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To my Oxford M.Sc. students: this is the book I would
have liked to have to teach you Statistical Programming.

Sorry that it took me a while to write it!
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Preface

Pitching new ideas by prefacing them with quotes like
“Data scientist: the sexiest job of the 21st century” [142]
or “Data is the new oil” [357] has become such a cliché
that any audience (in business and academia alike) will
collectively roll their eyes in exasperation. And for good
reason. Likewise, we do not believe radiologists or lorry
drivers will be replaced by artificial intelligence and out
of a job for the foreseeable future, and we are not alone
in realising the limits of machine learning [358].

Even so, it is difficult to understate the impact that
machine learning is having on many aspects of our
lives. It has taken the pre-existing trends of using
data and analytics (under the banner of “data mining”,
“big data” and similar buzzwords) to inform business
decisions and drive scientific discovery, and made
them ubiquitous. Machine learning has combined the
mathematical rigour of information theory and statistics,
the computational aspects of computer science and the
goal-driven flexibility of optimisation theory, redefining
how we work with data.

The flip side of trying to distil parts of so many different
disciplines has been the clash between their respective
cultures, which has been well summarised by Leo
Breiman in “Statistical Modeling: The Two Cultures”
[54]. On top of that, there is a tension between machine
learning practice in the industry and academia: the latter
strongly values producing novel models and theoretical
results, while the former is driven by the need to
produce practical results that have business value. With

xiii
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somany different perspectives, it is a wonder that a rough
consensus on what machine learning is has actually
evolved! (Personally, our red line is conflating deep
learning with machine learning. There is life beyond
deep neural networks!)

In this melting pot of ideas, we feel that software
engineering has played a remarkably small role compared
to other disciplines. Machine learning, after all, is “a
technique that allows computer systems to improve
with experience and data” [122]. Therefore, there is
a presumption that one will interact with a computer
system, which in turn happens by engineering a piece
of software that communicates to the computer system
what it is supposed to do. The quality of this engineering
is crucial in both academia and industry. In academia,
software quality issues are one of the underlying causes of
the “reproducibility crisis” [234, 340]. In industry, poor
engineering leads to lower practical and computational
performance [177], to a quick accumulation of technical
debt [313] and sometimes to catastrophic failures with
costs in the millions [317, 319, 368, 394]. There is, of
course, a sizeable body of accumulated wisdom on how
to architect and write software in foundational books
like The Pragmatic Programmer [369] and A Philosophy
of Software Design [252]. However, these books are
written with business software in mind, and we find
that they do not capture or touch only tangentially on
key practices that go a long way towards successfully
implementing and deploying machine learning models.
Analysis of algorithms; matching data and algorithms
with appropriate hardware; embracing data as part of the
software; testing and documenting algorithms and their
implementations; modularising and building pipelines;
and, last but not least, naming variables. From our
experience in academia and in the industry, engineering
software and teaching software engineering to students
and new staff alike, these topics are often not given
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the importance they deserve. We hope to convince the
readers of this book that the viability of any software
that analyses data, whether you call it machine learning,
data science or business analytics, depends crucially on
putting careful thought into these engineering practices.
We do not aim to be prescriptive: the individual practices
that we discuss will be more or less relevant in different
settings, and can be implemented with a variety of
software tools. On the contrary, we want our readers
to think about what we wrote in the context of their own
experience and to figure out which parts apply and which
do not!

The book starts with a brief introduction to machine
learning and software engineering, to set out how we
view them and how we think that they should interact
in practical applications. The remainder is structured in
four parts, from foundational to practical:

1. Foundations of Scientific Computing: covering
key topics that are foundational for the planning,
analysis and design of machine learning software,
such as: the trade-offs of using different
hardware configurations; the characteristics
of different data types and of suitable data
structures; and the analysis of algorithms to
determine their computational complexity.

2. Best Practices for Machine Learning and Data
Science: revisiting best practices in software
engineering from the point of view of a machine
learning engineer, from writing, troubleshooting
and deploying code to production (that is, serving
models) to writing technical documentation.

3. Tools and Technologies: discussing broad classes
of tools that shape how we think about what is
feasible to do with machine learning pipelines,
with examples from the state of the art and the
trade-offs they make.
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4. A Case Study: putting the recommendations in
the previous chapters into practice by discussing
and prototyping a machine learning pipeline for
natural language understanding from the work
of Lipizzi et al. [195].

All the material in this book, including the book itself, is
available online at

https://ppml.dev

and will be updated to fix assorted typos and code
problems as they become known to us.

Finally, we would like to thank all the people who
supported us and made this book possible. First of all,
our families who put up with our long working hours.
The colleagues who gave us feedback on early drafts
of the book: Vincenzo Manzoni, Fabio Stella and Ron
Kenett. And, last but not least, our editor Randi Cohen
who bore with us through the many delays this book
suffered during the Covid pandemic.

Lugano, Switzerland Marco Scutari
Milano, Italy Mauro Malvestio
August 2022
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1

What Is This Book About?

