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Introduction

The guiding motto in the life of every natural

philosopher should be, “Seek simplicity and distrust it.” 

—Alfred North Whitehead, “The Concept of Nature”

Hello, and welcome to the book! It’s great to have you here.

https://amzn.to/3GwoHjJ


Who is this book for?

There are lots of books that will teach you Go, but not many

that will show you what to do with it. In other words, once

you’ve learned how to write Go code, what code should you

write?

This book is aimed at those who have a little experience

with Go (or even a lot), and would now like to learn how to

build good software with it. What is “good” software

anyway? What would it look like in Go? And how do we get

there from here?

If software engineering is a craft, which it surely is, then how

do we go about mastering it? It’s all very well to say “just

write programs”, but how? How do we take some problem

and start designing a program to solve it? How can we

incorporate tests into the design? What are we even aiming

to do here?

I hope you’ll find at least some useful answers to these

questions in this book, which focuses on developing

command-line tools, but most of it applies to any kind of Go

program.

What should I know before reading it?

While you don’t need to be a confident or expert Go

programmer, I’ll assume in this book that you’re familiar

with at least the basics: compiling and running Go

programs, how structs and slices work, what functions do,

and so on. If you’re entirely new to Go, or even to

programming in general, I recommend you read my

previous book, “For the Love of Go”, first:



Once you’ve read it, you’ll be in the ideal place to start

reading this book. Go ahead! I’ll wait right here until you

come back.

What version of Go does it cover?

This book uses Go 1.21, released in August 2023, and all the

code samples have been tested against at least that

version. However, Go puts a strong emphasis on backward

compatibility, so all the code in this book will still work

perfectly well with later Go 1.x versions.

In general it should also work well with earlier versions,

though I recommend you use the latest version of Go you

can. If Go 1.21 isn’t yet available as a package in your

operating system distribution, you can build it from source

https://bitfieldconsulting.com/books/love


or download a suitable binary package from the Go website

directly:

https://go.dev/learn/

Where to find the code examples

There are dozens of challenges for you to solve throughout

the book, each designed to help you test your

understanding of the concepts you’ve just learned.

Throughout the book, you’ll see a number of code goals for

you to achieve, marked with the word GOAL, like this:

GOAL: Get the test passing.

When you see this, stop reading at that point and see if you

can figure out how to solve the problem. You can try to write

the code and check it against the tests, or just think about

what you would do.

If you reckon you have the answer, or alternatively if you’ve

got a bit stuck and aren’t sure what to do, you can then

read on for a HINT, or read on even further for step-by-step

instructions on how to construct the SOLUTION.

If you run into trouble, or just want to check your code, each

challenge is accompanied by a complete sample solution,

with tests.

All these solutions are also available in a public GitHub repo

here:

https://github.com/bitfield/tpg-tools2

Each listing in the book is accompanied by a name and

number (for example, listing hello/1), and you’ll find the

https://go.dev/learn/
https://github.com/bitfield/tpg-tools2
https://github.com/bitfield/tpg-tools2/tree/main/hello/1/main.go


solution to that exercise in the corresponding folder of the

repo.

What you’ll learn

By reading through this book and completing the exercises,

you’ll learn:

How to build reusable packages instead of one-off

programs

How to design user-friendly APIs and packages, without

annoying paperwork

How to write robust, testable tools that take command-

line flags and arguments

How to design Go packages that work with files and

other kinds of streaming data

How to write flexible tools to operate on trees of files,

and more generally path-value databases such as URLs

or zip archives

How to use Go to drive external commands and provide

elegant APIs to abstract their functionality

How to write commands that interact extensively with

users, such as shells

How to sequence operations into simple pipelines that

abstract away the details of handling streaming data

and errors

How to encode and decode data in binary format, and

translate Go data to and from JSON and YAML formats



How to create robust, reusable client packages for HTTP

services and other APIs



1. Packages

When it was announced that the Library contained all

books, the first reaction was unbounded joy. All… felt

themselves the possessors of an intact and secret

treasure. There was no personal problem, no world

problem, whose eloquent solution did not exist—

somewhere… 

—Jorge Luis Borges, “The Library of Babel”

The universal library

What’s wrong with this program?

package main 

 

import (

    "fmt" 

) 

 

func main() { 

    fmt.Println("Hello, world") 

}

https://amzn.to/47kNQZg


(Listing hello/1)

If you looked in vain, unable to spot the bug, I don’t blame

you. The fact is, there’s nothing wrong with this program as

such. It works, to the extent that it does what the author

intended: it prints a message to the terminal, and exits.

But there are some limitations on what we can do with this

program. The most serious of these is that it’s not an

importable package. Let’s talk about why this is a big deal.

The earliest computers were single-purpose machines. They

could only execute the specific computation they were

designed for: the trajectory of an artillery shell, say. To

compute something different meant physically re-wiring the

machine.

It took a leap of insight to realise that a much more useful

kind of computer would be one that could execute any

computation, without being re-wired. That is to say, it would

be programmable.

Packages are a force multiplier

A further significant advance was the idea that we don’t

need to write every program from scratch every time.

Instead, we could create reusable “routines”. For example,

the code to calculate square roots is complicated and easy

to get wrong, but it only has to be written once. We can

then copy and use that routine in any program that needs to

take a square root.

Nowadays, we would call such independent chunks of

software modules, or packages, and they’re fundamental to

all modern programming.

https://github.com/bitfield/tpg-tools2/blob/main/hello/1/main.go


Without packages we would always have to instruct the

computer about every detail of what we want to do. It would

be hard to write useful programs in Go without the packages

in the standard library, for example.

Packages, in other words, are an immensely powerful force

multiplier. When we’re programming in a language like Go

that has a rich ecosystem of importable packages, we never

have to reinvent the wheel.

If we can figure out how to break down our unsolved

problems into a bunch of mini-problems that have already

been solved by existing packages, then we’re 90% done.

The universal Go library is huge

The Go language itself is pretty small, in the sense that

there aren’t many keywords and there’s not a vast amount

of syntax to learn. And that’s great news for those of us

learning it.

But since this little language ships with a big standard

library, full of all sorts of useful and well-designed packages,

we can use it to construct some really powerful programs

right away.

That’s nice, but are we restricted to importing only

packages from the standard library? Certainly not. We can

import any published package in the world, and there are

plenty available.

We might call this wider ecosystem of importable Go

packages the universal library. A quick search on GitHub

reveals something close to half a million packages in this

universal library (and there are more published in other

places).



If you can imagine it, in other words, there’s probably a Go

package that provides it. So many, indeed, that simply

finding the package you want can be a challenge. The

pkg.go.dev site lets you search and browse the whole

universal library:

https://pkg.go.dev

If you’re looking for a package to tackle some specific

problem, a good place to check first is awesome-go, a

carefully-curated list of a couple of thousand or so of the

very best Go packages, by subject area:

https://github.com/avelino/awesome-go

This is one of the many reasons that Go is such a popular

choice for developing software nowadays. In many cases, all

we need to do to create a particular program is to figure out

the right way to connect up the various packages that we

need.

We can then make our program a package that other people

can use, and the process continues like a chain reaction. It’s

packages all the way down!

Sharing our code benefits us all

No program is an island, in other words. But that’s what’s

wrong with the “hello, world” program in listing hello/1: it

is isolated, breaking the chain of importability.

The syntax rules of Go mean that all code has to be in some

package, and it happens that ours is in package main. But

there’s something special about the main package in Go: it

can’t be imported. That makes sense, because it could only

be imported into some program that already has a main

package, so we’d have a namespace conflict.

https://pkg.go.dev/
https://pkg.go.dev/
https://github.com/avelino/awesome-go
https://github.com/avelino/awesome-go
https://github.com/bitfield/tpg-tools2/blob/main/hello/1/main.go


That means no one else can benefit from our wonderful

code. What a shame! We’re taking from the universal

package ecosystem, as it were, but not giving anything

back. That’s just rude. If our program is worth writing, it’s

worth sharing with the millions of other Gophers who also

benefit from the universal library.

This isn’t just wide-eyed idealism, though there’s nothing

wrong with that: it also makes good commercial sense. For

us to be able to write software at the scale we need today, it

has to be an industrial process using standardised, modular

components.

Today’s software developer is like the colonial-era

gunsmith, lovingly handcrafting every nut and screw.

We haven’t yet made an industrial revolution leap from

“filing away at software like gunsmiths at iron bars” to

“commercially robust repositories of trusted, stable

components”. 

—Scott Rosenberg, “Dreaming in Code”

Good programmers, then, are always thinking in terms of

writing importable packages, not mere dead-end programs.

And it turns out that this is a great way to write correct,

reliable software that’s easy to understand and maintain,

too. Modularity is just good design.

So what do we do differently when we’re writing packages,

not programs?

Writing packages, not programs

What Bill Kennedy has aptly called package-oriented design

represents a fundamental shift of mindset:

All design decisions start and end with the package. The

purpose of a package is to provide a solution to a

https://amzn.to/3NrFwhi


specific problem domain. To be purposeful, packages

must provide, not contain. The more focused each

package’s purpose is, the more clear it should be what

the package provides. 

—Bill Kennedy, “Design Philosophy On Packaging”

In other words, we start with some problem that we need to

solve. Instead of jumping straight to a program that solves

the problem, we first of all design a well-focused package

that solves the problem, and then we can use it in a

program.

The biggest shift in our thinking, then, is from solving our

very specific and parochial problem, to solving a general

class of problems that includes ours. For example, instead of

writing code to calculate the square root of 2, we write a

package that calculates any square root, and then we apply

it to the number 2.

Both approaches produce the square root of 2, but the

package approach is much more valuable because it also

solves the square root problem for all developers, for all

time. We can then contribute our package back to the

universal library, so that everybody else can benefit from

our work in the same way that we benefit every day from

theirs.

Command-line tools

We can write as many packages as we want, of course, but

nothing will actually happen until we run some executable

binary. That means there must be a main package, because

that’s how Go builds executable binaries.

But we’ve already said that the substantive code in our

program should be in some importable package, which

means it can’t be in main. So, while a main package has to

https://www.ardanlabs.com/blog/2017/02/design-philosophy-on-packaging.html


be present, it follows that it should do as little as possible. It

should import our package and call some entrypoint

function to start the real program, and that’s all.

We don’t really want to write any non-trivial logic in the 

main package, since it can’t be (directly) tested. And

whether it’s correct or not, it can’t be imported and used in

other programs, so it’s a dead end as far as the open-source

community is concerned.

Let’s see what would be left if we extracted all the

substantive code out of main, then, and replaced it with a

call to some hypothetical package that does the real work.

We’ll start by creating a new folder for this project (call it 

hello, or whatever you like). Within that folder, we’ll create

a file named main.go, containing the following code (you

can copy and paste it from the example repo, if you like):

(Listing hello/2)

This won’t work yet, of course, because we haven’t written

the hello package, but we can see how it would work.

We import the hello package from the module 

github.com/bitfield/hello. In Go, a module is a

package main 

 

import (

    "github.com/bitfield/hello" 

) 

 

func main() { 

    hello.Print() 

}

https://github.com/bitfield/tpg-tools2/blob/main/hello/2/cmd/hello/main.go


collection of packages that share a common version.

Now we can use the behaviour exported by the hello

package. To do that, we call the function hello.Print,

which will presumably do the actual printing of “Hello,

world”.

But how could we ever write such a main function until we

actually have the hello package available? How can we call

a function that doesn’t exist?

Well, design is always an exercise in imagination. If the

thing you want already exists, there’s no need to design it!

So it follows that when we design a package, we have to

start by imagining what it would do.

Zen mountaineering

As we’re writing main, we can ask ourselves “What kind of

function would we like to call here?” What name would

make sense for it? Would it need to take any arguments? If

so, what? Would it return any results? How many? What

type? And so on.

We’d always have to make these decisions at some point, of

course. The only question is “when?”

There’s a Zen saying that applies here:

If you want to climb a mountain, begin at the top. 

In other words, if we want to design a package, a great way

to begin is by pretending it already exists, and writing code

that uses it to solve our problem.

When this code looks clear, simple, and readable, we

probably have at least the beginnings of a nice design. We



will probably end up tweaking it as the project goes on, but

that’s okay. The amount of tweaking required will most likely

be less than it would if we had tried to design the whole

thing up front, with no idea of how it would be used in

practice.

By writing this main function, as minimal as it seems, we’re

starting this process. We’ve already done a little design

work on hello, even though we haven’t written a single line

of code in that package.

For example, we know there will be a Print function that

takes no parameters, returns nothing, and whose behaviour

is to print a message to the terminal. At least, that’s the API

implied by the way we use it in main.

That API might have to change, and it probably will, but let’s

follow the process a little further to see how it works.

Guided by tests

We’ve decided one of the behaviours we need from the 

hello package: printing the message “Hello, world”.

Supposing we’d already written the code to do this, how

would we know if it were correct?

Well, we could run the main package and see what happens,

and that’s always an option, but this kind of manual testing

doesn’t scale well as the software becomes more

complicated. What we really want is an automated test, and

Go has excellent support for writing such tests.

I’m going to suggest we do something that comes naturally

to some programmers, but not others: namely, build our

package guided by tests. What do I mean by that?

Specifically, that we’ll write the test for each behaviour

before we write the code to implement it.



This might sound weird, but it actually makes perfect sense

when you think about it. Unless you know in detail what the

code should do, how can you write it? And to “know in detail

what the code should do” is equivalent to writing an

automated test for it.

In other words, we’re not thinking about tests primarily as a

way of checking the correctness of code we’ve already

written, though they can certainly do that. Instead, we’re

treating the writing of a test as part of the design process.

Writing a test forces you to think clearly and precisely about

the observable behaviour of the component under test,

rather than the irrelevant details of its implementation. With

that thinking work already done, it’s much easier to write

the component itself. And when the test starts passing, we

know we’ve got it right.

Building a hello package

Let’s try this idea with our hello-printing example. We’ll

write a test and then see if we can come up with the right

code to pass it.

Let’s add the test to our existing hello project folder. We’ll

create a new file named hello_test.go, and start there.

Here’s a first attempt:

package hello_test 

 

import (

    "testing" 

 

    "github.com/bitfield/hello" 

) 



Let’s break this down, line by line. Every Go file must begin

with a package clause defining what package its code

belongs to. Since this code will be about testing the hello

package, let’s put it in package hello_test.

We need to import the standard library testing package for

tests, and we will also need our hello package.

The structure of a test

If you’re not already familiar with writing tests in Go, I

recommend you read For the Love of Go, which will give you

some helpful background on what follows.

As you probably know, every Go test function takes a single

parameter, conventionally named t, which is a pointer to a 

testing.T struct. We can see that in the signature of our

test:

This t value contains the state of the test during its

execution, and we use its methods to control the outcome of

the test (for example, calling t.Error to fail the test).

The call to t.Parallel signals that the test should be run

concurrently with other tests, and is a standard prelude to

any test. Now here comes the substantive part, where we

actually call the function under test:

 

func TestPrintPrintsHelloMessageToTerminal(t 

*testing.T) {  

    t.Parallel() 

    hello.Print() 

}

func TestPrintPrintsHelloMessageToTerminal(t 

*testing.T)

https://bitfieldconsulting.com/books/love


It doesn’t seem, from the way we’ve used it in our modified 

main package, that the Print function needs to take any

parameters, and at the moment there don’t seem to be any

useful results it could return.

And that’s the end of the test. But there’s a problem: when

would this test fail?

Tests are bug detectors

Go tests pass by default, so unless we take some specific

action to make it fail (we’ll see how to do that in a moment),

this test will always pass. That might sound great, at first:

we like passing tests!

But how useful is a test that can never fail? What is the

point of a test, actually? Why do we write them? Partly to

help us design the API of the system under test, as we’ve

seen, but another important role of any test is as a bug

detector.

To see how that works, let’s think about potential bugs that

could be in our hello.Print function. There are many, of

course: it could print the wrong message, print the right

message in the wrong language, print nothing but delete all

your files, and so on.

These would all be important bugs, and we’d like to be able

to detect and fix them, but let’s strip it right back to basics.

The most fundamental bug that could be in Print is that it

doesn’t do anything at all.

For example, suppose the implementation looked like this:

hello.Print()



The question we need to ask ourselves here is “would our

test detect this bug?” In other words, will the test fail when 

Print does nothing? Well, we already know the answer to

that. The test can’t fail at all, so it can’t detect any bugs,

including this one.

Actually, there’s one kind of bug it could detect: one that

would cause the function to panic. It doesn’t matter whether

the code explicitly calls the built-in panic function for some

reason, or whether it does something that causes a runtime

panic, such as accessing a non-existent slice element. In

either case, the test will fail.

Being able to assure ourselves that the code doesn’t panic

is better than nothing, but it’s still a pretty low bar. No code

should ever panic, so while it’s good that tests can catch

this, let’s be a bit more ambitious. Let’s extend the test to

check, first, that the code does anything at all, and then, no

less importantly, that it does the right thing.

So when should a test fail?

Most tests have one or more ways of failing under specific

circumstances. In other words, we usually have some code

in the test like this:

So what would CONDITION be in our case? It’s not easy to

work out at first. Let’s remind ourselves what the desired

behaviour of Print is. Its job is to print a hello message to

package hello 

 

func Print() {}

if CONDITION { 

    t.Errorf("test failed because %s", REASONS) 

}



the terminal. Okay, so we can see if that’s worked by

running the program and looking at the terminal, but how

could we carry out that same check from a test?

We can’t. In general, programs have no way of accessing

what they have or haven’t printed to the controlling

terminal. So let’s do a little judo move. If we can’t check

what we’ve printed to the terminal, could we check what

we’ve printed somewhere else?

If so, perhaps there’s a way we can make it possible for the

calling code to select where the output gets printed. When

running the real program, that will be the terminal, just as

before. But when running tests, the output could go

somewhere else that the test could then inspect.

In the original program from listing hello/1, we used 

fmt.Println to do the printing, and we found that its

output ends up going to the terminal.

So what determines this destination for output, and could

we change it? Let’s take a look at the source code. In most

editors, such as Visual Studio Code, you can place the

cursor on some function call like this, right-click, and select

Go to definition to see how it’s implemented (or you can just

hold down the Cmd key and click on the function name).

This is helpful for navigating our own projects, but it works

with imported packages too, even packages like fmt that

are part of the standard library. This code spelunking is fun

and interesting, and I recommend you spend some time

exploring the standard library, or even packages from the

universal library that interest you.

Where does fmt.Println print to?

https://github.com/bitfield/tpg-tools2/blob/main/hello/1/main.go


Here’s what we find when we spelunk into the definition of 

fmt.Println:

Notice that Println doesn’t seem to really do anything

substantive itself. Instead, it just calls some other function, 

Fprintln, passing on the arguments a... it received from

us, which are the things to be printed.

But it doesn’t just pass on its arguments: it adds a new one.

The first argument to Fprintln is os.Stdout, which is a file

handle representing the standard output. This is what

actually determines where stuff ends up getting printed.

This looks promising. We can’t control where Println sends

its output, because that’s hard-wired: it’s always os.Stdout.

But we can control where Fprintln’s output goes, because

the destination is the first argument to this function.

If we could construct some object that Fprintln will accept

as a destination, then we’d have a way to solve our testing

problem. So what would that look like? Here’s the signature

of Fprintln:

The parameter we’re interested in is w io.Writer, so

what’s io.Writer? It’s a standard library interface that

means “thing you can write to”. Writing is the same as

printing, for our purposes. Anything that conforms to the 

io.Writer interface is an acceptable destination as far as 

Fprintln is concerned.

func Println(a ...any) (n int, err error) { 

    return Fprintln(os.Stdout, a...) 

}

func Fprintln(w io.Writer, a ...any) (n int, err 

error)



Clearly that’s true of os.Stdout, but what could we

construct instead?

Meet bytes.Buffer, an off-the-shelf io.Writer

Like all good interfaces, io.Writer is easy to implement,

because it’s small. All we need is something with a Write

method.

For example, we could create some struct type whose Write

method stores the supplied text inside the struct, and we

could add a String method so that we can retrieve that text

and inspect it in the test.

That’s not necessary, though, because such a type already

exists in the standard library: bytes.Buffer. It’s an all-

purpose io.Writer that remembers what we write to it, so

it’s ideal for testing.

Let’s rewrite our test using a buffer as the print destination,

then. We’ll start by giving it a new name:

Since we’ll need a bytes.Buffer as our printing destination,

let’s create one and name it buf. What’s next?

Now comes the call to the function under test. Since the

behaviour of the function has changed, its name should

change too. It now takes an io.Writer argument to tell it

where to print its message to, so let’s rename it PrintTo.

And that reads quite naturally in the code:

func TestPrintTo_PrintsHelloMessageToGivenWriter(t 

*testing.T)

hello.PrintTo(buf) // prints hello message to buf



Indeed, this is probably the easiest way to invent good

names for things: write the code that refers to them, and

see what makes sense in context. Then use that name.

Again, this usually works better than deciding in advance

what the name should be, and then trying to jam it

awkwardly into code where it doesn’t fit. It’s easy to tell

when you’re reading a program where this has happened,

because the names don’t seem to be very good descriptions

of the things they’re attached to.

Failure standards

We can now do what proved impossible with the first version

of this test: we can write down the conditions under which it

should fail.

First, we know what message we want to see printed to buf;

it’s “Hello, world”. Let’s name that variable want.

What we actually got, though, we’ll find out when we call 

buf.String, which returns all the text written to buf since it

was created. We’ll name this value got.

And now we know the failure condition: if got is not equal to

want, then we should fail. We have a useful test at last! And

here it is:

func TestPrintTo_PrintsHelloMessageToGivenWriter(t 

*testing.T) {  

    t.Parallel() 

    buf := new(bytes.Buffer) 

    hello.PrintTo(buf) 

    want := "Hello, world\n" 

    got := buf.String() 

    if want != got { 

        t.Errorf("want %q, got %q", want, got) 



(Listing hello/3)

Implementing hello, guided by tests

So, how close are we to having this test pass? Well, that

would obviously require PrintTo to exist, and it doesn’t yet,

even though we’ve done a lot of useful thinking about it.

And we’re still not quite ready to write it, because there’s

one thing we need first. We need to see our test fail.

We start with a failing test

If you think that sounds weird, I don’t blame you. A failing

test is usually bad news—and it would be, if we were under

the impression that we’d successfully implemented the 

PrintTo function.

But we know we haven’t, so if we can get the test to run at

all, it should fail, shouldn’t it? The alternative would be that

it passes, even though the PrintTo function does nothing

whatsoever. That would be weird.

We agree, I hope, that if PrintTo does nothing, then that’s a

bug. Would we detect that bug with this test? Yes, I think we

would. Running this test against an empty PrintTo function

should fail. Let’s see why.

If PrintTo doesn’t write anything to the buffer, then when

we call buf.String we’ll get the empty string. That won’t

be equal to want, which is the string “Hello, world”.

That mismatch should fail the test, and it should also give

us some confidence in our bug detector. No doubt there

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/hello/3/hello_test.go


could be other bugs in PrintTo that we won’t detect at the

moment. That’s nearly always true.

But we feel at least we should detect this one, so let’s find

out.

Creating a module

We can’t actually run the test just yet, though. At the

moment, running go test gives us a compile error:

go: cannot find main module

This makes sense, since we haven’t yet created a go.mod

file to identify our module. A module in Go is a collection of

(usually related) packages. While a module can contain any

number of packages, it’s a good idea to keep things simple

and put each of our packages in its own module.

We’ll do that with the hello package, so we’ll name its

containing module hello too. To do that, we need a little bit

of paperwork.

Each Go module needs to have a special file named go.mod

that identifies it by name. It’s just a text file, so we could

create it by hand, but an easier way is to use the go tool

itself:

go: creating new go.mod: module 

github.com/YOUR_GITHUB_ID/hello

This name will be the import path for people who want to

use our module, so that’s why it needs to contain your

GitHub username.

One folder, one package

go mod init github.com/YOUR_GITHUB_ID/hello



But we still have a problem when we try to run the tests:

found packages hello (hello_test.go) and main 

(main.go)

Our old main.go file from listing hello/1 is still kicking

around in this folder, and that’s causing the compiler to get

confused.

The rule in Go is that each distinct package must occupy a

separate folder. That is to say, you can’t have a file that

declares package hello in the same folder as another file

that declares package main, for example. And right now

that’s what we have.

Let’s move main.go to a subfolder, then. We’ll come back to

it later:

A null implementation

Let’s try running the tests again:

go build hello: no non-test Go files

That’s absolutely correct. In order to run tests, there must

be some package to build, and there isn’t. So let’s create a 

hello.go file that declares package hello. What else shall

we put in it?

Well, we need the PrintTo function to be at least defined,

or our test won’t compile. On the other hand, we don’t want

go test

mkdir -p cmd/hello 

mv main.go cmd/hello

go test

https://github.com/bitfield/tpg-tools2/blob/main/hello/1/main.go


it to actually do anything yet, because we want to verify

that our test can tell when it doesn’t. So let’s write a null

implementation: just the same empty function we saw

before.

For it to compile, the function must take a parameter, and

we know its type should be io.Writer. Nothing else is

actually required, syntactically, since Go is quite happy for

you to write empty functions that do nothing (your boss

may take a different view).

But we think the test should fail, so let’s see what happens:

--- FAIL: 

TestPrintTo_PrintsHelloMessageToGivenWriter 

(0.00s) 

    hello_test.go:16: want "Hello, world", got ""

Nice! That’s exactly what we hoped for, even though it looks

like something bad happened. Don’t think of it as a failing

test: think of it instead as a succeeding bug detector. We

know there is a bug, so if the test passed at this stage, we

would have to conclude that our bug-detecting machinery

were faulty.

The real implementation

The test is now doing one half of its job: detecting when the

function doesn’t work. The other half of its job is to detect

when the function does work. So does it?

Let’s write the real implementation of PrintTo and find out:

package hello 

 

func PrintTo(w io.Writer) {}



Here’s the result:

PASS

Ideal. We now have an importable, testable package that

makes our “print hello to some io.Writer” behaviour

available to other users, provided that we remember to

publish it with an appropriate software licence.

The naming of tests

Not only do we have a great test for our package, but the

name of that test itself conveys some useful information. To

help us think about what our test names are saying about

the behaviour of the system, we can use the gotestdox

tool:

https://github.com/bitfield/gotestdox

It simply rewrites the test names as space-separated words

that we can read as a sentence. Here’s how to install it:

Let’s run it in our project folder and see what it says:

github.com/bitfield/hello: 

 ✔ PrintTo prints hello message to given writer

func PrintTo(w io.Writer) { 

    fmt.Fprintln(w, "Hello, world") 

}

go test

go install 

github.com/bitfield/gotestdox/cmd/gotestdox@latest

gotestdox

https://github.com/bitfield/gotestdox
https://github.com/bitfield/gotestdox


Nice! As our collection of tests grows, the documentation

produced by gotestdox will be an increasingly valuable way

to get an overview of what our package does, and how to

use it.

Refactoring to use our new package

While we wait for the world to rush to our door to take

advantage of our generous contribution to the Go universal

library, let’s use the new package ourselves to rebuild our 

hello command.

In fact, we only need to make minor changes to our main

package from listing hello/2. Specifically, we now need to

pass in the destination for PrintTo to print to:

(Listing hello/3)

Let’s run it and see if that works:

Hello, world

package main 

 

import (

    "os"

 

    "github.com/bitfield/hello" 

) 

 

func main() { 

    hello.PrintTo(os.Stdout) 

}

go run ./cmd/hello

https://github.com/bitfield/tpg-tools2/blob/main/hello/2/cmd/hello/main.go
https://github.com/bitfield/tpg-tools2/blob/main/hello/3/cmd/hello/main.go


This is great. We’re back precisely where we started. From

one point of view, we’ve added no value at all, since the

program’s behaviour is exactly the same. But from another

point of view, we’ve added all the value in the world, since

we created an importable package.

Someone else who wants this behaviour can now add it to

their own program as a pluggable component. And because

we’ve made it flexible about where it prints to, that program

needn’t even be a command-line tool. It could be, for

example, a web server:

(Listing hello/3)

Going further

If you’re impatient to read more, by all means go on to the

next chapter. But if you’d like to explore some of these ideas

further, try this mini-project. It will give you a chance to

practice building an importable package, guided by tests, in

the way that we’ve talked about.

Instead of a program that simply prints “Hello, world”,

try writing a program that asks the user for their name,

then prints “Hello, [NAME]”. Put all the substantive

func main() { 

    fmt.Println("Listening on 

http://localhost:9001")  

    http.ListenAndServe(":9001", http.HandlerFunc( 

        func(w http.ResponseWriter, r 

*http.Request) {  

            hello.PrintTo(w) 

        }) 

    ) 

}

https://github.com/bitfield/tpg-tools2/blob/main/hello/3/cmd/hellosrv/main.go


behaviour of the program in an importable package

that’s used by main.

You’ll find one possible solution in listing greet/1.

https://github.com/bitfield/tpg-tools2/blob/main/greet/1/


2. Paperwork

Yes, he did have a clean desk. But that was because he

was throwing all the paperwork away.

—Terry Pratchett, “The Fifth Elephant”

We can feel very warm and fuzzy, after our efforts in the

previous chapter, that we’ve added something useful to the

wider Go ecosystem: that is, to the universal library. Okay,

maybe it doesn’t seem super useful so far, but that’s not

really for us to judge. If we want it, someone else might, too.

Designing packages instead of programs means we need to

think about how other people might use our code. It’s no

longer about just solving some specific problem that we

have, but a wider class of problems. And that means we

need to have a way for users of our package to specify

options.

Making our package more flexible

Let’s put ourselves in the position of someone trying out our

package, then. Maybe they’ve been struggling to write a Go

https://amzn.to/3UCvc8K


program that prints “hello, world”, and they’ve just

discovered to their delight that a new package hello has

been published to do exactly that.

Mandatory arguments are annoying

Their first step will probably be to try it out, using a program

something like the one we wrote in listing hello/3:

From a developer experience point of view, this is okay, but

not great. Why do we have to pass os.Stdout as an

argument here? Isn’t it obvious that’s what we’ll almost

always want? Why make us do this apparently useless

paperwork?

Well, we know why: that argument has to be there because

in the tests, it won’t be os.Stdout; it will be something like

a *bytes.Buffer. Tests are great, of course, but do users

actually want to pass this argument?

The answer is that they might: the HTTP handler in listing

hello/3 needs to pass the ResponseWriter here so that the

message will go to the user’s browser instead of the

operator’s terminal. But surely this is a niche use case.

Probably 95% of the time os.Stdout is what users will want.

It’s a shame, then, that everybody has to pay the usability

penalty of supplying this mandatory argument. Sure, it’s not

a big deal that you have to pass in this one little value, but

it’s paperwork. Small inconveniences add up, over a big

enough API, to become a major annoyance, so we’d like to

eliminate them wherever possible.

func main() { 

    hello.PrintTo(os.Stdout) 

}

https://github.com/bitfield/tpg-tools2/blob/main/hello/3/cmd/hello/main.go
https://github.com/bitfield/tpg-tools2/blob/main/hello/3/cmd/hellosrv/main.go


Is there any way, then, to allow users to omit this argument

unless they want “advanced customisation” mode? What

we’d like is for the program to print to os.Stdout by

default, unless we choose to override that with something

else (like in the test, for example).

What if we allow users to pass nil?

Here’s one idea. Suppose, instead of requiring users to pass

some valid io.Writer value as an argument, we let them

pass nil instead. We can check for that in the function and

set the writer to our default os.Stdout in this case:

This is a little better, because the user doesn’t have to

remember to pass os.Stdout, specifically. Their code now

looks like this:

But this is objectively worse! We at least understood why 

os.Stdout was there, but this nil is completely baffling.

What, you didn’t know that passing nil means “print to

standard output”? Too bad.

This can’t be the right idea, can it? If there’s one thing

worse than mandatory paperwork, it’s mandatory

meaningless paperwork. You don’t ever want your users to

have to pass you a “mystery nil”.

The standard library isn’t entirely free of this problem. For

example, you may well have seen code like this:

func PrintTo(w io.Writer) { 

    if w == nil { 

        w = os.Stdout 

    } 

    ...

hello.PrintTo(nil)



What’s that nil about? It’s not immediately clear, is it? If

that argument isn’t always necessary, why does the API

force us to supply it? Or if it is always necessary, then why

is it okay for it to be nil here?

The answer, which again you just have to know, or go code-

diving to find out, is that this is where the handler goes. If

you don’t need a custom handler, you can pass nil, and the

result will be that the default handler is used. That’s a little

too much magic for our tastes.

Maybe some global variable instead?

If we don’t want to make users pass us a mystery nil, we

can’t make the writer a parameter. If it’s not a parameter,

then it must be a variable. But where should that variable

be set in such a way that users can override its default

value if they need to?

We could make it a variable in the hello package, and set

its default value at the same time:

Now we can drop the argument to PrintTo completely (and

its name therefore becomes once again just Print):

Note that we have to export the name Output, or we won’t

be able to set it from the test code like this:

http.ListenAndServe("localhost:8080", nil)

var Output io.Writer = os.Stdout

hello.Print()

buf := new(bytes.Buffer) 

hello.Output = buf 

hello.Print()



This gives us a tidier API, that is easier to use, and we don’t

mind doing a bit of paperwork in the tests for the unusual

case where we need to override the default output.

However, this approach wouldn’t be concurrency-safe. In

other words, supposing two different goroutines (parallel

tests, for example) were both trying to print something.

With each one simultaneously trying to set Output to a

different writer, chaos would ensue. At best, the program

would crash; at worst, it would produce the wrong results.

While we don’t at the moment call into the hello package

concurrently, we certainly want users to be able to do that,

and any mutable global state makes that impossible.

Calling t.Parallel in all our tests can help catch any such

mistakes. If we had parallel tests that relied on setting 

Output, they couldn’t possibly pass reliably if it were a

global variable. If we’d accidentally made that mistake, then

parallel tests would warn us about it, which is nice.

A struct is the answer

If a global variable is no good, then it follows elegantly that

we need some local variable instead. But what?

Suppose that instead of a function, Print were a method on

some struct—let’s call it a Printer, since that’s what it is.

Now each Printer could have its own individual Output

writer, distinct from all other Printers:

type Printer struct { 

    Output io.Writer 

}



So what would user code that uses the Printer look like,

then? Something like this, perhaps:

This seems like a step backwards, though: we’ve added

several lines of paperwork, and we still need an explicit

mention of os.Stdout. Couldn’t we make that the default 

Output? It seems like a sensible choice.

But “default” is doing a lot of work in that sentence. Go

doesn’t allow us to specify default values for struct fields;

they’ll just get whatever the zero value is for their type. In

this case, since io.Writer is an interface, the default 

Output will be nil.

That’s no good, so we’ll need to absorb this paperwork into

a constructor instead. That way, we can set Output to the

default value when we create the Printer, and users are

welcome to set it to something else if they want to.

The result returned by NewPrinter is ready to use, but we

can customise it when necessary. In the test, for example,

func (p *Printer) Print() { 

    fmt.Fprintln(p.Output, "Hello, world") 

}

p := &hello.Printer{ 

    Output: os.Stdout, 

} 

p.Print()

func NewPrinter() *Printer { 

    return &Printer{ 

        Output: os.Stdout, 

    } 

}



we’ll want to set that Output to a buffer, so we can inspect

what gets printed.

And here’s what that would look like:

(Listing hello/4)

Real users, though, don’t need to set anything in order to

print to the default output, which is nice:

We could even eliminate the p variable altogether, and write

simply:

Of course, now the user has to call two functions instead of

one, which is annoying. Isn’t there some way round that?

A convenience wrapper with defaults

func TestPrintPrintsHelloMessageToOutput(t 

*testing.T) {  

    t.Parallel() 

    buf := new(bytes.Buffer) 

    p := hello.NewPrinter() 

    p.Output = buf 

    p.Print() 

    want := "Hello, world\n" 

    got := buf.String() 

    if want != got { 

        t.Errorf("want %q, got %q", want, got) 

    } 

}

p := hello.NewPrinter() 

p.Print()

hello.NewPrinter().Print()

https://github.com/bitfield/tpg-tools2/blob/main/hello/4/hello_test.go


Well, this is easily solved. We can just provide some trivial

wrapper function that absorbs the unnecessary paperwork.

Let’s call it simply Main, since it’s effectively acting as our

main function:

So here’s the complete program:

(Listing hello/4)

Now the user really is living their best life. All they need to

do is call:

func Main() { 

    NewPrinter().Print() 

}

type Printer struct { 

    Output io.Writer 

} 

 

func NewPrinter() *Printer { 

    return &Printer{ 

        Output: os.Stdout, 

    } 

} 

 

func (p *Printer) Print() { 

    fmt.Fprintln(p.Output, "Hello, world") 

} 

 

func Main() { 

    NewPrinter().Print() 

}

https://github.com/bitfield/tpg-tools2/blob/main/hello/4/hello.go


This is, in fact, exactly the kind of zero-paperwork approach

that the standard library takes in many places. For example,

the net/http package has a nice, defaults-oriented way to

make HTTP requests:

Of course, in more sophisticated programs we would

probably want to customise certain things about the HTTP

client’s behaviour, such as timeouts. In that case, where we

want to do some paperwork, we can:

This way, we get the best of both worlds: sensible default

behaviour with no paperwork, or customisable behaviour

with minimal paperwork. That’s a result.

A good rule to remember in this context, coined by

researcher Alan Kay, is “Simple things should be simple, but

complex things should be possible.” It captures our user-

focused, paperwork-reducing approach perfectly.

A simple line counter

Let’s apply what we’ve learned so far to write a slightly

more useful program: one that counts the number of lines in

its input and prints the result to its output. Again, this is

straightforward to write directly as a main package:

func main() { 

    hello.Main() 

}

resp, err := http.Get("https://example.com")

client := http.Client{ 

    Timeout: 10 * time.Second, 

} 

resp, err := client.Get("https://example.com")



(Listing count/1)

Of course, this isn’t the only way to count lines, or even the

best. If we wanted to spend memory to buy speed, for

example, we could read the entire input with io.ReadAll,

and count the newlines in the resulting slice with 

bytes.Count.

Focus on behaviour, not implementation

Personally, I don’t need this program to be any faster than it

is, and I don’t like programs whose memory footprint scales

linearly with their input. It’s too easy to crash such

programs by sending them a lot of data, either deliberately

or accidentally.

Any time you take input, assume it will be of arbitrary size,

larger than available memory. Process it in bite-size chunks,

rather than all at once. If we only need a line at a time, we

should only read a line at a time.

In any case, the actual implementation doesn’t matter here:

we can treat it as a black box. Indeed, it should be trivially

replaceable, shouldn’t it? We’re primarily concerned here

with the user experience and friendliness of the package.

How should we go about turning it into an importable

package? Try it yourself first.

func main() { 

    lines := 0 

    input := bufio.NewScanner(os.Stdin) 

    for input.Scan() { 

        lines++ 

    } 

    fmt.Println(lines) 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/1/main.go


GOAL: Design and implement a line-counting package, test-

first, in the same way we did with hello. Include a main.go

that uses your package to build a line-counting CLI tool.

HINT: Remember, you don’t need to solve the problem of

how to count lines—we’ve already done that using 

bufio.Scanner in listing count/1.

The challenge here is how to turn this behaviour into an

importable package (shall we call it count?). Once we have

that, we can easily write a zero-paperwork main function to

use it.

We’ll also need to be able to test it, and that suggests we

won’t want to read directly from os.Stdin. Instead, think

about a counter object that could be configured with some 

Input, just as the “hello printer” object had a field to

specify its Output.

Actually, the line counter is really similar to the hello printer

in many respects, so if you’re not sure how to get started,

have a look at listing hello/4 for inspiration.

One possible first version

SOLUTION: As usual, let’s start with a test. What would a

test for the line counter look like? Again, let’s refer to listing

hello/4 for some inspiration. Here’s the test for the hello

printer:

func TestPrintPrintsHelloMessageToOutput(t 

*testing.T) {  

    t.Parallel() 

    buf := new(bytes.Buffer) 

    p := hello.NewPrinter() 

    p.Output = buf 

https://github.com/bitfield/tpg-tools2/blob/main/count/1/main.go
https://github.com/bitfield/tpg-tools2/blob/main/hello/4/hello.go
https://github.com/bitfield/tpg-tools2/blob/main/hello/4/hello_test.go


(Listing hello/4)

We’ll be doing something very similar in the test for the line

counter. For example, we could call NewCounter to get a

counter, and then set its Input to a bytes.Buffer. We’ll

need to be able to “pre-load” the buffer with some test input

—a string containing a few line breaks should be fine.

The next question is how we get the results. For users of a

command-line tool, it would be fine if the counter simply

printed its result to the standard output (or any io.Writer,

to make testing easier).

But that wouldn’t be convenient for those who want to

consume our package in their own programs. They’d like the

line count to be returned as a Go number—that is, as an 

int.

And that’s more flexible in general: after all, if we have an 

int, it’s easy to print it out when we want to. But if all you

can do is print to some writer, it’s a lot trickier to turn that

data back into a number.

So let’s call our counting method Lines, since that’s what it

returns: the number of lines counted in the input.

It sounds as though we’ve argued ourselves into something

like the following test:

    p.Print() 

    want := "Hello, world\n" 

    got := buf.String() 

    if want != got { 

        t.Errorf("want %q, got %q", want, got) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/hello/4/hello_test.go


(Listing count/2)

And here’s the corresponding package:

func TestLinesCountsLinesInInput(t *testing.T) { 

    t.Parallel() 

    c := count.NewCounter() 

    c.Input = bytes.NewBufferString("1\n2\n3") 

    want := 3 

    got := c.Lines() 

    if want != got { 

        t.Errorf("want %d, got %d", want, got) 

    } 

}

package count 

 

import (

    "bufio" 

    "io"

    "os"

) 

 

type counter struct { 

    Input io.Reader 

} 

 

func NewCounter() *counter { 

    return &counter{ 

        Input: os.Stdin, 

    } 

} 

 

func (c *counter) Lines() int { 

https://github.com/bitfield/tpg-tools2/blob/main/count/2/count_test.go


(Listing count/2)

Note that all we need to do to use this package from a

command-line program is to call count.Main. It doesn’t take

any parameters, or need any configuration. It just does the

right thing. How convenient!

(Listing count/2)

What about configuration?

To recap, we’ve said that practical programs often need

some kind of configuration in order to be flexible. A useful

pattern in Go is to have some kind of object—some struct,

that is—with fields that we can set. For example, with the

hello printer we can set the Output, and with the line

counter we can change its Input.

This is fine, but how well would it scale if there were lots of

things to configure? It might be annoying to have to write

    lines := 0 

    input := bufio.NewScanner(c.Input) 

    for input.Scan() { 

        lines++ 

    } 

    return lines 

} 

 

func Main() { 

    fmt.Println(NewCounter().Lines()) 

}

func main() { 

    count.Main() 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/2/count.go
https://github.com/bitfield/tpg-tools2/blob/main/count/2/cmd/count/main.go


separate assignment statements, one for every struct field

we want to set, if there were dozens of such fields.

We could make these values extra parameters to the

constructor, but as we’ve seen, there are several problems

with that idea. Go doesn’t allow us to omit arguments to a

function, so users would have to do annoying paperwork

such as passing a “mystery nil”. Let’s rule that approach

out of court, and keep thinking.

Config structs don’t solve the problem

A common, but not very satisfactory pattern, is to create

some config struct type and pass that to the constructor

instead. For example:

But this seems a bit pointless. We already have a struct that

contains the config information: the counter struct itself.

Adding another struct type doesn’t help users, it only

creates more paperwork. And now we have to laboriously

copy all the values from one struct into the other.

type Config struct { 

    Input io.Reader 

    Output io.Writer 

} 

 

func MakeCounterWithConfig(config Config) *counter 

{  

    c := NewCounter() 

    c.Input = config.Input 

    c.Output = config.Output 

    return c 

}



It’s fine to just have users set fields directly on the object

itself, as we’ve seen with the hello printer and the line

counter. Most of the time, indeed, this is the best solution,

especially if we can provide sensible defaults using a

constructor.

But, just for fun, can we think of anything better? Is there a

way we could configure many different things about our

object, but set them all in a single call to the constructor,

without having to do any paperwork?

An elegant option API

Using our Zen pre-mountaineering technique again, let’s try

to write roughly the code that we wish were possible, and

then figure out how to make it possible.

Imagine, for example, that we could write something like

this:

In other words, NewCounter can apparently take any

number of arguments, each of which configures something

different about the counter.

We could have done that with ordinary parameters, of

course, but, crucially, we wouldn’t be able to omit any of

them. That’s not the case here, because we also want to be

able to write, for example:

c := count.NewCounter( 

    count.WithInput(os.Stdin), 

    count.WithOutput(os.Stdout), 

    ... // Maybe more options here 

)

c := count.NewCounter()



So, is this possible?

Okay, so what’s an “option”?

First, let’s look at these arguments to NewCounter. Clearly

there’s some magic going on here, because we already said

that Go doesn’t allow us to omit arguments to a function.

That’s true, except in one rather special case.

Recall that in the first chapter, we looked at the

implementation of fmt.Println, and this was its signature:

The ... in the parameter list means “any number of”.

Indeed, Println takes as many, or as few, arguments as we

care to give it:

That’s the magic of ... at work. The technical way to put

this is to say that Println is variadic, meaning that it

accepts a variable number of arguments (including none at

all). And that’s just what we want with NewCounter, too.

But what type will these arguments be? We can only choose

one type, and it must apply to all our arguments.

For example, Println declares its arguments as type any,

which means exactly what you’d expect: literally any type of

value is allowed. That makes sense, because Println can

print any random junk we care to send it.

But that wouldn’t work for us here. For example, this

wouldn’t be meaningful:

func Println(a ...any) (n int, err error)

fmt.Println() 

fmt.Println("hello!") 

fmt.Println("eggs", 61, "new pence a dozen")



Right? We can’t just have users pass in random junk and

expect it to do anything sensible to the counter. In fact, the

arguments to NewCounter represent something specific:

let’s call them options.

An “option”, we’ll say, is something that sets some field of

the counter to some value. For example, the WithInput

option sets the input field to something.

How could that work? Well, let’s simply wave a wand and

imagine that there’s a type option that will take care of this

for us. So now at least we can write the beginning of 

NewCounter:

So far, so good. We still don’t know what kind of type 

option is, but maybe we can ask instead: what would we do

with an option?

