click the Add an app link

]
Figure 12.44 – Click the Add an app link

					Click the Add button to add the bot app to your channel:

			

			
				
					[image: Figure 12.45 – Add the bot app you created

]
				

			

			Figure 12.45 – Add the bot app you created

			Now, let's actually have a conversation. Mention and talk to your bot (packt-bot in the example) on the channel where you added this bot app. Since the only conversations we are learning with Watson Assistant this time are greetings and listening to jokes, we will send a message from Slack that seems to be related to either of these.

			First, let's say Hello. You will see a greeting kind of response:

			
				
					[image: Figure 12.46 – Exchanging greetings with the chatbot

]
				

			

			Figure 12.46 – Exchanging greetings with the chatbot

			Then send a message like Please tell me a joke. It randomly responds with a bot-selected joke as a reply:

			
				
					[image: Figure 12.47 – The chatbot answers some jokes

]
				

			

			Figure 12.47 – The chatbot answers some jokes

			Great work! You finally made the chatbot application with Node-RED.

			If you want the flow configuration file to make this flow in your Node-RED environment, you can get it here: https://github.com/PacktPublishing/-Practical-Node-RED-Programming/blob/master/Chapter12/slack-watson-chatbot-flows.json.

			Summary

			In this chapter, we experienced how to make a chatbot application with Slack, Watson, and Node-RED. This time, we used Slack as a chat platform, but you can use any chat platforms that have APIs, such as LINE, Microsoft Teams, and so on, instead of Slack.

			This chapter is also very helpful for creating any applications that are not IoT-based. Node-RED can develop various applications by linking with any Web API.

			In the next chapter, let's develop our own node. Of course, it can be used in any environment. Developing your own node with Node-RED means developing a new node that cannot be done with the existing nodes. This is surely the first step for advanced users of Node-RED.

		

	
		
			Chapter 13: Creating and Publishing Your Own Node on the Node-RED Library

			So far, we have learned about Node-RED using the prepared nodes. In this chapter, you'll learn how to create your own node and publish it in a library. After completing the tutorials in this chapter, you will be able to publish your own node for use by various developers around the world.

			Let's get started with the following topics:

			
					Creating your own node

					Testing your own node in a local environment

					Publishing your own node as a module on the Node-RED Library

			

			By the end of this chapter, you will have mastered how to create your own node.

			Technical requirements

			To progress in this chapter, you will need the following:

			
					A GitHub account: https://github.com/.

					An npm account: https://www.npmjs.com/.

					Node-RED (standalone in a local environment).

					An IBM Cloud account.

					The code used in this chapter can be found in Chapter13 folder at https://github.com/PacktPublishing/-Practical-Node-RED-Programming.

					The steps of this tutorial are basically processed on Mac. If you use a Windows PC, please replace the commands and file path with your environment.

			

			Creating your own node

			Before developing a node, there is something you need to know first. The following policies are set for node development. Let's follow these and develop a node.

			When creating a new node, you need to follow some general rules. They adhere to the approach adopted by the core nodes and provide a consistent user experience.

			You can check the rules for creating a node on the official Node-RED website: https://nodered.org/docs/creating-nodes/.

			Node program development

			Node-RED nodes consist of two files: a JavaScript file that defines processing and an HTML file that provides a UI such as a setting screen. In the JavaScript file, the processing of the node you create is responsible for is defined as a function. This function is passed an object that contains node-specific properties. The HTML file describes the property settings screen displayed by the Node-RED flow editor. The settings values entered on the property settings screen displayed in this HTML file are called from the JavaScript file and processed.

			Here, we will create a GitHub repository, but if you just want to create a node, you don't need a GitHub repository. In this chapter, we will use the GitHub repository to publish the created node to the library, so I would like you to create the repository at the beginning of the step.

			Please implement the following steps to create a GitHub repository:

			
					Go to https://github.com/ and log in with your GitHub account.

					Select New repository from the + dropdown at the top right of the GitHub page:[image: Figure 13.1 – Create a repository for your own node

]
Figure 13.1 – Create a repository for your own node
The repository created here exists as a project for developing nodes, and then it will be packaged and published to npm. (Of course, it is optional to publish it.)
Therefore, make sure that the repository name follows the naming convention for node development.
The GitHub repository name will be the same as the node name. In the node creation rule, the node name must be node-red-contrib-<name representing a group of nodes>, so specify the GitHub repository name accordingly. In this example, it is node-red-contrib-taiponrock.

					After specifying the repository name, set the repository disclosure range to Public, check the README file, and specify the license. In this example, it is created with the Apache License 2.0.

					After setting everything, click the Create repository button to create a repository:

			

			
				
					[image: Figure 13.2 – The repository is created as a public project

]
				

			

			Figure 13.2 – The repository is created as a public project

			You have now created your GitHub repository.

			Now let's clone the repository we just created to our local development environment by following these steps:

			
					Copy the repository URL to the clipboard. Click the green Code dropdown and click the clipboard button to copy the URL:[image: Figure 13.3 – Copy the URL to clone this repository

]
Figure 13.3 – Copy the URL to clone this repository
Clone the repository locally (git clone) from a command-line interface (such as a terminal) where Bash can run.

					Go to the working directory where you want to clone (copy) the repository. Here, I created a work directory under the user directory and moved to it:$ mkdir work
$ cd work

					Execute the git clone command with the URL of the repository you created earlier: $ git clone https://github.com/<GitHub account>/node-red-contrib-<Any specified string>.git

					When the clone is finished, use the ls command to confirm that it has been successfully cloned:$ls
node-red-contrib-<Any specified string>
Let's make a JavaScript file now.
From here, we will create the actual node processing. But don't worry, we already have the code ready. The provided code is very simple for processing the node. It's just a matter of converting the string passed as input to lowercase.

					First, change to the directory of the cloned repository:$ cd node-red-contrib-<arbitrary specified string>

					Under this directory, create a file with the filename node.js, as shown in the following code:module.exports = function(RED) {
 function LowerCaseNode(config) {
 RED.nodes.createNode(this,config);
 var node = this;
 node.on('input', function(msg) {
 msg.payload = msg.payload.toLowerCase();
 node.send(msg);
 });
 }
 RED.nodes.registerType("lower-case",LowerCaseNode);
}
node.js has been created.
Let's make an HTML file now.

					Create a file under the same directory with the filename node.html, as shown in the following code:<script type="text/javascript">
 RED.nodes.registerType('lower-case',{
 category: 'function',
 color: '#a6bbcf',
 defaults: {
 name: {value:""}
 },
 inputs:1,
 outputs:1,
 icon: "file.png",
 label: function() {
 return this.name||"lower-case";
 }
 });
</script>
<script type="text/html" data-template-name="lower-case">
 <div class="form-row">
 <label for="node-input-name"><i class="icon- tag"></i> Name</label>
 <input type="text" id="node-input-name" placeholder="Name">
 </div>
</script>
<script type="text/html" data-help-name="lower-case">
 <p>A simple node that converts the message payloads into all lower-case characters</p>
</script>
node.html has been created. This HTML file is responsible for the UI and design of the node you create. As mentioned previously, a node always consists of an HTML file and a JavaScript file.

			

			The node implementation has been almost completed. Next, let's package the created node so that it can be deployed.

			Node packaging

			Now that we've created the node processing (JavaScript) and appearance (HTML), it's time to package it. In Node-RED, the flow editor itself is a Node.js app, and each node running on it is also a Node.js app. In other words, the packaging here is processed using npm.

			We won't go into detail about npm here. If you want to know more about it, please visit the npm official website or refer to various technical articles: https://www.npmjs.com/.

			Now, use the npm command to perform the following steps:

			
					npm initialization. Execute the following command in the same location as the directory where node.js and node.html were created:$ npm init

					When you run npm init, you will be asked for various parameters interactively, so enter them according to how you want to proceed. These are the parameters that I used:[image:]
When you finish this step, the npm init command will generate a package.json file:
[image: Figure 13.4 – npm init

]
Figure 13.4 – npm init

					Edit package.json. You will need to manually add Node-RED-specific settings to package.json. Open the package.json file with a text editor and add the new property at the same level as "name" and "version" in the JSON: "node-red": {"nodes": "{" lower-case ":" node.js "} }:{
 "name": "node-red-contrib-<arbitrary string specified>",
 "version": "1.0.0",
 (abridgement)
 "node-red": {
 "nodes": {
 "lower-case": "node.js"
 }
 },
 (abridgement)
}
The following screenshot can be used as a reference, which will help you in adding this property:

			

			
				
					[image: Figure 13.5 – Edit package.json

]
				

			

			Figure 13.5 – Edit package.json

			This completes the packaging of your own node. Let's actually use this node in the next part.

			Testing your own node in a local environment

			You have already completed your own node. Let's add the nodes created so far to Node-RED in a local environment.

			For your own nodes, it is very important to check their operation locally. Publishing a node on the internet without making sure it works in your environment is not good for many developers.

			So, in this section, you'll be testing your own node in your local environment.

			Node installation

			You can use the npm link command to test the node module locally. This allows you to develop nodes in your local directory and link them to your local Node-RED installation during development.

			This is very simple. Follow these steps:

			
					Execute the following command on the CLI to add a node and start Node-RED:$ cd <path to node module>
$ npm link
This will create the appropriate symbolic link to the directory and Node-RED will discover the node at boot time. Simply restart Node-RED to get the changes to the node's files.

					Run the node-red command on the command line to start the local Node-RED. If it has already been started, restart it.You should see that a node called lower case has been added to the function category of the palette after rebooting:
[image: Figure 13.6 – The lower case node has been added

]
Figure 13.6 – The lower case node has been added

					Let's see if it can be used properly. Create a flow by sequentially connecting each node of inject lower case debug.

					For the properties of the inject node, set it to the character string type and set it to output any character string in all uppercase letters, for example, MY NAME IS TAIJI:[image: Figure 13.7 – Make a flow

]
Figure 13.7 – Make a flow

					When you deploy the created flow and execute the inject node, you can see that the all-uppercase string, as the parameter of this flow, is converted to an all-lowercase string and output to the debug tab:

			

			
				
					[image: Figure 13.8 – Result of this flow

]
				

			

			Figure 13.8 – Result of this flow

			Next, let's see how to customize a node.

			Node customization

			I was able to confirm that the node I created can be used in the local environment. From here, we will customize that node. It is possible to edit the function and appearance of the node by modifying JavaScript and HTML. These changes will take effect when you restart Node-RED.

			Changing the node name

			Currently, the node name of the created node is still a lower-case version of the sample program. Here, change this name to any name you like. Every node must have a unique name, so you should pick something that does not already exist. Follow these steps to change the name of the node:

			
					Change lower-case described in the package.json file to your own node name.In the example, the repository of the node is node-red-contrib-taiponrock, so change it to the taiponrock node.
This is how the package.json file looks before being modified:
[image: Figure 13.9 – Before modifying package.json

]
Figure 13.9 – Before modifying package.json
And this is how it looks after being modified:
[image: Figure 13.10 – After modifying package.json

]
Figure 13.10 – After modifying package.json

					Change lower-case and LowerCaseNode described in the node.js file to your own node name.For example, change lower-case to taiponrock and LowerCaseNode to TaiponrockNode.
This is how the node.js file looks before being modified:
[image: Figure 13.11 – Before modifying node.js

]
Figure 13.11 – Before modifying node.js
This is how the node.js file looks like after being modified:
[image: Figure 13.12 – After modifying node.js

]
Figure 13.12 – After modifying node.js

					Change lower-case described in the node.html file to your own node name.For example, change lower-case to taiponrock.
This is how the node.html file looks before being modified:

			

			
				
					[image: Figure 13.13 – Before modifying node.html

]
				

			

			Figure 13.13 – Before modifying node.html

			This is how the node.html file looks after being modified:

			
				
					[image: Figure 13.14 – After modifying node.html

]
				

			

			Figure 13.14 – After modifying node.html

			After restarting Node-RED, you can see that it has been renamed correctly:

			
				
					[image: Figure 13.15 – Your node has been renamed

]
				

			

			Figure 13.15 – Your node has been renamed

			Next, we will see how we can change the code of a particular node.

			Changing the node code

			The main parts that implement node processing are as follows:

			
					Change the code. You can change the processing of the node by rewriting msg.payload = msg.payload.toLowerCase (); defined in this part of node.js:(abridgement)
node.on ('input', function (msg) {
 msg.payload = msg.payload.toLowerCase ();
 node.send (msg);
}
(abridgement)
Here, to make the work easier to understand, let's change to a method that only returns the character string of your name or nickname.

					Let's rewrite node.js as follows:(abridgement)
node.on ('input', function (msg) {
 msg.payload = "Taiponrock";
 node.send (msg);
}
(abridgement)

					Execute the flow.Now let's see if it has changed. Use the flow you created earlier. The lower case node in this flow has been changed to a node whose name and processing has been changed, but it needs to be redeployed and raised. To make it easier to understand, delete the node that was once the original lower case node and relocate it.
[image: Figure 13.16 – Replace the node you created with the renamed node and execute it

]
Figure 13.16 – Replace the node you created with the renamed node and execute it

					Check the result. When you deploy the created flow and execute the inject node, you can see that the character string (name or nickname) that was set as a constant in this Changing the node code section is displayed in the debug tab.

			

			
				
					[image: Figure 13.17 – Result of this flow

]
				

			

			Figure 13.17 – Result of this flow

			In the next section, we will see some other node customizing options that we can use.

			Other customizing options

			In addition to the node name, you can customize your own node in a lot of different ways, such as node color, node icon, node category, node function, and so on. For details, please see this official document: https://nodered.org/docs/creating-nodes/appearance.

			Now that we have tested and customized the node in the local environment, let's publish the node in the Node-RED library.

			Publishing your own node as a module in the Node-RED Library

			Here, we will publish the created node in the Node-RED library. To do that, some work is required. So far, you have created your own node and confirmed that it can be used only in your environment. However, since it is a unique node created by you, let's publish it on the internet and have everyone in the world use it. To do this, you need to publish your own node to a location called the Node-RED library, which can be found here: https://flows.nodered.org/.

			Important note

			The Node-RED library is a community-based place to publish nodes and flows. Therefore, you should avoid exposing incomplete or useless nodes. This is because the Node-RED users should be able to find the nodes that they want, and it is not desirable to have a mix of unwanted nodes.

			So, although this chapter will explain how to publish nodes, please avoid exposing test nodes or sample node-level ones.

			Publishing the node you created

			Follow these steps to publish your own node in the Node-RED library:

			
					Maintain a README.md file.We will write the node description in the README.md file. English is the best language to write in, considering that English is a universal language.
For example, it is desirable to describe the following contents:
	Overview explanation
	How to use the node
	Screenshot
	Sample flow using this node
	Prerequisite environment
	Change logIn this section, since it is a hands-on tutorial, only the outline and usage will be written in the README.md file. Please update README.md with the following contents:
node-red-contrib-<Any specified string>
Overview
This node is a node for forcibly converting all the alphabet character strings passed as input to the character string "Taipon rock".
Even if the input parameter passed is not a character string, "Taiponrock" is forcibly returned.
In this process, it is a wonderful node that changed the sample node that was executing toLowerCase, which is an instance method of String object in JavaScript, to a process that just returns a meaningless constant.
how to use
It is used when you want to forcibly convert all the character strings of the parameters to be passed to "Taiponrock".

					Upload files – make sure you have five files: node.js, node.html, package.json, README.md, and LICENSE in the directory (it doesn't matter if package.lock.json is included):[image: Figure 13.18 – Check these five files

]
Figure 13.18 – Check these five files
Upload these files to the repository on GitHub. You should have done the work in the cloned repository directory, but if you are in another location, move to that repository directory. Then, execute the following command:
$ git add .
$ git commit -m "Node has been published"
$ git push
When the push finishes without error, you can see that the target file has been uploaded in the repository on GitHub:
[image: Figure 13.19 – Your node files are uploaded

]
Figure 13.19 – Your node files are uploaded

					Publish your node (npm publish).Now let's expose the node as a module. Upload the set of files using the npm command. Again, work in the cloned repository directory:
$ npm adduser
$ npm publish
You will be asked to confirm the version when you run npm publish. Don't forget to edit package.json to increase the version number, as the version must be up when you run npm publish a second time or later.
When publish is completed normally, it will be published at https://www.npmjs.com/package/node-red-contrib-<arbitrary character string>.
An example is https://www.npmjs.com/package/node-red-contrib-taiponrock:
[image: Figure 13.20 – Your node has been published on npm

]
Figure 13.20 – Your node has been published on npm

					Register the created node from Adding a node of the Node-RED library.

					In Add your node to the Flow Library, enter the name of the node you created and click the add node button:

			

			
				
					[image: Figure 13.21 – Add your node to the Node-RED library

]
				

			

			Figure 13.21 – Add your node to the Node-RED library

			When the registration is complete, you can see that the created node has been added to the library:

			
				
					[image: Figure 13.22 – Your node has been published in the Node-RED library

]
				

			

			Figure 13.22 – Your node has been published in the Node-RED library

			It takes about 15 minutes for the registration of a new node. Please note that the node you registered via the Node-RED flow editor cannot be found without complete registration on the Node-RED library.

			If you upgrade the version and publish it again, please refresh from your node's page of the Node-RED Library and click check for update in the Actions panel on the right side of the node screen:

			
				
					[image: Figure 13.23 – Check for the update of your node's status

]
				

			

			Figure 13.23 – Check for the update of your node's status

			Next, let's see how to delete the node published by you.

