
©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

MEAP Edition
Manning Early Access Program

Copyright 2010 Manning Publications
For more information on this and other Manning titles go to www.manning.com

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning.com/
http://www.manning-sandbox.com/forum.jspa?forumID=507

Table of Contents

1. OSGi Revealed
2. Mastering Modularity
3. Learning Lifecycle
4. Studying Services
5. Delving Deeper into Modularity
6. Moving Toward Bundles
7. Managing Bundles and Applications
8. Testing Applications
9. Debugging Applications
10. Component Models
11. Launching and Embedding an OSGi
Framework
12. Security
13. Web Applications and Services

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 1

OSGi Revealed

The Java™ platform is an unqualified success story. It is used to develop applications for

small mobile devices to massive enterprise endeavors. This is a testament to its well thought

out design and continued evolution. However, this success has come in spite of the fact that

Java does not have explicit support for building modular systems beyond ordinary object-

oriented data encapsulation.

So, what does this mean to you? If Java is a success despite its lack of advanced

modularization support, then you might wonder if its absence is a problem. Most well

managed projects have to build up a repertoire of comparable, but project specific,

techniques to compensate for the lack of modularization in Java. These include:

 Programming practices,

 Tricks with multiple class loaders, and

 Serialization between in-process components.

However these techniques are inherently brittle and error prone since they are not

enforceable via any specific compile-time or run-time checks. The end result has detrimental

impacts on multiple stages of an application's lifecycle:

 Development – you are unable to clearly and explicitly partition development into
independent pieces.

 Deployment – you are unable to easily analyze, understand, and resolve requirements
imposed by the collection of independently developed pieces that make up the
system.

 Execution – you are unable to manage and evolve the constituent pieces of a running
system, nor minimize the impact of doing so.

It is definitely possible to manage these issues in Java, and lots of projects do so using

the custom techniques mentioned above, but it is much more difficult than it should be.

We're tying ourselves in knots to work around the lack of a fundamental feature. If Java had

explicit support for modularity, then you would be freed from such issues and could

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

concentrate on what you really want to do, which is developing the functionality of your

application.

Welcome to the OSGi™ Service Platform. The OSGi Service Platform is an industry

standard defined by the OSGi Alliance to specifically address the lack of support for

modularity in the Java platform. Additionally, it also introduces a new service-oriented

programming model, referred to by some as “SOA in a VM.” This chapter will give you an

overview of the OSGi Service Platform and the issues it is intended to address. Once we have

finished this chapter we will have enough background knowledge to start digging into the

details in chapter 2.

1.1 The what and why of OSGi
The sixty-four-thousand dollar question is, “What is OSGi?” The simplest answer to this

question is it is a modularity layer for the Java platform. Of course, the next question that

might spring to mind is, “What do you mean by modularity?” Here we use modularity more

or less in the traditional computer science sense, where the code of your software application

is divided into logical parts representing separate concerns as in Figure 1.1.1. If your

software is modular, then you can simplify development and improve maintainability by

enforcing the logical module boundaries; we will discuss more modularity details in Chapter

2.

The notion of modularity is not new. The concept actually became fashionable back in the

1970s. So, why is OSGi all the rage right now? To better understand what OSGi can do for

you, it is worthwhile to understand what Java is not doing for you with respect to modularity.

Once you understand that, then you can see how OSGi can help.

1.1.1 Java's modularity limitations

Java was never intended to support modular programming, so we admit that criticizing its

inability to do so is a little unfair. Java has been promoted as a platform for building all sorts

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 1.1.1 Modularity refers to the logical
decomposition of a large system into smaller
collaborating pieces

Module
A

Module
B

Module
C

uses

uses

uses

use
s

http://www.manning-sandbox.com/forum.jspa?forumID=507

of applications for all sorts of domains ranging from mobile phone to enterprise applications.

Most of these endeavors require, or could at least benefit from, modularity, so Java's lack of

explicit support does cause some amount of pain for developers. From this point of view, we

do feel the following criticisms are valid.

LOW-LEVEL CODE VISIBILITY CONTROL

While Java provides a fair complement of access modifiers to control visibility (e.g., public,

protected, private, and package private), these tend to address low-level object-

oriented encapsulation and do not really address logical system partitioning. Java has the

notion of a package, which is typically used for partitioning code. For code to be visible from

one Java package to another, the code must be declared public (or protected if using

inheritance). Sometimes the logical structure of your application calls for specific code to

belong in different packages, but then this means any dependencies among the packages

must be exposed as public, which makes it accessible to everyone else too. Often this can

expose implementation details, which makes future evolution more difficult since users may

end up with dependencies on your non-public API.

To illustrate this, let's consider a trivial hello world application that provides a public

interface in one package, a private implementation in another and a main class in yet

another.

Listing 1.1.1 Trivial example of the limitations of Java's object-orientated encapsulation

package org.foo.hello;

public interface Greeting { #1
 void sayHello();
}

package org.foo.hello.impl;

import org.foo.hello.Greeting;

public class GreetingImpl implements Greeting {
 final String m_name;

 public GreetingImpl(String name) { #2
 m_name = name;
 }

 public void sayHello() {
 System.out.println("Hello, " + m_name + "!");
 }
}

package org.foo.hello.main;

import org.foo.hello.Greeting;
import org.foo.hello.impl.GreetingImpl;

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

public class Main {
 public static void main(String[] args) {
 Greeting greet = new GreetingImpl(“Hello World”); #3
 greet.sayHello();
 }
}

I n Listing 1.1.1, the author may have intended a third party to only interact with the

application via the Greeting interface at (#1). He or she may mention this in Javadoc,

tutorials, blogs, or even email rants, but there is nothing actually stopping a third party from

constructing a new GreetingImpl using its public constructor at (#2) as is done at (#3).

You might argue that the constructor should not be public and there is no need to split

the application into multiple packages, which could well be true in this trivial example. But in

real-world applications class-level visibility when combined with packaging turns out to be a

very crude tool for ensuring API coherency. Seeing how a supposedly private implementation

can be accessed by third-parties developers, now you need to worry about changes to

private implementation signatures as well as that of public interfaces when making updates.

 This problem stems from the fact that although Java packages appear to have a logical

relationship via nested packages, they actually do not. A common misconception for people

first learning Java is to assume that the parent-child package relationship bestows special

visibility privileges on the involved packages. Two packages involved in a nested relationship

are equivalent to two packages that are not. Nested packages are largely useful for avoiding

name clashes and provide only partial support for the logical code partitioning.

What this all means is in Java you are regularly forced to decide between:

1. Impairing your application's logical structure by lumping unrelated classes into the
same package to avoid exposing non-public API or

2. Keeping your application's logical structure by using multiple packages at the expense
of exposing non-public API so it can be accessed by classes in different packages.

Neither choice is particularly palatable.

ERROR-PRONE CLASS PATH CONCEPT

The Java platform also inhibits good modularity practices. The main culprit is the Java class

path. Why does the class path pose problems for modularity? Largely due to all of the issues

that it hides, such as code versions, dependencies, and consistency. Applications are

generally composed of various versions of libraries and components. The class path pays no

attention to code versions, it simply returns the first version that it finds. Even if it did pay

attention, there is no way to explicitly specify dependencies. The process of setting up your

class path is largely trial and error; you just keep adding libraries until the VM stops

complaining about missing classes.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 1.1.2 shows the sort of “class path Hell” that can often be found when more than

one JAR file provides a given set of classes. Even though each JAR file may have been

compiled to work as a unit, when merged at run time the Java class path pays no attention

to the logical partitioning of the components. This tends to lead to such hard to predict

errors, such as NoSuchMethodError, when a class from one JAR file interacts with an

incompatible class from another one.

In large applications, created from independently developed components, it is not

uncommon to have dependencies on different versions of the same component, such as

logging or XML parsing mechanisms. The class path forces you to choose just one version in

such situations, which may not always work for all parts of the application if there are

incompatibilities between versions. Worse, if you happen to have multiple versions of the

same package on the class path, either on purpose or accidentally, they are treated as split

packages by Java and are implicitly merged based on order of appearance. Overall, the class

path approach lacks any form of consistency checking. You just get whatever classes have

been made available by the system administrator, which is very likely only an approximation

of what the developer actually expected. This hardly inspires confidence.

LIMITED DEPLOYMENT AND MANAGEMENT SUPPORT

Java also lacks support when it comes to deploying and managing your application. There is

no easy way in Java to deploy the proper transitive set of versioned code dependencies and

execute your application. Likewise for evolving your application and its components after

deployment. Consider the common requirement of wanting to support a dynamic plugin

mechanism. The only way to achieve such a benign request is to use class loaders, which are

low level and error prone. Class loaders were never intended to be a common tool for

application developers, but so many of today's systems require their use. A properly defined

modularity layer for Java can deal with these issues by making the module concept explicit

and raising the level of abstraction for code partitioning.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 1.1.2 Multiple JARs containing the “same” class are merged based on their order of appearance
in the class path paying no respect to logical coherency between archives

Jar 2Jar 1

Classpath

Jar 3

http://www.manning-sandbox.com/forum.jspa?forumID=507

With this better understanding of the limitations of Java when it comes to modularity, we

can ponder whether OSGi is the right solution for your projects.

1.1.2 Can OSGi help you?

Nearly all but the simplest of applications can benefit from the modularity features OSGi

provides, so if you are wondering if OSGi is something you should be interested in, the

answer is most likely, “Yes!” Still not convinced? Here are some common scenarios that you

may have encountered where OSGi can be helpful:

 If you ever received ClassNotFoundExceptions when starting your application
because the class path was not correct. OSGi can help you here by ensuring that code
dependencies are satisfied before allowing the code to execute.

 If you ever encountered run-time errors when executing your application due to the
wrong version of a dependent library on the class path. OSGi verifies that the set of
dependencies are consistent with respect to required versions and other constraints.

 If you ever wanted to share classes between modules without worrying about
constraints implied by hierarchical class loading schemes; put in a more concrete way,
the dreaded appearance of “foo instanceof Foo == false” when sharing
objects between two servlet contexts.

 If you ever wanted to package your application as logically independent JAR files and
be able to deploy only those pieces you actually need for a given installation. This
pretty much describes the purpose of OSGi.

 If you ever wanted to package your application as logically independent JAR files and
also wanted to declare which code is accessible from each JAR file and have this
visibility enforced. OSGi enables a new level of code visibility for JAR files that allows
you to specify what is and what is not visible externally.

 If you ever wanted to define an extensibility mechanism for your application, like a
plugin mechanism. OSGi modularity is particularly suited to providing a powerful
extensibility mechanism, including support for run-time dynamism.

As you can see, these scenarios cover a lot of use cases, but are by no means

exhaustive. The simple and non-intrusive nature of OSGi tends to make you discover more

ways to apply it the more you use it. Having explored some of the limitations of the standard

Java class path we'll now properly introduce you to OSGi.

1.2 A quick OSGi overview
The OSGi Service Platform is composed of two parts: the OSGi framework and OSGi standard

services (depicted in Figure 1.1.3). The framework is the runtime that implements and

provides OSGi functionality. The standard services define reusable APIs for common tasks,

such as Logging and Preferences.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

The OSGi specifications for the framework and standard services are managed by the

OSGi Alliance (http://www.osgi.org). The alliance is an industry backed non-profit

corporation founded in March 1999. The framework specification is now on it's fourth major

revision and is stable. Technology based on this specification is in use in a range of large

scale industry applications including (but not limited to) automotive, mobile devices, desktop

applications, and more recently enterprise application servers.

NOTE

Once upon a time, the letters “OSGi” were an acronym that stood for the Open Services

Gateway Initiative. This acronym highlights the lineage of the technology, but has fallen

out of favor. After the third specification release, the OSGi Alliance officially dropped the

acronym and “OSGi” is now simply a trademark for the technology.

In the bulk of this book we will discuss the OSGi framework, its capabilities, and how to

leverage these capabilities. Since there are so many standard services, we will only discuss

the most relevant and useful services where appropriate. For any service we miss, you can

get more information from the OSGi specifications themselves. Let's continue our overview of

OSGi by introducing the broad features of the OSGi framework.

1.2.1 The OSGi Framework

The OSGi framework plays a central role when creating OSGi-based applications, since it is

the application's execution environment. The OSGi Alliance's framework specification defines

the proper behavior of the framework, which gives you a well-defined API to program

against. The specification also enables the creation of multiple implementations of the core

framework to give you some freedom of choice; there are a handful of well-known open

source projects, such as Apache Felix, Eclipse Equinox, and Knopflerfish. This ultimately

benefits you, since you are not tied to a particular vendor and are able to program against

the behavior defined in the specification. It's sort of like the reassuring feeling you get by

knowing you can go into any McDonald's anywhere in the world and get the same meal.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 1.1.3 The OSGi Service Platform
specification is divided into two halves, one for the
OSGi framework and one for standard services

Framework

Standard services

OSGi SERVICE PLATFORM

http://www.manning-sandbox.com/forum.jspa?forumID=507

The OSGi specification conceptually divides the framework into three layers (see Figure

1.1.4):

 Module layer – this layer is concerned with packaging and sharing code.

 Lifecycle layer – this layer is concerned with providing run-time module management
and access to the underlying OSGi framework.

 Service layer – this layer is concerned with interaction and communication among
modules, specifically the components contained in them.

Like typical layered architectures, each layer is dependent upon the layers beneath it.

Therefore, it is possible for you to use lower OSGi layers without using upper ones, but not

vice versa. The next three chapters discuss these layers in detail, but we will give an

overview of each here.

1.2.2 Module layer

The module layer defines the OSGi module concept, called a bundle, which is simply a JAR

file with extra metadata (i.e., data about data) as depicted in Figure 1.1.5. A bundle contains

your class files and their related resources. Bundles are typically not an entire application

packaged into a single JAR file; rather, they are the logical modules that combine to form a

given application. Bundles are more powerful than standard JAR files, since you are able to

explicitly declare which contained packages are externally visible (i.e., exported packages).

In this sense, bundles extend the normal access modifiers (i.e., public, private, and

protected) associated with the Java language.

Another important advantage of bundles over standard JAR files is that you are also able

to explicitly declare on which external packages your bundle depends (i.e., imported

packages). The main benefit of explicitly declaring your bundles' exported and imported

packages is that the OSGi framework can manage and verify the consistency of your bundles

automatically; this process is called bundle resolution and involves matching exported

packages to imported packages. Bundle resolution ensures consistency among bundles with

respect to versions and other constraints, which we will discuss in detail in Chapter 2.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 1.1.4 OSGi layered architecture

MODULE

LIFECYCLE

SERVICE

http://www.manning-sandbox.com/forum.jspa?forumID=507

1.2.3 Lifecycle layer

The lifecycle layer defines how bundles are dynamically installed and managed in the OSGi

framework. If we were building a house, the module layer provides the foundation and

structure, while the lifecycle layer is the electrical wiring – it makes everything go.

The lifecycle layer serves two different purposes. External to your application, the

lifecycle layer precisely defines the bundle lifecycle operations (e.g., install, update, start,

stop, and uninstall). These lifecycle operations allow you to dynamically administer, manage,

and evolve your application in a well-defined way. This means that bundles can be safely

added and removed from the framework without restarting the application process. Internal

to your application, the lifecycle layer defines how your bundles gain access to their

execution context, which provides them with a way to interact with the OSGi framework and

the facilities it provides during execution. This overall approach to the lifecycle layer is

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 1.1.6 The service-oriented interaction pattern. Providers
publish services into a registry where requesters can discover
which services are available for use.

Publish Find

Interact

Service
Registry

Service
Provider

Service
Requester

Service
Description

Figure 1.1.5 A bundle contains code,
resources, and metadata

Bundle

.class

class files

.xml,
.jpeg,
etc.

resource files

MANI
FEST
.MF

metadata

http://www.manning-sandbox.com/forum.jspa?forumID=507

powerful since it allows you to create externally (and remotely) managed applications or

completely self-managed applications (or any combination of the two).

1.2.4 Service layer

Finally, the service layer supports and promotes a flexible application programming model

that incorporates concepts popularized by service-oriented computing (although, these

concepts were part of the OSGi framework before SOA became popular). The main concepts

revolve around the service-oriented publish, find, and bind interaction pattern: service

providers publish their services into a service registry, while service clients search the

registry to find available services to use (see Figure 1.1.6). Nowadays, SOA is largely

associated with web services, but OSGi services are local to a single VM, which is why some

people refer to it as “SOA in a VM”.

The OSGi service layer is very intuitive, since it promotes an interface-based development

approach, which is generally considered good practice. Specifically, it promotes the

separation of interface and implementation. OSGi services are simply Java interfaces that

represent a conceptual contract between service providers and service clients. This makes

the service layer very lightweight, since service providers are simply Java objects accessed

via direct method invocation. Additionally, the service layer expands the bundle-based

dynamism of the lifecycle layer with service-based dynamism, i.e., services can appear or

disappear at any time. The result is a programming model that eschews the monolithic and

brittle approaches of the past, in favor of being modular and flexible.

Certainly, this sounds all well and good, but you might still be wondering how these three

layers all fit together and how you go about using them to create an application on top of

them. Fair enough, in the next couple of sections we'll explore how these layers fit together

using some small example programs.

1.2.5 Putting it all together

The OSGi framework is made up of layers, but how do we use these layers in application

development? Let's try to make it a little clearer by outlining the general approach you will

use when creating an OSGi-based application:

3. Design your application by breaking it down into service interfaces (i.e., normal
interface-based programming) and clients of those interfaces.

4. Implement your service provider and client components using your preferred tools and
practices.

5. Package your service provider and client components into [usually] separate JAR files,
augmenting each JAR file with the appropriate OSGi metadata.

6. Start the OSGi framework.

7. Install and start all of your component JAR files from step 3.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

If you are already following an interface-based approach, then the OSGi approach will feel

very familiar to you. The main difference will be how you locate your interface

implementations (i.e., your services). Normally, you might instantiate implementations and

pass around references to initialize clients. In the OSGi world, your services will publish

themselves in the service registry and your clients will look up available services in the

registry. Once your bundles are installed and started, your application will start and execute

like normal, but with several advantages. Underneath, the OSGi framework is providing more

rigid modularity and consistency checking and its dynamic nature opens up a whole world of

possibilities.

Don't fret if you don't or can't use an interfaced-based approach for your development.

The first two layers of the OSGi framework still provide a lot of functionality for you; in truth,

the bulk of OSGi framework functionality lies in these first two layers, so keep reading.

Enough talk, let's look at some code.

1.3 “Hello, world!” examples
Since OSGi functionality is divided over the three layers mentioned previously (modularity,

lifecycle, and service), we will show you three different “Hello, world!” examples that

illustrate each of these layers.

1.3.1 Modularity layer

The modularity layer is actually not related to code creation as such; rather, it is related to

the packaging of your code into bundles. There are certain code-related issues of which you

need to be aware when developing, but by and large you prepare your code for the

modularity layer by adding packaging metadata to your project's generated JAR files. For

example, suppose you want to share the class in Listing 1.1.2.

Listing 1.1.2 Basic greeting implementation

package org.foo.hello;

public class Greeting {
 final String m_name;

 public Greeting(String name) {
 m_name = name;
 }

 public void sayHello() {
 System.out.println("Hello, " + m_name + "!");
 }
}

During the build process you would compile the source code and put the generated class

file into a JAR file. To leverage the OSGi modularity layer you must add some metadata into

your JAR file's META-INF/MANIFEST.MF file, such as the following snippet:
Bundle-ManifestVersion: 2 #A

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Bundle-Name: Greeting API #B
Bundle-SymbolicName: org.foo.hello #C
Bundle-Version: 1.0 #C
Export-Package: org.foo.hello;version="1.0" #D

#A Indicates the OSGi metadata syntax version
#B Human-readable name, not strictly necessary
#C Symbolic name and version bundle identifier
#D Share packages with other bundles

In this small example, the bulk of the metadata is largely related to bundle identification.

The important part is the Export-Package statement, since this extends the functionality

of a typical JAR file with the ability for you to explicitly declare which packages contained in

the JAR are visible to the users of it. In this particular example, only the contents of the

org.foo.hello package are externally visible; if there were other packages in our

example, they would not be externally visible. So what does this really mean? It means when

you run your application, other modules will not be able to accidentally (or intentionally)

depend on packages that your module doesn't explicit expose.

To use this shared code in another module you would again add metadata, this time using

the Import-Package statement to explicitly declare which external packages are required

by the code contained in the client JAR. The following snippet illustrates this:
Bundle-ManifestVersion: 2 #A
Bundle-Name: Greeting Client #B
Bundle-SymbolicName: org.foo.hello.client #C
Bundle-Version: 1.0 #C
Import-Package: org.foo.hello;version="[1.0,2.0)" #D

#A Indicates the OSGi metadata syntax version
#B Human-readable name, not strictly necessary
#C Symbolic name and version bundle identifier
#D Specify dependency on an external package

To see this example in action, go into the greeting-example/modularity/ directory

for Chapter 1 in the accompanying code and type “ant” to build it and “java -jar

main.jar” to run it. Although this example is simple, it illustrates that creating OSGi

bundles out of your existing JAR files is a reasonably non-intrusive process. In addition, there

are tools that can help you create your bundle metadata, which we will discuss in [ref xx],

but in reality no special tools are required to create a bundle other than what you normally

use to create a JAR file. Chapter [ref ch2] will go into all of the juicy details of OSGi

modularity and how to take advantage of it in your applications.

1.3.2 Lifecycle layer

In the last subsection we saw that it is possible to leverage OSGi functionality in a non-

invasive way by simply adding metadata to your existing JAR files. Such a simple approach is

sufficient for most reusable libraries, but sometimes we need or want to go further to meet

specific requirements or to use additional OSGi features. The lifecycle layer moves us deeper

into the OSGi world.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Perhaps you want to create a module that performs some initialization task, such as

starting a background thread or initializing a driver; the lifecycle layer makes this possible.

Bundles may declare a given class as an “activator,” which is the bundle's hook into its own

lifecycle management. We will discuss the full lifecycle of a bundle later in chapter [ref ch3],

but first let's look at a simple example to give you an idea of what we are talking about. In

Listing 1.1.3, we extend our previous Greeting class to provide a singleton instance.

Listing 1.1.3 Extended greeting implementation

package org.foo.hello;

public class Greeting {
 static Greeting instance; #A
 final String m_name;

 Greeting(String name) { #B
 m_name = name;
 }

 public static Greeting get() { #C
 return instance;
 }

 public void sayHello() {
 System.out.println("Hello, " + m_name + "!");
 }
}

#A singleton instance to be managed
#B constructor is now package private
#C clients can only use the singleton

Listing 1.1.4 implements a bundle activator that initializes the Greeting class singleton

when the bundle is started and clears it when it is stopped. The client can now use the pre-

configured singleton instead of creating its own instance.

Listing 1.1.4 OSGi bundle activator

package org.foo.hello;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator { #A

 public void start(BundleContext ctx) { #B
 Greeting.instance = new Greeting("lifecycle");
 }

 public void stop(BundleContext ctx) { #C
 Greeting.instance = null;
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

You can see at #A that a bundle activator must implement a simple OSGi interface, which

comprises the two methods depicted at #B and #C. At execution time, the framework will

construct an instance of this class and invoke the start() method when the bundle is

started and the stop() method when the bundle is stopped. What we precisely mean by

“starting” or “stopping” a bundle will become clearer in chapter [ref ch3]. Because the

framework uses the same activator instance while the bundle is active, you can share

member variables between the start() and stop() methods.

The inquisitive among you might be wondering what the single parameter of type

BundleContext in the start() and stop() methods is all about. This is how the bundle

gets access to the OSGi framework in which it is executing. From this context object, the

module has access to all of the OSGi functionality for modularity, lifecycle, and services. In

short, it is a fairly important object for most bundles, but we will defer a detailed introduction

of it until later when we discuss the lifecycle layer. The important point to take away from

this example is that bundles have a simple way to hook into their overall lifecycle and gain

access to the underlying OSGi framework.

Of course, it is not sufficient to just create this bundle activator implementation, you

actually have to tell the framework about it. Luckily, this is quite simple. If you have an

existing JAR file you are converting to be a module, then you must add the activator

implementation to the existing project so the class is included in the resulting JAR file. If you

are creating a bundle from scratch, then you just need to compile the class and put the

result in a JAR file. You also need to tell the OSGi framework about the bundle activator by

adding another piece of metadata to the JAR file manifest. For our example, we would add

the following metadata to the JAR manifest:
Bundle-Activator: org.foo.hello.Activator
Import-Package: org.osgi.framework

Notice we also need to import the org.osgi.framework package, since our bundle

activator has a dependency on it. Otherwise, it is pretty simple to make bundles lifecycle

aware. To see this example in action, go into the greeting-example/lifecycle/

directory for Chapter 1 in the accompanying code and type “ant” to build it and “java

-jar main.jar” to run it.

We've now introduced how to create OSGi bundles out of your existing JAR files using the

modularity layer and how to make your bundles lifecycle aware so that they can leverage

framework functionality. The last example in this section demonstrates the service-oriented

application programming approach promoted by OSGi.

1.3.3 Service layer

If you follow an interfaced-based approach in your development, the OSGi service approach

will feel quite natural to you. To illustrate, consider the Greeting interface depicted below:
package org.foo.hello;

public interface Greeting {
 void sayHello();

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

}

For any given implementation of the Greeting interface, when the sayHello() method

is invoked a greeting will be displayed. In general, a service represents a contract between a

provider and prospective clients; the semantics of the contract are typically described in a

separate, human readable document, like a specification. The service interface above

represents the syntactic contract of all Greeting implementations. The notion of a contract

is necessary so that clients can be assured of getting the functionality they expect when

using a Greeting service. The precise details of how any given Greeting implementation

performs its task is not known to the client. For example, one implementation may print its

greeting textually, while another may display its greeting in a GUI dialog box. The code in

Listing 1.1.5 depicts a simple text-based implementation.

Listing 1.1.5 Greeting implementation

package org.foo.hello.impl;

import org.foo.hello.Greeting;

public class GreetingImpl implements Greeting {
 final String m_name;

 GreetingImpl(String name) {
 m_name = name;
 }

 public void sayHello() {
 System.out.println("Hello, " + m_name + "!");
 }
}

Your might be thinking that nothing in the service interface or Listing 1.1.5 indicate we

are defining an OSGi service. Well, you'd be correct. That's what makes the OSGi's service

approach so natural if you are already following an interface-based approach, since your

code will largely stay the same. There are two places where your development will be a little

different. One is how you make a service instance available to the rest of your application

and the other is how the rest of your application discovers the available service.

All service implementations will ultimately be packaged into a bundle and that bundle will

need to be lifecycle aware in order to register the service; this means that we need to create

a bundle activator for our example service as depicted in Listing 1.1.6.

Listing 1.1.6 OSGi bundle activator with service registration

package org.foo.hello.impl;

import org.foo.hello.Greeting;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 public void start(BundleContext ctx) { #A
 ctx.registerService(Greeting.class.getName(),
 new GreetingImpl("service"), null);
 }

 public void stop(BundleContext ctx) {} #B
}

This time in the start() method at #A, instead of storing the Greeting

implementation as a singleton, we use the provided bundle context to register it as a service

with the service registry. The first parameter we need to provide is the interface name(s)

that the service implements, followed by the actual service instance, and finally the service

properties. In the stop() method at #B we could unregister the service implementation

before stopping the bundle, but in practice you don't need to do this. The OSGi framework

will automatically unregister any registered services when a bundle stops.

We've seen how to register a service, but what about discovering a service? Listing 1.1.7

shows a very simplistic client, which does not handle missing services and suffers from

potential race conditions. A more robust way to access services will be discussed in chapter

[ref ch4].

Listing 1.1.7 OSGi bundle activator with service discovery

package org.foo.hello.client;

import org.foo.hello.Greeting;
import org.osgi.framework.*;

public class Client implements BundleActivator {

 public void start(BundleContext ctx) {
 ServiceReference ref =
 ctx.getServiceReference(Greeting.class.getName()); #A

 ((Greeting) ctx.getService(ref)).sayHello(); #B
 }

 public void stop(BundleContext ctx) {}
}

The first thing you'll notice is that accessing a service in OSGi is a two-step process. First

at #A, a indirect reference is retrieved from the service registry, which points to the earliest

active service that was registered under the given interface name. Second at #B, this

indirect reference is used to access the actual service object instance. The service reference

can safely be stored in a member variable, but in general you should never store service

object instances since this will make your application less dynamic and stop bundles from

being cleanly uninstalled. We say “in general” since there are certain advanced use cases

discussed in later chapters [ref xx] where you may wish to store a reference to a service. But

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

in these situations you must be very careful to de-reference the service when the OSGi

framework tells you it is no longer valid.

Also note that the client code only needs to declare an import for the Greeting

interface, it has no direct or explicit dependency on the actual service implementation(s).

This makes it very easy to swap services dynamically without restarting the client bundle.

Both the service implementation and client should be packaged into separate bundle JAR

files. Each bundle will name an activator in their respective bundle metadata, but only the

service implementation will export the org.foo.hello package, whereas the client will

import it. To see this example in action, go into the greeting-example/service/

directory for Chapter 1 in the accompanying code and type “ant” to build it and “java

-jar main.jar” to run it.

Now that we have seen some examples, it is possible for us to better understand how

each layer of the OSGi framework builds on the previous one. Each layer gives you additional

capabilities when building your application, but OSGi technology is flexible enough for you to

adopt it according to your specific needs. If you only want better modularity in your project,

then use the modularity layer. If you want a way to initialize your modules and interact with

the modularity layer, then use both the modularity and lifecycle layer. If you want a dynamic,

interface-based development approach, then use all three layers. The choice is yours.

1.3.4 Setting the stage

To help introduce the concepts of each layer in the OSGi framework in the next three

chapters, we will use a simple paint program, whose user interface is depicted in Figure

1.1.7. The paint program is not intended to be independently useful; rather, it is used to

demonstrate common issues and best practices. From a functionality perspective, the paint

program only allows the user to paint various shapes, such as a circles, squares, and

triangles. The shapes are painted in predefined colors. Available shapes are displayed as

buttons in the main window's toolbar. To draw a shape, the user selects it in the toolbar and

then clicks anywhere in the canvas to draw it. The same shape can be drawn repeatedly by

clicking in the canvas numerous times. The user can drag drawn shapes to reposition them.

This sounds simple enough. The value of using a visual program for demonstrating these

concepts will become evident when we start introducing run-time dynamism.

We have finished our overview of the OSGi framework and are ready to delve into the

details, but before we do let's try to put OSGi in context by discussing similar or related

technologies. While no Java technology fills the exact same niche as OSGi, there are several

treading similar ground, so it is worth understanding their relevance before moving forward.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

1.4 Putting OSGi in context
OSGi is often mentioned in the same breath with many other technologies, but it is actually

in a fairly unique position in the Java world. Over the years, no single technology addressed

OSGi's exact problem space, but there has been overlaps, complements, and offshoots.

While it is not possible to cover how OSGi relates to every conceivable technology, we will try

to address some of the most relevant in roughly chronological order. After reading this

section you should have a good idea whether OSGi replaces your familiar technologies or is

complimentary to it.

1.4.1 Java Enterprise Edition

Java Enterprise Edition (Java EE, formerly J2EE) has roots dating back to 1997. Java EE and

OSGi started targeting opposite ends of the computing spectrum (i.e., enterprise vs.

embedded markets, respectively). Only within the last couple years has OSGi technology

really started to take root in the enterprise space. Taken in total, the Java EE API stack is not

really related to OSGi. The Enterprise JavaBeans (EJB) specification is probably the closest

comparable technology from the Java EE space, since it defines a component model and

packaging format. However, its component model focuses on providing a standard way to

implement enterprise applications that must regularly handle issues of persistence,

transactions, and security. The EJB deployment descriptors and packaging formats are

relatively simplistic and do not address the full component lifecycle, nor did they support

clean modularity concepts. OSGi is now moving into the Java EE space to provide a more

sophisticated modularity layer beneath these existing technologies. Since the two ignored

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 1.1.7 Simple paint program user interface

http://www.manning-sandbox.com/forum.jspa?forumID=507

each other for so long, though, there are some challenges in moving existing Java EE

concepts to OSGi, largely due to different assumptions about how class loading is performed.

Still, progress is being made and today OSGi plays a role in several application servers, such

as IBM's Websphere, Redhat's JBoss, BEA's Weblogic, Sun's GlassFish, and ObjectWeb's

JOnAS.

1.4.2 Jini

An often overlooked Java technology is Jini, which is definitely a conceptual sibling of OSGi.

Jini targets OSGi's original problem space of networked environments with a variety of

connected devices. Sun began developing Jini in 1998. The goal of Jini is to make it possible

to administer a networked environment as a flexible, dynamic group of services. Jini

introduces the concepts of service providers, service consumers, and a service lookup

registry. All of this sounds completely isomorphic to OSGi. Where Jini differs is its focus on

distributed systems. In typical Jini fashion, consumers access clients through some form of

proxy using a remote procedure call mechanism, like RMI. The service lookup registry is also

a remotely accessible, federated service. The Jini model assumes remote access across

multiple VM processes, while OSGi assumes everything occurs in a single VM process.

However, in stark contrast to OSGi, Jini does not define any modularity mechanisms and

relies on the run-time code loading features of RMI. The open source project Newton is an

example of combining OSGi and Jini technologies in a single framework.

1.4.3 NetBeans

NetBeans, an IDE and run-time platform for Java, has a long history of having a very

modular design. Sun purchased NetBeans back in 1999 and has continued to evolve it. The

NetBeans platform actually has a lot in common with OSGi. It defines a fairly sophisticated

module layer and also promotes interface-based programming using a “lookup” pattern

which is quite similar to the OSGi service registry. While OSGi focused on embedded devices

and dynamism, the NetBeans platform was originally just an implementation layer for the

IDE. Eventually the platform was promoted as a separate tool in its own right, but focused on

being a complete GUI application platform with abstractions for file systems, windowing

systems, and much more. NetBeans was never really seen as being comparable to OSGi,

even though it is; perhaps OSGi's more narrow focus was an asset in this case.

1.4.4 Java Management Extensions

Java Management Extensions (JMX), released in 2000 through the Java Community Process

(JCP) as JSR 003, was compared to OSGi in the early days. JMX is a technology for remotely

managing and monitoring applications, system objects, and devices; it defines a server and

component model for this purpose. JMX is not really comparable to OSGi; it is actually

complementary, since it can be used to manage and monitor an OSGi framework and its

bundles and services. Why did the comparisons arise in the first place? There are probably

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

three reasons: the JMX component model was sufficiently generic so it was possible to use it

for building applications, the specification defined a mechanism for dynamically loading code

into its server, and certain early adopters pushed JMX in this direction. One major

perpetrator was JBoss, who adopted and extended JMX for use as a modularity layer in its

application server (since eliminated in JBoss 5). Nowadays, JMX is not (and shouldn't be)

confused with a module system.

1.4.5 Lightweight containers

Around 2003 lightweight or inversion of control (IoC) containers started to appear, such as

PicoContainer, Spring, and Apache Avalon. The main idea behind this crop of IoC containers

was to simplify component configuration and assembly by eliminating the use of concrete

types in favor of interfaces. This was combined with dependency injection techniques, where

components depend on interface types and implementations of the interfaces are injected

into the component instance. OSGi services promote a similar interface-based approach, but

employs a service locator pattern to break a component's dependency on component

implementations, similar to Apache Avalon. At the same time, the Service Binder project was

creating a dependency injection framework for OSGi components. It is fairly easy to see why

the comparisons arose. Regardless, OSGi's use of interface-based services and the service

locator pattern long predated this trend and none of these technologies were offering a

sophisticated dynamic module layer like OSGi. There is now significant movement from IoC

vendors to port their infrastructure to the OSGi framework, such as Spring Dynamic Modules.

1.4.6 Java Business Integration

Java Business Integration (JBI) was developed in the JCP and released in 2005. Its goal was

to create a standard SOA platform for creating enterprise application integration (EAI) and

business-to-business integration (B2B) solutions. In JBI, “plugin” components provide and

consume services once they are plugged into the JBI framework. Components do not directly

interact with services, like in OSGi; instead, they communicate indirectly using normalized

WSDL-based messages. JBI uses a JMX-based approach to manage component installation

and lifecycle and defines a packaging format for its components. Due to the inherent

similarities to OSGi's architecture, it was easy to think JBI was competing for a similar role.

On the contrary, its fairly simplistic modularity mechanisms mainly addressed basic

component integration into the framework. It actually made more sense for JBI to leverage

OSGi's more sophisticated modularity, which is ultimately what happened in Project Fuji from

Sun and ServiceMix from Apache.

1.4.7 JSR 277

In 2005, Sun announced a new JCP specification, called JSR 277, to define a module system

for Java. JSR 277 was intended to define a module framework, packaging format, and

repository system for the Java platform. From the perspective of the OSGi Alliance, this was

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

a major case of reinventing the wheel, since the effort was starting from scratch rather than

building on the experience gained from OSGi. In 2006, many OSGi supporters pushed for the

introduction of JSR 291 (titled “Dynamic Component Support for Java”), which was an effort

to bring OSGi technology properly into JCP standardization. The goal was two-fold: to create

a bridge between the two communities and to ensure OSGi technology integration was

considered by JSR 277. The completion of JSR 291 was fairly quick since it started from the

OSGi R4 specification and resulted in the R4.1 specification release. During this period OSGi

technology continued to gain momentum, while JSR 277 continued to make slow progress

through 2008 until it was put on hold indefinitely.

1.4.8 JSR 294

During this time in 2006, JSR 294 (titled “Improved Modularity Support in the Java

Programming Language”) was introduced as an offshoot of JSR 277. Its goal was to focus on

necessary language changes for modularity. The original idea was to introduce the notion of

a “superpackage” into the Java language, more simply described as a package of packages.

The specification of superpackages got bogged down in various details until they were

scrapped in favor of simply adding a “module” access modifier keyword to the language. This

simplification ultimately led to JSR 294 being dropped and merged back into JSR 277 in

2007. However, when it became apparent in 2008 that JSR 277 would be put on hold, JSR

294 was pulled back out. Currently, its scope is still evolving. With JSR 277 on hold, Sun

introduced an internal project, called Project Jigsaw, to modularize the JDK itself. The details

of Jigsaw are also evolving, but at this point it is intended to be an implementation detail of

Sun's JDK.

1.4.9 Service Component Architecture

Service Component Architecture (SCA), which started as an industry collaboration in 2004

and ultimately resulted in final specifications in 2007. SCA defines a service-oriented

component model similar to OSGi's, where components provide and require services. It's

component model is more advanced since it defines composite components (i.e., a

component made of other components) for a fully recursive component model. SCA is

intended to be a component model for declaratively composing components implemented

using various technologies (e.g. Java, BPEL, EJB, C++) and integrated using various bindings

(e.g. SOAP/HTTP, JMS, JCA, IIOP). SCA does define a standard packaging format, but it does

not define a sophisticated modularity layer like OSGi provides. The SCA specification leaves

open the possibility of other packaging formats, which makes it possible to use OSGi as a

packaging and modularity layer for Java-based SCA implementations; Apache Tuscany and

Newton are examples of an SCA implementation leveraging OSGi. Additionally, bundles could

be used to implement SCA component types and SCA could be used as a mechanism to

provide remote access to OSGi services.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

1.4.10 .NET

Although Microsoft's .NET is not a Java technology, it deserves mention since it was largely

inspired by Java and did improve on it in ways which are similar to how OSGi improves Java.

Released in 2002, Microsoft not only learned from Java's example, but they also learned from

their own history of dealing with “DLL Hell”. As a result, .NET includes the notion of an

assembly, which has modularity aspects similar to an OSGi bundle. All .NET code is packaged

into an assembly, which takes the form of a DLL or EXE file. Assemblies provide an

encapsulation mechanism for the code contained inside of them; an access modified, called

“internal”, is used to indicate visibility within an assembly, but not external to it. Assemblies

also contain metadata describing dependencies on other assemblies, but the overall model is

not as flexible as OSGi's. Since dependencies are on specific assemblies, the OSGi notion of

provider substitutability is not attainable.

Additionally, at run time assemblies are loaded into application domains and can only be

unloaded by unloading the entire application domain. This makes the highly dynamic and

lightweight nature of OSGi hard to achieve, since multiple assemblies loaded into the same

application domain must be unloaded at the same time. It is possible to load assemblies into

separate domains, but then communication across domains must use inter-process

communication to collaborate and type sharing is greatly complicated. There have been

research efforts to create OSGi-like environments for the .NET platform, but the innate

differences between the .NET and Java platforms results in not a significant amount of details

in common. Regardless, .NET deserves credit for improving on standard Java in this area.

1.5 Summary
The Java platform is great for developing all sorts of applications, but it does not do a good

job of supporting modularity, which is critical for the long-term success of your projects. The

OSGi Service Platform, through the OSGi framework, addresses the modularity shortcomings

of Java to create a powerful and flexible solution.

The declarative, metadata-based approach employed by OSGi provides a non-invasive

way to take advantage of its sophisticated modularity capabilities. New projects can define

and enforce separation of concerns from the outset, while existing projects can leverage

OSGi modularity by simply modifying how they are packaged with few, if any, changes to the

code itself. With this high-level understanding of OSGi technology, we can dive into the

details of the modularity layer in chapter 2, which is the foundation of everything else in the

OSGi world.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

2
Mastering Modularity

In the previous chapter we took a whistle stop tour of the OSGi landscape. We made a

number of observations about how standard Java is broken with respect to modularity and

gave you examples where OSGi could help. We briefly covered a fair amount of computer

science theory and history and potentially introduced you to a lot of new concepts, including

the core layers of the OSGi framework; modules, lifecycles and services. You could be

forgiven for feeling a little bit bewildered, but please, don't panic!

In this chapter we deal specifically with the modularity layer, who's features are typically

the siren's song for attracting Java developers to OSGi. The modularity layer is the

foundation on which everything else rests in the OSGi world. Here we will provide you with a

full understanding of what OSGi modularity is, why modularity is so important in a general

sense, and how it can help you in designing, building and maintaining Java applications in

the future.

The goal of this chapter is to get you thinking in terms of bundles, rather than JAR files.

We will teach you about OSGi bundle metadata and you will learn how to describe your

application's modularity characteristics with it. To illustrate all of these concepts, we will

introduce a simple paint program example, which we will convert from a monolithic

application into a modular one. Let's get started with modularity.

2.1 What is modularity?
Modularity encompasses so many aspects of programming that we often take it for granted.

The more experience you have with system design, the more you know good designs tend to

be very modular, but what precisely does that mean? In short, it means designing a

complete system from a set of logically independent pieces; these logically independent

pieces are called modules. You might be thinking, “Is that it?” In the abstract, yes, that is it,

but of course there are a lot of details underneath these simple concepts.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

A module defines an enforceable logical boundary, this means that code is either part of a

module (i.e., on the inside) or it is not part of a module (i.e., on the outside). The internal

(i.e., implementation) details of a module are only visible to code that is part of a module.

For all other code, the only visible details of a module are those details that it explicitly

exposes (i.e., public API), as depicted in Figure 2.1. This aspect of modules makes them an

integral part of designing the logical structure of an application.

2.1.1 Modularity versus object orientation

You might be wondering, “Hey, doesn't object orientation give us these things?” You would

be correct, object orientation is intended to address these issues too. You will find that

modularity provides many of the same benefits as object orientation. One reason these two

programming concepts are similar is because both are a form of separation of concerns. The

idea behind separation of concerns is you should break a system down into minimally

overlapping functionality or concerns, so that each concern can be independently reasoned

about, designed, implemented, and used. Modularity is actually one of the earliest forms of

separation of concerns that gained popularity in the early 1970s, while object orientation

gained popularity in the early 1980s.

Having said that, you might now be wondering, “If I already have object orientation in

Java, why do I need modularity too?” Another good question. The need for both arises due to

granularity.

Assume you need some functionality for your application. You sit down and start writing

Java classes to implement the desired functionality. Do you typically implement all of your

functionality in a single class? No. If the functionality is even remotely complicated, you

implement it as a set of classes. You may also make use of existing classes from other parts

of your project or from the JRE itself. When you are done, there is a logical relationship

among the classes you created, but where is this relationship captured? Certainly it is

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.1 A module defines a logical boundary and the
module itself is explicitly in control of which classes are
completely encapsulated and which ones are exposed for
external use.

Module

Class1

Class2

Class3

Class4

Class5

http://www.manning-sandbox.com/forum.jspa?forumID=507

captured in the low-level details of the code itself, because there will be compilation

dependencies that will not be satisfied if all classes are not available at compilation time.

Likewise at execution time, these dependencies will fail if all classes are not present on the

class path when you try to execute your application.

Unfortunately, just looking at the external names of the classes is not sufficient to

understand these dependencies and looking into the low-level code details to figure them out

is quite a chore, especially if you are reusing code that someone else developed. The issue is

that classes provide a mechanism to encapsulate data, but they do not provide one to

encapsulate code. Modules do encapsulate code and this mechanism can be used to capture

logical relationship among classes. Figure 2.2 illustrates how modules can encapsulate code

and the resulting inter-module relationships. You might be thinking Java packages allow us to

capture such logical code relationships. Well, you'd be right. Packages are not an object-

oriented concept, but are a weak form of built-in modularity provided by Java as discussed in

section 1.1.1. The key point to come away with from this discussion is that object orientation

and modularity serve different, but complementary purposes (see Figure 2.3).

When developing in Java, object orientation can be viewed as the implementation

approach for modules. As such, when you are developing classes you are “programming in

the small,” which means you are not thinking about the overall structure of your application,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.3 Even though object orientation and modularity provide similar
capabilities, they actually address them at different levels of granularity

Visibility

Accessibility

Cohesion
Object Orientation Modularity

Coupling

Figure 2.2 Classes have explicit dependencies due to the references contained in the code;
modules have implicit dependencies due to the code they contain

Module2Module1

Class1 Interface1 Class2

Class3

http://www.manning-sandbox.com/forum.jspa?forumID=507

but instead are thinking in terms of specific functionality. Once you start to logically organize

related classes into modules, then you start to concern yourself with “programming in the

large,” which means you are focusing on the larger logical pieces of your system and the

relationships among these pieces.

In addition to capturing relationships among classes via module membership, modules

also capture logical system structure by explicitly declaring dependencies on external code.

With this in mind, we now have all the pieces in place to more concretely define what we

mean by the term module in the context of this book:

MODULE

A set of logically encapsulated implementation classes, an optional public API based on a

subset of the implementation classes, and a set of dependencies on external code.

Although this definition implies that modules contain classes, at this point this sense of

containment is purely logical. Another aspect of modularity worth understanding is physical

modularity, which refers to the actual container of module code.

Logical versus physical modularity

A module defines a logical boundary in your application, which impacts code visibility in a

similar fashion as access modifiers in object-oriented programming. Logical modularity

refers to code visibility. Physical modularity refers to how code is packaged and/or made

available for deployment. In OSGi, these two concepts are largely conflated; a logical

module is referred to as a bundle and so is the physical module (i.e., the JAR file). Even

though these two concepts are nearly synonymous in OSGi, for modularity in general they

are not, since it is possible to have logical modularity without physical modularity or to

package multiple logical modules into a single physical module. Physical modules are

sometimes also referred to as deployment modules or deployment units.

2.1.2 Driving home modularity

A traditional analogy used in discussions on separation of concerns is that of an automobile.

Since we don't want to fly in the face of tradition, we'll employ it to help illustrate how these

concepts fit together and why they are important.

A motor car is made up of many constituent parts, each part depends on some subset of

the other parts. The motor and transmission must be designed to work well together, but the

design of the motor does not generally effect the design of the doors. The chassis design is

influenced by the weight of the motor and the number of doors, but does not effect what

color the body is painted. Several engines may have common characteristics and be

interchangeable, but this does not mean they are necessarily made out of the same parts –

they may not even consume the same fuel. Let's move this analogy closer to Java

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

development by listing some basic car parts in terms of modules and classes, as shown in

Table 2.1.

Table 2.1 Car component's expressed in terms of modules and classes

Modules Classes

Chassis Nut

Motor Bolt

Transmission Screw

Door Cog

Gas Tank Gas

Let's now consider the dependency diagram in Figure 2.4 for the modules making up the

car. Each of the modules use one or more of classes for its internal functionality. The chassis,

for example, uses nut, bolt, and screw classes, while the gas tank uses nuts, bolts, and gas

classes.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.4 : Dependency diagram for modules and classes in an
automobile

u
ses

uses

uses

use
s

Gas Tank

Chassis

DoorEngine

Gear Box

Screw

Nut

Bolt

Gas

Cog

http://www.manning-sandbox.com/forum.jspa?forumID=507

Now consider that while the motor and the gas tank may conceptually use the same type

of class, they don't necessarily use exactly the same kind of the class. Perhaps the gas tank

is built using off-the-shelf nuts and bolts, while the motor uses heat-resistant nuts and bolts.

In standard Java this would not be possible because whichever nut or bolt class reaches the

assembly line (i.e., class path) first will be used to construct the entire car.

The Java EE developers among you will probably say, “Why don't we just use one

URLClassloader per module? That way the motor can have it's version of it's cogs and the

transmission it's version.” Unfortunately, this only works if your modules are truly isolated

from each other. A complex situation arises when the modules, such as the motor and the

gas tank, need to share classes, in this case gas. In Java, the same byte code loaded by

different class loaders it is considered a different class. This leads to extremely nasty

situations where the gas in the gas tank is not the same as the gas in the motor. This tends

to cause some pretty spectacular explosions (i.e., ClassCastExceptions) on our way to

work.

Enterprise architects will typically tell you there are two possible solutions in such a

situation. In order to get gas from the gas tank to the motor, they'll say you need to either:

 Attach a chemical processing factory (e.g., serialization via RMI, JMS, WS, etc.) to the
input and outputs of these modules or

 Only ever fill the car up once with special gas provided by the manufacturer (i.e., put
classes on the boot class path) and buy a whole new car when it runs out (i.e., restart
the JVM for updates).

No wonder we're all driving around in odd looking applications! OSGi modularity allows us

to properly express the modularity characteristics of our applications. But it is not a free

pass, so let's look more in depth at why you should want to modularize your applications so

you can make up your own mind.

2.2 Why modularize?
So we have talked about what modularity is, but we haven't really gone into great depth

about why you might want to modularize your own applications. In fact, you might be

thinking, “If modularity has been around for almost 40 years and it is so important, why isn't

everyone already doing it?” Well, that's a great question and one that probably doesn't have

any single answer. The computer industry is driven by “the next best thing”, so we tend to

throw out the old when the new comes along. And in fairness, as we discussed in the last

section, our new technologies and approaches (e.g., object orientation and component

orientation) do provide us with some of the same benefits that modularity was intended to

address, so we might have been fooled into thinking that we no longer needed modularity

itself.

Java also provides another important reason why modularity is once again an important

concern. Traditionally, programming languages were the domain of logical modularity

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

mechanisms and operating systems and/or deployment packaging systems were the domain

of physical modularity. Java blurs this distinction because it is a language and a platform.

Thus, Java needs to provide both, but has only done a reasonably good job with the former

and an inadequate job with the latter. If you compare this to the .NET platform, then you can

see that Microsoft, given their history of operating system development and the pain of DLL

Hell, recognized this connection early in .NET, which is why it has its own module concept,

called an Assembly. Luckily for us Java programmers, OSGi technology provides a time-

tested solution to the same modularity issues and much, much more.

This discussion provided some potential explanations as to why modularity is coming back

in vogue, but it still doesn't answer the original question of this section, which is why should

you modularize your own applications?

Modularity allows us to reason about the logical structure of our applications. Two key

concepts that arose from modularity decades ago were cohesion and coupling:

 Cohesion measures how closely aligned a module's classes are with each other and
with achieving the module's intended functionality. You should strive for high cohesion
in your modules. For example, a module should not address many different concerns
(e.g., network communication, persistence, XML parsing, etc.), it should focus on a
single concern

 Coupling, on the other hand, refers to how tightly bound or dependent different
modules are on each other. You want to strive for low coupling among your modules.
For example, you don't want every module to depend on all other modules. As you
start to use OSGi to modularize your applications, you cannot avoid these issues.
Modularizing your application will help you see your application in a way that you
weren't able to before

By following these principles of cohesion and coupling you will create code that is easier

to reuse, since it is easier to reuse a module that performs a single function and does not

have a lot of dependencies on other code.

More specifically, by using OSGi to modularize your applications, you will be able to

address the Java limitations discussed in section 1.1.1. Additionally since the modules you

create explicitly declare their external code dependencies, reuse is further simplified because

you will no longer have to scrounge documentation or resort to trial and error to figure out

what to put on the class path. You will now be developing code that more readily fits into a

collaborative, independent development approach, such as in multi-team, multi-location

projects or in large-scale open source projects.

Now we know what modularity is and why we want it, so let's begin to focus on how OSGi

provides it and what you need to do to leverage it in your own applications. We will use an

example paint program to help us understand the concepts.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

2.3 Modularizing a simple paint program
The functionality provided by OSGi's modularity layer is quite sophisticated and can seem

overwhelming when taken in total. We will use a simple paint program, as discussed in

chapter 1, to illustrate how to use OSGi's modularity layer. We will start from an existing

paint program, rather than creating one from scratch. The existing implementation follows an

interfaced-based approach with logical package structuring, so it is amenable to

modularization, but it is currently packaged as a single JAR file. Listing 2.1 shows the

contents of the paint program's JAR file.

Listing 2.1 Contents of existing paint program JAR file

META-INF/ #A
META-INF/MANIFEST.MF #A
org/
org/foo/
org/foo/paint/ #B
org/foo/paint/PaintFrame$1$1.class #B
org/foo/paint/PaintFrame$1.class #B
org/foo/paint/PaintFrame$ShapeActionListener.class #B
org/foo/paint/PaintFrame.class #B
org/foo/paint/SimpleShape.class #B
org/foo/paint/ShapeComponent.class #B
org/foo/shape/ #C
org/foo/shape/Circle.class #C
org/foo/shape/circle.png #C
org/foo/shape/Square.class #C
org/foo/shape/square.png #C
org/foo/shape/Triangle.class #C
org/foo/shape/triangle.png #C

#A Standard manifest file
#B Main application classes
#C Various shape implementations

The main classes composing the paint program and their purpose are described in table

2.2.

Table 2.2 Overview of the classes in paint program

Class Description

org.foo.paint.PaintFrame The main window of the paint program, which contains the

toolbar and drawing canvas; it also has a static main() method

to launch the program.

org.foo.paint.SimpleShape An interface representing an abstract shape for painting.

org.foo.paint.ShapeComponent A GUI component responsible for drawing shapes onto the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

drawing canvas.

org.foo.shape.Circle An implementation of SimpleShape for drawing circles.

org.foo.shape.Square An implementation of SimpleShape for drawing squares.

org.foo.shape.Triangle An implementation of SimpleShape for drawing triangles.

For those familiar with Swing, PaintFrame extends JFrame and contains a JToolBar

and a JPanel canvas . PaintFrame maintains a list of available SimpleShape

implementations, which it displays in the toolbar. When the user selects a shape in the

toolbar and clicks in the canvas to draw the shape, a ShapeComponent (which extends

JComponent) is added to the canvas at the location where the user clicked. A

ShapeComponent is associated with a specific SimpleShape implementation by name,

which it retrieves from a reference to its PaintFrame. The static main() method on

PaintFrame launches the paint program, which creates an instance of the PaintFrame

and each shape implementation, adding each shape instance to the created PaintFrame

instance. Figure 2.5 captures the classes and relationships among them.

To run this non-modular version of the paint program go into the chapter01/paint-

nonmodular/ directory of the companion code. Simply type ant to build the program, then

type java -jar main.jar to run it. Feel free to click around and see how it works, but we

won't go into any more details of the paint program implementation, since GUI programming

is beyond the scope of this book. The important point is to understand the structure of the

program and how it works. Using this understanding of the paint program, we will divide the

program into bundles so we can enhance and enforce its modularity.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.5 Paint program class relationships

Paint
Frame

Shape
Component

Simple
Shape

1 *

1

1 1

*

Circle Square Triangle

http://www.manning-sandbox.com/forum.jspa?forumID=507

Currently, the paint program is packaged as a single JAR file, which we call version 1.0.0

of the program. Since everything is in a single JAR file, this implies the program is not

already modularized. Of course, single JAR file applications can still be implemented in a

modular way and just because an application is composed of multiple JAR files, doesn't imply

it is modular. Our paint program example could have both its logical and physical modularity

improved. First we will examine the logical structure of the paint program and define

modules to enhance this structure. So where do we start?

One low hanging fruit is to look for public API. It is good practice in OSGi (we will see why

later) to separate your public API into separate packages so they can be easily shared

without worrying about exposing implementation details. Our paint program has a good

example of public API, which is its SimpleShape interface. This interface makes it easy to

implement new, possibly third-party shapes for use with our paint program. Unfortunately,

SimpleShape is inside the same package as the implementation classes of our paint

program. To remedy this situation, we will shuffle our the package structure slightly. We will

move SimpleShape into the org.foo.shape package and move all shape implementations

into a new package called org.foo.shape.impl. These changes divide our paint program

into three logical pieces according to the package structure:

 org.foo.shape – The public API for creating shapes.

 org.foo.shape.impl – Various shape implementations.

 org.foo.paint – The application implementation.

Given this structure (logical modularity), we could package each of these packages as

separate JAR files (physical modularity). To have OSGi verify and enforce our modularity, it is

not sufficient to simply package our code as JAR files, we must package them as bundles. To

do this, we need to understand OSGi's bundle concept, which is its logical and physical unit

of modularity. Let's introduce ourselves to bundles.

2.4 Introducing bundles
If you are going to be using OSGi technology, you might as well start getting familiar with

the term bundle, since you are going to be hearing and saying it a lot. The term bundle is

what OSGi uses to refer its specific realization of the module concept. Throughout the

remainder of this book, the terms module and bundle will be used interchangeably, but in

most cases we are specifically referring to bundles and not modularity in general, unless

otherwise noted. Enough fuss about how we will use the term bundle, let's define it:

BUNDLE

A physical unit of modularity in the form of a JAR file containing code, resources, and

metadata, where the boundary of the JAR file also serves as the encapsulation boundary

for logical modularity at execution time.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

The contents of a bundle are graphically depicted in Figure 2.6. The main thing making a

bundle JAR file different than a normal JAR file is it includes module metadata. All JAR files,

even if they are not bundles, have a place for metadata, which is in their manifest file or,

more specifically, in the META-INF/MANIFEST.MF entry of the JAR file. This is where OSGi

places its module metadata. Whenever we refer to a bundle's manifest file, we are

specifically referring to the module-related metadata in this standard JAR manifest file.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.6 A bundle can contain all the usual artifacts you would expect
in a standard JAR file, the only major difference is the manifest file
contains information describing its modular characteristics

Bundle

.class

class files

.xml,
.jpeg,
etc.

resource files

MANI
FEST
.MF

metadata

http://www.manning-sandbox.com/forum.jspa?forumID=507

We should also note that this definition of a bundle is very similar to our definition of a

module, except that it combines both the physical and logical aspects of modularity into one

concept. So, before getting into meat of this chapter, which is defining bundle metadata, let's

discuss the bundle's role in physical and logical modularity in a little more detail.

2.4.1 The bundle's role in physical modularity

The main function of a bundle with respect to physical modularity is to determine module

membership. There is no metadata associated with making a class a member of a bundle. A

given class is a member of a bundle if it is contained in its bundle JAR file. The benefit for

you is that you do not need to do anything special to make a class a member of a bundle,

just put it inside the bundle JAR file.

This physical containment of classes leads to another important function of bundle JAR

files as a deployment unit. The bundle JAR file is tangible and it is the artifact we share,

deploy, and use when working with OSGi. The final important role of the bundle JAR file is as

the container of bundle metadata, since, as we mentioned, the JAR manifest file is used to

store it. These aspects of the bundle are shown in Figure 2.7. The issue of metadata

placement is part of an ongoing debate, which we address in the sidebar for those interested

in the issue.

Where should metadata go?

Is it a good thing to store the module metadata in the physical module and not in the

classes themselves? Well, there are two schools of thought on this subject. One says it is

better to include the metadata right along side the code it is describing (i.e., in the source

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.7 A class is a member of a bundle if it is packaged within it, the
bundle carries it's module metadata inside it as part of it's manifest data
and the bundle can be deployed as a unit into a runtime environment

blah, blah, blah,
blah, blah, blah,
blah, blah, blah,

Manifest

Bundle A Bundle B Bundle C

Class1

Class2

Application Server

http://www.manning-sandbox.com/forum.jspa?forumID=507

file itself), rather than in a separate file where it is more difficult to see the connection to

the code. This approach is possible with various techniques, such doclets or the

annotations mechanism introduced in Java 5.

Annotations in particular are the choice du jour today. Unfortunately, when OSGi work

started back in 1999, annotations were not an option since they didn't exist yet. Besides,

there are many other good reasons to keep the metadata in a separate file, which brings

us to the second school of thought.

The second school of thought argues that it is better to not bake metadata into the source

code, since it becomes harder to change. Having metadata in a separate file offers you

greater flexibility. Consider the following benefits from having separate module metadata:

• You do not need to recompile your bundle to make changes to its metadata.

• You do not need access to the source code to add or modify metadata, which is

sometimes necessary when dealing with legacy or third-party libraries.

• You do not need to load classes into the JVM to access the associated metadata.

• Your code does not become dependent on OSGi API and can still potentially be used

with other frameworks.

• You can use your same code in multiple modules, which is sometimes convenient or

even necessary in some situations when packaging your modules.

• You can easily use your code on older or smaller JVMs that do not support

annotations.

So whether your preferred approach is annotations or not, you can see there is a good

deal of flexibility gained by maintaining the module metadata in the manifest file.

2.4.2 The bundle's role in logical modularity

Similar to how the bundle JAR file physically encapsulates the member classes, the bundle's

role in logical modularity is to logically encapsulate member classes. What precisely does this

mean? It specifically relates to code visibility. Imagine you have a utility class in some util

package, which is not part of your project's public API. To use this utility class from different

packages in your project, it must be public. Unfortunately, this means anyone can access

the utility class, even though it is not part of your public API.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.8 Packages (and the therefore classes within them) contained
within a bundle are private to that bundle unless explicitly exposed,
allowing them to be shared with other bundles

Bundle BBundle A

Exposed packages

Private packages

http://www.manning-sandbox.com/forum.jspa?forumID=507

The logical boundary created by a bundle changes this, giving classes inside of the bundle

different visibility rules to external code, as shown in Figure 2.8. This means public classes

inside of your bundle JAR file are not necessarily externally visible. You might be thinking,

“What?” This is not a misstatement, it is a major differentiator between bundles and

standard JAR files. The only externally visibly bundle code is that which is explicitly exposed

via bundle metadata. This logical boundary effectively extends standard Java access

modifiers (i.e., public, private, protected, and package private) with module private

visibility (i.e., only visible within the module). For those readers familiar with .NET, you may

be thinking this is similar to the internal access modifier, which marks something as being

visible within an Assembly, but private to other Assemblies. You'd be correct.

As you can see, the bundle concept plays important roles in both physical and logical

modularity. Now we can start to examine how we use metadata to describe bundles.

2.5 Defining bundles with metadata
In this section we will discuss OSGi bundle metadata in detail and we'll use our paint

program as a practical use case to help you understand the theory. The main purpose of

bundle metadata is to precisely describe the modularity-related characteristics of a bundle so

the OSGi framework can handle it appropriately, such as resolving dependencies and

enforcing encapsulation. The module-related metadata captures the following pieces of

information about the bundle:

 Human-readable information – this is optional information intended purely as an aide
to humans who are using the bundle.

 Bundle identification – this is required information to identify a bundle.

 Code visibility – this is required information for defining which code is internally visible
and which internal code is externally visible.

We will look at each of these areas in the following subsections. However, since OSGi

relies on the manifest file, we have included a sidebar to explain its persnickety syntax

details and OSGi's extended manifest value syntax. Luckily, there are tools for editing and

generating bundle metadata, so we don't always have to create it manually, but it is still

worthwhile to understand the syntax details.

JAR file manifest syntax

The JAR file manifest is composed of groups of name-value pairs (i.e., attributes). The

general format for an attribute declaration is:

 name: value

The name is not case sensitive and can contain alphanumeric, underscore, and hyphen

characters. Values can contain any character information, except for carriage returns and

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

line feeds. The name and the value must be separated by a colon and a space. A single

line cannot exceed 72 characters. If a line must exceed this length, then it is necessary to

continue it on the next line, which is accomplished by starting the next line with a single

space character followed by the continuation of the value. Manifest lines in OSGi can grow

quite long, so it is useful to know this.

An attribute group is defined by placing attribute declarations on successive lines (i.e.,

one line after the other) in the manifest file. An empty or blank line between attribute

declarations is used to signify different attribute groups. OSGi only uses the first group of

attributes, called the main attributes. The order of attributes within a group is not

important. If you look in a manifest file, you may see something like:

 Manifest-Version: 1.0

 Created-By: 1.4 (Sun Microsystems Inc.)

 Bundle-ManifestVersion: 2

 Bundle-SymbolicName: org.foo.api

 Bundle-Version: 1.0.0.SNAPSHOT

 Bundle-Name: Simple Paint API

 Export-Package: org.foo.api

 Import-Package: javax.swing,org.foo.api

 Bundle-License: http://www.apache.org/licenses/LICENSE-2.0

We will get into the exact meaning of most of these attributes throughout the remainder

of this section. But for now we will focus a little more on the syntax. While the standard

Java syntax is a name-value pair, OSGi defines a common structure for OSGi-specified

attribute values. Most OSGi manifest attribute values are a list of clauses separated by

commas, such as:

 Property-Name: clause, clause, clause

Where each clause is further broken down into a target and a list of name-value pair

parameters separated by semi-colons, such as:

 Property-Name: target1; parameter1=value1; parameter2=value2,

 target2; parameter1=value1; parameter2=value2,

 target3; parameter1=value1; parameter2=value2

Parameters are actually divided into two types, called attributes and directives. A directive

alters framework handling of the associated information and are explicitly defined by the

OSGi specification. Attributes are just arbitrary name-value pairs. We will see how to use

directives and attributes later. Slightly different syntax is used to differentiate directives

(:=) from attributes (=), which looks something like this:

 Property-Name: target1; dir1:=value1; attr1=value2,

 target2; dir1:=value1; attr1=value2,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 target3; dir1:=value1; attr1=value2

Keep in mind you can have any number of directives and attributes assigned to each

target, all with different values. Values containing whitespace or separator characters

should be quoted to avoid parsing errors. Sometimes you will have lots of targets having

the same set of directives and attributes. In such a situation, OSGi provides a shorthand

way to avoid repeating all of the duplicated directives and attributes, as follows:

 Property-Name: target1; target2; dir1:=value1; attr1=value2

This is equivalent to listing the targets separately with their own directives and attributes.

This is pretty much everything you need to understand the structure of OSGi manifest

attributes. Not all OSGi manifest values will conform to this common structure, but the

majority do, so it makes sense for you to become familiar with it.

2.5.1 Human-readable information

Most bundle metadata is intended to be read and interpreted by the OSGi framework in its

effort to provide a general modularity layer for Java. Some bundle metadata, however,

serves no purpose other than helping humans understand what a bundle does and from

where it comes. The OSGi specification defines several pieces of metadata for this purpose,

but none of it is required, nor does it have any impact on modularity. The OSGi framework

completely ignores it.

DESCRIBING OUR PAINT PROGRAM

The following code snippet depicts human-readable bundle metadata for our paint

program's org.foo.shape bundle (the other program bundles are described similarly).

Bundle-Name: Simple Paint API #1

Bundle-Description: Public API for a simple paint program. #2

Bundle-DocURL: http://www.manning.com/osgi-in-action/ #3

Bundle-Category: example, library #4

Bundle-Vendor: OSGi in Action #5

Bundle-ContactAddress: 1234 Main Street, USA #6

Bundle-Copyright: OSGi in Action #7

The Bundle-Name attribute (#1) is intended to be a short name for the bundle. You are

free to name your bundle anything you want. Even though it is supposed to be a short

name, there is no enforcement of this; just use your best judgment. The Bundle-

Description attribute (#2) is intended to allow you to be a little more long winded in

describing the purpose of your bundle. To provide even more documentation about your

bundle, the Bundle-DocURL at (#3) allows you to specify a URL to refer to

documentation. Bundle-Category (#4) defines a comma-separated list of category

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

names. OSGi does not define any standard category names, so you are free to choose

your own. The remaining attributes, Bundle-Vendor (#5), Bundle-

ContactAddress (#6), and Bundle-Copyright (#7), provide information about

the bundle vendor.

Human-readable metadata is reasonably straightforward. The fact that the OSGi

framework ignores it means you can pretty much do what you want to with it. But don't fall

into a laissez-faire approach just yet, the remaining metadata requires more precision. Next,

we will look at how we use metadata to identify bundles.

2.5.2 Bundle identification

The human-readable metadata from the previous subsection helps us understand what a

bundle does and from where it comes. Some of this human-readable metadata also appears

to play a role in identifying a bundle. For example, Bundle-Name seems like it could be a

form of bundle identification. It is not. The reason is somewhat historical. Earlier versions of

the OSGi specification did not provide any means to uniquely identify a given bundle.

Bundle-Name was created to be purely informational and therefore no constraints were

placed on its value. As part of the OSGi R4 specification process, the idea of an unique

bundle identifier was proposed. For backwards compatibility reasons, Bundle-Name could

not be commandeered for this purpose since it would not be possible to place new

constraints on it and maintain backwards compatibility. Instead, a new manifest entry was

introduced, called Bundle-SymbolicName.

In contrast to Bundle-Name, which is only intended for users, Bundle-SymbolicName

is only intended for the OSGi framework to help uniquely identify a bundle. The value of the

symbolic name follows rules similar to Java package naming in that it is a series of dot-

separated strings where reverse domain naming is recommended to avoid name clashes.

While the dot-separated construction is enforced by the framework, there is no way to

enforce the reverse domain name recommendation. You are free to choose a different

scheme, but if you do, keep in mind that the main purpose is to provide unique identification,

so try choose a scheme that won't lead to name clashes.

IDENTIFYING OUR PAINT PROGRAM (PART 1)

For our paint program, we divided it into bundles based on packages, so we can use each

bundle's root package as our symbolic name since it already follows a reverse domain

name scheme. For the public API bundle, we declare the symbolic name in manifest file

as:

Bundle-SymbolicName: org.foo.shape

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Although it would be possible to solely use Bundle-SymbolicName to uniquely identify

a bundle, it would be awkward to do so over time. Consider what would happen when you

released a second version of your bundle, you'd need to change the symbolic name to keep it

unique, e.g., org.foo.shapeV2. While this is possible, it is cumbersome and worse, this

versioning information would be opaque to the OSGi framework, which means the modularity

layer could not take advantage of it. To remedy this situation, a bundle is uniquely identified

not only by its Bundle-SymbolicName, but also by its Bundle-Version, whose value

conforms to the OSGi version number format (see sidebar). This pair of attributes forms a

unique identifier and also allows the framework to capture the time-ordered relationship

among versions of the same bundle.

IDENTIFYING OUR PAINT PROGRAM (PART 2)

For example, the following metadata uniquely identifies our paint program's public API

bundle:

Bundle-SymbolicName: org.foo.shape

Bundle-Version: 2.0.0

While technically only Bundle-SymbolicName and Bundle-Version are related to

bundle identification, the Bundle-ManifestVersion attribute also plays a role. Starting

with the R4 specification, it became mandatory for bundles to specify Bundle-

SymbolicName. This was a substantial change in philosophy. To maintain backwards

compatibility with legacy bundles created before the R4 specification, OSGi introduced the

Bundle-ManifestVersion attribute. Currently, the only valid value for this attribute is

“2”, which is the value for bundles created for the R4 specification or later. Any bundles

without Bundle-ManifestVersion are not required to be uniquely identified, but bundles

with it must be.

IDENTIFYING OUR PAINT PROGRAM (PART 3)

The following example illustrates the proper OSGi R4 metadata to identify our shape

bundle:

Bundle-ManifestVersion: 2

Bundle-SymbolicName: org.foo.shape

Bundle-Version: 2.0.0

We have defined the identification metadata for our public API above. The identification

metadata for the other paint program bundles would be defined in a similar fashion. Now

that we have bundle identification out of the way, we are ready to look at code visibility,

which is perhaps the most important area of metadata.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

OSGi version number format

One important concept you will visit over and over again in OSGi is a version number. The

OSGi specification defines a common version number format used in a number of places

throughout the specification. For this reason it is worthwhile spending a few paragraphs

exploring exactly what a version number is in the OSGi world.

A version number is composed of three separate numerical component values separated

by dots; for example, 1.0.0 is a valid OSGi version number. The first value is referred to

as the major number, the second value as the minor number, and the third value as the

micro number. These names reflect the relative precedence of each component value and

is very similar to other version numbering schemes, where version number ordering is

based on numerical comparison of version number components in decreasing order of

precedence; in other words 2.0.0 is newer than 1.2.0 and 1.10.0 is newer than 1.9.9.

A fourth version component is possible, which is called a qualifier. The qualifier can

contain alphanumeric characters; for example, 1.0.0.alpha is a valid OSGi version

number with qualifier. When comparing version numbers, the qualifier is compared using

string comparison. As Figure 2.9 shows, this does not always lead to intuitive results; for

example, while 1.0.0.beta is newer than 1.0.0.alpha, 1.0.0 is older than both.

In places where a version metadata is expected, if it is omitted, then it defaults to

0.0.0. If a numeric component of the version number is omitted, then it defaults to 0,

while the qualifier defaults to an empty string. For example, 1.2 is equivalent to 1.2.0.

One tricky aspect is that it is not possible to have a qualifier without specifying all of the

numeric components of the version. So, you cannot specify 1.2.build-59, you must

specify 1.2.0.build-59.

OSGi uses this common version number format for versioning both bundles and Java

packages. In later chapters [ref?], we will discuss more high-level approaches for

managing version numbers for your packages, bundles, and applications.

2.5.3 Code visibility

Human-readable and bundle identification metadata are valuable, but they don't go very far

in allowing you to describe your bundle's modularity characteristics. The OSGi specification

defines metadata for comprehensively describing which code is visible internally in a bundle

and which internal code is visible externally. Code visibility information is at the core of the

modularity mechanisms of the OSGi framework.

Metadata for code visibility captures the following information:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.9 OSGi versioning semantics can sometimes lead to non intuitive results

1.0.0 1.0.0.alpha 1.0.0.beta 1.0.1 1.2.0

Higher Version

1.1.0 1.1.1

http://www.manning-sandbox.com/forum.jspa?forumID=507

1. Internal bundle class path – this is the code forming the bundle.

2. Exported internal code – this is explicitly exposed code from the bundle class path for
sharing with other bundles.

3. Imported external code – this is external code on which bundle class path code
depends.

Each of these areas captures separate, but related information about which Java classes

are reachable in your bundle and by your bundle. We will cover each in detail, but before we

do that, let's step back and dissect how we use JAR files and the Java class path in traditional

Java programming. This will give us a basis for comparison to OSGi's approach to code

visibility.

CODE VISIBILITY IN STANDARD JAR FILES AND THE CLASS PATH

Generally speaking, we compile Java source files into classes, then use the jar tool to create

a JAR file of our generated classes. If the JAR file has a Main-Class attribute in the

manifest file, then we can run our application like this:
java -jar app.jar

If not, we add it to the class path and start the application something like this:
java -cp app.jar org.foo.Main

Figure 2.10 shows us the stages the JVM goes through, first it searches for the class

specified in Main-Class attribute or the one specified on the command line. If it finds the

class, it searches it for a “static public void main(String[])” method. If such a

method is found, it invokes it to start the application. As the application executes, any

additional classes needed by the application are found by searching the class path, which is

composed of the application classes in the JAR file and the standard JRE classes (and

anything you may have added to the class path). Classes are loaded as they are needed.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

This represents a high-level understanding of how Java executes an application from a

JAR file. But this high-level view conceals a few implicit decisions made by standard JAR file

handling, such as:

1. Where to search inside the JAR file for a requested class?

2. Which internal classes should be externally exposed?

With respect to the first decision, JAR files have an implicit policy of searching all

directories relative to the root of the JAR file as if they were package names corresponding to

the requested class (e.g., the class org.foo.Bar is in org/foo/Bar.class inside the JAR

file). With respect to the second decision, JAR files have an implicit policy of exposing all

classes in root-relative packages to all requesters. This is a highly deconstructed view of the

behavior of JAR files, but it helps to illustrate the implicit modularity decisions of standard

JAR files. These implicit code visibility decisions are put into effect when we place a JAR file

on the class path for execution.

While executing, the JVM finds all needed classes by searching the class path as shown in

Figure 2.11. But what is exact purpose of the class path with respect to modularity? The

class path defines which external classes are visible to our JAR file's internal classes. In fact

every class reachable on the class path is visible to our application classes, even if they are

not needed.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.10 Flow diagram showing the steps the jvm goes through to
execute a Java program from the classpath.

-jar?

JVM Start

Read Main-Class
manifest entry

Call
public static void main(String [])

Load Main classFound?

Success

Yes

YesNo

No

Non Daemon Threads? Wait

Load Main class

http://www.manning-sandbox.com/forum.jspa?forumID=507

With this view of how standard JAR files and the class path mechanism work, let's look

into the details of how OSGi handles these same code visibility concepts, which is quite a bit

different. We will start with how OSGi searches bundles internally for code, followed by how

OSGi externally exposes internal code, and finally how external code is made visible to

internal bundle code. Let's get started.

INTERNAL BUNDLE CLASS PATH

Recall the implicit internal class searching rule of standard JAR files, which is to search all

directories from the root of the JAR file as if they were package names. OSGi uses a more

explicit approach to define how bundle JAR files are searched, called the bundle class path.

Like the standard Java class path concept, the bundle class path is a list of locations to

search for classes. The difference is the bundle class path refers to locations inside the

bundle JAR file.

When a given bundle class needs another class in the same bundle, the entire bundle

class path of the containing bundle is searched to find the class. Classes in the same bundle

have access to all code reachable on their bundle class path. Let's examine the syntax for

declaring it.

BUNDLE-CLASSPATH

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.11 Flow diagram showing the steps the jvm goes through to
load a class from the classpath

Next
classpath entry

Define Class

Is loaded?

Return Class

More classpath
Entries?

Search
classpath entry

Contains .class

No

No

Yes

Yes

Find Class

No

http://www.manning-sandbox.com/forum.jspa?forumID=507

An ordered, comma-separated list of relative bundle JAR file locations to be searched for

class and resource requests.

Bundles declare their internal class path using the Bundle-ClassPath manifest header.

The bundle class path behaves in the same way as the global class path in terms of the

search algorithm, so we can refer to Figure 2.11 to see how this behaves, but in this case the

scope is limited to classes contained in the bundle. With Bundle-ClassPath, we can

specify a delimited list of paths within the bundle where the class loader should look for

classes or resources, for example:
Bundle-ClassPath: .,other-classes/,embedded.jar

This tells the OSGi framework where to search inside the bundle for classes. The “.”

signifies the bundle JAR file itself. For this example, the bundle itself will be searched first for

root-relative packages, then in the folder called other-classes, and finally in the embedded

jar within our bundle. The ordering is important, since the bundle class path entries are

searched in the declared order.

The Bundle-ClassPath is somewhat unique, since OSGi manifest headers do not

normally have default values. If you don't specify a value, the framework supplies a default

value of “.”. Why does Bundle-ClassPath have a default value? The answer is related to

how standard JAR files are searched for classes. The bundle class path value of “.”

corresponds to this internal search policy of standard JAR files. Putting “.” on your bundle

class path likewise treats all root-relative directories as if they were packages when

searching for classes. Making “.” the default, gives both standard and bundle JAR files the

same default internal search policy.

NOTE

It is important to understand that the default value of Bundle-ClassPath is “.” if and

only if there is no specified value, which is not the same as saying the value “.” is included

on the bundle class path by default. In other words, if you specify a value for Bundle-

ClassPath, then “.” is only included if you explicitly specify it in your comma-separated

list of locations. If you specify a value and do not include “.”, then root-relative directories

will not be searched when looking for classes in the bundle JAR file.

As you can see, the internal bundle class path concept is actually quite powerful and

flexible when it comes to defining the contents and internal search order of bundles; refer to

the sidebar for some examples of when this flexibility is useful. Next, we will learn how we

can expose internal code for sharing with other bundles.

Bundle class path flexibility

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

You may be wondering why you'd want to package classes in different directories or

embed JAR files within the bundle JAR file? Good question!

First, the bundle class path mechanism does not apply only to classes, but also to

resources. A common use case is to place images in an image/ directory to make it

explicit within the JAR file where certain content can be found. Also, in web applications

classes are embedded within the JAR file under WEB-INF/lib/ o r WEB-

INF/classes/ directories.

In other situations, you may have a legacy or proprietary JAR file you are not able to

change. By embedding the JAR file into your bundle and adding bundle metadata you can

use it without changing the original JAR. It may also just be convenient to embed a JAR

file when you want your bundle to have a private copy of some library, this is especially

useful when you want to avoid sharing static library members with other bundles.

Embedding JAR files is not strictly necessary, since you can also unpack a standard JAR

file into your bundle to achieve the same effect. As an aside, you could also see a

performance improvement by not embedding JAR files, since OSGi framework

implementations must extract the embedded JAR files to access them.

EXPORTING INTERNAL CODE

Bundle-ClassPath affects the visibility of classes within a bundle, but how do we share

classes between bundles? The first stage is to export the packages you wish to share with

others.

Externally useful classes are those composing the public API of the code contained in the

JAR file, while non-useful classes are those forming the implementation details. Standard JAR

files do not provide any mechanism to differentiate externally useful classes from non-useful

ones, but OSGi does. In fact, while a standard JAR file exposes everything relative to the

root by default, an OSGi bundle exposes nothing by default. A given bundle must explicitly

describe in its metadata the internal classes it wishes to expose to other bundles; it does so

using the Export-Package manifest header.

EXPORT-PACKAGE

A comma-separated list of internal bundle packages to expose for sharing with other

bundles.

Instead of exposing individual classes, OSGi defines sharing among bundles at the

package level. While this makes the task of exporting code a little simpler, it can still be a

major undertaking for large projects, so we will discuss some tools to simplify this in section/

appendix [ref]. When you include a package in an Export-Package declaration, every

public class contained in the package is exposed to other bundles. A simple example for our

paint program shape API bundle is as follows (graphically depicted in Figure 2.12):

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Export-Package: org.foo.shape

Here we are exporting every class in the org.foo.shape package. You will likely want

to export more than one package at a time from your bundles. We can export multiple

packages by separating them with commas, such as:
Export-Package: org.foo.shape,org.foo.other

You can export as many packages as you want by separating them with commas. We can

also attach attributes to exported packages. Since it is possible for different bundles to

export the same packages, a given bundle can use attributes to differentiate its exports from

other bundles. For example:
Export-Package: org.foo.shape; vendor="Manning", org.foo.other;
 vendor="Manning"

This attaches the vendor attribute with the value "Manning" to the exported packages.

In this particular example, vendor is an arbitrary attribute because it has no special

meaning to the framework. We defined this attribute name and value and the OSGi

framework does not interpret this to mean anything other than being an attribute attached to

the associated packages. When we talk about importing code, we will get a better idea of

how arbitrary attributes are used in package sharing to differentiate among exported

packages. As mentioned previously in the manifest syntax sidebar, OSGi also supports a

shorthand format when you want to attach the same attributes to a set of target packages,

like this:
Export-Package: org.foo.shape; org.foo.other; vendor="Manning"

This is equivalent to the previous example. This shorthand comes in handy, but it can

only be applied if all attached attributes are the same for all packages. Using arbitrary

attributes allows a bundle to differentiate its exported packages, but there is actually a more

meaningful reason to use an attribute for differentiation: version management.

Code is constantly evolving. Packages contain classes that change over time. It is

important to document such changes using version numbers. Version management is not a

part of standard Java development, but it is inherent in OSGi-based Java development. In

particular, OSGi not only supports bundle versioning as discussed previously, but it also

supports package versioning, which means every shared package has a version number.

Attributes are used to associate a version number with a package, such as:
Export-Package: org.foo.shape; org.foo.other; version="2.0.0"

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.12 Graphical depiction of an exported
package

export
org.foo.shape

http://www.manning-sandbox.com/forum.jspa?forumID=507

Here we attach the version attribute with value "2.0.0" to the exported packages,

using OSGi's common version number format. In this case, the attribute is not arbitrary,

because this attribute name and value is defined by the OSGi specification.

VERSIONING POLICY

The OSGi specification does not define a standard version policy, only a standard version

format. You are free to define your own policy for the meaning of version number

changes, but a common policy is that micro number changes are small changes (e.g., bug

fixes) and are highly backwards compatible, while minor number changes are larger

changes yet are still backwards compatible, and finally major number changes are big

changes and not backwards compatible.

You may have noticed in some of our earlier Export-Package examples we did not

specify a version at all. In that case, it defaults to "0.0.0", but it is not a good idea to use

this version number.

With Bundle-ClassPath and Export-Package, we have a pretty good idea how we

define and control the visibility of our bundle's internal classes, but not all the code we need

is contained in our bundle JAR file. Next we will learn how to specify our bundle's

dependencies on external code.

IMPORTING EXTERNAL CODE

Both Bundle-ClassPath and Export-Package deal with internal bundle code visibility.

Normally, a bundle will also be dependent on external code. We need some way to declare

which external classes are needed by our bundle so the OSGi framework can make them

visible to it. Typically, the standard Java class path is used to specify which external code is

visible to classes in your JAR files, but OSGi does not use this mechanism. OSGi requires all

bundles to include metadata explicitly declaring their dependencies on external code,

referred to as importing.

Importing external code is straightforward, if not tedious. You must declare imports for all

classes required by your bundle, but not contained in your bundle. The only exception to this

rule is for classes in the java.* packages, which are automatically made visible to all

bundles by the OSGi framework.

Import-Package versus import keyword

You may be thinking you already do imports in your source code with the import

keyword. Conceptually, the import keyword and declaring OSGi imports are similar, but

they actually serve different purposes. The import keyword in Java is for namespace

management; it allows you to use the short name of the imported classes, instead of

using its fully qualified class name (i.e., you can refer to SimpleShape, rather than

org.foo.shape.SimpleShape). You can import classes from any other package to

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

use their short name, but it doesn't grant any visibility. In fact, you never need to use

import, since you can just use the fully qualified class name instead. For OSGi, the

metadata for importing external code is very important, since it is how the framework

knows what your bundle needs.

As with exporting bundle packages, it is not necessary to explicitly declare an import for

each external class your bundle uses; rather, you declare which packages it uses. The

manifest header we use for importing external code is appropriately named Import-

Package.

IMPORT-PACKAGE

A comma-separated list of packages needed by internal bundle code from other bundles.

The value of this header follows the common OSGi manifest header syntax. First, let's

start with the simplest form. Consider our main paint program bundle which has a

dependency on the org.foo.shape package. It needs to declare an import for this package

as follows (graphically depicted in Figure 2.13):
Import-Package: org.foo.shape

This specifically tells the OSGi framework our bundle requires access to org.foo.shape

in addition to the internal code visible to it from its bundle class path. We should emphasize

this point. Bundle classes have access to all code either reachable from their bundle class

path or explicitly imported in their metadata using Import-Package. Be aware that

importing a package does not import its sub-packages; remember, there is no actual

relationship among nested packages. If your bundle needs access to org.foo.shape and

org.foo.shape.other, then it must import both packages as comma-separated targets,

like this:

Import-Package: org.foo.shape,org.foo.shape.other

Your bundles can import any number of packages by listing them on Import-Package

and separating them using commas. It is actually not uncommon in larger projects for your

Import-Package declaration to grow quite large. Remember that the JAR file manifest

format is picky. If your Import-Package value grows too large, you will need to continue

its value on the next line as discussed in section [ref].

You will likely want to narrow your bundle's package dependencies in some way. Recall

h o w Export-Package declarations can include attributes to differentiate a bundle's

exported packages. These export attributes can be used as matching attributes when

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.13 Graphical depiction of an imported package

import
org.foo.shape

http://www.manning-sandbox.com/forum.jspa?forumID=507

importing packages. For example, we previously discussed the following export and

associated attribute:
Export-Package: org.foo.shape; org.foo.other; vendor="Manning"

A bundle with this metadata exports the two packages with the associated vendor

attribute and value. It is possible to narrow your bundle's imported packages using the same

matching attribute, such as:
Import-Package: org.foo.shape; vendor="Manning"

The bundle with this metadata is declaring a dependency on the package

org.foo.shape with a vendor attribute matching the "Manning" value. The attributes

attached to Export-Package declarations define the attribute's value, while attributes

attached to Import-Package declarations define the value to match; essentially, they act

like a filter. The details of how imports and exports are matched and filtered is something we

will defer until section 2.7. For now it is sufficient to understand that attributes attached to

imported packages are matched against the attributes attached to exported packages.

For arbitrary attributes, OSGi only supports equality matching. In other words, it either

matches the specified value or it doesn't. We learned about one non-arbitrary attribute when

discussing Export-Package, which was the version attribute. Since this attribute is

defined by the OSGi specification, more flexible matching is supported. In fact, this is an

area where OSGi excels. In the simple case, it treats a value as an infinite range starting

from the specified version number; for example:
Import-Package: org.osgi.framework; version="1.3.0"

This statement declares an import for package org.osgi.framework for the version

range of 1.3.0 to infinity, inclusive. This simple form of specifying an imported package

version range implies an expectation that future versions of org.osgi.framework will

always be backwards compatible with the lower version. In some cases, such as specification

packages, it is reasonable to expect backwards compatibility. In situations where you wish to

limit your assumptions about backwards compatibility, OSGi allows you to specify an explicit

version range using interval notion, where the characters '[' and ']' indicate inclusive values

and the characters '(' and ')' indicate exclusive values. Consider the following example:
Import-Package: org.osgi.framework; version="[1.3.0,2.0.0)"

This statement declares an import for package org.osgi.framework for the version

range including 1.3.0 and up to, but excluding 2.0.0 and beyond. Table 2.3 illustrates the

meaning of the various combinations of the version range syntax.

Table 2.3 Version range syntax and meaning

Syntax Meaning

"[min,max)" min <= x < max

"[min,max]" min <= x <= max

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

"(min,max)" min < x < max

"(min,max]" min < x <= max

"min" min <= x

If you want to specify a precise version range, then you must use a version range like

"[1.0.1,1.0.1]". You might be wondering why a single value, like "1.0.1", is an infinite

range rather than a precise version? Good question. The reason is partly historical. In the

OSGi specifications prior to R4, all packages were assumed to be specification packages

where backwards compatibility was guaranteed. Since backwards compatibility was assumed

in OSGi specification prior to R4, it was only necessary to specify a minimum version. When

the R4 specification added support for sharing implementation packages, it also needed to

add support for arbitrary version ranges. It would have been possible at this time to redefine

a single version to be a precise version, but this would be unintuitive for existing OSGi

programmers. Also, the specification would have to define some syntax to represent infinity.

In the end, the OSGi Alliance deemed it made the most sense to define versions ranges as

presented here.

You may have noticed in some of our earlier Import-Package examples above we did

not specify a version range at all. What happens in that case? When no version range is

specified, it defaults to the value "0.0.0", which you might expect from past examples. Of

course, the difference here is it that the value "0.0.0" is interpreted as a version range

from 0.0.0 to infinity.

Now we understand how we use Import-Package to express dependencies on external

packages and Export-Package to expose internal packages for sharing. The decisions to

use packages as the basis for inter-bundle sharing is not an obvious choice to everyone, so

we discuss some arguments for doing so in the sidebar.

Depending on packages, not bundles

Importing packages seems fairly normal for most Java programmers, since we import the

classes and packages we use in our source files. But the import statements in our source

files are for managing namespaces not dependencies. OSGi's choice of using package-

level granularity for expressing dependencies among bundles is novel, if not controversial,

for Java-based module-oriented technologies. Other approaches typically adopt module-

level dependencies, meaning dependencies are expressed in terms of one module

depending on another. The OSGi choice of package-level dependencies has created some

debate about which approach is better.

The main criticisms leveled against package-level dependencies is they are too

complicated or fine grained. Some people believe it is easier for developers to think in

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

terms of requiring a whole JAR file, rather than individual packages. This argument

doesn't really hold water, since a Java developer using any given technology must know

something about its package naming. For example, if we know enough to realize we want

to use the Servlet class in the first place, then we probably have some idea about

which package it is in too.

Package-level dependencies are more fine-grained, which does result in more metadata.

For example, if a bundle exported ten packages, then only one module-level dependency

is needed to express a dependency on all of them, while package-level dependencies

require ten. However, bundles rarely depend on all exported packages of a given bundle

and this is more of a condemnation of tooling support. Remember how much of a

nuisance it was to maintain import declarations before IDEs started doing it for us? This is

starting to change for bundles too; in chapter [ref] we describe tools for generating your

bundle metadata. Let's look at some of the benefits of package-level dependencies.

The difference between module- versus package-level dependencies is one of “who”

versus “what”. Module-level dependencies express which specific module you depend

(i.e., who), while package-level dependencies express which specific packages you

depend (i.e., what). Module-level dependencies are brittle, since they can only be

satisfied by a specific bundle even if another bundle offers the same packages. Some

people argue this is not an issue, because they want the specific bundled they have

tested against or the packages are implementation packages and will not be provided by

another bundle. While these arguments are reasonable, they usually break down over

time.

For example, if your bundles grows too large over time you may wish to refactor it by

splitting its various exported packages into multiple bundles. If you use module-level

dependencies, such a refactoring will break existing clients, which tends to be a real

bummer when the clients are from third parties and you cannot easily change them. This

issue goes away when you use package-level dependencies. In most cases, a bundle

doesn't usually depend on everything in another bundle, only a subset. Module-level

dependencies are too broad and cause transitive fanout. The end result is you end up

needing to deploy a lot of extra bundles you don't even use, just to satisfy all of the

dependencies.

Package-level dependencies are the real dependencies of the code. It is possible to

analyze a bundle's code and generate its set of imported packages; similar to how IDEs

maintain import declarations in source files. Module-level dependencies cannot be

discovered in such a fashion, since they do not exist in the code. Package-level

dependencies sound great, right? You might now be wondering if they have any issues?

The main issue is OSGi must treat packages as an atomic unit. If this assumption were

not made, then the OSGi framework would not be free to substitute a package from one

bundle with the same package from another bundle. This means you cannot split a

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

package across bundles; a single package must be contained within a single bundle. If

packages were split across bundles, there would be no easy way for the OSGi framework

to know when a package was complete. Typically, this is not such a major limitation.

Other than this limitation, you can do anything with package-level dependencies you can

with module-level dependencies. And truth be told, the OSGi specification does support

module-level dependencies and some forms of split packages, but we will not discuss

those until chapter [ref].

We've now covered the major constituents of the OSGi module layer: Bundle-

ClassPath, Export-Package, and Import-Package. We've discussed these in the

context of our paint program which we will see running in the next section, but the final

piece of the puzzle we need to look at is how these various code visibility mechanims fit

together in a running application.

2.5.4 Class search order

We have talked a lot about code visibility, but in the end all of the metadata we discussed

allows the OSGi framework to perform sophisticated searching on the behalf of bundles for

their contained and needed classes. Under the covers, when an importing bundle needs a

class from an exported package, it asks the exporting bundle for it. The framework uses

class loaders to do this, but the exact details of how it asks are unimportant. Still, it is

important to understand the ordering of this class search process.

When a bundle needs a class at execution time, the framework searches for the class in

the following order:

1. If the class is from a package starting with “java.”, then the parent class loader is
asked for the class. If the class is found, then it is used. If there is no such class, the
search ends with an exception.

2. If the class is from a package imported by the bundle, then the framework asks the
exporting bundle for the class. If the class is found, then it is used. If there is no such
class, the search ends with an exception.

3. The bundle class path is searched for the class. If it is found, then it is used. If there is
no such class, the search ends with an exception.

These steps are important since they also help the framework ensure consistency.

Specifically, step (1) ensures all bundles use the same core Java classes, while step (2)

ensures imported packages are not split across the exporting and importing bundles.

That's it! We've finished our introduction to bundle metadata. We have not covered

everything you can possibly do, but have covered the most important bundle metadata for

getting started creating bundles; we will cover additional modularity issues in chapter 5.

Next we will put all of our metadata in place for our paint program, then step back a little bit

and review our current design. Before moving on, if you are wondering if it is possible to

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

have a JAR file that is both a bundle and an ordinary JAR file, then we discuss this in the

following sidebar.

Is a bundle a JAR file or a JAR file a bundle?

Maybe you are interested in adding OSGi metadata to your existing JAR files or you want

to create bundles from scratch, but you'd still like to use them in non-OSGi situations too.

We've said before a bundle is just a JAR file with additional module-related metadata in

its manifest file, but how accurate is this statement? Does it mean any OSGi bundle can

be used as a standard JAR file? What about using a standard JAR file as a bundle? Let's

answer the second question first, since it is easier.

A standard JAR file can actually be installed into an OSGi framework unchanged.

Unfortunately, it doesn't really do anything useful. Why? The main reason is because a

standard JAR file does not expose any of its content; in OSGi terms, it doesn't export any

packages. The default Bundle-ClassPath for a JAR file is “.”, but the default for

Export-Package is nothing. So even though a standard JAR file is a bundle, it is not a

very useful bundle. At a minimum, you need to add an Export-Package declaration to

its manifest file to explicitly expose some (or all) of its internal content. What about

bundle JAR files? Can they be used as a standard JAR file outside of an OSGi

environment? The answer is, it depends.

It is possible for you to create bundles that function equally well in or out of an OSGi

environment, but not all bundles can be used as standard JAR files. It all comes down to

which features of OSGi your bundle uses. Of the metadata features we have learned

about so far, there is only one which can cause issues: Bundle-ClassPath. Recall that

the internal bundle class path is a comma separate list of locations inside the bundle JAR

file and may contain:

• A “.” representing the root of the bundle JAR file itself.

• A relative path to an embedded JAR file.

• A relative path to an embedded directory.

Only bundles with a class path entry of “.” can be used as standard JAR files. Why? It is

like we said in section [ref], the OSGi notion of “.” on the bundle class path is equivalent

to standard JAR file class searching, which is to search from the root of the JAR file as if

all relative directories are package names. If a bundle specifies a relative path to an

embedded JAR file or directory, then it requires special handling only available in an OSGi

environment. Luckily, it is not too difficult to avoid using embedded JAR files and

directories. Embedded directories are really not too common and embedded JAR files can

be avoided by simply exploding them into the bundle JAR file.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

It is a good idea to try to keep your bundle JAR files compatible with standard JAR files if

you can, but it is still best to use them in an OSGi environment. Without OSGi, you lose

dependency checking, consistency checking, and boundary enforcement, not to mention

all of the cool lifecycle and service stuff we will discuss in the coming chapters.

2.6 Finalizing our paint program design
So far, we have defined three bundles for our paint program:a shape API bundle, a shape

implementation bundle, and a main paint program bundle. Let's look at the complete

metadata for each. The shape API bundle is described by the following manifest metadata:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.shape
Bundle-Version: 2.0.0
Bundle-Name: Paint API
Import-Package: javax.swing
Export-Package: org.foo.shape; version="2.0.0"

The bundle containing the shape implementations is described by the following manifest

metadata:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.shape.impl
Bundle-Version: 2.0.0
Bundle-Name: Simple Shape Implementations
Import-Package: javax.swing, org.foo.shape; version="2.0.0"
Export-Package: org.foo.shape.impl; version="2.0.0"

And lastly, the main paint program bundle is described by the following manifest

metadata:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.paint
Bundle-Version: 2.0.0
Bundle-Name: Simple Paint Program
Import-Package: javax.swing, org.foo.shape; org.foo.shape.impl;
 version="2.0.0"

As you can see in Figure 2.14, these three bundles directly mirror the logical package

structure of the paint program.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.14 Structure of paint program's bundles

Shape
impl

Shape
API

Paint

import
org.foo.shape.impl

export
org.foo.shape.impl

import
org.foo.shape

export
org.foo.shape

import
org.foo.shape

http://www.manning-sandbox.com/forum.jspa?forumID=507

This approach is certainly reasonable, but could it be improved? To some degree, we can

only answer this question if we know more about the intended uses of the paint program, but

let's look a little more closely at it anyway.

2.6.1 Improving our paint program modularization

In our current design, one aspect that sticks out is the shape implementation bundle. Is

there a downside to keeping all shape implementations in a single package and a single

bundle? Perhaps it is better to reverse the question. Is there any advantage to separating the

shape implementations into separate bundles? Imagine use cases where not all shapes are

necessary; for example, small devices may not have enough resources to support all shape

implementations. If we separate the shape implementations into separate packages and

separate bundles, then it gives us more flexibility when it comes to creating different

configurations of our application.

This is a good issue to keep in mind when modularizing your applications. Optional

components or components with the potential to have multiple alternative implementations

are good candidates to be in separate bundles. Breaking your application into multiple

bundles gives you more flexibility, because you are limited to deploying configurations of

your application based on the granularity of your defined bundles. Sounds good, right? You

might then wonder why we don't just divide our applications into as many bundles as we

can?

There is a price to pay for the flexibility afforded by dividing our application into multiple

bundles. Lots of bundles mean you have lots of artifacts which are versioning independently,

creating lots dependencies and configurations to manage. So, it is probably not a good idea

to create a bundle out of each of your project's packages, for example. You need to analyze

and understand your needs for flexibility when deciding how best to divide your application.

There is no single rule for every situation.

Returning to our paint program example, let's assume our ultimate goal is to enable the

possibility for creating different configurations of our application with different sets of shapes.

To accomplish this, we move each shape implementation into its own package (e.g.,

org.foo.shape.circle, org.foo.shape.square, org.foo.shape.triangle). We

can now bundle each of these shapes separately; the following metadata captures the circle

bundle:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.shape.circle
Bundle-Version: 2.0.0
Bundle-Name: Circle Implementation
Import-Package: javax.swing, org.foo.shape; version="2.0.0"
Export-Package: org.foo.shape.circle; version="2.0.0"

The metadata for the square and triangle bundles is nearly identical, except with the

correct shape name substituted where appropriate. The shape implementation bundles have

dependencies on Swing and the public API; they export their implementation-specific shape

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

package. These changes also require changes to the metadata of the paint program

implementation bundle; we modify its metadata as follows:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.paint
Bundle-Version: 2.0.0
Bundle-Name: Simple Paint Program
Import-Package: javax.swing, org.foo.shape; org.foo.shape.circle;
 org.foo.shape.square; org.foo.shape.triangle; version="2.0.0"

The paint program implementation bundle depends on Swing, the public API bundle, and

all three shape bundles. Figure 2.15 depicts the new structure of our paint program.

Now we have five bundles (shape API, circle, square, triangle, and paint). Great. But

what do we do with these bundles? The initial version of the paint program had a static

main() method on PaintFrame to launch it, do we still use it to launch the program? We

could use it by putting all of our bundle JAR files on the class path, since all of our example

bundles can function as standard JAR files, but this would defeat the purpose of modularizing

the application. There would be no enforcement of modular boundaries or consistency

checking. To get these benefits, we need launch our paint program using the OSGi

framework. Let's look at what we need to do.

2.6.2 Launching the new paint program

The focus of this chapter is on using the modularity layer, but we cannot launch our

application without a little help from the lifecycle layer. Instead of putting the cart before the

horse and talking about the lifecycle layer now, we created a generic OSGi bundle launcher

to launch our paint program for us. This launcher is very simple. You execute it from the

command line and specify a path to a directory containing bundles, it will create an OSGi

framework instance and deploy all bundles in the specified directory. The cool part is this

generic launcher hides all of the details and OSGi-specific API from us; we will discuss the

launcher in detail in chapter 12.

Even though the launcher is pretty cool, we still need some way to kick start the

application, such as a static main() method. In fact, we can use the original paint program's

static main() method to launch our new modular version. To get this to work with the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.15 Logical structure of paint program with separate
modules for each shape implementation

Triangle

Shape
API

Paint

Square

Circle

http://www.manning-sandbox.com/forum.jspa?forumID=507

bundle launcher, we simply need to add the following metadata from the original paint

program to the paint program bundle manifest:
Main-Class: org.foo.paint.PaintFrame

Like in the original paint program, this is standard JAR file metadata for specifying the

class containing the static main() method of the application. Note that this feature is not

defined by the OSGi specification, but is a feature of our bundle launcher. To build and launch

our newly modularized paint program, simply go into the chapter02/paint-modular/

directory in the companion code and type ant. This will compile all code and package the

modules. Typing java -jar launcher.jar bundles/ will start the paint program.

The paint program starts up as it apparently always has, but it gains all the modularity

goodness of OSGi. That's all there is to it. We have used the OSGi modularity layer to create

a nicely modular application. The metadata-based approach of OSGi didn't require any code

changes to our application, although we did move some classes around to different packages

to improve our logical and physical modularity.

The goal of the OSGi framework is to shield us from a lot of the complexities, but

sometimes it is beneficial for us to peek behind the curtain, such as to help us debug our

OSGi-based applications when things go wrong. In the next section, we will look at some of

the work the OSGi framework is doing for us to get a deeper understanding of how

everything fits together.

2.7 OSGi dependency resolution
We learned how we describe the internal code composing our bundles with Bundle-

ClassPath, expose internal code for sharing with Export-Package, and declare

dependencies on external code with Import-Package. Although we hinted at how the OSGi

framework uses the exports from one bundle to satisfy the imports of another, we didn't

really go into it in detail. The Export-Package a n d Import-Package metadata

declarations included in bundle manifests form the backbone of the OSGi bundle dependency

model, which is predicated on package sharing among bundles.

In this section we will explain how OSGi resolves bundle package dependencies and

ensures package consistency among bundles. After this section, you will have a clear

understanding of how bundle modularity metadata is used by the OSGi framework. You

might wonder why this is necessary, since it seems like OSGi framework implementation

details. Admittedly, this section covers some of the more complex details of the OSGi

specification, but in reality it is helpful when defining your bundle metadata if you

understand a little bit of what is going on behind the scenes. Further, this information can

come in handy when debugging your OSGi-based applications. Let's get started.

2.7.1 Resolving dependencies automatically

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Adding OSGi metadata to your JAR files represent extra work for you as a developer, so why

do we want to do it? The main reason is so we can use the OSGi framework to support and

enforce the inherent modularity of our bundles. One of the most important tasks performed

by the OSGi framework is automating dependency management, which is called bundle

dependency resolution. Technically, resolution is part of the lifecycle layer because it happens

at execution time, but we will describe it in this chapter since it is intrinsically related to the

bundle metadata.

A bundle's dependencies must be resolved by the framework before the bundle can be

used, as shown in Figure 2.16. The framework's dependency resolution algorithm is very

sophisticated; we will get into its gory details, but let's start off with a simple definition.

RESOLVING

The process of matching a given bundle's imported packages to exported packages from

other bundles and doing so in a consistent way so any given bundle only has access to a

single version of any type.

Resolving a bundle may cause other bundles to be resolved transitively, if exporting

bundles themselves have not yet been resolved. The resulting set of resolved bundles are

conceptually “wired” together in such a fashion that any given imported package from a

bundle is wired to a matching exported package from another bundle, where a “wire” implies

having access to the exported package. The final result is a graph of all bundles wired

together where all imported package dependencies are satisfied. If any dependency cannot

be satisfied, then the resolve fails and the instigating bundle cannot be used until its

dependencies are satisfied. This description likely makes you want to ask three questions:

1. When does the framework resolve a bundle's dependencies?

2. How does the framework gain access to bundles to resolve them in the first place?

3. What does it really mean to “wire” an importing bundle to an exporting bundle?

The first two questions are somewhat related, since they both involve the lifecycle layer,

which we will discuss in the next chapter. For the first question, it is sufficient to say the

framework resolves a bundle automatically when another bundle attempts to use it. To

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.16 Transitive dependencies occur when bundle A depends on
packages from bundle B and bundle B in turn depends on packages
from bundle C. In order to use bundle A you need to find (resolve) both
bundle B and bundle C.

B CA

http://www.manning-sandbox.com/forum.jspa?forumID=507

answer the second question, we will simply say that all bundles must be “installed” into the

framework in order to be resolved (bundle installation will be covered in more depth in the

next chapter). For the discussion in this section, we will always be talking about installed

bundles. As for the third question, we will not answer it fully since the technical details of

wiring bundles together is not really important, but for the curious we can explain it briefly,

before looking into the resolution process in more detail.

At execution time, each OSGi bundle has a class loader associated with it, which is how

the bundle gains access to all of the classes to which it should have access (i.e., the ones

determined by the resolution process). When an importing bundle is wired to an exporting

bundle, the importing class loader is given a reference to the exporting class loader so it can

delegate requests for classes in the exported package to it. You don't need to worry about

how this happens, just relax and let OSGi worry about it for you. Now let's look into the

resolution process in more detail.

SIMPLE CASES

At first blush, resolving dependencies is fairly straightforward; the framework just needs to

match exports to imports. Let's consider a snippet from our paint program example.
Bundle-Name: Simple Paint Program
Import-Package: org.foo.shape

From this we know the paint program has a single dependency on the org.foo.shape

package. If only this bundle were installed in the framework, it would not be usable since its

dependency would not be satisfiable. We have to supply the shape API in order to used the

main paint program:
Bundle-Name: Paint API
Export-Package: org.foo.shape

When the framework tries to resolve the paint program, it knows it must find a matching

export for org.foo.shape. In this case, it finds a match from shape API bundle. When the

framework finds a matching candidate, it must determine if the candidate is resolved. If the

candidate is already resolved, then the candidate can be chosen to satisfy the dependency. If

the candidate is not yet resolved, then the framework must resolve it first before it can select

it; this is the transitive nature of resolving dependencies. If our shape API bundle has no

dependencies, it can always be successfully resolved. However we know from our example it

does have some dependencies, namely javax.swing:
Bundle-Name: Paint API
Import-Package: javax.swing
Export-Package: org.foo.shape

So what happens when the framework tries to resolve the paint program? By default in

OSGi it would not succeed, which means the paint program can not be used. Why? Because

even though the org.foo.shape package from the API bundle satisfies main program's

import, there is no bundle to satisfy shape API's import of javax.swing. In general to

resolve this situation, we could install another bundle exporting the required package, such

as:
Bundle-Name: Swing

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Export-Package: javax.swing

Now when the framework tries to resolve the paint program, it will succeed. The main

paint program bundle's dependency is satisfied by the shape API bundle and its dependency

is satisfied by the Swing bundle, which has no dependencies. After resolving the main paint

program bundle, all three bundles are marked as resolved and the framework will not try to

resolve them again (until certain conditions require it, which will be described in the next

chapter). The framework ends up wiring the bundles together as depicted in Figure 2.17.

What does the wiring in Figure 2.17 tell us? It says when main bundle needs a class in

package org.foo.shape, it will get it from the shape API bundle. It also says when the

shape API bundle needs a class in package javax.swing, it will get it from the Swing

bundle. Even though this example is simple, it is largely what the framework is trying to do

when it resolves bundle dependencies.

System class path delegation

In actuality, the javax.swing case in the previous example is a little misleading if you are

running your OSGi framework with a JRE that includes javax.swing. In such a case, you

may want bundles to use Swing from the JRE. The framework can implicitly provide

access using system class path delegation. We will look at this area a little bit in chapter

12, but this highlights a deficiency with the heavyweight JRE approach. If it is possible to

install a bundle to satisfy the Swing dependencies why are they packaged in the JVM by

default? Adoption of OSGi patterns could massively trim the footprint of future JVM

implementations.

You might recall from section [ref] something about attaching attributes to exported

packages. We said it was sufficient to understand that attributes attached to imported

packages are matched against attributes attached to exported packages. Now we can more

fully understand what this means. Let's modify our bundle metadata snippets to get a deeper

understanding of how attributes factor into the resolve process. Assume we modify the swing

bundle to look like this:
Bundle-Name: Swing
Export-Package: javax.swing; vendor="Sun"

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.17 Transitive bundle resolution wiring

API SwingMain
import
org.foo.shape

export
org.foo.shape

import
javax.swing

export
javax.swing

http://www.manning-sandbox.com/forum.jspa?forumID=507

Here we modify Swing bundle to export javax.swing with an attribute vendor with

value "Sun". If the other bundle's metadata are not modified and we perform the resolve

process from scratch, what impact does this change have? This minor change actually has no

impact at all. Everything still resolves as it did before and the vendor attribute never comes

into play. Why not? Depending on your perspective this may or may not seem confusing. As

we previously described attributes, imported attributes are matched against exported

attributes. In this case, no import declarations mention the vendor attribute, so it is simply

ignored. Let's revert the change to the Swing bundle and instead change the API bundle to

look like this:
Bundle-Name: Paint API
Export-Package: org.foo.shape
Import-Package: javax.swing; vendor="Sun"

Attempting to resolve paint program bundle will now fail because no bundle is exporting

the package with a matching vendor attribute for our API bundle. Putting the vendor

attribute back on the Swing bundle export allows the main paint program bundle to

successfully resolve again with the same wiring as depicted before in figure 2.17. Attributes

on exported packages only have an impact if imported packages specify them, in which case

the values must match or the resolve fails. You might recall we also talked about the

version attribute in section [ref]. Other than the more expressive interval notation for

specifying ranges, it works the same way as arbitrary attributes. For example, we can modify

the shape API bundle as follows:
Bundle-Name: Paint API
Export-Package: org.foo.shape; vendor="Manning"; version="2.0.0"
Import-Package: javax.swing; vendor="Sun"

And modify our paint program bundle as follows:
Bundle-Name: Simple Paint Program
Import-Package: org.foo.shape; vendor="Manning"; version="[2.0.0,3.0.0)"

In this case, the framework can still resolve everything because our shape API bundle's

export matches our paint program bundle's import; the vendor attributes match and 2.0.0

is in the range of 2.0.0 inclusive to 3.0.0 exclusive. In this particular example, we actually

have multiple matching attributes on our import declaration, which is treated like a logical

AND by the framework. Therefore, if any of the matching attributes on an import declaration

do not match a given export, then the export does not match at all.