Well, we’d apply it to the counter. In fact, the word “apply”

is a clue that maybe an option could be a function. What

about a function that takes the *counter itself as a

parameter, and sets the appropriate field to the value the

user wants?

We can receive any number of such options, so a range loop

seems appropriate. For each option, then, we would call it

as a function, passing it the counter. After we’ve applied all

the options, the counter will be set up correctly.

c := count.NewCounter("eggs")

func NewCounter(opts ...option) *counter { 

    c := &counter{ 

        input:  os.Stdin, 

        output: os.Stdout, 

    }



This seems promising, because no matter what the option

actually does, its function signature is always the same. We

can now define our option type as simply this:

Options are functions

At the end of our range loop, then, we will have applied all

the options we received, and the fully-configured counter

will be all ready to return.

So here’s what that looks like:

The pieces are falling neatly into place. The only missing

piece, in fact, is how we create these option functions in

the first place. Should we make the user supply them as

function literals? That sounds like paperwork:

for _, opt := range opts { 

    opt(c) 

}

type option func(*counter)

func NewCounter(opts ...option) *counter { 

    c := &counter{ 

        Input:  os.Stdin, 

        Output: os.Stdout, 

    } 

    for _, opt := range opts { 

        opt(c) 

    } 

    return c 

}

// Don't make me write this! 

c := count.NewCounter( 



The only things the user is actually supplying here are 

inputBuf and outputBuf; the rest is boilerplate.

Let’s eliminate that by providing an option constructor for

each field that we can set. In other words, rather than have

to write the option function themselves, users can simply

call a function to create it.

Here’s a suitable constructor:

Now all users have to write is, for example:

How delightful!

“Always valid” fields

A nice consequence of this approach is that now, since users

don’t ever need to set the struct fields directly, we can

make them unexported. Now that the only way to set the

    func (c *count.Counter) { 

        c.Input = inputBuf 

    }, 

    func (c *count.Counter) { 

        c.Output = outputBuf 

    } 

)

func WithInput(input io.Reader) option { 

    return func(c *counter) { 

        c.Input = input 

    } 

}

c := count.NewCounter( 

    count.WithInput(inputBuf), 

)



fields is by calling some function, we can also take

advantage of that to validate the settings.

For example, we might want to ensure that the input and

output are never nil, which would cause a panic if the

program tried to use them. That’s great, and we can

certainly check those values, but what if they fail the check?

In general, what should we do when invalid options are

supplied?

We could silently ignore them, but that doesn’t sound right.

The Go-like thing to do here would be to return an error, so

let’s do that:

Since the only way users can set this field is by calling our

validating WithInput function, we can now be sure that the

value of c.input is always valid. This is much better than

having to check it every time we use it, and safer, too.

This needs a little tweak to our option type, but we can do

that:

And since our option function now returns error, we’ll

need to receive and check that error in the apply-options

func WithInput(input io.Reader) option { 

    return func (c *counter) error { 

        if input == nil { 

            return errors.New("nil input reader") 

        } 

        c.input = input 

        return nil 

    } 

}

type option func(*counter) error



loop in NewCounter.

That, in turn, means that NewCounter also needs to return 

error (along with counter). And that makes sense: if you

supply options that happen to be invalid for some reason,

then NewCounter should tell you about it.

Here’s the updated constructor:

(Listing count/3)

Some internal paperwork

Now that NewCounter returns error, we’ll also need to

update our Main convenience function. Previously, this was

all we needed:

func NewCounter(opts ...option) (*counter, error) 

{  

    c := &counter{ 

        input:  os.Stdin, 

        output: os.Stdout, 

    } 

    for _, opt := range opts { 

        err := opt(c) 

        if err != nil { 

            return nil, err 

        } 

    } 

    return c, nil 

}

func Main() { 

    fmt.Println(NewCounter().Lines()) 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/3/count.go


Now we’ll have to receive the counter and error values

from NewCounter, then call the Lines method on the 

counter. But what should we do with that error value?

Ignore it?

We might salve our guilty conscience by saying “Well, I

don’t pass any options here, so it can never return error in

that case.” But who says? Actually, if NewCounter returns an

error when given no options, that’s the kind of disastrous

bug that we’d absolutely want to know about straight away,

isn’t it?

Handling internal errors

Any time you find yourself thinking “It’s okay to ignore this

error, because with the program as it currently stands, the

error can never be non-nil”, think again.

First, you could be wrong about that. With a sufficiently

complex program, you’re almost guaranteed to be wrong

about that.

Second, the program is bound to change in the future, and

the person changing it might not know that returning an

error from NewCounter could blow something up in a

function far, far away.

Ignoring errors based on unstated and possibly faulty

assumptions is like leaving a land mine in the code for

someone to step on later; most likely your future self. After

all, there are more ways for things to go wrong than for

func Main() { 

    // I have a bad feeling about this... 

    c, _ := NewCounter() 

    fmt.Println(c.Lines()) 

}



them to go right, so it’s totally fine for the majority of our

code to be about error handling. Indeed, it’s statistically

inevitable.

If ignoring the error from NewCounter is unacceptable, what

can we do instead? Return it?

But the whole reason for writing Lines in the first place was

to create a “minimal main” with no annoying paperwork.

Well, we just created some new paperwork:

If the only person who will ever call Lines can’t do anything

useful with the error except log it and crash, we may as well

do that directly:

func Main() error { 

    c, err := NewCounter() 

    if err != nil { 

        return err 

    } 

    fmt.Println(c.Lines()) 

}

func main() { 

    err := count.Main() 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 

        os.Exit(1) 

    } 

}

func Main() { 

    c, err := NewCounter() 

    if err != nil { 

        panic(err) 

    } 



(Listing count/3)

There is no useful information we can give the user,

because the user can’t fix our program, and this is definitely

an internal program bug. That’s exactly what panic is for:

reporting unrecoverable internal program bugs.

It’s not generally a good idea to call panic outside of the 

main package, because if somebody is using your package

to build their own application, they don’t want it

unexpectedly panicking. You’re not in a position to judge

what is and isn’t a recoverable error for them, so the right

thing to do with errors in general is to return them to the

caller and let them decide.

However, Main is such a CLI-specific function that we can

regard it as, essentially, a delegated equivalent of the real 

main. I don’t love this kind of semi-hidden panic, but I prefer

it to making the user handle errors that aren’t their fault and

can never happen anyway.

Many software engineering decisions, indeed, amount to

choosing the least worst of a bunch of unsatisfactory

solutions. Sorry about that.

A line counter with options

So here’s the count package as it currently stands:

    fmt.Println(c.Lines()) 

}

package count 

 

import (

    "bufio" 

    "errors" 

https://github.com/bitfield/tpg-tools2/blob/main/count/3/count.go


    "io"

    "os"

) 

 

type counter struct { 

    input  io.Reader 

    output io.Writer 

} 

 

type option func(*counter) error 

 

func WithInput(input io.Reader) option { 

    return func(c *counter) error { 

        if input == nil { 

            return errors.New("nil input reader") 

        } 

        c.input = input 

        return nil 

    } 

} 

 

func WithOutput(output io.Writer) option { 

    return func(c *counter) error { 

        if output == nil { 

            return errors.New("nil output writer") 

        } 

        c.output = output 

        return nil 

    } 

} 

 

func NewCounter(opts ...option) (*counter, error) 

{  



(Listing count/3)

Here’s the test:

    c := &counter{ 

        input:  os.Stdin, 

        output: os.Stdout, 

    } 

    for _, opt := range opts { 

        err := opt(c) 

        if err != nil { 

            return nil, err 

        } 

    } 

    return c, nil 

} 

 

func (c *counter) Lines() int { 

    lines := 0 

    input := bufio.NewScanner(c.input) 

    for input.Scan() { 

        lines++ 

    } 

    return lines 

} 

 

func Main() { 

    c, err := NewCounter() 

    if err != nil { 

        panic(err) 

    } 

    fmt.Println(c.Lines()) 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/3/count.go


(Listing count/3)

And here’s the main.go:

package count_test 

 

import (

    "bytes" 

    "testing" 

 

    "github.com/bitfield/count" 

) 

 

func TestLinesCountsLinesInInput(t *testing.T) { 

    t.Parallel() 

    inputBuf := bytes.NewBufferString("1\n2\n3") 

    c, err := count.NewCounter(

        count.WithInput(inputBuf), 

    ) 

    if err != nil { 

        t.Fatal(err) 

    } 

    want := 3 

    got := c.Lines() 

    if want != got { 

        t.Errorf("want %d, got %d", want, got) 

    } 

}

package main 

 

import (

    "github.com/bitfield/count" 

) 

https://github.com/bitfield/tpg-tools2/blob/main/count/3/count_test.go


(Listing count/3)

This functional options pattern is becoming popular in Go,

and you may well have encountered it before, but perhaps it

wasn’t always quite clear what problem it was solving.

Approaching it this way, by degrees, and considering the

various alternatives, helps make it easier to understand why

we use functional options, and why they work the way they

do.

It does require a bit of extra machinery on the package side,

but since you can use essentially the same pattern for every

Go package you ever write, it’s a nice tool to have in the

box.

Methodical options

Another way to use functions to set options, instead of

passing them as arguments to the constructor, is to add

methods on the object itself.

For example, to set the line counter’s input reader, we could

have written a method like this:

How would we call it? Well, perhaps something like this:

 

func main() { 

    count.Main() 

}

func (c *counter) WithInput(input io.Reader) 

*counter {  

    c.input = input 

    return c 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/3/cmd/count/main.go


We’d need to change NewCounter to return just a *counter,

and no error, but that’s okay: if NewCounter no longer

needs to take any arguments, then it no longer needs to

return error.

Arguably, using methods to set our options—we might call

them methodical options—is no less clear than the

functional style. And we don’t need to repeat the package

prefix for each option, which is nice.

You’ll see this style used in some Go tools, but I can’t say

I’m especially keen on it myself. Since we can only return

the counter itself from each of these methods, we can’t also

return error; that would break the method chaining. So we

can’t validate the arguments to option methods.

There’s a more subtle problem, too. The user isn’t obliged to

call these methods before using the object: they can call

them at any time. That might be okay, or it might not. Will

your object handle unexpected changes to its configuration

after it’s started doing things? Well, it had better!

If you want users to be able to change the configuration of

the object while using it, then clearly this is the way to go,

and that wouldn’t be possible with functional options. On

the other hand, it’s easier to write some programs if we can

guarantee that the configuration won’t suddenly change

underneath us.

Going further

c := count.NewCounter() 

    .WithInput(os.Stdin) 

    .WithOutput(os.Stdout) 

    ... // maybe more options



Here’s an idea you might like to try get some practice with

these techniques.

Write a Go tool that can search its input for lines

containing a given string, and print them to its output.

For example, if the search string is hello, and you feed

the program some text file, the program should print out

all the lines in the file that contain hello as a substring.

You’ll find one possible solution in listing match/1.

https://github.com/bitfield/tpg-tools2/blob/main/match/1/


3. Arguments

As far as the customer is concerned, the interface is the

product. 

—Jef Raskin, “The Humane Interface”

There are many useful programs that operate only on their

standard input and output, such as the line counter from the

previous chapter.

However, we could expand the range of behaviour available

if we had a way to pass the program arguments on the

command line.

For example, right now we have to run our count program

by piping text into it, like this:

But if you didn’t already know this, you might assume that

the program is supposed to be passed the name of some file

on the command line. For example:

cat foo.go | count

count foo.go

https://amzn.to/3AeMh07


Right now, that command would simply do nothing but

pause forever, waiting for data on its standard input. It

seems a shame to punish users for a completely

understandable (indeed, predictable) mistake. One thing

about great designs is that they’re very intuitive.

Designing the behaviour

Good programs make themselves hard to misuse. The

simplest, most obvious thing someone might try should just

work. So, if the user supplies a filename on the command

line, the program should do the right thing with it.

How can we arrange that?

Deciding the scope

As usual, let’s start by trying to describe the behaviour we

want in words, and then refine that description into the form

of a test. We might start with something like:

“If a filename is specified on the command line, the

counter should count the lines in the specified file.

Otherwise, it should count lines from standard input as

before.”

Perhaps the thought already occurred to you that it would

be handy to specify multiple files on the command line, or

to use the shell’s globbing facility (so that we could write 

count *.go, for example).

Yes, it would, but let’s rein in our ambition for a moment. A

good question to ask when you’re trying to write any

program is “What simpler version of this problem could I

solve first?”



If we can solve the problem for one file, we can presumably

extend that solution to multiple files. So let’s proceed by

easy stages.

First, if the test is going to supply command-line arguments

to the count package, how is it going to do that?

Testing CLI arguments

As you probably know, a Go program’s command-line

arguments are available to it as os.Args, in the form of a

slice of strings. So the count package could just look at 

os.Args and interpret any arguments as input filenames.

That’s straightforward.

But how are we to supply such arguments in a test? That

might be a little more tricky.

Our first idea might be to set os.Args. It’s a variable:

specifically, an exported package-level variable in the os

package, so we have “permission” to set it, if you like. But is

that a good idea?

Almost certainly not. We determined in an earlier chapter

that mutating global state is a recipe for disaster. That

certainly applies here. For example, we may well want to

run several parallel tests, each of which would need to set 

os.Args to a different value, and these would interfere with

each other.

So setting os.Args directly is a no-no. What can we do

instead?

We already constructed some option functions in previous

chapters to control the behaviour of the counter object,

such as WithInput to set its input reader. Suppose there

were some option like WithInputFromArgs?



This idea seems promising, because the option could take a 

[]string as the parameter. This matches the type of 

os.Args, so we’ll be able to pass that value when running

the program for real.

But in the test, we can pass any strings we want, to

simulate the various command-line arguments that a user

might provide.

A first attempt

Let’s try to rough out the test, and see if we run into any

design issues. We know that the test must call NewCounter,

since that’s the only way it can pass options.

Let’s start with that function call, which must come roughly

in the middle of the test, and then work both backwards

(setting up the necessary world) and forwards (checking the

results against expectations).

So we know there’ll be a function call like this in the body of

the test:

Working backwards from this, we can see that we need

some variable args to pass to WithInputFromArgs. We’ve

said we want to be able to pass a single filename, and have

the counter read input from the specified file. So first of all

we’ll need that file to exist; let’s create it. Where?

Test data files

It’s conventional in Go to put test data files in a subfolder

named testdata, so we’ll create that folder first, and then,

c, err := count.NewCounter( 

    count.WithInputFromArgs(args), 

)



within it, let’s create a suitable file.

Creating the test data

We could call it anything, but it’ll be helpful to name the file

after the test case that it represents. So something about

the number of lines it contains would be logical. How many

lines should we add to the file?

An empty file would be pretty pointless, so if zero lines is

not enough, what about just one line? Well, it’s possible to

imagine faulty line counting code that would always report

1, no matter the number of input lines. That’s less likely for

two lines, but since the lines themselves needn’t be very

long, let’s stretch out a bit and give ourselves three lines to

play with.

Having decided on a three-line test file (the lines “1”, “2”,

and “3” would be fine, though it shouldn’t matter for our

purposes what the lines actually contain), we now know

what to name it: three_lines.txt (for example).

Name a test fixture for the case it demonstrates. When we

have many test files for many cases, this will be very

helpful, because we’ll know which file belongs to which

case.

Using the data in a test

There’s no more world setup needed, so we can turn now to

the remainder of the test. As before, we should set our want

to 3, call c.Lines to get our got value, and compare them.

So here’s the completed test:

func TestWithInputFromArgs_SetsInputToGivenPath(t 

*testing.T) {  

    t.Parallel() 



(Listing count/4)

By the way, even though "testdata/three_lines.txt"

looks like a Unix-specific file path, with components

separated by a forward slash, it nevertheless works on all

platforms. Although Windows has traditionally used a

backslash as its default path separator, a forward slash

works too. So there’s no need to clutter up your code with

calls to filepath.Join, for example.

The failing test

We should now be at the point where the test fails to

compile because the relevant method is undefined. Let’s

see:

./count_test.go:12:3: undefined: 

count.WithInputFromArgs

The next step, again following the workflow, is to write a null

implementation of WithInputFromArgs, so that we can see

the test fail:

    args := []string{"testdata/three_lines.txt"} 

    c, err := count.NewCounter(

        count.WithInputFromArgs(args), 

    ) 

    if err != nil { 

        t.Fatal(err) 

    } 

    want := 3 

    got := c.Lines() 

    if want != got { 

        t.Errorf("want %d, got %d", want, got) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/4/count_test.go


This is straightforward: the test code already requires that

the function takes a []string parameter and return option.

That in turn requires that we return a suitable function

literal, that must at least return nil. And, for now, the least

is what we’re going to do.

Once again applying our precognitive powers, we feel that

the test should fail, but why exactly? Thinking it out, we can

see that since the option returned by WithInputFromArgs

does nothing at all, the line counter has no way of knowing

what file to read from, so by default it will presumably read

from standard input. As we’re not supplying any standard

input, the result should be a count of zero lines, as against

the test’s expectation of 3.

Let’s find out if our prediction is correct by running go test:

--- FAIL: 

TestWithInputFromArgs_SetsInputToGivenPath (0.00s) 

    count_test.go:20: want 3, got 0 

FAIL

If we saw anything else here, we’d be somewhat puzzled (a

test pass would be even more surprising). But everything

seems in order.

GOAL: Make this test pass.

Implementing file-reading

func WithInputFromArgs(args []string) option { 

    return func (c *counter) error { 

        return nil 

    } 

}



HINT: The simplest way I can think of to implement this

behaviour is to have the WithInputFromArgs option open

the specified file and attach it to the counter’s input field.

Then the counter doesn’t have to do anything special when

it starts counting. For example, it doesn’t have to worry

about opening the file—that’s already been taken care of. In

the “real” program (that is, when users run the command,

rather than when we run tests), the input will be os.Stdin,

which is always already open.

SOLUTION: Here’s my version:

This passes the test, so in theory, we’re done here. But

naïve tests don’t always tell the whole story. While the

program behaves as specified, there are at least two

problems with this code.

GOAL: Can you spot both problems? (If you can find more

than two, you get extra credit.)

HINT: What happens if args is empty? Also, when does f

get closed?

func WithInputFromArgs(args []string) option { 

    return func (c *counter) error { 

        f, err := os.Open(args[0]) 

        if err != nil { 

            return err 

        } 

        c.input = f 

        return nil 

    } 

}



Empty slice checking

SOLUTION: Problem one is that we assume the args slice

contains at least one element. If it doesn’t, the code will

panic, because it references args[0]. Indeed, it’s never safe

to reference a slice index unless you know that the slice

contains that many elements. I call this a YOLO slice access;

“you only live once” can be a good strategy for some

decisions, but usually not in programming.

In the test, we passed a one-element slice, so this issue was

accidentally hidden. How can we fix this problem, test-first?

GOAL: Fix this problem, test-first.

HINT: We have, in fact, just thought of a new behaviour,

that we hadn’t previously realised we needed. Specifically, if

we pass a nil or empty slice to WithInputFromArgs, the

program should not panic. Good programs don’t panic, and

nor do good programmers.

What should happen instead? Well, we started out by

wanting to let users pass filenames on the command line,

and we’ve done that. But if they don’t happen to give any

filenames as arguments, it makes sense for the program to

just read from standard input, as before.

More specifically, we can say that if the WithInputFromArgs

option is supplied to NewCounter, but there are no

arguments, the counter should simply ignore the option and

use its existing configured input. That’ll be the standard

input unless it’s already been overridden by some 

WithInput option.

Testing the “no args” behaviour



SOLUTION: Now that we have a clear idea about the

behaviour we want, we can express it in the form of a test.

Something like this:

(Listing count/4)

What’s going on here? First, we set up some input consisting

of a buffer containing three lines. Then, we call NewCounter

and use WithInput to set the counter’s input to our buffer.

But we also pass WithInputFromArgs with an empty slice of

strings, simulating what happens when a user runs the

program with no command-line arguments. We already

know that this will panic with the current implementation,

and this test proves it:

--- FAIL: TestWithInputFromArgs_IgnoresEmptyArgs 

(0.00s) 

func TestWithInputFromArgs_IgnoresEmptyArgs(t 

*testing.T) {  

    t.Parallel() 

    inputBuf := bytes.NewBufferString("1\n2\n3") 

    c, err := count.NewCounter(

        count.WithInput(inputBuf), 

        count.WithInputFromArgs([]string{}), 

    ) 

    if err != nil { 

        t.Fatal(err) 

    } 

    want := 3 

    got := c.Lines() 

    if want != got { 

        t.Errorf("want %d, got %d", want, got) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/4/count_test.go


panic: runtime error: index out of range [0] with 

length 0 

[recovered]

In order to make the test pass, we need to prevent that

panic, and also ensure that if no arguments are supplied,

the counter’s input is not changed.

GOAL: Make this test pass.

HINT: To avoid panicking when we reference an args[0]

that doesn’t exist, we need some kind of len check

beforehand. What should we do in the zero-length case?

Well, nothing. If there are no arguments, there’s nothing for

us to do, so we can just return nil. This makes the test pass

without panicking.

SOLUTION: We can add a check like this to the beginning of

the function returned by WithInputFromArgs:

Closing files and other resources

We can turn now to the second problem: the file f is never

closed, meaning that the program leaks a resource (in this

case a file handle). Normally we would defer calling f.Close

as soon as we established that we successfully opened the

file, but that won’t work here.

Since the program exits after fully reading the file, thus

releasing all its resources in any case, this might not seem

if len(args) < 1 { 

    return nil 

}



like a big deal. But, remember, we’re writing packages, not

programs.

We should always treat resource leaks as potentially serious,

then, because we don’t know how other developers will be

using our code. It might be in a long-running program,

where running out of resources would eventually cause it to

crash.

Updating the user interface

Let’s save that interesting problem for an end-of-chapter

boss challenge. For now, let’s put the finishing touches to

our updated program.

Now that we can accept text for line-counting from both the

standard input and from filenames supplied on the

command line, we’ll need to change our Main function to

include that behaviour:

Why do we pass os.Args[1:] rather than just os.Args? The

first element of os.Args is always the pathname of the

running binary, which we’re not interested in, so we can skip

it.

func Main() { 

    c, err := NewCounter( 

        WithInputFromArgs(os.Args[1:]), 

    ) 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 

        os.Exit(1) 

    } 

    fmt.Println(c.Lines()) 

}



Instead of calling panic in case of error, we now report it to

the standard error writer (os.Stderr) and terminate the

program with exit status 1, indicating an error.

Some user testing

Let’s run the program and check that it works as expected.

First, counting lines from standard input, as before:

1

Now we can try out passing a filename on the command

line:

3

Finally, let’s see what happens if we both pass a filename

and send it text on standard input. Which one will take

precedence?

3

It turns out that a supplied filename causes standard input

to be ignored, which makes sense, and matches what users

would expect.

Setting exit status

It might have occurred to you that the error behaviour of

our program is slightly different now that it takes command-

line arguments. The only error the program needed to worry

echo hello | go run ./cmd/count

go run ./cmd/count testdata/three_lines.txt

echo hello | go run ./cmd/count 

testdata/three_lines.txt



about before was if NewCounter was called with some

invalid option, such as a nil input reader.

And, since NewCounter was only called internally, within the

package, we felt justified, though not ecstatic, about using 

panic to signal this kind of internal programming mistake.

True, there could also have been an error while reading the

input stream, but in this case input.Scan would have

returned false, and we would have finished scanning and

reported the number of lines successfully read up to that

point, if any. That’s not unreasonable, but now things are

getting a bit more complicated.

Now, for example, the user can supply the name of a file on

the command line that doesn’t exist, or at least isn’t

readable for some reason. It’s not sensible to silently ignore

a problem like this, because that can’t be what the user

wants. We need to report the error so that they can decide

what to do.

As you may know, programs return an integer exit status

value to the operating system when they’re done.

Conventionally, this is zero if everything’s okay, or greater

than zero otherwise. Any non-zero value indicates an error,

and programs are free to use different values to signal

different kinds of problem if they want to.

The programs we’ve written so far have implicitly returned a

zero exit status, because that’s what happens when the 

main function returns. If you want to specify a non-zero exit

status, that’s done by calling the os.Exit function with the

value you want.

In fact, we used this already, in the Main function in listing

count/4, to terminate the program with exit status 1 if

there’s an error opening the user’s specified file. But this

https://github.com/bitfield/tpg-tools2/blob/main/count/4/count.go


isn’t really ideal, because now people using our package

just have to know that calling Main can exit the program.

They might not want that behaviour; for example, they

might want to try to recover from certain errors, perhaps by

prompting the user to enter a different filename. Anyway,

we’d prefer Main not to arrogate this decision to itself, but

instead always return to main, whether there’s an error or

not.

Let’s make a small change to Main to allow for this. We’ll

have it return an int representing the exit status, and then 

main can pass that to os.Exit (or do something else if it

wants to).

(Listing count/4)

And here’s the updated main function that calls it:

(Listing count/4)

func Main() int { 

    c, err := NewCounter( 

        WithInputFromArgs(os.Args[1:]), 

    ) 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 

        return 1 

    } 

    fmt.Println(c.Lines()) 

    return 0 

}

func main() { 

    os.Exit(count.Main()) 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/4/count.go
https://github.com/bitfield/tpg-tools2/blob/main/count/4/cmd/count/main.go


Very simple, but it strikes a nice balance between flexibility

and paperwork.

Test scripts

We saw earlier in this chapter that, when a program needs

to read its command-line arguments, they will come

ultimately from os.Args. But, because this is difficult to

test, we designed the count package to take an arbitrary 

[]string as its argument to WithInputFromArgs.

When we call the NewCounter function from Main, we pass it

os.Args as the value of this slice. In the tests, though, we’re

free to pass whatever strings we like as the program

“arguments”.

This is great, and it’s always a good idea to decouple our

packages in this way so that we make them more flexible,

and less dependent on being used in a very specific way.

However, it’s not always possible or convenient to do this

decoupling, and there’s a limit to how well we can simulate

the use of a package from the command line when all we

can do is call its functions.

Running the program as a binary

But are we restricted to just calling functions? Could we, for

example, execute the program as a binary, passing it

arbitrary arguments, from a Go test, and see what it

produces?

Of course, because we can do anything with Go. We could,

for example, write a test that executes the Go compiler on

our main.go, producing a binary, and then executes that

binary in the way we want.



This is all perfectly possible using the os/exec package. We

can execute programs as subprocesses, from our tests, and

obtain their standard output or standard error streams as 

io.Reader values, for example.

There’s some plumbing involved, though, and it’s annoying

to have to repeat it all for every program we write, simply to

execute our main package as a binary and see its output.

Isn’t there a better way? Hasn’t some public-spirited citizen,

for example, contributed a package to the universal library

that would help us here?

Introducing testscript

Indeed they have. The testscript package, originally

written by the Go team to test the go tool itself, has been

adapted and extended to become a general-purpose utility

for testing any command-line tool. Let’s see how it works.

Using testscript, we can frame our tests as simple text

files that look very like shell scripts. Here’s an example:

(Listing count/5)

The line beginning stdin sets the standard input for any

subsequent commands to come from the file 

stdin three_lines.txt 

exec count 

stdout '^3\n$' 

 

-- three_lines.txt -- 

this input 

contains 

three lines

https://pkg.go.dev/github.com/rogpeppe/go-internal/testscript
https://github.com/bitfield/tpg-tools2/blob/main/count/5/testdata/script/count_counts_lines_from_stdin.txtar


three_lines.txt. Then the exec count line executes the 

count command (that is, our line counting program).

We then assert something about the expected output, using 

stdout: specifically, that it contains “3”, which is what the

program should produce if it’s working correctly.

This script, in other words, is a test, hence the name

‘testscript’. There are two ways it could fail. First, executing

the count command could return a non-zero exit status.

Second, its output might not contain the expected text.

Invoking test scripts

How do we run this script as part of the tests executed by 

go test, then? All we need to do is to add a Go test like

this:

(Listing count/5)

Given everything we’ve said about writing useful test

names, you might be surprised that this test is called,

simply, Test. That’s because it doesn’t assert any behaviour

by itself: it exists merely to run our test scripts.

Each of these scripts will be a subtest of the parent test, and

the name of that subset is derived from the filename of the

script. So, for example, if our script file is named:

count_counts_lines_from_stdin.txtar

func Test(t *testing.T) { 

        t.Parallel() 

        testscript.Run(t, testscript.Params{ 

            Dir: "testdata/script", 

    }) 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/5/count_test.go


then its behaviour, as formatted by gotestdox, will be:

 ✔ Count counts lines from stdin

And notice that the parent test doesn’t do anything except

call testscript.Run, passing a Params object to configure

it. In this case the only parameter we set is the directory in

which to look for test scripts: testdata/script.

So, let’s put our script file in the testdata/script folder,

and name it something like 

count_counts_lines_from_stdin.txtar (the .txtar

extension is important, but the name isn’t).

Let’s try running the test:

--- FAIL: Test/count_counts_lines_from_stdin 

(0.00s) 

    testscript.go:429: > stdin three_lines.txt 

      > exec count 

      [exec: "count": executable file not found in 

$PATH] 

      FAIL: 

testdata/script/count_counts_lines_from_stdin.txta

r:2: 

      unexpected command failure

Hmm. It looks like the exec line in the script has failed, not

because the count command returned a non-zero exit

status, but because there is no count command in our path.

That makes sense: we haven’t compiled it yet!

Defining custom commands

Note that we could quite happily have executed any

external command that does exist in our path, including any

command we could run from a terminal. Sometimes that



can be useful, but it’s not what we need here, because we

want to run our count program as though it were an

external binary, without actually having to create one.

To do that, we need one more bit of code:

(Listing count/5)

The name TestMain is special to Go, because this function

is always executed first when we run go test, before any

tests are run. Its purpose is to set up any text fixtures or

other things that need to exist for the tests to work. In this

particular case, we’re using it to call testscript.RunMain.

So what does that do?

It takes a map argument defining any “custom commands”

we want to make available to test scripts. In this case, we

want to define the count command, by associating it with

the count.Main function. We’re saying that if some test

script calls exec count, then the count.Main function

should be executed as an independent binary, in a

subprocess, just as if it were a “real” external command.

The delegate Main function

The signature of this “delegate main” function is fixed by 

RunMain: it must take no arguments and return int,

indicating the command’s exit status. By a total

coincidence, that’s exactly what we have:

func TestMain(m *testing.M) { 

    os.Exit(testscript.RunMain(m, 

map[string]func() int{  

        "count": count.Main, 

    })) 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/5/count_test.go


So now we should be able to run the test and have it pass:

PASS

Reassuring! Just to make sure it’s really running Main, let’s

change that function to return 1 instead of 0:

Now the test should fail, and we should also see exactly

why:

--- FAIL: Test/count_counts_lines_from_stdin 

(0.01s) 

    testscript.go:429: > stdin three_lines.txt 

      > exec count 

      [exit status 1] 

      FAIL: 

testdata/script/count_counts_lines_from_stdin.txta

r:2: 

      unexpected command failure

The [exit status 1] tells us that Main is really being

called, and the unexpected command failure tells us that

the test failed because the count command didn’t return a

zero exit status. Nice.

The stdout assertion

Let’s see what happens if the input file contains, for

example, four lines instead of three. We’ll edit the test script

func Main() int {

func Main() int { 

    // Houston, we've had a problem. 

    return 1 

}



so that the part specifying the contents of the input file now

has an extra line:

The filename is a lie! More to the point, the test should fail.

Let’s see:

... 

> exec count 

[stdout] 

4 

> stdout '^3\n$' 

FAIL: 

testdata/script/count_counts_lines_from_stdin.txta

r:3: 

no match for `^3\n$` found in stdout

Now the exec assertion succeeds, because the count

command does indeed return zero exit status, but it’s the 

stdout assertion that fails this time. The command’s output

didn’t contain the expected text, because it printed “4”

instead.

With just this very simple and lightweight mechanism, we

can test our CLI tool as a CLI tool, without needing a lot of

complicated plumbing, or even having to build a binary.

That’s very handy.

Testing arguments

... 

-- three_lines.txt -- 

this input 

contains 

three lines 

plus one more



What about when we give count a command-line argument

representing a filename? Could we test that behaviour using

a script, too? Certainly:

(Listing count/5)

Note that we didn’t use the stdin directive this time, so if

the count command were to try to read from standard

input, there wouldn’t be any. Instead, it must open and read

the file named on its command line for it to produce the

correct output.

There’s a whole lot more we can do with testscript, and

indeed you can read a whole chapter about it in The Power

of Go: Tests, but we’ve already learned enough to radically

simplify our tests for the count tool.

In the next chapter, we’ll see how to extend the behaviour

of count further, using a special kind of command-line

argument: flags.

Going further

Here’s a suggestion for exploring the ideas discussed in this

chapter.

Add support to the line counter for supplying multiple

filenames on the command line. Ensure that all files are

exec count three_lines.txt 

stdout '^3\n$' 

 

-- three_lines.txt -- 

this input 

contains 

three lines

https://github.com/bitfield/tpg-tools2/blob/main/count/5/testdata/script/count_uses_path_arg_as_input.txtar
https://bitfieldconsulting.com/books/tests


closed after reading.

You’ll find one possible solution in listing count/6.

https://github.com/bitfield/tpg-tools2/blob/main/count/6/


4. Flags

We used to sit around in the Unix room saying, “What

can we throw out? Why is there this option?” It’s often

because there is some deficiency in the basic design.

Instead of adding an option, think about what was

forcing you to add that option. 

—Doug McIlroy, “Ancestry of Linux—How the Fun Began”

With APIs, as in other areas of life, simplicity is always the

best plan. The smaller your API, the easier it is to use (and

the more likely that it will be used). The ideal command-line

tool, according to the Unix philosophy, does one thing, and

does it well.

Commands

We would like our tools to be so simple and focused that

they don’t need a lot of options and switches to control their

behaviour. A tool that does one thing is easier to use than

one that does two things, or N things. But we are often

compelled, against our better instincts, to add extra modes

and features to our programs that necessitate a more

complex API.

The Unix way

https://archive.org/details/DougMcIlroy_AncestryOfLinux_DLSLUG


Our long-suffering line counter program needs no additional

behaviours to be useful, but let’s give it some, purely for the

purposes of demonstration. Suppose that, like some hard-

working authors, we are anxious to know how many words

we have written so far, rather than simply how many lines.

The most Unix-like (and therefore the most Go-like) way to

do this would in fact to write two separate programs: one

that counts words, and another that counts lines.

The two programs can share almost all their code, of course,

since they’ll import it from the count package, but from the

user’s point of view, they’ll be two different commands.

Let’s see how to do that.

Multiple main packages

As you know, every Go binary you build requires its own 

main package, and since you can’t have two different main

packages in the same folder, that means we’ll need a

separate folder for each binary we want to build. Each will

contain the main.go code for that specific command.

We already have a main.go in the cmd/count subfolder, that

runs the line counter:

(Listing count/4)

We’re now envisaging two commands, one that counts lines

(which we already have), and one that counts words (which

we’ll need to write). They can’t both be called count, so

func main() { 

    os.Exit(count.Main()) 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/4/cmd/count/main.go


suppose we rename the line-counting program to lines?

Let’s rename its subfolder accordingly:

A words command

It seems reasonable, then, to call our new word-counting

command words, so let’s create a new subfolder for it:

Now we can create cmd/words/main.go. Since the two

programs are so similar in behaviour, we’d like to make their

main functions as similar as possible.

Our existing main function for the lines command

delegates all its functionality to count.Main, for ease of

testing. We’ll need a similar function for words, and they

can’t both be called Main. What to do?

Let’s rename the existing count.Main to count.MainLines:

(Listing count/7)

Following this pattern, we can create a cmd/words/main.go

that calls MainWords instead:

(Listing count/7)

mv cmd/count cmd/lines

mkdir cmd/words

func main() { 

    os.Exit(count.MainLines()) 

}

func main() { 

    os.Exit(count.MainWords()) 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/7/cmd/lines/main.go
https://github.com/bitfield/tpg-tools2/blob/main/count/7/cmd/words/main.go


This looks all right, so what should MainWords do? Well,

again, let’s see what we have in MainLines:

(Listing count/7)

With some pragmatic (nay, shameless) code duplication,

let’s simply copy this to MainWords, substituting c.Words for

c.Lines:

(Listing count/7)

func MainLines() int { 

    c, err := NewCounter( 

        WithInputFromArgs(os.Args[1:]), 

    ) 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 

        return 1 

    } 

    fmt.Println(c.Lines()) 

    return 0 

}

func MainWords() int { 

    c, err := NewCounter( 

        WithInputFromArgs(os.Args[1:]), 

    ) 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 

        return 1 

    } 

    fmt.Println(c.Words()) 

    return 0 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/7/count.go
https://github.com/bitfield/tpg-tools2/blob/main/count/7/count.go


If we’re really bothered about the duplication, we can

always refactor this code later, but let’s focus for now on

producing a working program, rather than a beautiful one.

A test for word counting

We now need to write Words. Let’s start with a test, and

again we’ll get a head start by looking at the existing test

for Lines:

(Listing count/7)

GOAL: Write a test for Words in a similar way.

HINT: You can start by literally copying and pasting the test

for Lines, and making the appropriate changes. Can you

see what to do?

func TestLinesCountsLinesInInput(t *testing.T) { 

    t.Parallel() 

    inputBuf := bytes.NewBufferString("1\n2\n3") 

    c, err := count.NewCounter(

        count.WithInput(inputBuf), 

    ) 

    if err != nil { 

        t.Fatal(err) 

    } 

    want := 3 

    got := c.Lines() 

    if want != got { 

        t.Errorf("want %d, got %d", want, got) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/7/count_test.go


SOLUTION: Although we could construct a suitable test just

by changing c.Lines to c.Words, let’s make it a little more

interesting by adding some extra words to our simulated

input in inputBuf. We’ll make it six words in total, meaning

that our want value also becomes 6:

(Listing count/7)

GOAL: Add a null implementation of Words and check that

the test fails with the following output:

want 6, got 0

HINT: Be careful not to write the real implementation of 

Words too quickly. Before we do that, we should make sure

that this test really tests anything. And to do that, we need

to see what it reports when Words returns the wrong answer.

func TestWordsCountsWordsInInput(t *testing.T) { 

    t.Parallel() 

    inputBuf := bytes.NewBufferString("1\n2 

words\n3 this time")  

    c, err := count.NewCounter(

        count.WithInput(inputBuf), 

    ) 

    if err != nil { 

        t.Fatal(err) 

    } 

    want := 6 

    got := c.Words() 

    if want != got { 

        t.Errorf("want %d, got %d", want, got) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/7/count_test.go


The easiest wrong answer to return is zero, and that’s what

the suggested test output says. But you can use whatever

wrong answer you like. The only thing that wouldn’t work

would be 6. Other than that, get creative!

SOLUTION: Well, here’s the null implementation I would

write:

If this doesn’t fail the test, what would?

Okay, now that we’ve proved we have a working bug

detector, let’s go ahead and implement Words for real.

GOAL: Write the real implementation of Words.

HINT: How should we approach this? Well, you know the

drill by now: start with what we have already.

func (c *counter) Words() int { 

    return 0 

}

func (c *counter) Lines() int { 

    lines := 0 

    input := bufio.NewScanner(c.input) 

    for input.Scan() { 

        lines++ 

    } 

    for _, f := range c.files { 

        f.(io.Closer).Close() 

    } 

    return lines 

}



(Listing count/7)

What needs to change here to count words instead of lines?

One idea that isn’t terrible is to use something like 

strings.Split on each line to count the number of words

in it, and add it to the running word total. But there’s a

shortcut.

By default, a bufio.Scanner scans lines, but we can make it

scan words by calling input.Split to set the scanner’s split

function to ScanWords, before we start scanning.

SOLUTION: I like the bufio.Scanner solution, because it’s

kind of symmetrical with the way Lines works. So the only

substantive difference with this method is that we need to

set the split function to ScanWords, as hinted:

(Listing count/7)

With the test now passing, we’re ready to try out our new 

words command:

func (c *counter) Words() int { 

    words := 0 

    input := bufio.NewScanner(c.input) 

    input.Split(bufio.ScanWords) 

    for input.Scan() { 

        words++ 

    } 

    for _, f := range c.files { 

        f.(io.Closer).Close() 

    } 

    return words 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/7/count.go
https://github.com/bitfield/tpg-tools2/blob/main/count/7/count.go


2

Pretty neat. Let’s make sure the existing lines program still

works as expected:

1

Updating the test scripts

This looks promising, so we can now modify the testscript

tests we wrote earlier to take account of our two new

commands, lines and words.

First, we’ll update our TestMain function to register these

two commands, so that they’re available in our scripts:

(Listing count/7)

Our existing “counts lines from stdin” script only needs the

command name updating:

echo hello world | go run ./cmd/words

echo hello world | go run ./cmd/lines

func TestMain(m *testing.M) { 

    os.Exit(testscript.RunMain(m, 

map[string]func() int{  

        "lines": count.MainLines, 

        "words": count.MainWords, 

    })) 

}

stdin three_lines.txt 

exec lines 

stdout '^3\n$' 

 

https://github.com/bitfield/tpg-tools2/blob/main/count/7/count_test.go


And we have a new command, words, that deserves its own

test script:

And, since we added support for specifying filenames as

command-line arguments, let’s make sure we test that for

both commands:

It’s worth pausing for a moment to reflect on what we’ve

done here. We took an existing program that counted lines,

-- three_lines.txt -- 

this input 

contains 

three lines

stdin five_words.txt 

exec words 

stdout '^5\n$' 

 

-- five_words.txt -- 

this input 

contains 

five words

exec lines input1.txt input2.txt

stdout '^3\n$' 

 

exec words input1.txt input2.txt

stdout '^10\n$' 

 

-- input1.txt -- 

this input 

contains two lines 

-- input2.txt -- 

and this has just one



and turned it into two programs, one that counts lines, and

one that counts words.

Suppose we hadn’t read the earlier chapters of this book,

and we had just implemented that behaviour in the main

function. When we duplicated the main function, we would

have duplicated the entire code for the line counter.

That’s not a disaster, but it is inconvenient. If we wanted to

add some extra behaviour that applies to both commands,

we would have had to add it in two places. If we’d needed to

fix a bug, we would have had to fix it in two places.

For a real, useful, production program, multiply that by lots

of features and lots of bugs over lots of years (and lots of

programmers). It just doesn’t scale.

But we didn’t do that. Instead, we put all the substantive

behaviour into the count package, and made the main

function for the lines command about as small as it could

possibly be.

So when we added the words command, we were able to re-

use just about everything we needed: the counter struct,

with its constructor and functional options, its multiple file

handling, and so on.

Yet we didn’t need to add any confusing command-line flags

to switch between counting lines and counting words. The

delegate Main... function for each command is quite short,

straightforward, and to the point. That makes it easy to

understand and easy to maintain.

So, when we want our program to have different behaviours

that nevertheless share a lot of code, very much the

cleanest and most user-friendly way to do that is to create



two separate commands, each with its own Main...

function.

That technique, though, is only practical when we’re using

the “write packages, not programs” philosophy. And that’s

no coincidence. Because an importable package makes it

easy for users to create their own programs using our code,

it also makes it easy for us to create new programs with it.

Flags

The “one command per behaviour” approach makes perfect

sense with something like the counter example. But

practical programs often have many different behaviours,

and it would be awkward to manage dozens of binaries, one

for each possible combination that users might want.

Introducing flags

So it’s usual for programs like this to instead let users

specify the behaviours they want using command-line

arguments. For example, we could have implemented the

counter program as a single command that accepted a verb

as argument, like this:

or

That’s not terrible; it’s just a bit more typing for users, and

of course we’d need to handle the situation where they

specify an unknown verb, or don’t specify one at all. But it

could be done.

count lines input.txt

count words input.txt



However, most programs also use command-line arguments

for other things. In the case of the counter program, it

accepts filenames, for examples. If we mix verbs in with

these, how is the program to know whether a given

argument represents a verb, or the name of some input file?

What if it could be both, for example?

So it’s common to distinguish arguments that are intended

to control behaviour using some special format, such as

prefixing them with a hyphen. You’re probably already

familiar with hyphenated flags from such commands as:

Here, the leading hyphen identifies -v as a flag, not just the

name of some Go package or source file. The specific

meaning of this flag is to tell go test to be verbose: that is,

to print more detailed output than it would otherwise.

Adding a -lines flag

Suppose we added a flag to control the behaviour of our

counter program, then; what would that look like? Let’s

decide, arbitrarily, that the default behaviour will be to

count words, but you can enable line-counting mode by

specifying the -lines flag:

(counts words)

(counts lines)

We could add another flag, -words, to count words, but

there’s no need. Users don’t want to type any more than

go test -v

count input.txt

count -lines input.txt



they have to. There are only two possible behaviours, so we

only need one flag to choose between them.