			Deleting the node you published

			Be careful when deleting published nodes. Currently (as of October 2020), according to npm's package unpublish policy, the unpublish deadline is within 24 to 72 hours of publication. In addition, it is possible to unpublish packages that have little effect on specific conditions, such as less than 300 downloads even for 72 hours or more.

			This information is expected to be updated from time to time, so please refer to the npm official website for the latest information: https://www.npmjs.com/policies/unpublish.

			After unpublishing, please refresh from your node's page of the Node-RED library in the same way as when updating. Click the request refresh at the bottom of the Actions panel on the right side of the node screen.

			To unpublish, execute the following command in the module directory (the directory of the cloned repository):

			$ npm unpublish --force node-red-contrib- <arbitrary string>

			If this command completes successfully, the module unpublishing is successful.

			Installing the node you published

			It is recommended that you wait at least 15 minutes after completing adding your node to the Node-RED Library.

			In Node-RED of the local environment, I reflected the self-made node so that it can be used as it is. I also published it to npm for publication and registered the node in the Node-RED library. Anyone should now be able to use this node.

			Here, let's try and check whether the node created this time can be installed and used without any problems from Node-RED of IBM Cloud. Please follow these steps:

			
					Log into IBM Cloud, create a Node-RED service, and launch the Node-RED flow editor.

					Open Manage Palettes in the flow editor:[image: Figure 13.24 – Access ing Manage palette

]
Figure 13.24 – Access ing Manage palette

					Select the Install tab and start typing the name of your node you created in the search field. If the node you created is displayed in the search results, it means that it is open to the public and is the target of installation.

					Click the Install button to install.If it is not displayed in the search results, you must have not waited for 15 minutes after node registration. Please try again after 30 minutes or 1 hour. If you still do not find your node, there may be some other cause, so please review the procedure you have done so far and try again:
[image: Figure 13.25 – Search for and install your node

]
Figure 13.25 – Search for and install your node

					Confirm that the node you created on the palette is installed, create a flow as shown in the following figure, and execute the inject node: [image: Figure 13.26 – Make the flow

]
Figure 13.26 – Make the flow
In the example, the self-made node is inserted between the flows prepared by default when the Node-RED flow editor is started for the first time.

					After running the inject node, verify that the results are displayed in the debug window:

			

			
				
					[image: Figure 13.27 – Result of this flow

]
				

			

			Figure 13.27 – Result of this flow

			Great job! You now know how to make your own node and publish it.

			Summary

			Congrats! In this chapter, you learned how to create your own node, how to customize it, and how to set it from the Node-RED library or your local machine. Creating your own node wasn't as difficult as you might think. If you create the processing content and arrange the appearance based on this procedure, you can publish your own useful node that does not already exist and have developers all over the world use it!

			Also, at the end of this book, I'll give you a brief introduction to the Node-RED user community, so be sure to check that out as well.

		

	
		
			Appendix: Node-RED User Community

			Node-RED is still evolving as an open source tool. Behind the scenes, not only the creators of Node-RED but also its many users are a big force in shaping the tool and contributing to it.

			I believe that the user market of Node-RED will grow even more in the future. Here, we will introduce the user community; please do actively participate in the user community, whether you are just starting to use Node-RED or have already been using it for some time.

			Node-RED Community Slack

			In Node-RED’s Slack, creators and users talk about various topics. You can also give feedback to the Node-RED core team.

			In addition, the number of channels that support local languages is gradually increasing, so anyone can easily enjoy the conversation: https://nodered.org/slack/

			Node-RED Forum

			The Node-RED Forum gives you support from users or creators on technical issues and development topics. You will get more benefit from it when used in conjunction with the Slack channel mentioned previously: https://discourse.nodered.org/

			Japan User Group

			This is a Node-RED user community for Japan, which Taiji, the author of this book, belongs to and organizes. Its representative is Atsushi Kojo of Uhuru. The information provided is mainly in Japanese, but recently the number of participants from outside Japan have increased, and communication in English can also be found. Once a year, we also have a global Node-RED conference called Node-RED Con: https://nodered.jp/

		

	
		
			[image:]

			Packt.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			[image:]

			Building Low-Code Applications with Mendix

			Bryan Kenneweg , Imran Kasam , Micah McMullen

			ISBN: 978-1-80020-142-2

			
					Gain a clear understanding of what low-code development is and the factors driving its adoption

					Become familiar with the various features of Mendix for rapid application development

					Discover concrete use cases of Studio Pro

					Build a fully functioning web application that meets your business requirements

					Get to grips with Mendix fundamentals to prepare for the Mendix certification exam

					Understand the key concepts of app development such as data management, APIs, troubleshooting, and debugging

			

			[image:]

			Practical Python Programming for IoT

			Gary Smart

			ISBN: 978-1-83898-246-1

			
					Understand electronic interfacing with Raspberry Pi from scratch

					Gain knowledge of building sensor and actuator electronic circuits

					Structure your code in Python using Async IO, pub/sub models, and more

					Automate real-world IoT projects using sensor and actuator integration

					Integrate electronics with ThingSpeak and IFTTT to enable automation

					Build and use RESTful APIs, WebSockets, and MQTT with sensors and actuators

					Set up a Raspberry Pi and Python development environment for IoT projects

			

			Packt is searching for authors like you

			If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

			Leave a review - let other readers know what you think

			Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book’s Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

		

	OEBPS/image/Figure_12.42_B16353.jpg
Edit function node

Delete Cancel

Properties ’ kdl [E=
¥ Name [Name] [-A4
Setup Function H Close ‘

1 var g_channel=global.get("channel");
2

3 msg.topic = "message";

4 - msg.payload = {

5 channel: g_channel,

6 text: msg.payload.output.text[0]
7-}

8 return msg

OEBPS/image/Figure_12.32_B16353.jpg
representing the same users,

Disable translation to send and receive
global user IDs exclusively. Learn more,

Save Integration

OEBPS/image/Figure_10.6_B16353.jpg
Cwdeug |

Yaunoses | @

272020, 120819 PM e Bc93804 64218
g payioad Object

»{ temperature: 29.18, humidity:
$5.56)}

OEBPS/image/Figure_11.17_B16353.jpg
1BM Cloud

Resource list /

Node-RED for Packt @ running | visitAppURL| Addtags 2

Getting started

Instances
| Overview
Runtime Health
Connections 1 O O %
Logs

1/1 instance(s) are running
API Management

Autoscaling

OEBPS/image/Figure_5.10_B16353.jpg

OEBPS/image/Figure_4.15_B16353.jpg
)

Q filter nodes Flow 1 Flow 2

Installing 'node-red-contrib-watson-content-hub'

Before installing, please read the node's documentation. Some nodes
have dependencies that cannot be automatically resolved and can
require a restart of Node-RED.

Cancel Open node information Install

8

1 v Watson Content Hub
Nodes added to palette:

wch-asset
wch-category
wch-connection
wch-content
wch-imageprofile

o e
i
o,

e T
* wch-search -

Jo8)
« wch-user 7 _

OEBPS/image/Figure_11.27_B16353.jpg
Edit gauge node > Edit dashboard group node

Delete Cancel
‘ # Properties = B

% Name Raspberry Pi Sensor data ‘
BB Tab Home v & ‘
+~ Width 6

Display group name

[Allow group to be collapsed

OEBPS/image/Figure_5.20_B16353.jpg

OEBPS/image/Figure_12.12_B16353.jpg
Resource list /

Watson Assistant-02 @active Addtags 2

Manage
Service credentials
Plan

Connections

Start by launching the tool

Getting started tutorial

(£}

Credentials

AP key:

URL:

API reference

Download

OEBPS/image/Figure_12.22_B16353.jpg
View

Import
Export

Search flows

Configuration nodes
Flows

Subflows

Groups

Manage palette

OEBPS/image/Figure_6.41_B16353.jpg
Edit chart node
Delete

% Properties

B Group

Eisize

X Label

12 Type

Xeaxis

Add new ul_grouy ’

auto

chart
12 Line chart
last | 1 hours

oR

N |

Edit chart node > Add new dashbboard group config node

O enlarge points

1000

points

Cancel
@ Properties 1
® Name Packt Chart
BTab Home v
—witn o
G Display group name
(O Allow group to be collapsed
L
Edit chart node Il
Delete Gancel
| % Properties L G

& Group. {Home] Packt Chart v

OEBPS/image/Figure_4.2_B16353.jpg
Properties (Variables)

Node
Parameter 1
Parameter 2
Parameter 3

Node

Optional Setting 1
Optional Setting 2

OEBPS/image/Figure_10.16_B16353.jpg
@ 12C connected

@ connected

D= ——SE e

@ connected

OEBPS/image/Figure_11.21_B16353.jpg
Edit mqtt in node > Add new matt-broker config node

Properties & 3

& Name CloudMQTT
‘ Connection H Security H Messages
@ Server driver.cloudmatt.com Port | 18913

(J Enable secure (SSL/TLS) connection
% Client ID Leave blank for auto generated

© Keep alive time (s) 60 Use clean session

[Use legacy MQTT 3.1 support

OEBPS/image/Figure_3.9_B16353.jpg
4 debug i@ P o v

LT

Yallnodes | | &

7152020, 7:3324 AM node: 167cc04d.471b
msg payload : Obiect
»{ name: "Taiji" }

OEBPS/image/Figure_11.31_B16353.jpg
J!’tdebug ill@| %[l ~

Yallnodes | | @

2/1/2021, 6:33:31 PM node: 49861b9.05a0de4
packt : msg.payload : string[38]
"

{"temperature":36.22,"humidity":25.1
1}"

2/1/2021, 6:33:31 PM node: 72f3d3b2.40819¢c

packt : msg.payload : number

36.22

OEBPS/image/Figure_7.6_B16353.jpg
By city name
Description:

You can call by city name or city name, state code and country code. API responds with a list of
weather parameters that match a search request.

AP call:

api.openweathermap.org/data/2.5/weather?q={city name}&appid={your api key}

api.openweathermap.org/data/2.5/weather?q={city name},{state code}&appid={your api key}
api.openweathermap.org/data/2.5/weather?q={city name},{state code},{country code}&appid={your api key}
Parameters:

q city name, state code and country code divided by comma, use ISO 3166 country codes. You can
specify the parameter not only in English. In this case, the API response should be returned in the
same language as the language of requested location name if the location is in our predefined list of
more than 200,000 locations.

Examples of API calls:
api.openweathermap.org/data/2.5/weather?q=London

api.openweathermap.org/data/2.5/weather?q=London,uk

OEBPS/image/Figure_9.15_B16353.jpg
TaijinoMacBook-Pro-2:node-red-todo-app taiji$ pwd
/Users/taiji/.node-red/projects/node-red-todo-app |
TaijinoMacBook-Pro-2:node-red-todo-app taiji$ Ls

LICENSE README .md flow. json flow_cred.json package.json public
TaijinoMacBook-Pro-2:node-red-todo-app taiji$

OEBPS/image/Figure_3.14_B16353.jpg
Flow 1

Flow 2

OEBPS/image/Figure_9.25_B16353.jpg
PaldRs € 4 +

Stitles: ’
"order”:
"complete

OEBPS/image/Figure_11.11_B16353.jpg
Edit mqtt out node

Cancel
Corpees |

@ server ‘ CloudMQTT
=Topic ‘pam ‘
®Qos [v DRetan | e B

@ Name [Name ‘

OEBPS/image/Figure_11.5_B16353.jpg
Name Plan Datacenter Actions.

You don't have any instances yet, do you want to create one?

OEBPS/image/Figure_4.8_B16353.jpg
Edit switch node

Delete Cancel

& Properties . B|=
% Name Big and Small

* Property ~ msg. payload

L[}
A

viiv %6 -1 x

n
v

viiv 0 5 —2 x

OEBPS/image/Figure_7.29_B16353.jpg
Here are your keys & tokens

For security, this will be the last time we'll display these. If something
happens, you can always regenerate them.

APl key ()

D44uYxkpAWEWYy1mVKhWI79ar7

API secret key ()

nlOgRySGa6iLkttOIhU5TfwOizILgwXvTmGW9HeuGxONITf72S

Bearer token ()

AAAAAAAAAAAAAAAAAAAAAIMZNGEAAAAAEVSWSWCXWIFNWAETSIK
PKTYKLmW%3DnOHJGWAWrKhFktslz8EhZyypl2TcOJUstjsOTbDFORW
SNSnOP

Setup your App

Your app settings page will allow you to enable 3rd party authentication, get
user tokens and more.

App settings

OEBPS/image/Figure_7.32_B16353.jpg
Edit twitter in node > Add new twitter-credentials config node
Cancel Add
£+ Properties &

¥ Twitter D @ taiponrock

1. Create your own application at developer.twitter.com/en/apps

2. From the 'Keys and tokens' section, copy the Consumer API keys

API key

APl secret key | eeee

3. Create a new 'Access token & access token secret' and copy them

Access token

Access token
secret

)

OEBPS/image/Figure_7.19_B16353.jpg
esserca |

Node-RED for Packt ®swe vt hos tsl Adduags & verass
0 [ecomnin |
Ovriem
Runtieng Wame Troe

[T ———— Coutann

T

OEBPS/image/Figure_7.39_B16353.jpg
=
4

-]

J¥ debug

Y all nodes o

10/26/2020, 1:57:16 PM node: 101d719f.ff96be
tweets/taiponrock : msg.payload.text : string[140]

""Node-RED Con Tokyo 2020 recap event
is held at 7pm JST today! It's
provided in Japanese but we cant
support transla..
https://t.co/3ggcF5rtav"

OEBPS/image/B16353_Preface_Table_1.jpg
Software/hardware covered in the book

OS requirements

Windows, macOS, or Raspberry Pi

Node-RED 1.2 oS

Node.js 12 Windows, macOS, or Raspberry Pi
(0N

npm 6 Windows, macOS, or Raspberry Pi

(ON

OEBPS/image/Figure_6.1_B16353.jpg
Log in to IBM Cloud

Don't have an account? Create an account

Enter your IBMid Forgot ID?

& remember o

Login with SoftLayer ID

OEBPS/image/Figure_7.12_B16353.jpg
J¥ debug

all nodes -

8/28/2020, 10:40:06 AM node: 123ccb32.9a1165
msg.payload : string[472]

"{"coord":
{"10n" 139.69,"lat":35.69}, "weather"

[{"1d" 802,"main":"Clouds","descript
ion":"scattered
clouds","icon":"@3d"}],"base":"stati
ons","main":
{"temp":305.85,"feels_like":310.36,"
temp_min":304.26,"temp_max":306.48,"
pressure':1012,"humidity":70},"visib
ility":10000,"wind":
{"speed":4.1,"deg":150},"clouds":
{"all":40},"dt":1598578432,"sys
{"type":1,"id":8077,"country":"Jp","
sunrise":1598559021,"sunset":1598606
104},"timezone":32400,"id":1850144,"
name" :"Tokyo","cod":200}"

8/28/2020, 10:40:06 AM node: 9380419f.68119
msg.payload : Object
»{ coord: object, weather:

array[1], base: "stations", main:
object, visibility: 10000 .. }

OEBPS/image/Figure_7.22_B16353.jpg
Restage app

Your "Node-RED for Packt' app must be restaged to use the new 'Visual
Recognition-11' service, Restaging makes this service available for use. Do you want

to restage it now?

OEBPS/image/Figure_12.18_B16353.jpg
G Tryit

w~ ¥ im) Create intent +

Examples T

OEBPS/image/Figure_2.13_B16353.jpg
%
T

& delay O

trigger

Flow 1 +

o [-[o]+

~ Information

Flow “f9196ea7.f2d91"
Name Flow 1
Status Enabled

~ Description

OEBPS/image/Figure_7.23_B16353.jpg
1BM Cloud

Resource list /

Node-RED for Packt | © restaging Addtags 2
Getting started S Filkitems
overview

Name.

1BM Cloud

Resourc list /

Node-RED for Packt

Getting started

Overview

© Running

Visit App URL

Q Filter items

Add tags &

OEBPS/image/Figure_5.26_B16353.jpg
»{ temperature: 29.18, humidity:
55.56 }

6212020, 12.06:30 PM node: d8c93894 604218
‘msg payload : Object

»{ temperature: 29.04, humidity:
55.72 '}

OEBPS/image/Figure_12.28_B16353.jpg
Q_ bots

Results for “bots” Sortby

m Trello Collaborate on Trello projects without leaving Slack. >
Jira Cloud Easily connect Jira Cloud projects to your Slack channels >

‘P Polly Instant engagement through polls, surveys, standups and trivia il >

i Bots Connect a bot to the Slack Real Time Messaging API. >

Standuply Standup-Bot #1: Surveys & Polls via Text-Voice-Video >

OEBPS/image/Figure_12.38_B16353.jpg
Edit slack-rtm-in node > Add new slack-config config node

% Name

& Token

1
Cancel

Add

L AE]

‘ packt-bot

OEBPS/image/Figure_7.33_B16353.jpg
Edit twitter in node

Delete Cancel
% Properties & B =

& Twitter ID @taiponrock vi| &
Q Search all public tweets v

W for #nodered

¥ Name Get #nodered tweets

Tip: Use commas without spaces between multiple search terms.
Comma = OR, Space = AND.

The Twitter APl WILL NOT deliver 100% of all tweets.

Tweets of who you follow will include their retweets and favourites.

Leave for blank to set using msg.payload.