Overall, attributes do not add much complexity to the resolution process, since they

simply add additional constraints to the matching of imported and exported package names

already taking place. Next we will look into slightly more complicated bundle resolution

scenarios.

MULTIPLE PROVIDERS

In the previous section, dependency resolution was fairly straightforward since there was

only one candidate to resolve each dependency. The OSGi framework doesn't restrict

multiple bundles from exporting the same package. Actually, one of the main benefits of the

OSGi framework is it supports side-by-side versions, meaning it is possible to use different

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

versions of the same package within the same running JVM. In highly collaborative

environments of independently developed bundles, it is difficult to limit which versions of

packages are used. Likewise, in really large systems, it is possible for different teams to use

different versions of libraries in their subsystems; the use of different XML parser versions is

a prime example.

Let's consider what happens when there are multiple candidates available to resolve the

same dependency. Considering a case in which a web application needs to import the

javax.servlet package and both a servlet API bundle and a Tomcat bundle provide the

package (see Figure 2.18).

When the framework tries to resolve the dependencies of the web application it sees that

the web application requires javax.servlet with a minimum version of 2.4.0 and both

the servlet API and Tomcat bundles meet this requirement. Since the web application can

only be wired to one version of the package, how does the framework choose between the

candidates? As you might intuitively expect, the framework favors the highest matching

version, so in this case it selects Tomcat to resolve the web application's dependency. Sounds

simple enough. What would happen if both bundles exported the same version, say 2.4.0?

In this case, the framework chooses between candidates based on the order in which

they are installed in the framework. Bundles installed earlier are given priority over bundles

installed later; as we mentioned, the next chapter will show you what it means to install a

bundle in the framework. If we assume the servlet API was installed before Tomcat, then the

servlet API will be selected to resolve the web application's dependency. There is one more

consideration which the framework makes when prioritizing matching candidates:

maximizing collaboration.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.18 How does the framework choose between multiple
exporters of a package?

Web
Application

import
javax.servlet;
version=2.4.0

Servlet
API

export
javax.servlet

version=2.4.0

Tomcat

export
javax.servlet

version=2.5.0

?

http://www.manning-sandbox.com/forum.jspa?forumID=507

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

So far we have been working under the assumption of starting the resolve process on a

cleanly installed set of bundles. However, the OSGi framework allows bundles to be

dynamically installed at any time during execution. In other words, the framework doesn't

always start from a clean slate. It is possible for some bundles to be installed, resolved, and

already in use when new bundles are installed. This creates another means to differentiate

among exporters: already resolved exporters and not yet resolved exporters. The framework

gives priority to already resolved exporters, so if it must choose between two matching

candidates where one is resolved and one is not, then it chooses the resolved candidate.

Consider again our example with the servlet API exporting version 2.4.0 of the

javax.servlet package and Tomcat exporting version 2.5.0. If the servlet API was already

resolved, then the framework would choose it to resolve the web application's dependency,

even though it is not exporting the highest version. Why?

It has to do with maximizing the potential for collaboration. Bundles can only collaborate

if they are using the same version of a shared package. When resolving, the framework

favors already resolved packages as a means to minimize the number of different versions of

the same package being used. To summarize the priority of dependency resolution candidate

selection:

1. Highest priority is given to already resolved candidates, where multiple matches of
resolved candidates are sorted according to version and then installation order.

2. Next priority is given to unresolved candidates, where multiple matches of unresolved
candidates are sorted according to version and then installation order.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.19 If a bundle is already resolved because it is in use by
another bundle this bundle will be preferred to bundles that are only
installed

Jetty

import
javax.servlet;
version=2.4.0

Servlet
API

Resolved

export
javax.servlet

version=2.4.0

Tomcat

Installed
export

javax.servlet
version=2.5.0

Web
Application

import
javax.servlet;
version=2.4.0

http://www.manning-sandbox.com/forum.jspa?forumID=507

It looks like we have all our bases covered, right? Not quite. Next we will look at how an

additional level of constraint checking is necessary to ensure bundle dependency resolution is

consistent.

2.7.2 Ensuring consistency with “uses” constraints

From the perspective of any given bundle, there are a set of packages visible to it, which we

will call its class space. Given our current understanding, we can define a bundle's class

space as its imported packages combined with the packages accessible from its bundle class

path as shown in figure 2.20.

A bundle's class space must be consistent, which means only a single instance of a given

package must be visible to the bundle. Here we define instances of a package as those with

the same name and version, but from different providers. For example consider our previous

example where both the servlet API and Tomcat bundles exported the javax.servlet

package at version 2.4.0. The OSGi framework strives to ensure the class spaces of all

bundles remain consistent. Simply prioritizing how exported packages are selected for

imported packages, as described in the last section, is not sufficient. Why not? Let's consider

the simple API in the following code snippet:
package org.osgi.service.http;
import javax.servlet.Servlet;
public interface HttpService {
 void registerServlet(Sting alias, Servlet servlet, HttpContext ctx);
}

This is a snippet from an API we will meet later in chapter [ref], the details of what it

does are unimportant at the moment, for now we just need to know it's method signature.

Let's assume the implementation of this API is packaged as a bundle containing the

org.osgi.service.http package, but not javax.servlet. This means it would have some

metadata in its manifest like this:
Export-Package: org.osgi.service.http; version="1.0.0"

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.20 Bundle A's class space is defined as the union of it's
bundle classpath with it's imported packages which are provided by
bundle B's exports.

Bundle A's
Bundle-Classpath

Bundle B's
Bundle-Classpath

Imported/Exported
Classes

http://www.manning-sandbox.com/forum.jspa?forumID=507

Import-Package: javax.servlet; version="2.3.0"

Let's assume our framework has our HTTP service bundle and a servlet library bundle

installed, as depicted in Figure 2.21. Given these two bundles, the framework makes the only

choice available, which is to select the version of javax.servlet provided by the Servlet

API bundle. Now assume we install two more bundles into the framework, the Tomcat bundle

exporting version 2.4.0 of javax.servlet and a bundle containing a client for the HTTP

service importing version 2.4.0 of javax.servlet. When the framework resolves these

two new bundles, it would do so as depicted in Figure 2.22.

The HTTP client bundle imports org.osgi.service.http and version 2.4.0 of

javax.servlet, which the framework resolves to the HTTP service bundle and the Tomcat

bundle, respectively. It seems everything is fine, all bundles have their dependencies

resolved, right? Not quite. There is an issue with these choices for dependency resolution,

can you see what it is?

Consider the servlet parameter in the HTTPService.registerServlet() method.

Which version of javax.servlet is it? Since the HTTP service bundle is wired to the servlet

API bundle, its parameter type is version 2.3.0 of javax.servlet.Servlet. When the

HTTP client bundle tries to invoke HTTPService.registerServlet(), which version of

javax.servlet.Servlet will be the instance it passes? Since it is wired to the Tomcat

bundle, it will create a 2.4.0 instance of javax.servlet.Servlet. The class spaces of

the HTTP service and client bundles are not consistent; two different versions of

javax.servlet are reachable from both. At execution time, this would result in class cast

exceptions when the HTTP service and client bundles interact. What went wrong?

The framework made the best choices at the time it resolved the bundle dependencies,

but due to the incremental nature of the resolve process, it was not able to make the best

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.21 HTTP service dependency resolution

HTTP
Service

Servlet
API

export
org.osgi.service.http

import
javax.servlet
version=”2.3.0”

export
javax.servlet

version=”2.3.0”

Figure 2.22 Subsequent HTTP client dependency resolution

HTTP
Service

export
org.osgi.service.http

import
javax.servlet
version=”2.3.0”

export
javax.servlet

version=”2.3.0”

HTTP
Client

import
org.osgi.service.http

Tomcat

import
javax.servlet

version=”2.4.0”

export
javax.servlet
version=”2.4.0”

Servlet
API

http://www.manning-sandbox.com/forum.jspa?forumID=507

overall choice. If we installed all four bundles together, then the framework would have

resolved the dependencies in a consistent way using its existing rules. Figure 2.23 shows the

dependency resolution when all four bundles are resolved together.

Since there is only one version of javax.servlet in use, we know the class spaces of

the HTTP service and client bundles are consistent, allowing them to interact without issue.

But is this a general remedy to class space inconsistencies? Unfortunately, it isn't as we shall

see in the next chapter since OSGi allows us to dynamically install and uninstall bundles at

any time. Moreover, inconsistent class spaces do not only result from incremental resolving

of dependencies. It is also possible to resolve a static set of bundles into inconsistent class

spaces due to inconsistent constraints. For example, imagine our HTTP service bundle

required precisely version 2.3.0 o f javax.servlet, while the client bundle required

precisely version 2.4.0. While these constraints are clearly inconsistent, the framework

would happily resolve our example bundles given our current set of dependency resolution

rules. Why doesn't it detect this inconsistency?

INTER- VERSUS INTRA-BUNDLE DEPENDENCIES

The difficulty is Export-Package a n d Import-Package only capture inter-bundle

dependencies, but class space consistency conflicts result from intra-bundle dependencies.

Recall the org.osgi.service.http.HttpService interface; its registerServlet()

method takes a parameter of type javax.servlet.Servlet, which means

org.osgi.service.http uses javax.servlet. Figure 2.24 depicts this intra-bundle

“uses” relationship between the HTTP service bundle's exported and imported packages.

How do these “uses” relationships arise? Our example shows the typical way, which is

when the method signatures of classes in an exported package expose classes from other

packages. This seems pretty obvious, since the used types are visible, but it is not always

the case. You can also expose a type via a base class which is downcast by the consumer.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.23 Consistent dependency resolution of HTTP service and client bundles

HTTP
Service

export
org.osgi.service.http

import
javax.servlet
version=”2.3.0”

export
javax.servlet

version=”2.3.0”

HTTP
Client

import
org.osgi.service.http

Tomcat

import
javax.servlet

version=”2.4.0”

export
javax.servlet
version=”2.4.0”

Servlet
API

Figure 2.24 Bundle export "uses" import

HTTP
Service

export
org.osgi.service.http

import
javax.servlet
version=”2.3.0”

“uses”

http://www.manning-sandbox.com/forum.jspa?forumID=507

Since these types of “uses” relationships are important, how do we capture them in our

bundle metadata?

THE “USES” DIRECTIVE

A directive attached to exported packages whose value is a comma-delimited list of

packages exposed by the associated exported package.

The manifest syntax sidebar in section [ref] introduced the concept of a directive, but this

is our first example of actually using one. Directives are additional metadata to alter how the

framework interprets the metadata to which the directives are attached. The syntax for

capturing directives is quite similar arbitrary attributes. For example, the following modified

metadata for our HTTP service example shows how to use the “uses” directive:
Export-Package: org.osgi.service.http;
 uses:="javax.servlet"; version="1.0.0"
Import-Package: javax.servlet; version="2.3.0"

Notice that directives use the “:=” assignment syntax, but the ordering of the directives

and the attributes is not important. In this particular example, we indicate

org.osgi.service.http uses javax.servlet. How exactly does the framework use

this information? Uses relationships among exported packages act like a grouping constraint

for the packages. In this example, the framework ensures importers of

org.osgi.service.http also use the same javax.servlet used by the HTTP service

implementation.

This captures the previously missing intra-bundle package dependency. In this specific

case, the “uses” relationship is on an imported package, but it can also be on exported

packages. These sorts of “uses” relationships constrain which choices the framework can

make when resolving dependencies, which is why they are also referred to as “uses”

constraints. Abstractly, if package foo uses package bar, then importers of foo are

constrained to the same bar if they use bar at all. Figure 2.25 depicts how this would have

impacted our original incremental dependency resolutions.

For the incremental case, the framework can now detect inconsistencies in the class

spaces and resolution will fail when we try to use the client bundle. Early detection is better

than errors at execution time, since it alerts us to inconsistencies in our deployed set of

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.25 Uses constraints detect class space inconsistencies, so the framework
can determine it is not possible to resolve the HTTP client bundle

HTTP
Service

export
org.osgi.service.http;
uses:=”javax.servlet”

import
javax.servlet
version=”2.3.0”

export
javax.servlet

version=”2.3.0”

HTTP
Client

import
javax.servlet

version=”2.4.0”

export
javax.servlet
version=”2.4.0”

import
org.osgi.service.http

Tomcat Servlet
API

http://www.manning-sandbox.com/forum.jspa?forumID=507

bundles. In the next chapter, we will learn about how we can cause the framework to re-

resolve the bundle dependencies to remedy this situation.

We can further modify our example, to illustrate how “uses” constraints help find proper

dependency resolutions. Assume the HTTP service bundle imports precisely version 2.3.0 of

javax.servlet, but our client imports version 2.3.0 or greater. Typically, the framework

will try to select the highest version of a package to resolve a dependency, but due to the

“uses” constraint the framework will end up selecting a lower version instead, as depicted in

Figure 2.26.

If we look at the class space of the HTTP client, we can see how the framework ends up

with this solution. The HTTP client's class space will contain both javax.servlet and

org.osgi.service.http, since it imports these packages. From the perspective of the

HTTP client bundle, it can use either version 2.4.0 or 2.3.0 of javax.servlet, but the

f r a m e w o r k o n l y h a s o n e c h o i c e f o r org.osgi.service.http. S ince

org.osgi.servicee.http from the HTTP service bundle uses javax.servlet, the

framework must choose the same javax.servlet package for any clients. Since the HTTP

service bundle can only use version 2.3.0 of javax.servlet, this eliminates the Tomcat

bundle as a possibility for the client bundle. The end result is a consistent class space, where

a lower version of a needed package was correctly selected, even though a higher version

was available.

USING USES

Let's finish up our discussion of “uses” constraints by touching on some final points. First,

“uses” constraints are transitive, which means if a given bundle exports package foo which

uses imported package bar and the selected exporter of bar uses package baz, then the

associated class space for a bundle importing foo is constrained to have the same providers

for both bar and baz if they are used at all. Also, even though “uses” constraints are

important to capture, we don't want to just create blanket “uses” constraints, since it overly

constrains dependency resolution. The framework has more leeway when resolving

dependency on packages not listed in “uses” constraints, which is necessary to support side-

by-side versions. For example, in larger applications, it is not uncommon for independently

developed subsystems to use different versions of the same XML parser. If you specify “uses”

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.26 Uses constraints guide dependency resolution

HTTP
Service

import
javax.servlet
version=”[2.3.0,2.3.0]”

export
javax.servlet

version=”2.3.0”

HTTP
Client

import
javax.servlet

version=”2.3.0”

export
javax.servlet
version=”2.4.0”

Tomcat
Servlet

API

export
org.osgi.service.http;
uses:=”javax.servlet”

import
org.osgi.service.http

http://www.manning-sandbox.com/forum.jspa?forumID=507

constraints too broadly, then this would not be possible. Accurate “uses” constraints are

important, but luckily tools exist for generating them for exported packages.

Ok! We made it through the most difficult part and survived. Don't worry if you didn't

understand every minute detail, since some of it may make more sense after you have more

experience creating and using bundles. Let's turn our attention back to the paint program to

review why we did all of this in the first place.

2.8 Reviewing the benefits of the modular paint program
Even though the amount of work to create the modular version of our paint program was not

great, it was still more effort than if we left the paint program as it was. Why exactly did we

create this modular version? Table 2.4 lists some of the benefits.

Table 2.4 Benefits of modularization in the paint program

Benefit Description

Logical boundary enforcement We can keep our implementation details private, since we are only

exposing what we want to expose in the org.foo.shape public

API package.

Reuse improvement Our code is more reusable since we explicitly declare what each

bundle depends on via Import-Package statements; this means

we know what we need when using the code in different projects.

Configuration verification We no longer have to guess if we have deployed our application

properly, because OSGi verifies whether all needed pieces are

present when launching the application.

Version verification Similar to configuration verification, OSGi also verifies whether we

have the correct versions of all our application pieces when

launching the application.

Configuration flexibility We are more easily able to tailor our application to different

scenarios by creating new configurations; think of this as paint

program a la carte.

Some of these benefits are more obvious than the others. Others we can demonstrate

quite easily. For example, assume we forgot to deploy the shape API bundle in our launcher

which we can simulate by deleting the bundles/shape-2.0.jar before launching the paint

program as we did in section [ref]. You will see that it throws an exception like this:
org.osgi.framework.BundleException: Unresolved constraint in bundle 1:
package; (&(package=org.foo.shape)(version>=2.0.0)(!(version>=3.0.0)))

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

The exact syntax of this message will become familiar to you when you read chapter 4,

but ignoring the syntax it tells you the application is missing the org.foo.shape package,

which is provided by the API bundle. Due to the on-demand nature of Java class loading,

such errors are typically only discovered during application execution when the missing

classes are used. With OSGi we are able to discover such issues with missing bundles or

incorrect versions immediately. Besides detecting errors, let's look at how OSGi modularity

helps us create different configurations of our application.

Creating a different configuration of our paint program is as simple as creating a new

static main() method for our launcher to invoke. Currently, we are using the original static

main() method provided by PaintFrame. In truth, it is not very modular to have our static

main() on our implementation class; it is better to create a separate class so we don't need

to recompile our implementation classes when we want to change the application's

configuration. Listing 2.2 shows the existing static main() method from the PaintFrame

class.

Listing 2.2 Existing PaintFrame.main() method implementation

public class PaintFrame extends JFrame
 implements MouseListener, MouseMotionListener {
 ...
 public static void main(String[] args) throws Exception {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 PaintFrame frame = new PaintFrame(); #1
 frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
 frame.addWindowListener(new WindowAdapter() { #2
 public void windowClosing(WindowEvent evt) {
 System.exit(0);
 }
 });
 frame.addShape(new Circle()); #3
 frame.addShape(new Square());
 frame.addShape(new Triangle());
 frame.setVisible(true); #4
 }
 });
 }

The existing static main() is quite simple. At (#1), we create a PaintFrame instance and

at (#2) we add a listener to cause the VM to exit when PaintFrame window is closed.

Starting at (#3) we inject the various shape implementations into the paint frame and at

(#4) we make the application window visible. The important aspect from the point of view of

modularity is at (#3) where the shape implementations are injected into the paint frame.

Since the configuration decision of which shapes to inject is hardcoded into the method, if we

want to create a different configuration, then we must recompile the implementation bundle.

For example, assume we want to run our paint program on a small device only capable of

supporting a single shape. To do so, we could modify PaintFrame.main() to only inject a

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

single shape, but this would not be sufficient. We would also need to modify our metadata

for the bundle so it would no longer depend on the other shapes, since they are no longer

needed. Of course, after making these changes we have now lost the first configuration.

These types of issues are arguments why the static main() method should be in a separate

bundle.

So let's correct this situation in our current implementation. First we will delete the

PaintFrame.main() method and modify its bundle metadata as follows:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.paint
Bundle-Version: 2.0.0
Bundle-Name: Simple Paint Program
Import-Package: javax.swing, org.foo.shape; version="2.0.0"
Export-Package: org.foo.paint; version="2.0.0"

The main paint program bundle no longer has any dependencies on the various shape

implementations, but it now needs to export the package containing the paint frame. We can

take the existing static main() method body and put it inside a new class, called

org.foo.fullpaint.FullPaint, with the following bundle metadata:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.fullpaint
Bundle-Version: 1.0.0
Bundle-Name: Full Paint Program Configuration
Import-Package: javax.swing, org.foo.shape; org.foo.paint;
 org.foo.shape.circle; org.foo.shape.square; org.foo.shape.triangle;
 version="2.0.0"
Main-Class: org.foo.fullpaint.FullPaint

To launch this full version of our paint program, we simply use our bundle launcher to

deploy all of the associated bundles including this FullPaint bundle. Likewise, we could

create a different bundle containing the org.foo.smallpaint.SmallPaint class in

Listing 2.3 to launch a small configuration of our paint program containing only the circle

shape.

Listing 2.3 New launcher for “smaller” paint program configuration

package org.foo.smallpaint;

public class SmallPaint {
 public static void main(String[] args) throws Exception {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 PaintFrame frame = new PaintFrame();
 frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent evt) {
 System.exit(0);
 }
 });
 frame.addShape(new Circle()); #A
 frame.setVisible(true);
 }

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 });
 }

#A Only the circle shape implementation is injected

The metadata for the bundle containing our small paint program configuration is:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.smallpaint
Bundle-Version: 1.0.0
Bundle-Name: Reduced Paint Program Configuration
Import-Package: javax.swing, org.foo.shape; org.foo.paint;
 org.foo.shape.circle; version="2.0.0"
Main-Class: org.foo.smallpaint.SmallPaint

This small configuration only depends on Swing, the public API, the paint program

implementation, and the circle implementation. When launching the full configuration, all

shape implementations are required, but for the small configuration only the circle

implementation is required. Now we can deploy the appropriate configuration of our

application based on the target device and have OSGi verify the correctness of it all. Pretty

sweet. For completeness we've added a quick sketch of the before and after view of the paint

program as shown in figure 2.27.

2.9 Summary
We've covered a lot of ground in this chapter, some of the highlights include:

 Modularity is a form of separation of concerns which provides both logical and physical
encapsulation of classes.

 Modularity is desirable since it allows us to break our applications into logically
independent pieces that can be independently changed and reasoned about.

 A bundle is the name for a module in OSGi, which is a JAR file containing code,
resources, and modularity metadata.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 2.27 Modular and non modular versions of the paint
program

Non Modular
Paint Program

Shape API

PaintFrame Square

Circle

Triangle

FullPaint

SmallPaint

http://www.manning-sandbox.com/forum.jspa?forumID=507

 Modularity metadata details human readable information, bundle identification, and
code visibility.

 Bundle code visibility is composed of an internal class path, exported packages, and
imported packages.

 The OSGi framework uses the metadata about imported and exported packages to
automatically resolve bundle dependencies and ensure type consistency before a
bundle can be used.

 Imported and exported packages capture inter-bundle package dependencies, but
“uses” constraints are necessary to capture intra-bundle package dependencies to
ensure complete type consistency.

From here, we will move onto the lifecycle layer, where we enter execution time aspects

of OSGi modularity. While this chapter was all about describing our bundles to the OSGi

framework, the lifecyle layer is all about actually using our bundles and the facilities provided

by the OSGi framework at execution time.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

3
Learning Lifecycle

In the last chapter we looked at the OSGi modularity layer and introduced you to bundles; a

bundle is OSGi terminology for a module, which is a JAR file with the extra modularity

metadata. We use bundles to define both the logical (i.e., code encapsulation and

dependencies) and physical (i.e., deployable units) modularity of our applications.

The OSGi modularity layer goes to great lengths to ensure class loading happens in a

consistent and predictable way. However, to avoid putting the cart before the horse, in the

last chapter we had to gloss over the details of how we actually installed bundles into an

OSGi framework. No longer, in this chapter we will look at the next layer of the OSGi stack,

the lifecycle layer.

As we saw in Chapter 2, to use a bundle we install it into a running instance of the OSGi

framework. So, creating a bundle is the first half of leveraging OSGi's modularity features,

the second half is using the OSGi framework as a runtime to manage and execute bundles.

The lifecycle layer is quite unique in allowing you to create externally (and remotely)

managed applications or completely self-managed applications (or any combination of the

two). It also introduces dynamism that is not normally part of an application.

This chapter will familiarize you with the features of the lifecycle layer and explain how to

effectively use them. In the next section, we take a closer look at what lifecycle management

is and why you should care about it, followed by the definition of the OSGi bundle lifecycle.

In the subsequent section, we learn about the API you use for managing the lifecycle of your

bundles. Throughout this chapter we will bring all the points back home via examples of a

simple OSGi shell and a lifecycle-aware version of our paint program.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

3.1 Introducing lifecycle management
The OSGi lifecycle layer provides a management API and a well-defined lifecycle for bundles

in an OSGi runtime. The lifecycle layer serves two different purposes:

 External to your application, the lifecycle layer precisely defines the bundle lifecycle
operations. These lifecycle operations allow you to manage and evolve your
application by dynamically changing the composition of bundles inside a running
framework.

 Internal to your application, the lifecycle layer defines how your bundles gain access
to their execution context, which provides them with a way to interact with the OSGi
framework and the facilities it provides at execution time.

But let's take a step back. It's all very well stating what the OSGi lifecycle layer does, but

this won't necessarily convince you of it's worth. Instead, let's give you quick example of how

it can improve your applications with a real-world scenario.

3.1.1 What is lifecycle management

Imagine you have a business application able to report management events via JMX. Do you

always want to enable or even install the JMX layer? You could imagine running in a light-

weight configuration and only enabling the JMX notifications on demand? The lifecycle layer

allows you to externally install, start, update, stop and uninstall different bundles to

customize your application's configuration at execution time.

Further, imagine if there is some critical failure event within your application that must

trigger the JMX layer to send out a notification whether or not the administrator had

previously enabled or installed it. The lifecycle layer also provides programmatic access to

bundles so they can internally modify their application's configuration at execution time.

Generally speaking, programs (or parts of a program) are subject to some sort of lifecycle

whether this is explicit or not. There are typically four distinct phases of software lifecycle as

shown in Figure 3.1.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 3.1 The four phases of software lifecycle,
where an application is installed so we can
execute it, later it be updated to a newer version,
or utlimately removed if it is no longer needed

Installation

Execution

Update

Removal Application

http://www.manning-sandbox.com/forum.jspa?forumID=507

If you are creating an application, think about the typical lifecycle of the application as a

whole. First you need to install it. Assuming all its dependencies are satisfied, you can

execute it, which allows it to start acquiring resources. When the application is no longer

needed you stop the application, which allows it to release any resources and perhaps persist

any important state. Over time you might want to update the application to a newer version.

Ultimately, the application may be removed because it is no longer needed. For non-modular

applications, the lifecycle operates on the application as a whole, but as we will see for

modular applications, fine-grained lifecycle management is possible for individual pieces of

the application.

Let's review some of the more popular models for creating applications in Java and how

they manage the software lifecycle.

Java lifecycles

Standard Java For the purposes of this discussion, we will equate an application in standard Java to

a JAR file containing the Main-Class header in its manifest, which allows it to be

easily executed. In standard Java development, the lifecycle of an application is very

simple. Such a JAR-based Java application is installed when downloaded. It is

executed when the user launches a JVM process, typically by double-clicking on it.

The application is stopped when the program terminates. Updating is usually done by

replacing the JAR with a newer version. Removal is achieved by deleting the jar from

the filesystem.

Servlet In servlet development, the lifecycle of the web application is managed by the servlet

container. The application is installed via a container specific process, sometimes this

involves dropping a WAR file containing the application in a certain directory in the file

system or uploading a WAR file via a web management interface. The servlet

container calls various lifecycle API methods on the sub-components of the WAR file

such as Servlet.init() and Servlet.destroy() during the execution

phase of the application's lifecycle. In order to update the application a completely

new WAR file is generated. The existing WAR must be stopped and the new WAR file

started in it's place. The application is removed by a container specific process, again

sometimes removing the WAR from the file system or interacting with a management

interface.

Netbeans No idea of process – does anyone else know

Maven Some idea of process but others are probably best to write

Technology X

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

As you can see there are many different lifecycle processes in use in Java today. In

traditional Java applications, the lifecycle is largely managed by the platform-specific

mechanism of the underlying operating system via installers and double-clicking on desktop

icons. For modular development approaches, such as Servlets, Java EE, or Netbeans, each

has it's own specific mechanism of handling the lifecycle of their own components. This leads

us to the question of why do we need lifecycle management at all?

3.1.2 Why lifecycle management?

Cast your mind back to our earlier discussion about why you should modularize your

application code into separate bundles. We talked about the benefits of separating different

concerns into separate bundles and avoiding tight coupling among them. The OSGi module

layer provides you with the necessary means to do this at the class level, but it doesn't

address when a particular set of classes or objects are needed in an application.

An explicit lifecycle API lets the providing application take care of how to configure,

initialize, and maintain a piece of code that is installed so it can decide how it should operate

at execution time. For example, if a database driver is in use, should it start any threads or

initialize any cache tables to improve performance? If it does any of these things when are

these resources released? Do they exist for the lifetime of the application as a whole and if

not how are they removed? Since the OSGi specification provides an explicit lifecycle API,

this allows you to take any bundle providing the functionality you need and let it worry about

how to manage its internal functions. In essence: compose versus control.

By allowing you to architect your application such that parts of it may come and go at any

point in time greatly increases your flexibility. You can easily manage installation, update,

and removal of an application and its required modules. You can configure or tailor

applications to suit specific needs, breaking the monolithic approach of standard

development approaches. Instead of “you get what you get”, wouldn't it be great if you could

offer “you get what you need”? Hopefully, this discussion piqued your interest. Now let's

focus specifically on defining the OSGi bundle lifecycle and the management API associated

with it.

3.2 OSGi bundle lifecycle
The OSGi lifecycle layer is how we use our bundles; it is where the rubber meets the road.

The module metadata from the previous chapter is all well and good, but creating bundles in

and of itself is only useful if we actually use them. We need to interact with the OSGi lifecycle

layer in order to use our bundles. Unlike the modularity layer which relies on metadata, the

lifecycle layer relies on API. Since introducing API can be a boring endeavor (JavaDoc

anyone?), we move in a top-down fashion and show what the lifecycle layer API allows us to

do using an example.

It is important to note that the OSGi core framework does not mandate any particular

mechanism of interacting with the lifecycle API (e.g., command line, GUI, or XML

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

configuration file), the core is purely a Java API. In fact, this turns out to be extremely

powerful as it makes it possible to design as many different ways of managing the OSGi

framework as you can think of; in the end, we are only limited by our imagination as

developers.

Since there is no standard way for users to interact with the lifecycle API, we could use a

framework-specific mechanism. However, doing so would actually be doing you, the reader, a

disservice since it is a great opportunity for learning. Instead of reusing someone else's work

in this chapter, we lead you through some very basic steps to develop our very own

command-line interface for interacting with the OSGi framework. This gives us the perfect

tool, along side the paint program, to explore the rich capabilities provided by the OSGi

lifecycle API.

SHELLS, SHELLS, EVERYWHERE

For readers with some familiarity using OSGi frameworks, you are likely aware that most

OSGi framework implementations (e.g., Apache Felix, Eclipse Equinox, Knopflerfish) have

their own shells for interacting with a running framework. The OSGi specification does not

define a standard shell (although there has been some work toward this goal recently),

but shells need not be tied to a specific framework and can be implemented as bundles,

just like we are going to do here.

3.2.1 Introducing lifecycle to the paint program

Enough with the talk, let's see the lifecycle API in action by kicking off our shell application

and using it to install the paint program. To do this, type the following into your operating

system console (windows users substitute \ for /):
cd chapter03/shell-example/
java -jar launcher.jar bundles
Bundle: org.foo.shell started with bundle id 1 - listening on port 7070

Our shell is created as a bundle which has, upon starting, begun listening for user input

on a telnet socket. This allows clients to connect and perform install, start, stop, update, and

uninstall actions on bundles. It also provides some basic diagnostic facilities. Lets connect to

our newly launched framework and use the telnet console to install our paint example:
telnet localhost 7070
-> install file:../paint-example/bundles/paint-3.0.jar
Bundle: 3
-> install file:../paint-example/bundles/shape-3.0.jar
Bundle: 4
-> start 3
-> install file:../paint-example/bundles/circle-3.0.jar
Bundle: 5
-> install file:../paint-example/bundles/square-3.0.jar
Bundle: 6
-> start 5
-> start 6
-> install file:../paint-example/bundles/triangle-3.0.jar

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Bundle: 7
-> start 7
-> stop 5

From Figure 3.2, you can see in step (1) we first install the shape API bundle, then we

install and start the paint program bundle. This causes an empty paint frame to appear with

no available shapes, which makes sense since we haven't installed any other bundles yet. In

step (2) we install and start the circle and square bundles. As if by magic, the two shapes

dynamically appear in the paint frame's toolbar and are available for drawing. In step (3) we

install and start the triangle bundle, then we draw some shapes on the paint canvas. So what

happens if we stop a bundle? In step (4) we stop the circle bundle, which we can see is

replaced in the canvas with the placeholder icon (i.e., the construction worker) from

DefaultShape.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 3.2 Execution-time evolution – Dynamically add and remove shapes from the paint program as if by
magic.

-> install file:org.foo.shape-3.0.jar
Bundle: 2
-> install file:org.foo.paint-3.0.jar
Bundle: 3
-> start 3

-> install file:org.foo.shape.circle-
3.0.jar
Bundle: 4
-> install file:org.foo.shape.square-
3.0.jar
Bundle: 5
-> start 4
-> start 5

-> install file:org.foo.shape.triangle-3.0.jar
Bundle: 6
-> start 6

-> stop 4

1)

2)

3)

4)

http://www.manning-sandbox.com/forum.jspa?forumID=507

This shows you in practice how the lifecycle API can be used to build a highly dynamic

application, but what's actually going on in this example? To understand this, let's take a

top-down approach, using our shell and paint example for context:

 First, in section 3.2.2 we will explain the framework's role in the application's lifecycle.

 Second, in section 3.2.3 we will look at the changes we need to make to the bundle
manifest to hook our bundles into the OSGi framework.

 Third, in section 3.2.4 we will investigate the key API interfaces used by the OSGi
lifecycle; BundleActivator, BundleContext and Bundle.

 Finally, in section 3.2.5 we will wrap up our top-down approach with a review of the
OSGi lifecycle state diagram.

Let's get started.

3.2.2 The OSGi framework's role in lifecycle

In standard Java programming, you use your JAR files by placing them on the class path.

This is not the approach for using bundles. A bundle can only be used when it is installed into

a running instance of the OSGi framework. Conceptually, you can think of installing a bundle

into the framework as being similar to putting a JAR file on the class path in standard Java

programming. In other words, installing a bundle makes it available for use, just like putting

a JAR on the class path makes it available for use.

This simplified view does hide some important differences from the standard class path as

you can see in figure Figure 3.1. One big difference is the OSGi framework supports full

lifecycle management of bundle JAR files, including install, resolve, start, stop, update, and

uninstall. At this point, we have only really touched upon installing bundles and resolving

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 3.1: Classpath v.s. OSGi framework with full lifecycle management.

Installation

Execution

Update

Removal Bundle

Installation

Execution

Update

Removal Bundle

Installation

Execution

Update

Removal Bundle

OSGi Framework

Classpath

Jar Jar Jar

http://www.manning-sandbox.com/forum.jspa?forumID=507

their dependencies. The remainder of this chapter will fully explain all of the lifecycle

activities and how they are related to each other. For example, we've already mentioned the

framework doesn't allow an installed bundle to be used, until its dependencies (i.e.,

Import-Package declarations) are satisfied.

Another huge difference from the standard class path is inherent dynamism. The OSGi

framework supports the full bundle lifecycle at execution time. This is similar to modifying

what's on the class path dynamically.

As part of the lifecycle management, the framework maintains a persistent cache of

installed bundles. This means the next time you start the framework, any previously installed

bundles are automatically reloaded from the bundle cache and the original JAR files are no

longer necessary. Perhaps we can characterize the framework as a fully manageable,

dynamic, and persistent class path. Sounds cool, huh? Let's move on to discussing how we

have to modify our bundle metadata to allow it to hook into the lifecycle layer API.

3.2.3 The bundle activator manifest entry

So now we know you have a good idea of what the framework is doing when we install our

bundles, but how do we tell the framework how to kickstart our bundles at execution time?

The answer, as with the rest of the modularity information, is via the bundle metadata. Let's

look at the JAR file manifest describing the shell bundle we will create in Listing 3.1:

Listing 3.1 Shell bundle manifest headers

Manifest-Version: 1.0
Bundle-ManifestVersion: 2 #1
Bundle-SymbolicName: org.foo.shell #1
Bundle-Version: 1.0 #1
Bundle-Activator: org.foo.shell.Activator #2
Import-Package: org.osgi.framework;version="[1.3,2.0)",org.osgi.servic #3
 e.packageadmin;version="[1.2,2.0)",org.osgi.service.startlevel;versio
 n="[1.1,2.0)"
Bundle-Name: remote_shell #4
Bundle-DocURL: http://code.google.com/p/osgi-in-action/ #4

You should already be familiar with most of these headers from the last chapter, but to

recap most of these entries are related to the class-level modularity of the bundle, i.e.:

 (#1) defines the bundles identity,

 (#3) specifies the packages on which this bundle depends, and

 (#4) declares additional human-readable information.

The only new header is Bundle-Activator at (#2). This is our first sighting of the OSGi

lifecycle API in action! The Bundle-Activator header specifies the name of a class on the

bundles class path implementing the org.osgi.framework.BundleActivator interface. This

interface provides our bundle with a hook into the lifecycle layer and the ability to customize

what happens when it is “started” or “stopped”.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

IS AN ACTIVATOR NECESSARY?

Keep in mind, not all bundles need an activator. An activator is only necessary if you are

creating a bundle wishing to specifically interact with OSGi API or needing to perform

some custom initialization/deinitialization actions. If you are creating a simple library

bundle, then it is not necessary to give it an activator since it is possible to share classes

without one. This doesn't mean your bundles won't be able to do anything. In fact,

bundles do not need to be started at all to do useful things. Just remember the paint

program we created in the last chapter; none of our bundles had activators nor did any of

them need to be started, but we still created a fully functioning application.

In order to understand what is going on in our shell example we now have to introduce

you to three interfaces (BundleActivator, BundleContext, and Bundle), which are the

heart and soul of the lifecycle layer API.

3.2.4 Introducing the lifecycle API

The last section described how our shell bundle declares a BundleActivator to hook into

the framework at execution time. We can now look into the details of this interface and the

other lifecycle API made available from it to our bundle. This is our bundle's hook into the

world of OSGi!

BUNDLE ACTIVATOR

As we have seen, adding an activator to our bundle is straightforward, since we only need to

create a class implementing the BundleActivator interface, which looks like this:
public interface BundleActivator {
 public void start(BundleContext context) throws Exception;
 public void stop(BundleContext context) throws Exception;
}

For our shell example, the activator allows it to become lifecycle aware and gain access to

framework facilities. Listing 3.2 shows the activator for our shell bundle.

Listing 3.2 Simple shell bundle activator

package org.foo.shell;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator { #1
 private volatile Binding m_binding; #2

 public void start(BundleContext context) { #3
 int port = getPort(context); #4
 int max = getMaxConnections(context); #5
 m_binding = getTelnetBinding(context, port, max); #6
 m_binding.start(); #7
 System.out.println("Bundle " + #8
 context.getBundle().getSymbolicName() +

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 " started with bundle id" +
 context.getBundle().getBundleId() +
 " listening on port " + port);
 }

 public void stop(BundleContext context) { #9
 m_binding.stop(); #10
 }

 ...
}
...

public interface Binding { #11
 public void start(); #12
 public void stop() throws InterruptedException; #13
}

You can see at (#1) our bundle activator implements the OSGi BundleActivator

interface, with the start() method implemented at (#3) and stop() at (#9). When our

bundle is installed and started, the framework constructs an instance of this activator class

and invokes the start() method. When the bundle is stopped, the framework invokes the

stop() method.

The start() method is the actual starting point for your bundle, sort of like the static

main() method in standard Java. After it returns, your bundle is expected to function until

t h e stop() method is invoked at some later point. Typically, a bundle performs any

necessary initialization in its start() method including (but not limited to):

 Opening network sockets,

 Initializing cache tables,

 Registering event callback interfaces, or

 Starting threads.

The stop() method should undo anything done by the start() method. Here we

should mention a couple of technical, but potentially important details about the handling of

the BundleActivator instance.

 First, the activator instance on which start() is called, will be the same instance on
which stop() is called.

 Second, after stop() is called, the activator instance is discarded and will not be
used again.

 If the bundle is subsequently restarted after being stopped, a new activator instance
will be created and the start() and stop() methods will be invoked on it as
appropriate.

As you can see, the rest of the activator isn't very complicated. At (#4) we get the port

on which the bundle will listen for connection requests and at (#5) we get the number of

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

allowed concurrent connections. We create a TelnetBinding at (#6), which will do the work

of listening on a socket for user input and process it; the details of creating the telnet

binding are omitted here for reasons of simplicity and brevity. The next step is to start the

binding, which creates a new Thread to run our shell. How this happens is left to the

binding, which we start at (#7).

The point about the binding starting its own thread is important because the activator

methods shouldn't do much work. This is best practice as with most callback patterns, which

are supposed to return quickly, allowing the framework to carry on managing other bundles.

However it is also important to point out that the OSGi specification does not mandate you

start a new thread if your applications startup doesn't warrant it – the ball is in your court so

to speak.

THREADING

OSGi is designed around the normal Java thread abstraction. Unlike other, more

heavyweight frameworks, it assumes you do your own thread management. You gain a

lot of freedom by this, but at the same time you have to make sure your programs are

correctly synchronized and thread safe. In this simple example, nothing special is needed,

but, in general, it is likely stop() will be called on a different thread than start() (for

this reason we make the member at (#2) volatile). The OSGi libraries are thread safe

and callbacks are normally done in a way to give you some guarantees. For example, in

the case of the bundle activator, start() and stop() are guaranteed to be called in

order and not concurrently, but they still might be executed by different threads. Your

code must take this into account as far as other threads and visibility of member

variables are concerned.

For the activator stop() method at (#9), all we do is tell the binding to stop listening to

user input and cease to execute. We should make sure it really does stop by waiting until its

thread is finished; the binding method waits for its thread to stop. Sometimes you might

have special cases for certain situations because, as you will see later on, it might be the

shell thread itself calling the stop() method, which would cause the bundle to freeze. We'll

cover these and other advanced use cases in section [ref]. In general, if you use threads in

your bundles, do so in such a way that all threads are stopped when the stop() method

returns.

Now we have seen how we can handle starting and stopping our application. But what if

we want to interact with the OSGi framework itself? We will now switch our focus to the

BundleContext object passed into the start() and stop() methods of our activator at

(#3) and (#9); this allows the bundle to interact with the framework and manage other

bundles.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

BUNDLE CONTEXT

As we learned in the previous section, the framework calls the start() method of a

bundle's activator when it is started and the stop() method when it is stopped. Both

methods receive an instance of the BundleContext interface. The methods of the

BundleContext interface can be roughly divided into two categories.

 The first category is related to deployment and lifecycle management, which we will
focus on in this chapter.

 The second category is related to bundle interaction via services, which will be
discussed in the next chapter.

We are interested in the first category of methods, since they give us the ability to install

and manage the lifecycle of other bundles, access information about the framework, and

retrieve basic configuration properties. Listing 3.3 captures these methods from

BundleContext.

Listing 3.3 BundleContext methods related to lifecycle management

public interface BundleContext {
 ...
 String getProperty(String key);
 Bundle getBundle();
 Bundle installBundle(String location, InputStream input)
 throws BundleException;
 Bundle installBundle(String location) throws BundleException;
 Bundle getBundle(long id);
 Bundle[] getBundles();
 void addBundleListener(BundleListener listener);
 void removeBundleListener(BundleListener listener);
 void addFrameworkListener(FrameworkListener listener);
 void removeFrameworkListener(FrameworkListener listener);
 ...
}

We will cover most of these methods in this chapter. The second category of

BundleContext methods related to services will be covered in the next chapter.

UNIQUE CONTEXT

One important aspect of the bundle context object is it represents the unique
execution context of the bundle. Since it represents the execution context, it is only
valid while the associated bundle is active, which is explicitly from the moment the
activator start() method is invoked until the activator stop() method completes
and the entire time in between. Most bundle context methods throw an exception if
used when the associated bundle is not active. It is a unique execution context since
each activated bundle receives its own context object. The framework uses this
context for security and resource allocation purposes for each individual bundle.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Given this capability-like nature of BundleContext objects, they should be treated
as sensitive or private objects and not passed freely among bundles.

Our shell activator in Listing 3.2 uses the bundle context to get its configuration property

values at (#4) and (#5). It also passes the context into the telnet binding at (#6), which

client connections will use to interact with the running framework. Lastly, it uses the context

at (#8) to obtain our bundle's Bundle object to access our identification information. We will

crack open the details of to actually use these interfaces when we get to section [ref], but for

now we will continue our top-down description by looking at the final interface, namely

org.osgi.framework.Bundle.

BUNDLE

For each installed bundle, the framework creates a Bundle object to logically represent it.

The Bundle interface defines the API to manage an installed bundle's lifecycle; a portion of

the interface is presented in Listing 3.4.

Listing 3.4 Bundle interface methods related to lifecycle management

public interface Bundle {
 ...
 BundleContext getBundleContext();
 long getBundleId();
 Dictionary getHeaders();
 Dictionary getHeaders(String locale);
 String getLocation();
 int getState();
 String getSymbolicName();
 Version getVersion();
 void start(int options) throws BundleException;
 void start() throws BundleException;
 void stop(int options) throws BundleException;
 void stop() throws BundleException;
 void update(InputStream input) throws BundleException;
 void update() throws BundleException;
 void uninstall() throws BundleException;
 ...
}

As we cover most of these methods, we will see that most lifecycle operations are method

on the Bundle object. Unlike BundleContext objects, Bundle objects do not represent

sensitive capabilities, so you can freely pass them around among bundles, although this is

rarely necessary.

Each installed bundle is uniquely identified in the framework by its Bundle object. From

the Bundle object, you can also access two additional forms of bundle identification: the

bundle identifier and the bundle location. You might be thinking, “Didn't we talk about bundle

identification metadata back in chapter 2?” Yes, we did, but don't get confused. The

identification metadata described in section [ref] statically identified the bundle's JAR file and

its contents. The bundle identifier and bundle location are for execution-time identification,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

meaning they are associated with the Bundle object. You might be wondering why we need

two different execution-time identifiers?

The main difference between the two is who defines the identifier. The bundle identifier is

a Java language long value assigned by the framework in ascending order as bundles are

installed. The bundle location is a String value assigned by the installer of the bundle.

BUNDLE LOCATION INTERPRETATION

The bundle location does have a unique characteristic since most OSGi framework

implementations interpret it as a URL pointing to the bundle JAR file. The framework then

uses this URL to download the contents of the bundle JAR file during bundle installation.

The specification does not actually define the location string as an URL, nor is it actually

required since you can install bundles from an input stream as well.

Both the bundle identifier and location values uniquely identify the Bundle object and

persist across framework executions when the installed bundles are reloaded from the

framework's cache.

You still might be thinking, “I am not convinced all of these identification mechanisms are

necessary. Couldn't we just find the Bundle object using the bundle's symbolic name and

version from chapter 2?” In reality, yes, we could because the framework only allows one

bundle with a given symbolic name and version to be installed at a time. This means the

bundle symbolic name and version pair also acts as an execution-time identifier.

Why so many forms of identification?

History plays a role here. As mentioned in chapter 2, the notion of using bundle symbolic

name and version to uniquely identify a bundle did not exist in versions of the

specification prior to R4. Therefore, prior to R4 it made sense to have internally and

externally assigned identifiers. Now it makes less sense, since the bundle symbolic name

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Ch3Figure 3.3: Difference between the bundle identifiers.

Installed Bundles

Framework

Install file:bundle.jar

Create Bundle
Representation
With Bundle-ID

ID=2

Identity
defined by
user

Identity
defined by
framework

http://www.manning-sandbox.com/forum.jspa?forumID=507

and version pair are externally defined and explicitly recognized internally by the

framework.

There is still a role for the bundle identifier since in some cases the framework treats a

lower identifier value as being better than a higher one when deciding between two

otherwise equal alternatives, such as when there are two bundles exporting the same

version of a given package. The real loser here is the bundle location, which really doesn't

serve a very useful purpose other than potentially giving the initial URL of the bundle JAR

file.

While one instance of Bundle exists for each bundle installed into the framework, at

execution time there is also a special instance of Bundle to represent the framework itself.

This special bundle is called the system bundle and, although the API is the same, it merits

its own discussion.

THE SYSTEM BUNDLE

At execution time the framework is represented as a bundle with an identifier of zero, called

the system bundle. You do not actually install the system bundle, it always exists while the

framework is running.

The system bundle follows the same lifecycle as normal bundles, so it can be manipulated

with the same operations as normal bundles. Lifecycle operations performed on the system

bundle have special meanings when compared to normal bundles, however. One example of

the special meaning is evident when you stop the system bundle. Intuitively, stopping the

system bundle shuts down the framework in a well-behaved manner. It will stop all other

bundles first and will then shut itself down completely.

With that, we conclude our high-level look at the major API players in the lifecycle layer

(BundleActivator, BundleContext, and Bundle). We now know:

 BundleActivator is the entry point for our application, much like static main() in a
standard Java application,

 BundleContext provides our applications with the methods to manipulate the OSGi
framework at execution time, and

 Bundle represents an installed bundle in the framework allowing state manipulations
to be performed on it.

With this knowledge in hand, we will now complete our top-down approach by defining

the overall bundle lifecycle state diagram and see how these interfaces relate to it.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

3.2.5 Lifecycle state diagram

Up until now we have been holding off on explicitly describing the complete bundle lifecycle

in favor of getting a high-level view of the API comprising the lifecycle layer. This allowed us

to quickly get our hands a little dirty. Now we can better understand how these APIs relate to

the complete bundle lifecycle state diagram, which is depicted in Figure 3.4.

The entry point of the bundle lifecycle is the BundleContext.installBundle() operation,

which creates a bundle in the INSTALLED state. From the figure, you can see there is no

direct path from INSTALLED to STARTING. This is because the framework ensures all

dependencies of a bundle are satisfied before it can be used (i.e., no classes can be loaded

from it). The transition from the INSTALLED to RESOLVED state represents this guarantee.

The framework will not allow a bundle to transition to RESOLVED unless all its dependencies

are satisfied. If it cannot transition to RESOLVED, then by definition it cannot transition to

STARTING. Often the transition to RESOLVED happens implicitly when the bundle is started

or another bundle tries to load a class from it, but we will see later in this chapter it is also

possible to explicitly resolve a bundle.

The transition from the STARTING to ACTIVE state is always implicit. A bundle is in the

STARTING state while its activator's start() method executes. Upon successful completion

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 3.4 OSGi bundle lifecycle

INSTALLED

ACTIVERESOLVED

STARTING

UNINSTALLED

STOPPING

install

resolve refresh
update

uninstall

update
refresh

start

stop

http://www.manning-sandbox.com/forum.jspa?forumID=507

of the start() method the bundle's state transitions to ACTIVE, but if the activator throws

an exception it transitions back to RESOLVED.

A n ACTIVE bundle can be stopped, which also results in a transition back to the

RESOLVED state via the STOPPING state. The STOPPING state is an implicit state like

STARTING and the bundle is in this state while its activator's stop() method executes. The

reason a stopped bundle transitions back to RESOLVED instead of INSTALLED is because its

dependencies are still satisfied and do not need to be resolved again. It is possible to force

the framework to resolve a bundle again by refreshing it or updating it, which we will discuss

later. Refreshing or updating a bundle transitions it back to the INSTALLED state.

A bundle in the INSTALLED state can be uninstalled, which will transition it to the

UNINSTALLED state. If you uninstall an active bundle, the framework will automatically stop

the bundle first, which results in the appropriate state transitions to the RESOLVED state and

then transition it to the INSTALLED state before uninstalling it1. A bundle in the

UNINSTALLED state will remain there as long as it is still needed (we will explain later what

this means in xxx), but it can no longer transition to another state. Now we understand the

complete bundle lifecycle, so let's discuss how these operations impact the framework's

bundle cache and subsequent restarts of the framework.

3.2.6 Bundle cache and framework restarts

To use our bundles, we have to install them into the OSGi framework. Check. But what does

this actually mean? Technically, we know we must invoke Bundle.installBundle() to

install a bundle. In doing so, we must specify a location typically interpreted as an URL to the

bundle JAR file or an input stream from which the bundle JAR file is read. In either case the

framework reads the bundle JAR file and saves a copy in a private area known as the bundle

cache. This means two things:

1. Installing a bundle into the framework is a persistent operation.

2. Once installed, the original copy of the bundle JAR file is no longer needed by the
framework.

The exact details of the bundle cache are dependent the framework implementation; the

specification does not dictate the format or structure other than it be persistent across

framework executions. So if you start an OSGi framework, install a bundle, shutdown the

framework, and then restart it, the bundle you installed will still be there. If you compare it

to using the class path where you manually manage everything, having the framework cache

and manage the artifacts relieves you from a lot of effort.

In terms of your application, you can think of the bundle cache as the deployed

configuration of your application. This is similar to the discussion about creating different

configurations of the paint program from the last chapter. You application's configuration is

1This is a change in the new version 4.2 of the OSGi specification. You cannot go to UNINSTALLED from RESOLVED
you have to go to INSTALLED first and only INSTALLED goes to UNINSTALLED. This is an errata from the R4.2 spec

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

whichever bundles you install into the framework. You maintain and manage the

configuration using the APIs and techniques discussed in this chapter.

Bundle installation is not the only lifecycle operation to impact the bundle cache. When a

bundle is started using Bundle.start(), the framework persistently marks the bundle as

started, even if Bundle.start() throws an exception, such as when the bundle cannot be

resolved or the bundle's BundleActivator.start() method throws an exception. When a

bundle is persistently marked as started, subsequent executions of the framework will not

only reinstall the bundle, but will start it too. From a management perspective, you deploy a

configuration of your application by installing a set of bundles and activating them.

Subsequent framework executions will automatically restart your application. If you stop a

bundle using Bundle.stop(), this removes the persistently started status of the bundle, so

subsequent framework executions will no longer restart the bundle, although it will still be

reinstalled. This is actually another means for modifying your application's configuration.

You might be wanting to ask, “What about updating and uninstalling a bundle? These

must impact the bundle cache, right?” The short answer is yes, but this is not the whole

answer. Bundle.update() and Bundle.uninstall() impact the bundle cache by saving

a new bundle JAR file or removing an existing bundle JAR file, respectively. However, the

impacts of these operations may not impact the cache immediately. We will explain these

oddities when we discuss the relationship between the modularity and lifecycle layers in

section [ref]. Next we will delve into the details of our shell bundle as we explore how to

actually use the lifecycle layer API.

3.3 Leveraging the lifecycle API in your bundles
So far we haven't implemented very much functionality for our shell, we just created the

activator to start it up and shut it down. In this section we will show how to implement the

bulk of its functionality. We will use a simple command pattern to provide the executable

actions to allow us to interactively install, start, stop, update, and uninstall bundles. We will

even add a persistent history to keep track of previously executed commands.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Ch3Figure 3.5: Bundle cache during framework restarts

Installation

Execution

Update

Removal Bundle

Bundle Cache

Framework

Bundle

Bundle Cache

Installation

Execution

Update

Removal Bundle

Bundle Cache

Installation

Execution

Update

Removal Bundle

Bundle Cache

Framework

Installation

Execution

Update

Removal Bundle

Bundle Cache

Framework Stop Framework Restart

http://www.manning-sandbox.com/forum.jspa?forumID=507

A high-level understanding of our approach might be useful before we start. The main

piece is the telnet binding, which listens to the configured port for connection requests. It

spawns a new thread for each connecting client. The client sends command lines to its

thread, where a command line consists of a command name and the arguments for the

command. The thread parses the command line, selects the appropriate command, and

invokes it with any specified arguments.

Commands simply process the arguments passed into them. We will not discuss the

implementation of the telnet binding and the connection thread, but full source code is

available in the companion code. We will dissect the command implementations to illustrate

how to use Bundle and BundleContext. Ok, let's get the ball rolling by showing how we

configure our bundle.

3.3.1 Configuring bundles

Our shell needs two configuration properties, one for the port and one for the maximum

number of concurrent connections. In traditional Java programming, we would use the

System.getProperty() method to retrieve them. When creating a bundle, you can use

the BundleContext object to retrieve configuration properties instead. The main benefit of

this approach is it avoids the global aspect of System.getProperty() and allows

properties per framework instance.

The OSGi specification does not specify how to set bundle configuration properties, so

different frameworks handle this differently; typically they provide a configuration file where

the properties are set. However, the specification does require bundle configuration

properties be backed by system properties, so you can still set use system properties in a

pinch. Retrieving bundle configuration property values is standardized via the

BundleContext.getProperty() method as shown in Listing 3.5.

Listing 3.5 Bundle configuration by example

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Ch3Figure 3.6: TelnetBinding Overview

Port

TelnetBinding <<Listen>>
<<command>> <<args>>

Parse and select
 command implementation

Dispatch to command
implementation

CommandImpl

http://www.manning-sandbox.com/forum.jspa?forumID=507

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

 public class Activator implements BundleContext {
 ...

 private int getPort(BundleContext context) {
 String port = context.getProperty("org.foo.shell.port"); #1
 if (port != null) {
 return Integer.parseInt(port);
 }
 return 7070;
 }

 private int getMaxConnections(BundleContext context) {
 String max = context.getProperty("org.foo.shell.connection.max"); #2
 if (max != null) {
 return Integer.parseInt(max);
 }
 return 1;
 }
}

This listing continues our activator implementation from Listing 3.2; in our activator we

used these two methods to get configuration properties. Here at (#1) and (#2) we can see

the methods actually use the BundleContext.getProperty() method to retrieve the

properties. This method looks in the framework properties to find the value of the specified

property. If it cannot find the property, it then searches the system properties, returning

null if the property is not found. For our shell, we return default values if no configured

value is found. The OSGi specification also defines some standard framework properties,

shown in Table 3.1. If you need to use these standard properties, you can use the constants

for them defined in the org.osgi.framework.Constants class.

Table 3.1 Standard OSGi framework properties

Property name Description

org.osgi.framework.version the OSGi framework version

org.osgi.framework.vendor the framework implementation vendor

org.osgi.framework.language the language being used; see ISO 639 for possible values

org.osgi.framework.os.name the host computer operating system

org.osgi.framework.os.version the host computer operating system version number

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

org.osgi.framework.processor the host computer processor name

So there we have it. Our first real interaction with the OSGi framework. This is only a

small part of the API you can use in your bundles, but we will cover a lot of ground in the

next section, so don't worry. And for those of you thinking, “Hey, this configuration

mechanism seems overly simplistic!” You are correct. There are other, more sophisticated

ways to configure your bundle, but we won't discuss them until chapter [ref]. Bundle

properties are the simplest method available and should only be used for properties that

don't change much. In this regard, they might not be the best choice for our shell, but it just

depends on what we want to achieve; for example, it makes it difficult to change the shell's

port dynamically. For now, we will keep things simple, so this is sufficient.

3.3.2 Deploying bundles

Each bundle installed into the framework is represented by a Bundle object and can be

identified by its bundle identifier, location, or symbolic name. For most of the shell

commands we are going to implement, we will use the bundle identifier to retrieve a Bundle

object, since the bundle identifier is nice and concise. Since most of our commands will

accept a bundle identifier as a parameter, let's look at how we can use the bundle context to

access Bundle objects associated with other bundles using the identifier. As part of our

design, we create an abstract BasicCommand class to define a shared method

getBundle() to retrieve bundles by their identifier as shown below:
protected volatile BundleContext m_context;
...
public Bundle getBundle(String id) {
 Bundle bundle = m_context.getBundle(Long.parseLong(id.trim())); #1

 if (bundle == null) {
 throw new IllegalArgumentException("No such bundle.");
 }
 return bundle;
}

All we do is call BundleContext.getBundle() on our context object at (#1) with the

parsed bundle identifier, which is passed in as a String. The only special case we need to

worry about is when no bundle with the given identifier exists. In such a case, we throw an

exception.

INSTALL COMMAND

With this basic functionality in place we can start our first command.

Listing 3.6 shows the implementation of an “install” command.

Listing 3.6 Bundle install command

package org.foo.shell;

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

INSTALLED

install

http://www.manning-sandbox.com/forum.jspa?forumID=507

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

public class InstallCommand extends BasicCommand {
 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 Bundle bundle = m_context.installBundle(args); #1
 out.println("Bundle: " + bundle.getBundleId()); #2
 }
}

We use BundleContext.installBundle() at (#1) to install a bundle. In most

framework implementations the argument to installBundle() is conveniently interpreted

as an URL in String form from which the bundle JAR file can be retrieved. Since the user

enters the URL argument as a String, we can use it directly at (#1) to install the bundle. If

the install succeeds, then a new Bundle object corresponding to the newly installed bundle

is returned. The bundle will be uniquely identified by this URL, which will be used as its

location. This location value will also be used in the future to determine if the bundle is

already installed. If a bundle is already associated with this location value, then the Bundle

object associated with the previously installed bundle is returned instead of installing it

again. If the install operation was a success, our command outputs the installed bundle's

identifier at (#2).

The bundle context also provides an overloaded installBundle() method for installing

a bundle from an input stream. We do not show this method here, but this form of

installBundle() accepts a location and an open input stream. When using this version of

the method, the location is used purely for identification and the bundle JAR file is read from

the passed in input stream. The framework is responsible for closing the input stream.

START COMMAND

Now we have a command to install bundles, so the next

operation we will want to do is start bundles. The “start”

command shown in Listing 3.7 does just that.

Listing 3.7 Bundle start command

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

 public class StartCommand extends BasicCommand {
 public void exec(String id) throws Exception {

 Bundle bundle = getBundle(id); #1
 bundle.start(); #2

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

ACTIVERESOLVED

STARTING

start

http://www.manning-sandbox.com/forum.jspa?forumID=507

 }
}

Again, the implementation is pretty easy. We use our method from the base command

class to get the Bundle object associated with the user-supplied identifier at (#1), then we

invoke Bundle.start() at (#2) to start the bundle associated with the identifier.

The result of Bundle.start() depends on the current state of the associated bundle. If

the bundle is INSTALLED, then it will transition to ACTIVE via the RESOLVED and

STARTING states. If the bundle is UNINSTALLED, then the method will throw an

IllegalStateException. If the bundle is either STARTING or STOPPING, then start()

blocks until the bundle enters either ACTIVE or RESOLVED. If the bundle is already ACTIVE,

then calling start() again has no effect. A bundle must be resolved before it can be

started. It is not necessary to explicitly resolve the bundle, since the specification requires

the framework to implicitly resolve the bundle if it is not already resolved. If the bundle's

dependencies cannot be resolved, then start() throws a BundleException and the

bundle cannot be used until its dependencies are satisfied. If this happens, you will typically

install additional bundles to satisfy the missing dependencies and try to start the bundle

again.

If the bundle has an activator, the framework wil l invoke the

BundleActivator.start() method when starting the bundle. Any exceptions thrown

from the activator will result in a failed attempt to start the bundle and an exception being

thrown from Bundle.start(). One last case where an exception may result is if a bundle

tries to start itself; the specification says attempts to do so should result in an

IllegalStateException.

STOP COMMAND

That's it for starting bundles, now we can look at stopping

bundles, which is actually very similar starting them; see

Listing 3.8.

Listing 3.8 Bundle stop command

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

 public class StopCommand extends BasicCommand {
 public void exec(String id) throws Exception {
 Bundle bundle = getBundle(id); #1
 bundle.stop(); #2
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

ACTIVERESOLVED

STOPPING

stop

http://www.manning-sandbox.com/forum.jspa?forumID=507

Like starting a bundle, stopping a bundle is a simple call to Bundle.stop() at (#2) on

the Bundle object retrieved from the specified identifier at (#1). Like before, we must be

mindful of the bundle's state. If it is UNINSTALLED, an IllegalStateException will

result. Either STARTING or STOPPING blocks until either ACTIVE or RESOLVED is reached,

respectively. In the ACTIVE state, the bundle will transition to RESOLVED via the STOPPING

state. If the bundle has an activator and the activator's stop() method throws an

exception, then a BundleException will be thrown. Lastly, a bundle is not supposed to

change its own state; trying to do so may result in an IllegalStateException. You may

be wondering, “Why can't a bundle stop itself?” Good question. We will discuss this more in

section xx.

UPDATE COMMAND

Let's continue with the “update” command in Listing 3.9.

Listing 3.9 Bundle update command

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

 public class UpdateCommand extends BasicCommand {
 public void exec(String id) throws Exception {

 Bundle bundle = getBundle(id); #1
 bundle.update(); #2
 }
}

By now you might have noticed the pattern we mentioned in the beginning. Most lifecycle

operations are methods on the Bundle a n d BundleContext objects. The

Bundle.update() method is no exception as you can see at (#2). The update() method

is available in two forms: one with no parameters (shown) and one taking an input stream

(not shown). Our update command uses the form without parameters at (#2), which reads

the updated bundle JAR file using the original location value as a source URL. If the bundle

being updated is in the ACTIVE state, then it must be stopped first, as required by the

bundle lifecycle. We do not need to do this explicitly, since the framework will do it for us,

but it is still good to understand that this occurs since it impacts the behavior of our

applications. The update happens in either the RESOLVED or INSTALLED state and results in

a new revision of the bundle in the INSTALLED state. If the bundle is in the UNINSTALLED

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

INSTALLED

RESOLVED

update

update

http://www.manning-sandbox.com/forum.jspa?forumID=507

state, then an IllegalStateException is thrown. As in the stop command, a bundle

should not try to update itself.

THE BUNDLE-UPDATELOCATION ANTI-PATTERN

We should point out an anti-practice for updating a bundle. The OSGi specification

actually provides a third option for updating bundles based on bundle metadata. A bundle

may declare a piece of metadata in its bundle manifest called Bundle-

UpdateLocation. If present, then the Bundle.update() with no parameters uses

the update location value specified in the metadata as URL for retrieving the updated

bundle JAR file. Using this approach is discouraged since it is confusing if you forget it is

set and it doesn't make sense to bake this sort of information into the bundle itself.

UNINSTALL COMMAND

We can now wrap up the lifecycle operations by implementing the

“uninstall” command as depicted in Listing 3.10.

Listing 3.10 Bundle uninstall command

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

 public class UninstallCommand extends BasicCommand {
 public void exec(String id) throws Exception {

 Bundle bundle = getBundle(id); #1
 bundle.uninstall(); #2
 }
}

To uninstall a bundle we call the Bundle.uninstall() method at (#2) after retrieving

t h e Bundle object associated with the user-supplied bundle identifier at (#1). The

framework will stop the bundle, if necessary. If the bundle is already UNINSTALLED, then an

IllegalStateException is thrown. As with the other lifecycle operations, a bundle should

not attempt to uninstall itself.

That's it. We created a telnet-based shell bundle we can use in any OSGi framework.

There is one fly in the ointment. Most of our shell commands require the bundle identifier to

perform their action, but how does the user know what identifier to use? We need some way

to inspect the state of the framework's installed bundle set. We'll create a command for that

next.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

INSTALLED

UNINSTALLED

uninstall

http://www.manning-sandbox.com/forum.jspa?forumID=507

3.3.3 Inspecting framework state

We need one more command to display information about the bundles currently installed in

the framework. Listing 3.11 shows a simple implementation of a “bundles” commmand.

Listing 3.11 Bundle information example

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;
import org.osgi.framework.Constants;

public class BundlesCommand extends BasicCommand {
 public void exec(String args) throws Exception {
 Bundle[] bundles = m_context.getBundles(); #1

 out.println(" ID State Name");

 for (Bundle bundle : bundles) {
 printBundle(
 bundle.getBundleId(), #2
 getStateString(bundle.getState()), #3
 (String) bundle.getHeaders().get(Constants.BUNDLE_NAME), #4
 bundle.getLocation(), #5
 bundle.getSymbolicName()); #6
 }
 }

 private String getStateString(int state) {
 switch (state) {
 case Bundle.INSTALLED:
 return "INSTALLED";
 case Bundle.RESOLVED:
 return "RESOLVED";
 case Bundle.STARTING:
 return "STARTING";
 case Bundle.ACTIVE:
 return "ACTIVE";
 case Bundle.STOPPING:
 return "STOPPING";
 default:
 return "UNKNOWN";
 }
 }

 private void printBundle(long id, String state, String name,
 String location, String symbolicName) {...}
}

The implementation of this command is pretty easy too, since we only need to use

BundleContext.getBundles() at (#1) to get an array of all bundles currently installed in

the framework. The rest of the implementation loops through the returned array and prints

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

out information from each Bundle object. Here we print the bundle identifier (#2), lifecycle

state (#3), name (#4), location (#5), and symbolic name (#6) for each bundle.

With this command in place we have everything we need for our simple shell. We can

install, start, stop, update, and uninstall bundles and list the currently installed bundles. That

was pretty easy, wasn't it? Think about the flexibility at your fingertips versus the amount of

effort needed to create our shell. Now it is possible for you to create applications with easily

deployable configurations of bundles that can be managed and evolved as necessary over

time.

Before we move back to our paint program there are two final lifecycle concepts that are

worth exploring in order to fully appreciate the approach we will take to make our our paint

program dynamically extensible: persistence and events. We will describe them in the

context of our shell example, but as you will see in the paint example in a couple of pages

time they are generically useful tools to have in mind when building OSGi applications.

3.3.4 Persisting bundle state

As we mentioned in section [ref] when discussing bundle activators, the framework creates

an instance of a bundle's activator class and uses the same instance for starting and

subsequently stopping the bundle. An activator instance is only used once by the framework

to start and stop a bundle, then it is discarded. If the bundle is subsequently restarted, then

a new activator instance is created. Given this situation, how does a bundle persist state

across stops and restarts? Stepping back even further, we mentioned how the framework

saves installed bundles into a cache so they can be reloaded the next time the framework

starts. How does a bundle persist state across framework sessions? There are several

possibilities.

One possibility is to store the information outside the framework, such as in a database

or even a file. The disadvantage of this approach is the state is not managed by the

framework and may not be cleaned up when the bundle is uninstalled.

Another possibility is for a bundle to give its state to another bundle which is not being

stopped, then it could get the state back after it restarts.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Ch3Figure 3.7: Storing state externally

External
File

External
Database

Bundle

Framework

http://www.manning-sandbox.com/forum.jspa?forumID=507

This approach is similar to the one offered by services, which are explained in the next

chapter so we will not discuss it yet. For simplicity, it would be nice to just be able to use

files, but have them managed by the framework. Such a possibility exists. The framework

maintains a private data area in the file system for each installed bundle.

The BundleContext.getDataFile() method provides access to your bundle's private

data area. When using the private data area, you don't need to worry about where it is on

the file system because the framework takes care of that for you, as well as cleaning up in

the event of your bundle being uninstalled. For some, it may seem odd to not just directly

use files to store your data; however, it would be impossible for your bundle to clean up

during an uninstall. This is because a bundle is not notified when it is uninstalled. Further,

this method simplifies running with security enabled since bundles can be granted permission

to access their private area by the framework.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Ch3Figure 3.9: Storing state internally

Framework

Bundle Cache

BundleFile in
Data area of

the bundle

Ch3Figure 3.8: Storing state with other bundles

Framework

Bundle

Bundle

Data stored
Inside another

bundle

http://www.manning-sandbox.com/forum.jspa?forumID=507

For our shell example, we want to use the private area to persistently save our command

history. Listing 3.12 shows how we want our “history” command to work; it prints the

commands issued via the shell in reverse order.

Listing 3.12 Using the history command

-> history
bundles
uninstall 2
bundles
update 2
bundles
stop 2
bundles
start 2
bundles
install file:foo.jar
bundles

Listing 3.13 shows how we use the bundle's private storage area to save the command

history when the bundle stops and read it in when it starts.

Listing 3.13 Bundle persistent storage example

package org.foo.shell;

import java.util.List;

public interface History {
 public List<String> get();
}

public class Activator implements BundleActivator {
 ...
 private void writeHistory(History history, BundleContext context) {
 List<String> list = history.get();
 File log = context.getDataFile("log.txt"); #1
 if (log == null) { #2
 System.out.println(
 "Unable to persist history – no storage area");
 }
 if (log.exists() && !log.delete()) {
 throw new IOException("Unable to delete previous log file!");
 }
 write(list, log);
 }

 private List<String> readHistory(BundleContext context) {
 List<String> result = new ArrayList<String>();
 File log = context.getDataFile("log.txt"); #3
 if ((log != null) && log.isFile()) { #4
 read(log, result);
 }
 return result;

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 }
}

We use BundleContext.getDataFile() at (#1) and (#3) to get a File object in our

bundle's private storage area. The method takes a relative path as a String and returns a

valid File object in the storage area. Once we get the File object, we can use it normally

to create the file, make a subdirectory, or whatever we want. It is possible for a framework

to return null when a bundle requests a file, so as you can see at (#2) and (#4) we need

to handle this possibility. This can happen because the OSGi framework was designed to run

on a variety of devices, some of which may not support a file system. For our shell, we just

ignore it if there is no file system support, since the “history” command is non-critical

funcionality.

If you want to retrieve a File object for the root directory of your bundle's storage area,

you can call getDataFile() with an empty string. Your bundle is responsible for managing

the content of its data area, but there is no need to worry about cleaning up when

uninstalled, since the framework takes care of this.

PLAN AHEAD

One thing to keep in mind, your bundle might get updated. Due to this possibility, you

should design your bundles so they properly deal with previously saved persistent state,

since they may start with a private area from an older version of the bundle. The best

approach is for your bundles to seamlessly migrate old state formats to new state formats

if possible. One tricky issues, though, is the update lifecycle operation may also be used

to downgrade a bundle. In this case, your bundle may have difficulty dealing with the

newer state formats, so it is probably best if your implement your bundles to delete any

existing state if they cannot understand it. Otherwise, you could always uninstall the

newer bundle first, then install the older version instead of downgrading.

We could finish our “history” command, but let's try to make it a little more interesting by

keeping track of what is going on inside the framework. The idea is we can not only record

the issued commands, but also the impact they had on the framework. The next section

shows how we can achieve this using framework's event notification mechanism.

3.3.5 Listening for events

The OSGi framework is a very dynamic execution environment. To create bundles, and

ultimately applications, flexible enough to not only cope with, but leverage this dynamism

you need to pay attention to run-time changes. While the lifecycle layer API provides access

to a lot of information, it is not easy to poll for changes; it is much more convenient if we can

be notified when changes occur. To make this possible, the OSGi framework supports two

types of events: BundleEvents and FrameworkEvents. The former event type reports

changes in the lifecycle of bundles, while the latter reports changes in the framework.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

You can use the normal Java listener pattern in your bundles to receive these events. The

BundleContext o b j e c t h a s m e t h o d s t o r e g i s t e r BundleListener a n d

FrameworkListener objects for receiving BundleEvent a n d FrameworkEvent

notifications, respectively. Listing 3.14 shows how we implement our “history” command.

Listing 3.14 Bundle and Framework Event listener example

package org.foo.shell;

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import org.osgi.framework.BundleEvent;
import org.osgi.framework.BundleListener;
import org.osgi.framework.FrameworkEvent;
import org.osgi.framework.FrameworkListener;

public class HistoryDecorator implements Command, #1
 History, FrameworkListener, BundleListener {
 private final List<String> m_history =
 Collections.synchronizedList(new ArrayList<String>()); #2
 private final Command m_next;

 public HistoryDecorator(Command next, List<String> history) { #3
 m_next = next;
 m_history.addAll(history);
 }

 public void exec(String args, PrintStream out, PrintStream err) #4
 throws Exception {
 try {
 m_next.exec(args, out, err); #5
 } finally {
 m_history.add(args); #6
 }
 }

 public List<String> get() {
 return new ArrayList<String>(m_history);
 }

 public void frameworkEvent(FrameworkEvent event) { #7
 m_history.add("\tFrameworkEvent(type=" + event.getType() + #8
 ",bundle=" + event.getBundle() +
 ",source=" + event.getSource() +
 ",throwable=" + event.getThrowable() + ")");
 }

 public void bundleChanged(BundleEvent event) { #9
 m_history.add("\tBundleEvent(type=" + event.getType() + #10
 ",bundle=" + event.getBundle() +

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 ",source=" + event.getSource() + ")");
 }
}

 We use an interceptor pattern to wrap the actual commands so we can record the issued

commands. Our wrapper can also record any events in the history by implementing the

BundleListener and FrameworkListener interfaces at (#1). We will maintain a list of

all issued commands and received events in the m_history member defined at (#2). Our

history wrapper command forwards the command execution to the actual command at (#5)

and stores it in the history list at (#6).

The wrapper implements the single FrameworkListener.frameworkEvent() method

at (#7). Here we record the event information in the history list. The most important part of

the event is its type. Framework events are of one of the following types:

 FrameworkEvent.STARTED – indicates the framework has performed all
initialization and has finished starting up.

 FrameworkEvent.INFO – indicates some information of general interest in various
situations.

 FrameworkEvent.WARNING – indicates a warning; not crucial, but may indicate a
potential error.

 FrameworkEvent.ERROR – indicates an error; requires immediate attention.

 FrameworkEvent.PACKAGES_REFRESHED – indicates the framework has refreshed
some shared packages; we will discuss what this means in xx.

 FrameworkEvent.STARTLEVEL_CHANGED – indicages the framework has changed
its start level; we will discuss what this means in xx.

The wrapper implements the single BundleListener.bundleChanged() method at

(#9). Here we also record the event information in the history list. Bundle events have one

of the following types:

 BundleEvent.INSTALLED – indicates a bundle was installed.

 BundleEvent.RESOLVED – indicates a bundled was resolved.

 BundleEvent.STARTED – indicates a bundle was started.

 BundleEvent.STOPPED – indicates a bundle was stopped.

 BundleEvent.UPDATED – indicates a bundle was updated.

 BundleEvent.UNINSTALLED – indicates a bundle was uninstalled.

 BundleEvent.UNRESOLVED – indicates a bundle was unresolved.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

It is easy to register event listeners, BundleContext has add and remove methods for

both BundleListener and FrameworkListener. Listing 3.15 shows how we add our

listeners to the context.

Listing 3.15 Add bundle and framework listener

private void addListener(BundleContext context,
 BundleListener bundeListener, FrameworkListener frameworkListener) {
 context.addBundleListener(bundleListener); #1
 context.addFrameworkListener(frameworkListener); #2
}

Our example does not show how to remove the listeners, which requires calls to the

removeBundleListener() and removeFrameworkListener() methods on the context.

It is actually not necessary to remove the listeners, since the framework will do so

automatically when our bundle is stopped; this makes sense since the bundle context is not

valid once the bundle is stopped. You only need to explicitly remove your listeners if you

want to stop listening to events while your bundle is active.

For the most part, the framework delivers events asynchronously. It is possible for

framework implementations to deliver them synchronously, but typically they don't because

it complicates concurrency handling. Sometimes you need synchronous delivery because you

need to perform an action as the event is happening, so to speak. This is possible for

BundleEvents by registering a listener implementing the SynchronousBundleListener

interface instead of BundleListener. The two interfaces look the same, but the framework

deliver events synchronously to SynchronousBundleListeners, meaning the listener is

notified during the processing of the event. Synchronous bundle listeners are processed

before normal bundle listeners. This allows you to take action when a certain operation is

triggered; for example, you could give permissions to a bundle at the moment it is installed.

The following event types are only sent to SynchronousBundleListeners:

 BundleEvent.STARTING – indicates a bundle is about to be started.

 BundleEvent.STOPPING – indicates a bundle is about to be stopped.

Synchronous bundle listeners are sometimes necessary (as we shall see in our paint

example in the next section), but should be used with caution. They can lead to concurrency

issues if you try to do too much within the callback; as always, keep your callbacks as short

and simple as possible. In all other cases, the thread invoking the listener callback method is

undefined. Events become much more important to you when you start to write more

sophisticated bundles that take full advantage of the bundle lifecycle

3.3.6 How to kill yourself...

We've mentioned it numerous time: a bundle is not supposed to change its own state. But

what if a bundle really wants to change its own state? Good question. This is one of the more

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

complicated aspects of the lifecycle layer and there are potentially negative issues in doing

so.

The central issues is if a bundle stops itself, it finds itself in a state it should not be in. Its

BundleActivator.stop() method has been invoked, which means its bundle context is

no longer valid. Additionally, the framework has cleaned up its bookkeeping for the bundle

and has released any framework facilities it was using, such as unregistering all of its event

listeners. The situation is even worse if a bundle tries to uninstall itself, since the framework

will likely release its class loader. In short, the bundle is in a very hostile environment and it

might not be able to function properly.

Since its bundle context is no longer valid, a stopped bundle can't use the functionality

provided by the framework anymore. Most method calls on an invalid bundle context will

throw IllegalStateExceptions. Even if the bundle's class loader is released, this may

not pose a serious issue if the bundle does not need any new classes, since the class loader

will not be garbage collected until the bundle stops using it. However, we are not guaranteed

to be able to load new classes if the bundle was uninstalled. In this case, the framework

might have closed the JAR file associated with the bundle. Already loaded classes will

continue to load, but all bets are off when attempting to load new classes.

Depending on your bundle, you could run into other issues too. If your bundle creates

and uses threads, it is typically a good idea for it to wait for all of its threads to complete

when its BundleActivator.stop() method is called. If the bundle tries to stop itself on

its own thread, that same thread could end up in a cycle waiting for other sibling threads to

complete. In the end, the thread waits forever. For example, our simple shell uses a thread

to listen for telnet connections and then secondary threads to execute the commands issued

on those connections. If one of the secondary threads attempts to stop the shell bundle

itself, it ends up waiting in the shell bundle's BundleActivator.stop() method for the

connection thread to stop all of the secondary threads. Since the calling thread is one of the

secondary threads, it will end up waiting forever for the connection thread to complete. You

have to be very careful of these types of situations and they are not always obvious.

Under normal circumstances, you shouldn't try to stop, uninstall, or update your own

bundle. Ok, that should be enough disclaimers. Let's look at a case where you might need to

do it any way. We can use our shell as an example, since it is provides a means to update

bundles and it may need to update itself. What do we have to do to allow a user to update

the shell bundle via the shell command line? We need to do two things to be safe:

1. Use a new thread when we stop, update, or uninstall our own bundle.

2. Do nothing in the new thread after calling stop, update, or uninstall.

We need to do this to prevent us from waiting forever for the shell thread to return when

we get stopped and to avoid the potential ugliness of the hostile environment in which our

thread will find itself. Listing 3.16 shows the changes to the implementation of the “stop”

command to accommodate this scenario.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Listing 3.16 Example of how to stop yourself

package org.foo.shell;

import java.io.PrintStream;
import org.osgi.framework.Bundle;
import org.osgi.framework.BundleException;

class StopCommand extends BasicCommand {
 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 Bundle bundle = getBundle(args);

 if (bundle == m_context.getBundle()) { #1
 new SelfStopThread(bundle).start();
 } else {
 bundle.stop();
 }
 }

 private static final class SelfStopThread extends Thread {
 private final Bundle m_self;

 public SelfStopThread(Bundle self) {
 m_self = self;
 }

 public void run() {
 try {
 m_self.stop(); #2
 } catch (BundleException e) {
 // Ignore
 }
 }
 }
}

At (#1), we use the BundleContext.getBundle() method to get a reference to our

own bundle representation and compare it to the target bundle. Remember there is only one

instance of any given bundle so we can use referential equality. When the target is our

bundle, we need to stop it using a different thread. For this reason, we create and start a

new thread of type SelfStopThread, which will execute the Bundle.stop() method at

(#2). There is one final point of note in this example. We changed the behavior of stopping a

bundle in this case from synchronous to asynchronous. Ultimately, this shouldn't matter

much, since the bundle will be stopped anyway.

We should also modify the implementation of the “update” and “uninstall” commands in

the same way. If you followed our suggestion and implemented a “shutdown” command,

then you will need to make changes to it along the lines of the “stop” command. Why?

Because stopping the system bundle causes the framework to stop, which stops every other

bundle. This means we will stop our own bundle indirectly, so we should make sure we are

using a new thread.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Hopefully, you now have a good understanding of what is possible with OSGi's lifecycle

layer. Now we will apply all of this knowledge to our paint program.

3.4 Dynamically extending the paint program
Let's look at how the individual parts of the lifecycle layer can be used to dynamically extend

the paint program. As you recall from last chapter, we first converted a non-modular version

of it into a modular one using an interface-based programming approach for the architecture.

This is great since we can reuse the resulting bundles with only a minimal amount of extra

work. In fact, the bundles containing the shape implementations do not need to change at

all, except for some additional metadata in their manifest. We just need to modify the paint

program to make it possible for shapes to be added and removed at execution time.

THE EXTENDER PATTERN

The approach we are going to take is a well-known pattern in the OSGi world, called the

extender pattern. The main idea behind the extender pattern is to model dynamic

extensibility on the lifecycle events (e.g., installing, resolving, starting, stopping, etc.) of

other bundles. Typically, some bundle in the application acts as the “extender”. It listens

for bundles being started and/or stopped. When a bundle is started, the extender probes

it to see if it is an “extension” bundle. The extender looks in the bundle's manifest (using

Bundle.getHeaders()) or the bundle's content (using Bundle.getEntry()) for

specific metadata it recognizes. If the bundle does contain an extension, the extension is

described by the metadata. The extender reads the metadata and performs the necessary

tasks on behalf of the extension bundle to integrate it into the application. The extender

also listens for the bundles to be stopped, in which case it removes the extension from

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Ch3Figure 3.10: Extender Pattern Overview

Installed bundles

Tracker

Frame

Register Bundle
listener

Bundle jar

Install
bundle

Shape
Impl

Starting shape
bundle resolves it

Create logical
bundle

Bundle start event

Interrogate for metadata,
resources, classes, etc

Inject

For the reverse, if the shape bundle is stopped,
the tracker removes its associated shape.

1)

2)

3)

4)

5)

6)

7)

http://www.manning-sandbox.com/forum.jspa?forumID=507

the application. That's the general description of the extender pattern, so let's look at how

we will use it in the paint program.

We will treat our shape implementations as extensions. The extension metadata will be

contained in the bundle manifest and will describe which class implements the shape

contained in the shape bundle. The extender will use this information to load the shape class

from the bundle, instantiate it, and inject it into the application. If a shape bundle is stopped,

the extender will remove it from the application.

So let's dive in and start converting the application. The first thing we need to do is to

define the extension metadata for shape bundles to describe their shape implementation. In

Listing 3.17 we add a couple of constants to the SimpleShape interface for extension

metadata property names; it is not strictly necessary to add these, but it is good

programming practice to use constants.

Listing 3.17 Defining the SimpleShape interface

package org.foo.shape;

import java.awt.Graphics2D;
import java.awt.Point;

public interface SimpleShape {
 public static final String NAME_PROPERTY = "Extension-Name"; #A
 public static final String ICON_PROPERTY = "Extension-Icon"; #B
 public static final String CLASS_PROPERTY = "Extension-Class"; #C

 public void draw(Graphics2D g2, Point p); #D
}

#A The name of shape

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Ch3Figure 3.11: Paint Program as Extender Pattern

Paint
Shape

Circle

Square

Triangle

Export
org.foo.shape

Extension-Name:
 Circle
Extension-Class:
 org.foo.shape.circle.Circle
Extension-Icon:
 org/foo/shape/circle/circle.png

http://www.manning-sandbox.com/forum.jspa?forumID=507

#B Bundle resource file for the shape's icon
#C Bundle class name for the shape's class
#D Method to draw shape on the canvas

From these constants, it is fairly straightforward to see how we will describe a specific

shape implementation. We only need to know the name, an icon, and the class implementing

the shape. As an example, for the circle implementation we add the following entries to its

bundle manifest:
Extension-Name: Circle
Extension-Icon: org/foo/shape/circle/circle.png
Extension-Class: org.foo.shape.circle.Circle

This metadata is arbitrary, we've just chosen them for our paint program. The name is

just a string, while the icon and class refer to a resource file and a class inside the bundle

JAR file, respectively. We add similar metadata to the manifests of all shape implementation

bundles, which converts them all to extensions. Next, we need to tweak the architecture of

the paint program to make it to cope with dynamic addition and removal of shapes. Figure

3.12 captures the updated design.

Comparing the new design to the original, we added two new classes: ShapeTracker

a n d DefaultShape. They help us dynamically adapt the paint frame to deal with

SimpleShape implementations dynamically appearing and disappearing. In a nutshell, the

ShapeTracker is used to track when extension bundles start or stop, in which case it adds

or removes DefaultShapes to/from the PaintFrame, respectively.

The concrete implementation of the ShapeTracker is actually a subclass of another

class, called BundleTracker. The latter class is a generic class for tracking when bundles

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 3.12 Dynamic paint program class relationships

Paint
Frame

Shape
Component

Default
Shape

1

*

1

1 1

*

Circle Square Square

Shape
Tracker

1

1

Simple
Shape

1

1

http://www.manning-sandbox.com/forum.jspa?forumID=507

are started or stopped. Since BundleTracker is somewhat long, we will divide it across

multiple listings; the first part is shown in Listing 3.18.

Listing 3.18 BundleTracker class declaration and constructor

package org.foo.paint;

import java.util.*;
import org.osgi.framework.*;

public abstract class BundleTracker {
 final Set m_bundleSet = new HashSet();
 final BundleContext m_context;
 final SynchronousBundleListener m_listener;
 boolean m_open;

 public BundleTracker(BundleContext context) { #1
 m_context = context;
 m_listener = new SynchronousBundleListener() { #2
 public void bundleChanged(BundleEvent evt) { #3
 synchronized (BundleTracker.this) {
 if (!m_open) { #4
 return;
 }
 if (evt.getType() == BundleEvent.STARTED) {
 if (!m_bundleSet.contains(evt.getBundle())) {
 m_bundleSet.add(evt.getBundle()); #5
 addedBundle(evt.getBundle()); #6
 }
 } else if (evt.getType() == BundleEvent.STOPPING) {
 if (m_bundleSet.contains(evt.getBundle())) {
 m_bundleSet.remove(evt.getBundle()); #7
 removedBundle(evt.getBundle()); #8
 }
 }
 }
 }
 };
 }

The bundle tracker is constructed with a BundleContext object at (#1), which is used to

listen for bundle lifecycle events. The tracker uses a SynchronousBundleListener at

(#2) for listening to events because a regular BundleListener doesn't get notified when a

bundle enters the STOPPING state, only STOPPED. We need to react on the STOPPING event

instead of the STOPPED event because it is still possible to use the stopping bundle since it

hasn't actually been stopped yet; a potential subclass might need to do this if it needed to

access the stopping bundle's BundleContext object. The bundle listener's single method is

implemented at (#3), where it makes sure the tracker is tracking bundles at (#4). If so, for

started events it adds the associated bundle to its bundle list at (#5) and invokes the

abstract addedBundle() method at (#6). Likewise, for stopping events it removes the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

bundle from its bundle list at (#7) and invokes abstract removedBundle() method at (#8).

Listing 3.19 shows the next portion of the BundleTracker.

Listing 3.19 Opening and using a BundleTracker

 public synchronized void open() { #1
 if (!m_open) {
 m_open = true;
 m_context.addBundleListener(m_listener); #2
 Bundle[] bundles = m_context.getBundles();
 for (int i = 0; i < bundles.length; i++) {
 if (bundles[i].getState() == ACTIVE) {
 m_bundleSet.add(bundles[i]); #3
 addedBundles(bundles[i]); #4
 }
 }
 }
 }

 public synchronized Bundle[] getBundles() { #5
 return (Bundle[]) m_bundleSet.toArray(
 new Bundle[m_bundleSet.size()]);
 }

 protected abstract void addedBundle(Bundle bundle); #6

 protected abstract void removedBundle(Bundle bundle); #7

To start a BundleTracker instance tracking bundles, you must invoke its open()

method at (#1). This methods registers a bundle event listener at (#2) and processes any

existing ACTIVE bundles by adding them to its bundle list at (#3) and invoking the abstract

addedBundle() method at (#4). The getBundles() method at (#5) provides access to

the current list of active bundles being tracked. Since BundleTracker is abstract,

subclasses must provide implementations of addedBundle() at (#6) and

removedBundle() at (#7) to perform custom processing of added and removed bundles,

respectively. The last portion of the BundleTracker is in Listing 3.20.

Listing 3.20 Disposing of a BundleTracker

 public synchronized void close() { #1
 if (m_open) {
 m_open = false;
 m_context.removeBundleListener(m_listener); #2
 Bundle[] bundles = (Bundle[]
 m_bundleSet.toArray(new Bundle[m_bundleSet.size()]);
 for (int i = 0; i < bundles.length; i++) {
 if (m_bundleSet.remove(bundles[i])) { #3
 removedBundle(bundles[i]); #4
 }
 }
 }
 }

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

}

Calling BundleTracker.close() at (#1) stops it from tracking bundles. It will remove

its bundle listener at (#2) and remove each currently tracked bundle from its bundle list at

(#3) and invoke the abstract removedBundle() method at (#4).

STANDARDIZING BUNDLE TRACKERS

The need to track bundles is a very useful building block. In fact, it is so useful that the

OSGi Alliance decided to create a standard BundleTracker for the R4.2 specification.

The R4.2 BundleTracker is more complicated than the one presented here, but it

follows the same basic principles; we show how to use it in chapter [ref].

Now that we know how the BundleTracker works, we return to our subclass of it,

called ShapeTracker. The heart of this subclass is the processBundle() method

depicted in Listing 3.21, which processes added and removed bundles.

Listing 3.21 Processing shapes in ShapeTracker

private void processBundle(int action, Bundle bundle) {
 Dictionary dict = bundle.getHeaders();
 String name = (String) dict.get(SimpleShape.NAME_PROPERTY); #1
 if (name == null) {
 return;
 }

 switch (action) {
 case ADDED: #2
 String iconPath = (String) dict.get(SimpleShape.ICON_PROPERTY);
 Icon icon = new ImageIcon(bundle.getResource(iconPath));
 String className = (String) dict.get(SimpleShape.CLASS_PROPERTY);
 m_frame.addShape(name, icon,
 new DefaultShape(m_context, bundle.getBundleId(), className));
 break;
 case REMOVED: #3
 m_frame.removeShape(name);
 break;
 }
}

Dictionary dict = bundle.getHeaders();
String name = (String) dict.get(SimpleShape.NAME_PROPERTY);
if (name == null) {
 return;
}

ShapeTracker overrides BundleTracker' s addedBundle() and removedBundle()

abstract methods to invoke processBundle() in either case. We can see at (#1), we

determine if the bundle is an extension by probing its manifest for the Extension-Name

property. Any bundle without this property in its manifest is simply ignored. If the bundle

being added contains a shape, the code at (#3) grabs the metadata from the bundle's

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

manifest headers and adds the shape to the paint frame wrapped as a DefaultShape. For

the icon metadata, we use Bundle.getResource() to load it. If the bundle being removed

contains a shape, we remove the shape from the paint frame at (#3).

 The DefaultShape, shown in Listing 3.22, serves two purposes. It implements the

SimpleShape interface and is responsible for lazily creating the actual shape

implementation using the Extension-Class metadata. It also serves as a placeholder for

the shape if and when the shape is removed from the application. We did not have to deal

with this situation in the original paint program, but now shape implementations can appear

or disappear at any time when bundles are installed, started, stopped, and uninstalled. In

such situations, the DefaultShape draws a placeholder icon on the paint canvas for any

departed shape implementations.

Listing 3.22 DefaultShape example

class DefaultShape implements SimpleShape {
 private SimpleShape m_shape;
 private ImageIcon m_icon;
 private BundleContext m_context;
 private long m_bundleId;
 private String m_className;

 public DefaultShape() {} #A

 public DefaultShape(BundleContext context, long bundleId, #B
 String className) { #B
 m_context = context; #B
 m_bundleId = bundleId; #B
 m_className = className; #B
 }

 public void draw(Graphics2D g2, Point p) {
 if (m_context != null) { #C
 try { #C
 if (m_shape == null) { #C
 Bundle bundle = m_context.getBundle(m_bundleId); #C
 Class clazz = bundle.loadClass(m_className); #C
 m_shape = (SimpleShape) clazz.newInstance(); #C
 } #C
 m_shape.draw(g2, p); #C
 return; #C
 } catch (Exception ex) {} #C
 }

 if (m_icon == null) { #D
 try { #D
 m_icon = new ImageIcon(this.getClass().getResource(#D
 "underc.png")); #D
 } catch (Exception ex) { #D
 ex.printStackTrace(); #D
 g2.setColor(Color.red); #D
 g2.fillRect(0, 0, 60, 60); #D

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 return; #D
 } #D
 } #D
 g2.drawImage(m_icon.getImage(), 0, 0, null); #D
 }
}

#A default constructor to create placeholder shape
#B constructor with extension data
#C create extension if any and delegate
#D draw default image if no extension

In summary, when the paint application is started, its activator creates and opens a

ShapeTracker. This tracks started and stopping bundles, interrogating them for extension

metadata. For every started extension bundle, it adds a new DefaultShape for the bundle

to the paint frame, which creates the extension if needed using the extension metadata.

When the bundle stops, the ShapeTracker removes the shape from the paint frame. When

a drawn shape is no longer available, the DefaultShape is used to draw a placeholder

shape on the canvas instead. If the departed shape reappears, the placeholder is removed

and the real shape is drawn on the canvas again.

Now we have a dynamically extensible paint program, as was demonstrated at the

beginning of the chapter in section [ref]. While we didn't show the activator we added to the

paint program, it is reasonably simply and only creates the framework and shape tracker on

start and disposes of them on stop. Overall, this is a good example of how easy it is make a

modularized application take advantage of the lifecycle layer to make it dynamically

extensible. It wasn't that difficult, was it? What we're still missing is a discussion about how

the lifecycle and modularity layers interact with each other, which we will get into next

3.5 Lifecycle and modularity
There is a two-way relationship between OSGi's lifecycle and modularity layers. The lifecycle

layer is used to manage which bundles are actually installed into the framework, which

obviously impacts how the modularity layer resolves dependencies among bundles. The

modularity layer uses the metadata in bundles to make sure all their dependencies are

satisfied before they can be used. This symbiotic relationship creates a chicken and egg

situation when you want to use your bundles; to use a bundle you have to install it, but to

install a bundle you must be a bundle to use the lifecycle layer to install it. This close

relationship is also obvious in how the framework resolves bundle dependencies, especially

when bundles are dynamically installed and/or removed. Let's explore this relationship by

first looking into bundle dependency resolution.

3.5.1 Resolving Bundles

The actual act of resolving of a bundle happens at the discretion of the framework as long as

it happens before any classes are loaded from the bundle. Often when resolving a given

bundle, the framework will end up resolving another bundle to satisfy a dependency of the

original bundle. This can lead to cascading dependency resolution, because in order for the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

framework to use a bundle to satisfy the requirements of another bundle, the satisfying

bundle too must be resolved and so on. Since the framework resolves dependencies when

needed, it is possible for you to mostly ignore transitioning bundles to the RESOLVED state;

you can just start a bundle and know the framework will resolve it before starting it, if

possible. This is great compared to the standard Java way, where you can run into missing

dependencies at any point during the lifetime of your application.

But what if you want to make sure a given bundle resolves correctly? For example,

maybe you want to know in advance whether an installed bundle can be started. In this case,

there is a way to ask the framework to resolve the bundle directly, but it is not a method on

Bundle like most other lifecycle operations. Instead, you use the Package Admin Service.

The Package Admin Service is represented as an interface and is depicted in Listing 3.23.

Listing 3.23 Package Admin Service interface

public interface PackageAdmin {
 static final int BUNDLE_TYPE_FRAGMENT = 0x00000001;
 Bundle getBundle(Class clazz);
 Bundle[] getBundles(String symbolicName, String versionRange);
 int getBundleType(Bundle bundle);
 ExportedPackage getExportedPackage(String name);
 ExportedPackage[] getExportedPackages(Bundle bundle);
 ExportedPackage[] getExportedPackages(String name);
 Bundle[] getFragments(Bundle bundle);
 RequiredBundle[] getRequiredBundles(String symbolicName);
 Bundle[] getHosts(Bundle bundle);
 void refreshPackages(Bundle[] bundles);
 boolean resolveBundles(Bundle[] bundles);
}

You can explicitly resolve a bundle with the resolveBundles() method, which takes an

array of bundles and returns a boolean flag indicating whether the bundles could be resolved

or not. The Package Admin Service can actually do a bit more than resolving bundles and it is

a fairly important part of the framework; it also supports the following operations among

others:

 Determine which bundle owns a particular class – In rare circumstances you might
need to know which bundle owns a particular class; you can accomplish this with the
getBundle() method, which takes a Class and returns the Bundle to which it
belongs.

 Introspect how the framework resolved bundle dependencies – You can use the
getExportedPackage() family of methods to find out which bundles are importing
a given package, while other method inspect other types of dependencies we will not
talk about until chapter 5, such as getRequiredBundles() and getFragments().

 Refresh the dependency resolution for bundles – Since the framework installed set of
bundles can evolve over time, sometimes you need to have the framework recalculate
bundle dependencies. You can do this with the refreshBundles() method.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

The most important feature of the Package Admin Service is not the ability to resolve

bundles or introspect dependencies, it is the ability to refresh bundle dependencies, which is

another tool needed for managing your bundles. But before we get into the details of

refreshing bundles, let's finish our discussion of explicitly resolving bundles.

To demonstrate how to use the Package Admin Service to explicitly resolve a bundle, we

will create a new “resolve” command for our shell to instigate bundle resolution, as shown in

Listing 3.24.

Listing 3.24 Resolve Bundle example

package org.foo.shell;

import java.io.PrintStream;
import java.util.*;
import org.osgi.framework.Bundle;
import org.osgi.service.packageadmin.PackageAdmin;

public class ResolveCommand extends BasicCommand {

 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 if (args == null) {
 getPackageAdminService().resolveBundles(null); #1
 } else {
 List<Bundle> bundles = new ArrayList<Bundle>();
 StringTokenizer tok = new StringTokenizer(args);
 while (tok.hasMoreTokens()) {
 bundles.add(getBundle(tok.nextToken())); #2
 }
 getPackageAdminService().resolveBundles(bundles.toArray(new #3
 Bundle[bundles.size()]));
 }
 }

 private PackageAdmin getPackageAdminService() {...} #4
}

We won't discuss the details of how you obtain the Package Admin Service until the next

chapter; for now, we will just use the getPackageAdminService() method at (#4). If our

“resolve” command is executed with no arguments, then we invoke resolveBundles()

with null at (#1), which will cause the framework to attempt to resolve all unresolved

bundles. Otherwise, we parse the argument as a list of whitespace-separated bundle

identifiers. For each identifier we get its associated Bundle object and add it to a list at

(#2). Once we have retrieved the complete list of bundles, we pass them in as an array to

resolveBundles() at (#3). The framework attempts to resolve any unresolved bundles of

those specified.

It is worthwhile to understand the framework may resolve additional bundles to those

that were specified. The specified bundles are the root of the framework's resolve process;

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

the framework will resolve any additional unresolved bundles necessary to resolve the

specified roots.

Resolving a bundle is a fairly easy process, since the framework does all of the hard work

for us. You'd think that'd be it. As long as your bundle's dependencies are resolved you have

nothing to worry about, right? It turns out, the dynamic nature of the bundle lifecycle makes

this not the case. Sometimes you need have the framework recalculate a bundle's

dependencies. You probably are wondering, “Why?” We will tell you all about it in the next

section.

3.5.2 Refreshing bundles

The lifecycle layer allows you to deploy and manage your application's bundles. Up until now

we have focused on installing, resolving, and starting your bundles, but there are other

interesting bundle lifecycle operations. How about updating or uninstalling a bundle? In and

of themselves, these operations are as conceptually simple as the other lifecycle operations.

We certainly understand what it means to update or uninstall a bundle. The details are a little

more complicated. When you update or uninstall a resolved bundle, you stand a good chance

of disrupting your system. This is the place where you can really start to see the impacts of

the framework's dynamic lifecyce management.

The simple case is updating or uninstalling a self-contained bundle. In this case, the

disruption is limited to the specific bundle. Even if the bundle imports packages from other

bundles, the disruption is limited to the specific bundle being updated or uninstalled. In

either case, the framework stops the bundle if it is active. In the case of updating, the

framework updates the bundle's content and restarts it if it was previously active.

Complications arise if other bundles depend on the bundle being updated or uninstalled.

Such dependencies can cause a cascading disruption to your application, if the dependent

bundles also have bundles depending on them.

Why do dependencies complicate the issue? Consider updating a given bundle. Other

dependent bundles have potentially loaded classes from the old version of the bundle. They

cannot just start loading classes from the new version of the bundle, because they would see

old versions of the classes they already loaded mixed with new versions of classes. This

would be inconsistent. In the case of an uninstalled bundle, the situation is more dire, since

we cannot just pull the rug out from under the dependent bundles.

It is worthwhile to limit the disruptions caused by bundle updates or uninstalls. The

framework provides such control by making updating and uninstalling bundles a two-step

process. Conceptually, the first step prepares the operation and the second step, called

refreshing, enacts its. Refreshing actually recalculates the dependencies of the impacted

bundles. How does this help? It allows you to control when the changeover to the new

bundle version or removal of a bundle occurs for updates and uninstalls, respectively.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

We say this is a two-step process, but what is happening in the first step? For updates,

the new bundle version is put in place, but the old version is still kept around so bundles

dependent on it can continue loading classes from it. You might be thinking to yourself,

“Does this mean there are two versions of the bundle installed at the same time?” Effectively,

the answer to this is, “yes.” And each time you perform an update without a refresh, you are

introducing yet another version. For uninstalls, the bundle is removed from the installed list

of bundles, but it is not actually removed from memory. Again, the framework keeps it

around so dependent bundles can continue to load classes from it.

For example, if we imagine we want to update a set of bundles, it would be fairly

inconvenient if the framework refreshed all dependent bundles after each individual update.

With this two-step approach, we can update all bundles in our set and then trigger one

refresh of the framework at the end. You can experience a similar situation if you install a

bundle providing a newer version of a package. Existing resolved bundles importing an older

version of the package will not be automatically rewired to the new bundle unless they are

refreshed. Again, it is nice to be able to control the point of time when this happens. It is

actually a fairly common scenario when updating your application that some of your bundles

get updated, some get uninstalled, and some get installed.

The way to trigger a refresh is to use the Package Admin Service again. To illustrate how

to use it, we add a “refresh” command to our shell as shown in Listing 3.25.

Listing 3.25 Refresh command example

package org.foo.shell;

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Ch3Figure 3.13: Updating and Refreshing bundles

BundleA
In

Revision 1

BundleA in
revision 2

BundleA
In

Revision 1

BundleA in
revision 2

BundleB in
revision 1BundleB in

revision 1BundleB in
revision 1

Update
BundleA Refresh

http://www.manning-sandbox.com/forum.jspa?forumID=507

import java.io.PrintStream;
import java.util.*;
import org.osgi.framework.Bundle;
import org.osgi.service.packageadmin.PackageAdmin;

public class RefreshCommand extends BasicCommand {

 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 if (args == null) {
 getPackageAdminService().refreshPackages(null); #1
 } else {
 List<Bundle> bundles = new ArrayList<Bundle>();
 StringTokenizer tok = new StringTokenizer(args);
 while (tok.hasMoreTokens()) {
 bundles.add(getBundle(tok.nextToken())); #2
 }
 getPackageAdminService().refreshPackages(#3
 bundles.toArray(new Bundle[bundles.size()]));
 }
 }

 private PackageAdmin getPackageAdminService() {...} #4
}

Just like in the “resolve” command, we rely on our magic method to get the Package

Admin Service at (#4.) We use the PackageAdmin.refreshPackages() method to

refresh bundles. If no arguments are given to the command, then we simply pass in null to

the Package Admin Service at (#1). This results in the framework refreshing all previously

updated and uninstalled bundles since the last refresh. This captures the update and

uninstall cases we presented above, but it doesn't help us with the rewiring case. We achieve

that by passing in the specific bundles we want refreshed. For this case, the “refresh”

command accepts an argument of whitespace-separated bundle identifiers. We parse their

identifiers out of the supplied argument, retrieve their associated Bundle object, and add

them to a list to be refreshed at (#2). We then pass in the array of bundles to refresh to the

Package Admin Service at (#3).

T h e PackageAdmin.refreshPackages() method updates or removes packages

exported by the bundles being refreshed. The method returns to the caller immediately and

performs the following steps on a separate thread:

1. First, it computes the graph of affected dependent bundles starting from the specified
bundles (or from all updated or uninstalled bundles if null is specified). Any bundle
wired to a package currently exported by a bundle in the graph is added to the graph.
The graph is fully constructed when there is no bundle outside the graph wired to a
bundle in the graph.

2. Each bundle in the graph in the ACTIVE state is stopped, moving it to the RESOLVED
state.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

3. Then each bundle in the graph in the RESOLVED state, including those which were
stopped, is unresolved and moved to the INSTALLED state; this means the bundles'
dependencies are no longer resolved.

4. Each bundle in the graph in the UNINSTALLED state is removed from the graph and
completely removed from the framework (i.e., is free to be garbage collected). Now
we are back to a fresh starting state for the affected bundles.

5. For the remaining bundles in the graph, the framework restarts any previously
ACTIVE bundles, which resolves them and any bundles on which they depend.

6. When everything is done, the framework fires an event of type
FrameworkEvent.PACKAGES_REFRESHED.

It is possible, as a result of the previous steps, some of the previously ACTIVE bundles

can no longer be resolved; maybe a bundle providing a required package was uninstalled. In

such cases, or for any other errors, the framework fires an event of type

FrameworkEvent.ERROR.

Listing 3.26 depicts a shell session showing how the “resolve” and “refresh” commands

are used in combination to manage a system.

Listing 3.26 Example resolve and refresh commmand usage

-> install file:foo.jar
Bundle: 2
-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
[2] [INSTALLED] Foo Bundle
 Location: file:foo.jar
 Symbolic-Name: org.foo.foo
-> resolve 2 #1
-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
[2] [RESOLVED] Foo Bundle
 Location: file:foo.jar
 Symbolic-Name: org.foo.foo
-> refresh 2 #2
-> bundles
 ID State Name
[0] [ACTIVE] System Bundle

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
[2] [INSTALLED] Foo Bundle
 Location: file:foo.jar
 Symbolic-Name: org.foo.foo

We install a bundle and resolve it using the “resolve” command at (#1), which transitions

it to the RESOLVED state. Using the “refresh” command at (#2), we transition it back to the

INSTALLED state. At this point, we've achieved a lot in understanding our understanding of

the lifecycle layer, but before we can finish there are still some nuances to explain when it

comes to updating bundles. Let's get to it.

3.5.3 When updating is not really updated

One of the gotchas many people run into when updating a bundle is it may or may not be

using its new classes after the update operation. When we said previously that updating a

bundle is a two-step process, where the first step prepares the operation and the second

step enacts it; well, this is not entirely accurate when you update a bundle. The specification

says the framework should actually enact the update immediately, so after the update the

bundle should theoretically be using its new classes, but it does not necessarily start using

them immediately. So in some situations after updating a bundle new classes are used and in

other situation old classes used. Sounds confusing, doesn't it? It is. Why was it defined this

way? Why not just wait to enact the new revision completely until a refresh?

The answer, as you might guess, is historical. The original R1 specification defined the

update operation to actually update a bundle. End of story. There was no Package Admin

Service. With experience it became clear clear that the specified definition of update was

insufficient. There were too many details left for framework implementations to decide, such

as when to dispose of old classes and start using new class. This led to inconsistencies, which

made it difficult to manage the bundle lifecycle across different framework implementations.

This situation resulted in the introduction of the Package Admin Service in the R2

specification to resolve the inconsistencies around update once and for all. Unfortunately, the

original behavior of update was left intact, due to backwards compatibility concerns. These

concerns leave us with the less than clean approach to bundle update that we have today,

but at least it is fairly consistent across framework implementations.

Back to the issue of an updated bundle sometimes using old or new classes, as arcane as

it may be, there actually is a way to understand what is going. Whether the new or the old

classes of your bundle are used after an update depends on two factors:

1. If the classes are from a private package or an exported package.

2. If the classes are from an exported package, whether or not they are being used by
another bundle.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Regarding the first factor, if the classes come from a private bundle package (i.e., it is not

exported), then the new classes will become available immediately no matter what. If they

are from an exported package, then their visibility depends on whether other bundles are

using them. If no other bundles are using the exported packages, then the new classes will

become available immediately. The old version of the classes are no longer needed. On the

other hand, if any other bundles are using the exported packages, then the new classes will

not become available immediately, since the old version is still required. In this case, the new

classes will not be made available until the PackageAdmin.refreshPackages() method

is called.