So, we have a fair idea of the behaviour we want. How can

we express that in the form of a test? Let’s consider the test

script we used for a previous version of the count program:

(Listing count/5)

We’ll start by changing this to reflect the fact that we now

want count on its own, with no flags, to count words in its

input:

(Listing count/8)

And we can now add a new script showing that, with the -

lines flag, the program instead counts lines, not words:

stdin three_lines.txt 

exec count 

stdout '^3\n$' 

 

-- three_lines.txt -- 

this input 

contains 

three lines

exec count input.txt 

stdout '^5\n$' 

 

-- input.txt -- 

this input 

contains 

five words

https://github.com/bitfield/tpg-tools2/blob/main/count/5/testdata/script/count_counts_lines_from_stdin.txtar
https://github.com/bitfield/tpg-tools2/blob/main/count/8/testdata/script/count_counts_words_by_default.txtar


(Listing count/8)

Now that we only have one binary, we’ll go back to our

original scheme from listing count/5. We need just one 

main.go, in the cmd/count folder:

(Listing count/8)

And we’re defining a single count command in TestMain:

(Listing count/8)

Let’s run the tests and see what happens. We don’t expect

them to pass, since we haven’t added the flag-handling

code yet. However, we would like to confirm that they fail

for the right reasons:

exec count -lines input.txt 

stdout '^3\n$' 

 

-- input.txt -- 

this input 

contains 

three lines

func main() { 

    os.Exit(count.Main()) 

}

func TestMain(m *testing.M) { 

    os.Exit(testscript.RunMain(m, 

map[string]func() int{  

        "count": count.Main, 

    })) 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/8/testdata/script/count_counts_lines_with_lines_flag.txtar
https://github.com/bitfield/tpg-tools2/blob/main/count/5/count_test.go
https://github.com/bitfield/tpg-tools2/blob/main/count/8/cmd/count/main.go
https://github.com/bitfield/tpg-tools2/blob/main/count/8/count_test.go


--- FAIL: Test/count_counts_lines_with_lines_flag 

(0.01s) 

    testscript.go:429: > exec count -lines 

input.txt 

      [stderr] 

      open -lines: no such file or directory 

      [exit status 1] 

      FAIL: 

testdata/script/count_counts_lines_with_lines_flag

. 

      txtar:1: unexpected command failure 

--- FAIL: Test/count_counts_words_by_default 

(0.02s) 

    testscript.go:429: > exec count input.txt 

        [stdout] 

        3 

        > stdout '^5\n$' 

        FAIL: 

testdata/script/count_counts_words_by_default.txta

r: 

        2: no match for `^5\n$` found in stdout

The word-counting test fails because our program still

defaults to its old line-counting mode, so it gives the wrong

answer for count input.txt:

no match for `^5\n$` found in stdout

The line-counting test fails for a more interesting reason. We

gave the -lines flag on the command line, but the program

currently has no way of interpreting this as anything other

than the name of a file to read:

open -lines: no such file or directory

go test



So it doesn’t count anything. Fair enough. Now let’s see

what we need to do to get these tests passing.

Implementing the behaviour

Do we need to change anything about the Counter struct,

its constructor, its options, or its methods? Not really:

everything we need is there. The only choice the program

has to make is whether to print the result of c.Lines, or 

c.Words, based on the flag.

Let’s look at the Main function we had before:

(Listing count/4)

We’ll need to modify this so that it can detect whether the -

lines flag is supplied on the command line. If it is, we

should call c.Lines, just as we do now, but if it isn’t, we

should call c.Words instead.

First, how can we detect the presence (or absence) of the -

lines flag? We could read os.Args, of course, but it turns

out we don’t need to. The standard library has our back, as

usual. The flag package will do exactly what we want:

func Main() int { 

    c, err := NewCounter( 

        WithInputFromArgs(os.Args[1:]), 

    ) 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 

        return 1 

    } 

    fmt.Println(c.Lines()) 

    return 0 

}

https://github.com/bitfield/tpg-tools2/blob/main/count/4/count.go


Actually, we didn’t need to add a lot of code to achieve the

behaviour we want. Here’s the first thing we added, at the

top of Main:

We call the function flag.Bool to declare a new boolean

flag, whose name is "lines", and whose default value is 

false. We also add a helpful note explaining to users what

this flag means.

The result of flag.Bool is assigned to the variable 

lineMode, which we’ll use to find out if “line mode” is on or

off, depending on the flag.

func Main() int { 

    lineMode := flag.Bool("lines", false, "Count 

lines, not words")  

    flag.Parse() 

    c, err := NewCounter( 

        WithInputFromArgs(flag.Args()), 

    ) 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 

        return 1 

    } 

    if *lineMode { 

        fmt.Println(c.Lines()) 

    } else { 

        fmt.Println(c.Words()) 

    } 

    return 0 

}

lineMode := flag.Bool("lines", false, "Count 

lines, not words")



We don’t know the actual state of the flag yet, since we

haven’t parsed the program’s arguments to look for flags.

That won’t happen until we call this function:

This means “Dear flag package, please parse the

program’s command-line arguments, and use them to set

the value of any flags I’ve previously defined.” After this

call, then, we should expect lineMode to reflect whether or

not the user supplied -lines as an argument.

But we don’t need to know that yet, because we have to

construct the Counter regardless. Because the user might

also have supplied some filenames on the command line,

we still need to call WithInputFromArgs. However, we don’t

pass it os.Args[1:], as we did before, because that might

contain the word -lines. And that shouldn’t be interpreted

as a filename, or we’ll get the test failure we saw previously.

What we’d really like instead is a way to get all the non-flag

arguments. In other words, having called flag.Parse to

extract all the arguments that refer to flags, we want to ask

“what’s left?”

That’s exactly what flag.Args does:

Finally, having constructed the counter c, we can use it to

count words (or lines). And that depends on the value of 

lineMode:

flag.Parse()

WithInputFromArgs(flag.Args()),

if *lineMode { 

    fmt.Println(c.Lines()) 

} else { 



Why is lineMode a pointer, rather than a plain old bool

value? Well, flag.Parse needs to be able to modify each of

our defined flag variables when we call it. So, somewhere

under the hood, it must maintain a list of pointers to those

variables. Thus, all flag variables are pointers, so we use the

* operator to dereference them and get the value we need.

One important thing to note is that the flag package stops

parsing as soon as it sees a non-flag argument. So you can’t

put flags after arguments:

open -lines: no such file or directory

Help and usage information

Whenever your program takes flags and arguments, or even

when it doesn’t, it’s nice to provide a help message for

users who aren’t sure what to do. Typically, programs will

recognise a -h or --help flag for this purpose.

Indeed, this is built into the flag package, and we get this

behaviour for free:

Usage of count: 

  -lines 

        Count lines, not words

Pretty neat! Still, we can improve on this a bit. It doesn’t say

what the program actually does, and it’s never safe to

assume that users know this. They may just be wondering

    fmt.Println(c.Words()) 

}

count input.txt -lines

count -h



what this weird count binary is on their system, who

installed it, and why.

It also doesn’t document that the program takes command-

line arguments. Let’s see what we can do. A little spelunking

into the flag package shows us that the function actually

being called here is flag.Usage. Here it is:

Why did they make this a var declaration, rather than

simply defining func Usage...? For the very good reason

that we can assign to it. Let’s assign our own function that’s

a little more informative:

The assignment needs to come before we call flag.Parse,

because it’s this parsing that may trigger the printing of the

usage message. Here’s the result:

Usage: count [-lines] [files...] 

Counts words (or lines) from stdin (or files). 

var Usage = func() { 

    fmt.Fprintf(CommandLine.Output(), "Usage of 

%s:\n", os.Args[0])  

    PrintDefaults() 

}

flag.Usage = func() { 

    fmt.Printf("Usage: %s [-lines] [files...]\n", 

os.Args[0])  

    fmt.Println("Counts words (or lines) from 

stdin (or files).")  

    fmt.Println("Flags:") 

    flag.PrintDefaults() 

}

count -h



Flags: 

  -lines 

        Count lines, not words

It doesn’t matter how great the program is if no one can

figure out how to use it. A little effort like this to make our

programs helpful and friendly can go a long way.

Going further

Here’s a suggestion for exploring the ideas discussed in this

chapter.

Add a new flag to the line counter program that makes it

capable of counting bytes instead of words or lines.

If both the byte-counting flag and the line-counting flag

are supplied simultaneously, the program should report

an error.

You’ll find one possible solution in listing count/9.

https://github.com/bitfield/tpg-tools2/blob/main/count/9/


5. Files

Plan 9 has persistent objects—they’re called “files”. 

—Ken Thompson, quoted in Plan 9 Fortunes Files

Many Go programs are about manipulating files in some

way; we’ve already seen in a previous chapter how to open

a file and read data from it. We might also be called upon to

write to files, and also to manage files themselves as data:

create them, delete them, rename them, list them, and so

on.

Let’s take the writing problem first, and see what’s involved

in building a Go package that deals with writing to files.

Writing to files

The first question to ask is whether the program itself needs

to deal with files at all. As we’ve seen, the Unix shell can

helpfully read data from files and send it to a program’s

standard input. When a program only needs to deal with

data as a stream of bytes, the most Unix-like answer is to

http://fortunes.cat-v.org/plan_9/


read from standard input, and let the operating system take

care of the file handling.

Similarly, when producing data that needs to be written to a

file, the simplest and most flexible way is for the program to

write to its own standard output stream. This can be

redirected by the shell to the file where it’s needed (or even

the input of some other program, for example).

The art of judicious logging

Incidentally, the same applies to logging, which is a special

case of writing data. Many programmers spend a good deal

of time and energy on deciding what information to log,

where to log it, how to log it, which package to use, and so

on. Most of this effort is probably wasted. Well-designed

applications don’t need to log much information, if any.

What they do need to say can be said to standard output (or

standard error, as appropriate), and this gives the maximum

flexibility for the program operator to decide where this data

should be sent.

It’s always worth asking, before you decide to log some

information, “What question about the program’s behaviour

does this log message answer?” For example, the answer

might be “It tells me that there was some error”. That’s fine,

and the best place to write that message is usually to the

program’s standard error stream. After all, that’s where the

user is most likely to see it.

On the other hand, if you can’t think of any worthwhile

question that the log message would help to answer, then

you don’t need the message. If what you want is aggregate

information about how many times the program does

something, or how often, emitting metrics (using the

Prometheus format, for example) is likely to be better than

logging.



Similarly, if you want to analyse the program’s performance,

or understand why it misbehaved in a certain situation, your

best option is probably to use tracing (such as

OpenTelemetry data) instead of logging.

That said, let’s look at some non-logging-related uses for

writing to files, and see what kind of API and testing

patterns emerge.

Testing a WriteToFile function

Let’s assume that we’re writing useful data to a file, then,

and not just suffering from a nasty case of logorrhoea. This

will be a fun thing to test. We can start by trying to build a

simple function that creates a file and writes some arbitrary

data to it.

We’d like to start with a test, of course, so what behaviour

should we test? Well, we already have a rough description of

the required behaviour in the form of a user story: the

program creates a specified file and writes the specified

data to it. Let’s work from the middle out, as before. What

sort of function would it make sense to call here? Perhaps:

The package name writer sounds sensible: it’s short, clear,

and describes the primary concern of the package.

Similarly, WriteToFile expresses the specific behaviour of

the function we’re trying to write. It may turn out, in

practice, that a slightly different name makes more sense,

but that’s okay: we’ve seen already in this book that our

process often results in quite a few changes along the way,

and they’re usually for the better.

What does the function need to take as arguments? Clearly,

at least the pathname of the file to create, and the data to

writer.WriteToFile(path, data)



write to it. What would be the appropriate types for these

things? We usually operate on pathnames as strings, and

arbitrary data as a []byte, so we’ll need to set these up at

the beginning of the test.

Now that we know what WriteToFile takes, we can ask

what, if anything, it returns. The first thing to ask about any

function’s results, regardless of what else it returns, is

whether it should return error. The way to answer that is to

ask another question: “Can there be an error?”

Designing errors out of existence

If there’s no readily imaginable situation where the function

could encounter an error, then the answer is no. Similarly, if

it’s safe for the function to ignore errors, or it’s able to

handle any errors that occur without troubling the caller

with them, then it need not return error.

The best kind of function is one that doesn’t return error,

because then you don’t have to check it. Wherever possible,

consider designing your API such that it doesn’t need to

return error for a given operation. An example might be

deleting a file: if the specified file doesn’t exist, should the

delete function return an error?

Arguably, no: the required behaviour is that, after calling the

function, the file should not exist. Well, if the file does exist,

the function can delete it, but if it doesn’t, then the function

can succeed by simply doing nothing!

The best way to eliminate exception handling

complexity is to define your APIs so that there are no

exceptions to handle: define errors out of existence.

This may seem sacrilegious, but it is very effective in

practice. 

—John Ousterhout, “A Philosophy of Software Design”

https://amzn.to/3NfCg6E


In other words, don’t just return an error because it’s there.

Instead, try to design functions that don’t need to return

errors.

Another approach is what’s called crash-only programming,

and as the name suggests, it involves not trying to handle

errors at all, but instead just letting the program crash if it

encounters them. This sounds rather reckless at first, but

can be a sensible idea in some cases. Modern software

orchestration systems such as Kubernetes can automatically

restart any program that exits unexpectedly.

Wise program designers should assume the program will

eventually crash anyway, whether they intended it to or not.

The program should be able to cope with crashing and being

restarted without losing any important state or user data.

Looking for inspiration

What action on error makes sense here? Well, crashing

wouldn’t be helpful, for one thing. This is a package, so we

don’t want to take that choice away from the user. We

discussed panic in a previous chapter and pointed out that

unilaterally exiting the program is unfriendly behaviour for

any package. The same applies here.

We also can’t design errors out of existence in this case: if

we’re unable to create the file, or unable to write all the

data to it, the user needs to know that. While we might be

able to mitigate errors somehow, by retrying, saving data

elsewhere, logging any lost data, or whatever, that’s not a

responsibility we should take on ourselves here.

It’s always a good idea to look to the standard library for

inspiration; can we find anything similar? Well, the standard 

Write method for anything that implements io.Writer

looks like this:



As you can see, it returns two things: an error, and an

integer value n that represents the number of bytes

successfully written. The semantics of Write require it to

return a non-nil error if n is less than len(p): that is, if it did

not in fact write all the bytes supplied.

Should we do the same here? As usual, we have conflicting

principles to weigh. On the one hand, the Principle of Least

Surprise (otherwise known as the “don’t make me think”

rule) says that things should work the way people expect

them to work. If a convention exists, for example, we should

follow it.

On the other hand, as the saying goes, everything should be

as simple as possible, but no simpler. That is, all else being

equal, simplicity should usually win.

The job of this function is to write some data to a file, and

the only thing it needs to report is whether or not it

succeeded. So let’s have WriteToFile return just error to

indicate that.

What are we really testing?

So are we done? If we’ve called WriteToFile and checked

that there’s no error, is there anything more we need to

test? In other words, would something like this be good

enough?

Write(p []byte) (n int, err error)

func TestWriteToFile_ReturnsNoError(t *testing.T) 

{  

    t.Parallel() 

    err := writer.WriteToFile("data", []byte{1, 2, 

3})  

    if err != nil { 



Of course you’re too smart to answer “Yes”, because you

know I wouldn’t be asking the question in that case. So, if

this isn’t good enough, why not?

Actually, you’ll come across a lot of Go tests that look more

or less just like this example. It’s a symptom of what we

may call “test-last development”: in other words, it was

likely written afterwards, as a box-ticking exercise.

This test isn’t wrong, as such, but the real problem is that it

clearly assumes the function is already correct. And that’s

what a test is supposed to establish in the first place, so

something must be missing.

Indeed, it’s always worth asking of any test, “What are we

really testing here?” Let’s ask it now.

What’s the most important behaviour of WriteToFile,

actually? That it returns a nil error? No, because in that

case we could pass the test by writing simply:

And that can’t be right!

The real implementation of WriteToFile, it turns out, needs

to do something a bit more challenging than just returning 

nil. It needs to actually write some data to the file.

Let’s try to flesh out this description of the behaviour to be

very specific, until it starts to sound like a test.

        t.Fatal(err) 

    } 

}

func WriteToFile(path string, data []byte) error { 

    return nil 

}



When we call WriteToFile and it returns a nil error, then

the specified file should exist and it should contain the

specified data.

If we were to express this as a brief sentence (as produced

by gotestdox, for example), we might say something like:

 ✔ WriteToFile writes given data to file

That gives us the name of our test, which is always a good

start:

It sounds a bit redundant: WriteToFile writes to file.

Because of course it does! Actually, this is the sign of a

really well-named function. Its name perfectly expresses

what the function is supposed to do. Naturally, the name of

the test reflects that too.

So we’ll certainly be calling WriteToFile and checking the

error, but we won’t stop there. We’ll also test that we can

successfully open the resulting output file, and that it

contains exactly the bytes we want.

To do that, we can use os.ReadFile to open and read the

file’s contents as got. Now, how should we compare them

with the want data?

The go-cmp module

Since both want and got are of type []byte, we could use 

bytes.Equal to compare them, but let’s use the more

sophisticated go-cmp module, which has a handy “diff”

feature. In the event that the slices are not the same, we’ll

be able to see exactly where and how they differ.

func TestWriteToFile_WritesGivenDataToFile(t 

*testing.T) {

https://github.com/google/go-cmp


We’ll need to add an import for the go-cmp/cmp package,

since it’s not part of the standard library. So here’s the

complete test package:

And since Go doesn’t automatically download a new

dependency when it’s added, we’ll need to run go mod tidy

package writer_test 

 

import (

    "os"

    "testing" 

 

    "github.com/bitfield/writer" 

    "github.com/google/go-cmp/cmp" 

) 

 

func TestWriteToFile_WritesGivenDataToFile(t 

*testing.T) {  

    t.Parallel() 

    path := "testdata/write_test.txt" 

    want := []byte{1, 2, 3} 

    err := writer.WriteToFile(path, want) 

    if err != nil { 

        t.Fatal(err) 

    } 

    got, err := os.ReadFile(path) 

    if err != nil { 

        t.Fatal(err) 

    } 

    if !cmp.Equal(want, got) { 

        t.Fatal(cmp.Diff(want, got)) 

    } 

}



to do this:

go: finding module for package 

github.com/google/go-cmp/cmp 

go: found github.com/google/go-cmp/cmp in 

github.com/google/go-cmp v0.5.9

If we run the test now, we should expect to see a failure on

trying to open the output file, because we know we won’t

have created it. And that’s exactly what happens:

--- FAIL: TestWriteToFile_WritesGivenDataToFile 

(0.00s) 

    writer_test.go:21: open 

testdata/write_test.txt: no such 

    file or directory

GOAL: Make this test pass.

HINT: The Go standard library can do an amazing amount of

heavy lifting for us, especially when dealing with things like

files. Have a look into the os package and see if you can

find something that would make this job easy.

Implementing a WriteToFile function

SOLUTION: Here’s the simplest implementation of 

WriteToFile I can think of:

Again, we could have opened the file for writing, deferred

closing it, and written the byte data to it, but os.WriteFile

does all this with one function call. It also creates the file if it

func WriteToFile(path string, data []byte) error { 

    return os.WriteFile(path, data, 0o600) 

}

https://pkg.go.dev/os


doesn’t exist, and truncates it if it does, which is the

behaviour we want.

File permissions

By the way, that otherwise mysterious 0o600 argument to 

os.WriteFile specifies the permission bits that the created

file should have. You probably know that in Unix (and Unix-

like systems) files have some metadata bits governing

who’s allowed to do what to a file: read it, write it, execute

it. It’s convenient to express these with a literal in octal

(base 8) notation, which starts with 0o, indicating “octal”.

The next three octal digits indicate permissions on the file

for its owner, group, and everyone, respectively. The value 

0o600, in particular, means “read and write (6) for owner, no

access (0) for group, no access (0) for everyone.”

We have to specify some permission value to os.WriteFile,

syntactically, but we don’t really care that much what it is.

While read and write permission for us makes sense, we

don’t need to grant access to any other users, so this value

seems a sensible choice.

It’s possible that users of our writer package might want to

use it to create files that other users can read. In that case,

we could always provide a WriteToPublicFile function, or

something similar. But it’s sensible to default to creating

private files, because even if we warn users not to use this

package for sensitive information, it’s a good bet that

sooner or later someone will.

When the directory doesn’t exist

Let’s see if the test is now passing:



--- FAIL: TestWriteToFile_WritesGivenDataToFile 

(0.00s) 

    writer_test.go:20: open 

testdata/write_test.txt: no such 

    file or directory

That’s weird. It’s now failing because WriteToFile is

returning a “no such file” error, which means that 

os.WriteFile is also returning that error. But isn’t 

WriteFile supposed to create the file if it doesn’t exist?

Yes, it is, but if the directory it’s supposed to be in doesn’t

exist, it doesn’t go so far as to create that too. We don’t

really want to be in the business of creating extensive file

trees on the user’s computer. If they’ve asked for a file to be

written to a directory that doesn’t exist, that’s probably a

mistake we should let them know about.

Let’s create testdata manually so that the test can run:

Now all is well:

PASS 

ok      writer  0.185s

Is there anything that’s not quite satisfactory about our

existing test? Once you have a test passing, it’s always a

good idea to review it and see if it can be improved in any

way.

Well, one characteristic of good unit tests is that they should

be idempotent (Latin for “same effect”): they should always

do the same thing, and they should always leave the world

in the same state. In other words, tests shouldn’t have side-

effects.

mkdir testdata



This one has a side-effect, though, doesn’t it? It creates the

file testdata/write_test.txt. This is a problem, not just

because we’re polluting the code repository with

uncommitted changes, but because it could mask bugs in 

WriteToFile.

A disastrous bug

I’ll explain what I mean. Since the output file has now been

created and it contains the expected data, then as long as

no one deletes it, the test will always pass.

In other words, it’s no longer a test at all, since 

WriteToFile could still pass even if it’s subsequently

changed to do nothing at all:

Will running the tests now catch this regression bug? Nope:

PASS 

ok      writer  0.148s

Oh dear. This is pretty bad. We no longer have an effective

test, but the worst of it is that it still looks like we do. Even

the code coverage tool will show that WriteToFile is

covered by tests (which is a useful reminder that coverage

isn’t everything, or indeed anything much).

Code coverage only proves that the code gets called, after

all, not that it works. It’s a bit like the useless test we saw

earlier that only checks the function’s error result,

forgetting to also check that it actually did something! So

this won’t do.

func WriteToFile(path string, data []byte) error { 

    return nil 

}



GOAL: Fix this regrettable situation, the right way. (Be

careful.)

HINT: Well, the wrong way to fix this would be to have the

test delete the output file after it’s created! Why’s that

wrong, though?

Don’t worry, most programmers would make the same

mistake, and it’s a very natural one. Our first instinct on

finding a bug is to fix the bug, but that would be to miss an

important step.

We’re aiming to build a self-testing program that contains its

own bug detectors in the form of tests. So if we find a bug,

that means we also have a bug in our bug detector. The

problem wasn’t caught by any test, so the first thing we

need to do is fix that problem.

Depending on the bug, we may need to add a new test

specifically for it, or we may instead be able to extend some

existing test. For example, we can do that in this case, by

extending the test for WriteToFile to check whether it

cleans up after itself properly.

Right now, the test just calls WriteToFile and checks that

the output file exists afterwards. As we now realise, that’s

not good enough. If that file ever gets created, the test will

always pass, even when WriteToFile does nothing.

So the first thing we should do in the test is check that the

file doesn’t exist before it’s supposed to. In other words, it’s

not good enough just to check our postconditions after

calling WriteToFile. In order to know that WriteToFile

actually did anything, we also need to check the

preconditions beforehand.



SOLUTION: So, the first thing we should do is check

whether the file already exists, and fail if that’s the case.

This isn’t testing WriteToFile, as such; it’s just a sanity

check for the test itself. But that’s worth having: insane

tests don’t help anyone.

We’ve said that the test should be idempotent, leaving the

world in exactly the same state as it was. If that’s not the

case, then we’ve failed to clean something up, so let’s

check:

func TestWriteToFile_WritesGivenDataToFile(t 

*testing.T) {  

    t.Parallel() 

    path := "testdata/write_test.txt" 

    _, err := os.Stat(path) 

    if err == nil { 

        t.Fatalf("test artifact not cleaned up: 

%q", path)  

    } 

    defer os.Remove(path) 

    want := []byte{1, 2, 3} 

    err := writer.WriteToFile(path, want) 

    if err != nil { 

        t.Fatal(err) 

    } 

    got, err := os.ReadFile(path) 

    if err != nil { 

        t.Fatal(err) 

    } 

    if !cmp.Equal(want, got) { 

        t.Fatal(cmp.Diff(want, got)) 

    } 

}



To check whether the file exists beforehand, we call 

os.Stat, which requests metadata about a file. In this case

we don’t care about the metadata, so we ignore that result

with the blank identifier _. We only care that there should be

an error trying to get it, because the file shouldn’t exist at

this point in the test.

Having ensured the file doesn’t exist before the test, we

then need to ensure it doesn’t exist after the test, by calling 

defer os.Remove(path).

Why do we need to defer this, instead of just calling it at the

end of the test? Because the test could exit at several

different points before it reaches that call. As you know, 

defer executes the supplied call when the surrounding

function exits, however and whenever that may be.

Using t.TempDir

This is all right, but a decent chunk of the test code is taken

up by paperwork around checking and removing this file.

Can’t we do better? What we’d like is to write to a file that

would automatically remove itself after the test.

The t.TempDir method can do exactly this for us. It will

create, and return the path to, a temporary folder, which will

be deleted once the test is complete. So now we don’t need

to check for un-cleaned-up artifacts, because there won’t be

any.

Here’s the resulting test:

func TestWriteToFile_WritesGivenDataToFile(t 

*testing.T) {  

    t.Parallel() 

    path := t.TempDir() + "/write_test.txt" 

    want := []byte{1, 2, 3} 
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Instead of checking our preconditions, as in the previous

version, this goes one better, by taking control of the

preconditions. Calling t.TempDir creates a new directory

that didn’t exist before, so it can’t have any test junk left in

it. And, as a bonus, it’s also self-cleaning.

We can’t always use a temporary directory like this, though.

Sometimes the job of a function is to create files in some

specific place where other files might also exist, for

example. So when we do have to manually check and clean

up test artifacts, at least now we know how.

Finishing the job

Is this good enough? Are we done now? Well, not quite.

One thing we haven’t done is test that WriteToFile returns

an error when it should. I mean, we know it does, because

we already saw that happen by accident, but that’s not the

same as having a test for it.

    err := writer.WriteToFile(path, want) 

    if err != nil { 

        t.Fatal(err) 

    } 

    got, err := os.ReadFile(path) 

    if err != nil { 

        t.Fatal(err) 

    } 

    if !cmp.Equal(want, got) { 

        t.Fatal(cmp.Diff(want, got)) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/writer/1/writer_test.go


And now we know an easy way to trigger such an error:

passing WriteToFile a path containing a directory that

doesn’t exist. That sounds like a straightforward test to

write:

(Listing writer/1)

What else haven’t we covered? Well, one interesting

question to ask is what should happen if the file already

exists when we try to write to it.

One option would be to return an error, but is this really an

error situation? After all, WriteToFile’s job is to make sure

that the file exists, and contains the given data. It doesn’t

really matter whether it existed beforehand or not, in this

case.

Let’s design this error out of existence, then. We’ll say

simply that if the output file already exists, WriteToFile

should clobber it: that is, overwrite it with the new data.

GOAL: Write a test to demonstrate that WriteToFile

clobbers existing files.

func 

TestWriteToFile_ReturnsErrorForUnwritableFile(t 

*testing.T) {  

    t.Parallel() 

    path := "bogusdir/write_test.txt" 

    err := writer.WriteToFile(path, []byte{}) 

    if err == nil { 

        t.Fatal("want error when file not 

writable")  

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/writer/1/writer_test.go


HINT: When writing a test, we start with the behaviour we

want: what’s supposed to happen if the code works

correctly. Then, to turn that into a Go test, we ask “In what

circumstances should the test fail, then?”

We’re saying that if a file with the same name already

exists, our WriteToFile function should replace it entirely.

So how could that go wrong?

Well, one bug could be that we don’t do anything at all,

leaving the existing file unchanged. Another is that we

simply append the data to what’s there already, meaning

that the file ends up containing both sets of data.

Of course, we can always imagine other bugs: we prepend

the new data, or interleave it with the old data, or we delete

the file altogether, or leave it empty, or wipe the user’s

computer and install Windows for Workgroups 3.11, or

generate an infinite number of digits of π, or… well, you get

the point.

Let’s try to write a test that covers as many of these

different classes of bugs as possible. One thing that they all

have in common is that, if present, we won’t end up with a

file containing “1, 2, 3” (or whatever our input data was).

And we already have code to test that, so all we really need

to do is write some other data to the file beforehand.

It’s clobbering time

SOLUTION: Here’s my version:

func TestWriteToFile_ClobbersExistingFile(t 

*testing.T) {  

    t.Parallel() 

    path := t.TempDir() + "/clobber_test.txt" 
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In this test, we actually want the file to exist beforehand,

and to contain some data, so that we can check whether 

WriteToFile handles that situation correctly. So we write

some arbitrary bytes to it.

One way for WriteToFile to misbehave might be to refuse

to write to an existing file, returning an error, and this test

would catch that. Another might be to append to the file

instead of truncating it. This test would also catch that,

because the final file would contain 4, 5, 6, 1, 2, 3

instead of just 1, 2, 3.

It may well be that in years to come someone looks at 

WriteToFile and thinks “I could implement this a much

    err := os.WriteFile(path, []byte{4, 5, 6}, 

0o600)  

    if err != nil { 

        t.Fatal(err) 

    } 

    want := []byte{1, 2, 3} 

    err = writer.WriteToFile(path, want) 

    if err != nil { 

        t.Fatal(err) 

    } 

    got, err := os.ReadFile(path) 

    if err != nil { 

        t.Fatal(err) 

    } 

    if !cmp.Equal(want, got) { 

        t.Fatal(cmp.Diff(want, got)) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/writer/1/writer_test.go


better way, by doing so and so,” but doesn’t realise that the

contract requires this clobbering behaviour, for example.

The test will catch that error right away. It also serves to

document the required behaviour; a wise coder will read all

the tests covering the unit of interest before attempting to

refactor it, for exactly this reason.

Ensuring permissions

We said earlier that, since we’re obliged to tell 

os.WriteFile what permissions we want the created file to

have, mode 0o600 is a reasonable choice. It makes the file

readable and writable by the user running the program, but

completely inaccessible to everyone else, even for reading.

Actually, this reminds us that having the file end up with the

right permissions is part of the required behaviour of 

WriteToFile, and we haven’t tested it. Let’s fix that now.

How can we check the permissions on an existing file?

We’ve used os.Stat already in this chapter to get a file’s

metadata, and at the time we weren’t interested in the

metadata itself, only whether or not we could get it.

This time we are interested in the metadata: specifically,

the permissions. We can add the following code to the

original WriteToFile test to check them:

stat, err := os.Stat(path) 

if err != nil { 

    t.Fatal(err) 

} 

perm := stat.Mode().Perm() 

if perm != 0o600 { 



If calling os.Stat fails, meaning the file doesn’t exist, then

something’s gone very wrong with the test and we should

bail out. But assuming we get stat successfully, we can

then ask it for the file’s permissions, which should be 0o600.

It doesn’t really matter whether we do this before or after

checking the file’s contents: we need both the permissions

and the contents to be correct for the test to pass.

It does pass, which is reassuring. But is this a waste of time?

Aren’t we just testing that os.WriteFile behaves correctly,

which we shouldn’t do? We asked the same question about

testing the clobbering behaviour, and it’s the same answer:

the tests should test the required behaviour, regardless of

how WriteToFile is currently implemented.

What’s the worst that could happen?

Another way to think about what’s worth testing is to ask

“what could be wrong?” In other words, is it possible that we

could implement WriteToFile in such a way that the file

ends up with incorrect permissions? It certainly is! We could

simply pass the wrong permission value to os.WriteFile.

If it could be wrong, it needs testing, and this is one way to

test it. But there’s another, more subtle way that 

WriteToFile could behave incorrectly. Suppose, as in the

clobbering test, that the specified file already exists

beforehand. But suppose also that it has different

permissions: say, 0o644 (read and write for user, read for

everyone else).

    t.Errorf("want file mode 0o600, got 0%o", 

perm)  

}



What happens to those permissions when we call 

WriteToFile? Actually, it’s not clear from looking at our

code. We know that os.WriteFile clobbers the contents of

an existing file, because we already tested that. But does it

change the permissions of an existing file, if they’re not

what we specify?

If not, this would be a serious potential security hole,

wouldn’t it? It would make us vulnerable to a pre-population

attack. If a malicious user were able to create the file

beforehand with open permissions (for example 0o644), and

our program were to write our private data to the file

leaving the permissions unchanged, the attacker could then

read it and learn our secrets.

This kind of thing happens all the time, and it’s not the way

you want your company to get on the six o’clock news. Let’s

write a test that checks for this vulnerability, then. What

could we do?

GOAL: Write a test that checks WriteToFile is not

vulnerable to a pre-population attack that leaves the file

with insecure permissions.

HINT: To test something like this, we can do exactly what

the attacker would do: create the file in advance with open

permissions. Then we’ll call WriteToFile and see whether

the permissions are still open afterwards. If so, that’s a fail.

A security leak

SOLUTION: Here’s what that could look like:

func TestWriteToFile_ChangesPermsOnExistingFile(t 

*testing.T) {  

    t.Parallel() 
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Let’s run it and see what happens.

want file mode 0o600, got 0o644

Oh my goodness! We just gave away the secret formula for

Coke, or whatever. Can it really be that os.WriteFile

leaves existing permissions unchanged? What does the

documentation say?

WriteFile writes data to the named file, creating it if

necessary. If the file does not exist, WriteFile creates it

    path := t.TempDir() + "/perms_test.txt" 

    // Pre-create empty file with open perms 

    err := os.WriteFile(path, []byte{}, 0o644) 

    if err != nil { 

        t.Fatal(err) 

    } 

    err = writer.WriteToFile(path, []byte{1, 2, 

3})  

    if err != nil { 

        t.Fatal(err) 

    } 

    stat, err := os.Stat(path) 

    if err != nil { 

        t.Fatal(err) 

    } 

    perm := stat.Mode().Perm() 

    if perm != 0o600 { 

        t.Errorf("want file mode 0o600, got 0o%o", 

perm)  

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/writer/1/writer_test.go


with permissions perm (before umask); otherwise

WriteFile truncates it before writing, without changing

permissions.

(os.WriteFile)

Without changing permissions. Well, there it is. A good Go

programmer should be thoroughly familiar with the standard

library, but she might be excused for overlooking or

forgetting about this somewhat obscure edge case. That’s

another great reason for writing tests, of course.

GOAL: Get this test passing.

HINT: It’s clear that we can’t rely on os.WriteFile to set

the desired permissions if the file already exists, so we may

as well set the permissions explicitly ourselves, after calling 

WriteFile. That way, it doesn’t matter whether the file

already existed or not.

We can do this by calling os.Chmod (“change mode”). That

could fail, of course, but happily it returns error, and so

does WriteToFile, so there’s a concise way to handle this

error. Can you see what to do?

SOLUTION: Here’s one I prepared earlier:

func WriteToFile(path string, data []byte) error { 

    err := os.WriteFile(path, data, 0o600) 

    if err != nil { 

        return err 

    } 

    return os.Chmod(path, 0o600) 

}

https://pkg.go.dev/os#WriteFile
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Whatever the file permissions end up being after the call to 

WriteFile, we ensure that they’re set correctly before the

function returns.

It’s still possible that the attacker might be able to read at

least some data between the time WriteFile starts

executing and the time Chmod closes the permissions,

though. So for secret data that really matters, we’d need to

implement writing to files at a lower level, and that’s

beyond the scope of this book.

This is a useful little reminder, though, that behaviour

intended to be helpful (leaving existing permissions

unchanged) can lead to dangerous vulnerabilities when

you’re not aware of it, or don’t test for it.

It’s worth knowing that os.MkdirAll suffers from a similar

desire to be helpful: its job is to create the directory that

you specify, along with all the parent directories that don’t

already exist. For example, if you specified the path /a/b/c,

and /a existed but b and c didn’t, it would create b and c for

you.

Since directories have permissions too, MkdirAll also takes

a permission value to apply to any directories it creates.

But, just like WriteFile, if any of the directories already

exist, it leaves their current permissions intact. This is

another potential security hole that you can close by

explicitly testing for the permissions of all files or directories

that your program creates.

When you see os.WriteFile or os.MkdirAll in other

people’s programs, it’s worth asking “Does this explicitly

check the permissions afterwards, or is it vulnerable to a

pre-population attack?”

https://github.com/bitfield/tpg-tools2/blob/main/writer/1/writer.go


Going further

Here are some mini-projects you might like to tackle to

explore these ideas further.

Add a CLI to the writer package that lets users create a

named file with a configurable size, whose bytes are all

zeroes.

For example, a command like the following:

would create the file zeroes.dat containing exactly one

thousand zeros.

You might like to compare your solution with mine in 

writer/2.

writefile -size 1000 zeroes.dat

https://github.com/bitfield/tpg-tools2/blob/main/writer/2


6. Filesystems

Computer programming is an art, because it applies

accumulated knowledge to the world, because it

requires skill and ingenuity, and especially because it

produces objects of beauty. 

—Donald Knuth, “Computer Programming as an Art”

In previous chapters we’ve read data from files, and written

data to them. We haven’t worried too much about exactly

how those files are stored, treating them instead as simple

abstractions with byte-oriented interfaces: io.Reader and 

io.Writer.

That’s fine, but Go programmers are often called upon to

write tools and utilities that manipulate files directly on disk

(or the equivalent of disk, such as cloud storage).

Files and filesystems

Because the exact semantics of working with files depends

on your operating system, the Go standard library provides

many useful facilities in the os package. For example, you

https://dl.acm.org/doi/10.1145/361604.361612


can work directly with files via the os.File type, which

represents a disk file as seen by the operating system.

This is great when all you need to do is operate on some

individual file, but we’re often concerned with collections of

files. Let’s take a moment to talk about how these are

stored and addressed, at least in Unix-like operating

systems.

What even is a file?

There are lots of different data storage technologies,

including spinning magnetic disks, solid-state disks, RAM

disks, and so on. As programmers, we almost never need to

worry about any of these implementation details. One of the

reasons Unix has been so successful is that it gives us some

very simple abstractions to deal with files:

We can address a file using a string called a pathname.

This uniquely specifies some file and how to find it,

relative to some filesystem.

Having found the file we want, we can access its data

using very simple read, write, and seek operations.

You’re already familiar with reading and writing files, and

seeking is the process of moving the current read/write

position to some specific offset in the file. For example, if

you have a 100GiB data file and you only want the last byte

of it, you don’t have to read all the preceding bytes. You can

seek directly to one byte before the end, and then read it. In

practice, we’re not usually working at such a low level of

abstraction in Go programs.

Organising files



On the other hand, we’re often very concerned with how to

address files: finding them, creating them, deleting them,

renaming them, and so on. So how are files organised? The

simplest imaginable way would be a flat file system: each

file has a unique name, and that’s it.

Flat file systems aren’t very convenient, because of the

uniqueness constraint, and there’s often a fairly small limit

on the length of filenames, which in turn limits the number

of files we can have on a given disk or filesystem.

A much more flexible scheme is the hierarchy: grouping files

into collections called directories or folders. Now filenames

only have to be unique within their containing folder, and

since folders can contain folders, this structure is recursive.

Here’s an example:

notes.txt 

letters/ 

    bank.txt 

    archive/ 

        bank.txt

There are several files here, some with the same name, but

that’s allowed because they’re not in the same folder: each

file still has a unique path. The files and folders form a tree

structure. At the top level (the root of the tree), there’s a file

notes.txt, and a folder letters.

The letters folder in turn contains the file bank.txt, and

another folder, archive. We say that archive is a subfolder

of letters. This contains another file bank.txt, and so on.

We can describe this whole structure as a tree, but also

refer to individual subtrees within it, such as the subtree

rooted at letters. The files, folders, and relationships

between them, are collectively called a filesystem. Usually,



a filesystem corresponds to some physical disk or storage

system.

It’s pretty easy to implement folders, by the way: we can

give certain files a special marker or piece of metadata that

tells the operating system it’s a folder, instead of a regular

file. This special file can contain a list of the files (and

folders) contained in the folder, each with the necessary

information to tell the OS how to find the data associated

with that file.

As a user of such a filesystem, how do we address individual

files and folders? In Unix-like systems, pathnames are

usually written by specifying each folder’s name, in

descending order from the root, separated by a slash (/).

For example, these are the pathnames of the text files

shown above:

/notes.txt 

/letters/bank.txt 

/letters/archive/bank.txt

A simple file finder

Suppose we have been tasked with writing a tool that will

count the number of Go source files contained in some tree

(for example, a project repository). How might we go about

that using the operations available in the os package?

The argument to the program will be the pathname of some

folder. For example:

/Users/john/code/games/lander

The first thing the program would need to do would be to

get the list of all files in this folder (remembering that



subfolders are also a kind of file). To do this, we can use 

os.ReadDir:

Since this path might not exist or not be readable by us, we

need to handle a potential error from ReadDir. Assuming

there is none, we now have a files variable containing a

slice of os.DirEntry values. Each of these contains

metadata about a specific file.

We need to inspect the name of each file in turn, so we

could range over this slice and use the handy path.Ext

function to check if a file’s extension is .go, and increment

some counter value if the filename matches. Something like

this:

Great! Are we done?

Handling folders recursively

files, err := 

os.ReadDir("/Users/john/code/games/lander")

func countGoFiles(folder string) (count int) { 

    files, err := os.ReadDir(folder) 

    if err != nil { 

        return 0 

    } 

    for _, f := range files { 

        if path.Ext(f.Name()) == ".go" { 

            count++ 

        } 

    } 

    return count 

}



Well, not quite: we only counted the Go files in the target

folder. What if it contains subfolders with Go files in, or

subfolders within subfolders? We’ll need an extra step to

detect if a given file is in fact a folder. We can call f.IsDir

to ask if this is the case.

And what should we do if we find a folder? We could call 

os.ReadDir on it to get the list of its contents, but there’s

no limit to how deep this could go. Instead, we would do

better to put our code in some function that we could call

recursively, to match the recursive nature of the hierarchy.

If this function finds a folder, it can call itself to get the

count of Go files within the tree rooted at that folder, and so

on. Eventually, having recursed into all the folders in the

tree, the final result will be the total number of Go files.

Suppose we had a tree like this, for example:

testdata/ 

    tree/ 

        file.go 

        subfolder/ 

            subfolder.go 

        subfolder2/ 

            another.go 

            file.go

There are four files whose names end in .go, so when we

run our file finder against this tree, we would expect the

output “4”.

Something like this might work:

func main() { 

    fmt.Println(countGoFiles("testdata/tree", 0)) 

} 



(Listing findgo/1)

This is a little tricky to write, and even trickier to read. It’s

also not very efficient: each of those recursive function calls

eats up a little bit of stack memory, so the deeper the

hierarchy, the bigger the memory footprint of our program.

In practice it would take a fair bit more code to make this

program really robust and flexible, never mind portable. And

we’d hate to have to write all of this every time we wanted

to do some operation on a file tree. Can’t we do better?

Filesystems and io/fs

Dealing with file trees of arbitrary depth is so common that

the Go standard library provides an abstraction to make this

 

func countGoFiles(folder string, count int) int { 

    files, err := os.ReadDir(folder) 

    if err != nil { 

        // skip 

        return count 

    } 

    for _, f := range files { 

        if f.IsDir() { 

            count = 

countGoFiles(folder+"/"+f.Name(), count)  

        } 

        if path.Ext(f.Name()) == ".go" { 

            count++ 

        } 

    } 

    return count 

}

https://github.com/bitfield/tpg-tools2/blob/main/findgo/1/main.go


easier: the filesystem. The io/fs package defines an

interface fs.FS that represents a tree of files.

In principle, any set of objects addressable by hierarchical

pathnames can be represented by an fs.FS. A tree of disk

files is the obvious example, but if we design our program to

operate on an fs.FS value, it can also process ZIP and tar

archives, Go modules, arbitrary JSON, YAML, or CUE data, or

even Web resources addressed by URLs.

The fs.FS abstraction provides some really helpful facilities

for working with these data structures, especially when we

need to recursively walk filesystem trees, selectively

performing operations on their nodes.

Let’s refer to an fs.FS value as a “filesystem” from now on,

keeping in mind that the term also has the more general

meaning we discussed earlier in this chapter. How can we

create a filesystem representing the tree of files rooted at a

specific disk folder, then?

Opening a folder as an fs.FS is straightforward. We can do

this by calling os.DirFS:

Notice that there’s no error result to handle here. That’s

because we haven’t actually done any disk operations yet;

we’ve just created the abstraction representing the file tree

rooted at testdata/tree. If there doesn’t happen to be

such a path, or we’re not allowed to read it, well, too bad:

we’ll find that out when we try to do something that

involves reading it.

An fs.FS by itself doesn’t do much. You might be surprised

by how small its method set is:

fsys := os.DirFS("testdata/tree")



(io/fs)

The only thing we can do by calling methods on the

filesystem, then, is to Open some path within it. For

example:

If this path doesn’t correspond to any existing file, then

there will be some error (specifically, an fs.PathError). But

if there isn’t, then we successfully obtained some f of type 

fs.File. Great! So what’s that?

(io/fs)

Again, a very simple interface. All we can do with an 

fs.File is stat it (ask for its metadata, such as its name or

permissions), or use it as an io.ReadCloser, just like a

regular os.File pointer.

One interesting thing we can’t do is write to it. Filesystems

in Go are read-only, which is fine. A Go proverb says:

The bigger the interface, the weaker the abstraction.

In other words, if we’re interested in operations on files as

part of a tree structure, then fs.FS is the ideal abstraction

type FS interface { 

    Open(name string) (File, error) 

}

f, err := fsys.Open("file.go")

type File interface { 

    Stat() (FileInfo, error) 

    Read([]byte) (int, error) 

    Close() error 

}

https://pkg.go.dev/io/fs#FS
https://pkg.go.dev/io/fs#File
https://go-proverbs.github.io/


for us: it’s not cluttered up with stuff related to writing,

modifying, moving, deleting, or changing permissions on

files.

Once we know a file’s pathname, we can always use the

existing os machinery to modify or write to it. So when

you’re dealing with trees of files, use fs.FS rather than

trying to write the recursion code yourself.

Matching files by name

So what filesystem-level operations might we want to do?

With our file-counting program in mind, one useful tool is 

fs.Glob, which takes a filesystem and a pathname

containing wildcards (for example, "*.go") and returns the

names of all the matching files:

An error here would indicate that the pattern is invalid in

some way, while matches is a slice of strings containing the

pathnames of the matching files. The glob patterns are very

similar to those understood by the Unix shell; for example,

in the command ls *.go.

Great! Does that mean we can write our file-counting

program as simply as this?

matches, err := fs.Glob(fsys, "*.go")

func main() { 

    fsys := os.DirFS("testdata/tree") 

    matches, err := fs.Glob(fsys, "*.go") 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 

        os.Exit(1) 

    } 

    fmt.Println(len(matches)) 

}



Not quite. fs.Glob interprets a glob like *.go as referring to

all the .go files in a specific folder (for example, the root

folder of the filesystem). So if we used this glob to count Go

files, we’d miss any files that aren’t in the root folder:

1

Couldn’t we use another * to represent any folder, so that 

*/*.go would find all Go files in all subfolders? No, because

while that glob would match Go files in subfolder or 

subfolder2, for example, it wouldn’t match files in the root

folder, or in any subfolders of subfolders. The * wildcard can

only match non-separator characters in a pathname. We

can’t write a recursive glob, in other words.