OEBPS/image/Figure_5.16_B16353.jpg
User Settings

=]
hon Nodes [nstan L
s o I o o 2]

a grove-base

s x

© node-red-contrib-grove-base-hat
The node for Grove Base HAT for Raspberry Pi.
® 009 E8 2monthsago nstal

OEBPS/image/Figure_6.7_B16353.jpg
@ select the deployment target O Configure the DevOps toolchain

Deployment Automation

Select your deployment target and configure your DevOps toolchain. After you click Create,
deployment process is started automatically.

Deployment target
2 °

Cloud Foundry

Deploy and run your
applications without managing
servers or clusters. A Lite plan
is available for quick and easy
deployment.

1BM Cloud API key

Create a new API key with full access

Warning: This will create a new AP key that allows anyone who has it the ability to do anything you could do.
You can improve your security posture by using the IAM UI to create a service 1D API key that limits access to
only what your pipeline requires, and then pasting that into the template UI instead. For more information on
API Keys and access see the IAM documentation

Name Description

API Key for Node-REDforPackt

] save thiskey ina secrets store fo reuse

The value s required.

1BM Cloud API key

OEBPS/image/Figure_12.19_B16353.jpg
Tryit out Clear Manags Context @) X
| Hello Howean y L)

Hi

#Ganeral_Grastings PN

1 i thero ®

Ploase give me joko phrase
#General_Jokes v @

1 "Excuse me, but T saw your thumb in my s0up when you
were carrying it O, that's okay. The soup isn't hot

[

OEBPS/image/Figure_7.13_B16353.jpg
Y all nodes l?

8/28/2020, 10:40:06 AM node: 93804191.68119
msg.payload : Object

vobject
~vcoord: object
lon: 139.69
lat: 35.69
~vweather: array[1]
~v0: object
id: 802
main: "Clouds"

description: "scattered
clouds"

icon: "@3d"
base: "stations"
vmain: object

temp: 305.85

feels_like: 310.36

temp_min: 304.26

temp_max: 306.48

pressure: 1012

humidity: 70

visibility: 10000

~vwind: object
speed: 4.1
deg: 150
~vclouds: object
all: 40
dt: 1598578432
vsys: object
type: 1
id: 8077
country: "JP"
sunrise: 1598559021
sunset: 1598606104
timezone: 32400
id: 1850144
name: "Tokyo"
cod: 200

OEBPS/image/Figure_12.39_B16353.jpg
Edit slack-rtm-in node

Delete Cancel
e | OBE

¥ Name ‘ Name

& Siack Client | packt-bot v ¢

Y Slack Events ‘ message

Tip: Leave blank to receive ALL events.

OEBPS/image/Figure_6.12_B16353.jpg
Resource list /

Node-RED for Packt @ ruming Add tags 2 Details

Getting started

Instances Edit 2 Runtime
(BT SDK for Node.js™
Runtime Health Instances
Connections 1 B
100+ :
Logs A !
1/1 instance(s) are running 256
API Management Total MB allocation

Autoscaling
MB memory per instance

Availability Monitoring
] @ 256 256

0 MB stil available
M used [Free

Runtime cost Connections (1)
Current and estimated cost excludes connected services.

*0.00 *0.00

Estimated total for billing period
Aug 1, 2020 - Aug 31, 2020

© node-red-for-packt-cloudant-1596781067543-61622

Current charges for billing period

OEBPS/image/Figure_12.29_B16353.jpg
< Browse Apps

= Bots

Description Permissions Security & Compliance

Run code that listens and posts to your Slack team just as a user would.

Add to Slack

Learn more & Support
8 Privacy policy

OEBPS/image/Figure_6.22_B16353.jpg
Satellite (0)
Cloud Foundry apps (1)
I+ Node RED for Packt Test fillgapapp03@fillgap.jp / dev Dallas © Started

Cloud Foundry services (1)

Services (8) Restart
Storage (0) Edit name
Network (0) Add tags

Functions namespaces (0)
Delete

Apps (1)

OEBPS/image/Figure_6.32_B16353.jpg
Editinject node

Delete Cancel
s Propertes [o][o][=

@ Name [Name

S
= | msg. payload ‘=|’() || [x1

= ‘ msg. topic

OEBPS/image/Figure_11.30_B16353.jpg
® 12C connected

@ connected

OEBPS/image/Figure_13.3_B16353.jpg
Gotofile Addfile~ About

No description, website,

&J Clone ©] provided.
HTTPS SSH GitHub CLI
00 Readme
https://github.com/taijihagino/node [°)
Use Git or checkout with SVN using the web URL.
Releases

" P
) Open with GitHub Desktop T —
Create a new release

[Download ZIP

Packages

OEBPS/image/Figure_11.20_B16353.jpg
Edit mqtt in node

Delete

J %+ Properties
Q Server CloudMQTT v| #
& Topic packt
® QoS 1 v
@ Output auto-detect (string or buffer) v
¥ Name Name

OEBPS/image/Figure_3.13_B16353.jpg
=<2, Node-RED
a fitter nodes

~ network

Flow 1

o
get] fweb O

http response

Sends responses back to requests
from an HTTP Input node

e hitp response

Flow2

OEBPS/image/Figure_3.19_B16353.jpg
Export nodes

Export

Cpboard

Ubrary

Search flows

Configuration nod
Flows

Subflows.

Keyboard shortcuts
Node-RED website
V110

cumsntfow | [anfows

OEBPS/image/Figure_11.10_B16353.jpg

OEBPS/image/Figure_11.6_B16353.jpg
Select a plan and name -step 10f4

Name Packt MQTT Broker Plan
Plan Humble Hedgehog ($5/month) v
Tags

Tags are used to separate your instances between projects. This is primarily used in the project
listing view for easier navigation and access control.

‘Tags allow admins to manage team members access to different groups of instances.

Cute Cat

See the plan page to learn about the different
plans.

S

OEBPS/image/Practical_Python_Programming_for_IoT.png
Practical Python
Programming for loT

'V.'«a\'
.4“%‘ &l

V- | ¢
Pl

Gary smart

OEBPS/image/Figure_4.9_B16353.jpg
Edit template node

Delete Cancel

JQPmperllas v & B|=

¥ Name Output Small a-

* Property ~ msg. payload

[Template Syntax Highlight: | mustache vl
1 The number is small: {{payload}} !

OEBPS/image/Figure_5.2_B16353.jpg
Node-RED version: v1.0.6
Node.js version: vi2.18.1

Linux 4.19.118-v7+ arm LE

Loading palette nodes

Settings file : /home/pi/.node-red/settings.js
Context store : 'default’ [module=memory]

User directory : /home/pi/.node-red

Projects disabled : editorTheme.projects.enabled=false
Flows file : /home/pi/.node-red/flows_raspberrypi.j

Server now running at http://127.0.0.1:1880/

[Vour flow credentials file is encrypted using a system-generated key.
1f the system-generated key is lost for any reason, your credentials
file will not be recoverable, you will have to delete it and re-enter
your credentials.

[Vou should set your own key using the 'credentialSecret’ option in
your settings file. Node-RED will then re-encrypt your credentials
File using your chosen key the next time you deploy a change.

25 Jun ©9:25:33 - [info] Starting flows
25 Jun ©9:25:33 - [info] Started flows

OEBPS/image/Figure_5.11_B16353.jpg

OEBPS/image/Figure_2.9_B16353.jpg
a s s Fowt | + =] 1 wo * -
+ common " 7 | v information =
Pow owzonsros
Name it
Sa s
prs—

nkin

I

comment

i

ii

ctrl (click]in the workspace to

3
!;'
| J

open the quick-add dialog

£

OEBPS/image/Figure_5.21_B16353.jpg
Edit grove-light-sensor-v1_2 node

Delete Cancel D
Properties. (& B|=
Port A2 v

Name Name

OEBPS/image/Figure_13.19_B16353.jpg
¥ main ~ ¥ 1branch © 0tags

@ taijinagino Update README.md

[LICENSE Initial commit

O README.md Update README.md

O node.html Node has been published
O node.js Node has been published
O package-lock.json Node has been published
[package.json Node has been published
README.md

node-red-contrib-taiponrock

Overview

Gotofile || Addfile~

9c36edb 18 seconds ago D) 4 commits

5 months ago
18 seconds ago
4 months ago
4 months ago
4 months ago

4 months ago

7

This node is a node for forcibly converting all the alphabet character strings passed as input to the character

string "Taipon rock".

Even if the input parameter passed is not a character string, "Taiponrock" is forcibly returned.

In this process, it is a wonderful node that changed the sample node that was executing toLowerCase, which is an
instance method of String object in JavaScript, to a process that just returns a meaningless constant.

how to use

It is used when you want to forcibly convert all the character strings of the parameters to be passed to
"Taiponrock". DON'T publish this kind of nodes, because it will be definitly spam node.

OEBPS/image/Figure_6.42_B16353.jpg
Ll dashboard i

Layout | Site

Tabs & Links
~ B Home

v B Default

~ B8 Packt Chart
& chart

Htab | ik

-_—

Open as new window(or tab)

Packt Chart

4
35

3
25

2
23:32:30

chart

23:32:50

23:33:19

OEBPS/image/Figure_5.01_B16353.jpg

OEBPS/image/Figure_10.10_B16353.jpg
piBraspberrypi:~ $ sudo systemctl start mosquitto
piGraspberrypi:~ S sudo systemctl status mosquitto
o mosquitto.service - Mosquitto MQTT v3.1/v3.1.1 Broker
Loaded: loaded (/1ib/systemd/system/mosquitto.service; enabled; vendor presei
Active: active (running) since Wed 2021-61-27 10:35:05 JST; 1min 57s ago
Docs: man:mosquitto.conf(5)
man:mosquitto(8)

Main PID: 483 (mosquitto)
Tasks: 1 (limit: 2077)
Memory: 2.2M
CGroup: /system.slice/mosquitto.service

483 /usr/sbin/mosquitto -c /etc/mosquitto/mosquitto.conf

Jan 27 10:35:03 raspberrypi systemd[1]: Starting Mosquitto MQTT v3.1/v3.1.1 Brok|
Jan 27 10:35:05 raspberrypi systemd[1]: Started Mosquitto MQTT v3.1/v3.1.1 Brokel

picraspberryp:

OEBPS/image/Figure_6.30_B16353.jpg

OEBPS/image/Figure_6.20_B16353.jpg
Toolchains / Node-REDforPackt / Node-REDforPackt /

Node-REDforPackt | Delivery Pipeline

BUILD ® @ > pepiov ® 8

LAST INPUT GitURL @ LAST INPUT Stage: BUILD / Job: Build

Last commit by IBM Cloud ~ 15m ago N
clone from zip & Build1

Jo8S View logs and history 1088 View logs and history
© Build Passed now © Rolling Deploy Passed now
LAST EXECUTION RESULT LAST EXECUTION RESULT

Node-RED for Packt

& Build 1 H
& Build1

OEBPS/image/Figure_6.40_B16353.jpg
Edit function node

Delete
‘ Properties & |B||=
® Name Name 8-~

Setup Function Close

// Set min and max for random number
var min = -10 ;
var max = 10 ;

// Generate random number and return it
msg.payload = Math.floor(Math.random() * (max + 1 - min)) + min
return msg;|

OEBPS/image/Figure_7.5_B16353.jpg
Weather API

Home | Weather API

Please sign up and use our fast and easy-to-work weather APIs for free. Look at our monthly

subscriptions for more options rather than the Free account that we provide you. Read How to start first

and enjoy using our powerful weather APIs.
Current & Forecast weather data collection

Ci t Weather Data Hourly Forecast 4 days
55 curont weather data forany - Houry forocastis availabl for 4 days
location inclucing over 200,000 cies - Forocast weather data for 96 imestamps
+ Current weather s frequently updated + Higher geographic accuracy
based on gobal models and data from + JSON and XML formats
more than 40,000 weather stations + Avalabl fo Devaloper, Professional and
+ JSON. XML, and HTML formats Enterprise accounts

« Availabe forboth Froe and paid
‘subscriptions

One Call API NEW

Make one API cal and got curent,
forecast and historical weather data

+ Minute forecast for 1 hour

+ Hourly forecast for 48 hours

+ Daily forecastfor 7 days

« Historical data for 5 prvious days

+ JSON format

« Available for both Free and paid

OEBPS/image/Figure_3.4_B16353.jpg
a filter nodes

~ common
Injects a message into a flow either manually or
at regular intervals. The message payload can

inject be a variety of types, including string

JavaScript objects or the current time.

node-red : nject

in

link out

il

comment

OEBPS/image/Figure_6.10_B16353.jpg
App Development / Apps | App details /

Node-RED for Packt Addtags

h.git.cloud.ibm.

01/

DforPackt

Details

App URL u
Source htps://us-
Resource group Default

Deployment target

Created 8/7/2020

es

@ Cloudant
Open dashboard [3 Documentation [3

Credentials

Deployment Automation

Name Node-REDforPackt

Location Dallas

oBs2

Tool integrations

Delivery Pipelines

Name
Status @ success 1
Last input Last commit by IBM Cloud (3 minutes ago)

Clone from zip [7

OEBPS/image/Figure_3.15_B16353.jpg
<«

{}

C @ localhost:1880/web

OEBPS/image/Figure_9.5_B16353.jpg
% Download CouchDB 3.1.1

1. e | S SO RAAEE | B2
g T3S s 115 | e
gt 727 s 11 | i s

AP 10375 wson 1 1 [i s

Sin1C5008 for verhing downioads. KEYS f 1 vaIIStng scrsnres.

OEBPS/image/Image86736.jpg
@ connected

OEBPS/image/Figure_11.4_B16353.jpg
&~ CLOUDMQTT

Welcome back!
{ E-mail]
[Password]
(O Keep me signed in Forgot your password?

or use a third-party service

Sign in with SAML

© Ssign in with GitHub G Sign in with Google

Don't have an acmunt

OEBPS/image/Figure_6.21_B16353.jpg
Resource summary

12

Resources

Cloud Foundry apps

Cloud Foundry services
Services
Apps

Developer tools

View all

91

93

Add resources +

OEBPS/image/Figure_9.4_B16353.jpg
= CouchDB

relax

Abost Docs Contribute News Download

Seamless multi-master sync, that
scales from Big Data to Mobile,
with an Intuitive HTTP/JSON API
and designed for Reliability.

More.

OEBPS/image/Figure_4.14_B16353.jpg
Deploy User Settings

Projects
View View Nodes Install
sort:| |5 | a-z | recent
Keyboard
Import g
Q watson
Export Palette
®© node-red-watson-api-lite &
For using the node “speech-to-text’, “sox is needed for m: and “arecord'
Git config
Search flows
L r
Configuration nodes © node-red-node-watson &
A collection of Node-RED nodes for IBV
Flows S 092 &
Subflows
@ node-red-node-watson-ucg &
Gr Ups A collection of Nc RED noc
% oo | 3 inst
Manage palette © node-red-contrib-watson-content-hub &
Nod D nodes for W Content Hub ir
% 025 8 1 r
Settings
© node-red-contrib-watson-machine-learning &
Interact with Watson Machine learning
Keyboard shortcuts L JEAN] s
Node-RED website @ node-red-contrib-watson-token-generator 2!
vi.1.0 A Node-RED node to g n tokens

OEBPS/image/Figure_10.11_B16353.jpg
:~ $ mosquitto_sub -d -t packt

Client mosqsub|3715-raspberryp sending CONNECT

Client mosqsub|3715-raspberryp received CONNACK (0)

Client mosqsub|3715-raspberryp sending SUBSCRIBE (Mid: 1, Topic: packt, QoS: 0)
Client mosqsub|3715-raspberryp received SUBACK

Subscribed (mid: 1): ©

OEBPS/image/Figure_3.2_B16353.jpg
=<, Node-RED

Deploy button

v subflows Q Search flows

Q filter nodes Flow 1

g v # | w

B node-red-todo-
< y > Flows
& D > Subflows
> Global Configuration Nodes
|
v common

|
|| 2] tweet a|a

Node "81890778.8a13¢c8"
e 5] Type twitter out
snowmore ~
-w |
_' The panel on the left is the Palette. | |'-/
It contains individual Nodes. Workspace [Sidebar I
==

OEBPS/image/pic_1-7.jpg
. Y M L Ao
Wy M

2 A

Y W

Jun 14, 20... Dec 11,2016 Jun 10,2018 Dec 8,2019

OEBPS/image/Figure_13.4_B16353.jpg
About to write to /Users/taiponrock/work/node-red-contrib-taiponrock/package.json:

{
"name"
"version":

red-contrib-taiponrock",
1.0.0",
: "test node",

"repository": {
"type": "git",
"url": "git+https://github.com/taijihagino/node-red-contrib-taiponrock.git"

1

"keywords": [
"node-red",
"taiponrock"

1,

"author": "taiji",

: "Apache-2.0",

[Is this OK? (yes) yes 1
Taijis-MacBook-Pro:node-red-contrib-taiponrock taiponrock$ 1s 1
LICENSE README .md node. html node. js package. json
Taijis-MacBook-Pro:node-red-contrib-taiponrock taiponrock$

OEBPS/image/Figure_6.31_B16353.jpg
packt_db =

OEBPS/image/Figure_3.3_B16353.jpg
New
Open
Project Settings

Add

Rename

Group selection

Show palette
Show sidebar
Event log

Action list

Dashboard

Debug messages

Create Subflow

== Deploy ~

Projects

View

Import
Export

Search flows

Configuration nodes
Flows
Subflows

Groups

Manage palette

Settings

Keyboard shortcuts
Node-RED website
v1.1.0

OEBPS/image/Figure_6.11_B16353.jpg
Toolchains / Node-REDforPackt / Node-REDforPackt /

Node-REDforPackt | Delivery Pipeline

BUILD ® @ > epioy ® @

LAST INPUT GitURL @ LAST INPUT Stage: BUILD / Job: Build

Last commit by 1M Cloud ~ 15m ago
clone from zip

& Build1

J088 View logs and history J088 View logs and history
© Build Passed now © Rolling Deploy Passed now
LAST EXECUTION RESULT LAST EXECUTION RESULT

Node-RED for Packt

View console

&, Build1

& Build1

OEBPS/image/Figure_7.24_B16353.jpg
View

Keyboard

Palotte

E—

[

sort: IF az recent | C

a twitter Torzm x
© node-red-node- twitter

A Node-RED node to tak to Twitter
S 116 8 11 monthsago s

© node-red-contrib-twitter 7
NodeRED nodes to wrap the vi.1 of the Twitter APl

OEBPS/image/Figure_6.19_B16353.jpg
B package.json 618ytes [3 Replace | Delete [B

1 {

2 node-red-app",

2 .12,

1 q

2 “node-red-app",
Commitmessage Update package.json

Target Branch master

Commit changes

OEBPS/image/Figure_7.37_B16353.jpg
O
Q function ()

OEBPS/image/Table_13.1_B16353.jpg
Parameter Value

name Default

version Default

description Node description (displayed as a library or installation description)
entry point Default

test command

No input required

git repository Default
Specify keywords used for search during installation, separated by
keywords commas. This time, we are planning to register the library, so be sure
to enter node - red.
author npm account
license Apache-2.0 (Default)

OEBPS/image/Figure_6.39_B16353.jpg

OEBPS/image/Figure_8.22_B16353.jpg
¥ Branch: master 1110

Manage remote branch

P Remote: origin/master

Your repository is 1 commit ahead of the
remote. You can push this commit now.