There is yet another nuance to this. In chapter 5 we will learn that bundles can also

import the same packages they export. If a bundle imports a package it exports and the

imported package from the the updated bundle matches the exported package from the old

version, then the updated bundle will actually have its import wired to the old exported

packages. This might work out well in some cases where you are just fixing a bug in a

private package, for example. However, it potentially does lead to odd situations, since the

updated bundle is using new versions of private classes along side old versions of exported

classes. If you need to avoid this, then you should specify version ranges when your bundle

imports its own packages to avoid the situation.

If the updated bundle imports its own package, but the import doesn't match the old

version of the exported package, we have a different situation. This situation is similar to if

the bundle only exports the package. In this case, the new classes from the exported

packages become available immediately to the updated exporting bundle and for future

resolves of other bundles, but not to existing importing bundles, which continue to see the

old version. This situation generally requires PackageAdmin.refreshPackages() to bring

the bundles back to a useful state.

Some of these issues can be avoided through interface-based programming and bundle

partitioning. For example, if you can separate shared API (i.e., the API through which

bundles interact) into interfaces and you place those interfaces into a separate set of

packages contained in a separate bundle, then you can sometimes simplify this situation. In

such a setup, both the client bundles and the bundles implementing the interfaces will have

dependencies on the shared API bundle, but not each other. In others, we limit the coupling

between clients and the providers of the functionality.

3.6 Summary
In this chapter we have seen that whether your desire is to simply deploy the bundles

needed to execute your application or to create a sophisticated auto-adaptive system, the

lifecycle layer provides you with everything you need. Let's review what we've learned:

 A bundle can only be used by installing it into a running instance of the OSGi
framework.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 The lifecycle layer API is composed of the main interfaces: BundleActivator,
BundleContext, and Bundle.

 A BundleActivator is how a bundle hooks into the lifecycle layer to become
lifecycle-aware, which allows it to gain access to all framework facilities for inspecting
and modifying the framework state at execution time.

 The framework associates a lifecycle state with each installed bundle and the
BundleContext and Bundle lifecycle interfaces make it possible to transition
bundles though these states at execution time.

 Monitoring bundle lifecycle events is a form of dynamic extensibility available in the
OSGi framework based on the dynamically changing installed set of bundles (a.k.a.,
the extender pattern).

 The lifecycle and module layers have a close relationship, which is witnessed when
bundles are updated and uninstalled. The Package Admin Service is used to manage
this interaction.

Now we will move onto the next layer of the OSGi framework, which is the service layer.

Services promote interface-based programming among our bundles and provide another

form of dynamic extensibility.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

4
Studying Services

So far we've seen two layers of the OSGi framework. The modularity layer helped us

separate our application into well-defined, re-usable bundles, and the lifecycle layer built on

the modularity layer to help us manage and evolve our bundles over time. Now we're going

to make things even more dynamic with the third and final layer of OSGi: services!

We start off this chapter with a general discussion about services to make sure we are all

thinking about the same thing. We then look at when you should (and shouldn't) use services

and walk through an example to demonstrate the OSGi service model. At this point, you

should understand the basics, so we'll take a closer look at how best to handle the dynamics

of OSGi services, including common pitfalls and how to avoid them.

With these techniques in mind we'll update our ongoing paint program to use services

and see how the service layer relates to the modularity and lifecycle layers. We conclude with

a review of standard OSGi framework services and learn more about the “compendium”. As

you can see we have many useful and interesting topics to cover, so let's get started and talk

about services!

4.1 The what, why and when of services
Before looking at OSGi services, we should first try to agree on what we mean by a service,

since the term can mean different things to different people depending on your background.

Once we know the “what”, we also need to know why and when to use services, so we'll get

to that too.

4.1.1 What is a service?

You might think a service is something you access across the network, like retrieving stock

quotes or searching Google. In fact, the classical view of a service is something much

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

simpler, namely: “work done for another”. This definition could easily apply to a simple

method call between two objects, because the callee is doing work for the caller. So how

does a service differ from a method call? Well, a service implies a contract between the

provider of the service and its consumers. Consumers typically aren't worried about the

exact implementation behind a service (or even who provides it) as long as it follows the

agreed contract, suggesting that services are to some extent substitutable. Using a service

also involves a form of discovery or negotiation, implying each service has a set of

identifying features (see Figure 4.1).

If you think about it, Java interfaces provide part of a contract and Java class-linking is a

type of service lookup because it “discovers” methods based on signatures and class

hierarchy. Different method implementations can also be substituted by changing the JAR

files on the class path. So a local method call could easily be seen as a service; although it

would be even better if you could use a high-level abstraction to find services or if there was

a more dynamic way to switch between implementations at execution time. Thankfully, OSGi

helps with both by recording details of the service contract, such as interface names and

metadata, and by providing a registry API to publish and discover services. You'll hear more

about this later on in 4.2, for now let's continue to look at services in general.

You might be thinking a Java method call in the same process can't possibly be a service,

because it doesn't involve a remote connection or a distributed system. In reality, as we shall

see throughout this chapter, services do not have to be remote and there are many benefits

to using a service-oriented approach in a purely local application.

Components versus services

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.1 Services follow a contract and involve some form of discovery

AA

A

A

A ?

http://www.manning-sandbox.com/forum.jspa?forumID=507

When people discuss services they often talk about components in the same context, so it

is useful for us to consider how services and components compare and overlap. In fact,

service-oriented design and component-oriented design are extremely complimentary.

The key semantic difference between these two approaches is:

• in a component-oriented approach the architect focuses on the provider's view,

but

• in a service-oriented approach the architect focuses on the consumer's view.

Typically in a component-oriented approach, the architect is focused on ensuring that the

component he or she provides is packaged in such a way that it makes his or her life

easier. We know when it comes to packaging and deploying Java code there are often a

range of different scenarios in which the code will be used. For example: live deployments

may need extra security constraints applied; testing deployments may need extra

assertion filters applied; and development deployments may need minimal dependencies

for fast turn around. The component design approach tries to make it as easy as possible

for the architect to chose what functionality they want to deploy without hard coding this

into their application.

This contrasts with a service-oriented approach where the architect is focused on

supplying a function, or set of functions, to consumers who typically have very little

interest in how the internals of the individual component is constructed, but have very

specific requirements for how they want the function to behave. For example: acid

transactions; low latency; or encrypted data.

We will see in chapter 11 that component-oriented approaches can easily be built on top

of the OSGi services model. With this in mind let's continue our introduction to services

by considering what exactly are the benefits of services.

4.1.2 Why use services?

The main drive behind using services is to get others to do work on your behalf, rather than

attempting to do everything yourself. This idea of delegation fits in very well with many

object-oriented design techniques, such as Class-Responsibility-Collaboration (CRC) cards

[ref1]. CRC cards are a role-playing device used by development teams to think about what

classes they need, as well as which class will be responsible for which piece of work and how

the various classes should collaborate to get work done. Techniques like CRC cards try to

push work out to other components wherever possible, which leads to lean, well-defined,

maintainable components. Think of this like a game of pass-the-parcel, where each

developer is trying to pass parcels of work onto other developers – except in this game when

the music stops you want the smallest pile of parcels!

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

A service-oriented approach also promotes:

 less coupling between providers and consumers, so it's easier to re-use components,

 more emphasis on interfaces (the abstract) rather than superclasses (the concrete),

 clear descriptions of dependencies, so you know how it all fits together, and

 support for multiple competing implementations, so you can swap parts in and out.

In other words, it encourages a “plug-and-play” approach to software development, which

means much more flexibility during development, testing, deployment, and maintenance.

You don't mind where a service comes from, as long as it does what you want. Still not

convinced? Let's see how each of these points help you build a better application.

LESS COUPLING

One of the most important aspects of a service is the contract. Every service needs some

form of contract, otherwise how could a consumer find it and use it? The contract should

include everything a consumer needs to know about the service, but no more. Putting too

much detail in a contract tightens the coupling between the provider and consumer, and

limits the possibility of swapping in other implementations later on. To put it in clothing

terms, you want it nice and stretchy to give your application room to breathe!

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.2 Using CRC to place responsibilities can be like playing pass-the-parcel

http://www.manning-sandbox.com/forum.jspa?forumID=507

A good service contract clearly and cleanly defines the boundary between major

components and helps with development and maintenance. Once the contract is defined

developers can work on implementing service providers and consumers in parallel to reduce

development time and can use scripted or “mock” services to perform early testing of key

requirements. So contracts are good news for everyone, but how do we define one in Java?

MORE EMPHASIS ON INTERFACES

Java interfaces can form part of a service contract. They list the various methods that make

up a service along with expected parameters and return types. Once defined, developers can

start programming against the agreed upon set of interfaces without having to wait for

others to finish their implementations (Figure 4.4). Interfaces also have several advantages

over concrete classes. A Java class can implement several interfaces, whereas it could only

ever extend one concrete class. This is essential if you want flexibility over how you

implement related services. Interfaces also provide a higher level of encapsulation, because

they cannot define any mutable fields.

You could decide to stop at this point and assemble your final application by creating the

various components with “new” and wire their dependencies manually. Or you could use a

dependency injection framework to do the construction and wiring for you. If you did then

you would have a pluggable application and all the benefits that entails, but you would also

miss out on two other benefits of a service-oriented approach: rich metadata and the ability

to switch between implementations at execution time.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.3 Why you need contracts

Service contract

Interface Leg

Description:
bends at knee

[etc...]

Our robot needs legs!

?

=

http://www.manning-sandbox.com/forum.jspa?forumID=507

CLEAR DESCRIPTIONS OF DEPENDENCIES

Interfaces alone can't easily capture certain characteristics of a service; like the quality of a

particular implementation, or configuration settings like supported locales. Such details are

often best recorded as metadata alongside the service interface, and to do this you need

some kind of framework. Semantics, which describe “what” a service does, are also hard to

capture. Simple semantics like pre- and post-conditions can be recorded using metadata or

might even be enforced by the service framework. Other semantics can only be properly

described in documentation, but even here metadata can help provide a link to the relevant

information. Think about your current application, what characteristics might you want to

record outside of classes and interfaces? To get you started, Table 1 describes some

characteristics from real-world services that could be recorded as metadata:

Table 1 Example characteristics of real-world services

Characteristic Why might you be interested?

Supported locales A price checking service may only be available for certain currencies

Transaction cost You might want to use the cheapest service, even if it takes longer

Throughput You may want to use the fastest service regardless of cost

Security You may only want to use services that are digitally signed by certain providers

Persistence

characteristics

You may only want to use a service that guarantees to store your data in such a

way that it will not be lost should the JVM be restarted

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.4 Programming to interfaces means teams can work in parallel

Body team Left leg teamRight leg team

http://www.manning-sandbox.com/forum.jspa?forumID=507

As you can see, metadata can capture fine-grained information about your application in

a structured way. This is very helpful to developers when assembling, supporting, and

maintaining an application. Recording metadata alongside a service interface also means you

can be more exact about what you actually need. The service framework can use this

metadata to filter out services you don't want, without having to load and access the service

itself. But why might you want to do this? Why not just call a method on the service to ask if

it does what you need?

SUPPORT FOR MULTIPLE COMPETING IMPLEMENTATIONS

A single Java interface can have many implementations; one might be fast, but use a lot of

memory, another could be slow, but conserve memory. How do you know which one to use

when they both implement the same interface? You could add a query method to the

interface that tells you more about the underlying implementation, but this leads to bloat

and reduces maintainability. What happens when you add another implementation that can't

be characterized using the existing method? Using a query method also means you have to

find and call each service implementation before you even know whether you want to use it

or not, which isn't very efficient. Especially when you might have hundreds of potential

implementations that could be loaded at execution time.

Because service frameworks help you record metadata alongside services, they can also

help you query and filter on this metadata when discovering services. This is different from

classic dependency injection frameworks, which look up implementations solely based on the

interfaces used at a given dependency point. Figure 4.5 shows how services can help you get

exactly what you want.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.5 Dependency injection vs. service discovery

Leg Leg Leg Leg

metadata
color: silver
side: right

metadata
color: gold
side: left

Dependency Injection Service Discovery

http://www.manning-sandbox.com/forum.jspa?forumID=507

Hopefully by now you agree that services are a good thing – but as the saying goes, you

can have too much of a good thing! How can you know when you should use a service or

when it would be better to use another approach such as a static factory method or simple

dependency injection?

4.1.3 When to use services?

The best way to decide when to use a service is to consider the benefits: less coupling,

programming to interfaces, additional metadata, and multiple implementations. If you have a

situation where any of these make sense or your current design provides similar benefits,

then you should use a service. The most obvious place to use a service is between major

components, especially if you want to replace or upgrade those components over time

without having to rewrite other parts of the application. Similarly, anywhere you lookup and

choose between implementations is another candidate for a service, because it means you

can replace your custom logic with a standard, recognized approach.

Services can also be used as a substitute for the classic listener pattern [ref2]. The

listener pattern is when one object offers to send events to other objects, known as listeners.

The event source provides methods to subscribe and unsubscribe listeners and is responsible

for maintaining the list of listeners. Each listener implements a known interface to receive

events and is responsible for subscribing and unsubscribing to the event source (Figure 4.6).

Implementing the listener pattern involves writing a lot of code to manage and register

listeners, but how can services help? A service can be seen as a more general form of

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.6 Listener pattern

subscribe / unsubscribe

send events

Event Source

Listener

sources

listeners

http://www.manning-sandbox.com/forum.jspa?forumID=507

listener, because it can receive all kinds of requests, not just events. So why not save time

and get the service framework to manage listeners for you by registering them as services?

To find the current list of listeners, the sender just queries the service framework for

matching services (Figure 4.2). Service metadata can be used to further define and filter the

interesting events for a listener. In OSGi, this is known as the whiteboard pattern and we'll

use this pattern later on when we update the “paint example” to use services in 4.4.

WHEN NOT TO USE SERVICES?

Another way to decide if you should use a service is to consider when you wouldn't want to

use them. Depending on the service framework, there may be overhead involved when

calling a service, so you probably don't want to use them in performance critical code. That

said, the overhead when calling a service in OSGi can be almost equivalent to making a

direct method call when you use the approaches shown in chapter 11. You should also

consider the work needed to define and maintain the service contract. There is no point in

using a service between two tightly coupled pieces of code that are always developed and

updated in tandem (unless of course you need to keep choosing between multiple

implementations).

What if you're still not sure whether to use a service or not? Thankfully there is an

approach which makes development easier and helps you migrate to services later on:

programming to interfaces. If you use interfaces, then you're already more than halfway to

using services, especially if you also take advantage of dependency injection. Of course

interfaces can be taken to extremes; there's no point in creating an interface for a class if

there's only ever going to be one implementation. But for outward-facing interaction between

components, it definitely makes sense to use interfaces wherever possible.

So what have we learned? We saw how interfaces reduce coupling and promote faster

development, regardless of whether you actually end up using services. We also saw how

services help capture and describe dependencies and how they can be used to switch

between different implementations. More importantly, we learned how a service-oriented

approach makes developers think more about where work should be done, rather than just

lumping code all in one place. And finally, we went through a whole section about services

without once mentioning remote or distributed systems.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.7 Whiteboard pattern

Event Source
Service
Registry

Listener
discover

http://www.manning-sandbox.com/forum.jspa?forumID=507

So is OSGi just another service model? Should we end the chapter here with an overview

of the API and move on to other topics? No, because there is one aspect that is unique to the

OSGi service model – services are completely dynamic!

4.2 OSGi services in action!
What do we mean by dynamic? After your bundle has discovered and started using a service

in OSGi, it can disappear at any time. Perhaps the bundle providing it has been stopped or

even uninstalled, perhaps a piece of hardware has failed; whatever the reason, you should

be prepared to cope with services coming and going over time. This is different from many

other service frameworks, where once you bind to a service it is fixed and never changes –

although it might throw a runtime exception to indicate a problem. OSGi doesn't try to hide

this dynamism, if a bundle wants to stop providing a service then there is little point in trying

to hold it back or pretend the service is still there. This is similar to many of the failure

models used in distributed computing. Hardware problems in particular should be

acknowledged and dealt with promptly rather than ignored. Thankfully, OSGi provides a

number of techniques and utility classes to build robust yet responsive applications on top of

such fluidity; we'll look more closely at these in chapter 11. Before we can discuss the best

way to handle dynamic services, we need to understand how OSGi services work at the basic

level.

The OSGi framework has a centralized service registry that follows a “publish-find-bind”

model (Figure 4.7). Or to put this in the perspective of service providers and consumers:

 A providing bundle can publish POJOs as services

 A consuming bundle can find and then bind services

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

The OSGi service registry is accessed through the BundleContext interface, which we

saw back in section 3.2.4; back then we looked at its lifecycle-related methods, now we'll

look into its service-related methods as shown in Listing 4.1.

Listing 4.1 BundleContext methods related to services

public interface BundleContext {
 ...

 void addServiceListener(ServiceListener listener, String filter)
 throws InvalidSyntaxException;

 void addServiceListener(ServiceListener listener);

 void removeServiceListener(ServiceListener listener);

 ServiceRegistration registerService(
 String[] clazzes, Object service, Dictionary properties);

 ServiceRegistration registerService(
 String clazz, Object service, Dictionary properties);

 ServiceReference[] getServiceReferences(String clazz, String filter)
 throws InvalidSyntaxException;

 ServiceReference[] getAllServiceReferences(String clazz, String filter)
 throws InvalidSyntaxException;

 ServiceReference getServiceReference(String clazz);

 Object getService(ServiceReference reference);

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.8 OSGi service registry

OSGi
Service
Registry

framework

bundle

publish

find

find

http://www.manning-sandbox.com/forum.jspa?forumID=507

 boolean ungetService(ServiceReference reference);

 ...
}

As long as your bundle has a valid context (i.e., when it is active), it can use services.

Let's see how easy it is to use a bundle's BundleContext to publish a service.

4.2.1 Publishing a service

Before we can publish a service, we need to describe it so others can find it. In other words,

we need to take details from the agreed contract and record them in the registry. So what

details does OSGi need from the contract?

DEFINING A SERVICE

It's actually very simple, in order to publish a service in OSGi you need to provide an array of

interface names along with an optional dictionary of metadata. Here's what you might use

for a service that can provide both stock listings and stock charts:

String[] interfaces = new String[] {
 StockListing.class.getName(), StockChart.class.getName()}; #A

Dictionary metadata = new Properties(); #B
metadata.setProperty(“name”, “LSE”);
metadata.setProperty(“currency”, Currency.getInstance(“GBP”)); #C
metadata.setProperty(“country”, “GB”);

#A Class.getName() helps when refactoring
#B metadata must be in Dictionary type
#C metadata can contain any Java type

Once everything is ready, you can publish your service by using your bundle context:

ServiceRegistration registration =
 bundleContext.registerService(interfaces, new LSE(), metadata);

SERVICE REGISTRATIONS ARE PRIVATE

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.9 Publishing a service that provides both stock listings and stock charts

ServiceRegistration

ctx.registerService (, , ,)

OSGi
Service
Registry

£
Hi Lo StockHi Lo Stock
 44¼ 2 FOO¼ 2 FOO
18 11½ NUL18 11½ NUL LSE

id

http://www.manning-sandbox.com/forum.jspa?forumID=507

The service registration should not be shared with other bundles, because it is tied to the

lifecycle of the publishing bundle.

The “LSE” implementation is a Plain Old Java Object (POJO), it doesn't need to extend or

implement any specific OSGi types or use any annotations. It just has to match the provided

service details. There is no leakage of OSGi types into service implementations. In fact, you

don't even have to use interfaces if you don't want to, OSGi will accept services registered

under concrete class names.

UPDATING SERVICE METADATA

Once you've published a service, you can change its metadata at any time by using its

service registration:

registration.setProperties(newMetadata);

This makes it easy for your service to adapt to circumstances and inform consumers

about any such changes by updating its metadata. The only piece of metadata you cannot

change is the “service.id” property, which is maintained by the framework. Other properties

which have special meaning to the OSGi framework are shown in Table 2:

Table 2 Standard OSGi Service Properties

Key Type Description

objectClass String[] The class names the service is registered under, defaults to the set of

names passed in when registering the service.

service.id Long Unique registration sequence number, assigned by the framework when

registering the service – cannot be chosen or changed by the developer.

service.pid String Persistent (unique) service identifier, chosen by developer.

service.ranking Integer Ranking used when discovering services, defaults to 0 – services are

sorted by their ranking (highest first) and then by their id (lowest first)

service.description String Description of the service, chosen by developer.

service.vendor String Name of the vendor providing the service, chosen by developer.

REMOVING A SERVICE

Removing a published service can also be done at any time by the publishing bundle:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

registration.unregister();

What happens if your bundle stops before you've removed all your published services?

The framework keeps track of what you have registered and any services that have not yet

been removed when a bundle stops are automatically removed by the framework. So you

don't have to explicitly unregister a service when your bundle is stopped, although it is

prudent to unregister before cleaning up required resources. Otherwise, someone could

attempt to use the service while you're trying to clean it up.

We've successfully published our service in only a few lines of code and without any use

of OSGi types in our service implementation, now let's see if it's just as easy to discover and

use the service.

4.2.2 Finding and binding services

As with publishing, you need to take details from the service contract to discover the right

services in the registry. The simplest query takes a single interface name, which is the main

interface you expect to use as a consumer of the service:

ServiceReference reference =
 bundleContext.getServiceReference(StockListing.class.getName());

This time the registry returns a service reference, which is an indirect reference to the

discovered service. This service reference can safely be shared with other bundles, because it

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.10 Using an OSGi service

ctx.getService()

ServiceReference

direct method calls

OSGi
Service
Registry

ctx.ungetService()

http://www.manning-sandbox.com/forum.jspa?forumID=507

is not tied to the lifecycle of the discovering bundle. But why does the registry return an

indirect reference and not the actual service implementation?

To make services fully dynamic, the registry must decouple the use of a service from its

implementation. By using an indirect reference it can track usage of the service, support

laziness, and tell consumers when the service is removed.

Revisiting our magic method

Recall in chapter 3 when we implemented the “refresh” command for our shell, we had to

use the magic getPackageAdminService() method to acquire the Package Admin

Service? Now we have enough knowledge to see what was really happening behind the

scenes:

 private PackageAdmin getPackageAdminService() {

 return (PackageAdmin) m_context.getService(#1

 m_context.getServiceReference(#2

 PackageAdmin.class.getName())); #3

 }

As you see, the method is actually quite simple. At (#2) we use the BundleContext to

find a service implementing the Package Admin Service interface at (#3). This returns a

service reference, which we use to get the service implementation at (#1). No more

magic!

CHOOSING THE BEST SERVICE

If multiple services match the given query, the framework will choose what it considers to be

the “best” services. It determines the best service using the ranking property mentioned in

Table 2, where a larger numeric value denotes a higher ranked service. If multiple services

have the same ranking, then the framework will then choose the service with the lowest

service identifier, also covered in Table 2. Since the service identifier is an increasing number

assigned by the framework, lower identifiers are associated with older services. So if multiple

services have equal ranks, the framework effectively chooses the oldest service, which

guarantees some stability and provides an affinity to existing services.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

You've seen how to find services based on the interfaces they provide, but what if you

want to discover services with certain properties? For example, in Figure 4.12 if we just ask

for any stock listing service we'd get back the first one (NYSE) – but what if we want a UK

based listing? The bundle context provides us with another query method that accepts a

standard LDAP filter string, described in RFC 1960 [ref3], and returns all services matching

the filter.

A quick guide to using LDAP queries

Attribute matching:

(name=John Smith)

(age>=20)

(age<=65)

Fuzzy matching:

(name~=johnsmith)

Wild-card matching:

(name=Jo*n*Smith*)

Does attribute exist:

(name=*)

Match ALL the contained clauses:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.11 OSGi service ordering (by highest service.ranking then lowest service.id)

2

rank: 3

3

rank: null

4

rank: 0

5

rank: -1

6

rank: null

7

rank: 3

8

rank: 2
1

rank: 2

2

rank: 3

4

rank: 0

6

rank: null

5

rank: -1

7

rank: 3

8

rank: 2

1

rank: 2

3

rank: null

http://www.manning-sandbox.com/forum.jspa?forumID=507

(&(name=John Smith)(occupation=doctor))

Match ONE of the contained clauses:

(|(name~=John Smith)(name~=Smith John))

Negate the contained clause:

(!(name=John Smith))

Here's how you might find all stock listing services using the GBP currency:

ServiceReference[] references =
 bundleContext.getServiceReferences(StockListing.class.getName(),
 “(currency=GBP)”);

We would now get back the LSE service instance with service.id 3.

You can also use the “objectClass” property, mentioned in Table 2, to query for services

providing additional interfaces. Here we narrow the search to those stock listing services that

use a currency of GBP and also provide a chart service:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.12 Discovering an OSGi service

Hi Lo StockHi Lo Stock
 44¼ 2 FOO¼ 2 FOO
18 11½ NUL18 11½ NUL

Hi Lo StockHi Lo Stock
 44¼ 2 FOO¼ 2 FOO
18 11½ NUL18 11½ NUL

Hi Lo StockHi Lo Stock
 44¼ 2 FOO¼ 2 FOO
18 11½ NUL18 11½ NUL

Hi Lo StockHi Lo Stock
 44¼ 2 FOO¼ 2 FOO
18 11½ NUL18 11½ NUL

Hi Lo StockHi Lo Stock
 44¼ 2 FOO¼ 2 FOO
18 11½ NUL18 11½ NUL

OSGi
Service
Registry

LSE

NYSE

DAX

KRX

£

₩

$

£ €
3

5

1

2

ctx.getServiceReference ()
Hi Lo StockHi Lo Stock
 44¼ 2 FOO¼ 2 FOO
18 11½ NUL18 11½ NUL

LSE

4

ServiceReference

http://www.manning-sandbox.com/forum.jspa?forumID=507

ServiceReference[] references =
 bundleContext.getServiceReferences(StockListing.class.getName(),
 “(&(currency=GBP)(objectClass=org.example.StockChart))”);

Which means we would now get the LSE service instance with service.id 4. As we've just

seen, we can look up all sorts of service references based on our needs, but how do we use

them? We need to dereference each service reference to get the actual service object.

USING A SERVICE

Before you can use a service you must bind to the actual implementation from the registry:

StockListing listing =
 (StockListing) bundleContext.getService(reference);

The implementation returned will typically be exactly the same POJO instance previously

registered with the registry, although the OSGi specification does not actually prohibit use of

proxies or wrappers. Each time you call getService() the registry will increment a usage

count, so it can keep track of who is using a particular service. To be a good OSGi citizen, we

should tell the registry when we have finished with a service:

bundleContext.ungetService(reference);
listing = null;

SERVICES ARE NOT PROXIES

In general, in OSGi when you are making method calls on a service you are holding a

reference to the actual Java object supplied by the providing bundle. For this reason, you

should also remember to null variables referring to the service instance when done using

it, so it can be safely garbage collected. The actual service implementation should

generally never be stored in a long-lived variable such as a field, instead you should try to

access it temporarily via the service reference and expect that the service may go away

at any time.

We have now seen how to publish simple Java POJOs as OSGi services, how they can be

discovered, and how the registry tracks their use. But if you remember one thing from this

section it should be that services can disappear at any time. If you want to write a robust

OSGi-based application you should not rely on services always being around or even

appearing in a particular order when starting your application. Of course, we don't want to

scare you with all of this talk of dynamism. It is important to realize dynamism isn't created

or generated by OSGi, it just enables it. Services are never arbitrarily removed; either a

bundle has decided to remove it or an agent has stopped a bundle. You have control over

how much dynamics you need to deal with, but it is always good to code defensively in case

things change in the future or your bundles are used in different scenarios.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

So what is the best way to cope with potential dynamism? How can you get the most

from dynamic services without continual checking and re-checking? Well the next section

discusses potential pitfalls and recommended approaches when programming with dynamic

services.

4.3 Dealing with dynamics
In the last section we covered the basics of OSGi services and saw how easy it is to publish

and discover services. In this section we shall look more closely at the dynamics of services

and techniques to help you write robust OSGi applications. To demonstrate this, we are going

to use the OSGi Log Service.

The Log Service is a standard OSGi service, one of the so-called “compendium” or non-

core services. Compendium services will be covered more in 4.6.2. For now, all we need to

know is that the Log Service provides a simple logging facade, with various flavors of

methods accepting a logging level and a message.

Listing 4.2 The OSGi Log Service

package org.osgi.service.log;

import org.osgi.framework.ServiceReference;

public interface LogService {

 public static final int LOG_ERROR = 1;
 public static final int LOG_WARNING = 2;
 public static final int LOG_INFO = 3;
 public static final int LOG_DEBUG = 4;

 public void log(int level, String message);
 public void log(int level, String message,
 Throwable exception);

 public void log(ServiceReference sr, int level, String message);
 public void log(ServiceReference sr, int level, String message,
 Throwable exception);
}

With OSGi, we could use any number of possible Log Service implementations in our

example, such as those written by OSGi framework vendors or others written by third-party

bundle vendors. To keep things simple and to help us trace what's happening inside the

framework, we will use our own dummy Log Service that implements only one method and

outputs a variety of debug information about the bundles using it.

We learned the basics of discovering services in section 4.2.2, in the following section we

will take that knowledge and use it to lookup and call the Log Service, pointing out and

solving potential problems as we go along.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

EXAMPLES AHEAD, PLEASE BEWARE

The examples in the next section are intended purely to demonstrate the proper use of

dynamic OSGi services. In order to keep these explanatory code snippets focused and to

the point they will occasionally avoid using proper programming techniques such as

encapsulation. You should be able to join the dots between the patterns we show you in

these examples and real-world OO design.

4.3.1 Avoiding common pitfalls

When people start using OSGi, they often write code that looks similar to this:

Listing 4.3 Broken lookup example – service instance stored in a field

public class Activator implements BundleActivator {

 volatile LogService m_logService; #A

 public void start(BundleContext context) {
 ServiceReference logServiceRef =
 context.getServiceReference(LogService.class.getName()); #B

 m_logService = (LogService) context.getService(logServiceRef); #C

 startTestThread(); #D
 }

 public void stop(BundleContext context) {
 m_logService = null; #E
 stopTestThread();
 }
}

#A volatile shared between threads
#B find single best Log Service
#C store instance in field (bad!)
#D start Log Service test thread
#E clear field when we're done

Because we store the Log Service instance in a field, our test code can be very simple:

while (m_logService != null) {
 m_logService.log(LogService.LOG_INFO, "ping");
 pauseTestThread();
}

But there is a major problem with our bundle activator! The Log Service implementation

is stored directly in a field, which means the consumer won't know when the service is

retracted by its providing bundle. It only finds out when the implementation starts throwing

exceptions after removal when the implementation becomes unstable. This hard reference to

the implementation also keeps it from being garbage collected while our bundle is active,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

even if the providing bundle is uninstalled. To fix this, let's replace the Log Service field with

the indirect service reference.

Listing 4.4 Broken lookup example – service is only discovered on startup

public class Activator implements BundleActivator {

 volatile ServiceReference m_logServiceRef;
 BundleContext m_context;

 public void start(BundleContext context) {
 m_logServiceRef =
 context.getServiceReference(LogService.class.getName()); #A

 m_context = context; #B

 startTestThread();
 }

 public void stop(BundleContext context) {
 m_logServiceRef = null;
 stopTestThread();
 }
}

#A store indirect service reference instead
#B must remember context for later on

We will also need to change our test method to always dereference the service:

Listing 4.5 Broken lookup example – testing the discovered Log Service

while (m_logServiceRef != null) {
 LogService logService =
 (LogService) m_context.getService(m_logServiceRef); #A

 if (logService != null) { #B
 logService.log(LogService.LOG_INFO, "ping");
 } else {
 alternativeLog("LogService has gone");
 }

 pauseTestThread();
}

#A need the saved bundle context
#B if null then service was removed

This is slightly better, but there is still a problem with our bundle activator. We only

discover the Log Service once in the start method, so if there is no Log Service when our

bundle starts then the reference will always be null. Similarly, if there is a Log Service at

startup, but it subsequently disappears, then the reference will always return null from that

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

point onwards. Perhaps you want this one-off check, so you can revert to another (non-

OSGi) logging approach based on what's available at startup. But this isn't very flexible, it

would be much better if we could react to changes in the Log Service and always use the

active one.

A simple way of reacting to potential service changes is to always lookup the service just

before you want to use it, like so:

Listing 4.6 Broken lookup example – potential race condition

while (m_context != null) {
 ServiceReference logServiceRef =
 m_context.getServiceReference(LogService.class.getName()); #A

 if (logServiceRef != null) { #B
 ((LogService) m_context.getService(logServiceRef)).log(
 LogService.LOG_INFO, "ping"); #C
 } else {
 alternativeLog("LogService has gone");
 }

 pauseTestThread();
}

#A lookup best Log Service each time
#B if null then service was removed
#C safe to dereference... or is it?

With this change our bundle activator becomes very trivial, just recording the context:

public class Activator implements BundleActivator {

 volatile BundleContext m_context;

 public void start(BundleContext context) {
 m_context = context;
 startTestThread();
 }

 public void stop(BundleContext context) {
 m_context = null;
 stopTestThread();
 }
}

Unfortunately, we're still not done, because there is a problem in our test method – can

you see what it is? Here's a clue: remember that services can disappear at any time and with

a multi-threaded application this can even happen between single statements.

The problem is that in between the calls to getServiceReference() and

getService(), the Log Service could disappear. The current code assumes once you have

a reference you can safely dereference it immediately afterwards. This is a common mistake

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

made when starting with OSGi and an example of what's known as a “race condition” in

computing.

Let's make the lookup more robust by adding a few more checks and a try-catch block:

Listing 4.7 Correct lookup example

while (m_context != null) {
 ServiceReference logServiceRef =
 m_context.getServiceReference(LogService.class.getName()); #A

 if (logServiceRef != null) { #B
 try {
 LogService logService =
 (LogService) m_context.getService(logServiceRef);

 if (logService != null) { #C
 logService.log(LogService.LOG_INFO, "ping");
 } else {
 alternativeLog("LogService has gone");
 }

 } catch (RuntimeException re) {
 alternativeLog("error in LogService " + re); #D
 } finally {
 m_context.ungetService(logServiceRef); #E
 }
 } else {
 alternativeLog("LogService has gone");
 }

 pauseTestThread();
}

#A lookup best Log Service each time
#B if null then no service available
#C if null then service was removed
#D report any problems using service
#E unget service when not using it

Our test method is now robust, but not perfect. We react to changes in the Log Service,

and fall back to other logging methods when there are problems finding or using a service,

but we can still miss Log Service implementations. For example, imagine a Log Service is

available when we first call getServiceReference(), but it is removed and a different

Log Service appears before we can use the original service reference. Our getService()

call will return null and we'll end up not using any Log Service, even though a valid

replacement was available. This particular race condition cannot be solved by adding checks

or loops because it is an inherent problem with the two stage “find-then-get” discovery

process. Instead, we must use another facility provided by the service layer to avoid this

problem: service listeners.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

4.3.2 Listening for services

The OSGi framework supports a simple, but flexible listener API for service events. We briefly

discussed the listener pattern back in 4.1.3, where one object (in this case the framework)

offers to send events to other objects, known as listeners. For services there are currently

three different types of event, shown in Figure 4.13:

 REGISTERED - a service has been registered and can now be used.

 MODIFIED - some service metadata has been modified.

 UNREGISTERING - a service is in the process of being unregistered.

Every service listener must implement this interface in order to receive service events:

public interface ServiceListener extends EventListener {
 public void serviceChanged(ServiceEvent event);
}

How might we use such an interface in our current example? We could use it to cache

service instances on REGISTERED events and avoid the cost of repeatedly looking up the Log

Service, as we were doing in 4.3.1. A simple caching implementation might go something

like this:

Listing 4.8 Broken listener example – caching the latest service instance

class LogListener implements ServiceListener {
 public void serviceChanged(ServiceEvent event) {
 switch (event.getType()) {

 case ServiceEvent.REGISTERED:
 m_logService = (LogService)
 m_context.getService(event.getServiceReference()); #A

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.13 OSGi service events

reg

ctx.registerService(...)

reg .setProperties(...) reg .unregister()

REGISTERED

OSGi
Service
Registry

MODIFIED

OSGi
Service
Registry

UNREGISTERING

OSGi
Service
Registry

http://www.manning-sandbox.com/forum.jspa?forumID=507

 break;

 case ServiceEvent.MODIFIED: #B
 break;

 case ServiceEvent.UNREGISTERING:
 m_logService = null; #C
 break;

 default:
 break;
 }
 }
}

#A valid as events are delivered synchronously
#B nothing to do – only metadata has changed
#C stop using service (see a problem here?)

It is safe to call the getService() method during the REGISTERED event, because the

framework delivers service events synchronously using the same thread. This means we

know the service won't disappear, at least from the perspective of the framework, until the

listener method returns. Of course the service itself could still throw a runtime exception at

any time, but using getService() with a REGISTERED event will always return a valid

service instance. For the same reason, you should make sure the listener method is relatively

short and will not block or deadlock, otherwise you would block other service events from

being processed.

REGISTERING A SERVICE LISTENER

We have our service listener, but how do we tell the framework about it? The answer is as

usual via the bundle context, which defines methods to add and remove service listeners. We

must also choose an LDAP filter to restrict events to services implementing Log Service;

otherwise, we could end up receiving events for hundreds of different services. The final code

looks something like this:

Listing 4.9 Broken listener example – existing services are not seen

public class Activator implements BundleActivator {

 volatile BundleContext m_context;
 volatile LogService m_logService;

 public void start(BundleContext context) throws Exception {
 m_context = context;

 String filter = "(" + Constants.OBJECTCLASS + "=" + #A
 LogService.class.getName() + ")";

 context.addServiceListener(new LogListener(), filter); #B

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 startTestThread();
 }

 public void stop(BundleContext context) { #C
 m_logService = null;
 m_context = null;
 stopTestThread();
 }

}

#A LDAP filter matches LogService instances
#B add listener for future Log Service events
#C framework automatically removes listeners

Notice that we don't explicitly remove the service listener when we stop the bundle. This

is because the framework keeps track of what listeners we have added and automatically

clears up any remaining listeners when the bundle stops. We saw something similar in 4.2.1

when the framework removed any leftover service registrations.

Our test method is now very simple, because we're caching the service instance:

while (m_context != null) {
 if (m_logService != null) {
 m_logService.log(LogService.LOG_INFO, "ping");
 } else {
 alternativeLog("LogService has gone");
 }
 pauseTestThread();
}

This looks much better doesn't it? We don't have to do so much checking, nor polling of

the service registry. Instead, we wait for the registry to tell us whenever a Log Service

appears or disappears. Unfortunately there are a number of problems in the above code

example! First, there are some minor issues with our test method; we don't catch runtime

exceptions when using the service and because of the caching we don't “unget” the service

when we're not using it. The cached Log Service could also change between the non-null test

and when we actually use it.

More importantly there is a significant error in the listener code, because it doesn't check

that the UNREGISTERING service is the same as the Log Service currently being used.

Imagine two Log Services (A and B) are available at the same time, where the test method

was using Log Service A. If Log Service B was unregistered, the listener would clear the

cached instance even though Log Service A is still available. Similarly as new Log Services

are registered, the listener will always choose the newest service regardless of whether it has

a better service ranking or not. To make sure we use the highest ranked service and to be

able to switch to alternative implementations whenever a service is removed, we must keep

track of the current set of active service references – not just a single instance.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

There is another subtle error in the bundle activator in Listing 4.9, which you may not

have noticed at first. In fact, this error might never show up in practice, depending on how

you start your application. Think back to how listeners work: the event source will send

events to the listener as they occur. What about events that happened in the past? What

about already published services? In this case, the service listener will not receive events

that happened in the dim and distant past and will remain oblivious to existing Log Service

implementations.

FIXING THE SERVICE LISTENER

So we have two problems to fix: we must keep track of the active set of Log Services and

take account of already registered Log Services. The first problem requires the use of a

sorted set and relies on the natural ordering of service references, as defined in the

specification of the compareTo() method. We'll also add a helper method to decide which

Log Service to pass to the client, based on the cached set of active service references:

Listing 4.10 Correct listener example – keeping track of active Log Services

class LogListener implements ServiceListener {

 SortedSet<ServiceReference> m_logServiceRefs =
 new TreeSet<ServiceReference>(); #A

 public synchronized void serviceChanged(ServiceEvent event) { #B
 switch (event.getType()) {
 case ServiceEvent.REGISTERED:
 m_logServiceRefs.add(event.getServiceReference());
 break;
 case ServiceEvent.MODIFIED:
 break;
 case ServiceEvent.UNREGISTERING:
 m_logServiceRefs.remove(event.getServiceReference());
 break;
 default:
 break;
 }
 }

 public synchronized LogService getLogService() { #C
 if (m_logServiceRefs.size() > 0) {
 return (LogService) m_context.getService(
 m_logServiceRefs.last()); #D
 }
 return null;
 }
}

#A service references ordered by ranking
#B must lock listener before changing state
#C must lock listener before querying state
#D last service reference has highest ranking

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

The second problem can be fixed in the bundle activator by issuing pseudo-registration

events for each existing service, to make it look like the service has only just appeared:

Listing 4.11 Correct listener example – sending pseudo registration events

public class Activator implements BundleActivator {

 volatile BundleContext m_context;
 volatile LogListener m_logListener;

 public void start(BundleContext context) throws Exception {
 m_context = context;

 m_logListener = new LogListener(); #A

 synchronized (m_logListener) { #B

 String filter = "(" + Constants.OBJECTCLASS + "=" +
 LogService.class.getName() + ")";

 context.addServiceListener(m_logListener, filter);

 ServiceReference[] refs =
 context.getServiceReferences(null, filter); #C

 if (refs != null) {
 for (ServiceReference r : refs) {
 m_logListener.serviceChanged(
 new ServiceEvent(ServiceEvent.REGISTERED, r)); #D
 }
 }
 }

 startTestThread();
 }

 public void stop(BundleContext context) {
 m_context.removeServiceListener(m_logListener); #E

 m_logListener = null;
 m_context = null;

 stopTestThread();
 }
}

#A store listener for test thread
#B lock listener before adding it
#C check for existing Log Services
#D send pseudo events for existing services
#E example of explicitly removing a listener

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

We deliberately lock the listener before passing it to the framework, so that our pseudo-

registration events will be processed first. Otherwise, it would be possible to receive an

UNREGISTERING event for a service before its pseudo-registration. Only when the listener

has been added do we check for existing services, to make sure we don't miss any

intervening registrations. We could potentially end up with duplicate registrations by doing

the checks in this order, but that is better than missing services.

The test method now only needs to call the helper method to get the best Log Service:

Listing 4.12 Correct listener example – using the listener to get the best Log Service

while (m_context != null) {
 LogService logService = m_logListener.getLogService();

 if (logService != null) {
 try {
 logService.log(LogService.LOG_INFO, "ping");
 } catch (RuntimeException re) {
 alternativeLog("error in LogService " + re);
 }
 } else {
 alternativeLog("LogService has gone");
 }

 pauseTestThread();
}

You might have noticed the finished listener example still doesn't “unget” the service after

using it, this is left as an exercise for the reader. Here's a hint to get you started; think about

moving responsibility for logging into the listener. This would also help you reduce the time

between binding the service and actually using it.

Service listeners reduce the need to continually poll the service registry. They let you

react to changes in services as soon as they occur and get around the inherent race

condition of the “find-then-get” approach. The downside of listeners is the amount of code

you need to write. Imagine having to do this for every service you want to use and having to

repeatedly test for synchronization issues. Why doesn't OSGi provide a utility class to do all

of this for you, a class that has been battle-hardened and tested in many applications, which

you can configure and customize as you require. Well it does, and its name is the

ServiceTracker.

4.3.3 Tracking services

The OSGi ServiceTracker class provides a safe way for developers to get the benefits of

service listeners without the pain. To show how easy it can be, let's take the bundle activator

from our last example and adapt it to use the service tracker:

Listing 4.13 Standard tracker example

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

public class Activator implements BundleActivator {

 volatile BundleContext m_context;
 volatile ServiceTracker m_logTracker;

 public void start(BundleContext context) {
 m_context = context;

 m_logTracker = new ServiceTracker(context,
 LogService.class.getName(), null); #A

 m_logTracker.open(); #B

 startTestThread();
 }

 public void stop(BundleContext context) {

 m_logTracker.close(); #C

 m_logTracker = null;
 m_context = null;

 stopTestThread();
 }
}

#A create a ServiceTracker for Log Services
#B must open tracker before using it
#C close tracker to ensure proper cleanup

In this example we use the basic ServiceTracker constructor that takes a bundle

context, the service type you want to track, and a “customizer” object. We'll look at

customizers in a moment, for now we don't need any customization so we pass null. If you

need more control over what services are tracked, there is another constructor that accepts

a filter.

OPEN SESAME

Before you can use a tracker you must open it, this registers the underlying service

listener and initializes the tracked list of services. This is often the thing people forget to

do when they first use a service tracker and wonder why they don't see any services.

Similarly, when you're done with the tracker you must close it. While the framework will

automatically remove the service listener when the bundle stops, it is best to explicitly

call close so that all the tracked resources can be properly cleared.

And that's all we need to do to track instances of the Log Service, we don't need to write

our own listener or worry about managing long lists of references. When we need to actually

use the Log Service, we just ask the tracker for the current instance:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

LogService logService = (LogService) m_logTracker.getService();

There are other tracker methods to get all active instances and access the underlying

service references, there's even a method that helps you wait until a service appears. Often

you'll find a raw service tracker is all you need, but there are times you'll want to extend it.

Perhaps you want to decorate a service with additional behavior or you need to acquire or

release resources as services appear and disappear. You could simply extend the

ServiceTracker class, but you would have to be careful not to break the behavior of any

methods you override. Thankfully, there is a way to extend a service tracker without

subclassing it: with a “customizer” object. The ServiceTrackerCustomizer interface

shown below provides a safe way to enhance a tracker by intercepting tracked service

instances:

Listing 4.14 ServiceTrackerCustomizer interface

public interface ServiceTrackerCustomizer {

 public Object addingService(ServiceReference reference); #A

 public void modifiedService(ServiceReference reference, #B
 Object service);

 public void removedService(ServiceReference reference, #C
 Object service);
}

#A matching service is being registered
#B metadata of matching service has changed
#C matching service has been removed

Like a service listener, a customizer is based on the three major events in the life of a

service: adding, modifying, and removing. The addingService() method is where most of

the customization occurs. The associated tracker will call this whenever a matching service is

added to the OSGi service registry. You are free to do whatever you want with the incoming

service; you could initialize some resources or wrap it in another object, for example. The

object you return will be tied to the service by the tracker and returned wherever the tracker

would normally return the service instance. If you decide you don't want to track a particular

service instance, simply return null. The other two methods in the customizer are typically

used for housekeeping tasks, like updating or releasing resources.

Suppose we want to decorate the Log Service, such as adding some text around the log

messages. Our service tracker customizer might look something like this:

Listing 4.15 Customized tracker example – decorated Log Service

class LogServiceDecorator implements ServiceTrackerCustomizer {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 public Object addingService(ServiceReference ref) {
 return new LogService() {

 public void log(int level, String message) {
 ((LogService) m_context.getService(ref)).log(level,
 "<<" + message + ">>"); #A
 }

 public void log(int level, String message,
 Throwable exception) {}

 public void log(ServiceReference sr, int level, String message) {}
 public void log(ServiceReference sr, int level, String message,
 Throwable exception) {}
 };
 }

 public void modifiedService(ServiceReference ref, Object service) {}

 public void removedService(ServiceReference ref, Object service) {}
}

#A wrap code around original Log Service

All we have to do to decorate the Log Service, is pass the customizer to the tracker:

m_logTracker = new ServiceTracker(context, LogService.class.getName(),
 new LogServiceDecorator());

Now any Log Service returned by this tracker will add angle brackets to the logged

message. This is a trivial example, but I hope you can see how powerful customizers can be.

Service tracker customizers are especially useful in separating code from OSGi specific

interfaces, since they act as a bridge connecting your application code to the service registry.

We have seen three different ways to access OSGi services; directly through the bundle

context, reactively with service listeners, and indirectly using a service tracker. Which way

should you choose? Well, if you only need to use a service very intermittently and don't mind

using the raw OSGi API, then using the bundle context is probably the best option. At the

other end of the spectrum, if you need full control over service dynamics and don't mind the

potential complexity, then a service listener would be best. In all other situations you should

use a service tracker, as it helps you handle the dynamics of OSGi services with the least

amount of effort.

WHAT? NO ABSTRACTIONS?

If none of these options suit you and you prefer to use a higher level abstraction, such as

components, this is fine too. As we mentioned at the start of this chapter it is possible to

build component models on top of these core APIs. In fact, this is exactly what many

people have been doing for the past few years and there are several service-oriented

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

component frameworks based on OSGi which we will discuss in chapter 11. But

remember, all of these component frameworks make some subtle, but important,

semantic choices when mapping components to the OSGi service model. If you ever need

to cut through these abstractions and get to the real deal, you now know how.

Now we know all about OSGi services and their dynamics, let's look again at our ongoing

paint program and see where it might make sense to use services.

4.4 Using services in the paint example
The last time we saw the paint example was back in 3.4 where we used an extender pattern

to collect shapes. Why don't we try using a service instead? A shape service makes a lot of

sense, because we can clearly define what responsibilities belong to a shape and use

metadata to describe various non-functional attributes like its name and icon. Remember the

first thing to define when creating a new service is the contract, so what should a shape

service look like?

4.4.1 Defining a shape service

Let's use the previous interface as the basis of our new service contract, but this time

instead of extension names we'll declare service property names. These names will tell the

client where to find additional metadata about the shape:

public interface SimpleShape {

 public static final String NAME_PROPERTY = "simple.shape.name"; #A
 public static final String ICON_PROPERTY = "simple.shape.icon"; #B

 public void draw(Graphics2D g2, Point p); #C
}

#A metadata key for the shape name
#B metadata key for the shape icon
#C draw shape onto given canvas

This is not much different from the previous interface defined in 3.4. This shows how easy

it is to switch over to services when programming with interfaces. With this contract in hand,

we now need to update each shape bundle to publish their implementation as a service, and

update the paint frame bundle to track and consume these shape services.

4.4.2 Publishing a shape service

Before we can publish a shape implementation as a service, we need a bundle context. To

get the bundle context, we we need to add a bundle activator to each shape bundle, as

shown in Listing 4.16.

Listing 4.16 Publishing a shape service

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

public class Activator implements BundleActivator {
 private BundleContext m_context = null;

 public void start(BundleContext context) {
 m_context = context;
 Hashtable dict = new Hashtable();

 dict.put(SimpleShape.NAME_PROPERTY, "Circle"); #A
 dict.put(SimpleShape.ICON_PROPERTY,
 new ImageIcon(this.getClass().getResource("circle.png"))); #B

 m_context.registerService(SimpleShape.class.getName(),
 new Circle(), dict); #C
 }

 public void stop(BundleContext context) {}
}

#A record name under correct metadata key
#B record icon under correct metadata key
#C publish the new shape service

Our shape bundles will now publish their shape services when they start, and remove

them when they stop. To use these shapes when painting we need to update our paint frame

bundle so it will use now services instead of bundles, as shown in Figure 4.14.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 4.14 Painting with services

publish discoverOSGi
Service
Registry

http://www.manning-sandbox.com/forum.jspa?forumID=507

4.4.3 Tracking shape services

Remember the DefaultShape class that acted as a simple proxy to an underlying shape

bundle in 3.4. When the referenced shape bundle was installed, the DefaultShape used its

classes and resources to paint the shape. When the shape bundle was not installed, the

DefaultShape drew a placeholder image instead. Well, we can use exactly the same

approach with services, except that instead of a bundle identifier we use a service reference:

Listing 4.17 Drawing with a shape service

if (m_context != null) {
 try {
 if (m_shape == null) {
 m_shape = (SimpleShape) m_context.getService(m_ref); #A
 }
 m_shape.draw(g2, p); #B
 return;
 } catch (Exception ex) {} #C
}

#A get referenced shape service
#B draw shape – simple method call
#C use placeholder image if problem

We'll also add a dispose method to tell the framework when we're done with the service:

public void dispose() {
 if (m_shape != null) {
 m_context.ungetService(m_ref);
 m_context = null;
 m_ref = null;
 m_shape = null;
 }
}

Our new DefaultShape is now based on an underlying service reference, but how do we

find these references? Remember the advice from 4.3.3; we want to use several instances of

the same service, and react as they appear and disappear, but we don't want detailed control

– so what we need is a ServiceTracker!

In the previous chapter, we used a BundleTracker to react as shape bundles came and

went. This proved to be a good design choice, because it means our ShapeTracker class

can already process shape events and trigger the necessary Swing actions. All we need to

change is the source of shape events, which now come from the ServiceTracker

methods:

Listing 4.18 Sending shape events from ServiceTracker methods

public Object addingService(ServiceReference ref) {
 SimpleShape shape = new DefaultShape(m_context, ref);

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 processShapeOnEventThread(ADDED, ref, shape);
 return shape;
}

public void modifiedService(ServiceReference ref, Object svc) {
 processShapeOnEventThread(MODIFIED, ref, (SimpleShape) svc);
}

public void removedService(ServiceReference ref, Object svc) {
 processShapeOnEventThread(REMOVED, ref, (SimpleShape) svc);
 ((DefaultShape) svc).dispose(); #A
}

#A ungets the service and clears fields

The processing code also needs to use service metadata rather than extensions:

String name = (String) ref.getProperty(SimpleShape.NAME_PROPERTY);
Icon icon = (Icon) ref.getProperty(SimpleShape.ICON_PROPERTY);

And that's all there is to it, we now have a service-based paint example! If you want to

see it in action, go into the code/chapter04/paint-example/ directory of the

companion code, type ant to build it, and java -jar launcher.jar bundles to run it.

The fact that we only needed to change a few files is a testament to the non-intrusiveness of

OSGi services. Hopefully, you can also see how easy it would be to do this in reverse, and

adapt a service-based example to use extensions. Imagine being able to decide when and

where to use services in your application, without having to factor it into the initial design.

The OSGi service layer gives you that ability, and the previous layers help you manage and

control it. But how can the modularity and lifecycle layers help, how do they relate to the

service layer?

4.5 Relating services to modularity and lifecycle
The service layer builds on top of the modularity and lifecycle layers. We've already seen one

example of this, where the framework automatically unregisters services when their

registering bundle stops. But there are other places where the layers interact, such as

providing bundle-specific (also known as factory) services, when you should “unget” and

unregister services, and how you should bundle up services. But let's start with how

modularity affects what services you can see.

4.5.1 Why can't I see my service?

There may be times you ask yourself this question and wonder why even though the OSGi

framework shows a particular service as registered, you cannot access it from your bundle.

The answer comes back to modularity. You can only see classes from packages that are

imported by your bundle. Similarly, the OSGi framework will only return references to

services whose versions of registered interfaces are visible to your bundle. The reasoning

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

behind this is that you should be able to cast service instances to any of their registered

interfaces without causing a ClassCastException.

But what if you want to query all services, regardless of what interfaces you can actually

see? While not common, this is useful in management scenarios where you want to track

third-party services you don't yet know about. To support this the OSGi framework provides

a so-called All* variant of the getServiceReferences() method to return all matching

services, regardless of whether their interfaces are visible to the calling bundle. For example:

ServiceReference[] references =
 bundleContext.getAllServiceReferences(null, null);

This returns references to all services currently registered in the OSGi service registry.

Similarly for service listeners there is an All* extension of the ServiceListener

interface, which will let you receive all matching service events. The ServiceTracker is

the odd one out; there's no All* variant, to ignore visibility you just start the tracker with

open(true).

We've just seen that while one bundle can see a service, another bundle with different

imports might not. How about two bundles with the same imports? They would see the same

service instances. What if we actually wanted them to see different instances – is it possible

to customize services for each consumer?

4.5.2 Can I provide a bundle-specific service?

You may have noticed throughout this chapter we have assumed service instances are

created first then published, discovered, and finally used. Or to put it another way, creation

of service instances is not related to their use. But there are times when you want to create

services lazily or you want to customize a service specifically for each bundle using it. An

example of this is our simple Log Service implementation from 4.3. None of the Log Service

methods accept a bundle or bundle context, but we might like to record details of the bundle

logging the message. How is this possible in OSGi, doesn't the registerService()

method expect a fully constructed service instance?

The OSGi framework defines a special interface to use when registering a service. The

ServiceFactory interface acts as a marker telling the OSGi framework to treat the

provided instance not as a service, but as a factory which can create service instances on-

demand. The OSGi service registry uses this factory to create instances just before they are

needed, when the consumer first attempts to use the service. A factory could potentially be

creating a number of instances at the same time, so it must be thread-safe.

public interface ServiceFactory {

 public Object getService(Bundle bundle,
 ServiceRegistration registration);

 public void ungetService(Bundle bundle,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 ServiceRegistration registration, Object service);
}

The framework caches factory created service instances, so a bundle requesting the same

service twice will receive the same instance. This cached instance is only removed when the

bundle has completely finished with a service (that is the number of calls to “get” it match

the calls to “unget” it), when the bundle has stopped, or the service factory is unregistered.

So should we always “unget” a service after we use it, like closing an I/O stream?

4.5.3 When should I “unget” a service?

We just saw that instances created from service factories are cached until the consuming

bundle has finished with the service. This is determined by counting the calls to

getService() compared to ungetService(). Forgetting to call “unget” can lead to

instances being kept around until the bundle is stopped. Similarly, agents interrogating the

framework will assume the bundle is using the service when it actually isn't. So should we

always “unget” after using a service, perhaps something like the following?

try {
 Service svc = (Service) m_context.getService(svcRef);
 if (svc != null) {
 svc.dispatch(something);
 } else {
 fallback(somethingElse);
 }
} finally {
 m_context.ungetService(svcRef);
}

This would record exactly when we use the service, but what happens if we want to use it

again and again in a short space of time? Services backed by factories would end up creating

and destroying a new instance on every call, which could be costly. We might also want to

keep the instance alive between calls if it contains session-related data. In these

circumstances it makes more sense to “get” at the start of the session and “unget” at the

end of the session. For long-lived sessions you would still need to track the service in case it

was removed, probably using a service tracker customizer to close the session. In all other

situations you should “unget” the service when finished with it.

But what about the other side of the equation? Should bundles let the framework

unregister their services when they stop or should they be more pro-active and unregister

services as soon as they don't want to or can't support them?

4.5.4 When should I unregister my service?

The OSGi framework does a lot of tidying up when a bundle stops – it removes listeners,

releases used services, and unregisters published services. It can often feel like you don't

need to do anything yourself, indeed many bundle activators have empty stop() methods.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

But there are times when it is prudent to unregister a service yourself. Perhaps you've just

received a hardware notification and need to tell bundles not to use your service. Perhaps

you need to perform some processing before shutting down and don't want bundles using

your service while this is going on. At times like this you should remember you are in control

and it is often better to be explicit than rely on the framework to clean up after you.

After that salutary message, let's finish off this section with a modularity topic that has

caused a lot of heated discussion on OSGi mailing lists: where to put service interfaces.

4.5.5 Should I bundle interfaces separately?

Service interfaces are by definition decoupled from their implementations. So should they be

bundled separately in their own bundle or duplicated inside each implementation bundle?

OSGi supports both options, because as long as the metadata is correct it can wire the

various bundles together to share the same interface. But why might you want to copy the

interface inside each implementation bundle, surely that would lead to duplicated content?

Think about deploying a set of services into a framework, if each service has both an API

and implementation bundle, then that doubles the number of bundles to manage. Putting the

interface inside the implementation bundle means you only need to provide one JAR file.

Similarly, users don't have to remember to install the API – if they have the implementation

they automatically get the API for free. This sounds good, so why doesn't everyone do this?

It comes down to managing updates. Putting interfaces inside an implementation bundle

means the OSGi framework could decide to use that bundle as the provider of the API

package. If you then want to upgrade and refresh the implementation bundle, then all the

consuming bundles will end up being refreshed, causing a wave of restarting bundles.

Similarly, if you decide to uninstall the implementation, the implementation classes will only

be unloaded by the garbage collector when the interface classes are no longer being used

(because they share the same class loader).

In the end, there is no single right answer. Each choice has consequences of which you

should be aware. Just as with other topics we've discussed: service visibility, service

factories, using “unget”, and unregister; you need to know the possibilities to make an

informed choice. Whatever you decide, we can all agree that services are an important

feature of OSGi.

4.6 Framework services
Services are such an important feature that they are actually used throughout the OSGi

specification itself. By using services to extend the framework, the core API can be kept very

lean and clean. When reading the specification you will realize a lot of services are actually

optional, and we'll discuss these “compendium” services in a moment, but first we'll take a

quick look at the set of core services (most of which) every OSGi framework must implement

and provide.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Table 3 Framework services covered in this section

Service Type Description

Package Admin Core Manage bundle updates and discover who exports what

Start Level Core Query and control framework and bundle start levels

URL Handlers Core Dynamic URL stream handling

Permission Admin Core Manage bundle and service permissions

HTTP Compendium Put simple servlets and resources onto the web

Event Admin Compendium Topic-based “pub-sub” event model

Configuration Admin Compendium Manage and persist configuration data

User Admin Compendium Role-based authentication and authorization

4.6.1 Core services

PACKAGE ADMIN SERVICE

The OSGi Package Admin Service, which we discussed in chapter 3, provides a selection of

methods to discover details about exported packages and the bundles that export and/or

import them. You can use this service to trace dependencies between bundles at execution

time, which can help when upgrading because you can see what bundles might be affected

by the update. The Package Admin Service also provides methods to refresh exported

packages, which may have been removed or updated since the last refresh, and to explicitly

resolve specific bundles.

START LEVEL SERVICE

The OSGi Start Level Service lets you programmatically query and set the start level for

individual bundles as well as the framework itself. You can use start levels to deploy an

application, or roll-out a significant update, in controlled stages.

URL HANDLERS SERVICE

The OSGi URL Handlers Service adds a level of dynamism to the standard Java URL process.

The Java specification unfortunately only allows one URLStreamHandlerFactory to be set

during the lifetime of a JVM, so the framework will attempt to set its own implementation at

startup. If this is successful then this factory will dynamically provide URL stream handlers

and content handlers, based on implementations registered with the OSGi service registry.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

(CONDITIONAL) PERMISSION ADMIN SERVICE

There are actually two services dealing with permissions in OSGi: the Permission Admin

Service, which deals with permissions granted to specific bundles, and the Conditional

Permission Admin Service, which provides a more general purpose and fine-grained

permission model based on conditions. Both of these services build on the standard Java2

security architecture. While these two are core services, they are actually optional, since all

security-related features are optional in the OSGi specification.

So we now know which core services we can expect to see in an OSGi framework, but

what about the optional “compendium” services? What sort of capabilities do they cover?

4.6.2 Compendium services

In addition to the core services, the OSGi Alliance defines a set of non-core standard services

called the “compendium” services. While the core services are typically available by default in

a running OSGi framework, the compendium services will not. In fact, keeping with our

desire for modularity, we wouldn't want them to be included by default since this would lead

to bloated systems. Instead, these services are provided as separate bundles by framework

implementers or other third-party parties and typically work on all frameworks.

We have already seen one example of a compendium service, the Log Service from 4.3

which provided a simple logging API. This is one of the more well-known compendium

services. Let's take a brief look at other examples which we'll be using later on in the book:

HTTP SERVICE

The OSGi HTTP Service supports registration of servlets and resources under named aliases.

These aliases are matched against incoming URI requests and the relevant servlet or

resource is used to construct the reply. You can authenticate incoming requests using either

standard HTTP/HTTPS, the OSGi User Admin service, or your own custom approach. The

current HTTP Service is based on version 2.1 of the servlet specification [ref4], which means

it doesn't cover servlet filters, event listeners, or JSPs. Later versions of the HTTP Service

specification should address this and there are some implementations that already support

these additional features [ref5].

EVENT ADMIN SERVICE

The OSGi Event Admin Service provides a basic “publish-subscribe” event model. Each event

consists of a topic, which is basically a semi-structured string, and set of properties. Event

handlers are registered as services and can use metadata to describe which topics and

properties they are interested in. Events can be sent synchronously or asynchronously and

are delivered to matching event handlers by using the whiteboard pattern, which we

discussed earlier in 4.1.3. Other types of OSGi events (like framework, bundle, service, and

log events) are mapped and re-published by the Event Admin Service implementation.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

CONFIGURATION ADMIN SERVICE

The OSGi Configuration Admin Service delivers configuration data to those services with

persistent identifiers (“service.pid”) that implement the ManagedService interface – or

ManagedServiceFactory, if they want to create a new service instance per configuration.

These so-called “configuration targets” accept configuration data in the form of a dictionary

of properties. Management bundles, which have been granted permission to configure

services, can use the Configuration Admin Service to initialize and update configurations for

other bundles. Non-management bundles can only update their own configurations. The

Config Admin Service is pluggable, and can be extended by registering implementations of

the ConfigurationPlugin interface with the OSGi service registry.

USER ADMIN SERVICE

The OSGi User Admin Service provides a role-based model for authentication (checking

credentials) and authorization (checking access rights). An authenticating bundle would use

the User Admin Service to pre-populate the required roles, groups, and users along with

identifying properties and credentials. This bundle can then query the User Admin Service at

a later date to find users, check their credentials, and confirm their authorized roles. It can

then decide how to proceed based on the results of these checks.

This is just a short sample of the most popular compendium services, a complete table

can be found in Appendix [ref6]. You can also read detailed specifications of each service in

the OSGi Service Compendium book [ref7].

4.7 Summary
That was a lot of information to digest, so don't worry if you got a bit woozy. Let's try and

summarize this chapter together:

 A service is “work done for another”.

 Service contracts define responsibilities, and match consumers with providers.

 Services encourage a relaxed, pluggable, interface-based approach to programming

 You don't mind where a service comes from as long as it meets the contract.

 The best place to use services is between replaceable components.

 Think carefully before using services in tightly-coupled or high performance code.

 Services can replace the listener pattern with a much simpler whiteboard pattern.

 OSGi services use a “publish-find-bind” model.

 OSGi services are truly dynamic and can disappear at any time.

 The easiest and safest approach is to use the OSGi ServiceTracker utility class.

 OSGi services build on and interact with the previous module and lifecycle layers.

 OSGi defines “core” framework services and additional “compendium” services.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Finally, as we close the chapter on services, we can all now agree that they are not just

limited to distributed or remote applications. There is a huge benefit to applying a service-

oriented design to a purely local, single-JVM application and we honestly hope you get the

opportunity to experience this in your next project.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

5
Delving Deeper into Modularity

In the preceding chapters we covered a myriad of details about the three layers of the OSGi

framework. Believe it or not, we didn't cover everything; instead, our focus was on

explaining the common features, best practices, and framework behavior necessary to help

you understand and start employing OSGi in your own projects. Depending on the project,

the aforementioned features and best practices may not be sufficient. This can be especially

true when it comes to legacy situations, where you are not able to make sweeping changes

to your existing code base. Sometimes the clean theory of modularity conflicts with the

messiness of reality, so occasionally compromises are needed to simply get things moving or

to meet objectives.

In this chapter, we investigate more aspects of OSGi's modularity layer. We will look into

simple features, such as making imported packages a little more flexible, and into more

complicated ones, such as splitting Java packages across multiple bundles or breaking a

single bundle into pieces. You will likely not need to use most of the features described in

this chapter as often as the preceding ones and, in fact, if you are you should likely review

your design since it is likely missing the benefits brought by more streamlined modularization

approach. With that said, it is worthwhile to be aware of these advanced features of OSGi

modularization and the circumstances under which they are useful. To assist in this endeavor,

we will introduce use cases and examples to help you understand when and how to apply

them.

This chapter is not strictly necessary for understanding subsequent chapters, so feel free

to postpone reading it until later. Otherwise, let's dig in.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

5.1 Managing your exports
From what we've learned so far, exporting a package from a bundle is fairly simple: just

include it in the Export-Package header and potentially include some attributes. This does

not cover all the details of exporting packages. In the following subsections we discuss other

aspects, like importing exported packages, implicit attributes, mandatory attributes, class

filtering, and duplicate exports.

5.1.1 Importing your exports

In chapter 2, we learned how Export-Package exposes internal bundle classes and how

Import-Package makes external classes visible to internal bundle classes. This seems to

be a nice division of labor between the two. We might even assume the two are mutually

exclusive. In other words, we might assume a bundle exporting a given package cannot

import it also and vice versa. In many module systems this would be a reasonable

assumption, but for OSGi it is incorrect. A bundle that imports a package it exports is

actually a special case in OSGi, but what exactly does it mean? The answer to this question

is both philosophical and technical.

The original vision of the OSGi service platform was to create a lightweight execution

environment where dynamically downloaded bundles collaborate. In an effort to meet the

“lightweight” aspect of this vision, these bundles collaborated by sharing direct references to

service instances. Using direct references means bundles collaborate via normal method

calls, which is very lightweight. As a byproduct of using direct references, bundles must

share the Java class associated with shared service instances. As we have learned, OSGi has

code sharing covered in spades with Export-Package and Import-Package. Still, there is

an issue lurking in here, so let's examine a collaboration scenario more closely.

Imagine bundle A wants to use an instance of class javax.servlet.Servlet from

another bundle B. As we now understand, in their respective metadata bundle A would

import package javax.servlet and bundle B would export it. Makes sense. Now imagine

another bundle C also wants to share an instance of class javax.servlet.Servlet with

bundle A. It has two choices at this point, it can:

1. Not include a copy of package javax.servlet in its bundle JAR file and import it
instead.

2. Include a copy of package javax.servlet in its bundle JAR file and also export it.

If the option 1 approach is taken (see Figure 5.1), then bundle C cannot be used unless

bundle B is present, since it has a dependency on package javax.servlet and only bundle

B provides the package (i.e., it is not self contained).

On the other hand, if the option 2 approach is taken (see Figure 5.2), then bundle C is

self contained and both B and C can be used independently. But what happens if you want

bundle A to interact with the javax.servlet.Servlet objects from bundles B and C at

the same time? It cannot do so. Why?

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

If bundles B and C both include and export a copy of the javax.servlet package, then

there will actually be two copies of the javax.servlet.Servlet class. Bundle A would not

be able to use both instances, since they would come from different copies of the

javax.servlet.Servlet class and would be incompatible. Due to this incompatibility, the

OSGi framework only allows bundle A to see one copy, which means A would not be able to

collaborate with both B and C at the same time.

It is not important for you to completely understand these arcane details of Java class

loaders, especially since OSGi technology tries to relieve you from having to worry about

class loaders in the first place. The important point is to understand the issues surrounding

the two options above: option 1 results in bundle C requiring B to be present, while option 2

results in bundle A not being able to see the shared object instances from bundles B and C at

the same time. This gets us to the crux of OSGi's special case for allowing a bundle to import

a package it also exports.

Neither choice is very satisfactory. The solution devised by the OSGi specification is to

allow a bundle to both import and export the same package (see Figure 5.3). In this case,

the bundle contains the given package and its associated classes, but it may not actually end

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 5.2 If B and C each have a copy of the Servlet class, then A
can only share Servlet instances with either B or C since it can only
see one definition of a class

A

import
javax.servlet

export
javax.servlet

B
.class

two copies of
javax.servlet.Servlet

export
javax.servlet

C
.class

?

Figure 5.1 If bundle B imports from C, then both can share
Servlet instances with A since there is only one copy of the
Servlet class, but this creates a dependency for C on B

A

import
javax.servlet

export
javax.servlet

C
import
javax.servlet

B
.class

one copy of
javax.servlet.Servlet

http://www.manning-sandbox.com/forum.jspa?forumID=507

up using them. A bundle importing and exporting the same package is actually offering the

OSGi framework a choice; it allows the framework to treat it as either an importer or an

exporter of the package, whichever seems appropriate at the time the framework makes the

decision. Another way to think about this is it defines a substitutable export, where the

framework is free to substitute the bundle's export with an exported package from another

bundle. Returning to our example, both bundles B and C can include a copy of package

javax.servlet with both importing and exporting it, knowing they will work independently

or together.

Admittedly, this may seem odd, but as our discussion here illustrates, to simplify the

OSGi vision of a collaborative environment it is necessary to make sure bundles use the

same class definitions. In fact, up until the OSGi R4 specification, Export-Package

implicitly meant Import-Package too. The R4 specification removed this implicitness,

making it a requirement to have a separate Import-Package to get a substitutable export,

but this did not lessen the importance of doing so in cases where collaboration is desired. An

interesting side effect of this is the possibility of metadata like this:
Export-Package: javax.servlet; version="2.4.0"
Import-Package: javax.servlet; version="2.3.0"

This is not a mistake. A bundle may include a copy of a given package at a specific

version level, but may work with a lower range. This could make the bundle useful in a wider

range of scenarios, since it can still work in an environment where an older version of the

package must be used.

When to import our exports?

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 5.3 B and C can both export and import the Servlet
package, which makes it possible for the framework to
choose to substitute packages so all bundles use a single
class definition

C
.class

B
.class

A

import
javax.servlet

export and import
javax.servlet

export and import
javax.servlet

http://www.manning-sandbox.com/forum.jspa?forumID=507

So the question on your mind now probably is, “With all of these benefits, shouldn't I just

make all of my exports substitutable?” Not necessarily. If your bundle is purely a library

bundle providing packages and nothing more, then it is not necessary to import its

packages too. Another rule of thumb to consider is whether another bundle could

meaningfully provide the packages; if the packages are specific to your application, then

only exporting them is probably sufficient. A common situation when importing and

exporting a package is useful is when using an interface-based development approach.

In interface-based programming, which is the foundation of the OSGi service approach,

you assume there are potentially multiple implementations of well-known interfaces. You

may want to package the interfaces into their implementations to keep them self

contained. In this case, to ensure interoperability, the bundles should import and export

the interface packages. Since the whole point of OSGi services is to foster collaboration

among bundles using interface-based programming, the choice between importing only or

exporting and importing interface packages is fairly common.

You do have an alternative approach, which is to always package your collaborative

interface packages into a separate bundle. By never packaging your interfaces in a bundle

providing implementations, you can also be sure all implementations can be used

together because all implementations will import the shared packages. If you follow this

approach, then none of your implementations will be self contained, since they will all

have external dependencies on the shared packages. The trade off is deciding whether

you want more bundles with dependencies among them or fewer self-contained bundles

with some content overlap.

Next we will look at implicit export attributes. Unlike importing exported packages, which

give the framework more flexibility when resolving imports, implicit export attributes limit

how the framework resolves an import.

5.1.2 Implicit export attributes

Generally speaking, OSGi regards the same package exported by multiple bundles as being

completely equivalent if the package versions are the same. This is beneficial when it comes

to dependency resolution, since it is possible for the framework to satisfy an import for a

given package from any available matching exporter. In certain situations, you may not wish

to have your bundle's imports satisfied by an arbitrary bundle; instead, you may want to

import from a specific bundle. For example, perhaps you patched a bug in a common open

source library and you do not want to risk using a non-patched version of the packages.

OSGi supports this through implicit export attributes. Consider the following bundle manifest

snippet:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: my.javax.servlet
Bundle-Version: 1.2.0
Export-Package: javax.servlet; javax.servlet.http; version="2.4.0"

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

As we learned in chapter 2, this metadata exports the packages javax.servlet and

javax.servlet.http with a version attribute of the specified value. Additionally, the

framework implicitly attaches the bundle's symbolic name and version to all packages

exported by a bundle. Therefore, the previous metadata conceptually looks like this (also

depicted in Figure 5.4):
Bundle-ManifestVersion: 2
Bundle-SymbolicName: my.javax.servlet
Bundle-Version: 1.2.0
Export-Package: javax.servlet; javax.servlet.http; version="2.4.0";
 bundle-symbolic-name="my.javax.servlet"; bundle-version="1.2.0"

Although this is conceptually what is happening, do not try to explicitly specify the

bundle-symbolic-name a n d bundle-version attributes on your exports. These

attributes can only be specified by the framework; the framework considers any bundle

explicitly specifying these attributes as invalid and throws an exception during installation.

With these implicit attributes, it is possible for us limit the dependency resolution of an

imported package to specific bundles. For example, another bundle may contain the following

snippet of metadata:
Import-Package: javax.servlet; bundle-symbolic-name="my.javax.servlet";
 bundle-version="[1.2.0, 1.2.0]"

In this case, the importer limits its dependency resolution to a specific bundle by

specifying its symbolic name with a precise version range. As you can imagine, this makes

the dependency a lot more brittle, but under certain circumstances this may be desired.

You might be thinking implicit export attributes aren't completely necessary to control

how import dependencies are resolved. You'd be correct. Good old arbitrary attributes can

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

a) b)

Figure 5.4 a) Our metadata declares explicit attributes which are attached to our
bundle's exported packages, but b) the framework also implicitly attaches
attributes explicitly identifying from which bundle the exports come.

export
javax.servlet
version=”2.4.0”
bundle-symbolic-name=”my.javax.servlet”
bundle-version=”1.2.0”

export
javax.servlet
version=”2.4.0”
bundle-symbolic-name=”my.javax.servlet”
bundle-version=”1.2.0”

export
javax.servlet
version=”2.4.0”

export
javax.servlet
version=”2.4.0”

http://www.manning-sandbox.com/forum.jspa?forumID=507

also be used to achieve the same effect, just make sure you make your attribute name

and/or value sufficiently unique. For example, we could modify our exporting manifest like

this:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: javax.servlet
Bundle-Version: 1.2.0
Export-Package: javax.servlet; javax.servlet.http; version="2.4.0";
 my-provider-attribute="my.value.scheme"

In this case, the importer simply needs to specifying the corresponding attribute name

and value on its Import-Package declaration. There is actually an advantage to using this

approach if you are in a situation where you must have brittle dependencies: it is not as

brittle as implicit attributes. The reason is you are able to refactor your exporting bundle

without impacting importing bundles, since these attribute values are not tied to the

containing bundle. On the downside side, arbitrary attributes are easier for other bundles to

imitate, even though there are no guarantees either way.

In short, it is best to avoid brittle dependencies, but at least now we understand how

both implicit and arbitrary export attributes allow importing bundles to have a say in how

their dependencies are resolved. Thinking about the flip side, it may also occasionally be

necessary for exporting bundles to have some control over how importing bundles are

resolved. Mandatory attributes can help us here.

5.1.3 Mandatory export attributes

The OSGi framework promotes arbitrary package sharing among bundles. As we discussed in

the last subsection, there are some situations where this isn't always desired. Up until now,

the importing bundle appears to be completely in control of this situation, since it declares

the matching constraints for dependency resolution. For example, consider the following

metadata snippet for importing a package:
Import-Package: javax.servlet; version="[2.4.0,2.5.0)"

Such an import declaration will match any provider of javax.servlet as long as it is in

the specified version range. Now consider the following metadata snippet for exporting a

package in another bundle:
Export-Package: javax.servlet; version="2.4.1"; private="true"

Will the imported package match this exported package? Yes, it will, as depicted in Figure

5.5. The name of the attribute, private, may have tricked you into thinking otherwise, but

it is just an arbitrary attribute and has no meaning (if it did have meaning to the framework,

it would likely be a directive not an attribute). When it comes to matching an import to an

export, only the attributes mentioned on the import declaration are compared against the

attributes on the export declaration. So in this case, the import mentions the package name

and a version range, which happen to match the exports package name and version. The

private attributes is not even considered.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

In some situations, you may wish to have a little more control in your exporting bundle.

For example, maybe you are exposing a package containing non-public API or you have

modified a common open source library in an incompatible way so you don't want unaware

bundles to inadvertently match your exported packages. The OSGi specification provides this

capability through the notion of a mandatory export attribute and specified with the

mandatory export package directive.

MANDATORY DIRECTIVE

The mandatory export package directive specifies a comma-delimited list of attribute

names which any importer must match in order to be wired to the exported package.

To see how mandatory attributes work, let's modify the previous snippet to export its

package using one:
Export-Package: javax.servlet; version="2.4.1"; private="true";
 mandatory:="private"

We have added the mandatory directive to the exported package. In this example we

declared the private attribute as mandatory. Any export attribute declared as mandatory

places a constraint on importers. If the importers do not specify a matching value for the

attribute, then they do not match. In other words, the export attribute cannot be ignored, as

depicted in Figure 5.6. The need for mandatory attributes does not arise often; we will see

some other use cases in the coming sections. Until then, let's look into another more fine-

grained mechanism bundles have to control what is exposed from their exported packages.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 5.5 Only attributes mentioned in the imported
package declaration impact dependency resolution
matching, any attributes mentioned only in the
exported package declaration are ignored.

B

export
javax.servlet

version=”2.4.0”
private=”true”

A import
javax.servlet
version=”[2.4.0,2.5.0)”

http://www.manning-sandbox.com/forum.jspa?forumID=507

5.1.4 Export filtering

In chapter 1, we discussed the limitations of Java's rules for code visibility. There is no way

to declare “module” visibility, so public visibility must be used for classes accessed across

packages. This is not necessarily problematic if you can keep your public and private API in

separate packages, since bundles have the ability to hide packages by simply not exporting

them. Unfortunately, this is not always possible and in some cases you end up with a

public implementation class inside of a package exported by the bundle. To cope with this

situation, OSGi provides include and exclude export filtering directives for fine-grained

control over the classes exposed from your bundle's exported packages.

EXCLUDE/INCLUDE DIRECTIVES

The exclude and include export package directives specify a comma-delimited list of

class names to exclude or include from the exported package, respectively.

To see how we can use these directives, consider a hypothetical bundle containing a

package (e.g., org.foo.service) with a service interface (public class Service), an

implementation of the service (package private class ServiceImpl), and a utility class

(public class Util). In this hypothetical example, the utility class is part of the private

API. It is included in this package due to dependencies on the service implementation and is

public because it is used by other packages in the bundle. We need to export the

org.foo.service package, but we do not want to expose the Util class. In general, we

should avoid such scenarios, but the following metadata snippet illustrates how we can do

this with export filtering:
Export-Package: org.foo.service; version="1.0.0"; exclude:="Util"

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 5.6 If an export attribute is declared as
mandatory, then importing bundles must declare the
attribute and matching value or else it will not match
when the framework resolves dependencies.

C

B

import
javax.servlet
version=”[2.4.0,2.5.0)”
private=”true”

export
javax.servlet

version=”2.4.0”
private=”true”

mandatory:=”private”

A import
javax.servlet
version=”[2.4.0,2.5.0)”

http://www.manning-sandbox.com/forum.jspa?forumID=507

This exported package behaves like any normal exported package as far as dependency

resolution is concerned, but at execution time it filters the Util class from the package so

importers cannot access it as shown in Figure 5.7. A bundle attempting to load the Util

class will receive class not found exception. The value of the directive specifies only class

names; the package name must not be specified, nor should the .class portion of the class

file name. The “*” character is also supported as a wild card, so it is possible to exclude all

classes with names matching “*Impl”, for example.

In some cases it might be easier to specify which classes are allowed instead of which

ones are disallowed. For those situations, the include directive is available. It specifies

which classes the exported package should expose. The default value for the include

directive is “*”, while the default value for the exclude directive is an empty string. It is

possible to specify both the include and exclude directive for a given exported package.

A class is only visible if it is matched by an entry in the include directive and not matched

by any entry in the exclude directive.

You should definitely strive to separate your public and private API into different packages

so these mechanisms aren't needed, but they are here to get you out of a tough spot when

you need them. Next, we will move onto another mechanism to help us manage our API.

5.1.5 Duplicate exports

A given bundle can only see one version of a given class while it executes. Knowing this, it is

not surprising to learn that bundles are not allowed to import the same package more than

once. What you may find surprising is OSGi allows a bundle to export the same package

more than once. For example, the following snippet of metadata is perfectly valid:
Export-Package: javax.servlet; version="2.3.0",
 javax.servlet; version="2.4.0"

How is it possible you ask? The trick is the bundle doesn't actually contain to separate

sets of classes for the two exported packages. In reality, the bundle is masquerading the

same set of classes as different packages. Why would it do this? If we expound on the above

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 5.7 Bundle A exports the org.foo.service package but excludes the “Util” class, when bundle B
imports the org.foo.service package from bundle A it can only access the “Service” and “ServiceImpl”
classes.

A
/org/foo/service/Service.class
/org/foo/service/ServiceImpl.class
/org/foo/service/Util.class

export
org.foo.service
version=”1.0.0”
exclude:=Util

B
org.foo.service.Service
org.foo.service.ServiceImpl

import
org.foo.service

version=”[1.0.0,2.0.0)”

Util

http://www.manning-sandbox.com/forum.jspa?forumID=507

snippet, maybe we have unmodifiable third-party bundles with explicit dependencies on

javax.servlet version 2.3.0 in our application. Since version 2.4.0 is backwards

compatible with version 2.3.0, we can use duplicate exports to allow our bundle to stake a

backwards compatibility claim. In the end, all bundles requiring either version of

javax.servlet can resolve, but they all use the same set of classes at execution time as

depicted in Figure 5.8.

As with exporting filtering, this is another mechanism to manage our API. We can take

this further and combine it with some of the other mechanisms we've learned about in this

section for additional API management techniques. Generally, we don't want to expose our

bundle's implementation details, but sometimes we do want to expose implementation

details to some bundles; this is similar to the “friend” concept in C++. A friend is allowed to

see implementation details while non-friends cannot. To achieve something like this in OSGi,

we need to combine mandatory export attributes, export filtering, and duplicate exports. To

illustrate, let's return to our example from export filtering:
Export-Package: org.foo.service; version="1.0.0"; exclude:="Util"

In this example, we excluded our Util class, since it was an implementation detail. This

is the exported package our non-friends should use. For our friends we need to export the

package without filtering, such as:
Export-Package: org.foo.service; version="1.0.0"; exclude:="Util",
 org.foo.service; version="1.0.0"

Now we have one export hiding the Util class and one exposing it. So how do we control

who gets access to what? That's right, mandatory export attributes. We need the following:
Export-Package: org.foo.service; version="1.0.0"; exclude:="Util",
 org.foo.service; version="1.0.0"; friend="true"; mandatory:="friend"

Only bundles explicitly importing our package with the friend attribute and matching

value will see the Util class. Clearly, this is not a very strong sense of friendship, since any

bundle can specify the friend attribute, but at least it requires an opt-in strategy to using

implementation details signaling that the importer is willing to live with the consequences of

potential breaking changes in the future. Best practice dictates avoiding the friendship

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 5.8 A bundle can export the same package multiple
times, but this is only a form of masquerading and only one
set of classes exist for the package in the bundle

export
javax.servlet;
version=”2.4.0”

A
.class.class.class

one set of classes
for javax.servlet

export
javax.servlet;
version=”2.3.0”B

import
javax.servlet
version=”[2.3.0,2.4.0)”

C import
javax.servlet
version=”[2.4.0,2.5.0)”

http://www.manning-sandbox.com/forum.jspa?forumID=507

concept, since it weakens modularity. If API is valuable enough to export it, then you should

consider making it public API.

We have now explored all of the extra export capabilities provided by the OSGi

framework. These extra capabilities represent advanced use cases which allow us to handle

some of the more thorny edge cases of operating in a modular environment. So this covers

exports, but what about imports? Surely if there are all these extra capabilities of exports

there must be more to learn about imports? Yes, there is. In the next section, we will learn

how to make importing packages a little more flexible which again can provide us with some

wiggle room when trying to get legacy Java applications to work in an OSGi environment.

5.2 Loosening your imports
Explicitly declared imports are great, since they allow us to more easily reuse code because

we know its requirements and can automate dependency resolution. This gives us the benefit

of being able to detect misconfigurations early, rather than receiving various class loading

and class cast exceptions at execution time. On the other hand, explicitly declared imports

are somewhat constraining, since the framework uses them to strictly control whether or not

our code can be used; if an imported package cannot be satisfied, the framework does not

allow the associated bundle to transition into the RESOLVED state. Additionally, to import a

package we have to know the name of a package in advance, but this is not always possible.

What can we do in these situations? The OSGi framework provides two different

mechanisms for dealing with such situations: optional and dynamic imports. Let's look into

how each of these can help as well as compare and contrast them.

5.2.1 Optional imports

Sometimes a given package imported by a bundle is not strictly necessary for it to function

properly. Consider an imported package for a non-functional purpose, like logging. If our

bundle uses logging, even if no logging package is available in the framework, it can continue

to function properly, it just won't be able to do any logging. To express this, OSGi provides

the resolution directive to mark imported packages as optional.

RESOLUTION DIRECTIVE

T h e resolution import package directive can have a value of mandatory or

optional to indicate whether the imported package is required to successfully resolve

the bundle.

Consider the following metadata snippet:
Import-Package: javax.servlet; version="2.4.0",
 org.osgi.service.log; version="1.3.0"; resolution:="optional"

This import statement declares dependencies on two packages, javax.servlet and

org.osgi.service.log. The dependency on the logging package is optional, as indicated

by the use of the resolution directive with optional value. This means the bundle can

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

be successfully resolved even if there is no org.osgi.service.log package available.

Attempts to use the class at execution time will result in a ClassNotFoundException. All

imported packages have a resolution associated with them, but the default value is

mandatory. We'll look at how this is used in practice in section 5.2.4, but for now let's

consider the other tool in the box, called dynamic imports.

5.2.2 Dynamic imports

Certain Java programming practices make it difficult to know all the packages a bundle may

need at execution time. A prime example is locating a JDBC driver. Often, the name of the

class implementing the JDBC driver is a configuration property or is supplied by the user at

execution time. Since our bundle can only see classes in packages it imports, how is it

possible for it to import an unknown package name? This sort of situation arises when

dealing with service provider interface (SPI) approaches, where a common interface is known

in advance, but not the name of the class implementing it. To capture this, OSGi allows a

bundle to dynamically import packages.

DYNAMICIMPORT-PACKAGE

A comma-separated list of packages needed at execution time by internal bundle code

from other bundles, but not needed at resolve time. The package names can be a “*”

wildcard or can include a trailing “.*” as a recursive sub-package wildcard.

You may have expected from the previous examples that dynamic imports would be

handled by an import package directive as well, but they are sufficiently different to warrant

their own metadata header. In the most general sense, a dynamic import is expressed in the

bundle metadata like this:
DynamicImport-Package: *

Since the intended use case is for gaining access to unknown packages, the use of

wildcards is necessary to match any package. The above snippet will dynamically import any

package needed by the bundle. When the wildcard is used at the end of a package name

(e.g., “org.foo.*”), it matches all sub-packages recursively, but does not match the

specified root package. Given the dynamic and open-ended nature of dynamic imports, it is

important to understand precisely when in the class search order of a bundle they are

searched. They appear in the class search order as follows:

1. Requests for classes in “java.” packages are delegated to the parent class loader;
searching stops with either a success or failure (section 2.5.4?).

2. Requests for classes in an imported package are delegated to the exporting bundle;
searching stops with either a success or failure (section 2.5.4?).

3. The bundle class path is searched for the class; searching stops if found, but continues
to the next step with a failure (section 2.5.4?).

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

4. Requests for classes matching a dynamically imported package are delegated to an
exporting bundle if one is found; searching stops with either a success or failure.

As you can see, dynamic imports are only attempted as a last resort, but once a

dynamically imported package is resolved and associated with the importing bundle, then it

behaves just like a statically imported package. Future requests for classes in the same

package will be serviced in step 2.

Dynamic imports are alluring to new OSGi programmers, because they provide similar

behavior to standard Java programming where everything available on the class path is

visible to the bundle. Unfortunately, this approach is not modular and does not allow the

OSGi framework to verify whether dependencies are satisfied in advance of using your

bundle. As a result, dynamically importing packages should be seen as bad practice, except

for explicitly dealing with SPI approaches.

It is also possible to use dynamically imported packages in a fashion more similar to

optionally imported packages by specifying additional attributes like normal imported

packages:
DynamicImport-Package: javax.servlet.*; version="2.4.0"

Or even:
DynamicImport-Package: javax.servlet; javax.servlet.http; version="2.4.0"

In the first case, all sub-packages of javax.servlet of version 2.4.0 are dynamically

imported, while in the second only the explicitly mentioned packages are dynamically

imported. More precise declarations such as this often make less sense when using dynamic

imports, since the general use case is for unknown package names.

So, we apparently have two different ways of loosening bundle imports, let's compare and

contrast them a little more closely.

5.2.3 Optional versus dynamic imports

As mentioned in the previous subsections, there are intended use cases for both optional and

dynamic imports, but the functionality they provide overlaps. To better understand each, we

will look into the similarities and differences; let's start with the similarities.

Both are used to express dependencies on packages which may or may not be available

at execution time. While this is the specific use case for optional imports, it is actually a

byproduct of dynamic imports. Either way, this has the following impact:

1. Optional/dynamic imports never cause a bundle to be unable to resolve.

2. Your bundle code must be prepared to catch ClassNotFoundExceptions for the
optionally/dynamically imported packages.

Only normally imported packages (i.e., mandatory imported packages) impact bundle

dependency resolution. If a mandatory imported package cannot be satisfied, then the

bundle cannot be resolved and used. Neither optionally or dynamically imported packages

are required to be present when resolving dependencies. For optional imports, this is the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

whole point; they are optional. For dynamic imports, they are not necessarily optional, but

since they are unknown a priori, it is not possible for the framework to enforce that they

exist.

Since the packages may not exist in either case, the logical consequence is the code in

any bundle employing either mechanism must be prepared to catch

ClassNotFoundExceptions when attempting to access classes in the optionally or

dynamically imported packages. This is typically the sort of issue the OSGi framework tries to

help us avoid with explicit dependencies; we shouldn't be dealing with class loading issues as

developers. By now you must be wonder what's the difference between the two? It has to do

with when the framework tries to resolve the dependencies.

The framework attempts to resolve an optionally imported package once when the

associated bundle is resolved. If the import is satisfied, then the bundle has access to the

package. If not, then the bundle does not and will not ever have access to the package

unless it is re-resolved. For a dynamically imported package, the framework attempts to

resolve it at execution time when the bundle's executing code tries to use a class from the

package. Further, the framework keeps trying to resolve the package each time the bundle's

executing code tries to use classes from it until it is successful. Once it is successful, then the

bundle is wired to the provider of the package and it behaves like a normal import from that

point forward. Let's look at how we could use these mechanisms in an example for logging,

which is often an optional activity for bundles.

5.2.4 Logging example

Logging is typically a good example of optional functionality. The OSGi specification defines a

simple logging service, which we might want to use in our bundles, but we cannot be certain

it will always be available. One way to deal with this uncertainty is to create a simple “proxy”

logger which uses the logging service if available or prints to standard output if not. Our first

example will use an optional import for the org.osgi.service.log package. The simple

proxy logger code is depicted in Listing 5.1.

Listing 5.1 Simple proxy logger using optional import

public class Logger {
 private final BundleContext m_context;
 private final ServiceTracker m_tracker;
 public Logger(BundleContext context) { #1
 m_context = context;
 m_tracker = init(m_context);
 }
 private ServiceTracker init(BundleContext context) { #2
 ServiceTracker tracker = null;
 try {
 tracker = new ServiceTracker(#3
 context, org.osgi.service.log.LogService.class.getName(), null);
 tracker.open();
 } catch (NoClassDefFoundError error) { } #4

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 return tracker;
 }
 public void close() { #5
 if (m_tracker != null) {
 m_tracker.close();
 }
 }
 public void log(int level, String msg) { #6
 boolean logged = false;
 if (m_tracker != null) { #7
 LogService logger = (LogService) m_tracker.getService();
 if (logger != null) { #8
 logger.log(level, msg); #9
 logged = true;
 }
 }
 if (!logged) {
 System.out.println("[" + level + "] " + msg); #10
 }
 }
}

The proxy logger has a constructor (#1) which takes the BundleContext object to track

log services, an init() method (#2) to create a ServiceTracker for log services, a

close() method (#5) to stop tracking log services, and a log() method (#6) for logging

messages. Looking more closely at the init() method, at (#3) we try to use the logging

package to create a ServiceTracker. Since we are optionally importing the logging

package, we surround it in a try-catch block at (#4). If an exception is thrown we set our

tracker to null, otherwise we end up with a valid tracker. When a message is logged, we

check if we have a valid tracker at (#7). If so, we try to log to a log service. Even if we have

a valid tracker, it doesn't mean we actually have a log service, which is why we verify it at

(#8). If we have a log service we use it at (#9), otherwise we log to standard output at

(#10). The important point is we only attempt to probe for the log package once with a

single call to init() from the constructor, since an optional import will never be satisfied

later if it is not satisfied already. Our bundle activator is depicted in Listing 5.2.

Listing 5.2 Bundle activator creating the proxy logger

public class Activator implements BundleActivator {
 private volatile Logger m_logger = null;
 public void start(BundleContext context) throws Exception {
 m_logger = new Logger(context); #1
 m_logger.log(4, "Started");
 …
 }
 public void stop(BundleContext context) {
 m_logger.close(); #2
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

When the bundle is started, we create an instance of our proxy logger at (#1) which will

be used throughout our bundle for logging. Although not depicted here, the bundle passes a

reference or somehow provides access to the logger instance to any internal code needing a

logger at execution time. When the bundle is stopped, we invoke close() on the proxy

logger at (#2), which stops its internal service tracker, if necessary. The manifest for our

logging bundle is:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: example.logger
Bundle-Activator: example.logger.Activator
Import-Package: org.osgi.framework, org.osgi.util.tracker,
 org.osgi.service.log; resolution:=optional

How would this example change if we wanted to treat the logging package as a dynamic

import? The impact to the Logger class is depicted in Listing 5.3.

Listing 5.3 Simple proxy logger using dynamic import

public class Logger {
 private final BundleContext m_context;
 private ServiceTracker m_tracker; #1
 public LoggerImpl(BundleContext context) {
 m_context = context;
 }
 private ServiceTracker init(BundleContext context) {
 ServiceTracker tracker = null;
 try {
 tracker = new ServiceTracker(
 context, org.osgi.service.log.LogService.class.getName(), null);
 tracker.open();
 } catch (NoClassDefFoundError error) { }
 return tracker;
 }
 public synchronized void close() { #2
 if (m_tracker != null) {
 m_tracker.close();
 }
 }
 public synchronized void log(int level, String msg) { #3
 boolean logged = false;
 if (m_tracker == null) {
 m_tracker = init(m_context); #4
 }
 if (m_tracker != null) {
 LogService logger = (LogService) m_tracker.getService();
 if (logger != null) {
 logger.log(level, msg);
 logged = true;
 }
 }
 if (!logged) {
 System.out.println("[" + level + "] " + msg);
 }
 }

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

}

We can no longer make our ServiceTracker member variable final at (#1), since we

don't know when it will actually be created. To make our proxy logger thread safe and avoid

creating more than one ServiceTracker instance, we need to synchronize our entry

methods at (#2) and (#3). Since the logging package could appear at any time during

execution, we try to create the ServiceTracker instance each time we log a message at

(#4) until successful. As before, it all else fails, we log to standard output. The manifest

metadata is pretty much the same as before, except for the logging package:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: example.logger
Bundle-Activator: example.logger.Activator
Import-Package: org.osgi.framework, org.osgi.util.tracker
DynamicImport-Package: org.osgi.service.log

These two example should illustrate the differences between these two mechanisms. As

you can see, if you really plan to take advantage of the fully dynamic nature of dynamic

imported packages, then there is added complexity with respect to threading and

concurrency. There is also potential overhead associated with dynamic imports too, not only

because of the synchronization, but also because it can be costly for the framework to try to

find a matching package at execution time. For logging, which happens frequently, this cost

could be great.

Optional imports are optional

We should point out that you can use dynamic imports in a fashion similar to optional

imports. So in this sense, the use of the optional import package mechanism is itself

optional. For example, we could just modify the metadata of the optional logger example

to be a dynamic import instead, but keep the code exactly the same. If we did this, then

the two examples would be largely equivalent. If this is the case, then why choose one

over the other? There is no real reason or recommendation for doing so. These two

concepts overlap for historical reasons. Dynamic imports have existed since the R2

release of the OSGi specification, whereas optional imports have only existed since the R4

release. Even though optional imports overlapped dynamic imports, they were added for

consistency with bundle dependencies, which were also added in R4 and could also be

declared as optional. We will look at them next.

5.3 Requiring bundles
In section 5.1.2, we discussed how implicit export attributes allow bundles to import

packages from a specific bundle. The OSGi specification also supports a module-level

dependency concept, called a required bundle, providing a similar capability. In [ref section

ch2], we discussed a host of reasons why package-level dependencies are preferred over

module-level dependencies, such as them being less brittle and coarse grained. We won't

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

rehash those general issues. However, there is one particular use case where requiring

bundles may be necessary in OSGi – if you must deal with split packages.

SPLIT PACKAGE

A split package is a Java package whose classes are not contained in a single JAR, but are

split across multiple JAR files; in OSGi terms, it is a package split across multiple bundles.

In standard Java programming, packages are generally treated as split; the Java class

path approach merges all packages from different JAR files on the class path into one big

soup. This is the anathema to OSGi's modularization model where packages are treated as

atomic (i.e., they cannot be split).

When migrating to OSGi from a world where split packages are common, we are often

forced to confront ugly situations. But even in the OSGi world, over time a package may

grow too large and reach a point where you can logically divide it into disjoint functionality

for different clients. Unfortunately, if you simply break up the existing package and assign

new disjoint package names, you'd break all existing clients. Splitting the package allows its

disjoint functionality to be used independently, but for existing clients we need an

aggregated view of the package.

This gives you an idea of what a split package is, but how does this relate to requiring

bundles? This will become clearer after we discuss what it actually means to require a bundle

and introduce a use case for doing so, which we'll do next.

5.3.1 Declaring bundle dependencies

The big difference between importing a package and requiring a bundle is the scope of the

dependency. While an imported package defines a dependency from a bundle to a specific

package, a required bundle defines a dependency from a bundle to every package exported

by a specific bundle. To require a bundle, we declare it in the bundle's manifest file using the

bundle symbolic name and version of the required bundle.

REQUIRE-BUNDLE

A comma-separated list of target bundle symbolic names on which a bundle depends,

indicating the need to access all packages exported by the specifically mentioned target

bundles.

We use the Require-Bundle header to specify a bundle dependency in a manifest, like

this:
Require-Bundle: A; bundle-version="[1.0.0,2.0.0)"

Resolving required bundles is similar to imported packages. The framework tries to satisfy

each required bundle; if it is unable to do so, then the bundle cannot be used. The

framework resolves the dependency by searching the installed bundles for ones matching the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

specified symbolic name and version range. Figure 5.9 depicts a resolved bundle

dependency.

When resolving a bundle dependency, the framework must still obey any “uses”

constraints associated with the exported packages of the required bundle. To a large degree,

requiring bundles is just a brittle way to import packages, since it specifies “who” instead of

“what”. The significant difference is how it fits into the overall class search order for the

bundle, which is:

1. Requests for classes in “java.” packages are delegated to the parent class loader;
searching stops with either a success or failure (from section 2.5.4).

2. Requests for classes in an imported package are delegated to the exporting bundle;
searching stops with either a success or failure (from section 2.5.4?).

3. Requests for classes in a package from a required bundle are delegated to the
exporting bundle; searching stops if found, but continues with the next required
bundle or the next step with a failure.

4. The bundle class path is searched for the class; searching stops if found, but continues
to the next step with a failure (from section 2.5.4).

5. Requests for classes matching a dynamically imported package are delegated to an
exporting bundle if one is found; searching stops with either a success or failure (from
section 5.2.2).

Packages from required bundles are searched only if the class was not found in an

imported package, which means imported packages override packages from required

bundles. Did you notice another important difference between imported packages and

packages from required bundles in the search order? If a class in a package from a required

bundle cannot be found, the search continues to the next required bundle in declared order

or the bundle's local class path. This is because Require-Bundle supports split packages,

which we will discuss in more detail in the next subsection, but first let's look at some of the

remaining details of requiring bundles.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 5.9 Requiring a bundle is similar to
explicitly importing every package exported by
the target bundle

export
javax.servlet;
version=”2.4.0”

A
1.0.0

export
javax.servlet.http;
version=”2.4.0”

B

Require-Bundle: A;
 bundle-version=”[1.0.0,2.0.0)”

http://www.manning-sandbox.com/forum.jspa?forumID=507

As we briefly mentioned in section 5.2.4, it is possible to optionally require a bundle using

the resolution directive; for example:
Require-Bundle: A; bundle-version="[1.0.0,2.0.0)"; resolution:="optional"

The meaning is the same as when we optionally import packages, such as not impacting

dependency resolution and the need to catch ClassNotFoundExceptions when your

bundle attempts to use potentially missing classes. It is also possible to control downstream

visibility of packages from a required bundle using the visibility directive, which can be

specified as either private by default or reexport. For example:
Require-Bundle: A; bundle-version="[1.0.0,2.0.0)"; visibility:="reexport"

 This makes the required bundle dependency transitive. If a bundle contains this, then

any bundle requiring it will also see the packages from bundle A (i.e., they are re-exported).

Figure 5.10 provide a pictorial example.

CAUTION!

There are very few, if any, good reasons to use Require-Bundle with reexport

visibility. This mechanism is not very modular and excessive use results in very brittle

systems with high coupling.

Now let's return our attention to how Require-Bundle supports split packages.

5.3.2 Aggregating split packages

Avoiding split packages is the recommended approach in OSGi, but occasionally you may run

into a situation where you need to split a package across bundles. Require-Bundle makes

such situations possible. Since class searching does not stop when a class is not found for

required bundles, it is possible to use Require-Bundle to search for a class across a split

package by requiring multiple bundles containing its different parts. For example, assume we

have a package org.foo.bar split across bundles A and B. Here is a manifest snippet from

bundle A:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: A

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 5.10 When bundle B requires bundle A with reexport visibility,
any packages exported from A will become visible to any bundles
requiring B

export
javax.servlet;
version=”2.4.0”

A
1.0.0

export
javax.servlet.http;
version=”2.4.0”

Require-Bundle: A;
 bundle-version=”[1.0.0,2.0.0)”;
 visibility:=reexport

export
javax.servlet;

version=”2.4.0”

export
javax.servlet.http;

version=”2.4.0”

B

http://www.manning-sandbox.com/forum.jspa?forumID=507

Bundle-Version: 2.0.0
Export-Package: org.foo.bar; version="2.0.0"

Here is a manifest snippet from bundle B:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: B
Bundle-Version: 2.0.0
Export-Package: org.foo.bar; version="2.0.0"

Both bundles claim to export org.foo.bar, even though they each only offer half of it;

yes, this is problematic, but we will ignore it for now and come back to it shortly. Now if we

have another bundle wanting to use the entire org.foo.bar package, it has to require both

bundles. The bundle metadata might look something like this:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: C
Bundle-Version: 1.0.0
Require-Bundle: A; version="[2.0.0,2.1.0)", B; version="[2.0.0,2.1.0)"

When code from bundle C attempts to load a class from the org.foo.bar package it

follows these steps:

1. It delegates to bundle A. If the request succeeds the class is returned, but if it fails it
goes to the next step.

2. It delegates to bundle B. If the request succeeds the class is returned, but if it fails it
goes to the next step.

3. It tries to load the class from bundle C's local class path.

The last step actually allows org.foo.bar to be split across the required bundles as well

as the requiring bundle. Since searching continues across all require bundles, bundle C is

able to use the whole package. What about a bundle wanting to use only one half of the

package? Instead of requiring both bundles, it could require just the bundle containing the

portion it needs. Sounds reasonable, but does this mean once you split a package you are

stuck with using bundle-level dependencies and can no longer use package-level

dependencies? No, it doesn't, but it does require some best practice recommendations.

HANDLING SPLIT PACKAGES WITH IMPORT-PACKAGE

If another bundle wanted to use Import-Package to access the portion of the package

contained in bundle B, it could do something like this:
Import-Package: org.foo.bar; version="2.0.0"; bundle-symbolic-name="B"

This is actually quite similar to using Require-Bundle for the specific bundle. If we

added an arbitrary attribute to each exported, called split for example, we could use it to

indicate a part name. Assume we set split equal to part1 for bundle A and part2 for

bundle B. Then we could import the portion from B as follows:
Import-Package: org.foo.bar; version="2.0.0"; split="part2"

This has the benefit of being a little more flexible, since if we later change which bundle

contains which portion of the split package it won't break existing clients. What about

existing clients which were using Import-Package to access to the entire org.foo.bar

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

package, is it still possible? It is very likely there are existing client bundles simply doing the

following:
Import-Package: org.foo.bar; version="2.0.0"

Will they see the entire package if it is now split across multiple bundles? No. How would

the framework resolve this dependency? The framework has no understanding of split

packages as far as dependency resolution is concerned. If bundles A and B were installed

and another bundle came along with the above import declaration, the framework would

treat A and B as both being candidates to resolve dependency. It would simply choose one

following the normal rules of priority for multiple matching candidates. Clearly, no matter

which candidate it chose, the resulting solution would be incorrect. To avoid such situations,

we need to ensure our split package portions aren't accidentally used by the framework to

resolve an import for the entire package, but how? Mandatory attributes can help us here,

we could rewrite bundle A's metadata like so:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: A
Bundle-Version: 2.0.0
Export-Package: org.foo.bar; version="2.0.0"; split="part1";
 mandatory:="split"

And likewise for bundle B, but with split equal to part2. Now for a bundle to import

either part of the split package, they must explicitly mention the part they wish to use. But

what about an existing client bundle wanting to import the whole package? Since its import

doesn't specify the mandatory attribute, it cannot be resolved. We need some way to

reconstruct the whole package and make it available for importing; OSGi allows us to create

a façade bundle for such a purpose. To make bundle C a façade bundle, we change its

metadata to be:
Bundle-ManifestVersion: 2
Bundle-SymbolicName: C
Bundle-Version: 1.0.0
Require-Bundle: A; version="[2.0.0,2.1.0)", B; version="[2.0.0,2.1.0)"
Export-Package: org.foo.bar; version="2.0.0"

The only change is the last line where bundle C exports org.foo.bar, which is another

form of re-exporting a package. In this case, it aggregates the split package by requiring the

bundles containing the different parts and it re-exports the package without the mandatory

attribute. Now any client simply importing org.foo.bar will be able to resolve to bundle C

and have access to the whole package. This outlines best practices when it comes to split

packages:

1. Always export split packages with a mandatory attribute to avoid unsuspecting
bundles from using it.

2. Use either Require-Bundle or Import-Package plus the mandatory attribute to
access split packages.

3. To provide access to the whole package, create a façade bundle that requires the
bundles containing the package parts and exports the package in question.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

This is not necessarily the most intuitive or straightforward way to deal with split

packages, but they are anathema to OSGi. This approach was not intended to make them

easy to use, since they are best avoided, but it does make it possible for those situations

where you have no choice. Despite these dire sounding warnings, OSGi actually provides

another way of dealing with split packages, called bundle fragments. We will talk about those

shortly, but first we will discuss some of the issues surrounding bundle dependencies and

split packages.

5.3.3 Issues with bundle dependencies

Using Import-Package and Export-Package is the preferred way to share code since

they couple the importer and exporter to a lesser degree. Using Require-Bundle entails

much tighter coupling between the importer and the exporter and suffers from other issues,

such as the following.

MUTABLE EXPORTS

Requiring bundles are impacted by changes to the exports of the required bundle, which

introduce another form of breaking change needing to be considered. Such changes are not

always easily apparent since the use of reexport visibility can result in chains of required

bundles where removal of an export in upstream required bundles breaks all downstream

requiring bundles.

SHADOWING

Since class searching continues across all required bundles and the bundle class path like

normal class path searching, it is possible for content in required bundles to shadow other

required bundles and the bundle itself. The implications of this are not always obvious,

especially if some bundles are optionally required.

ORDERING

If a package is split across multiple bundles, but there are overlapping classes in them, then

the declared ordering of Require-Bundle declaration is significant. All bundles requiring

the bundles with overlapping content must declare them in the same order or else their view

of the package will be different. This is similar to traditional class path ordering issues.

COMPLETENESS

Even though it is possible to aggregate split packages using a façade bundle, the framework

has no way of verifying whether an aggregated package is complete. This becomes the

responsibility of the bundle developer.

RESTRICTED ACCESS

An aggregated split package is not completely equivalent to the unsplit package. Each

portion of the split package is loaded by its containing bundle's class loader. In Java, classes

loaded by different class loaders cannot access package private members and types, even if

they are in the same package.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

This is by no means an exhaustive list, but it gives you some ideas of what to look out for

when using Require-Bundle and hopefully dissuades you from using it too much. Enough

of the scare tactics, so far we have introduced you to some of the more advanced features of

managing OSGi dependencies, including:

 Importing exports

 Implicit export attributes

 Mandatory export attributes

 Export filtering

 Duplicate exports

 Optional and dynamic imports

 Requiring bundles

These tools allow you to solve some of the more complex edge cases found when

migrating a classic Java application to an OSGi environment. That must be it right? We must

have covered every possible mechanism of specifying dependencies? Well not quite, there is

one more curve ball to be thrown into the mix, that of bundle fragments. Fragments are

another way to deal with split packages by allowing the content of a bundle to be split across

multiple bundle JAR files. We will learn about these and the patterns and that arise from

them in the next section.