Some languages and tools use a double star wildcard for

this: for example, **/*.go would match all Go files

anywhere in the filesystem. Alas, fs.Glob and the other Go

standard library functions that use wildcards don’t support

this syntax. We’ll have to keep thinking.

Walking the tree

Since a filesystem is recursive in nature, the actual

recursion operation is always the same. In principle, the

standard library could do this for us, and all we’d need to

supply is the specific code to execute for each file or folder

we find.

The fs.WalkDir function does exactly this. It takes a

filesystem and some starting path within it, and recursively

walks the tree, visiting every file and folder (in lexical order;

that is, alphabetically).

go run main.go



For each one it finds, it calls some function that you provide,

passing it the pathname. For example:

With our example tree, myFunc would be called once for

each of the following pathnames:

. 

file.go 

subfolder 

subfolder/subfolder.go 

subfolder2 

subfolder2/another.go 

subfolder2/file.go

The first path, ., is the root folder of the filesystem itself.

So what could myFunc do with these paths? Well, it could

look at each path and increment a counter if it ends in .go.

This sounds promising. Let’s see if we can write myFunc.

The function we pass to fs.WalkDir must have a signature

that matches the type fs.WalkDirFunc:

(io/fs)

When this function gets called, the path parameter will be

the pathname of the current file, while the DirEntry

contains the file’s metadata. We’ll see what err is for in a

moment.

First, let’s write a suitable WalkDirFunc for our file counter.

It just needs to check the path and increment its counter if it

decides it’s found a Go file:

fs.WalkDir(fsys, ".", myFunc)

func(path string, d DirEntry, err error) error

https://pkg.go.dev/io/fs#WalkDirFunc


We can now pass matchGo as the function argument to 

fs.WalkDir:

In practice, and to avoid making count a global variable, we

wouldn’t write some named function matchGo and then refer

to it. We would pass it as an anonymous function literal

instead, and this is very idiomatic in Go:

(Listing findgo/2)

So what’s that error parameter about? It lets you control

what happens if there’s an error reading some folder. For

example, suppose we don’t have read permission to get the

contents of subfolder, so when WalkDir tries to open it

func matchGo(p string, d fs.DirEntry, err error) 

error {  

    if filepath.Ext(p) == ".go" { 

        count++ 

    } 

    return nil 

}

fs.WalkDir(fsys, ".", matchGo)

var count int 

fsys := os.DirFS("testdata/tree") 

fs.WalkDir(fsys, ".", func(p string, d 

fs.DirEntry, err  

    error) error { 

    if filepath.Ext(p) == ".go" { 

        count++ 

    } 

    return nil 

}) 

fmt.Println(count)

https://github.com/bitfield/tpg-tools2/blob/main/findgo/2/main.go


there’ll be an fs.ErrPermission error. In this case, WalkDir

would call our function with "./subfolder" and the error,

and the function could decide what to do about it.

The simplest thing it could do would be to just return the

error immediately, in which case WalkDir would stop

walking and return the same error itself. That’s usually not

what we want, though. We wouldn’t want a single

permission error to crash a 17-hour file scanning job a few

minutes before the end, for example, forcing us to start all

over again.

Instead, we can return the special error value fs.SkipDir,

meaning “skip this folder, but carry on walking”. We don’t

handle errors in our example program, so it will always just

skip any folders it can’t read, which isn’t completely

unreasonable. You might need more sophisticated error

handling in production programs, though.

A file-finding tree-walker

It looks like using a filesystem and fs.WalkDir will work for

our file-finding program, so let’s see how to turn it into a

full-fledged, well-tested Go package.

To do that, let’s expand our ambitions a bit. Counting files

can be useful, but it seems a shame to go to all the trouble

of finding the files, only to throw away everything but the

number of files we found.

Suppose users wanted to get a list of those files; well, it’s

bad luck for them, if all they have is the value of count.

They’d have to walk the tree all over again.

On the other hand, if we have the list of files, it’s very easy

to count them: just use the built-in len function. Finding files



is the more general problem, so let’s try to solve that in a

useful way.

Starting at the top

As usual, let’s first think about the main function we’d like to

write, with absolutely minimal paperwork. Something like

this would be nice:

(Listing findgo/3)

It wouldn’t actually be that simple in practice, since we’d

need to check that os.Args[1] exists, report errors, and so

on. But the CLI isn’t the point of this example, and we’ve

covered all that machinery in previous chapters, so let’s

take it as read for now, and see how findgo.Files would

work.

It would need to take the pathname of some folder as its

argument, and it would walk the tree rooted at that folder

finding Go files, in the way that we’ve already done as a

proof of concept. Let’s write a test for that.

func main() { 

    paths := findgo.Files(os.Args[1]) 

    for _, p := range paths { 

        fmt.Println(p) 

    } 

}

func TestFilesCorrectlyListsFilesInTree(t 

*testing.T) {  

    t.Parallel() 

    want := []string{ 

        "file.go", 

        "subfolder/subfolder.go", 

https://github.com/bitfield/tpg-tools2/blob/main/findgo/3/cmd/findgo/main.go
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We’ll copy our example tree of files into testdata/tree, so

the test has something to work on. The test is saying that if

we call Files with this path, in which there are four Go files,

it should return the expected slice of strings. Over to you to

make this work.

GOAL: Implement Files.

HINT: Well, we’ve done most of the work already, haven’t

we? We can take the code from our main.go proof of

concept and move it straight into the findgo package.

All we need to change is that, instead of incrementing a

counter every time we find a file, we append its path to a

slice instead. That slice is the result we should return once 

fs.WalkDir is done.

SOLUTION: Code lifted and shifted!

        "subfolder2/another.go", 

        "subfolder2/file.go", 

    } 

    got := findgo.Files("testdata/tree") 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

func Files(path string) (paths []string) { 

    fsys := os.DirFS(path) 

    fs.WalkDir(fsys, ".", func(p string, d 

fs.DirEntry, err error) error {  

https://github.com/bitfield/tpg-tools2/blob/main/findgo/3/findgo_test.go
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Excellent! The program works perfectly on our little test

tree. But we can imagine that a program with more

complicated logic might run into problems, especially in

large and complicated filesystems. How could we test cases

like that?

The fs.FS abstraction

One problem with tests that use files on disk is that disk

access is, in general, extremely slow (at least, compared to

accessing data in memory). Old-school spinning disks have

a pretty high latency: it takes a long time to start sending

data, because the read head has to physically travel to a

specific place on the disk first.

Solid-state disks are faster, or at least have lower latency,

but the data still has to get to the CPU over some relatively

low-bandwidth link, such as a USB bus. The technology is

always changing, but it’s a reasonable rule of thumb that we

can access data in memory an order of magnitude or two

faster than data on disk—that is to say, 10-100x faster.

This is the kind of speedup that every programmer dreams

of, so can we achieve it here? In general, could we test

filesystem operations on some in-memory data structure

instead of having to access a disk?

        if filepath.Ext(p) == ".go" { 

            paths = append(paths, p) 

        } 

        return nil 

    }) 

    return paths 

}

https://github.com/bitfield/tpg-tools2/blob/main/findgo/3/findgo.go


As we saw earlier in this chapter, fs.FS is an interface.

Specifically, an interface with the method Open. This

effectively maps some slash-separated pathname to an 

fs.File, where fs.File is some file-like object that

supports statting, reading, and closing. Such small

interfaces make for powerful abstractions.

If we think a little more generally, we could treat a

filesystem as a kind of key-value database. The keys here

are pathnames, and each key is associated with a unique

value representing a file. Specifically, this is a path-value

database, because the keys obey a hierarchical pattern. In

our example, the key subfolder/subfolder.go maps to

whatever data is represented by the subfolder.go file.

Any path-value map is a “filesystem”

In fact, there are lots of things that fit this abstraction. The

Web itself is a kind of path-value database: a URL is a

hierarchical, slash-separated pathname that maps to some

specific data. A JSON, YAML, or CUE document has the same

implicit structure. So does a Go import path, or the files

contained in a ZIP archive.

In principle, we could use an fs.FS to access any of these

things. As long as there’s some concept of a hierarchical

pathname mapped to a piece of data, the filesystem

abstraction can be useful.

We could even imagine implementing fs.FS with some

simple data type based on a Go map. All we’d need to do is

give it an Open method, that maps string keys to some value

that satisfies fs.File. Since fs.File is also a small

interface, that’s easy to do.

This would be very useful for testing any code that works

with filesystems. While a tree of files on disk is a perfectly



good fs.FS, it’s a very slow one compared to a Go map, or

anything else that lives in memory.

Instead, we could create simple pieces of test data, such as

our Go file tree, by using a map literal. And the test would

execute very fast, because it wouldn’t need to make any

disk accesses: everything would be in memory.

The fstest.MapFS filesystem

As it happens, we don’t need to implement such a type

ourselves, because the standard library already provides

one: fstest.MapFS. This satisfies the fs.FS interface, and

it’s easy to construct MapFS-based filesystems in code.

Let’s see how to rewrite our test for Files using a MapFS

instead of regular disk files.

func TestFilesCorrectlyListsFilesInMapFS(t 

*testing.T) {  

    t.Parallel() 

    fsys := fstest.MapFS{ 

        "file.go":                {}, 

        "subfolder/subfolder.go": {}, 

        "subfolder2/another.go":  {}, 

        "subfolder2/file.go":     {}, 

    } 

    want := []string{ 

        "file.go", 

        "subfolder/subfolder.go", 

        "subfolder2/another.go", 

        "subfolder2/file.go", 

    } 

    got := findgo.Files(fsys) 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 
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A MapFS is some kind of Go map, as the name implies.

Specifically, it’s a map of string (the pathname) to 

*MapFile values.

In this test, we first set up our variable fsys as a MapFS

literal where each of the keys represents one of our test files

in testdata/tree.

Notice that we haven’t included the folders subfolder and 

subfolder2 as explicit keys in this map. We could, but it’s

not necessary, because they’re implied by the pathnames of

the files within them. For example, the path 

subfolder2/file.go implies a containing folder 

subfolder2. The MapFS implementation will “simulate” that

folder for us if it needs to.

A MapFile is the “fake file” object that satisfies fs.File,

and it has fields for storing data as a[]byte, file

permissions, and so on. In other words, everything we’re

allowed to do with an fs.File, we can do with a MapFile.

As it happens, the code under test here only needs to look

at the pathnames, so the MapFile values don’t matter at all.

We can leave them empty, so each element of this map is

just the empty struct {}.

When you need to test some function that takes a

filesystem, it’s faster to give it a MapFS than a real tree of

files on disk, because we eliminate so many relatively slow

I/O operations.

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/findgo/4/findgo_test.go


What should happen when we call Files with this

filesystem? Well, just the same as before: it should

recursively walk the filesystem looking for .go files and

return the slice of matching paths. The result should be just

the same as it was with the tree of real files on disk.

Indeed, Files doesn’t know that it’s not looking at disk files,

and that’s the point. We’ve generalised it to something that

simply queries a path-value database.

We’ll need to make a couple of minor changes to both Files

and our previous TestFiles... function to make this work.

Can you see what to do?

GOAL: Get all tests passing.

HINT: We need to update Files to take an fs.FS as its

parameter instead of a pathname. And since we’re receiving

the filesystem now, we needn’t open it ourselves using 

os.DirFS, so we can remove that call.

Adding a filesystem to our API

SOLUTION: Here’s the modified Files function:

func Files(fsys fs.FS) (paths []string) { 

    fs.WalkDir(fsys, ".", func(p string, d 

fs.DirEntry, err error) error {  

        if filepath.Ext(p) == ".go" { 

            paths = append(paths, p) 

        } 

        return nil 

    }) 

    return paths 

}
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Next, we’ll update the other test: the one that calls Files

on a disk-based filesystem. Instead of just passing the root

path, it will now need to call os.DirFS itself to create the

filesystem:

(Listing findgo/4)

We don’t really need this test anymore, since it just

replicates what the MapFS-based test does, only a lot more

slowly.

But before we delete it, it would be interesting to know how

much slower it is. Let’s do a little science.

Timing potentially slow operations

Go provides excellent benchmarking facilities for measuring

performance, in the same standard testing package we’ve

func TestFilesCorrectlyListsFilesInTree(t 

*testing.T) {  

    t.Parallel() 

    fsys := os.DirFS("testdata/tree") 

    want := []string{ 

        "file.go", 

        "subfolder/subfolder.go", 

        "subfolder2/another.go", 

        "subfolder2/file.go", 

    } 

    got := findgo.Files(fsys) 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/findgo/4/findgo.go
https://github.com/bitfield/tpg-tools2/blob/main/findgo/4/findgo_test.go


been using. Before we see how to use them to write a

benchmark for Files, let’s think about the problem a little.

What’s actually involved in measuring the speed of some

function?

If we didn’t have built-in benchmarking facilities, and we

wanted to measure the time elapsed during some

potentially slow operation, what could we do?

One approach might be something like this:

By finding the current wall-clock time before and after the

operation, and subtracting one from the other, we get the

elapsed time. Fine. But how reliable is that figure?

Not all that reliable, in fact: your computer is doing a lot of

other things at the same time as running this program, and

any of these might cause the operation to be faster or

slower.

In other words, the environment is noisy, causing jitter in

our time measurements: if we repeat the same operation

many times, we’ll get results that differ by essentially

random amounts. If the jitter is large compared to the total

time we’re measuring, that’s a problem.

To avoid this, it’s a good idea to run the operation some

large number of times (say a million), and then divide the

total by that figure to get the mean time per operation.

Hopefully the noise will mostly cancel out, giving us a more

accurate result. So we’ll call the function inside a loop that

executes many times.

start := time.Now() 

slowOperation() // could take a while 

elapsed := time.Since(start) 

fmt.Println(elapsed)



But how many times? If the function is very fast, we should

run it very many times to get a statistically useful answer.

But if it’s slow, running it many times would make the test

take a long time. So the number of times we need to run it

depends on how long it actually takes.

We could imagine determining the number of loop iterations

by trial and error, first calling the function a small number of

times to see how long that takes, optionally running it more

times, and so on, until we’ve reached some overall time

limit (ten seconds, let’s say).

Writing benchmark functions

Once again, the standard library can take over this workload

for us. All we need to do in a benchmark function is write a

loop that calls our function N times, where N is some

variable that can be set automatically by the test

machinery. Here’s what that looks like:

(Listing findgo/4)

Just as test function names begin with the word Test,

benchmark function names begin with the word Benchmark.

And just as tests take a *testing.T parameter that controls

the test execution, benchmarks take an analogous 

*testing.B parameter that controls the benchmark

execution. We’ll see exactly how that works in a moment.

func BenchmarkFilesOnDisk(b *testing.B) { 

    fsys := os.DirFS("testdata/tree") 

    b.ResetTimer() 

    for i := 0; i < b.N; i++ {

        _ = findgo.Files(fsys) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/findgo/4/findgo_test.go


We first want to measure how long it takes Files to search

a disk-based filesystem, so we create one using os.DirFS in

the same way as the regular test.

The stopwatch is running from the moment the benchmark

function starts. But since we don’t want the call to os.DirFS

to be included in the benchmark timing, we then call 

b.ResetTimer to reset the clock to zero: “start timing from

now!”

And now we write the loop we discussed earlier, to call our

function a variable number of times. In fact, it will loop b.N

times, where b.N is controlled by the benchmark machinery

so as to make the overall time around ten seconds, to give a

more reliable result.

To run this benchmark, use the command:

goos: darwin 

goarch: amd64 

pkg: findgo 

cpu: Intel(R) Core(TM) i7-3615QM CPU @ 2.30GHz 

BenchmarkFilesOnDisk-8    5434  333303 ns/op 

PASS

Because a benchmark is just a special kind of test, we’re

using the go test command, which will also run our regular

tests. This makes sense, because there’s no point

benchmarking anything unless the tests are passing: a

function can be arbitrarily fast if it doesn’t have to be

correct.

However, we also supply the -bench . flag, asking go test

to also run any benchmarks whose names match the regular

expression “.”. Since this “dot” wildcard matches any

go test -bench .



character, this will run all benchmarks defined in the

package.

The output gives us some contextual information about the

system we’re running the test on (a darwin kernel,

signifying macOS, on the amd64 architecture, specifically an

Intel Core i7 clocked at 2.3GHz).

It then reports the results of the benchmark:

BenchmarkFilesOnDisk-8    5434  333303 ns/op

The -8 following the benchmark name indicates that 8 CPU

cores were available to Go, in case we need to know that: it

might be important for concurrent programs.

The next number, 5434, indicates how many times the loop

executed overall, and thus how many times Files was

called.

Finally, the figure 333303 tells us that the mean time per

operation (that is, per call to Files) was 333,000

nanoseconds and change. That is to say, about 333

microseconds.

Seems pretty fast! Can we do better using the MapFS-based

filesystem? Let’s find out:

func BenchmarkFilesInMemory(b *testing.B) { 

    fsys := fstest.MapFS{ 

        "file.go":                {}, 

        "subfolder/subfolder.go": {}, 

        "subfolder2/another.go":  {}, 

        "subfolder2/file.go":     {}, 

    } 

    b.ResetTimer() 



(Listing findgo/4)

Here’s the result:

... 

BenchmarkFilesOnDisk-8    5492   353633 ns/op 

BenchmarkFilesInMemory-8  91056  13483 ns/op

Looking at the last column, we can see that the disk-based

benchmark again took around 350 microseconds, while the

memory-based one took only 13 microseconds. That’s about

25 times faster, or about one order of magnitude: roughly

what we expected.

So was it worth it, just to save 0.3 milliseconds when

running tests? Well, we’re all busy people, but not so busy

that we couldn’t spare a millisecond or two. If you think

about the impact of a 25x speedup on large test suites,

though, eliminating as much unnecessary disk I/O as

possible in this way makes a lot of sense.

We also save the disk space, of course, and arguably it’s

clearer to see the file tree structure directly in the test code,

rather than having to look at the testdata folder. So a 

MapFS is a neat tool to have available whenever we want to

test code that operates on filesystems.

Taking fs.FS makes APIs more flexible

    for i := 0; i < b.N; i++ {

        _ = findgo.Files(fsys) 

    } 

}

go test -bench .

https://github.com/bitfield/tpg-tools2/blob/main/findgo/4/findgo_test.go


There’s nothing stopping you from writing your own fs.FS

implementation, and it’s quite straightforward. Indeed,

whenever you’re writing Go code to deal with data that

could in principle be addressed as a path-value tree, you

might like to consider accepting an fs.FS as input, or

making your data type satisfy fs.FS itself. It all helps to

make your packages more flexible, useful, powerful, and

friendly.

We can see the effect of this with our file-finder example.

Initially, because it took a disk pathname, the only thing we

could use it to search was a disk-based filesystem. Now that

we’ve updated it to accept fs.FS, it can operate on

anything satisfying that interface. Our test can pass it a 

MapFS and it works just fine.

So what else would work? We mentioned earlier some

examples of other things that satisfy fs.FS. Just for fun,

let’s try Files with a filesystem derived from a ZIP archive:

after all, it should work, shouldn’t it?

First, let’s zip up our test findgo folder and its contents

using the zip command. If you don’t have that command,

you can use anything that creates standard ZIP files,

including the macOS Finder’s “Compress” action.

adding: tree/ (stored 0%) 

adding: tree/subfolder/ (stored 0%) 

adding: tree/subfolder/subfolder.go (stored 0%) 

adding: tree/subfolder2/ (stored 0%) 

adding: tree/subfolder2/another.go (stored 0%) 

cd testdata

zip -r files.zip tree/



adding: tree/subfolder2/file.go (stored 0%) 

adding: tree/file.go (stored 0%)

All these files are empty, which is why zipping them doesn’t

seem to save much space, but that’s not the point: we just

want a ZIP file to play with. Now, how do we open it as a

filesystem?

Helpfully, Go provides facilities for reading ZIP files in the

standard library package archive/zip, so here’s our test:

(Listing findgo/4)

We call zip.OpenReader with the pathname of our test ZIP

file, and the result is a value that satisfies fs.FS, so we can

func TestFilesCorrectlyListsFilesInZIPArchive(t 

*testing.T) {  

    t.Parallel() 

    fsys, err := 

zip.OpenReader("testdata/files.zip")  

    if err != nil { 

        t.Fatal(err) 

    } 

    want := []string{ 

        "tree/file.go", 

        "tree/subfolder/subfolder.go", 

        "tree/subfolder2/another.go", 

        "tree/subfolder2/file.go", 

    } 

    got := findgo.Files(fsys) 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/findgo/4/findgo_test.go


pass it directly to Files. And, of course, it gives us the

correct answer:

PASS

Just by using the fs.FS abstraction instead of talking

directly to the disk, we made our Files function work with

ZIP archives, with no extra effort. And if you expose this

type in your own APIs, other people will be able to use your 

fs.FS values in their own code.

If your function operates on trees of files, or sets of path-

value pairs, then, consider taking an fs.FS parameter

instead of a root path.

Going further

If you want some ideas for ways to get more practice with

the ideas we’ve talked about, here is a mini-project

suggestion:

Write a Go package that finds all files in a given

filesystem older than a specified duration (for example,

30 days). That is, files whose “last modified” date is 30

days or more before the present.

Test your package using a MapFS. Check that it works on

a disk filesystem too.

You might like to compare your solution with that shown

in listing older/1.

https://github.com/bitfield/tpg-tools2/blob/main/older/1


7. Commands

This is the Unix philosophy: Write programs that do one

thing and do it well. Write programs to work together.

Write programs to handle text streams, because that is

a universal interface. 

—Doug McIlroy, quoted in Peter Salus’s “A Quarter

Century of Unix”

In previous chapters we’ve used Go to create executable

commands that users can run on their systems, such as 

words or lines. That’s great, but what if we wanted to run

such a command from within a Go program itself? What

would that look like?

The exec package

For example, suppose we want to run the command ls to

list the files in the current directory. When we ask the shell

to run that command, it makes a call to the operating

system kernel to start a new process. There’s more work

involved in this than you might think.

What even is a process?

https://amzn.to/3tzOHTf


The kernel first allocates some memory to store the

process’s context and other housekeeping information about

it. Then it loads the specific executable file we requested

(something like /bin/ls), which means copying its bytes

from disk into memory. Finally it starts executing the

machine code instructions at the beginning of the program.

So the kernel-level API for running a command needs to take

at least the path to the executable, and in practice there are

a few more arguments.

On Unix-like systems, there’s some environment (a set of

key-value pairs storing information the program might need)

for the process, possibly some command-line arguments,

and also some file descriptors: byte streams allowing the

program to read input and write output in a standard way.

This sounds like a lot of paperwork, and while we could do it

(using the os.StartProcess standard library call), we’d

prefer not to. So it’s good to know that there’s a higher-level

API provided by the os/exec package.

Let’s see how that works in a Go program with our ls

example:

package main 

 

import (

    "os/exec" 

) 

 

func main() { 

    cmd := exec.Command("/bin/ls") 

    cmd.Run() 

}



First we call exec.Command with the path to some

executable (/bin/ls). If the ls executable is in a different

place on your system, you’ll need to use a different path

here (use whereis ls to find it).

This returns a value of type *exec.Cmd, and we assign it to

the variable cmd. Note that nothing has actually happened

so far: we haven’t started a new process yet, just created

the abstraction we’ll use to control it.

Calling the command’s Run method is what actually causes

the kernel to create a new process, load the ls executable,

and run it. If we run this Go program, then, we should see

just one file listed: the main.go file containing its source

code. Let’s try.

Hmm. Nothing happened. In fact, the ls command worked

perfectly well, but we have no way of knowing that, because

we didn’t see its output.

Managing command output

We said earlier that the Unix process model includes input

and output file descriptors: the equivalent of os.Stdin and 

os.Stdout (and os.Stderr) in Go. And an exec.Cmd has

fields for these to be attached, but we didn’t attach

anything, so the output of ls went… nowhere.

We’ll need to attach something to cmd.Stdout in order to

see that output. If we attach os.Stdout, for example, we

should see it printed to the terminal:

go run main.go

func main() { 

    cmd := exec.Command("/bin/ls") 

    cmd.Stdout = os.Stdout 



main.go

That’s more like it! In practice, when we’re running external

commands from a Go program, we usually want to capture

that output somehow: for example, in a bytes.Buffer. But

this is enough to prove the concept.

Can we do more? How about passing arguments to the

command, for example?

It turns out that exec.Command is variadic: it takes any

number of strings after the first, and interprets them as

arguments to be passed to the command.

Here’s the output:

-rw-r--r--  1 john  staff  127 30 Sep 15:46 

main.go

When not to use exec

Although it makes a neat demo, we wouldn’t actually want

to run the ls command from a Go program: that

functionality is much better implemented in Go itself, and

we’ve seen how to do it in the chapter on filesystems.

    cmd.Run() 

}

go run main.go

func main() { 

    cmd := exec.Command("/bin/ls", "-l", 

"main.go")  

    cmd.Stdout = os.Stdout 

    cmd.Run() 

}



Similarly, there’s no benefit in shelling out (that is, invoking

a subprocess) to run standard file-management commands

such as mkdir, touch, rm, and so on. All of these things are

either already available in the standard library, or easy to

write in Go. Don’t shell out to an external command whose

functionality is easily replicated in native Go code. That just

adds an unnecessary dependency.

Suppose we wanted to do something a bit more advanced,

though, such as triggering a Kubernetes deployment with 

kubectl, or creating a cloud virtual machine with the 

gcloud, aws, or az commands. Would this be a good case

for running external commands from Go?

Not really. Apart from the dependency issue that we already

discussed, complicated programs like kubectl tend to

change over time. New flags and verbs are added, old ones

deprecated, and the behaviour of the program can change

radically.

A new version of kubectl could easily cause your Go

program to stop working properly. And since we usually

want the output from such tools, we have to parse it to get

the information we need, and that’s equally fragile.

Tiny changes in the output format of external commands

can completely break programs that rely on them, and this

kind of thing isn’t easy to test automatically.

A better approach is to look for a Go package that provides

the same, or similar functionality to the command-line tool.

Often, the CLI tool itself will use that package to implement

what it does.

For example, this is the complete main function for the 

kubectl tool, which I’m sure we will all agree does a lot:



(kubectl.go)

It doesn’t look like there’s much code here, but that’s the

point: this minimal main function just calls into the

accompanying cli package to do the actual work. And if 

kubectl can use that package, so could we.

All the important machinery of kubectl, then, is in Go

packages that we can import and use in our own programs,

which is sensible. Anything the kubectl binary can do, we

can do too, using pure Go, and without fragile dependencies

on external commands.

We’ve worked hard throughout this book to design programs

with a “minimal main”, and now that we’re looking at other

people’s programs from the user’s point of view, we can see

why that’s so valuable. main can’t be imported into any

program, so it shouldn’t do anything that might be useful to

others.

When to use exec

There are legitimate use cases for running external

commands from Go. For example, the purpose of the Go

program might be to run such a command, perhaps to

automate some process that’s currently done manually.

func main() { 

    command := cmd.NewDefaultKubectlCommand() 

    if err := cli.RunNoErrOutput(command); err != 

nil {  

        // Pretty-print the error and exit with an 

error.  

        util.CheckErr(err) 

    } 

}

https://github.com/kubernetes/kubernetes/blob/master/cmd/kubectl/kubectl.go


It may not be practical or desirable to completely replace

this command with a Go program, or at least not yet, so the

compromise option is to execute it from Go for the time

being.

And there isn’t always a convenient Go SDK or package that

we can use to get the same functionality that the command

provides. For example, the command might be written in C,

or use a C shared library. If this is the only implementation

of the necessary behaviour that exists, then we have no

choice but to use it, or write our own.

While we can use the cgo interoperability layer to call C

functions from Go, that’s always a last resort, and greatly

complicates our programs. In such a case, it would be better

to use exec to run some command instead, despite the

disadvantages that we’ve already discussed.

Migrating from shell scripts to Go

It’s sometimes said that the internet is held together with

shell scripts and duct tape, and it’s certainly true that a

great many organisations depend on some rather fragile

and ancient (and almost certainly buggy) shell scripts. While

the shell is a great tool for one-shot tasks and rapid

prototyping, it’s not ideal for developing robust,

maintainable software over the long term.

Why use Go to run commands?

It’s possible to write and maintain relatively robust shell

programs, but it’s uphill work. Just use Go instead. Go is a

much better language for this job, so many important

programs that were once made of duct tape are now being

migrated to Go.



When the program is a script that simply executes a bunch

of Unix commands, for example, the first step on the

migration path may well be to replace it with a Go program

that uses exec to run the same bunch of commands.

That may not sound like a big improvement, but we can do

a lot from this position. We can write unit tests, and use Go

for things like text processing, instead of relatively awkward 

grep, awk, and sed commands.

I yield to no one in my admiration of things like awk, and

even Perl: they’re terrific at doing what they do. What they

don’t necessarily do well is communicate data to and from

other tools, except in the very simple byte-oriented way

provided by the Unix API.

In other words, we can pipe lines of text in and out of tools,

but we can’t easily do complex filtering, logic, or

manipulation. That’s a job for a programming language.

Luckily, we have one.

A command wrapper in Go

When we need the behaviour provided by proprietary or

other closed-source programs, especially if they’re only

available as executable binaries, we may have no

alternative but to use exec.

The pmset command

For example, suppose we want to get the current battery

charge status on a Mac. We can do this easily on the

command line with the OS-specific pmset command:

pmset -g ps



Now drawing from 'AC Power' 

 -InternalBattery-0 (id=10879075) 98%; charging; 

    0:42 remaining present: true

Getting this information from a Go program is not so

straightforward, though. How does pmset do it? Looking at

the C source code for this command, we find that it gets the

data by making a system call to the macOS kernel.

While we could make the same system call from a Go

program, this is likely to involve a lot of paperwork; probably

more than we’d care to do just to get the battery status.

Although we don’t want to use external commands when it’s

easy to replicate their functionality in Go, that’s not the case

here. Running the pmset command makes our Go program

much simpler than it would be if we tried to implement the

same behaviour ourselves.

Since the pmset command is part of macOS, it’s fairly safe

to assume we’ll be able to execute it on any Mac. To put it

another way, executing the command is no less portable or

reliable than making the equivalent system call. And the

output doesn’t look too difficult to parse.

What can we test?

Let’s see how to approach writing a pmset wrapper in Go.

This will be a Go package that users can import and call

some function to get the current battery status, without

having to worry about how that actually works under the

hood.

If you’re not using macOS, just substitute some equivalent

command, such as acpi on Linux, or powercfg on Windows,

and make the appropriate tweaks to the code as you go.



The logic will be roughly the same whatever command

you’re using.

Go ahead and create a new folder for this project (you might

call it battery, for example). Now, what’s the first test we

should write?

Suppose what we want is some Go function that will give us

the current charge status of the battery. You might find it

difficult to think of any test that you could write for this: how

can you know in advance what the correct battery charge

status will be?

Any function that returns dynamic information based on

some external conditions can’t be tested by comparing its

result directly against expectation. We need to think harder.

Throughout this book we’ve been asking the question: what

behaviour are we really testing? So what’s the answer here?

It’s tempting to answer “The function correctly gets the

battery status”, but that’s wrong. The “getting the battery

status” behaviour isn’t actually in our code; it’s in the pmset

command. So what does our code do, then?

Breaking down behaviour into chunks

The behaviour we’re really testing in this case is in two

parts:

1. We execute the pmset command with the correct

arguments

2. We correctly parse the pmset output to get the battery

status

When you frame it this way, it’s easier to see how to test

these two chunks of behaviour, isn’t it? The “output” of the



first one is simply a string representing the appropriate 

pmset command line.

The “input” of the second behaviour is some string

representing the kind of text that pmset prints out when you

run it, and its output is whatever battery information we

manage to parse from it.

In between these two steps there’s some hidden stuff that’s

outside our code: basically, everything pmset does. And

we’re not interested in testing pmset, so we can focus

entirely on the two things our code does.

In this case, the first behaviour is trivial, since the required

command line is always the same: it’s just pmset -g ps. No

need to test that we can produce this string. We can

imagine situations where this could be more complicated,

and would need testing, but let’s consider this one solved

for now.

An otherwise hard-to-test function can often be broken

down into sub-behaviours, each of which can be refactored

out to a testable function. We can then trivially compose

these behaviours into a single function that users can call.

Parsing command output

The second behaviour needs a little more thought. First,

we’ll need some test input. The best test data is always the

real data, so let’s use pmset to generate it, and pipe the

output to a file in the testdata folder.

As we saw earlier, the result will be something like this:

mkdir testdata

pmset -g ps >testdata/pmset.txt



Now drawing from 'AC Power' 

 -InternalBattery-0 (id=10879075) 98%; charging; 

0:42 

remaining present: true

So that’s the input to our parsing function; what output do

we want? Well, there are several useful pieces of

information we could glean from this text, such as the AC

power status, the battery ID, its charge percentage, and the

charging time remaining.

That’s too much fun for one chapter. Let’s just focus on the

charge percentage for now: if we can extract that,

presumably we can extract the other things the same way.

We’d like to avoid being tempted into solving more

problems than we strictly need to.

Without worrying yet about exactly how we’re going to get

the charge number, we can certainly write a test for the

function that does it. Take a minute and try to sketch out a

suitable test.

GOAL: Write a test for the “parse pmset output for battery

charge percentage” behaviour. Use the real output from 

pmset -g ps as your test data.

HINT: First, what input will the function need to take? Well,

what we’ll have is a string, since the output from pmset is

plain text, so a string parameter sounds reasonable.

What about outputs? The most useful thing would be a

number representing the battery charge percentage, so we

could have the function return an int. pmset doesn’t report

fractional percentages, so int will be fine.



But, thinking ahead a little, we can see that there might be

other information we’ll want to extract from the data in

future. Can we leave room in our API for this?

We’d like to avoid changing the signature of our function, as

this would break any user code that calls it. Instead, it’ll be

convenient to have some struct type representing all the

information we want to know about the battery status. We

can always add new fields to it, without making breaking

changes to our public API.

So let’s define a want variable of this struct type, whose

only field (so far) is the charge percentage. To be

unambiguous, then, let’s name it ChargePercent.

And the rest should be straightforward: call the function,

and compare the result we got against want in our now-

familiar way.

Testing the parsing function

SOLUTION: Here’s my attempt at this:

func TestParsePmsetOutput_GetsChargePercent(t 

*testing.T) {  

    t.Parallel() 

    data, err := os.ReadFile("testdata/pmset.txt") 

    if err != nil { 

        t.Fatal(err) 

    } 

    want := battery.Status{ 

        ChargePercent: 98, 

    } 

    got, err := 

battery.ParsePmsetOutput(string(data))  

    if err != nil { 



(Listing battery/1)

This looks pretty much like most of the other tests we’ve

written, which makes it straightforward to understand. We

read the test data, call our parse function, and compare 

want against got.

What’s want? Our pmset output text shows a charge

percentage of 98, so that’s the ChargePercent we should

expect.

ParsePmsetOutput needs to return an error as well as the 

Status struct, because clearly parsing can fail: we might

not be able to make sense of the input if its format has

changed, for example.

Parsing command output

Let’s write a null implementation of ParsePmsetOutput and

check that we get the expected test failure:

-       ChargePercent: 98, 

+       ChargePercent: 0,

Good. This time, the test was the easy bit, and the

implementation might be more challenging. Let’s see.

GOAL: Implement ParsePmsetOutput.

Clarifying the problem

        t.Fatal(err) 

    } 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/battery/1/battery_test.go


HINT: This needs a little thought. Let’s clarify the problem

statement. We’re expecting input similar to our test data:

Now drawing from 'AC Power' 

 -InternalBattery-0 (id=10879075) 98%; charging; 

0:42 

remaining present: true

And we want to be able to extract the charge percentage: in

this case, the value 98. How could we do that?

It’s not a case of simple string matching, unfortunately. We

don’t know the value in advance, so we can’t search for it.

The value isn’t always at the same byte position in the text,

either, so we can’t just read bytes 63-64, or something like

that. We can’t even rely on counting words to get to the text

we want, since presumably the part about “drawing from

‘AC Power’” could change to something else.

What could we do?

SOLUTION: Some programmers, when confronted with a

problem like this, think “I know, I’ll use regular expressions!”

(Now they have two problems.)

What kind of regular expression would work here? Well, the

thing we want is a sequence of digits, but there’s more than

one such sequence in our example. Can we narrow it down a

bit more?

Writing a regular expression

On closer inspection, it seems that there’s only one digit

sequence followed by a % character, so we can try to match

that.

http://regex.info/blog/2006-09-15/247


Here’s a regular expression that will match one or more

digits followed by a %:

[0-9]+%

What can we do with that in Go? Here’s an example:

Our real string is different, but this simpler version will make

it easier to see what’s going on. First, we compile the

regular expression, which is like a mini-program, to get

some value r that we can use. Then, we call its FindString

method with our input text.

FindString returns the first string that completely matches

the specified regular expression, so in this case that’s:

98%

Great, but we only want the 98, not the trailing %. We need

to match the % character, to make sure we’ve got the right

digit sequence. But once we have it, we then want to

extract only the digits from it.

We can do this by adding parentheses to our regular

expression, to create a capturing group:

([0-9]+)%

If this expression matches a chunk of text, then we’ll be able

to extract just the contents of the capturing group: the part

inside parentheses. Here’s what that looks like:

r := regexp.MustCompile("[0-9]+%") 

result := r.FindString("the charge is 98%")



Whereas FindString only returns the entire matched string,

FindStringSubmatch returns a slice of strings. The first

element of this slice is the entire matched string, as before,

but the second is the contents of the capturing group.

If we had more groups in the regular expression, then there

would be extra elements in this slice, each holding the

contents of the corresponding group. But as it happens, we

only have one group, so the matches slice contains exactly

two elements:

["98%", "98"]

The second element is the one we want, and we can use the

index expression matches[1] to get it. Once we have that

string, we feel confident that we can use something like 

strconv.Atoi to turn it into an integer.

Now we have a plan. So how can we put all this together to

implement ParsePmsetOutput?

Using the regexp

It happens that the MustCompile operation is relatively

expensive, compared to the actual string matching. But

compilation only needs to be done once per program run, so

we can do it at package level, in a var statement.

If the call to MustCompile were instead inside our parsing

function, then the regexp would be recompiled every time

the function is called, which is unnecessary. Once we have

the compiled value, we can use it to match against any

number of input strings relatively cheaply.

r := regexp.MustCompile("([0-9]+)%") 

matches := r.FindStringSubmatch("the charge is 

98%")



Here’s my version of the function, then:

(Listing battery/1)

Having used the compiled pmsetOutput regexp to test the

input for matches, we now need to check whether or not it

actually matched. If it did, we should have the contents of

the capturing group, so there will be at least two elements

in matches. We can check len(matches) and return an error

if this isn’t the case.

Note that we include the output that we couldn’t parse: just

saying “failed to parse” would be no help, either to the user

var pmsetOutput = regexp.MustCompile("([0-9]+)%") 

 

func ParsePmsetOutput(text string) (Status, error) 

{  

    matches := 

pmsetOutput.FindStringSubmatch(text)  

    if len(matches) < 2 { 

        return Status{}, fmt.Errorf("failed to 

parse pmset \  

            output: %q", text) 

    } 

    charge, err := strconv.Atoi(matches[1]) 

    if err != nil { 

        return Status{}, fmt.Errorf("failed to 

parse charge \  

            percentage: %q", matches[1]) 

    } 

    return Status{ 

        ChargePercent: charge, 

    }, nil 

}

https://github.com/bitfield/tpg-tools2/blob/main/battery/1/battery.go


or the developer. Including the unparsable text in the error

message takes only a few more keystrokes, but makes a big

difference to the usefulness of the error.

Now we know that we successfully extracted the string of

digits we need, we can call strconv.Atoi to turn it into an

integer value. This returns error, because not all strings

represent valid integers. We feel pretty sure that ours will,

but again, let’s not take chances. So we check that error

too.

Finally, we have the int value we need, so we can construct

a suitable Status literal and set its ChargePercent field to

the value we calculated.

Let’s try the test again:

PASS

Mischief managed! We can now feel confident that, given

some genuine pmset output, we can extract the battery

status from it.

We can turn our attention, then, to the other part of the

task: getting that output in the first place. We can imagine

some function GetPmsetOutput that runs pmset using exec

and returns its output as a string.

But there’s a problem. If we’re not allowed to execute

external commands in a unit test, how can we possibly write

a unit test for such a function?

We can’t, clearly. But unit tests aren’t the only kind of tests

we can write.

Integration tests



A unit test, as the name implies, tests some unit of your

code, such as a function, usually in isolation. Its job is to

verify that the function’s logic is correct, so it tries to avoid

using any external dependencies, such as commands.

The job of an integration test, on the other hand, is to test

what happens when we do use those external

dependencies. It validates our assumptions about how they

work: for example, that we execute the right command in

the right way.

Why isolate integration tests?

Why make a distinction between these two kinds of tests?

Well, unit tests need to be fast and lightweight, because we

run them very often, and the only time they should fail is

when something’s wrong with our code.

We don’t need to run integration tests so often, though,

because the only way they could break is if something

external changed: the pmset command was updated or

removed, for example.

Unit tests check a program’s behaviour given certain

assumptions about external dependencies. Integration tests

check those assumptions are still correct. So it doesn’t

matter if integration tests are relatively slow, or use external

dependencies, as long as we can figure out a way to avoid

running them every time we run unit tests.

Build tags

One common way to control the execution of integration

tests is to use a build tag.

A build tag is a special comment in a Go file that prevents it

from being compiled unless that tag is defined. There are



some predefined build tags: for example, the tag windows is

defined if we’re building on Windows. Similarly, darwin and 

linux indicate macOS and Linux.

Here’s what specifying a build tag looks like in a Go file. It

needs to be the first line in the file, and be followed by a

blank line before the package declaration:

We could use this mechanism to provide OS-specific

implementations of a certain piece of code, for example. We

would write the macOS version in a Go file protected by the 

darwin build tag, the Linux version protected by linux, and

so on.

But we can also define arbitrary build tags of our own.

Suppose we put the following at the beginning of a new Go

file:

Now this file will be ignored by the Go tools unless the 

integration tag is defined, and under normal

circumstances it won’t be, because it’s not one of the

predefined tags. If the file contains tests, they won’t be run

by the go test command. If it contains implementations,

they won’t be built by go build, and so on.

So suppose we write some test for GetPmsetOutput and we

put it in its own Go file, protected by the integration build

//go:build darwin 

 

package ...

//go:build integration 

 

package battery_test



tag. It won’t be run by go test, which is what we want, but

then how do we run it when we want to?

The answer is that you can supply arbitrary build tags to the

go test command, so we would run something like this:

Now that tag is defined, so the file will become visible to Go,

and the test will be run. But if we don’t supply that tag on

the command line, it won’t.

Testing the command runner

What integration test should we write? We know we’re going

to call GetPmsetOutput, and that that function will execute

the pmset command. Fine. So what can we test about it?

Well, another way to phrase that question is to ask “What

could fail?” Clearly, running the command could fail for a

number of reasons, most likely that the command doesn’t

exist or has a different path.

If we ran this test on some non-macOS machine, for

example, it would presumably fail. So that’s one thing we

can check. In that case we’d get an error something like

this:

fork/exec /usr/bin/pmset: no such file or 

directory

If this happens in the test, we could do some work to make

the test failure friendlier. For example, we could check the

value of runtime.GOOS, which tells us what operating

system Go thinks it’s running on. If it’s something other

than darwin, we could report a failure like “This test will

go test -tags=integration



only work when run on macOS and when /usr/bin/pmset is

available.”

That’s getting a bit fancy, though, so for now we’ll just skip

the test, using t.Skip, if we can’t run the pmset command

for whatever reason.

There’s one other sanity check we need. Even if pmset is

available, on machines without batteries (a Mac mini, for

example), it won’t report anything useful to us. So if we

don’t find the string InternalBattery in the output from 

pmset, we should also skip this test.

Now it’s reasonably safe to call the function under test, so

what should we test about it? GetPmsetOutput returns a

string, so we could test that the string isn’t empty, but that

doesn’t prove much. Can we do more? We don’t know in

advance what the string actually is, so we can’t simply

compare it against a string literal.

But there’s something else we can do with it. We can pass it

to ParsePmsetOutput. After all, if we executed the pmset

command correctly, then its output should be parseable

without error, shouldn’t it?

So we can check the error value, but is there anything

useful we can test about the resulting Status struct? Not

really, it turns out.

We could look at the ChargePercent field and see if it has

the default value 0, indicating it hasn’t been set. But the

battery might really be 0% charged, in which case we’d get

a bogus test failure for code that’s actually correct.

In any case, we don’t actually need to check the result at

all. If ParsePmsetOutput doesn’t return error, then the



result is valid by definition. And we know that function

works, because it has its own test.

We’re not testing the parsing here, just using it to check

that pmset returned something parseable. If this is indeed

the case, then we feel we can’t have messed up too badly in

executing it. So we’ve done enough for now.

Here’s the test, then:

//go:build integration 

 

package battery_test 

 

import (

    "testing" 

 

    "github.com/bitfield/battery" 

) 

 

func TestGetPmsetOutput_CapturesCmdOutput(t 

*testing.T) {  

    t.Parallel() 

    data, err := exec.Command("/usr/bin/pmset", "-

g", "ps").  

        CombinedOutput() 

    if err != nil { 

        t.Skipf("unable to run 'pmset' command: 

%v", err)  

    } 

    if !bytes.Contains(data, 

[]byte("InternalBattery")) {  

        t.Skip("no battery fitted") 

    } 



(Listing battery/1)

Even if there’s no error from parsing the pmset output, it

would be nice to know what value is actually being parsed,

so we pass that to t.Logf. The output from this won’t be

printed unless the test fails, or unless we run go test with

the -v flag to enable verbose mode.