() Set as upstream branch

1 push Lpull

OEBPS/image/Figure_8.7_B16353.jpg
Changes to commit -all

@ flow.json

OEBPS/image/pic_1-1.jpg
Customer

Sales

Submit PO /

Enter Order

Rep is Notified

Contracts Legal Fullfillment
Review Order
Standard
Terms?
Approve Order
3 Mark it OK,
Return to Agent
Change
L Request Approval Acceptable? Pick Order,
Log Shipment
Mark it No,
Return to Agent
Cancel Order
No Ship Order Ship Order

OEBPS/image/Figure_13.18_B16353.jpg
[Taijis-MacBook-Pro:node-red-contrib-taiponrock taiponrock$ ls
LICENSE node. html package-lock. json
README .md node.js package. json
Taijis-MacBook-Pro:node-red-contrib-taiponrock taiponrock$

OEBPS/image/Figure_9.9_B16353.jpg
v @Bonmomms (son B A

Obytes o No a8

OEBPS/image/Figure_13.12_B16353.jpg
node-red-conti

module.exports = function(RED) {
function conﬁg) {

RED.nodes . createNode(this,config);

var node = this;

node.on("input', function(msg) {
msg.payload = msg.payload.tolLowerCase();
node.send(msg) ;

B;

}
RED.nodesmegisterType' TaiponrockNode);

OEBPS/image/Figure_5.08_B16353.jpg

OEBPS/image/Figure_7.31_B16353.jpg
Edit twitter in node

Delete Cancel m
roperties & B

& Twitter ID ‘ Add new twitter-credentials... vl &
Q Search all public tweets v

W for ‘ comma-separated words, @ids, #tags

9 Name Name

Tip: Use commas without spaces between multiple search terms.
Comma = OR, Space = AND.

The Twitter APl WILL NOT deliver 100% of all tweets.

Tweets of who you follow will include their retweets and favourites.

Leave for blank to set using msg.payload.

OEBPS/image/Figure_6.2_B16353.jpg
B
@

5009

7%

+

Dashboard

Resource summary

1

Resources

Cloud Foundry apps

Viewall

o1

Add resources +

Apps. Recent support cases

You can view a summary of your support

You can view your apps here after you create them. cases here after you submit them. Leam
Create an app. more about how to get support.

>

Viewall

Planned maintenance Viewall

Clear skies!

You can view your scheduled maintenance events here.

Usage

|

v

N,

There aren't enough resources or costs to
make a chart.

vpgrace custonize 2 m

1BM Cloud status.

Noissues @

Viewall

View usage

FEEDBACK

OEBPS/image/Image86662.jpg
Packt)

OEBPS/image/Figure_13.2_B16353.jpg
Create a new repository

A repository contains all project files, including the revision history. Already have a project repository
elsewhere? Import a repository.

Owner * Repository name *

@ taijihagino ~ / node-red-contrib-taiponrock v/
Great repository names are short and memorable. Need inspiration? How about bookish-octo-spork?

Description (optional)

® Q Public
7l Anyone on the internet can see this repository. You choose who can commit.
o) 6 Private
You choose who can see and commit to this repository.
Initialize this repository with:

Skip this step if you're importing an existing repository.

Add a README file
This is where you can write a long description for your project. Learn more.

(J Add .gitignore
Choose which files not to track from a list of templates. Learn more.

Choose a license
Alicense tells others what they can and can't do with your code. Learn more.

License: Apache License 2.0 v

This will set ¥ main as the default branch. Change the default name in your settings.

Create repositol

OEBPS/image/Figure_13.5_B16353.jpg
"name": "red-contrib-taiponrock",
"version": "1.0.0",

"description": "test node",
"main": "node.js",
"scripts": {

"test": "echo \"Error: no test specified\" &% exit 1"
1,
"node-red" : {

"nodes": {

"lower-case": "node.js"

}
1,
"repository": {

"type": "git",

"url": "git+https://github.com/taijihagino/node-red-contrib-taiponrock.git"

"node-red",
"taiponrock"

: "https://github.com/taijihagino/node-red-contrib-taiponrock/issues"

"homepage": "https://github.com/taijihagino/node-red-contrib-taiponrock#readme"

1wq

OEBPS/image/Figure_7.11_B16353.jpg
~ common

OEBPS/image/Figure_12.27_B16353.jpg
4% slack app directory

o

Add apps, get work done

Pull reports, start calls, file tickets,
and more — right within Slack.

Get Essential Apps

¢t$400

OEBPS/image/Figure_6.13_B16353.jpg
‘Welcome to your new Node-RED instance on IBM Cloud

+ Securoyour Node RED dier
+ Loamhow o st adtonsinodes

Secure your Node-RED editor

I ® Secure your editor 5o only authorised users can access it I

-
— Password
o
C , -

Learn how to install additional nodes

However rat

Applying your settings and starting Node-RED

oo - O——0

Finish the install
Youhave made e folowing selectons:

Previous Next

feaure on e applcaton's 18M Coud dashboor.
For more nformation folow s orl on IBM Deveoper.

Cloud consol:
« 00, ED_ussRAKS - he usemame.
« ODE_RED_PASSWORD - he password
« NODE RED GUESE ACCESS - ot 1o e, alows anjone road ol accass o s oor

OEBPS/image/cover.png
Practical Node-RED
Programming

Learn powerful visual programming techniques and best practices
for the web and IoT

Taiji Hagino

Foreword by Nick O'Leary, Co-creator of Node-RED

Iv

OEBPS/image/Figure_13.25_B16353.jpg
User Settings

¥ Nodes Install
[+
Keyboard
Q node-red-contrib-taiponrock 112892 %
Palette

© node-red-contrib-taiponrock (2
test node

® 101 £ 4hoursago install

OEBPS/image/Figure_4.1_B16353.jpg
Node.js Node-RED

Manual Coding

Build and Deploy Deploy on Node-RED

hyphenate

Node.js runtime Node.js runtime

OEBPS/image/Figure_12.9_B16353.jpg
Packt Node-RED v

Get started

First: Assemble the team
Browse Slack

v Channels

general
learning-node-red
random

v Direct messages

¥ Slackbot

@ fillgapappO1 (you)

+ Invite people

#learning-node-red
Add a tof

OEBPS/image/Figure_11.1_B16353.jpg
Publisher E))) CloudMQTT Subscriber
LN |
Publisher g h Subscriber
-_—
MQTT broker
Publisher Subscriber

OEBPS/image/Figure_6.8_B16353.jpg
Number of instances.

1 v

Memory allocation per instance

64 M8 —————@ 2000 MB 256
Region Organization Space -
Dallas v fillgapappo1@filigap.jp dev
Host Domain
node-red-for-packt-taijioo1 mybluemix.net v

_

OEBPS/image/Figure_12.47_B16353.jpg
fillgapapp01 11:50 AM
Please tell me a joke

~_ packt-bot APP 11:50 AM
"Why did the cucumber blush?" "Because it saw the salad dressing.”"

OEBPS/image/Figure_10.8_B16353.jpg

OEBPS/image/Figure_11.29_B16353.jpg
Edit gauge node

Delete Cancel
roperties & B =

[Home] Raspberry Pi Sensor data vl ¢
auto
Gauge v

1 Label Humidity

I Value format | {{value}}

I Units %
Range min| 0 max| 100
Sectors 0 ...| optional |..| optional |.. 100

¥ Name

OEBPS/image/Figure_11.32_B16353.jpg
|l dashboard il @)% L] ~

J Layout Site Theme @

Tabs & Links A | v | +tab | +link
v &EH Home

> BB Raspberry Pi Sensor data

OEBPS/image/Figure_2.8_B16353.jpg
‘& Install Node.js

Standard Install on “Macintosh HD"

[rodaeton This will take 75.2 MB of space on your computer.
License Click Install to perform a standard installation of this software

Destination Select on the disk “Macintosh HD".

Installation Type
Installation

Summary

ned

Change Install Location...

Customize Go Back Install

OEBPS/image/Figure_7.8_B16353.jpg
~ common

OEBPS/image/Figure_3.8_B16353.jpg
J ¥¥ debug

b |

Y all nodes

OEBPS/image/Figure_4.10_B16353.jpg
Edit template node

Delete Cancel

£+ Properties i Bl e

% Name Output Big a-

* Property v msg. payload

[@ Template Syntax Highlight: | mustache v
1 The number is big: {{payload}} !

OEBPS/image/Figure_5.15_B16353.jpg
Projects

View

Import
Export

Search flows

Configuration nodes
Flows
Subflows

Groups

Manage palette

Settings

Keyboard shortcuts
Node-RED website
vi.1.0

OEBPS/image/Figure_6.26_B16353_.jpg
18M Cloud

s 0@ bHo

7

+

Dashboard ~

Resource summary Viewall

6

Resources

Cloud Foundry apps

Cloud Foundry services 1
Services

Apps 1
Developer tools 1

Add resources +

News v Recent support cases View all

Planned maintenance

Clear skies!
You can view your scheduled mai

User access.

Enter email addresses below
user setup:

Enter up to 100 email addr

OEBPS/image/Figure_6.33_B16353.jpg
E=

Edit JSON Visual editor

{55, 72"

29.18°

(" temp

e
cansson [vous o
~| v object

“humi® : "55.72"

OEBPS/image/Figure_8.1_B16353.jpg
& — &

Hello! We have introduced 'projects' to Node-RED.

This is @ new way for you to manage your flow files and includes version control
of your flows.

To get started you can create your first project using your cumrent flow files in a
fow easy steps.

I you are not sure, you can skip this for now. You wil stil be able to create your
first project from the 'Projects’ menu option at any time,

OEBPS/image/Figure_10.14_B16353.jpg
Edit mqtt out node

Delete ‘
% Properties

@ server | localhost:1883
= Topic | packt
®Qos ‘ 1 v DRetain | true

@ Name | Name

OEBPS/image/Figure_7.1_B16353.jpg

OEBPS/image/Figure_12.10_B16353.jpg
1BM Cloud

=]

Catalog

A Search results for ‘Assistant’ 1 resutt

Featured

Services

Software

Consulting
Watson

18M + Services « AT/ Machine Learning

Category Watson lets you build conversational
E interfaces into any application, device, or channel.

Lite + Free + IAM-enabled

Product

OEBPS/image/Figure_12.30_B16353.jpg
Username

Start by choosing a username for your
bot

packt-bot

Usernames must be all lowercase. They cannot be longer than 21 characters and can only
contain letters, numbers, periods, hyphens, and underscores.Most people choose to use
their first name, last name, nickname, or some combination of those with initials.

Add bot integration

By creating a bot integration, you agree to the Slack API Terms of Service.

OEBPS/image/Figure_11.12_B16353.jpg
Edit matt out node > Add new matt-broker config node.

 Properties

® Name | cloudmorT
J ‘Connection ‘ ‘Security Messages
@ Server | driver cloudmat.com | port |18913 ‘

@ Enable secure (SS/TLS) connection

@ Client ID [Leave blank for auto generated

©Keepalivetime (5) 60 | @ Use clean session

© Use legacy MQTT 3.1 support

OEBPS/image/Figure_3.12_B16353.jpg

OEBPS/image/Figure_4.7_B16353.jpg
Edit function node

Delete Cancel
% Properties.

® Name Generate Random Number

Setup Function Close

// generate random number
var min
var max = 10 ;

var a = Math. floor(Math. random() * (max + 1 - min)) + min ;

SomNoUAWNE

// set random number to message
msg.payload = a;

// return message
return msg;

o

OEBPS/image/Figure_11.23_B16353.jpg
Edit json node

Delete Cancel
‘ﬁPmperﬁea & B =

@® Action Convert between JSON String & Object v
= Property msg. payload

9 Name Name

Object to JSON options

(0 Format JSON string

OEBPS/image/Figure_9.17_B16353.jpg
J Todo APIs

Get all todos

@ connect ECONNREFUSED 127.0.0.1:5984

) Addanew todo

i.

‘connect ECONNREFUSEBA7.0.

OEBPS/image/Figure_9.20_B16353.jpg

OEBPS/image/Figure_12.41_B16353.jpg
Edit assistant node

Delete

Properties L ANER =S

9 Name ‘ Name ‘
® Workspace
° C W
9 Timeout
Period ‘ Leave empty to disable ‘
Save context
O Multiple Users
(O Permit Empty Payload

([Opt Out Request Logging

OEBPS/image/Figure_8.19_B16353.jpg
v Commit History (=]

rels

Manage remote branch

P Remote: origin/master

Your repository is 1 commit behind and 2
commits ahead of the remote. You must
pull the remote commit down before
pushing.

(O Set as upstream branch

1 push Lpull

OEBPS/image/Building_Low-Code_Applications_with_Mendix.png
Building Low-Code
Applications with Mendix

Discoverbest practices and expert techniques to
simpliy enterprise web development

Bryan Kenneswe | Imean Kasam | Micsh McMolen

I~

OEBPS/image/Figure_12.21_B16353.jpg
Skill details

Skill name:
SkillID:

Legacy v1 workspace URL:

Respond Joke Phrase

https://api.us-south.assistant.watson.cloud.ibm.com/

Service credentials

OEBPS/image/Figure_8.3_B16353.jpg
Deploy ~ =

P history i Eﬁ\ﬂv

v Local Changes

Q

Local files

None

Changes to commit

None

OEBPS/image/Figure_6.35_B16353.jpg
<€ packt_db i Document 10 v ool Don B A

All Documents

i Ky
50067021636007702c37580310936927 {“Tev"

Document

value
630355504c1BC16912428807fefoc9ed)

O 50e67021636007702c37580310936927

Oesign Documents @

OEBPS/image/Figure_5.17_B16353.jpg
Installing ‘node-red-contrib-grove-base-hat'

Before installing, please read the node's documentation. Some nodes
have dependencies that cannot be automatically resolved and can

require a restart of Node-RED.
=l =

OEBPS/image/Figure_2.6_B16353.jpg
nede

GETIWOWED | SECURNTY | ceRTIRCATION

Nodejs® is a JavaScript runtime built on Chrome'

#BlackLivesMatter

Download for macOS (x64)

12.18.1LTS 14.4.0 Current
Recommended For Host Users LatetFeatures

Or have a look at the Lon

dej issue | Report websiteissue | Get Help

|OpenJs Feport i

©pen.s Foundation. Allights Resered. Potians o thissite riginally © Joyent.

Node sis atrademarkof Joyen,Inc.and s used with it permission.Please eview the Traderark it and Traderark Guidelins of the Open 5 Foun

Node.scontibutor 4 contributions 21.2 MB

‘n e e ‘ node-v12.18.1.pkg

OEBPS/image/Figure_9.11_B16353.jpg
// 1he tolLlowing property can beé used to speclTy an additional directory to scan.
//nodesDir: '/home/nol/.node-red/nodes’,

// By default, the Node-RED UI is available at http://localhost:1880/
// The following property can be used to specifiy a different root path.
// If set to false. this is disabled.

//httpAdminRoot: '/admin',

// Some nodes, such as HTTP In, can be used to listen for incoming http requests.