5.4 Dividing bundles into fragments
Although splitting packages is not a good idea, occasionally it does make sense, such as with

Java localization. Java handles localization by using java.util.ResourceBundles (which

have nothing to do with OSGi bundles), as a container to help you turn locale-neutral keys

into local-specific objects. When a program wants to convert information into the user's

preferred locale, it uses a resource bundle to do so. A ResourceBundle is created by

loading a class or resource from a class loader using a base name, which ultimately defines

the package containing the class or resource for the ResourceBundle. This approach

means you typically package many localization for different locales into the same Java

package.

If you have lots of localizations or lots of information to localize, then packaging all of

your localizations into the same OSGi bundle could result in a large deployment unit.

Additionally, you wouldn't be able to introduce new localizations or fix mistakes in existing

ones without releasing a new version of the bundle. It would be nice if we could keep

localizations separate, but unlike the split package support of Require-Bundle, these split

packages are generally not useful without the bundle to which they belong. To this end OSGi,

provides another approach to managing these sorts of dependencies through fragments. We

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

will come back to localization shortly when we present a more in-depth example, but first we

will discuss what fragments are and what we can do with them.

5.4.1 Understanding fragments

If we recall the modularity discussion of Chapter 2, we know there is a difference between

logical modularity and physical modularity. Normally in OSGi, a logical module and a physical

module are treated as the same thing; a bundle is a physical module as a JAR file, but it is

also the logical module at run-time forming an explicit encapsulation boundary. Through

fragments, OSGi allows us to break a single logical module across multiple physical modules.

This means we can split a single logical bundle across multiple JAR files.

Breaking a bundle into pieces does not result in a handful of peer bundles; instead, we

define one host bundle and one or more fragment bundles. A host bundle is technically

usable without fragments, but the fragments are not usable without a host. Another way to

think about it is fragments are treated as optional by the OSGi framework. The host bundle is

not necessarily aware of its fragments, since it is the fragments who declare a dependency

on the host using the Fragment-Host manifest header, like this:
Fragment-Host: org.foo.hostbundle; bundle-version="[1.0.0,1.1.0)”

The Fragment-Host header is somewhat confusingly named, since it seems to be

declaring the bundle as a fragment host; it should be read as “require fragment host”. The

target is the symbolic name and bundle version range of the host bundle. Although this

header value follows the common OSGi syntax, you cannot specify multiple symbolic names.

A fragment is limited to belonging to one host bundle, although it may be applicable to a

range of host versions. Note that we do not need to do any special to define a bundle as a

host, any bundle without a Fragment-Host header is a potential host bundle. Likewise, any

bundle with a Fragment-Host header is a fragment. So, we understand the relationship

between a host and its fragments, but how do they actually work together?

When the framework resolves a bundle, it searches the installed bundles to see if there

are any fragments for it. If so, it merges the fragments into the host bundle. This merging

happens in two different ways:

1. Physical – the content and metadata from fragments conceptually become part of the
host bundle.

2. Logical – unlike normal bundles, fragments do not have their own class loader and
instead are accessed via their host's class loader.

The first form of merging recombines the split physical pieces of the logical bundle, while

the second form creates a single logical bundle since OSGi uses a single class loader per

logical bundle to achieve encapsulation.

Fragments and package private access

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

As a technical side note, Java only allows package private access to classes loaded by the

same class loader; two classes in the same package, but loaded by two different class

loaders cannot access each others' package private members. By using the host class

loader, fragment bundles are properly recombined to avoid this issue in the case where a

package is split across fragments and/or the host. This is not the case for split packages

accessed through Require-Bundle. This is not always important, but the distinction

between these two forms of support for split packages is worth understanding.

Returning to our discussion about resolving a bundle, if it has fragments then the

framework merges their metadata with the host's and resolves the bundle like normal. Figure

5.11 illustrates the before and after effects of the merging process.

1. Requests for classes in “java.” packages are delegated to the parent class loader;
searching stops (section 2.5.4?).

2. Requests for classes in an imported package are delegated to the exporting bundle;
searching stops (section 2.5.4?).

3. Requests for classes in a package from a required bundle are delegated to the
exporting bundle; searching continues with a failure (section 5.3.1).

4. The host bundle class path is searched for the class; searching continues with a failure
(section 2.5.4?).

5. Fragment bundle class paths are searched for the class in the order in which the
fragments were installed; searching stops if found, but continues through all fragment
class paths and then to the next step with a failure.

6. Requests for classes matching a dynamically imported package are delegated to an
exporting bundle if one is found; searching stops (section 5.2.2).

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 5.11 a) The host and fragment bundles are deployed
as independent bundles in the framework; b) when the
framework resolves the host, it effectively merges the
fragment's content and metadata into the host bundle

Host Fragment

Host

Fragment

a)

Fragmentb)

http://www.manning-sandbox.com/forum.jspa?forumID=507

This is the complete bundle class search order, as such you may want to mark this page

for future reference! This search order makes it clear how fragments support split packages,

since the host and all fragment class paths are searched until the class is found.

Fragments and the Bundle-ClassPath

Bundle class path search order seems fairly linear, but fragments do introduce one

exception. When specifying a bundle class path, we can embed JAR files, such as:

Bundle-ClassPath: .,specialized.jar,default.jar

Typically, you would expect both of these JAR files to be contained in the JAR file of the

bundle declaring it, but this need not be the case. If fragments aren't involved, then the

framework ignores a non-existent JAR file on the bundle class path. However, if the

bundle has fragments attached to it, then the framework will search the fragments for the

specified JAR files if they do not exist in the host bundle. In the above example, imagine

the host contains default.jar, but does not contain specialized.jar, which is

actually contained in an attached fragment. The impact this has on the class search order

is that the specified fragment content will be searched before some of the host bundle

content.

Sometimes this is useful if you want to provide some default functionality in the host

bundle, but be able to override it on platforms where you have specialized classes (e.g.,

using native code). This approach can also be used to provide a means for issuing

patches to bundles after the fact, but in general it is better to replace the whole bundle.

Some final issues regarding fragments. Fragments are allowed to have any metadata a

normal bundle may have, except Bundle-Activator. This makes sense since fragments

cannot be started or stopped and can only be used when combined with the host bundle.

Attaching a fragment to a host creates a dependency between the two, which is similar to

the dependencies created between two bundles via Import-Package or Require-Bundle. This

means if either bundle is updated or uninstalled, then the other bundle is impacted and any

refreshing of the one will likely lead to refreshing of the other.

We started our foray into fragments discussing localization since it was the main use case

for them. Next, we will look at an example of how to use fragments for just that purpose.

5.4.2 Using fragments for localization

To see how we can use fragments to localize an application, let's return to the service-based

paint program from chapter 4. The main application window was implemented by the

PaintFrame class. Recall its design, PaintFrame did not have any direct dependencies on

OSGi API; instead, it used a ShapeTracker class to track SimpleShape services in the

OSGi service registry and inject them into the PaintFrame instance. ShapeTracker

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

injected service into the PaintFrame using its addShape() method as depicted in Listing

5.4.

Listing 5.4 Method used to inject shapes into PaintFrame object

public void addShape(String name, Icon icon, SimpleShape shape) { #1
 m_shapes.put(name, new ShapeInfo(name, icon, shape)); #2
 JButton button = new JButton(icon); #3
 button.setActionCommand(name);
 button.setToolTipText(name); #4
 button.addActionListener(m_reusableActionListener);

 if (m_selected == null) {
 button.doClick();
 }

 m_toolbar.add(button); #5
 m_toolbar.validate();
 repaint();
}

We see that addShape() is invoked with the name, icon, and service object of the

SimpleShape implementation at (#1). The exact details are not so import, but the shape is

recorded in a data structure at (#2), a button is created for it at (#3), its name is set as the

button's tool tip at (#4), and after a few other steps the associated button is added to the

toolbar at (#5). Focusing on (#4), the tool tip is textual information displayed to the user

when he or she hovers the mouse over the shape's toolbar icon. It would be nice if this

information could be localized.

There are different approaches we could take to localize the shape name. One approach is

to define a new service property which defines the ResourceBundle base name. This way

shape implementations could define their localization base name, much like they use service

properties to indicate name and icon. In such an approach, the PaintFrame.addShape()

would need to be injected with the base name property so it could perform the localization

lookup. This is probably not ideal in this situation. Another approach is to focus on where the

shape's name is set in the first place, which occurs in the shape implementation's bundle

activator. Listing 5.5 depicts the activator of the circle implementation.

Listing 5.5 Original circle bundle activator with hard-coded name

public class Activator implements BundleActivator {
 public void start(BundleContext context) {
 Hashtable dict = new Hashtable();
 dict.put(SimpleShape.NAME_PROPERTY, "Circle"); #1
 dict.put(SimpleShape.ICON_PROPERTY,
 new ImageIcon(this.getClass().getResource("circle.png")));
 context.registerService(
 SimpleShape.class.getName(), new Circle(), dict); #2
 }

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 public void stop(BundleContext context) {}
}

We can see at (#1) the hard-coded shape name is assigned to the service property

dictionary and the shape service is ultimately registered at (#2). So the first thing we need

to do is to change the hard-coded name into a lookup from a ResourceBundle. Listing

shows the necessary changes.

Listing 5.6 Modified circle bundle activator with ResourceBundle name lookup

public class Activator implements BundleActivator {
 public static final String CIRCLE_NAME = "CIRCLE_NAME"; #1

 public void start(BundleContext context) {
 ResourceBundle rb = ResourceBundle.getBundle(
 "org.foo.shape.circle.resource.Localize"); #2
 Hashtable dict = new Hashtable();
 dict.put(SimpleShape.NAME_PROPERTY, rb.getString(CIRCLE_NAME)); #3
 dict.put(SimpleShape.ICON_PROPERTY,
 new ImageIcon(this.getClass().getResource("circle.png")));
 context.registerService(
 SimpleShape.class.getName(), new Circle(), dict);
 }

 public void stop(BundleContext context) {}
}

We've modified the activator to use look up the shape name using the key constant

defined at (#1) from a ResourceBundle we create at (#2), which is assigned to the service

properties at (#3). Even though we won't go into the complete details of using

ResourceBundle objects, the important part in this example is when we define it at (#2).

Here we specify the base name of org.foo.shape.circle.resource.Localize. By

d e f a u l t , t h i s r e f e r s t o t h e Localize.properties i n t h e

org.foo.shape.circle.resource package, which contains a default mapping for our

name key. We need to modify our circle implementation to have this additional package and

we add the Localize.properties file to it with the following content:
CIRCLE_NAME=Circle

This is the default mapping for our shape name; if we had a more complicated example,

we would have many more default mappings for other terms. If we want to provide other

mappings to other languages, we need to include them in this same package, but in separate

property files named after the locale's country code. For example, the country code for

Germany is “DE”, so for its localization we create a file called Localize_de.properties with the

following content:
CIRCLE_NAME=Kreis

We do this for each locale we want to support, then at runtime when we create our

ResourceBundle, the correct property file will be selected based on locale of the user's

computer. This all sounds pretty nice, but if we have a lot of information to localize, then we

need to include all of this information in our bundle, which could greatly increase its size.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Further, we have no way of adding support for new locales without releasing a new version of

our bundle. This is where fragments can help, since we can split the resource package into

different fragments. We keep the default localization in our circle implementation, but all

other localizations are put into separate fragments. We didn't need to change the metadata

of our circle bundle, since it is unaware of fragments; the contents of our circle bundle is:
META-INF/MANIFEST.MF
META-INF/
org/
org/foo/
org/foo/shape/
org/foo/shape/circle/
org/foo/shape/circle/Activator.class
org/foo/shape/circle/Circle.class
org/foo/shape/circle/circle.png
org/foo/shape/circle/resource/
org/foo/shape/circle/resource/Localize.properties

For this example we will create a localization fragment bundle for German using the

properties file shown above; the metadata for this bundle is:
Bundle-ManifestVersion: 2
Bundle-Name: circle.resource-de
Bundle-SymbolicName: org.foo.shape.circle.resource-de
Bundle-Version: 5.0
Fragment-Host: org.foo.shape.circle; bundle-version="[5.0,6.0)"

The important part of this metadata is the last line, which declares it as a fragment of the

circle bundle. The contents of the fragment bundle is quite simple:
META-INF/MANIFEST.MF
META-INF/
org/
org/foo/
org/foo/shape/
org/foo/shape/circle/
org/foo/shape/circle/resource/
org/foo/shape/circle/resource/Localize_de.properties

It only contains a resource file for the German translation, which we can see is a split

package with the host bundle. We can create any number of localization fragments following

this same pattern and for our other shapes (e.g., square and triangle). Figure 5.12 shows the

paint program with the German localization fragments installed.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 5.12 Paint program with installed German
localization fragments

http://www.manning-sandbox.com/forum.jspa?forumID=507

To run this example, go into the code/chapter05/paint-example/ directory of the

companion code and type ant to build and java -jar launcher.jar bundles/ to run.

With this approach, we only need to deploy the needed localization fragments along with our

shape implementations and we can create new localizations or update existing ones without

releasing new versions of our shape bundles.

We've now covered all aspects of the OSGi modularity specification! As you can see there

is a comprehensive toolkit available to help you deal with virtually any scenario the Java

language can throw at you. But there is one more trick up our sleeves, the OSGi specification

actually does a pretty good job at dealing with native code that runs outside of the Java

environment. We'll look at this and how to deal with general factors relating to the JVM

environment in the next section.

5.5 Dealing with your environment
Although Java has been fairly successful at attaining its original vision of “write once, run

everywhere,” there are still situations where it is not entirely able to achieve this vision. One

such situation is the myriad of Java platforms, such as Java ME as well as different versions

of Java SE. If you develop a bundle with requirements for a specific Java platform, for

example if you use classes from the java.util.concurrent package, then you will need a

Java 5.0 JVM or above. Another situation is if you need to natively integrate with the

underlying operating system, such as might be necessary if you need to communicate

directly with underlying hardware. As you might expect, in both these situations the OSGi

specification provides mechanisms to explicitly declare these scenarios in your bundles to

allow an OSGi framework to do the necessary work at execution time. In this section, we will

cover both of these topics, starting with the former.

5.5.1 Requiring execution environments

If you develop a bundle with dependency on specific Java execution environments, what will

happen if this bundle executes in an unintended environment? Most likely you will get various

exceptions for missing classes/methods and/or just faulty results. The “write once, run

everywhere” approach for creating bundles is certainly the best, if you can achieve it. But

when you can't, you really need to declare the bundle's execution environment constraints in

the bundle metadata to avoid people unknowingly deploying your bundle to invalid

environments.

The OSGi specification defines an execution environment concept for just this purpose.

Like all bundle metadata, we use a manifest header to define it; in this case the header has

the rather long name of Bundle-RequireExecutionEnvironment. The value of the

header is a comma-delimited list of execution environments. Table 5.1 lists the execution

environments names defined by the OSGi specification.

Table 5.1 OSGi defined standard execution environment names

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Name Description

CDC-1.1/Foundation-1.1 Equivalent to J2ME Foundation Profile

CDC-1.1/PersonalBasis-1.1 J2ME Personal Basis Profile

CDC-1.1/PersonalJava-1.1 J2ME Personal Java Profile

J2SE-1.2 Java 2 SE 1.2.x

J2SE-1.3 Java 2 SE 1.3.x

J2SE-1.4 Java 2 SE 1.4.x

J2SE-1.5 Java 2 SE 1.5.x

JavaSE-1.6 Java SE 1.6.x

OSGi/Minimum-1.2 Minimal required set of Java API that allows an OSGi

framework implementation

Bundles should list all known execution environments on which they can run, which might

look something like this:
Bundle-RequiredExecutionEnvironment: J2SE-1.4,J2SE-1.5,JavaSE-1.6

This indicates the bundle only runs on modern Java platforms. If a bundle lists a limited

execution environment, such as CDC-1.1/Foundation-1.1, then it should not use any

classes or methods that do not exist in the execution environment. The framework does not

verify this claim, it only ensures the bundle is not resolvable on incompatible execution

environments.

Resolve-time, not install-time enforcement

Pay special attention to the last sentence. It is possible to install bundles on a given

execution environment even if they are not compatible with it, but you will not be able to

resolve a bundle unless its execution environment matches the current one. The reason

this is tied to the bundle's resolved state is it possible the execution environment changes

over time; for example, you may switch between different versions of Java on subsequent

executions of the framework. This way, any cached bundles not matching the current

execution environment will essentially just be ignored.

A given framework implementation can claim to provide more than one execution

environment, since it most case the Java platform versions are backwards compatible. It is

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

possible to determine the framework's supported execution environments by retrieving the

org.osgi.framework.executionenvironment p r o p e r t y f r o m

BundleContext.getProperty(). Now that we understand how to declare our bundles'

required execution environments, let's look at how to handle bundles with native code.

5.5.2 Bundling native libraries
Java provides a nice platform and language combination, but it is not always possible to stay

purely in Java. In some situations you need to create native code for the platform on which

Java is running, such as when communicating directly with hardware or for special

performance considerations. Java defined JNI (Java Native Interface) precisely for this

purpose; JNI is how Java code calls code written in other programming languages (e.g., C or

C++) for specific operating systems (e.g., Windows or Linux). A complete discussion of how

JNI works is outside the scope of this book, but the following bullet points provide the

highlights:

 Native code is integrated into Java as a special type of method implementation; a Java
class can declare a method as having native implementation using the native
method modifier.

 Classes with native code are compiled normally, but after compilation the javah
command is used generate C header and stub files, which are used to create the
native method implementations.

 The native code is compiled into a library in a platform-specific way for its target
operating system.

 The original Java class with the native method will include code to invoke
System.loadLibrary(), typically in a static initializer, to load the above native
library when the class is loaded in the Java VM.

 Other classes can simply invoke the native method as if it were a normal method and
the Java platform takes care of the native invocation details.

Although it is fairly straightforward to use native code in Java, it is best to avoid it if

possible. Native code does not benefit from the garbage collector and suffers from the typical

pointer issues associated with all native code. Additionally, it hinders Java's “write one, run

everywhere” goal, since it ties the class to a specific platform. Still, in those cases where it is

absolutely necessary, it is nice to know that OSGi supports it. Actually, OSGi even simplifies it

a little.

One of the downsides of native code is you end up with an additional artifact to deploy

along with your classes. To make matters worse, what you need to do with the native library

differs among operating systems; for example, you typically need to put native libraries in

specific locations in the file system so they can be found at execution time (e.g., somewhere

on the binary search path). OSGi native code support simplifies these issues by:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 Allowing you to embed your native library directly into your bundle JAR file.

 Allowing you to embed multiple native libraries for different target platforms.

 Automatically handling execution time discovery of native code libraries.

When you embed a native library into your bundle, you must tell the OSGi framework

about it. As with all other modularity aspects, we do so in the bundle metadata using the

Bundle-NativeCode manifest header. With this header we can specify the set of contained

native libraries for each platform our bundle supports; the grammar is as follows:
Bundle-NativeCode ::= nativecode (',' nativecode)* (',' optional)?
nativecode ::= path (';' path)* (';' parameter)+
optional ::= '*'

Where a parameter is one of the following:

 osname – Name of the operating system.

 osversion – The operating system version range.

 processor – The processor architecture.

 language – The ISO code for a language.

 selection-filter – An LDAP selection filter.

For example, if we have a bundle with native libraries for Windows XP, then we might

have a native code declaration like:
Bundle-NativeCode: lib/math.dll; lib/md5.dll; osname=WindowsXP;
 processor=x86

This is a semicolon-delimited list, where the first entries not containing an '=' character

are interpreted as file entries in the bundle JAR file and the remaining entries with an '='

character are used to determine if the native library clause matches the current platform. In

this case, we state the bundle has two native libraries for Windows XP on the x86

architecture. If Bundle-NativeCode is specified, then there must be a matching header for

the platform on which the bundle is executing or else the framework will not allow the bundle

to resolve. In other words, if a bundle with the above native code header was installed on a

Linux box, the framework wouldn't allow the bundle to be used. Makes sense. If these same

libraries also worked on Vista, we could specify this as follows:
Bundle-NativeCode: lib/math.dll; lib/md5.dll; osname=WindowsXP;
 osname=WindowsVista; processor=x86

In cases where the parameter is repeated, then the framework treats this like a logical

OR when matching, so these native libraries match Windows XP or Windows Vista. If our

bundle also had native libraries for Linux, we could specify this as follows:
Bundle-NativeCode: lib/math.dll; lib/md5.dll; osname=WindowsXP;
 osname=WindowsVista; processor=x86, lib/libmath.so; osname=Linux;
 osprocessor=x86

We separate different platforms using a comma instead of a semicolon. Notice also that

the native libraries do not need to be parallel. In this example, we have two native libraries

for the Windows platform, but only one for Linux. This bundle would now be usable on

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Windows XP, Windows Vista, and Linux on the x86 architecture, but on any other platform

the framework would not resolve it. In some cases, we may either have optional native

libraries or a non-optimized Java implementation for unsupported platforms. We can denote

this using the optional clause, like this:
Bundle-NativeCode: lib/math.dll; lib/md5.dll; osname=WindowsXP;
 osname=WindowsVista; processor=x86, lib/libmath.so; osname=Linux;
 osprocessor=x86, *

The * at the end acts as a separate platform clause that can match any platform, so this

bundle would be usable on any platform. The actual process of how native libraries are made

available when the classes containing native methods perform System.loadLibrary() is

handled automatically by the framework, so we don't need to worry about it. Even though it

isn't often necessary, it is fairly easy to use this mechanism to create bundles with native

code.

So now we know how to package our bundles using all the tools of the OSGi modularity

layer and also how to deal with issues related to execution environment and native code. The

final topic we are going to look at in this chapter is dealing with a particular use case related

to bundle usage of physical resources at execution time. In truth, this topic is really related

to lifecycle, but we include it in this modularity chapter since it is connected to class loading,

which is a modularity concern. Read on and all will be explained.

5.6 Starting lazy bundles
From chapter 3, we know starting a bundle involves invoking the Bundle.start() method

on its corresponding Bundle object. If the bundle has a BundleActivator and it is resolvable,

this causes the framework to create an instance of the bundle's activator and invoke

start() on it, allowing the bundle to initialize itself. The act of starting a bundle and of it

being activated are actually two independent concepts, although typically they occur

together. We will also look at this independent nature in chapter 7 when discussing start

levels; a bundle can be started, but it won't be activated until some other event has occurred

to tip the bundle into the active state. Sometimes you might want to leverage this

independent nature when developing a bundle. Why? There are two main reasons:

1. Your bundle's exported packages are not able to function properly without a
BundleContext (e.g., perhaps they require a service from the registry).

2. Your bundle's initialization is costly and you want to defer it until it is actually needed.

The OSGi specification allows bundles to declare a lazy activation policy for such

purposes. Of course, there are alternative approaches for dealing with these situations. For

the first issue, your classes could always throw exception until activated. For the second, you

could minimize initialization in your activator and use threads to do work in the background.

Sometimes these alternative approaches are feasible, but sometimes throwing exceptions

isn't so clean, nor is it possible to completely reduce all startup overhead, especially if you

are starting lots of bundles. In these cases, we can use the lazy activation policy.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

5.6.1 Understanding activation policies

Although the OSGi specification defines activation policies in an open-ended way, there is

currently only one activation policy, which is lazy. The main gist of the lazy activation policy

is this:

1. A bundle declares itself to be lazy.

2. When a lazy bundle is started, the framework marks the bundle as started, but defers
activating it.

3. The lazy bundle's activation is deferred until a class is loaded from it.

4. Once a class is loaded from a lazy bundle, the framework completes its activation like
normal.

This is fairly straightforward, but there are some small details lurking in there. Let's

revisit the bundle life cycle diagram in Figure 5.13 to get a better understanding of the

impact.

The red arrows in Figure 5.13 depict additional transitions in the bundle life cycle state

diagram. When a bundle is started lazily, it transitions to the STARTING state, which is

denoted by the framework by firing a BundleEvent of type LAZY_ACTIVTION, instead of

the normal STARTING event. The bundle stays in this state until it is stopped or a class is

loaded from it. Stopping a lazy bundle in the STARTING state returns it to the RESOLVED

state and results in STOPPING and STOPPED bundle events. When a class is loaded from a

lazy bundle in the STARTING state, this acts as a trigger for the framework automatically

activate the bundle, which completes the normal process of creating the bundle activator and

calling its start() method, resulting in the normal STARTING and STARTED bundle events.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 5.13 The lazy activation policy causes bundles to defer
activation and linger in the STARTING state until a class is loaded
from it, at which point the framework completes its activation

INSTALLED

ACTIVERESOLVED

STARTING

UNINSTALLED

STOPPING

install

resolve refresh
update

uninstall

uninstall

update
refresh

start

stop

stop
trigger

http://www.manning-sandbox.com/forum.jspa?forumID=507

Since loading a class from one lazy bundle may require other classes to be loaded from

other lazy bundles, the framework may end up activating chains of lazy bundles. The

framework does not the bundles as it loads classes from them, since this can lead to arcane

class loading errors. Instead, the framework delays the activation of each lazy bundle it

discovers in a class loading chain until it finishes loading the instigating class. At that point,

the framework will activate the detected lazy bundles in reverse order. For example, assume

ClassA is loaded from bundle A, which requires ClassB from bundle B, which in turn

requires ClassC from bundle C. If all bundles are lazy and in the STARTING state, then the

framework will activate bundle C, B, and then A before returning ClassA to the requester.

Attention!

Be aware that loading resources from a bundle does not trigger lazy activation, only

classes. Also, the specification does not unambiguously define how the framework should

treat the class loading trigger, so the precise behavior may vary. In particular, some

frameworks may scope the trigger to the lifetime of the bundle's class loader (i.e., it only

needs to be re-triggered if the bundle is refreshed) while others may scope the trigger to

the bundle's ACTIVE lifecycle state (i.e., it needs to be re-triggered after the bundle is

stopped and restarted). Finally, the lazy activation policy still must obey start levels. This

means if the lazy bundle's start level is not satisfied, then it will not be activated even if a

class is loaded from the bundle.

Now we know how the lazy activation policy works, let's look into the details of using it.

5.6.2 Using activation policies

As you might expect, we use manifest metadata to declare the activation policy for a bundle;

we use the Bundle-ActivationPolicy header for this. Since lazy activation is currently

the only supported policy, this head can only have one value, which is lazy. In our manifest,

it would look like this:
Bundle-ActivationPolicy: lazy

It is only possible for a bundle to declare itself as lazy in its manifest. It is not possible,

however, to lazily activate some arbitrary bundle; only bundles declaring the lazy policy can

be lazily activated. This may seem a little odd, but the thinking behind this goes back to one

of the main use cases motivating deferred activation, which is a bundle that requires a

BundleContext for its exported packages to function properly. In this use case, only the

bundle itself knows if this is the case; thus, only the bundle itself can declare the policy.

We know this may sound a little odd, since deferring activation sounds like a good thing

to do all the time. Why pay the cost of actually activating a bundle before it is needed? We

could start all bundles lazily and then they would only activate when another bundle actually

used them, right? There is a fly in the ointment with this approach. Suppose your bundle

provides a service. If your bundle is not actually activated, then it won't ever get a chance to

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

publish its service in its bundle activator. Thus, no other bundles will be able to use it and it

will never get activated lazily. So, even if it were possible to apply an activation policy to a

bundle externally, we wouldn't always end up working the way we intended.

All control is not lost, though. When we start a bundle, we at least get to determine

whether or not the bundle uses its declared policy. In chapter, we learned about using

Bundle.start() to start and eagerly activate a bundle. If we call Bundle.start() with

no arguments on a bundle with lazy activation policy, it will still be activated eagerly, like

normal. To start the bundle with lazy activation, we must call Bundle.start() with the

Bundle.START_ACTIVATION_POLICY flag. When we use this flag, we are saying we want

to start the bundle using its declared activation policy. A bundle with no activation policy, will

be started eagerly like normal, while one with the lazy policy will have its activation deferred

as described in the previous section. There is no requirement to start lazy bundles lazily;

eagerly starting a bundle is always acceptable, it just means you are willing to pay for the

start up cost immediately.

One final lazy activation detail, the specification offers us fine-grained control over which

precise packages trigger lazy activation. The specification defines include and exclude

directives, which declare a comma-separated list of included and excluded packages,

respectively. For example:
Bundle-ActivationPolicy: lazy; include:="com.acme.service"

A bundle with this metadata will only be lazily activated if a class is loaded from its

com.acme.service package. Now let's move on to how bundles can deal with their

underlying execution environments.

5.7 Summary
We learned that the OSGi module layer provides many additional mechanisms to deal with

collaborative, dynamic, and legacy situations, such as:

 A bundle may import a package it exports to make its export substitutable for
purposes of broadening collaboration among bundles.

 Exported packages have bundle symbolic name and version attributes implicitly
attached to them, which can be useful if you need to import a package from a specific
bundle.

 Exported packages may have mandatory attributes associated with them, which must
be specified by an importer to get wired to the exported package.

 It is possible to export the same package more than once with different attributes,
which is sometimes helpful if a bundle wishes to masquerade as more than one
version of a package.

 The framework ignores optionally imported packages if no exporters are present when
the importing bundle is resolved.

 The framework only attempts to resolve dynamically imported packages when the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

importing bundle actually tries to use a class in the imported package; repeated
attempts to use a class in the imported package will result in repeated attempts to
resolve the package until successful.

 It is possible to require a bundle, rather than importing specific packages, which wires
you to everything the target bundle exports; this is typically useful when aggregating
split packages.

 Bundle fragments support splitting a bundle into multiple optional JAR files, which is
helpful in such situations as localization.

 Bundles with dependencies on specific Java platforms can declare these dependencies
with required execution environments.

 Bundles can include native libraries to integrate platform-specific functionality.

 The lazy activation policy defers bundle activation until a class is actually loaded from
the lazily started bundle.

Most of these mechanisms are intended for specific use cases and should not be overused

to avoid less modular solutions. We've now finished with the first part of the book describing

the details of the OSGi framework layers! From here, we will move onto higher level topics

describing how we put all of these features to good use.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

6
Moving Towards Bundles

The first part of this book introduced the three layers of OSGi: module, lifecycle, and service.

We will now take a more practical look at how you can migrate existing code to OSGi by

using one or more of these layers, beginning with examples of turning real-world JAR files

into bundles. After that we will examine different ways of migrating a complete application to

OSGi and finish up with a short discussion of situations where you might decide not to

bundle.

By the end of this chapter you will know how to take your current application and all of its

third-party libraries and turn them into bundles, step-by-step. You'll be able to move existing

projects to OSGi, plan new projects with OSGi in mind, and understand when it might not be

the right solution for you. In other words, you should be able to explain in detail how OSGi

will affect your project to your manager and co-workers. But before we reach that stage, we

first need to consider a simple question that often comes up on the OSGi mailing lists: how

can I turn my JAR file into a bundle?

6.1 Turning JARs into bundles
As we saw in chapter 2, a bundle is a JAR file with additional metadata. So to turn a JAR file

into a bundle we just need to add metadata giving it a unique identity and describing what it

imports and exports. Simple, right? For most business domain JAR files it will be, but for

others (such as third-party GUI or database libraries) you'll need to think carefully about

their design. Where is the line between what's public and what's private, which imports are

required and which are optional, and what versions are compatible with one another? In this

section we'll help you come up with this metadata by taking a series of common library JAR

files and turning them into working bundles. We shall also consider some advanced bundling

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

techniques, such as embedding dependencies inside the bundle, as well as how to manage

external resources and background threads.

Before we can even load a bundle into an OSGi framework it must have an identity. This

identity should be unique, at least among the set of bundles loaded into the framework. But

how should we choose such an identity? If we pick names at random we could clash with

other projects or other developers, just like in Figure 6.1:

6.1.1 Choosing an identity

Each bundle installed into an OSGi framework must have a unique identity, made up of the

Bundle-SymbolicName and Bundle-Version. One of the first steps in turning a JAR file

into a bundle is to decide what symbolic name to give it. The OSGi specification doesn't

mandate a naming policy, but recommends a reverse domain naming convention. This is the

same as Java package naming, so if the bundle is the primary source of a particular package

then it makes sense to use it as the Bundle-SymbolicName.

Let's look at a real-world example, the kXML parser [ref]. This small JAR file provides two

distinct “top-level” packages: the XmlPull API org.xmlpull.v1 and the kXML implementation

org.kxml2. If this JAR was the only one expected to provide the org.xmlpull.v1 API or it

only contained this package, then it would be reasonable to use this as the symbolic name.

However, this JAR file also provides a particular implementation of the XmlPull API, so it

makes more sense to use the name of the implementation as the symbolic name because it

captures the essence of what the bundle provides:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.1 Bundles must have a unique identity

foo 1.0

foo 2.0

foo.bar 1.0

org.bar 1.0

org.foo 1.0
foo.bar 1.0

foo.bar 2.0

http://www.manning-sandbox.com/forum.jspa?forumID=507

Bundle-SymbolicName: org.kxml2

Alternatively, you could use the domain of the project that distributes the JAR file:

Bundle-SymbolicName: net.sourceforge.kxml.kxml2 #A
#A domain = http://kxml.sourceforge.net/kxml2/

Or if Maven [ref] project metadata is available, you could use this to identify the JAR file:

Bundle-SymbolicName: net.sf.kxml.kxml2 #A
#A Maven groupId + artifactId

Sometimes you might decide on a name that doesn't correspond to a particular package

or distribution. For example, consider two implementations of the same service API provided

by two different bundles. OSGi lets you hide non-exported packages so these bundles could

have an identical package layout, but at the same time provide different implementations.

You can still base the symbolic name on the main top-level package, or the distribution

domain, but you must add a suffix to ensure each implementation has a unique identity. This

is the approach that the SLF4J project [ref] used when naming their various logging

implementation bundles:

Bundle-SymbolicName: slf4j.juli #A
Bundle-SymbolicName: slf4j.log4j
Bundle-SymbolicName: slf4j.jcl

#A all these bundles export org.slf4j.impl

If you are wrapping a third-party library, you might want to prefix your own domain in

front of the symbolic name. This makes it clear you are responsible for the bundle metadata

rather than the original third-party. For example, the symbolic name for the SLF4J API

bundle in the SpringSource Enterprise Bundle Repository [ref] clearly shows it was modified

by SpringSource and is not an official SLF4J JAR:

Bundle-SymbolicName: com.springsource.slf4j.api

Don't worry too much about naming bundles, in the end you just need to give each

bundle a unique enough name for your target deployment. You are free to rename your

bundle later on if you wish, because by default the framework wires import packages to

export packages regardless of bundle symbolic names. It is only when someone uses

Require-Bundle (section 5.3.1) that consistent names become important. That's another

reason why package dependencies are preferred over module dependencies, because they

don't tie you down to a particular symbolic name forever.

Once you have decided on a name, the next step is to version your bundle. Determining

the Bundle-Version is more straightforward than choosing the symbolic name, because

pretty much every JAR file distribution is already identified by some sort of build version or

release tag. On the other hand, version numbering schemes that don't match the recognized

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

OSGi format of major.minor.micro.qualifier will have to be converted before you can

use them. Table 6.1 shows some actual project versions and attempts to map them to OSGi:

Table 6.1 Mapping real-world project versions to OSGi

Project version Suggested OSGi equivalent

2.1-alpha-1 2.1.0.alpha-1

1.4-m3 1.4.0.m3

1.0_01-ea 1.0.1.ea

1.0-2 1.0.2

1.0.b2 1.0.0.b2

1.0a1 1.0.0.a1

2.1.7c 2.1.7.c

1.12-SNAPSHOT 1.12.0.SNAPSHOT

0.9.0-incubator-SNAPSHOT 0.9.0.incubator-SNAPSHOT

3.3.0-v20070604 3.3.0.v20070604

4aug2000r7-dev 0.0.0.4aug2000r7-dev

Not every version can be automatically converted to the OSGi version format. Look at the

last example in the table; it starts with a number, but this is actually part of the date rather

than the major version. This is the problem with free-form version strings, there is no

standard way of comparing them or breaking them into component parts. OSGi versions on

the other hand have standardized structure and well-defined ordering.

Once you have uniquely identified your bundle by name and version, you can add more

information; a human-friendly Bundle-Name, a more detailed Bundle-Description,

license details, vendor details, a link to online documentation, and so on. Most if not all of

these details can be taken from existing project information, such as the following example

from the second release of Google-Guice [ref]:

Listing 6.1 Example OSGi manifest from Guice 2

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Bundle-SymbolicName: com.google.inject
Bundle-Version: 2.0
Bundle-Name: guice
Bundle-Copyright: Copyright (C) 2006 Google Inc.
Bundle-Vendor: Google Inc.
Bundle-License: http://www.apache.org/licenses/LICENSE-2.0
Bundle-DocURL: http://code.google.com/p/google-guice/
Bundle-Description: Guice is a lightweight dependency injection
 framework for Java 5 and above

Remember that new OSGi bundles should also have this header:

Bundle-ManifestVersion: 2

Which tells the OSGi framework to process your bundle according to the latest

specification. While this is not mandatory it is strongly recommended, because it enables

additional checks and support for advanced modularity features offered by OSGi R4

specifications and beyond. Once you have captured enough bundle details to satisfactorily

describe your JAR file, the next thing to decide is which packages it should export to other

bundles in the framework.

6.1.2 Selecting what to export

Most bundles export at least one package, but a bundle doesn't actually have to export

anything at all. Bundles providing service implementations via the service registry don't have

to export any packages if they import their service API from another bundle. This is because

their implementation is shared indirectly via the service registry and accessed using the

shared API, as in Figure 6.2. But what about the package containing the Bundle-

Activator class, doesn't that need to be exported? No, you don't need to export the bundle

activator package unless you want to share it with other bundles. Indeed it is best practice to

keep it private. As long as the activator class has a public modifier the framework can load it;

even if it belongs to an internal, non-exported package.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

So the question remains: when is it necessary for you to export packages and which

packages in your JAR file do you actually need to export? The classic, non-OSGi approach is

to export everything and make the entire contents of the JAR file visible. For API-only JAR

files this is fine, but for implementation JAR files you don't want to expose internal details.

Clients might then use and rely on these internal classes by mistake. As we'll see in a

moment, exporting everything also increases the chance of conflicts among bundles

containing the same package, particularly when they provide a different set of classes in

those packages. When you're new to OSGi, exporting everything can look like a reasonable

choice to begin with, especially if you don't know precisely where the public API begins or

ends. On the contrary, you should really try to trim down the list of exported packages as

soon as you have a working bundle.

Let's use a real-world example to demonstrate how to select your exports. Take a look at

some of the packages containing classes and resources inside the core BeanUtils 1.8.0 library

[ref] from Apache Commons:

org.apache.commons.beanutils
org.apache.commons.beanutils.converters
org.apache.commons.beanutils.locale
org.apache.commons.beanutils.locale.converters
org.apache.commons.collections

None of these packages seem private; there isn't an 'impl' or 'internal' package in the list,

but the org.apache.commons.collections package is in fact an implementation detail. If

you look closely at the BeanUtils Javadoc [ref], you will see this package actually contains a

subset of the original Apache Commons Collections API [ref]. BeanUtils only uses a few of

the Collections classes, and rather than have an execution-time dependency on the entire

JAR file, the project embeds a copy of what it needs instead. So what happens when your

application requires both the BeanUtils and Collections JAR files?

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.2 Sharing implementations without exporting their packages

Service
Registry

API IMPL

ACTIVATOR

getService

registerService

IMPL

getServiceReference
ACTIVATOR

http://www.manning-sandbox.com/forum.jspa?forumID=507

This is typically not a problem in a non-OSGi environment because the application class

loader exhaustively searches the entire class path to find a class. If both BeanUtils and

Collections were on the same class path they would be merged together, with classes in

BeanUtils overriding those from Collections, or vice versa depending on their ordering on the

class path. Figure 6.3 (taken from chapter 2) shows an example of this:

One important caveat is that this only works if the BeanUtils and Collections versions are

compatible. If you have incompatible versions on your class path then you would get runtime

exceptions as the merged set of classes are inconsistent.

OSGi tries to avoid this by isolating bundles; bundles only see what they import and only

if another bundle exports it. Unfortunately for our current example, this means if we

exported org.apache.commons.collections from the BeanUtils bundle and the framework

wires another bundle to it, it would only see the handful of collection classes from BeanUtils.

They would not see the complete set of collection classes sitting in the Commons Collections

bundle. To make sure this doesn't happen, we must exclude the partial package from our

BeanUtils bundle's exports:

Export-Package: org.apache.commons.beanutils,
 org.apache.commons.beanutils.converters,
 org.apache.commons.beanutils.locale,
 org.apache.commons.beanutils.locale.converters

We can do this because the collections package does not belong to the main BeanUtils

API. Now if it was purely an implementation detail never exposed to clients, our job would be

complete. But there's a hitch: a class from the collections package is indirectly exposed to

BeanUtils clients via a return type on some deprecated methods. What can we do? We could

optionally import it, since the package like this:

Import-Package: org.apache.commons.collections;resolution:=optional

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.3 The classic application classloader merges JAR files into a single class space

Jar 2Jar 1

Classpath

Jar 3

http://www.manning-sandbox.com/forum.jspa?forumID=507

In the case, if the full package is available we will import it instead, but if it is not

available then we can use the private copy. Would this work? It is better, but still not entirely

accurate. Unfortunately, the only way to resolve this situation is to refactor the BeanUtils

bundle to not contain the partial private copy of org.apache.commons.collections; see

the sidebar if you want more details as to why an optional import won't work.

Revisiting “uses” constraints

So, we hypothesized about modifying our example BeanUtils bundle to optionally import

org.apache.commons.collections. The idea was our bundle would import it if an

exporter was available, but would use its private copy if not. This doesn't work, but why

not? It is all about “uses” constraints as discussed in section 2.7.2.

As we mentioned, BeanUtils exposes a type from the collections package in a return type

of a method in its exported types; this is a “uses” constraint by definition. To deal with

this situation, we must express it somehow. For the sake of it, let's assume we follow the

optional import case and we try to model the “uses” constraint correctly, like this:

Export-Package:
 org.apache.commons.beanutils; uses:="org.apache.commons.collections",
 org.apache.commons.beanutils.converters,
 org.apache.commons.beanutils.locale,
 org.apache.commons.beanutils.locale.converters
Import-Package: org.apache.commons.collections;resolution:=optional

This may actually work in some situations; for example, if our BeanUtils bundle, a

BeanUtils and collections importing bundle, and a bundle exporting the collections

package. In this case, all the bundles would get wired up to each other and everyone

would be using the correct version of the collections packages. Great! But what would

happen if the BeanUtils bundle was installed and resolved by itself first. In that case it

wouldn't import the collections package (since there isn't one) and would use its private

partial copy instead. Now if the the other bundles were installed and resolved, we'd end

up with the wiring depicted in Figure 6.4.

So, what does this mean? It means the BeanUtils bundle is using it own private copy of

the collections types, while the importing bundle is using its imported collections types, so

it will receive a ClassCastException if it uses any methods from BeanUtils that

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.4 A "uses" constraint on an optionally imported package is ignored if the optionally
imported package is not actually wired to an exporter

BeanUtils

export
org.apache.commons.beanutils

import
org.apache.commons.collections
resolution:=optionalImporting

bundle

import
org.apache.commons.collections

export
org.apache.commons.collections

import
org.apache.commons.beanutils

collections

“uses”

http://www.manning-sandbox.com/forum.jspa?forumID=507

expose collections types. In the end, there is no way to have a private copy of a package,

if its types are exposed via exported packages. As we've concluded already, we must

refactor our bundle to export preferably the whole package or to import the package.

Unfortunately, a surprising number of third-party libraries include partial packages, which

can lead to similar situations. Some want to re-use code from another large library, but don't

want to bloat their own JAR file. Some prefer to ship a single self-contained JAR file that

clients can add to their class path without worrying about conflicting dependencies. Some

libraries even use tools, such as JarJar [ref], to repackage internal dependencies under

different namespaces to avoid potential conflicts. This leads to multiple copies of the same

class all over the place, just because Java doesn't provide modularity out of the box!

Renamed packages also make debugging harder and confuse developers. OSGi removes the

need for renaming and helps you safely share packages while still supporting embedding.

At this point, you might decide it is a good time to refactor the API to make it more

modular. Separating interfaces from their implementations can avoid the need for partial (or

so-called “split”) packages. This will help you reduce the set of packages you need to export

and make your bundle more manageable. While this might not be an option for externally

developed libraries, it is often worth taking time to contact the original developers to explain

the situation. This happened a few years ago with the SLF4J project [ref] and they refactored

their API to great effect.

Once you have your list of exported packages, you should consider versioning them. So

which version should you use? The common choice is to use the bundle version, which

implies the packages change at the same rate as the bundle, but some packages will

inevitably change faster than others. You may also want to increment the bundle version

because of an implementation fix while the exported API remains at the same level. Although

everything starts out aligned you will probably find you need a separate version for each

package (or at least each group of tightly-coupled packages). An example of this is the OSGi

framework itself, which provides service APIs that have changed at different rates over time:

Export-Package: org.osgi.framework;version="1.4",
 org.osgi.service.packageadmin;version="1.2",
 org.osgi.service.startlevel;version="1.1",
 org.osgi.service.url;version="1.0",
 org.osgi.util.tracker;version="1.3.3"

Knowing which packages to export is only half of the puzzle of turning a JAR into a

bundle, you also need to find out what should be imported. This is often the hardest piece of

metadata to define, and causes the most problems when people migrate to OSGi.

6.1.3 Discovering what to import

Do you know what packages a given JAR file needs at execution time? Many developers have

tacit or hidden knowledge of what JAR files to put on the class path. Such knowledge is often

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

gained from years of experience getting applications to run, where you reflexively add JAR

files to the class path until any ClassNotFoundExceptions disappear. This leads to

situations where an abundance of JAR files is loaded at execution time, not because they are

all required, but because a developer feels they may be necessary based on past experience.

Listing 6.2 shows an example class path for a J2EE client. Can you tell how these JAR files

relate to one another, what packages they provide and use, and their individual versions?

Listing 6.2 Example class path for a J2EE client

concurrent.jar:getopt.jar:gnu-regexp.jar:jacorb.jar:\
jbossall-client.jar:jboss-client.jar:jboss-common-client.jar:\
jbosscx-client.jar:jbossha-client.jar:jboss-iiop-client.jar:\
jboss-j2ee.jar:jboss-jaas.jar:jbossjmx-ant.jar:jboss-jsr77-client.jar:\
jbossmq-client.jar:jboss-net-client.jar:jbosssx-client.jar:\
jboss-system-client.jar:jboss-transaction-client.jar:jcert.jar:\
jmx-connector-client-factory.jar:jmx-ejb-connector-client.jar:\
jmx-invoker-adaptor-client.jar:jmx-rmi-connector-client.jar:jnet.jar:\
jnp-client.jar:jsse.jar:log4j.jar:xdoclet-module-jboss-net.jar

With OSGi you explicitly define what packages your bundle needs and this knowledge is

then available to any developer who wants it. They no longer have to guess how to compose

their class path, the information is readily available in the metadata! It can also be used by

tools such as the OSGi Bundle Repository (OBR) [ref] to automatically select and validate

collections of bundles for deployment. This means any developer turning a JAR file into a

bundle has a great responsibility in defining the correct set of imported packages. If this list

is incomplete or too excessive it affects all users of the bundle. Unfortunately standard Java

tools do not provide an easy way to determine what packages a JAR file might use at

execution time. Manually skimming the source for package names is time-consuming and

unreliable. Byte-code analysis is more reliable and repeatable, which is especially important

for distributed teams, but it can miss classes that are dynamically loaded by name. For

instance:

String name = someDynamicNameConstruction(someSortOfContext);
Class<?> clazz = someClassLoader.loadClass(name); #A

#A this could load a class from any package!

The ideal solution is to use a byte-code analysis tool like “bnd” [ref] followed by a manual

review of the generated metadata by project developers. You can then decide whether to

keep generating the list of imported packages for every build, or generate the list once and

save it to a version controlled file somewhere so it can be pulled into later builds. Most tools

for generating OSGi manifests also let you supplement or override the generated list, in case

the manual review finds missing or incorrect packages. Once you are happy with the

metadata you should run integration tests on an OSGi framework to verify the bundle has

the necessary imported packages. You don't want to get a ClassNotFoundException in

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

production when an obscure but important piece of code runs for the very first time, and

attempts to access a package that hasn't been imported!

We'll show you how to test OSGi applications later on in chapter 8. For now let's continue

with our BeanUtils example and use bnd to discover what imports we need. The bnd tool was

developed by one of the founders of OSGi, Peter Kriens, and provides a number of Ant tasks

and command-line commands specifically designed for OSGi. Bnd uses a “pull” approach to

divide a single class path into separate bundles based on a set of instructions. This means we

have to tell bnd what packages we want to pull in and export, as well as those we want to

pull in and keep private. Bnd instructions take the form of “name:value” properties, which

means you can mix normal manifest entries along with bnd instructions. The following

instructions select the exported and non-exported (or so-called private) packages that should

be contained in our final bundle, along with the optional Collections import we discussed back

in 6.1.2. Let's put them in a file named “beanutils.bnd”, which you can find in the example

code under “chapter06/BeanUtils-example”:

Export-Package: org.apache.commons.beanutils.* #A
Private-Package: org.apache.commons.collections #B
Import-Package: org.apache.commons.collections.*;resolution:=optional,* #C

#A public BeanUtils API
#B internal collection classes
#C collections is optional

Bnd accepts package wildcards, which it expands according to what it actually finds in the

project byte code. In addition to accepting OSGi manifest headers as instructions it also adds

some of its own, such as Include-Resource and Private-Package, to give you more

control over exactly what goes into the bundle. These are not used by the OSGi framework at

execution time. You will also notice that the import instruction contains both our optional

collections import followed by a global wildcard. This tells bnd to add all the calculated

imports and not filter any out. Once we have chosen our exported and internal packages, we

invoke the bnd wrap task by passing it the original BeanUtils JAR file along with our custom

bnd instructions:

$ cd chapter06/BeanUtils-example

$ java -jar ../../lib/bnd-0.0.355.jar \
 wrap -properties beanutils.bnd commons-beanutils-1.8.0.jar #A

#A wrap as bundle

Bnd processes the JAR file using our instructions and generates a new file alongside the

original, called “commons-beanutils-1.8.0.bar”. We can extract the OSGi enhanced manifest

from the newly created BeanUtils bundle like so:

$ jar xvf commons-beanutils-1.8.0.bar META-INF/MANIFEST.MF

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

As you can see it contains the following generated list of imported packages:

Import-Package: org.apache.commons.beanutils,org.apache.commons.beanut
 ils.converters,org.apache.commons.beanutils.expression,org.apache.com
 mons.beanutils.locale,org.apache.commons.beanutils.locale.converters,
 org.apache.commons.collections.comparators;resolution:=optional,org.a
 pache.commons.collections.keyvalue;resolution:=optional,org.apache.co
 mmons.collections.list;resolution:=optional,org.apache.commons.collec
 tions.set;resolution:=optional,org.apache.commons.logging

There are a couple of interesting points about this list. First, bnd has added imports for all

the BeanUtils packages that we want to export. As we discussed in 5.1.1, this is good

practice when exporting an API because it means that if (for whatever reason) an existing

bundle already exports these packages, then we will share the same class space for the API.

Without these imports our bundle would sit on its own little island, isolated from any bundles

already wired to the previous package exporter. Second, bnd has found byte code references

to the Apache Commons logging package, which isn't contained in the BeanUtils JAR file and

must therefore be imported. Just think, we can now tell what packages a JAR file needs at

execution time by checking the imported package list in the manifest. This is extremely

useful for automated deployment of applications. Such a system would know when deploying

BeanUtils that it should also deploy Commons Logging (or another bundle that provides the

same package, like SLF4J). But which particular version of Logging should it deploy?

Just as with exported packages you should consider versioning your imports. Chapter 2

explained how versioning helps ensure binary compatibility with other bundles. You should

try to use ranges rather than leave versions open-ended, because it protects you against

potentially breaking API changes in the future. For example, consider:

Import-Package: org.slf4j;version="1.5.3”

This matches any version of the SLF4J API from 1.5.3 onwards, even unforeseen future

releases which could be incompatible with our code. One recommended practice is to use a

range starting from the minimum acceptable version up to, but not including, the next major

version. (This assumes a change in major version indicates the API is not binary compatible.)

For example, if we tested against the 1.5.3 SLF4J API we might use the following range:

Import-Package: org.slf4j;version="[1.5.3,2)"

This ensures only versions from the tested level to just before the next major release will

be used. Not all projects follow this particular versioning scheme, you may need to tweak the

range to narrow or widen the set of compatible versions. The width of the import range also

depends on how you're using the package. Consider a simple change like adding a method to

an interface, which typically occurs during a point release (such as 1.1 to 1.2). If you are

just calling the interface this change would not affect you. If on the other hand you are

implementing the interface then this would definitely break you, as you now need to

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

implement a new method. You can imagine adding the right version ranges to imported

packages takes time and patience, but this is often a one-time investment that pays off

many times over during the life of a project. Tools such as bnd can help by detecting existing

version metadata from dependencies on the class path and by automatically applying version

ranges according to a given policy.

Unfortunately tools aren't perfect. While you're reviewing the generated list of imported

packages you might notice a few that aren't actually used at execution time. Some code may

only be executed in certain scenarios, like an Ant build task that's shipped with a library JAR

file for convenience. Other JAR files might dynamically test for available packages and adapt

their behavior at execution time to match what's actually installed. In such cases it is useful

to mark these imports as optional to tell the OSGi framework the bundle can still work even

when these packages are not available. Table 6.2 shows some real-world packages often

considered as optional:

Table 6.2 Common optional imported packages found in third-party libraries

Package Used for

javax.swing.* GUI classes (could be interactive tests)

org.apache.tools.ant.* ANT taskdefs (build time)

antlr.* Parsing (maybe build / test related)

sun.misc.* Sun implementation classes (like BASE64)

com.sun.tools.* Sun tool support (javac, debugging, etc.)

As we saw back in section 5.2.1, OSGi provides two ways to mark a package as optional.

You can either mark packages with the resolution:=optional directive or list them as

dynamically imported packages. For packages you never expect to be used at execution

time, like the Ant packages, we suggest you either use the optional attribute or even remove

them from the list of imported packages. Use resolution:=optional when you know the

bundle will always be used in the same way, once installed. If you want a more adaptive

bundle that reacts to the latest set of available packages then you should list them as

dynamic imports.

If you are new to OSGi and unsure exactly what packages your JAR file uses, consider

using:

DynamicImport-Package: *

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

This makes things similar to the classic model where requests to load a new class always

result in a query to the complete class path. It also allows your bundle to successfully resolve

regardless of what packages are actually available. The downside is that you are pushing the

responsibility of finding the right set of bundles onto users, because you don't provide any

metadata defining what you really need! So this approach should only be considered as a

stopgap measure to get you started.

We've now chosen the exports and imports for our new bundle. Every non-optional, non-

dynamic package we import (but don't export) must be provided by another bundle. Does

this mean for every JAR file we convert into a bundle, we also need to convert each of its

dependencies into bundles? Not necessarily, because unlike standard JAR files OSGi supports

embedding JAR files inside bundles.

6.1.4 Embedding vs. importing

Sometimes a JAR file has a close dependency on another JAR file. It might be they only work

together, the dependency may be an implementation detail you want to keep private, or you

may not want to share the statics in the JAR file with other bundles. In these situations it

makes more sense to embed these dependencies inside the primary JAR file when you turn it

into a bundle. Embedding the JAR file is easier than converting both JAR files to bundles

because you can ignore packages that would otherwise need to be exported and imported

between them. The downside of embedding is that it adds unnecessary weight for non-OSGi

users, who can't use the embedded JAR file unless the bundle is first unpacked. Figure 6.5a

shows how a CGLIB bundle might embed ASM, a small utility for processing byte code.

Alternatively you might consider creating a new bundle artifact that embeds all the

related JAR files together instead of turning the primary JAR file into a bundle. This

aggregate bundle could then be provided separately to OSGi users without affecting users of

the original JAR files. Figure 6.5b shows how you could use this approach for the CGLIB

library. While this does mean you have an extra deliverable to support, it also gives you an

opportunity to override or add classes for better interoperability with OSGi. We'll see an

example of this in a moment and also later on in section 6.2.1. This often happens when

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.5 Embedding tightly-coupled dependencies in a bundle

 CGLIB

ASM

Bundle-ClassPath: .,asm.jar

ASM

Bundle-ClassPath: cglib.jar,asm.jar

CGLIB

a) b)

http://www.manning-sandbox.com/forum.jspa?forumID=507

libraries use external connections or background threads, which ideally should be managed

by the OSGi lifecycle layer. Such libraries are said to have “state”.

6.1.5 Adding lifecycle support

You might not realize it when you use a third-party library, but a number of them actually

have a form of state. This state could take the form of a background thread, a filesystem

cache, or a pool of database connections. Libraries usually provide methods to manage this

state, such as cleaning up resources and shutting down threads. Often you don't bother

calling these methods because the life of the library is the same as the life of your

application. In OSGi this is not necessarily the case; your application could still be running

after the library has been stopped, updated, and restarted many times. On the other hand,

the library could still be available in the framework long after your application has come and

gone. You need to tie the library state to its bundle lifecycle and to do that you need to add a

bundle activator (see section 3.4.1).

The original HttpClient library [ref] from Apache Commons manages a pool of threads for

multi-threaded connections. These threads are started lazily so there is no need to explicitly

initialize the pool, but the library provides a method to shut down and clean everything up:

MultiThreadedHttpConnectionManager.shutdownAll();

If we wanted to wrap the HttpClient library JAR file up as a bundle, we might decide to

add an activator that shuts down the thread pool whenever the HttpClient bundle was

stopped:

Listing 6.3 Bundle-Activator for HttpClient library

package org.apache.commons.httpclient.internal;

import org.apache.commons.httpclient.MultiThreadedHttpConnectionManager;
import org.osgi.framework.*;

public class Activator implements BundleActivator {
 public void start(BundleContext ctx) {}

 public void stop(BundleContext ctx) {
 MultiThreadedHttpConnectionManager.shutdownAll();
 }
}

We have to tell OSGi about this activator by adding metadata to the manifest:

Bundle-Activator: org.apache.commons.httpclient.internal.Activator

You can see this in action by building and running the following example:

$ cd chapter06/HttpClient-example

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

$ ant dist

$ java -jar launcher.jar bundles

You should see it start and attempt to connect to the internet (ignore Log4J warnings):

GET http://www.google.com/
GOT 5500 bytes
->

If you use jstack to see what threads are running in the JVM, one of them should be:

"MultiThreadedHttpConnectionManager cleanup" daemon

Stop the HttpClient bundle, which should cleanup the thread pool, and check again:

-> stop 5

The MultiThreadedHttpConnectionManager thread should now be gone. Unfortunately

this is not a complete solution, because if you stop and re-start the test bundle the thread

pool manager will re-appear – even though the HttpClient bundle is still stopped! Restricting

use of the HttpClient library to the bundle active state would require all calls to go through

some sort of delegating proxy, or ideally the OSGi service registry. Thankfully the latest 4.0

release of the HttpClient library makes it much easier to manage connection threads inside a

container such as OSGi and removes the need for this single static shutdown method.

Bundle activators are mostly harmless because they don't interfere with non-OSGi users

of the JAR file. They are only referenced via the bundle metadata and aren't considered part

of the public API. They just sit there unnoticed and unused in classic Java applications, until

the bundle is loaded into an OSGi framework and started. Whenever you have a JAR file with

implicit state or background resources, consider adding an activator to help OSGi users.

We've now covered most aspects of turning a JAR file into a bundle: identity, exports,

imports, embedding, and lifecycle management. How many best practices can you

remember? Wouldn't it be great to have them summarized as a one-page cheatsheet?

Well look no further than the following page...

6.1.6 JAR file to bundle cheatsheet

The following cheatsheet provides a handy summary for converting JAR files into bundles:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.6 JAR file to bundle cheatsheet

http://www.manning-sandbox.com/forum.jspa?forumID=507

OK, we know how to take a single JAR file and turn it into a bundle, but what about a

complete application? We could simply take our existing JAR, EAR, and WAR files and turn

them all into bundles or we could choose to wrap everything up as a single application

bundle. Surely we can do better than that. What techniques can we use to bundle up an

application and what are the pros and cons? For the answers to this and more, read on!

6.2 Splitting an application into bundles
Most applications are usually made up of one or more JAR files. One way to migrate an

application to OSGi is to take these individual JAR files and convert each of them into a

bundle using the techniques discussed in the previous section. Converting lots of JAR files is

time consuming (especially for beginners), so a simpler approach is to take your complete

application and wrap it up as a single bundle. In this section we'll show how to start from

such a single application bundle and suggest ways of dividing it further into multiple bundles.

Along the way we'll look at how you can introduce other OSGi features, such as services, to

make your application more flexible. Finally we'll suggest places where it doesn't make sense

to introduce a bundle.

Let's start with the single application bundle or so-called “mega” bundle.

6.2.1 Making a mega bundle

A mega bundle comprises a complete application along with its dependencies. Anything the

application needs on top of the standard JDK is embedded inside this bundle and made

available to the application by extending the Bundle-ClassPath (2.5.3). This is very

similar to how Java Enterprise applications are constructed. In fact, you can take an existing

web application archive (also known as a WAR file) and easily turn it into a bundle by adding

an identity along with a Bundle-ClassPath entries for the various classes and libraries

contained within it, as shown in Figure 6.7.

The key benefit of a mega bundle is that it drastically reduces the number of packages

you need to import, sometimes down to no packages at all. The only packages you might

need to import are non-java.* packages from the JDK (such as javax.* packages) or any

packages provided by the container itself. Even then you could choose to access them via

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.7 Turning a WAR file into a bundle

classes

Bundle-ClassPath: WEB-INF/classes,WEB-INF/lib/velocity-1.4.jar,...

WEB-INF

lib/velocity-1.4.jar

http://www.manning-sandbox.com/forum.jspa?forumID=507

OSGi “boot delegation” by setting the org.osgi.framework.bootdelegation framework

property to the list of packages you want to inherit from the container class path. Boot

delegation can also avoid certain legacy problems (see section 9.2 for the gory details). The

downside is that it reduces modularity, since you cannot override boot-delegated packages in

OSGi. A mega bundle with boot delegation enabled is very close to the classic Java

application model, the only difference is each application has its own class loader instead of

sharing the single JDK application class loader.

JEDIT MEGA-BUNDLE EXAMPLE

This is an action book, so let's shelve the theoretical discussion for the moment and create

our own mega bundle based on jEdit, a pluggable Java text editor [ref]. The sample code for

this book comes with a copy of the jEdit 4.2 source, which you can unpack like so:

$ cd chapter06/jEdit-example

$ ant jEdit.unpack

$ cd jEdit

The jEdit build uses Apache Ant [ref], which is good news because it means we can use

bnd's Ant tasks to generate OSGi manifests. Maven users should not feel left out though, as

they can use the maven-bundle-plugin [ref] which also uses bnd under the covers. So how

exactly do we add bnd to the build? Listing 6.4 shows the main target from the original (non-

OSGi) jEdit build.xml:

Listing 6.4 default jEdit build target

<target name="dist" depends="compile,compile14"
 description="Compile and package jEdit.">

 <jar jarfile="jedit.jar"
 manifest="org/gjt/sp/jedit/jedit.manifest"
 compress="false">

 <fileset dir="${build.directory}">
 <include name="bsh/**/*.class"/>
 <include name="com/**/*.class"/>
 <include name="gnu/**/*.class"/>
 <include name="org/**/*.class"/>
 </fileset>

 <fileset dir=".">
 <include name="bsh/commands/*.bsh"/>
 <include name="gnu/regexp/MessagesBundle.properties"/>
 <include name="org/gjt/sp/jedit/**/*.dtd"/>
 <include name="org/gjt/sp/jedit/icons/*.gif"/>
 <include name="org/gjt/sp/jedit/icons/*.jpg"/>
 <include name="org/gjt/sp/jedit/icons/*.png"/>
 <include name="org/gjt/sp/jedit/*.props"/>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 <include name="org/gjt/sp/jedit/actions.xml"/>
 <include name="org/gjt/sp/jedit/browser.actions.xml"/>
 <include name="org/gjt/sp/jedit/dockables.xml"/>
 <include name="org/gjt/sp/jedit/services.xml"/>
 <include name="org/gjt/sp/jedit/default.abbrevs"/>
 </fileset>
 </jar>
</target>

The jar task is configured to take a static manifest file, “org/gjt/sp/jedit/jedit.manifest”.

If we didn't want to change the build process, but still wanted an OSGi enabled manifest then

we could take the jEdit binary, run it through an analyzer like bnd, and add the generated

OSGi headers to this static manifest. As mentioned back in 6.1.3, this approach is fine for

existing releases or projects that don't change much. On the other hand, integrating a tool

such as bnd with your build means you get immediate feedback about the modularity of your

application rather than when you actually try to deploy it.

REPLACING THE JAR TASK WITH BND

We're going to make things more dynamic and generate OSGi metadata during the build.

This is the recommended approach because we don't have to remember to check and

regenerate the metadata after significant changes to the project source. This is especially

useful in the early stages of a project when responsibilities are still being allocated.

There are several ways to integrate bnd with a build:

5. use bnd to generate metadata from classes before creating the JAR file

6. create the JAR file as normal and then post-process it with bnd

7. use bnd to generate the JAR file instead of using the Ant jar task

If you really need certain features of the jar task like indexing, you should use the first

or second option. If you are post-processing classes or need to filter resources then choose

either the second or third option. We're going to go with the third option to demonstrate how

easy it is to switch your build over to bnd. It will also help us later on in 6.2.2 when we start

partitioning the application into separate bundles.

First we comment out the jar task:

<!-- jar jarfile="jedit.jar" #A
 manifest="org/gjt/sp/jedit/jedit.manifest" #B
 compress="false">
...
</jar -->

#A where to put the JAR
#B fixed manifest entries

Next we add the bnd task below it:

<taskdef resource="aQute/bnd/ant/taskdef.properties"
 classpath="../../../lib/bnd-0.0.355.jar" /> #A

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

<bnd classpath="${build.directory}" #B
 files="jedit-mega.bnd" /> #C

#A location of bnd tasks
#B project class path
#C bnd instructions

There is one key difference between the jar and bnd tasks that you must remember:

 The jar task takes a list of files and directories and copies them all into a single JAR
file.

 The bnd task takes a class path and a list of instruction files (one file per bundle) that
tell it which classes and/or resources to copy from the class path into each bundle.

So if you don't tell bnd to pull a certain package into the bundle, don't be surprised if it's

not there. We're building a single mega bundle so we only need one instruction file, which

we'll call “jedit-mega.bnd”. The first thing we must add is an instruction to tell bnd where to

put the generated bundle:

-output: jedit.jar

The bnd task can also copy additional manifest headers into the final manifest, so let's

ask bnd to include the original jEdit manifest rather than duplicate its content in our new file:

-include: org/gjt/sp/jedit/jedit.manifest

We could have left the manifest file where it was, added our instructions to it, and passed

that into bnd, but this would make it harder for people to separate out the new build process

from the original. It is also better to have the bnd instructions at the project root where they

are more visible. We can now try to rebuild the project from inside the “jEdit” directory:

$ ant dist
...
[bnd] Warnings
[bnd] Neither Export-Package, Private-Package, -testpackages is set,
 therefore no packages will be included
[bnd] Did not find matching referal for *
[bnd] Errors
[bnd] The JAR is empty

ADDING BND INSTRUCTIONS

What went wrong? Well we forgot to tell bnd what packages to pull into our new bundle!

Using the JAR to bundle cheatsheet from 6.1.6 let's add the following bundle headers to

“jedit-mega.bnd”, along with a bnd specific instruction to pull in all classes and resources

from the build class path and keep them private:

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Bundle-Version: 4.2

Private-Package: * #A
#A pull in everything as private

Remember that bnd supports wildcard package names, so we can use * to represent the

entire project. While this is useful when creating mega bundles, you should be careful using

wildcards when separating a class path into multiple, separate bundles or when already

bundled dependencies appear on the class path. Always check the content of your bundles to

make sure you aren't pulling in additional packages by mistake. Getting back to the task at

hand, when we rebuild the jEdit project we now see:

$ ant dist
...
[bnd] # org.gjt.sp.jedit (jedit.jar) 849

Success! Let's try to run our new JAR file:

$ java -jar jedit.jar

Whoops, something else went wrong:

Uncaught error fetching image:
java.lang.NullPointerException
 at sun.awt.image.URLImageSource.getConnection(Unknown Source)
 at sun.awt.image.URLImageSource.getDecoder(Unknown Source)
 at sun.awt.image.InputStreamImageSource.doFetch(Unknown Source)
 at sun.awt.image.ImageFetcher.fetchloop(Unknown Source)
 at sun.awt.image.ImageFetcher.run(Unknown Source)

ADDING RESOURCE FILES

It seems our JAR file is missing some resources, can you see why? Look closely at the jar

task in Listing 6.4; notice how classes come from ${build.directory}, but the resource

files come from “.” (the project root). We could write a lengthy Include-Resource

instruction to tell bnd to pull in these resources, but there is a much easier solution. Simply

put the existing resource fileset inside a copy task to copy matching resources to the build

directory before the bnd task runs:

<copy todir="${build.directory}">
 <fileset dir=".">
 <include name="bsh/commands/*.bsh"/>
 <!-- and so on... -->
 </fileset>
</copy>

The resource files can now be found on the build class path. Rebuild and run jEdit again:

$ ant dist

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

...
[bnd] # org.gjt.sp.jedit (jedit.jar) 1003

$ java -jar jedit.jar

Bingo! You should see the main jEdit window appear, as shown in Figure 6.8:

Our bundle works as a classic JAR file, but will it work as a bundle? Let's review the

manifest:

Listing 6.5 jEdit mega bundle manifest

Manifest-Version: 1.0
Created-By: 1.6.0_13 (Sun Microsystems Inc.)
Bnd-LastModified: 1250524748304
Tool: Bnd-0.0.355
Main-Class: org.gjt.sp.jedit.jEdit
Bundle-ManifestVersion: 2
Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.8 Main jEdit window

http://www.manning-sandbox.com/forum.jspa?forumID=507

Private-Package: org.gjt.sp.jedit.icons,org.gjt.sp.jedit.help,org.obje
 ctweb.asm,org.gjt.sp.util,org.gjt.sp.jedit,org.gjt.sp.jedit.syntax,bs
 h.reflect,org.gjt.sp.jedit.pluginmgr,bsh.commands,org.gjt.sp.jedit.pr
 int,org.gjt.sp.jedit.menu,org.gjt.sp.jedit.browser,org.gjt.sp.jedit.p
 roto.jeditresource,org.gjt.sp.jedit.io,org.gjt.sp.jedit.options,com.m
 icrostar.xml,gnu.regexp,bsh.collection,org.gjt.sp.jedit.search,org.gj
 t.sp.jedit.gui,org.gjt.sp.jedit.buffer,org.gjt.sp.jedit.msg,installer
 ,org.gjt.sp.jedit.textarea,bsh
Import-Package: javax.print.attribute,javax.print.attribute.standard,j
 avax.swing,javax.swing.border,javax.swing.event,javax.swing.filechoos
 er,javax.swing.plaf,javax.swing.plaf.basic,javax.swing.plaf.metal,jav
 ax.swing.table,javax.swing.text,javax.swing.text.html,javax.swing.tre
 e

Our jEdit bundle doesn't export any packages, but it does use packages from Swing.

These should come from the system bundle, which is typically setup to export JDK packages

(although this can be overridden). You might be wondering if we should add version ranges

to the packages imported from the JDK. This is not required as most system bundles don't

version their JDK packages. You only need to version these imports if you wanted to use

another implementation that's different from the stock JDK version. We should also mention

the final manifest contains some bnd specific headers that are not used by the OSGi

framework (such as Private-Package, Tool, and Bnd-LastModified). They are left as a

record of how bnd built the bundle and can be removed by adding this bnd instruction to

“jedit-mega.bnd”:

-removeheaders: Private-Package,Tool,Bnd-LastModified

The new manifest looks correct, but the real test is yet to come. We must now try to

deploy and run our bundle on an actual OSGi framework. Will it work first time or fail with an

obscure exception?

RUNNING JEDIT WITH OSGI

We can deploy our jEdit bundle by using the same simple launcher used to launch the earlier

paint examples. Remember this launcher will first install any bundles found in the directory

and then use the first Main-Class header it finds to bootstrap the application. Our manifest

already has a Main-Class so we just need point the launcher at the “jEdit” directory, like

so:

$ cd ..

$ cp ../../launcher/dist/launcher.jar .

$ java -jar launcher.jar jEdit

Unfortunately something's not quite right. While the bundle installs and the application

starts, it hangs at the splash screen in Figure 6.9 and the main jEdit window never appears.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

If we look closely at the top of the stack trace we see the following warning message:

java.net.MalformedURLException: Unknown protocol: jeditresource

Why would this work when the bundle was run as a classic application, but not when the

bundle was installed in an OSGi framework? The answer lies in the URL Handlers service we

discussed briefly back in 4.6.1. To implement this service, the OSGi framework installs its

own URLStreamHandlerFactory which delegates requests to handlers installed via the

service registry. Unlike the default URLStreamHandlerFactory this implementation does

not automatically scan the class path for URL handlers. Instead all URL handlers must be

registered as OSGi services, which also means the handlers are tied to their bundle lifecycle.

FIXING THE URL HANDLER ISSUE

Your first thought might be to try and disable the URL Handlers service so it doesn't install

this factory. Unfortunately, there is no standard switch for this, but to disable it in Felix you

would set the felix.service.urlhandlers framework property to 'false'. Turning off the

global URL Handlers service also has serious implications. It means no bundle can contribute

dynamic protocol handlers, which would break applications that rely on the URL Handlers

service. It also wouldn't fix this particular problem because the “jeditresource” handler is not

visible to the default URLStreamHandlerFactory when we run jEdit as a bundle. The

JDK's URL Handler factory uses Class.forName() to search the application class path for

valid handlers, but our “jeditresource” handler is hidden from view inside the jEdit bundle

class loader.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.9 jEdit when first run as OSGi bundle

http://www.manning-sandbox.com/forum.jspa?forumID=507

The solution is to register the “jeditresource” handler as a URLStreamHandlerService

when the jEdit bundle is started and remove it when it is stopped. But how can we add OSGi

specific code without affecting classic jEdit users? Cast your mind back to section 6.1.5

where we talked about using lifecycles to manage external resources. This is exactly the sort

of situation that requires a bundle activator, such as the one shown in Listing 6.6:

Listing 6.6 Bundle Activator to manage “jeditresource” handler

package org.gjt.sp.jedit;

import java.io.IOException;
import java.net.*;
import java.util.Properties;

import org.osgi.framework.*;
import org.osgi.service.url.*;

import org.gjt.sp.jedit.proto.jeditresource.Handler;

public class Activator implements BundleActivator {
 private static class JEditResourceHandlerService #A
 extends AbstractURLStreamHandlerService {
 private Handler jEditResourceHandler = new Handler(); #B

 public URLConnection openConnection(URL url)
 throws IOException {
 return jEditResourceHandler.openConnection(url); #C
 }
 }

 public void start(BundleContext context) {
 Properties properties = new Properties();
 properties.setProperty(URLConstants.URL_HANDLER_PROTOCOL, #D
 "jeditresource");

 context.registerService(#E
 URLStreamHandlerService.class.getName(),
 new JEditResourceHandlerService(),
 properties);
 }

 public void stop(BundleContext context) {} #F
}

#A OSGi service wrapper class
#B real handler instance
#C delegate to real handler
#D for “jeditresource” protocol
#E publish URL handler service
#F automatically removed on stop

Once we've added this activator class to the build we must remember to declare it in the

OSGi metadata, otherwise it will never get called. This is a common cause of head scratching

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

for people new to OSGi, because the framework can't tell when you accidentally forget a

Bundle-Activator header. So when you've added an activator, but it's having no effect,

always check your manifest to make sure it's been declared – it saves a lot of hair!

Bundle-Activator: org.gjt.sp.jedit.Activator

Our activator code uses OSGi constants and interfaces, so we must add the core OSGi API

to the compilation class path in the jEdit build.xml otherwise our new code won't compile:

<javac ... >
 <classpath path="../../../lib/osgi.core.jar"/>
 <!-- the rest of the classpath -->

This API is only required when compiling the source, it won't be necessary at runtime

unless the activator class is explicitly loaded. One more build and we now have a JAR file that

can run as a classic Java application or an OSGi bundle! Our final set of bnd instructions is

shown in Listing 6.7.

Listing 6.7 Final bnd instructions for jEdit mega bundle

-output: jedit.jar

-include: org/gjt/sp/jedit/jedit.manifest

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2

Private-Package: *

-removeheaders: Private-Package,Tool,Bnd-LastModified

Bundle-Activator: org.gjt.sp.jedit.Activator

One last wrinkle is that we have to tell jEdit where its installation directory is by using the

jedit.home property. Normally jEdit can detect the installation directory containing its JAR

file by peeking at the application class path, but this won't work when running it as a bundle

on OSGi because the JAR file is loaded via a different mechanism.

$ ant dist

$ cd ..

$ java -Djedit.home=jEdit -jar launcher.jar jEdit

With this last piece of configuration in place you should see jEdit start and the main

window appear, just as we saw before in Figure 6.8. It should also still work as a classic Java

application.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

RE-VISITING MEGA-BUNDLES

We've successfully created a mega bundle for jEdit with a small amount of effort. So what

are the downsides of a mega bundle? Well, your application is still one single unit. You

cannot replace or upgrade sections of it without shutting down the complete application and

this might shutdown the whole JVM process if the application called System.exit(). Because

nothing is being shared, you could end up with duplicate content between applications.

Effectively you're in the same situation as before moving to OSGi, except with a few

additional improvements in isolation and management. This doesn't mean the mega bundle

approach is useless, as a first step it can be very reassuring being able to run your

application on an OSGi framework with the minimum of fuss. It also provides a solid

foundation for further separating (or slicing) your application into bundles, which is the focus

of the next section.

6.2.2 Slicing code into bundles

We now have a single mega bundle containing our entire application. The next step towards

a full-fledged flexible OSGi application is to start breaking it into bundles that can be

upgraded independently of one another. How and where should you draw the lines between

bundles? Bundles import and export packages in order to share them, so it makes sense to

draw lines that minimize the number of imports and exports. If you have a high-level design

document showing the major components and their boundaries, then you could take each

major component and turn it into a bundle. If you don't have such a document, you should

look for major areas of responsibility; such as business logic, data access, graphical

components. Each major area could be represented by a bundle, as depicted in Figure 6.10.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.10 Slicing code into bundles

UI

Data

Logic

UI

Logic

Data

http://www.manning-sandbox.com/forum.jspa?forumID=507

CUT ALONG THE DOTTED LINES

Returning to our jEdit example, what areas suggest themselves as potential bundles? Well

the obvious choice to begin with is to separate out the jEdit code from third-party libraries,

then try to extract the main top-level package. But how do we go about dividing the project

class path into different bundles? Remember what we said about bnd back in 6.1.3, that it

uses a “pull” approach to assemble bundles from a project class path based on a list of

instruction files. All we need to do is provide our bnd task with different instruction files for

each bundle:

<bnd classpath="${build.directory}"
 files="jedit-thirdparty.bnd,jedit-main.bnd,jedit-engine.bnd" /> #A

#A divide into three bundles

The first bundle will contain all third-party classes, basically any package from the build

directory that doesn't start with org.gjt.sp. Bnd makes this very easy by allowing negated

packages. For example:

Private-Package: !org.gjt.sp.*, *

This copies all other packages into the bundle and keeps them private. Using the earlier

“jedit-mega.bnd” as a template we can flesh out the rest to get the “jedit-thirdparty.bnd” file

shown in Listing 6.8. We also exclude the installer package because this is not actually

required at execution time and doesn't belong in the third-party library bundle.

Listing 6.8 Initial bnd instructions for jEdit third-party library bundle

-output: jedit-thirdparty.jar

Bundle-Name: jEdit Third-party Libraries
Bundle-SymbolicName: org.gjt.sp.jedit.libs
Bundle-Version: 4.2

Private-Package: !org.gjt.sp.*, !installer.*, *

-removeheaders: Private-Package,Tool,Bnd-LastModified

The second bundle will contain the top-level package containing the main jEdit class. We

should also add the org.gjt.sp.jedit.proto package containing the URL handler code

because this is only used by the bundle activator in the top-level package. Listing 6.9 shows

our initial attempt at “jedit-main.bnd”. You might notice that the only difference between this

file and the mega bundle instructions in Listing 6.7 is the selection of private packages,

everything else is exactly the same. The main bundle also replaces the mega bundle as the

executable JAR file.

Listing 6.9 Initial bnd instructions for jEdit main bundle

-output: jedit.jar

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

-include: org/gjt/sp/jedit/jedit.manifest

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2

Private-Package: org.gjt.sp.jedit, org.gjt.sp.jedit.proto.*

-removeheaders: Private-Package,Tool,Bnd-LastModified

Bundle-Activator: org.gjt.sp.jedit.Activator

The third and final bundle will contain the rest of the jEdit packages, which we'll call the

“engine” for now. It should contain all packages beneath the org.gjt.sp namespace, except

the top-level jEdit package and packages under org.gjt.sp.jedit.proto. The resulting

“jedit-engine.bnd” file appears in Listing 6.10. Notice how the same packages listed in the

main instructions are negated in the engine instructions. Refactoring packages between

bundles is as simple as moving entries from one instruction file to another.

Listing 6.10 Initial bnd instructions for jEdit engine bundle

-output: jedit-engine.jar

Bundle-Name: jEdit Engine
Bundle-SymbolicName: org.gjt.sp.jedit.engine
Bundle-Version: 4.2

Private-Package:\
 !org.gjt.sp.jedit, !org.gjt.sp.jedit.proto.*,\ #A
 org.gjt.sp.*

-removeheaders: Private-Package,Tool,Bnd-LastModified
#A exclude main packages

STITCHING THE PIECES TOGETHER

We now have three bundles that together form the original class path, but none of them

share any packages. If you tried to launch the OSGi application at this point it would fail

because of unsatisfied imports between the three bundles. Should we just go-ahead and

export everything by switching all Private-Package instructions to Export-Package?

We could, but what would you learn by doing that? Let's try and export only what we

absolutely need to share, keeping as much as possible private.

There are three ways we can find out which packages a bundle must export:

1. Gain an understanding of the codebase and how the packages relate to one other.
This could involve the use of structural analysis tools such as Structure 101 [ref].

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

2. Read the Import-Package headers from the generated manifests to compile a list
of packages that 'someone' needs to export. Ignore JDK packages, like
javax.swing.

3. Repeatedly deploy the bundles onto a live framework and use any resulting error
messages and/or diagnostic commands (such as the “diag” command on Equinox)
to fine-tune the exported packages until all bundles resolve.

The first option requires patience, but the reward will be a thorough understanding of the

package structure. It will also help you determine other potential areas that could be turned

into bundles. The third option can be quick if the framework gives you the complete list of

missing packages on the first attempt, but sometimes feels like an endless loop of “deploy,

test, update”. The second option is a good compromise of the other two. The bnd tool has

already analyzed the codebase to come up with the list of imports and we already know the

framework will follow the import constraints listed in the manifest. The structured manifest

also means we can write a script to do the hard work for us. For example, consider this

rather obscure command on Linux:

$ java -jar ../../lib/bnd-0.0.355.jar print jEdit/*.jar \
 | awk '/^Import-Package$/ {getline;ok=1} /^[^]/ {ok=0} \
 {if (ok) print $1}' | sort -u

It uses bnd to print a summary of each jEdit bundle, extracts the package names from

the Import-Package part of the summary, and sorts them into a unique list. Once we

remove the JDK and OSGi framework packages we get Listing 6.11.

Listing 6.11 packages imported by jEdit bundles

bsh #A
com.microstar.xml
gnu.regexp

org.gjt.sp.jedit #B

org.gjt.sp.jedit.browser #C
org.gjt.sp.jedit.buffer
org.gjt.sp.jedit.gui
org.gjt.sp.jedit.help
org.gjt.sp.jedit.io
org.gjt.sp.jedit.menu
org.gjt.sp.jedit.msg
org.gjt.sp.jedit.options
org.gjt.sp.jedit.pluginmgr
org.gjt.sp.jedit.search
org.gjt.sp.jedit.syntax
org.gjt.sp.jedit.textarea
org.gjt.sp.util

#A third-party packages
#B main jEdit package

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

#C other jEdit packages

It is clear that the third-party library bundle only needs to export three packages and the

main jEdit bundle just the top-level package. Unfortunately, the jEdit engine bundle needs to

export almost all of its packages, indicating a tight coupling between the engine and the top-

level jEdit package. This suggests it would be better to merge these two bundles back

together, unless we were going to refactor the code to reduce this coupling. Let's ignore this

for now and press on, as this separation will eventually lead to an interesting class loading

issue that is worth knowing about. Anyone who's curious can skip ahead to section 6.2.4.

What's next on the JAR to bundle checklist? Ah yes, versioning. We should version all the

exported jEdit packages with the current bundle version (4.2), but we won't bother

versioning the individual third-party packages at the moment, because it's not obvious what

releases are being used. We can always add the appropriate versions in the future, when we

divide the combined third-party bundle into separate library bundles. We should also add

version ranges to our imports, as suggested back in 6.1.3. Rather than go to the hassle of

explicitly writing out all the ranges, we can take advantage of another bnd feature and

compute them:

-versionpolicy: [${version;==;${@}},${version;+;${@}})

This instruction tells bnd to take the detected version ${@} and turn it into a range

containing the current “major.minor” version ${version;==;...} up to (but not including)

the next major version ${version;+;...} [ref]. So if the bnd tool knows that a package has

a version of 4.1.8, it would apply a version range of “[4.1,5)” to any import of that package.

We add this to each of our bnd files, along with the changes to export the necessary

packages. You can see the final third-party and engine instructions in listings 6.12 and 6.13.

Listing 6.12 Final bnd instructions for jEdit third-party library bundle

-output: jedit-thirdparty.jar

Bundle-Name: jEdit Third-party Libraries
Bundle-SymbolicName: org.gjt.sp.jedit.libs
Bundle-Version: 4.2

Export-Package: bsh, com.microstar.xml, gnu.regexp
Private-Package: !org.gjt.sp.*, !installer.*, *

-versionpolicy: [${version;==;${@}},${version;+;${@}})
-removeheaders: Private-Package,Tool,Bnd-LastModified

Listing 6.13 Final bnd instructions for jEdit engine bundle

-output: jedit-engine.jar

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Bundle-Name: jEdit Engine
Bundle-SymbolicName: org.gjt.sp.jedit.engine
Bundle-Version: 4.2

Export-Package:\
 !org.gjt.sp.jedit,\
 !org.gjt.sp.jedit.proto.*,\
 org.gjt.sp.*;version="4.2"

-versionpolicy: [${version;==;${@}},${version;+;${@}})
-removeheaders: Private-Package,Tool,Bnd-LastModified

We still have one more (non-OSGi) tweak to make to the main jEdit bundle instructions.

Remember that we now create three JAR files in place of the original single JAR file. While we

can rely on the OSGi framework to piece these together into a single application at execution

time, this isn't true of the standard Java launcher. We need some way to tell it to include the

two additional JAR files on the class path whenever someone executes:

$ java -jar jedit.jar

Thankfully there is a way, we simply need to add the standard Class-Path header to

the main JAR file manifest. The Class-Path header takes a space-separated list of JAR

files, whose locations are relative to the main JAR file. Listing 6.14 has the final main bundle

instructions:

Listing 6.14 Final bnd instructions for jEdit main bundle

-output: jedit.jar

-include: org/gjt/sp/jedit/jedit.manifest
Class-Path: jedit-thirdparty.jar jedit-engine.jar

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2

Export-Package:\
 org.gjt.sp.jedit;version="4.2"

Private-Package:\
 org.gjt.sp.jedit.proto.*

-versionpolicy: [${version;==;${@}},${version;+;${@}})
-removeheaders: Private-Package,Tool,Bnd-LastModified

Bundle-Activator: org.gjt.sp.jedit.Activator

Update your three bnd files as shown above and rebuild or if you want a shortcut use:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

$ cd ..

$ ant jEdit.patch dist

 Congratulations, you've just successfully separated jEdit into three JAR files that work

with or without OSGi!

$ java -Djedit.home=jEdit -jar launcher.jar jEdit #A

$ java -jar jEdit/jedit.jar #B

#A launch jEdit OSGi
#B launch jEdit classic

As this example hopefully demonstrates, once you have an application working in OSGi it

doesn't take much effort to start slicing it up into smaller, more modularized bundles. But is

this all we can do with jEdit on OSGi, just keep slicing it into smaller and smaller pieces?

6.2.3 Loosening things up

So far we've focused on using the first two layers of OSGi: modularity and lifecycle. There is

another layer we have not yet used in this chapter: services. The service layer is different

from the first two layers in that it can be very hard to tell when or where you should use it,

especially when migrating an existing application to OSGi. Often people decide not to use

services at all in new bundles, instead relying on sharing packages to find implementations.

But as we saw in chapter 4, services make your application more flexible and help reduce the

coupling between bundles. The good news is you can decide to use services at any time, but

how will you know when the time is right?

There are many ways to share different implementations inside a Java application. You

might construct instances directly, call a factory method, or perhaps apply some form of

dependency injection. When you first move an application to OSGi you'll probably decide to

use the same tried and tested approach as you did before, except now some of the packages

will come from other bundles. But as we saw in chapter 4, these approaches have certain

limitations compared to OSGi services. Services in OSGi are extremely dynamic, support rich

metadata, and promote loose coupling between the consumer and provider.

If you expect to continue to use your application outside of OSGi, for example as a classic

Java application, you might be worried about using the service layer in case it ties you to the

OSGi runtime. No problem! You can get the benefits of services without being tied to OSGi,

by using component-based dependency injection. Chapter 10 introduces a number of

component models that transparently support services without forcing you to depend on the

OSGi API. If you already use dependency injection then moving to these component models

is straightforward, sometimes only a matter of reconfiguring the dependency bindings in your

original application. If you're itching to try out these component models, feel free to skip

ahead to Chapter 10. But make sure to come back and read the intervening chapters; they

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

will be an invaluable guide when it comes to managing, testing, and debugging your new

OSGi application.

Let's get back to discussing services. Where might we use services in jEdit? Well jEdit has

its own home-grown plugin framework for developers to contribute all sorts of gadgets, tools,

and widgets to the GUI. In addition, jEdit uses its own custom class loader

org.gjt.sp.jedit.JARClassLoader to allow hot deployment and removal of jEdit plugins.

Plugins hook back into jEdit by accessing implementation classes and calling static methods,

such as jEdit.getSettingsDirectory(). While these static method calls are convenient,

they make it hard to mock out (or replace) dependencies for testing purposes.

Instead of relying on static methods, we could change jEdit to use dependency injection.

Plugins would have their dependencies injected, rather than call jEdit directly. Once we

replace the static methods calls with dependency injection, it is just another step to replace

the static bindings with dynamic OSGi services (10.?). This also simplifies unit testing, as we

can swap out the real bindings and put in stubbed or scripted test implementations.

Unfortunately, refactoring jEdit to use dependency injection throughout is outside of the

scope of this book, but chapter 10 will provide you with a general guide. With this in mind, is

there a smaller task that would help bridge the gap between OSGi bundles and jEdit plugins

and make it easier to use services?

We could consider replacing the jEdit plugin framework with OSGi, much like Eclipse

replaced its original plugin framework. To do this we would have to take the JARClassLoader

and PluginJAR classes and extract a common API we could then re-implement using OSGi,

as shown in Figure 6.11. We would use the original jEdit plugin code when running in classic

Java mode and the smaller OSGi mapping layer when running on an OSGi framework.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Extracting the common plugin API is left as an interesting exercise for the reader; one

wrinkle is jEdit assumes plugins are located on a filesystem, whereas OSGi supports bundles

installed from opaque input streams. The new plugin API would need methods to iterate over

and query JAR file entries to avoid having to know where the plugin was located. These

methods would map to the resource entry methods on the OSGi Bundle interface.

How about being able to register OSGi bundles as jEdit plugins? This would be a stepping

stone to using services, because we need a bundle context to access OSGi services. The

main jEdit class provides two static methods to add and remove plugin JAR files:

public static void addPluginJAR(String path);

public static void removePluginJAR(PluginJAR jar, boolean exit);

Following the extender pattern introduced in section 3.4, let's use a bundle tracker to look

for potential jEdit plugins. The code in Listing 6.15 uses a tracker to add and remove jEdit

plugin bundles as they come and go. It identifies jEdit plugins by looking for a file called

“actions.xml” at the bundle root #1. Because the jEdit API only accepts path-based plugins,

it ignores bundles whose locations don't map to a file #4. To remove a plugin bundle it uses

another jEdit method to map the location back to the installed PluginJAR instance #2. The

last piece of the puzzle is to only start the bundle tracker when jEdit is ready to accept new

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.11 Extracting a common jEdit plugin API

jEdit

JARClassLoader PluginJAR

jEdit

JARClassLoader PluginJAR

OSGi Mapping Layer

Common Plugin API

http://www.manning-sandbox.com/forum.jspa?forumID=507

plugins. If you look at the jEdit startup code you might notice one of the last things it does in

finishStartup() is send out the initial “EditorStarted” message on the EditBus (jEdit's

event notification mechanism). So we simply register a one-shot component that listens for

any message event, deregisters itself, and starts the bundle tracker #3.

Listing 6.15 Using the extender pattern to install jEdit plugins

package org.foo.jedit.extender;

import java.io.File;
import org.gjt.sp.jedit.*;
import org.osgi.framework.*;

public class Activator implements BundleActivator {

 BundleTracker pluginTracker;

 public void start(final BundleContext ctx) {
 pluginTracker = new BundleTracker(ctx) {

 public void addedBundle(Bundle bundle) {
 String path = getBundlePath(bundle);
 if (path != null && bundle.getResource("actions.xml") != null) { #1
 jEdit.addPluginJAR(path);
 }
 }

 public void removedBundle(Bundle bundle) {
 String path = getBundlePath(bundle);
 if (path != null) {
 PluginJAR jar = jEdit.getPluginJAR(path); #2
 if (jar != null) {
 jEdit.removePluginJAR(jar, false);
 }
 }
 }
 };

 EditBus.addToBus(new EBComponent() {
 public void handleMessage(EBMessage message) {
 EditBus.removeFromBus(this);
 pluginTracker.open(); #3
 }
 });
 }

 public void stop(BundleContext ctx) {
 pluginTracker.close();
 pluginTracker = null;
 }

 static String getBundlePath(Bundle bundle) { #4
 String location = bundle.getLocation().trim();

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 File jar;
 if (location.startsWith("file:")) {
 jar = new File(location.substring(5));
 } else {
 jar = new File(location);
 }

 if (jar.isFile()) {
 return jar.getAbsolutePath();
 }

 return null;
 }
}

Let's see this extender in action!

$ cd chapter06/jEdit-example

$ ant jEdit.patch dist

$ java -Djedit.home=jEdit -jar launcher.jar jEdit

-> install file:test/Calculator.jar

Look under the “Plugins” menu, there should be no plugins available. Now start the

calculator bundle that you just installed:

-> start 9

You should now see the calculator under the “Plugins” menu. Selecting this item should

bring up the window shown in Figure 6.12. If you stop the calculator bundle this window will

immediately disappear, and the “Plugins” menu will once again show no available plugins.

-> stop 9

Cool, our extender successfully bridges the gap between OSGi bundles and jEdit plugins!

We can now use existing OSGi management agents, such as the Apache Felix web-console

[ref], to manage jEdit plugins. This small example hopefully shows you how standards like

OSGi can make it much easier to re-use and assemble existing pieces into new applications.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

So are you eager to start moving your application to OSGi? Wait, not so fast! We have

one last topic to discuss before we close out this chapter, and it's something you should keep

asking yourself when modularizing applications: is this bundle adding any value?

6.2.4 To bundle or not to bundle?

There are times when you should take a step back and think, do I really need another

bundle? The more bundles you create, the more work is required during build, test, and

management in general. Creating a bundle for every individual package would obviously be

overkill, while putting your entire application inside a single bundle means you're missing out

on modularity. Some number of bundles in between is best, but where is the sweet spot?

One way to tell is to measure the benefit introduced by each bundle. If you find you're

always upgrading a set of bundles at the same time and you never install them individually,

then keeping them as separate bundles is not bringing much benefit. You could also look at

how your current choice affects developers. If a bundle layout helps developers work in

parallel or enforces separation between components, then it is worth keeping. But if a bundle

is getting in the way of development, perhaps for legacy class loader reasons, then you

should consider removing it; either by merging it with an existing bundle or by making it

available via boot delegation (we briefly discussed this option at the start of 6.2.1). Consider

our jEdit example, have we reached the right balance of bundles?

A BUNDLE TOO FAR

First let's refresh our memory. Cast your mind back to section 6.2.2 and the import package

discussion following listing 6.11. We mentioned an interesting issue caused by placing the

top-level package in its own bundle, separate from the rest of the jEdit engine. You can see

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.12 jEdit Calculator plugin

http://www.manning-sandbox.com/forum.jspa?forumID=507

the problem for yourself by starting the OSGi version of jEdit, opening the “File...” menu, and

selecting the “Print...” option. A message box should pop-up (Figure 6.13) describing a

failure in a beanshell script.

Why did the script fail? The error message suggests a class loading problem. If you scroll

down through the stack trace you will notice the last jEdit class before the call to

bsh.BshMethod.invoke() i s org.gjt.sp.jedit.BeanShell. This is a utility class which

manages beanshell script execution for jEdit. It is part of the top-level jEdit package loaded

by the main bundle class loader and it configures the beanshell engine to use a special

instance of JARClassloader (previously discussed in 6.2.3) that delegates to each plugin

class loader in turn. This is so beanshell scripts can access any class in the entire jEdit

application. If none of the plugin class loaders can see the class then this special class loader

delegates to its parent class loader. For a classic Java application this will be the application

class loader, which can see all of the jEdit classes on the class path. For our OSGi application,

the parent will be the class loader for the main bundle, which can only see the

org.gjt.sp.jedit and proto packages it contains as well as any packages it explicitly

imports. One thing we know it can't see is the BufferPrinter1_4 class.

Who owns the BufferPrinter1_4 class? It is part of the org.gjt.sp.jedit.print

package, belonging to the jEdit engine bundle. We could check the manifest to make sure

this package is being exported as expected, but if you're using the instructions from Listing

6.13 then it will be. It is being exported from the engine bundle, but is it being imported by

the main bundle? Without an import this package won't be visible. Let's avoid cracking open

the JAR file and instead use bnd to see the list of imports:

$ java -jar ../../lib/bnd-0.0.355.jar print -impexp jEdit/jedit.jar #A
#A print imported and exported packages

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 6.13 Error attempting to print from jEdit

http://www.manning-sandbox.com/forum.jspa?forumID=507

Aha! The main bundle manifest contains no mention of the org.gjt.sp.jedit.print

package, which explains why the BufferPrinter1_4 class wasn't found and the script failed.

The last remaining question before we try to fix this issue: why didn't bnd pick up the

reference to the org.gjt.sp.jedit.print package? Remember that bnd works primarily on

byte code, not source code; it won't pick up packages referenced in scripts, arbitrary strings,

or runtime configuration files. The only reference to this package was in a beanshell script,

which was not analyzed by the bnd tool.

We now have all the answers as to why the script failed, but how should we solve it?

Well, bnd does support adding custom analyzers to process additional content, so we could

write our own beanshell analyzer for bnd. But what if writing such an analyzer is outside our

expertise, can we instead fix the class loading problem at execution time? There are two

approaches to solving this type of class loading issue:

1. Attempt to use a different class loader to load the class.

2. Add the necessary imports to the bundle doing the loading.

The first approach is only possible when the library provides some way of passing in the

class loader or when it uses the Thread Context Class Loader (TCCL) to load classes. (You

can read more about the TCCL in chapter 9.) The beanshell library does provide a method to

set the class loader, but jEdit is already using it to pass in the special class loader that

provides access to all currently installed jEdit plugins. Rather than mess around with jEdit's

internal JARClassLoader code and potentially break the jEdit plugin framework, we shall

take approach two and simply add the missing imports to the main bundle. This has the least

impact on existing jEdit code, all we're doing is updating the OSGi part of the manifest.

We know we need to import the org.gjt.sp.jedit.print package, but what else might

we need? To make absolutely sure we would need to run through a range of tests exercising

the whole of the jEdit GUI. While this testing could be automated to save time, let's instead

try the suggestion from the end of section 6.1.3 and allow the main jEdit bundle to import

any package on-demand:

DynamicImport-Package: *

Add this to the “jedit-main.bnd” instruction file and rebuild one more time. You can now

open the print dialog without getting the error message. The application will also continue to

work even if you use a more restrictive dynamic import, such as

DynamicImport-Package: org.gjt.sp.*

Why does this work? Well, rather than say upfront what we import, we leave it open to

whatever load requests come through the main bundle class loader. As long as another

bundle exports the package and it matches the given wildcard, we will be able to see it. But

is this really the right solution? Merging the main and engine bundles back together would

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

solve the beanshell problem without the need for dynamic imports. We already know these

bundles are tightly coupled, keeping them apart is just causing us further trouble. In fact,

this is a good example of where introducing more bundles does not make sense. OSGi is not

a golden hammer and it won't magically make code more modular.

In short, if you're getting class loading errors or are sharing lots of packages between

bundles, that could be a sign to start merging them back together. You might even decide to

fall back to classic Java class loading by putting really troublesome JAR files on the

a p p l i c a t i o n c l a s s p a t h a n d a d d i n g t h e i r p a c k a g e s t o t h e

org.osgi.framework.bootdelegation property (section 9.2). You won't be able to use

multiple versions or dynamically deploy them, but if it avoids tangled class loading problems

and helps keep your developers sane then it's a fair trade. You can often achieve more by

just concentrating on modularizing your own code. Leave complex third-party library JAR

files on the application class path until you know how to turn them into bundles or until an

OSGi compatible release is available. Not everything has to be a bundle. As we often say in

this book: you can decide how much OSGi you want to use, it is definitely not an all-or-

nothing approach!

6.3 Summary
At the start of this chapter we showed you how to turn a JAR file into a bundle

(abracadabra!) followed by a lengthier discussion about turning a complete application into

several bundles. Making decisions about where to slice an application into bundles comes

with experience, but you can use existing knowledge about your application's design to drive

this process. Feedback from developers along with other project measurements can indicate

which of the new bundles bring the most bang for the buck and help focus future

development. We also learned there is often a sweet spot in the number of bundles, where

you get the most value for the least amount of management cost.

But what is actually involved in managing bundles? Once you've split your application into

many independent parts, how do you keep everything consistent and how do you upgrade

your application without bringing everything down? The next chapter will discuss this and

more, as we look at managing real-world OSGi applications.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

7
Managing Bundles and

Applications

By now you should be familiar with the mechanisms to create, deploy and interact with

bundles. We have seen: how to use modularity to improve the cohesiveness of your

application code; how to use lifecycle to bring dynamic installation and update to application

environments; and how to use services to decouple our modules via interface-based

programming techniques. We have also shown you some of the advanced features of the

OSGi modularity toolkit and demonstrated how to begin migrating a classic Java application

to an OSGi environment.

With the OSGi Service Platform, you can create loosely coupled and highly cohesive

bundles. You can compose your bundles in many different ways. In a sense, your deployed

set of bundles becomes your application's configuration. As such, the task of managing your

bundles is one of the most important skills you will need to fully master OSGi. In this

chapter, we will explore the four different aspects of application management:

 Evolving applications using versioning policies to avoid inconsistent or incompatible
configurations,

 Configuring applications using the ConfigurationAdmin, MetaTypeService, and
Preferences services,

 Deploying applications using the OSGi Bundle Repository or the DeploymentAdmin,
and

 Ordering bundle activation using the StartLevel service.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

With these tools you will be better equipped to build, deploy, and configure sophisticated

OSGi-based applications. Let's start by looking at versioning.

7.1 Versioning packages and bundles
From what we've learned so far, we know versioning is a core part of any OSGi application.

Both bundles and their exports have versions. When the framework resolves bundle

dependencies, it must take these versions into account. In this section, we'll discuss the

recommended policy for versioning these artifacts and discuss advantages and disadvantages

of different versioning strategies. To get things started, let's provide some motivation for

OSGi's approach to versioning.

7.1.1 Meaningful versioning

In traditional Java programming, versioning is an afterthought. OSGi, on the other hand,

treats versioning as a first-class citizen, which makes it easier to handle versioning in a

meaningful way. This emphasis on versioning makes the need for a proper versioning

strategy very important in order to get and keep everything working correctly.

You must be thinking, “Hey! I already version my JAR files!” Tools like Maven and Ivy

already allow us to specify versions for JAR files and declare dependencies on those versions.

We discussed these sorts of module-level dependencies in chapter [ref]. We also mentioned

a number of reasons why they are bad for the health of your projects. In short, they are

brittle when it comes to really expressing fine-grained dependencies between units of code.

As it turns out, not only do module-level dependencies have drawbacks, but so does

module-level versioning. Such a model is too simple and forces all packages inside of a JAR

file to be versioned in lockstep with the other packages. Let's look at some of these reasons

in more detail.

MODULE VERSIONING IS OPAQUE

Consider a case where you bundle some related packages together and assign a version

number to the resulting JAR file. Later you may need to alter some code within one of the

contained packages; such a change may be the result of a bug fix or a change to the API

contract. This new JAR file needs a new version number associated with it.

With a single version number for all the packages, it is now up to upstream users of the

JAR file to decide whether the change warrants an update. Since the only information they

have is the module-level version number change, it is often a stab in the dark as to whether

the updated functionality is required for their application. One reason for this is that

upstream users do not always use all functionality provided by a JAR file and are actually

only dependent on some subset. Depending on the subset being used, it is possible nothing

of importance has changed for them.

A counter argument is if the bundle is highly cohesive, then it makes no sense to update

a single package without it's siblings. While this is true, it is not uncommon for JAR files to be

less than optimally cohesive. In fact, OSGi already caters for this situation with “uses”

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

constraints, which we mentioned in chapter [ref]. These ensure the cohesiveness of

packages is maintained by capturing internal package dependencies. This means upstream

users aren't forced to depend on anything more than the API-level contract of the exported

packages.

Luckily, in OSGi, we can version our packages either independently or in lockstep with the

bundle as shown in Figure 7.1. The OSGi approach of package-level versioning and

dependencies leads to less churn in the development lifecycle. Less churn implies less risk,

since existing modules are better understood than updated modules, which can introduce

unexpected behavior into a complex system. This concept is extremely powerful and

removes a lot of the pain from assembling applications out of independent JAR files, since we

can make better informed decisions about when and what to update in our applications.

MULTIPLE VERSIONS IN THE SAME JVM

Package-level versioning is also helpful when it comes to running different versions side-by-

side. Java doesn't support this by default, but OSGi does. In many cases, this seemingly

unimportant feature frees you from worrying about backward compatibility or changes to

artifacts outside your control. Your bundles can continue to use the versions of packages with

which they are compatible, since your entire application no longer has to agree on a single

version to place on the class path.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.1 Versioning packages independently

Provider
version:=1.0

bar;version:=1.0

foo;version:=1.0

Client
version:=1.0

Provider
version:=2.0

bar;version:=2.0

foo;version:=2.0

Client
version:=2.0

Provider
version:=2.0

bar;version:=1.0

foo;version:=2.0

Client
version:=1.0

Versioning the Bundle
and the packages in
lock-step

Versioning the Bundle
and the packages
independently

http://www.manning-sandbox.com/forum.jspa?forumID=507

There is a price to pay for this flexibility. Versioning must be done as a core task

throughout the development process, not as an afterthought. Versioning packages and

maintaining a versioning policy is a lot of work. One easy way to reduce the amount of work

is to have less to version. In OSGi, you have the option to not expose the implementation

packages of a bundle (assuming that nobody else outside the bundle needs them). As a

consequence, the simplest option you have is to not export packages to avoid the need to

version them. When you need to export packages, however, then you need to version them.

Let's look more closely at how we can implement a versioning policy for packages in OSGi.

7.1.2 Package versioning

Let's consider a package named org.foo with a version of 1.0.0.r4711 provided by a

bundle called foo which is itself at version 1.0.0. Its manifest would look like this:
Bundle-SymbolicName: foo
Bundle-Version: 1.0.0
Export-Package: org.foo;version:="1.0.0.r4711"

As we mentioned previously, the OSGi specification does not define a versioning policy,

which means you can use any scheme that makes sense to you. However, the OSGi

specification does recommend the following policy behind version number component

changes:

 Major number change – signifies an incompatible update.

 Minor number change – signifies a backward compatible update.

 Micro number change – signifies an internal update (e.g., a bug fix or performance
improvement).

 Qualifier change – signifies a trivial internal change with “outward” noticeable
difference, but nonetheless is a new artifact (e.g., line number refactoring).

This is a very common version compatibility policy. Why? Since versions are important for

the consumer to specify what is needed, this policy makes it possible to easily express a floor

and a ceiling version in between which all versions are allowed. As we saw in chapter [ref], a

version range is expressed as a pair of version numbers inside brackets or parentheses. This

follows mathematical interval notation, where a square bracket signifies an inclusive value

and a parenthesis signifies an exclusive value. As an example, consider a typical definition of

a package import,
Import-Package: org.foo;version:="[1.0,2.0)"

The org.foo package is imported in version 1.0.0 up to, but excluding 2.0.0. This

makes sense if the recommended version policy is being used, since it would include all

backward compatible versions and exclude all non-backward compatible versions, which a

change in the major number would signify. Being able to specify such ranges is very useful

since the import can be satisfied by a wider range of exports. This scheme only works if

producers and consumers operate with a shared understanding of the kind of compatibility

being expressed by a given version number.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

DOWNSIDES AND PITFALLS

The recommended OSGi versioning policy sounds good and it has been used successfully by

many projects. But new users should still take care due to a subtlety related to the usage of

Java interfaces, which is related to whether an interface is being used or implemented.

The difference seems trivial, but becomes very important in the context of versioning.

Consider the following 1.0.0 version of the Foo interface:
public interface Foo {
 public Bar getBar();
}

What happens if we change this simple interface? For example, by adding a method:
public interface Foo {
 public Bar getBar();
 public void setBar();
}

The question to ponder is whether this change should cause a major or minor version

number increase? It depends on whether the interface is intended to be implemented or used

by the consumer. In the former case, the addition of the method is a binary incompatible

change to the interface and should cause a major version number increase to 2.0.0. In the

latter case, a minor version number increase to 1.1.0 is sufficient because method addition

is a backward compatible update to the interface. Figure 7.2 shows the situation.

If you are in control of all the bundles, you could define a policy to ensure that method

addition always causes a major version number change, which allows all consumers of a

package to use a [1.0,2.0) version range. In reality, you are unlikely to be in control of all

the bundles. Furthermore, such a drastic policy would limit the reusability of your bundles,

because consumers only using your interfaces would have no way to express they are fine

with an added method.

A REFINED APPROACH

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.2: Difference between uses and implements in updates

Uses

Implements

Foo

+ getBar()

Uses

Implements

Foo

+ getBar()
+ setBar()

Update

http://www.manning-sandbox.com/forum.jspa?forumID=507

The best strategy devised so far is to shift the burden to the consumer. This is pretty

straightforward and requires implementers to specify a version range of [1.0,1.1),

while users can use the broader version range of [1.0,2.0) as shown in Figure 7.3.

Another important aspect about versioning is to be consistent. You don't want to define

your versioning policy on a bundle by bundle basis. So, whether your follow the

recommended approach or not, you should at least try to use the same global policy.

This gives us a fairly good understanding of versioning policy for packages, but what

about versioning bundles? We'll explore bundle versioning policies next.

7.1.3 Bundle versioning

Bundles and packages are related through containment: bundles contain packages. Since

both bundles and packages have version numbers, what is the relationship between them?

We need to adopt a versioning policy to define this relationship. Let's look at that in more

detail.

In the simple case, a bundle may contain several related implementation packages all

with the same version number. Here it is advisable to make the bundle version mirror the

version of the implementation packages. When dealing with a bundle containing packages of

different versions, the most consistent versioning policy is to increment the bundle version

based on the highest change of a package inside it. For example, if any package has a major

number increase, then the major number of the bundle should increase as well. Likewise, if

the highest change was to a minor or micro portion of the version. With this policy, it is

possible for us to judge the impact of an updated bundle based on its version number.

Unfortunately, this might not always make sense, especially if the versions of the individual

packages actually represent a well-known product version.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.3: Best practice for interface users and implementers

org.foo
Uses

Implements

version:=[1.0,2.0)

version:=[1.0,1.1)

http://www.manning-sandbox.com/forum.jspa?forumID=507

For example, let's assume we want to create a bundle for the core API of the OSGi

framework. In this case, we have several independently versioned packages, but the

collection of packages in this bundle has a version number based on the OSGi specification.

Figure 7.4 graphically depicts this situation.

Now the question is, what version should we assign to the org.osgi.core bundle?