Running the command

If we supply a null implementation of GetPmsetOutput, we

should be able to run this test and see it fail:

--- FAIL: TestGetPmsetOutput_CapturesCmdOutput 

(0.00s) 

    battery_integration_test.go:19: failed to 

        parse pmset output: ""

Capturing output

Good. Now, how do we implement GetPmsetOutput? You

already know how to use exec.Command to create a

command object, and Run to run it. How can we get its

output as a Go value?

    text, err := battery.GetPmsetOutput() 

    if err != nil { 

        t.Fatal(err) 

    } 

    status, err := battery.ParsePmsetOutput(text) 

    if err != nil { 

        t.Fatal(err) 

    } 

    t.Logf("Charge: %d%%", status.ChargePercent) 

}

go test -tags=integration

https://github.com/bitfield/tpg-tools2/blob/main/battery/1/battery_integration_test.go


In our ls example, we set the Stdout field on the command

to send its output somewhere. We could use something like

a strings.Builder to capture it, but there’s an easier way.

The command object has an Output method that runs the

command and returns its output as a string. In fact, it’ll be

handy to get the standard error stream, too.

We can get both standard output and standard error in one

string, by calling CombinedOutput. Here’s what that looks

like:

(Listing battery/1)

This should pass the test, so let’s try:

fork/exec /usr/bin/pmset -g ps: no such file or 

directory

Oops. The command line is correct, as a single string, but

that’s not actually how you pass it to exec.Command.

It needs to be broken up into individual strings, one for each

command-line argument:

func GetPmsetOutput() (string, error) { 

    data, err := exec.Command("/usr/bin/pmset -g 

ps").  

        CombinedOutput() 

    if err != nil { 

        return "", err 

    } 

    return string(data), nil 

}

go test -tags=integration

https://github.com/bitfield/tpg-tools2/blob/main/battery/1/battery.go


Good thing we wrote that integration test, or we might not

have spotted that bug until we ran the program for real.

Let’s try again:

... 

    battery_integration_test.go:21: Charge: 100% 

--- PASS: TestGetPmsetOutput_CapturesCmdOutput 

(0.02s)

Not only does this pass, but thanks to the -v flag, we can

spy on the charge percentage value we passed to t.Logf:

Charge: 100%

There’s more we could do with this package, of course, but

it’s a good start. Some programmer out there will be glad

that we provided a straightforward way for them to get the

battery status in Go code. Otherwise, they’d have to do

what we did: work out what command to run, exactly how to

invoke it, parse its output, and so on.

When to import a third-party package

It’s worth saying a word or two about what to do when you

have some problem that isn’t trivially solved by the

standard library, like the battery status example. This

happens a lot, so how should we think about the right way

to proceed?

data, err := exec.Command("/usr/bin/pmset", "-g", 

"ps").  

    CombinedOutput()

go test -tags=integration -v



The first thing would be to look for some existing third-party

package (on pkg.go.dev, for example). If there’s already a

pure Go package that does exactly what we need, then

that’s wonderful—providing its licence allows us to use it,

naturally.

It sometimes happens, though, that the best we can find is

something that’s close to what we want, but not a perfect

match. We may need to do a fair bit of paperwork to get the

package to solve our problem, and at that point it’s worth

questioning whether we should import the package at all.

If we can import a package to save writing ten lines of Go

code, but it takes ten lines to use the package, then there’s

no real benefit from importing it. It might be better just to

copy the piece of code that we need directly into our

program.

If importing some package makes your program simpler, in

other words, then import it. If it doesn’t, don’t.

We need to keep in mind that imports aren’t free. Every

extra dependency for your program complicates the code,

slows the build process, and adds to the list of things that

could break your build for one reason or another.

Maybe the package pushed a breaking upgrade, or

introduced a critical bug, or maybe it was just deleted

altogether. Every import is a potential point of failure.

Even if we’re copying code rather than importing it, we’re

still introducing a foreign object into our program that could

contain bugs. If it doesn’t have its own tests that we can

copy, we should cover it with tests.

We can’t just take the attitude that if something is on

GitHub or StackOverflow, it must be fine. That’s very much

https://pkg.go.dev/


not the case, as a brief inspection of those sources will

confirm.

Go adoption is growing rapidly, after all, so statistically most

Go programmers must be relative beginners. By extension,

most Go code we find in the wild won’t be all that good.

That doesn’t mean we should never use “found code”: it just

means we shouldn’t assume it’s necessarily a model of good

Go style, or even that it works at all.

Going further

If you feel excited and inspired to write some interesting Go

programs that execute external commands, or even if you

don’t, here’s one suggestion.

Write a command in Go that times how long it takes to

execute some other command. For example, you could

use it like this:

Make sure the substantive functionality is part of an

importable package, so other people can use your code

in their own programs.

If you get stuck, take a sneak peek at my suggested

solution in listing howlong/1.

howlong sleep 1 

(time: 1.007s) 

 

howlong backup.sh 

... 

(time: 1h14m2s)

https://github.com/bitfield/tpg-tools2/blob/main/howlong/1


8. Shells

Individual people remain largely unprogrammable. They

do things that the most imaginative programmers do

not expect. And they want things that those

programmers cannot anticipate. 

—Scott Rosenberg, “Dreaming in Code”

In the previous chapter we saw how to run a command from

Go using the exec package. It’s not too hard to write a very

basic shell along these lines. What is a shell, actually?

Essentially, a shell reads lines from its input and executes

them as commands. Well, we know how to do both of those

things, so let’s have a little fun, and try to write the world’s

least featureful shell.

A simple shell

A shell is a good example of the kind of program that seems

intrinsically hard to test at first, because it’s interactive: it

gets input from the user, and sends output back. How can

you supply input in a test, or verify output? We’ve covered

https://amzn.to/3NrFwhi


some techniques in this book that can help solve these

problems.

Defining some behaviour

But it’s easy to fall into the trap of trying to write a test

before you’re completely clear in your own mind what the

behaviour should be. Let’s establish that firmly by writing

down some sensible assumptions about what a shell should

do:

1. It should read a line of input and interpret it as a

command line.

2. It should execute that command line and print the

output, along with any errors.

3. If the input line is empty, the shell should do nothing.

4. If the input line consists only of the end-of-file character

(EOF), the shell should exit (perhaps with a cheerful

message).

This is specific enough that we can at least feel more

comfortable about writing some tests. Not completely

comfortable, perhaps, but it’s a start.

If you’re not sure how to test something, it’s usually

because you don’t yet know exactly how it should behave.

And that’s very often the case.

It’s not impossible that we could eventually write some test

that covers all the specified behaviour, but that probably

won’t be a useful test for helping us implement that

behaviour. We’d like to break it up into smaller chunks, so

that we can start to build up the machinery we need, piece

by piece, test-first.

Identifying the first test



An important software design skill is breaking the problem

down into units of behaviour that we can envisage testing

and implementing independently.

Even though we’re concerned with testing behaviour, not

functions, it can be helpful to ask “Is there any piece of

behaviour here that might be implemented as a self-

contained function?”

If you can’t see how to test the whole program, that is, you

can ask instead “Well, what part of it could I test?”

Even if we can only find one thing, that will help us get

started. Suppose we start with the first behaviour:

interpreting an input line as a command.

We know that, whatever else it does, the program will need

to be able to take some string representing a command line,

and use the exec package to create a runnable Cmd object

from it. That sounds like something we could write a test for.

GOAL: Write a test for a function CmdFromString that takes

a string and returns the corresponding *exec.Cmd value.

The function should be able to handle space-separated

command-line arguments.

HINT: Again, even this simple-seeming test presents us with

some interesting little problems. The first puzzle is, what’s

our want?

Suppose we have some input like /bin/ls -l main.go, as

in our earlier example, and our function returns an

appropriately-configured *exec.Cmd. How can we check that

it’s correct?



We’d like to compare the result of CmdFromString against

some *exec.Cmd object that the test expects, but that might

not be straightforward. What can you come up with?

Comparing the incomparable

SOLUTION: We might start by trying an idea something like

this:

This looks reasonable, but doesn’t work:

want /bin/ls -l main.go, got /bin/ls -l main.go

Even though they print the same, it’s clear that want and 

got aren’t comparing equal. What’s going on?

We know they’re pointers, so rather than the general-

purpose %v, let’s use the special %p verb for pointers, to see

what they actually are:

This makes it clear why they’re not equal, and why

comparing pointers is meaningless:

func TestCmdFromString_CreatesExpectedCmd(t 

*testing.T) {  

    t.Parallel() 

    input := "/bin/ls -l main.go" 

    want := exec.Command("/bin/ls", "-l", 

"main.go")  

    got := shell.CmdFromString(input) 

    if want != got { 

        t.Errorf("want %v, got %v", want, got) 

    } 

}

t.Errorf("want %p, got %p", want, got)



want 0xc0000ec000, got 0xc0000ec160

They point to different locations in memory. What we really

wanted was to compare the structs they point to, not the

pointers themselves. Suppose we use the * operator to

dereference both values:

But this doesn’t work either:

invalid operation: *want != *got (struct 

containing []string 

cannot be compared)

Just as it’s not meaningful to compare two pointers, it’s also

not meaningful to compare two slices, because slices are,

like pointers, just references to some memory location

where the real data is stored. So comparing structs that

contain slice fields isn’t allowed.

Fortunately, we don’t need to examine the whole Cmd struct,

just its Args field. This is a slice, but we know how to use 

cmp.Equal to compare slices:

if *want != *got {

func TestCmdFromString_CreatesExpectedCmd(t 

*testing.T) {  

    t.Parallel() 

    input := "/bin/ls -l main.go" 

    want := []string{"/bin/ls", "-l", "main.go"} 

    cmd := shell.CmdFromString(input) 

    got := cmd.Args 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}



With a null implementation of CmdFromString that simply

returns an empty command, we should now see a test

failure, and so we do:

- "/bin/ls", 

+ "", 

- "-l", 

- "main.go",

GOAL: Make this test pass by implementing 

CmdFromString.

Parsing user input

HINT: What does CmdFromString need to do? Given some

string like "/bin/ls -l main.go", we want it to return the

result of:

This is really just splitting up the string by spaces, isn’t it?

We can use strings.Fields to do that:

Now we have a slice of strings args, containing each

element of the input line.

We know the pathname will be the first element: args[0].

The arguments will be all the remaining elements, 

args[1:]. By now, seeing a slice expression like that should

give you pause for thought.

Any time you write a line of code, you should ask yourself

“Under what circumstances would this not work?” Well, 

args[1:] wouldn’t work here if args is empty.

exec.Command("/bin/ls", "-l", "main.go")

args := strings.Fields(input)



So can the result of strings.Fields be an empty slice, in

fact? Good question. One does not simply refer to a slice

element that may or may not exist. Let’s check the

documentation for strings.Fields:

Fields splits the string s around each instance of one or

more consecutive whitespace characters, as defined by

unicode.IsSpace, returning a slice of substrings of s or

an empty slice if s contains only whitespace. 

(strings.Fields)

So args can be empty if input contains only spaces, or is

empty itself. In that case, would it even make sense to

construct a Cmd? No. It wouldn’t do anything when executed.

Should we just return nil if the input is empty? No, because

calling Run on a nil command would panic. So it looks like 

CmdFromString will need to return error in this case.

Let’s update the test, then:

func TestCmdFromString_CreatesExpectedCmd(t 

*testing.T) {  

    t.Parallel() 

    cmd, err := shell.CmdFromString("/bin/ls -l 

main.go\n")  

    if err != nil { 

        t.Fatal(err) 

    } 

    want := []string{"/bin/ls", "-l", "main.go"} 

    got := cmd.Args 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

https://pkg.go.dev/strings#Fields


(Listing shell/1)

To make sure the function does return error on empty input,

let’s add a new test for that:

(Listing shell/1)

SOLUTION: To pass this test we’ll have to check len(args),

and return an error if there isn’t at least one element.

Assuming there are enough elements, though, we can pass

them to exec.Command and return the result:

(Listing shell/1)

Why args[1:]...? We might instead have tried to write

just:

func TestCmdFromString_ErrorsOnEmptyInput(t 

*testing.T) {  

    t.Parallel() 

    _, err := shell.CmdFromString("") 

    if err == nil { 

        t.Fatal("want error on empty input, got 

nil")  

    } 

}

func CmdFromString(input string) (*exec.Cmd, 

error) {  

    args := strings.Fields(input) 

    if len(args) < 1 { 

        return nil, errors.New("empty input") 

    } 

    return exec.Command(args[0], args[1:]...), nil 

}

https://github.com/bitfield/tpg-tools2/blob/main/shell/1/shell_test.go
https://github.com/bitfield/tpg-tools2/blob/main/shell/1/shell_test.go
https://github.com/bitfield/tpg-tools2/blob/main/shell/1/shell.go


which looks reasonable, but doesn’t work:

cannot use args[1:] (value of type []string) as 

string value 

in argument to exec.Command

The result of args[1:] is a slice, but exec.Command doesn’t

take a slice: it’s variadic, so it takes any number of strings

instead. Therefore, we need to use the unroll operator “...”

to pass the individual elements of args[1:] as separate

arguments.

Prototyping

We have one component that we know we’ll need, but it’s

still not entirely clear where it will fit into the program as a

whole, or what else we might need. Let’s do some

prototyping so that we can work out what we even want,

before trying to build it.

A pseudocode outline

When you’re not sure about the overall structure of a

program, it’s a good idea to start by sketching out roughly

what the shell program will look like, in so-called

pseudocode:

repeat forever: 

    read input line 

    parse command 

    execute command 

    print output or error

We’re not quite ready to write a test for this, because we

need to flesh out a few more details. So let’s use a

return exec.Command(args[0], args[1:]), nil



technique I call, slightly tongue-in-cheek, main-driven

development.

We’ll write some main function that does roughly what we

want, because we’re not sure yet exactly what we want. We

need to see what it looks like in action, and probably tweak

a few details.

If you’re not sure what the test should test, try writing a

throwaway version of the function first, and test it. Then

throw it away. Let’s use that tactic here.

GOAL: Write a main.go that implements the basic shell

loop. Nothing fancy, just enough to get something on the

screen, so we can poke and prod at it.

HINT: Well, we know how to read lines from standard input,

using a bufio.Scanner: we did that back in the chapters

about the line counter. Let’s start with a loop like that, and

then add in a call to CmdFromString, to turn the user’s input

into a command object that we can run.

We also know how to run commands and get their combined

output, using CombinedOutput, as we did for the battery

status command in the previous chapter. See if you can put

these pieces together to create the beginnings of a shell.

Main-driven development

SOLUTION: Here’s my first attempt at the program (in 

cmd/shell/main.go):

func main() { 

    input := bufio.NewScanner(os.Stdin) 

    for input.Scan() { 

        line := input.Text() 



First, we construct a bufio.Scanner, so that we can read

the user’s input line by line. As usual, we loop over it using 

input.Scan.

Next, we use our existing CmdFromString function to parse

the command line and create a runnable Cmd object.

Finally, we use the CombinedOutput method to run the

command and get its standard output and standard error as

a string, which we print, along with any error.

It’s pretty basic, but it should do something. Let’s give it a

try:

Hmm, nothing. It’s waiting for input, but if we didn’t know

that, we might just think it wasn’t working.

Let’s make a note to add in a suitable prompt character to

make it more user-friendly.

What happens if we type in a command?

        cmd, err := shell.CmdFromString(line) 

        if err != nil { 

            continue 

        } 

        out, err := cmd.CombinedOutput() 

        if err != nil { 

            fmt.Println("error:", err) 

        } 

        fmt.Printf("%s", out) 

    } 

}

go run ./cmd/shell



hello

Nice! What about some command that doesn’t exist,

though; will we see an error?

error: exec: "bogus": executable file not found in 

$PATH

That looks sensible. What else shall we try?

Our “spec” says that empty lines should be ignored, so let’s

see what happens when we enter one. Nothing. Excellent.

Finally, what happens when we close the input stream

(which we can do by typing Ctrl-D)? We’d like the shell to

shut down cleanly, ideally with a polite farewell message,

but instead it just exits silently. That’s okay; we can work on

the politeness a little.

Feedback from user testing

That was an excellent user testing session. It’s always a

great idea to get your program in front of real users as early

as possible in its development. It’s easier to make changes

at this stage than later on, when we’ll have a lot more code

to modify.

The moment you actually use the program, you’ll see a lot

of problems with it. So don’t delay this moment until it’s too

late to fix them. Instead, get to a runnable program as

quickly as you can, and then run it. As soon as you become

a user of your own software, you immediately spot usability

echo hello

bogus



problems with it that you don’t see when you’re just looking

at the code.

Let’s make some changes based on our user testing

feedback, then. We need to handle empty lines correctly,

and add a shutdown message:

(Listing shell/1)

This looks much better. Let’s run a command again:

> ls 

cmd 

go.mod 

go.sum 

func main() { 

    fmt.Print("> ") 

    input := bufio.NewScanner(os.Stdin) 

    for input.Scan() { 

        line := input.Text() 

        cmd, err := shell.CmdFromString(line) 

        if err != nil { 

            continue 

        } 

        out, err := cmd.CombinedOutput() 

        if err != nil { 

            fmt.Println("error:", err) 

        } 

        fmt.Printf("%s", out) 

        fmt.Print("\n> ") 

    } 

    fmt.Println("\nBe seeing you!") 

}

go run ./cmd/shell

https://github.com/bitfield/tpg-tools2/blob/main/shell/1/cmd/shell/main.go


shell.go 

shell_test.go 

test.txtar

Nice! Let’s try quitting:

> ^D 

Be seeing you!

Indeed.

It’s precisely this sort of minor, but important, tweaking

that’s much easier to do in main. By the time we’ve moved

on to some large and fragile test that depends critically on

every newline and space, changing it will be painful.

Actually, it’s easiest to write this kind of transcript test when

the program’s more or less finished. By this point the exact

details of input and output should be more or less set. If we

should make some future change to the program that

causes it to behave differently, the transcript test will catch

it.

A stateful shell session

The next test will be interesting, because there are no more

obvious little units like CmdFromString to extract. But it’s

also not straightforward to turn our proof-of-concept main

function into something testable.

What would we like to write?

Let’s approach the problem from both ends at once. Firstly,

by writing the main.go we’d like to write. Secondly, we’ll try

to figure out how we could test the behaviour that we have.

The minimal main would be something like this, we imagine:



(Listing shell/2)

This is great, and we can test this CLI from a user’s point of

view with testscript, as we did with the line counter in

earlier chapters. But such end-to-end tests, while useful, are

always a bit limited. We can only interact with the program

in the way that a user would: by “typing” input and looking

at the response.

And when such a test fails, all it tells us is that something’s

wrong (which is still valuable)—but not what. To know that,

we’d need smaller, more focused tests that can call Go

functions directly and check their behaviour.

So what would that look like for Main? Are there any

potential problems with calling it from a Go test? Well, for

one thing, it needs to read user “input”. Reading from 

os.Stdin, while it works in the real program, won’t do much

in the test: since there is no input, the scanner will just wait

until the test times out.

Similarly, the shell will try to print results, and we don’t

want them to go to os.Stdout when that happens in a test.

package main 

 

import (

    "os"

 

    "github.com/bitfield/shell" 

) 

 

func main() { 

    os.Exit(shell.Main()) 

}

https://github.com/bitfield/tpg-tools2/blob/main/shell/2/cmd/shell/main.go


Tests should never produce any output on the terminal

except failure messages. So we’ll need a way to configure

the shell with at least input and output streams, as we did

for the line counter. And let’s add a standard error stream,

too, just for the fun of it.

In the line counter program, we created a special type of

object to hold the configuration and current state of the

counter, and we called it, straightforwardly, Counter.

What object would make sense?

So what’s the object here? We could call it a Shell, but that

doesn’t seem quite right. What we’re modelling is really the

state of a specific user’s interaction with the shell. They

start the shell, see a prompt, type a command, see the

result, perhaps repeat this for a few more commands, and

finally exit. So let’s call our object a Session.

If there’s a session object, then that also implies some

constructor function: NewSession, let’s say. And since

merely constructing the session shouldn’t necessarily start

it running, let’s also plan on giving it a Run method to do

this.

So what would Main do, given these facilities? It would first

need to construct a new session with the right configuration,

and then run it. That sounds pretty simple, so let’s just go

ahead and write it. If it’s not correct, we’ll soon find out.

func Main() int { 

    session := NewSession(os.Stdin, os.Stdout, 

os.Stderr)  

    session.Run() 

    return 0 

}



(Listing shell/2)

We didn’t bother with functional options here; you can add

them if you want to. Indeed, we could have made the 

NewSession API simpler still, by having it take no arguments

at all, and just letting users set the respective fields on the 

Session struct themselves, if they want to change the

defaults.

There’s no one right way to do this (that’s something you

won’t hear from most software engineers). It really is up to

you. My advice would be to make things as simple as they

can possibly be while still being useful. It’s easy to make a

program more complicated later, if it turns out you need to:

it’s much more difficult to make it simpler.

So, let’s start putting together the building blocks we need:

namely, NewSession and Run. It makes sense to start with a

test for NewSession, so over to you for this part.

GOAL: Write a test for NewSession.

Designing the Session object

HINT: The requirements for NewSession are that we create

some kind of struct to represent the session, and it needs to

be customisable with different input, output, and error

streams.

It sounds like a straightforward want and got comparison

should do the trick, but, as usual when writing tests, 90% of

the problem is just figuring out what our want is!

What do you think?

SOLUTION: Here’s my attempt:

https://github.com/bitfield/tpg-tools2/blob/main/shell/2/shell.go
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It doesn’t actually matter what values we assign to Stdin, 

Stdout, and Stderr, so long as they satisfy the required

interfaces. We may as well use the predefined os streams,

then, since the test won’t actually cause anything to be read

or written to them.

It might seem like this isn’t testing a lot: we just check that 

NewSession has indeed configured the session the way we

asked for. But that’s okay. Don’t be afraid, in general, to

write tests for functions that seem to have very simple

behaviour. Those are the best kind of functions, after all.

We feel this function should be pretty easy to write, too, so

let’s have a go.

GOAL: Implement NewSession.

func TestNewSession_CreatesExpectedSession(t 

*testing.T) {  

    t.Parallel() 

    want := shell.Session{ 

        Stdin:  os.Stdin, 

        Stdout: os.Stdout, 

        Stderr: os.Stderr, 

    } 

    got := *shell.NewSession(os.Stdin, os.Stdout, 

os.Stderr)  

    if want != got { 

        t.Errorf("want %#v, got %#v", want, got) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/shell/2/shell_test.go


HINT: We already did the heavy lifting in the test (which is

one reason I like writing tests first). The struct definition

practically writes itself!

Not quite, though, so you’ll need to give it a little help. Once

we have the Session type we need, then we can write 

NewSession to return an instance of it, configured as

requested.

SOLUTION: Just as in our previous programs, we’re looking

at defining some kind of struct type to represent our session

object. We need a Session struct with suitable fields (their

types are implied by the test) and the constructor can return

a pointer to a literal of this type.

So here’s something that would pass the test:

(Listing shell/2)

Running a session

type Session struct { 

    Stdin          io.Reader 

    Stdout, Stderr io.Writer 

} 

 

func NewSession(in io.Reader, out, errs io.Writer) 

*Session {  

    return &Session{ 

        Stdin:  in, 

        Stdout: out, 

        Stderr: errs, 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/shell/2/shell.go


Since merely creating a session doesn’t actually do

anything, once we have the Session object we’ll need to

give it a Run method, to start things happening.

Testing Run might be a little more tricky. Try this yourself

first, and then we’ll work through it together.

GOAL: Write a test for Run.

HINT: We’ll need to call Run in the test, but hold on: once

we’ve done that, it won’t return until the session is complete

and the “user” has “exited”.

So we’ll need to supply some simulated user input,

representing one or more commands. When the session has

consumed it all, Run should return.

We’ll also need to check the output of the session, so let’s

construct a buffer to receive it in the same way that we’ve

done in previous tests.

Testing the Run method

SOLUTION: Here’s a first cut:

func TestRunProducesExpectedOutput(t *testing.T) { 

    t.Parallel() 

    in := strings.NewReader("echo hello\n\n") 

    out := new(bytes.Buffer) 

    session := shell.NewSession(in, out, 

io.Discard)  

    session.Run() 

    want := "> hello\n> > \nBe seeing you!\n" 

    got := out.String() 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 



(Listing shell/2)

Let’s break this down.

Because Run is supposed to have an interactive session with

the user, and expects to get the user’s input from a reader,

we construct a strings.Reader containing the command 

echo hello (plus a couple of newlines).

If all goes well, the shell should read the user’s command,

run it, and send the output to the session’s configured

output writer (in this case, the buffer out). We can read that

output afterwards to see what happened.

So what’s our want here? This is a bit tricky. The first thing

the shell should print is the prompt character, >, followed by

a space. It will then try to read some input.

The first line of input will be echo hello. This should cause

the echo command to print the string hello, followed by a

newline, and we should then see the prompt character

again.

The next line of input is empty, which should result in

another prompt character and space. When the shell tries to

read more input, it will hit the end of our strings.Reader

buffer, which should trigger the goodbye message.

So our want string contains the sum of these expected

outputs:

    } 

}

want := "> hello\n> > \nBe seeing you!\n"

https://github.com/bitfield/tpg-tools2/blob/main/shell/2/shell_test.go


You might expect to see the user’s command here, too, but

think about how most shells work: you type in your

command, and it prints the output. It doesn’t print your

command back to you: you can see what you just typed,

because it’s already in your terminal window.

So the only output the shell should produce here is its

prompts, the result of the fake user’s echo command, and

the goodbye message.

If we wanted to test a longer and more complicated session,

it would be a good idea to compare it against a golden file,

that is, a text file containing the exact output we want. We’ll

come back to golden files later in this book.

This test is correct, then, as it stands, but there’s still a

problem. Can you see what it is?

GOAL: Work out what is wrong (or at least not ideal) with

this version of the Run test.

Dependencies on external commands

HINT: It’s always a good idea to avoid external

dependencies in tests, especially when they’re not obvious.

Can you see the hidden external dependency here?

It’s echo. Running the test with this input will cause Run to

actually execute the echo hello command, if it can… but

can it?

It’s common nowadays for automated CI systems to run

tests in scratch containers. These don’t contain the binaries

for cat, echo, and so on. Indeed, a true scratch container

contains nothing at all, hence “building from scratch”.



It’s not safe to assume, then, when running Go tests, that

any external program exists. Even if it does, we still don’t

really want to run external programs in unit tests.

Running commands is relatively slow. Also, the commands

could have unwanted side effects, and we already know

tests shouldn’t have side effects.

But unless we supply some commands for the shell to

execute, we won’t know if that behaviour really works. So

what can we do?

We need some way that the shell can tell us it understood a

line of input as a command, but without actually running it.

We could write an integration test, as we did in the chapter

on commands, but let’s think more creatively. What can you

come up with?

A dry-run mode

SOLUTION: One way to do this is to provide some kind of

dry-run mode. Many command-line tools have a mode like

this: they will tell you what they would have done, without

actually doing it. This can be very helpful for real users, as

well as for testing.

Suppose we added a bool field on the session object named

DryRun, for example. We can set that field in the test, and

the Run method can check it before actually running any

command.

If DryRun is set, what should happen instead of running the

command? Well, for testing purposes it’ll be helpful if the

shell simply prints the command it would have executed.

That way, we can check it by looking at the output buffer.

GOAL: Update the test to use DryRun.



HINT: Well, we’ve imagined a field named DryRun on the

session object, and we’ve said it sounds like a boolean. In

the test, we want dry run mode to be active, so that

commands aren’t run for real, just echoed to the output

instead.

We can’t set a field on the session object before it exists, so

the change to the test will need to come after the call to 

NewSession. If we set the field to true, and then call Run,

what output should we expect?

It won’t be hello, as it would have been if we’d really run

the echo command. Instead, we should see the whole

command (echo hello) printed to the session’s output

writer.

Can you figure it out?

SOLUTION: Here’s the updated test:

func TestRunProducesExpectedOutput(t *testing.T) { 

    t.Parallel() 

    stdin := strings.NewReader("echo hello\n\n") 

    stdout := new(bytes.Buffer) 

    session := shell.NewSession(stdin, stdout, 

io.Discard)  

    session.DryRun = true 

    session.Run() 

    want := "> echo hello\n> > \nBe seeing you!\n" 

    got := stdout.String() 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}
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Note that we now expect to see the echo hello command

itself echoed to the output. We could imagine that if the

shell did more sophisticated things with its input, such as

expanding wildcards or variable references, this would be a

good way to see (and test) the results.

We haven’t made DryRun an argument to NewSession,

though; why not? The answer is that real users wouldn’t

normally want to enable dry-run mode, so they’d always

have to supply a “mystery false”:

We already know this kind of thing is an API smell.

Accordingly, we make the DryRun field exported, and set it

in the test using a direct assignment.

Implementing Run

We’re now in a position to implement the Run method: we

can move the existing code from main, make the necessary

changes, and add the dry-run check. Over to you!

GOAL: Implement Run.

HINT: We don’t need to worry about writing any new code

for looping, reading lines from the user and turning them

into commands, or even executing them. We already have

all that stuff in listing shell/1, and we can lift and shift it into 

Run.

Your job, effectively, is to turn our old main function into a 

Run method on the session object, and also add the DryRun

functionality so that we can call it in test mode.

shell.NewSession(in, out, err, false)

https://github.com/bitfield/tpg-tools2/blob/main/shell/3/shell_test.go
https://github.com/bitfield/tpg-tools2/blob/main/shell/1/cmd/shell/main.go


In other words, if DryRun is true, then instead of calling 

CombinedOutput to run the user’s command, we should just

print the input line to the output and continue.

As usual, the test will tell you when you’ve got it right, so

see what you can do.

SOLUTION: Here’s my version:

(Listing shell/3)

func (s *Session) Run() { 

    fmt.Fprintf(s.Stdout, "> ")

    input := bufio.NewScanner(s.Stdin) 

    for input.Scan() { 

        line := input.Text() 

        cmd, err := CmdFromString(line) 

        if err != nil { 

            fmt.Fprintf(s.Stdout, "> ") 

            continue 

        } 

        if s.DryRun { 

            fmt.Fprintf(s.Stdout, "%s\n> ", line) 

            continue 

        } 

        output, err := cmd.CombinedOutput() 

        if err != nil { 

            fmt.Fprintln(s.Stderr, "error:", err) 

        } 

        fmt.Fprintf(s.Stdout, "%s> ", output) 

    } 

    fmt.Fprintln(s.Stdout, "\nBe seeing you!") 

}

https://github.com/bitfield/tpg-tools2/blob/main/shell/3/shell.go


It’s relatively long and complicated, but that’s okay: we at

least have working code, as defined by the tests. That gives

us the luxury of time to refactor it if we want to, since we

already solved the user’s problem. As a bonus, we’ll know

straight away if our refactoring breaks anything: the tests

will tell us!

What’s still missing

It’s time to run the updated program and try some more

advanced things, to see if we have all the facilities we’d

expect from a shell.

Globbing

One thing we’d expect to be able to do is to refer to a bunch

of files at once, using a glob expression, involving a

wildcard. For example:

> cat *.go 

error: exit status 1 

cat: *.go: No such file or directory

That’s weird: there are some files in this folder that should

be matched by *.go. Why can’t we see them?

Well, it turns out that globbing—expanding wildcards such

as * into a list of filenames—isn’t actually done by cat and

other commands. This is something the shell itself would

normally do, and it would then pass the list of matching files

as individual arguments to cat.

But we haven’t implemented that behaviour yet, so that’s

one for our wishlist of future user stories.

Redirection

go run ./cmd/shell



Let’s try something else: using the familiar shell redirect

feature. For example, we’d expect to be able to redirect the

output of a command such as echo by using the > operator

to send it to a file. Here goes:

> echo hello >tmp.txt 

hello >tmp.txt

Well, that is actually what we asked for, but it’s not quite

what we expected!

Our shell doesn’t know about redirection, so it just ran the 

echo command with the literal string hello >tmp.txt. echo

did what it was told and echoed that string to the output. So

we should also add redirection to our wishlist.

Piping

What about chaining commands together with the | (pipe)

symbol? This should send the output of one command to the

input of the next. For example:

> grep Test shell_test.go | wc -l

error: exit status 2 

grep: |: No such file or directory 

grep: wc: No such file or directory 

shell_test.go

We wanted the output of the grep command—all the lines in

shell_test.go matching the string Test—to be piped into

the wc command, to count the matches.

What actually happened was that grep received three extra

arguments: |, wc and -l. The latter is a valid flag to grep,

coincidentally, but it interpreted | and wc as the names of

files. Since no such files exist, grep complains and bails out.

Quoting



One other feature familiar from shells like zsh and bash is

being able to quote filenames, or other arguments, that

contain spaces. Without quoting, each word would be

interpreted as a separate argument.

Let’s see what happens when we try to create a file with

spaces in the name:

> touch "filename with spaces" 

> ls 

"filename 

spaces" 

with

Hmm. We actually created three separate files instead.

Handling quoted arguments will need a little more work:

another one for the wishlist.

Nor do we have any kind of line-editing, command history,

string manipulation, environment variables, arithmetic, or a

way to configure the prompt.

We’re also missing facilities for job control: for example,

interrupting a running command, or running commands in

background. But we have a decent proof of concept, and

while it wouldn’t exactly be delightful to use this shell as our

Unix environment, we could use it.

It’s not that we particularly need a new shell, anyway. But

any tool that needs to interact with users could use similar

machinery, couldn’t it? It’s quite common for command-line

programs to have some kind of interactive, shell-like

interface, and it makes for a simpler API.

Something else that standard shells offer is a scripting

capability. Actually, we already have this in a limited form.

Since our shell reads commands from standard input, we



could use another shell to pipe the contents of a script file

into it.

However, users wouldn’t be able to write very complicated

programs: our simple shell doesn’t have any control flow

constructs such as if or for. So there’s no way to write

loops or logic at the moment.

That’s okay, though, since we’re focusing on a tool for

interactively running commands, rather than implementing

a scripting language. And while shell scripts are great for

one-off tasks, they’re not the best way to write robust and

maintainable programs for use in production.

For that, we need a real programming language; fortunately,

we have an excellent one to hand. In the next chapter, we’ll

see how to use Go to implement some of the kind of tasks

that have traditionally been done with shell scripts.

Going further

It’s fun to write shells, and while the world certainly doesn’t

need another shell, who cares what the world thinks?

Programming is enjoyable for its own sake, to a certain kind

of person.

If you’re that kind of person, and given that you’re reading

this, I suspect you are, here’s one idea you could work on:

Add a transcript feature to the shell, so that it

automatically saves the session to a file in the current

directory named transcript.txt. The file should

contain both the user’s input and the shell’s output, so

that it more or less mirrors exactly what the user saw in

the terminal.



This could be useful for audit purposes, for example, or

for recording what you do so that you can review it later.

A transcript is also a good way to document system

procedures: you can show readers exactly what they

should type and what they should expect to see in

response.

You can see one possible way to do this in listing 

shell/4.

https://github.com/bitfield/tpg-tools2/blob/main/shell/4


9. Pipelines

That was the big revelation to me when I was in graduate school

—when I finally understood that the half page of code on the

bottom of page 13 of the Lisp 1.5 manual was Lisp in itself.

These were “Maxwell’s Equations of Software”! This is the whole

world of programming in a few lines that I can put my hand

over. 

—Alan Kay, “ACM Queue: A Conversation with Alan Kay”

So far in this book, we’ve focused on applications: software that

directly solves user problems. But not all software engineering is

about writing applications.

Developers also need tooling: programs and services to automate

everyday tasks like configuring servers and containers, running

builds and tests, deploying their applications, and so on.

And, of course, all of this relies on the underlying system software

such as the OS kernel, networking stack, cluster orchestrators, and

what-not. Somebody has to write (and maintain) that stuff, too.

A realistic operations task

How suitable is Go for such software, then? We know that Go has

many advantages for general programming: it’s fast, scalable,

maintainable, and developers can be productive with it pretty

quickly. What about using Go for tooling and systems code, though?

https://queue.acm.org/detail.cfm?id=1039523


Well, in these domains, what really matters about software is its

correctness and reliability. Can Go help here?

Well, maybe. Because Go is a compiled language with a strong type

system, the compiler can do a lot to help us write correct programs.

Go also surfaces runtime errors in a way that makes them hard

(though, sadly, not impossible) to ignore. In turn, this helps us

produce robust, reliable programs.

Matching and counting log lines

Let’s think about a typical devops-type task such as counting the

lines in a log file that match a certain string (“error”, for example).

What’s a good way to write this code?

Most experienced Unix users would probably write some kind of

shell pipeline to do this. A pipeline is a set of commands joined at

their inputs and outputs, so data can flow between them, with the

overall job control handled by the shell.

For example:

The grep command filters its input, producing only lines that contain

“error”, while wc -l simply counts the number of lines it receives.

The overall effect of this pipeline is to print the number of lines in 

log.txt that contain “error”. The shell makes it easy to compose

individual commands like grep and wc in this way to do virtually

anything you want.

A quick shell spell

But shell wizards can do much more. For example, suppose we have

a web server access log to analyse. Here’s a typical line from such a

log: it contains the client’s IP address, a timestamp, and various

information about the request.

203.0.113.17 - - [30/Jun/2019:17:06:15 +0000] "GET / 

HTTP/1.1" 

    200 2028 "https://example.com/ "Mozilla/5.0..."

grep error log.txt | wc -l



And suppose we want to find the top ten most frequent visitors to

our website, by IP address. How could we do that?

Each line represents one request, so we’ll need to count the lines for

each IP address, sort them in descending order of frequency, and

take the first ten.

A shell one-liner like this would do the job:

This extracts the IP address from the first column of each line (cut),

counts the number of unique values (uniq -c), sorts them in

descending numerical order (sort -rn), and shows the first ten

(head).

Since virtually all Unix commands can accept data on standard

input, and write results to standard output, some very complex

pipelines that can be constructed this way, using only the shell’s

simple pipe operator.

The shell and its associated userland tools, it turns out, make this

kind of work easy, and that’s no surprise. The particular dialect

understood by the shell is not a general-purpose programming

language like Go; rather, it’s a domain-specific language optimised

for writing system tools and one-off scripts, like our visitor-counting

example.

Solving the problem with Go

Let’s try to write a similar kind of program in Go, then, just for fun,

and we’ll see how easy or hard it is compared to doing the same job

with the shell’s language.

GOAL: Write a Go command that reads a log file in this format,

counts the number of requests made by each IP address, and prints

a table of the top ten IP addresses by number of requests. Use the

example log file in listing visitors/1 as input.

cut -d' ' -f 1 log.txt | sort | uniq -c 

    | sort -rn | head

https://github.com/bitfield/tpg-tools2/blob/main/visitors/1/log.txt


HINT: While the task is well-defined, this program is by no means

easy to write in Go. It’s certainly hard to make it as concise as the

shell version, but don’t worry about that. Just focus on getting the

frequency data we need, by any means, fair or foul.

When it’s not clear right away how to solve a problem, try breaking

it down into smaller sub-problems first. For example, we might

break down the tasks this way:

1. Open the file and scan it line by line.

2. Extract the IP address from the line.

3. Increment some counter for this IP address.

4. When done reading the file, sort the results by frequency.

5. Print the final frequency table.

Taking these tasks one at a time is easier psychologically, because

we can focus on a comparatively small problem. As we check off

more and more tasks, it also helps boost our confidence that we’ll

get to the end goal.

Try this approach and see how far you can get.

SOLUTION: Something like this might do the job:

package main 

 

import (

    "bufio" 

    "fmt" 

    "log" 

    "os"

    "sort" 

    "strings" 

) 

 

func main() { 



(Listing visitors/1)

There are several problems with this program, not least that it’s

pretty complicated. You might like to test your code-reading skills by

    f, err := os.Open("log.txt") 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 

        os.Exit(1) 

    } 

    defer f.Close() 

    input := bufio.NewScanner(f) 

    uniques := map[string]int{} 

    for input.Scan() { 

        fields := strings.Fields(input.Text()) 

        if len(fields) > 0 { 

            uniques[fields[0]]++

        } 

    } 

    type freq struct { 

        addr  string 

        count int 

    } 

    freqs := make([]freq, 0, len(uniques)) 

    for addr, count := range uniques { 

        freqs = append(freqs, freq{addr, count}) 

    } 

    sort.Slice(freqs, func(i, j int) bool { 

        return freqs[i].count > freqs[j].count 

    }) 

    fmt.Printf("%-16s%s\n", "Address", "Requests") 

    for i, freq := range freqs { 

        if i > 9 { 

            break 

        } 

        fmt.Printf("%-16s%d\n", freq.addr, freq.count) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/visitors/1/main.go


figuring out how it works, but I’m by no means recommending it as

a model of Go style.

It’s just a quick, untested, hack, and that’s partly the point. In

devops work we’re often required to solve problems quickly, rather

than elegantly. The server could be on fire now, and we need to

figure out which IP address is burning it down. It’s much quicker and

easier to do that with the shell, and the resulting program is much

simpler.

So this isn’t a very satisfactory result for us Go fans. If Go is so

great, why doesn’t it seem to be a good fit for this problem? What

kind of code would we like to write instead?

In what language would this be easy?

Given the nature of the problem, we’d prefer to express the solution

as a pipeline, just like the shell program. How could we express that

in Go? What about something like this?

In other words, read the file log.txt, take its first column, sort by

frequency, get the first ten results, and print them to standard

output.

Not only is this extremely concise, it’s arguably even clearer than

the shell pipeline. So, can we make it real? Let’s have a think.

Programs as pipelines

Throughout this book, we’ve used the “Zen mountaineering”

technique of software design: write the code we wish we could

write, and then derive the necessary architecture to make that code

possible.

Well, then, how shall we tackle this problem as Zen mountaineers?

We’ve done the first part already: we have a program that looks

nice. So what else would we need to build in order for this program

to work as written?

File("log.txt").Column(1).Freq().First(10).Stdout()



One notable thing about the program is that it seems to consist

mainly of a series of method calls. For example:

Column is clearly a method on something here, as is Freq: the dot

notation tells us that. But methods on what kind of type, exactly?

A fluent API

It makes sense to assume that each of these methods will form

independent, reusable stages, and that we could put them together

in any order to compose the operations we want. So what does that

imply?

Well, Column, Freq, and friends would all have to be methods on the

same type for that idea to work. Let’s call it Pipeline, and assume

it’ll be some kind of struct. If every method on a pipeline also

returns a pipeline, then we can chain together as many of these

method calls as we want.

This pattern is sometimes called a fluent API, in the sense that data

“flows” through the pipeline, with the output of one method forming

the input to the next. It’s just like the shell pipeline that we saw at

the beginning of this chapter. This sounds promising!

A question occurs to us at this point, though: what happens when

there’s an error?

Errors in sequenced operations

Clearly pipeline stages can have errors. For example, 

File("log.txt") could fail because the file doesn’t exist or we

can’t read it. Normally we’d have the method return an error result

to deal with this.

But the File method can’t return an error result here, because then

we wouldn’t be able to chain method calls together. If we’re going to

call Column on the result of File, then File can only return one

value, not two.

... .Column(1).Freq() ...



If File can only return a pipeline, then what happens if that pipeline

is invalid, and we then call some method on it like Column? We don’t

want to blow up the program with a panic. We’ll need some way for 

Column to know if it actually has some valid data to read, or not.

To explain how this could work, let’s think about a simpler program

for a moment. Suppose you have some io.Writer, perhaps

representing a file, and you need to write many short pieces of data

to it.

Every individual write operation can potentially return an error, so

you’d have to check each one in turn. Something like this:

Repetition isn’t a problem in itself, but is this repetition really

necessary? Do we actually need to check the error from each

individual Write operation? Or do we really only care about whether

an error happened somewhere in the sequence?

func write(w io.Writer) error {

    metadata := []byte("hello\n") 

    _, err := w.Write(metadata) 

    if err != nil { 

        return err 

    } 

    _, err = w.Write(metadata) 

    if err != nil { 

        return err 

    } 

    _, err = w.Write(metadata) 

    if err != nil { 

        return err 

    } 

    _, err = w.Write(metadata) 

    if err != nil { 

        return err 

    } 

    return nil 

}



We take exactly the same action on every error, and it’s always to

bail out and return the error. It seems like we should be able to do

that just once, instead of after every write operation.

Could we just check the final value of err, then, after all the writes

have finished? No, because it’s possible that some write failed, but

subsequent writes succeeded. The err variable would have been

overwritten with nil by the time we check it.

It would look like everything was okay, except that we would have

silently lost some of the user’s data. And that’s a problem. What can

we do about this?

GOAL: Think of a way to solve this problem that eliminates the

repeated if err != nil blocks. Implement your idea and see if it

works.

HINT: If we’re not going to check the error result after each Write,

then we need to make it safe for Write to be called even when

there’s been a previous error. The only safe thing to do in such a

situation is nothing, so let’s just return.

But how can Write know that a previous call to Write encountered

an error? Only by checking the value of some variable that persists

across multiple calls to the function. But what?

We know that a global variable is always the wrong answer,

whatever the question. So what if we stored the error result in some

struct, and then made Write a method on that struct instead?

Now Write can look at the error field on its receiver, and if it’s not 

nil, just return without doing anything. Nice.

Assuming there was no previous error, though, we can go ahead and

do the write. That could fail, of course, and if that happens, we know

what to do: store the resulting error on the receiver so that future

calls to Write will see it and bail out.

Can you go ahead and implement this scheme?

An error-safe writer



SOLUTION: As we discussed, “remembering” the previous error

status would be easy if Write were a method on some struct. And

such a struct would also be the ideal place to store the destination

writer, so that we don’t have to keep passing it to Write again every

time.

We could call this struct type an “error-safe writer”: one that

behaves normally until there’s an error, at which point all

subsequent writes are skipped. After the user’s done with all their

writes, they can check the error field on the struct to see if there

was a problem at any point during the sequence.

Let’s start with the struct type. How about something like this:

(Listing safewriter/1)

We can now add Write as a method on this new type. We know

exactly what it needs to do, because we already worked it out:

check the error, do the write, and save the error.

Here goes:

(Listing safewriter/1)

Let’s refactor our original write function to use the safe writer,

removing the now-unnecessary error checks:

type safeWriter struct { 

    w     io.Writer 

    Error error 

}

func (sw *safeWriter) Write(data []byte) { 

    if sw.Error != nil { 

        return 

    } 

    _, err := sw.w.Write(data) 

    if err != nil { 

        sw.Error = err 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/safewriter/1/main.go
https://github.com/bitfield/tpg-tools2/blob/main/safewriter/1/main.go


(Listing safewriter/1)

Pretty sweet. Now that we know what to do, it’s almost trivial to

implement a “safe-whatever” when we need it. Some people

complain that Go is a bad language because they end up writing if 

err != nil a lot, but really, that’s up to them. It’s not a

requirement of the language, as we can see.