0
//nodesDir: '/home/nol/.node-red/nodes’,
// By default, the Node-RED UI is available at http://localhost:1880/
// The following property can be used to specifiy a different root path.
// Tf set to false, this is disabled.

httpAdminRoot: '/admin',

// Some nodes, such as HTTP In, can be used to listen for incoming http requests.
/7 Rv dAefanil+ +hece area cerved relative +n0 "/7'" The followina nronar+yv

OEBPS/image/pic_1-6.jpg
Internet of Things
Analytics Application

ihe (¥ O]
Tklil_—

N N N
N N N

Device Network Platform
0l
I |
Security

OEBPS/image/Figure_9.24_B16353.jpg
< todos i v Gomm Quon B A
Al Documents ° X
" v @
Run A uery with Mango
Pormissions " oy ™
pom) 00000iEomET0o000a5e N ADOONGT 0000 GRETOR0ISANHDOORST [rov 1 605T0ckacc08005a201 T

Design Documents °

OEBPS/image/Figure_13.14_B16353.jpg
ed-contrib-taiponro vi node.html

<script type="text/javascript"s>
RED.nodes. register'Type,{
category: 'function”,
color: '#a6bbcf',
defaults: {
name: {value:""}
1
inputs:1,
outputs:1,
icon: "file.png",
label: function() {
return this.namel |

}
I>H
</script>

<script type="text/x-red" data-template-name: -

<div class="form-row">

<label for="node-input-name"><i class="icon-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>

</script>

<script type="text/x-red" data-help-name

<p>A simple node that converts the message payloads into all lower-case characters</p>
</script>

OEBPS/image/Figure_6.6_B16353.jpg
App Development / Apps | App details |

Node-RED for Packt addtags

Details Deployment Automation
App URL =
Resource group Default Configure Continuous Delivery

Continuous Delivery is not enabled for this app. Enable Continuous Delivery to

Deployment target automate builds, tests, and deployments through Delivery Pipeline, GitLab, and more.

Created 8/7/2020
Services
© Ccloudant H

Open dashboard (3 Documentation (3

Credentials v

onnect existing servic

OEBPS/image/Figure_10.2_B16353.jpg

OEBPS/image/Figure_12.16_B16353.jpg
Add dialog skill

Add an existing skill, or create a new dialog skill to add to your assistant.

Add existing skill Create skill Use sample skill Import skill

Select the JSON file for the dialog skill with the data you want
to import.

Drag and drop file here or click to select a file

skill-Respond-Joke-Phrase.json X

Im

OEBPS/image/Figure_12.23_B16353.jpg
User Settings

Close

View Nodes Install {
sort:| IF | a-z | recent ‘ ‘ <
Keyboard _—
Q node-red-contrib-slack 9/28% x
Palette

®© node-red-contrib-slack &
A node-red module to interact with the Slack API
© 200 8 1year, 9 months ago

install

© node-red-contrib-slack-files &
A node-red module to post to Slack.com

® 0.1.2 £ 3years, 11 months ago install

OEBPS/image/Figure_11.18_B16353.jpg
Node-RED
pre ‘

ming

Flow-b

tool for wiring together hardware

iy s el s Go to your Node-RED flow editor

IBM Cloud application, giving it
rvices available on the platform.

Learn how to customise Nodi

OEBPS/image/Figure_13.9_B16353.jpg
name": "red-contrib-taiponrock",

"version": "1.0.0",

"description": "test node",

"main": "node.js",

"scripts": {

"test": "echo \"Error: no test specified\" &% exit 1"

1,

"node-red": {

repository": {
"type": "git",
: "git+https://github.com/taijihagino/node-red-contrib-taiponrock.git"

}

1,

"keywords": [
"node-red",
"taiponrock"

: "taiji”,
": "Apache-2.0",

{
: "https://github.com/taijihagino/node-red-contrib-taiponrock/issues"

"homepage": "https://github.com/taijihagino/node-red-contrib-taiponrock#readme"

"package. json" 28L, 665C

OEBPS/image/Figure_3.10_B16353.jpg
=/T Deploy ~ —

Projects

View

Import
Export

Search flows

Configuration nodes
Flows
Subflows

Groups

OEBPS/image/Figure_12.43_B16353.jpg
Edit slack-rtm-out node

Delete ‘ Cancel
£+ Properties

¥ Name Name

& Slack Client | | packt-bot vi| ¢

OEBPS/image/Figure_7.28_B16353.jpg
Q .

Name your App.

Apps are where you get your access keys and tokens, plus set
permissions. You can find them within your Projects.

Packt AppO‘I|

Back

OEBPS/image/Figure_12.36_B16353.jpg
@ connected

@ Missing property: msg.payload

@ connected

OEBPS/image/Figure_7.35_B16353.jpg
¢Ue tone analyzer v3 \)

OEBPS/image/Figure_8.13_B16353.jpg
User Settings.

View

Keyboard

Palette

Git config

Committer Details
Leave blank to use system default

Username | Taiji HAGINO
Email taijihagino@gmail com
SSH Keys

Allows you to create secure connections to remote git repositories.

4 id_rsa

Projects

View

Import

Export

arch flows

Configuration nodes
Flow

Subflow

Groups

Manage palette

Keyboard shortcuts

Node-RED website

v1.1.3

OEBPS/image/Figure_11.25_B16353.jpg
Edit change node

Delete Cancel

| Bl
 Name [Name \
=Rules
| set "J {v msg. payload

to

\ v msg. payload.humidity

OEBPS/image/Figure_12.5_B16353.jpg
What's the name of your company
or team?

‘ Packt Node-RED ’

By continuing, you're agreeing to our Customer Terms of Service,
Privacy Policy, and Cookie Policy.

OEBPS/image/Figure_13.21_B16353.jpg
Adding a node

Node:RED nodes are packaged a5 modules and published 0 the pubic npm reposicry.
‘Once published t npm, they can b addo 10 the Flow Library using the form below:
o add a nodo t the lbrar,folow these steps:

. Create your node and package it as an npm module.

our module must have:

+ aname that follows the projects narming guidelines,
+ a READHE.nd o that describes what your node does and how to
useit,
+ a package. json fle with
 a node-red section listng the node fles,
 and "node-red" in s Ist of keywords

Publish your module to the public npm repository.

You can use the npn pubLish command to do this.

‘Add your node to the Flow Library

Use this form 1o tel the Flow Library about your node.

node-red-contrib-taiponrock

OEBPS/image/Figure_2.12_B16353.jpg
Node-RED version: v1.0.6
Node.js version: vi2.18.1
Linux 4.19.118-v7+ arm LE
Loading palette nodes

Settings file : /home/pi/.node-red/settings.js
Context store : 'default’ [module=memory

User directory : /home/pi/.node-red

Projects disabled : editorTheme.projects.enabled=false
Flows file : /home/pi/.node-red/flows_raspberrypi.j

Server now running at http://127.9.0.1:1880/

[vour flow credentials file is encrypted using a system-generated key.
1f the system-generated key is lost for any reason, your credentials
file will not be recoverable, you will have to delete it and re-enter
your credentials.

[vou should set your own key using the 'credentialsecret’ option in
[your settings file. Node-RED will then re-encrypt your credentials
Fite using your chosen key the next time you deploy a change.

25 Jun ©9:25:33 - [info] Starting flows
25 Jun ©9:25:33 - [info] Started flows

OEBPS/image/Figure_7.15_B16353.jpg
1BM Cloud

Catalog

18M
Featured
Services

Software

Consulting

Category

Search results for ‘tone analyzer’ sresuts

18M « Services + AL/ Machine Learning
uses linguistic analysis to detect

three types of tones from communications:
emotion, social, and language. This insight can.

Lite « Free + IAM-enabled

Streaming Analytics
18M + Services + Analytics

Leverage IBM Streams to ingest, monitor,

Visual Recognition Node.js App
18M - Software + AL/ Machine Learning

Use deep learning algorithms images

that can give you insights into your visual content.

Starter kits + 1BM Kubernetes Service +
Red Hat Openshift

Natural Language Understanding
18M + Services + Al Machine Learning

Xt to extract meta-data from content

&

SQL Query
18M + Services + Analytics

Read, . and store data i Cloud Object
Storage with ANST SQL.

Lite « Free - IAM-enabled

Annotator for Clinical Data
18M + Services + AL/ Machine Learning

xt to extract medical codes and

OEBPS/image/Figure_12.14_B16353.jpg
Create assistant

Craate an Aststant ta digloy the Gl that sddresses your
customers' goals.
Name

Ruspond Joke Phrase

T STV, Tor wairyle Rankiag o Custemar Care.
Bescrpnen loptonsl

Wb chat @ Proview ek
B Enabile web chat B Enable preview bnk

OEBPS/image/Figure_6.17_B16353.jpg
Resource list / App details /

Node RED for Packt Addtas 2

Details

App URL https://node-red-for-packt.mybluemix.net

Source https://us-south.git.cloud.ibm.com/fillgapapp01/NodeREDforPackt
Resource group Default

Deployment target Node RED for Packt

Created 10/26/2020

OEBPS/image/Figure_6.37_B16353.jpg
Edit cloudant in node

1 Properties & B =

Service node-red-for-packt-cloudant-159678106754 v

& Database | packt_db

Qsearchby | [‘all documents Bl

® Name Name

OEBPS/image/Figure_8.5_B16353.jpg
V history iE/Lﬁ\ﬂv

v Local Changes

Q

Local files +all

@ flowjson w| [+

OEBPS/image/Figure_12.34_B16353.jpg
Create connection

Q_ Search resources...]
Name Group Location
O o Internet of Things Platform-51 Default Dallas
(O g Visual Recognition-1l Default Dallas
@®)’ Watson Assistant-02 Default Dallas
O ,“uf cloud-object-storage-dsx Default Global

Cancel

OEBPS/image/Figure_9.13_B16353.jpg
" &

Open Project Craate Project | Clane Repository

Project name
node-red-todo-app. -
Must contain only A-Z 09 _ -
Git repository URL
https://github.comtaijihaging/node-red-todo-app.
i, st or sl
Usermnarme
taiponrock

Credentials encryption key

. |

OEBPS/image/Figure_2.4_B16353.jpg
8 Nodejs Setup - X

Custom Setup

Select the way you want features to be installed. n ‘@d ¢

Click the icons in the tree below to change the way features will be installed.

ezl Insal the core Node.s runtime
| npm package manager (node.exe).
©-| online documentation shortcuts

S| Addto PATH This feature requires 5259KB on your

hard drive. It has 1 of 1 subfeatures
selected. The subfeatures require OKB
on your hard drive.

Browse...

OEBPS/image/Figure_7.26_B16353.jpg

OEBPS/image/Figure_5.19_B16353.jpg
grove
ultrasonic
ranger

grove light
sensor vi_2

grove
temperature
sensor

grove-light-sensor-vi_2

The node controls Grove Light Sensor v1

node-red-contrib-grove-base-hat : grove-light-sensor- | &
vi2

OEBPS/image/Figure_10.4_B16353.jpg
Edit grove-temperature-humidity-sensor-sht3x node

Delete o o |

BIRDIE]

Port
Name

Namo

OEBPS/image/Figure_11.16_B16353.jpg
P m

i 008

N

Resource list

Q Filter by name or 1P address.

T Group

Filter by group or org.

Location

Filter.

Devices (0)
VPCinfrastructure (0

Clusters (0)

Cloud Foundry apps (1)

4 Node-RED for Packt

fillgapapp01@fillgap.jp / dev

Dallas

OEBPS/image/Figure_8.15_B16353.jpg
Project Setings.

Dwandencies | P | packagelson

e Flow tom en
Cracuntils | s_cro

& Encrypion enabled

P master aamm
Git remates

e mctes

OEBPS/image/Figure_2.2_B16353.jpg
18 Nodejs Setup - X

End-User License Agreement n‘dc

Please read the following license agreement carefully

Node js is licensed for use as follows:
ICopyright Node.js contributors. Al rights reserved.

Permission is hereby granted, free of charge, to any person
lobtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
land to permit persons to whom the Software is furnished to do so,

[accept the terms in the License Agreement

OEBPS/image/Figure_6.28_B16353.jpg
1BM Cloud

Resource list /

node-red-for-packt-cloudant-1596781067543 @acue adtses 2 Detats

Manage Overview Dashboard Capacity Docs aunch ard 7
Service credentials
Plan
Deployment details
Connections
CRN crn:v1:bluemix:public:cloudantnosgldb:us-south:a/1b3c468ed41e4f02bd68715cedb1c5dd:ea5402c0-a2d7-4163-b416-122fca01 7ebe::

Location Dallas

OEBPS/image/Figure_6.4_B16353.jpg
Select an Application Starter Kit

Choose a language and framework below to get running quickly on the cloud, then learn, evaluate, add your own code.

Filters

Languages

[] Node.js

[Go

[Python + Flask
[Python + Django
[] 3ava + Spring
[2ava + Liberty
[swift

[ios swift

[Android

Services used
[cloudant

[] Push Notifications

Deployment targets
[cloud Foundry
[Kube/Helm

[Kube/Knative

Q_ Node-RED|

@

Create App

Kickstart your journey from development to deployment with a new cloud-native application or
add arepo to bring your own code.

(=)

Node-RED

Astarter to run the Node-RED open-source project on I8M Cloud.

Lite + Code Pattern

FEEDBACK

ASK A QUESTION

OEBPS/image/Figure_13.23_B16353.jpg
Actions
Rate: 1 ¥ ¥¥ ¥ ¥¥ %
add to collection

check for update

report this module

OEBPS/image/Figure_7.17_B16353.jpg
Resource list /

Tone Analyzer-gv ©scwe asdug: 2

[]

Gerting started
Service credentials
Plan

Connections

Start by viewing the tutorial

Gotingstarted tutorist 3 | APt reference

Credentials

251 key:

https: //api.us-south. tone-analyzer..watson.cloud. ibs. con/instances/Se782ada- 1ale-477£-b817-4

=}

OEBPS/image/Figure_12.3_B16353.jpg
Confim your emall address

“Your confirmation cod s bolow — ante it n the browser window where
YOu've staried signing up or Slack.

‘Guestions about setting up Slack? Email us at holn B siack.com

1 you chdnt request this emal, there's nathing to wory about —
you can sadely ionore it

OEBPS/image/Figure_12.25_B16353.jpg
#general 7
Company-wide announcements and work-based matters.

Packt Node-RED v @

Packt Node-RED
packtnode-red slack.com

Your workspace is currently on the free
Version of Slack. See plans

Invite people to Packt Node-RED

Create a channel

Preferences

Settings & admi Settings

Workspace settings

ok Customize Packt Node-RED

Sign out of Packt Node-RED Administration

Manage members

T v

Upgrade

OEBPS/image/Figure_2.10_B16353.jpg
e =
- s

a=s R
Cea) e
e oo

inkin
& ko

=

Enable or disable thess tips from the

option in the settings

i (1T

s -0+

OEBPS/image/Figure_4.3_B16353.jpg

OEBPS/image/Figure_7.3_B16353.jpg
Sign In To Your Account

8 Estecemn

8 Posson

Rememter ma

OEBPS/image/Figure_9.18_B16353.jpg
Edit cloudantplus in node

Delete

& Properties

M Server

& Database
Q Search by

% Name

Cancel

External cloudant or couchdb service

http://localhost:5984

todos

all documents.

Get all

OEBPS/image/Figure_3.6_B16353.jpg
Edit inject node > JSON editor Edit inject node > JSON editor

J Edit JSON |[[visual editor | Edituson ||| visual editor
¢ [«] v object
g‘} "name": "Taiji" % name : “Taiji

OEBPS/image/Figure_5.23_B16353.jpg
color sensor
v2

grove

temperature
humidity

sensor sht3x

grove
magnetic

grove-temperature-humidity-sensor-sht3x

The node controls Grove Temperature Humidity
Sensor SHT3x.

node-red-contrib-grove-base-hat : grove-temperature- | &

humidity-sensor-sht3x

OEBPS/image/Figure_12.45_B16353.jpg

OEBPS/image/Figure_11.24_B16353.jpg
Sence)

ormpertes | DIDE

v

to

~ msg. payload

¥ msg. payload.temperature

OEBPS/image/Figure_11.14_B16353.jpg
\?’ CloudMQTT List all instances ~

Instances

Name - Plan Datacenter

Packt MQTT Broker Humble Hedgehog Amazon Web Services US-East-1 (Northern Virginia)

OEBPS/image/Figure_11.2_B16353.jpg
CloudMQTT Pricing Documentation ~ Support Blog

Hosted message broker for the
Internet of Things

Perfectly configured and optimized message queues for loT, ready in seconds.

OEBPS/image/Figure_3.17_B16353.jpg
Edit template node

v Cancel
J %+ Properties ‘ E]

¥ Name

=]

= Property [v msg. payload ‘

[® Template Syntax Highlight: | mustache v~
P! L =J

1+ <html>

2~ <head>

3 <title>Node-RED Web sample</title>
4~ </head>

5+ <body>

6 <h1l>Hello Node-RED!!</h1>

7 <h2>Menu 1</h2>

8 <p>It is Node-RED sample webpage.</p>
9 <hr>
10 <h2>Menu 2</h2>
il <p>It is Node-RED sample webpage.</p>
12- </body>
13« </html>|

</> Format [Mustache template VI

— Output as Plain text v

OEBPS/image/Figure_9.12_B16353.jpg
Deploy

pen

Project Settings

Projects

View

Import

Export

OEBPS/image/Figure_7.9_B16353.jpg
Edit http request node

Delete c -

3 Fropetics [o]@|=

N Method GET

M

@URL

hitp://apl.openweathermap.org/data/2 5/weather

Payload Ignore

OEBPS/image/Figure_9.22_B16353.jpg
€ 5 C O localhost1880 * 0 nQ:

Report my tasks

OEBPS/image/Figure_4.12_B16353.jpg
@

A

J ¥¥ debug

Y all nodes

7/18/2020, 1:07:22 PM node: Debug

msg.payload : number

1595045242842
7/18/2020, 1:07:22 PM node: Debug
msg.payload : string[35]

"It has been changed to string
data!"

7/18/2020, 1:07:22 PM node: Debug
msg.payload : string[22]

"The number is big: 9 !