There is no single answer. We could have increased the major number on every major

release of the OSGi specification, but this would have indicated a binary incompatible change

in at least one of the provided packages which clearly is not the case (as indicated by the

individual package versions). Another approach is to keep the version number at 1,

indicating no binary incompatible change has happened. We would then need to use the

minor number to match the release number of the specification. Since the OSGi specification

has also had minor number releases (e.g., 4.1), we would then need to use the micro

number for the minor number of the specification.

Unfortunately, this wouldn't be exactly what we want, since there have been updates in

the minor numbers of the contained packages. To make matters worse, if we ever needed to

update the bundle for a different reason (like a packaging mistake), then we'd need to use

the qualifier to express that the bundle has changed. In the specific case of the core OSGi

specification, the OSGi Alliance actually makes them available based on the version of the

specification (i.e., 4.1.0, 4.2.0, etc.).

The important management task to take away from this section is that versioning is

important and should not be left as an afterthought or ignored. There are issues you need to

take into account when versioning your packages and bundles. If done correctly, the OSGi

concept of versioning is extremely powerful and removes a lot of the pain from assembling

applications. To get it correct, you will need to define a versioning policy and enforce it upon

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.4: The platform implementation contains many sub packages that
must evolve in line with the specification, but what is the version of the
implementation?

org.osgi.core

org.osgi.service.condpermadmin;version:=1.0

org.osgi.service.packageadmin;version:=1.2

org.osgi.service.url;version:=1.0

org.osgi.service.startlevel;version:=1.1

org.osgi.service.permissionadmin;version:=1.2

org.osgi.framework;version:=1.4

OSGi Service
Platform Release 4

Interfaces and classes

http://www.manning-sandbox.com/forum.jspa?forumID=507

all your bundles and exported packages. One possible policy is the one recommended by

OSGi which we introduced in this section. With that established, we can now look into

another important management task: configuring our bundles.

7.2 Configuring bundles
To make the bundles we create more reusable, we often introduce configuration properties to

control their behavior. Recall from chapter [ref] when we introduced our shell example, we

used configuration properties to alter its behavior, such as the port on which it listened for

client connections. Configuring bundles is an important aspect of using them, so it would be

very beneficial if there was a standard way of managing this for bundles. At a minimum, it

would be nice if we had:

 A common format for specifying the type of configuration data a given bundle expects.

 A common way to actually set the configuration information for a given bundle.

 A common mechanism for bundles to safely store bundle- and user-related
configuration information.

Fortunately for us, the OSGi Alliance defines the following three compendium

specifications to help us address these issues:

3. Configuration Admin service – manages key/value pair configuration properties for
bundles.

4. Metatype service – allows bundles to describes their configuration properties.

5. Preferences service – provides a place to store bundle- and user-related information.

Even with these specifications to help us, adding bundle configurations to the mix still

creates more issues for us to worry about. Configuration data becomes yet another artifact

to manage. For example, we have to make sure to consider them when we change the

bundles in our systems as well, since configuration data are generally not compatible across

bundles or even bundle versions. They are subject to deployment and provisioning just like

bundles. In the remainder of this section, we will introduce you to the above configuration-

related services and show you how you can manage configurations. We'll start with the

Configuration Admin service.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

7.2.1 Configuration Admin service

The Configuration Admin service is an important piece of the deployment of an OSGi Service

Platform. It allows you to set the configuration information of deployed bundles. This process

involves setting a bundle's configuration data and ensuring it receive that data when it

becomes active. What happens is pretty simple. Consider the scenario in Figure 7.5 where a

bundle needs an integer port number and a boolean secure property. In this case, you

provide these values to the Configuration Admin service and it provides these values to the

bundle when it is activated. Using this approach, bundles have a simple, standard way of

obtaining configuration data.

How does this work? The Configuration Admin service maintains a database of

Configuration objects, each of which has an associated set of name-value pair properties.

The Configuration Admin service follows the whiteboard pattern and monitors the service

reg is t ry for two d i f ferent “managed” serv i ces: ManagedService a n d

ManagedServiceFactory. If you have a bundle needing configuration data, it must

register one of these two services as defined by the Configuration Admin specification. The

difference between these two is that a ManagedService accepts one configuration to

configure a single service, while a ManagedServiceFactory accepts any number of

configurations and configures a different service instance for each configuration; Figure 7.6

illustrates this difference.

When registering one of these managed services, you need to attach a service.pid

(service persistent identity) property to it. Each managed Configuration object also has a

service.pid associated with it, which the Configuration Admin service uses as a key to

match configuration data to the bundle needing it.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.5: An administrator configures a bundle in the framework by interacting
with the configuration admin service. This decouples the administrator from
having to know the internal workings of the bundle that uses this configuration.

Bundle Developer
writes a bundle

port=?
secure=?

port=4711
secure=true

bundle is deployed

configuration data

ConfigurationAdmin

http://www.manning-sandbox.com/forum.jspa?forumID=507

WHAT IS A PID?

In a nutshell, each registered service can have a persistent identity or PID associated with

it by specifying it in its service property dictionary when registering the service. If you

specify a service.pid property, it must be unique for each service. Its purpose is to

uniquely and persistently identify a given service, which allows the Configuration Admin

service to use it as a primary key for bundles needing configuration data. This means the

Configuration Admin service requires the use of a PID with ManagedService and

ManagedServiceFactory service registrations. As a convention, PIDs starting with a

bundle identifier and a dot are reserved for the bundle associated with that identifier. For

example, the PID 42.4711 belongs to the bundle associated with bundle identifier 42.

You are free to use other schemes for your PIDs, just make sure they are unique and

persistent across bundle activations.

You may have noticed we are dealing with two conceptually different layers when using

the Configuration Admin service. On one layer, we have a published ManagedService or

ManagedServiceFactory service. On the other layer, we have a bundle and the services it

provides that we actually want to configure. The Configuration Admin service connects these

two layers together to deliver configuration data. Of course, the reverse is also possible, and

the Configuration Admin service may tell a managed service that its configuration has gone

away, which means it needs to stop performing its functionality since it no longer has a valid

configuration. The benefit of this approach is you get a really flexible system, where you can

configure and control any kind of service or any number of service instances in a common

way. Let's look into the details of implementing a managed service next.

IMPLEMENTING A MANAGED SERVICE

Now that we understand the underlying basics of how the Configuration Admin service works

by associating configuration data to managed services, let's explore an example. The actual

interface we need to implement looks like the following:
public interface ManagedService {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.6: Differentiation of ManagedService and ManagedServiceFactory

Service Layer

Service Registry

Management Layer

Managed Service ManagedServiceFactory

http://www.manning-sandbox.com/forum.jspa?forumID=507

 public void updated(Dictionary properties) throws ConfigurationException;
}

Listing 7.1 shows an example ManagedService implementation.

Listing 7.1: Example of a managed service

public class ManagedServiceExample implements ManagedService { #1
 private EchoServer m_server = null;

 public synchronized void updated(Dictionary properties) #2
 throws ConfigurationException {
 if (m_server != null) { #3
 m_server.stop(); #3
 m_server = null; #3
 }
 if (properties != null) { #4
 String portString = (String) properties.get("port"); #5
 if (portString == null) { #6
 throw new ConfigurationException(null,"Property missing"); #6
 }
 int port;
 try {
 port = Integer.parseInt(portString); #7
 } catch (NumberFormatException ex) { #7
 throw new ConfigurationException(null, "Not a valid port number");
 }
 try {
 m_server = new EchoServer(port); #8
 m_server.start(); #8
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
...
}

We implement the ManagedService interface at (#1), which has a single updated()

method that we implement at (#2). The argument to this method is a Dictionary

containing the configuration properties.

CONFIGURATION PROPERTIES

A configuration dictionary contains a set of properties in a Dictionary object. The

name or key of a property must always be a String object and is not case-sensitive

during look up, but will preserve the original case. The values should be of type String,

Integer, Long, Float, Double, Byte, Short, Character, Boolean, or the

primitive counterparts. Furthermore, they can be arrays or collections of them. For arrays

and collections, they must only contain values of the same type.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

In this example, we have a simple “echo” server that listens on a port and sends back

whatever it receives. Since it is good practice, we make the port configurable. When we

receive a new configuration, we first stop the existing server if there is one at (#3). At (#4),

we check if we received a null configuration, which indicates the previous configuration was

deleted and there is no new one. If this is the case, then we there is nothing else to do.

Otherwise, we get the port number from the dictionary at (#5) and verify its existence at

(#6). If it exists, we parse it at (#7) and create and start a new server for the given port at

(#8).

A ManagedService is associated with one configuration object. A bundle can register

any number of ManagedService services, but each must be identified with its own PID. A

ManagedService should be used when configuration is needed for a single entity in the

bundle or where the service represents an external entity like a device. Then, for each

detected device a ManagedService is published with a PID related to the identity of the

device, such as the address or serial number. What about cases where we simply want to

configure more than a single entity using the same PID, such as creating multiple instances

of the same service with different configurations? We use a ManagedServiceFactory,

which we'll explore next.

IMPLEMENTING A MANAGED SERVICE FACTORY

A ManagedServiceFactory should be used when a bundle does not have an internal or

external entity associated with the configuration information, but can handle more then one

configuration at the same time. Remember, with a ManagedService there is only one

configuration namely, the configuration for the specific PID. With a

ManagedServiceFactory, there can be any number of configurations for the same factory.

Using this approach, you can instantiate a service for each configuration associated with your

managed service factory, for example. This way, by simply creating a new configuration for

the managed service factory you actually create new service instances. A slightly different

use case is related to services representing entities that cannot be identified directly, such as

devices on a USB port that can't provide information about their type. Using a

ManagedServiceFactory we can define configuration information for each available

device attached to the USB port.

How does this work with respect to the PIDs? The trick in this case is that the

ManagedServiceFactory is registered with a factory.pid property. This way, the

Configuration Admin service can differentiate between a managed factory service and a

managed service. For the managed factory service, it assigns a new and unique PID to each

created configuration for the factory. The interface to implement looks like this:
public interface ManagedServiceFactory{
 public String getName();
 public void updated(String name, Dictionary properties)
 throws ConfigurationException;
 public void deleted(String name);
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Listing 7.2 shows an example where we use a ManagedServiceFactory to configure

echo services that will read from their configured port and send back whatever they receive

along with their name.

Listing 7.2: ManagedServiceFactory example

public class ManagedServiceFactoryExample implements
 ManagedServiceFactory { #1
 private final Map<String, EchoServer> m_servers = #2
 new HashMap<String, EchoServer>();

 public synchronized void deleted(String pid) { #3
 EchoServer server = m_servers.remove(pid); #4
 if (server != null) { #4
 server.stop(); #4
 }
 }

 public String getName() { #5
 return getClass().getName();
 }

 public synchronized void updated(String pid, Dictionary properties)
 throws ConfigurationException {
 EchoServer server = m_servers.remove(pid); #6
 if (server != null) {
 server.stop();
 }
 if (properties != null) {
 String portString = (String) properties.get("port");
 if (portString == null) {
 throw new ConfigurationException(null, "Property missing");
 }
 int port;
 try {
 port = Integer.parseInt(portString);
 } catch (NumberFormatException ex) {
 throw new ConfigurationException(null,"Not a valid port number");
 }
 try {
 server = new EchoServer(port);
 server.start();
 m_servers.put(pid, server); #7
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 ...
}

This example is not significantly different than the last one. We now implement the

ManagedServiceFactory interface at (#1). Since we are going to manage a number of

servers, we introduce a map to hold them at (#2). The factory interface defines two new

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

methods, deleted() and getName(), which we implement at (#3) and (#5), respectively.

The latter is simply a descriptive name for the factory, while the former notifies our factory

that a previously updated configuration has gone away, which results in us stopping the

corresponding server at (#4). Notice that the updated() method actually has a different

signature from the ManagedService interface at (#6). It now accepts a PID, which is

needed because our managed factory service needs to know the PID for the supplied

configuration, which it will correlate with a specific echo server. For each one, we need a PID

and a configuration. The rest is similar to what we did for a single server in the

ManagedService example. The only exception is now we need to add the resulting server

instance to our list of servers, which we do at (#7).

This covers the basics about what we need to do to make our bundles configurable, now

we need to look into how we actually configure our bundles by creating configurations.

CREATING CONFIGURATIONS

It is one thing to make our bundles configurable, but we need some way to specify and set

the actual property values we want to use to configure them. We need to learn how to create

and manage configurations; we use the Configuration Admin service for this. It provides

methods to maintain configuration data by means of Configuration objects associated

with specific configuration targets which can be created, listed, modified, and deleted. The

ConfigurationAdmin service interface is defined as follows:
public interface ConfigurationAdmin{
 public Configuration createFactoryConfiguration(String factoryPid)
 throws IOException;
 public Configuration createFactoryConfiguration(String factoryPid,
 String location) throws IOException;
 public Configuration getConfiguration(String pid, String location)
 throws IOException;
 public Configuration getConfiguration(String pid) throws IOException;
 public Configuration[] listConfigurations(String filter) throws
 IOException, InvalidSyntaxException;
}

Configuration objects are represented by the following interface:
public interface Configuration{
 public String getPid();
 public Dictionary getProperties();
 public void update(Dictionary properties) throws IOException;
 public void delete() throws IOException;
 public String getFactoryPid();
 public void update() throws IOException;
 public void setBundleLocation(String location);
 public String getBundleLocation();
}

To illustrate how these all fit together, we can continue to improve our shell example by

creating a new command to manage configurations. Have a look at Listing 7.3.

Listing 7.3: ConfigurationAdmin service shell command

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

public class ConfigAdminCommand extends BasicCommand {
 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 args=args.trim();
 if (args.startsWith("list")) { #1
 listConfigurations(args.substring("list".length()).trim(),
 out);
 } else if (args.startsWith("add-cfg")) { #2
 addConfiguration(args.substring("add-cfg".length()).trim());
 } else if (args.startsWith("remove-cfg")) { #3
 removeConfiguration(args.substring(
 "remove-cfg".length()).trim());
 } else if (args.startsWith("add-factory-cfg")) { #4
 addFactoryConfiguration(args.substring("add-factory-
 cfg".length()).trim());
 } else if (args.startsWith("remove-factory-cfg")) { #5
 removeFactoryConfiguration(args.substring(
 "remove-factory-cfg".length()).trim());
 }
 }

In this example, we create a “cm” command that accepts five different subcommands

namely: list, add-cfg, remove-cfg, add-factory-cfg, and remove-factory-cfg. The above code

is largely just responsible for delegating to private methods to perform the functionality of

the subcommands at (#1), (#2), (#3), (#4), and (#5), respectively. Listing 7.4 shows how

“cm list” lists available configurations.

Listing 7.4 Implementation of the “cm list” subcommand

private void listConfigurations(String filter, PrintStream out)
 throws IOException, InvalidSyntaxException {
 Configuration[] configurations = admin().listConfigurations(#1
 ((filter.length() == 0) ? null : filter));
 if (configurations != null) {
 for (Configuration configuration : configurations) { #2
 Dictionary properties = configuration.getProperties(); #2
 for (Enumeration e = properties.keys(); e.hasMoreElements();) { #2
 Object key = e.nextElement(); #2
 out.println(key + "=" + properties.get(key)); #2
 }
 out.println();
 }
 }
 ...
}

We get the ConfigurationAdmin service and use it's listConfigurations()

method to get the configuration objects at (#1). We can optionally specify an LDAP filter to

limit which configurations are returned; specifying no filter results in all configurations. In

either case, an array of Configuration objects is returned, which are the holders of the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

actual configuration properties. At (#2) we print the configuration properties using the

getProperties() method on the Configuration object to retrieve them.

We can use the “add-cfg” subcommand to create new configuration objects. The

subcommand accepts the PID of the ManagedService and the configuration properties as a

whitespace delimited list of name-value pairs, where the name and value are separated by

an equals sign. The actual implementation is as follows:
private void addConfiguration(String args) {
 String pid = args.substring(0, args.indexOf(" ")).trim();
 Configuration conf = admin.getConfiguration(pid, null); #1
 createConfiguration(args.substring(pid.length()).trim(), pid, conf); #2
}

To c r e a t e a Configuration o b j e c t , we c a l l getConfiguration() o n

ConfigurationAdmin at (#1). This method creates the configuration object on the first

call and returns the same object on subsequent calls. We initialize the new configuration

with a call to the private method createConfiguration() at (#2), which is defined in

Listing 7.5.

Listing 7.5 Private method to initialize configuration objects

private void createConfiguration(
 String args, String pid, Configuration conf) throws IOException {
 conf.setBundleLocation(null); #1
 Dictionary dict = conf.getProperties(); #2
 if (dict == null) {
 dict = new Properties();
 }
 StringTokenizer tok = new StringTokenizer(args, " "); #3
 while (tok.hasMoreTokens()) { #3
 String[] entry = tok.nextToken().split("="); #3
 dict.put(entry[0], entry[1]); #3
 }
 conf.update(dict); #4
}

This sets the Configuration object's bundle location to null at (#1), which means it

is not currently associated with any bundle. We finish initializing the new configuration by

getting any existing properties at (#2), parsing the specified properties and merging them

with existing properties at (#3), and finally updating the configuration at (#4). Since we

handle existing properties, the “add-cfg” subcommand can be used to create and modify

configurations.

CONFIGURATION AND LOCATION BINDING

When a Configuration object is created using either getConfiguration() or

createFactoryConfiguration(), it becomes bound to the location of the calling

bundle. This location is obtained via the calling bundle’s getLocation() method.

Location binding is a security feature to assure only management bundles can modify

configuration data and other bundles can only modify their own configuration data. If the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

bundle location of a configuration for a given PID is set to null (as we did in Listing 7.5),

then the Configuration Admin service will bind the first bundle registering a managed

service with the given PID to this configuration. Once the bundle location is set, then

configurations for the given PID are only delivered to the bundle with that location. When

this dynamically bound bundle is subsequently uninstalled, the location is set to null

again automatically so it can be bound again later.

The “remove-cfg” subcommand can be used to remove configuration objects. The

implementation of this subcommand is much simpler:
private void removeConfiguration(String pid) {
 Configuration conf = admin.getConfiguration(pid); #1
 conf.delete(); #2
}

The subcommand accepts a PID which we use to get the Configuration object from

the ConfigurationAdmin service at (#1). Once we have the Configuration object, we

call delete() on it at (#2).

The “add-factory-cfg” subcommand creates a configuration object for a managed factory

service. It is implemented as follows:
private void addFactoryConfiguration(String args) {
 String pid = args.substring(0, args.indexOf(" ")).trim();
 Configuration conf = admin.createFactoryConfiguration(pid, null); #1
 createConfiguration(args.substring(pid.length()).trim(), pid, conf);
}

It accepts the PID of the managed factory service and the configuration properties as a

whitespace delimited list of name-value pairs. It is very similar to the “add-cfg”

subcommand, except we use ConfigurationAdmin.createFactoryConfiguration()

to create a new Configuration object for the factory at (#1). This always creates a new

Configuration object for the factory service (unlike getConfiguration(), which only

creates one the first time for a given PID).

The “remove-factory-cfg” subcommand allows us to remove a factory configuration, it is

implemented as follows:
private void removeFactoryConfiguration(String pid) {
 Configuration[] configurations = admin.listConfigurations(
 "(service.pid=" + pid + ")"); #1
 configurations[0].delete(); #2
}

The subcommand accepts a PID which we use to find the associated configuration using

listConfigurations() with an appropriated filter at (#1). Once we have it, we call

delete() on it at (#2) as before.

To experiment with this new command, go into the code/chapter07/shell-

example/ directory of the companion code. Type ant to build the example and java -jar

launcher.jar bundles to execute it. To interact with the shell use telnet localhost

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

7070. For this example, we use the Apache Felix Configuration Admin implementation2.

Listing 7.6 shows a session using the “cm” command.

Listing 7.6 Configuration Admin Command Example

-> cm add-cfg foo first=bar second=baz
-> cm add-factory-cfg bar first=foo
-> cm list
service.pid=foo
second=baz
first=bar

service.pid=bar.b1925070-fdc8-4009-b961-3a8853ab2854
service.factoryPid=bar
first=foo

-> cm remove-cfg foo
-> cm remove-factory-cfg bar.b1925070-fdc8-4009-b961-3a8853ab2854
-> cm list
->

That finishes our quick tour of the Configuration Admin service. You should now be able

to use Configuration Admin to create externally configurable bundles, instantiate services

using configurations, and manage configurations. But wait, how do we know what kind of

data our configurable bundles accept? All we've said so far is that managed services are

configured with simple name-value pairs. Sometimes that may suffice, but often you might

want to tell other bundles or entities, like a user, about the structure of your bundle's

configuration data. The Metatype service, which we'll introduce next, allows you to define

your own meta types and associate them with your bundles and services.

7.2.2 Meta type service

Assume for a moment, that we are deploying a new bundle for the first time into a

framework that has our Configuration Admin shell command available. If this new bundle

provides some services which are configurable, then we can use our shell command to

configure it, right? Unfortunately, since this bundle is new to us, we have no idea which

properties it accepts, nor which ones are mandatory. In this kind of scenario, it would

certainly be helpful if the bundle could convey to us what a valid configuration look likes.

The OSGi standard Meta Type service makes this possible. It aggregates meta types (i.e.,

descriptions of types) contributed by bundles and allows others to look up these definitions.

Using this service allows us to introspect what a managed service accepts as valid

configuration and also validate configurations against these schema, which are subject to the

same update and versioning mechanisms as the bundles that provide them.

As you can see in Figure 7.7, there are two ways to provide meta type information about

for your managed services:

2 http://felix.apache.org/site/apache-felix-configuration-admin-service.html

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

1. A bundle can contain XML resources in its OSGI-INF/metatype directory which will
then be picked-up by the Meta Type service using the extender pattern or

2. A managed service can implement a second interface, called MetaTypeProvider.

If for some reason a bundle does both, then only the XML resources are considered and

the MetaTypeProvider service is ignored.

From a client perspective, the Meta Type service defines a dynamic typing system for

properties. This allows us, for example, to construct reasonable user interfaces dynamically.

The service itself provides unified access to the meta type information provided by deployed

bundles. A client can request MetaTypeInformation associated with a given bundle which

in turn provides a list of ObjectClassDefinition objects for this bundle. An object class

contains descriptive information and a set of name-value pairs. Listing 7.7 shows what this

looks like for the example Echo Server.

Listing 7.7: Example Meta Type XML resource file

<?xml version="1.0" encoding="UTF-8"?>
<MetaData xmlns="http://www.osgi.org/xmlns/metatype/v1.0.0">
 <OCD name="EchoServer" id="4.7.1.1" description="Echo Server Config"> #1
 <AD name="port" id="4.7.1.1.1" type="Integer" #2
 description="The port the Echo Server listens on"/>
 </OCD>
 <Designate pid="org.foo.managed.service">
 <Object ocdref="4.7.1.1"/>
 </Designate>
</MetaData>

Don't let this somewhat obtuse XML fool you. It is actually quite simple. We first define an

ObjectClassDefinition (OCD) at (#1), called EchoServer, with a unique identifier of

4.7.1.1 (if you have a matching LDAP/X.500 object class OID, then you can use that one;

otherwise, any other reasonably unique name that follows the same grammar as the

LDAP/X.500 OID) and a human readable description. At (#2) we specify an attribute

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.7: Meta Type service overview

MetaType
Service

Managed
Service

ManagedService
Factory

OSGI-INF/
metatype

xml resource

http://www.manning-sandbox.com/forum.jspa?forumID=507

definition (AD) to describe the configuration properties the Echo Server needs. In this case,

there is only one, called port. Notice, the Designate element? This is where you make the

link between the type (i.e., the OCD) and the instance (i.e., the PID). In this example, we

say the EchoServer description applies to the configurations of managed services with the

PID org.foo.managed.service.

USING META TYPE INFORMATION

To use meta type information, we use the Meta Type service to look up meta type definitions.

The Meta Type service is represented by the following interface:
public interface MetaTypeService {
 public MetaTypeInformation getMetaTypeInformation(Bundle bundle);
}

Using the discovered meta type information, we could generate user interfaces or validate

configurations, for example. To demonstrate how to use the Meta Type service, we will add a

“type” command to our shell to display meta type information; see Listing 7.8.

Listing 7.8: Meta Type service shell command example

public class MetaDataCommand extends BasicCommand {

 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 MetaTypeService mts = getMetaTypeService(); #1
 Bundle b = getBundle(args); #2
 MetaTypeInformation mti = mts.getMetaTypeInformation(b); #3
 String[] pids = mti.getPids(); #4
 for (int i = 0; i < pids.length; i++) {
 out.println(pids[i]);
 ObjectClassDefinition ocd = mti.getObjectClassDefinition(#5
 pids[i], null);
 AttributeDefinition[] ads = ocd #6
 .getAttributeDefinitions(ObjectClassDefinition.ALL);
 for (int j = 0; j < ads.length; j++) {
 out.println("\tOCD=" + ocd.getName()); #7
 out.println("\t\tAD=" + ads[j].getName() + " - " + #7
 ads[j].getDescription()); #7
 }
 }
 }

 private MetaTypeService getMetaTypeService() {...}

}

The command is quite simple, we just ask the MetaTypeService if a specified bundle has

MetaTypeInformation objects associated with it. The “type” command accepts a bundle

identifier as an argument. At (#1), we get the MetaTypeService and at (#2) we retrieved

t h e Bundle object associated with the specified bundle identifier. We invoke the

getMetaTypeInformation() method at (#3) for retrieving an associated meta type

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

information. If there is meta type information, then we get the PIDs at (#4) and for each PID

we get the object class definition at (#5). Likewise, for each object class definition, we get

the AttributeDefinitions at (#6) and print their names and descriptions at (#7). We can

now use this command to get a list of all known PIDs and their respective properties for any

given bundle identifier.

To run this example, go into the code/chapter07/managed-example directory of the

companion code. Type ant to build the example and java -jar launcher.jar bundles

to execute it. To interact with the shell use telnet localhost 7070. For this example, we

use the Apache Felix Metatype implementation3. Listing 7.9 shows a session using the “type”

command.

Listing 7.9 Metatype command session

-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic Name: org.apache.felix.framework
[1] [ACTIVE] managed.service
 Location: file:bundles/managed.service-1.0.jar
 Symbolic Name: org.foo.managed.service
…
-> type 1
org.foo.managed.service
 OCD=EchoServer
 AD=port - The port the Echo Server listens on

As you can see, all we need to do is to execute the “type” command with a bundle

identifier of a bundle providing metadata and we get a description of what kind of properties

a given PID can understand.

So where are we now? We learned how we can configure our bundles and provide meta

type information about our configuration properties. This combination allows us to create

externally and generically configurable applications. What more do we need? Not all

configuration information is intended to be externally managed; for example, most

preference settings in an application fall under this category. Where should a bundle store

such configuration information? The OSGi Preferences service can help us out here, let's look

at how it works next.

7.2.3 Preferences service

In many cases, your applications need to store preferences and settings persistently. Of

course, this chapter is about managing bundles and, technically, dealing with preference

settings is not really a management activity. Still, we include it here since it is related to

configuration data in general and it gives us an opportunity to present another standard

OSGi compendium service.

3 http://felix.apache.org/site/apache-felix-metatype-service.html

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

The OSGi Preferences service gives bundles a mechanism to persistently store data. You

might recall from chapter 3 that a bundle already has a private file system area, which it can

access via BundleContext.getDataFile(). While we could use this mechanism to store

preference settings, the Preferences service has several advantages:

 It defines a standard way to handle such data.

 It supports hierarchical system and per-user settings.

 It does not actually require a file system.

 It can abstract access to the underlying operating system's settings mechanism, if one
exists.

The Preferences service provides simple, lightweight access to stored data. It does not

define a general database service, but is optimized to deliver stored information when

needed. It will, for example, return defaults instead of throwing exceptions when the back-

end store is not available.

The Preferences service data model is a multi-rooted hierarchy of nodes, where a “system

root” node exists for system settings and any number of named “user root” nodes can be

created for user settings. Each one of these root nodes is the root of a tree of Preferences

objects. A Preferences object has a name, a single parent node (except for a root node

which has no parent), and zero or more child nodes. It is possible to navigate a tree either

by walking from one node to its parent or children or by addressing nodes directly via a

relative or absolute path. This is possible using the node names separated with the “/”

character, much like file system paths. Figure 7.8 shows a conceptual picture of the trees.

Each Preferences object has a set of key/value pairs, called properties. The key is a

case sensitive string that lives in a separate name space from that of the child nodes. So the

same node can have a property with the same key as the name of one of its children. The

value must always be able to be stored and retrieved as a string. Therefore, it must be

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.8: System and User Preferences Trees

System
Root

Node

Node Node

Node

User1
Root

Node

Node Node

Node

UserN
Root

Node

Node Node

Node

...

http://www.manning-sandbox.com/forum.jspa?forumID=507

possible to encode/decode all values into/from strings. A number of methods are available to

store and retrieve values as primitive types.

PREFERENCES ARE PER BUNDLE

The preferences saved by one bundle are completely distinct from the preferences saved

by another bundle. The Preferences service does not provide a mechanism for one bundle

to access another bundle's preferences storage. If this is needed, a reference to the

source bundle's preferences must be attained in another way, such as directly passing a

reference to the other bundle.

Using the Preferences service is straightforward. To access the system preferences root,

all you have to do is the following:
Preferences root = service.getSystemPreferences();

To access a user preferences root, you just do this:
Preferences fooUser = service.getUserPreferences(“foo”);

When you have the node you can navigate the preference tree using the

childrenNames(), parent(), and node() methods on the returned Preferences node.

For setting values, the Preferences interface offers some simple methods to store

key/value pairs:
public void put(String key, String value);
public void putInt(String key, int value);
public void putLong(String key, long value);
public void putBoolean(String key, boolean value);
public void putFloat(String key, float value);
public void putDouble(String key, double value);
public void putByteArray(String key, byte[] value);

For each of these methods, a correspondent getter method exists. Getter methods always

accept two arguments: the first to specify the key of the property to retrieve and the second

to specify a default value in case the property doesn't exist (or in case of errors). For

instance:
public float getFloat(String key, float def);

So assuming you want to store the last time your bundle was started, you can do this

using the system preferences:
Preferences startPreferences =
 service.getSystemPreferences().node("start");
startPreferences.putLong("time", new Date().getTime());

This stores the current time as a long in the systems preferences “start” node. As you

can see, this is pretty simple stuff, but it is convenient to have a standard service definition

rather than having to invent it yourself.

Isn't this just Java Preferences?

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Generally speaking, the Preferences services is very similar to the
java.util.prefs.Preferences introduced in Java 1.4. One of the reasons the
OSGi Preferences service exists is because the Java Preferences API isn't available
before Java 1.4 and OSGi still supports Java 1.3. At the same time, the OSGi
Preferences service saves preferences for each bundle independently of other
bundles, while Java Preferences saves preferences of one user of the system
independently of other users. So the two, while similar, are not identical.

This concludes our section on bundle configuration. We've covered a lot of ground. The

combination of the Configuration Admin, Meta Type, and Preferences services provides for

very flexible approaches when it comes to configuring your bundles, which can save you a lot

of management effort. But to manage our bundles in the first place, we have to deploy them

into an OSGi framework. Next we will look at some management tools to help us deploy

bundles and OSGi-based applications.

7.3 Deploying bundles
Once we have created some configurable bundles and versioned them according to a

meaningful policy, we need to install them in an OSGi framework. In chapter [ref], we looked

at the various details of the lifecycle layer API, which allows us to install, start, update and

uninstall bundles from a running framework. Given the nature of modularity, it is likely your

applications will grow over time to include too many bundles for you to manage their

deployment in an ad-hoc fashion. Manually installing and updating 10's, 100's, or even

1000's of bundles becomes becomes impractical. What can we do? This is when it becomes

important to think about how you (or your users) are going to discover and deploy bundles.

INTRODUCING MANAGEMENT AGENTS

The solution, in OSGi lingo, is to create a specific type of bundle, called a management

agent. Although we have shown how to programmatically manipulate the lifecycle of a

bundle, it's typically not a good idea for a bundle to change its own state or the state of

other bundles. Such a bundle is very difficult to reuse in other compositions, since it is tightly

bound to the other bundles it expects to control. The solution employed by most

management agents is to externalize the information about which bundles to install or start.

For example, this management information could refer to bundles using URIs and could

aggregate useful groups of bundles using some sort of composition language/mechanism.

Your management agent is able to generically process such information, leaving it nicely

decoupled from the bundles it is managing.

An example of this is our shell from chapter 3. It is, in fact, a management agent.

Granted, it's a simple agent since it only accepts and executes commands, but if it is

sufficient for your application, then it is perfectly fine. A management agent can be much

more powerful, however. Even for our shell, we could easily extend it to handle a command

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

scripts to execute commands in batches. You could create a couple scripts, one for each

configuration you need. Switching between application configurations would then be trivial.

Even more sophisticated management agents are possible. The shell as a management

agent assumes human interaction to either directly or indirectly make the right decisions and

issue commands to manage the bundles. We could devise a system with rules to automate

some of this by reacting to certain conditions autonomously. Consider a home automation

system able to detect a new device and automatically discover a driver for it in a remote

repository and subsequently install the driver along with its dependencies. Or an application

that automatically adapts itself to the language of the current user by installing the

necessary locale bundles.

In essence, a management agent manages a running framework. OSGi supports us in

developing such an agent by providing us with the means to monitor and manipulate a

running framework. One of the more critical aspects of managing the framework is

determining which bundles should be deploy to it. Various strategies are possible to manage

complex sets of interdependent bundles. The two most prominent at the moment are the

OSGi Bundle Repository (OBR) and Deployment Admin.

OBR and Deployment Admin address bundle deployment from different angles, but both

can help when it comes to developing a management agent. The difference in focus between

the two can be summarized as:

 OBR focuses on remote discovery and deployment of individual bundles.

 Deployment Admin focuses on the deployment of sets of bundles and associated
resources.

In the following sections we will explore these two technologies in more detail and show

you how to use them to provision or deploy your applications and bundles.

Alternative technologies

There are a number of other technologies attempting to address deployment and

provisioning for OSGi, including Apache Ace, Eclipse p2, and Paremus Nimble:

• Ace is a software distribution framework based on Deployment Admin. It focuses on

centrally managing target systems and distributing software components,

configuration data, and other artifacts to them. The target systems are usually OSGi

based, but don't have to be.

• Nimble is based on open source work from the Newton project and focuses on

building an extensible resolver architecture able to deal with other types of

dependencies outside of the OSGi modularity layer such as service-level

dependencies; for example, if a bundle containing servlets is deployed and activated,

then a servlet container should be deployed and activated along side it.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

• p2 is a subproject of the Eclipse Equinox framework. p2 focuses on extending the

types of deployable artifacts to encompass things outside of an OSGi environment,

including Unix RPM packages or windows services, for example.

We won't discuss the details of any of these in the remainder of this book. If you are

interested in any of them, they are just a Google search away.

7.3.1 OSGi Bundle Repository

The OSGi Bundle Repository (OBR) is officially not an OSGi standard specification; rather, it is

a proposal for a specification, internally referred to as RFC 112 in the OSGi Alliance. Since

OBR is only an RFC, its details may change in the future, but it is still a useful tool as it is.

OBR started life as the Oscar Bundle Repository, which was associated with the Oscar

OSGi framework (and ultimately became the Apache Felix framework). OBR is intended to

address two aspects of bundle deployment:

1. Discovery – provide a simple mechanism to discover which bundles are available for
deployment.

2. Dependency deployment – provide a simple mechanism to deploy a bundle and its
transitive set of dependencies.

To achieve (1), OBR defines a simple bundle repository with an API for accessing it and a

common XML interchange format for describing deployable resources. An OBR repository can

refer to other OBR repositories, defining a federation of repositories. The OSGi Alliance hosts

their own repository at bundles.osgi.org. However, it is not necessary to define federations,

so it is possible to create independent repositories specifically for your own purposes and

applications. One of the main goals of OBR was simplicity, so it was easy for anyone to

provide a bundle repository. One of the benefits of define an XML-based repository format, is

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.9: The OBR specification provides a federated index that allows a
management agent to resolve and install large numbers of bundles from a
number of remote locations. The OBR index files are aggregated by the
RepositoryAdmin service which resolves bundle dependencies on behalf of a
ManagementAgent.

delegate1

delegate4

delegate2 delegate3

Root
Repository

subdelegate

OBR
Bundle

OSGi Framework

Managment
Agent

Referral

RepositoryAdmin
Service

http://www.manning-sandbox.com/forum.jspa?forumID=507

that the no server-side process is needed (although a server-side process is also possible).

Figure 7.9 shows the federated structure of an OBR repository.

The key concept of an OBR repository is a generic description of a resource and its

dependencies. A resource is an abstract entity that can be used to represent any type of

artifact such as a bundle, a certificate, or a configuration file. The resource description allows

an agent to discover applicable artifacts, typically bundles, and deploy them along with their

transitive dependencies. Each resource description has:

 Zero or more requirements on other resources or the environment and

 Zero or more capabilities that are used to satisfy other resources' requirements.

Resource requirements are satisfied by capabilities provided by other resources or the

environment. OBR maps bundle metadata from Import-Package and Require-Bundle

headers onto resource requirements and from Export-Package a n d Bundle-

SymbolicName headers onto resource capabilities. Figure 7.10 shows the relationship

among the repository entities.

Using this information, an OBR implementation is able to resolve a consistent set of

bundles for deployment given an initial set of bundles and a set of bundles to be deployed.

OBR's dependency resolution algorithm is basically the same as the framework's dependency

resolution algorithm.

OBR versus framework resolution

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.10: Relationships among the OBR repository entities

Repository
Files Repository

Requirement
Capability

Extend

Resourcerequires provides

extends

contains

1

1

1 1

0..n

0..n

0..n
0..n

http://www.manning-sandbox.com/forum.jspa?forumID=507

Although the dependency resolution algorithms for OBR and the framework are similar,

they are not identical. OBR starts from a given set of bundles and will pull in resources

from its available repositories in an attempt to satisfy any dependencies. The framework

resolution algorithm will never pull in additional resources; it only considers installed

bundles. Another gotcha is the current OBR RFC does not mandate “uses” constraints

when resolving dependencies. This can lead to unexpected failures at execution time if a

“uses” constraint prevents bundles from resolving. OBR is an active area of work within

the OSGi Alliance, so future revisions of the RFC may address this issue.

With this overview of OBR, let's look at how we can create a repository for it.

CREATING OBR REPOSITORIES

To illustrate how to create an OBR repository, we will use the bundles from our service-based

paint program example. The repository is just an XML file containing the metadata of the

bundles. We will go through the entries in the XML file and explain the schema along the

way. Let's assume we have the bundles from the example in a directory called paint-

bundles. The directory contains the paint frame bundle, the API bundle, and the three

shape bundles:
paint-bundles/
 frame-4.0.jar
 circle-4.0.jar
 triangle-4.0.jar
 shape-4.0.jar
 square-4.0.jar

We could create the repository XML file by hand, but there are several different tools we

can use to create them instead. We will use probably the simplest, called bindex4, provided

by the OSGi Alliance. For Maven users, there is also Maven integration, which we will discuss

in appendix [ref]. To create a repository using bindex, run the following from above the

bundles directory (this example assumes you are in code/chapter07/shell-example/),
java -jar bindex.jar -r repository.xml -n Paint paint-bundles/*.jar

This creates a repository.xml file which contains the metadata of the bundles from

the example. The main XML element is a repository tag defining the repository:
<repository lastmodified='20090215101706.874' name='Paint'>
…
</repository>

The lastmodified attribute is used as a timestamp by the OBR service to determine

whether something has changed. The most interesting element is the resource tag. It

describes the bundles we want to make available. The created repository XML file contains a

resource block per bundle. Our shape API bundle converted into OBR is shown in Listing

7.10.

Listing 7.10: Shape API bundle converted into OBR repository XML syntax

<resource id='org.foo.shape/4.0.0' presentationname='shape'

4 http://www.osgi.org/Repository/BIndex

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

symbolicname='org.foo.shape' uri='paint-bundles/shape-4.0.jar'
version='4.0.0'>
 <size>
5742
 </size>
 <license>
 http://www.apache.org/licenses/LICENSE-2.0
 </license>
 <documentation>
http://code.google.com/p/osgi-in-action/
 </documentation>
 <capability name='bundle'> #1
 <p n='manifestversion' v='2'/> #1
 <p n='presentationname' v='shape'/> #1
 <p n='symbolicname' v='org.foo.shape'/> #1
 <p n='version' t='version' v='4.0.0'/> #1
 </capability> #1
 <capability name='package'> #2
 <p n='package' v='org.foo.shape'/> #2
 <p n='version' t='version' v='4.0.0'/> #2
 </capability> #2
 <require extend='false' filter='(&(package=org.foo.shape) #3
(version>=4.0.0)(version<5.0.0))' multiple='false' name='package' #3
 optional='false'> #3
 Import package org.foo.shape ;version=[4.0.0,5.0.0) #3
 </require> #3
</resource>

The capability elements at (#1) and (#2) represent what the bundle provides. In this

case, (#1) represents the bundle itself, since the bundle itself can be required (e.g.,

Require-Bundle), while (#2) represents the package exported by the bundle. Bundle

dependencies are represented as requirement elements, such as the one at (#3) for an

imported package. Both capabilities and resources have a name, which is actually a

namespace and is how capabilities are matches to requirements. For example, capabilities

representing exported packages and requirements representing imported packages both

have the package namespace.

In general, a capability is actually a set of properties specified using a <p> element with

the following attributes:

 n – the name of the property

 v – the value of the property

 t – the type of the property, which is one of:

o string – A string value, which is the default

o version – An OSGi version

o uri – A URI

o long – A long value

o double – A double value

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

o set – A comma separated list of values

Looking more closely at the bundle capability at (#1), we can see it is a fairly

straightforward mapping from the bundle identification metadata:
Bundle-ManifestVersion: 2
Bundle-Name: Simple Paint API
Bundle-SymbolicName: org.foo.shape
Bundle-Version: 4.0

Likewise, the package capability at (#2) is also a simple mapping from the bundle's

Export-Package header:

Export-Package: org.foo.shape;version="4.0"

A requirement is an LDAP query over the properties of a capability. So, to match a

requirement to a capability, first the namespace must match. If that matches, then the

requirements LDAP query must match the properties supplied by the capabilities. Even with

the LDAP query, the package requirement at (#3) is a fairly easy mapping from the Import-

Package header:
Import-Package: org.foo.shape;version="[4.0,5.0)"

One reason why the filter at (#3) looks somewhat more complicated than necessary is

that version ranges are not directly supported by the filter syntax and must be expressed as

the lower and upper bound.

If our bundle had a Require-Bundle, Fragment-Host, or Bundle-ExecutionEnvironment

header, these would all be mapped to requirements. Even though the mappings are

straightforward, it is still nice to have a tool like bindex doing this for us. We could even

integrate bindex into in our build cycle so our repository is updated whenever our bundles

change.

The repository XML is fine and all of that, but you are probably wondering how you can

use repositories in your management agent. In fact, you don't need to know anything about

the XML format to use OBR. All we need to do is grab the service implemented by OBR and

use it. Let's have a closer look at this.

BROWSING OBR REPOSITORIES

The best way to get familiar with how to use repositories is to give an example and explain

what it does along the way. We will reuse the shell example again and extend it with a new

command to add/remove/list repositories and browse the bundles inside them. The

programatic entry point to the OBR specification is the RepositoryAdmin service, which is

represented by the following interface:
public interface RepositoryAdmin {
 Resource[] discoverResources(String filterExpr);
 Resolver resolver();
 Repository addRepository(URL repository) throws Exception;
 boolean removeRepository(URL repository);
 Repository[] listRepositories();
 Resource getResource(String respositoryId);
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

This RepositoryAdmin service provides centralized access to the federated repository.

An OBR implementation implements this interface as well as the other types referenced by it.

Figure 7.11 shows the relationships among the involved entities.

The code in Listing 7.11 shows the code for our new “obr-repo” command. It uses

RepositoryAdmin to add, remove, and list repositories as well as to discover resources.

Listing 7.11: OBR repository shell command example

public class RepositoryCommand extends BasicCommand {
 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 args = args.trim();
 RepositoryAdmin admin = getRepositoryAdmin();
 if (admin != null) {
 if ("list-urls".equalsIgnoreCase(args)) { #1
 for (Repository repo : admin.listRepositories()) { #1
 out.println(repo.getName() + " (" + repo.getURL() + ")"); #1
 } #1
 } else if (args != null) {
 if (args.startsWith("add-url")) { #2
 admin.addRepository(#2
 new URL(args.substring("add-url".length()))); #2
 } else if (args.startsWith("remove-url")) { #3
 admin.removeRepository(#3
 new URL(args.substring("remove-url".length()))); #3
 } else if (args.startsWith("list")) { #4
 String query = (args.equals("list")) #4
 ? "(symbolicname=*)" #4
 : args.substring("list".length()).trim(); #4
 for (Resource res : admin.discoverResources(query)) { #4
 out.println(res.getPresentationName() + " (" #4

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.11: UML diagram of the RepositoryAdmin service. An external
RepositoryClient uses the RepositoryAdmin and Resolver interfaces to install
download and install bundles and their dependencies.

Repository
Client Impl

Capability
Provider Impl

Resolver Repository
Admin

Capability
Provider

Resolver
Impl

Repository
AdminImpl

resolves with

uses

1

0..n

0..n

0..n

1

Implements

Adds capabilities

http://www.manning-sandbox.com/forum.jspa?forumID=507

 + res.getSymbolicName() + ") " + res.getVersion()); #4
 } #4
 } #4
 } else {
 out.println(
 "Unknown command - use {list-urls|add-url|remove-url|list}");
 }
 } else {
 out.println("No RepositoryAdmin service found...");
 }
 }

 private RepositoryAdmin getRepositoryAdmin() {
 ...
 }
}

The “obr-repo” command has the following subcommands: list-url, add-url, remove-url,

and list. A RepositoryAdmin provides access to a number of repositories referenced by

URLs. At (#1), we implement the “list-url” subcommand to list these repositories by

retrieving the RepositoryAdmin service and calling it's listRepositories() method,

which gives us access to the associated Repository objects. In this case, we loop through

the repositories and print their names and URLs.

You can add or remove repository URLs with the “add-url” and “remove-url”

subcommands, respectively. As you can see at (#2) and (#3), there is a one-to-one mapping

to the addRepository() and removeRepository() methods of the RepositoryAdmin

service. Finally, the “list” subcommand expects an LDAP query which it passes to

discoverRepositories() to discover resources at (#4). If no query is specified, then all

resources are listed. We loop through the discovered resources and print their presentation

name, symbolic name, and version.

We can now use this command to configure repositories and discover bundles. Once

we've discovered a bundle we want to use, we need to deploy it. We'll implement a separate

command for that next.

DEPLOYING BUNDLES WITH OBR

Discovering bundles is one half of the OBR story, the other half is deploying them and their

dependencies into the framework. The RepositoryAdmin.getResolver() method gives

us access to a Resolver object to select, resolve, and deploy resources. A Resolver has these

methods:
public interface Resolver {
 void add(Resource resource);
 Requirement[] getUnsatisfiedRequirements();
 Resource[] getOptionalResources();
 Requirement[] getReason(Resource resource);
 Resource[] getResources(Requirement requirement);
 Resource[] getRequiredResources();
 Resource[] getAddedResources();
 boolean resolve();
 void deploy(boolean start);

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

}

The process for deploying resources is fairly simple, just follow these steps:

1. Add desired resources using Resolver.add().

2. Resolve the desired resources' dependencies with Resolver.resolve().

3. If the desired resources resolve, then deploy them with Resolver.deploy().

I n Listing 7.12 we implement an “obr-resolver” shell command to resolve and deploy

resources.

Listing 7.12: OBR resolver shell command example

public class ResolverCommand extends BasicCommand {
 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 RepositoryAdmin admin = getRepositoryAdmin();
 Resolver resolver = admin.resolver(); #1
 Resource[] resources = admin.discoverResources(args); #2
 if ((resources != null) && (resources.length > 0)) {
 resolver.add(resources[0]); #3
 if (resolver.resolve()) { #3
 for (Resource res : resolver.getRequiredResources()) { #4
 out.println("Deploying dependency: " + #4
 res.getPresentationName() + #4
 " (" + res.getSymbolicName() + ") " + res.getVersion()); #4
 } #4
 resolver.deploy(true); #5
 } else { #6
 out.println("Can not resolve " + resources[0].getId() + #6
 " reason: "); #6
 for (Requirement req : resolver.getUnsatisfiedRequirements()) { #6
 out.println("missing " + req.getName() #6
 + " " + req.getFilter()); #6
 } #6
 }
 } else {
 out.println("No such resource");
 }
 }

 private RepositoryAdmin getRepositoryAdmin() {
 ...
 }
}

We get the Resolver from the RepositoryAdmin service at (#1). We use the

RepositoryAdmin.discoverResources() method with a LDAP filter argument to

discover a resource to deploy at (#2). If we find any resources, we add the first one to the

Resolver and call resolve() to resolve its dependencies from the available repositories at

(#3). If the resource is successfully resolved, then we print out all of the dependencies of the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

resource we are deploying at (#4). At (#5) we use Resolver.deploy() to install and start

the discovered bundle and its dependencies. If the resource couldn't be resolved, we print

out the missing requirements at (#6).

To run this example, go into the code/chapter07/shell-example/ directory of the

companion code. Type ant to build the example and java -jar launcher.jar bundles

to execute it. To interact with the shell use telnet localhost 7070. For this example, we

use the Apache Felix OBR implementation5. Listing 7.13 shows a session using the “obr-repo”

and “obr-resolver” commands.

Listing 7.13 OBR command example session

-> obr-repo add-url file:repository.xml #1
-> obr-repo list-urls #2
Paint (file:repository.xml)
-> obr-repo list #3
circle (org.foo.shape.circle) 4.0.0
frame (org.foo.paint) 4.0.0
shape (org.foo.shape) 4.0.0
square (org.foo.shape.square) 4.0.0
triangle (org.foo.shape.triangle) 4.0.0
-> obr-resolver (symbolicname=org.foo.paint) #4
Deploying dependency: shape (org.foo.shape) 4.0.0
-> obr-resolver (symbolicname=org.foo.shape.circle) #5

In this session, we first use the “add-url” subcommand to add our repository containing

the paint program bundles at (#1). We verify the configured repository using the “list-url”

subcommand at (#2). Using the “list” subcommand at (#3), we browse the bundles

contained in the repository. At (#4) we use the “obr-resolver” command with an LDAP filter

to select and deploy the paint frame bundle, which also installs its dependencies. At (#5), we

install the circle bundle based on its symbolic name.

That's about all you need to know to start using OBR to discover and deploy your

bundles. Often, this is all you need to manage the growing complexity of your applications.

However, sometimes you will be faced with a slightly different scenario which doesn't fit as

well with what OBR provides. Perhaps you want to package your application in a single

deployment unit composed of several bundles. What can you do in this case? There is

another OSGi compendium specification that targets such needs. Let's look at that next.

7.3.2 Deployment Admin

With OBR you tend to think about deploying specific bundles and letting OBR automatically

calculate and deploy any dependent bundles. With Deployment Admin you tend to think

about deploying entire applications or subsystems as a single unit. The Deployment Admin

specification standardizes some of the responsibilities of a management agent; specifically, it

addresses lifecycle management of interlinked resources on an OSGi Service Platform.

5 http://felix.apache.org/site/apache-felix-osgi-bundle-repository.html

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Deployment Admin defines a way to package a number of resources in a deployment

package. A deployment package is a JAR file with a format similar to bundles. Deployment

packages can be installed using the DeploymentAdmin service. The DeploymentAdmin

service can process bundle resources itself, but other types of resources in the deployment

package by handing them off to a ResourceProcessor service for that specific type of

resource. A ResourceProcessor service will appropriately process a given type of

resource. The uninstallation and update of a deployment package works similarly, where

bundles are processed by the DeploymentAdmin service and other types of resources are

handed off to ResourceProcessors. All ResourceProcessor services are notified about

any resources that are dropped or changed. If all resources have been processed, the

changes are committed. If an operation fails, all changes are rolled back.

NOT ACTUALLY TRANSACTIONAL

Although we are talking in terms of commits and rollbacks, the DeploymentAdmin service

is not guaranteed to support all features of transactions. Most implementations tend to

provide only a best effort rollback.

This sounds fairly promising for managing applications. To get a better idea of how it

works, we will present some of the details of deployment packages next. After that, we'll

give an example of how you can use the Deployment Admin to install and manage

deployment packages.

CREATING DEPLOYMENT PACKAGES

As an example, let's think about how we would provision our paint program. The paint

program has the following artifacts:
paint-4.0.jar
shape-4.0.jar
circle-4.0.jar
square-4.0.jar
triangle-4.0.jar

In order to be able to show all of what deployment packages have to offer, let's assume

we want to provide a core version of the program containing the drawing frame and the

shape API bundles. This way we are able to deploy the actual shape implementations

separately via an “extension pack”. The latter contains the square, circle, and triangle

bundles. Let's go with this example and explore the different ways you can use deployment

packages to make it work.

The general structure of a deployment package is shown in Figure 7.12. This ordering is

carefully designed to allow deployment packages to be streamed in such a way that the

contents can be processed without needing to download the entire JAR file.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

The deployment package design has a few other desirable characteristics. First, the

deployment package puts metadata in its manifest, similar to bundles, which allows us to

turn it into a named and versioned set of resources. Second, by taking advantage of the fact

that JAR files can be signed, we can use signed JAR files to make our deployment packages

tamperproof.

For our example, we could chose to (shown in Figure 7.13):

1. Create a deployment package for the core bundles and one package for all shape
bundles or

2. Create a deployment package for the core bundles and individual deployment
packages for each shape bundle.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.12: Structure of a deployment package JAR file

signature files

localization files

bundles

resources

manifest

resource
order

Figure 7.13: Paint program packaging alternatives

org.foo.paint-4.0.jar

org.foo.shape-4.0.jar
org.foo.shape.circle-4.0.jar

org.foo.shape.triangle-4.0.jar

org.foo.shape.square-4.0.jar

org.foo.shape.circle-4.0.jar

org.foo.shape.triangle-4.0.jar

org.foo.shape.square-4.0.jar
dependency

resource

deployment package

packaged together

packaged separately

http://www.manning-sandbox.com/forum.jspa?forumID=507

DEPLOYMENT PACKAGES ARE GREEDY

These two different packaging strategies cannot be used simultaneously. The
specification only allows resources to belong to a single resource package. Using
both approaches at the same time or changing the approach after the fact would
move ownership of the bundle resources to another deployment package and thus
violate the specification. A deployment package is defined as a set of resources with
the need to be managed as a unit. The resources in a deployment package are
assumed to be tightly coupled, such as a bundle and its configuration data. As a
consequence, a resource can only belong to one deployment package, otherwise
you could run into situations where you have two different, conflicting configurations
for the same bundle, for example.

In terms of our example this leaves use with the need to make a decision. We will go with

the first approach and create a single deployment bundle for all shapes. However, since

deployment packages can be updated we could gain some flexibility by starting with only one

shape in the deployment package and then adding another one in an updated version and

another for the third or other combinations. Actually, when we create an update which just

adds or removes resources from a previous version then we don't even have to package the

resources inside the update; instead we can use fix packages.

WHAT'S A FIX PACKAGE?

A fix-package is a deployment package that minimizes download time by excluding

resources that are not required to upgrade or downgrade a deployment package. It can

only be installed if a previous version of that deployment package is already installed. A

fix package only contains the changed and new resources. A fix package (called the

source) therefore must specify the range of versions that the existing deployment

package (called the target) must have installed. You will see shortly when we walk

through the example.

Now that we've figured out our packaging approach, how do we proceed? We need to

create a manifest for the target which will contain the paint frame and shape API bundles,

which we'll use to provision the paint program core. Then we need to create the manifest of

the fix package which we'll use to add the three shape bundles to the core. Once we have

our manifests, we need to create two JAR files with the corresponding manifests and our

bundles, optionally sign them, and we are good to go. Listing 7.14 shows the manifest of the

core deployment package.

Listing 7.14: Core paint program deployment package manifest

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: org.foo.paint #1
DeploymentPackage-Version: 1.0.0 #2

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Name: paint-4.0.jar #3
Bundle-SymbolicName: org.foo.paint #4
Bundle-Version: 4.0.0 #5

Name: shape-4.0.jar
Bundle-SymbolicName: org.foo.shape
Bundle-Version: 4.0.0

We specify deployment package's symbolic name and version at (#1) and (#2),

respectively. Next we specify the list of resources contained in the JAR file. We specify the

name of a resource at (#3), its symbolic name at (#4), and its version at (#5). We must do

this for each resource. For this example, we only have bundle resources. To finish, we just

need to use the jar tool to create the JAR file with the appropriate content and we are done

with our first deployment package.

Signing deployment packages

In this example we didn't sign our deployment package, nor is it required for us to do so.

If we wanted to create a signed deployment package, we just use the jarsigner tool

from the standard Java SDK. The signing process is no different than signing a normal

JAR file, which results in the signatures being placed inside the deployment package JAR

file inside the META-INF directory and after the MANIFEST.MF file. Additionally, each

entry section in the manifest will contain a digest entry.

Now we need to create the manifest for our fix package containing the shape bundles.

Listing 7.15 shows the manifest.

Listing 7.15: Paint program Fix-Package

Manifest-Version: 1.0
DeploymentPackage-Symbolicname: org.foo.paint #1
DeploymentPackage-Version: 2.0 #2
DeploymentPackage-FixPack: [1,2) #3

Name: paint-4.0.jar
Bundle-SymbolicName: org.foo.paint
Bundle-Version: 4.0.0
DeploymentPackage-Missing: true #4

Name: shape-4.0.jar
Bundle-SymbolicName: org.foo.shape
Bundle-Version: 4.0.0
DeploymentPackage-Missing: true #5

Name: triangle-4.0.jar #6
Bundle-SymbolicName: org.foo.shape.triangle
Bundle-Version: 4.0.0

Name: circle-4.0.jar #7

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Bundle-SymbolicName: org.foo.shape.circle
Bundle-Version: 4.0.0

Name: square-4.0.jar #8
Bundle-SymbolicName: org.foo.shape.square
Bundle-Version: 4.0.0

Since the fix package is an update to our core package, the symbolic name stays the

same at (#1), but the version is upgraded to 2.0.0 at (#2). The DeploymentPackage-

FixPack header at (#3) indicates this is a fix package; we use version range syntax indicate

that the fix package can be applied to any previously installed version of the deployment

package from 1.0.0 inclusive to 2.0.0 exclusive. This version numbering scheme

expresses the assumption that only major version number changes indicate added bundles.

We now don't need to package the bundles already present in the core package, but we still

need to mention them in the manifest. We use the DeploymentPackage-Missing header

to do this at (#4) and (#5). Then we just specify the shape bundles at (#6), (#7), and (#8)

in the same fashion as before. To use the deployment packages we simply need to make

each available via a URL.

DEPLOYMENT PACKAGE MIME TYPE

If you make deployment packages available via a protocol that supports mime-types, the

standard MIME type is for deployment packages is application/vnd.osgi.dp.

Next, we can use the provided DeploymentAdmin service in your management agent to
install, update, and uninstall deployment packages.

MANAGING DEPLOYMENT PACKAGES

To demonstrate how a management agent can use Deployment Admin, we'll once again

create a new “dpa” shell command to list, install, and uninstall deployment packages; we'll

introduce subcommands for each of these. Our command will use the DeploymentAdmin

service, which is represented by the following interface:
public interface DeploymentAdmin {
 DeploymentPackage installDeploymentPackage(InputStream in)
 throws DeploymentException;
 DeploymentPackage[] listDeploymentPackages();
 DeploymentPackage getDeploymentPackage(String symbName);
 DeploymentPackage getDeploymentPackage(Bundle bundle);
 boolean cancel();
}

Listing 7.16 shows the implementation of the command.

Listing 7.16: Deployment Admin shell command example

public class DeploymentPackageCommand extends BasicCommand {

 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 DeploymentAdmin admin = getDeploymentAdmin();

 if (admin == null) {
 out.println("No DeploymentAdmin service found.");
 return;
 }
 if (args != null) {
 if (args.trim().equalsIgnoreCase("list")) { #1
 for (DeploymentPackage dp : admin.listDeploymentPackages()) { #1
 out.println(dp.getName() + " " + dp.getVersion()); #1
 } #1
 } else if (args.trim().startsWith("uninstall ")) { #2
 DeploymentPackage dp = admin.getDeploymentPackage(#2
 args.trim().substring("uninstall ".length())); #2
 if (dp != null) { #2
 dp.uninstall(); #2
 } else { #2
 out.println("No such package"); #2
 } #2
 } else if (args.trim().startsWith("install ")) { #3
 DeploymentPackage dp = admin.installDeploymentPackage(new URL(#3
 args.trim().substring("install ".length())).openStream()); #3
 out.println(dp.getName() + " " + dp.getVersion()); #3
 } #3
 } else {
 out.println("Use {list|install <url>|uninstall <name>}");
 }
 }

 private DeploymentAdmin getDeploymentAdmin() {
 ...
 }
}

Like the previous example commands, we more or less map the command onto the

DeploymentAdmin service interface. At (#1), we get installed deployment packages using

the listDeploymentPackages() service method and print their names and versions. At

(#2), we uninstall an existing deployment package associated with a specified symbolic

name using DeploymentPackage.uninstall(). Finally, at (#3) we install a deployment

package from the specified URL using the installDeploymentPackage() service method.

The approach is fairly similar to managing bundles.

To run this example, go into the code/chapter07/shell-example/ directory of the

companion code. Type ant to build the example and java -jar launcher.jar bundles

to execute it. To interact with the shell use telnet localhost 7070. For this example, we

use the Apache Felix Deployment Admin implementation6. Listing 7.17 shows the command

in action.

Listing 7.17: Deployment Admin command session

-> dpa install file:org.foo.paint-1.0.dp #1

6 WE NEED A URL FOR THIS!

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

org.foo.paint 1.0.0
-> dpa install file:org.foo.paint-2.0.dp #2
org.foo.paint 2.0.0
-> dpa list #3
org.foo.paint 2.0.0
-> dpa uninstall org.foo.paint #4

In this session we install the core paint program deployment package at (#1). We then

update it to include the fix package for the shapes at (#2). At (#3), we list the installed

deployment packages. Finally, at (#4) we uninstall the deployment package. This highlights

the difference between the OBR and Deployment Admin approaches, since we are able to

manage our bundles as a single unit of deployment rather than individual bundles.

Before concluding our discussion on Deployment Admin, we'll discuss resource

processors. Resource processors are an important part of the Deployment Admin

specification, since they extend OSGi deployment beyond bundles.

RESOURCE PROCESSORS

Deployment Admin can process bundle resources in deployment packages by itself, but when

it comes to other types of resources it needs to enlist the help of ResourceProcessor

services. A ResourceProcessor is a service to appropriately process arbitrary resource

types; they implement the following interface:
public interface ResourceProcessor {
 void begin(DeploymentSession session);
 void process(String name, InputStream stream)
 throws ResourceProcessorException;
 void dropped(String resource) throws ResourceProcessorException;
 void dropAllResources() throws ResourceProcessorException;
 void prepare() throws ResourceProcessorException;
 void commit();
 void rollback();
 void cancel();
}

Deployment Admin connects resource types to resource processors using the Resource-

Processor header in the resource entry of the deployment package manifest. We use this

header to specify the service PID of the needed resource processor. These kind of services

are provided by “customizer” bundles delivered as part of the deployment dackage.

A customizer bundle is indicated by using the DeploymentPackage-Customizer

header in the resource entry for a bundle in the deployment package. This allows

Deployment Admin to start customizers first, so they can provide the necessary

ResourceProcessor services to handle the deployment package content. Resource

processors may result in new file system artifacts, but can perform other tasks like database

initialization or data conversion, for example. Each non-bundle resource should have a

processor associated with it. With the necessary resource processor specified, Deployment

Admin is able to process all resource package content.

Before processing of the deployment package starts, the DeploymentAdmin service

creates a session in which all actions needed to process the package will take place. A

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

session is not visible to clients of the DeploymentAdmin service, it is used to join the

required resource processors to the processing of the deployment package. If an exception is

raised during a session by any of the resource processors or the session is canceled, then

Deployment Admin rolls back the changes. As we mentioned before, this may only be a best-

effort rollback, but it is normally sufficient to leave the framework in a consistent state. If no

exceptions are raised during a session, then Deployment Admin commits the changes.

During a commit, the DeploymentAdmin service tells all joined ResourceProcessor

services to prepare and subsequently commit their changes. Figure 7.14 shows the

transactional aspects of the session.

As you can see, this essentially provides a two-phase commit implementation. This allows

ResourceProcessors to cleanly handle rollbacks. However, rolling back a bundle update,

as well as re-installing a stale bundle, requires an implementation specific back door into the

OSGi framework, because the framework specification is not transactional over multiple

lifecycle operations. This is the reason why the Deployment Admin specification does not

mandate full transactional behavior.

In this section, we've looked at two different ways of deploying bundles. Which approach

to choose depends on your needs. In summary, OBR is geared toward discovery and

installation of bundles together with the transitive closure of their dependencies. Deployment

Admin provisions sets of bundles and their required resources as complete units. These

provide solutions for many of the deployment and discovery tasks you'll need for a

management agent. Of course, if you need something else, you can always use the core

OSGi API to create it as well.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 7.14: Transactional aspects of a session

begin

ok?

operations

prepare rollback

ok?

commit

yes

no

yes

no

http://www.manning-sandbox.com/forum.jspa?forumID=507

Now that we know how to deploy bundles to the OSGi framework, we have one final

manage-related task we should look into. Sometimes, you need to control the activation

order of the deployed bundles. We'll discuss this final management activity next.

7.4 Ordering bundle activation
In certain scenarios, it might be necessary for you to control the relative order in which

deployed bundles get activated and/or deactivated. There are some good reasons to control

such ordering, but there are even more bad ones. Best practice dictates you should create

your bundles to be independent of activation and deactivation ordering. OSGi allows bundles

to listen for lifecycle events from other bundles since it eliminates the need of ordering

dependencies and allows bundles to be aware of changes and react to them. Ordering

constraints are another form of coupling among bundles, which severely limits their ability to

be reused and arbitrarily composed. A bundle shouldn't require some functionality from

another bundle be available for it to be started; instead, it should wait for the functionality to

become available and then continue with its own functionality.

Having said that, there are a few valid reasons why you might want to ensure a given

bundle is activated before another. For example, you might want to implement a splash

screen to display the progress of your application's startup. If your splash screen is

developed as a bundle, you need a way to ensure it is activated first. After all, what good

would a splash screen showing the startup progress be if it came up last? We can generalize

this kind of functionality as a high-priority feature, which in general requires ordering

because it needs preferred treatment. Besides high-priority features, there are two other

scenarios where ordering may be needed:

 When a bundle violates the best practices mentioned above and does rely on implicit
activation ordering during startup. In reality, you should consider fixing or replacing
this bundle, but if you cannot then you must ensure the bundles it depends on are
started first. Again, this is extremely bad practice and you should feel a generous
amount of shame until the bundle is fixed.

 When bundles can be grouped into sets with certain desirable properties. For example,
you might define a set of bundles comprising a safe mode, where you deactivate all
but a small set of trusted bundles and provide limit core functionality for safety or
security reasons. Other examples could be diagnostic or power save modes.

So how can you influence and control relative activation and deactivation ordering among

bundles? By using the standard Start Level service provided by the OSGi framework.

7.4.1 Introducing the Start Level service

The Start Level service allows a management agent to control the relative

activation/deactivation order among bundles as well as when transitions should occur. The

idea is pretty simple and you might already be familiar with it from other contexts, such as in

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Unix environments where system services are started or stopped based on the current run

level of the system.

In OSGi, the framework has an active start level associated with it, which is a non-

negative integer indicating the start level in which it is executing. The framework starts with

an active start level of zero and, by default, will transition to an active start level of one

when it is fully running. Each bundle also has an integer start level associated with it, which

indicates the required start level of the bundle. Only bundles with a start level less than or

equal to the framework's active start level are allowed to be in the ACTIVE state. The Start

Level service is represented by the following interface:
public interface StartLevel {
 int getStartLevel();
 void setStartLevel(int startlevel);
 int getBundleStartLevel(Bundle bundle);
 void setBundleStartLevel(Bundle bundle, int startlevel);
 int getInitialBundleStartLevel();
 void setInitialBundleStartLevel(int startlevel);
 boolean isBundlePersistentlyStarted(Bundle bundle);
 boolean isBundleActivationPolicyUsed(Bundle bundle);
}

This service interface supports the following operations:

 Modify the active start level of the framework – You can change the framework's
active start level with setStartLevel(). Doing so will result in all active bundles
with a higher start level being stopped and bundles with a lower or equal start level
that are persistently marked as started being activated.

 Assign a specific start level to a bundle – You can change an individual bundle's start
level with setBundleStartLevel(). The framework will activate the bundle if it is
persistently marked as started and the new start level is less than or equal to the
active start level or will stop the bundle if the new start level is greater than the active
start level.

 Set the initial start level for newly installed bundles – All bundles are installed with a
default start level of one. With setInitialBundleStartLevel(), you can change
this default value to any desired initial start level. This only impacts subsequently
installed bundles.

 Query relevant values – You are able to query the framework's active start level, the
start level of a bundle, and the initial bundle start level. Additionally, you can query
whether a given bundle is persistently marked as started.

So what does all this mean in simple terms? The framework's active start level and a

bundle's start level control whether or not a bundle can actually be started. This means if

you explicitly start a bundle (i.e., invoke Bundle.start() on it), it will not actually activate

unless the bundle's start level is less than or equal to the framework's active start level. In

such a case, the only effect of invoking Bundle.start() is that the bundle is persistently

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

marked as started. If the framework's active start level is eventually changed to a greater or

equal value, then the bundle will be activated by the framework.

As you can imagine, changing the active start level of the framework can have a dramatic

impact on the framework depending, since a lot of bundles may be started or stopped as a

result. When the Start Level service is used to change the framework's active start level, all

active bundles with start levels greater than the target start level are stopped, while all

bundles persistently marked as started with start levels less than or equal to the target start

level are started. When invoking StartLevel.setStartLevel(), the actual process will

occur on a background thread, so the method will return immediately. The background

thread will effectively increment or decrement the current active start level one step at a

time, depending on whether the new active start level is greater then or less than the

current active start level, respectively. At each step, the background thread starts or stops

the bundles at that level until the new target level is reached.

7.4.2 Using the Start Level service

To illustrate how you use the Start Level service, we will add “startlevel” and

“bundlestartlevel” commands to the shell. These two commands, implemented in Listing

7.18, perform the four functions mentioned above.

Listing 7.18 Start Level service shell commands example

package org.foo.shell;

import java.io.PrintStream;
import org.osgi.service.startlevel.StartLevel;

public class StartLevelCommand extends BasicCommand {

 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 if (args == null) {
 out.println(getStartLevelService().getStartLevel()); #1
 } else {
 getStartLevelService().setStartLevel(#2
 Integer.parseInt(args.trim()));
 }
 }
…
}
…

public class BundleLevelCommand extends BasicCommand {

 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 StringTokenizer tok = new StringTokenizer(args);
 if (tok.countTokens() == 1) {
 out.println("Bundle " + args + " has level " +

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 getStartLevelService().getBundleStartLevel(#3
 getBundle(tok.nextToken())));
 } else {
 String first = tok.nextToken();
 if ("-i".equals(first)) {
 getStartLevelService().setInitialBundleStartLevel(#4
 Integer.parseInt(tok.nextToken()));
 } else {
 getStartLevelService().setBundleStartLevel(#5
 getBundle(tok.nextToken()), Integer.parseInt(first));
 }
 }
 }
…
}

As you can see at (#1), executing the “startlevel” command without an argument prints

the f ramework 's act ive star t leve l . We implement th i s wi th the

StartLevel.getStartLevel() method. If the “startlevel” command is passed a

argument, then the new active start level is parsed from the argument and we call the

StartLevel.setStartLevel() method at (#2), which cause the framework to move to

the specified active start level.

Next, the “bundlelevel” command allows us to set and get the start level of an individual

bundle. When the command is given only one argument, we use the argument as the bundle

identifier and retrieve and output the associated bundle's start level with

StartLevel.getBundleStartLevel() at (#3). At (#4), we add a “-i” switch to the

c o m m a n d t o s e t t h e i n i t i a l b u n d l e s t a r t l e v e l u s i n g t h e

StartLevel.setInitialBundleStartLevel() method. Lastly, at (#5) we add the

ab i l i t y t o change an i nd i v i dua l bund l e ' s s t a r t l eve l u s i ng the

StartLevel.setBundleStartLevel() method.

When the framework's active start level is changed, the background thread doing the

work will fire a FrameworkEvent.STARTLEVEL_CHANGED event to indicate when it is done

doing the work; we will capture this event in the history we added in the last section. Listing

7.19 shows a simple session demonstrating what you can do with these commands.

Listing 7.19 Using the startlevel and bundlestartlevel commands

-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
-> startlevel #1
1
-> bundlelevel -i 2 #2
-> install file:foo.jar #3

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Bundle: 3
-> start 3
-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
[3] [INSTALLED] Foo Bundle
 Location: file:foo.jar
 Symbolic-Name: org.foo.foo
-> startlevel 2 #4
-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
[3] [ACTIVE] Foo Bundle
 Location: foo.jar
 Symbolic-Name: org.foo.foo
-> bundlelevel 3 3 #5
-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
[3] [RESOLVED] Foo Bundle
 Location: file:foo.jar
 Symbolic-Name: org.foo.foo

In the example session, we first use the “startlevel” command at (#1) to display the

current active start level of the framework, which is one by default. We use the “bundlelevel”

command with the “-i” switch at (#2) to set the initial bundle start level of installed bundles

to two. Subsequently, when we install and start the foo bundle at (#3), we can see from the

following “bundles” command output that it is not actually started yet. This is expected,

because the bundle's start level is two, but the framework's active start level of one is less

than it. At (#4), we raise the framework's active start level to two, which ultimately causes

the foo bundle to be started. Using the “bundlelevel” command at (#5) to set the foo

bundle's start level to three stops the bundle again.

That's all there is to the Start Level service. You will not likely need this service often,

since bundle activation ordering is not a good practice, but it can come in handy in certain

situations. We've covered a lot of ground with respect to bundle and application

management, let's summarize what we've learned.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

7.5 Summary
In this chapter we discussed how to manage bundles and your OSGi-based applications.

Management is a broad topic, so we covered a range of topics including:

 The versioning of both packages and bundles must be carefully considered when
working with OSGi.

 The OSGi specification recommends, but does not prescribe versioning policies. It is
up to you to define and adhere to one.

 Managing bundles also involves managing bundle configuration data.

 The Configuration Admin service provides a way to externalize and standardize
management of bundle configuration data, while the Meta Type service provides a
standard way to describe a bundle's configuration data.

 Related to configuration data, the Preferences service provides a standard mechanism
for bundles to manage system and user preference settings.

 One of the key management tasks is deploying bundles to the OSGi framework and
there are multiple approaches for doing so, including rolling your own approach or
using technologies like OBR or Deployment Admin.

 OBR focuses on discovering and deploying bundles and their transitive closure of their
dependencies, while Deployment Admin focuses on defining and deploying sets of
bundles and needed resources.

 Lastly, we discussed how the Start Level service can be used to control the relative
activation order of your deployed bundles, which arises in a few situations like creating
splash screens or different execution modes.

These topics have given us a fairly good foundation for managing our bundles. Now that

we know how to build and manage our OSGi applications, how do we go about testing them?

This is the topic of the next chapter.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

8
Testing Applications

You are now just over halfway through this book, congratulations! At this point you should

have confidence in applying OSGi to new and existing projects. In fact migrating applications

to OSGi should be especially fresh in your mind from the last chapter. But what can we do to

make sure we are on the right track to modularity and not turning our application into

tangled spaghetti? Like any piece of software, the best way to track quality is with regular

testing. Testing can confirm your modularized code meets the same requirements as your

original application. Testing can verify your code will continue to work when deployed inside

the target container. It can even help you practice different deployment scenarios in the

safety of your friendly neighborhood test server. Even a simple non-functional test, such as

checking the number of shared packages between bundles, can avoid tangles forming early

on in development.

So why wait until the end of a project to discover if your code works in the strict

environment of an OSGi framework or how well your chosen bundles fit together? Migrate

and modularize your tests along with your code! This chapter will help put this advice into

practice by taking you through three different approaches:

 running existing tests on OSGi

 mocking out calls to OSGi APIs

 writing tests with OSGi in mind

The last section in particular takes a closer look at how unit and integration test concepts

relate to modular applications and introduces the idea of management testing. If you are

eager to learn more about testing modularity and you are already familiar with in-container

tests and object mocking, feel free to skip ahead to the third section starting on page 318.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

By the end of this chapter you should be comfortable with testing OSGi applications,

which will lead to better quality bundles for everyone. Let's start by continuing the theme

from chapter 6 and get some existing tests running on an OSGi framework.

8.1 Migrating tests to OSGi
Imagine you have an application that you want to modularize and move to OSGi, you almost

certainly have existing tests that check requirements and expected behavior. You can use

these tests to verify and validate the modularization process; either by manually running

them at key stages or by using an automated build system that runs tests on a regular

schedule, say whenever people check-in code. These tests give you confidence your

modularized application is to some extent equivalent to the original, at least when run with

the test framework. But what they don't tell you is whether your code behaves the same

inside an OSGi container.

To find out we need to run our tests twice: inside the target container as well as outside.

8.1.1 Container testing

Would you develop and deploy a web application without ever testing it inside an application

server? Would you ship a product without testing its installer? Of course not! It is important

to test code in the right environment. If you expect to use a class with OSGi you should test

it inside an OSGi framework, how else would you discover potential class loading or visibility

issues? But before we can run tests from inside the container, we first need to deploy them.

As we just saw in chapter 6, whenever you want to deploy something into an OSGi

framework, you must consider packaging and placement. If the test classes are

(accidentally) exposed from the boot class path then the tests will effectively be running

outside of the container. So does this mean you should bundle tests along with the

application code? It really depends on how you expect the code to be used in OSGi. Internal

classes can only be tested from inside the same bundle, but public facing code can and

should be tested from another bundle to mimic real-life conditions. Testing code inside the

same bundle typically means the “caller” and “callee” share the same class loader, but many

OSGi-related issues only appear when different class loaders are involved. So wherever

possible, test from another bundle.

Figure 8.1 summarizes the four main test deployment options:

 Boot class path

 System export

 Intra-bundle

 Inter-bundle

{FIGURE}

Figure 8.1 Test deployment options

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

We can deploy tests just like any other piece of code, but how much effort is actually

involved in getting tests up and running in an OSGi framework? Let's find out right now by

converting an existing open source library and its test suite into bundles.

8.1.2 Bundling tests

The Apache Commons Pool project [ref] provides a small library for managing object pools.

We're going to use the source distribution for Commons Pool 1.5.3, which contains the code

for both the library and its test suite:

chapter08/migration-example/commons-pool-1.5.3-src.zip

We begin our example by splitting the Commons Pool library and tests into two bundles.

The main subproject extracts the library source, compiles it, and creates a simple bundle that

exports the main package, but hides the implementation (.impl) package. The test

subproject does exactly the same thing for the test source, but appends “-test” to the bundle

symbolic name to make sure the bundles are unique.

The Commons Pool tests are jUnit tests, so we also need access to the jUnit library [ref].

Should it be deployed as a bundle or placed on the boot class path? Exposing the packages

from the boot class path means we don't have to turn jUnit into a bundle, but it also means

jUnit can't see test classes unless they are also on the boot class path or explicitly passed in

via a method call. We would have to write our own code to scan bundles for tests and feed

the class instances to jUnit, instead of relying on the standard test runner. We'll look at tool

that does this later in section 8.3, so let's try the other approach here: bundling jUnit.

We use the “bndwrap” Ant task from the bnd tool [ref] to quickly wrap the JAR file. The

bndwrap task analyzes the JAR and creates a bundle that exports all packages contained

inside it. It also adds optional imports for any packages that are needed, but not contained in

the JAR file. Unfortunately this import list won't contain our test packages, because jUnit

doesn't know anything about them yet. To avoid having to explicitly list our test packages at

build-time, we instead use DynamicImport-Package: * (discussed in 5.2.2). This dynamic

import means jUnit will be able to see any future test class, as long as some bundle exports

it.

We also add the following Main-Class header:

Main-Class: junit.textui.TestRunner

This tells our example launcher to start the jUnit test runner after deploying all the

bundles. The TestRunner class expects to receive the name of the primary test class, so we

add org.apache.commons.pool.TestAll to the OSGi launcher command-line in build.xml.

(Our launcher will automatically pass any arguments after the initial bundle directory setting

on to the Main-Class.)

Figure 8.2 shows our test deployment, which resembles the fourth option in Figure 8.1:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

{FIGURE}

Figure 8.2 Testing Commons Pool inside an OSGi framework

Let's try it out for real:

$ cd chapter08/migration-example

$ ant clean test.osgi
...
[junit.osgi] Class not found "org.apache.commons.pool.TestAll"
[junit.osgi] Java Result: 1

Hmm, our jUnit bundle couldn't see the TestAll class even though the test bundle clearly

exports it. If you look closely at the package involved and cast your mind back to the

visibility discussion from 2.5.3 you should understand why. This is the same package that's

exported by the main Commons Pool bundle! Remember that packages cannot be split across

bundles unless you use bundle dependencies (section 5.3) and we are using package

dependencies. We could use Require-Bundle to merge the packages together and re-export

them (see section 5.3.1 for more about re-exporting packages), but we would then need to

use mandatory attributes to make sure jUnit and other related test bundles were correctly

wired to the merged package. This would lead to a fragile test structure and cause problems

with package-private members (to find out why see the discussion near the start of 5.4.1).

A better solution is to use fragments (section 5.4) to augment the original bundle with

the extra test classes. To do this we just need to add one line to test/build.properties:

Fragment-Host: ${module} #1

The module property refers to the org.apache.commons.pool package, which we also use

as the symbolic name of the main bundle. This is all we need to declare our test bundle as a

fragment of the main library bundle (#1). With this change in place we can rebuild and

repeat the test. You should see jUnit run through the complete Commons Pool test suite,

which takes around two minutes:

$ ant clean test.osgi
...
[junit.osgi] ...
[junit.osgi] ...
[junit.osgi] ...
[junit.osgi] ...
[junit.osgi] ...
[junit.osgi]
[junit.osgi] Time: 118.127
[junit.osgi]
[junit.osgi] OK (242 tests)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

We are now running all our tests inside the combined library bundle (option 3 from Figure

8.1) because our test fragment contains both internal and public facing tests. We could go

one step further and use a plain bundle for public tests and a fragment for internal tests, but

we would need some way to give jUnit access to our internal tests. At the moment the public

org.apache.commons.pool.TestAll class loads internal tests from inside the same

fragment, but this won't work when we separate them. We don't want to export any internal

packages from the fragment because that would also expose internals from the main bundle,

potentially affecting the test results.

The least disruptive solution is to keep a single public test class in the fragment that can

be used to load the internal tests. The remaining public facing tests can be moved to a new

package that doesn't conflict with the library API (such as .test) and deployed in a separate

bundle. Figure 8.3 shows an example of such a structure for testing Commons Pool.

{FIGURE}

Figure 8.3 Recommended test structure for OSGi bundle tests

Finally, try running the tests outside of the container, you should see the same results:

$ ant clean test
...
[junit] ...
[junit] ...
[junit] ...
[junit] ...
[junit] ...
[junit]
[junit] Time: 117.77
[junit]
[junit] OK (242 tests)

We just saw how easy it is to run tests both inside and outside of a container, but how do

we know if we're testing all possible scenarios and edge cases? Most projects use coverage

to measure test effectiveness, although this doesn't guarantee you have well-written tests!

Given the importance of test coverage, let's continue with our example and find out how we

can record coverage statistics inside an OSGi container.

8.1.3 Covering all the bases

It is always good to know how much of your code is being tested. Like test results, coverage

can vary depending on whether you're testing inside or outside a container. This makes it

just as important to include container-based tests when determining overall test coverage.

We can break the coverage gathering process into three stages:

3. Instrument the classes

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

4. Execute the tests

5. Analyze the results

The first and third stages can be done outside of the OSGi container. This leaves us with

the second stage: testing the instrumented classes inside the chosen container. We already

know we can run the original tests in OSGi, so what difference does instrumentation make?

It obviously introduces some sort of package dependency to the coverage library, but it also

introduces a configuration dependency. The instrumented code needs to know where to find

the coverage database so it can record results. We can deal with the package dependency in

three ways: wrap the coverage JAR file up as a bundle, export its packages from the system

bundle using org.osgi.framework.system.packages.extra, or expose them from the boot

class path with org.osgi.framework.bootdelegation. When using boot delegation we must

make sure coverage packages are excluded from the generated Import-Package in the

library bundle or at least made optional. (Not doing this would lead to a missing constraint

during resolution, because no bundle exports these packages.)

The simplest approach is to add the coverage JAR file and its dependencies to the

launcher's class path and update the system packages. Next simplest is boot delegation,

here we have the extra step of removing coverage packages from the Import-Package of our

instrumented bundle. We're going to take the interesting route and turn the coverage JAR file

into a bundle. Our chosen coverage tool for this example is Cobertura 1.9.3 [ref], but all of

the techniques mentioned above should work for other tools as well.

First step is to create a new JAR file which contains the original Cobertura JAR file and all

of its execution time dependencies. We embed these dependencies because we want this to

be a standalone bundle. Remember, this bundle will only be used during testing, so we have

more leeway than if we were creating a production quality bundle. We then use the bnd tool

to wrap the JAR file in the same way we wrapped jUnit, making sure we set Bundle-

ClassPath so the bundle can see its embedded dependencies. You can find the complete

bundling process in cobertura.osgi/build.xml.

All we need to do now is instrument the classes and run the tests:

$ ant clean test.osgi “-Dinstrument=true”

We use the instrument property to enable the various instrumentation targets. Before

launching the tests, the build also sets the net.sourceforge.cobertura.datafile system

property so that instrumented tests know where to find the coverage database. As soon as

the tests complete the build runs the Cobertura report task to process the results. Point your

browser at reports/index.html to see the results, which should look like Figure 8.4.

{FIGURE}

Figure 8.4 Cobertura coverage report for Commons Pool

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Throughout this section we saw how to take existing tests (and test tools) and run them

inside an OSGi container. You may have noticed that this process is very similar to the “JAR

to bundle” process described in the first half of chapter 6. In fact, deciding how to bundle

tests is really no different from deciding how to bundle an application. Visibility and

modularity are just as important when it comes to testing. But what about going the other

way? Can we take OSGi-related code and test it outside of the container?

When you first begin to modularize and migrate your application over to OSGi, you

probably won't have a direct dependency on the OSGi API itself. This means your code can

still be tested both inside and outside of the container. But at some point you will want to use

the OSGi API. It may start with one or two bundle activators, then maybe using the bundle

context to lookup a service. Dependency injection, component models (discussed in chapter

10), and other similar abstractions can all help reduce the need to deal directly with the

container. But what if you have code that uses the OSGi API. Such code cannot be tested

outside of the container – or can it?

Imagine if we could mimic the container without having to implement a complete OSGi

framework. Well there is a technique for doing this and it goes by the name of mocking.

8.2 Mocking OSGi
OSGi is just a load of fancy class loaders! Oh wait, we didn't mean that sort of mocking.

(Besides, we all know by now that there's a lot more to OSGi than enhanced class loading.)

We are actually talking about using mock objects to test portions of code without requiring a

complete system. A mock object is basically a simulation, not a real implementation. It

provides the same API, but its methods are scripted and usually return expected values or

additional mocked objects. Object mocking is a powerful technique because it lets you test

code right from the start of a project, even before your application is complete. You can also

use it to test situations that are hard to recreate with the real object, such as external

hardware failures. Figure 8.5 shows an example of mocking in action.

{FIGURE}

Figure 8.5 Mocking in action

8.2.1 Testing expected behavior

So how might we use mocking to test an OSGi application? Let's look at code from earlier in

this book, specifically the LogService lookup example from chapter 4 that contained a

potential race condition. Listing 8.1 provides a quick reminder of the problematic code:

Listing 8.1 Broken service lookup containing race condition

public class Activator implements BundleActivator {
 BundleContext m_context;

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 public void start(BundleContext context) {
 m_context = context; #1
 startTestThread();
 }

 public void stop(BundleContext context) {
 stopTestThread();
 }

 class LogServiceTest implements Runnable {
 public void run() {
 while (Thread.currentThread() == m_logTestThread) {
 ServiceReference logServiceRef =
 m_context.getServiceReference(LogService.class.getName()); #2

 if (logServiceRef != null) {
 ((LogService)m_context.getService(logServiceRef)).log(#3
 LogService.LOG_INFO, "ping");
 } else {
 alternativeLog("LogService has gone");
 }

 pauseTestThread();
 }
 }
 }

 // The rest of this class is just support code...
}

Notice how this code interacts with the OSGi container. It receives a context object in the

activator start method (#1), uses this context to get a service reference (#2), and uses this

reference to get the actual instance (#3). Each of these objects has a well-defined interface

we can mock out, and the example code only uses a few methods from each API. This is

good news because when mocking objects you only need to simulate the methods that are

actually used, not the complete API.

We already know this code compiles against the OSGi API and back in chapter 4 we even

tried it out on an actual framework. But does it use the service API correctly? This is the sort

of test which is hard to write without mocking. Sure you can run tests on the container by

invoking your code and checking the results as we did back in 8.1, but this doesn't tell you if

the code is using the container in the right way. For example, the container won't complain if

you forget to “unget” a service after you're done with it, but forgetting to do this skews

service accounting and makes it look like your bundle is still using the service when it isn't.

The container also doesn't know if you use the result of getService() without checking for

null. In our example you could get a NullPointerException if the service disappeared

in the short time between checking the reference and using it. Writing a test that's

guaranteed to expose this race condition on a live framework is very hard, but trivial with

mock objects.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

How exactly does mocking help? Because mock objects are scripted, we can verify that

the right methods are called in the appropriate order. We can throw exceptions or return

null values at any point in the sequence to see how the client handles it. Enough talk, let's

actually try mocking ourselves.

8.2.2 Mocking in action

There are typically five steps involved in mocking out an API:

 mock – create prototype mock objects

 expect – script the expected behavior

 replay – prepare the mock objects

 test – run code using the mock objects

 verify – check the behavior matches

We're going to use EasyMock [ref] in this example, but any mocking library would do. You

can find our initial setup under chapter08/mocking-example in the companion code

samples. It contains the log client code from Listing 8.1 and a skeleton test class which we'll

expand on during this section, mock_test/src/org/foo/mock/LogClientTests.java. You

can also find a completed version of the unit test in the solution directory if you don't feel

like typing out all this code.

Let's go through each of the five steps in detail and mock out the OSGi API:

1. First create prototype objects for parts of the API that we want to mock out; namely
BundleContext, ServiceReference, and LogService. You can do this by adding the
following lines to the empty test case:

 BundleContext context = createStrictMock(BundleContext.class);
 ServiceReference serviceRef = createMock(ServiceReference.class);
 LogService logService = createMock(LogService.class);

We use a strict mock for the context, because we want to check the call sequence.

2. Script the expected behavior of the log client as it finds and calls the LogService:

 expect(context.getServiceReference(LogService.class.getName())) #1
 .andReturn(serviceRef); #2

 expect(context.getService(serviceRef)) #3
 .andReturn(logService); #4

 logService.log(
 and(geq(LogService.LOG_ERROR), leq(LogService.LOG_DEBUG)), #5
 isA(String.class)); #6

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Using our knowledge of the service API from chapter 4, we expect the client will call
our mock context to find a reference to the LogService (#1), to which we respond by
returning a mock service reference (#2). We expect the client to pass this reference
back our mock context (#3) in order to get our mock LogService (#4). Finally we
expect the client to call our mock LogService with a valid log level and some sort of
message string.

3. Replay the expected behavior to initialize our mock objects:

 replay(context, serviceRef, logService);

4. Now we get to use our mock objects and pretend to be the OSGi container:

 BundleActivator logClientActivator = new Activator();

 logClientActivator.start(context); #1
 try {
 Thread.sleep(1000); #2
 } catch (InterruptedException e) {}
 logClientActivator.stop(context); #3

Consider the active lifecycle of an OSGi bundle: it is first started (#1) and some time
later it is stopped (#3). We don't worry about mimicking the resolution stage in this
test because we want to test service usage, not class loading. We know the client will
spawn some sort of thread to use the LogService, so we wait one second (#2) to give
that thread time to make the call and pause. (Using sleep here is not ideal, later on
we'll see how we can replace it with proper handshaking.) Then when our one second
is up, we stop the client bundle.

5. The last step is to make sure we saw the expected behavior during the test:

 verify(context, serviceRef, logService);

This method throws an exception if the observed behavior does not match.

At this point you should have a complete test which will compile and run successfully:

$ cd chapter08/mocking-example

$ ant test
...
test:
[junit] Running org.foo.mock.LogClientTests
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 1.157 sec

Excellent, we've confirmed that our client uses the OSGi API correctly when a LogService

is available. But what happens when a LogService is not available, does it handle that too?

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

8.2.3 Mocking unexpected situations

As we mentioned back at the start of this section, mocking is a powerful testing technique

because it lets you script situations that are hard to recreate inside a test environment. While

it is easy to arrange a test in an OSGi container without a LogService, it would be very

difficult to arrange for this service to appear and disappear at exactly the right time to

trigger the race condition we know exists in our client code. With mocking it is easy.

First, let's test what happens when no LogService is available by adding the following

expectation between our last expect and the call to replay:

 expect(context.getServiceReference(LogService.class.getName()))
 .andReturn(null);

This states that we expect the client to begin another call to lookup the LogService, but

this time we return a null reference to indicate no available service. If you try and run the

test now it will fail because we don't give the client enough time to make a second call before

stopping the bundle. Our log client pauses five seconds between each call, so we just need to

add five seconds onto the existing sleep:

 try {
 Thread.sleep(6000);
 } catch (InterruptedException e) {}

The client now gets enough time to begin a second log call, but the test still fails:

$ ant test
...
[junit] Running org.foo.mock.LogClientTests
[junit] Exception in thread "LogService Tester" java.lang.AssertionError:
[junit] Unexpected method call getBundle():

It appears that our client is using another method (getBundle()) on the BundleContext

to find the owning bundle when no LogService is available. If you look at the rest of the

client code under chapter08, you'll see that it uses this to get the bundle id when logging

directly to the console. We don't really mind how many times our client calls getBundle(), if

at all, so lets use a “wildcard” expectation:

 Bundle bundle = createNiceMock(Bundle.class); #1

 expect(context.getServiceReference(LogService.class.getName()))
 .andReturn(null);

 expect(context.getBundle())
 .andReturn(bundle).anyTimes(); #2

We need to provide a new mock to represent our Bundle object. This time instead of

simulating each method the client actually uses, we take a shortcut and use a “nice” mock

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

(#1). Nice mocks automatically provide empty implementations and default return values.

We expect our log client to request this mock bundle from our mock bundle context after we

return the null service reference, but it might ask for it zero or more times (#2). One last

thing we must remember to do is add our mock bundle to the replay list. (If you happen to

forget to replay a mock before it is used you will get an IllegalStateException from

EasyMock about missing behavior definitions.)

replay(context, serviceRef, logService, bundle);

With the new expectation in place and everything replayed, the test passes once more:

$ ant test
...
[junit] Running org.foo.mock.LogClientTests
[junit] <--> thread="LogService Tester", bundle=0 : LogService has gone
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 6.125 sec

Having sleep in our unit test is annoying though. Every time we want to test additional

log calls we would need to extend the sleep, which makes our tests run longer and longer.

We should really try to replace it with some form of handshaking. But even with

handshaking, our log client will still pause for five seconds between each call. If only we

could replace the pause method while keeping the rest of the code intact.

8.2.4 Coping with multi-threaded tests

We're currently testing a simple log client that spawns a separate thread to make log calls.

Knowing how to test multi-threaded bundles is very useful, because people often use threads

to limit the amount of work done in the activator's start method. As we mentioned at the end

of the last section, the main difficulty is synchronizing the test thread with the threads being

tested. Up to now we relied on sleep, but this is a fragile solution. Some form of barrier or

handshake procedure (Figure 8.6) is needed to hold client threads back until the test is ready

to proceed and vice-versa.

{FIGURE}

Figure 8.6 Synchronizing tests with multi-threaded code

Thankfully, the log client has an obvious place where we can add such a barrier: the

protected pauseTestThread method, which currently puts the client thread to sleep for five

seconds. We could consider using aspect-orientated programming to add a barrier to this

method, but let's avoid pulling in extra test dependencies and use an anonymous class to

override it instead:

 final CountDownLatch latch = new CountDownLatch(2); #1

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 BundleActivator logClientActivator = new Activator() {
 @Override protected void pauseTestThread() {
 latch.countDown(); #2

 if (latch.getCount() == 0) { #3
 LockSupport.park(); #4
 }
 }
 };

Our anonymous class replaces the original pauseTestThread method with one that uses a

countdown latch, initialized with the number of expected log calls (#1). Each time the client

makes a log call it calls pauseTestThread and counts down the latch (#2). When no more

log calls are expected (#3) the client thread suspends itself and waits for the rest of the test

to shutdown (#4). All our test code needs to do is wait for the latch to count down to zero

before it stops the client bundle:

 logClientActivator.start(context);
 if (!latch.await(5, TimeUnit.SECONDS)) { #1
 fail("Still expecting" + latch.getCount() + " calls");
 }
 logClientActivator.stop(context);

The test includes a timeout (#1) in case the client thread aborts and can't complete the

countdown, but if everything goes as expected the updated test will finish in under a second:

$ ant test
...
[junit] Running org.foo.mock.LogClientTests
[junit] <--> thread="LogService Tester", bundle=0 : LogService has gone
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.14 sec

So far so good, all we have to do to test additional log calls is increment the latch count.

But what should we do if our client thread doesn't contain a “pause” method or this method

cannot be replaced or extended? Another solution is to add barriers to the mocked out

objects themselves by using so-called “answer” objects. Answers let us perform basic AOP by

intercepting method calls, which we can use to add synchronization points. For example:

 expect(context.getServiceReference(isA(String.class)).andAnswer(
 new IAnswer<ServiceReference>() { #1
 public ServiceReference answer() {
 LockSupport.park(); #2
 return null;
 }
 });

In the above (incomplete) example, we script an answer (#1) that always returns a null

service reference and use it to suspend the client thread whenever it makes this call (#2).

This works as long as the client thread initiates the expected call at the right time and there

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

are no problems with suspending the client in the middle of this call. But it also leaves the

client code untouched, which for us would mean a five second pause between log calls. We're

going to test another log call in the next section, so let's stick with our original latch solution.

8.2.5 Exposing race conditions

OSGi is very dynamic; bundles and services might come and go at any time. The key to

developing a robust application is being able to cope with and react to these events. This

same dynamism makes testing robustness very difficult. You could deploy your bundles into

a real framework and attempt to script events to cover all possibilities (we'll look at this in

more detail in 8.3), but some scenarios require micro-second timing. Remember the race

condition we mentioned at the start of this section? This would only be exposed if we could

arrange for the LogService to disappear between two method invocations, a very narrow

window. Many factors could cause us to miss this window: unexpected garbage collection,

differences in thread scheduling. With mocking we can easily script the exact sequence of

events we want:

 expect(context.getServiceReference(LogService.class.getName()))
 .andReturn(serviceRef); #1

 expect(context.getService(serviceRef))
 .andReturn(null); #2

 expect(context.getBundle())
 .andReturn(bundle).anyTimes(); #3

We begin by expecting another log call, so remember to bump the latch count up to three

calls. The LogService is still available at this point, so we return our mock reference (#1).

The client is expected to dereference this by calling getService() and it is at this point that

we pretend the LogService has vanished and return null (#2). We follow this by expecting

another wildcard call to get the bundle (#3) just as we did in 8.2.3, because the log client

might need it to do some alternative logging to the console.

Our test is now complete. You might want to compare it with the class in the solution

sub-directory. It covers normal and missing service conditions, and the edge case where the

service is there to begin with, but quickly disappears. Running it should expose the problem

we all know is there, but we weren't able to recreate reliably on a real framework:

$ ant test
...
[junit] Running org.foo.mock.LogClientTests
[junit] <--> thread="LogService Tester", bundle=0 : LogService has gone
[junit] Exception in thread "LogService Tester"
 java.lang.NullPointerException
[junit] at org.foo.log.Activator$LogServiceTest.run(Activator.java:66)
[junit] at java.lang.Thread.run(Thread.java:619)
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 5.205 sec

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

At this point, adventurous readers might like to copy the working service lookup example

from chapter 4 (chapter04/dynamics/correct_lookup) and try testing it. One tip: you'll

need to extend the test to expect calls to ungetService, because the working example

attempts to release the service reference after each successful call to getService. Whether

you mandate calls to ungetService() or make them optional by appending “times(0, 1)”

to the expectation is completely up to you.

In this section, we learned how to mock out the OSGi API and script different scenarios

when testing bundle-specific code that uses OSGi. Mocking helps us test situations that are

next to impossible to recreate in a real container. It also provides a counterpoint to the first

section where we were running existing tests inside a real container on code that often had

no dependency on OSGi at all. Our last section will attempt to harmonize both approaches,

by explaining how to script modular tests and run them on a variety of frameworks.

8.3 Testing modularity
In the previous section, we successfully mocked out the OSGi API and ran our tests without

requiring a framework. Of course, the less you depend directly on an API, the easier it is to

mock. It is even easier if you use one of the component models from chapter 10 because

your dependencies will be indirectly injected by the component framework. Such components

rarely need to use the OSGi API themselves, so testing becomes a matter of reconfiguring

bindings to inject mocked out dependencies in place of the original instances. But as we

discussed in 8.1.1, eventually you will want to run tests on a real OSGi framework. These

container tests typically won't increase your code coverage – any unit and mocked out tests

should have already tested the critical paths. Instead, these tests verify that your code

conforms to the container: is it packaged correctly, does it follow the container programming

model, does it use standard APIs?

You should run your tests on as many containers as possible to guard against container-

specific behavior. But keeping all these containers up to date and managing their different

settings and configurations soon becomes tiresome. The newly standardized OSGi embedding

and launching API (discussed in chapter 11) helps, but it lacks features that would make

testing on OSGi much easier: automatic test wrapping, dynamic bundle creation, common

deployment profiles. Luckily for us, there are several recently released OSGi test tools that

provide all these features and more.

OSGi-enabled test tools bring other benefits because they embrace OSGi, such as

improved test modularity and management. You can use them to run a complete range of

tests from basic unit tests, through various combinations of integration tests, all the way up

to advanced management tests. We'll see a real-world example of this later on and explain

exactly what we mean by management testing, but first let's see what OSGi test tools are

available right now.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

8.3.1 OSGi test tools

At the time of writing this book, there are three major test tools available for OSGi:

 OPS4J's Pax-Exam [ref]

 Spring DM's test support [ref]

 Dynamic Java's DA-Testing [ref]

All follow the same basic approach to building and deploying tests:

 Prepare the OSGi container

 Deploy the selected bundles

 Create test bundle on the fly

 Deploy and execute the tests

 Shutdown the container

Each tool has its own advantages and disadvantages. The Spring-DM test support

obviously works best with Spring based applications. While you can also use it to test non-

Spring applications, it requires several Spring dependencies which make it appear rather

heavy. Spring-DM testing also only supports jUnit 3, which means no annotated tests. DA-

Testing on the other hand provides its own test API, optimized for testing service dynamics

such as the race condition we saw in 8.2.5. This makes it hard to move existing jUnit or

TestNG tests over to DA-Testing, since developers have to learn another test API, but it does

make dynamic testing much easier. Pax-Exam goes to the other extreme and supports both

jUnit 3 and 4, with TestNG support in the works. Table 8.1 summarizes the differences

between the tools:

Test Tool jUnit3 jUnit4 TestNG OSGi Mocks OSGi Frameworks OSGi Profiles

Pax-Exam X X future
Felix / Equinox / KF

(multiple versions)
over 50

Spring-DM X future X
Felix / Equinox / KF

(single version only)

DA-Testing
Equinox

(others planned)

Table 8.1 OSGi Test Tool Features

We are going to use Pax-Exam from the OPS4J community because we believe it's a good

general purpose solution, but a lot of the techniques covered in this section can also be

adapted for use with the other tools. One of Pax-Exam's strengths is its support for a wide

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

range of different OSGi frameworks, which is really important if you want to produce robust

portable bundles. But why is this?

8.3.2 Running tests on multiple frameworks

OSGi is a standard, with a detailed specification and a set of framework compliance tests.

Even with all of this there can be subtle differences between implementations. Perhaps part

of the specification is unclear or is open to interpretation. On the other hand, maybe your

code relies on behavior that isn't part of the specification and is left open to framework

implementers, such as the default Thread Context Class Loader (TCCL) setting. The only way

to make sure your code is truly portable is to run the same tests on different frameworks.

This is just like the practice of running tests on different operating systems – even though

the JDK is supposed be be portable and standardized, differences can exist and it is better to

catch them during development than fix problems in the field.

Unfortunately, a lot of OSGi developers only test against a single framework. This might

be because they only expect to deploy their bundles on that particular implementation, but it

is more likely that they believe the cost of setting up and managing multiple frameworks far

outweighs the perceived benefits. This is where Pax-Exam steps in – it makes testing on an

extra OSGi framework as simple as adding a single line of Java code.

Let's see for ourselves how easy it to use Pax-Exam. We're going to continue to use Ant

to run these tests, although Pax-Exam is primarily Maven based. This means we need to

explicitly list execution-time dependencies in our build.xml, instead of letting Maven

manage this for us. You can find our initial setup under chapter08/testing-example.

Take a look at the fw subproject, it contains a very simple test class that prints out

various framework properties. The contents of this test class are shown below in Listing 8.2.

Listing 8.2 Simple container test

@RunWith(JUnit4TestRunner.class) #1
public class ContainerTest {

 @Configuration #2
 public static Option[] configure() {
 return options(
 mavenBundle("org.osgi", "org.osgi.compendium", "4.2.0") #3
);
 }

 @Test
 public void testContainer(BundleContext ctx) { #4
 System.out.println(
 format(ctx, FRAMEWORK_VENDOR) +
 format(ctx, FRAMEWORK_VERSION) +
 format(ctx, FRAMEWORK_LANGUAGE) +
 format(ctx, FRAMEWORK_OS_NAME) +
 format(ctx, FRAMEWORK_OS_VERSION) +
 format(ctx, FRAMEWORK_PROCESSOR) +

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 "\nTest Bundle is " +
 ctx.getBundle().getSymbolicName()); #5
 }

 private static String format(
 BundleContext ctx, String key) {

 return String.format("%-32s = %s\n",
 key, ctx.getProperty(key));
 }
}

We begin by annotating our test class with @RunWith (#1). This tells jUnit to use the

named test runner instead of the standard jUnit one. The Pax-Exam JUnit4TestRunner class

is responsible for starting the relevant framework, deploying bundles, and running the tests.

The @Configuration (#2) annotation identifies the method that provides the Pax-Exam

configuration. Right now we just ask it to deploy the standard OSGi compendium bundle

(#3) from Maven central on to the default framework. The actual test method is annotated

with the usual jUnit4 annotation, @Test. It accepts a BundleContext argument (#4) which

will be supplied by Pax-Exam at execution time. We use this bundle context to print out

various properties, including the symbolic name of the test bundle (#5).

To run this test, type the following:

$ cd chapter08/testing-example

$ ant test.container

You should see something like Listing 8.3, but with properties that match your system.

Listing 8.3 Using Pax-Exam to run tests on an OSGi framework

[junit] Running org.foo.test.ContainerTest
[junit] __________ ___________
[junit] ______ _____ ___ ___ _ _____/__ ________ _____
[junit] | ___/__ \ \ \/ / | __)_\ \/ /__ \ / \
[junit] | | / __ _> < | \> < / __ \| Y Y \
[junit] |____| (____ /__/_ \ /_______ /__/_ \(____ /__|_| /
[junit] \/ \/ \/ \/ \/ \/
[junit]
[junit] Pax Exam 1.1.0 from OPS4J - http://www.ops4j.org
[junit] --
[junit]
[junit]
[junit]
[junit] Welcome to Felix
[junit]
[junit] ================
[junit]
[junit] org.osgi.framework.vendor = Apache Software Foundation
[junit] org.osgi.framework.version = 1.5
[junit] org.osgi.framework.language = en

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

[junit] org.osgi.framework.os.name = windowsvista
[junit] org.osgi.framework.os.version = 6.0
[junit] org.osgi.framework.processor = x86
[junit]
[junit] Test Bundle is pax-exam-probe
[junit]
[junit]
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 3.424 sec

You might have noticed that the symbolic name of the test bundle is “pax-exam-probe”.

This bundle is generated at execution time by Pax-Exam and contains our test classes. The

default container is Apache Felix, but we can easily ask Pax-Exam to run the same test on

other frameworks as well. All we need to do is add a few lines to the configuration method in

our test class fw/container/src/org/foo/test/ContainerTest.java:

 @Configuration
 public static Option[] configure() {
 return options(
 frameworks(
 felix(), equinox(), knopflerfish()
),
 mavenBundle("org.osgi", "org.osgi.compendium", "4.2.0")
);
 }

Pax-Exam will do the hard work of downloading the necessary JAR files and setting up

any framework specific configuration files. We just need to sit back and re-run our test:

$ ant test.container

This time you should see three distinct sets of output as shown in Listing 8.4.

Listing 8.4 Using Pax-Exam to run tests on multiple frameworks

[junit] Running org.foo.test.ContainerTest
[junit] __________ ___________
[junit] ______ _____ ___ ___ _ _____/__ ________ _____
[junit] | ___/__ \ \ \/ / | __)_\ \/ /__ \ / \
[junit] | | / __ _> < | \> < / __ \| Y Y \
[junit] |____| (____ /__/_ \ /_______ /__/_ \(____ /__|_| /
[junit] \/ \/ \/ \/ \/ \/
[junit]
[junit] Pax Exam 1.1.0 from OPS4J - http://www.ops4j.org
[junit] --
[junit]
[junit]
[junit]
[junit] Welcome to Felix
[junit] ================
[junit]
[junit] org.osgi.framework.vendor = Apache Software Foundation

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

[junit] org.osgi.framework.version = 1.5
[junit] org.osgi.framework.language = en
[junit] org.osgi.framework.os.name = windowsvista
[junit] org.osgi.framework.os.version = 6.0
[junit] org.osgi.framework.processor = x86
[junit]
[junit] Test Bundle is pax-exam-probe
[junit]
[junit]
[junit] __________ ___________
[junit] ______ _____ ___ ___ _ _____/__ ________ _____
[junit] | ___/__ \ \ \/ / | __)_\ \/ /__ \ / \
[junit] | | / __ _> < | \> < / __ \| Y Y \
[junit] |____| (____ /__/_ \ /_______ /__/_ \(____ /__|_| /
[junit] \/ \/ \/ \/ \/ \/
[junit]
[junit] Pax Exam 1.1.0 from OPS4J - http://www.ops4j.org
[junit] --
[junit]
[junit]
[junit] org.osgi.framework.vendor = Eclipse
[junit] org.osgi.framework.version = 1.5.0
[junit] org.osgi.framework.language = en
[junit] org.osgi.framework.os.name = WindowsVista
[junit] org.osgi.framework.os.version = 6.0.0
[junit] org.osgi.framework.processor = x86
[junit]
[junit] Test Bundle is pax-exam-probe
[junit]
[junit]
[junit] __________ ___________
[junit] ______ _____ ___ ___ _ _____/__ ________ _____
[junit] | ___/__ \ \ \/ / | __)_\ \/ /__ \ / \
[junit] | | / __ _> < | \> < / __ \| Y Y \
[junit] |____| (____ /__/_ \ /_______ /__/_ \(____ /__|_| /
[junit] \/ \/ \/ \/ \/ \/
[junit]
[junit] Pax Exam 1.1.0 from OPS4J - http://www.ops4j.org
[junit] --
[junit]
[junit]
[junit] Knopflerfish OSGi framework, version 4.1.10
[junit] Copyright 2003-2009 Knopflerfish. All Rights Reserved.
[junit]
[junit] See http://www.knopflerfish.org for more information.
[junit]
[junit] Loading xargs url file:knopflerfish/config.ini
[junit] Installed and started:
 file:bundles/org.ops4j.pax.exam_1.1.0.jar (id#1)
[junit] Installed and started:
 file:bundles/org.ops4j.pax.exam.junit.extender_1.1.0.jar (id#2)
[junit] Installed and started:
 file:bundles/org.ops4j.pax.exam.junit.extender.impl_1.1.0.jar (id#3)
[junit] Installed and started:
 file:bundles/org.ops4j.pax.url.dir_1.0.0.jar (id#4)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

[junit] Installed and started:
 file:bundles/com.springsource.org.junit_4.4.0.jar (id#5)
[junit]
[junit] Installed and started:
 file:bundles/org.ops4j.pax.exam.rbc_1.1.0.jar (id#6)
[junit] Installed and started:
 file:bundles/osgi.cmpn_4.2.0.200908310645.jar (id#7)
[junit] Framework launched
[junit] org.osgi.framework.vendor = Knopflerfish
[junit] org.osgi.framework.version = 1.3
[junit] org.osgi.framework.language = en
[junit] org.osgi.framework.os.name = Windows Vista
[junit] org.osgi.framework.os.version = 6.0
[junit] org.osgi.framework.processor = x86
[junit]
[junit] Test Bundle is pax-exam-probe
[junit]
[junit]
[junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 12.513 sec

Notice how some of the properties vary slightly between each framework, in particular

the OS name. This is a reminder why it is a good idea to test on a variety of frameworks, to

make sure you are not depending on unspecified or undocumented behavior.