Putting the pieces together

We now know one way to eliminate errors from our pipeline, but we

still have a bit more thinking to do. It’s not really clear yet how the

methods on Pipeline can actually work.

How does data flow from one method to another?

It looks like each method reads data from somewhere, but where?

Let’s work backwards from the end of the pipeline. Here’s our

example again:

The last method call in the chain is Stdout, which we suppose will

write the contents of the pipe to standard output. What is “the

contents of the pipe”? Logically, it must be the output of the

previous stage: First(10).

So what’s that? Well, First outputs the first N lines of the contents

of its pipe; that is, the output of the previous stage, Freq. And so on.

func write(w io.Writer) error {

    metadata := []byte("hello\n") 

    sw := safeWriter{w: w} 

    sw.Write(metadata) 

    sw.Write(metadata) 

    sw.Write(metadata) 

    sw.Write(metadata) 

    ... 

    return sw.Error 

}

File("log.txt").Column(1).Freq().First(10).Stdout()

https://github.com/bitfield/tpg-tools2/blob/main/safewriter/1/main.go


It looks like each method just reads from something in the Pipeline

struct. But what? Well, io.Reader would make sense, wouldn’t it?

Let’s write some code. We’ll start with something that looks

relatively easy, like Stdout. Naturally, we’ll start with a test.

GOAL: Write a test for Stdout.

Testing the end of the pipeline

HINT: There’s something unusual about Stdout, compared to the

other methods in the sample program: what is it? Interestingly, it’s

not a pipeline stage.

In other words, it doesn’t return a Pipeline for further methods to

be called on. Instead, it’s the end of a pipeline. It reads the final

contents of the pipe, after it’s filtered through all the methods in the

chain.

What happens to that data? Well, the name Stdout suggests that it

should go to standard output. That’s the behaviour we need to test,

but it’ll be easier to do that if the pipeline has some kind of “output

writer” that we can configure.

So we’ll construct a Pipeline with some data in it, set its Output to

a buffer we prepared earlier, and call Stdout. We can then check

the contents of the buffer to see if they’re what we expected.

But what do we expect? We need a pipeline containing some text,

so that there’s something to write. How would we create such a

pipeline?

What we’d like is some function that creates a pipeline from a given

string: FromString, perhaps. Let’s pretend such a function exists,

and keep thinking. What else would the test need to do?

Well, we’ve said there’s some Error field on the pipeline that

enables the “safe writer” pattern. Actually, in this case it’s a “safe

reader”, but the principle is exactly the same.

What should we expect about the final value of the Error field? We

can assume that writes to our test buffer will succeed, so in that



case Error should be nil.

Finally, we can check the contents of the buffer against the string

we started with. Sound reasonable? Have a go!

SOLUTION: Here’s my version of the test:

(Listing pipeline/1)

Things are starting to come into clearer focus. We’re ready to start

adding the necessary bits and pieces for the test to compile.

GOAL: Get this test compiling!

Breaking ground

HINT: First, we need to create a pipeline module, a pipeline.go

declaring package pipeline, and so on.

We’ll need a Pipeline struct type, with an Error field, and we also

need an Output field so that we can attach it to our test buffer.

To construct the test pipeline, we’ll need to provide a FromString

function. We know the pipeline’s methods will be pointer methods,

func TestStdoutPrintsMessageToOutput(t *testing.T) { 

    t.Parallel() 

    want := "Hello, world\n" 

    p := pipeline.FromString(want) 

    buf := new(bytes.Buffer) 

    p.Output = buf 

    p.Stdout() 

    if p.Error != nil { 

        t.Fatal(p.Error) 

    } 

    got := buf.String() 

    if !cmp.Equal(want, got) { 

        t.Errorf("want %q, got %q", want, got) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline_test.go


so it makes sense for FromString to return a pointer to Pipeline.

Finally, to run the test we’ll have to supply at least a null

implementation of Stdout.

SOLUTION: Here’s what that could look like:

This compiles, so we’re ready to run the test:

--- FAIL: TestStdoutPrintsMessageToOutput (0.00s) 

panic: runtime error: invalid memory address or nil 

pointer 

dereference [recovered] 

panic: runtime error: invalid memory address or nil 

pointer 

dereference 

[signal SIGSEGV: segmentation violation code=0x1 addr=0x0 

pc=0x112c228] 

...

Whoops! Let’s see which test line is panicking:

package pipeline 

 

import "io" 

 

type Pipeline struct { 

    Output io.Writer 

    Error  error 

} 

 

func FromString(s string) *Pipeline { 

    return nil 

} 

 

func (p *Pipeline) Stdout() {}

p.Output = buf



That makes sense: FromString currently just returns nil, so p is 

nil, and and we can’t dereference a nil pointer. What do we need to

add to prevent the test from panicking, then?

Not much, it turns out. All we need to do is have FromString return

a pointer to an empty Pipeline, instead of nil:

Now the test fails as expected:

want "Hello, world\n", got ""

See if you can fill in the missing code.

GOAL: Get this test passing.

Getting the test passing

HINT: In order for the test to pass, buf needs to contain the string 

Hello, world\n. So how would that string get into the buffer?

The answer is that Stdout must write it there: that is, it must write

the data to the pipeline’s Output. But how would it know what string

to write?

Since Stdout takes no arguments, the only place the data could

come from is some field on the Pipeline. And we said earlier that 

io.Reader would be a sensible type for this.

SOLUTION: Let’s add a suitable field to store the reader, then:

(Listing pipeline/1)

func FromString(s string) *Pipeline { 

    return &Pipeline{} 

}

type Pipeline struct { 

    Reader io.Reader 

    Output io.Writer 

    Error  error 

}

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline.go


Next, we’ll have the FromString function create a strings.Reader

out of the supplied string:

Now we’re ready to implement Stdout. When you want to copy the

contents of a reader to a writer, io.Copy is a neat solution:

(Listing pipeline/1)

This passes the test, but we’re not quite done with Stdout yet: we

haven’t made it error-safe. See what you can do.

GOAL: Make Stdout error-safe.

Adding error safety

HINT: As usual, we’ll start by adding a failing test. What should it

look for? Well, if we have some pipeline whose Error field is set—we

can set it ourselves to some non-nil value—then Stdout should do

nothing!

Translating that into a test, we could say, suppose we have a

pipeline created from some string (it doesn’t matter what). If we

then set an error on the pipeline object and call its Stdout object, it

should produce no output—that is, the buffer it’s writing to should

be empty.

Updating Stdout to check the error and short-circuit is

straightforward: it’s just like our safeWriter’s Write method from

earlier on.

Over to you, then. Get piping!

func FromString(s string) *Pipeline { 

    return &Pipeline{ 

        Reader: strings.NewReader(s), 

    } 

}

func (p *Pipeline) Stdout() { 

    io.Copy(p.Output, p.Reader)

}

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline.go


SOLUTION: We could write the test something like this:

(Listing pipeline/1)

This fails, not surprisingly, because we haven’t done that bit yet:

want no output from Stdout after error, but got "Hello, 

world\n"

Let’s add the error-checking code:

(Listing pipeline/1)

We now have all tests passing, so let’s pause and reflect on the

progress we’ve made. Just by reasoning backwards from the sample

code, we’ve designed a package, its core struct type, a way to get

input into the pipeline and output out of it, and we’ve deduced

several important things about the way it needs to work.

func TestStdoutPrintsNothingOnError(t *testing.T) { 

    t.Parallel() 

    p := pipeline.FromString("Hello, world\n") 

    p.Error = errors.New("oh no") 

    buf := new(bytes.Buffer) 

    p.Output = buf 

    p.Stdout() 

    got := buf.String() 

    if got != "" { 

        t.Errorf("want no output from Stdout after error, 

\  

            but got %q", got) 

    } 

}

func (p *Pipeline) Stdout() { 

    if p.Error != nil { 

        return 

    } 

    io.Copy(p.Output, p.Reader)

}

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline_test.go
https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline.go


Obviousness-oriented programming

In fact, we never really needed to solve any hard puzzles, did we?

Each stage of the design followed logically from the previous one,

more or less. We didn’t need to come up with brilliant leaps of

intuition at any point: instead, all we needed to do was think clearly

and work methodically towards the goal.

If you find yourself with a hard problem, stop, and renegotiate an

easier problem. In other words, if we’re writing complicated code,

something’s gone wrong. We shouldn’t congratulate ourselves on

having written such a hairy program: we should instead be

wondering what’s wrong with our basic approach.

This point is well illustrated by reading certain parts of the standard

library, for example. It all looks so simple and straightforward! We

search in vain for brilliancies, but the code just plods onwards, step

by obvious step, doing one simple thing after another. By the end

we feel as though we must have missed something: maybe the

clever code was in some other file.

But there is no clever code. Instead, the cleverness of the standard

library, and other well-written programs, is at a higher level: in the

design. Everything is very carefully and thoughtfully structured so

that when you get down to the level of individual functions or

statements, the code follows clearly and elegantly, even

necessarily, from the design.

This simplicity is characteristic of really excellent programs, and it

doesn’t arise by accident. It was the goal all along. I call this

obviousness-oriented programming, and it’s the only kind of OOP

that I think is worthwhile.

If you can’t see any clever code, then you’re looking at a clever

design. Let’s see if we can apply the same kind of thinking to the

rest of our pipeline program.

Trying it out

As we saw in the previous chapter, it’s always a good idea to get

your code in front of users as soon as possible, so that they can tell



you it’s not what they want. Also we need to see that the code

works correctly when it’s run by users, not just by tests.

Tests always fail to capture something important about the

production environment: we just don’t know what, until we try the

program out for real.

Hello, world

Let’s write a program that uses pipeline to do something. It

doesn’t have to be anything fancy. We’ll try just printing a string to

the standard output:

This is so simple, it can hardly go wrong, can it?

panic: runtime error: invalid memory address or nil 

pointer  

dereference [signal SIGSEGV: segmentation violation 

code=0x1  

addr=0x18 pc=0x105a8bd] 

 

goroutine 1 [running]: 

io.WriteString({0x0, 0x0}, {0x108322c, 0xc}) 

        /usr/local/go/src/io/io.go:314 +0x7d 

...

The world strikes back

Whoops! Looks like I spoke too soon. Why would there be a panic

calling WriteString on our output? Well, if the output was nil, for

example.

package main 

 

import "github.com/bitfield/pipeline" 

 

func main() { 

    pipeline.FromString("hello, world\n").Stdout() 

}

go run main.go



Let’s look again at where we create the Pipeline struct in 

FromString:

Looks like we never set an Output on the pipeline at all. In the tests,

we set it to a *bytes.Buffer, necessarily, since we want to capture

it. But when we call FromString from our main.go, we get a pipeline

with a nil output, hence the crash.

This is a good example of a bug that’s hard to catch in tests: failing

to set a default value for something that is overriden by a test! We

could have written ever more elaborate tests for this, of course, but

the quickest way to find this bug is simply to run a real program and

watch it crash.

Setting defaults with a constructor

We could fix this bug by setting Output to os.Stdout in the 

FromString function, but let’s be intelligent about it. Since we’ll

eventually want to create pipelines from several different sources,

there will be multiple places in the code where we could forget to

set a default Output writer.

Instead, let’s write one piece of code to create a Pipeline, and get

it right. Then we can use it in every function that creates a pipe

source.

(Listing pipeline/1)

Great. Now we can rewrite FromString in terms of this new

constructor function:

func FromString(s string) *Pipeline { 

    return &Pipeline{ 

        Reader: strings.NewReader(s), 

    } 

}

func New() *Pipeline { 

    return &Pipeline{ 

        Output: os.Stdout, 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline.go


(Listing pipeline/1)

This should fix our panic:

hello, world

That’s more like it. We now have a robust “new pipeline” function

we can use throughout the package, and we don’t need to worry

about forgetting to set that Output field. Any time you find a bug

caused by forgetting to do something, consider restructuring the

code so that you can’t forget to do it, because you don’t have to

remember.

Reading data from files

In the sample program, the pipeline needs to read text from a file,

not a string. Since we already have a function FromString, let’s call

the corresponding function that creates a pipeline from a file 

FromFile, for symmetry. How could we implement it?

GOAL: Implement the FromFile function, test-first.

HINT: We already have a test that ensures the pipeline contains

some specified text, so we can use that as a starting point.

The only difference here is that the text will come from a file, rather

than a string. To check it, we won’t need to call Stdout; we can read

directly from the pipeline’s Reader instead (using io.ReadAll, for

example).

Since that can fail, we’ll also need to set the error field on the

pipeline in this case (and don’t forget to test this behaviour too).

func FromString(s string) *Pipeline { 

    p := New() 

    p.Reader = strings.NewReader(s) 

    return p 

}

go run main.go

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline.go


SOLUTION: Here’s a test that looks reasonable. If we create a file in

the testdata folder containing the expected text, then opening it

with FromFile and reading the resulting pipeline should produce the

same text we started with:

(Listing pipeline/1)

Clearly there can be an error opening a file, but the semantics of the

FromFile function demand that it returns only *Pipeline, not 

error, as we’ve already seen.

Instead, the pipeline itself will hold any error in its Error field. Let’s

write the “invalid input” test now:

func TestFromFile_ReadsAllDataFromFile(t *testing.T) { 

    t.Parallel() 

    want := []byte("Hello, world\n") 

    p := pipeline.FromFile("testdata/hello.txt") 

    if p.Error != nil { 

        t.Fatal(p.Error) 

    } 

    got, err := io.ReadAll(p.Reader) 

    if err != nil { 

        t.Fatal(err) 

    } 

    if !cmp.Equal(want, got) { 

        t.Errorf("want %q, got %q", want, got) 

    } 

}

func TestFromFile_SetsErrorGivenNonexistentFile(t 

*testing.T) {  

    t.Parallel() 

    p := pipeline.FromFile("doesnt-exist.txt") 

    if p.Error == nil { 

        t.Fatal("want error opening non-existent file, 

got nil")  

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline_test.go


(Listing pipeline/1)

Here’s a null implementation of FromFile to get the tests compiling:

Another pipeline explosion

What happens if we run the tests now? Alas, there’s a panic at this

line:

And that makes sense, because p.Reader was never set to

anything, so it still has the default value for any interface type: that

is, nil.

Is this the same kind of bug as we found with the user testing

session earlier in this chapter when we forgot to set a default 

Output on the pipeline? Not really, because while there’s a sensible

choice for a default output (os.Stdout), that doesn’t apply to

inputs.

If the user tries to create a pipeline without setting its input, for

example, we want them to be alerted to that fact right away.

Defaulting to os.Stdin would just leave their program apparently

hanging. In fact, it would be waiting for some input on the terminal,

but there would be nothing to indicate that. It might take quite a

while for the user to figure out what’s gone wrong.

So in this case we don’t want to add a default Reader to the

constructor function New. That would hide program errors, whereas

we want to expose them; and a panic is pretty hard to ignore.

Instead, while we’re stubbing out our FromFile function to validate

the test, we’ll set a valid Reader on the pipeline that just doesn’t

happen to contain anything:

func FromFile(pathname string) *Pipeline { 

    return New() 

}

got, err := io.ReadAll(p.Reader)

p := New() 

p.Reader = strings.NewReader("") 

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline_test.go


This eliminates the panic:

--- FAIL: TestFromFile_SetsErrorGivenNonexistentFile 

(0.00s) 

    pipeline_test.go:48: want error opening non-existent 

file, 

    but got nil 

--- FAIL: TestFromFile_ReadsAllDataFromFile (0.00s) 

    pipeline_test.go:40: want "Hello, world\n", got ""

The failure of the “error” test makes sense, because we never

actually set the pipeline’s error status. The failure of the “valid

input” test also makes sense, because we know the pipeline doesn’t

contain what it’s supposed to. We haven’t written any code to

actually read the data yet.

We can now fill in the missing pieces:

(Listing pipeline/1)

Normally we would want to defer a call to f.Close here, but that

won’t work: the file needs to stay open. If we close it as soon as 

FromFile returns, then we won’t be able to read anything from it

later. We’ll touch on a possible solution to this problem later in the

chapter.

We’ve now implemented both ends of the pipeline, so to speak. We

have some sources that put data in, FromFile andFromString. We

return p

func FromFile(pathname string) *Pipeline { 

    f, err := os.Open(pathname)

    if err != nil { 

        return &Pipeline{Error: err} 

    } 

    p := New() 

    p.Reader = f 

    return p 

}

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline.go


also have a sink, Stdout, that takes it out. Now, how could we add a

method in the middle of a pipeline?

Filtering data

Most pipelines take data from a source, pass it through one or more

filters, or intermediate stages, and send it to some sink. Let’s try to

write a filter, then, and see how it works out.

Extracting columns

The first filter method in our example program was Column, which

extracts a specified column from the input.

For example, suppose we have some input lines consisting of

whitespace-separated data:

1 2 3 

1 2 3 

1 2 3

Filtering this data through a pipeline stage like Column(2), for

example, should eliminate all but the second field of the input (that

is, the second column, if we think of this as a table). The result:

2 

2 

2

That sounds like a test we could write. Let’s try.

GOAL: Write a test, or tests, for Column.

HINT: We know how to create a new pipeline from a given string,

and we can have the test call Column(2) on it, for example. What

next? How do we check if Column did the right thing?

We could, as before, create a buffer, set it as the pipeline’s output,

and call Stdout, but that’s tiresome. Since we’ll often want the

pipeline’s output as a string in real programs, let’s add a String

sink method, too, so that we can use it in this test.



Once you’ve done that, writing the Column test becomes easier. We

can create a pipeline containing some text in columns (separated by

whitespace). We can then use Column to filter that data by column,

and finally call String to check that we got the result we expect.

A String sink

SOLUTION: So, let’s push the Column test onto our mental stack for

a moment while we work on the tests for String. Something like

this, for example:

(Listing pipeline/1)

func TestStringReturnsPipeContents(t *testing.T) { 

    t.Parallel() 

    want := "Hello, world\n" 

    p := pipeline.FromString(want) 

    got, err := p.String() 

    if err != nil { 

        t.Fatal(err) 

    } 

    if !cmp.Equal(want, got) { 

        t.Errorf("want %q, got %q", want, got) 

    } 

} 

 

func TestStringReturnsErrorWhenPipeErrorSet(t *testing.T) 

{  

    t.Parallel() 

    p := pipeline.FromString("Hello, world\n") 

    p.Error = errors.New("oh no") 

    _, err := p.String() 

    if err == nil { 

        t.Error("want error from String when pipeline has 

\  

            error, but got nil") 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline_test.go


In other words, if the pipeline contains “Hello, world”, then calling 

String should produce that same string, and no error. Alternatively,

if the pipeline has an error, then String should return an empty

string plus the error.

Great. That’s not too hard to implement:

(Listing pipeline/1)

You might ask, why return error from a method like String, given

that we already have an Error field on the pipeline? Why not just

return a string, and let the user check p.Error manually?

Well, they might forget to check, and it’s very idiomatic for Go

functions to return “something and error” to remind them. We’ll

adapt that convention for our purposes and have the pipeline as a

whole return something and error.

Testing Column

Now that we have an easy way to get the pipeline contents as a

string, we can finish writing TestColumn:

func (p *Pipeline) String() (string, error) { 

    if p.Error != nil { 

        return "", p.Error 

    } 

    data, err := io.ReadAll(p.Reader) 

    if err != nil { 

        return "", err 

    } 

    return string(data), nil 

}

func TestColumnSelectsColumn2of3(t *testing.T) { 

    t.Parallel() 

    input := "1 2 3\n1 2 3\n1 2 3\n" 

    p := pipeline.FromString(input) 

    want := "2\n2\n2\n" 

    got, err := p.Column(2).String() 

    if err != nil { 

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline.go
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We create a pipeline with our example input, call Column(2) on it,

and check that we get exactly the second column of input returned

from String (and no error).

Speaking of errors, do we need a “what if there’s an error” test, too?

We surely do, because the required behaviour of Column if the

pipeline has an error is to do nothing.

Unless we explicitly check for a pipeline error, though, it will do

something, and that’s wrong. Let’s add a new test, then:

(Listing pipeline/1)

There’s a little wrinkle here that needs further explanation. Why

can’t we just call String on the pipeline to see its result?

        t.Fatal(err) 

    } 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

func TestColumnProducesNothingWhenPipeErrorSet(t 

*testing.T) {  

    t.Parallel() 

    p := pipeline.FromString("1 2 3\n") 

    p.Error = errors.New("oh no") 

    data, err := io.ReadAll(p.Column(1).Reader) 

    if err != nil { 

        t.Fatal(err) 

    } 

    if len(data) > 0 { 

        t.Errorf("want no output from Column after error, 

but \  

            got %q", data) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline_test.go
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Because String itself does nothing when the pipeline has an error.

So String effectively hides the error-handling behaviour of any

previous stages.

We need to check that Column has produced no output, though, so

what can we do? We can read everything from the pipeline’s 

Reader. This should return exactly nothing (and no error).

Testing that a function does nothing might seem weird, but

sometimes that’s the most important thing a function can do.

Are we done with testing Column? Well, not quite. There’s another

“invalid input” case to test.

Validating arguments

Since Column takes a numeric argument representing the column to

cut, that argument could be invalid. It doesn’t make sense to ask for

Column(0) or Column(-1), for example, so what should happen in

that case?

The Column method itself can’t return an error, as we know. So if we

supply an invalid argument to Column, we should expect to find the

pipeline’s Error field to be set afterwards. And if that’s so, then

reading data from the pipe should produce nothing, whatever the

input was.

Let’s try:

func 

TestColumnSetsErrorAndProducesNothingGivenInvalidArg(t 

*testing.T) {  

    t.Parallel() 

    p := pipeline.FromString("1 2 3\n1 2 3\n1 2 3\n") 

    p.Column(-1) 

    if p.Error == nil { 

        t.Error("want error on non-positive Column, but 

got nil")  

    } 

    data, err := io.ReadAll(p.Column(1).Reader) 

    if err != nil { 
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To get these tests compiling, we’ll need a null implementation of 

Column. To avoid panics, let’s use FromString to create a pipeline

containing just the string bogus:

This looks good, and all three tests are now failing as expected:

TestColumnSelectsColumn2of3: string( 

        -   "2\n2\n2\n", 

        +   "bogus", 

          ) 

TestColumnProducesNothingWhenPipeErrorSet: want no output 

from  

Column after error, but got "bogus" 

TestColumnSetsErrorAndProducesNothingGivenInvalidArg: 

want error  

on non-positive Column, but got nil

Now it’s over to you again to make these tests pass.

GOAL: Implement Column.

Implementing Column

HINT: Let’s first deal with the error-handling behaviour. The tests

require us to short-circuit and set the pipeline’s Error if the column

argument is zero or negative, and we can do that.

        t.Fatal(err) 

    } 

    if len(data) > 0 { 

        t.Errorf("want no output from Column with invalid 

col, but \  

            got %q", data) 

    } 

}

func (p *Pipeline) Column(col int) *Pipeline { 

    return FromString("bogus") 

}
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Secondly, if there’s already an error on the pipeline, we should set

the pipeline’s reader to the empty string and return. That’s

straightforward.

The main behaviour of Column, though, is to extract the specified

column from the input. How could we do that?

We can read the input line by line, and we know how to do that

using bufio.Scanner. We also know we can get individual columns

with strings.Fields. So what do we do with each column value

once we’ve extracted it?

One idea is to write it to a buffer, which will then serve as the reader

for the pipeline we return. Can you turn this scheme into working

code?

SOLUTION: Here’s my attempt:

func (p *Pipeline) Column(col int) *Pipeline { 

    if p.Error != nil { 

        p.Reader = strings.NewReader("") 

        return p 

    } 

    if col < 1 { 

        p.Error = fmt.Errorf("bad column %d: must be 

positive",  

            col) 

        return p 

    } 

    result := new(bytes.Buffer) 

    input := bufio.NewScanner(p.Reader) 

    for input.Scan() { 

        fields := strings.Fields(input.Text()) 

        if len(fields) < col { 

            continue 

        } 

        fmt.Fprintln(result, fields[col-1]) 

    } 

    return &Pipeline{ 



(Listing pipeline/1)

The script package

If you implemented Column a different way, that’s completely fine.

We’ve said all through this book that, provided the tests are correct,

the exact implementation you choose doesn’t matter. If it behaves

as it should, reads clearly, and is as simple as possible (but no

simpler), then it’s good enough to ship.

Was this a waste of time?

You might be objecting by now that we seem to have written a long

and complicated package purely so that we could use it to write a

short and simple program. You’ve got some attitude, mister. But

isn’t that exactly what good software engineering is about, actually:

creating useful abstractions?

The plain-ol’-Go version of the access log program only did one very

specialised job, so in that sense writing it was a waste of time. It’s

no help to us with any other kind of problems.

By contrast, writing our pipeline package was an excellent use of

time. We can now use the facilities it provides to write not only the

access log counter, but any number of other programs, in a very

clear and simple way.

Writing a one-off program is an expense, but writing a reusable

package is an investment. For example, if we implemented a few

more sources (Stdin) and a few more filters (First, Last, Match, 

Replace), we’d be well on the way to being able to replace a good

many shell scripts with Go programs.

For things the pipeline package doesn’t yet do, we could add a

filter method that sends the data through any external Unix

command. That gives us some flexibility and enables a gradual

migration from shell script to pure Go program.

        Reader: result, 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/pipeline/1/pipeline.go


Introducing script

There is (not by coincidence) a Go package that implements the

ideas described in this chapter, along with many others:

https://github.com/bitfield/script

script is designed precisely to make it easy to write Go programs

that chain together operations into a pipeline, in the same way that

shell scripts do. It works in more or less the way we’ve discussed in

this chapter, with a few extra bells and whistles.

For example, script pipelines automatically close their input files

after reading, in the same sort of way that we discussed in the

chapter on arguments.

You can use script to construct the sort of simple one-off pipelines

that would otherwise require the shell, or special-purpose tools that

need to do text filtering.

Some simple one-liners

Here’s a simple version of the Unix cat command, for example. Like 

cat, it concatenates all the files you give it as arguments, and sends

the result to its output:

Well, that was easy! We can also use script to write a basic version

of the grep command:

package main 

 

import (

    "fmt" 

    "os"

 

    "github.com/bitfield/script" 

) 

 

func main() { 

    script.Args().Concat().Stdout() 

}

https://github.com/bitfield/script


Or something like echo, for example:

What about ls? Listing files is easy, but let’s do a little more. We’ll

use a regular expression to suppress “dotfiles”: files whose names

begin with ., such as .zshrc.

There’s a very useful Unix command xargs, which lets us execute a

given command repeatedly, once for each line of input. We can do

something similar to this using script’s ExecForEach method:

For each filename produced by ListFiles("*"), this will run the

command echo with that filename as its argument. Because 

ExecForEach takes a Go template string, you can use it to construct

some fairly complex commands.

More sophisticated programs

As you’d expect, script also lets us concisely express the kind of

programs we’ve considered in this chapter, such as the access log

analyser:

We’re not limited to getting data only from files or commands. We

can make HTTP requests too:

That’s great for simple GET requests, but suppose we want to send

some data in the body of a POST request, for example:

script.Stdin().Match(os.Args[1]).Stdout()

script.Args().Join().Stdout()

dotFiles := regexp.MustCompile(`^\.`) 

script.ListFiles(".").RejectRegexp(dotFiles).Stdout()

script.ListFiles("*").ExecForEach("echo {{.}}").Stdout()

script.Stdin().Column(1).Freq().First(10).Stdout()

script.Get("https://wttr.in/London?format=3").Stdout() 

// Output: 

// London: Sunny +13°C



If, as is common, the data we get from an HTTP request is in JSON

format, we can use JQ queries to interrogate it:

Concurrent pipeline stages

We can also run external programs and get their output:

Note that Exec runs the command concurrently: it doesn’t wait for

the command to complete before returning any output. That’s good,

because this ping command will run forever (or until we get bored).

Instead, when we read from the pipe using Stdout, we see each line

of output as it’s produced:

PING 127.0.0.1 (127.0.0.1): 56 data bytes 

64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.056 ms 

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.054 ms 

...

Custom filter functions

If there doesn’t happen to be a built-in script method that does

what we want, we can just write our own, using Filter:

script.Echo(data).Post(URL).Stdout()

data, err := script.Do(req).JQ(".[0] | {message: 

.commit.message, \  

    name: .commit.committer.name}").String()

script.Exec("ping 127.0.0.1").Stdout()

script.Echo("hello world").Filter(func (r io.Reader, w 

io.Writer) error {  

    n, err := io.Copy(w, r) 

    fmt.Fprintf(w, "\nfiltered %d bytes\n", n) 

    return err 

}).Stdout() 

// Output: 

// hello world 

// filtered 11 bytes

https://stedolan.github.io/jq/


The function we supply to Filter takes just two parameters: a

reader to read from, and a writer to write to. The reader reads the

previous stages of the pipe, as you might expect, and anything

written to the writer goes to the next stage of the pipe.

If our filter function returns some error, then, just as with the Do

example, the pipe’s error status is set, and subsequent stages

become a no-op (that is, they short-circuit without doing anything).

Filters run concurrently, so the pipeline can start producing output

before the input has been fully read, as it did in the ping example.

In fact, most built-in pipe methods, including Exec, are implemented

using Filter.

The aim of software engineering, as we’ve discussed, is not merely

to write programs to solve specific problems, but to create a new

kind of “language” in which it’s easy and natural to solve a general

class of problems. It makes sense, then, that script should largely

be written in itself.

Solving problems

Let’s apply the script package to some of the problems we’ve

already solved together in this book, and see if it helps at all. What

about the line counter, for example? Could we shorten that a little?

Well, this isn’t bad. Of course the earlier program that we developed

together is much better. It has a few more facilities, such as

counting words or bytes, for example, and is generally more helpful

and user-friendly.

But if we just want to quickly count some lines in a bunch of files,

this does the job, and we can get it working with very little time and

effort. Which is the point, of course.

The Go file finder is a lot smaller this way, too:

lines, err := script.Args().Concat().CountLines()

goFiles := regexp.MustCompile(".go$") 

script.FindFiles(".").MatchRegexp(goFiles).Stdout()



And, of course, we already know what the visitor-counting program

looks like:

You get the idea. We wouldn’t necessarily want to write all our

important tools this way, but script is useful for quick-and-dirty

little scripts that we might otherwise write as shell one-liners.

It also gives us some handy convenience methods that let us write

more sophisticated systems tools in Go, without quite so much

boilerplate required for straightforward things like reading a file and

matching text.

The landscape of simple programs

The real takeaway of this chapter, then, is not that you should use

the script package for writing devops tools and shell-like scripts,

though naturally you’re welcome to do so if you like.

The point is rather that when plain Go doesn’t provide a convenient

way to solve some problem, you yourself can use it to implement a

“language” that does.

In this case, we used Go to provide the language of Unix-style

pipelines. But we could have chosen any architecture we wanted to

suit the problem.

If Go doesn’t already provide the tool you need, use Go to build that

tool, then use it. A great way to discover such an architecture is to

write the easy, simple code that you’d like to be able to write, and

then reason backwards from it to the program architecture that

makes it possible.

Going further

If you found this chapter easy going, try this extra-credit challenge:

Use the script package to write a program that counts the

number of non-blank lines of Go code in a project. It should

recursively find all Go files in the tree rooted at the current

script.File("log.txt").Column(1).Freq().First(10).Stdout()
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directory, count their lines (ignoring any blank lines), and report

the final total.

For example, you might run it something like this:

You've written 719 lines of Go in this project. Nice 

work!

You should find that script has the necessary facilities to do

this calculation in a single pipeline. Alternatively, you could

extend the pipeline package developed in this chapter so that

you can use it to implement this program.

If you’d like some inspiration, have a look at the suggested

implementation in listing loc/1.

loc

https://github.com/bitfield/tpg-tools2/blob/main/loc/1


10. Data

A parser for things 

Is a function from strings 

To lists of pairs 

Of things and strings 

—Graham Hutton, “Programming in Haskell”

All programs are about data, in some sense. Some of the

data in our programs is transient: it only exists while the

program is running (sometimes not even that long). But we

often need persistent data, too: data that stays around even

after the program has exited.

For example, a to-do list app that couldn’t save its data

wouldn’t really be much use. You’d have to keep it running

all the time, and if it ever crashed, or your computer

rebooted, you’d lose all your reminders. (Some people might

consider this a feature, not a bug.)

Marshalling

https://amzn.to/3O2cTY5


So we need to be able to send data from a program out into

the world in some way, perhaps into a disk file, or some

cloud storage, or a relational database, or some kind of

service that consumes it.

We need a way of putting our data into a format that can

exist outside our program. Let’s call this process

marshalling, and the inverse operation unmarshalling.

We could marshal Go data into many formats: plain text,

base64-encoded text, SQL results or queries, TCP/IP packets,

and so on. Whatever the target format, the idea is basically

the same.

Serialisation

The simplest imaginable way to format data for

transmission is as a stream of bytes. This kind of

marshalling is called serialisation, and we’ve already seen in

this book that byte-stream abstractions can be powerful: 

io.Reader, for example.

So how should we represent Go values as bytes? The

answer is that it doesn’t matter, as long as both the

producer and the consumer can agree on how to do it.

If we’re serialising data to be read back into our own

program later, or if we’re sending it to another Go program,

we can use an efficient “Go-aware” byte format. The

standard library provides such an encoding, called gob.

The gob package

The encoding/gob package can serialise most kinds of Go

values to bytes, with a few exceptions. Serialising a function

or a channel value isn’t allowed, but that wouldn’t really

make sense anyway.



A file-based data store

Let’s play with gob by using it to store some arbitrary data

in a file. Suppose we write a package implementing a little

key-value store, for example, that can persist its data to

disk.

What kind of API would make sense to users of such a

package? What would they do first?

Well, they’d need to be able to open a store whose data

lives in a particular file, so we could write that something

like this:

Sounds reasonable, doesn’t it? There could be an error, so 

OpenStore should return it, and if there isn’t, we should also

get an object representing the store.

What if the file doesn’t exist? Well, that’s bound to be the

case when we create the store for the very first time, so this

doesn’t seem like an error situation. Instead, we can just

create and return a new empty store, ready for use. We

needn’t even write anything to disk, since there’s nothing to

write yet.

Testing data persistence

To test OpenStore, we could open a store file we prepared

earlier, and check that the store contains exactly the data

that we put in it to start with. This sounds great! But how do

we create such a file?

We could do it manually, by figuring out the gob encoding

format, typing bytes into a hex editor, and so on, but that

sounds like hard work. Thinking ahead, we’ll need saving

s, err := kv.OpenStore("data.bin")



data to be part of the API, too. Once we can do that, it’ll be

easy to create a suitable file for testing OpenStore.

Suppose there were some Save method on the store, then,

that marshalled its data via gob to a disk file. Then, when

we wanted to make sure the store’s contents are saved, we

could write simply:

We shouldn’t need to pass the file path to Save: after all,

presumably we already supplied it to OpenStore. It sounds

as though the store should remember its own path, and be

prepared to save data to it on demand.

Setters and getters

Fair enough. But we can’t test much by saving and loading

empty files: we need to get some data into the store

somehow. We’ve said it’s a key-value store, so we could

imagine writing something like:

Of course, users might want to store and retrieve data of

any type, but let’s stick to strings for the time being. Solve

the simpler problem first.

And, if you think about it, this “setting and getting”

behaviour is independent of any disk files. It can happen

purely in memory. And, since we’ll need it to test disk

operations later, let’s build this part first.

err := s.Save()

s.Set("key", "value") 

v, ok := s.Get("key") 

fmt.Println(v, ok) 

// Output: 

// value true



GOAL: Write tests for sensible Set and Get behaviour, on a

store created by OpenStore with a dummy path (we needn’t

actually save or load any data for these tests).

A sensible key-value API

HINT: There are several behaviours here, so we’ll need a

few different tests. Maybe something like:

1. When we query a key that doesn’t exist, Get returns the

empty string and false.

2. When we query a key that does exist, Get should return

its associated value, along with true.

3. When we Set a key to a given value, we should be able

to get that value back again by querying the key with 

Get.

4. If a key already exists with a certain value, but we use 

Set to associate it with a new value, then subsequent

calls to Get should return the updated value.

The easiest of these tests to write is probably number 1,

because it doesn’t need the store to contain any data. Fine.

Let’s start there.

First, we’ll need a store. Let’s assume that the store type

itself is not exported, so we can’t just create a literal of that

struct outside its home package.

This is probably a good thing, since a store with no path

wouldn’t be able to save its data. To prevent this situation

arising, we’ll mandate that the only way to get a store is to

call OpenStore.

How about something like this, then?
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Can you go ahead and write the other tests?

Testing the key-value machinery

SOLUTION: It’s surprising how much design work we end

up doing, just by writing these tests, isn’t it? Even if we

threw the tests away later, it would still have been worth

writing them, just because it encouraged us to think about

the API from the user’s point of view.

Let’s copy the test we have and use it as the basis for a new

test for case 2, getting a key that does exist.

This time, we’ll need to set the key to something before

querying it. Here’s a version that could work:

func TestGetReturnsNotOKIfKeyDoesNotExist(t 

*testing.T) {  

    t.Parallel() 

    s, err := kv.OpenStore("dummy path") 

    if err != nil { 

        t.Fatal(err) 

    } 

    _, ok := s.Get("key") 

    if ok { 

        t.Fatal("unexpected ok") 

    } 

}

func TestGetReturnsValueAndOKIfKeyExists(t 

*testing.T) {  

    t.Parallel() 

    s, err := kv.OpenStore("dummy path") 

    if err != nil { 

https://github.com/bitfield/tpg-tools2/blob/main/kv/1/kv_test.go
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We make progress! What about case 3, setting a key that

doesn’t exist? Well, we sort of already tested that just now,

by using Set in the test for Get.

If Set didn’t do anything, then the Get test could hardly

pass. And if we were to write a separate test for Set, then it

would look more or less exactly like the one we just wrote.

That seems silly, so let’s skip it.

The final test case is that Set overwrites any existing value

with a new one. That seems straightforward:

        t.Fatal(err) 

    } 

    s.Set("key", "value") 

    v, ok := s.Get("key") 

    if !ok { 

        t.Fatal("not ok") 

    } 

    if v != "value" { 

        t.Errorf("want 'value', got %q", v) 

    } 

}

func TestSetUpdatesExistingKeyToNewValue(t 

*testing.T) {  

    t.Parallel() 

    s, err := kv.OpenStore("dummy path") 

    if err != nil { 

        t.Fatal(err) 

    } 

    s.Set("key", "original") 

    s.Set("key", "updated") 

https://github.com/bitfield/tpg-tools2/blob/main/kv/1/kv_test.go
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Before we even worry about saving and loading, then, let’s

get this basic key-value machinery working.

GOAL: Get these tests passing.

Implementing the store

HINT: We know we need some store struct type, and we

know it has to have some field that can hold the key-value

data. A map sounds logical, doesn’t it? Specifically, a 

map[string]string would do exactly what we need.

OpenStore will need to at least initialise this to an empty

map, though it doesn’t need to do anything else to pass the

tests we have right now.

Set and Get are both easy to write if the store contains a

map, since we can use the built-in map operations:

Can you see what to do?

    v, ok := s.Get("key") 

    if !ok { 

        t.Fatal("key not found") 

    } 

    if v != "updated" { 

        t.Errorf("want 'updated', got %q", v) 

    } 

}

s.data[key] = value 

... 

v, ok := s.data[key] 

return v, ok

https://github.com/bitfield/tpg-tools2/blob/main/kv/1/kv_test.go


SOLUTION: Let’s start with the store struct itself. It doesn’t

yet need to hold anything except the key-value data:

(Listing kv/1)

Here’s OpenStore, then, whose only job (so far) is to

initialise the data map:
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And here’s Set and Get:
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It’s not complicated, but it’s wise to get this stuff thoroughly

ironed out before trying to do anything fancy like serialising

the data to gob. Well done! So, what’s the next step?

type store struct { 

    data map[string]string 

}

func OpenStore(path string) (*store, error) { 

    return &store{ 

        data: map[string]string{}, 

    }, nil 

}

func (s *store) Set(k, v string) { 

    s.data[k] = v 

} 

 

func (s store) Get(k string) (string, bool) { 

    v, ok := s.data[k] 

    return v, ok 

}

https://github.com/bitfield/tpg-tools2/blob/main/kv/1/kv.go
https://github.com/bitfield/tpg-tools2/blob/main/kv/1/kv.go
https://github.com/bitfield/tpg-tools2/blob/main/kv/1/kv.go


Adding persistence

Well, to make this a persistent data store we’ll need to add a

Save method to the store, and we’ll also need to extend 

OpenStore so that it actually reads this saved data, if any.

Just as with Set and Get, these operations effectively test

each other, so that helps. See what you can do:

GOAL: Write tests for the saving and loading behaviour, and

make them pass.

HINT: We could imagine writing a test that creates a store,

puts some data in it, saves it, and then checks the contents

of the resulting file against what it should be.

That’s not wrong, though it might be a little awkward to

write, because we don’t know what order the map keys will

be in, for example. The real problem with a test like this is

that, fundamentally, we don’t care about the bytes on disk.

What are we really testing here?

In other words, what’s the important behaviour of Save that

we want to test? Not that it produces a specific sequence of

bytes for given data. What really matters here is that,

whatever bytes it produces, we can read them back and

recover our original data.

After all, that’s why we were doing this: to be able to persist

the data. The exact wire format—the specific bytes—don’t

matter, and indeed we could have used any serialisation

scheme we wanted (JSON, for example).

If we can put some data into a store, save it, open a new

store from the same file, and get back the data we started

with, then we’ll be happy.



Even if we wrote a golden-file test for Save, we’d still have

to test the loading behaviour of OpenStore too, so why not

combine the two into a single test?

See what you can do.

An end-to-end persistence test

SOLUTION: Here’s the test, then:

func TestSaveSavesDataPersistently(t *testing.T) { 

    t.Parallel() 

    path := t.TempDir() + "/kvtest.store" 

    s, err := kv.OpenStore(path) 

    if err != nil { 

        t.Fatal(err) 

    } 

    s.Set("A", "1") 

    s.Set("B", "2") 

    s.Set("C", "3") 

    err = s.Save() 

    if err != nil { 

        t.Fatal(err) 

    } 

    s2, err := kv.OpenStore(path) 

    if err != nil { 

        t.Fatal(err) 

    } 

    if v, _ := s2.Get("A"); v != "1" { 

        t.Fatalf("want A=1, got A=%s", v) 

    } 

    if v, _ := s2.Get("B"); v != "2" { 

        t.Fatalf("want B=2, got B=%s", v) 

    } 

    if v, _ := s2.Get("C"); v != "3" { 
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We open a store at a temporary path, put three key-value

pairs into it, and save it. Then we open that path as a new

store and check what’s in it. Nice and simple.

It might seem a bit basic, but really, it’s hard to imagine

serious bugs in Save or OpenStore that wouldn’t be caught

here. If Save didn’t write anything, or missed out some keys,

or mixed up different keys and values, then we’d know

because the Get checks would fail.

Similarly, if OpenStore garbled the data on loading

somehow, then Get would return different results. So this

end-to-end test is quite good value.

Of course, if it ever fails, it’ll tell us there’s a bug in either 

Save or OpenStore (or both), but not which. If this bothers

you, by all means write golden-file tests to check the

serialisation and deserialisation code separately.

Saving and loading

Let’s go ahead and write Save:

        t.Fatalf("want C=3, got C=%s", v) 

    } 

}

func (s store) Save() error { 

    f, err := os.Create(s.path) 

    if err != nil { 

        return err 

    } 

    defer f.Close() 

    return gob.NewEncoder(f).Encode(s.data) 

}

https://github.com/bitfield/tpg-tools2/blob/main/kv/1/kv_test.go
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It’s pleasantly easy to use gob. All we need to do is create a 

NewEncoder on some writer (the file f, in this case), and

pass our data to its Encode method. It returns an error,

which we simply pass back to the caller without comment.

What about OpenStore? Right now, all it does is create a

new store with an empty map, and that store has no way of

remembering its disk path. We’ll need to do a little more:

type store struct { 

    path string 

    data map[string]string 

} 

 

func OpenStore(path string) (*store, error) { 

    s := &store{ 

        path: path, 

        data: map[string]string{}, 

    } 

    f, err := os.Open(path) 

    if errors.Is(err, fs.ErrNotExist) { 

        return s, nil 

    } 

    if err != nil { 

        return nil, err 

    } 

    defer f.Close() 

    err = gob.NewDecoder(f).Decode(&s.data) 

    if err != nil { 

        return nil, err 

    } 

    return s, nil 

}

https://github.com/bitfield/tpg-tools2/blob/main/kv/1/kv.go
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Because the file at path may contain data, we should try to

open it. If this fails with a fs.ErrNotExist error, then

there’s no such file, but that’s okay. It just means we’re

creating a new store that’s never been saved before, so we

can return it as-is.

If the file does exist, and there are no other errors opening

it, we use gob to decode the disk bytes into s.data, and

return the populated store.

This passes the test, which is encouraging. So are there any

important bits we haven’t covered? What don’t we test?

Tightening up the tests

Well, we don’t test that OpenStore returns an error if the

store file exists, but can’t be read. Why would that be? One

possibility is that we don’t have permission to read it.

So let’s create a dummy file and set its permissions to 

0o000, meaning “no permissions for anyone”. Trying to open

that should fail:

func TestOpenStore_ErrorsWhenPathUnreadable(t 

*testing.T) {  

    t.Parallel() 

    path := t.TempDir() + "/unreadable.store" 

    if _, err := os.Create(path); err != nil { 

        t.Fatal(err) 

    } 

    if err := os.Chmod(path, 0o000); err != nil { 

        t.Fatal(err) 

    } 

    _, err := kv.OpenStore(path) 

https://github.com/bitfield/tpg-tools2/blob/main/kv/1/kv.go
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What else? Well, we also don’t test that OpenStore returns

an error when gob can’t decode the file’s contents. That’s

easily arranged:

(Listing kv/1)

What would invalid data look like? Well, an empty file would

be pretty invalid:

There’s only one remaining loophole in our tests: we’re not

testing that Save returns an error when it can’t save the

data. Hold my beer!

    if err == nil { 

        t.Fatal("no error") 

    } 

}

func TestOpenStore_ReturnsErrorOnInvalidData(t 

*testing.T) {  

    t.Parallel() 

    _, err := 

kv.OpenStore("testdata/invalid.store")  

    if err == nil { 

        t.Fatal("no error") 

    } 

}

touch testdata/invalid.store

func TestSaveErrorsWhenPathUnwritable(t 

*testing.T) {  

    t.Parallel() 

https://github.com/bitfield/tpg-tools2/blob/main/kv/1/kv_test.go
https://github.com/bitfield/tpg-tools2/blob/main/kv/1/kv_test.go
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In this case, the path is unwritable because the parent

directory bogus doesn’t exist (we assume). Trying to save

the store to it should result in something like “no such file or

directory”.