OEBPS/image/Figure_10.13_B16353.jpg
@ 12C connected

@ connected,

@ connected

OEBPS/image/Figure_4.5_B16353.jpg
Edit complete node

#+ Properties
Select nodes...
Q

(O msg.payload debug
(O msg.payload debug
[catch: all catch

[If the function will be complete, show the message! comment

[If the function will get error, show the message! comment

OEBPS/image/Figure_10.9_B16353.jpg
Publisher

Publisher

(r) mosavitto

Publisher

Subscriber

MQTT broker

Subscriber

Subscriber

OEBPS/image/Figure_5.09_B16353.jpg

OEBPS/image/Figure_8.2_B16353.jpg
= & =

Open Project | Create Project | Clane Repository

Project nama.
Toat-Nodo-RED-Projoctd! v
Mt contain only A-Z 00 _-
Description
for test
Optonal
Flow fia
flowjson
“Jaon
Credentiais

OEBPS/image/Figure_8.17_B16353.jpg
¥ history i@ F | |¥| |l ~

> Local Changes

v Commit History z

first
mag

9 ho

Cre
9 ho

Manage remote branch

Manage remote branch
P Remote: None

Your local branch is not currently
tracking a remote branch.

OEBPS/image/Figure_12.1_B16353.jpg
USER

TOoOoUI

CLOUD

— @

Node-RED

Watson
Assistant

OEBPS/image/Figure_13.16_B16353.jpg

OEBPS/image/Figure_3.11_B16353.jpg
afiter nodes.

v network

hitp in

o

@, http request)

—

node-red : hitp in

Flow 2

end-point for creating web

OEBPS/image/Figure_8.8_B16353.jpg
first commit

‘ Cancel | Commit

OEBPS/image/Figure_8.11_B16353.jpg
Deploy

-

Projects

View

Import
Export

OEBPS/image/Figure_13.1_B16353.jpg
Import repository
GitHub formo New gist

Projects, ideas N iati
ew organlzatlon

W project
oogle Play

¢ Star

natively for An
Ne

2 Download on
@& App Store

OEBPS/image/Figure_6.24_B16353.jpg
IBM Cloud

Database

Data

Store

OEBPS/image/Figure_9.1_B16353.jpg
User ul Node-RED CouchDB

Todo-Backend

Node.js

-
App Handling

PC

OEBPS/image/Figure_6.14_B16353.jpg
Node-RED on IBM Cloud

Node-RED

Flow-based programming for the Internet of Thing

Node-RED is a programming tool for wiring together hardware

devices, APIs and online services in new and interesting ways. Go to your Node-RED flow editor

This instance is running as an IBM Cloud application, giving it

access to the wide range of services available on the platform

More information about Node-RED, including documentation, can be

Learn how to customise Node-RED

found at nodered.org.

Customising your instance of Node-RED

This instance of Node-RED is enough to get you started creating flows.

You may want to customise it for your needs, for example replacing this introduction page with your|
editor or adding new nodes to the palette.

To start customising your instance of Node-RED, you can either download the application locally or
deploy your changes directly.

Node-RED

Usemname:

packt-user

Password:

Login

OEBPS/image/Figure_11.8_B16353.jpg
Confirm new instance -step4ofa

Plan

Humble Hedgehog

Total: $5/month

Packt MQTT Broker
g Amazon Web Services
Region: Us-East-1 (Northern Virginia)

«pock Coneel

OEBPS/image/Figure_8.20_B16353.jpg
v Commit History

12

¥ Branch: master | |11

merged

((master)

Seconds ago

Initial commit
(origin/master)

17 mins ago

67097¢c0

151734

first commit
10 hours ago

Create project
10 hours ago

41d7970

2dfaeea

OEBPS/image/Figure_12.8_B16353.jpg
Tada! Meet your team’s first
channel: #learning-node-red

You're leaving those unending email threads in the past.
Channels give every project, topic, and team a dedicated
space for all their messages and files.

See Your Channel in Slack

OEBPS/image/Figure_13.26_B16353.jpg

OEBPS/image/Figure_3.21_B16353.jpg
afiter node Flow 1 Flow2 Flow2

OEBPS/image/Figure_2.7_B16353.jpg
() @ Install Node.js

To continue installing the software you must agree to the terms of the
'software license agreement.

® Il cjick Agree to continue or click Disagree to cancel the installation and quit
o Lic thenstaller.

Read License Disagree Agree

Surfimary

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

n ‘ c WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

This license applies to parts of Node.Js originating from the https=/github.com/

Print... Save... Go Back Continue

OEBPS/image/Figure_12.7_B16353.jpg
Who do you email most about this
project?

name@work-email.com

@® Add another
Add Teammates

& Get an invite link to share

OrJskip for now

OEBPS/image/Figure_13.17_B16353.jpg
¥¥ debug i (&P ||% |l

v

Y all nodes

10/7/2020, 10:50:04 AM node: e95a10e6.bc037
msg.payload : string[10]

"Taiponrock"

i

OEBPS/image/Figure_13.7_B16353.jpg

OEBPS/image/pic_1-2.jpg
01

02

OEBPS/image/Figure_13.20_B16353.jpg
Miss any of our Open REC calls? Watch the recordings herel

node-red-contrib-taiponrock

10,0+ Public - Published 2 minut

Readme B eplore © 0 Dependencies & 0 Dependents

node-red-contrib-taiponrock s

® 1 Versions

B Settings

OEBPS/image/Figure_13.10_B16353.jpg
"keywords": [
"node-red",
"taiponrock"

1,

"author": "taiji",

"https://github.com/taijihagino/node-red-contrib-taiponrock/issues”

"homepage": "https://github.com/taijihagino/node-red-contrib-taiponrock#readme"

OEBPS/image/Figure_6.34_B16353.jpg
Edit cloudant out node

1 Properties B =

Service node-red-for-packt-cloudant-159678106754 v

& Database | packt_db

Operation | insert
3 Only store msg.payload object?

% Name Name.

OEBPS/image/Figure_9.8_B16353.jpg
Create Database

Database name

todos

Partitioning
® Partitioned

© Non-partitioned

> What is a Partitioned Database?

Cancel

OEBPS/image/Figure_6.15_B16353.jpg
a fiiter nodes Flow 1

v common

comment

-[o[+

i info SICHE IR
Q Search flows -
~ Flows
> B9 Flow1 o
> Subflows

> Global Configuration Nodes

B Flow1 a

Flow "7916636d.c705ec"

%
Hold down (% | when you/click|on
anode to add or remove it from the

current selection

OEBPS/image/Figure_13.27_B16353.jpg
& || x

i debug

Y all nodes

10/7/2020, 6:12:10 PM node: f2f26492.0d0d98
msg.payload : string[10]

"Taiponrock"

OEBPS/image/Figure_8.21_B16353.jpg
@
[=
g
4

¥ history

> Local Changes

Q

v Commit History

¥ Branch: master 1l

test commit
master

Seconds ago 63a8db2

commit

OEBPS/image/Figure_7.40_B16353.jpg
¥ debug

| Yall nodes @

v sentences_tone: array[2]
v0: object
sentence_id: @

text: "Node-RED Con Tokyo 2020
recap event is held at 7pm JST
today!"

input_from: @
input_to: 61
v tone_categories: array[3]
v0: object
~vtones: array[5]
v0: object
score: 0.14684
tone_id: "anger"
tone_name: "Anger"
v1: object
score: 0.033644
tone_id: "disgust"
tone_name: "Disgust"
v2: object
score: 0.088225
tone_id: "fear"
tone_name: "Fear"
~v3: object
score: 0.422311
tone_id: "joy"
tone_name: "Joy"
v4: object
score: 0.228365
tone_id: "sadness"
tone_name: "Sadness"
category_id:
"emotion_tone"
category_name: "Emotion
Tone"

OEBPS/image/Figure_13.6_B16353.jpg
=< Node-RED

Flow 1

lower case

OEBPS/image/Figure_4.11_B16353.jpg
Edit change node

Delete Cancel

% Properties & B =
¥ Name Change to String
i= Rules

Set v | ¥ msg. payload

to |, 2, It has been changed to string datal

OEBPS/image/pic_1-5.jpg
Node-RED

loT

- [e Wi

Sign in with GitHub

downloads

rating

TIoT - Industrial Internet of Things
1Smart-Tech Logo

node-red-contrib-web-babylonjs
Realize an loT project with 3D objects, it is in
very early stage, The aim of this project is build
augemented reality nodes, for visualizing loT

v0.0.9 node

@oringnet/node-red-contrib-oring-
paas
Node-RED nodes for the ORing Paa$S.

v1.0.3 node

machadotiago % 5.0 collection
~

node-red-contrib-pi-plates
control Pi-Plates boards from Node-RED

N
node-red-contrib-kheiron
Kheiron.io node-red node for exchanging data
with kheiron.io platform.

vi.06 & 70 node

@searis/node-red-contrib-clarify
A Node-Red node to insert data into Clarify

v0.09 & 90 node

:

node-red-contrib-bacnet
The BACnet toolbox package for Node-RED.

3
node-red-contrib-tplink
A collection of Node-RED nodes for TP-Link
smart-home devices.

/|

node-red-contrib-snap4city-
developer

Node-red nodes for loT

for smart cities. These nodes are targeted to a

v0.22 & 94 node

V0. & 298 node
N\

node-red-contrib-snap4city-user
Nodes for Snap4city project, targeted to
standard user (no developer)

V0. & 115 % de

\

node-red-contrib-google-home-
notifier-offline

Node-Red nodes for google-home-notifier-
offline library. With this node you can cast any

v0.1.5 & 115 ode

N
@tmus/node-red-contrib-differences
Given two array inputs, when this node is
executed it will output the differences between
the two arrays

&8 143 K5 node

@tmus/node-red-contrib-array-
iterator

node-red-contrib-knx-ultimate
Single Node KNX IN/OUT with optional ETS

Siemens I0T2050 System Monitor in
NodeRed Dashboard

OEBPS/image/Figure_7.20_B16353.jpg
Create connection

Q_ Search resources...

O

®

O

Name
@% Machine Learning-la
(' Tone Analyzer-gv

Visual Recognition-11

Group
Default
Default

Default

Location

Dallas

Dallas

Dallas

OEBPS/image/Figure_9.7_B16353.jpg
LB E®Q I 3 O
About Apache CouchDB

)t Open Admin Console
View Logs

v Launch Admin Console at Start
l Automatically Start at Login I

Quit Apache CouchDB

nc

fo

OEBPS/toc.xhtml

		
		Contents

			
						Practical Node-RED Programming

						Foreword

						Contributors

						About the author

						About the reviewers

						Preface
					
								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Download the color images

								Conventions used

								Get in touch

								Reviews

					

				

						Section 1: Node-RED Basics

						Chapter 1: Introducing Node-RED and Flow-Based Programming
					
								What is FBP?
							
										Workflows

										Flow-based programming (FBP)

							

						

								What is Node-RED?
							
										Overview

										Flow editor and runtime

										History and origin of Node-RED

							

						

								Node-RED benefits
							
										Simplification

										Efficiency

										Common

										High quality

										Open source

										Node-RED library

										Various platforms

							

						

								Node-RED and IoT
							
										Node-RED and IoT

							

						

								Summary

					

				

						Chapter 2: Setting Up the Development Environment
					
								Technical requirements

								Installing npm and Node.js for Windows

								Installing npm and Node.js for Mac

								Installing npm and Node.js for Raspberry Pi

								Installing Node-RED for Windows

								Installing Node-RED for Mac

								Installing Node-RED for Raspberry Pi

								Summary

					

				

						Chapter 3: Understanding Node-RED Characteristics by Creating Basic Flows
					
								Technical requirements

								Node-RED Flow Editor mechanisms
							
										Using the Flow Editor

							

						

								Making a flow for a data handling application

								Importing and exporting a flow definition

								Summary

					

				

						Chapter 4: Learning the Major Nodes
					
								Technical requirements

								What is a node?

								How to use nodes
							
										Common category

										Function category

							

						

								Getting several nodes from the library

								Summary

					

				

						Section 2: Mastering Node-RED

						Chapter 5: Implementing Node-RED Locally
					
								Technical requirements

								Running Node-RED on a local machine

								Using the standalone version of Node-RED

								Using IoT on edge devices

								Making a sample flow
							
										Use case 1 – light sensor

										Use case 2 – temperature/humidity sensor

										Making a flow for use case 1 – light sensor

										Making a flow for use case 2 – temperature/humidity sensor

							

						

								Summary

					

				

						Chapter 6: Implementing Node-RED in the Cloud
					
								Technical requirements

								Running Node-RED on the cloud

								What is the specific situation for using Node-RED in the cloud?

								IoT case study spot on the server side
							
										Use case 1 – Storing data

										Use case 2 – Temperature/humidity sensor

							

						

								Making a sample flow
							
										Making a flow for use case 1 – storing data

										Making a flow for use case 2 – visualizing data

							

						

								Summary

					

				

						Chapter 7: Calling a Web API from Node-RED
					
								Technical requirements

								Learning about the RESTful API

								Learning about the input/output parameters of a node

								How to call the web API on a node
							
										Creating an account

										Creating an API key

										Checking the API endpoint URL

										Checking that the API can run

										Creating the flow calling the API

							

						

								How to use the IBM Watson API
							
										Logging in to IBM Cloud

										Starting Node-RED on IBM Cloud

										Creating the Watson API

										Connecting Node-RED and the Tone Analyzer service

										Creating the flow by calling the Tone Analyzer API

										Testing the flow

							

						

								Summary

					

				

						Chapter 8: Using the Project Feature with Git
					
								Technical requirements

								Enabling the project feature

								Using the Git repository
							
										Accessing project settings

							

						

								Connecting a remote repository

								Summary

					

				

						Section 3: Practical Matters

						Chapter 9: Creating a ToDo Application with Node-RED
					
								Technical requirements

								Why you should use Node-RED for web applications

								Creating a database

								How to connect to the database
							
										Configuring Node-RED

										Cloning the Node-RED Project

										Configuring the Node-RED and CouchDB connection

							

						

								Running the application

								Summary

					

				

						Chapter 10: Handling Sensor Data on the Raspberry Pi
					
								Technical requirements

								Getting sensor data from the sensor module on the Raspberry Pi
							
										Preparing the devices

										Checking Node-RED to get data from the sensor device

							

						

								Learning the MQTT protocol and using an MQTT node

								Connecting to an MQTT broker
							
										Mosquitto

										Preparing Mosquitto on your Raspberry Pi

										Making a flow to get sensor data and send it to the MQTT broker

							

						

								Checking the status of data on the localhost

								Summary

					

				

						Chapter 11: Visualize Data by Creating a Server-Side Application in the IBM Cloud
					
								Technical requirements

								Preparing a public MQTT broker service

								Publishing the data from Node-RED on an edge device

								Subscribing and visualizing data on the cloud-side Node-RED
							
										Preparing Node-RED on the IBM Cloud

										Visualization of the data on the IBM Cloud

							

						

								Summary

					

				

						Chapter 12: Developing a Chatbot Application Using Slack and IBM Watson
					
								Technical requirements

								Creating a Slack workspace

								Creating a Watson Assistant API

								Enabling the connection to Slack from Node-RED

								Building a chatbot application

								Summary

					

				

						Chapter 13: Creating and Publishing Your Own Node on the Node-RED Library
					
								Technical requirements

								Creating your own node
							
										Node program development

										Node packaging

							

						

								Testing your own node in a local environment
							
										Node installation

										Node customization

							

						

								Publishing your own node as a module in the Node-RED Library
							
										Publishing the node you created

										Deleting the node you published

										Installing the node you published

							

						

								Summary

					

				

						Appendix: Node-RED User Community
					
								Node-RED Community Slack

								Node-RED Forum

								Japan User Group

								Why subscribe?

					

				

						Other Books You May Enjoy
					
								Packt is searching for authors like you

								Leave a review - let other readers know what you think

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

			

		
	

OEBPS/image/Figure_7.10_B16353.jpg
Edit json node

4 Properties

© Action Convert between JSON String & Object v

* Proparty msg. payload

W Name Name

Object to JSON options
([Format JSON string

OEBPS/image/Figure_7.30_B16353.jpg
twitter ;)

OEBPS/image/Figure_10.12_B16353.jpg
:~ $ mosquitto_pub -d -t packt -m "Hello Packt!"

Client mosgpub|3748-raspberryp
lient mosqpub|3748-raspberryp

lient mosqpub|3748-raspberryp

bytes))

Client mosqpub|3748-raspberryp
R |

sending CONNECT
received CONNACK (0)
sending PUBLISH (de, q@, r@, ml, 'packt’,

sending DISCONNECT

OEBPS/image/Figure_6.9_B16353.jpg
© select the deployment target @ Configure the DevOps toolchain

Configure the DevOps toolchain

Give your toolchain a name and select the region to create your toolchain in.