We just saw how easy it was to run a test on many different frameworks using Pax-Exam.

But how well does it work with existing unit tests and existing test tools?

8.3.3 Unit testing

At the start of this section we mentioned how OSGi test tools can help us modularize and

manage tests. Because Pax-Exam integrates with jUnit as a custom runner, it can be used in

any system that can run jUnit tests. This means you can mix non-OSGi unit and integration

tests with Pax-Exam based tests and have the results collected in one place. A good example

of this mixture can be found in the Configuration Admin service implementation from the

Apache Felix project [ref]. Configuration Admin is a compendium service that provides and

persists configuration data for bundles.

The Felix Configuration Admin build uses Maven and has a single test directory. This test

directory contains both mocked-out unit tests that test internal details, along with Pax-Exam

integration tests that test the expected Configuration Admin behavior. We've taken these

tests and separated them out into unit and integration tests so you can see the difference.

The unit tests are in the ut subproject and you can run them with this command:

$ ant test.unit
...
[junit] Running
 org.apache.felix.cm.file.FilePersistenceManagerConstructorTest
[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.027 sec
[junit] Running org.apache.felix.cm.file.FilePersistenceManagerTest
[junit] Tests run: 8, Failures: 0, Errors: 0, Time elapsed: 0.255 sec
[junit] Running org.apache.felix.cm.impl.CaseInsensitiveDictionaryTest

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

[junit] Tests run: 10, Failures: 0, Errors: 0, Time elapsed: 0.012 sec
[junit] Running org.apache.felix.cm.impl.ConfigurationAdapterTest
[junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.013 sec
[junit] Running org.apache.felix.cm.impl.ConfigurationManagerTest
[junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.037 sec
[junit] Running org.apache.felix.cm.impl.DynamicBindingsTest
[junit] Tests run: 4, Failures: 0, Errors: 0, Time elapsed: 0.055 sec

These are still considered unit tests because they don't run inside an OSGi container. We

could bundle them up into a fragment like we did in the first section and deploy them using

Pax-Exam, in which case they would be called bundle tests. Bundle tests are somewhere

between unit and full-blown integration tests. They test more than a single class or feature,

but don't involve more than one bundle. Figure 8.7 shows the difference:

{FIGURE}

Figure 8.7 Unit, bundle, and integration testing

Once you have tested your core functionality both inside and outside the OSGi container

you can move onto integration testing. Integration testing is where Pax-Exam really shines.

8.3.4 Integration testing

Integration tests are where you start to piece your application together and test interactions

between individual components. In order to test combinations of components, you need

some way to compose them. For standard Java applications it can be tricky deciding which

JAR files you need to load, but with OSGi applications all the dependency information is

available in the metadata. Deployment becomes a simple matter of picking a set of bundles.

Let's look at a concrete example. You can find the Apache Felix Configuration Admin

integration tests under the it subproject. To run all of these tests in sequence, type:

$ ant test.integration
...
[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 26.523 sec
...
[junit] Tests run: 7, Failures: 0, Errors: 0, Time elapsed: 24.664 sec
...
[junit] Tests run: 15, Failures: 0, Errors: 0, Time elapsed: 55.839 sec
...
[junit] Tests run: 4, Failures: 0, Errors: 0, Time elapsed: 14.45 sec
...
[junit] Tests run: 4, Failures: 0, Errors: 0, Time elapsed: 13.809 sec
...
[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 5.723 sec

You might be wondering why there isn't much output during the tests. This is because

we've set the local logging threshold to WARN. To see more details about what Pax-Exam is

running, edit the local log4j.properties file and change the threshold from WARN to INFO.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Let's take a closer look at one of the integration tests from ConfigurationBaseTest:

Listing 8.5 Basic configure then start integration test

@Test #1
public void test_basic_configuration_configure_then_start()
 throws BundleException, IOException
{
 final String pid = "test_basic_configuration_configure_then_start";
 final Configuration config = configure(pid, null, true); #2

 bundle = installBundle(pid, ManagedServiceTestActivator.class); #3
 bundle.start();
 delay(); #4

 final ManagedServiceTestActivator tester =
 ManagedServiceTestActivator.INSTANCE;

 TestCase.assertNotNull(tester.props); #5
 TestCase.assertEquals(pid, tester.props.get(
 Constants.SERVICE_PID));
 TestCase.assertNull(tester.props.get(
 ConfigurationAdmin.SERVICE_FACTORYPID));
 TestCase.assertNull(tester.props.get(
 ConfigurationAdmin.SERVICE_BUNDLELOCATION));
 TestCase.assertEquals(PROP_NAME, tester.props.get(PROP_NAME));
 TestCase.assertEquals(1, tester.numManagedServiceUpdatedCalls);

 config.delete(); #6
 delay();

 TestCase.assertNull(tester.props);
 TestCase.assertEquals(2, tester.numManagedServiceUpdatedCalls); #7
}

This integration test checks that the Configuration Admin implementation successfully

records configuration data that is registered before the managed bundle starts. The managed

bundle is the bundle being configured. The test method has the standard jUnit4 annotation

(#1) and extends a base class called ConfigurationTestBase which provides general helper

methods. One such method is used to set configuration data using the current

ConfigurationAdmin service (#2). The test creates and installs a managed bundle on the

fly (#3) and waits for the configuration to be delivered to this managed bundle (#4). It

makes sure the delivered configuration is correct (#5) before removing the configuration

(#6). The test waits for the managed bundle to be notified about this removal and verifies it

was correctly notified (#7).

This is a very clear test. It almost looks like a unit test except that calls are being made

between components instead of inside a single component or class. The other tests under the

it subproject follow the same basic pattern, which may be repeated several times:

 Check the initial system state

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 Disrupt the state (by calling services, adding or removing bundles)

 Check the resulting system state

As we saw just, the Configuration Admin integration tests all extend a single base class

called ConfigurationTestBase that defines helper methods to deal with configurations,

synchronize tests, and create additional bundles at execution time. These additional bundles

consume and validate the configuration data. Right now the tests are only configured to run

on Apache Felix, but let's see if they also pass on other frameworks.

Add the following lines to the Pax-Exam options inside the configuration() method in

ConfigurationTestBase, just like we did with the container test back in section 8.3.2:

CoreOptions.frameworks(
 CoreOptions.felix(), CoreOptions.equinox(), CoreOptions.knopflerfish()
),

Pax-Exam will now run each test three times – once per framework:

$ ant test.integration
...
[junit] Tests run: 6, Failures: 0, Errors: 0, Time elapsed: 84.585 sec
...
[junit] Tests run: 21, Failures: 0, Errors: 0, Time elapsed: 99.05 sec
...
[junit] Tests run: 45, Failures: 0, Errors: 0, Time elapsed: 220.184 sec
...
[junit] Tests run: 12, Failures: 0, Errors: 0, Time elapsed: 55.269 sec
...
[junit] Tests run: 12, Failures: 0, Errors: 0, Time elapsed: 54.686 sec
...
[junit] Tests run: 6, Failures: 0, Errors: 0, Time elapsed: 26.417 sec

No failures or errors! The Apache Felix Configuration Admin implementation works the

same on all three frameworks. This should not be unexpected, because one of the goals

driving OSGi is reusable modules. In fact, many framework bundles can be reused on other

frameworks. So when you find you need a particular compendium service and your current

framework doesn't provide it, take a look around in case you can reuse a bundle from

another site. You could even use Pax-Exam to try out different combinations of compendium

bundles.

Pax-Exam makes integration testing as simple as unit testing, but like any good tool you

have to be careful not to overuse it. Each integration test has the overhead of starting and

stopping an OSGi container, so the overall test time can soon build up as you add more and

more tests. People are looking into re-using containers during testing, but for some tests you

need complete isolation. So, while work is being done to reduce the cost of each test, it will

never be zero. In practice this means you should look carefully at your tests and try to get

the most from each one.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Integration testing is normally considered the last phase of testing before starting system

or acceptance tests. You've tested each piece of functionality separately and tested they

work together. There's nothing else to test before verifying your application meets the

customers' requirements or is there?

8.3.5 Management testing

This book contains a whole chapter on how to manage OSGi applications, so it is clear that

management is an important aspect. We should reflect that by testing applications to make

sure they can be successfully managed, upgraded, and restarted before releasing them into

production. Too often we see bundles that work perfectly until they are restarted or bundles

that cannot be upgraded without causing ripples that affect the whole application.

So what might management testing cover? Table 8.2 has some suggestions:

Task Involves

Install Installing new bundles (or features) alongside existing used implementations

Uninstall Uninstalling old bundles (or features) that may or may not have replacements

Upgrade Upgrading one or more bundles with new functionality or bug fixes

Downgrade Downgrading one or more bundles because of an unexpected regression

Graceful degradation See how long the application functions as elements are stopped or uninstalled

Table 8.2 Management testing ideas

We're going to show you how OSGi and Pax-Exam can help with management testing.

Our current test example exercises the latest Configuration Admin implementation from

Apache Felix. But what if you have an application that uses an earlier version, can you

upgrade to the new edition without losing any configuration data? Why not write a quick test

to find out!

You can find our example upgrade test under mt/upgrade_configadmin_bundle. It is

based on the listConfiguration test from the existing Apache Felix integration test suite.

Listing 8.6 shows the custom configuration for our upgrade test. We want to re-use the

helper classes from the earlier tests, so we explicitly deploy the integration test bundle

alongside our management test (#1). We also deploy the old Configuration Admin bundle

(#2) and store the location of the new bundle in a system property (#3) so we can use it

later to upgrade Configuration Admin during the management test. We use a system

property because the configuration and test methods are executed by different processes,

and system properties are a cheap way to communicate between processes.

Listing 8.6 Configuring the upgrade management test

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

private static String toFileURI(String path) {
 return new File(path).toURI().toString();
}

@org.ops4j.pax.exam.junit.Configuration
public static Option[] configuration() {
 return options(
 provision(
 bundle(toFileURI("bundles/integration_tests-1.0.jar")), #1
 bundle(toFileURI("bundles/old.configadmin.jar")), #2
 mavenBundle("org.osgi", "org.osgi.compendium", "4.2.0"),
 mavenBundle("org.ops4j.pax.swissbox", "pax-swissbox-tinybundles",
 "1.0.0")
),
 systemProperty("new.configadmin.uri").
 value(toFileURI("bundles/configadmin.jar")) #3
);
}

The rest of the test follows the same script as the original listConfiguration test with

three key differences. First, we make sure that the installed Configuration Admin bundle is

indeed the older 1.0.0 release by checking the OSGi metadata:

Dictionary headers = getCmBundle().getHeaders();
TestCase.assertEquals("org.apache.felix.configadmin",
 headers.get(Constants.BUNDLE_SYMBOLICNAME));
TestCase.assertEquals("1.0.0",
 headers.get(Constants.BUNDLE_VERSION));

Second, we do an in-place update of the Configuration Admin bundle to the new edition:

cmBundle.update(new URL(
 System.getProperty("new.configadmin.uri")).openStream());

We perform an in-place update to preserve the existing configuration data in the bundle's

persistent data area (3.3.4). This only works when upgrading bundles to a new version, if we

wanted to switch to a Configuration Admin implementation from another vendor then we

would need both bundles installed while we copied the configuration data between them.

Third, we make sure the Configuration Admin bundle was successfully updated to the new

version before finally checking that the configuration data still exists:

headers = cmBundle.getHeaders();
TestCase.assertEquals("org.apache.felix.configadmin",
 headers.get(Constants.BUNDLE_SYMBOLICNAME));
TestCase.assertEquals("1.2.7.SNAPSHOT",
 headers.get(Constants.BUNDLE_VERSION));

You can run this management test with a single command:

$ ant test.management

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

[junit] Running org.apache.felix.cm.integration.mgmt.ConfigAdminUpgradeTest
...
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 5.344 sec

You can even extend the upgrade test to make sure it works on other OSGi frameworks,

like we did with the original Apache Felix Configuration Admin integration tests. You'll see the

test passes on all three frameworks, which is more proof that this service implementation is

truly independent of the underlying OSGi framework.

This was only a small test, but if you look at the management examples from chapters 3

and 7, hopefully you can see that you could easily script larger, more complex scenarios in

Java (or any other JVM language) by using the standard OSGi lifecycle and deployment APIs.

Imagine building up a modular library of management actions (install, start, stop, upgrade,

downgrade) which you can quickly tie together to test a particular task. Such management

testing can help squash potential problems well in advance, minimizing real-world downtime.

Earlier on in this chapter we showed you how to test an application all the way up from

individual classes, to single bundles, and combinations of bundles. Just now we looked at

testing different management strategies, such as upgrading and downgrading components,

to make sure the application as a whole (and not just this release) continues to behave over

its lifetime. At this point you should be ready to move onto system and acceptance tests.

These tests do not need special treatment regarding OSGi, because OSGi is just an

implementation detail. As long as the application can be launched, it can be tested.

8.4 Summary
This chapter covered three different approaches to testing OSGi applications:

 bundling existing non-OSGi tests to run inside OSGi

 mocking existing OSGi tests to run outside of OSGi

 using OSGi test tools to automate test deployment

In an ideal world you would use a combination of these three approaches to test all of

your code, both inside and outside of one or more OSGi containers. In the real world,

projects have deadlines and developers need their sleep, so we suggest using tools such as

Pax-Exam to automate as much of the test bundling and deployment work as possible. These

tests should grow along with your application, giving you confidence that you do indeed have

a robust, modular application. But what should you do if one of your tests fails inside OSGi,

what tools and techniques can you apply to find the solution? Help is available in chapter 9.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

9
Debugging Applications

We just learned how to test individual bundles and application deployments in OSGi, but

what should you do when an integration test unexpectedly fails with a class loading

exception or a load test runs out of memory? If you were working on a classic Java

application, you would break out the debugger, start adding or enabling instrumentation, and

capture various diagnostic dumps. Well, an OSGi application is still a Java application, so you

can continue to use many of your well-honed debugging techniques. The key area to watch

out for is usually related to class loading, but that's not the only pitfall.

OSGi applications can have multiple versions of the same class running at the same time

requiring greater awareness of versioning, missing imports can lead to groups of classes that

are incompatible with other groups, and dangling services can lead to unexpected memory

leaks when updating bundles. In this chapter, we'll show you how to debug examples of all

these problems and suggest best practices based on our collective experience of working

with real-world OSGi applications in the field.

Let's kick off with something simple. Say we have an application composed of many

working bundles and one misbehaving bundle, how do we find the bad bundle and debug it?

9.1 Debugging bundles
Applications continue to grow over time – more and more features get built on top of existing

functionality; each code change can introduce errors, expose latent bugs, or break original

assumptions. In a properly modularized OSGi application, this should only lead to a few

misbehaving bundles rather than a completely broken application. If you can identify these

bundles you can decide whether to remove or replace them, potentially fixing the application

without having to restart it. But first you need to find out which bundles are broken!

Take our paint example, imagine we get a request to allow users to pick the colors of

shapes. Our first step might be to add a setColor() method to our SimpleShape interface:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 /**
 * Change the color used to shade the shape.
 *
 * @param color The color used to shade the shape.
 **/
 public void setColor(Color color);

You probably think adding a method to an API is a minor, backwards-compatible change,

but in this case the interface is implemented by various client bundles that we may not have

control over. In order to compile against the new SimpleShape API they need to implement

this method, so from their perspective this is actually a major change. We should therefore

increment the API version in the main paint example “build.xml” file to reflect this. The last

version we used was 5.0, so the new version will be:

<property name="version" value="6.0"/>

We now need to implement the setColor() method in each of the three shape bundles.

Listing 9.1 shows the updated implementation for the triangle shape bundle:

Listing 9.1 Implementing the setColor() method for the triangle shape

public class Triangle implements SimpleShape {

 Color m_color = Color.GREEN; #A

 public void draw(Graphics2D g2, Point p) {
 int x = p.x - 25;
 int y = p.y - 25;
 GradientPaint gradient =
 new GradientPaint(x, y, m_color, x + 50, y, Color.WHITE); #B
 g2.setPaint(gradient);
 int[] xcoords = { x + 25, x, x + 50 };
 int[] ycoords = { y, y + 50, y + 50 };
 GeneralPath polygon =
 new GeneralPath(GeneralPath.WIND_EVEN_ODD, xcoords.length);
 polygon.moveTo(x + 25, y);
 for (int i = 0; i < xcoords.length; i++) {
 polygon.lineTo(xcoords[i], ycoords[i]);
 }
 polygon.closePath();
 g2.fill(polygon);
 BasicStroke wideStroke = new BasicStroke(2.0f);
 g2.setColor(Color.black);
 g2.setStroke(wideStroke);
 g2.draw(polygon);
 }

 public void setColor(Color color) {
 m_color = color; #C
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

#A remember assigned color
#B apply color to gradient
#C update assigned color

The paint frame bundle contains another implementation of the SimpleShape API:

org.foo.paint.DefaultShape. This class lazily delegates to the real shape via the OSGi

service registry, so it also needs to implement the new setColor() method. The correct

implementation would follow the same approach used in DefaultShape.draw(). Namely:

check that we have access to the real shape from the registry and, if we don't, request it.

We're going to use a broken implementation instead and assume we always have access to

the shape instance:

public void setColor(Color color) {
 m_shape.setColor(color);
}

This sort of mistake could be made by a new team member who doesn't know about the

lazy delegation approach and assumes that m_shape has been initialized elsewhere. If the

application just happened to call draw() early on then this bug could go unnoticed for a long

time because m_shape would already be valid by the time the code reached setColor(). But

one day, someone might reasonably change the application so it calls setColor() first, like

in Listing 9.2 from the ShapeComponent class, and the bug will bite. (This example may seem

a little contrived, but it's surprisingly hard to write bad code when you really want to!)

Listing 9.2 Triggering the missing initialization bug

 protected void paintComponent(Graphics g) {
 super.paintComponent(g);
 Graphics2D g2 = (Graphics2D) g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 SimpleShape shape = m_frame.getShape(m_shapeName);
 shape.setColor(getForeground()); #A
 shape.draw(g2, new Point(getWidth() / 2, getHeight() / 2));
 }

#A setColor called before draw

We now have our broken OSGi application, which will throw an exception whenever you

try to paint shapes. Let's see if we can debug it using the JDK provided debugger, jdb [ref].

9.1.1 Debugging in action

The “Java Debugger” (also known as jdb) is a simple debugging tool that primarily exists as

an example application for the Java Platform Debugger Architecture (JPDA) rather than a

product in its own right. This means it lacks some of the polish and user-friendly features

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

found in most other debuggers. But jdb is still a useful tool, especially when debugging on

production servers which have limited installation environments.

DEBUGGING WITH JDB

We first need to build our broken example, once that is done we can start jdb:

$ cd chapter09/debugging-bundles

$ ant dist

$ jdb -classpath launcher.jar launcher.Main bundles

Initializing jdb ...
>

Jdb starts up, but it won't launch our application until we type “run”:

> run
run launcher.Main bundles
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
>
VM Started:
>

You should see the updated paint window appear, just like Figure 9.1. All we had to do is

call “jdb” instead of “java” and specify the class path and main class (jdb doesn't support the

-jar option). We didn't have to tell jdb anything about our bundles or the OSGi framework;

from jdb's perspective this is just another Java application. A quick side note: if you happen

to see several I/O exceptions mentioning the “felix-cache”, check that you haven't got any

leftover debugged Java processes running. When you forcibly quit jdb using “Ctrl-C” it can

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 9.1 Updated paint example running under jdb

http://www.manning-sandbox.com/forum.jspa?forumID=507

sometimes leave the debugged process running in the background, which in this case will

stop new sessions from using the local “felix-cache” directory.

If you try to draw a shape in the paint window, jdb will report an uncaught exception in

the AWT event thread:

Exception occurred: java.lang.NullPointerException (uncaught)
 "thread=AWT-EventQueue-0", java.awt.EventDispatchThread.run(),
 line=156 bci=152

AWT-EventQueue-0[1] where

 [1] java.awt.EventDispatchThread.run (EventDispatchThread.java:156)

This exception has percolated all the way up to the top of the AWT event thread and jdb

doesn't give us an easy way to see where it was originally thrown. We can ask it to stop the

application when this sort of exception occurs again, like so:

AWT-EventQueue-0[1] catch java.lang.NullPointerException

Set all java.lang.NullPointerException

AWT-EventQueue-0[1] resume

All threads resumed.

As soon as the application is resumed you will see an exception stack trace appear on the

jdb console. This is not a new exception, it is simply the AWT thread printing out the original

(uncaught) exception. The top of the exception stack confirms it was caused by our faulty

code inside DefaultShape, which we know is contained inside the paint frame bundle. Notice

that jdb doesn't give us a way to correlate the exception location with a particular JAR file.

What if we didn't know which bundle contained this package? We could try to locate it using

the console, but most framework consoles only let you see exported packages. For internal

packages we would have to come up with a list of candidate bundles by manually checking

the content of each bundle and comparing the exception location with the appropriate

source. As we shall see in a moment, tracking a problem down to a specific bundle is much

easier when you use an OSGi-aware debugger, such as the Eclipse debugger.

Returning to our broken example, try to paint again. Jdb will now detect and report the

exception at the point at which it is thrown inside setColor(), but because we haven't

attached any source files it won't show us the surrounding Java code:

Exception occurred: java.lang.NullPointerException
 (to be caught at: javax.swing.JComponent.paint(), line=1,043 bci=351)
 "thread=AWT-EventQueue-0", org.foo.paint.DefaultShape.setColor(),
 line=126 bci=5

AWT-EventQueue-0[1] list

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Source file not found: DefaultShape.java

No problem, we just need to attach our local source directory:

AWT-EventQueue-0[1] use org.foo.paint/src

AWT-EventQueue-0[1] list

122 g2.drawImage(m_icon.getImage(), 0, 0, null);
123 }
124
125 public void setColor(Color color) {
126 => m_shape.setColor(color);
127 }
128 }

When we print the current value of m_shape, we can finally see why it failed:

AWT-EventQueue-0[1] print m_shape

 m_shape = null

If you're an experienced Java programmer this should all be very familiar, no special OSGi

knowledge was required. But take another look at the command where we attached our

source directory:

use org.foo.paint/src

This command has no knowledge of bundles or class versions, it merely provides a list of

candidate source files for jdb to compare to debugged classes. Jdb only allows one version of

a given source file to be used at any one time, which makes life difficult when debugging an

OSGi application containing multiple bundle versions. You have to know which particular

collection of source directories to enable for each debug session.

DEBUGGING WITH ECLIPSE

Thankfully this is merely a limitation of jdb. If you use an IDE, such as Eclipse, which knows

that multiple versions of a class can co-exist in the same JVM, then you don't have to worry

about which source relates to which bundle version. The IDE manages that association for

you as you debug your application. To see this in action generate Eclipse project files for the

two paint examples from chapters 4 and 9:

$ cd ../../chapter04/paint-example

$ ant clean pde

$ cd ../../chapter09/debugging-bundles

$ ant clean pde

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Now import these two directories into Eclipse as existing projects. You should end up with

ten new projects; half marked as version 4, the rest as version 6. To debug these bundles in

Equinox click on the drop-down arrow next to the bug icon (circled at the top of Figure 9.2)

and select “Debug Configurations...”.

This should open a dialog box similar to the one shown above. Now follow this list of

instructions to configure a minimal Eclipse target platform for debugging the paint example:

6. Double-click on “OSGi Framework”

7. Change the name from “New_configuration” to “ch9_debugging_example”

8. Deselect “Include optional dependencies” as well as “add new workspace bundles”

9. Select “Validate bundles automatically”

10.Deselect the top-level “Target Platform”

11.Click on “Add Required Bundles”

12.Click on “Apply”

When you're happy with your selection press the “Debug” button to launch the debugger!

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 9.2 Configuring the Eclipse Debugger

http://www.manning-sandbox.com/forum.jspa?forumID=507

Two different paint frames will appear, as depicted in Figure 9.3. This is because we have

two versions of the code running simultaneously in the same JVM. Before we start to paint

let's add a breakpoint so the debugger will stop when someone tries to use a null object

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 9.3 Debugging the paint example in Eclipse

Figure 9.4 Watching for NullPointerExceptions

http://www.manning-sandbox.com/forum.jspa?forumID=507

reference. Click on the “Run” menu and choose “Add Java Exception Breakpoint...”. This will

open the dialog box shown in Figure 9.4. Select “java.lang.NullPointerException” and hit OK.

You should now have the two paint examples running in the Eclipse debugger. If you try

to paint with the original version, which has just three shapes in its toolbar, everything will

work as expected. But if you try to paint with the new version, the one with the paint brush

in its toolbar, the debugger will stop (Figure 9.5).

Look closely at the title bar. It has correctly identified the affected source code is from

chapter09 even though there are multiple versions of this class loaded in the Java runtime.

Once again, we see that the problem is caused by a null shape object. Using the Eclipse IDE,

we can trace the exception back to the specific bundle project. We can also click on different

frames in the stack trace to see what other bundles (if any) were involved. Compare this to

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 9.5 Exception caused by bad setColor() method

http://www.manning-sandbox.com/forum.jspa?forumID=507

jdb, where it was difficult to tell which bundles were involved in a given stack trace without a

good understanding of the source distribution.

We've successfully debugged an OSGi application with existing tools, from the basic jdb

debugger to a fully-fledged IDE like Eclipse. But what do you do when you finally track down

the bug? Do you stop your application, fix the code, and restart? What if your application

takes a long time to initialize or if it takes hours to get it into the state that triggered the bug

in the first place – surely there must be a better way!

9.1.2 Making things right with HotSwap

Thankfully there is and you might know it as “HotSwap”. HotSwap is a feature of the Java 5

debugging architecture that lets you change the definition of a class at execution time

without having to restart the JVM. The technical details behind HotSwap are outside of the

scope of this book, what's more interesting to us is whether it works correctly with OSGi.

In order to use HotSwap you need to attach a native agent at startup to the low-level

debugging hooks provided by the JVM. One such agent is attached whenever you run an

application under jdb. While jdb provides a basic “redefine” command to swap in newly

compiled classes, it won't work for our last example. Jdb refuses to redefine classes that

have multiple versions loaded, because it can't determine which version should be redefined.

But what about Eclipse? Can it help us update the right version of DefaultShape?

HOTSWAP WITH ECLIPSE

Back in section 9.1.1 we successfully used the Eclipse debugger to manage multiple versions

of source code while debugging. Will Eclipse come to the rescue again and let us fix the

broken DefaultShape implementation while leaving earlier working versions intact? If you

still have the Eclipse debugger instance running you can skip onto the next paragraph.

Otherwise, you'll need to re-launch the example by clicking on the drop-down arrow next to

the bug icon (circled in Figure 9.2) and selecting “ch9_debugging_example”. Trigger the

exception once again by attempting to paint a shape.

You should have the paint example suspended in the debugger at the point of failure, as

we saw back in Figure 9.5. Unlike jdb, which has to be told which classes to redefine, the

Eclipse debugger automatically attempts to redefine any class whose source changes in the

IDE (provided you have automatic builds enabled). This means all we need to do to squish

this bug is change the setColor() method in the open DefaultShape.java window so that

m_shape is initialized before we use it and save the file. For a quick solution we could simply

copy and paste the relevant code from the draw() method, like in Listing 9.3:

Listing 9.3 Fixing the setColor() method

 public void setColor(Color color) {
 if (m_context != null) { #A
 try {
 if (m_shape == null) { #B
 m_shape = (SimpleShape) m_context.getService(m_ref); #C

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 }
 m_shape.setColor(color);
 } catch (Exception ex) {} #D
 }
 }

#A confirm we're active
#B only get service once
#C access shape service
#D ignore missing shape

Copying code in this way is fine for a quick debugging session, but it would be better to

extract the initialization code into a common method for use by both draw() and setColor()

methods. Reducing code duplication makes testing and debugging a whole lot easier. For now

we'll keep things simple: go ahead and paste the code from Listing 9.3 over the broken

setColor() implementation. When you're ready, hit save to squish the bug!

What just happened? Most, if not all of you, got an error message like the one in Figure

9.6 saying the JVM could not add a method to an existing class. This happened because

Eclipse tried to update both versions of the DefaultShape class. While it was able to redefine

the broken setColor() method in the version from this chapter, there is no such method in

t h e DefaultShape class from chapter 4. Instead the debugger attempted to add the

setColor() method to the old class, but adding methods is not supported by the current

Sun implementation of HotSwap. Even worse, if we decide to ignore this error message and

continue, we still get the same exception as before when painting shapes.

There are alternative implementations of HotSwap that do support adding methods. One

such implementation can be found in the IBM JDK [ref]. If we debug the same example using

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 9.6 HotSwap failure updating DefaultShape

http://www.manning-sandbox.com/forum.jspa?forumID=507

IBM Java 6 as the target runtime (remembering of course to first revert the setColor()

method back to the broken version) we can successfully fix the problem without ever

restarting the process. Figure 9.7 confirms that even after using HotSwap to squish the bug,

both the old and new paint examples continue to work on the IBM JDK.

While we eventually managed to use HotSwap to fix the problem in our bundle, this isn't

exactly what we want because all versions of DefaultShape were updated. By chance this

didn't affect our old paint example because we were adding a completely new method. It has

no affect on the old application and just sits there unused. But what if we wanted to change

a method that was tightly coupled to existing code? We could end up fixing one version only

to find out we've broken all the others by unintentionally upgrading them with the new logic.

This may not be a big deal during development, as you'll probably be focusing on one version

at a time, but can we do better when debugging OSGi applications in the field?

HOTSWAP WITH JREBEL

Yes we can do better; there is a JVM agent called JRebel (formerly known as JavaRebel [ref])

that behaves in a similar way to HotSwap, but has much better support for custom class

loading solutions like OSGi. For those who don't know, a JVM agent is a small native library

that attaches to the process on start-up and is granted low-level access to the Java runtime.

Whenever you recompile a class, JRebel automatically updates the appropriate version

loaded in the JVM without affecting any other versions of the class. This makes it very easy

to develop, debug, and compare different releases of an application at the same time.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 9.7 Successful HotSwap with the IBM JVM

http://www.manning-sandbox.com/forum.jspa?forumID=507

So what are the downsides? The main downside is reduced performance due to the extra

tracking involved. JRebel also needs to know how custom class loaders map their classes and

resources to local files. It currently supports the Equinox OSGi implementation, but there's

no guarantee it will work with other OSGi frameworks. Finally you need to add an option to

the JVM command-line to use it, which is problematic in production environments that lock-

down the JVM's configuration. In fact, some places won't let you use JVM agents at all

because of the potential security issues involved. Agents have access to the entire process

and can redefine almost any class in your application. Adding an agent to your JVM is like

giving root access to a user in Linux. For these reasons, JRebel is usually best suited to

development environments.

But what if you're working somewhere that forbids the use of debuggers or JVM agents, is

there any other way we can update the broken bundle without restarting the whole process?

HOTSWAP THE OSGI WAY

Update is the key word here. Remember back in section 3.7 where we discussed the update

and refresh parts of the OSGi lifecycle, well we can use them here to deploy our fix without

having to restart the JVM. To see this in action, we first need to revert the setColor()

method of the local DefaultShape class back once again to the broken implementation:

public void setColor(Color color) {
 m_shape.setColor(color);
}

Next, completely rebuild our example:

$ ant clean dist

This time we're not going to use a debugger at all. We'll also add our command shell to

the current set of bundles, so we can ask the framework to update the fixed bundle later.

$ ant add_shell_bundles

$ java -jar launcher.jar bundles

First, confirm you have the broken implementation installed by attempting to paint a

shape (you should see an exception). Then fix the setColor() method of the DefaultShape

class using the code from Listing 9.3 and rebuild the paint frame bundle in a new window:

$ cd chapter09/debugging-bundles/org.foo.paint

$ ant

We can now try updating our fixed bundle. Go back to the OSGi console and type:

-> update 6

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Where 6 is the ID of the paint frame bundle, as reported by the “bundles” command.

When we issue the “update” command, the framework will update the bundle content by

reloading the bundle JAR file from its original install location. It will also stop and restart the

paint frame bundle, so you should see the paint frame window disappear and reappear. The

paint example will now be using the fixed code, which means you can paint multicolored

shapes as in Figure 9.8. Notice, we didn't need to follow the update with a refresh. This is

because the paint frame bundle doesn't export any packages, so we know there are no other

bundles hanging onto old revisions of the DefaultShape code.

Unlike JRebel, the OSGi update process does not depend on a special JVM agent. It also

doesn't have any significant effect on performance. These reasons together mean you could

use the OSGi update process in a production environment. The downside is that we had to

update and restart the entire bundle, potentially destroying the current state, rather than

redefine a single class. If we wanted to keep any previously drawn shapes we would need to

persist them somehow when stopping, and restore them when starting.

We've just seen how you can debug and fix problems in OSGi applications using everyday

development tools such as jdb and Eclipse. We looked at more advanced techniques, such as

HotSwap and JRebel, and finally used the tried and tested OSGi update process to fix a

broken bundle. Hopefully these examples made you feel a bit more comfortable about

debugging your own OSGi applications. In the next section, we will take a closer look at a set

of problems you will eventually encounter when using OSGi: class loading issues.

9.2 Solving class loading issues
OSGi encourages and enforces modularity, which, by its very nature, can lead to class

loading issues. Maybe you forgot to import a package or left something out when building a

bundle. Perhaps you have a private copy of a class you're supposed to be sharing or forgot to

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 9.8 Painting with the fixed example

http://www.manning-sandbox.com/forum.jspa?forumID=507

make sure two tightly-coupled packages are provided by the same bundle. These are all

situations which break modularity and can lead to various class loading exceptions. The right

tools can help you avoid getting into these situations in the first place, but it is still

worthwhile knowing what can happen and what the resulting problem signatures look like. In

the following sections, we'll take you through a number of common class loading problems;

what to look out for, what might be the cause, and how to solve them.

All the exceptions discussed in this section come from the same example application: a

simple hub-and-spoke message system that uses the OSGi Extender Pattern (section 3.4) to

load spoke implementations at execution time. The basic architecture is shown in Figure 9.9.

The only thing that changes throughout this example is the content of the spoke

implementation bundle; the API, hub extender, and test bundles remain exactly the same. By

the end of this section you should understand how OSGi class loading can be affected by

simple changes in content and metadata, and how you can diagnose and fix them when

something goes wrong.

9.2.1 ClassNotFound vs NoClassDefFound

The first thing you should do when debugging a class loading exception is look and see if the

exception is “ClassNotFound” or “NoClassDefFound”. There is a subtle difference between

these two types which will help you understand why the exception occurred and how to fix it.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 9.9 Simple hub-and-spoke message system

Hub
Extender

Spoke

Spoke

Spoke

Spoke

Spoke-Class: org.foo.spoke.SpokeImpl
Spoke-Name: some_identifiable_name

Hub
Tester

send

receive

receive

receive

receive

Hub
API/SPI

http://www.manning-sandbox.com/forum.jspa?forumID=507

CLASSNOTFOUNDEXCEPTION

A ClassNotFoundException means the reporting class loader was not able to find or load the

initial named class, either by itself or by delegating to other class loaders. There are three

main reasons why this could occur in a Java application:

 There is a typo in the name passed to the class loader (very common),

 The class loader (and its peers) have no knowledge of the named class, or

 The named class is available, but is not visible to the calling code.

The third case, visibility, is where things get interesting. You know all about public,

protected, and private access; but how many of you know what package-private

means? Package-private classes are those without any access modifier before their class

keyword. Their visibility rules are unique: in addition to only being visible to classes from the

same package, they are also only visible to classes from the same class loader. Most Java

programs have a single application class loader, so this last rule hardly ever comes up. OSGi

applications contain multiple class loaders, but as long as each package is loaded by only one

class loader it's effectively the same as before. The real problem arises with split packages

(5.3.2), which span several class loaders. Package-private classes from a split package in

one bundle are not visible to fellow classes in other bundles. This can lead to

ClassNotFoundExceptions or IllegalAccessExceptions that wouldn't happen with a single

application class loader. Figure 9.10 shows three different package-private scenarios; one

classic and two involving split packages. Each scenario has subtly different class visibility.

To see a common ClassNotFoundException situation, run the following example:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 9.10 Split packages and package-private visibility

package a;
public class A { }

package a;
class B { }

package a;
class C { }

package a;
public class A { }

package a;
class B { }

package a;
class C { }

package a;
public class A { }

package a;
class B { }

package a;
class C { }

A can see B and C

B can see A and C

C can see A and B

A can't see B or C

B can see A and C

C can see A and B

A can see B but not C

B can see A but not C

C can see A but not B

http://www.manning-sandbox.com/forum.jspa?forumID=507

./chapter09/classloading/PICK_EXAMPLE 1

This builds and deploys a spoke bundle that has incorrect extender metadata concerning

its implementation class: it lists the name as MySpokeImpl instead of SpokeImpl. This is an

easy mistake to make in applications configured with XML or property files because of the

lack of type safety. The resulting exception gives the name of the missing class:

java.lang.ClassNotFoundException: org.foo.spoke.MySpokeImpl

You should use this information to check if the name is correct, the class is visible, and

the package containing the class is either imported or contained inside the bundle. Most

ClassNotFoundExceptions are easily solved by checking bundle manifests and configuration

files. The hardest problems involve third-party custom class loaders; you inevitably need

access to the class loader's source code to determine why it couldn't see a particular class,

as well as having the patience to unravel the exception stack.

So that's ClassNotFoundException, but how is NoClassDefFoundError any different?

NOCLASSDEFFOUNDERROR

Firstly, it's an error rather than an exception, which means applications are discouraged from

catching it. Secondly, it means the initial class that started the current load cycle was found,

but the class loader was not able to finish loading it because a class it depends on was

missing. This can happen when a class is compiled against a dependent API, but the

resulting bundle neither contains nor imports that package.

Continuing with our exceptional example, type:

./chapter09/classloading/PICK_EXAMPLE 2

This time the extender metadata in the spoke bundle is correct, but the bundle doesn't

import the org.foo.hub.spi package containing the Spoke interface. The runtime begins to

load the spoke implementation, but cannot find the named interface when defining the class:

java.lang.NoClassDefFoundError: org/foo/hub/spi/Spoke
...
Caused by: java.lang.ClassNotFoundException: org.foo.hub.spi.Spoke

Debugging a NoClassDefFoundError involves tracing back through the dependencies of

the class being loaded to find the missing link (or links). While the cause in this example is

clear, developers often get side-tracked by assuming the initial class is at fault. The real

culprit might be hidden right down at the bottom of the stack as the original cause of the

exception. Once you know the real cause you can use the same problem solving approach

used in ClassNotFoundException to fix the issue.

Figure 9.11 summarizes the difference between the two “missing class” exception types,

together they make up many of the class loading issues you'll encounter when using OSGi.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Just remember: ClassNotFoundException means a class is missing, NoClassDefFoundError

means one of its dependencies is missing.

Unfortunately these two exceptions don't have a monopoly on confusing OSGi developers.

A classic puzzle for people new to class loading goes something like this: you are given an

object that says its type is org.foo.Item, but when you try to cast it to org.foo.Item you

get a ClassCastException! What's going on?

9.2.2 Casting problems

How many of you would expect a ClassCastException from the following code?

ServiceTracker itemTracker =
 new ServiceTracker(bundleContext, “org.foo.Item”, null);

itemTracker.open(true); #1

Item item = (Item) itemTracker.getService(); #2

At first glance it looks correct: we configure a service tracker to track services of type

org.foo.Item and cast the discovered service, if any, to the same type. But notice how we

open the tracker at (#1). Instead of calling the no-argument open() method as usual, we're

passing in a boolean: true. This tells the service tracker to track all services whose type

name matches the “org.foo.Item” string, not just the ones which are class loader compatible

with our bundle (we discussed a similar situation back in section 4.5.1). If another bundle

provides an Item service and happens to get the org.foo package from a different class

space than us, you will see a ClassCastException at (#2).

How can this be? Recall from chapter 2 that class loaders actually form part of a type's

identity at execution time, so the exact same class byte code loaded by two different class

loaders is considered to be two distinct types. This makes all the difference, since OSGi uses

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 9.11 Difference between ClassNotFound and NoClassDefFound

bundleB.loadClass(“a.A”) → a.A ClassNotFoundException

bundleB.loadClass(“b.B”) → b.B → a.A NoClassDefFoundError

package a;

public class A { }

package b;

public class B extends a.A { }
no Import-Package

http://www.manning-sandbox.com/forum.jspa?forumID=507

a class loader per bundle to support class space isolation in the same Java runtime. It also

means you can get ClassCastExceptions when casting between types that look identical on

paper.

To see this in practice, run the third example:

./chapter09/classloading/PICK_EXAMPLE 3

You should see a ClassCastException involving the Spoke class. This is because our

spoke bundle contains its own private copy of org.foo.hub.spi, instead of importing it from

the hub bundle. The spoke and hub end up using different class loaders for the same API

class, which makes the spoke implementation incompatible with the hub:

java.lang.ClassCastException: org.foo.spoke.SpokeImpl
 cannot be cast to org.foo.hub.spi.Spoke

The fastest way to investigate these “impossible” ClassCastExceptions is to compare

the class loaders for the expected and actual types. OSGi frameworks sometimes label their

class loaders with the bundle identifier, so calling getClassLoader().toString() on both

sides can tell you which bundles are involved. You can also use the framework console to find

out who's exporting the affected package and who imports it from them. Use this to build a

map of the different class spaces. The specific commands to use depend on the framework;

at the time of writing this book the OSGi Alliance is still standardizing a command shell. On

Felix, the “inspect package” command is the one to use. On Equinox you would use the

“packages” or “bundle” commands. Once you understand the different class spaces, you can

adjust the bundle metadata to make things consistent to avoid the ClassCastException.

One approach might be to add “uses” constraints, which we first introduced at the end of

chapter 2.

9.2.3 Using “uses” constraints

Cast your mind back to chapter 2, specifically the discussion about consistent class spaces in

section 2.7.2. Bundles must have a consistent class space to avoid running into class-related

problems, such as visibility or casting issues. When you have two tightly-coupled packages it

is sometimes necessary to add “uses” constraints to make sure these packages come from

the same class space. Perhaps you don't think you need all these “uses” constraints

cluttering up your manifest, after all what's the worst that could happen if you remove them?

Let's find out by running the fourth example in our class loading series:

./chapter09/classloading/PICK_EXAMPLE 4

Yet again we get a class loading exception, except this time it happened inside the spoke

implementation. The Java runtime noticed that we attempted to load two different versions

of the Message class in the same class loader, in other words our class space is inconsistent!

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

java.lang.LinkageError: loader constraint violation: loader (instance of
 org/apache/felix/framework/searchpolicy/ModuleImpl$ModuleClassLoader)
 previously initiated loading for a different type with name
 "org/foo/hub/Message"

How did this happen? Well our new spoke bundle has an open version range for the hub

API, which means it can import any version after “1.0”. It also provides a new “2.0” version

of the org.foo.hub package that includes a modified Message interface. Now you might be

wondering what this package is doing in our spoke bundle – maybe we're experimenting with

a new design or perhaps it got included by mistake. How it got there is not really important.

What is important is that we have a “2.0” version of org.foo.hub floating around without a

corresponding “2.0” version of the Spoke SPI. Let's see how this affects the package wiring.

The hub extender and test bundles still have the original, restricted version range:

Import-Package: org.foo.hub;version="[1.0,2.0)",org.foo.hub.api;versio
 n="[1.0,2.0)",org.foo.hub.spi;version="[1.0,2.0)"

Thus, they get Spoke and Message from the original API bundle, but our spoke bundle

has:

Import-Package: org.foo.hub;version="1.0",org.foo.hub.spi;version="1.0"

Which means it gets the original Spoke interface from the API bundle and the updated

Message from itself. (Remember the framework always tries to pick the newest version it

can.) This means the Spoke interface and our implementation see different versions of the

Message interface, which causes the LinkageError in the JVM. Figure 9.12 shows the

mismatched wiring.

-nouses: ${no.uses} #A

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 9.12 Mismatched wiring due to missing “uses” constraints

Hub
Extender

SpokeHub
API/SPI

org.foo.hub 1.0 org.foo.hub 2.0

org.foo.hub.spi 1.0 org.foo.hub.spi 1.0

org.foo.hub.Message 1.0 org.foo.hub.Message 2.0

org.foo.hub.spi.Spoke 1.0 org.foo.spoke.SpokeImpl

≠

http://www.manning-sandbox.com/forum.jspa?forumID=507

#A ${no.uses} is true for example 4

Removing this re-enables bnd support for “uses” constraints. If we run the example

again:

./chapter09/classloading/PICK_EXAMPLE 4

We no longer see any exceptions or linkage errors:

SPOKE org.foo.spoke.no_uses_constraints RECEIVED Testing Testing 1, 2, 3...

We just saw how “uses” constraints can help you avoid inconsistent class spaces and odd

linkage errors, but what happens if they can't be satisfied? We can find out by tweaking the

version range for org.foo.hub in the spoke bundle. By using a range of “[2.0, 3.0)” we leave

only one matching exporter of org.foo.hub, the spoke bundle itself. But this breaks the

“uses” constraints on the SPI package exported from the main API bundle, because it has a

range of “[1.0, 2.0)” for org.foo.hub. These two ranges are incompatible, there is no

way we can find a solution that satisfies both. The fifth example demonstrates the result:

./chapter09/classloading/PICK_EXAMPLE 5

Error starting framework: org.osgi.framework.BundleException:
 Unable to resolve due to constraint violation.

Unfortunately, the framework exception doesn't tell us which particular constraint failed

or why. Determining why a solution wasn't found can be very time-consuming without help

from the framework because the search space of potential solutions can be very large.

Thankfully, Equinox has a “diag” command to explain which constraints were left unsatisfied.

With Felix you can add more details to the original exception by enabling debug logging.

For example, if we change the last line in the PICK_EXAMPLE script to:

java "-Dfelix.log.level=4" -jar launcher.jar bundles

Then Felix prints the following message before the exception is thrown:

./chapter09/classloading/PICK_EXAMPLE 5

DEBUG: Constraint violation for 1.0 detected;
 module can see org.foo.hub from [1.0] and org.foo.hub from [2.0]

The message tells us the unsatisfied constraint is related to the org.foo.hub package, it

also gives us the identifiers of the bundles involved. This is another reason why it's a good

idea to use “uses” constraints. Without them you'd have to debug confusing class loading

problems with no support from the framework. “Uses” constraints help avoid linkage errors

to begin with and help the framework explain why certain sets of bundles aren't compatible.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

But it can only do this if the constraints are valid and consistent; which is why we

recommend you always use a tool to compute them, such as bnd.

So far we've concentrated on what happens when your bundle metadata is wrong, but

even a perfect manifest doesn't always guarantee success. Certain coding practices common

to legacy code can cause problems in OSGi because they assume a flat, static class path.

One practice worth avoiding is the use of Class.forName() to dynamically load code.

9.2.4 Staying clear of Class.forName

Suppose you're writing a module that needs to look up a class at execution time based on

some incoming argument or configuration value. Skimming through the Java platform API

you spot a method called Class.forName(). Give it a class name and it returns the loaded

class – perfect, right? Its ongoing popularity suggests many Java programmers agree, but

before sprinkling it throughout your code you should know it has a flaw: it does not work well

in modular applications. It assumes the caller's class loader can see the named class, which

we know is not always true when you enforce modularity.

How does this affect us as OSGi developers? Well, any class that you attempt to load

using Class.forName() must either be contained, imported, or boot delegated by the bundle

making the call. When you're loading from a selection of known classes this isn't such a big

deal, but if you're providing a general utility (such as an aspect-weaving service), then

there's no way to know which classes you might need to load. And even if you happen to

know, you may decide to keep things flexible for the future. Those of you who remember our

discussion on discovering imports from section 6.1.3 might think this sounds like a job for

dynamic imports:

DynamicImport-Package: *

But dynamic imports only work when the wanted packages are exported. In addition, our

bundle could get wired to many different packages in numerous client bundles. If any one of

these bundles was refreshed our bundle would also end up refreshed, which in turn might

affect the other bundles. Finally, we can only import one version of a package at any one

time. If we want to work with non-exported classes or handle multiple versions of the same

code concurrently, we need to find another way to access them.

Whenever you work with OSGi class loading, always remember there are well-defined

rules governing visibility. Its not some arbitrary decision about who sees what. Every loaded

class must be visible to at least one class loader. Our bundle might not be able to see the

client class, but the client bundle certainly can. If we can somehow get ahold of the client

class loader, we can use it to load the class instead of using our own class loader. This job is

much easier if the method arguments already include a type or instance of a type that we

know belongs to the client. In fact, let's see how easy it can be with the help of our sixth

spoke implementation, shown in Listing 9.4:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Listing 9.4 Audited spoke implementation

public class SpokeImpl implements Spoke {

 String address;

 public SpokeImpl(String address) {
 this.address = address;
 }

 public boolean receive(Message message) {
 if (address.matches(message.getAddress())) {

 Class msgClazz = message.getClass();
 String auditorName = msgClazz.getPackage().getName() + ".Auditor"; #A

 try {
 Class auditClazz = Class.forName(auditorName); #B

 Method method = auditClazz.getDeclaredMethod(
 "audit", Spoke.class, Message.class);

 method.invoke(null, this, message); #C

 return true;

 } catch (Throwable e) {
 e.printStackTrace();
 return false;
 }
 }
 return false;
 }
}

#A assume same package
#B don't use forName!
#C call auditor method

This spoke assumes each Message implementation has an accompanying Auditor class in

the same package and uses reflection to access it and log receipt of the message. The reason

behind this design is not important, you might imagine the team wants to support both

audited and non-audited messages without breaking the simple message API. What is

important is that by using Class.forName() the spoke bundle assumes it can see the

Auditor class. But we don't export our implementation packages, so when you run the sixth

example you hopefully won't be too surprised to see an exception:

./chapter09/classloading/PICK_EXAMPLE 6

java.lang.ClassNotFoundException: org.foo.hub.test.Auditor

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

We know the Auditor sits alongside the Message implementation in the same package,

so they share the same class loader (we don't have any split packages). We just need to

access the Message implementation class loader and ask it to load the class like so:

Class auditClazz = msgClazz.getClassLoader().loadClass(auditorName);

Remove the Class.forName() line from the spoke implementation in Listing 9.4 and

replace it with the line above. You can now run the sixth example without any problem:

./chapter09/classloading/PICK_EXAMPLE 6

Fri Sep 18 00:13:52 SGT 2009 - org.foo.spoke.SpokeImpl@186d4c1
 RECEIVED Testing Testing 1, 2, 3...

Class.forName() considered harmful!

Some of you may be wondering why we didn't use the longer form of Class.forName(),

the method that accepts a user given class loader instead of using the caller's class

loader. We don't use it because there is a subtle but important difference between these

statements:

Class<?> a = initiatingClassLoader.loadClass(name);

Class<?> b = Class.forName(name, true, initiatingClassLoader);

First consider loadClass(): the initiating class loader is used to initiate the load request.

It may delegate through several class loaders before finding one that has already loaded

the class or can load it. The class loader that defines the class (by converting its bytecode

into an actual class) is called the defining class loader. The result of the load request is

cached in the defining class loader in case anyone else wants this class. Now consider

forName(): while it behaves like loadClass() when looking for new classes, it caches the

result in both the defining and initiating class loaders. It also consults the initiating loader

cache before delegating any load request. So with loadClass() the resulting class could

depend on your context, perhaps according to which module you're currently running in.

But with forName() you get the same result irrespective of context. Because this extra

caching might lead to unexpected results in dynamic environment such as OSGi, we

strongly recommend you use loadClass() instead of forName().

In our last example we found the client class loader by examining one of the arguments

passed into our method and used that to look up the client's Auditor class. What if none of

the method arguments relate to the client bundle? Perhaps we can use a feature specifically

introduced for application frameworks in Java 2: the “Thread Context Class Loader”.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

9.2.5 Following the Context Class Loader

The Thread Context Class Loader (or TCCL) is as you might expect, a thread-specific class

loader. Each thread can have its own TCCL, and by default a thread inherits the TCCL of its

parent. Accessing the TCCL can be done with a single line of Java code:

ClassLoader tccl = Thread.currentThread().getContextClassLoader();

The TCCL is very useful when writing code that needs dynamic access to classes or

resources, but must also run inside a number of different containers such as OSGi. Instead of

adding a class loader parameter to each method call, you can instead use the code listed

above to access the current TCCL. All the container needs to do is update the TCCL for each

thread as it enters and leaves the container. When done properly this approach also supports

nesting of containers, as shown in Figure 9.13.

{FIGURE}

Figure 9.13 Using TCCL with nested containers

Let's see how the TCCL can help us solve a class loading issue without affecting the API.

./chapter09/classloading/PICK_EXAMPLE 7

You should see an exception when the spoke attempts to load the Auditor class:

java.lang.ClassNotFoundException: org.foo.hub.test.Auditor

If you look at our seventh spoke implementation (Listing 9.5) you see it uses the TCCL:

Listing 9.5 Audited spoke implementation with TCCL

public class SpokeImpl implements Spoke {

 String address;

 public SpokeImpl(String address) {
 this.address = address;
 }

 public boolean receive(Message message) {
 if (address.matches(message.getAddress())) {

 Class msgClazz = message.getClass();
 String auditorName = msgClazz.getPackage().getName() + ".Auditor";

 try {
 Class auditClazz = Thread.currentThread()
 .getContextClassLoader().loadClass(auditorName); #A

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 Method method = auditClazz.getDeclaredMethod(
 "audit", Spoke.class, Message.class);

 method.invoke(null, this, message);

 return true;

 } catch (Throwable e) {
 e.printStackTrace();
 return false;
 }
 }
 return false;
 }
}

#A use current TCCL

So as long as the TCCL is assigned properly by the container or the caller, this should

work. The OSGi standard doesn't define what the default TCCL should be, it is left up to the

framework implementers. This example uses Apache Felix, which leaves the default TCCL

unchanged, in other words it will be set to the application class loader. Unfortunately the

application class loader has no visibility of the Auditor class contained within the test bundle,

which explains why we saw a ClassNotFoundException.

To avoid this exception we need to update the TCCL in the test bundle before sending the

message. To be consistent we should also record the original TCCL and reset it after the call

completes. This last step is very important if you want to nest or share containers inside the

same process, as we saw in Figure 9.13. Now take a look at the test activator contained

under “org.foo.hub.test”, Listing 9.6 indicates the changes needed to set and reset the TCCL:

Listing 9.6 Setting and resetting the TCCL

public Object addingService(ServiceReference reference) {
 ClassLoader oldTCCL = Thread.currentThread().getContextClassLoader(); #A

 try {
 Thread.currentThread().setContextClassLoader(
 getClass().getClassLoader()); #B

 Hub hub = (Hub) ctx.getService(reference);
 hub.send(new TextMessage(".*", "Testing Testing 1, 2, 3..."));

 } catch (Throwable e) {
 e.printStackTrace();
 } finally {
 Thread.currentThread().setContextClassLoader(oldTCCL); #C
 }
 return null;
}

#A record old TCCL
#B update TCCL

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

#C reset old TCCL

With these three changes we can re-run the test without any class loading problems:

./chapter09/classloading/PICK_EXAMPLE 7

Fri Sep 19 00:13:52 SGT 2009 - org.foo.spoke.SpokeImpl@186d4c1
 RECEIVED Testing Testing 1, 2, 3...

That wraps up our discussion of class loading problems. We were able to use the same

example code to show a wide range of different exceptions that you might encounter when

developing OSGi applications. Hopefully this will provide you with a foundation for any future

class loading investigations. If you can relate a particular exception with one of the examples

here then hopefully the associated solution will also help fix your problem.

Unfortunately class loading is not the only problem you might encounter when working

with OSGi, but the next topic we will look at is indirectly related to class loading. OSGi

enforces modularity with custom class loaders. An OSGi application will contain several class

loaders, each one holding onto a set of resources. Unused class loaders should be cleared as

bundles are uninstalled and the framework refreshed, but occasionally a rogue reference

keeps a class loader and its associated resources alive. This can turn into a memory leak.

9.3 Tracking down memory leaks
Memory leaks can occur in OSGi applications just like any other Java application. All you

need is something like a rogue thread or static field hanging onto one end of a spaghetti ball

of references, stopping the garbage collector from reclaiming the objects. In a desktop Java

application you might not notice any memory leaks because you don't leave the application

running for long. As soon as you restart the JVM your old application with its ever-growing

heap of objects is gone and you get a brand new empty heap to fill.

OSGi applications on the other hand typically have longer lifetimes, an uptime of many

months is not unreasonable. In fact, one of the strengths of OSGi is that you are able to

install, update, and uninstall bundles without having to restart the JVM. While this is great

for maximizing uptime, it does mean you have to be very careful not to introduce memory

leaks in your bundles. You cannot always rely on the process being occasionally restarted.

Furthermore, updating a bundle introduces a new class loader to hold the updated classes. If

there is anything holding onto objects or classes from the old class loader, then it won't be

reclaimed and your process will use more and more class loaders each time the bundle is

updated or re-installed.

Often times, class loader leaks can often be more problematic than simple object leaks,

because several Java runtimes (like Sun's HotSpot JVM) place classes in a separate heap

with a much smaller limit than the main object heap. Imagine how quick this so-called

“PermGen” heap could fill up when each bundle update adds dozens more classes without

unloading any class. While any leak is a cause for concern, depending on your requirements

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

not all leaks may warrant investigation. You might not even notice certain leaks if they only

add a few bytes to the heap every now and again. So what is the best way to test for leaks

in an OSGi application?

9.3.1 Analyzing OSGi heap dumps

[DOCUMENT memory-leaks EXAMPLE]

9.3.2 Monitoring bundle resources

[DOCUMENT monitoring CONCEPTS]

9.4 Dangling services
In addition to the everyday leaks Java developers have to be careful of, the OSGi framework

introduces a new form of memory leak to trap the unwary: dangling services. But what

exactly do we mean by dangling?

Cast your mind back to section 4.3.1 where we showed why it was a bad idea to access a

service instance once and store it in a field. This was because you wouldn't know when this

service was unregistered by the providing bundle. Your bundle would continue to keep a

strong reference to the original service instance and its entire graph of references long after

the providing bundle had been updated or uninstalled. You would also be keeping alive the

class loaders of any classes used by this instance. Like many memory leaks you could end up

with a significant amount of potential space being kept alive by one single field. Clearing this

field would free everything up and allow your application to continue its uptime.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

 Figure 9.14 Classic dangling service

Bundle B

Service

Registry

Bundle A Bundle B

Service
object

Field

Field

registerService getService

Bundle A is uninstalled, Bundle B doesn't notice!

strong referenceService
object

http://www.manning-sandbox.com/forum.jspa?forumID=507

9.4.1 Finding a dangling service

In an ideal world your application won't resemble a haystack! Often you will have some idea

of where the leak might be because of the bundles involved. For example, if bundle A leaks

when it is updated and you know that it's only used by bundles X and Y, then you can

concentrate your search on those three bundles. This is another benefit of modularity: by

enforcing module boundaries and interacting indirectly via the service registry you reduce

the contact points between modules. You no longer have to read through or instrument the

entire code base for potential references because different concerns are kept separate from

one another. But regardless of how much code you have to look through, there are a couple

of techniques you can use to narrow the search, ranging from high-level queries to low-level

monitoring.

QUERYING THE FRAMEWORK

You can perform high-level monitoring by using facilities built into the OSGi framework to

track service use. The Bundle API has a method called getServicesInUse() to tell you

which services the OSGi framework believes a given bundle is actively using at any one time.

Remember from Chapter 4, this is done by tracking calls to getService() and

ungetService(). Unfortunately, many developers and even some service-based

frameworks do not call ungetService() when they are done with a service, which can lead

you to think there is a leak where there isn't one. This approach also doesn't detect when a

direct reference to the service escapes from the bundle into some long-lived field. You can

also use the getUsingBundles() method from the ServiceReference API to perform a

reverse check and find out which bundles are using a given service, but this too doesn't

account for incorrectly cached instances.

MONITORING WITH JVMTI

Low-level monitoring is possible using the JVM Tools Interface [ref] or JVMTI for short. JVMTI

is a native API that provides several ways to interrogate, intercept, and introspect aspects of

the JVM such as the Java heap, locks, and threads. There are already open-source agents

that can analyze the heap to find leak candidates. It should be possible to take these generic

agents and enhance them with knowledge about OSGi specifics, so they can watch for

references to OSGi service instances on the Java heap and determine which bundle is

responsible for holding onto them.

Just as we saw when debugging, it's one thing to find out why something is happening.

Being able to do something about it (in this case protect against it) is even more important.

9.4.2 Protecting against dangling services

One of the simplest ways to protect against dangling services is to let a service component

framework like Declarative Services manage services for you. Component frameworks are

discussed in detail in Chapter 11, for now you might like to think of them as watchful parents

that protect their children from the harsh realities of the world. But even component

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

frameworks may not be able to help against rogue clients that stubbornly refuse to relinquish

references to your service. We somehow need to give these bundles a reference that we can

clear ourselves, without requiring their co-operation.

One way to do this is by using a delegating service object. A delegating service object is

basically a thin wrapper that implements the same set of interfaces as the original service. It

contains a single reference to the real service implementation that can be set and cleared by

methods only visible to our registering bundle. By registering this delegating object with the

service registry instead of the real service implementation we stay in control. Because client

bundles are unaware of the internal indirection, they cannot accidentally keep a reference to

the underlying service. As Figure XX shows, we can decide to sever the link at any time:

While you could manually create delegating service objects upfront, this would only make

sense for small numbers of services. For large systems you'd want a generic service that

accepts a set of interfaces at execution time and returns the appropriate delegating service

object. There's also an overhead involved in both memory and performance, so you should

really only use a delegating service object when you really don't trust client bundles to do

the right thing or your service uses so many resources that even a single leak could be

dangerous.

9.5 Summary
We started off this chapter with a practical guide to debugging OSGi applications using the

console debugger (jdb) and an advanced IDE (Eclipse). We then moved onto specific issues

that you may encounter while working with OSGi, including seven class loading problems:

 ClassNotFoundException

 NoClassDefFoundException

 ClassCastException

 Missing 'uses' constraints

 Mismatched 'uses'

 Class.forName issues

 TCCL loading issues

This was followed by a couple of related resource discussions:

 Memory / resource leaks

 Dangling OSGi services

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure XX Delegating service object

http://www.manning-sandbox.com/forum.jspa?forumID=507

The next chapter should be a welcome break from all of this low-level debugging and

testing. Look out for fresh, high-level concepts as we discuss managing OSGi applications!

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

10
Component Models

So far in this book we have shown you how to develop applications that run using the core

OSGi framework, which includes three key layers: modularization, lifecycle and services. In

the chapter 2 we mentioned that component orientated programming actually shares some

common characteristics with modularization. Also in chapter 4 we mentioned that a service

model can work along side a component model. So there's obviously some level of synergy

between OSGi and component technologies. During this chapter we'll explore various types

of component models and their usage in an OSGi environment. By the end of this chapter

you will know how to migrate existing component applications to OSGi or build new OSGi

applications with a minimum of fuss.

Component models have become incredibly popular in Java development over the past

decade, and there are a vast number of different schemes that can be used, including

Enterprise Java Beans, Spring Beans, Google Guice, SCA, Fractal, Avalon, etc. During the

course of this chapter we are going to look at three different component models that are

designed to work specifically in an OSGi environment; Declarative Services, Blueprint

Container and iPojo. The first two are defined as part of the OSGi compendium specification,

the third is an extremely interesting project hosted at the Apache Felix project. We will reuse

our paint example converting it to use each of these component models and in the process of

doing so we will discuss the various unique features of each model.

At the end of this chapter we will see it is possible for all three of these component

models to interoperate in the same framework along side standard OSGi services. We feel

this demonstrates the extreme flexibility provided by the OSGi specification. Given a

common classloading and services model with enforced modularity boundaries different

developers can pick and choose the programming model they wish to use. Whilst still

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

allowing their code to work seamlessly at runtime with code written by other developers

using potentially very different programming models.

The key aspect of all component technologies is that they describe the functional building

blocks of your application. These building blocks are typically business objects which publish

particular interfaces and consume other interfaces provided by other components. When

using a component model you code your business objects using a certain pattern defined by

the component model. Table 10.1 provides a quick summary of the types of component

models and the patterns they employ.

Table 10.1 Types of component models

Type Description

Type I Early component models such as EJB 2.0 required the developer to implement defined

interfaces, or implement defined method signatures e.g. initialize(),

setDependency(Service service) or destroy() etc.

Type II The next generation of component models abstracted the component lifecycle to an

external configuration file – usually XML – which defined the lifecycle methods to call on

the Java objects.

Type III Most recently component models tend to use a sprinkling of annotations to mark out the

lifecycle methods to call

COMPONENT BENEFITS

The requirement to code to a certain pattern is actually a bit of a constraint, as you are

bounded by the rules of the component framework, so why do we do it? Well the key point is

that by conforming to a pattern and providing a description of the components you wish to

construct a third party framework can be tasked with the actual work of constructing and

managing the business objects that make up your application. This provides a number of

benefits:

 Redundancy - removal of boiler plate code

 Composability – common patterns allow components to be plugged together

 Uniformity – making code easier to navigate for new developers

COMPONENT DOWNSIDES

This sounds very useful, but are there any downsides to using a component framework? Well

yes there are always issues that have to be weighed up in any architectural decision. Table

10.2 details the issues you should consider when choosing whether to employ a component

model, note these issues apply whether or not you are using OSGi but it is worth reminding

ourselves.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Table 10.2 Problems associated with usage of component models

Problem Description Analysis

Bloat Some component frameworks are

relatively heavy so for small applications

they may not be appropriate

How complex are your application

dependencies? Is the extra functionality

provided by a component framework required?

Diagnosis Debugging service dependency problems

requires a new set of tools to figure out

what is going on when your services are

not published as expected

We'll show you in this chapter some of the tools

available, it is up to you which you think is most

appropriate

Side file

syndrome

Build or runtime problems causes by

component configuration becoming stale

with respect to Java source code can be

frustrating to debug

IDE tooling can definitely help here by providing

refactoring support and early analysis. Again

we'll try to point out relevant tooling during this

chapter where appropriate

But overall we feel that component models are a significant benefit to OSGi development

as they simplify a lot of the low level logic for dealing with services that you would otherwise

have to manage yourself.

10.1 Component models and OSGi
In this section we will look at the specific benefits of using component models in an OSGi

environment and look at the general architecture of a component frameworks within OSGi.

This will provide us with context for the rest of the chapter such that we can focus on the

unique features of each component implementation.

10.1.1 Why components?

The most immediate benefit of moving to a component model in OSGi is the simplification it

brings to handling multiple service dependencies i.e. the removal of redundant boiler plate

code. Recall in chapter [ref] we showed you various mechanisms for looking up services from

the OSGi BundleContext, either direct lookup via the getServiceReference method of

BundleContext or via indirect notification via the ServiceListener interface or the

ServiceTracker utility class. These mechanisms provide you with the flexibility to allow you to

tailor how your application responds to the availability of service dependencies to a high

degree of detail. However in many cases you will find yourself repeating the same basic set

of service dependency code.

Consider a trivial example where a class FooImpl depends on service Bar and should only

publish it's service when Bar is available, or to say it another way FooImpl has a 1..1

cardinality dependency on a Bar service. This scenario is shown in figure 10.1.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Listing 10.1 shows the code that achieves this scenario using a ServiceTracker pattern.

Listing 10.1 Service tracker providing 1..1 dependency on a service

class BarTracker extends ServiceTracker {
 private final FooImpl foo;
 private final BundleContext ctx;
 private LinkedList<Bar> found = new LinkedList<Bar>();
 private ServiceRegistration reg;

 BarTracker(FooImpl foo, BundleContext ctx) {
 super(ctx, Bar.class.getName(), null);
 this.foo = foo;
 this.ctx = ctx;
 }

 @Override
 public Object addingService(ServiceReference reference) {
 Bar bar = (Bar) super.addingService(reference);
 found.add(bar); #1
 if (foo.getBar() == null) { #2
 foo.setBar(bar); #3
 reg = ctx.registerService(Foo.class.getName(), foo, null); #4
 }
 return bar;
 }

 @Override
 public void removedService(ServiceReference reference, Object service) {
 found.remove(service);
 if (foo.getBar() == service) { #5
 if (found.isEmpty()) {
 reg.unregister(); #6
 foo.setBar(null); #7
 reg = null;
 }
 else {
 foo.setBar(found.getFirst()); #8
 }

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 10.1 Trivial service dependency between two
components Foo and Bar

FooImpl

Foo

Bar 1..1 BarImpl

Bar

http://www.manning-sandbox.com/forum.jspa?forumID=507

 }
 super.removedService(reference, service);
 }
}

This service tracker checks if this is the first Bar service it has found at #2. If so it calls

the FooImpl.setBar() method at #3 prior to registering the service in the BundleContext at

#4. If more than one Bar service is found then backups are stored at #1. If the original Bar

service is removed (#5) then one of the backups is set in it's place at #8. If no backup is

available the service is unregistered at #6 and the setBar method is called with a null

parameter at #7.

Now you may be looking at this code and thinking “Gee that looks pretty complicated“

which is especially true if you also consider that this only covers the 1..1 cardinality case –

we need a different set of logic to deal with 0..1, 0..n and 1..n cardinalities. Then consider

how complex things get if you have a service that has multiple dependencies – i.e if FooImpl

has a 1..1 dependency on Bar and a 1..n depencency on a Baz service. The logic at #4 and

#6 to publish or unpublish the Foo service to the BundleContext now needs to take account

of whether all dependencies are satisfied.

You could obviously implement your own abstracted wrapper classes around these use

cases but in actual fact this is exactly what the various OSGi component models do on your

behalf. So unless you are very keen to implement your own version of a component model

you are more than likely better off reusing one of these models.

Let's convince you of the benefits of using a component model by showing you the code

you need to write to achieve the uber complex Foo, Bar, Baz dependency case we alluded to

above using one of the component models we will cover in this chapter – declarative

services. The Java code needed to implement this is shown in listing 10.2.

Listing 10.2 Multiple dependencies with declarative services

public class FooImpl implements Foo {
 private volatile Bar bar; #1
 private List<Baz> bazList = Collections.synchronizedList(new
LinkedList<Baz>()); #2

 protected void setBar(Bar bar) { #3
 this.bar = bar;
 }

 protected void addBaz(Baz baz) { #4
 bazList.add(baz);
 }

 protected void removeBaz(Baz baz){ #5
 bazList.remove(baz);
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

This class declares two internal references to the Bar and Baz services at #1 and #2

respectively and provides accessor methods to set these references at #3, #4 and #5. “So

where is the OSGi code in this example?” I hear you ask. Well there isn't any! The only non

trivial bits of code in this example are the use of the volatile keyword and the synchronized

wrapper class which we use to protect ourselves from the dynamic nature of services in an

OSGi environment. So how do we get the services to and from the BundleContext? The

answer is via an external xml configuration file which conforms to the Declarative Services

specification as shown in listing 10.3.

Listing 10.3 Multiple dependencies with declarative services

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 <scr:implementation class="org.foo.example.FooImpl" /> #1

 <scr:reference #2
 name="bar" #2
 interface="org.foo.example.Bar" #2
 cardinality="1..1" #2
 policy="dynamic" #2
 bind="setBar" #2
 unbind="setBar"/> #2

 <scr:reference #3
 name="baz" #3
 interface="org.foo.example.Baz" #3
 cardinality="1..n" #3
 policy="dynamic" #3
 bind="addBaz" #3
 unbind="removeBaz"/> #3

 <scr:service>
 <scr:provide interface="org.foo.example.Foo"/> #4
 </scr:service>

</scr:component>

This configuration file tells the declarative services framework to:

 Create an instance of our FooImpl class at #1

 Search for one instance of the Bar service and call the setBar method when one is
found at #2

 Search for one or more instances of the Baz service and call the addBaz method when
one arrives and the removeBaz method when one is removed at #3

 Publishes the FooImpl to the BundleContext under the Foo interface when one Bar and
at least one Baz service are connected to the FooImpl object

Hopefully you will appreciate that this significantly reduces the amount of boilerplate code

you will need to use in your applications. Though the xmlaphobes among you are probably

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

starting to get one of those headaches. In general we agree that though there are question

marks over the POJOness of components written with annotations they are in general more

expressive and less prone to code rot. But in fact the choice of meta model is even less

critical in the long term, OSGi places no restriction on the format of the meta model used to

share services. In our last example in this chapter we will show how it is possible to mix

component technologies some that use XML and another that uses annotations in a single

application. This allows for infinite flexibility in the long term – you can pick and choose the

model that suits you best.

Hang on we've introduced a new term here “meta model” without specifying what we

mean by this (collective slap on the wrist). Let's look now at the general architecture of a

component framework within an OSGi context.

10.1.2 Component generalizations

Almost all component frameworks in OSGi follow the same basic pattern:
 (Component Extender)
 + (Java Code + Meta Model + Component Indicator)
=> Runtime

In the above discussion on the benefits of component models in OSGi we have seen an

example of the Java Code and Meta Model in the form of the FooImpl class and the foo.xml

component definition respectively. Obviously the use of XML as the meta model is purely an

arbitrary (though common) choice. Another popular route is to combine the java code and

the meta model through the use of annotations. But what about the other parts of this

formula?

Well in general component frameworks within OSGi follow the extender pattern which we

covered in chapter [ref] when adding lifecycle hooks into the paint program. As such the

Component Extender is a bundle or set of bundles that work together to publish and

consume services on behalf of the the client component bundles. These extender bundles

typically look for some form of Component Indicator within the bundles – either a manifest

header or some well known file patterns to decide whether they should consider this bundle

for extension.

Given all of these ingredients the component extender could be said to act like a catalyst

in a chemical reaction – as depicted in figure 10.2. Without it the various component bundles

will sit inert within the OSGi framework. Though they provide the description of what to do,

they do not actively manage their own lifecycles. But when a component provider is installed

and started all sorts of services and processes will spring into life within the OSGi framework.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

10.1.3 Painting with components

During the rest of this chapter we are going to look three different component models,

Declarative Services, Blueprint Container and iPojo. With each of these component

frameworks we will convert them from the procedural Java code of BundleActivators,

ServiceRegistrations and ServiceListeners to the applicable meta model for that component

framework. In each case our components will follow a common pattern as shown in figure

10.3.

Each of these components is packaged in it's own bundle (though this is not strictly

necessary). The PaintFrame exposes a Window service and consumes 0..n SimpleShape

services and the shape components each export a single SimpleShape interface

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 10.3 Components used in modified paint application.

Circle

SimpleShape

Square

SimpleShape

Triangle

SimpleShape

PaintFrame

Window SimpleShape [0..n]

WindowListener

Window [1..1]

LogService [0..1]

Figure 10.2 Mixing bundles together can have some spectacular results!

Bundle-ManifestVersion: 2
Bundle-Symbolicname: org.foo
Bundle-Version: 1.0
Import-Package:
 org.bar;version="[1.0,2.0)"
Service-Component:
 OSGI-INF/foo.xml

META-INF/MANIFEST.MF
OSGI-INF/foo.xml
org.foo.Foo.class
org.foo.FooImpl.class

Declarative
Services
Provider

OSGi
Framework

http://www.manning-sandbox.com/forum.jspa?forumID=507

The WindowListener has a 1..1 dependency on the Window service and shuts down the

framework when the window it is bound to closes, it also has an optional 0..1 dependency on

the LogService to log a message when the window is closed. In our procedural paint

application the function of the window listener was realized as an inner class registered in the

bundle activator. This class listened for the window closing event and shutdown the OSGi

framework by stopping bundle zero (as we discussed in chapter [ref]). In our componentized

paint program the WindowListener binds to published java.awt.Window services and registers

itself as a listener for the window closing event. In a modular java environment we might

imagine that many window objects could be published from a single JVM as such we use an

attribute and filter pattern to limit the set of windows that our WindowListener component

binds to.

The code for this chapter is found in the following directories:

 Declarative Services – $oia/code/chapter10/paint-example-ds

 Blueprint – $oia/code/chapter10/paint-example-bp

 iPojo – $oia/code/chapter10/paint-example-ip

If you compile and run each of these examples you will see that they each behave exactly

as the original procedural OSGi code from chapter [ref]. But what's going on underneath the

hood? Let's turn our attention to the first component model on our list, declarative services.

10.2 Declarative Services
Declarative Services is the first component model defined by the OSGi alliance, it was added

to the OSGi specification in release 4.1 and it defines a lightweight approach to managing

service dependencies. The basis of the declarative services specification is to address three

main areas of concern, which we discuss below in table 10.3.

Table 10.3 The declarative services raison d'etre.

Area of concern Discussion

Startup Time Whilst the lifecycle layer of OSGi provides a mechanism to dynamically register

and consume services, with many bundles each having activators the

initialization time of each bundle adds to the initialization time of the entire

application.

Memory Footprint A service model allows for consumers to be decoupled from their

implementations however the downside is that a service provider has no easy

way to find out in advance whether it's service is actually required. Registering

services implies the creation of many classes and objects to support the service

and each of these requires memory to be consumed – if these services are never

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

used then this is wasted resource that could have been used for other application

functions.

Complexity We've already discussed the amount of boiler plate code that is required to

handle complex service dependency scenarios, any amount of boilerplate code

represents a risk in terms of software maintenance - more moving parts imply

more potential bugs or more work during upgrades.

10.2.1 Building declarative services components

Let's start by considering how to convert the circle bundle to use declarative services (the

square and triangle follow the exact same pattern). If you inspect the contents of the circle

bundle you will see it now has the following contents:
META-INF/MANIFEST.MF
OSGI-INF/
OSGI-INF/circle.xml
org/
org/foo/
org/foo/shape/
org/foo/shape/circle/
org/foo/shape/circle/Circle.class
org/foo/shape/circle/circle.png

The first thing you will notice here is that there is no BundleActivator class contained in

this bundle, however if we inspect the services published by the circle bundle you will see

that it is exporting a service with the SimpleShape API:

Listing 10.4 Confirming the SimpleShape API is published as a service

-> ps #1
START LEVEL 1
 ID State Level Name
[0] [Active] [0] System Bundle (2.0.1)
[1] [Active] [1] circle (4.0)
...
-> services 1 #2

circle (1) provides:

component.id = 0
component.name = circle
objectClass = org.foo.shape.SimpleShape
service.id = 9
simple.shape.icon = circle.png
simple.shape.name = Circle

At #1 we list the bundles installed within the framework using the felix shell command

“ps” then having found the bundle id of our circle component we list it's services at #2. So

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

how did this get here if there is no BundleActivator? The clue we need is located in the

MANIFEST.MF file for this bundle, notice that it contains a new manifest entry:
Service-Component: OSGI-INF/circle.xml

This manifest entry is defined by the declarative services specification and is used to

advertise the location of an xml component definition file within the bundle. When a bundle is

installed within the OSGi framework that contains this manifest entry the declarative services

provider bundle will be triggered to act as extension provider and add ServiceListeners and

register services on that bundles behalf based on the policy set out in this component

definition file.

In declarative services the convention is to put these component definition files in the

directory OSGI-INF/<component-name>.xml but in fact they can go anywhere within the

bundle. It is possible to include multiple component files in a single bundle either by comma

delimiting the set of configuration files that should be registered or by placing all files in a

single directory and using a wild card pattern, or indeed a mixture of the two:
Service-Component: OSGI-INF/foo.xml,OSGi-INF/baz.xml

Or
Service-Component: OSGI-INF/*.xml

Segue

FRAGMENTED COMPONENTS

It is also possible to place component definition files in bundle fragments (which we

covered in chapter [ref]). In this case only the host bundle's Service-Component manifest

header is read, though the xml configuration may reside in a separate bundle fragment. A

possible use case for doing this would be if you wanted to support several different

component configuration options and choose at deployment time which is actually

instantiated.

PUBLISHING SERVICES WITH DECLARATIVE SERVICES

The following code snippet shows the declaration used to publish our Circle as a service to

the OSGi bundle context under the SimpleShape API (with attributes specifying the name

and icon that the Paint component should use to display this component):
<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
 <property name="simple.shape.name" value="Circle" /> #1
 <property name="simple.shape.icon" value="circle.png" /> #2
 <scr:implementation class="org.foo.shape.circle.Circle" /> #3
 <scr:service>
 <scr:provide interface="org.foo.shape.SimpleShape"/> #4
 </scr:service>
</scr:component>

In this file we define two properties for our circle component at #1 and #2. Properties

may be used to configure a component (which we will look at shortly) but importantly they

are also automatically added as attributes to services published from components. We define

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

the implementation class for this component at #3 which must be a class that is visible to

the bundle classpath where this component file is located. At #4 we define that this

component exports a SimpleShape service interface, let's now look at our Circle class shown

below in listing 10.5

Listing 10.5 Circle class used in the declarative services paint example

package org.foo.shape.circle;

import java.awt.*;
import java.awt.geom.Ellipse2D;
import org.foo.shape.SimpleShape;

public class Circle implements SimpleShape {
 public void draw(Graphics2D g2, Point p) {
 ...
 }
}

Here you will note that the circle class is exactly the same as that defined in the

procedural OSGi services paint program. Segue

COMPONENT PROPERTIES

In the case of our circle component we specified the service attributes using the declarative

services construct of component properties. This follows the same pattern of property

propagation that we saw in chapter [ref] where by any configuration property not prefixed

with a “.” is copied onto the service. In the our case we statically declared the properties

within our component xml file using <property> element. But in fact this is the last place

that declarative services looks for component properties. In fact component properties may

be sourced from:

13.Properties passed to the ComponentFactory.newInstance method

14.Properties retrieved from the ConfigurationAdmin service using component name as
the PID.

15.Properties defined in the component description xml file.

Properties defined in 1, override properties of the same name in 2 and 3 and likewise

properties defined in 2 override properties defined in 3. This precedence behavior allows a

developer to setup the component with default component properties but allows another user

or system administrator to change the configuration at runtime to suite his or her needs.

DECLARATIVE SERVICES HAVE SIMPLE ATTRIBUTE TYPES

One important difference between this approach compared to the procedural version used

in chapter [ref] (apart from the obvious lack of java activation code) is that the

declarative services specification is only able to publish services with “simple” java types

(String (default), Long, Double, Float, Integer, Byte, Character, Boolean, Short). In our

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

procedural version of this paint example we added the image that represented the shape

as an attribute of the service using the following code:

dict.put(SimpleShape.ICON_PROPERTY, new

ImageIcon(this.getClass().getResource("circle.png")));

This is does mark a breaking change between a declarative services model and a “pure”

OSGi service model so is something you should be aware of when choosing a component

model. However in the vast majority of situations this limitation is actually not that big a

deal, though we will return to this topic later in the chapter.

CONSUMING SERVICES WITH DECLARATIVE SERVICES

So that seems fairly straight forward, but then our circle component does not consume any

services, it only publishes them. To see how we use external services let's now turn our

attention to the Paint frame. Again in this case the paint bundle contains a similar OSGI-INF/

paint.xml component definition shown in listing 10.6:

Listing 10.6 Declarative services definition of Paint frame component

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 name="paint" #1
 immediate="true"> #2

 <scr:implementation class="org.foo.paint.PaintFrame" /> #3

 <scr:reference #4
 interface="org.foo.shape.SimpleShape" #5
 cardinality="0..n" #6
 policy="dynamic" #7
 bind="addShape" #8
 unbind="removeShape"/> #9

 <scr:service>
 <scr:provide interface="java.awt.Window"/> #10
 </scr:service>

 <scr:property name="name" value="main"/> #11
</scr:component>

There's quite a lot going on in this code listing but as with our shape components this

paint component declares a new component called “paint” at #1 and publishes a service at

#10 with the service attribute defined at #11 backed by an implementation class defined at

#3.

In fact the first new element we want to draw your attention to is at #4. Here we define a

“reference” to an external service which we will locate via the OSGi bundle context and we

tell the declarative services framework at #5 that we are interested in finding services

published to the OSGi registry with the SimpleShape interface.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

For those of you familiar with other dependency injection frameworks such as Spring

Beans this should feel pretty familiar, at #8 it states that when found the declarative services

framework should injected the discovered service into our PaintFrame implementation by

calling the addShape method on the PaintFrame. Also as we are in an OSGi environment –

where services can come and go – we also define an method at #9 that will be called should

that service be removed from the OSGi bundle context.

BINDING METHOD SIGNATURES

The declarative services specification defines the following method signatures for binding

methods:

1. void <method-name>(ServiceReference);

2. void <method-name>(<parameter-type>);

3. void <method-name>(<parameter-type>, Map);

The first form parses in the ServiceReference to the service which allows a component to

find out which services are available within the framework but not necessarily use them. This

pattern should be used in conjunction with the ComponentContext which we will see a little

later and can be used to implement an extremely light weight service model where services

are only bound when absolutely necessary.

The second form should look familiar to most programmers who have used some form of

dependency injection framework, here the service is pulled from the OSGi bundle context on

behalf of the component and injected into the component via the binding method. Here the

component developer may choose to store a reference to the service however they must be

very careful to dereference that service when the corresponding unbind method is called to

prevent memory leakage.

Finally the third form behaves much like the second form except that additionally the

service attributes of the injected service are also provided to the binding method. As we use

the attributes of our service to carry the name of the shape and it's icon it is this form that

we will use. Let's look at the addShape method on our PaintFrame shown below in listing

10.7:

Listing 10.7 Method used to inject the SimpleShape service into the PaintFrame

void addShape(SimpleShape shape, Map attrs) {
 final DefaultShape delegate = new DefaultShape(shape);
 final String name = (String) attrs.get(SimpleShape.NAME_PROPERTY); #1
 final Icon icon = new ImageIcon(shape.getClass().getResource((String)
attrs.get(SimpleShape.ICON_PROPERTY))); #2

 synchronized(m_shapes) {
 m_shapes.put(name, delegate); #3
 }
 ...
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

The declarative services framework calls the addShape method when any SimpleShape

service is published to the OSGi registry, passing in the service and the map of service

attributes with which the service was published. At #1 we read the name attribute of the

simple shape as we did in chapter [ref] in the procedural OSGi version of the paint

application. At #2 we load the ImageIcon that represents the simple shape component. As

we mentioned earlier when we looked at the circle component the declarative services

framework is only able to publish services with simple attribute types so in this version of the

paint component we have to explicitly load the resource via the shape objects classloader.

Finally at #3 we store a reference to the shape service in an internal map so it can be

utilized later on by the UI thread.

When the shape component is unpublished from the OSGi registry the removeShape

method (shown below in listing 10.8) is called automatically by the declarative services

framework.

Listing 10.8 Method used to tell the PaintFrame that a SimpleShape service is removed

void removeShape(SimpleShape shape, Map attrs) {
 final String name = (String) attrs.get(SimpleShape.NAME_PROPERTY); [1]

 DefaultShape delegate = null;

 synchronized(m_shapes) {
 delegate = (DefaultShape) m_shapes.remove(name); [2]
 }

 ...
}

Again we use the form of binding method that supplies the service attributes as a map.

We use the name attribute to figure out which component has been removed at #1 and

deference the object from the internal map at #2.

METHOD ACCESSIBILITY

You may have noticed that the binding methods we defined for our paint component are

set at the default “package” level visibility. In fact the declarative services specification

states the following with regard to method visibility:

• public – access permitted
• protected – access permitted
• package – access permitted if method declared in implementation class or any

superclass within the same package
• private – access permitted if method declared in implementation class

Even if you are using an interface based approach and the interface does not expose the

binding methods then the you may still wish to protect your binding methods as this will

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

prevent external code using reflection to inject service bindings (assuming the Java

security manager is enabled – we will look at security in an OSGi context in chapter

[ref]).

So far we have seen how to create components and publish and consume services,

however there is one use case we have not yet explored. What if your component is not a

singleton within the framework and instead holds state and must be created multiple times

(possibly with slightly different configurations)? Declarative services supports this model

through the concept of a component factory which we will look at next.

FACTORY COMPONENTS

A trivial example of a factory component is a component that stores an authenticated session

– in this case the component must be created uniquely for each consumer in order to avoid

sharing authentication credentials.

In order to create a factory component you simply need to declare the component using

the factory=<factory.identifier> attribute on the top level component declaration:
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
factory="session.factory" name="session">

This defines our component as a factory component client code that wishes to use this

service should do so using the following declarative services reference:
 <reference
 name="session"
 interface="org.osgi.service.component.ComponentFactory"
 target="(component.factory=session.factory)"
 cardinality="1..1"
 policy="static"
 bind="addSessionFactory"
 unbind="removeSessionFactory"/>

Blah blah

Listing 10.9 Binding to a component factory

package org.foo.session.client;
import org.foo.session.Session;
import org.osgi.service.component.ComponentFactory;

public class SessionClient {
 private Session session;

 void addSessionFactory(ComponentFactory factory) {
 session = (Session) factory.newInstance(null);
 session.login(null);
 }

 void removeSessionFactory(ComponentFactory factory) {
 session.logout();
 session = null;
 }
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

blah blah

10.2.2 Declarative services component lifecycle

Having defined our component implementations, services and service references the next

area of the design we need to consider is their lifecycle within the OSGi framework: When

are components created? When are they destroyed? Are there any callback events at these

stages? Can you access the BundleContext if there is no BundleActivator? We'll deal with

each of these questions in this section.

CREATING COMPONENTS

In chapter [ref] we introduced you to the life cycle of OSGi bundles, in essence bundles are

installed, then resolved, then activated. Declarative services defines a similar life cycle for

components where they are enabled, then satisfied, then activated. For a bundle activation

implies that the BundleActivator start method has been called. In the context of declarative

services an activated component implies the implementation class has been constructed

(using the default no args object constructor) and if it publishes a service this is registered in

the OSGi bundle context.

The lifecycle of components within a bundle extends but is also coupled to the lifecycle of

the bundle itself. Once a bundle containing declarative service components has been started

components within it are eligible to be activated. If a bundle is stopped then all activated

components within it are automatically deactivated. Here a deactivated component implies

that any service is unregistered from the OSGi bundle context and the implementation object

is dereferenced making it eligible for garbage collection by the JVM.

Let's dive into some code to see what this means in practice in our paint application.

Firstly we'll look at the PaintFrame class in listing 10.10:

Listing 10.10 Lifecycle related code from the declarative services PaintFrame class

public PaintFrame() { #1
 super("PaintFrame");
...
}
...
void activate(Map properties) { #2
 Integer w = (Integer) properties.get(".width"); #3
 Integer h = (Integer) properties.get(".height"); #3

 int width = w == null ? 400 : w;
 int height = h == null ? 400 : h;

 setSize(width, height); #4

 SwingUtils.invokeAndWait(new Runnable() {
 public void run() {
 setVisible(true);
 }
 });

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

}

void deactivate() { #5
 SwingUtils.invokeLater(new Runnable() {
 public void run() {
 setVisible(false);
 dispose();
 }
 });
}
...
}

At #1 we define the default no args constructor for our component class, declarative

services components classes must define a public no args constructor. At #2 we define a

method “activate” that is a callback method invoked by the declarative services framework

when the component is activated. At #5 we define a corresponding deactivate method that is

called when the component is deactivated.

In fact the name “activate” and “deactivate” are simply defaults, if you wish to use a

different pattern or are migrating legacy code then it is possible to define the name of these

callback methods via attributes on the <component> xml declaration. For example in the

following code snippet we redefine the activate and deactivate methods to be start and stop

respectively:
<component name="org.foo.example"
 activate=”start”
 deactivate=”stop”>

DECLARATIVE SERVICES ACTIVATION FAQ

In declarative services the activate and deactivate methods are optional so if your

component has no need to track it's activation state then you can simply leave them out.

Also if you use the default “activate” and “deactivate” method names then there is no

need to define these in the component xml declaration.

So you may be wondering about the Map parsed into the activate method at #2 which we

use to configure the size of the component at #3 and #4? In fact the lifecycle callbacks in

declarative services accept a number of different argument types that give the component

context within the wider OSGi framework. We'll look at this next.

LIFECYCLE METHOD SIGNATURES

The lifecycle callback methods follow the same method accessibility rules laid out earlier in

section [ref] for binding methods. They may also accept zero or more of the following

argument types (order is not important):

 ComponentContext – The component instance will be passed the Component Context
for the component configuration.

 BundleContext – The component instance will be passed the BundleContext of the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

component's bundle.

 Map – The component instance will be passed an unmodifiable Map containing the
component properties.

In addition to this set of arguments the deactivate method may also accept an argument

of type:

 int or Integer – The component instance will be passed the reason the component
configuration is being deactivated. Where the integer code maps to one of the
following reasons:

o 0 – Unspecified.

o 1 – The component was disabled.

o 2 – A reference became unsatisfied.

o 3 – A configuration was changed.

o 4 – A configuration was deleted.

o 5 – The component was disposed.

o 6 – The bundle was stopped.

Here we have introduced you to a new interface the ComponentContext. What is this and

what function does it supply? We'll look at this next.

USING THE COMPONENTCONTEXT

Blah blah
public interface ComponentContext {
 public Dictionary getProperties();
 public Object locateService(String name);
 public Object locateService(String name, ServiceReference reference);
 public Object[] locateServices(String name);
 public BundleContext getBundleContext();
 public Bundle getUsingBundle();
 public ComponentInstance getComponentInstance();
 public void enableComponent(String name);
 public void disableComponent(String name);
 public ServiceReference getServiceReference();
}

Lookup strategy

Now you may be surprised to here that the only the interface attribute is mandatory on

the reference element.

Blah blah

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

MODIFIED

The last lifecycle method defined by the declarative services specification is the modified

callback event. This occurs if the components configuration is updated in the

ConfigurationAdmin service. This presents the component with the option to update it's

internal state without requiring the entire component to be deactivated and reactivated.

The method signature and accessibility rules for this callback method are the same as the

activate method. Unlike the activate and deactivate methods there is no default method

name for this lifecycle callback so if you need to deal with this use case you must define the

method name in the <component> element using the “modified” attribute as shown in the

following code snippet:
<component name="org.foo.example"
 modified=”modified”>

We've now seen how to build declarative services components and how to support

lifecycle events, but in order to complete the picture we need to look at how declarative

services interacts with a running OSGi framework, we'll do this next.

10.2.3 Declarative services components as part of a framework

Note at the start of section [ref] we said that starting a bundle containing components

implied the components were “eligible to be activated”. In fact whether a component is

activated or not depends on a number of external factors:

1. Is the component enabled?

2. Is any required configuration set in the ConfigurationAdmin?

3. Are all mandatory (1..X) service references satisfied?

Let's look at each of these in turn.

ENABLED

The enabled flag on a component is a mechanism to control the life cycle of individual

components decoupled from the bundle life cycle. Whether a component is enabled is initially

controlled via an xml attribute “enabled” of the <component> element where the default

value for this is “true” if not specified. It is possible to programatically toggle the enabled

state of a component via the ComponentContext interface.

A simple use case to which this can be applied is to reduce start up time. Essentially a

bundle containing a number of components may enable one master component within the

declarative services xml file and use this master component to toggle the enabled state of

the other components in this bundle based on runtime requirements.

CONFIGURATION POLICY

We've seen that it is possible to configure a declarative services component by specifying an

entry in the ConfigurationAdmin service with PID corresponding to the name of our

declarative services component. This configuration overrides any configuration specified in

the xml document and provides a way to tweek the behavior of a component at runtime.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

In fact declarative services allows the component developer to state that this

configuration policy is optional, require(d) or ignore(d). The default configuration policy is

optional implying that the declarative services framework will append (and override) any

default configuration supplied by the component with configuration specified via the

ConfigurationAdmin service.

However in some cases it may be that there is no sensible default value that can be given

to a configuration value. A classic example of this type of configuration is that of a data base

URL (there is no such thing as a default database URL so specifying one in the component

xml would not make any sense). In this case it is possible to add an attribute to the

<component> element stating that this component must be configured before it can be

activated. The following code snippet shows how this is done:
<component name="org.foo.example"
 configuration-policy=”require”>

This states that the org.foo.example configuration must be registered in the

ConfigurationAdmin before the component can be activated. Declarative services also allows

the opposite behaviour, via configuration-policy=”ignore” this allows the component

developer to lock their component configuration at build time such that it cannot be

overridden by the ConfigurationAdmin service. A potential use case for this is if the

component developer wishes to lock a sensitive configuration value that the developer wishes

not to hard code into the application but none the less is effectively hard coded at

deployment time – such as a buffer size to prevent out of memory errors.

MANDATORY SERVICES

A mandatory service reference is one that has cardinality 1..1 or 1..n, i.e. these represent

tightly coupled service dependencies, for example an HttpServlet component might have a

mandatory 1..1 dependency on an HttpService provider – without an HttpService to publish

the servlet there's not much point in creating the servlet as there is no useful work it can do.

Conversely the same HttpServlet may have an optional 0..1 dependency on a LogService –

without the LogService no log events will happen but this is not critical to the application – it

can still serve content to end users. Mandatory services must be available in the OSGi bundle

context before the component can be activated.

Circular dependencies

Here we should draw to your attention to how declarative services handles the issue of

circular dependencies between components. When designing components it is possible to

get yourself into a situation where component A needs to access a service from

component B and component B also needs to access a service from component A.

If both of these dependencies are mandatory then there is no way for a declarative

services framework to break the cycle. Service A will not be published until component A

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

is activated and this will only happen after service B is bound. If component B is also

waiting until service A is bound then the components are effectively deadlocked.

These sort of problems can be tricky to spot and often creep in my accident in large

software projects. Here the declarative services specification states that the declarative

services provider should detect these cyclic dependencies and log an error message with

the OSGi LogService – which at least gives you a warning that there is a problem.

However it is possible to break this cycle by making one of the service dependencies

optional. If we say that component A is mandatory for component B but component B is

optional for component A, this allows the A component to be activated and published first

which then satisfies component B which is then subsequently wired into component A.

That must be it right? What other tricks can declarative services possibly have up it's

sleeve with respect to life cycle? Well it turns out there is one more...immediate and delayed

components.

IMMEDIATE VS DELAYED COMPONENTS

Many components such as the shape components in our paint example exist solely to provide

a function to other parts of the OSGi framework. As such if there are no other bundles

deployed to the OSGi framework that consume these services then there is no need to

expend resources in creating classes or threads.

Delayed components represent an elegant way of conserving JVM resources until the

point at which a component is really needed – i.e. when another object within the OSGi

framework is going to call a method on the service published by that component. In fact the

default behavior for components that provide services within a declarative services

framework is to do so as delayed components. If we look again at the component declaration

of our paint frame we see that it specifies the immediate=”true” attribute:
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 name="paint"
 immediate="true">

This turns off this “delayed” behavior and forces the declarative services framework to

construct our paint frame before another bundle requests it's service interface. For services

that do not provide a service then it is an error to set immediate to false (as they would

never be instantiated) and they are implicitly defined as immediate components so the

declarative services framework instantiates them as soon as the component is activated.

Declarative services achieves this delayed behavior by registering a ServiceFactory (which

we looked at in chapter [ref]) in the OSGi bundle context as a proxy to the service on behalf

of the component. This allows declarative services to delay all resource creation – even

classloading – until the moment that the service is loaded by another bundle. In short

delayed components have an extra lifecycle phase: enabled, then satisfied, then registered,

then active.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

10.2.4 Complex service dependencies in declarative services

We've shown you how to make a trivial dependency on another service using the declarative

services specification. But what if you have more complex service dependencies, for

example: How are mandatory or optional services specified? How can services be filtered

based on service attributes? How does declarative services help with dealing with service

dynamics?

To illustrate some of these aspects of declarative services let's take a look at the

WindowListener component of our modified paint program. This component has a mandatory

dependency on a service published to the OSGi bundle context with the java.awt.Window

API with the attribute name=main and an optional dependency on the OSGi LogService (to

log an info message if a window close event causes the WindowListener to shutdown the

OSGi framework). Listing 10.11 provides a look at the declarative services XML file that

defines this component:

Listing 10.11 WindowListener with optional LogService dependency

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 name="windowlistener">
 <scr:implementation class="org.foo.windowlistener.WindowListener" />

 <scr:reference
 name="window"
 interface="java.awt.Window"
 policy="static" #1
 cardinality="1..1" #2
 target="(name=main)" #3
 bind="bindWindow"
 unbind="unbindWindow"/>
 <scr:reference
 name="logService"
 interface="org.osgi.service.log.LogService"
 policy="dynamic" #4
 cardinality="0..1" #5
 bind="bindLog"
 unbind="unbindLog"/>
</scr:component>

At #2 and #5 we state the cardinality of the service dependencies, possible values for

this attribute are 0..1, 0..n, 1..1 or 1..n (where 0.. dependencies are optional and 1..

dependencies are mandatory). At #3 we specify an LDAP filter that will be applied to any

Window services that are found in the OSGi bundle context. Finally at #1 and #4 we specify

the binding policy for our references which will be explained in the following discussion.

Target reference properties

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

We saw earlier that component properties can be used to configure the service attributes

published by the component. In fact component properties can also be used to configure

reference filters at runtime. In order to do this the property name must be equal to the

name of the reference appended with “.target”. In our case this implies we could override

the window target using a property of the form:

<property name=”window.target” value=”(name=other)” />

This will bind our window listener to windows attributed with the name=other identifier.

Doing this directly in the declarative services xml is obviously of relatively low value, but

if you remember the discussion on component properties these values can also be set at

runtime via the ConfigurationAdmin service or via the ComponentFactory.newInstance

method which brings into play a whole set of interesting use cases.

As you can see filtering services based on attributes is incredibly easy and at first glance

dealing with optional services appears equally trivial. However there are some subtle

mechanics that you need to be aware of particularly around the area of the policy attribute

used in listing 10.11 which we'll deal with in the following side bar.

Dynamic or static policy?

A reference may be declared with either of two policy values: dynamic or static. But what

does this mean? Well a dynamic policy means that the component will be notified

whenever the service comes or goes. Where as with a static policy the service is injected

once and not changed until the component is reactivated.

In essence if you use a dynamic policy then your component class needs to be able cope

with the possible threading issues of a service coming or going whilst the component is

running. If you use a static policy then you don't need to worry about the threading

issues but your component will only see one view of the services published in the OSGi

registry whilst it is activated. Or to say it another way if a reference is static and the

component is satisfied (active) added services are not considered until the component is

reactivated for other reasons.

Let's consider some examples, of a 0..1 dependency on a service Foo from a component

Bar. In this case with a static policy: If Foo is missing when Bar is activated then it will be

null until that component is reactivated. If instead Foo is available when Bar is activated

and subsequently goes away the service will initially be bound, then when it is removed

the Bar component will first be deactivated then the relevant unbindMethod is called then

the component is reactivated with the new reference.

Listing 10.12 shows relevant lines from the declarative services WindowListener class:

Listing 10.12 WindowListener with optional LogService dependency

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

public class WindowListener extends WindowAdapter {
...
 private AtomicReference<LogService> logRef = new
AtomicReference<LogService>(); #1

 protected void bindLog(LogService log) {
 logRef.compareAndSet(null, log); #2
 }

 protected void unbindLog(LogService log) {
 logRef.compareAndSet(log, null); #3
 }
...
 private void log(int level, String msg) {
 LogService log = logRef.get(); #4
 if (log != null) { #4
 log.log(level,msg);
 }
 }
}

Here we store the LogService reference using a java.util.concurrent.AtomicReference

object at #1 and set it at #2 and #3 in our binding methods. We use an AtomicReference to

protect ourselves from threading issues related to the service being bound or unbound whilst

being accessed from the AWT UI thread. We also need to be wary of the fact that the

LogService may in fact not be bound as it is optional – so at #4 we check whether the

service is bound and log a message if so. The use of a wrapper method to achieve this is one

possible mechanism – a more advanced solution could chose to use null objects to protect

other areas of code from this runtime aspect of the design.

This concludes our look at the declarative services framework, we shall now turn our

attention to the next component model on our list, that of the Blueprint specification.

10.3 Blueprint Services
Probably the most widely used component model in use in the world today is that of Spring

Beans. In Blueprint Services the OSGi alliance has taken the base XML bean definition from

Spring and standardized it in the 4.2 release of the OSGi specification in such a way that it

works in an OSGi context. This specification is based heavily on the Spring Dynamic Modules

framework from SpringSource but there are also several planned implementations of this

specification from other vendors, including Apache Geronimo, and the recently announced

Eclipse Gemini project.

There can be only one?

One could argue that the fact that the OSGi specification defines more than one

component definition is confusing. However there is method in this apparent madness.

Firstly both specifications are in the main (see discussion later in section [ref])

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

interoperable at runtime so both can be used interchangeably in a running framework.

Secondly each specification caters for subtlety different use cases:

• Declarative services focusses on building a light weight components with quick

startup time

• Blueprint focusses on building a rich component model which is familiar to current

Java developers

XXX

Blah blah

BLUEPRINT ARCHITECTURE

The blueprint specification defines a component in terms of a number of elements each of

which is backed by an underlying manager provided by the blueprint container. Each

blueprint definition can contain zero or more or any of these managers, these managers are

listed in table 10.4.

Table 10.4 Blueprint container managers

Manager Description

Bean Provides implementation classes with same basic semantics as Spring beans, i.e.:

• construction via reflective construction or static factory methods

• support for singletons or prototype instances

• injection of properties or constructor arguments

• lifecycle callbacks for activation and deactivation

Reference Provides a single service from the OSGi registry based on interface and optional

filters of the available service attributes

Reference List Provides one or more services from the OSGi registry based on interface and

optional a filter of the available service attributes

Service Provides a mechanism to manage any OSGi service registrations made on behalf of

the component.

Environment Provides access to the OSGi framework and the Blueprint container, including the

bundle context of the component.

Blah blah

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

10.3.1 Building blueprint components

In this section we will explore how the blueprint specification can be used to build our paint

application. As with declarative services let's start by looking first at the circle bundle. Again

this bundle contains no activator code, but it does contain a circle.xml file which is shown

below in listing 10.13.

Listing 10.13 Blueprint definition of the circle component

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"> #1
 <bean id="circle" class="org.foo.shape.circle.Circle" /> #2

 <service id="shape" interface="org.foo.shape.SimpleShape" ref="circle">#3
 <service-properties>
 <entry key="simple.shape.name" value="Circle"/> #4
 <entry key="simple.shape.icon"> #5
 <bean class="org.foo.shape.circle.IconFactory"
 factory-method="createIcon"/> #6
 </entry>
 </service-properties>
 </service>
</blueprint>

As you can see this uses a different xml syntax to that of declarative services. However

those of you who have built applications using Spring beans should be at least partially

familiar with this syntax. You should recognize the <bean> element at #2 where it used to

define our Circle component and at #6 where it is used to specify a value for a service

attribute. Equally you should be familiar with the <entry> at #4 and #5 element which is

used in Spring beans to define the entries of map objects and here to define the entries of

our service interface. The new features in this example which you will not be as familiar with

are:

 The top level element at #1 <blueprint> (with a new namespace) compared to the
<beans> from a classic spring application.

 The <service> element at #3 which is uses the “ref” element to publish the bean with
id “circle” to the OSGi bundle context with a set of nested service attributes.

At first site there only appear to be syntactic differences between the declarative services

version of this component and this blueprint component. However there is one big

differentiator, the ability to define complex attribute objects – namely the use of another

blueprint pattern – the factory bean – to create a javax.swing.ImageIcon attribute at #6.

Below you can see the code required to implement our factory bean:
package org.foo.shape.circle;

import javax.swing.ImageIcon;

public class IconFactory {
 public static ImageIcon createIcon() {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 return new ImageIcon(IconFactory.class.getResource("circle.png"));
 }
}

The factory pattern allows us to create a class to call the non trivial code required to

create an ImageIcon from the XML model. The factory bean pattern allows the blueprint

service to create objects with non trivial constructors and use them within the component as

services, parameters or service attributes. The final piece of the puzzle is to notice that the

blueprint circle bundle contains a new manifest header:
Bundle-Blueprint: OSGI-INF/circle.xml

As with declarative services this header provides the component indicator needed by the

blueprint extender bundle to spot that this bundle is a blueprint bundle and start to manage

it's lifecycle. Blueprint also supports a number of other mechanisms for supplying the service

interface, the <interfaces> element and the “auto-export” attribute. To demonstrate these

features consider the following trivial bean and class definition:
<bean id="fooImpl" class="FooImpl"/>
public class FooImpl implements Foo { ... }

Given this definition then the following service definitions are equivalent:
<service id="foo">
 <interfaces>
 <value>com.acme.Foo</value>
 </interface>
</service>
<service id="foo" interface="com.acme.Foo" ref="fooImpl"/>
<service id="foo" auto-export="interfaces" ref="fooImpl"/>

The first form is a long hand form of service definition which allows a blueprint

component to export more than one interface for a given bean. The second form is the short

form that explicitly exports a bean using a single interface. Finally the last form is a short cut

that allows the service manager to reflectively calculate the interfaces under which the bean

should be registered. The possible values of the auto export attribute are:

 disabled – No auto-detection of service interface names is undertaken, the interface
names must be explicitly declared. This is the default mode.

 interfaces – The service object will be registered using all of its implemented public
Java interface types, including any interfaces implemented by super classes.

 class-hierarchy – The service object will be registered using its actual type and any
public super-types up to the Object class (not included).

 all-classes – The service object will be registered using its actual type, all public
super-types up to the Object class (not including), as well as all public interfaces
implemented by the service object and any of its super classes.

Hopefully that all seems pretty straight forward? Let's now look at the PaintFrame

component to see how to reference the services published by our shape components.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

10.3.2 Referencing services in blueprint

Blueprint provides two patterns of binding to services published in the OSGi registry these

are: Provided Objects or Reference Listeners. Provided objects will be familiar to those of you

who have developed Spring components in the past – the service or a list of services

(depending on the cardinality requirements of your application) is injected as a bean

property or as a constructor argument. Conversely reference listeners provide callback

methods that the blueprint container may notify when services come and go from the OSGi

bundle context.

THE A, B, C'S OF BLUEPRINT REFERENCES

To demonstrate these differences let's look at a few trivial cases. Firstly we will define a

trivial service interface A with a method doit for client code to call:
public interface A {
 void doit();
}

Pretty straightforward I hope you'll agree, now let's look at a simple client:
public class B {
 private A a;
 public void setService(A a) { this.a = a }
 public void someAction() { a.doit(); }
}

In this example we have a class B that depends on a service A that is injected via a bean

property method setService. In blueprint we can express this relationship as:
<reference id="a" interface="A"/>
<bean id="b" class="B">
 <property name="service" ref="a"/>
</bean>

Given this declaration the Blueprint container injects a java.lang.reflect.Proxy that backs

onto the OSGi bundle context to find the underlying A service when it is registered by

another bundle. An alternative form of this is shown below where a class C has a dependency

on the service A which this time is injected via a constructor argument.
public class C {
 private A a;
 public C(A a) { this.a = a }
 public void someAction() { a.doit(); }
}

In this case the blueprint xml to express this relationship looks like this:
<reference id="a" interface="A"/>
<bean id="c" class="C">
 <argument ref="a"/>
</bean>

In both cases each client class is injected with a proxy that hides the dynamic aspects of

the OSGi lifecycle. When service A is registered in the bundle context then the proxy is

created. But hang on! What happens when service A is unregistered? Well in this case

blueprint specifies that the proxy should block method calls with a timeout until a new

service becomes available to take it's place. If no service becomes available after the timeout

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

t h e n t h e p r o x y t h r o w s t h e r u n t i m e e x c e p t i o n

org.osgi.service.blueprint.container.ServiceUnavailableException. We'll look at the

exact mechanics of this a little later.

What about if our client code aggregates services? The following example shows a class D

that aggregates many A services registered in the OSGi bundle context:
public class D {
 private List<A> list;
 public void setServices(List<A> list) { this.list = list }
 public void someAction() {
 for (A a : list) {
 a.doit();
 }
 }
}

In this case our class D is injected with a provided object list that aggregates the services

bound in the OSGi bundle context. Changes to the OSGi bundle context are reflected in the

list, new services are appended to the end of the list and old services are removed. You may

be looking at this code and wondering what happens the underlying services backing this list

change during the course of the iteration. In fact the blueprint specification protects against

this by ensuring that the hasNext and getNext operations are “safe” with respect to changes

in the OSGi bundle context – that is if a service is removed when hasNext has already been

called then a dummy object is returned that throws an ServiceUnavailableException when

a method is called instead of throwing a ConcurrentModificationException. The blueprint

xml to define this is as follows:
<reference-list id="a" interface="A"/>
<bean id="d" class="D">
 <property name="services" ref="a"/>
</bean>

Here the xml element <reference/> has been replaced by a new element <reference-list/

>. Now compare these provided object patterns to the reference listener pattern of receiving

service bind an unbind events as shown in the following example:
public class E {
 private volatile A a;
 public void addService(A a) { this.a = a }
 public void removeService(A a) { this.a = null }
 public void someAction() {
 A a = this.a;
 if (a != null) a.doit();
 }
}

In this case the class E receives a callback via the addService and removeService

methods when the A service is registered or unregistered in the OSGi bundle context and the

body of the someAction method must protect against the fact that the service may be null.