Good work! We have a fully-functional persistent key-value

store. And, since it doesn’t care how the data gets persisted,

you could use any kind of encoding or serialisation format

you like. We just picked gob for this because it’s fun and

useful to know about.

JSON: a text data format

Let’s turn to another kind of byte encoding, then. JSON is a

widely-used format, so as working programmers we’ll need

to know how to read and write JSON-encoded data with Go

programs.

The json package

The standard library API for JSON handling is very similar to

that for gob:

    s, err := 

kv.OpenStore("bogus/unwritable.store")  

    if err != nil { 

        t.Fatal(err) 

    } 

    err = s.Save() 

    if err == nil { 

        t.Fatal("no error") 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/kv/1/kv_test.go


JSON data is usually represented by UTF-8-encoded text,

meaning that it’s human-readable (for some values of

“human”):

What’s the point of serialising to text, rather than a more

space-efficient binary format such as gob? Well, it’s useful to

be able to read the encoded data by eye, which we can’t

really do with gob.

We can see, for example, that this is some kind of mapping

from a string (john) to some kind of struct, with a numeric 

age field and a hobbies field that is a slice of strings. And

we can see the values of all those fields.

The whitespace and newlines help with readability, but in

fact they’re ignored by JSON. They just allow us to pretty-

print the data for better readability.

JSON is a useful auxiliary language

import "encoding/json" 

... 

err := json.NewEncoder(w).Encode(x) 

... 

err = json.NewDecoder(r).Decode(&x)

{ 

    "john": { 

        "age": 29, 

        "hobbies": [ 

            "physics", 

            "reading" 

        ] 

    } 

}



JSON isn’t Go-aware, but on the other hand its syntax is

sufficiently general to suit most programming languages

and data types. This perhaps partly explains JSON’s wide

adoption.

It makes sense, then, that the primary use for JSON is as an

auxiliary language for communicating data between

different kinds of applications and computer systems. For

example, web-based APIs commonly accept request data

formatted as JSON, and send responses in the same format.

It’s also becoming increasingly common to use JSON as an

input/output data format for command-line tools, and that’s

a nice way for us to tie it in with the focus of this book.

As we discussed in the chapter on pipelines, the traditional

Unix tools communicate with each other using either plain

text, or more generally, byte streams.

A byte stream, though, lacks any kind of structure or type

information. We can easily format a Go struct as text using

the fmt package, but it’s not so easy to parse arbitrary text

into Go data, as we found in the chapter on commands.

A JSON output option

JSON, though, has at least some basic notions of structure:

strings, numbers, slices, and structs. Many tools, such as 

kubectl and terraform, already offer a JSON output option

for this reason.

This makes it much easier, in turn, to write tools that

consume or parse their output. There are some powerful

tools that can operate on arbitrary JSON, such as the

invaluable jq:

https://stedolan.github.io/jq/

https://stedolan.github.io/jq/


And, as we saw in the chapter on pipelines, programs using

the script package can also process JSON data using jq

queries.

Go itself has a JSON output mode for tests, which can be

useful for implementing things like automated test runners

(such as gotestdox, which we encountered in the first

chapter):

In a previous chapter we wrote a Go wrapper for the pmset

command to get the system’s battery status. This would

certainly have been easier if pmset had an option to output

JSON instead of plain text.

It makes sense, then, to add a JSON output option to our

own tools. Let’s try.

Adding JSON to the battery package

Suppose in some future version of the battery package, we

parsed all the data produced by pmset, instead of just the

battery charge percentage. Could we then serialise it to

JSON for output?

By the way, there’s an interesting project called jc, which

acts as a “JSONiser” for various popular Unix utilities. It

parses the specific command’s output format, just as we did

for pmset, and then formats the result as JSON:

https://github.com/kellyjonbrazil/jc

Could we do something similar for pmset? Suppose we had a

Battery struct like this:

go test -json

https://github.com/kellyjonbrazil/jc


We know how to take flags, so we could take a -j flag to our

tool requesting JSON output. How would we generate it?

Producing JSON strings

We know how to encode JSON to a writer, but that isn’t quite

what we want here. The user would have to pass us the

writer to write to, which is awkward:

In any case they might not be ready to actually print the

value yet. They might just want the JSON data to interpolate

in some document they’re generating, such as a report.

In the “normal” (non-JSON) mode, our output would be a

string, so it makes sense that our JSON mode should behave

the same way.

Suppose there were a method on the Battery type named 

ToJSON, then, that returns the data as a JSON-encoded

string. Should it also return error? What do you think?

What could go wrong?

Clearly there can be an error encoding values to JSON. One

such error would be trying to encode an invalid type such as

a function or channel. Alternatively, we could have a cyclic

batt := battery.Battery{ 

    Name:             "InternalBattery-0", 

    ID:               10813539, 

    ChargePercent:    100, 

    TimeToFullCharge: "0:00", 

    Present:          true, 

}

batt.WriteJSONTo(os.Stdout)



structure: a struct that contains a pointer to itself, for

example. This can’t be represented in JSON.

It seems unlikely that we’d make this kind of mistake in

defining our Battery struct, though. Even if we did, there’s

nothing users could do about it, so sending them an error

wouldn’t be helpful.

This is one of the rare cases where a panic is appropriate.

Remember, a panic signals an unrecoverable internal

program error: it’s the programmer’s fault, not the user’s.

And that’s certainly the case if the Battery struct is so

malformed as to be un-JSON-able.

Now let’s see if you can rough out a suitable test.

GOAL: Write a test for ToJSON.

HINT: We’ve said that the API for ToJSON is something like

“method on Battery, returns string”. So if we create some

Battery object and then call its ToJSON method, we should

be able to predict the exact string we want as the result.

The JSON string might be a bit unwieldy to write directly in

our code as a literal, so if you like, you can read it from a 

testdata file instead.

See what you can do!

Testing ToJSON

SOLUTION: Here’s my version:

func TestToJSON_GivesExpectedJSON(t *testing.T) { 

    t.Parallel() 

    batt := battery.Battery{ 
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By the way, you don’t have to laboriously construct the

golden file by hand. You can take the lazy option instead:

just put the string bogus in the file, so that it fails against

the null implementation of ToJSON. Then implement the

method for real and see what it actually produces.

If the result looks correct to you, then copy it into the golden

file. Needless to say, you’d better be sure you’ve got it right,

but this is a useful technique for constructing test data and

keeping it in sync with your program.

Over to you again now to make this test pass.

GOAL: Implement ToJSON.

        Name:             "InternalBattery-0", 

        ID:               10813539, 

        ChargePercent:    100, 

        TimeToFullCharge: "0:00", 

        Present:          true, 

    } 

    wantBytes, err := 

os.ReadFile("testdata/battery.json")  

    if err != nil { 

        t.Fatal(err) 

    } 

    want := string(wantBytes) 

    got := batt.ToJSON() 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/battery/2/battery_test.go


HINT: You already know how to marshal a Go object to JSON

by creating a NewEncoder on some writer, then passing the

object to Encode. And, if you like, you can implement 

ToJSON this way.

The problem is that we’d need to create a writer, which we’ll

only end up throwing away, because what we really wanted

was a string. In that situation, we could use an alternate API

provided by the json package:

There’s no intermediate Encoder here: instead, Marshal

turns the given object directly into a []byte (unless there’s

an error, of course). Once we have the bytes, it’s easy to

turn them into a string.

Implementing ToJSON

SOLUTION: Let’s make this a bit more interesting, and

extend our Battery struct type to store a bit more

information. For example:

(Listing battery/2)

How should we create the JSON string we want? As we

discussed in the hint section, we could create a buffer and

encode the JSON to it, then return the contents of the buffer

as a string.

data, err := json.Marshal(object)

type Battery struct { 

    Name             string 

    ID               int64 

    ChargePercent    int 

    TimeToFullCharge string 

    Present          bool 

}

https://github.com/bitfield/tpg-tools2/blob/main/battery/2/battery.go


That’s not terrible, but using the alternate json.Marshal

API results in a simpler implementation:
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As we discussed, there can only be a marshalling error here

if we’ve messed up the struct definition somehow, so panic

is quite appropriate for that case.

Pretty-printing with indentation

The string produced by ToJSON looks like this:

That’s valid JSON, for sure, but it’s a bit dense. A pretty-

printed version would be preferable for display to humans.

What can we do?

There’s a handy variant of json.Marshal called 

MarshalIndent, which will do this for us:

The two otherwise mysterious arguments are the prefix and

the indent strings to use: here, we’ve selected no prefix and

an indent of two spaces.

func (b Battery) ToJSON() string { 

    output, err := json.Marshal(b) 

    if err != nil { 

        panic(err) 

    } 

    return string(output) 

}

{"Name":"InternalBattery-

0","ID":10813539,"ChargePercent":100,  

"TimeToFullCharge":"0:00","Present":true}

output, err := json.MarshalIndent(b, "", "  ")

https://github.com/bitfield/tpg-tools2/blob/main/battery/2/battery.go


The result looks like this:

In tests, we usually want to compare JSON strings while

ignoring differences due to whitespace. A good way to do

this is to normalise them both, by unmarshalling them and

then re-marshalling, eliminating any irrelevant whitespace.

Querying JSON output

Now that we can generate JSON from our battery status tool,

let’s see what we can do with that output.

We can pipe it through jq, for example, and query it for the

charge percentage:

Because the data now has structure, rather than just being

raw text, this is a great way of adding value to any

command-line tool.

YAML: a less verbose JSON

Simplicity is a recurring theme of this book, and simple tools

don’t need much configuration. They won’t take lots of flags

or switches, because their behaviour is simple and obvious.

If they’re so complex as to need a configuration file, things

have gone really wrong.

{ 

  "Name": "InternalBattery-0", 

  "ID": 10813539, 

  "ChargePercent": 100, 

  "TimeToFullCharge": "0:00", 

  "Present": true 

}

battery | jq ".ChargePercent" 

100



But some programs do take configuration files, and if we

were writing a Go tool to replace them, we’d probably need

to start by accepting the same kind of configuration.

Also, some tools need to process configuration data for

other tools, because that’s their job. Such data is usually

formatted as YAML, which is a bit less verbose than JSON:

This is part of an example config file for the Prometheus

monitoring system. As you can see, comments are allowed,

indentation defines structure, and quotes are not required.

Parsing YAML in Go

How could we parse something like the Prometheus config

example into a Go program? Let’s try.

GOAL: Write a test for a function that parses the example

YAML file.

HINT: Okay, we have some bytes, and we need to

deserialise them into a Go value. What type of Go value

would best represent this data, then?

# my global config 

global: 

  scrape_interval: 15s 

  evaluation_interval: 30s 

  # scrape_timeout is set to the global default 

(10s).  

 

  external_labels: 

    monitor: codelab 

    foo: bar



One possibility is map[string]any, because any YAML (or

JSON) document can be represented this way. But that’s not

really parsing, just remoulding one big ball of mud into

another. Mud-wrestling has its appeal, no doubt, but we can

do better than this.

Instead, let’s think about what structure is implied by the

data itself. Is it a list of things? No, it’s one thing: a

Prometheus configuration. Let’s call that type prom.Config.

It looks like a struct, so what fields will it need? There seems

to be one top-level field, identified by the key global. Its

value looks like another struct: let’s call it GlobalConfig.

This struct has three fields: a “scrape interval”, an

“evaluation interval”, and some “external labels”. The first

two look like time.Durations, and the third is a list of

something… but what?

It seems to be a list of string key-value pairs. So it sounds

like the Go type map[string]string would model this data

nicely.

There’s also a comment that’s worth noting:

It looks like there’s also some duration field ScrapeTimeout

on GlobalConfig, defaulting to 10 seconds. We’ll need to

expect this value in the test, even though it’s not explicitly

set in the data.

Suppose we had some function that reads a YAML file like

this one, and turns it into a Config struct. Let’s call the

function ConfigFromYAML. The next decision is about its

# scrape_timeout is set to the global default 

(10s).



signature: what does it need to take as a parameter? What

does it need to return?

All we need to take, in this case, is the path to the YAML file,

and we’ll want to return the parsed Config struct and error.

See what you can do.

Designing the API with a test

SOLUTION: We might start with a test for ConfigFromYAML

looking something like this:

func TestConfigFromYAML_CorrectlyParsesYAMLData(t 

*testing.T) {  

    t.Parallel() 

    want := prom.Config{ 

        Global: prom.GlobalConfig{ 

            ScrapeInterval:     15 * time.Second, 

            EvaluationInterval: 30 * time.Second, 

            ScrapeTimeout:      10 * time.Second, 

            ExternalLabels: map[string]string{ 

                "monitor": "codelab", 

                "foo":     "bar", 

            }, 

        }, 

    } 

    got, err := 

prom.ConfigFromYAML("testdata/config.yaml")  

    if err != nil { 

        t.Fatal(err) 

    } 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}
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Defining our types

As usual, to get the test compiling, we need to define the

types we’ve mentioned:

If we’ve got everything right, then our test should fail

against a null implementation of ConfigFromYAML, and so it

does.

Now, how should we implement the function for real?

The go-yaml package

There isn’t a standard library package that deals with YAML,

but fortunately for us, there’s a good third-party equivalent:

https://github.com/go-yaml/yaml

Decoding

The decoding API for yaml is very similar to that of the gob

and json packages. We create a yaml.Decoder on some

stream, and then pass its Decode method a pointer to a

variable of the right type (in this case, Config).

type Config struct { 

    Global GlobalConfig 

} 

 

type GlobalConfig struct { 

    ScrapeInterval     time.Duration 

    EvaluationInterval time.Duration 

    ScrapeTimeout      time.Duration 

    ExternalLabels     map[string]string 

}

https://github.com/bitfield/tpg-tools2/blob/main/prom/1/prom_test.go
https://github.com/go-yaml/yaml


Something like this should work:

Does this pass? Let’s find out:

prom.Config{ 

        Global: prom.GlobalConfig{ 

  -         ScrapeInterval:     s"15s", 

  +         ScrapeInterval:     s"0s", 

  -         EvaluationInterval: s"30s", 

  +         EvaluationInterval: s"0s", 

  -         ScrapeTimeout:      s"10s", 

  +         ScrapeTimeout:      s"0s", 

  -         ExternalLabels: 

    map[string]string{"foo": "bar", "monitor": 

"codelab"}, 

  +         ExternalLabels:     nil, 

        }, 

    }

When unmarshalling doesn’t work

func ConfigFromYAML(path string) (Config, error) { 

    f, err := os.Open(path) 

    if err != nil { 

        return Config{}, err 

    } 

    defer f.Close() 

    config := Config{} 

    err = yaml.NewDecoder(f).Decode(&config) 

    if err != nil { 

        return Config{}, err 

    } 

    return config, nil 

}

go test



When unmarshalling doesn’t work, it’s usually either

because the fields are unexported, or because the field

names don’t match.

Unexported fields aren’t visible outside the package where

they’re defined, so they wouldn’t be visible to the yaml

package, but there are no unexported fields here: we can

rule that problem out.

So it looks as though the Go field names don’t match the

YAML data. ScrapeInterval isn’t the same as 

scrape_interval, for example. But Go uses camel case, so

we don’t want to change the Go field name.

We need a way to tell the yaml package that it should

associate the Go ScrapeInterval field with the YAML 

scrape_interval field. Where could we put that

information?

The format of struct tags

The Go designers have thoughtfully provided struct tags for

this purpose. A struct tag is a string literal following a field

declaration. For example:

The Go compiler allows, but ignores, these tags. We can use

them for whatever we want. In practice, they’re mostly used

for supplying serialisation hints to packages like yaml.

Here’s a struct tag giving the required YAML field name hint

for the ScrapeInterval field:

type bogus struct { 

    name string "Hi, I'm a struct tag!" 

}
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See if you can figure out the others, based on this example.

Setting defaults

Does that fix the test? Almost:

-       ScrapeTimeout:      s"10s", 

+       ScrapeTimeout:      s"0s",

Ah yes, we forgot something. We need to set the default

value for ScrapeTimeout before the YAML parsing begins:
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And we have a passing test!

Eliminating config structs

So that’s how to parse arbitrary YAML data. What about the

case where the YAML represents configuration for our own

program? What should the API for that look like?

Well, we wouldn’t want to write something like this, for

reasons we’ve discussed earlier in this book:

ScrapeInterval  time.Duration  

`yaml:"scrape_interval"`

config := Config{ 

    GlobalConfig{ 

        ScrapeTimeout: 10 * time.Second, 

    }, 

}

config, err := ConfigFromYAML("config.yaml") 

... // handle error 

https://github.com/bitfield/tpg-tools2/blob/main/prom/1/prom.go
https://github.com/bitfield/tpg-tools2/blob/main/prom/1/prom.go


Config structs are an anti-pattern, because they make users

do paperwork to construct them, only to pass them right

back to us.

We already know how to do better than this. We can write,

for example:

Presumably there is some Config struct under the hood, if

only to parse the YAML into, but it’s hidden away. Users

don’t need to know about it.

Going further

If you’ve battled your way through this chapter so far,

destroying all monsters, then try this end-of-level boss

challenge:

Extend the simple key-value store in listing kv/1 to add

a command-line tool (or tools) that can add, update, or

query data from the store, including the ability to dump

all the keys and values.

You can stick with the gob encoding, or use JSON

instead, or something else. That’s up to you, and the

program shouldn’t care about the specific wire format,

beyond being able to read and write it. Feel free to write

golden-file tests if you want to, though.

You can find one possible solution in listing kv/2.

client, err := NewClient(config) 

... // handle error

client, err := NewClient( 

    WithConfigFromYAML("config.yaml"), 

) 

... // handle error

https://github.com/bitfield/tpg-tools2/blob/main/kv/1
https://github.com/bitfield/tpg-tools2/blob/main/kv/2


11. Clients

In general, it is best to assume that the network is filled with

malevolent entities that will send in packets designed to have the

worst possible effect. 

—RFC 1122

So far in this book we’ve confined ourselves to writing tools that do

things on the local machine, ignoring the wider world of resources

available to us on the network. The internet can be a scary place, as we

all know, so let’s don our fireproof clothing and venture forth to see

what’s out there.

A simple weather client

For almost any general task that you can imagine doing, there’s a public

API that provides it: converting dates from the Hebrew calendar to the

Gregorian, generating random numbers with laser beams, or

downloading arbitrary-sized placeholder images of bacon (mmm, bacon).

Indeed, you can find a list of hundreds of such public APIs in this

excellent GitHub repo:

https://github.com/public-apis/public-apis

What do we need?

The bacon one is tempting, but let’s try writing a weather client first.

Suppose we just want to be able to get a short summary of the current

weather conditions at our location:

Clouds 11.2ºC

https://datatracker.ietf.org/doc/html/rfc1122
https://github.com/public-apis/public-apis


We could use our tool to show the current weather conditions in our

terminal prompt, or menu bar, for example. Where can we get that data

from?

Let’s pick a weather API from that big list on GitHub. OpenWeatherMap

isn’t a bad choice:

https://openweathermap.org/api

Browsing through their documentation, we can see that there are lots of

APIs and endpoints relating to weather, so we’ll pick the simplest one

that can give us the current conditions at a specified location:

https://openweathermap.org/current

We’ll need an API key, or token, which we can get by signing up to the

OpenWeatherMap site and entering an email address. It doesn’t cost

anything to use the API; the key just helps prevent the service being

abused.

Kicking the tyres

Let’s first of all see if we can get the data we want using a web browser

or a command-line tool like curl, before we worry about trying to do it

with Go.

The API documentation gives a really nice example, showing what URL to

call, and how to include your location and API key:

api.openweathermap.org/data/2.5/weather?q={city name}&appid= 

{API key}

Wouldn’t it be great if every project’s documentation started with an

example of how to use it? Word to the wise.

There are lots of ways to specify our location, but let’s try the “city, two-

letter country code” format:

You’ll need to substitute your own API key for XXX in this URL. Using one I

registered earlier, I get the following response:

curl "https://api.openweathermap.org/data/2.5/weather?q=\ 

London,UK&appid=XXX"

https://openweathermap.org/api
https://openweathermap.org/current


Now that we know what HTTP request to make, we can try making it from

a Go program.

GOAL: Write a Go program to make an OpenWeatherMap request, and

print the response.

HINT: Let’s use main-driven development to write the simplest possible

Go program that can get weather data. Our program needs to do a few

things:

1. Get the API key value from the user

2. Make the HTTP request

3. Print the response body

Environmental credentials

How should we have the user supply their API key? Passing credentials

on the command line is a bad idea, because your command line is

usually visible to other users via something like ps, and it will be saved in

your shell history.

Putting the key in a file feels like paperwork, and we want to be able to

run the program non-interactively, so we can’t prompt for it either.

Instead, we can put the key in an environment variable: that way, the

user can set it in their .zshrc, or however they configure their

environment.

Making a GET request

How should we make the HTTP request? There’s a nice low-paperwork

API for this in the standard library http package:

{"coord":{"lon":-0.1257,"lat":51.5085},"weather":[{"id":801, 

"main":"Clouds", "description":"few clouds","icon":"02n"}], 

"base":"stations","main":{"temp":282.47,"feels_like":281.12, 

"temp_min":280.57,"temp_max":284.01,"pressure":996,"humidity":

 

77},"visibility":10000,"wind":{"speed":2.57,"deg":240}, 

"clouds":{"all":20},"dt":1635787388,"sys":{"type":2,"id":201, 

"country":"GB","sunrise":1635749645,"sunset":1635784437}, 

"timezone":0,"id":2643743,"name":"London","cod":200}

resp, err := http.Get(URL)



Here, resp is the API’s response, and we can look at its StatusCode, or

read the contents of its Body.

Are you feeling inspired?

SOLUTION: Here’s the least I can possibly do that solves this problem:
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We’ve hard-wired the location London,UK into the URL here for now; we’ll

worry about how to get the user’s location later on.

Initial user testing

Let’s try the program and see what happens:

package main 

 

import (

    "fmt" 

    "io"

    "net/http" 

    "os"

) 

 

const BaseURL = "https://api.openweathermap.org" 

 

func main() { 

    key := os.Getenv("OPENWEATHERMAP_API_KEY") 

    URL := fmt.Sprintf("%s/data/2.5/weather?

q=London,UK&appid=%s",  

        BaseURL, key) 

    resp, err := http.Get(URL) 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 

        os.Exit(1) 

    } 

    defer resp.Body.Close() 

    io.Copy(os.Stdout, resp.Body) 

}

go run main.go

https://github.com/bitfield/tpg-tools2/blob/main/weather/1/main.go


Oops, I forgot to set the environment variable, so my API key was being

sent as the empty string. We can improve on this error message, though,

can’t we? Something like this would be more polite:

Please set the environment variable OPENWEATHERMAP_API_KEY.

Computers should always be respectful when addressing humans: after

all, who pays the electricity bill around here?

We’re also not yet checking the HTTP response status, which we’ll need

to do. Anything other than http.StatusOK will need to be handled

somehow.

I’ve made a note of those nits to fix in the next iteration, so let’s set that

variable and try again:

{"coord":{"lon":-0.1257,"lat":51.5085}, 

... // lots more JSON 

2643743,"name":"London","cod":200}

A second pass

Let’s add in some checks for the missing API key, and a non-OK response

status, and try again:

{"cod":401, "message": "Invalid API key. Please see 

http://openweathermap.org/faq#error401 for more info."}

export OPENWEATHERMAP_API_KEY=xxx

go run main.go

func main() { 

    key := os.Getenv("OPENWEATHERMAP_API_KEY") 

    if key == "" { 

        fmt.Fprintln(os.Stderr, "Please set the environment \ 

            variable OPENWEATHERMAP_API_KEY.") 

        os.Exit(1) 

    } 

    URL := fmt.Sprintf("%s/data/2.5/weather?q=London,\ 

        UK&appid=%s", BaseURL, key) 

    resp, err := http.Get(URL) 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 
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All this behaviour will eventually be covered by tests, naturally, but we

can check it manually for now.

Parsing JSON responses

What can we write a test for? One thing we know we’ll need to do is to

parse that JSON response into a Go value, which we can then print as a

string.

So suppose there were some function ParseResponse that turned the

raw JSON data from OpenWeatherMap into a Go struct. Could we write a

test for that?

GOAL: Write a test for ParseResponse, using the real JSON data from

OpenWeatherMap.

Testing ParseResponse

HINT: The first thing to do is put our sample JSON data in a file in 

testdata; that’s our test input. Next, what’s our want? Some struct, but

with what fields?

Let’s leave the temperature aside for a moment and start by getting the

one-word weather summary as a string. Can you see what to do?

SOLUTION: Here’s a first attempt at this test:

        os.Exit(1) 

    } 

    defer resp.Body.Close() 

    if resp.StatusCode != http.StatusOK { 

        fmt.Fprintln(os.Stderr, "unexpected response status",  

            resp.Status) 

        os.Exit(1) 

    } 

    io.Copy(os.Stdout, resp.Body) 

}

func TestParseResponse_CorrectlyParsesJSONData(t *testing.T) 

{  

    t.Parallel() 

https://github.com/bitfield/tpg-tools2/blob/main/weather/2/main.go
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If we create a weather module, add the sample JSON data in testdata,

define the Conditions struct, and provide a null implementation of 

ParseResponse, we should have a failing test:

-   Summary: "Clouds", 

+   Summary: "",

That makes sense: we’re not actually parsing anything yet. How should

we do that?

To decode or to unmarshal?

We know two different JSON decoding APIs: json.Decoder and 

json.Unmarshal. Which is the right choice here?

In principle, we usually prefer the more efficient streaming API, 

json.Decoder. But the byte slice API, json.Unmarshal, might actually

be better in this case. Why?

Consider what happens if there’s an error parsing the JSON for some

reason. The user experience might be something like:

unexpected end of JSON input

    data, err := os.ReadFile("testdata/weather.json") 

    if err != nil { 

        t.Fatal(err) 

    } 

    want := weather.Conditions{ 

        Summary: "Clouds", 

    } 

    got, err := weather.ParseResponse(data) 

    if err != nil { 

        t.Fatal(err) 

    } 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

weather London,UK

https://github.com/bitfield/tpg-tools2/blob/main/weather/3/weather_test.go


This isn’t terribly helpful: we’d like to see the JSON that couldn’t be

parsed, but we can’t.

If we use json.Decoder on a stream, then by the time we hit a problem,

the data will have already been consumed in the decoding. We won’t

have it available for printing.

On the other hand, if we used json.Unmarshal, we’d have all the data in

the form of a byte slice. If we can’t parse it for some reason, we’ll be able

to print the complete response, to help with debugging.

A temporary struct type

The next thing we need to know is what kind of struct to unmarshal the

JSON data into. But wouldn’t we just use a Conditions?

No, because that wouldn’t work. We’ve defined Conditions as a struct

containing a single string field Summary. But we can see from the

OpenWeatherMap data that the schema implied by the JSON is

something quite different.

Let’s take a closer look at the test data. The JSON specifies some coord

field that we don’t care about, and then something that looks more

promising:

So the struct implied by this data has a top-level field weather,

containing an array (that is, a slice) of something; what? Some struct

with a string field main—we want that—and some other fields we don’t.

We’re going to need a Go struct definition matching this schema, just as

we did in the YAML parsing example in the previous chapter.

This type isn’t the same as the Conditions struct we already defined,

and that’s okay. Its only purpose is to serve as a temporary holding area

for the data parsed from the response. I call this kind of thing an adapter

struct: it exists only to adapt the API’s schema to our own.

"weather": [ 

  { 

    "id": 801, 

    "main": "Clouds", 

    "description": "few clouds", 

    "icon": "02d" 

  } 

],



The API’s schema isn’t suitable for use in our own program, because it

contains mostly irrelevant information, and what is relevant isn’t in a

form that’ll be convenient for us to work with. So we’ll define some

transient struct just for decoding purposes: let’s call it OWMResponse.

The response struct

We can infer all the details of the necessary type by looking at the JSON.

It’s this:
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We didn’t bother to name the inner struct, the one that forms the

elements of the Weather array, because we don’t need to.

We also didn’t add any struct tags, again because they’re not needed.

Indeed, we don’t even need to export this type, because users won’t

refer to it.

But let’s make it exported for now: people using our package might want

to write their own tests that do create values of this struct.

Now that we have the test, the JSON data, and the struct type required to

decode it, we’re ready to go ahead and write ParseResponse.

GOAL: Write ParseResponse.

Implementing ParseResponse

HINT: Here’s the general plan: we’ll set up a variable of type 

OWMResponse, ready to receive the data, and we’ll call json.Unmarshal

to do the unmarshalling.

If the parsing is successful, we’ll have a valid OWMResponse, and we can

extract the data we want from it. Specifically, we’ll want the value of the 

Main field of the first element of the Weather slice, and we’ll put that

value into the Summary field of our result.

Can you get the test to pass?

type OWMResponse struct { 

    Weather []struct { 

        Main string 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/weather/3/weather.go


SOLUTION: Here’s a first attempt:

What could go wrong?

Not bad, but we can see from the fact that there are two return

statements that we need another test for “invalid input” behaviour. The

simplest JSON document that won’t parse successfully into an 

OWMResponse is an empty []byte.

Let’s write a test using this invalid data, proving that ParseResponse

returns an error in this case. This should work:
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While we’re playing the “what could go wrong?” game, a closer look at

this version of ParseResponse reveals another potential issue. Can you

spot it?

GOAL: Find the bug in ParseResponse and add a test that demonstrates

it, then fix it.

func ParseResponse(data []byte) (Conditions, error) { 

    var resp OWMResponse 

    err := json.Unmarshal(data, &resp) 

    if err != nil { 

        return Conditions{}, fmt.Errorf( 

            "invalid API response %s: %w", data, err) 

    } 

    conditions := Conditions{ 

        Summary: resp.Weather[0].Main, 

    } 

    return conditions, nil 

}

func TestParseResponse_ReturnsErrorGivenEmptyData(t 

*testing.T) {  

    t.Parallel() 

    _, err := weather.ParseResponse([]byte{}) 

    if err == nil { 

        t.Fatal("want error parsing empty response, got nil") 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/weather/3/weather_test.go


Other kinds of invalid data

HINT: We know that referring to a slice element without a protective len

check can panic. So we need to write a test that will cause 

ParseResponse to panic unless it checks the slice length first.

Can you design some input data that would have this effect?

SOLUTION: Here’s the test, first of all:
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Next, we’ll need to write some new test data. We want something that’s

valid JSON, but whose Weather array contains no elements.

We can arrange that by copying the valid data and setting its weather

field to an empty array:
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To pass this test, we’ll need to add the requisite len check, with a

suitably helpful error message. Here’s the result:

func TestParseResponse_ReturnsErrorGivenInvalidJSON(t 

*testing.T) {  

    t.Parallel() 

    data, err := os.ReadFile("testdata/weather_invalid.json") 

    if err != nil { 

        t.Fatal(err) 

    } 

    _, err = weather.ParseResponse(data) 

    if err == nil { 

        t.Fatal("want error parsing invalid response, got 

nil")  

    } 

}

"weather": [],

func ParseResponse(data []byte) (Conditions, error) { 

    var resp OWMResponse 

    err := json.Unmarshal(data, &resp) 

    if err != nil { 

https://github.com/bitfield/tpg-tools2/blob/main/weather/3/weather_test.go
https://github.com/bitfield/tpg-tools2/blob/main/weather/3/testdata/weather_invalid.json
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What are we really testing here?

The internet is full of malevolent entities and bad data, so our parsing

code is pretty cautious. If the JSON is empty, incomplete, invalid, or has

the wrong schema, we detect that and give the user the raw data to help

diagnose the problem.

Even if the JSON is syntactically valid and matches the schema, the data

still might not be well-formed because it doesn’t provide any Weather

elements. We also handle that specific problem informatively.

Neither of these things would be our fault, to be sure, but they can still

happen. Some programmers might be anxious about testing such

situations, retaining a vague memory of being told “not to test other

people’s code”.

But we’re not testing OpenWeatherMap. We’re testing what our program

does when OpenWeatherMap misbehaves. In other words, don’t test

other people’s code: test that your code does the right thing when theirs

doesn’t.

Back to a running program

Our earlier version of the program in func main ended like this, dumping

a load of raw JSON into the user’s surprised face:

        return Conditions{}, fmt.Errorf( 

            "invalid API response %s: %w", data, err) 

    } 

    if len(resp.Weather) < 1 { 

        return Conditions{}, fmt.Errorf("invalid API response 

%s: \  

            want at least one Weather element", data) 

    } 

    conditions := Conditions{ 

        Summary: resp.Weather[0].Main, 

    } 

    return conditions, nil 

}

io.Copy(os.Stdout, resp.Body)

https://github.com/bitfield/tpg-tools2/blob/main/weather/3/weather_test.go


We can do better than that now, because we have a ParseResponse

function to make sense of the data. To extract it from the supplied 

resp.Body, we’ll use our friend io.ReadAll:

What does the output look like now?

{Clouds}

Not bad!

Constructing the request URL

Another chunk of behaviour that we could pull out into a function and

unit-test is constructing the request URL, given the user’s location and

API key:

A FormatURL function

We’ll need to be able to supply the location, too. Let’s say there’s some

function FormatURL that takes the base URL, location, and key, and

returns a string containing the complete request URL.

This sounds like something we could write a test for. Let’s try.

GOAL: Write a test for FormatURL.

data, err := io.ReadAll(resp.Body) 

if err != nil { 

    fmt.Fprintln(os.Stderr, err) 

    os.Exit(1) 

} 

conditions, err := weather.ParseResponse(data) 

if err != nil { 

    fmt.Fprintln(os.Stderr, err) 

    os.Exit(1) 

} 

fmt.Println(conditions)

go run main.go

URL := fmt.Sprintf("%s/data/2.5/weather?

q=London,UK&appid=%s",  

    BaseURL, key)



HINT: We have a clear idea what the request URL should be, given our

base URL, location, and key. So we can write a straightforward want and 

got comparison. Can you turn this idea into a test?

SOLUTION: This will get us started:
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Having checked this test against the null implementation of FormatURL,

we can now fill in the real code:
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We’re saying that the location, instead of being hard-wired to London, is

now an argument to FormatURL. So how will the user supply that

information when they run the program?

Getting the location as input

We could imagine some -location flag on the command line, like this:

func TestFormatURL_ReturnsCorrectURLForGivenInputs(t 

*testing.T) {  

    t.Parallel() 

    baseURL := weather.BaseURL 

    location := "Paris,FR" 

    key := "dummyAPIKey" 

    want := "https://api.openweathermap.org/data/2.5/weather?

\  

        q=Paris,FR&appid=dummyAPIKey" 

    got := weather.FormatURL(baseURL, location, key) 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

func FormatURL(baseURL, location, key string) string { 

    return fmt.Sprintf("%s/data/2.5/weather?q=%s&appid=%s", 

        baseURL, location, key) 

}

weather -location London,UK

https://github.com/bitfield/tpg-tools2/blob/main/weather/3/weather_test.go
https://github.com/bitfield/tpg-tools2/blob/main/weather/3/weather.go


But that doesn’t seem quite right. What if they omit the flag? There’s no

sensible default location that we could choose.

Actually, since the location is compulsory, it should be an argument, not

a flag:

Indeed, if the user does run the program without an argument, we can

be helpful and show them what to do. Let’s define a usage message to

be shown in this case:

Now we’ll detect this case in main and show the message:

(Listing weather/3)

Refactoring the remaining code

We’ve already written FormatURL and ParseResponse, so the only parts

remaining to be refactored are making the request and checking the

response status.

How would we call those from main? Maybe something like this:

A paperwork-reducing GetWeather function

weather London,UK

const Usage = `Usage: weather LOCATION 

 

Example: weather London,UK`

if len(os.Args) < 2 { 

    fmt.Println(Usage) 

    os.Exit(0) 

} 

location := os.Args[1] 

URL := weather.FormatURL(weather.BaseURL, location, key)

URL := weather.FormatURL(weather.BaseURL, location, key) 

data, err := weather.MakeAPIRequest(URL) 

if err != nil { 

    fmt.Fprintln(os.Stderr, err) 

    os.Exit(1) 

} 

conditions, err := weather.ParseResponse(data)

https://github.com/bitfield/tpg-tools2/blob/main/weather/3/cmd/weather/main.go


This is okay, but not great. It feels a bit fussy. Why get a URL from some

function only to pass it back to some other function to actually make the

request?

Similarly, why get the data from some function only to pass it back to

another function for parsing? We’re doing too much paperwork.

What we’d like is to call some function that only needs the location and

the key:

In general, don’t give users paperwork just so they can pass it back to

you. Keep the paperwork to yourself.

Testing against a local HTTP server

Testing GetWeather is interesting, because we don’t want it to call the

real OpenWeatherMap API. We need it to call some local HTTP server

instead, that will respond to any GET request with our test JSON data.

The standard library httptest package has a nice, low-paperwork way to

do this:

A simple httptest example

Let’s start by writing a very simple test that creates an httptest server

like this, calls it using http.Get, and checks that the status code is OK.

Have a try.

GOAL: Write a simple test along these lines.

HINT: Once we’ve started the httptest server, we need to know its URL

in order to make a request to it. Happily, the server itself contains that

information, in the field ts.URL.

Can you figure it out?

conditions, err := weather.GetWeather(location, key)

ts := httptest.NewTLSServer(http.HandlerFunc( 

    func(w http.ResponseWriter, r *http.Request) { 

        http.ServeFile(w, r, "testdata/weather.json") 

    })) 

defer ts.Close()



SOLUTION: We might start by trying something like this:

But this doesn’t work:

2021/11/03 15:13:21 http: TLS handshake error from 127.0.0.1: 

62009: remote error: tls: bad certificate 

--- FAIL: TestHTTPGet_SuccessfullyGetsFromLocalServer (0.22s) 

    weather_test.go:72: Get "https://127.0.0.1:62008": x509: 

    certificate signed by unknown authority

One way around this might be to use a non-TLS server for testing, but

that’s a mistake. Sure, we trust the test server, and we’re talking to it

over a local link. But the weather code will need to talk to untrusted

servers (no offence, OpenWeatherMap) over insecure networks.

In other words, the real program will always use TLS connections, so let’s

test it the same way. The trust problem is easily solved, it turns out.

A trustful TLS client

We got a “signed by unknown authority” error when connecting to our

test server because its certificate (not surprisingly) is self-signed. We

wouldn’t want to trust a self-signed certificate from some random server

func TestHTTPGet_SuccessfullyGetsFromLocalServer(t 

*testing.T) {  

    t.Parallel() 

    ts := httptest.NewTLSServer(http.HandlerFunc( 

        func(w http.ResponseWriter, r *http.Request) { 

            http.ServeFile(w, r, "testdata/weather.json") 

        })) 

    defer ts.Close() 

    resp, err := http.Get(ts.URL) 

    if err != nil { 

        t.Fatal(err) 

    } 

    defer resp.Body.Close() 

    want := http.StatusOK 

    got := resp.StatusCode 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}



on the internet, but this is different: we control the test server, so it’s

okay. How can we persuade our HTTP client to trust it, then?

Well, the test server itself can provide us with a suitably trustful client:

If we make this change, the test passes. Great! Let’s force it to fail by

setting want to something that’s not http.StatusOK:

This fails as expected:

-   418, 

+   200,

A weather client object

We still have a problem: we don’t have a way to pass the test server’s

URL to GetWeather. It will, presumably, use FormatURL to construct the

URL itself, incorporating the OpenWeatherMap base URL.

How can we inject the test URL instead? We could make BaseURL a global

variable instead of a constant, and set it from the test, but that feels

wrong, and we wouldn’t be able to parallelise our tests.

A familiar pattern

We’re saying, in fact, that up to now we’ve effectively been using some

default OpenWeatherMap client, and now we’d like one that we can

customise.

This is a familiar pattern:

The default client should talk to the real OpenWeatherMap URL, but we’ll

be able to override that for testing purposes:

Now that we have a client object, it makes sense that we should get the

weather by calling some method on it. GetWeather, perhaps:

client := ts.Client() 

resp, err := client.Get(ts.URL)

want := http.StatusTeapot

c := weather.NewClient(key)

c.BaseURL = ts.URL



Refactoring the tests to use our client

We’ll need to update this test, since FormatURL now also becomes a

method on the client:

(Listing weather/4)

GOAL: Get the FormatURL test passing again.

Writing the client constructor

HINT: What information does the client struct need to store? First, the

API key, which will be passed in to the constructor. Next, for test

purposes, we’ll want to be able to set both the base URL and an arbitrary

HTTP client.

Can you add the necessary fields to the struct type, and set them to

sensible values in NewClient?

SOLUTION: Let’s try this:

conditions, err := c.GetWeather(location)

func TestFormatURL_ReturnsCorrectURLForGivenInputs(t 

*testing.T) {  

    t.Parallel() 

    c := weather.NewClient("dummyAPIKey") 

    location := "Paris,FR" 

    want := "https://api.openweathermap.org/data/2.5/weather?

\  

        q=Paris,FR&appid=dummyAPIKey" 

    got := c.FormatURL(location) 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

type Client struct { 

    APIKey  string 

    BaseURL string 

    HTTPClient *http.Client 

}

https://github.com/bitfield/tpg-tools2/blob/main/weather/4/weather_test.go


Here’s the constructor:

(Listing weather/4)

Refactoring FormatURL is straightforward. We’re not adding any new

behaviour, just moving paperwork around:

(Listing weather/4)

We’re back to passing tests, which is good. There’s nothing wrong with

making refactorings that break tests (indeed, those are the best kind,

because they’re improving your API).

But once we have failing tests, our top priority is to fix them. This will be

much harder to do later, because we’ll no longer be clear about exactly

what change broke them.

Never let the code drift more than about five minutes away from passing

tests. That way, you still have a fighting chance of getting them passing

again.

Refactoring GetWeather as a client method

We need to do one more thing: check that GetWeather returns the

expected weather data.

Testing GetWeather

See if you can put all these pieces together now to write a test for 

GetWeather.

func NewClient(apiKey string) *Client { 

    return &Client{ 

        APIKey:  apiKey, 

        BaseURL: "https://api.openweathermap.org", 

        HTTPClient: &http.Client{ 

            Timeout: 10 * time.Second, 

        }, 

    } 

}

func (c Client) FormatURL(location string) string { 

    return fmt.Sprintf("%s/data/2.5/weather?q=%s&appid=%s", 

        c.BaseURL, location, c.APIKey) 

}

https://github.com/bitfield/tpg-tools2/blob/main/weather/4/weather.go
https://github.com/bitfield/tpg-tools2/blob/main/weather/4/weather.go


GOAL: Write a test for GetWeather.

HINT: We can adapt the simple HTTP test we wrote earlier, adding the

new handler, and creating a weather client configured to call it.

Since we control the data, we also know the exact Conditions struct

that we should get back. Can you see what to do?

SOLUTION: Here’s the test:

(Listing weather/4)

Once you’ve got this test completed and filled in the necessary null

implementation of GetWeather, we should able to see it fail:

-   Summary: "Clouds", 

+   Summary: "",

func TestGetWeather_ReturnsExpectedConditions(t *testing.T) { 

    t.Parallel() 

    ts := httptest.NewTLSServer(http.HandlerFunc( 

        func(w http.ResponseWriter, r *http.Request) { 

            http.ServeFile(w, r, "testdata/weather.json") 

        })) 

    defer ts.Close() 

    c := weather.NewClient("dummyAPIKey") 

    c.BaseURL = ts.URL 

    c.HTTPClient = ts.Client() 

    want := weather.Conditions{ 

        Summary: "Clouds", 

    } 

    got, err := c.GetWeather("Paris,FR") 

    if err != nil { 

        t.Fatal(err) 

    } 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

https://github.com/bitfield/tpg-tools2/blob/main/weather/4/weather_test.go


All we need to do now is move the remaining code from main to 

GetWeather, and update it to use the new client struct.

Implementing GetWeather

We don’t need to do any clever problem-solving here, just careful

refactoring:

(Listing weather/4)

A convenience wrapper

What will all this paperwork reduction leave us with in main? Let’s take a

look:

func (c *Client) GetWeather(location string) (Conditions, 

    error) { 

    URL := c.FormatURL(location) 

    resp, err := c.HTTPClient.Get(URL) 

    if err != nil { 

        return Conditions{}, err 

    } 

    defer resp.Body.Close() 

    if resp.StatusCode != http.StatusOK { 

        return Conditions{}, fmt.Errorf("unexpected response 

\  

            status %q", resp.Status) 

    } 

    data, err := io.ReadAll(resp.Body) 

    if err != nil { 

        return Conditions{}, err 

    } 

    conditions, err := ParseResponse(data) 

    if err != nil { 

        return Conditions{}, err 

    } 

    return conditions, nil 

}

func main() { 

    if len(os.Args) < 2 { 

        fmt.Println(Usage) 

        os.Exit(0) 

https://github.com/bitfield/tpg-tools2/blob/main/weather/4/weather.go


Can we do more? We know that whenever we have a client object, users

will appreciate being able to call a convenience wrapper around an

implicit default client.