DevOps toolchain name
Accept the default name, or enter a value up to 100 characters

Node-REDforPackt

Region

Dallas

OEBPS/image/Figure_8.10_B16353.jpg
i info i & v | |la -

Q Search flows v

> Global Configuration Nodes

OEBPS/image/Figure_5.24_B16353.jpg

OEBPS/image/Figure_9.19_B16353.jpg
Edit cloudantplus In node > Edit cloudantplus node

Delete

1 Properties

W Host

& Username

@ Password

® Name

http://localhost:5984

admin

Name

Cancel

2 B

OEBPS/image/Figure_5.14_B16353.jpg
Raspberry Pi

Sensor Log

ETTIET
i

LEE] A
AEEER
T
Temperature / Humidity

OEBPS/image/Figure_7.2_B16353.jpg
Edit http roquest node

Delate Cancel

& Properties
& Method GET s
@ UAL ickt.com/foo?usermame={{payload))&format=jsori
Payload Ignore v

71 Enable secure (SSL/TLS) connection

OEBPS/image/Figure_8.9_B16353.jpg
P history i@ v | o~

> Local Changes

v Commit History z
V Branch: master

first commit
master

Seconds ago 41d7970

Create project
6 mins ago 2dfaeea

OEBPS/image/Figure_5.5_B16353.jpg
1 Raspberry Pi Software Configuration Tool (raspi-config) —— ——

1 Change User Password Change password for the 'pi' use
2 Network Options Configure network settings

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional settings to match your
6 Overclock Configure overclocking for your Pi

7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest versio

9 About raspi-config Information about this configuration tool

<select> <Finish>

OEBPS/image/Figure_3.5_B16353.jpg
Edit inject node

£+ Properties

Cancel

9 Name [Name

= { msg. payload J=

> {}

msg.
flow.
global.

2, string

% number

© boolean

{} JSON

93 buffer

© timestamp

J: expression

$ env variable

O Inject once after seconds, then

C' Repeat [none

]

OEBPS/image/Figure_9.2_B16353.jpg
‘v TodoMVC

Helping you select an MV* framework

View on GitHub | Blog

OEBPS/image/Figure_3.1_B16353.jpg
Node-RED

USER

OEBPS/image/Figure_4.13_B16353.jpg
Node-RED Library

Find new nodes, share your flows and see what other people have done with
Node-RED.

—Q L — 51 _— '
e ﬁ O BT e . £

Recent nodes see more (2703) »
node-red-contrib- node-red-contrib-chart-image node-red-contrib-alpaca
connectionmanager Use chartjs to generate charts and output them Nodes for connecting to the Alpaca stock
Node-RED implements generalised as image buffers. trading API.

connections manager.

v0.1.0 & 39 v0.20 & 39 % NaN

Recent flows see more (1619) »
Time (sunset and sunrise) Durham Announcements FLOW G120-I0T2040
calculations This is for use on the lounge car at the Durham Subir datos de un G120 10T2040
lenter image description here Museum, Omaha, NE. The purpose is to play a

background sound (train rolling sounds) and

notenoughtech bobmccoy AnaBME % NaN

Recent collections see more (199) »

myproject-connectors Node-Red Nodes For Example

OEBPS/image/Figure_5.12_B16353.jpg

OEBPS/image/Figure_5.4_B16353.jpg
Requirement already satisfied: smbus2 in /usr/local/lib/python3.7/dis
Installing collected packages: sgp30
Successfully installed sgp30-0.1.6
Looking in indexes: https://pypi.org/simple, https://wiw.piwheels.org/sinple
Collecting https://github.con/Seeed-Studio/grove.py/archive/master.zip

Downloading https://github.com/Seeed-Studio/grove.py/archive/master.zip

/ 696kB 13.5MB/s

Requirement already satisfied, skipping upgrade: RPi.GPIO in /usr/lib/python2.7/dist-packages (from grove.py:
Requirement already satisfied, skipping upgrade: rpi ws281x in /usr/local/lib/python2.7/dist-packages (from grove.p:
Requirement already satisfied, skipping upgrade: smbus2 in /usr/local/lib/python2.7/dist-packages (from grove.py:
Building wheels for collected packages: grove.py

Running setup.py bdist wheel for grove.py ... done

Stored in directory: /tmp/pip-ephem-wheel-cache-QrvP_1/wheels/1a/5b/70/01a949561c39a7059cd 1daae9fa6d03e7h2c58d7ecafb6245¢
successfully built grove.py
Installing collected packages: grove.py
Successfully installed grove.py-0.6
Looking in indexes: https://pypi.org/simple, https://wiw.piwheels.org/sinple
Collecting https://github.con/Seeed-Studio/grove.py/archive/master.zip

Using cached https://github.con/Seeed-Studio/arove.py/archive/master . zip
Requirement already satisfied, skipping upgrade: RPi.GPIO in /usr/lib/python3/dist-packages (from grove.p:
Requirement already satisfied, skipping upgrade: rpi ws28lx in /usr/local/lib/python3.7/dist-packages (from grove.p:
Requirement already satisfied, skipping upgrade: smbus2 in /usr/local/lib/python3.7/dist-packages (from grove.py:
Building wheels for collected packages: grove.py

Running setup.py bdist wheel for grove.py ... done

Stored in directory: /tmp/pip-ephem-wheel-cache-bhetx0rs/wheels/1a/5b/70/01a949561c39a7059cd1daaeofa6d03e7h2c8d7ecdfb6245
successfully built grove.py
Installing collected packages: grove.py
Successfully installed grove.py-0.6

packages (from sgp30) (0.3.0)

.6) (0.7.0)
0.6) (4.2.3)
.6) (0.3.0)

.6) (0.7.0)
0.6) (4.2.3)
.6) (0.3.0)

Lastest Grove.py from github install complete !11!

e

pi@raspberryp:

OEBPS/image/Figure_7.4_B16353.jpg
NewProducts Services APikeys Bilingplans Payments Blocklogs Myorders My profile

You can generate as many API keys as nesded for your subscription. We accumulate the total load from all of them.

Key Name Create key

R R

bdBcd915eddb1e0d03129aa0d0157aea Packt @ x

OEBPS/image/Figure_5.13_B16353.jpg
Raspberry Pi

I Log
il @

Sensor

==
e

il
i
i

OEBPS/image/Figure_5.22_B16353.jpg
l'
«

3 debug

-D

§/212020, 12:14:06 PM _ node: 4467126 3bealc
‘msg.payload : number

622

6/212020, 12:14:12PM _ node: 4067126 3bealc
‘msg.payload : number

623

67212020, 12:14:19 P node: 4467126 3bealc
‘msgpayload : number

a6

OEBPS/image/Figure_3.16_B16353.jpg
~ function
Q function

Flow 1 Flow 2

[get] Aweb 0~ — _

template

Sets a property based on the provided
template,

node-red template

OEBPS/image/Figure_11.3_B16353.jpg
DMQTT

Welcome back!

E-mail

Password

O Keep me signed in

Forgot your password?

gin

or use a third-party service

Sign in with SAML

©) Sign in with GitHub G Sign in with Google

Don't have an account? Sign up

OEBPS/image/Figure_5.3_B16353.jpg
a fiiter nodes

~ function

B
+ e
g

On o
ii
& o

o
=

o
-~

T -t
T

>

Flow "f9196ea7.f2d91"
Name Flow 1

Status Enabled

~ Description

You can confirm your changes in the
node edit tray with |ctrl-enter |or

cancel them with | ctrl-escape

(j|=[o[+

OEBPS/image/Figure_7.27_B16353.jpg
6%5 Projects

w Developer
Portal

NO PROJECTS HERE
Dashboard

Projects & Apps

Overview
EB Standalone Apps

Standalone Apps live outside of Projects. This means that they can't use the
Packt App01

STANDALONE APPS
Products (NEW)
Packt App01

Account

QUOTA: 10F 10 APPS G

OEBPS/image/Figure_7.34_B16353.jpg
& s

OEBPS/image/Figure_6.29_B16353.jpg
Databases Database name - {}ason A

vourbatabases Create Database
Database name
Name Size # of Docs Partitioned
E=
noderedforpackt 19.0KB a4 No
Partitioning

Partitioned @® Non-partitioned

> Whatis a Partitioned Database?

3-m“

OEBPS/image/Figure_8.12_B16353.jpg
Project Settings

Test-Node-RED-Project0l

- T
Tost-Node-RED-Project01 wresca e
or st
About

Tris I yeur prejac's README me fla. & Rk usavs Undarstand what yeor prejact
D0, P 15 U8 8 a0 TN el they may reed 1o know.

OEBPS/image/Figure_12.6_B16353.jpg
What'’s a project your team is
working on?

‘ Learning Node-RED

OEBPS/image/Figure_5.6_B16353.jpg
: Raspberry Pi Software Configuration Tool (raspi-config) E

P1 Camera Enable/Disable connection to the Raspberry Pi Camera
P2 SSH Enable/Disable remote command line access to your Pi using
P3 UNC Enable/Disable graphical remote access to your Pi using Rea
P4 SPT Enable/Disable automatic loading of SPI kernel module

P6 Serial Enable/Disable shell and kernel messages on the serial conn
P7 1-Wire Enable/Disable one-wire interface
P8 Remote GPIO Enable/Disable remote access to GPIO pins

<select> <Back>

OEBPS/image/Figure_2.11_B16353.jpg

OEBPS/image/Figure_7.14_B16353.jpg
/—\ Nm(:!;rquest N
N L 75 1BM Cloud

-

Cloud platforms

rver

DD
'»

‘@' |IBM Watson

‘Smartphone

]

E

OEBPS/image/Figure_9.3_B16353.jpg
Implementations ~ Contribute

Todo-Backend

a shared example to showcase backend tech stacks

The Todo-Backend project defines a simple web API spec - for managing a todo list. Contributors implement that spec using various tech stacks. Those implementations are
cataloged below: A spec runner verifies that each contribution implements the exact same AP by running an automated test suite which defines the APL

‘The Todo-Backend project was inspired by the TodoMVC project, and some code (specifically the todo client app) was borrowed dircety from TodoMVC,

Created and curated by Pete Hodgson.

OEBPS/image/Figure_6.36_B16353.jpg

OEBPS/image/Figure_7.41_B16353.jpg
10/26/2020, 1:57:16 PM node: 54546cce.cc0d34
tweets/taiponrock : msg.payload.sentiment : Object
vobject
score: 2
comparative: 0.09090909090909091

~vtokens: array[22]
v[0 . 9]

0: "node-red"
1: “con"
2: "tokyo"
3: "2020"
4: "recap"
5: "event"
6: "is"
7: "held"
8: "at"
9: "7pm"
v [10 .. 19]
10: ™jst"
11: "today"
12 g s
13: "provided"
14: "in"
15: "japanese"
16: "but"
17: "we"
18: "cant"
19: "support"
v [20 .. 21]
20: "transla"
21: "httpstco3ggcf5rtav"
vwords: array[1]
0: "support"
vpositive: array[1]
@: "support"
negative: array[@]

OEBPS/image/Figure_13.15_B16353.jpg
taiponrock

A simple node that converts the message

taiponrock payloads into all lower-case characters

red-contrib-taiponrock : taiponrock E’

OEBPS/image/Figure_6.16_B16353.jpg
8/9/2020, 805:47 P node: 212649a.010098
msg payload : string(15]
“Hello Node-RED!"

OEBPS/image/Figure_5.18_B16353.jpg
a filter nodes J Flow 1 + =

——

OEBPS/image/Figure_6.23_B16353.jpg
a fiter nodes Nodes added to palette:

« uibase
« uLbutton

« ul_cropdown

+ ulswitch

+ ui_sider

+ ulnumeric

« ultext_input

« ul_date_picker
+ ul_colour_picker
« uiform

- ultext

* ul_gauge

« ulchan

+ ul_audio

=
L=
N
CEEEY
EEES
CIE
f@ coeec]
k=]
k=0 a
E=E
T
TEm=n

OEBPS/image/Figure_2.5_B16353.jpg
13 Nodejjs Setup - X

Tools for Native Modules

‘Optionally install the tools necessary to compile native modules. n ‘®d ¢

‘Some npm modules need to be compiled from C/C:++ when installing. T you wiant to be able to
install such modules, some tools (Python and Visual Studio Build Tools) need to be installed.

[JPutomatical instal the riecessary tool. ote that this wil aiso nstll Chocolatey. The scipd
will pop-up in 2 new window after the installation completes.

Alternatively, follow the instructions at https://qithub.com/nodejs/node-gyp#on-windows to
install the dependencies yourself.

o =

OEBPS/image/Figure_6.5_B16353.jpg
App Development / Starter kits / Create app |

© Node-RED

About Create

App details

App name
Accept the default name, or enter a value up to 128 characters.

Node RED for Packt

Resource group.

Default
Tags @
Examples: env:dev, version-1

Patorn
® Nodeis

Service details

Cloudant
Region Resource group
Dallas - Default
Pricing plan
Lite

Pricing detailsTerms 3

OEBPS/image/Figure_7.21_B16353.jpg

OEBPS/image/Figure_9.6_B16353.jpg
Today

Apache CouchDB

i Apache-CouchDB.zip

OEBPS/image/Figure_10.1_B16353.jpg
Jil\ 08 m i H =
e E[?L,,

AR

OEBPS/image/Figure_3.18_B16353.jpg
< C @ localhost:1880/web

Hello Node-RED!!
Menu 1
It is Node-RED sample webpage.

Menu 2
It is Node-RED sample webpage.

OEBPS/image/Figure_12.17_B16353.jpg
Respond Joke Phrase
Actions Beta

Build conversations easier than ever

« Have an assistant ready to chat in less time, with less effort

« Compose step-by-step flows for any range of simple or complex conversations
« Focus more on your customer's goals and experience

« Collaborate and work more intuitively, made so that anybody can build

Learn more

ialog

Respond Joke Phrase

LANGUAGE: TRAINED DATA: VERSION:

DESCRIPTION: VERSION CREATED:
English (US) 101Intents | OEntities | 4 Dialog nodes -

LINKED ASSISTANTS (2): Respond Joke Phrase

OEBPS/image/pic_1-3.jpg
NEAEE
& sl

3
A\
)]
Y

OEBPS/image/Figure_11.19_B16353.jpg

OEBPS/image/Figure_11.22_B16353.jpg
Edit mgtt in node > Add new mqtt-broker config node

Cancel

Add

Properties

¥ Name CloudMQTT
Connection

& Username giwkgfar

& Password

Security

Messages

OEBPS/image/Figure_13.8_B16353.jpg
¥¥ debug i@ P ||| || -~
Y all nodes o

10/7/2020, 10:38:18 AM node: e95a10e6.bc037
msg.payload : string[16]

"'my name is taiji"

OEBPS/image/Figure_5.25_B16353.jpg
Edit grove-temperature-humidity-sensor-sht3x node

Delete Cancel

IQPmpemos » & |2 =

Port 12C

Name Name

OEBPS/image/Figure_9.16_B16353.jpg
voaeell 4 L L23 CRhalgec,

//httpRoot: '/red',

SLLL-0Nn3 .+, , < Jde.-L10n.5

// When httpAdminRoot is used to move the UI to a different root path, the

// following property can be used to identify a directory of static content
that should he served at httn://localhost:1880

I //httpStatic: '/Users/taiji/.node-red/projects/node-red-todo-app/public’,

// The maximum size of HTTP request that will be accepted by the runtime api.
// Default: Smb
//apiMaxLength: 'Smb',

// If you installed the optional node -dashboard you can set it's path

//httpRoot: '/red',

// When httpAdminRoot is used to move the UI to a different root path, the

// following property can be used to identify a directory of static content
that should be served at http://localhost:1880@

l httpStatic: '/Users/taiji/.node-red/projects/node-red-todo-app/public’,

// The maximum size of HTTP request that will be accepted by the runtime api.
// Default: Smb
//apiMaxLength: 'Smb',

// If you installed the optional node-red-dashboard you can set it's path

omlipglta compression neinn y

OEBPS/image/Figure_12.40_B16353.jpg
Edit function node

£+ Properties ‘ @ @] \E‘
9 Name ‘ Name H &~ ‘

Setup ‘ Function Close

1 global.set("channel”,msg.payload.channel);

2

3 msg.topic = "message";

4 msg.payload = msg.payload.text;

5 return msg

OEBPS/image/Figure_6.27_B16353_.jpg
18M Cloud ur

Resource list

atalog

g v Name 1 Group Location Offering
@ Q_ Filter by name or IP address. Filter by group or org. Filter Q Filter.
L ——
© ¢ vechmstcure ©)
o v Clusters 0)
= ~ Cloud Foundry apps (1)
B = Node-RED for Packa filgapappo1@filgapip / dev Daltas SOK fo Node
+ ~ Cloud Foundry services (1)
~ services (2)
& Continuous Delivery Default Dallas Continuous De
‘@ node-red-for-packt-cloudant-1596781067543 Default Dallas. Cloudant

Storage (0
Network (0)
Cloud Foundry enterprise environments (0)

Functions namespaces (0)

OEBPS/image/Figure_6.43_B16353.jpg
Packt Chart

Packt Chart Packt Chart Packt Chart
—_— —_— —_—
chart chart chart chart

7 10 0 0

s 5 5 5

5 0 o 0

4 5 5 5

3 10 10 10
233251 23N 233346 283300 23320 233356 233310

23330 233408 23318 233848 233419

OEBPS/image/Figure_8.18_B16353.jpg
v Commit History (=]

Manage remote branch

¥ Remote: None

Q Find or create a remote branch

V origin/master |

Your local branch is not currently
tracking a remote branch.

1 push ‘ ‘ L pull

OEBPS/image/Figure_12.20_B16353.jpg
Skills

Skills contain the tr ing to respond to your customer
queries. Add skills to your assistant and then deploy to your
channels.