We can express this relationship in blueprint xml as follows:
<bean id="e" class="E"/>
<reference id="a" interface="A">

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 <reference-listener
 bind-method="addService"
 unbind-method="removeService"
 ref="e"/>
</reference>

So each of these patterns gives us some flexibility in how to define our code but what are

the benefits or costs of each?

PROVIDED OBJECTS VS REFERENCE LISTENERS

Provided objects mask the dynamic aspects of services in an OSGi framework and as such

can simplify the task of dealing with services in code. However provided objects are static

so cannot be used with stateful services as you will not know when the underlying

services comes or goes.

PAINTING WITH BLUEPRINT

Let's now return to our paint example, listing 10.14 provides the definition of our the paint

frame using the blueprint xml syntax:

Listing 10.14 Blueprint definition of Paint frame component

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <bean id="paintFrame" class="org.foo.paint.PaintFrame" #1
 init-method="activate" #2
 destroy-method="deactivate"/> #3

 <reference-list id="shape"
 interface="org.foo.shape.SimpleShape"
 availability="optional"> #4
 <reference-listener #5
 bind-method="addShape"
 unbind-method="removeShape"
 ref="paintFrame"/> #6
 </reference-list>

 <service id="window"
 interface="org.foo.windowlistener.api.Window" #7
 ref="paintFrame"/>
</blueprint>

At #1 we define our paint component and at #2 and #3 we specify the lifecycle methods

that should be called by the blueprint container after it's properties have been injected. As

with declarative services we'll leave the discussion of the lifecycle aspects of Blueprint till the

next section (section [ref]). At #4 we use the <reference-list> element to ask the Blueprint

container to monitor the OSGi context for any SimpleShape services it finds there. Nested

within this reference-list element there is a <reference-listener> element used at #5 to tell

blueprint to inject the service via the bind and unbind methods addShape and removeShape

on the bean defined at #6 via the ref attribute which points back to our paintFrame bean.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Finally at #7 we use the <service> element to publish the paintFrame bean as a service

to the OSGi registry. One point to note here is the need to publish the service as a java

interface where as standard OSGi and declarative services allow (though don't recommend)

you to publish a service with a java class as the service interface.

You may wonder why blueprint only allows java interfaces as service interfaces? Well the

reason comes down to the mechanism via which it injects references into a bean. In fact

when a service is bound to a bean from the OSGi registry in blueprint it is not the service

itself which is bound but rather a java.lang.reflect.Proxy to that service and java proxies

must be defined with an interface vs a class. This has impact on our paint application of

forcing us to define a new interface class to provide the java.awt.Window methods we wish

to use in our window listener component:
package org.foo.windowlistener.api;

import java.awt.event.WindowListener;

public interface Window {
 void addWindowListener(WindowListener listener);
 void removeWindowListener(WindowListener listener);
}

In our blueprint xml we defined the bind methods addShape and the unbind method

removeShape – the code for this looks basically the same as the declarative services

example (shown below in listing 10.15) but with one minor difference:

Listing 10.15 Binding method used in Blueprint component

public void addShape(SimpleShape shape, Map attrs) {
 final DefaultShape delegate = new DefaultShape(shape);
 final String name = (String) attrs.get(SimpleShape.NAME_PROPERTY);
 final Icon icon = (Icon) attrs.get(SimpleShape.ICON_PROPERTY); #1
 m_shapes.put(name, delegate);

 SwingUtils.invokeAndWait(new Runnable() {
 public void run() {
 //...
 }
 });
}

At #1 we are given the Icon object directly vs having to look this up from the shape's

classloader. As with declarative services the method signatures for these callback methods

can take a number of forms which we look at in the following callout.

REFERENCE LISTENER METHOD SIGNATURES

In blueprint a reference listener callback can have any of the following signatures (note

they must be public):

• public void <method-name>(ServiceReference)

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

• public void <method-name>(? super T)

• public void <method-name>(? super T,Map)

We've now seen how to define component implementations, how to publish services and

how to consume service references. The next area of the blueprint specification we should

look at is how blueprint deals with the component life cycle.

10.3.3 Blueprint component lifecycle

As with declarative services blueprint supports the notion of: mandatory and optional service

references; eager and lazy component activation; and lifecycle callbacks on bean classes.

MANDATORY AND OPTIONAL SERVICE REFERENCES

As with declarative services components it is possible to define service references in

blueprint as either mandatory or optional. Any mandatory service references must be

satisfied before a component can be enabled. Once a component is enabled any service

managers associated with the blueprint component can register their associated service

interfaces in the OSGi bundle context.

BLUEPRINT SERVICE REFERENCES ARE HYSTERICAL?

Unlike in declarative services if a mandatory service reference is removed from the bundle

context then this does not cause the unregister of the blueprints services. Instead the

services remain published in the OSGi registry until the bundle containing the blueprint

definition is stopped. In this case calling methods on the published service may result in

the component object receiving ServiceUnavailableExceptions from the proxy if the

service reference is a provided object or an empty list if the provided object comes from a

reference list. The behavior in a component object which uses the reference listener

pattern is undefined but could result in NullPointerExceptions if the code is not properly

protected. All in all the blueprint specification of mandatory is a very weak form of

dependency checking – you have been warned!

However there are cases such as logging where the existence of the service is indeed

optional and shouldn't prevent a service from being registered. Consider the following code

snippet from our blueprint windowlistener xml file.
<reference id="log" interface="org.osgi.service.log.LogService"
availability="optional">
 <reference-listener
 bind-method="bindLog"
 unbind-method="unbindLog"
 ref="listener"/>
</reference>

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Here we've labeled the reference as optional using the “availability” attribute. Possible

values of this attribute are “optional” and “mandatory”. The default value of this is

mandatory unless otherwise specified.

REGISTRATION LISTENER

The registrationListeners represent the objects that need to be called back after the

service has been registered and just before it will be unregistered. The listenerComponent

must be a Target object; it is the target for the following callbacks:

• registrationMethod – The name of the notification method that is called after this

service has been registered.

• unregistrationMethod – This method is called when this service will be unregistered.

DAMPING AND GRACE PERIODS

Up until now barring some syntactic and minor semantic differences blueprint seems to

behave in a very similar fashion to declarative services. However there are two big

differentiators in the blueprint lifecycle compared to that of declarative services, namely

damping and grace periods, we will look at these next.

When is a mandatory service reference not mandatory? Well according to blueprint it is

not mandatory during a software upgrade. As we have already mentioned blueprint service

references are actually proxies to the underlying OSGi bundle context. When a service is

removed from the bundle context the blueprint proxy goes into a timeout wait to allow a new

service to be published to satisfy the call.

This timeout process is known as damping and allows for bundle updates without large

unpublish/publish waves rippling through the framework. Of course one may also achieve the

same behavior by marking a service as optional – but then your application code has to

check that the service reference is not null.

SERVICEUNAVAILABLEEXCEPTION

If the timeout passes and no new service is found to replace the missing service reference

t h e b l u e p r i n t p r o x y w i l l t h r o w a

org.osgi.service.blueprint.container.ServiceUnavailableException which is a runtime

exception so unchecked in your application code. Client code should therefore be

defensively coded to deal with runtime exceptions gracefully – but then this is true in

general and not just in blueprint.

To configure this behavior you may specify the “timeout” attribute on a service reference

which specifies the number of milliseconds to wait until the service reappears. The timeout

value must be equal or larger than zero and a timeout of zero implies that the service

reference should wait indefinitely. From our window listener component we can see this in

action:
<reference id="window" interface="org.foo.windowlistener.api.Window"
timeout="1">

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

The grace period is a timeout that ensures that at some point during component

initialization a service has been registered in the OSGi bundle context for each mandatory

service reference. This allows a component that uses the provided object pattern of service

references to be optimally wired together. The grace period behaviour is configured via

manifest headers in the blueprint bundle:
Bundle-SymbolicName: com.acme.foo;
blueprint.graceperiod:=true;
blueprint.timeout:= 10000

In this example we state that the grace period should be used and that the blueprint

container should wait 10 seconds for required services to be published to the OSGi bundle

context before publishing services for this component. It is possible to disable this grace

period behaviour by setting blueprint.graceperiod=false. In this case the blueprint container

will not wait for any mandatory service references to be satisfied before publishing the

services for any blueprint component contained in this bundle.

LAZY VS EAGER INITIALIZATION

As with declarative services blueprint components are lazy by default and all classloading is

delayed until a service published by the blueprint component is requested from the OSGi

bundle context or an eager manager is activated. A blueprint manager is declared as eager

or lazy using the “eager” attribute on the xml element which accepts a boolean argument,

for example:
<bean id=”foo” class=”Foo” eager=”true” />
<reference id=”bar” interface=”Bar” eager=”false” />
<service id=”baz” interface=”Baz” eager=”false” />

One potential gotcha when using lazy beans is if a service that references the bean

specifies the auto-export attribute which we looked at in section [ref] – in this case the

blueprint container must activate the underlying bean to perform classloading to calculate

the service interface via reflection.

BLUEPRINT DEFAULTS

In declarative services the default behavior of components is defined in the compendium

specification. In blueprint the default behaviour of the component can be specified via a

number of attributes on the <blueprint /> element:

 default-activation – The default for the activation attribute on a manager. The default
for this attribute is eager.

 default-availability – The default availability of the service reference elements. The
default for this attribute is mandatory.

 default-timeout – The default for the reference element timeout attribute. The default
for this attribute is is 30000, or 5 minutes.

Segue

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

10.3.4 Advanced blueprint

SCOPE

A bean manager has a recipe for the construction and injection of an object value.

However, there can be different strategies in constructing its component instance, this

strategy is reflected in the scope. The following scopes are architected for this specification:

• singleton – The bean manager only holds a single component instance. This object is

created and set when the bean is activated. Subsequent requests must provide the same

instance. Singleton is the default scope. It is usually used for core component instances as

well as stateless services.

• prototype – The object is created and configured a new each time the bean is requested

to provide a component instance, that is, every call to getComponentInstance must result in

a new component instance. This is usually the only possible scope for stateful objects. All

inlined beans are always prototype scope.

SERVICE MANAGER SCOPE

ServiceFactory is always singleton. Otherwise, if the manager that provided the service

object has prototype scope, a new object will be provided for each bundle. A singleton

manager will be shared between all bundles.

ENVIRONMENT MANAGER

<bean id="listener" class="org.foo.windowlistener.SystemListener">
 <property name="bundleContext" ref="blueprintBundleContext" />
</bean>

blah blah
private BundleContext m_context;
...
public void setBundleContext(BundleContext context) {
 m_context = context;
}

blah blah

MANAGER AS VALUE

Each manager can be the provider of component instances that act as object values.

When a manager is used in an object value, then that is the manager asked to provide a

component instance. The managers are specified in manager on page657. The simple

example is a bean. Any inlined bean can act as an object value. For example:

<list>

<bean class="com.acme.FooImpl"/>

</list>

Some managers have side effects when they are instantiated. For example, a service

manager will result in a ServiceRegistration object but it will also register a service.

<map>

<entry key="foo">

<service interface="com.acme.Foo">

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

<bean class="com.acme.FooImpl"/>

</service>

</entry>

</map>

METADATA

Blah, blah

TYPE CONVERTERS

Blah, blah

This concludes our look at the Blueprint specification, we will now turn our attention to

the last component model on our list, iPojo from the Apache Felix project.

10.4 Apache Felix iPOJO
Outside of the OSGi alliance there are a number of different component models that have

been developed or ported to work in an OSGi environment including:

 Google Guice – Peaberry

 Felix iPojo

 Scala Modules

As such iPojo is yet another component model for OSGi however we believe it warrants

special attention due to the novel approach it takes which significantly simplifies the task of

building a service orientated components within OSGi. The biggest differentiators of iPojo

over declarative services and blueprint container are: it's use of byte code weaving; Java

annotations; and it's extensible Handlers API. Let's look at each of these quickly to get an

overview before we show you how this applies to our paint application.

BYTECODE WEAVING

Byte code weaving is a mechanism to instrument existing Java byte code with new byte code

instructions either at compile time or runtime. Many popular libraries use this technique

including AspectJ, XXX and YYY. This pattern allows developers to focus on their business

logic without worrying about domain specific issues, such as data synchronization or

networking protocols which can be slotted in later. iPojo uses byte code weaving at compile

time to handle the complex threading issues related to managing and accessing dynamic

services in an OSGi environment.

ANNOTATIONS VS XML

Both Declarative Services and Blueprint Container each employ a separate XML file

embedded within the bundle to describe the meta model of their components. There are a

number of problems with this model, the main one being the issue of keeping this file up to

date with respect to changes to the underlying java code. IPojo supports the XML model of

component declaration but also importantly introduces a number of Java annotations that

express the component aspects of a Java class right there in the code.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

HANDLERS

The first thing to note about building components in iPojo is that the component definition is

creating a template of a component that can be instantiated. In this sense every iPojo

component is equivalent to a declarative services component factory. A component is

encapsulated in a so called “container” that manages the connectivity of the Java class that

provides the implementation to the outside world. The container is extensible via a pluggable

API called a Handler as shown in figure 10.4:

In fact all of the typical component functions of such as service publication, wiring in

service dependencies, making lifecycle callbacks and configuring components are handled via

a default set of Handlers that are always attached to a component definition. In general a

handler should typically manage one specific functional concern, for example handling

persistence characteristics of a component or providing audit of method invocations, this

allows complex component definitions to be composed via aggregation.

10.4.1 Building iPojo components

For every architectural aspect of an iPojo component there is both an XML representation and

an equivalent Java annotation. As this chapter has already been pretty XML heavy so far we'll

change the pace by looking at the annotated view of iPojo for information on the XML syntax

you can refer to the iPojo documentation found at [ref].iPojo defines the following

annotations described in table 10.5:

Table 10.5 iPojo annotations and their uses

Annotation Description

@Component Class level annotation declaring class as a component class

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 10.4 iPojo components are an aggregation of
Handlers that are managed at runtime as a unit referred to as
a container.

http://www.manning-sandbox.com/forum.jspa?forumID=507

@Provides Class level annotation declaring that this class provides a service

@Requires Field level annotation declaring that this field is a service which should be

injected from the OSGi bundle context

@ServiceProperty Field level annotation declaring that this field should be added as a service

property to this components services

@Property Field level annotation declaring that this field should be configured from

component properties

@Updated Method level annotation declaring a callback method invoked when configuration

is complete

@Bind Method level annotation declaring a callback method invoked when a service is

available to be injected from the OSGi bundle context

@Unbind Method level annotation declaring a callback method invoked when a service

previously bound to this component is removed from the OSGi bundle context.

@Validate Method level annotation declaring a callback method invoked when all handlers

report the valid state

@Invalidate Method level annotation declaring a callback method invoked when one or more

handlers report the invalid state

Building iPojo components

iPojo uses byte code manipulation to instrument java class files with functionality to work

in an OSGi services environment. The simplest way to achieve this is via a build time step

to parse your business objects and their component definitions. To do this iPojo provides

integrations with Ant, Maven and Eclipse (the ant task is shown below for our circle

bundle).

<taskdef name="ipojo"

 classname="org.apache.felix.ipojo.task.IPojoTask"

 classpath="${lib}/felix/org.apache.felix.ipojo.ant-1.4.0.jar" />

<ipojo input="${dist}/${ant.project.name}-${version}.jar"

 metadata = "OSGI-INF/circle.xml"/>

Once this build step has been completed you can verify that the manipulation has taken

place by inspecting the manifest headers of your bundle. It will now contain a header:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

iPOJO-Components that provides a declaration of every component defined by this bundle

(the example below is taken from our manipulated circle bundle).

iPOJO-Components: instance { $component="org.foo.shape.circle.Circle"

 }component { $classname="org.foo.shape.circle.Circle" $public="true"

 $immediate="true" $name="org.foo.shape.circle.Circle" provides { prop

 erty { $field="m_name" $name="simple.shape.name" }property { $field="

 m_icon" $name="simple.shape.icon" }}manipulation { interface { $name=

 "org.foo.shape.SimpleShape" }field { $type="javax.swing.ImageIcon" $n

 ame="m_icon" }field { $type="java.lang.String" $name="m_name" }method

 { $name="$init" }method { $arguments="{java.awt.Graphics2D,java.awt.

 Point}" $name="draw" }}}

This header may look quite verbose – compared to the headers defined for declarative

services, and blueprint container. In fact this header is a compact representation of all the

component meta data which allows the iPojo framework to optimize start up time by

delaying all classloading until the very last moment.

As with our other component models there are three main architectural tasks that a

component developer wishes to achieve with iPojo: publishing services; consuming services;

and configuring the component.

PROVIDING SERVICES

Let's look at the Java code used to define our circle component shown below in listing 10.16:

Listing 10.16 iPojo declaration of circle component type using annotations

import org.apache.felix.ipojo.annotations.Component;
import org.apache.felix.ipojo.annotations.Provides;
import org.apache.felix.ipojo.annotations.ServiceProperty;
...
@Component(immediate=true) #1
@Provides #2
public class Circle implements SimpleShape {

 @ServiceProperty(name=SimpleShape.NAME_PROPERTY) #3
 private String m_name = "Circle";

 @ServiceProperty(name=SimpleShape.ICON_PROPERTY) #4
 private ImageIcon m_icon = new
ImageIcon(this.getClass().getResource("circle.png"));

 public void draw(Graphics2D g2, Point p) {
 ...
 }
}

At #1 we define our circle class as an iPojo component, the immediate flag causes iPojo

to create the component whether or not a service reference has been requested elsewhere in

the framework. At #2 we state that the component provides a service, in this case leaving

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

iPojo the task of registering the component under all implemented interfaces (namely

SimpleShape in this case). At #3 and #4 we use the ServiceProperty annotation to state that

the value of the fields m_name and m_icon should be published as the service attributes of

this component. Note as annotations are part of the Java source code it is possible to use the

static constant fields for the attribute names where as in declarative services and blueprint

container we had to externalize these names as there expanded names – this greatly

reduces the risks of code rot due to changing attribute names.

Immediate components and service properties

Just as with declarative services and blueprint container, iPojo delays classloading for as

long as possible by using a ServiceFactory to register the service interface in the OSGi

bundle context. However this delayed loading has an unexpected side effect when using

the @ServiceProperty annotation. As discussed above the @ServiceProperty causes iPojo

to monitor the field values of our component object and add the attributes to the service

registration.

However if the component is a delayed component (which is the default behaviour) then

iPojo does not have a field to monitor so the service is initially registered with no

attributes. Then when the service is requested the component class is constructed which

causes the field values to be added to the service.

In order to rectify this situation components that use the @ServiceProperty should

declare themselves as immediate components such that iPojo eagerly constructs the

component class and therefore adds the correct attributes to the service registration.

In listing 10.16 we used a short cut form of the @Provides annotation that tells iPojo to

export the component using all implemented interfaces of the component class, including

any interfaces specified in the inheritance tree. However it is also possible to export a

specific interface or an abstract or concrete class as the service interface by specifying the

provided interface as shown in the following code snippet:
@Provides(specifications=java.awt.Window.class)
public class PaintFrame extends JFrame implements MouseListener,
MouseMotionListener {

Let's now turn our attention to the other side of the equation, how iPojo connects

components to services from the OSGi bundle context. iPojo defines two mechanisms of

injecting services into a component class: at method level via @Bind and @Unbind and at

field level via @Required. Both mechanisms share a common attribute of “binding policy”

which controls how and when a component sees it dependencies bound. Binding policy is an

enumeration containing the following values (where the default value is dynamic if not

specified):

 static - Static dependencies cannot change without invalidating the component

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

instance, so injected services typically do not change at run time and service
departures typically result in the component instance being destroyed and potentially
recreated

 dynamic - Dynamic dependencies can change without invalidating the component
instance, so injected services can change at run time, but do not change with respect
to service priority changes (i.e., they do not automatically switch if a higher priority
service appears)

 dynamic-priority - Dynamic priority dependencies can change without invalidating
the component instance and do dynamically update based on service priority rankings
at run time

We'll first turn our attention to method level injection as this is most similar to the

mechanisms we found in Declarative Services and Blueprint container.

SERVICE BINDINGS

iPojo defines two annotations @Bind and @Unbind that can be applied to methods with any

of the following signatures:

1. void <method-name>() - no args

2. void <method-name>(ServiceReference ref) – the service reference from the OSGi
bundle context

3. void <method-name>(Service svc) – the service from the OSGi bundle context

4. void <method-name>(Service svc, ServiceReference ref) – as above

5. void <method-name>(Service svc, Map properties) – the service from the OSGi
bundle context and a map of it's service attributes

6. void <method-name>(Service svc, Dictionary properties) – the service from the OSGi
bundle context and a java.util.Dictionary of it's service attributes

In cases 1 and 2 it is necessary to state the service interface to which this method applies

using the specification parameter to the annotation but in all other cases iPojo will infer

the service interface from the method signature. Let's look at some examples, firstly the bind

methods in our iPojo window listener class shown in listing 10.17.

Listing 10.17 Bind and unbind methods from the iPojo WindowListener

@Bind(filter="(name=main)") #1
protected void bindWindow(Window window) { #2
 m_log.log(LogService.LOG_INFO, "Bind window");
 window.addWindowListener(this);
}

@Unbind(filter="(name=main)") #3
protected void unbindWindow(Window window) { #4
 m_log.log(LogService.LOG_INFO, "Unbind window");
 window.removeWindowListener(this);

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

}

Here we simply annotate the bind and unbind methods right there in the Java code at #1

and #3 and iPojo infers that it should create ServiceListeners on our behalf using

java.awt.Window as the service interface from the method declarations at #2 and #4. As in

our previous examples with declarative services and blueprint container we also state that

this service should be published with the name=”main” service attribute. So this specifies a

mandatory (1..1) dependency on a service published with a service attribute. How about

services with multiple cardinalities as in our shape components? Well let's look at the iPojo

declaration of the PaintFrame shape binding methods shown in listing 10.18:

Listing 10.18 Bind and unbind methods from the iPojo PaintFrame

@Bind(aggregate=true,id="shape") #1
public void addShape(SimpleShape shape, Map attrs) { #2
 final DefaultShape delegate = new DefaultShape(shape);
 final String name = (String) attrs.get(SimpleShape.NAME_PROPERTY);
 final Icon icon = (Icon) attrs.get(SimpleShape.ICON_PROPERTY);

 m_shapes.put(name, delegate);

 SwingUtils.invokeAndWait(new Runnable() {
 public void run() {
 ...
 }
 });
}

@Unbind(aggregate=true,id="shape") #3
public void removeShape(SimpleShape shape, Map attrs) { #4
 final String name = (String) attrs.get(SimpleShape.NAME_PROPERTY);

 DefaultShape delegate = null;

 synchronized(m_shapes) {
 delegate = (DefaultShape) m_shapes.remove(name);
 }
}

Here we define a bind and unbind method for our SimpleShape services at #1 and #3 in

order to prompt iPojo to bind more than one service from the OSGi bundle context we specify

the aggregate=true parameter on the annotations which tells iPojo that our PaintFrame

component aggregates SimpleShape services from the OSGi bundle context.

ID'S

Note we have specified an id=shape parameter on these binding methods where as we

did not do this for our previous window binding. What does this mean? Well in fact iPojo

automatically infers bind and unbind pairs based on method names:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

if the id is already defines in a "@requires " or "@unbind" annotation, it adds this method

as a bind method of the already created dependency. (optional, default= no id, compute

an id if the method name begin by "bind" (for instance "bindFoo" will have the "Foo" id))

REQUIRING SERVICES

All the component frameworks we have covered in this chapter provide tools to simplify the

task of accessing OSGi services, via dependency injection semantics based on java reflection.

However accessing services is only one part of the challenge, another is dealing with the

dynamic nature of services in an OSGi framework. If services can come and go at any point a

service consumer must protectively code against this. One simple way to do this is to use

mandatory dependencies such that a component is not itself accessible unless all of it's

dependencies are satisfied. However this only works if the XXX

However they do nothing to simplify the task of dealing with the dynamic nature of services

in an OSGi environment.
@Requires(optional=true)
private LogService m_log;
...

Blah blah
@Override
public void windowClosed(WindowEvent evt) {
 try {
 m_log.log(LogService.LOG_INFO, "Window closed");
 m_context.getBundle(0).stop();
 } catch (BundleException e) {
 }
}

Nullable, Blah blah

Blah blah

Byte code weaving/synchronization

optional=true

CREATING COMPONENTS

<?xml version="1.0" encoding="UTF-8"?>
<iPOJO>
 <instance component="org.foo.shape.circle.Circle"/>
</iPOJO>

ConfigurationAdmin, org.apache.felix.ipojo.Factory, @Instance (iPojo 1.6)

10.4.2 iPojo component lifecycle

CALLBACK METHODS

@Validate
protected void activate()
{
 SwingUtils.invokeAndWait(new Runnable() {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 public void run() {
 setVisible(true);
 }
 });
}

Blah, blah
@Invalidate
protected void deactivate()
{
 SwingUtils.invokeLater(new Runnable() {
 public void run() {
 setVisible(false);
 dispose();
 }
 });
}

Invalidate is called after unbind – so need to be wary of null services!

FRAMEWORK CONTEXT

@Component(immediate=true)
public class SystemListener extends WindowAdapter {

 private BundleContext m_context;

 public SystemListener(BundleContext context) {
 m_context = context;
 log(LogService.LOG_INFO, "Created " + this);
 }

Blah blah

10.4.3 iPojo Handlers

An external handler is identified by a namespace. This namespace will be used by developers

to refer to the external handler (when he configures its component type) and by iPOJO to

instantiate the handler object.

org.apache.felix.ipojo.MethodInterceptor

org.apache.felix.ipojo.FieldInterceptor

org.apache.felix.ipojo.InstanceStateListener

org.apache.felix.ipojo.FactoryStateListener

org.apache.felix.ipojo.Handler

org.apache.felix.ipojo.PrimitiveHandler

Blah blah

10.5 Mix and match
Benefits:

Choose the right model for your module and others can work to their own environments.

Demonstrate deploying ds, bp, ipojo in same framework

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Feature Declarative Services Blueprint IPojo

Dependency injection

Callback injection Yes No Yes

Constructor injection No Yes No

Field injection No No Yes

Setter injection Yes Yes Yes

Proxy injection No Yes No

List injection No Yes Yes

Nullable injection No No Yes

Lifecycle

Callbacks

(activate/deactivate)

Yes Yes Yes

Factory pattern Yes Yes Yes

Lazy initialization Yes Yes Yes

Damping No Yes No

Field synchronization No No Yes

Configuration

Property Configuration No Yes Yes

Field Configuration No No Yes

Configuration Admin Yes No Yes

Services

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Custom attribute type No Yes Yes

Lazy initialization via

ServiceFactory

Yes Yes Yes

Model

XML Yes Yes Yes

Java Annotations No No Yes

Gotcha's

DS only supports simple service attributes

BP parses in a proxy so be careful with calls such as service.getClass() as this will not

return the result you expect – namely service.getClass().getResource does not work as

expected!!

BP damping can cause some odd hangs

10.6 Summary
Component models can simplify the task of dealing with the OSGi framework and each add

useful capabilities including lazy initialization, management of complex service dependencies,

XXX and YYY, that you may otherwise end up coding yourself in your applications.

 Declarative services is the simplest framework offering the key tools needed to build
dynamic service environment but few extra frills

 Blueprint is very rich and is a useful step if you are migrating an existing Spring
application to an OSGi environment but it also has some odd design decisions namely
the fact that the removal of services on mandatory references does not cause
published services to be unpublished

 iPojo offers the most rounded and complete framework for building a dynamic services
based application but it's use of byte code engineering may turn off some users and it
is not a specification so you are reliant on a single (all be it open source)
implementation

We've also demonstrated that it is possible to mix and match component frameworks in a

single OSGi framework in the end you can pick the component model that suits you and this

will not effect other parts of the application. With these tools you will be able to build rich

dynamic applications in an OSGi framework. In the next chapter we will look at how to

launch and/or embed an OSGi framework within an existing Java process.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

11
Launching and Embedding an

OSGi Framework

We've spent a lot of time talking about creating, deploying, and managing bundles and

services. Interestingly, we can't do anything with these unless we have a running OSGi

framework. For such an important and necessary topic, we've spent very little time

discussing how precisely to achieve it. Not only is it necessary, but by learning to launch the

framework, we'll have the ability to create custom launchers tailored to our application's

needs. It even opens up new use cases, where we can actually use an instance of an OSGi

framework inside an existing application or even embedded inside a bunde. Very interesting

stuff.

In this chapter we'll learn everything we need to know about launching the OSGi

framework. To help us reach this goal, we will dissect the generic bundle launcher we've

been using to run the book's examples. We'll also refactor our paint program to show how to

embed a framework instance inside an existing application. Let's get going.

11.1 Standard launching and embedding
As we mentioned back in chapter 3, we face a dilemma when we want to use a bundle we

have created. We need a BundleContext object to install our bundle into the framework,

but the framework only gives a BundleContext object to an installed and started bundle.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

So, we are in a chicken-and-egg situation where we need to be an installed and started

bundle in order to install and start our bundle. We need some way to bootstrap the process.

Traditionally, OSGi framework implementations from Apache Felix, Equinox, and

Knopflerfish devised implementation-specific means for dealing with this situation. This

typically involved some combination of auto-deploy configuration properties for each

framework implementations' custom launchers and/or shells with textual or graphical

interfaces. These mechanisms worked reasonably well, but weren't portable across

framework implementations.

With the release of the OSGi R4.2 specification, the OSGi Alliance has defined a standard

framework launching and embeddin API. While this is not a major advance in and of itself, it

does help us create applications that are truly portable across framework implementations.

You might be wondering if this is really necessary or all that common. The truth is, it is

fairly common since your application may have specific configuration requirements that

cannot be easily addressed by the default launcher of a framework implementation.

Surprisingly, even the need to create an instance of a framework to use within another

application is not that uncommon, because in some legacy situations are are not free to

rewrite everything as a bundle. Previously, if either of these use cases applied to you, then

you had to tie your application to a specific framework implementation by using its custom

API for launching it.

Now, R4.2 compliant frameworks share a common API for creating, configuring, and

starting the framework. Let's dive into its details.

11.1.1 Framework API overview

As we previously mentioned, at execution time the OSGi framework is internally represented

as a special bundle, called the system bundle, with bundle identifier zero. This means active

bundles are able to interact with the framework using the standard Bundle interface, which

we reiterate in Listing 11.1.

Listing 11.1 Standard Bundle interface

public interface Bundle {
 int getState();
 void start() throws BundleException;
 void start(int options) throws BundleException;
 void stop() throws BundleException;
 void stop(int options) throws BundleException;
 void update() throws BundleException;
 void update(InputStream input) throws BundleException;
 void uninstall() throws BundleException;
 BundleContext getBundleContext();
 long getBundleId();
 URL getEntry(String path);
 Enumeration getEntryPaths(String path);
 Enumeration findEntries(String path, String pattern, boolean recurse);
 Dictionary getHeaders();

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 Dictionary getHeaders(String locale);
 long getLastModified();
 String getLocation();
 ServiceReference[] getRegisteredServices();
 URL getResource(String name);
 Enumeration getResources(String name) throws IOException;
 ServiceReference[] getServicesInUse();
 Map getSignerCertificates(int signersType);
 String getSymbolicName();
 Version getVersion();
 boolean hasPermission(Object permission);
 Class loadClass(String name) throws ClassNotFoundException;
}

While this provides an internal framework API for other bundles, it doesn't really help

externally when we want to create and start framework instances. So when the R4.2

specification looked to address this situation, the logical place to start was with the Bundle

interface. The Bundle interface is a good starting point for interacting with the framework,

but it isn't completely sufficient. To address the missing pieces, the R4.2 specification defines

a new Bundle subtype, called Framework, which is captured in the following snippet:
public interface Framework extends Bundle {
 void init() throws BundleException;
 FrameworkEvent waitForStop(long timeout) throws InterruptedException;
}

All R4.2 compliant framework implementations will now implement the Framework

interface. Since it extends Bundle, this means framework implementations now look like a

bundle externally as well as internally via the system bundle.

NOTE

While this new API represents the framework instance internally and externally as a

Bundle object, the specification does not require the internal system bundle object to be

the same as the external Framework object. Whether this is or is not the case is

framework implementation dependent.

As you can see, the Framework interface is a simple extension, so we don't have too

much new API to learn. In the following subsections, we will fully explore how to use this API

to configure, create, and control framework implementations in a standard way.

11.1.2 Creating a framework instance

While it is great to have a standard interface for framework implementations, we can't

instantiate an interface so we need a way to get a concrete implementation class. It is not

possible for the OSGi specification to define a standard class name, so it adopted the

standard Java approach for specifying service provider implementations in JAR files, which is

META-INF/services.

In this case, META-INF/services refers to a directory entry in a JAR file. Just like a

JAR's META-INF/MANIFEST.MF file contains metadata about the JAR file, so does its META-

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

INF/services directory. More specifically, it contains metadata about the service providers

contained in a JAR file. Here the term “service” is not referring to an OSGi service, but to

well-known interfaces and/or abstract classes in general. All in all, the concept here is very

similar to the OSGi service concept.

The META-INF/services directory in a JAR file contains service provider configuration

files, which refer to a concrete implementation class for a given service. Concrete service

implementations are connected to their abstract service type via the name of the file entry in

the directory, which is named after the fully qualified service it implements. For example, a

service implementation for the java.io.spi.CharCodec service would be named:
META-INF/services/java.io.spi.CharCodec

Where the contents of this file is the name of the concrete implementation class, such as:
org.foo.CustomCharCodec

To find and create service providers, service provider configuration files are retrieved like

any normal resource using the standard service name as the name of the resource file. Once

a concrete type is obtained from the content of the file, the associated class can be loaded

and instantiated.

The OSGi specification leverages this mechanisms to provide a standard way to get the

concrete framework implementation class. However, rather than directly retrieving a

framework implementation class, OSGi defines a simple framework factory service as

follows:
public interface FrameworkFactory {
 Framework newFramework(Map config);
}

This interface provides a simple way to create new framework instances and pass a

configuration map into them. As a concrete example, the Apache Felix framework

implementation has the following entry in its JAR file declaring its service implementation:
META-INF/services/org.osgi.framework.launch.FrameworkFactory

The content of this JAR file entry is the name of the concrete class implementing the

factory service:
org.apache.felix.framework.FrameworkFactory

Of course, these details are only for illustrative purposes, since we only need to know

how to get a framework factory service instance. The standard way to do this in Java 6 is to

use java.util.ServiceLoader. We obtain a ServiceLoader instance for framework

factories like this:
ServiceLoader<FrameworkFactory> factoryLoader =
 ServiceLoader.load(FrameworkFactory.class);

Using the ServiceLoader instance referenced by factoryLoader, we are able to

iterate over all available OSGi framework factory services using like this:
Iterator<FrameworkFactory> it = factoryLoader.iterator();

In most cases, we only really care if there is a single provider of the factory service, so

we can just invoke it.next() to get the first available factory and use

FrameworkFactory.newInstance() to create a framework instance. If you are not using

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Java 6, you can also use the ClassLoader.getResource() method as illustrated in

Listing 11.2.

Listing 11.2 Retrieving a FrameworkFactory service manually

private static FrameworkFactory getFrameworkFactory() throws Exception {
 URL url = Main.class.getClassLoader().getResource(
 "META-INF/services/org.osgi.framework.launch.FrameworkFactory"); #1
 if (url != null) {
 BufferedReader br =
 new BufferedReader(new InputStreamReader(url.openStream())); #2
 try {
 for (String s = br.readLine(); s != null; s = br.readLine()) {
 s = s.trim();
 if ((s.length() > 0) && (s.charAt(0) != '#')) {
 return (FrameworkFactory) Class.forName(s).newInstance(); #3
 }
 }
 } finally {
 if (br != null) br.close();
 }
 }
 throw new Exception("Could not find framework factory."); #4
}

The getFrameworkFactory() method in Listing 11.2 is not as robust as it could be,

but it is sufficient to get the job done. At (#1) it queries for the standard service provider

configuration file. If it finds one, it reads the contents of the file at (#2). Within the loop, it

searches for the first line not starting with '#' (i.e., the comment character) and assumes

that line contains the name of the concrete class it should instantiate at (#3). The method

will throw an exception if an errors occur during the above or at (#4) if a factory provider

could not be found. Fairly simple and this one method will work for all R4.2 compliant

frameworks; we will use this for our generic launcher in section [ref 12.2]. Next we will look

into how we use the factory service to configure a framework instance.

11.1.3 Configuring a framework

Once we have a framework factory service, we are able to create an instance of Framework.

Typically, we do not use a framework instance as is, but we want to configure it in some way,

such as setting the directory where the framework should store cached bundles. This is why

FrameworkFactory.newInstance() takes a Map, so we can pass in configuration

properties for the created framework instance.

NO CONFIGURATION REQUIRED

You do not have to pass in a configuration when creating a factory, null is an acceptable

configuration. The OSGi specification says framework implementations must use

reasonable defaults; however, it does not explicitly define all of them. This means some

defaults are implementation specific. For example, by default the Apache Felix framework

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

caches installed bundles in a felix-cache/ directory in the current directory, while the

Equinox framework uses configuration/org.eclipse.osgi/bundles/ in the

directory where the Equinox JAR file is located. So be aware, you will not necessarily get

the same behavior unless you explicitly configure it.

Prior OSGi specifications defined a few standard configuration properties, but until the

framework factory API, there was no standard way to set them. As part of the R4.2

specification process, several new standard configuration properties have been introduced.

Table 11.1 introduces some of the new standard configuration properties and a few of the

existing ones.

Table 11.1 Some standard OSGi framework configuration properties

Property name New Meaning

org.osgi.framework.storage R4.2 A file system path to a directory, which will be

created if it does not exist. If this property is not

set, a reasonable default is used.

org.osgi.framework.storage.clean R4.2 Specifies if and when the storage area for the

framework should be cleaned. If no value is

specified, the framework storage area will not

be cleaned. Currently, the only possible value is

onFirstInit, which causes the framework

instance to clean the storage area the first time

it is used.

org.osgi.framework.system.packages Using standard Export-Package syntax,

specifies a list of class path packages to be

exported from the system bundle. If not set, the

framework must provide a reasonable default

for the current VM.

org.osgi.framework.system.packages.extra R4.2 Specifies a list of class path packages to be

exported from the system bundle in addition to

those from the previous system packages

property.

org.osgi.framework.startlevel.beginning R4.2 Specifies the beginning start level of the

framework.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

org.osgi.framework.bootdelegation Specifies a comma-delimited list of packages

with potential wildcards to make available to

bundles from the class path without Import-

Package declarations (e.g., com.sun.*). By

default, all java.* packages are boot

delegated. We recommend avoiding this

property.

org.osgi.framework.bundle.parent R4.2 Specifies which class loader is used for boot

delegation. Possible values are boot for the

boot class loader, app for the application class

loader, ext for the extension class loader, and

framework for the class loader of the

framework. The default is boot.

org.osgi.framework.library.extensions R4.2 A comma separated list of additional library file

extensions that must be used when searching

for native code.

org.osgi.framework.command.execpermission R4.2 Specifies an optional OS specific command to

set file permissions on a bundle’s native code.

All of the properties listed in Table 11.1 can be put into a Map and passed into the

FrameworkFactory.newInstance() method to configure the resulting framework

instance; property names are case insensitive. We will not go into the precise details of all

the standard configuration properties, so consult the R4.2 specification if you want details

not covered here. With this knowledge, we know how to configure and instantiate a

framework instance, so now we can look at how to start it.

11.1.4 Starting a framework instance

Once we have a Framework instance from FrameworkFactory, starting it is quite easy,

just invoke the start() method inherited from the Bundle interface. The start() method

implicitly initializes the framework by invoking the Framework.init() method, unless you

explicitly initialize it beforehand. If the init() method was not invoked prior to calling

start(), then it is invoked by start(). We can relate these methods to the framework

lifecycle transitions, similar to the normal bundle lifecycle:

 init() transitions the framework instance to the Bundle.STARTING state.

 start() transitions the framework instance to the Bundle.ACTIVE state.

The init() method gets the framework ready, but does not actually start executing any

bundle code yet; it performs the following steps:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

7. Framework event handling is enabled.

8. The security manager is installed if it is enabled.

9. The framework start level is set to 0.

10.All cached bundles are reloaded and their state is set to Bundle.INSTALLED.

11.A BundleContext object is created for the framework.

12.All framework-provided services are made available (e.g., Package Admin, Start Level,
etc.).

13.The framework enters the Bundle.STARTING state.

The start() method actually starts the framework instance and performs the following

steps:

1. If the framework is not in the Bundle.STARTING state, then the init() method is
invoked.

2. The framework sets its beginning start level to the configured value, which causes all
reloaded bundles to be started in accordance with their activation policy and start
level.

3. The framework’s state is set to Bundle.ACTIVE.

4. A framework event of type FrameworkEvent.STARTED is fired.

You may wonder why the init() method is necessary and why all the steps just aren't

performed in the start() method? There are some cases where you may want to interact

with the framework instance before re-starting cached bundles, but some interactions can

only happen via the framework's BundleContext object. Since bundles (including the

framework) do not have a BundleContext object until they have been started, init() is

necessary to transition the framework to the Bundle.STARTING state so you can acquire its

context with Bundle.getBundleContext().

To summarize, in the simple case, just call start(). But if you want to do some actions

before all of the cached bundles re-start, then call init() first to do what you need to do

followed by a call to start(). Once the framework is active, subsequent calls to init()

and start() have no effect. Next we will look at how we shutdown a running framework.

11.1.5 Stopping a framework instance

As you might guess, stopping an active framework simply involves invoking the stop()

method inherited from the Bundle interface. This method asynchronously stops the

framework on another thread, so the method returns immediately to the caller. If you want

to know when the framework has actually finished shutting down, you should call

Framework.waitForStop() after calling stop(), which blocks the calling thread until

shutdown is complete.

The following steps are performed when stopping a framework:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

1. The framework’s state is set to Bundle.STOPPING.

2. All installed bundles are stopped without changing each bundle’s persistent activation
state and according to start levels.

3. The framework's start level is set to 0.

4. Framework event handling is disabled.

5. The framework’s state is set to Bundle.RESOLVED.

6. All resources held by the framework are released.

7. All threads waiting on Framework.waitForStop() are awakened.

WAIT MEANS WAIT

Calling waitForStop() does not start the framework shutdown process, it simply waits

for it to occur. If you want to stop the framework, you must call stop() first.

T h e waitForStop() method takes a timeout value in milliseconds and returns a

FrameworkEvent object whose type indicates why the framework stopped; these values

include:

 FrameworkEvent.STOPPED – The framework was stopped.

 FrameworkEvent.STOPPED_UPDATE – The framework was updated.

 FrameworkEvent.ERROR – An error forced the framework to shutdown or an error
occurred while shutting down.

 FrameworkEvent.WAIT_TIMEDOUT – The timeout value has expired before the
framework stopped.

Once the framework has successfully stopped, it can be safely discarded or reused. To

start the framework again, simply call start() or init()/start(). The normal startup

process will commence, except the bundle cache will not be deleted again if the storage

cleaning policy is onFirstInit, since it only applies to the first time the framework is

initialized. Otherwise, you can stop and re-start the framework as much as you like.

That's all there is to creating and launching frameworks with the standard framework

launching and embedding API in R4.2. Let's explore our newfound knowledge by examining

our generic bundle launcher.

Launching versus embedding

Why is this called the framework launching and embedding API? The term “launching” is

largely self explanatory, but the term “embedding” is less clear. What is the difference

between the two? The conceptual difference is launching refers to creating and starting a

framework instance in isolation, while embedding refers to creating and starting a

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

framework instance within (i.e., embedded in) another application. Technically, there is

very little difference between the two, since creating, configuring, and starting a

framework instance with the API is the same in either case.

The main technical differences are in your objectives. When you launch a framework, all

functionality is typically provided by installed bundles and there is no concern about the

outside world. However, when you embed a framework, you often have functionality on

the outside you want to expose somehow on the inside or vice versa. Embedding a

framework instance has some additional constraints and complications we will discuss

later in this chapter.

11.2 Launching the framework
The general steps for launching the framework are fairly straightforward; we want to set the

desired configuration properties, create a framework instance using the configuration

properties, start the framework instance, and install some bundles. These are the same basic

steps our generic bundle launcher uses, which we'll introduce in the following subsections by

breaking the example into short code snippets. The complete source code for the generic

launcher is in the code/launcher/ directory of the companion code.

11.2.1 Determining which bundles to install

As we've seen throughout the book, our generic bundle launcher installs and starts all

bundles contained in a directory specified as a command-line argument. The launcher is

composed of a single class, called Main, which is defined in the snippet in Listing 11.3.

Listing 11.3 Main class definition for generic bundle launcher

public class Main {
 private static Framework fwk; #1

 public static void main(String[] args) throws Exception {
 if (args.length < 1 || !new File(args[0]).isDirectory()) { #2
 System.out.println("Usage: <bundle-directory>");
 } else {
 File[] files = new File(args[0]).listFiles(); #3
 Arrays.sort(files); #3
 List jars = new ArrayList(); #3
 for (int i = 0; i < files.length; i++) #3
 if (files[i].getName().endsWith(".jar")) #3
 jars.add(files[i]); #3
 ...

The static member variable at (#1) will hold the framework instance we are going to

create. At (#2) we verify that a directory was specified as a command line argument. If a

directory was specified, we get the files contained in it and save all files ending with “.jar”

into a list to be processed later.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

11.2.2 Shutting down cleanly

We cannot always guarantee that our launcher process will exit normally, so it is a good idea

to try to ensure our framework instance cleanly shutdowns. Depending on the framework

implementation, you could end up with a corrupted bundle cache if you do not shut down

cleanly. The code snippet in Listing 11.4 adds a shutdown hook to our JVM process to cleanly

shut down our framework instance.

Listing 11.4 Using a shutdown hook to cleanly stop the framework

 ...
 if (jars.isEmpty()) {
 System.out.println("No bundles to install.");
 } else {
 Runtime.getRuntime().addShutdownHook(new Thread() { #1
 public void run() {
 try {
 if (fwk != null) { #2
 fwk.stop(); #3
 fwk.waitForStop(0); #4
 }
 } catch (Exception ex) {
 System.err.println("Error stopping framework: " + ex);
 }
 }
 });
 ...

The JVM shutdown hook mechanism requires a Thread object to perform necessary

actions during process exit; we supply a thread at (#1) to cleanly stop the framework. When

our shutdown thread executes, we verify that a framework instance was created at (#2) and,

if so, we stop it at (#3). Since shutting down the framework happens asynchronously, the

call to fwk.stop() will return immediately. We call fwk.waitForStop() at (#4) to make our

thread wait for the framework to completely stop. It is necessary to have our thread wait,

otherwise there is a race condition between the JVM process exiting and our framework

actually stopping.

Using a shutdown hook is not strictly necessary. The process is in an awkward state

during shutdown and not all JVM services are guaranteed to be available. There is also the

potential for deadlock and hanging the process. In short, it is a good idea to try to cleanly

shut down the framework, but be aware of the potential pitfalls and do as little work as

possible in the shutdown hook.

11.2.3 Configuring, creating, and starting the framework

So, we know which bundles we want to install and registered a shutdown hook to cleanly

stop the framework; all we need now is a framework instance. The following snippet shows

how we create it:
 ...
 Bundle mainBundle = null; #1

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 try {
 List bundleList = new ArrayList(); #2
 Map m = new HashMap(); #3
 m.putAll(System.getProperties()); #4
 m.put(Constants.FRAMEWORK_STORAGE_CLEAN, "onFirstInit"); #5
 fwk = getFrameworkFactory().newFramework(m); #6
 fwk.start(); #7
 ...

First we have some odds and ends. At (#1) we create a variable to hold a reference to

our “main” bundle, which is a bundle with a Main-Class entry in its manifest file; we'll

come back to this concept in a couple sections so we won't go into any details now. After

that we create a list to hold the bundles we successfully install at (#2).

We get to the actual setup for the framework instance at (#3), where we create a

configuration map for it. For our generic launcher, we copy the system properties in the

configuration map as a convenience at (#4) and only set one configuration property at (#5),

which is to clean the bundle cache on first initialization. In most cases, you likely won't want

to do this, but for the purposes of the book examples this makes sense to make sure we

always start up with a clean framework instance. We get the framework factory service and

use it to create a framework instance using the configuration map at (#6). To get the

framework factory service, we use the getFrameworkFactory() method we introduced in

Listing 11.2. Lastly, we start the framework at (#7).

11.2.4 Installing the bundles

Now we have a configured and started framework instance. Since we configured the

framework to clean its bundle cache on first initialization, we know our framework has no

bundles installed in it. We need to remedy that. The following code snippet shows how we

install the bundles contained in the directory specified on the command line:
 ...
 BundleContext ctxt = fwk.getBundleContext(); #1
 for (int i = 0; i < jars.size(); i++) {
 Bundle b = ctxt.installBundle(#2
 ((File) jars.get(i)).toURI().toString());
 bundleList.add(b); #3
 if (b.getHeaders().get("Main-Class") != null) { #4
 mainBundle = b; #4
 }
 }
 ...

At (#1), we get the BundleContext object associated with the system bundle; this is

possible because the Framework object extends Bundle and represents the system bundle.

We loop through the JAR files contained in the specified directory and install them at (#2)

using the system bundle context; any exceptions will cause the launcher to fail. After we

install a bundle, we add it to a list of installed bundles at (#3) and probe to see if its

manifest contains a Main-Class header at (#4), which we'll use later. If there is more than

one bundle with a Main-Class header, we use the last one we discover.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

11.2.5 Starting the bundles

We installed all of the bundles, but they aren't doing anything yet. We need to start them all.

We can accomplish this in a simple loop over all installed bundles, invoking start() on each

one, like this:
 ...
 for (int i = 0; i < bundleList.size(); i++) {
 if (!isFragment((Bundle) bundleList.get(i))) { #1
 ((Bundle) bundleList.get(i)).start();
 }
 }
 ...

You may be wondering why we just didn't start each installed bundle right after starting

it? It is better to install and start bundles in two passes: one pass for installing and one pass

for starting. This helps alleviate ordering issues when it comes to dependency resolution. If

you install and start a bundle immediately, it may fail to resolve since it may depend on

some bundle that it not yet installed. By installing all of the bundles first, we stand a better

chance of successfully resolving the bundles when we activate them.

Notice also at (#1), we don't simply call start on all bundles; instead, we only call start

on bundles that are not fragment bundles. Fragments cannot be started and will throw an

exception if we try to do so, which is why we avoid it. How do we know a bundle is a

fragment? This simple approach works:
 private static boolean isFragment(Bundle bundle) {
 return bundle.getHeaders().get(Constants.FRAGMENT_HOST) != null;
 }

We just check to see if the bundle's manifest headers contain the Fragment-Host

header. If so, it must be a fragment and we don't want to start it.

11.2.6 Starting the main bundle

We've installed and started all the bundles contained in the specified directory. In most

cases, this would be good enough. For the examples in this book, however, we need one

more step. In chapter 2, we showed how we could use the module layer all by itself to

modularize our paint program. In that example, none of our bundles contained a

BundleActivator, since activators are part of the lifecycle layer. In such an scenario, we

need some way to start our application, so we decided to use the standard Java Main-

Class JAR file manifest header as a way to define a “main bundle” from which we will load

the “main class” and execute it static void main() method.

NOT AN OSGI CONVENTION

The notion of a main bundle with a main class is not an OSGi convention or a standard.

We just defined this approach for this book to show that it is possible to use the OSGi

modularity layer to modularize OSGi-unaware applications.

Listing 11.5 shows how we load the main class and invoke its main() method.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Listing 11.5 Invoking the main class from the main bundle

 ...
 if (mainBundle != null) { #1
 final String className =
 (String) mainBundle.getHeaders().get("Main-Class"); #2
 if (mainClassName != null) {
 final Class mainClass = mainBundle.loadClass(className); #3
 try {
 Method method = mainClass.getMethod(#4
 "main", new Class[] { String[].class });
 String[] mainArgs = new String[args.length-1]; #5
 System.arraycopy(args, 1, mainArgs, 0, mainArgs.length); #5
 method.invoke(null, new Object[] { mainArgs }); #6
 } catch (Exception ex) {
 System.err.println("Error invoking main method: "
 + ex + " cause = " + ex.getCause());
 }
 } else {
 System.err.println("Main class not found: " + mainClassName);
 }
 }
 ...

If we have a main bundle at (#1), then we need to invoke its main class' main() method;

we won't necessarily have a main bundle if the bundles do have activators. First, we get the

name of the class from the Main-Class manifest header at (#2). Using this name, we load

the class from the main bundle at (#3). At (#4) we use reflection to get the Method object

associated with the main class' main() method. We make an array to contain any additional

command-line arguments passed into the launcher after the specified directory at (#5).

Finally, we use reflection to invoke the main() method at (#6), passing in any command-

line arguments.

11.2.7 Waiting for shutdown

At this point, our launcher should have our bundled application up and running. So what's

left to do? Not much really, just sit around and wait for it to finish, like this:
 ...
 fwk.waitForStop(0); #1
 System.exit(0); #2
 } catch (Exception ex) {
 System.err.println("Error starting framework: " + ex);
 ex.printStackTrace();
 System.exit(0);
 }
 }
 }
 }

We call Framework.waitForStop() at (#1), which does not stop the framework, it

just waits for it to stop somehow. Why do we do this at all? Why not just let the calling

thread run off the end of our main method, similar to what we do with Swing applications?

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Unlike Swing applications, which result in a non-daemon thread getting starting for Swing

event delivery, we don't have any guarantee when starting an OSGi framework that any non-

daemon threads will be created. For those not familiar with concept of daemon threads, it is

just a fancy way of saying a background thread. For the Java VM, if only daemon threads are

present, it will end the VM process. So we need to explicitly wait for the framework to stop

because we know the main thread is non-daemon and will keep the VM process alive.

For similar issues, we call System.exit() at (#2) to end the VM process. If we didn't

call exit() here and someone started a non-daemon thread that wasn't properly stopped,

then the VM process would never exit. This is similar Swing applications, which require an

explicit call to exit() since the Swing event thread is non-daemon.

That's all there is to it. We've successfully created a completely generic launcher that will

work with any OSGi R4.2 framework implementation. To use this launcher with an arbitrary

framework implementation, just put it on the class path with the launcher and you are good

to go. But what about situations where you cannot convert your entire application into

bundles? In that case, you may want to embed a framework instance inside your application.

We'll look into that next.

11.3 Embedding the framework
In some situations it is not possible to convert your entire application into bundles where

your whole application runs on top of the OSGi framework. This could happen in legacy

situations where conversion into bundles is prohibitively expensive or even is situations

where there is resistance or uncertainty about converting your entire application. Even in

these sorts of situations, it is possible to leverage OSGi technology for specific needs. For

example, it is not uncommon for Java-based applications to provide a “plugin” mechanism

for extensibility purposes. If your application has a plugin mechanism or you are thinking

about adding one, an embedded OSGi framework can do the trick.

You might be thinking, “Wouldn't I be better off just creating my own simple plugin

mechanism in this case?” Typically, the answer is no. The dynamic class loading aspects of

plugin mechanisms are difficult to get correct. Over time you will likely find you need to add

more advanced features, like support for library sharing, side-by-side versions, or native

libraries, at which point you start to get into really complicated territory and start reinventing

the wheel. By using OSGi, all of this is taken care of for you so you can concentrate on

implementing your application's core functionality. If you are concerned about the size of an

OSGi framework, remember that they were intended to run in embedded devices, so most

implementations are not too hefty. In addition, you get the benefit of having a known

standard which makes it easier for your plugin developers and provides opportunity for reuse

of existing bundles.

Embedding an OSGi framework instance into an application may sound pretty exotic, but

thanks to the standard framework launching and embedding API, it is largely the same as

simply launching the framework. There are, however, some differences and a few issues you

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

need to understand. In the remainder of this section we will discuss these issues as well as

present an example of embedding and framework instance into an application.

11.3.1 Inside versus outside

The main issue around embedding a framework instance into an application is the distinction

between being on the “inside” of the framework versus being on the “outside” of the

framework. The bundles deployed into the embedded framework live in a nice insulated

world and know nothing about the outside. Conversely, the application lives in an external

rough and tumble world. Figure 11.1 illustrates the situation.

It is possible to traverse the isolation boundary provided by the framework, but the

inside/outside distinction places some constraints on how the application can interact with

installed bundles and vice versa.

AVOID BEING ON THE OUTSIDE

The best approach for dealing with the inside/outside divide is to eliminate it by

converting your entire application to bundles. If you are on the fence about this issue, it is

possible to start with an embedding approach and later convert the rest of your

application to bundles. But if you have a choice up front, start with all bundles.

So, if you decide to embed a framework instance, what are some of the things you will

likely need to do with it? You will likely want to:

1. Interact with and manage the embedded framework instance.

2. Provide services to bundles and use services from bundles.

Let's look at what we need to do in each of these cases.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 11.1 The embedded framework instance forms an
isolation boundary between the bundles on the inside and
the application objects on the outside.

application

application objects

isolation boundary

A

B

C

framework instance

http://www.manning-sandbox.com/forum.jspa?forumID=507

INTERACTING WITH THE EMBEDDED FRAMEWORK

We actually already know how to interact with embedded framework instances; through the

standard launching and embedding API. When we create an instance of an R4.2 compatible

framework implementation, we get an object which implements the Framework interface. As

we saw previously, this interface gives us access to all of the API necessary to control and

inspect the framework instance. The framework instance represents the system bundle and

provides us with a passage from to the inside of the framework, as depicted in Figure 11.2.

From the system bundle we can start and stop the framework as well as deploy, manage,

and interact with bundles. If you are using an embedded framework instance as a plugin

mechanism in your application, you will use this API to deploy plugin bundles by loading

them from a directory or providing a GUI for user access, for example. It is also through this

API that we can provide services to bundles and use services from bundles.

PROVIDING SERVICES AND USING BUNDLE SERVICES

Luckily, there is no new API to learn when it comes to providing application services to

embedded bundles or using services from them. We learned about providing and using

services in chapter 4 and all of that knowledge applies here. The only real difference is we

are going to use the system bundle to do everything, since the application has no bundle

associated with it.

Since we need a BundleContext to register or find services, we simply use the

BundleContext associated with the system bundle. We can get access to it by calling

getBundleContext() on the framework instance. From there, registering and using

services is pretty much the same as if the application were a bundle. Simple, right? As you

might expect, there is one main constraint.

COMMON CLASSES REQUIRED

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 11.2 A framework instance represents the system
bundle and provides the means to manage the framework
instance as well as interact with deployed bundles.

application

application objects

A

B

C

framework instance

system
bundle

access

http://www.manning-sandbox.com/forum.jspa?forumID=507

An application embedding a framework instance can only interact with contained bundles

using objects whose class definition is the same for both the application and bundles.

By default, the application on the outside and the bundles on the inside only share core

JVM packages, so it would be possible for the application and bundles to interact using

objects from classes defined in core JVM packages. For example, the it would be possible to

provide or use java.lang.Runnable services, since we know the application and the

bundles use a common class definition for Runnable. This works out fairly well if everything

you need is in a core JVM package, but this won't typically be the case.

Luckily, there is a rudimentary way to share packages from the application to the

contained bundles via framework configuration. The launching and embedding API defines

two previously mentioned configuration properties for this purpose:

 org.osgi.framework.system.packages

 org.osgi.framework.system.packages.extra

The former defines the complete set of class path packages exported by the system

bundle, while the latter defines an additional set of class path packages which is appended to

the former set. Typically, you will only want to use the latter property, since the specification

requires the framework to set a reasonable default for the former. For an example, consider

if we were going to created a version of our paint program that used an embedded

framework instance. In that case, we would likely want to put the SimpleShape interface on

the class path so we could share a common definition between the application and the

bundles. In that case, we would configure our framework instance like this:
Map m = new HashMap();
m.put(Constants.FRAMEWORK_SYSTEMPACKAGES_EXTRA, "org.foo.shape");
fwk = getFrameworkFactory().newFramework(m);
fwk.start();

The syntax to use when specifying the property is exactly the same as for the Export-

Package manifest header, which means we can specify additional packages by separating

them with commas and we can also include version information and attributes.

NECESSARY, BUT NOT SUFFICIENT

It is necessary to specify this configuration property to share class path packages with

bundles, but it is not sufficient to do only this. You must also ensure that the specified

packages are actually available on the class path when you start your application. This is

accomplished in the standard way.

The need to perform this configuration is an extra step for the application, but from the

bundle's perspective it is business as usual. The bundle's simply need to specify the package

on their Import-Package manifest header, like normal, and the framework will give them

access to the package following normal OSGi rules.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

So, what about the situation where you do not have a common class available from the

class path? Since it is not possible for the application to import packages from bundles, there

isn't much you can do here. The main option is to resort to reflection, which is possible since

OSGi service lookup can be performed by the class name. Of course, you should use

BundleContext.getAllServiceReferences() i n s t e a d o f

BundleContext.getServiceReferences(), since the framework will potentially filter

results if it determines you do not have access to the published service type. This will give

you access to the ServiceReference which you can use to get access to the service object so

you can invoke methods on it using reflection.

If you had a situation where you had different definitions of the service class on the

outside and inside, you could even try to get fancy and use dynamic proxies to bridge the

two types in a generic way. But this is likely overkill.

11.3.2 Who's in control?

If you're going to pursue the embedded framework route, you may run into a few other

issues related to who is expecting to be control. Generally speaking, the OSGi framework

assumes it is in control of the JVM on which it is running. If you are embedding a framework,

it is likely you don't want it to be in control or at least want it to share control with the

application in which you are embedding it. It is not uncommon to run into issues related to

JVM singleton mechanisms, like URL and content handler factories or security.

Singleton mechanisms like these are only intended to be set once at execution time. OSGi

framework implementations need to be responsible for initializing these mechanisms to

properly implement specification functionality. When a framework is embedded in another

application, often the application assumes it is in control of these singletons. The OSGi

specification doesn't specifically address these aspects of framework embedding, so how

implementations deal with it is undefined. Some frameworks, like Apache Felix, go to lengths

to try to do the “right thing,” but the right thing often depends on the specific use case. If

you run into issues in these areas, you'll have to consult the documentation or support

forums for your specific framework implementation.

Another area where issues arise is in the use of the thread context class loader. If you are

not familiar with this concept, each thread in Java has a class loader associated with it, which

is the thread context class loader. The context class loader provides a backdoor mechanism

to subvert the normal, strict hierarchical class loading of Java. Application servers and

various frameworks use this mechanism to deal with class loading dependencies that cannot

be shoehorned into hierarchical class loading. Unfortunately, this half-baked attempt at

dealing with class loading dependencies doesn't mesh well with OSGi modularity.

Explain example and potential workarounds...

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

11.3.3 Embedded framework example

For a simple illustration of framework embedding, we'll take the service-based paint program

from chapter 4 and convert it into a stand-alone application with an embedded framework

instance. Since the service-based paint program was completely composed of bundles, we

need to transform it into a Java application. Our new stand-alone paint program will use an

embedded framework instance as a plugin mechanism by which it can deploy custom shape

implementations. Figure 11.3 shows the before and after state.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

For the stand-alone paint program, the shape bundles don't need to be changed at all. So

what does need to be changed? The original service-based paint program didn't need a

launcher, since the bundle activator in the paint bundle served this purpose. For the stand-

alone paint program, we need a launcher that will create the paint frame and the framework

instance and wire everything together. Additionally, since the paint program needs a common

class definition to interact with bundles implementing shapes, we must move the shape API

into the stand-alone application so the application and bundles can use the same

SimpleShape service interface definition. Note that Figure 11.3 depicts the application as a

quasi bundle with an exported package and service dependencies. This is just for illustrative

purposes, the application is just a normal JAR file. The structure of the modified paint

program source code is as follows:
org/foo/paint/
 DefaultShape.java
 Main.java
 PaintFrame.java
 ShapeTracker.java
 ShapeComponent.java
 underc.png
org/foo/shape
 SimpleShape.java

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 11.3 a) The service-based paint program is
composed of five bundle sharing packages and services.
b) The stand-alone paint program combines the core paint
program, shape API, and launcher into a single JAR file
which will provide share the API with the bundles and use
their services.

Triangle

Shape
API

Paint

Square

Circle

Triangle

Paint,
Shape,
& Main

JAR

Square

Circle

b) after

a) before

http://www.manning-sandbox.com/forum.jspa?forumID=507

What's the design of our stand-alone paint program? Recall the original design of the

paint program, the main paint frame was designed in such a way to be injected with shape

implementations. This approach had the benefit of allowing us to limit dependencies on OSGi

API and to concentrate our OSGi-aware code to the shape tracker. In keeping with these

design principles, we will do most of the work in the launcher Main class, which will create

the embedded framework instance, deploy the shape bundles, create the paint frame, and

bind the paint frame to the embedded shape services.

It may be fairly obvious to you at this point that this already sounds pretty similar to the

generic framework launcher we created in the previous section. You'd be correct. Using the

framework in an embedded way is not all that different, other than the issues we outlined

previously. As a result, the launcher code for our stand-alone paint program will bear a

striking resemblance to our generic launcher. The different aspects it illustrates are:

1. Sharing code from the class path to bundles.

2. Using services on the outside.

3. Providing services to the inside.

This last aspect doesn't have an analogue in the original service-based paint program, but

we include it to demonstrate that it is possible to provide services from the outside. As

before, we'll break the launcher into small snippets and describe each one. Let's get started.

PERFORMING THE MAIN TASKS

Since our paint program is no longer a bundle, we replace its bundle activator with a Main

class. The main tasks this class performs are easy to discern from the main() method in

Listing 11.6.

Listing 11.6 Stand-alone paint program main method

public class Main {
 private static Framework fwk;
 private static PaintFrame frame = null;
 private static ShapeTracker shapeTracker = null;

 public static void main(String[] args) throws Exception {
 addShutdownHook(); #1
 fwk = createFramework(); #2
 publishTrapezoidService(); #3
 createPaintFrame(); #4
 }
 ...

The performed functionality is a combination of our generic launcher and the old bundle

activator: adding a shutdown hook (#1), creating a framework instance (#2), creating a

paint frame (#4). The only new task is publishing an external trapezoid shape service (#3),

which we'll see is pretty much the same as publishing a normal service. Let's continue to

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

look into the details. Since adding a shutdown hook is basically identical to what we did in

the generic launcher, we'll skip that step and go directly to creating the framework instance.

CONFIGURING AND CREATING THE FRAMEWORK

The createFramework() method follows fairly closely to our launcher, so we can go over

the details fairly quickly. The method starts, like the launcher, with discovering which bundles

it should install into the framework instance as depicted in the following snippet:
 ...
 private static Framework createFramework() throws Exception {
 File[] files = new File("bundles").listFiles(); #1
 Arrays.sort(files);
 List jars = new ArrayList();
 for (int i = 0; i < files.length; i++)
 if (files[i].getName().endsWith(".jar")) #2
 jars.add(files[i]); #2
 ...

Here we get the contents of the bundles directory in the current directory at (#1) and

add all contained JAR files to a list at (#2). This is rather simplistic, but it is sufficient for this

example. Now we can create the framework instance and deploy the discovered bundles. The

snippet in Listing 11.7 shows these steps.

Listing 11.7 Creating the framework instance and deploying discovered bundles

 ...
 try {
 List bundleList = new ArrayList();
 Map m = new HashMap();
 m.putAll(System.getProperties());
 m.put(Constants.FRAMEWORK_STORAGE_CLEAN, #1
 Constants.FRAMEWORK_STORAGE_CLEAN_ONFIRSTINIT); #1
 m.put(Constants.FRAMEWORK_SYSTEMPACKAGES_EXTRA, #2
 "org.foo.shape; version=\"4.0.0\""); #2
 fwk = getFrameworkFactory().newFramework(m); #3
 fwk.start(); #3
 BundleContext ctxt = fwk.getBundleContext(); #4
 for (int i = 0; i < jars.size(); i++) { #5
 Bundle b = ctxt.installBundle(#5
 ((File) jars.get(i)).toURI().toString()); #5
 bundleList.add(b); #5
 } #5
 for (int i = 0; i < bundleList.size(); i++) { #6
 ((Bundle) bundleList.get(i)).start(); #6
 } #6
 } catch (Exception ex) {
 System.err.println("Error starting framework: " + ex);
 ex.printStackTrace();
 System.exit(0);
 }

 return fwk;
 }
 ...

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

As with the generic launcher, we configure the framework to clean its bundle cache on

first initialization at (#1). For performance reasons, you'd likely not want to do this if you

were using the framework as a plugin mechanism, since it is slower to re-populate the cache.

We do it in the example to make sure we are starting from a clean slate. An important

difference from the launcher, which we alluded to previously, is at (#2). Here we configure

the framework to export the org.foo.shape package from the class path via the system

bundle. This will allow bundles to import the package from the application, thus ensuring

they are both using the same interface definition for shape implementations. We also need to

ensure this package will be on the class path, but since we are going to package it in the

application JAR file it will definitely be available.

We create the framework with the defined configuration and start it at (#3). We get the

system bundle's bundle context at (#4), which we use to install the discovered bundles at

(#5). Lastly, we start all installed bundles at (#6). Any errors will cause the JVM to exit. Now

let's look at how we publish an external service into the framework instance.

PUBLISHING AN EXTERNAL SERVICE

The publishTrapezoidService() method is quite simple as the following code snippet

illustrates:
 ...
 private static void publishTrapezoidService() {
 Hashtable dict = new Hashtable();
 dict.put(SimpleShape.NAME_PROPERTY, "Trapezoid");
 dict.put(SimpleShape.ICON_PROPERTY,
 new ImageIcon(Trapezoid.class.getResource("trapezoid.png")));
 fwk.getBundleContext().registerService(#1
 SimpleShape.class.getName(), new Trapezoid(), dict); #1
 }
 ...

This code is basically the same as we saw back in chapter 4 for publishing services. The

only difference is we use the system bundle's bundle context to register the service at (#1),

since the application doesn't have its own bundle context. Of course, what makes this

possible is the fact that we are using the same org.foo.shape package on the inside and

the outside, which means our trapezoid shape will work just like the shapes provided by any

of the shape bundles. Now we are ready to bind everything together to complete our

functioning paint program.

CREATING THE PAINT FRAME

The createPaintFrame() method performs nearly the same functionality as the bundle

activator for the original paint bundle from chapter 4. The details are shown in Listing 11.8.

Listing 11.8 Creating the paint frame and binding it to the framework instance

 ...
 private static void createPaintFrame() throws Exception {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 frame = new PaintFrame(); #1
 frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent evt) { #2
 try { #2
 fwk.stop(); #2
 fwk.waitForStop(0); #2
 } catch (Exception ex) { #2
 System.err.println("Issue stopping framework: " + ex); #2
 } #2
 System.exit(0); #2
 } #2
 });
 frame.setVisible(true); #3

 shapeTracker = new ShapeTracker(fwk.getBundleContext(), frame); #4
 shapeTracker.open(); #4
 }
 });
 }

We create the paint frame itself at (#1) and then add a window listener to cleanly stop

the embedded framework instance and exit the JVM process when the frame is closed at

(#2). We display the paint frame at (#3), but at this point it is not actually hooked into the

embedded framework instance. At (#4), we get the system bundle's bundle context and use

it to create a shape tracker for the paint frame. This is what actually binds everything

together. Due to our original design, we don't need to spread OSGi API usage throughout our

application.

To run the stand-alone paint program, go into the code/chapter11/paint-example/

directory and type ant to build it and java -jar paint.jar to run it. Figure 11.4 shows

the result.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 11.4 The stand-alone paint program

http://www.manning-sandbox.com/forum.jspa?forumID=507

11.4 Summary
The OSGi specification do not define a standard way to configure and launch a framework.

Consequently, most OSGi framework implementations provide their own approach. The

standard launching and embedding API introduced in R4.2 is the next best thing to a

standard launcher, since it allows us to create a single launcher that works across framework

implementations. In this chapter we learned:

 The OSGi R4.2 specification introduced the Framework interface to represent a
framework instance.

 T h e Framework interface extends the existing Bundle interface to extend our
existing knowledge of managing bundles to framework instances.

 The Framework instances actually represents the system bundle, which provides
access to the system bundle's bundle context for performing any task that a normal
bundle can (e.g., installing bundles and registering services).

 The META-INF/services approach is used to find a FrameworkFactory provider,
which enables framework creation without knowing a concrete framework
implementation class name.

 The OSGi specification defines numerous framework configuration properties to further
improve framework implementation independence.

 Although completely bundled applications is the preferred approach, the launching and
embedding API also simplifies embedding framework instances into existing
applications.

 When embedding a framework instance into an application, the main constraint
involves dealing with the difference between being on the outside versus the inside. If
direct interaction with bundles is required, then sharing common class definitions from
the class path is often required.

 Other than some additional constraints, embedding a framework instance is nearly
identical to launching a framework instance.

With this knowledge under out belt, we can now customize our framework usage for our

own specific purposes and do so in a framework implementation neutral way. In the next

chapter, we'll look into configuring our framework instances to deal with security.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

12
Security

Building your applications on top of OSGi allows you to create loosely coupled and extensible

architectures. Bundles can come and go at any time and it is easy to provide third parties

with the possibility to extend your application in a well-defined way. However, as with most

things in live, there is a downside to this approach as you open yourself (or your users) up to

security vulnerabilities in cases where the third party bundles can not trusted completely.

Luckily, the Java platform has security build in and OSGi can be used with security

enabled. Unfortunately, secure sandboxes and their restrictions are difficult to get right and

often hard to deal with. This is especially true in an environment as dynamic as OSGi.

Fortunately, OSGi has an extensive and very powerful security model that eases this difficult

task by providing a well-defined API to manage permissions where other execution models

tend to leave the permission management up to implementations.

In this chapter we will make you familiar with the Java security model and how it is used

by OSGi to provide the infrastructure to deploy and manage applications that must run in

secure environments. You will learn how to secure your applications on the one hand and

how to create bundles that are well behaved and easy to use in a security enabled OSGi

framework on the other hand. That said, lets have a closer look at why you might want to

care about security.

12.1 To Secure or Not Secure
Modern applications and software solutions increasingly center around loosely coupled and

extensible architectures. Component or Service orientation is applied in almost all areas of

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

application development including distributed systems, ubiquitous computing, embedded

systems, and client-side applications.

One of the main drawbacks of dynamically extensible applications are the potential

security issues that arise due to executing untrusted code without appropriated measures in

place. Just think about it. How many times did you execute code that you couldn't really

trust regardless and why?

Typically, one of the reasons is that permission management is a pain and it really doesn't

help that it is hard to impossible for a normal user to asses what the impact of allowing

something is. Plus, the user wants to run the application (otherwise, why bother at all). So to

the user, security and permissions are in the way and not really helpful.

The other problematic point about security is that it is inherently tricky to establish a

meaningful identity. Somehow it must be possible to differentiate between different providers

or provider types in order to permit or deny permissions. Often the location of a software

artifact is used but to ensure that the artifact has not been tempered with signing must come

into play which leaves us with a complicated process to create and maintain certificates and

trust between certificates which ultimately is nothing a user or developer wants to deal with

either.

Speaking of developers, maybe the biggest problem with security is that it adds another

burden to development. More often then not, code has to be aware of security in order to be

usable when security is enabled. Furthermore, fine-grained security checks make programs

execute slower which often is a killer argument against it.

In summary, we can easily identify three points needed for meaningful security

management and who is responsible for providing them namely:

• Identity – Defining the identity is clearly up to the provider of the code. In the

simple case, we can use the location of the codebase as an identity (as in e.g.,

everything from the local disk or a certain domain is trusted) but if we want more

then that, we have to resort to cryptographic measures by means of certificates. In

any case, the provider needs to make the code available in a way that we can

establish the needed credentials (be it a certain location or a certificate based

signature).

• Permission Management – Once we have the identity we still need to define the

permissions the code should have. This is up to whoever is responsible for the

framework. This might be the gateway operator or the server admin but it is entirely

possible the we are talking about an end-user. As a consequence, we need to make

it as simple as possible to manage permissions.

• Permission Checks and Privilege Management – Last but not least, security has to

be built into the code itself. Therefore, the developer has to think about needed

security checks on the one hand and on where he want to call code outside of his

control with limited permissions.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

So is it worth it? Well, it clearly depends on the given situation. In many cases it is just

not inside the scope of an application to consider security. Either the speed impact would be

to big or the development costs to high. Typically, this already serves as a filter for possible

security enabled applications. If the costs are to high then it probably is not worth it as the

benefit of having security would outweigh these arguments otherwise. Keep in mind so that if

you don't design your applications and your code in a way that it is usable in security

enabled environments then it is unlikely that it can function or be used in the very same.

Which gets us in a kind of catch-22 in regard to security. Because it is often to painful to

consider it applications and libraries are built without security in mind. As a consequence,

developing for this applications or reusing the libraries in a secure context becomes next to

impossible.

Ideally we would make sure that all our code has security checks in the right places and

is signed by a valid certificate that is part of a chain of trust to some well known root

certificate. The reminder of this chapter will show you how and what you can do and use to

take advantage of the security capabilities of the OSGi framework. Lets have a look at what

this looks like form a high-level perspective in the next section when we talk about Java and

OSGi security.

12.2 Security – Just do it
So we do want to secure our OSGi based application. Great, but where to start? Well, let's

start at the beginning and have a look at the Java security architecture and its permission

model which the OSGi security model is based on.

12.2.1 Java and OSGi Security

Discussing the complete Java security architecture at this point is clearly outside the scope of

this book but we want to at least mention and introduce the parts that are important to

understand the remainder of this chapter. The most important aspect in this context is to

understand that the OSGi related part of Java security at its core uses the codebased

security features only. In other words, for the decision of whether a certain action is allowed

userbased security is possible but must be added by an additional layer on top. In the Java

context this is the JAAS framework and in the OSGi world we have the UserAdmin service

which serves a similar purpose. In regard to codebased security it basically comes down to

how to check for and assign Permissions, how to establish the (protection) domain of a

bundle, and how to determine the identity (i.e., the location or signature of a bundle). If that

doesn't tell you anything at the moment, don't worry. We will define and introduce the terms

and concepts as we go along. But now back to the basics first.

The Java permission model is actually pretty simple. The main idea is that there is the

java.security.Permission class which has a special method called implies() that accepts

another Permission. With this mechanisms we are able to define our own permissions as

subclasses of java.security.Permission that can be used both, to check and to assign

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

permissions. How's that? Well, just think about it: all we have to do is to implement the

implies() method to check whether the target (the given permission) has all the properties

our permission implies. If that is the case then the check is successful otherwise not. At the

same time, it follows that in order to assign our permission, all one has to do is to create an

instance of it.

This leads to the question whom can we assign a permission to? For that, a special

concept called a ProtectionDomain is defined as encapsulating the characteristics of a

domain. Sounds complicated but in reality it is just a little abstract. For example, in OSGi

such a domain is a bundle. Subsequently, all classes that are originating in the same bundle

are member of the same ProtectionDomain (in this case called the BundleProtectionDomain).

You probably can see already where this is going namely, a BundleProtectionDomain encloses

exactly the set of classes whose instances are granted the set of permissions granted to the

bundle. So there we have our answer (at least in the OSGi case). We can assign permissions

to a bundle. This can happen either explicitly or indirectly as we will see later.

Now, the important thing is that a permission check consults all protection domains on

the stack. That means that when a permission check is triggered by either invoking any of

the SecurityManager.check* methods or the AccessController.checkPermission method the

JVM will collect the ProtectionDomains of all classes that have been involved in reaching the

check and make sure that each of the permission sets associated with them have at least

one permission implying the requested permission. Have a look at figure xxx to see what the

process looks like.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

 Ch2Figure 12.1: Security Check

AccessController.checkPermission(Permission p);

E.class

D.class

C.class

B.class

A.class

Privileged Call

ProtectionDomain
Bundle A

ProtectionDomain
Bundle B

PermissionA

PermissionB

if (!(PermissionA.implies(p) &&
PermissionB.implies(p))

{
throw new SecurityException();

}

http://www.manning-sandbox.com/forum.jspa?forumID=507

In this case, the AccessController.checkPermission method is used to see whether at the

given point all callers have a given permission p. The JVM then performs the stack walk to

determine that we have instances of the classes A,B,C, and D involved. Subsequently, it

determines that the A,D pair and the B,C pair originate from BundleA and BundleB,

respectively. Each of which have a permission granted. Logically, it then has to check

whether both assigned permission imply the given permission p. Otherwise a security

exception is raised.

Wait a moment, what about the E class? Well, for that we need to introduce you to the

last piece of the puzzle namely, privileged calls. We already discussed in the last section that

it must be possible, somehow, to limit the ProtectionDomains on the stack to the one that

makes the security sensitive call. Why's that again? Well, this gives us the ability to allow

other code that calls us with less privileges then us to still have us do things that require

more privileges. We can do this in this case by using the AccessController.doPrivileged()

method. The way this works then, is that only the ProtectionDomains on the stack up to the

last privileged call are considered. As a simple example consider the following scenario.

Let's assume we have a service that gives access to a specific resource – say a file in the

filesystem which contains sensitive informations. While we are trusting the bundle containing

the class implementing the service we don't want to give access to that file to anybody else

directly. The idea is that other parties must ask our service to retrieve the desired

information for them. How would we do that? Well, probably the easiest way is to rely on the

build in security checks for files and give only our bundle the FilePermission to access the file

in question. But if you payed attention than this doesn't help us much because when we

access the class on behalf on another bundle (i.e., because one of our methods has been

called) than the ProtectionDomain of that bundle will be on the stack as well. So we need to

use a doPrivileged() around our access to the file like this,
AccessController.doPrivileged(new PrivilegedAction(){
 public Object run() {
 // do access with only us on the call-stack
 }
});

It follows, that we really need to prepare our code with security in mind otherwise we are

running into problems. In this case, lets assume we did that and the service guards all its

accesses to the file with a doPrivileged() then there is another typical problem that you

might not want to give all other bundles access to these methods. As you will see later, its

easy to prevent access to the service entirely but if a bundle has permission to access the

service then the service needs to take care about the more fine-grained security checks

itself. Luckily, we can just use the normal security mechanisms and define our permission

and check whether we want to grant the caller the requested action or not.
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
 sm.checkPermission(new AccessPermission());
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

In this example we just get the SecurityManager and ask it to check for a custom

AccessPermission. Now all bundles (i.e., ProtectionDomains) on the stack up to the last

doPriviledged() call (if any) must have AccessPermission granted. Thats pretty much all there

is to it but the challenge is in thinking about and designing your code in such a way that

scenarios like the just presented are taken into account.

SECURITYMANAGER V.S. ACCESSCONTROLLER

One more thing, the reason we are using the SecurityManager in the way we do is
that this way we will only trigger a security check in case security is actually
enabled (i.e., a SecurityManager is installed). Which can sometimes prevent a
performance penalty and furthermore, OSGi encourages the use of the
SecurityManager over the AccessController as some of the security performance
optimization of OSGi will only be possible if the former is used.

In summary, each bundle has its own ProtectionDomain and when the AccessController or

the SecurityManager is used to check whether a certain permission is granted it considers all

ProtectionDomains on the call stack up to the latest privileged call. This way, we have pretty

fine-grained control over what is and isn't allowed inside the framework by managing the

permissions associated with each bundle. At the same time a bundle can still make security

sensitive calls on behave of other bundles assuming it has the needed permissions. That,

together with the fact that we can add our own custom permissions into the mix gives us a

lot of possibilities to secure our applications. The downside is that managing all that is

getting pretty complex real fast as you might imagine. Luckily, the OSGi specification is

aiding us in this difficult task while considering security throughout all aspects. Lets learn

about the OSGi specific permissions in the next section.

12.3 OSGi Permissions Revealed
In order to provide a first layer of security and make it possible to limit what bundles can do

inside the framework, the OSGi specification defines a couple of permissions that bundles

need in certain situations. Basically, we are talking about special permissions for framework

and service related tasks that, just like with most other things, can be ordered by the three

core layers as they are needed only for features in the layer they are used. We have:

• The module layer – which is where the PackagePermission and the BundlePermission

is needed for bundles to be allowed to import or export packages and require

bundles, respectively.

• The lifecycle layer – where most of the API requires some form of the

AdminPermission to be allowed to manage the lifecycle of bundles.

• The service layer – requiring the ServicePermission for a bundle to be able to

publish, find, or bind a service.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Again, you or other people's bundles can always use or define custom permissions as long

as they are exported by a bundle or are on the classpath of the framework and of course the

Java standard permissions still apply. However, we will briefly introduce these OSGi specific

permissions in the following subsections in order to give you an idea what permissions look

like and what you need to get your bundles up and running when security is enabled.

Typically, a permission accepts two parameters in its constructor. The Name, which is the

target of the permission and the action. For example, a FilePermission expects the path of

the file as its name and the READ, WRITE, etc. action. Together they allow to express what

file the permission gives access to and what kind of access. Lets have a look at

PackagePermission and how it can be used next.

Filter Based Permissions

Since the release 4.2 of the specification, OSGi supports a number of permissions that are

granted when the target of the permission is related to a bundle. For example,

AdminPermission can grant a bundle the permission to manage other bundles. This is

expressed by using a filter expression for the name of the permission. For example, a

bundle can get all services registered by bundles coming from a specific location:

ServicePermission(“(location=file:bundles/*)”, GET);. The filter can contain the following

keys:

• id – The bundle ID of the bundle.

• location – The location of the bundle. Filter wildcards for strings are supported.

• signer – A distinguished name chain as described later in this chapter.

• name – The symbolic name of a bundle. Filter wildcards for strings are

supported.

12.3.1 PackagePermission

On the module layer we need a way to limit the packages a bundle can import or export.

Typically, you want to make sure that a given bundle only gets access to the right providers

of packages as they might contain security sensitive code. What does that mean? Well,

remember when we've been talking about the possibility to run code with just your

protection domain on the stack – thats one of the cases where you want to make sure that

only the right kind of bundle has access to the package that contains this kind of code. At the

same time, the export case is just as important. If a bundle is allowed to export a package

then it might be able to have that code used by another bundle with more privileges and

influence the other bundles logic in a way that it does something it shouldn't do (although in

this case the protection domain of the exporting bundle would still be considered).

In summary, the PackagePermission is a bundle's authority to import or export a

package. It accepts the name of the package as the Name of the permission and has two

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

actions namely, EXPORT and IMPORT. Regaring the name, for convenience it is possible to

use the * wildcard to be able to target several packages with a single permission. In regard

to the actions, EXPORT does imply IMPORT. In other words, if you give EXPORT permission

for a package then the bundle has automatically IMPORT permissions for the package as

well. The reason for the latter is that for suggestibility reasons your bundles should import

what they export in most cases as we already discussed in the modularity chapters.

So what would a PackagePermission look like and how would it be used? Lets have a look

at a simple conceptual example. Lets assume we have a bundle with the following imports

and exports.
Import-Package: org.foo, org.bar
Export-Package: org.bar

When the bundle gets resolved the framework sill have to do the following security checks

for the bundle.
System.getSecurityManager().checkPermission(new

PackagePermission(“org.foo”, PackagePermission.IMPORT));
System.getSecurityManager().checkPermission(new

PackagePermission(“org.bar”, PackagePermission.IMPORT));
System.getSecurityManager().checkPermission(new

PackagePermission(“org.bar”, PackagePermission.EXPORT));

Notice, we don't need to check for the permission to import org.bar as the export permission

already implies the import but that is already handled by the permission itself (in its implies

method) so in order to keep the logic simple we just check for every import.

So as an example of what a PackagePermission looks like, lets have a look at the

following two permissions that are one way to make the bundle work.
new PackagePermission(“org.*”, PackagePermission.IMPORT);
new PackagePermission(“org.*”, PackagePermission.EXPORT);

As you can see, we are using the wildcard capability to just give PackagePermission to all

packages below org. In practice, you probably don't want to do that as it would be to broad a

scope but at least it shows how to use wildcards. Furthermore, you might have noticed that

we actually wouldn't need the first permission at all as the second already implies the first.

Alright, lets have a look at the second module layer related permission next.

12.3.2 BundlePermission

Similar to the PackagePermission, the BundlePermission is based in the module layer and

represents a bundle's authority to require/provide/attach a bundle/fragment. So while the

PackagePermission is required to import or export a given package, the BundlePermission is

need to require another bundle or to attach a fragment to a host. The name of the

permission is the name of the bundle that is required or in the case of a fragment attached

to. In regard to the actions, we have the PROVIDE and REQUIRE action which pretty much

speak for themselves in this case. Furthermore, like the EXPORT action of the

PackagePermission does imply the IMPORT of the package as well, the PROVIDE action

implies the REQUIRE. We will not give an example of this permission at this point as it really

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

is similar to the PackagePermission. Instead, lets get on to the lifecycle layer and its

associated permission namely, the AdminPermission.

12.3.3 AdminPermission

As you probably can imagine, the lifecycle layer needs to be the center of your attention

when you are about to secure your framework. This is where you can decide what bundles

can be installed and from whom. Furthermore, some of the methods provided are of a

sensitive nature as well, like the metadata of a bundle that can contain information some

other bundles should not see, etc.

For this reason the specification gives you a rather complex and powerful permission

namely, the AdminPermission which represents a bundle's authority to perform specific

privileged administrative operations or get sensitive informations about a bundle. The

permission is centered around a name (that identifies the bundles it should match) and a set

of ten actions (that the caller is allowed to perform on bundles that match the name filter).

Again, the name of the permission is a filter expression that can use any of the following

parameters:

• signer – A DN chain of bundle signers

• location – The location of the bundles.

• id – The bundle ID of the bundle.

• name – The symbolic name of the bundle.

We will give examples of possible filters in a moment but first lets introduce the actions

as well. As we already said, there are ten Actions namely,

• class – load a class from a bundle

• execute – start/stop bundle and set bundle startlevel

• extensionLifecycle – manage extension bundles

• lifecycle - manage bundles (upate/uninstall/etc.)

• listener – add/remove synchronous bundle listener

• metadata – get manifest and location

• resolve – refresh and resolve a bundle

• resource – get/find resources from a bundle

• startlevel – set startlevel and initial bundle startlevel

• context – get bundle context

The special action * represents all actions. As you probably can see, together they cover

the security sensitive portion of the lifecycle api and allow you to limit access to lifecycle

operations on a finegrained basis. We will not give examples for each possible action at this

point but focus on a simple example to show you the essentials. Ready? Ok, lets assume we

want to install and start a bundle programatically and have a look at the following code

which does just that.
context.installBundle(“file:bundle.jar”).start();

Now, the corresponding security check that the framework has to do looks like the following,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507
file:///bundle.jar

System.getSecurityManager().checkPermission(new AdminPermission(bundle,
AdminPermission.LIFECYCLE));
System.getSecurityManager().checkPermission(new AdminPermission(bundle,
AdminPermission.EXECUTE));

As you can see, the AdminPermission in this case provides a constructor which accepts the

targeted bundle as well the action. Why's that? Well, think about it for a second. We are

going to give AdminPermission to the bundles we trust to do lifecycle related operations but

we might wont to be able to limit their capabilities to only manage a specific kind of bundles.

Therefore, the AdminPermission must know about the target bundle. How can we specify the

bundles we target for a given permission? Well, as we mentioned earlier, the

AdminPermission accepts a filter string as its name like for example:
new AdminPermission(“(&(signer=o=foo)(name=org.foo.*)(location=file://*)
 (id>=10)”), AdminPermission.LIFECYCLE+ “,” + AdminPermission.EXECUTE);

Granted, that looks a little complicated but it really is just showing off all four possible filter

parameters in a single filter. We can see that the bundle must have been signed by a

certificate that has an o=foo entry (we will discuss signing and matching of certificate filters

in more depth later in this chapter) and a symbolic-name that starts with org.foo (as with

the other permissions before the * is a wildcard that matches anything). Furthermore, we

limit the location of the targeted bundles to be on the filesystem and their bundle id to be

greater or equal 10.

12.3.4 ServicePermission

Ok, where are we now? As you probably can see we have worked our way through the

module and the lifecycle layer in terms of permissions. As you might have guessed, finally,

a possibility is needed to give you a possibility to secure the service layer as well. This is

where the ServicePermission comes into play.

Basically, what you want to be able to express is a bundle's authority to register or get a

service. This is a very simplistic approach but nevertheless a very powerful one when you

think about it. The benefit is that in many cases security concerns can be addressed by just

denying or granting access to a service or not. Sure, in some cases you would need more

finegranied control as protecting the individual methods of a service object but that is when

you will have to create and define your own permissions. The OSGi specification only goes as

far as the service object but in many cases that is already enough.

As with the other permissions, the ServicePermission centers around the name which

represents the name of the service interface as a comma separated string. Wildcards may be

used and the two possible actions are GET and REGISTER. Representing the authority to

either get or register a service with the given name, respectively. How does that look like?

Consider the following,
context.getServiceReference(“org.foo.Service”);
context.registerService(“org.bar.Service”, new Service(), null);

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

As you can see, we are trying to get a reference to a service with the org.foo.Service

interface in the first step and registering a service with the org.bar.Service interface in the

second step. The system would in this case need to perform the following security checks,
System.getSecurityManager().checkPermission(
 new ServicePermission(“org.foo.Service”, ServicePermission.GET));
System.getSecurityManager().checkPermission(
 new ServicePermission(“org.bar.Service”, ServicePermission.REGISTER);

As you can see, the check is pretty straightforward as we only need to create and check

for the ServicePermission with the given interface as a name and the GET or REGISTER

action, respectively. By now, it should be easy for you to guess what the correct permissions

you need to grant to the bundle look like but just to make sure, they need to look somewhat

like the following,
new ServicePermission(“org.foo.*”, ServicePermission.GET);
new ServicePermission(“org.bar.Service”, ServicePermission.REGISTER);

The first permission uses a wildcard to allow access to all services that are inside the

org.foo package and the second represents the authority to register services with the

org.bar.Service interface.

But wait, actually, it is not as simple as we make it look as we have a another layer

involved. Can you guess what we are talking about? It is a bit tricky but we already

mentioned that service references returned by a call to the getServiceReference() methods

are filtered by the visibility of the requested interfaces to your bundle (as you hopefully

remember, otherwise have a look again at xxx). Now, maybe its obvious but it might be that

your bundle doesn't have the package permission to the interface it requests a service object

for. Thats tricky right? Well, in this case, the same happens as if the bundle could not see the

package in question namely, the service gets filtered out despite the fact that the bundle has

the needed service permission.

12.3.5 Relative FilePermissions

Finally, we have to mention at this point that there is a standard Java permission which is

impacted by the way the framework will interpret it namely, java.io.FilePermission. This

difference is that in normal circumstances, relative FilePermissions i.e., a file permission that

has a relative path as its name, will assume that the root of the relative path is the normal

root (i.e., the directory the java command has been started from). This is not the case in an

OSGi environment. Rather, the root for the relative path is assumed to be the root of the

data storage area of the bundle in question. Why is that? Well, there is no way to determine

where the root of a bundles data storage is as it is not mandated by the specification.

Nevertheless, in certain cases, you want to be able to use the wildcard mechanisms of the

FilePermission in combination with its relative path feature to for example give a bundle

execute permissions for all files inside its data area. Therefore, the relative FilePermissions

are assumed to be relative to the bundle storage area.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

12.4 Managing Permissions
As we mentioned in the beginning of this chapter, OSGi security is based on the Java security

model. However, apart form introducing and defining some additional permissions that you

can use to secure your framework, it also introduces a complete new feature to the domain

namely, permission management. Granted, even in the normal java security world, there is a

way to define and grant permissions to protection domains by using a policy file. The Java

security policy files make it possible to assign permissions mainly based on location (the so

called codebase) or signer of a specific class. As you can imagine they are pretty static in

nature (typically changes are only applied when you restart your JVM) also there is a

possibility to re-read the policy files at runtime or replace the file based policy mechanism

with your own, custom one it really doesn't sit well with the dynamic nature of OSGi

frameworks. Maybe a nice analogy is the difference between plain Java and the module

layer when it comes to modularity. Yes, you can get the same level of modularity without

OSGi (as in fact, the module layer is implemented on top of plain Java) but the main

question is do you really want to (especially with something as powerful as OSGi at your

disposal already).

Alright then, what get is management API (as you might guess, we are talking services

here) that allows you to assign permissions to bundles, store the information persistently,

and change the configuration at runtime. One thing to point out to avoid confusion later on

this that there are two kind of services around namely, the PermissionAdmin and the

ConditionalPermissionAdmin. The reason is mostly historical as the PermissionAdmin has

been around first and the ConditionalPermissionAdmin was introduced in later versions. We

will describe both services starting with the PermissionAdmin in the following subsection

followed by the ConditionalPermissionAdmin in the next section. For now, just keep in mind

that there are two services around and that in case both are used then the location bound

permissions of the PermissionAdmin service override any information of the

Condt ionalPermiss ionAdmin serv ice. Otherwise, the concepts o f the

ConditionalPermissionAdmin service apply. The reason we mention this fact at this point is

that the relationship between the two is well defined and even as it can be summarized as

we just did we still will need to mention the later sometimes while describing the former in

order to highlight some finegrained effects of this policy. But now lets have a look at the

PermissionAdmin service.

12.4.1 PermissionAdmin

So in order to be able to use security in any meaningful way we need to be to reason about

the security policy currently in effect (by which we mean to say lookup the permissions that

currently are granted) and allow the management agent to assign and remove permissions

at least on a per bundle basis. The PermissionAdmin service does just that namely, it

provides you with information about current permissions and allows a management agent to

set permissions per bundle.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

The way this works is that permissions are assigned to a bundle location. So when a

bundle does attempt to do some security sensitive action only the permissions assigned to

the location of the bundle are evaluated. Now, you might be thinking that this is not really

enough given that a bundle's identity is not really coupled with the location anymore and you

would be right. This is the main reason the ConditionalPermissionAdmin has been created

which gives you more power when it comes to assigning permission. For now, we are stuck

with the old way of doing it which is based on the bundle location and additionally, on a set

of so called default permissions. Default permissions are the permissions that apply if no

entry for the location of the given bundle exists. We will give you an example soon but for

that we need to first introduce you to the format used to describe permissions. Why is there

a new format and you can not just use the Permission objects themselves? Well, the answer

is actually pretty straightforward if you think about it a little namely, the bundle that assigns

the permissions might not have access to the classes at the time it assigns them to a

location. Therefore, a PermissionInfo is defined which we have a look at next.

12.4.2 PermissionInfo

As we just said, the reason that we need a PermissionInfo abstraction is that we might be in

a situation where we can not instantiate the Permission because the bundle that needs to

assign the permission doesn't have access to the class. The PermissionInfo is used in this

case to encapsulate the three pieces of information that we need to know about when we

have to instantiate the permission later on at the time of the actual security check namely:

• type - class name of the permission

• name - name argument of the permission

• actions - actions argument of the permission

It really is as simple as it sounds. All we need to do is to create a new PermissionInfo

that accepts the three needed pieces of information as arguments to its constructor. Lets

have a look at a simple example,
new PermissionInfo(
 AdminPermission.class.getName(), "(id=10)",
 AdminPermission.EXECUTE);

As you can see, we create a PermissionInfo for an AdminPermission that will have the filter

(id=10) as its name and EXECUTE as its action. In other words, if we assign this

PermissionInfo to the location of a bundle using the PermissionAdmin service then the bundle

with this location will have the permission to execute (i.e., start/stop) bundles assuming that

the target bundle has a bundle id that equals 10. With that, lets cut to the chase and see the

PermissionAdmin in action.

12.4.3 PermissionAdmin in Action

By now, it should be pretty obvious what the PermissionAdmin service looks like from a high

level perspective. It really is as simple as shown in Figure xxx.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

The PermissionAdmin service maintains a set of PermissionInfo objects for any number of

unique bundle locations. When a security check is invoked, then for each

BundleProtectionDomain on the stack the location of the individual bundle is used to lookup

its PermissionInfo set from the Permission admin or the default set of PermissionInfos if no

such bundle location has been assigned. Subsequently, for each PermissionInfo the described

Permission is instantiated and checked against the required permission. If any permission

grants the required permission the check continues until all BundleProtectionDomains are

processed and the action is granted otherwise a security exception is thrown.

In case that the ConditionalPermissionAdmin is present (i.e,. provided by the framework)

then the default permissions are ignored. That means that in case we don't have a specific

entry for the bundle location in question we don't default to the default permissions but let

the ConditionalPermissionAdmin handle the situation.

Now, how do we bootstrap this process? Surely, not every bundle can be allowed to

access and modify the PermissionAdmin? True, and the answer is a little tricky but essentially

boils down to the first bundle wins. To this end, the idea is that if no default permissions

have been set, the default default permissions are AllPermission. This way, as long as nobody

has used the PermissionAdmin, anybody is free to use it. On the other end, all methods of

the PermissionAdmin require AllPermission. So as soon as you replace the defaut permissions

(or rather, set them for the first time) the security of the framework is yours as long as you

remember to give yourself AllPermisssion as a first step.

Again, the first thing a management agent has to do is give itself AllPermission. Then he

can go on to give permissions to other bundles as he sees fit. The reason that we just

switched from you to the management agent is to underline the fact that there is a race

condition here again that needs to be taken care of. It is the same we have seen a couple of

times when talking about the concept of a management agent namely, the need to have only

one and have it be the one entity that controls the framework. Same with security. Your

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Ch2Figure 12.2: Class Diagram org.osgi.service.permissionadmin

<<interface>>
Permission
Admin

<<class>>
Permission
Info

java.security.
Permission

1 0..n

bundle location

constructs

1

1

http://www.manning-sandbox.com/forum.jspa?forumID=507

management agent should be the one that controls the permissions of the framework and it

can do so by being the first bundle that gets started. If you allow a different bundle to

execute before your management agent then it is free to take over the security of the

framework as all bundles have initially AllPermission.

That said, lets zoom in a little and see what it will look like to actually use the

PermissionAdmin service. The interface of the service looks like:
package org.osgi.service.permissionadmin;
public interface PermissionAdmin{
 PermissionInfo[] getDefaultPermissions();
 String[] getLocations();
 PermissionInfo[] getPermissions(java.lang.String location);
 void setDefaultPermissions(PermissionInfo[] permissions);
 void setPermissions(String location, PermissionInfo[] permissions);
}

The first thing we need to do (as we just established) is to give ourself AllPermission in

order to take over the security of the framework.
PermissionAdmin admin = getPermissionAdmin();
admin.setPermissions(
 context.getBundle().getLocation(),
 new PermissionInfo[]{
 new PermissionInfo(
 AllPermission.class.getName(), "", "")});

This looks a little complicated but all we do is to get the PermissionAdmin (which is just a

normal service lookup) and call its setPermission() method with the location of your own

bundle and a new PermissionInfo array with a single PermissionInfo that encapsulates an

AllPermission. With that in place, we now have AllPermission and can proceed to set the

default Permissions or rather to unset the default permissions in order to deny other bundles

any permission.
PermissionInfo[] previous = admin.getDefaultPermissions();
admin.setDefaultPermissions(new PermissionInfo[0]);

This is not strictly necessary but nevertheless, you really want to define your own set of

default permissions directly after you assigned yourself AllPermissions. This way, you can

make sure that the default is what you actually want for bundles you don't really consider.

Now, why do we capture the previous default permissions? Again, this is a best practice. As

with most things a bundle does, it should make sure that it leaves the framework in a good

state when it leaves and in our case, we want to be to set the previous default policy again

when we are stopped like this,
admin.setDefaultPermissions(previous);

But this is only when we should be stopped and not really important for the more interesting

question namely, what other permissions might have been assigned and how can we assign

permissions to other bundles? Well, the former can be done using the a combination of

methods provided by the service like the following,
String[] locations = admin.getLocations();
for (int I = 0;(locations != null)&& (i < locations.length);i++){
 Permission[] permissions = admin.getPermissions(locations[i]);

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 ...
}

This allows us to iterate over all previously set permissions and for example store them away

as we did with the default permissions in order to restore them when we are stopped. Notice

that in this case we have to be careful to remember that we already added ourself with our

AllPermission entry. But more importantly, we can use a similar loop to make sure that for

example all specific bundle permissions are removed (again, we would need to be careful not

to delete our own AllPermission entry).
String[] locations = admin.getLocations();
for (int i = 0;(locations != null) && (i < locations.length);i++){
 if (!context.getBundle().getLocation().equals(locations[i]) {
 admin.setPermissions(locations[i], null);
 }
}

Assuming we did all these steps we now can be sure of two things. First, no other bundle has

any permission except us and second, we have a record of the previous security policy that

we can restore should we be stopped. With that, we are free to continue and start to give the

bundles we are interested in specific permissions using their bundle locations and to assign

meaningful defaults for bundles we don't really know using the default permissions. All of

this is possible using the mechanisms and methods we already showed.

That wasn't that bad was it? By now you should have a good understanding about the

basic java security model and how it is enforced at runtime. You know about the OSGi

specific permissions available and what they do. Finally, you know how to use the

PermissionAdmin service to define your own security policy based on the bundle location. So

what else do you need to know? Well, as we already mentioned, for a long time this was

what has been given to you but ever since release 4 of the specification there is the

ConditionalPermissionAdmin which adds a new concept that makes your life a lot simpler

plus, it reconciles the security layer with the new notion of bundle identity which isn't really

based on bundle locations anymore but rather on an abstract concept of a bundle. We will

learn about both in the next section.

12.5 Conditional Permission Management
In many ways, the Java security model is relatively static in nature. Unless heavily

customized it assigns a set of permissions to a code base or signer. The first attempt of a

new security model suitable for an OSGi environment has been the PermissionAdmin which

we introduced you to in the previous section. Its main benefit is to provide a management

infrastructure that allows to assign and change permissions on a per bundle basis during

execution time. As we discussed already, the hard coupling to the bundle, however, as well

as its hard coupling to the bundle location as a unique identifier makes it still rather limited

when it comes to expressing complex security policies. The upside being that it is relatively

simple.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

A different, related but somewhat more complex model, is provided by introducing the

notion of a condition to the general model. The main idea is to have a set of conditional

permissions where each can be applicable for any bundle if it fulfills the right conditions. This

sounds more complicated then it is as in reality all there is to it is a tuple of a set of

conditions and a set of permissions. Assuming that a bundle in questions satisfies all the

conditions in the condition set at the time of the permission check then all the permissions in

the permission set are applicable for check of this bundle. Just think about what this means

for you when want to express your security policy for a second. Instead of having to define

what permissions are granted to a specific bundle ahead of time you can now just define a

set of conditions that have to be fulfilled in order to have a certain set of permissions (i.e.,

rights).

Another way of understanding the concept is to look at the normal Java policy and its

possibilities to assign permissions based on codebase and on signer. Really, what it comes

down to is that the codebase and the signer attribute are conditions that can be fulfilled or

not. If they are then the permissions are applicable otherwise not. The condition model

introduced here is more or less an extension of this idea where one the one hand the

conditions are more powerful and on the other hand the set of possible conditions can be

extended arbitrarily as it is the case with permissions already in the Java model. This makes

it possible to create completely new kinds of policies that for example take time, location, or

even remote advice (like from talking to a central server) into account when it comes to the

actual security check.

Hopefully, by now you are able to see that the general idea of introducing conditions to

the security model has a lot of potential and while it adds some complexity it is well worth

the pain. In this section we will introduce you to the ConditionalPermissionAdmin service

which is the counterpart to the PermissionAdmin service and its replacement in the long run.

Regarding the complexity added to the model, just keep in mind that we will come back to

this in the following section when we talk about ways to deal with it and to simplify some of

the tasks need to define a reasonable security policy. But now, lets have a look at the

ConditionalPermissionAdmin first.

12.5.1 ConditionalPermissionAdmin

Like its predecessor, the PermissionAdmin service, the ConditionalPermissionAdmin service

(around since version 4.0 of the OSGi core specification) is the one place to go to in order to

define and maintain your security policy. It introduces a new way of doing permission

management by defining the concept of conditional permission management. In a nutshell,

the idea is that for each bundle on the call stack permissions are granted only if the bundle

satisfies the right conditions at the time of the security check. Thus, a security policy

essentially is expressed by a number of condition and permission set tuples. If all conditions

of the condition set of a tuple are satisfied by a given bundle then the supplied permissions

in the tuple apply for this bundle during this permission check.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Due to this much more flexible and powerful model, the CondtionalPermissionAdmin is

what you should use exclusively for new projects. The only reason that you turn to the

PermissionAdmin would be that you need to secure a framework that is not at least at

version 4 of the specification (which will rarely be the case nowadays). In the reminder of

this section we will zoom in on the condition part next and then give you an example of how

to use the ConditionalPermissionAdmin service in action.

12.5.2 Conditions

By now, it should be clear that the actual purpose of a condition is to act as guard which

decides if a permission set is applicable or not. Subsequently, the condition must be

evaluated when a security check is trigged against all bundles on the callstack. The way this

done is that for each bundle protection domain that is checked at the first time a condition is

found it gets instantiated with a reference to the bundle in question. From then on, it will be

used for each evaluation this protection domain takes part in. The evaluation itself is pretty

straight-forward as all that is done is that the isSatified() method of the condtion is called

returning either true or false depending on whether the bundle in question satisfies the

condition or not at this point in time. In case you are thinking ahead a little bit you might

have two questions about this namely, isn't that kinda slow and what about side effects. At

least, these are the two main issues addressed by the conditions other then purely deciding

whether they are satisfied or not. Lets look at these two concerns in order now and explain

how they are addressed.

The the first question was whether the idea of evaluating all conditions for all bundles on

the callstack on every security check isn't a very expensive thing to do. The answer is that,

yes, this could be a real performance bottleneck and hence, conditions provide a mechanism

to mitigate these cost to some degree at least in a lot of cases. The way this is done is that

they provide the possibility to query whether they are mutable or not. This allows for

significant evaluation optimization as immutable conditions need to be evaluated only once

per bundle protection domain (during the first security check they take part in) and

subsequently, can be optimized away as they either will always remain in their state after

that. For this purpose, a condition has a isMutable() method which returns true or false

depending on whether the condtion is mutable or not. A good example might be a condition

that mimics the way that the PermissionAdmin service works by using a given bundle

location as requirement to be satisfied. As the bundle location of the given bundle for this

instance of the condition is not going to change, we only have to evaluate the requirement

once as subsequent evaluations will always yield the same result.

The second question regarding side-effects is a bit more complicated to explain but

makes perfect sense once you get more accustomed to the condition model. Lets try to

explain this by ways of an example. Imagine you want to create a condition (and in fact, it is

possible to define and use custom conditions as you will learn in a little bit) that asks the

user whether it should be satisfied or not. We can imagine the usual pop-up dialog that ask

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

the user whether a given bundle should have the permission (obviously, we could combine

that with the mutable feature by adding a checkbox that lets the user “remember this

decision”). Now, what we probably don't want is that the pop-up is happening for each

bundle on the call-stack and the user needing to acknowledge each at a time (as this would

be rather tedious for the user) and worse, that after he granted the permission for all

bundles it still fails because the last bundle (for example) is having another condition in the

set not being satisfied. Clicking on “allow” a hundred times (for a hundred bundles) and then

getting a security exception message as a reward wont make many users happy. So what we

need is two things namely, we need to be able to postpone conditions to underline that they

should be only evaluated if all other (not postponed) conditions are satisfied and we must be

able to group the evaluation for the same kind of condition into a single evaluation for the

group containing all bundles. With these two features we can easily make the user

experience for our little example a lot more pleasant by postponing the condition and

grouping the evaluation so that the user only sees the pop-up dialog in case that all other

conditions are already satisfied for all bundles and that the resulting permissions are actually

implying the required one (so that in case the user “allows” the result is that the security

check actually is successful). Furthermore, the grouping enables us to present the user with

a single dialog listing all the bundles in question rather then an individual dialog per bundle

(the hundred times clicking).

Fortunately, that is exactly what the second feature of conditions gives us. They can be

postponed (as indicated by yet another method isPostponed()) which actually combines the

two desired features. On the one hand, it will make sure the condition is evaluated only if all

other not postponed conditions are satisfied and that it is evaluated grouped together with all

other bundles on the callstack. As you can see, that is quite a powerful feature and we will

show you a detailed example later in this chapter when we show you how you could use

them implement such a more advanced use-cases in detail. For now lets have look a one of

the conditions that are provided by the default and how it can be encoded using a

ConditionInfo.

CONDITIONINFO AND BUNDLELOCATIONCONDITION

As conditions are the new way of defining which bundle gets what permissions obviously you

well need a couple of them to be able to express anything meaningful in your security policy.