They’d like to be able to call a single function, such as weather.Get, that

constructs and uses the client for them, transparently. Let’s write that:

(Listing weather/4)

Adding a Main function

We can also lift and shift the code from main into a weather.Main

function, in the same way that we did for previous CLI tools:

    } 

    key := os.Getenv("OPENWEATHERMAP_API_KEY") 

    if key == "" { 

        fmt.Fprintln(os.Stderr, "Please set the environment \ 

            variable OPENWEATHERMAP_API_KEY.") 

        os.Exit(1) 

    } 

    location := os.Args[1] 

    c := weather.NewClient(key) 

    conditions, err := c.GetWeather(location) 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 

        os.Exit(1) 

    } 

    fmt.Println(conditions) 

}

func Get(location, key string) (Conditions, error) { 

    c := NewClient(key) 

    conditions, err := c.GetWeather(location) 

    if err != nil { 

        return Conditions{}, err 

    } 

    return conditions, nil 

}

func Main() { 

    if len(os.Args) < 2 { 

        fmt.Println(Usage) 

https://github.com/bitfield/tpg-tools2/blob/main/weather/4/weather.go


(Listing weather/4)

That gets us to the minimal main we want:

(Listing weather/4)

Adding temperature support

We now have the weather machinery working end to end for the

summary data, so let’s now add in the missing temperature feature. See

what you can do:

        return 0 

    } 

    key := os.Getenv("OPENWEATHERMAP_API_KEY") 

    if key == "" { 

        fmt.Fprintln(os.Stderr, "Please set the environment \ 

            variable OPENWEATHERMAP_API_KEY.") 

        return 1 

    } 

    location := os.Args[1] 

    conditions, err := Get(location, key) 

    if err != nil { 

        fmt.Fprintln(os.Stderr, err) 

        return 1 

    } 

    fmt.Println(conditions) 

    return 0 

}

package main 

 

import (

    "os"

 

    "github.com/bitfield/weather" 

) 

 

func main() { 

    os.Exit(weather.Main()) 

}

https://github.com/bitfield/tpg-tools2/blob/main/weather/4/weather.go
https://github.com/bitfield/tpg-tools2/blob/main/weather/4/cmd/weather/main.go


GOAL: Add temperature handling.

HINT: Extending our Conditions struct with a float64 field to represent

the temperature seems sensible. How would we add support for this,

test-first? Can you figure it out by applying what you’ve learned so far?

Parsing temperature data

SOLUTION: Let’s start by modifying the ParseResponse test to expect

the temperature value from the test data:

If we add the necessary field to the struct definition, the test fails as

expected, because we’re not parsing the temperature data yet:

    Summary:     "Clouds", 

-   Temperature: 284.1, 

+   Temperature: 0,

To get this working, we need to tell the JSON decoder where to find the

temperature information, by adding its schema to our adapter struct:

Now there should be a resp.Main.Temp field on the decoded value in 

ParseResponse. We can use that to set the temperature in the computed

Conditions struct:

want := weather.Conditions{ 

    Summary:     "Clouds", 

    Temperature: 284.1, 

}

type OWMResponse struct { 

    Weather []struct { 

        Main string 

    } 

    Main struct { 

        Temp float64 

    } 

}

conditions := Conditions{ 

    Summary:     resp.Weather[0].Main, 

    Temperature: resp.Main.Temp, 

}



The test now passes, and we can also adjust the want value in the 

GetWeather test to expect the same temperature. That should pass

without any further changes.

More user testing

Let’s try running the program for real to see what the output looks like:

{Clouds 285.22}

We can definitely improve on this, can’t we? Firstly, we don’t need to see

the curly braces generated by fmt.Println. Let’s use Printf to improve

the formatting a little:

This is a little nicer:

Clouds 285.2

Handling quantities with units

But what units is that temperature in? The API docs say:

Temperature is available in Fahrenheit, Celsius and Kelvin units…

Temperature in Kelvin is used by default. 

—https://openweathermap.org/current#data

Unless they’re physicists, users are most likely to want temperature

information in Celsius or Fahrenheit, so what should we do?

Actually, units are just a matter of presentation, aren’t they? We can

store the temperature internally in whatever units we want: kelvin will be

just fine, and that’s what we happen to have.

In general, don’t convert values back and forth between different unit

systems in your code. Pick a lane, preferably SI units, and stick to it. You

only need to convert units when it comes to displaying values to users.

Presenting temperatures in Celsius

Let’s update the weather client to be able to report the temperature in

degrees Celsius. What API would make sense for this?

go run ./cmd/weather London,UK

fmt.Printf("%s %.1f\n", conditions.Summary, 

    conditions.Temperature)

https://openweathermap.org/current#data


We could make users call some unit-conversion function

(KelvinToCelsius, for example), but that feels a little paperworky.

What we’d like to write is something like:

See what you can do!

GOAL: Test and implement the Celsius method.

HINT: It’s a classic want and got situation, isn’t it? Testing the behaviour

of the Celsius method is easy, then, but implementing it isn’t as simple

as defining a method on float64, because that’s not allowed.

Can you see how to get around this? Once you know the trick, it’s quite

simple.

SOLUTION: We might start by writing a test like this:

As expected, this gives us a compile error:

input.Celsius undefined (type float64 has no field or method 

Celsius)

No problem: let’s define this method. It’s not hard to write:

But this still doesn’t compile:

conditions.Temperature.Celsius()

func TestCelsiusCorrectlyConvertsFahrenheitToCelsius(t 

*testing.T) {  

    t.Parallel() 

    input := 274.15 

    want := 1.0 

    got := input.Celsius() 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

func (t float64) Celsius() float64 { 

    return t - 273.15 

}



invalid receiver float64 (basic or unnamed type)

Defining a Temperature type

We can’t define methods on other people’s types, including built-in

types, which makes sense: that would modify the type, and that’s not

allowed. Instead, we need to define our own type, and add a method to

it:

(Listing weather/5)

To make our test compile, we just need to explicitly convert our input

value to the new Temperature type:

(Listing weather/5)

And now all is well. Let’s update our Main method to use Celsius when

displaying the temperature:

Here’s what that looks like when we run the program for real:

Sunny 12.0ºC

Tackling more complex APIs

type Temperature float64 

 

func (t Temperature) Celsius() float64 { 

    return float64(t) - 273.15 

}

func TestCelsiusCorrectlyConvertsFahrenheitToCelsius(t 

*testing.T) {  

    t.Parallel() 

    input := weather.Temperature(274.15) 

    want := 1.0 

    got := input.Celsius() 

    if !cmp.Equal(want, got) { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

fmt.Printf("%s %.1fºC\n", conditions.Summary, 

    conditions.Temperature.Celsius())

https://github.com/bitfield/tpg-tools2/blob/main/weather/5/weather.go
https://github.com/bitfield/tpg-tools2/blob/main/weather/5/weather_test.go


The code we’ve developed in this chapter is a good starting point for

building a client for more or less any API. Let’s look briefly at some of the

ways we might need to extend it to cope with more complex APIs.

Request data

We may need to send request data as a JSON-encoded body, rather than

embedded in the URL. In this case it’s probably a good idea to define

some APIRequest adapter struct, as we did with OWMResponse.

To make sure we’re marshalling the request data correctly, the httptest

handler can check it by unmarshalling it and comparing it with the

original value. For APIs with multiple endpoints with different types of

requests and responses, we may need multiple adapter structs.

“CRUD” methods

One common pattern for APIs that manage some kind of external

resource is the set of methods known as CRUD: Create, Read, Update,

and Delete. It makes sense to map each of these to a corresponding Go

method on the client object.

There’s usually some unique ID associated with the resource, so that we

can specify the one we want. Usually the API assigns an ID, so Create

should return it, while Read, Update, and Delete should take it as a

parameter.

You can often write a single test for all the CRUD methods at once. It

should create a resource, read it to check it was created properly, update

it, and read it again to make sure the update worked. The test can then

delete the resource, and make sure that a final read fails because it no

longer exists.

Last words

Well, here we are at the end already. Thanks for taking this journey with

me!

We began this book by describing the “universal library” of Go, and

redefining our own role as software developers to see ourselves as

contributors to this library, instead of merely writing one-off tools to

solve our immediate problems. In other words, we’re writing packages,

not just programs.



This shift in mindset automatically produces higher quality software:

easier to use, more flexible, more reliable. We’re doing better work

because we’re just thinking about it more, and I hope you’ll agree that

this actually makes the whole development process more fun, not less.

However, there’s one more thing we should keep in mind. The game

designer Sid Meier, of “Civilization” fame, had a wise and useful rule for

himself:

Make sure the player is the one having fun.

Without that rule, he said, it would be too easy for him to add game

features that seemed like fun to implement, but that might end up not

being so much fun for people to actually play.

Writing software can be very enjoyable and rewarding (if you’re doing it

right), but we should be careful not to forget that the user is the reason

we’re doing it. Good design is not just a matter of putting more things in,

but also of knowing what to leave out.

Features that seem cool or interesting to us, for example, might well

mean nothing to users, or just serve to make the software more

complicated and annoying to operate. Conversely, features that are

important to them might seem boring or difficult to us, so we could easily

overlook or shirk them.

Programming is fun, and that’s as it should be, but having fun needn’t

mean working in a slapdash or lazy way. Instead, it’s more fun when we

know we’re doing good work. But, especially in the commercial world,

there can be a lot of pressure on us to do quick, sloppy work, and

prioritise fast shipping over quality.

That isn’t good business sense, though, if you take the longer-term view.

It’s no good making your manager happy by making users miserable,

because it’s the users who ultimately pay your salary (and your

manager’s).

Quality is the best business plan, and the only sustainable one in the

long run. That means making sure the users are the ones having fun.

So it’s a good idea to ask ourselves from time to time, “Is this software

fun to use?” That is to say, is it simple, easy, intuitive, friendly, polite,

responsive, useful, helpful, natural, and—just occasionally—delightful?

And if the answer is “not yet”, well, perhaps it needs a little more work.



Can you see what to do?

Going further

If you’ve worked your way through the whole book and you still want

more of a challenge, then I salute you. You’re clearly made of the right

stuff. Here’s one suggestion for exploring further.

Currently, locations with spaces in the name are not handled

correctly, because we only read the first space-separated argument.

Extend the weather client so that the entire command line is treated

as the location. So, for example, you could run a command line:

If there are multiple locations that match the request,

OpenWeatherMap just returns one, but it may not be the one the

user wanted. Have the client report what actual location it’s giving

the weather for, to avoid any confusion.

You can see one possible solution to this in listing weather/6.

weather new york,us

https://github.com/bitfield/tpg-tools2/blob/main/weather/6
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Who wrote this?

John Arundel is a Go teacher and mentor of many years

experience. He’s helped literally thousands of people to

learn Go, with friendly, supportive, professional mentoring,

and he can help you too. Find out more:

Learn Go remotely with me

Feedback

If you enjoyed this book, let me know! Email

go@bitfieldconsulting.com with your comments. If you

didn’t enjoy it, or found a problem, I’d like to hear that too.

All your feedback will go to improving the book.

Also, please tell your friends, or post about the book on

social media. I’m not a global mega-corporation, and I don’t

have a publisher or a marketing budget: I write and produce

these books myself, at home, in my spare time. I’m not
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doing this for the money: I’m doing it so that I can help bring

the power of Go to as many people as possible.

That’s where you can help, too. If you love Go, tell a friend

about this book!

Mailing list

If you’d like to hear about it first when I publish new books,

or even join my exclusive group of beta readers to give

feedback on drafts in progress, you can subscribe to my

mailing list here:

Subscribe to Bitfield updates

For the Love of Go

For the Love of Go is a book introducing the Go

programming language, suitable for complete beginners, as

well as those with experience programming in other

languages.

http://eepurl.com/hdYV0z
https://bitfieldconsulting.com/books/love


If you’ve used Go before but feel somehow you skipped

something important, this book will build your confidence in

the fundamentals. Take your first steps toward mastery with

this fun, readable, and easy-to-follow guide.

Throughout the book we’ll be working together to develop a

fun and useful project in Go: an online bookstore called

Happy Fun Books. You’ll learn how to use Go to store data

about real-world objects such as books, how to write code to

manage and modify that data, and how to build useful and

effective programs around it.

The Power of Go: Tests

What does it mean to program with confidence? How do you

build self-testing software? What even is a test, anyway?

https://bitfieldconsulting.com/books/love


The Power of Go: Tests answers these questions, and many

more.

Welcome to the thrilling world of fuzzy mutants and spies,

guerilla testing, mocks and crocks, design smells, mirage

tests, deep abstractions, exploding pointers, sentinels and

six-year-old astronauts, coverage ratchets and golden files,

singletons and walking skeletons, canaries and smelly

suites, flaky tests and concurrent callbacks, fakes, CRUD

methods, infinite defects, brittle tests, wibbly-wobby timey-

wimey stuff, adapters and ambassadors, tests that fail only

at midnight, and gremlins that steal from the player during

the hours of darkness.

If you get fired as a result of applying the advice in this

book, then that’s probably for the best, all things

https://bitfieldconsulting.com/books/tests
https://bitfieldconsulting.com/books/tests


considered. But if it happens, I’ll make it my personal

mission to get you a job with a better company: one

where people are rewarded, not punished, for producing

software that actually works. 

Go’s built-in support for testing puts tests front and centre

of any software project, from command-line tools to

sophisticated backend servers and APIs. This accessible,

amusing book will introduce you to all Go’s testing facilities,

show you how to use them to write tests for the trickiest

things, and distils the collected wisdom of the Go

community on best practices for testing Go programs.

Crammed with hundreds of code examples, the book uses

real tests and real problems to show you exactly what to do,

step by step.

You’ll learn how to use tests to design programs that solve

user problems, how to build reliable codebases on solid

foundations, and how tests can help you tackle horrible,

bug-riddled legacy codebases and make them a nicer place

to live. From choosing informative, behaviour-focused

names for your tests to clever, powerful techniques for

managing test dependencies like databases and concurrent

servers, The Power of Go: Tests has everything you need to

master the art of testing in Go.

If that sounds interesting, there’s a sneak preview of the

first chapter at the end of this book!

Know Go: Generics

Go beyond the basics, and master the new generics

features introduced in Go 1.18. Learn all about type

parameters and constraints in Go and how to use them, with

this easy-to-read but comprehensive guide.

https://bitfieldconsulting.com/books/tests


If you’re new to Go and generics, and wondering what all

the fuss is about, this book is for you! If you have some

experience with Go already, but want to learn about the new

generics features, this book is also for you. And if you’ve

been waiting impatiently for Go to just get generics already

so you can use it, don’t worry: this book is for you too!

You don’t need an advanced degree in computer science or

tons of programming experience. Know Go: Generics

explains what you need to know in plain, ordinary language,

with simple examples that will show you what’s new, how

the language changes will affect you, and exactly how to

use generics in your own programs and packages.

As you’d expect from the author of For the Love of Go and

The Power of Go: Tools, it’s fun and easy reading, but it’s

https://bitfieldconsulting.com/books/generics


also packed with powerful ideas, concepts, and techniques

that you can use in real-world applications.

Further reading

You can find more of my books on Go here:

Go books by John Arundel

You can find more Go tutorials and exercises here:

Go tutorials from Bitfield

I have a YouTube channel where I post occasional videos on

Go, and there are also some curated playlists of what I

judge to be the very best Go talks and tutorials available,

here:

Bitfield Consulting on YouTube

Video course

If you’re one of the many people who enjoys learning from

videos, as well as from books, you may like the video course

that accompanies the ‘For the Love of Go’ book:

https://bitfieldconsulting.com/books
https://bitfieldconsulting.com/golang
https://www.youtube.com/c/BitfieldConsulting


For the Love of Go: Video Course

Credits

Gopher images by the magnificent egonelbre and

MariaLetta, except:

“Gopher with flag” image copyright 2019 by danielb42,

used under the MIT Licence.

https://bitfieldconsulting.com/courses/love-books-video-bundle
https://bitfieldconsulting.com/courses/love-books-video-bundle
https://github.com/egonelbre/gophers
https://github.com/MariaLetta/free-gophers-pack
https://github.com/danielb42/whiteflag
https://github.com/danielb42/whiteflag/blob/master/LICENSE
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A sneak preview

If you’re wondering where to go next after reading this

book, here comes a sneak preview of the first chapter of The

Power of Go: Tests. If you enjoy this chapter, please use the

discount code TOOLS2TESTS to get 25% off the price of the

full book. Just go to the product page, add the book to your

cart, and then enter the code at the checkout.

Happy fun reading!

https://bitfieldconsulting.com/books/tests


1. Programming with

confidence

It seemed that for any piece of software I wrote, after a

couple of years I started hating it, because it became

increasingly brittle and terrifying. 

Looking back in the rear-view, I’m thinking I was

reacting to the experience, common with untested code,

of small changes unexpectedly causing large breakages

for reasons that are hard to understand. 

—Tim Bray, “Testing in the Twenties”

When you launch yourself on a software engineering career,

or even just a new project, what goes through your mind?

What are your hopes and dreams for the software you’re

going to write? And when you look back on it after a few

years, how will you feel about it?

https://www.tbray.org/ongoing/When/202x/2021/05/15/Testing-in-2021


There are lots of qualities we associate with good software,

but undoubtedly the most important is that it be correct. If it

doesn’t do what it’s supposed to, then almost nothing else

about it matters.

Self-testing code

How do we know that the software we write is correct? And,

even if it starts out that way, how do we know that the

minor changes we make to it aren’t introducing bugs?

One thing that can help give us confidence about the

correctness of software is to write tests for it. While tests are

useful whenever we write them, it turns out that they’re

especially useful when we write them first. Why?

The most important reason to write tests first is that, to do

that, we need to have a clear idea of how the program

should behave, from the user’s point of view. There’s some

thinking involved in that, and the best time to do it is before

we’ve written any code.

Why? Because trying to write code before we have a clear

idea of what it should do is simply a waste of time. It’s

almost bound to be wrong in important ways. We’re also

likely to end up with a design which might be convenient

from the point of view of the implementer, but that doesn’t

necessarily suit the needs of users at all.

Working test-first encourages us to develop the system in

small increments, which helps prevent us from heading too

far down the wrong path. Focusing on small, simple chunks

of user-visible behaviour also means that everything we do

to the program is about making it more valuable to users.

Tests can also guide us toward a good design, partly

because they give us some experience of using our own



APIs, and partly because breaking a big program up into

small, independent, well-specified modules makes it much

easier to understand and work on.

What we aim to end up with is self-testing code:

You have self-testing code when you can run a series of

automated tests against the code base and be confident

that, should the tests pass, your code is free of any

substantial defects. 

One way I think of it is that as well as building your

software system, you simultaneously build a bug

detector that’s able to detect any faults inside the

system. Should anyone in the team accidentally

introduce a bug, the detector goes off. 

—Martin Fowler, “Self-Testing Code”

This isn’t just because well-tested code is more reliable,

though that’s important too. The real power of tests is that

they make developers happier, less stressed, and more

productive as a result.

Tests are the Programmer’s Stone, transmuting fear into

boredom. “No, I didn’t break anything. The tests are all

still green.” The more stress I feel, the more I run the

tests. Running the tests immediately gives me a good

feeling and reduces the number of errors I make, which

further reduces the stress I feel. 

—Kent Beck, “Test-Driven Development by Example”

The adventure begins

Let’s see what writing a function test-first looks like in Go.

Suppose we’re writing an old-fashioned text adventure

game, like Zork, and we want the player to see something

like this:

https://martinfowler.com/bliki/SelfTestingCode.html
https://amzn.to/3OR9pqg
https://www.gamasutra.com/view/feature/1499/the_history_of_zork.php


Attic 

The attics, full of low beams and awkward angles, begin

here in a relatively tidy area which extends north, south

and east. You can see here a battery, a key, and a

tourist map.

Adventure games usually contain lots of different locations

and items, but one thing that’s common to every location is

that we’d like to be able to list its contents in the form of a

sentence:

You can see here a battery, a key, and a tourist 

map.

Suppose we’re storing these items as strings, something like

this:

a battery 

a key 

a tourist map

How can we take a bunch of strings like this and list them in

a sentence, separated by commas, and with a concluding

“and”? It sounds like a job for a function; let’s call it 

ListItems.

What kind of test could we write for such a function? You

might like to pause and think about this a little.

One way would be to call the function with some specific

inputs (like the strings in our example), and see what it

returns. We can predict what it should return when it’s

working properly, so we can compare that prediction against

the actual result.

Here’s one way to write that in Go, using the built-in 

testing package:



(Listing game/1)

Don’t worry too much about the details for now; we’ll deal

with them later. The gist of this test is as follows:

1. We call the function game.ListItems with our test

inputs.

2. We check the result against the expected string.

3. If they’re not the same, we call t.Errorf, which causes

the test to fail.

Note that we’ve written this code as though the 

game.ListItems function already exists. It doesn’t. This test

is, at the moment, an exercise in imagination. It’s saying if

this function existed, here’s what we think it should return,

given this input.

But it’s also interesting that we’ve nevertheless made a

number of important design decisions as an unavoidable

part of writing this test. First, we have to call the function,

func TestListItems_GivesCorrectResultForInput(t 

*testing.T) {  

    t.Parallel() 

    input := []string{ 

        "a battery", 

        "a key", 

        "a tourist map", 

    } 

    want := "You can see here a battery, a key, 

and a tourist map."  

    got := game.ListItems(input) 

    if want != got { 

        t.Errorf("want %q, got %q", want, got) 

    } 

}

https://github.com/bitfield/tpg-tests/blob/main/game/1/game_test.go


so we’ve decided its name (ListItems), and what package

it’s part of (game).

We’ve also decided that its parameter is a slice of strings,

and (implicitly) that it returns a single result that is a string.

Finally, we’ve encoded the exact behaviour of the function

into the test (at least, for the given inputs), by specifying

exactly what the function should produce as a result.

The original description of test-driven development was

in an ancient book about programming. It said you take

the input tape, manually type in the output tape you

expect, then program until the actual output tape

matches the expected output. 

When describing this to older programmers, I often hear,

“Of course. How else could you program?” 

—Kent Beck

Naming something and deciding its inputs, outputs, and

behaviour are usually the hardest decisions to make about

any software component, so even though we haven’t yet

written a single line of code for ListItems, we’ve actually

done some pretty important thinking about it.

And the mere fact of writing the test has also had a

significant influence on the design of ListItems, even if it’s

not very visible. For example, if we’d just gone ahead and

written ListItems first, we might well have made it print

the result to the terminal. That’s fine for the real game, but

it would be difficult to test.

Testing a function like TestItems requires decoupling it from

some specific output device, and making it instead a pure

function: that is, a function whose result is deterministic,

depends on nothing but its inputs, and has no side-effects.

https://qr.ae/pGlzjU


Functions that behave like this tend to make a system easier

to understand and reason about, and it turns out that

there’s a deep synergy between testability and good design,

which we’ll return to later in this book.

Verifying the test

So what’s the next step? Should we go ahead and

implement ListItems now and make sure the test passes?

We’ll do that in a moment, but there’s a step we need to

take first. We need some feedback on whether the test itself

is correct. How could we get that?

It’s helpful to think about ways the test could be wrong, and

see if we can work out how to catch them. Well, one major

way the test could be wrong is that it might not fail when

it’s supposed to.

Tests in Go pass by default, unless you explicitly make them

fail, so a test function with no code at all would always pass,

no matter what:

That test is so obviously useless that we don’t need to say

any more. But there are more subtle ways to accidentally

write a useless test. For example, suppose we mistakenly

wrote something like this:

A value always equals itself, so this if statement will never

be true, and the test will never fail. We might spot this just

by looking at the code, but then again we might not.

func TestAlwaysPasses(t *testing.T) {}

if want != want { 

    t.Errorf("want %q, got %q", want, got) 

}



I’ve noticed that when I teach Go to my students, this is a

concept that often gives them trouble. They can readily

imagine that the function itself might be wrong. But it’s not

so easy for them to encompass the idea that the test could

be wrong. Sadly, this is something that happens all too

often, even in the best-written programs.

Until you’ve seen the test fail as expected, you don’t

really have a test.

So we can’t be sure that the test doesn’t contain logic bugs

unless we’ve seen it fail when it’s supposed to. When should

the test fail, then? When ListItems returns the wrong

result. Could we arrange that? Certainly we could.

That’s the next step, then: write just enough code for 

ListItems to return the wrong result, and verify that the

test fails in that case. If it doesn’t, we’ll know we have a

problem with the test that needs fixing.

Writing an incorrect function doesn’t sound too difficult, and

something like this would be fine:

Almost everything here is dictated by the decisions we

already made in the test: the function name, its parameter

type, its result type. And all of these need to be there in

order for us to call this function, even if we’re only going to

implement enough of it to return the wrong answer.

The only real choice we need to make here, then, is what

actual result to return, remembering that we want it to be

incorrect.

func ListItems(items []string) string { 

    return "" 

}



What’s the simplest incorrect string that we could return

given the test inputs? Just the empty string, perhaps. Any

other string would also be fine, provided it’s not the one the

test expects, but an empty string is the easiest to type.

Running tests with go test

Let’s run the test and check that it does fail as we expect it

to:

go test

--- FAIL: TestListItems_GivesCorrectResultForInput 

(0.00s) 

    game_test.go:18: want "You can see here a 

battery, a key, and 

    a tourist map.", got "" 

FAIL 

exit status 1 

FAIL    game    0.345s

Reassuring. We know the function doesn’t produce the

correct result yet, so we expected the test to detect this,

and it did.

If, on the other hand, the test had passed at this stage, or

perhaps failed with some different error, we would know

there was a problem. But it seems to be fine, so now we can

go ahead and implement ListItems for real.

Here’s one rough first attempt:

func ListItems(items []string) string { 

    result := "You can see here"

    result += strings.Join(items, ", ") 

    result += "." 



(Listing game/1)

I really didn’t think too hard about this, and I’m sure it

shows. That’s all right, because we’re not aiming to produce

elegant, readable, or efficient code at this stage. Trying to

write code from scratch that’s both correct and elegant is

pretty hard. Let’s not stack the odds against ourselves by

trying to multi-task here.

In fact, the only thing we care about right now is getting the

code correct. Once we have that, we can always tidy it up

later. On the other hand, there’s no point trying to beautify

code that doesn’t work yet.

The goal right now is not to get the perfect answer but

to pass the test. We’ll make our sacrifice at the altar of

truth and beauty later. 

—Kent Beck, “Test-Driven Development by Example”

Let’s see how it performs against the test:

--- FAIL: TestListItems_GivesCorrectResultForInput 

(0.00s) 

    game_test.go:18: want "You can see here a 

battery, a key, and 

    a tourist map.", got "You can see herea 

battery, a key, a 

    tourist map."

Well, that looks close, but clearly not exactly right. In fact,

we can improve the test a little bit here, to give us a more

helpful failure message.

Using cmp.Diff to compare results

    return result 

}

https://github.com/bitfield/tpg-tests/blob/main/game/1/game.go
https://amzn.to/3OR9pqg


Since part of the result is correct, but part isn’t, we’d

actually like the test to report the difference between want

and got, not just print both of them out.

There’s a useful third-party package for this, go-cmp. We

can use its Diff function to print just the differences

between the two strings. Here’s what that looks like in the

test:

(Listing game/2)

Here’s the result:

--- FAIL: TestListItems_GivesCorrectResultForInput 

(0.00s) 

    game_test.go:20:   strings.Join({ 

                "You can see here", 

        -       " ", 

                "a battery, a key,", 

        -       " and", 

func TestListItems_GivesCorrectResultForInput(t 

*testing.T) {  

    t.Parallel() 

    input := []string{ 

        "a battery", 

        "a key", 

        "a tourist map", 

    } 

    want := "You can see here a battery, a key, 

and a tourist map."  

    got := game.ListItems(input) 

    if want != got { 

        t.Error(cmp.Diff(want, got)) 

    } 

}

https://pkg.go.dev/github.com/google/go-cmp/cmp
https://github.com/bitfield/tpg-tests/blob/main/game/2/game_test.go


                " a tourist map.", 

          }, "")

When two strings differ, cmp.Diff shows which parts are

the same, which parts are only in the first string, and which

are only in the second string.

According to this output, the first part of the two strings is

the same:

"You can see here",

But now comes some text that’s only in the first string

(want). It’s preceded by a minus sign, to indicate that it’s

missing from the second string, and the exact text is just a

space, shown in quotes:

-       " ",

So that’s one thing that’s wrong with ListItems, as

detected by the test. It’s not including a space between the

word “here” and the first item.

The next part, though, ListItems got right, because it’s the

same in both want and got:

"a battery, a key,",

Unfortunately, there’s something else present in want that is

missing from got:

-       " and",

We forgot to include the final “and” before the last item. The

two strings are otherwise identical at the end:

" a tourist map.",



You can see why it’s helpful to show the difference between 

want and got: instead of a simple pass/fail test, we can see

how close we’re getting to the correct result. And if the

result were very long, the diff would make it easy to pick out

which parts of it weren’t what we expected.

Let’s make some tweaks to ListItems now to address the

problems we detected:

(Listing game/3)

A bit ugly, but who cares? As we saw earlier, we’re not

trying to write beautiful code at this point, only correct code.

This approach has been aptly named “Shameless Green”:

The most immediately apparent quality of Shameless

Green code is how very simple it is. There’s nothing

tricky here. The code is gratifyingly easy to

comprehend. Not only that, despite its lack of

complexity this solution does extremely well. 

—Sandi Metz & Katrina Owen, “99 Bottles of OOP: A

Practical Guide to Object-Oriented Design”

In other words, shameless green code passes the tests in

the simplest, quickest, and most easily understandable way

possible. That kind of solution may not be the best, as we’ve

func ListItems(items []string) string { 

    result := "You can see here " 

    result += strings.Join(items[:len(items)-1], 

", ")  

    result += ", and " 

    result += items[len(items)-1] 

    result += "." 

    return result 

}

https://github.com/bitfield/tpg-tests/blob/main/game/3/game.go
https://sandimetz.com/99bottles


said, but it may well be good enough, at least for now. If we

suddenly had to drop everything and ship right now, we

could grit our teeth and ship this.

So does ListItems work now? Tests point to yes:

go test

PASS 

ok      game    0.160s

The test is passing, which means that ListItems is

behaving correctly. That is to say, it’s doing what we asked

of it, which is to format a list of three items in a pleasing

way.

New behaviour? New test.

Are we asking enough of ListItems with this test? Will it be

useful in the actual game code? If the player is in a room

with exactly three items, we can have some confidence that

ListItems will format them the right way. And four or more

items will probably be fine too.

What about just two items, though? From looking at the

code, I’m not sure. It might work, or it might do something

silly. Thinking about the case of one item, though, I can see

right away that the result won’t make sense.

The result of formatting a slice of no items clearly won’t

make sense either. So what should we do? We could add

some code to ListItems to handle these cases, and that’s

what many programmers would do in this situation.

But hold up. If we go ahead and make that change, then

how will we know that we got it right? We can at least have

some confidence that we won’t break the formatting for



three or more items, since the test would start failing if that

happened. But we won’t have any way to know if our new

code correctly formats two, one, or zero items.

We started out by saying we have a specific job that we

want ListItems to do, and we defined it carefully in

advance by writing the test. ListItems now does that job,

since it passes the test.

If we’re now deciding that, on reflection, we want ListItems

to do more, then that’s perfectly all right. We’re allowed to

have new ideas while we’re programming: indeed, it would

be a shame if we didn’t.

But let’s adopt the rule “new behaviour, new test”. Every

time we think of a new behaviour we want, we have to write

a test for it, or at least extend an existing passing test so

that it fails for the case we’re interested in.

That way, we’ll be forced to get our ideas absolutely clear

before we start coding, just like with the first version of 

ListItems. And we’ll also know when we’ve written enough

code, because the test will start passing.

This is another point that I’ve found my students sometimes

have difficulty with. Often, the more experienced a

programmer they are, the more trouble it gives them.

They’re so used to just going ahead and writing code to

solve the problem that it’s hard for them to insert an extra

step in the process: writing a new test.

Even when they’ve written a function test-first to start with,

the temptation is then to start extending the behaviour of

that function, without pausing to extend the test. In that

case, just saying “New behaviour, new test” is usually

enough to jog their memory. But it can take a while to



thoroughly establish this new habit, so if you have trouble at

first, you’re not alone. Stick at it.

Test cases

We could write some new test functions, one for each case

that we want to check, but that seems a bit wasteful. After

all, each test is going to do exactly the same thing: call 

ListItems with some input, and check the result against

expectations.

Any time we want to do the same operation repeatedly, just

with different data each time, we can express this idea

using a loop. In Go, we usually use the range operator to

loop over some slice of data.

What data would make sense here? Well, this is clearly a

slice of test cases, so what’s the best data structure to use

for each case?

Each case here consists of two pieces of data: the strings to

pass to ListItems, and the expected result. Or, to put it

another way, input and want, just like we have in our

existing test.

One of the nice things about Go is that any time we want to

group some related bits of data into a single value like this,

we can just define some arbitrary struct type for it. Let’s

call it testCase:

func TestListItems_GivesCorrectResultForInput(t 

*testing.T) {  

    type testCase struct { 

        input []string 

        want  string 



(Listing game/4)

How can we refactor our existing test to use the new 

testCase struct type? Well, let’s start by creating a slice of 

testCase values with just one element: the three-item case

we already have.

(Listing game/4)

What’s next? We need to loop over this slice of cases using 

range, and for each case, we want to pass its input value

to ListItems and compare the result with its want value.

    } 

    ...

... 

cases := []testCase{ 

    { 

        input: []string{ 

            "a battery", 

            "a key", 

            "a tourist map", 

        }, 

        want: 

        "You can see here a battery, a key, and a 

tourist map.",  

    }, 

} 

...

... 

for _, tc := range cases { 

    got := game.ListItems(tc.input) 

    if tc.want != got { 

        t.Error(cmp.Diff(tc.want, got)) 

https://github.com/bitfield/tpg-tests/blob/main/game/4/game_test.go
https://github.com/bitfield/tpg-tests/blob/main/game/4/game_test.go
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This looks very similar to the test we started with, except

that most of the test body has moved inside this loop. That

makes sense, because we’re doing exactly the same thing

in the test, but now we can do it repeatedly for multiple

cases.

This is commonly called a table test, because it checks the

behaviour of the system given a table of different inputs and

expected results. Here’s what it looks like when we put it all

together:

    } 

}

func TestListItems_GivesCorrectResultForInput(t 

*testing.T) {  

    type testCase struct { 

        input []string 

        want  string 

    } 

    cases := []testCase{ 

        { 

            input: []string{ 

                "a battery", 

                "a key", 

                "a tourist map", 

            }, 

            want: 

            "You can see here a battery, a key, 

and a tourist map.",  

        }, 

    } 

    for _, tc := range cases { 

https://github.com/bitfield/tpg-tests/blob/main/game/4/game_test.go
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First, let’s make sure we didn’t get anything wrong in this

refactoring. The test should still pass, since it’s still only

testing our original three-item case:

PASS 

ok      game    0.222s

Great. Now comes the payoff: we can easily add more

cases, by inserting extra elements in the cases slice.

Adding cases one at a time

What new test cases should we add at this stage? We could

add lots of cases at once, but since we feel pretty sure

they’ll all fail, there’s no point in that.

Instead, let’s treat each case as describing a new behaviour,

and tackle one of them at a time. For example, there’s a

certain way the system should behave when given two

inputs instead of three, and it’s distinct from the three-item

case. We’ll need some special logic for it.

So let’s add a single new case that supplies two items:

        got := game.ListItems(tc.input) 

        if tc.want != got { 

            t.Error(cmp.Diff(tc.want, got)) 

        } 

    } 

}

{ 

    input: []string{ 

        "a battery", 

        "a key", 

https://github.com/bitfield/tpg-tests/blob/main/game/4/game_test.go
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The value of want is up to us, of course: what we want to

happen in this case is a product design decision. This is

what I’ve decided I want, with my game designer hat on, so

let’s see what ListItems actually does:

--- FAIL: TestListItems_GivesCorrectResultForInput 

(0.00s) 

    game_test.go:36:   strings.Join({ 

            "You can see here a battery", 

        +   ",", 

            " and a key.", 

          }, "")

Not bad, but not perfect. It’s inserting a comma after

“battery” that shouldn’t be there.

Now let’s try to fix that. For three or more items, we’ll

always want the comma, and for two, one, or zero items, we

won’t. So the quickest way to get this test to pass is

probably to add a special case to ListItems, when 

len(items) is less than 3:

    }, 

    want: "You can see here a battery and a key.", 

},

func ListItems(items []string) string { 

    result := "You can see here " 

    if len(items) < 3 { 

        return result + items[0] + " and " + 

items[1] + "."  

    } 

    result += strings.Join(items[:len(items)-1], 

", ")  

https://github.com/bitfield/tpg-tests/blob/main/game/5/game_test.go
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Again, this isn’t particularly elegant, nor does it need to be.

We just need to write the minimum code to pass the current

failing test case. In particular, we don’t need to worry about

trying to pass test cases we don’t have yet, even if we plan

to add them later:

Add one case at a time, and make it pass before

adding the next.

The test passes for the two cases we’ve defined, so now

let’s add the one-item case:

(Listing game/6)

Note the slightly different word order: “you can see here a

battery” would sound a little odd.

Let’s see if this passes:

--- FAIL: TestListItems_GivesCorrectResultForInput 

(0.00s) 

panic: runtime error: index out of range [1] with 

    result += ", and " 

    result += items[len(items)-1] 

    result += "." 

    return result 

}

{ 

    input: []string{ 

        "a battery", 

    }, 

    want: "You can see a battery here.", 

},

https://github.com/bitfield/tpg-tests/blob/main/game/5/game.go
https://github.com/bitfield/tpg-tests/blob/main/game/6/game_test.go


length 1 

[recovered]

Oh dear. ListItems is now panicking, so that’s even worse

than simply failing. In the immortal words of Wolfgang Pauli,

it’s “not even wrong”.

Quelling a panic

Panics in Go are accompanied by a stack trace, so we can

work our way through it to see which line of code is the

problem. It’s this one:

return result + items[0] + " and " + items[1] + 

"."

This is being executed in the case where there’s only one

item (items[0]), so we definitely can’t refer to items[1]: it

doesn’t exist. Hence the panic.

Let’s treat the one-item list as another special case:

func ListItems(items []string) string { 

    result := "You can see here " 

    if len(items) == 1 { 

        return "You can see " + items[0] + " 

here."  

    } 

    if len(items) < 3 { 

        return result + items[0] + " and " + 

items[1] + "."  

    } 

    result += strings.Join(items[:len(items)-1], 

", ")  

    result += ", and " 

    result += items[len(items)-1] 

https://en.wikipedia.org/wiki/Not_even_wrong


(Listing game/6)

This eliminates the panic, and the test now passes for this

case.

Let’s keep going, and add the zero items case. What should

we expect ListItems to return?

(Listing game/7)

Just the empty string seems reasonable. We could have it

respond “You see nothing here”, but it would be a bit weird

to get that message every time you enter a location that

happens to have no items in it, which would probably be

true for most locations.

Running this test case panics again:

--- FAIL: TestListItems_GivesCorrectResultForInput 

(0.00s) 

panic: runtime error: index out of range [0] with 

length 0 [recovered]

And we can guess what the problem is without following the

stack trace: if items is empty, then we can’t even refer to 

items[0]. Another special case:

    result += "." 

    return result 

}

{ 

    input: []string{}, 

    want:  "", 

},

https://github.com/bitfield/tpg-tests/blob/main/game/6/game.go
https://github.com/bitfield/tpg-tests/blob/main/game/7/game_test.go


(Listing game/7)

This passes.

Refactoring

We saw earlier that it doesn’t matter how elegant the code

for ListItems looks, if it doesn’t do the right thing. So now

that it does do the right thing, we’re in a good place,

because we have options. If we had to ship right now, this

moment, we could actually do that. We wouldn’t be

delighted about it, because the code is hard to read and

maintain, but users don’t care about that. What they care

about is whether it solves their problem.

But maybe we don’t have to ship right now. Whatever extra

time we have in hand, we can now use to refactor this

correct code to make it nicer. And, while there’s always a

risk of making mistakes or introducing bugs when

refactoring, we have a safety net: the test.

The definition of “refactoring”, by the way, is changing code

without changing its behaviour in any relevant way. Since

the test defines all the behaviour we consider relevant, we

can change the code with complete freedom, relying on the

test to tell us the moment the code starts behaving

differently.

Since we have four different code paths, depending on the

number of input items, we can more elegantly write that as

a switch statement with four cases:

if len(items) == 0 { 

    return "" 

}

https://github.com/bitfield/tpg-tests/blob/main/game/7/game.go


(Listing game/8)

Did we break anything or change any behaviour? No,

because the test still passes. Could we have written 

ListItems from the start using a switch statement, saving

this refactoring step? Of course, but we’ve ended up here

anyway, just by a different route.

In fact, all good programs go through at least a few cycles of

refactoring. We shouldn’t even try to write the final program

in a single attempt. Instead, we’ll get much better results by

aiming for correct code first, then iterating on it a few times

to make it clear, readable, and easy to maintain.

Writing is basically an iterative process. It is a rare

writer who dashes out a finished piece; most of us work

func ListItems(items []string) string { 

    switch len(items) { 

    case 0: 

        return "" 

    case 1: 

        return "You can see " + items[0] + " 

here."  

    case 2: 

        return "You can see here " + items[0] + " 

and " +  

            items[1] + "." 

    default: 

        return "You can see here " + 

            strings.Join(items[:len(items)-1], ", 

") +  

            ", and " + items[len(items)-1] + "." 

    } 

}

https://github.com/bitfield/tpg-tests/blob/main/game/8/game.go


in circles, returning again and again to the same piece

of prose, adding or deleting words, phrases, and

sentences, changing the order of thoughts, and

elaborating a single sentence into pages of text. 

—Dale Dougherty & Tim O’Reilly, “Unix Text Processing”

Well, that was easy

No doubt there’s more refactoring we could do here, but I

think you get the point. We’ve developed some correct,

reasonably readable code, with accompanying tests that

completely define the behaviour users care about.

And we did it without ever having to really think too hard.

There were no brain-busting problems to solve; we didn’t

have to invent any complicated algorithms previously

unknown to computer science, or that you might be tested

on in some job interview. We didn’t use any advanced

features of Go, just basic strings, slices, and loops.

That’s a good thing. If code is hard to write, it’ll be hard to

understand, and even harder to debug. So we want the code

to be easy to write.

Everyone knows that debugging is twice as hard as

writing a program in the first place. So if you’re as

clever as you can be when you write it, how will you

ever debug it? 

—Brian Kernigan & P.J. Plauger, “The Elements of

Programming Style”

If we find that writing the code is hard, we’ll reduce the

scope of our ambition so that we’re solving some simpler

problem instead. We’ll keep simplifying the problem in this

way until the code becomes easy and obvious. Then we can

gradually build back up to the real problem we started with.

https://amzn.to/3ObAKDI
https://amzn.to/3bF2mmB


The key point is that we’re always writing code, always

testing our evolving ideas against a running program,

instead of getting trapped into doing “big design up front”:

that never works.

My way of writing code is, you sculpt it, you get

something as good as you can, and everything’s subject

to change, always, as you learn. But you climb this

ladder of learning about your problem. Every problem’s

unique, so you have to learn about each problem, and

you do something and get a better vantage point. And

from that vantage point you can decide to throw it out.

Code is cheap. But often it tells you what to do next. 

—Andy Herzfeld, quoted in Scott Rosenberg’s “Dreaming

in Code”

At every stage in this process, we had the confidence that

comes from having a good test. It caught our occasional

missteps, showed us from moment to moment how close we

were getting to the correct solution, and what still remained

to be done.

As we generated new ideas during development, it was easy

to add them as new test cases, and we only had to do a

very little work to make them pass. Once we had all the

cases passing, we were able to confidently refactor the

entire function, without worrying about breaking anything or

introducing subtle bugs.

If you’re not used to this way of programming with tests, it

might all seem a bit long-winded for a relatively simple

function. But the process is a lot quicker to do than it is to

explain step by step.

In a real-life programming situation, it would probably take

me a couple of minutes to write this test, two or three

https://amzn.to/3NrFwhi


minutes to get it passing, and maybe another couple of

minutes to refactor the code. Let’s generously say ten

minutes is a reasonable time to build something like 

ListItems using this workflow.

Could we do it faster if we didn’t bother about the test?

Perhaps. But significantly faster? I doubt it. To write a

working ListItems from scratch that handles all these

cases would take me a good ten minutes, I think. Indeed, it

would actually be harder work, because I’d have to think

very carefully at each stage and painstakingly work out

whether the code is going to produce the correct result.

Even then, I wouldn’t be completely confident that it was

correct without seeing it run a few times, so I’d have to go

on and write some throwaway code just to call ListItems

with some inputs and print the result. And it probably

wouldn’t be correct, however carefully and slowly I worked. I

would probably have missed out a space, or something. So

I’d have to go back and fix that.

It will feel slow at first. The difference is, when we’re

done, we’re really done. Since we’re getting closer to

really done, the apparent slowness is an illusion. We’re

eliminating most of that long, painful test-and-fix finish

that wears on long after we were supposed to be done. 

—Ron Jeffries, “The Nature of Software Development”

In other words, the test-first workflow isn’t slow at all, once

you’re familiar with it. It’s quick, enjoyable, and productive,

and the result is correct, readable, self-testing code.

Watching an experienced developer build great software

fast, guided by tests, can be a transformative experience:

I grew a reporting framework once over the course of a

few hours, and observers were absolutely certain it was

https://amzn.to/3cUylzy


a trick. I must have started with the resulting framework

in mind. No, sorry. I’ve just been test driving

development long enough that I can recover from most

of my mistakes faster than you can recognize I’ve made

them. 

—Kent Beck, “Test-Driven Development by Example”

Sounds good, now what?

Maybe you’re intrigued, or inspired, by the idea of

programming with confidence, guided by tests. But maybe

you still have a few questions. For example:

How does Go’s testing package work? How do we write

tests to communicate intent? How can we test error

handling? How do we come up with useful test data?

What about the test cases we didn’t think of?

What if there are bugs still lurking, even when the tests

are passing? How can we test things that seem

untestable, like concurrency, or user interaction? What

about command-line tools?

How can we deal with code that has too many

dependencies, and modules that are too tightly

coupled? Can we test code that talks to external

services like databases and network APIs? What about

testing code that relies on time? And are mock objects a

good idea? How about assertions?

What should we do when the codebase has no tests at

all? For example, legacy systems? Can we refactor and

test them in safe, stress-free ways? What if we get in

trouble with the boss for writing tests? What if the

existing tests are no good? How can we improve testing

through code review?

https://amzn.to/3OR9pqg


How should we deal with tests that are optimistic,

persnickety, over-precise, redundant, flaky, failing, or

just slow? And how can tests help us improve the design

of the system overall?

Well, I’m glad you asked. Enjoy the rest of the book.
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