My first skill

TYPE: Dialog — English (US)

CREATED: UPDATED:
Nov 4, 2020 11:24 AM 38T Nov 4, 2020 11:44 AM 3ST

LINKED ASSISTANTS (2): Respond Joke Phrase

Respond Joke Phrase

TYPE: Dialog — English (US)

CREATED: UPDATED:

Nov 4, 2020 11:52 AM IST Nov 4, 2020 1¢

LINKED ASSISTANTS (1): Respond Joke Phrase

Import

Export

Duplicate

Rename

Delete

OEBPS/image/Figure_11.7_B16353.jpg
Select a region and data center -step2of4

Data center Us-East-1 (Northern Virg Plan

aws
S

Humble Hedgehog

See the plan page to learn about the different
plans.

csack conce

OEBPS/image/Figure_3.7_B16353.jpg
Flow 1

OEBPS/image/Figure_10.7_B16353.jpg
or] N R —

EH

M2M Platform
19

Yy -
Elte

Router Router

m]: (u):

Sensor Sensor

Router

‘(ﬁn)i),

Sensor

OEBPS/image/Figure_9.10_B16353.jpg
User Management

Change Password Create Server Admin

Create Admins

Before a server admin is configured, all clients ha
you must create an admin account to prevent

Server admins can create and destroy databases,

admin

Non-admin users have read and write access to a

Create Admin

OEBPS/image/Figure_11.33_B16353.jpg
Home

Raspberry Pi Sensor data
Temperature

36.22

Humidity

2511

0 % 100

OEBPS/image/Figure_7.7_B16353.jpg
{"coord":{*lon":139.63, "lat":35.69), "weather": [[*id" :802, "main": "Clouds", "descript:on": "scaztered clouds","icon":"03d'}], "base’: "stations", "mair"
{"temp":304.7,feels_Like":310.57, -temp_min":303.15, ~tems max":306.48, "pressure” 1013, "humidity":79), visibility" 10000, “wind":("speed-:3.1, "deg" 150}, "clouds
{"al1"140),"dt" 11598573164, "sys": {"type" :1,"id":8077, "comntry”: "Jp" , "sunrise” : 1598559021, "sunset " : 1598606104}, "timezore" 132400, "id" : 1850144, "name” : "Tokyo" "cod" 1200}

OEBPS/image/Figure_12.11_B16353.jpg
Catalog / Services /

Watson Assistant

18M - Date of last update: 10/08/2020 « Docs = API docs

Create

About

Select a region

Select a region

Dallas

Select a pricing plan
Displayed prices do not include tax. Monthly prices shown are for country or region: United States

Plan

Features

10,000 Messages/Month Free
Al-Based Intent and Entity Recognition

Entity Synonym Recommendations

Visual Dialog Edit with Simple Response Types (Text, Options, Images, etc...)

Prebuilt Content Available

Analytics Dashboard with 7 Days of Storage

5 Dialog Skills, Each with 100 Dialog Nodes

Shared Public Cloud

Disambiguation

‘The Lite plan gets you started with 10,000 API calls per month at no cost. And when you upgrade to a paid plan, you'll keep all your intents, entities, dialog flows, and chat logs.

Lite plan services are deleted after 30 days of ina

Plus Trial

Everything in Plus, for 30 days, for free! Free
50,000 Messages

5,000 Users

Creation limits consistent with the Lite Plan

Summary

Watson Assistant
Region: Dallas
Plan: Lite

Service name: Watson A

Resource group: Default

Create

OEBPS/image/Figure_12.31_B16353.jpg
Bots Disable + Remove
Added by fillgapapp01 on November 5th, 2020

Run code that listens and posts to your Slack team just as a user would.

Setup Instructions

Please refer to our bot user API documentation, which tells you everything you need to know about setting up a bot integration.

Integration Settings
API Token

The library you are using will want an
API token for your bot.

Regenerate

/A Be careful when sharing bot user tokens with applications. Do not publish bot user
tokens in public code repositories. Review token safety tips.

Customize Name

Choose the username for this bot.

packt-bot

OEBPS/image/Figure_3.22_B16353.jpg
< C @ localhost:1880/web

Hello Node-RED!!

Menu 1
It is Node-RED sample webpage.

Menu 2
It is Node-RED sample webpage.

OEBPS/image/Figure_11.13_B16353.jpg
Edit matt out node > Add new matt-broker config node.

Covopees |

® Name | clouamqrT

Connection

[

Messages

& Usemame | giwkgfar

@& Password ‘ fo—

OEBPS/image/Figure_8.16_B16353.jpg
Project Settings.

Version Control

¥ master

Git romotos

Add remcte

Cudantals o coud

@ Encrypson enatied

atamam

Mt i oy A2 09

DRI comaghagnolTost-Node-RED- Projec

T s o BT

Carest

Mo remotes

Ackd ot

OEBPS/image/Figure_9.21_B16353.jpg
> C O localhost1880 * 0 *Q:

OEBPS/image/Figure_6.3_B16353.jpg
18M Cloud

28 Dashboard

Resource List

B classic Infrastructure
@ cloud Foundry

) Functions

© Kubernetes

3 Openshift

vm VMware

3 veC Infrastructure

App Development

T Do
<o Interconnectivity
I Observability
£ schematics
a8

Securlty

Build with IBM Cloud

Start with apps pre-built for the Cloud

Getting Started (.

Expedite your app development with pre configured working code for adding Push

notifications, app usage analytics, crash analytics, chat bot, visual recognition and

OEBPS/image/Figure_5.07_B16353.jpg

OEBPS/image/Figure_10.15_B16353.jpg
Edit matt in node

 Properties

@ server | localhost:1883

= Topic | packt |
ogs [T 7

@ output | auto-detect (sring or buer) v

® Name [Name |

OEBPS/image/Figure_13.11_B16353.jpg
Module. expor
function LowerCaseNode

contrib-taiponrock

ED) {
config) {

RED.nodes . createNode(this,config);

var node = this;

node.on('input', function(msg) {
msg.payload = msg.payload.tolLowerCase();
node.send(msg);

b;

}
REDAnodes.registerType(LowerCaseNode) ;

OEBPS/image/Figure_2.3_B16353.jpg
Destination Folder
Choose a custom location or dlick Next to install.

Install Node.js to:

[C:\Program Files\nodejs\

OEBPS/image/Figure_6.25_B16353.jpg
Data

IBM Cloud

Publish

Dashboard

@
h

OEBPS/image/Figure_12.26_B16353.jpg
slack app directory

Manage

Custom Integrations
Connected Accounts
Muted Apps

App Management Settings

Activity Log

Apps

Learn more about managing apps @

Installed apps

Description includes Access type

Q e.g. Github l ‘ All

OEBPS/image/Figure_13.24_B16353.jpg
Deploy ~ -

View

Import
Export

Search flows

Configuration nodes
Flows

Subflows

Groups

Manage palette

Settings

Keyboard shortcuts
Node-RED website
v1.1.3

OEBPS/image/Figure_4.6_B16353.jpg

OEBPS/image/Figure_7.18_B16353.jpg
Dashboard ~

B Resowsesummary Planned maintenance Foryou
® 7 Watson Studio provides a suite of tools

and acollaborative environment for data
B -
_ Resource list
g v Name Group Location Offering status Tags
@ Q_ Filter by name or IP address. Filter by group or org. Filter. Q Filter. Q Fitter. Filt
(2 ~ Devices (0)
O © vecintrastrcture 0

— =
- ~_Cloud Foundry apps (1 3
< 8
B T Hgappoetigmnip/dov balls o @ stnea & i
+

~ Cloud Foundry services (1)

OEBPS/image/Figure_12.33_B16353.jpg
Resource list /

Node RED for Packt @~ruming VisitappURL Addtags 2 Details

Getting started Q Filter items

Overview
Name
Runtime
Connections © node-red-for-packt-cloudant-1603676099781-10841 Cloudant
Togs

Tone Analyzer-gv Tone Analyzer

API Management

OEBPS/image/Figure_7.38_B16353.jpg
Edit function node

Delete

1 Properties

W Name Format the payload... a-

Setup [Function [Close

~ msa.payload = {

1

2

3 "tex msg.payload,
4 "tone" : msg.response,
5

(o

i

8

" “sentiment" : msg.sentiment

return msg;

OEBPS/image/Figure_12.2_B16353.jpg
First, enter your email

Just one more email — a quick confirmation — before you
say goodbye to overstuffed inboxes for good.

Your email address

dammy@gmail.com

It's okay to send me emails about Slack.

OEBPS/image/pic_1-4.jpg

OEBPS/image/Figure_11.28_B16353.jpg
Edit gauge node

Delete Cancel

| # Properties hal B =
B8 Group [Home] Raspberry Pi Sensor data v &
5 Size auto
= Type Gauge v
I Label Temperature

I Value format | {{value}}

I Units °C

Range min | -15 max | 50

Colour gradient - - -
Sectors -15 ..| optional |..| optional .. 50

¥ Name

OEBPS/image/Figure_11.15_B16353.jpg
B
@
[
©
o

4 QB

+

Dashboard ~

Resource summary

11

Resources

Cloud Foundry apps

Cloud Foundry services

Services
Storage
Apps

Developer tools

©s
o1

Add resources +

Planned main

<

Clear skies!
You can view your

OEBPS/image/Figure_8.6_B16353.jpg
P history i@ P W||lu| -

v Local Changes 2

Local files Stage all changes IS

@ flow.json

OEBPS/image/Figure_12.39_B163531.jpg
Edit slack-rtm-in node

Delete Cancel
£+ Properties hod ‘ ‘] I l@

¥ Name ‘ Name

& Siack Client | packt-bot v ¢

Y Slack Events ‘ message

Tip: Leave blank to receive ALL events.

OEBPS/image/Figure_12.46_B16353.jpg
fillgapapp01 11:49 AM
@packt-bot Hello

3 packt-bot APP 11:49 AM
Hello my friend!

OEBPS/image/Figure_7.25_B16353.jpg
Install

 sentiment

© neutrinos-sentiment-engine &
‘A node to predict the sentiment of a sentence
& 1.00 8 2years, 3 monts ago nstal

© node-red-node-sentiment
A Node-RED node that usos the AFINN-165 wordiists for sentimant analysis of words.
% 016 [11 months ago

notall

OEBPS/image/Figure_10.5_B16353.jpg

OEBPS/image/Figure_12.13_B16353.jpg
IBM Watson Assistant Lite

2

Assistants

= An assistant helps your customers complete tasks and get
information faster. It may clarify requests, search for answers
from a knowledge base, and can also direct your customer to a
human if needed.

OEBPS/image/Figure_3.20_B16353.jpg
Import nodes.

Clipboard Paste fowjsonof =

Library t
44 e843ac6d. 00384,
“tab",

xampic iy
¥
{
nfiguration nodes 0% "6cses323.29205¢",
typen: “http ',
Flow 2 "es3actd. 04384,
“swaggerboc”
" t

OEBPS/image/Figure_2.1_B16353.jpg
Node.js¢ is a Javascript runtime built on Chrome's V8 Javascript engine,

#BlackLivesMatts

Download for Windows (x64)

12.18.11TS 14.4.0 Current

Recommended For Most U Latest Fe

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | APIDocs

Or have alook at the Long Term Support (LTS) schedule. |

~ OpenJs Report o ’ J]

ed. Portions ofthis

s used withts pemisson. leas review the Trademmark it and Trademark Guidel

Thankyou ek forbeing a Nod node-v12.18.1-x6
uor 19 conrbutions A

OEBPS/image/Figure_12.24_B16353.jpg
v social

OEBPS/image/Figure_12.44_B16353.jpg
#learning-node-red
You created this channel on October 30th. This is the very beginning

& Add description | £#* Add an app |& Add people

OEBPS/image/Figure_10.17_B16353.jpg
J 5 debug

L

Y all nodes

12712021, 105036 AM node: e4847c57.9€276
pack : msg.payload : string[38]

{"temperature":28.69, "humidity"
.47}

T

OEBPS/image/Figure_13.22_B16353.jpg
Node-RED g documentation forun flows

Search library h GitHub

node-red-contrib-taiponrock 101 Nodelnfo
Updated 3 hours ago
test node License: Apache-2.0

Rating: not yet rated

npm install node-red-contrib-taiponrock View on npm
View on GitHub

OEBPS/image/Figure_12.4_B16353.jpg
Check your email!

We've sent a 6-digit confirmation code to
dammy@gmail.com. It will expire shortly, so enter it soon.

3 | 8| 9 |- 1| 3

OEBPS/image/Figure_8.14_B16353.jpg
Create a new repository

A repository contains all project files, including the revision history. Already have a project repository
elsewhere? Import a repository.

Owner * Repository name *
@ taijihagino - / Test-Node-RED-Project01 v

Great repository names are short and memorable. Need inspiration? How about legendary-happiness?

Description (optional)

® Public
n. Anyone on the internet can see this repository. You choose who can commit.

o Private
You choose who can see and commit to this repository.

Initialize this repository with:
Skip this step if you're importing an existing repository.

Add a README file
This is where you can write a long description for your project. Learn more.

Add .gitignore
Choose which files not to track from a list of templates. Learn more.

gitignore template: None ~

Choose a license
A license tells others what they can and can't do with your code. Learn more.

License: Apache License 2.0 ~

This will set ¥ master as the default branch. Change the default name in your settings.

OEBPS/image/Figure_4.4_B16353.jpg
Edit inject node

Delete Cancel
Properties & B =
¥ Name ‘ Name ’
= ‘ msg. payload ’ = ‘ v {} {"name":"Taiji"} -—’ [x]
= ‘ msg. topic = ‘v ‘ [x]

C' Repeat

O Inject once after seconds, then

1 none

d

O Enabled

OEBPS/image/Figure_7.16_B16353.jpg
/ / Summary

Tone Analyzer

Author:18M « Date o tast update: 09/02/2020 » Docs +

Tone Analyzer

Reion: Dall

create About Service name
Resource group:

Selecta region

Selsctaregon

Selecta pricing plan
Displayed pices o not nclude tax. Monthly pricesshown are for country o region:

E
2

e 2,500 AP1Call pr Month Froo °

Th it plan et you tatod with 2500 AP cals pr monihat oo cost.

Lt plan serices ae dleted ater 30 daysof sty

Configure your resource

Sorvca ame Selctarosource grovp. ©

Tone Analyzer-gv Default

e ©

Exampls: nv:dev version-1

OEBPS/image/Figure_6.18_B16353.jpg
© BMCloud Projects ~
N NodeREDforPackt

1 Project overview
Details
Activity
Releases

& Collapse sidebar

Groups v

More v

I index.js
{} manifestyml

 package-lock.json

() package.json

I red.js

[® README.md

ov

clone from zip
clone from zip
clone from zip
clone from zip

clone from zip

OEBPS/image/Figure_8.4_B16353.jpg
Flow 1

OEBPS/image/Figure_11.26_B16353.jpg
Edit gauge node

Delete Cancel m
@ Properties | BIEIE

B8 Group [Home] Default vl &
auto
Gauge v

I Label gauge

I Value format | {{value}}

T Units units
Range min| 0 max | 10
Sectors 0 .| optional |..| optional |.. 10

¥ Name

OEBPS/image/Figure_12.35_B16353.jpg
Create connection o

To connect, you can customize the ServicelD and access role used for
this binding. Restaging your app is required to connect this service
and may result in application downtime.

Access Role for Canneetion
Manager ~
Service ID for Connection (Opticnal)
Auto Generate ~

OEBPS/image/Figure_7.36_B16353.jpg
Edit tone analyzer v3 node

Delete

=

Properties u ‘ B ‘ ‘ =

¥ Name ‘ Get the "tone" of the tweet

& Method: ‘ General Tone V‘

*D version_date: ‘ Multiple Tones v

2 Tones ‘ All v

[Sentences ‘ True v

< Content type‘ Text v

(A Input Text

Language ‘ v

OEBPS/image/Figure_9.14_B16353.jpg
afiter nodes

~ subflows.

[wo | [)[@][e][x][w]

Q Search flows -

& node-red-todo-app. =
~ Flows

> Subflows

> Global Configuration Nodes.

2

|§Mam

Flow *81389382.50507"

|#space | will toggle the view of this

sidebar

OEBPS/image/Figure_10.3_B16353.jpg

OEBPS/image/Figure_13.13_B16353.jpg
node.html

script type="text/javascript">
RED.nodes. r‘egisterType({
category: 'function”,
color: '#a6bbcf',
defaults: {
name: {value:""}

1
inputs:1,
outputs:1,

icon: "file.png",
label: function() {

return this.namel|"lower-case";

D;
</script>

<script type="text/x-red" data-temp'late—name=

<div class="form-row">
<label for="node-input-name"><i class="icon-tag"></i> Name</label>
<input type="text" id="node-input-name" placeholder="Name">
</div>
</script>

<script type="text/x-red" dutu-he'lp—name=
<p>A simple node that converts the message payloads into all lower-case characters</p>
</script>

node.html" 26L, 761C

OEBPS/image/Figure_9.23_B16353.jpg
C O localhost:1880 % 0%

_—
What needs to be done?

Report my tasks

1 tom et All Active Completed

OEBPS/image/Figure_6.38_B16353.jpg
Eoaug | [1]|8][a]]

3/16/2021, 8:11:43 AM node: 847b5f1c.c44e2
msg.payload : array[2]

varray[2]

v0: object
_id:
""5ce6702f6a6d077dac3758b31b93692
m

_rev: "1-
63d3555e4cf8cf691a4a8807 fefdc9ed

vpayload: object
temp: "29.18"

"55,72"
topic: ""

v1: object
_id:
"f62101c872efc5fc3eblb5bb4bee5ae
7n

_rev: "1-
63d3555e4cf8cf691a4a8807fefdc9ed

humi:

vpayload: object
temp: "29.18"
humi: "55.72"

topic: ""

OEBPS/image/Figure_12.15_B16353.jpg
Dialog

Our full-feature conversation builder

Dialog offers all the smarts, power, and flexibility you've come to trust. Select to keep building with the tools you know and love. Learn more