Therefore, a couple of conditions is include by default and one of them allows you to mimic

the behavior you already know from the PermissionAdmin namely, the

BundleLocationCondition. As the name implies already, what it does is to match a given

location to the location of the bundle in question and is satisfied if the given location (which

my include wildcards) matches the bundle location. Since we already used a similar scenario

as an example for why condition can be mutable or not it might be worth mentioning that

the BundeLocationCondition is immutable and as it doesn't have any unwanted side effects

nor needs grouping is not postponed. In other words, it works pretty much the same as the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

PermissionAdmin service except that in this case you must encode it inside a ConditionInfo in

order to use it (i.e., give it to the ConditionalPermissionAdmin). As an example consider the

following two BundleLocationConditions which we encode inside ConditionInfos,
new ConditionInfo(BundleLocationCondition.class.getName(),
 new String[] {context.getBundle().getLocation()});
new ConditionInfo(BundleLocationCondition.class.getName(),
 new String[] {"*://foo.baz/*"});

As you can see, the ConditionInfo constructor accepts two parameters. The first being the

name of the condition class as a string and the second is an array of strings which are the

parameters of the condition (and hence, are specific to each specific condition). In our case,

the BundleLocationCondtion expects one parameter namely, the location filter string.

Subsequently, the first condition will be satisfied by bundles that have the same location as

our bundle (as we use the location of our bundle directly as a parameter) while the second

condition accepts all bundles that are coming from the foo.baz domain. Notice, we use

wildcards not only to express that we want the condition to be satisfied by all bundles from

the foo.baz domain (the second wildcard) but also to express that we don't care about the

protocol schema (i.e., it could be http, ftp, etc.).

Since the 4.2 release of the specification, the BundleLocationCondition accepts a second

parameter as well, namely, the “!” string indicating that the result of the evaluation must be

negated. So the following would match all bundles except a bundle with the location of

file:bundle/foo.jar.
new ConditionInfo(BundleLocationCondition.class.getName(),
 new String[] {"file:bundle/foo.jar”, “!”});

Ok, with that, you know what you need to know about conditions to get started with

some ConditionalPermissionAdmin action. We will come back to conditions in more detail

later including introducing you to the other build-in condition namely, the

BundleSignerCondition and an example of how you can create and make available your own

custom conditions. For now, lets go and have a look at the ConditionalPermissionAdmin

service next.

12.5.3 ConditionalPermissionAdmin in Action

By now, it should be pretty clear what the ConditionalPermissionAdmin service looks like

conceptually. Basically, the service maintains a set of ConditionalPermissionInfo objects that

in turn contain a set of CondtionInfos and a set of PermissionInfos each. Have a look at

figure xxx to see what it looks like.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

As you can see in the figure, the high-level view of the ConditionalPermissionAdmin isn't all

that different from what the PermissionAdmin service did look like. The same is true for some

of the usage details as well. The interface of the service looks like:
package org.osgi.service.condpermadmin;

public interface ConditionalPermissionAdmin {
 ConditionalPermissionInfo addConditionalPermissionInfo(
 ConditionInfo[] conds, PermissionInfo[] perms);
 AccessControlContext getAccessControlContext(String[] signers);
 ConditionalPermissionInfo getConditionalPermissionInfo(String name);
 Enumeration getConditionalPermissionInfos();
 ConditionalPermissionInfo setConditionalPermissionInfo(String name,
 ConditionInfo[] conds, PermissionInfo[] perms):
}

Again, the first thing to do when putting your security policy in place is to give your

bundle Allpermission. The difference is now that you need to use conditions to identify your

bundle rather then just providing the location as the identifier. Fortunately, the location

condition introduced in the last section allows us to stay close to the example we did give for

the PermissionAdmin which now looks like the following,

ConditionalPermissionAdmin condPermAdmin =
getConditionalPermissionAdmin();
condPermAdmin.addConditionalPermissionInfo(
 new ConditionInfo[] {
 new ConditionInfo(
 BundleLocationCondition.class.getName(),
 new String[]{context.getBundle().getLocation()})
 },
 new PermissionInfo[] {
 new PermissionInfo(

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Ch2Figure 12.3: ConditionalPermissionAdmin overview

Conditional
Permission
Admin

Conditional
Permission
Info

Permission
Info

Condition
Info

Condition java.security.
Permission

1

* *

encodes encodes

http://www.manning-sandbox.com/forum.jspa?forumID=507

 AllPermission.class.getName(), "", “")
 });

We first get the ConditionalPermissionAdmin and then add a single condition permission

tuple using the addConditionalPermissionInfo() method. The first argument is an array of

ConditionInfo objects which in this case contains only a single condition description namely,

the BundleLocationCondition which gets the location of our bundle as an argument. The

second argument to the method is an array of the actual Permissions that we want to grant

when the conditions of the condition permission tuple are satisfied and subsequently, we add

a single PermissionInfo object which describes the desired AllPermission.

With the AllPermission in place for our bundle we now have to make sure that we don't

have any unexpected entries made already as we want to be the only one responsible for the

security policy of this framework. So what other permissions might have been assigned and

how can we assign permissions to other bundles? Well, the former can be done using the a

combination of methods provided by the service like the following,
for(Enumeration e = condPermAdmin.getConditionalPermissionInfos();
 e.hasMoreElements();){
 ConditionalPermissionInfo info =
 condPermAdmin.getConditionalPermissionInfo((String) e.nextElement());
…
}

This allows us to iterate over all previously set condition and permission tuples, using the

getConditionInfos() and the getPermissionInfos() methods of the ConditionalPermissionInfo

object, and for example store them away as we did previously with the PermissionAdmin

already in order to restore them when we are stopped. Notice that in this case we have to be

careful to remember that we added ourself as well. But more importantly, we can use a

similar loop to make sure that for example all specific bundle permissions are removed

(again, we would need to be careful not to delete our own AllPermission entry).

for(Enumeration e = condPermAdmin.getConditionalPermissionInfos();
 e.hasMoreElements();){
 ConditionalPermissionInfo info =
 condPermAdmin.getConditionalPermissionInfo((String) e.nextElement());

 info.delete();
}

Assuming we did all these steps we now can be sure of two things. First, no other bundle

has any permission except us and second, we have a record of the previous security policy

that we can restore should we be stopped. With that, we are free to continue and start to

implement our own security policy for other bundles. However, there is one more thing to

point out which is shown in the above example as well. The point is that in the case of the

PermissionAdmin we had a key to the permissions already as we could just use the location

as the key to address them. In the case of the ConditionalPermissionAdmin this is not

possible anymore and that's why a custom “name” is introduced. Obviously, the keys we use

via the Enumeration in the example are therefore the names if the available infos.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

I f t h e Cond i t i o na l Pe rm i s s i on In f o has been c r ea t ed u s i ng t he

addConditionalPermissionInfo() method then a unique name will be automatically created by

the service which you can get access to using the getName() method on the info itself. In

case that you want to set the name ourself then you can create or update (in case there is

already one with the given name) a ConditionalPermissionInfo as follows,
condPermAdmin.setConditionalPermissionInfo(“Management”,
 new ConditionInfo[] {
 ...
 },
 new PermissionInfo[] {
 ...
 });

We just use the setConditionalPermissionInfo() method which expects the name as its

first argument (in this example “Management”) and will either create the info or update it in

case there was already an info defined with the given name.

Thats it in a nutshell. You are now able to create your own condition based security

policies using the CondtionalPermissionAdmin service. That wasn't that hard right? But wait,

there is more. Essentially, what we did show you was the r4.1 way of using the

ConditionalPermission admin. With the advent of the r4.2, we now have a couple of methods

more that make the tasks of managing the condition/permission tuples even easier. The new

interface still contains all the method of the one shown above plus the following methods,
public interface ConditionalPermissionAdmin {
 …
 public ConditionalPermissionUpdate newConditionalPermissionUpdate();
 public ConditionalPermissionInfo newConditionalPermissionInfo(
 String name, ConditionInfo[]conditions,PermissionInfo[] permissions,
 String access);
 public ConditionalPermissionInfo newConditionalPermissionInfo(
 String encodedConditionalPermissionInfo);
}

Specifically, the update of the condition permission table has been simplified a lot by the

introduction of a ConditionalPermissionUpdate object. Have a look at the following example,
ConditionalPermissionAdmin admin = null;
ConditionalPermissionUpdate update =
admin.newConditionalPermissionUpdate();

As you can see, we can now get an update object from the service. From that, we can get

a representation of the current table like this,
List infos = update.getConditionalPermissionInfos();

As you probably can see, this makes our task of backing-up and deleting all currently

granted permissions a lot easier as all we need to do is the following,
List oldInfos = new ArrayList(infos);
infos.clear();

In case you are wondering “but what about my own permissions?”, the reason we can

first delete all entries is that we now have a transactional style update mechanism which

allows us to modify the representation we got as we see fit and it only becomes immediate

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

when we commit the update object. For example, if we wanted to add another

condition/permission entry after we cleared the table and then commit it all we need to do is,
infos.add(admin.newConditionalPermissionInfo(name, conditions, permissions,
 access));
update.commit();

The commit method will return true or false, in case that the update was successful or

not, respectively. Obviously, restoring the previous permissions becomes really simple now,

like this,
infos.clear();
infos.addAll(oldInfos);
update.commit();

Pretty simple huh? One thing we still need to talk about however, is the access

parameter we passed to the newConditionalPermissionInfo method. What is that all

about? In a nutshell, with the r4.2 version of the service we can now create not only allow

but deny policies as well.

ALLOW V.S. DENY POLICIES

So what are deny policies? Well, deny policies can significantly simplify the security

configuration setup because they handle the common case of an exception to the general

rule. Consider, for example, a case where a bundle should be allowed to use all exported

packages except a subset of packages under a common root (let's say org.foo.*). How would

we implement such a policy? The problem obviously is that we can't just enumerate all

possible packages other than the org.foo.* packages and at the same time we can't allow *

as we want to exclude org.foo.* packages.

This is where the access type comes into play. If we set it to be DENY then, assuming the

given conditions are satisfied, the bundle will not get the specified permissions. Thats what is

called a deny policiy and what makes it possible to first deny our bundle access to org.foo.*

packages while second, grant access to all other packages like so,
infos.add(admin.newConditionalPermissionInfo("deny-org.foo-packages",
 new ConditionInfo[]{ new ConditionInfo(
 BundleLocationCondition.class.getName(), new String[]{"file:foo.jar"})
 },
 new PermissionInfo[]{ new PermissionInfo(
 PackagePermission.class.getName(),
 "org.foo.*", PackagePermission.IMPORT)
 }, ConditionalPermissionInfo.DENY));

THE PERMISSION CHECK

It is important to realize that with the addition of the access type (i.e., Allow and Deny) it

is now the case the the order of condition/permission tuples becomes important.

Basically, the permission check will traverse the policy table of tuples in ascending index

order until the first tuple is found where the conditions are satisfied and the required

permission is present. If this access type is DENY, the check will fail. If an ALLOW is

found, the next bundle protection domain will be checked.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

With that in place, we now made sure that the bundle at the file:foo.jar location doesn't

get access to any org.foo.* package. Consequently, whats left is to allow access to all other

packages,
infos.add(admin.newConditionalPermissionInfo("allow-all-packages",
 new ConditionInfo[]{ new ConditionInfo(
 BundleLocationCondition.class.getName(), new String[]{"file:foo.jar"})

 },
 new PermissionInfo[]{ new PermissionInfo(
 PackagePermission.class.getName(), "*", PackagePermission.IMPORT)
 },
 ConditionalPermissionInfo.ALLOW));

Thats it for the conditional permission admin. In the next section we will show you how

you can use bundle signing to make your life easier when specifying your security policy

while at the same time you gain even more security. Let's have a look at that right now.

12.6 The simple Life
Knowing how to secure your OSGi framework by implementing your own security policy and

how to write your bundles in a way that they take security into consideration is only one

piece of the puzzle. The other is to find ways and methods to make your life easy enough to

actually use security. We will try to give you tools and mechanisms that can ease the pain

that is normally associated with two of them in this section namely, authenticate the provider

of a bundle while ensuring that the content has not been modified and grant a bundle the

permissions it needs (and only the ones it needs). The former can be done using digitally

signed bundles using certificated to establish the identity of the provider of the bundle and

the latter by a mechanism called local permissions. We will have a closer look at signing first

and then talk about the local permissions at the end of this section.

So far we already introduced you to the conditional permission idea that can help a lot in

implementing your security policy. While we did that you might have noticed that we

mentioned signed bundles and certificates a couple of times but never really explained how

to do that. We will now come to that in the next section where we show you how you can

digitally sign your bundles and in the section after that where we talk about the

BundleSignerCondition which gives you the means to grant permissions based on the identity

of a bundle established via certificates.

12.6.1 Signed Bundles

Digitally signing allows you to verify two things namely, the authenticity of the signer and

that the content has not been modified after it was signed. Typically, the authenticated signer

is called a principal. In an OSGi Framework, the principals that signed a bundle become

associated with that bundle. This association is then used to grant permissions to a bundle

based on the principal.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507
file:///foo.jar

For example, instead of determining the locations of all the bundles of a given company

you want to give networking permissions too, you can grant the a company the right to use

networking on your devices. The company can then use networking in every bundle they

digitally sign and that you deploy. Also, a specific bundle could be granted permission to only

manage the life cycle of bundles that are signed by the company in question. That gives you

a very simple yet powerful way of limiting what can or can not be installed in your

framework.

Signing provides a powerful delegation model. It allows an Operator to grant a restricted

set of permissions to a company, after which the company can create bundles that can use

those permissions, without requiring any intervention of, or communication with, the

Operator for each particular bundle.

Digital signing is based on public key cryptography. Public key cryptography uses a

system where there are two mathematically related keys: a public and a private key. The

public key is shared with the world and can be dispersed freely, usually in the form of a

certificate. The private key must be kept a secret. Messages signed with the private key can

only be verified correctly with the public key. This can be used to authenticate the signer of a

message (assuming the public key is trusted).

The digital signing process used with bundles is based on Java 2 JAR signing and the

same tools that you can use to sign a JAR can be used to sign a bundle. We will give you an

example next which shows you how you can give required permissions to the bundles signed

with the correct certificate. Lets see how we can get this done step-by-step and start with

creating the required certificates next.Trust and Certificate Chain Example

Does this sound a bit abstract so far? Don't worry, we will make things more clear right

now. Let's assume you have a system which features a set of core bundles (lets call that

the framework domain) and an arbitrary number of 3rd party bundles that can extend it

(the 3rd party domain). Furthermore, we are expecting other bundles to be around but

we don't want to have them make use of our framework bundles (e.g., they shouldn't be

able to import any packages exported nor use any service published by framework

bundles).

Now the question is how can we provide a simple yet secure model to allow us and 3rd

parties to provide bundles for their respective domains without knowing what bundles

that are in advance? Simple, we need to create a root certificated (what is normally called

a CA) which we maintain and that get's used as the root of trust by the framework. Next,

we create two subcertificates one for the framework and one for the 3rd party domain.

With that in place, we can sign certificates of framework and 3rd party

developers/companies with the respective subcertificate and when they in turn us their

certificate to sign a bundle the framework can use the root certificate to establish a chain

of trust (in other words, ensure that the certificates are known and trusted).

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

CERTIFICATES AND KEYSTORES

In order to create certificates and their associated public and private keys we will use the

keytool command provided by the JDK. It can be used to create and manage certificates

inside a so called keystore which is an encrypted file defined by Java for this purpose.

For our little example we first have to create two different certificates namely a core and

third-party certificate (see the sidebar at xxx for a more complete example). In a real

system the private keys would need to be kept as secret as possible. For now, we are just

going to create a new keystore file which will contain our new public and private key pair for

our Certificates like this,
keytool -genkey -keystore certificates.ks -alias core -storepass foobar \
 -keypass barbaz -dname "CN=core, O=baz, C=DE"
keytool -genkey -keystore certificates.ks -alias third-party \
 -storepass foobar -keypass barbaz -dname "CN=third-party, O=baz, C=DE"

As you can see, the new keystore is called certificates.ks and we create two new key

pairs with an alias of “core” and “third-party”. The store is protected by the password foobar

and the keys themselves have a password of barbaz. The -dname switch allows us to specify

our distinguished name in this case core and third-party from the baz organisation in

germany, respectively.

DISTINGUISHED NAME (DN)

An X.509 name is a Distinguished Name (DN). A DN is a highly structured name,
officially identifying a node in an hierarchical name space. The DN is used as an
identifier in a local name space, as in a name space designed by an Operator. In our
case (CN=root, O=baz, C=DE), we have a simple “country”/“company”/“name”
name-space. Notice that the traversal of a name is reversed from the order in the
DN, the first part specifies the least significant but most specific part. That is, the
order of the attribute assertions is significant. Two DNs with the same attributes but
different order are different DNs.

The next thing to do is to sign our key pair with itself. Might sound a little strange at first

but is what you need to do in order to make it the root of the tree. It's a common thing to do

as you can see by the fact that the keytool command has a support for it called “-selfcert”.
keytool -selfcert -keystore certificates.ks -alias core -storepass foobar \
 -keypass barbaz -dname "CN=core, O=baz, C=DE"
keytool -selfcert -keystore certificates.ks -alias third-party \
 -storepass foobar -keypass barbaz -dname "CN=third-party, O=baz, C=DE"

The only difference to the previous command is that we use the -selfcert instead of the

-genkey switch. With that, we have our key pairs which can be used to sign other certificates

in order to be part of a trusted certificate chain or bundles directly. But wait, where are our

certificates now? Well, for that, we need to extract them from the certificates.ks keystore

first and import it again. Why that? The reason is that we want to impor as certificate

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

entries. For now our key pairs are key entries and there is no other way to change it to be a

certificate entry other than to export and import it again.
keytool -export -v -keystore certificates.ks -alias core -file core.cert \
 -storepass foobar -keypass barbaz
keytool -export -v -keystore certificates.ks -alias third-party \
 -file third-party.cert -storepass foobar -keypass barbaz
keytool -import -v -keystore certificates.ks -alias core-cert \
 -file core.cert -storepass foobar -keypass barbaz
keytool -import -v -keystore certificates.ks -alias third-party-cert \
 -file third-party.cert -storepass foobar -keypass barbaz

In a real world scenario, you would want to make that different keystores. One that

contains your keys with which you can sign bundles into their domains and one that contains

the certificates that you can use to verify that the certificates of signed bundles are trusted.

For now, we can verify that we now have a key entry and a certificate entry using the “-list”

command of the keytool. Your output should look close to:
keytool -list -keystore certificates.ks -storepass foobar

third-party-cert, 08.01.2010, trustedCertEntry,
fingerprint (MD5): 15:9B:EE:BE:E7:52:64:D4:9C:C1:CB:5D:69:66:BB:29
core, 08.01.2010, PrivateKeyEntry,
fingerprint (MD5): CE:37:F8:71:C9:37:12:D0:F1:C8:2B:F9:85:BE:EA:61
third-party, 08.01.2010, PrivateKeyEntry,
fingerprint (MD5): 15:9B:EE:BE:E7:52:64:D4:9C:C1:CB:5D:69:66:BB:29
core-cert, 08.01.2010, trustedCertEntry,
fingerprint (MD5): CE:37:F8:71:C9:37:12:D0:F1:C8:2B:F9:85:BE:EA:61

Next, we need to sign our bundles using the certificate of the domain we want them to

belong to.

SIGNING BUNDLES

Digitally signing is a security feature that ensures that the content of a bundle has not been

modified as well as authenticating the signer. In OSGi, the principals that signed a bundle

JAR become associated with that bundle. This you can use to grant permissions to a bundle

based on the authenticated principal.

A given bundle JAR can be signed by multiple signers and the signing itself follows the

normal java JAR signing. The only additional constraint is that for a bundle, all entries inside

the bundle must be included in the signature except entires below META-INF/ (while the

normal java JAR signing allows for partially signed JARs). Luckily, that enables us to just use

the jarsigner tool included in the jdk (by default, it will sign all entires in the given JAR). The

following will sign a bundle with our core certificate,
jarsigner -keystore file:certificates.ks \
 -storepass foobar -keypass barbaz core-bundle.jar core

To sign a second bundle with our third party certificate should be pretty obvious and looks

like,
jarsigner -keystore file:certificates.ks \
 -storepass foobar -keypass barbaz third-party-bundle.jar third-party

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

file:///certificates.ks
http://www.manning-sandbox.com/forum.jspa?forumID=507

Again, in this example we don't need to worry about different keystores as we did place

both, the keys and their certificates inside the same keystore. Otherwise, we would need to

use the keystore containing the keys as we need the private key to sign a bundle. For

verification on the other hand, all we need is the certificate. We can use the jarsigner tool for

verification as well,
> jarsigner -verify -keystore file:certificates.ks core-bundle.jar
jar verified.
> jarsigner -verify -keystore file:certificates.ks third-party-bundle.jar
jar verified.

As you can see, we now have two correctly signed bundles. One is signed into the core

and one into the third-party domain, respectively. With that, its easy to grant permissions

based on the signer of a bundle as we will see next.

CERTIFICATE MATCHING

In OSGi, certificates are matched by their Subject DN. Certificate chains are represented as

“;” separated lists of the subject DNs of the involved certificates. DNs can also be compared

using wildcards. A wildcard (i.e., a “*”) replaces all possible values but due to the structure

of the DN, the comparison is more complicated than string-based wildcard matching.

Basically, we need to look at three different cases.

The first is if a “*” is used standalone. In this case it matches all possible siblings of the

DN tree from the point onwards. Therefore, it can only stand on the left hand side of a

Subject DN. For example, a DN with a wildcard that matches all nodes descending from the

o=baz node from the above example looks like:
*, o=baz, c=de

It will match both, the core and the third-party subject DNs from above. The second case

is if the wildcard is used as part of the right hand argument as in,
cn=*, o=baz, c=*

In this case, we would still match our two certificates but be matching more certificates

as the first filter as we allow for all countries but at the time more limiting as we require the

o node to be followed by a cn node. The two kind of wildcards can be combined as well, to

remove the limit and only keep the broader matching like so,
, o=baz, c=

Lastly, matching of a DN takes place in the context of a certificate. This certificate is part

of a certificate chain. Each certificate has a Subject DN and an Issuer DN. The Issuer DN is

the Subject DN used to sign the first certificate of the chain. DN matching can therefore be

extended to match the signer. The semicolon (“;”) must be used to separate DNs in a chain.

The following example matches a certificate signed by the core certificate of our example

certificates.
*; cn=core, o=baz, c=de

The wildcard matches zero or one certificates, however, sometimes it is necessary to

match a longer chain. The minus sign “-”) represents zero or more certificates, whereas the

asterisk only represents a single certificate. For example, to match a certificate where any of

our two example certificates is in the chain, use the following expression:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507
file:///certificates.ks
file:///certificates.ks

-;*, o=baz, c=de

Obviously, matching in general only applies if the certificates in the chain are trusted, or

are signed by a trusted certificate. Certain certificates are trusted because they are known

by the Framework, how they are known? Well, to some degree this is implementation specific

but besides the implementation specific ways there is one standard way introduces in r4.2

that allows you to specify keystores with the trusted certificates via a property. The following

property can be given to the framework via its configuration properties:
org.osgi.framework.trust.repositories
This property is used to configure trust repositories for the framework. The value is a list

of paths of files.The file paths are separated by the pathSeparator defined in the File class.

Each file path should point to a JKS key store. The framework will use the key stores as trust

repositories to authenticate certificates of trusted signers. The key stores must only be used

as read-only trust repositories to access public keys. The keystore must not have a

password.

Ok, so how do use this matching then together with the conditional permission admin?

This is what the BundleSignerConditions is for.

12.6.2 BundleSignerCondition

A Bundle Signer Condition is satisfied when the related bundle is signed with a certificate

that matches its argument. That is, this condition can be used to assign permissions to

bundles that are signed by certain principals.

The first string argument is a matching Distinguished Name as defined in Certificate

Matching. The second argument is optional, if used, it must be an exclamation mark ("!").

The exclamation mark indicates that the result for this condition must be reversed. For

example:
new ConditionInfo(BundleSignerCondition.class.getName(),
 new String[]{"cn=core,o=bar,c=de"});

This condition would match if the bundle has been signed by the core certificate of our

example certificates while the following will not match if it has been signed by the core

certificate but by any other certificate.
new ConditionInfo(BundleSignerCondition.class.getName(),
 new String[]{"cn=core,o=bar,c=de", “!”});

That pretty much is it on the topic of signing bundles. The only topic we might need to

cover is what happens if a bundle is signed by multiple signers.

MULTIPLE SIGNERS

A bundle can be signed by multiple signers, in that case the signer will match against any

of the signers’ DN. Using multiple signers is both a feature as well as it is a possible threat.

From a management perspective it is beneficial to be able to use signatures to handle the

grouping. However, it could also be used to maliciously manage a trusted bundle. For

example a trusted bundle could later have a signature added by an untrusted party. This will

grant the bundle the permissions of both, which ordinarily is a desirable feature. However,

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

there might be unexpected effects like for example becoming eligible to manage bundles that

shouldn't be manged by the bundle in question. This should be carefully considered when

multiple signers are used. The deny policies in Conditional Permission Admin can be used to

prevent this case from causing harm.

All right, you should now be able to use certificates to sign your bundles and grant

permissions based on the signer of a bundle. With that out of the way, let's have a look at

the next topic namely, how you can use local permissions to know what permissions a bundle

needs.

12.6.3 Local Permissions

Now that we know how we can use certificates and the BundleSignerCondition to establish

different levels of trust inside the framework lets get back to one of the biggest problems

with security we mentioned in the beginning. Namely, how do I know what permissions I

need to grant to a given bundle in order for it to function? Well, in standard java this is an

unsolved problem and basically requires you to rely on third party information. Obviously,

that doesn't work that well if we want to be able to use bundles that we don't know a lot

about. Fortunately, in OSGi, we have a concept called local permissions. This concepts

embodies a good working principle of security namely, to minimize permissions as much as

possible while at the same time allowing the developer to define the needed permissions of a

bundle instead of the deployer.

Local permissions are defined by a Bundle Permission Resource that is contained in the

bundle; this resource defines a set of permissions. These permissions must be enforced by

the Framework for the given bundle. That is, a bundle can get less permissions than the local

permissions but it can never get more permissions. At first sight, it can seem odd that a

bundle carries its own permissions. However, the local permissions define the maximum

permissions that the bundle needs, providing more permissions to the bundle is irrelevant

because the Framework must not allow the bundle to use them. The purpose of the local

permissions is therefore auditing by the deployer.

Analyzing a bundle’s byte codes for its security requirements is cumbersome, if not

impossible. Auditing a bundle’s permission resource is (relatively) straight-forward. For

example, if the local permissions request permission to access the Internet, it is clear that

the bundle has the potential to access the network. By inspecting the local permissions, the

Operator can quickly see the security impact of the bundle. It can trust this audit because it

must be enforced by the Framework when the bundle is executed. The Framework

guarantees that a bundle is never granted a permission that is not implied by its local

permissions. A simple audit of the application’s local permissions will reveal any potential

threats.

So what does this look like in practice? We are really just talking about a file inside the

bundle in a directory called OSGI-INF. The file itself must be called permissions.perm and

contains a listing of all the permissions the bundle needs.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

As a simple example lets assume we provide a foo bundle that only exports a single

package called org.foo. The local permissions of that bundle would be described in a file that

needs to contain an entry for the required PackagePermission and be placed as OSGi-

INF/permissions.perm inside the bundle. It would look like,
Tuesday, Dec 28 2009
Foo Bundle
(..PackagePermission "org.foo" "IMPORT,EXPORT")

As you can see, lines that start with a # are considered comments and are ignored. All

other none empty lines describe a required permission. The format is that of the encoded

PermissionInfo for that permission. Simple but very effective when it comes to auditing the

security impact of a given bundle.

Well, so much for the simple life. After you made it that far, you should now have a good

understanding about how you can implement security policies in OSGi. We did talk about the

PermissionAdmin und the ConditionalPermissionAdmin services which allow you to grant

permissions based on the location of a bundle or more general conditions, respectively. We

showed how you can use the keytool and jarsigner tools to create certificates and sign

bundles. Subsequently, you can use the BundleSignerCondition to grant permissions to

bundles based on their signers. Finally, we introduced you to local permissions allowing to at

the one hand, limit the permissions a bundle gets to the minimum while at the other hand

enabling to easily audit the security requirements of a given bundle. What else would there

be to know about? Well, while the location and signers of a bundle make for a solid basis of a

security policy, we already told you that the condition model of the

ConditionalPermissionAdmin is pretty powerful and allows you to provide your own

conditions. Let's have a look at how to do that and why you might want to next.

12.7 Advanced Permission Management
The actual purpose of a condition is to act as guard which decides if a permission set is

applicable or not. Subsequently, the condition must be evaluated when a security check is

trigged against all bundles on the callstack. The way this done is that for each bundle

protection domain that is checked at the first time a condition is found it gets instantiated

with a reference to the bundle in question. From then on, it will be used for each evaluation

this protection domain takes part in.

To this end, we already introduced you to the concept of mutable and immutable

conditions allowing to optimize the condition evaluation. So far, however, we didn't actually

told you how you can create your own conditions but only introduced two standard condtions

namely, the BundleLocationCondition and the BundleSignerCondition. While the two are often

all that is needed to implement a specific security policy the concept becomes much more

powerful if we are able to provide our own conditions. This is actually not that hard and we

will have a look at that now.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

12.7.1 Custom conditions

Obviously, providing custom conditions is a very security sensitive. We for sure don't want a

malicious bundle to shadow our actual condition with a faulty one. For that reason, providing

conditions isn't possible via normal bundles. In a nutshell, custom conditions are only valid if

they are made available from the classpath of the framework (i.e., are provided by the

system bundle). Otherwise, implementing a custom condition is pretty easy to do.

Basically, what is happening when a CondtionInfo is used to constructed a new condition

instance is that the framework loads the specified condition class form the classpath and

tries to call a static method on that class,
public static Condition getCondition(Bundle bundle, ConditionInfo info);

If such a method is not available it will fallback to trying to find a constructor to invoke

with the following signature:
(Bundle bundle, ConditionInfo info)

Assuming one of the two methods work then the instance is used as part of the already

described permission check. Obviously, for that to work the custom condition itself is

required to implement the Condition interface which looks like,
public interface org.osgi.service.condpermadmin.Condition{
 public static Condition TRUE;
 public static Condition FALSE;
 public boolean isPostponed();
 public boolean isSatisfied();
 public boolean isMutable();
 public boolean isSatisfied(Condition[] conditions, Dictionary context);
}

Besides the two static condition objects which are the default objects to use for a

condition that is allways TRUE or FALSE, respectively, the interface is only contains four

methods. We will have a look at two of them in the next section when we talk about

postponed conditions namely, the isPostponed() and the isSatisfied(Condition[]

conditions, Dictionary context) methods. For now, we are going to look at the two other

methods which are what you need for the simple case.

Probably, the easiest way to show you what you need to do is by way of an example. Lets

assume we want to restrict certain permission sets to be available before a certain point in

time. For example, we could imagine that we want to implement a simple license policy via

our security policy where we allow the usage of a bundle until a certain date. Have a look at

listing xxx where we provide a condition that we can use to make this possible.

Listing xxx: BeforeDateCondition Example

class BeforeDateCondition implements Condition {
 private final m_date;
 public static Condition getCondition(Bundle bundle, ConditionInfo info){
 return new BeforeDateCondition(Bundle bundle, info);#2
)
 public BeforeDateCondtion(Bundle bundle, ConditionInfo info){
 m_date = Long.parseLong(info.getArgs()[0]);#3

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 }
 public boolean isMutable(){
 return m_date > System.currentTimeMillis();#4
 }
 public boolean isPostponed(){
 return false;#5
 }
 public boolean isSatisfied(){
 return System.currentTimeMillis() < m_date;#6
 }
 public boolean isSatisfied(Condition[] conditions, Dictionary context){
 return false;#7
 }
}

As you can see, the implementation is simple. When we get a call to the static

getCondition() method we create a new instance of our BeforeDateCondition. In the

constructor, we parse the date as a long from the first (and only) argument in the condition

info and assign it to the m_date member. When the framework evaluates the condition, it will

first check whether the condition is postponed by calling the isPostponed() method. We

return false as we are not postponed. As a consequence, the framework will then call our

isSatisfied() method. There, we check whether the current time in milliseconds is still lower

then the given end-date in the m_date member and return the result.

Simple really. Thats all we need to do. The only thing left to explain is what happens in

the call to isMutable(). The idea of mutable and immutable conditions really is to optimize

condition evaluation. Assuming that a condition is immutable then the framework only needs

o evaluate (i.e., call it's isSatisfied() method) one time and can cache the result. Otherwise,

it needs to evaluate the condition on every check. Now, in this example, we have an

interesting case as the condition can not be immutable as long as the end-date hasn't been

reached (the result will change in the future). As soon as it is however, we can be

immutable. Luckily, the framework will recheck whether the condition has become immutable

after each evaluation. We make use of this in the isMutable() method by checking whether

the end-date has been reached and if so returning true.

Ok, now that we have your custom condition what is left is two things. We need to use it

as part of our security policy and therefore, make it available to the framework. The former

is just as you would expect nothing different from using the standard conditions. We just

change the condition info to be,
new ConditionInfo(“org.foo.BeforeDateCondition”, new String[]{<<Date>>});

Obviously, we need to replace the <<Date>> placeholder with desired date. The latter,

we can do by either putting the condition class on the classpath of the framework or by

making use of a so-called extension bundle. Let's have a look at that next.

DELIVER CUSTOM CONDITIONS AS EXTENSION BUNDLES

Again, our custom condition needs to be available from the classpath. However, given the
dynamic nature of OSGi, isn't there a way to still be able to deliver it at runtime? Luckily

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

there is. We can use an extension bundle that can deliver optional parts of the framework
implementation and is able to contribute to the framework classpath.

Extension Bundles

Extension bundles can deliver optional parts of the Framework implementation or provide

functionality that must reside on the boot class path. These packages cannot be provided

by the normal import/export mechanisms.

Framework extensions are necessary to provide implementation aspects of the

Framework. For example, a Framework vendor could supply the optional services like

Permission Admin service and Start Level service with Framework extension bundles. An

extension bundle should use the bundle symbolic name of the implementation system

bundle, or it can use the alias of the system bundle, which is system.bundle.

The following example uses the Fragment-Host manifest header to specify an extension

bundle for a specific Framework implementation

Fragment-Host: org.apache.felix.framework; extension:=framework

The following example uses the Fragment-Host manifest header to specify a extension

bundle in general.

Fragment-Host: system.bundle; extension:=framework

An extension bundle must throw a BundleException if it is installed or updated and it

specifies any of the following headers. Import-Package, Require-Bundle, Bundle-

NativeCode, DynamicImport-Package, or Bundle-Activator.

How would that look like? All we need is to create a bundle that contains our custom

condition with the following manifest,
Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.beforedatecondition
Bundle-Name: Before Date Condition Extension Bundle
Bundle-Version: 1.0.0
Fragment-Host: system.bundle; extension:=framework
Export-Package: org.foo

If the extension bundle is installed, all we need to do to be able to use the condition is to

actually use it in our security policy. That wasn't that hard, but what about this postponed

condition thing? Well, lets look at that next.

12.7.2 Postponed conditions

Certain Condition objects could optimize their evaluations if they are activated multiple times

in the same permission check. For example, a user prompt could appear several times in a

permission check but the prompt should only be given once to the user. These conditions are

called postponed conditions, conditions that can be verified immediately are called immediate

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

conditions. The isPostponed() method can inform if the condition is immediate or postponed.

A Condition must always return the same value for the isPostponed method so that the

Conditional Permission Admin can cache this value. If this method returns false, the

isSatisfied() method must be quick and can be called during the permission check, otherwise

the decision must be postponed until the end of the permission check because it is

potentially expensive to evaluate. Postponed conditions must always be postponed the first

time they are evaluated.

For example, a condition could verify that a mobile phone is roaming. This information is

readily available in memory and therefore the isPostponed() method could always return

false. Alternatively, a Condition object that gets an authorization over the network should

only be evaluated at most once during a permission check to minimize the delay caused by

the network latency. Such a Condition object should return true for the isPostponed method

so all the Condition objects are evaluated together at the end of the permission check.

The Conditional Permission Admin provides a type specific Dictionary object to all

evaluations of the same postponed Condition implementation class during a single

permission check. It is the responsibility of the Condition implementer to use this Dictionary

to maintain states between invocations. The condition is evaluated with a method that takes

an array and a Dictionary object: isSatisfied(Condition[],Dictionary). The array always

contains a single element that is the receiver. This is actually new in r4.2 as earlier versions

of the specification could verify multiple conditions simultaneously.

THE PERMISSION CHECK IN THE PRESENTS OF POSTPONED CONDITIONS

In addition to the access check for immediate conditions, the presents of postponed

conditions will change the evaluation internally but shouldn't change it as far as the

outcome is concerned. In other words, from the point of view of the policy creator it

doesn't matter whether a postponed or an immediate condition is used. The thing to note

however, is that the postponed conditions will only be evaluated if there is no immediate

entry that gives the required permissions.

As an example, lets implement a AskTheUser condition which does ask the user whether

he wants to allow access or not. We will split this into two parts namely, an AskTheUser

object which will present the user with a swing dialog asking to confirm a configurable

question and the actual AskTheUserCondition. The latter is a postponed condition that uses

the AskTheUser object to decide whether it is satisfied or not.

This is a good example for a postponed condition because you probably don't want to on

the one hand bother the user about stuff he in reality doesn't need to answer and on the

other, you want to postpone the (very slow) user interaction until it is really necessary. Have

a look at Listing xxx which shows the AskTheUser implementation.

Listing xxx: AskTheUser

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

public class AskTheUser implements Runnable {
 private final String m_question;
 private volatile boolean m_result;

 public AskTheUser(String question) {
 m_question = question;
 }
 public void run() {
 m_result = (JOptionPane.OK_OPTION ==
 JOptionPane.showConfirmDialog(null, m_question));
 }
 public boolean ask() throws Exception {
 SwingUtilities.invokeAndWait(this);
 return m_result;
 }
}

As you can see, we basically just provide a constructor that accepts the question to ask

as a string and when we call the ask() method a JoptioinPane confirm dialog with that

question will be presented to the user. If the user confirms, the ask() method will return

true, otherwise false.

With this in place, we can now let the user decide whether he wants the condition be

satisfied or not as shown in the AskTheUserCondition implementation in listing xxx.

Listing xxx: AskTheUserCondition

public class AskUserCondition implements Condition {
 private final Bundle m_bundle;
 private final String m_question;
 private final boolean m_not;
 public AskUserCondition(Bundle bundle, ConditionInfo info) {
 m_bundle = bundle;
 m_question = info.getArgs()[0].replace(
 "${symbolic-name}", bundle.getSymbolicName());
 m_not = !(info.getArgs().length == 2 && “!”.equals(info.getArgs()[1]));
 }
 public static Condition getCondition(Bundle bundle, ConditionInfo info) {
 return new AskUserCondition(bundle);
 }
 public boolean isMutable() {
 return true;
 }
 public boolean isPostponed() {
 return true;
 }
 public boolean isSatisfied() {
 return false;
 }
 public boolean isSatisfied(Condition[] conditions, Dictionary context) {
 if (context.get("result") != null) {
 if (m_not) {
 return !((Boolean) context.get("result")).booleanValue();
 }
 else {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 return ((Boolean) context.get("result")).booleanValue();
 }
 }
 Boolean result = ((Boolean) AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {
 AskTheUser question = new AskTheUser("m_question");
 try {
 return question.ask() ? Boolean.TRUE : Boolean.FALSE;
 } catch (Exception e) {
 return Boolean.FALSE;
 }
 }
 }));
 context.put("result", result);
 if (m_not) {
 return !result.booleanValue();
 }
 else {
 return result.booleanValue();
 }
}

As you can see, the implementation is simple for the most part. In the constructor we get

the question we need to ask the user from the first argument of the ConditionInfo and

replace ${symbolic-name} with the symbolic name of our bundle. Additionally, if there is a

second parameter which equals “!” we set the m_not member to true. We make it a mutable

postponed condition by having isMutable() and isPostponed() return true. In the

isSatisfied(Condition[],Dictionary) call we then first check whether we already asked the user

by looking up a “result” in the context dictionary. If it is present we just return the cached

answer (optionally, inverting it if m_not is true). Otherwise, we create a new AskTheUser

object with our question and call its ask() method. We will cache the result in the context

dictionary and return it (again, inverting it if m_not is true).

The only slightly complicated bit is that we need to make the call to the ask() method

inside an AccessController.doPrivileged(). The reason is that swing will need to make

a lot of security calls and we want to limit the involved protection domains to the minimum

(i.e., the protection domain of the condition itself). As the condition must be on the classpath

it will have the protection domain of the framework which needs to have AllPermission so the

call will go through but if we get an exception (for example in case that we are running

headless and can't use swing) we will return false to indicate that we are not satisfied as we

couldn't actually ask the user.

This concludes the section on postponed conditions. We are now able to let the user take

access decisions by simply including a condition info like the following,
new ConditionInfo(
 AskTheUserCondition.class.getName(),
 new String[]{"Do you want to grant ${symbolic-name} AllPermission?"});

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

We can now use this info as part of a condtion/permission tuple where the permission

part actually contains AllPermission and the tuple itself gets an access type of ALLOW. In

case we wanted to use the condition in a tuple with an access type of DENY we could just

create it with a not as a second parameter,
new ConditionInfo(
 AskTheUserCondition.class.getName(),
 new String[]{"Do you want to grant ${symbolic-name} AllPermission?",
 “!”});

With that, we could conclude the security chapter. We sure covered a lot of ground and

hope that we didn't go to fast. We imagine that it probably isn't that easy to see how all of

this adds up to a working security policy. Therefore, we will not finish the chapter at this

point but, give a complete example for a working security policy next. It will be based on the

Paint program from the previous chapters and in the next (and last) section we will present

you with a working security policy for it. Hopefully, this will help you to get a better

understanding of how all these things can be used together.

12.8 Bringing it all back home
Congratulations. If you have made it until this point, you should now know what there is

to know about OSGi security. Granted, we covered a lot of new things on top of the normal

Java security and especially, if you haven't been too familiar with that one in the first place,

we acknowledge the fact that this might have been a somewhat overwhelming experience

but we hope it was worth it. In order to help you see how all of this connects and is used

together we want to now present you with one example that uses as much as possible of the

introduced concepts and technologies.

Waiting for input

12.9 Summary
In this chapter we made you familiar with the Java security model and how it is used by

OSGi to provide the infrastructure to deploy and manage applications that must run in

secure environments. We showed you how to secure your applications and how to create

bundles that are well behaved and easy to use in a security enabled OSGi framework. In this

chapter we learned:

• That it is important to have security in mind when we write our bundles because

otherwise, they will likely not be good citizens in a security enabled environment.

• Java security gives us the possibility to create secure sandboxes and that we can

use the OSGi security to manage our security policies.

• OSGi provides us with the necessary permissions to be able to express security

policies for bundles.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

• The Permission Admin gives an easy and reasonable simple model to assign

permissions based on the location of a bundle.

• While the Conditional Permission admin introduces a completely new way of

managing security by means of conditions that must be satisfied in order for certain

permissions to be applicable.

• We can make our lives a lot simpler by signing our bundles with certificates and

have seem tell us what permissions they actually need by providing local

permissions.

• Its easy to implement and provide additional conditions which we can then use to

express our security policies.

• We can use postponed conditions if the evaluation of a condition would be expensive

which can help in certain scenarios to avouid performance penalties as well as given

a possiblitiy to batch evaluations so that for example a user would only be asked on

time whether he wants to grant a permission instead of multiple times. .

Using the paint program from the earlier chapters we learned how we can apply all of this

to a real scenario by securing the paint program. With this knowledge under out belt, we can

now secure our framework according to our own specific security policies and develop

bundles that can work in security enabled frameworks. In the next chapter, we'll look into

how we can use and provide web services using OSGi as well as how we can build web

applications on top of OSGi.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

13
Web applications and services

So this is it, the last chapter, hopefully throughout the course of this book we've been able to

convince you that OSGi is a technology that is both simple to use and extremely powerful.

We as authors believe OSGi is the inevitable future of Java development and we hope to

have convinced you of this fact too. Let's quickly review what we've covered during the

course of this book: we started the book by introducing you to the core concepts of OSGi

development, namely the module, service and life-cycle layers; in the middle section of the

book we then moved onto practical considerations of developing OSGi including migration,

managing, testing, debugging and working with legacy code; finally in this last section of the

book we have so far covered a number of advanced topics including component

development, embedded use cases, and how to manage security.

This final chapter will bring us right up to date with our recent technological past, namely

how to build and deploy web applications using OSGi, and show you the benefits OSGi can

bring to traditional web development frameworks. We will reuse a lot of knowledge from

earlier on in the book to build a dynamic, distributed OSGi application, but don't worry if you

skipped through, we'll provide you with relevant pointers back if you need an introduction or

a refresher on concepts for which you might be lacking in context.

Almost all organizations and many individuals in the world today have some form of web

presence, be this: via social networking sites, static html pages; simple one tier web

applications; medium sized n tiered architectures; or massive globe spanning behemoths.

Developers building these systems are familiar with a number of key technologies, namely

web services for back-end communication between business tiers and web applications for

user interaction via a browser.

During the course of this chapter we are going to look at a number of the key

technologies in this area and show you how to integrate them with OSGi. By way of an

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

example we are going to look at a number of simple examples before moving onto extend an

existing stock watcher web application from the GWT (Google Web Toolkit) tutorial to use

OSGi. Firstly we will look at how to use the module and lifecycle layers of OSGi install,

update and remove this application in and OSGi framework; then we will show you how to to

make use of OSGi services to allow for dynamic installation and update of business logic;

finally we will show you how to use web services with OSGi to make remote calls to other

OSGi framework's to offload processing from the web tier of our application.

For the purposes of brevity we will focus on the OSGi aspects of these technologies and

as such may skip over (or even plain ignore) some of the more complex aspects of web

development and distributed computing in general. Hopefully the genuine web developers

among you will be able to forgive us these transgressions. Our goal is to show you how OSGi

can work in a web context not to show you how to build and manage all aspects of web

applications or services. Figure 13.1 provides a simple diagram of the components of that we

will be building during this chapter. Let's get started.

13.1 Web applications
Unless you have been living on the moon for the last decade you must at some point have

had some exposure to web applications, whether this is as a user or a provider. Web

applications are a class of application that present their user interface via a standard web

browser such as Internet Explorer, Firefox or Safari. They are in fact ubiquitous: from

consumer shopping carts to online banking; from travel booking to social networking; from

games to employment to government, the list is pretty much endless.

If you're reasonably familiar with Java you will know that there are a plethora of tools and

technologies available to help you build such applications. In fact there are so many that it

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 13.1 During this chapter we will build a simple web application hosted on
a single OSGi framework that calls out to a number of back end OSGi
frameworks via web services protocols.

Web
Server

GWT

Web Service Client

JSP

Servlet

HTML

Web Service Web Service Web Service

Blah, blah, blah, blah,
blah, blah, blah, blah,
blah, blah, blah, blah,
blah, blah

http://www.manning-sandbox.com/forum.jspa?forumID=507

would be impossible for us to cover all of the possibilities in a single chapter, instead we will

pick a few of the more popular Java toolkits and show you how OSGi can improve upon their

design and usage. From here you should be able to extend the general principles we cover in

this section to integrate OSGi with any other toolkit of your choice. In this section we will

cover the use of OSGi with the following technologies:

 Static content

 Java Servlets

 JavaServer Pages

 Google Web Toolkit

So what are the benefits that OSGi can bring to web application development that we

should bother to break with the current status quo? Well if you've been following the themes

of this book you will know that the major benefits of OSGi are (repeat after me):

 Modularity

 Lifecycle

 Services

By modularizing our web applications we can improve the physical and logical structure of

our application's so they are easier to maintain and are easier to deploy. By using the OSGi

lifecycle layer we can control when certain pieces of functionality are installed or enabled so

making our applications lighter and more agile. Finally by using services we can decouple our

applications making it easy to swap in different implementations and (as you will see later in

this chapter) even move those implementations to other machines to improve performance.

All without changing a single line of client code.

There are two main routes into the OSGi framework for web applications, either via the

OSGi HttpService or as a Web Application Bundle. The HttpService is a service supplied by

the OSGi compendium specification, that allows programatic registration of Servlet and static

resources. A Web Application Bundle (WAB) is a Web ARchive (WAR) file that supplies the

relevant OSGi meta data and relies on the OSGi frameworks lifecycle layer to control when

resources are made available. Let's look first at the HttpService.

13.1.1 The OSGi HTTP service

If you are starting from scratch with your web application the simplest way of providing a

web application in OSGi is to use the OSGi org.osgi.service.http.HttpService. We find

the HttpService just like any other service in OSGi, via the BundleContext:
String name = HttpService.class.getName();
ServiceReference ref = ctx.getServiceReference(name);
if (ref != null) {
 HttpService svc = (HttpService) ctx.getService(ref);
 if (svc != null) {
 // do something

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 }
}

If this appears to make no sense to you we suggest you review chapter [ref] on the use

of OSGi services before continuing. Having found the HttpService what can we do with it?

The HttpService provides a simple API to register and unregister static resources (for

example images or html pages) and Java Servlets. It also provides a simple authentication

scheme that backs onto the org.osgi.service.useradmin.UserAdmin service (covered in

chapter [ref]). The API for the HttpService interface is shown in listing 13.1:

Listing 13.1 The HttpService API

package org.osgi.service.http;

import java.util.Dictionary;
import javax.servlet.Servlet;

public interface HttpService {
 HttpContext createDefaultHttpContext();

 void registerResources(String alias, String name, HttpContext context);

 void registerServlet(String alias, Servlet servlet, Dictionary
initparams, HttpContext context);

 void unregister(String alias)
}

REGISTERING RESOURCES

Let's dive in by starting our web application with a bundle that registers a set of static

resources. We'll reuse our knowledge of components from chapter [ref] to build a simple

iPojo binding component that registers the resources in our bundle with an HttpService.

Listing 13.2 shows the complete source of this component. For those who have skipped

through this book you may wonder why we are using iPojo instead of a simple

BundleActivator. The reason is due to the complex start ordering problems associated with

using multiple services – you could do this without a component framework but trust us you

really don't want to go there, refer to chapter [ref] for more information.

Listing 13.2 ResourceBinder class

package org.foo.httpservice.resourceapp;

import org.osgi.service.http.HttpService;
import org.osgi.service.http.NamespaceException;
import org.osgi.service.log.LogService;

public class ResourceBinder {
 private LogService s_log; [1]

 protected void addHttpService(HttpService service) { [2]
 try {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 service.registerResources(“/”, "/html", null); [3]
 } catch (NamespaceException e) {
 s_log.log(LogService.LOG_WARNING, "Failed to register static
content", e);
 }

 }

 protected void removeHttpService(HttpService service) { [4]
 service.unregister(“/”); [5]
 }
}

At [1] the OSGi log service is bound to the object via iPojo to the ResourceBinder s_log

member field. At [2] and [4] the HttpService is bound or unbound (respectively) to the

ResourceBinder. The real work with respect to this example is done in [3] and [5]. At [3] we

register content from the /html directory within our bundle to the root context of our

HttpService. In other words the file /html/index.html from within our bundle will be served

as /index.html from the OSGi HttpService. At [5] we unregister it when the service is

removed.

Having defined our ResourceBinder class we now need to define the iPojo meta file which

will be used by iPojo to inject byte code into the ResourceBinder class. iPojo then handles the

various concurrency issues inherent in this scenario, listing 13.3 shows the meta data file

that will achieve this.

Listing 13.3 ResourceBinder iPojo component

<?xml version="1.0" encoding="UTF-8"?>
<iPOJO>
 <component className="org.foo.webapp.servletapp.ResourceBinder"> [1]
 <requires field="s_log"/> [2]
 <requires> [3]
 <callback type="bind" method="addHttpService"/>
 <callback type="unbind" method="removeHttpService"/>
 </requires>
 </component>

 <instance component="org.foo.webapp.servletapp.ResourceBinder"/> [4]
</iPOJO>

At [1] we define the implementation of the resource binder component and at [2] we add

a one-to-one dependency on the OSGi LogService, to be injected via the field reference. At

[3] we add a one-to-one dependency on the OSGi HttpService, in this case binding the

service via the methods addHttpService and removeHttpService. At [4] we construct an

instance of this component which tells iPojo to instantiate a ResourceBinder object and wire

together it's dependencies when the bundle in which this component is packaged is started.

So what does the end result of this look like? Figure 13.2 provides a diagram of the

service and bundle level dependencies of our resource binder component.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

In order to see this example working start up the resource binder by running:
$ cd chapter14/httpservice
$ ant
$ java -Dorg.osgi.service.http.port=8080 -jar launcher.jar bundles/

Configuring the osgi http service

The HttpService is registered by an implementation bundle and as such the client code

has no control of the port or url that the service running on, that is the job of the

administrator starting the osgi framework. The HttpService is defined by the OSGi

Compendium specification and defines a number of configuration parameters to configure

the ports that it runs on:

org.osgi.service.http.port – This property specifies the port used for servlets and

resources accessible via HTTP. The default value for this property is 80.

org.osgi.service.http.port.secure – This property specifies the port used for servlets and

resources accessible via HTTPS. The default value for this property is 443.

In your web browser navigate to http://localhost:8080/index.html you should see the

following web page:

XXX TODO XXX

HTTPCONTEXT

So if you were observant of the API specification for HttpService you may have been

wondering what the HttpContext parameter the registerResources method is for – given in

our previous example we passed in null. Well the answer is that it provides a way to inject

policy mechanisms for resource lookup and access into the HttpService. Ok but what does

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 13.2 The ResourceBinder has a mandatory dependency on both the
HttpService and the LogService for providing content and logging errors
respectively.

Http Resource Bundle

ResourceBinder

HttpService Bundle

HttpServiceImpl

Log Service Bundle

LogServiceImpl

HttpService

LogService

http://www.manning-sandbox.com/forum.jspa?forumID=507

that mean, I hear you say? Let's first look at the API followed by an example to show you

what this allows you to do. Listing 13.4 shows the API for the HttpContext interface:

Listing 13.4 The HttpContext interface

package org.osgi.service.http;

import java.io.IOException;
import java.net.URL;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public interface HttpContext {
 boolean handleSecurity(HttpServletRequest req, HttpServletResponse resp)
throws IOException; [1]

 URL getResource(String name); [2]

 String getMimeType(String path); [3]
}

[1] provides a callback method to allow the http service to verify if a request should be

allowed for a given resource. [2] provides a mechanism to map where a particular resource

is mapped to – note that the response is a URL (so it is possible to host contents from any

scheme accessible via URL, if you so wish). Finally [3] provides a mechanism to control the

mime type headers that are returned with the stream for a particular resource.

In our previous example we passed in a null HttpContext. In this case the HttpService

uses a default implementation which can also be accessed via the helper method

HttpService.createDefaultHttpContext() this is defined by the OSGi specification to have

the following behaviour as shown in table 13.1:

Table 13.1 Default behavior of HttpContext implementations

Method Behavior

handleSecurity Implementation specific, though all open source implementations so far

reviewed by the authors simply return true

getResource Returns a resource from the bundle which has registered the resource or

servlet. Note if security is enabled this implies that the bundle that provides the

http service must be given resource AdminPermission to retrieve contents of

this bundle.

getMimeType Always returns null

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Let's look at an example that uses the HttpContext interface combined with the

BundleTracker service we met in chapter [ref] to register resources from other bundles with

the HttpService. Listing 13.5 shows the body of the addBundle method of our BundleTracker:

Listing 13.5 Tracking http resources in HttpResourceTracker

@Override
public Object addingBundle(Bundle bundle, BundleEvent event) {
 ArrayList<String> aliases = new ArrayList<String>();

 String[] resources = findResources(bundle); #1

 if (resources != null) {
 HttpContext ctx = new ProxyHttpContext(bundle); #2

 for (String p : resources) {
 String[] split = p.split("\\s*=\\s*");
 String alias = split[0];
 String file = split.length == 1 ? split[0] : split[1];
 try {
 http.registerResources(alias, file, ctx); #3
 aliases.add(alias);
 } catch (NamespaceException e) {
 e.printStackTrace();
 }
 }
 }

 return aliases.isEmpty() ? null : aliases.toArray(new
String[aliases.size()]);
}

At #1 we find any resources that the bundle advertises via the manifest header

“HTTP_Resources”. The format of this header is a comma separated list of directories which

may optionally be aliased (we'll see this working in just a second). If any resources are found

then we create an ProxyHttpContext (shown below in listing 13.6) at #2 and finally register

the resources with the HttpService at #3.

Listing 13.6 Proxy HttpContext that reads resources from a Bundle

public class ProxyHttpContext implements HttpContext {

 private final Bundle bundle;

 public ProxyHttpContext(Bundle bundle) {
 this.bundle = bundle;
 }

 public URL getResource(String name) {
 return bundle.getEntry(name); #1
 }
...
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

We need to create a ProxyHttpContext as the default implementation of the HttpContext

will attempt to find the resources in our tracker bundle, but in fact we want to find the

resources in the bundle that is being tracked. The key line of code in this class is shown at

#1 which passes the getResource call through to the registered bundle. In order to use our

resource tracker we define a trivial bundle that contains no code and in fact just packages up

some resources with our header as shown in listing XXX:
module: org.foo.http.resource
Include-Resource: html=html,images=images
HTTP_Resources:/resource=html,/resource/images=images

If we deploy this bundle in our osgi runtime along side the HttpService and our

ResourceTracker then the resources are bound and we can browse them on the url

http://localhost:8080/resource/index.html. In fact this is just one very trivial usage of

the HttpContext object, other possible scenarios might include:

 Manage authenticated access to web content served by the HttpService

 Mapping local file system resources into the HttpService

 Others?

Now that we're familiar with registering static resources with the HttpService let's move

on and look at how the HttpService can be used to hook in Java Servlets into an OSGi

environment.

OSGI AND SERVLETS

Java servlets are the building block upon which a vast number of web applications have

been built. The interface is relatively simple to understand, and there are a huge number of

tools and framework's available to help you develop web applications based on this

specification. As with static content the HttpService provides us with a mechanism to

dynamically register servlets with the running service, in this case the method in question is:
void registerServlet(String alias, Servlet servlet, Dictionary initparams,
HttpContext context);

With static content we had to look up the HttpService and then call registerResource

method once we'd found the service. We showed you how to use the bundle tracker and the

configuration admin service to dynamically register content. Can we do the same for

servlets? Well yes as it happens but this time instead of tracking bundles we need to track

services. Listing 13.7 provides a trivial example of how to track Servlets in the osgi registry

that are published with a "web-contextpath" attribute:

Listing 13.7 Tracking servlets in the OSGi service registry

static class ServletTracker extends ServiceTracker {
 private final HttpService m_http;

 public ServletTracker(BundleContext ctx, HttpService http) {
 super(ctx, buildServletFilter(ctx), null); #1
 m_http = http;

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 }

 @Override
 public Object addingService(ServiceReference reference) {
 Servlet servlet = (Servlet) super.addingService(reference); #2
 String servletContext = (String) reference.getProperty("web-
contextpath"); #3
 try {
 m_http.registerServlet(servletContext, servlet, null, null); #4
 } catch (ServletException e) {
 e.printStackTrace();
 } catch (NamespaceException e) {
 e.printStackTrace();
 }
 return servlet;
 }

Here we show the tracker constructor at #1 which uses the filtered form of the

ServiceTracker super constructor which uses the following buildServletFilter method to track

Servlet services with a specified service attribute.
private static Filter buildServletFilter(BundleContext ctx) {
 String ldap = "(&(" + Constants.OBJECTCLASS + "=" +
Servlet.class.getName() + ")(web-contextpath=*))";
 try {
 return ctx.createFilter(ldap);
 } catch (InvalidSyntaxException e) {
 throw new IllegalStateException(e);
 }
}

At #2 we read the service from the OSGi registry and read the context path with which it

is intended to be registered from it's service attributes at #3. Finally we register the service

with the HttpService at #4.

SERVLETCONTEXTS AND HTTPCONTEXTS

One important note that you should be aware of is that the HttpService specification

specifies that only Servlet objects that are registered with the same HttpContext object

are considered to be a part of the same ServletContext. Or to say this another way the

HttpService implementation creates a ServletContext for each unique HttpContext object

that is registered. If null is passed in this results in the HttpService calling

createDefaultHttpContext so each servlet registered with a null HttpContext is considered

to be in a separate ServletContext.

PAXWEB SUPPORT

Before leaving this section we should also note the support provided by the Pax Web project

hosted at www.ops4j.org. This provides a number of bundles at the core of which is the

WebContainer interface that extends the HttpService. This new interface provides a number

of extra methods to register other servlet related services, including Java Server Pages,

Filters and Event listeners.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

We'll not go into depth on this as it is not part of the core OSGi specification. But we will

work our way through a simple example which allows us to run one of the examples from

another Manning publication “Web Development with JavaServer Pages” within an OSGi

context. Listing 13.8 shows a declarative service Java component that registers our JSP's

when the WebContainer service is published to the OSGi registry.

Listing 13.8 Binder to register jsp pages in the PaxWeb WebContainer

package org.foo.webapp.jspapp;

import org.ops4j.pax.web.service.WebContainer;
import org.osgi.service.http.HttpContext;

public class Binder {
 private volatile HttpContext http;

 protected void bindWebContainer(WebContainer c) {
 http = c.createDefaultHttpContext();
 c.registerJsps(null, http); #1
 }

 protected void unbindWebContainer(WebContainer c) {
 c.unregisterJsps(http); #2
 http = null;
 }
}

This component registers all JSP pages within the bundle under the web container context

at #1 and unregisters the JSP's at #2. Listing 13.9 shows the declarative services component

specification for this component.

Listing 13.9 Declarative Service component definition for JSP binder

<?xml version="1.0" encoding="UTF-8"?>
<component name="sample.component" immediate="true">
 <implementation class="org.foo.webapp.jspapp.Binder" /> #1

 <reference name="webcontainer"
 interface="org.ops4j.pax.web.service.WebContainer" #2
 cardinality="1..1"
 policy="static"
 bind="bindWebContainer"
 unbind="unbindWebContainer"
 />
</component>

At #1 we create an instance of our jsp binder and at #2 we lookup the Pax WebContainer

service and inject it into our binder via the named bind and unbind methods. We'll leave it as

an exercise to the reader but you could also trivially extend this to use the BundleTracker

pattern from listing 13.5 to track JSP bundles from a common point vs duplicating binding

logic in different bundles. To run the jsp example, in a console launch the OSGi framework

via the following command:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

cd $osgi-in-action/chapter14/pax-web
ant dist
java -jar launcher.jar bundles

To see the shopping cart application in action browse to the following url:

http://localhost:8080/jsps/catalog.jsp where you should see a simple shopping cart

page Add a couple of items to the cart to verify it's working and you should see something

like the page depicted in figure 13.3.

So by this point we've shown you how you can deploy a range of web application

technologies from static resources to servlets to JSP's via the HttpService or it's extensions.

However this may leave you wondering “Hey what happened to my WAR files?” A good

question, in the next section we will look at how to package and deploy web applications that

conform to the Web ARchive format in OSGi.

13.1.2 Introducing web application bundles

Over the past 10 years since the Servlet 2.2 specification came out in August 1999 we have

been packaging and deploying Servlets, JSP's and other web technologies in WAR files. These

provide a standard way to map a range of web service tools to a servlet container context.

You could say it has taken the OSGi alliance a while to notice this, as it is only in there latest

4.2 specification that they provide the mechanism to load a WAR file in an OSGi context in a

standard way.

However this would also be being unfair as the OSGi specification has been driven

primarily by need, thus avoiding the curse of early specification. Up until this time there has

been very little need for the complex mapping that WAR files specify as OSGi has been

focussed on smaller lightweight environments for which the HttpService has been sufficient.

But as OSGi has moved up the stack a need for specification has arisen to allow vendors to

interoperate. Hence the addition of RFC66 (OSGi and Web Applications) which provides a

standard way for Servlet and JSP application components to interoperate with OSGi services.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 13.3 JSP shopping cart application running in an OSGi environment.

http://www.manning-sandbox.com/forum.jspa?forumID=507

So what is a web application bundle? As you might imagine a web application bundle

(WAB) is pretty much just a standard WAR file that has been converted into a bundle. More

specifically it is a WAR file that adheres to the Servlet 2.5 and JSP 2.1 specification that

additionally declares it's dependencies via the standard OSGi classpath semantics.

In order to demonstrate the process of creating a Web Application Bundle we will take the

stock watcher application from the Google Web Toolkit tutorial and convert this to run in an

OSGi context.
<target name="osgi">
 <path id="bnd.class.path">
 <fileset dir="${root.dir}/lib" includes="osgi.*.jar"/>
 <fileset dir="build" includes="*.war"/>
 </path>
 <mkdir dir="../bundles" />
 <pathconvert pathsep=":" property="bnd.cp" refid="bnd.class.path"/>
 <bnd files="build.properties" classpath="${bnd.cp}" exceptions="true"/>
</target>

This calls BND to wrap the war file generated by the GWT build into a WAB file. BND in

turn takes it's configuration parameters from the file build.properties in the same directory

which we list here for your convenience.
Bundle-SymbolicName: com.google.gwt.sample.stockwatcher #1
Bundle-ClassPath: WEB-INF/lib/gwt-servlet.jar,WEB-INF/classes #2
Include-Resource: war #3
Import-Package: \ #4
 com.google.gwt.benchmarks;resolution:=optional,\
 junit.framework;resolution:=optional,\
 *
Web-ContextPath: /stockwatcher/stockPrices #5

Most of these headers look pretty similar to those we've seen before (though if you need

a recap you should read chapter 2 section [ref] also if you are not familiar with BND syntax

you can refer to appendix [ref]. Briefly, at #1 we specify the bundle symbolic name for our

WAB. At #2 we set up the bundle classpath to include the gwt-servlet.jar provided by Google

and which is embedded within this bundle and the WEB-INF/classes directory which contains

the classes of our application. At #3 we embed the various resources that are used by this

application including JavaScript files and images. At #4 we specify that the bundle contains

two optional package imports which are only used in testing scenarios – for a review of

optional package imports refer to chapter [ref].

The only new header here is Web-ContextPath at #5. What does this do? Well the Web-

ContextPath header is used to identify the bundle as a web application. The header is used

by a specific class of bundle known as a web container extender. As the name suggests this

container bundle uses the extender pattern, which have we discussed already in this book in

section [ref] chapter [ref], to find bundles with the Web-ContextPath header and register the

servlet resources specified in these WAB's as a running web application. The value of this

header specifies the context root that the web container will use to register the web

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

application. All web accessible resources inside the bundle are then served up relative to this

path.

Before we delve any further into the inner workings of WAB files, lets launch our GWT

application to show it in action. To do this first compile the source:

For unix derivatives:
$ cd $OSGi_In_Action/chapter14/gwtapp
$ ant

For windows:
% cd %OSGi_In_Action%\chapter14\gwtapp
% ant

You can launch the GWT application using the launcher – java -jar launcher.jar

bundles/ then browse to http://localhost:8080/stockwatcher/stockPrices/ which should look

something like the contents of figure 13.4.

At this point we're taking advantage of the modularity layer of OSGi to allow us to: share

classes installed elsewhere in the OSGi framework; ensure that we have the correct

dependencies installed; and check that we're not sharing private implementation classes with

other parts of the JVM. We're also using the lifecycle layer to allow dynamic installation,

update and removal of our web application.

Modularity improves memory consumption

In this trivial example the point on being able to share installed classes is of relatively

minor importance as the StockWatcher has very few external dependencies. But consider

the benefits of being able to share classes in a larger web application environment. In

standard WAR development each application must embed it's own set of dependencies

inside the WAR file under WEB-INF/lib. For utility classes such as collections tools, xml

parsers, logging frameworks ,etc this can mean that a lot of classes get defined many

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 13.4 The google stock watcher application running in an OSGi context.

http://www.manning-sandbox.com/forum.jspa?forumID=507

times over for each WAR file installed in your application server. This starts to chew up

memory resources as the JVM must allocate a unique area of PermGen space for each

applications private classpath. In an OSGi environment you can break out your

dependencies to separate bundles which are then shared between your installed

applications, so reducing the overall memory foot print of your application.

So modularity – check, lifecyle – check. The question that probably springs to mind is can

we use the services layer? Well we have good news for you, the example you are running

already is using services! Listing 13.10 shows how this is achieved.

Listing 13.10 Accessing the BundleContext from within a Servlet

public class StockPriceServiceImpl extends RemoteServiceServlet implements
StockPriceService { #1

 private BundleContext ctx;

 @Override
 public void init() throws ServletException { #2
 ctx = (BundleContext)
getServletContext().getAttribute(OSGiConstants.OSGI_BUNDLE_CONTEXT_ATTRIBUT
E);
 }

 @Override
 public void destroy() {
 ctx = null; #3
 }

Here we have extended com.google.gwt.user.server.rpc.RemoteServiceServlet with

our own implementation class, though the details of GWT are not important for this example.

The important point to note is at #2 and #3 where we override the init and destroy

methods of javax.servlet.GenericServlet. Here we grab a reference to the osgi

BundleContext via an attribute on the javax.servlet.ServletContext. You will note we

have defined a Constants class for the actual attribute name. This is because at the time of

writing the RFC specification is very new and we have to use the 1.2 implementation of the

spring web extender, this conforms to all of the required behavior except for the trivial case

of the servlet context attribute, as you can see below we have included the real value “osgi-

bundlecontext” as per the specification in this class so that when a new version becomes

available we can swap this out.
package com.google.gwt.sample.stockwatcher.server;

public class OSGiConstants {
 public static final String OSGI_BUNDLE_CONTEXT_ATTRIBUTE =
"org.springframework.osgi.web.org.osgi.framework.BundleContext";
 //public static final String OSGI_BUNDLE_CONTEXT_ATTRIBUTE = "osgi-
bundlecontext";
}

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Having cached a reference to the BundleContext we can then use this to lookup other

services within the framework. In this case we've added a trivial StockProvider service with

the following interface:
package org.foo.stockprovider;
import java.util.Map;
public interface StockProvider {
 Map<String, Double> getStocks(String[] symbols);
}

This returns a map of stock prices for the given symbols. In the StockPriceServiceImpl

class we then lookup a service in the implementation of the getPrices method as shown in

listing 13.11:

Listing 13.11 Reading stock prices from the StockProvider service

public StockPrice[] getPrices(String[] symbols) throws DelistedException,
ServiceUnavailableException {
 StockPrice[] prices = null;

 String clazz = StockProvider.class.getName();

 ServiceReference ref = ctx.getServiceReference(clazz); #1

 if (ref != null) {
 StockProvider provider = (StockProvider) ctx.getService(ref); #2
 if (provider != null) {
 try {
 prices = readPrices(provider, symbols); #3
 }
 finally {
 ctx.ungetService(ref); #4
 }
 }
 }

 if (prices == null) { #5
 throw new ServiceUnavailableException();
 }

 return prices;
}

This uses the standard service lookup mechanism discussed in chapter [ref]: at #1 we

see if a service is registered with the specified interface; at #2 we try to get that service; at

#3 we perform some application specific calls to the StockProvider service; at #4 we tell the

framework we are no longer using the service; and finally if any of these stages fail we throw

an application specific ServiceUnavailableException at #5 to let the front end display a

suitable error message to the user.

It is worth noting here that we are back to using plain OSGi service lookups in this

environment. As such it would be advisable, when you are building your own applications, to

consider designing in an aggregation component - if you have complex service dependencies

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

- using any of the component technologies referenced in chapter [ref]. This will allow you to

focus your presentation tier on the job at hand instead of placing in a large amount of OSGi

boiler plate code to handle the lifecycle issues around multiple services.

We've now looked at a range of web application technologies and shown you how they

can be integrated with OSGi, the benefits of this approach include:

 enforcement of logical API boundaries, which helps avoid common pitfalls in code
evolution

 improved memory consumption due to use of shared classes

 simplified collaboration between functional units due to the use of the services pattern

In the next section we will turn our attention to how we can make OSGi services available

across network boundaries – i.e. how do we build distributed OSGi applications?

13.2 Web services
Up until this point in the book all of our applications have been single JVM architectures. But

this is very rarely the case in web environments – in fact the entire ethos of internet

development is to allow distributed processes to communicate over network protocols. We've

seen how you can do this at the low level in OSGi in chapter [ref] where we built our own

telnet implementation. But this is the early twenty first century and as such the zeitgeist in

the room has to be Web Services. In this section we will investigate how to communicate

between JVM's using OSGi technology and Web Service protocols.

Necessarily we will only touch on this area as distributed computing is very a large topic

and there are many complex and subtle areas of interest which we could not hope to do

justice in a single section of a single chapter. However we will show you over the next few of

pages how to communicate between distributed OSGi frameworks using the new Remote

Services section of the OSGi compendium specification.

Let's look at the stock watcher application we built at the end of the last section. At the

moment this has a three tier architecture comprised of a web browser connected to a

backend servlet engine which talks to an in-process StockProvider service. A logical step for

us in this section of the book is to split the StockProvider service out onto a separate JVM

and communicate with this service via an over the wire protocol such as SOAP, this new

architecture is shown in figure 13.5.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

13.2.1 Providing a web service

The first step in creating our distributed OSGi application is to create the remote

implementation of the StockProvider service. To do this we create a BundleActivator as

shown in listing 13.12.

Listing 13.12 Reading stock prices from the StockProvider service

package org.foo.stockprovider.server;

...

public class Activator implements BundleActivator {

 public void start(BundleContext ctx) throws Exception {
 Dictionary props = new Hashtable();

 props.put("service.exported.interfaces","*"); #1
 props.put("service.exported.intents","SOAP"); #2
 props.put("service.exported.configs","org.apache.cxf.ws"); #3
 props.put("org.apache.cxf.ws.address","http://localhost:9090/stockprovi
der"); #4

 ctx.registerService(StockProvider.class.getName(), new
StockProviderImpl(), props); #5
 }

 public void stop(BundleContext ctx) throws Exception {
 }
}

As you can see this is a very typical OSGi BundleActivator, we register a service into the

OSGi registry via the BundleContext using an interface and a set of properties. You may be

asking yourself where are the remote communications in this example? Well in fact the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 13.5 The google stock watcher application running in an OSGi context.

JVM1

Stock Watcher Bundle

Stock Watcher
Servlet

Stock Provider Bundle

StockProviderImpl

StockProvider

Blah, blah, blah, blah,
blah, blah, blah, blah,
blah, blah, blah, blah,
blah, blah

StockProvider

HTTP

SOAP

JVM2WebBrowser

http://www.manning-sandbox.com/forum.jspa?forumID=507

distributed OSGi specification only defines a set of attributes that should be added to a

service to indicate that it should be made remote, the actual remote communications are

handled by another bundle or set of bundles entirely, these types of bundles are classified as

distribution provider bundles.

The key attribute in listing 13.12 is in fact “service.exported.interfaces=*” at #1, this

tells any watching distribution providers that the developer intends this service to be made

available as a remote service. The value of “*” indicates that all interfaces specified in the

OSGi registration should be exported remotely. This can also be changed to a String[]

specifying the specific interfaces that should be exported.

OPT-IN FOR REMOTE SERVICES

This opt in mechanism is sensible, as not all services in an OSGi context make sense to

be used in a remote context. Consider the white board pattern for Servlets we provided

earlier in section [ref] for example, it makes very little sense to register a Java servlet

interface remotely, as the java interface is entirely an in memory API.

The rest of the attributes at #2, #3 and #4 specify either intents or configuration to be

used by the distribution provider when it is deciding how to publish the remote service. We'll

look at intents and configuration in detail a little later, but for now you would probably guess

that we're saying that the service should be exposed using a SOAP interface that will be

available from the specified URL.

Let's test this theory by launching the Stock provider service in an OSGi framework along

side the Apache CXF OSGi distribution provider:
cd $osgi-in-action/chapter14/webservice
ant clean dist
java -jar launcher.jar bundles/

We can then test our guess by browsing to the following url in a web browser:
http://localhost:9090/stockprovider?wsdl

You should see something like the following (truncated):
<wsdl:definitions name="StockProvider"
targetNamespace="http://stockprovider.foo.org/">
 <wsdl:types>
 <xsd:schema attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://stockprovider.foo.org/">
 <xsd:complexType name="string2doubleMap">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="entry">

So our guess was correct! By deploying our StockProvider bundle into an OSGi runtime

along side a distribution provider and registering our service with some special attributes,

our StockProvider service is now available to be called remotely! Pretty neat. Before we

move on to the client side of our example let's look a little more at the attributes we skipped

over, namely intents and configuration.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

INTENTS AND CONFIGURATION

To understand intents and configuration it is useful to consider the actual mechanics of

publishing a service remotely in OSGi. In fact this is a classic white board pattern in that a

service is registered using an agreed upon attribute “service.exported.interfaces” and it

is the distribution provider's task to make that service available remotely. Given no other

information a distribution provider could pick any number of ways of making this service

available remotely, including any number of protocols, SOAP, REST, RMI, etc, a range of

different security patterns encrypted or authenticated communications and a range of

different transports including HTTP, JMS, etc. There is no best option. In fact the key to

building well performing distributed applications is that one size most definitely does not fit

all - different schemes are appropriate in different scenarios.

Having said this it makes no sense for business level services to specify the minutiae

details of the mechanism via which they should be made available remotely. In fact coming

full circle back to our theme from chapter [ref] this is another area where separation of

concerns is applicable. Intents and configurations provide a layer of indirection between the

service provider and the distribution provider. They allow the service provider to specify just

enough information to ensure the service behaves as expected and allowing the distribution

provider scope to optimize the communications for the environment they are deployed

within. So now we know what intents and configuration are for in the abstract. let's now look

at them in the concrete.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 13.6 When making remote services available the number of options is
bewildering, protocols, transports, authentication schemes, encryption
algorithms all play their part.

Service

remote=*

SSL

LDAP

?

SOAP

RMI

Distribution Provider

http://www.manning-sandbox.com/forum.jspa?forumID=507

INTENTS

Intents are a pattern borrowed from the SCA specification, an intent is actually just a

string value which two parties have agreed on the semantics of what this means at the

distribution level. Huh? I hear you say, let's look at an example:
props.put("service.exported.intents", new String[]
{“propagatesTransaction”, “authentication”});

In this case we're telling the distribution provider that when the service is published it

must be done in such a way that transactional boundaries are transmitted to the service and

that a client application will have to authenticate prior to using the service.

Qualified intents

Intents have a hierarchical nature which is expressed by delimiting the intent value with

the '.' character. For example “authentication.transport” indicates that the service should

use transport level authentication. The practical upshot of this is that a service that

specifies simply “authentication” as an intent may be implemented by a provider that

provides “authentication.transport”. But a service that specifies “authentication.transport”

may not be implemented by a provider that only provides “authentication”.

Having agreed on the meaning of these intents a distribution provider can make it's best

guess at the underlying implementation for these intents. This aids in decoupling distributed

applications as we can specify the qualities of the remote communications without tying

ourselves explicitly to a particular implementation. If you move your application to a different

environment a different distribution provider may make equally valid but different guesses as

to the best mechanism to use to distribute your services. We'll not go into depth on possible

intent values in this book because the SCA specification defines many and just providing a

list here is pretty boring.

Extra Intents

The osgi specification also provides the ability to configure intents via the service

attribute “service.exported.intents.extra”. This attribute is reserved for services that

wish to allow external entities to manage the intents the service is published with at

runtime. The recommendation is that this attribute should be configurable via the

ConfigurationAdmin service. This separation allows a developer to specify a static set of

intents they know about when developing the service and a systems administrator to

apply separate intents at deployment time without requiring the bundle to be recompiled.

So intents allow a distribution provider to make a best guess at how to distribute an

application. This is useful in that it decouples the service provider and distribution provider

so allowing for a degree of flexibility when migrating software between environments. But a

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

best guess may not in fact be appropriate, what if we need to give specific instructions to the

distribution provider. Well this leads us onto the next level of attributes, configuration.

CONFIGURATIONS

Configurations provide a mechanism for the service provider to communicate explicit settings

to the distribution provider. Given the range of possible configurations schemes the OSGi

specification simply defines a mechanism for advertising how the configuration is encoded.

From our for example earlier we saw the following attribute added to our service:
props.put("service.exported.configs","org.apache.cxf.ws");

This advertises the fact that the service should be configured using the cxf web services

configuration scheme. The OSGi specification then suggests that a naming convention is used

to map underlying configuration attributes <config name>.<key>. In our example earlier we

specified a single configuration:
props.put("org.apache.cxf.ws.address","http://localhost:9090/stockprovider”
);

In general if you export a number of configuration schemes, you should expect to

namespace the configuration elements for those schemes as follows:
props.put("service.exported.configs", new String[]{"foo",“bar”});
props.put("foo.key1","value1”);
props.put("foo.key2","value2”);
props.put("bar.key1","value3”);
props.put("bar.key2","value4”);

This concludes our overview of intents and configurations, they provide an extensible

mechanism for communicating the service providers knowledge about how a service should

behave in a remote environment to the distribution provider. In general intents and

configurations should be kept to a minimum to allow the distribution providers flexibility in

wiring together services. Let's now turn our attention to the other side of the equation, client

side distributed applications.

13.2.2 Consuming a web service

Let's turn our attention back to our GWT stock watcher application. Currently this looks up a

StockProvider service via the OSGi registry and uses this to retrieve stock prices. What do

we need to change in order to make this work against our distributed version of the stock

provider service?

Well perhaps surprisingly, nothing at all, well at least nothing in terms of our stock

watcher application. The only extra step we need to do is provide our distribution provider

with configuration that tells it how to discover the distributed StockProvider service, the

distribution provider will then automatically create a proxy of the distributed service and

inject this into the local service registry for our stock watcher application to use.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Those who have used technologies such as Zeroconf, SSDP, UDDI, or Jini networking

patterns will be familiar with the concept of discovery. Even if you are not familiar with these

technologies you might well guess that discovery is a pattern used in network computing to

allow a service provider to announce the presence of a service. This is often achieved via a

central registry or peer to peer patterns such as TCP-multicast. These services are then

“discovered” as needed by client applications and proxy services created to allow

communication with these services. The distributed OSGi specification provides an extensible

pattern for implementing service discovery which we'll cover in more depth in the next

section.

LOCAL DISCOVERY

The distributed OSGi specification does not define how discovery is implemented, only

how it should behave. The Apache CXF dosgi implementation provides a version of discovery

based on the Hadoop Zookeeper project, but the usage of this is beyond the scope of this

book. However the Apache CXF project also provides a trivial version of discovery based on a

local or “static” discovery file. Local discovery is provided as a mechanism to bind services in

OSGi to statically defined external services – such as a web service hosted by Google or

Facebook for example. The “discovery” process is managed via the existence of xml files

contained within bundles that are started within the OSGi framework. Listing 13.13 shows

the xml that describes our stock provider service, which is a mirror image of the service we

published earlier.

Listing 13.13 Local discovery xml file for the StockProvider service

<service-descriptions xmlns="http://www.osgi.org/xmlns/sd/v1.0.0">

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 13.7 The distribution provider bundle creates a remote endpoint for the
service provider and it may also announce the location and type of this endpoint
for other distribution provider bundles to find. The client side distribution provider
discovers remote endpoints and creates proxies to these services which it
injects into the local OSGi registry.

Service
Provider

“server” vm

OSGi Registry

Distribution
Provider

Service
Provider

Proxy

“client” vm

OSGi Registry

Distribution
Provider

Announcement

Endpoint

http://www.manning-sandbox.com/forum.jspa?forumID=507

 <service-description>
 <provide interface="org.foo.stockprovider.StockProvider" /> #1
 <property name="service.exported.interfaces">*</property>
 <property name="service.exported.configs"> #2
 org.apache.cxf.ws
 </property>
 <property name="org.apache.cxf.ws.address"> #3
 http://localhost:9090/stockprovider
 </property>
 </service-description>
</service-descriptions>

This file is packaged in the directory OSGI-INF/remote-service/remote-services.xml

in a new bundle stockprovider-client-1.0.jar. At #1 we define the interface that this

service will provide at #2 and #3 we provide the configuration entries needed by the

discovery provider to bind to the remote service. In fact if we look at this bundle this is the

only file that is contained in this bundle.
cd $osgi-in-action/chapter14/webservice-client
ant clean dist
jar -tf bundles/stockprovider-client-1.0.jar
META-INF/MANIFEST.MF
OSGI-INF/
OSGI-INF/remote-service/
OSGI-INF/remote-service/remote-services.xml

We now know how to export and import services from remote processes into an OSGi

context let's now see our updated stock watcher application in action.

USING OUR WEB SERVICE

Our stock watcher application is unmodified and we only needed to add a trivial bundle

with some discovery information to enable the client side of our stock provider application!

Let's look at our updated stock watcher application in action. To launch the stock provider

web service type the following into your console:
cd $osgi-in-action/chapter14/webservice
ant clean dist
java -Dorg.osgi.service.http.port=8081 -jar launcher.jar bundles/

Here we've moved the server http service onto a separate port to avoid clashes with our

client application. Then launch the new stock watcher web application in another console:
cd $osgi-in-action/chapter14/webservice-client
ant clean dist
java -jar launcher.jar bundles/

Now browse to http://localhost:8080/stockwatcher/stockPrices/ and add a stock name

“foo”. You should see results appear in the browser and in our first console which is hosting

the web application you should see the following messages:
Retrieved {FOO=4.736842484258008}
Retrieved {FOO=48.88924250369791}
Retrieved {FOO=22.847587831790904}

This indicates that the method invocation is being sent across the wire from our stock

watcher jvm via our SOAP interface to the stock provider jvm.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

DEALING WITH FAILURE

One thing that should be obvious to the experienced distributed software developers

(note distributed software not distributed developers) is that remote services are

unreliable. In RMI we deal with this via the java.rmi.RemoteException which is a

checked exception telling us that something went wrong when trying to communicate

with the remote serv ice. In OSGi the equivalent except ion is

osgi.framework.ServiceException which extends RuntimeException and hence an

unchecked exception.

By now you should have a fair idea of the basic mechanics involved in using distributed

services in an OSGi context. The final area we will look at in this section is the role of the

distribution provider in defining the characteristics of a remote service and how a client can

choose the characteristics of remote services it uses.

EXPORTED INTENTS AND IMPORTED INTENTS MAY DIFFER

As we saw in the previous section, a service provider advertises their service in the OSGi

registry with a set of intents and properties. Is this the end of the story? Well no, having

handed this service off to a distribution provider the distribution provider must of course

honor the requirements of the service provider but it is then free to add any other additional

behaviors that they feel are appropriate, this could include default communications protocols,

authentication schemes, buffering strategies, etc, etc. as shown in figure 13.8. We shall see

in the next section when we look at the flip side of the equation that it is also possible for a

client to specify the intents that a service must provide which will include the sum of the

service providers intents and the distribution providers default intents.

We have now seen a fully fledged web service application working in conjunction with a

GWT web application to provide a distributed computing platform. Admittedly this is not a

very complex environment as there is only one service and one client. What if we're working

in a larger environment with multiple services and multiple clients, what facilities does the

distributed OSGi specification provide to enable this more realistic architecture? Let's look at

the complex issue of matching client applications to server applications.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 13.8 Service providers and distribution providers can each define intents
that are applied to a service endpoint.

Service Provider

pr
op

ag
at

es
T

ra
ns

ac
tio

n

au
th

en
tic

at
io

n

JM
S

in
te

gr
ity

.m
es

sa
ge

Distribution
Provider

E
nd

po
in

t

http://www.manning-sandbox.com/forum.jspa?forumID=507

MATCH-MAKING SERVICES

We briefly covered intents and configuration in section [ref] these provide the service

provider with control over how their services are exposed in a remote environment. However

this problem is symmetric in that clients often need to use services with specific

characteristics, for example: a medical insurance web application may require that

communications with the back end servers are encrypted to ensure patient confidentiality is

maintained; or a financial trading application may require a certain protocol be used to

communicate between services either for performance or regulatory reasons.

Again we will only touch on this area as the number of options and hence the potential

rich “feature sets” that this implies are much too large for us to cover here. But as you may

have guessed clients can select the sort of services they'd like to use via filters that match

the intents and configurations specified on our services at export time.

Let's first consider the simplest case – how do we differentiate between local OSGi

services and remote OSGi services? Well in fact the distribution provider automatically adds a

new attribute “service.imported” to the imported service, so if we explicitly want to bind to

a remote service we can set up a filter of the following form:
ServiceReference ref =
context.getServiceReferences(MyService.class.getName(),"(service.imported=*
)")

Alternatively if we explicitly want to bind to a local service we can set the following filter:
ServiceReference ref =
context.getServiceReferences(MyService.class.getName(),"(!
(service.imported=*))")

Now let's consider the more complex case of matching remote service qualities. The

service provider intents we specified earlier in section [ref] specified that the service required

transactions to be propagated and for clients to be authenticated via the attribute

“service.exported.intents”. However we also saw that a distribution provider is able to

add default intents to a service when it is exported. How then do we refer to the merged set

of intents with which the service is published? Well as before the distribution provider

automatically adds a new attribute “service.intents” to the imported service. This

attribute contains the union of the required intents from the service provider and the default

intents supplied by the distribution provider. Therefore when the client is searching for a

service it can specify the intents it is looking for via a service filter like the following:
ServiceReference ref =
context.getServiceReferences(MyService.class.getName(),"(&(service.intents=
propagatesTransaction)(service.intents=confidentiality))")

This specifies that the communications with the service must be encrypted and that

transactions must be propagated.

Matching qualified intents & configurations

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

One slightly thorny area surrounds the matching of qualified intents where, for example

the client requires (service.intents=confidentiality) but a service provides

service.intents=confidentiality.message. In fact these two intents should match as

the client doesn't care how the confidentiality is achieved, however if we think of a pure

LDAP match this would necessarily fail. To work around this the OSGi specification

mandates that distribution providers should expand out all implied qualified intents on

services such that LDAP queries function correctly for clients. As such

service.intents=confidentiality.message b e c o m e s

service.intents=[confidentiality,confidentiality.message]

Another complex issue surrounds the matching of configuration values, given the range of

different configuration schemes it is impossible to be prescriptive but the OSGi

specification does provide a suggestion that it should be possible to perform an additional

level of comparison based on the configuration meta data.

So far we have looked at how to interact with web services from the OSGi side of of the

looking glass, i.e. publishing and subscribing to distributed services via the OSGi service

registry. But what if you are coming at this from the other side of the looking glass? What if

you are a distributed software developer and you want to publish or subscribe to remote

services using your protocol of choice for injection into the OSGi registry?

13.2.3 Distributing services

In this section we will lead you through a short example that shows you how you can

start to implement a trivial distribution provider framework. The goal of this is not to replace

any existing frameworks but instead to show the underlying mechanics at play. We will

create a simple Registry interface that abstracts away the task of publishing and subscribing

to remote services. We'll see how we can publish services from the OSGi registry marked

with the service.exported.interfaces attribute into our registry abstraction. Then we'll

see how we can provide services from our registry and add them to the OSGi BundleContext.

Figure 13.9 provides a view of the classes involved in this example.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

During this example we are going to focus our attention on the following classes:

 ExportedServiceTracker

 ImportedServiceListenerHook

 ImportedServiceFindHook

But before we get there let's look briefly at the other classes in this diagram, firstly the

Registry API provides a simple lookup and listener scheme that mirrors the semantics of the

OSGi registry but importantly is separate from it. We will implement a DummyRegistry that

actually does no remote communication at all instead it just passes the services via a

separate java.util.HashMap.

HASHMAP?

You might think this is a bit of a cheat to use a HashMap in this example and in fact it is.

However this HashMap based approach demonstrates all the key functionality of remote

services from an OSGi perspective as services are published and subscribed to via an

externally managed registry. By necessity we are going to ignore the complex issues in

the area of distributed computing such as:

• Network discovery protocols

• Remote procedure calls

• Object marshaling in OSGi environments

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

Figure 13.9 Simple registry scheme that abstracts mechanism

Registry

ExportedServiceTracker

ImportedServiceListenerHook

ImportedServiceFindHook

publish

subscribe

subscribe

RegistryEvent

RegistryListener

RegistryServiceReference

provides

aggregates

handles

DummyRegistry extends

HashMap

uses

BundleContext

subscribe

publish

publish

http://www.manning-sandbox.com/forum.jspa?forumID=507

Though these are all important topics there are a million and one ways to implement

them - all of which are beyond the scope of this book. We leave you as architects or

developers with the task of choosing your favorite protocols du jour should you wish to

implement a real world version of this registry.

Having described the overall architecture let's start by exploring the

ExportedServiceTracker which handles the task of publishing services with the

service.exported.interfaces attribute to our registry service.

EXPORTEDSERVICETRACKER

The org.foo.dosgi.hooks.ExportedServiceTracker, class extends the ServiceTracker

class we met in chapter [ref] as the name implies it tracks any services which have been

marked as being exported, listing 13.14 shows how this is done.

Listing 13.14 Constructing an exported service tracker

public ExportedServiceTracker(BundleContext ctx, Registry registry,
String[] intents, String[] configs) {
 super(ctx, createFilter(ctx), null); #1
 this.ctx = ctx;
 this.registry = registry;
 this.intents = intents == null ? new String[0] : intents; #2
 this.configs = configs == null ? new String[0] : configs; #3
}

private static Filter createFilter(BundleContext ctx) {
 try {
 return ctx.createFilter("(service.exported.interfaces=*)"); #4
 } catch (InvalidSyntaxException e) {
 throw new IllegalStateException(e);
 }
}

At #1 we call the ServiceTracker super constructor passing in an OSGi filter which we

create at #4 to specify all services with a service.exported.interfaces attribute of any

value. Note here the * is interpretted by the LDAP syntax to be a wild card pattern match so

matches the values: *, foo, bar, [foo,bar], etc. At #2 and #3 we store the intents and

configurations that this registry supports, we will see a little later how these intent and

configuration values are derived, but for now let's look at the addingService method in listing

13.15:

Listing 13.15 Dealing with new exported services

@Override
public Object addingService(ServiceReference ref) {
 Object svc = super.addingService(ref); #1

 if (isValidService(ref)) { #2
 String[] ifaces = findExportedInterfaces(ref); #3
 for (String iface : ifaces) {

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

 registry.registerService(ref, iface, svc); #4
 }
 }

 return svc; #5
}

This method is called when an exported service is published to the OSGi bundle context.

The first stage is to get a reference to the service itself which we achieve at #1 by calling the

addingService method of the parent ServiceTracker class, this service is used at #4 and

returned at #5. We then check that the intents service matches the supported intents and

configurations that were parsed in in our constructor. If the service can be published with the

required intents we push the service to our Registry at #4.

NOTE

In this example we've pushed the service multiple times for each registered interface at

#4, in a real world scenario it might be more appropriate to register the service once with

multiple interfaces – this approach is used for simplicity only.

Listing 13.16 shows how we can find the interfaces that a service reference exports (if

any). The method findExportedInteraces returns a String[] containing the interface names or

null if the service is not exported.

Listing 13.16 Checking the exported interfaces of a service

private String[] findExportedInterfaces(ServiceReference ref) {
 Object ifaces = ref.getProperty("service.exported.interfaces"); #1
 if (ifaces == null) {
 return null;
 }
 else {
 String[] strs = PropertyUtil.toStringArray(ifaces); #2
 if (strs.length == 1 && "*".equals(strs[0])) { #3
 ifaces = ref.getProperty(Constants.OBJECTCLASS); #4
 strs = PropertyUtil.toStringArray(ifaces);
 }
 return strs;
 }
}

At #1 we check if the service is exported, if it is we use a utility class at #2 to return the

interfaces as the value may be a String or a String[]. At #3 we check to see if the * name of

the interface is “*” if it is we read the interfaces from the OSGi header objectClass. Finally

in listing 13.17 we check to see if this exported service is supported by the registry by

comparing the exported intents and configs with the intents we supplied to our

ExportedServiceTracker in listing 13.14.

Listing 13.17 Checking if a service matches supported intents and configurations

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

private boolean isValidService(ServiceReference ref) {
 List<String> list = readIntents(ref); #1
 list.removeAll(Arrays.asList(intents)); #2
 if (list.isEmpty()) { #2
 list = readConfigs(ref); #3
 list.removeAll(Arrays.asList(configs)); #4
 return list.isEmpty(); #4
 }
 else {
 return false;
 }
}

We read the intent and configuration values from the service reference attributes at #1

and #3. We then use the equals method of the String class and the removeAll method of List

at #2 and #4 to check that the service does not export any intents that the registry does not

support.

NOTE

The isValidService reference provides a naïve implementation of the check to see if a

given service matches our registry services supplied intents. It is naïve because it does

not take into account the qualified naming convention we mentioned in section 13.2.1 a

proper implementation would need to do this. However the logic to achieve this is too

long to list here and doesn't really add much to our discussion so we'll neatly skip over it

and leave it as an exercise for the reader.

The modified and remove methods of our tracker are broadly similar, so let's turn our

attention to the client side of the equation. How does a client find out about services in

OSGi? As we've seen we can either do a direct lookup via the

BundleContext.getServiceReference call or we can register a ServiceListener to be notified

when services appear. In the latest OSGi specification two new service interfaces have been

added to the OSGi specification which help us in this regard:

 org.osgi.framework.hooks.service.FindHook

 org.osgi.framework.hooks.service.ListenerHook

Services published with these interfaces have special powers within the OSGi framework,

they are called by the framework itself when other bundles: perform find calls via

getServiceReference ;or register or unregister listeners via addServiceListener and

removeServiceListener respectively. In order to save ourselves repetition of some boiler plate

code in the following examples we define a RegistryWatcher helper class to handle the lookup

of services from our Registry and injection into the OSGi context. Listing [ref] shows the

implementation of the addWatch method which we provide to give context to the following

examples:

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

Listing 13.18 Registry watcher helper addWatch method

public void addWatch(String clazz, String filter) {
 synchronized (watches) {
 if (watches.add(new Watch(clazz, filter))) { #1
 Collection<RegistryServiceReference> services = registry
 .findServices(clazz, filter); #2
 for (RegistryServiceReference ref : services) {
 if (!regs.containsKey(ref)) { #3
 Future<ServiceRegistration> future = exec
 .submit(new Registration(ref)); #4
 regs.put(ref, future);
 }
 }
 }
 }
}

Using our helper class and these new interfaces we can now find out when a remote

service is needed and inject it into the local OSGi registry on demand. Let's see how this is

done.

IMPORTEDSERVICELISTENERHOOK

Let's look at our imported service listener in listing 13.19. This class tracks listener

registrations and adds a watch in our Registry interface for services with the specified

interface:

Listing 13.19 Listeners added to osgi context can be tracked via the ListenerHook

public void added(Collection listeners) {
 for (final ListenerInfo info : (Collection<ListenerInfo>) listeners) {
 if (!info.isRemoved()) { #1
 LDAPExpr expr = LDAPParser.parseExpression(info.getFilter()); #2
 expr.visit(new ExprVisitor() {
 public void visitExpr(LDAPExpr expr) {
 if (expr instanceof SimpleTerm) { #3
 SimpleTerm term = (SimpleTerm) expr;
 if (term.getName().equals(Constants.OBJECTCLASS)) {
 watcher.addWatch(term.getRval(), info.getFilter()); #4
 }
 }
 }
 });
 }
 }
}

At #1 we check if the listener is removed, this may seem a little odd given it happens in

the added method but this protects our listener against a race condition that can occur due

to asynchronous event delivery. We then inspect the body of the ldap expression using a

utility class to walk our way through the filter expression at #2 and #3. Finally at #4 we add

a watch for the service interface specified by the OSGi Constants.OBJECTCLASS attribute to

the Registry. The result is that when a bundle registers a listener for a class the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

ImportedServiceListenerHook will find any existing services in the Registry and add them to

the local OSGi context it will also watch for new services and register them when they

appear. This covers the asynchronous lookup scenario, how about direct lookups? Let's look

at this next.

IMPORTEDSERVICEFINDHOOK

When a service calls BundleContext.getServiceReference() we'd like to be able to intercept

this and inject a remote service into the OSGi registry. This is exactly what our

ImportedServiceFindHook achieves:
public class ImportedServiceFindHook implements FindHook {
…
 public void find(BundleContext ctx, java.lang.String name,
 java.lang.String filter, boolean allServices, Collection references)
 {
 watcher.findServices(name, filter);
 }
}

In fact our implementation is trivial as it simply requests our registry watcher to find any

existing services in the Registry, which then adds the services to the local OSGi context.

REGISTRY SERVICES

We're almost there now the last area we need to look at is the relationship between a

distribution provider and a bundle that uses a specific set of intents or configurations. In fact

a bundle that uses intents and configurations is defining an implicit dependency on a

provider that can satisfy those intents and configurations. In order to make this relationship

explicit the OSGi specification states that our Registry service implementation should add the

following attributes to their services:

• remote.intents.supported – (String+) The vocabulary of the given distribution provider.

• remote.configs.supported – (String+) The configuration types that are implemented by

the distribution provider.

Thus a bundle that depends on the availability of specific intents or configuration types

can create a service dependency on an anonymous service with the given properties. The

following filter is an example of depending on a hypothetical org.json configuration type:

(remote.configs.supported=org.json)

PUTTING IT ALL TOGETHER

We'll skip over the implementation of the DummyRegistry here as it is indeed trivial but

the curious can take a look in XXX. We can now complete the picture by creating a test

bundle that exports a trivial Foo service using the service.exported.interfaces=* attribute as

shown below:
Hashtable props = new Hashtable();
props.put("service.exported.interfaces","*");

context.registerService(Foo.class.getName(), new FooImpl(), props);

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

And then add a service tracker that finds our imported service in listing 13.20, here we

explicitly look for the service.imported=* header to ensure that we find the “remote” version

of our service:

Listing 13.20 Tracking our “remote” service

Filter filter = context.createFilter("(&(" + Constants.OBJECTCLASS + "=" +
Foo.class.getName() + ")(service.imported=*))");
ServiceTracker tracker = new ServiceTracker(context, filter, null) {
 @Override
 public Object addingService(ServiceReference reference) {
 System.out.println("Found " + reference + " !!!!!!!");
 return super.addingService(reference);
 }

 @Override
 public void removedService(ServiceReference reference, Object service) {
 System.out.println("Lost " + reference + " !!!!!!!");
 super.removedService(reference, service);
 }
};
tracker.open();

To test this all fits together we can then boot the framework using the following

commands:

cd $osgi-in-action/chapter14/webservice-impl

ant clean dist

java -jar launcher.jar bundles

Found [org.foo.dosgi.test.Foo] !!!!!!!

This registry is intended as an example only – as we stated at the start of this section

there are many more issues that need to be taken into account when building real world

distributed OSGi infrastructure. However it demonstrates that the underlying mechanics are

easily implemented in an OSGi setting and can work seamlessly with existing OSGi

applications.

13.3 Summary
So that's it, we've reached the crest of the hill, during this chapter we have shown you how

to build web applications that take advantage of the OSGi framework. This included using all

aspects of the OSGi framework to handle:

 Static resources

 Servlet and JSP based applications

 A simple stock watcher application using Google Web Toolkit

Having looked at the client tier web technologies we then turned our attention to the next

level in the stack namely web services and how to use them in an OSGi context. Here we:

 Showed you how to migrate a local OSGi service via an OSGi distribution provider onto

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

a remote JVM

 Highlighted the extreme flexibility of service based programming as our client
application was unchanged during this process

Finally to give you full context we lead you though a brief tour of the behind the scenes

mechanics of an OSGi distribution provider. This introduced you to some advanced features

of the OSGi framework and demonstrated the infinite extensibility capabilities of the OSGi

framework.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=507

http://www.manning-sandbox.com/forum.jspa?forumID=507

	1.1 The what and why of OSGi
	1.1.1 Java's modularity limitations
	1.1.2 Can OSGi help you?

	1.2 A quick OSGi overview
	1.2.1 The OSGi Framework
	1.2.2 Module layer
	1.2.3 Lifecycle layer
	1.2.4 Service layer
	1.2.5 Putting it all together

	1.3 Hello, world! examples
	1.3.1 Modularity layer
	1.3.2 Lifecycle layer
	1.3.3 Service layer
	1.3.4 Setting the stage

	1.4 Putting OSGi in context
	1.4.1 Java Enterprise Edition
	1.4.2 Jini
	1.4.3 NetBeans
	1.4.4 Java Management Extensions
	1.4.5 Lightweight containers
	1.4.6 Java Business Integration
	1.4.7 JSR 277
	1.4.8 JSR 294
	1.4.9 Service Component Architecture
	1.4.10 .NET

	1.5 Summary
	2.1 What is modularity?
	2.1.1 Modularity versus object orientation
	2.1.2 Driving home modularity

	2.2 Why modularize?
	2.3 Modularizing a simple paint program
	2.4 Introducing bundles
	2.4.1 The bundle's role in physical modularity
	2.4.2 The bundle's role in logical modularity

	2.5 Defining bundles with metadata
	2.5.1 Human-readable information
	2.5.2 Bundle identification
	2.5.3 Code visibility
	2.5.4 Class search order

	2.6 Finalizing our paint program design
	2.6.1 Improving our paint program modularization
	2.6.2 Launching the new paint program

	2.7 OSGi dependency resolution
	2.7.1 Resolving dependencies automatically
	2.7.2 Ensuring consistency with uses constraints

	2.8 Reviewing the benefits of the modular paint program
	2.9 Summary
	3.1 Introducing lifecycle management
	3.1.1 What is lifecycle management
	3.1.2 Why lifecycle management?

	3.2 OSGi bundle lifecycle
	3.2.1 Introducing lifecycle to the paint program
	3.2.2 The OSGi framework's role in lifecycle
	3.2.3 The bundle activator manifest entry
	3.2.4 Introducing the lifecycle API
	3.2.5 Lifecycle state diagram
	3.2.6 Bundle cache and framework restarts

	3.3 Leveraging the lifecycle API in your bundles
	3.3.1 Configuring bundles
	3.3.2 Deploying bundles
	3.3.3 Inspecting framework state
	3.3.4 Persisting bundle state
	3.3.5 Listening for events
	3.3.6 How to kill yourself...

	3.4 Dynamically extending the paint program
	3.5 Lifecycle and modularity
	3.5.1 Resolving Bundles
	3.5.2 Refreshing bundles
	3.5.3 When updating is not really updated

	3.6 Summary
	4
	4.1 The what, why and when of services
	4.1.1 What is a service?
	4.1.2 Why use services?
	4.1.3 When to use services?

	4.2 OSGi services in action!
	4.2.1 Publishing a service
	4.2.2 Finding and binding services

	4.3 Dealing with dynamics
	4.3.1 Avoiding common pitfalls
	4.3.2 Listening for services
	4.3.3 Tracking services

	4.4 Using services in the paint example
	4.4.1 Defining a shape service
	4.4.2 Publishing a shape service
	4.4.3 Tracking shape services

	4.5 Relating services to modularity and lifecycle
	4.5.1 Why can't I see my service?
	4.5.2 Can I provide a bundle-specific service?
	4.5.3 When should I unget a service?
	4.5.4 When should I unregister my service?
	4.5.5 Should I bundle interfaces separately?

	4.6 Framework services
	4.6.1 Core services
	4.6.2 Compendium services

	4.7 Summary
	5.1 Managing your exports
	5.1.1 Importing your exports
	5.1.2 Implicit export attributes
	5.1.3 Mandatory export attributes
	5.1.4 Export filtering
	5.1.5 Duplicate exports

	5.2 Loosening your imports
	5.2.1 Optional imports
	5.2.2 Dynamic imports
	5.2.3 Optional versus dynamic imports
	5.2.4 Logging example

	5.3 Requiring bundles
	5.3.1 Declaring bundle dependencies
	5.3.2 Aggregating split packages
	5.3.3 Issues with bundle dependencies

	5.4 Dividing bundles into fragments
	5.4.1 Understanding fragments
	5.4.2 Using fragments for localization

	5.5 Dealing with your environment
	5.5.1 Requiring execution environments
	5.5.2 Bundling native libraries

	5.6 Starting lazy bundles
	5.6.1 Understanding activation policies
	5.6.2 Using activation policies

	5.7 Summary
	6.1 Turning JARs into bundles
	6.1.1 Choosing an identity
	6.1.2 Selecting what to export
	6.1.3 Discovering what to import
	6.1.4 Embedding vs. importing
	6.1.5 Adding lifecycle support
	6.1.6 JAR file to bundle cheatsheet

	6.2 Splitting an application into bundles
	6.2.1 Making a mega bundle
	6.2.2 Slicing code into bundles
	6.2.3 Loosening things up
	6.2.4 To bundle or not to bundle?

	6.3 Summary
	7.1 Versioning packages and bundles
	7.1.1 Meaningful versioning
	7.1.2 Package versioning
	7.1.3 Bundle versioning

	7.2 Configuring bundles
	7.2.1 Configuration Admin service
	7.2.2 Meta type service
	7.2.3 Preferences service

	7.3 Deploying bundles
	7.3.1 OSGi Bundle Repository
	7.3.2 Deployment Admin

	7.4 Ordering bundle activation
	7.4.1 Introducing the Start Level service
	7.4.2 Using the Start Level service

	7.5 Summary
	8.1 Migrating tests to OSGi
	8.1.1 Container testing
	8.1.2 Bundling tests
	8.1.3 Covering all the bases

	8.2 Mocking OSGi
	8.2.1 Testing expected behavior
	8.2.2 Mocking in action
	8.2.3 Mocking unexpected situations
	8.2.4 Coping with multi-threaded tests
	8.2.5 Exposing race conditions

	8.3 Testing modularity
	8.3.1 OSGi test tools
	8.3.2 Running tests on multiple frameworks
	8.3.3 Unit testing
	8.3.4 Integration testing
	8.3.5 Management testing

	8.4 Summary
	9.1 Debugging bundles
	9.1.1 Debugging in action
	9.1.2 Making things right with HotSwap

	9.2 Solving class loading issues
	9.2.1 ClassNotFound vs NoClassDefFound
	9.2.2 Casting problems
	9.2.3 Using uses constraints
	9.2.4 Staying clear of Class.forName
	9.2.5 Following the Context Class Loader

	9.3 Tracking down memory leaks
	9.3.1 Analyzing OSGi heap dumps
	9.3.2 Monitoring bundle resources

	9.4 Dangling services
	9.4.1 Finding a dangling service
	9.4.2 Protecting against dangling services

	9.5 Summary
	10.1 Component models and OSGi
	10.1.1 Why components?
	10.1.2 Component generalizations
	10.1.3 Painting with components

	10.2 Declarative Services
	10.2.1 Building declarative services components
	10.2.2 Declarative services component lifecycle
	10.2.3 Declarative services components as part of a framework
	10.2.4 Complex service dependencies in declarative services

	10.3 Blueprint Services
	10.3.1 Building blueprint components
	10.3.2 Referencing services in blueprint
	10.3.3 Blueprint component lifecycle
	10.3.4 Advanced blueprint

	10.4 Apache Felix iPOJO
	10.4.1 Building iPojo components
	10.4.2 iPojo component lifecycle
	10.4.3 iPojo Handlers

	10.5 Mix and match
	10.6 Summary
	11.1 Standard launching and embedding
	11.1.1 Framework API overview
	11.1.2 Creating a framework instance
	11.1.3 Configuring a framework
	11.1.4 Starting a framework instance
	11.1.5 Stopping a framework instance

	11.2 Launching the framework
	11.2.1 Determining which bundles to install
	11.2.2 Shutting down cleanly
	11.2.3 Configuring, creating, and starting the framework
	11.2.4 Installing the bundles
	11.2.5 Starting the bundles
	11.2.6 Starting the main bundle
	11.2.7 Waiting for shutdown

	11.3 Embedding the framework
	11.3.1 Inside versus outside
	11.3.2 Who's in control?
	11.3.3 Embedded framework example

	11.4 Summary
	12.1 To Secure or Not Secure
	12.2 Security Just do it
	12.2.1 Java and OSGi Security

	12.3 OSGi Permissions Revealed
	12.3.1 PackagePermission
	12.3.2 BundlePermission
	12.3.3 AdminPermission
	12.3.4 ServicePermission
	12.3.5 Relative FilePermissions

	12.4 Managing Permissions
	12.4.1 PermissionAdmin
	12.4.2 PermissionInfo
	12.4.3 PermissionAdmin in Action

	12.5 Conditional Permission Management
	12.5.1 ConditionalPermissionAdmin
	12.5.2 Conditions
	12.5.3 ConditionalPermissionAdmin in Action

	12.6 The simple Life
	12.6.1 Signed Bundles
	12.6.2 BundleSignerCondition
	12.6.3 Local Permissions

	12.7 Advanced Permission Management
	12.7.1 Custom conditions
	12.7.2 Postponed conditions

	12.8 Bringing it all back home
	12.9 Summary
	13.1 Web applications
	13.1.1 The OSGi HTTP service
	13.1.2 Introducing web application bundles

	13.2 Web services
	13.2.1 Providing a web service
	13.2.2 Consuming a web service
	13.2.3 Distributing services

	13.3 Summary