The modern practice of data analysis is shaped by
the convergence of many disciplines, each with its
own history: information theory, computer science,
optimisation, probability and statistics among them.
Machine learning and data science can be considered
their latest incarnations, inheriting the mantle of what
used to be called “data analytics”. Software engineering
should be considered as a crucial addition to this list.
Why do we need it to implement modern data analysis
efficiently and effectively?

1.1 Machine Learning

There are many definitions of machine learning. Broadly
speaking, it is a discipline that aims to create computer
systems and algorithms that can learn a structured
representation of reality without (or with less) human
supervision in order to interact with it [305]. At one
end of the spectrum, we can take this to be a narrow
version of artificial general intelligence in which we
want our computer systems to learn intellectual tasks
independently and to generalise them to new problems,
much like a human being would. At the other end, we can
view machine learning as the ability to learn probabilistic
models that provide a simplified representation of a
specific phenomenon to perform a specific task [110] such
as predicting an outcome of interest (supervised learning)

1
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or finding meaningful patterns in the data (unsupervised
learning). Somewhere in between these two extremes
lie expert systems [60], which “capture the ability to
think and reason about as an expert would in a particular
domain” and can provide “a meaningful answer to a less
than fully specified question.”

Broadly speaking, in order to do this:

1. We need a working model of the world that
describes the task and its context in a way that a
computer can understand.

2. We need a goal: how do we measure the
performance of the model? Because that is what
we optimise for! Usually, it is the ability to predict
new events.

3. We encode our knowledge of the world, drawing
information from training data, experts or both.

4. The computer system uses the model as a proxy
of reality and, as new inputs come in, to perform
inference and decide if and how to perform the
assigned task.

The exact form these elements take will depend on the
domain we are trying to represent and on the model we
will use to represent it. Machine learning is, at its core,
a collection of models and algorithms from optimisation,
statistics, probability and information theory that deal
with abstract problems: from simple linear regression
models [398], to Bayesian networks [314], to more
complex models such as deep neural networks [122]
and Gaussian processes [288]. These algorithms can
be applied to a variety of domains from healthcare
[381] to natural language processing [2] and computer
vision [393], with some combinations of algorithms and
domains working out better than others.

In classical statistics (Figure 1.1, bottom right), analysing
data required the modeller to specify the probabilistic
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FIGURE 1.1 Different approaches to data analysis grouped
by their sources of information: the data or the
assumptions made by the modeller.

model generating them in order to draw inferences from
a limited number of data points. Such models would
necessarily have a simple structure for two reasons:
because the modeller had to manually interpret their
properties and their output, and because of the lack
of any substantial computing power to estimate their
parameters. This approach would put all the burden
on the modeller: most of the utility that could be
had from the model would come from the ability of
the modeller to distil whatever he was modelling into
simple mathematics and to incorporate any available
prior information into the model structure. The result
is the emphasis on closed-form results, low-order
approximations and asymptotics that characterises the
earlier part of modern statistics.

There are, however, many phenomena that cannot
be feasibly studied in this fashion. Firstly, there are
limits to a human modeller’s ability to encode complex
behaviour when manually structuring models. These
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limits can easily be exceeded by phenomena involving
large numbers of variables or by non-linear patterns
of interactions between variables that are not very
regular or known in advance. Secondly, there may not be
enough information available to even attempt to structure
a probabilistic model. Thirdly, limiting our choice of
models to those that can be written in closed form to allow
the modeller to fit, interpret and use them manually,
without a significant use of computing power, does not
necessarily ensure that those models are easy to interpret.
For instance, there are many documented pitfalls in
interpreting logistic regression [226, 287], which is
arguably the simplest way to implement classification.

Classical applications of Bayesian statistics (Figure 1.1,
top right) address some of these limitations. Themodeller
still has to structure a model covering both the data and
any prior beliefs on their behaviour, but the posterior
may be estimated algorithmically using Markov Chain
Monte Carlo (MCMC).

In contrast [54], algorithmic approaches shift the burden
from the modeller to data collection and computer
software (Figure 1.1, top left). The modeller’s role in
constructing the probabilistic model is limited, and is
largely replaced by a computer system sifting through
large amounts of data: hence the name “machine
learning”. The structure of the model is learned from
the data, with few limitations in what it may look like.
Neural networks and Gaussian processes are universal
approximators, for instance. Almost all the information
comes from the data, instead of being prior information
that is mediated by the modeller, which is why machine
learning approaches are data-hungry.

1.2 Data Science

Data science is similarly data-driven (Figure 1.1, top
left), but focuses on extracting insights from raw data
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and presenting them graphically to support principled
decision making. Kenett and Redman [179] describe it as
follows: “the real work of data scientists involves helping
people make better decisions on the important issues in
the near term and building stronger organizations in the
long term”. It requires strong involvement from the data
scientist in all areas of business, shifting the focus from
computer systems to people. Nevertheless, data scientists
use statistical and machine learning models as the means
to obtain those insights.

Compared to classical statistics, when data are abundant
(Big Data! [178]) we do not really need to construct
their generating process from prior knowledge. The data
contain enough information for us to “let them speak for
themselves” and obtain useful insights, which are what
we are mainly interested in. Of course, prior information
from experts is still useful: models that incorporate it
tend to be better at producing insights that can be acted
upon.

As a result, data science puts a strong focus on the quality
of the data, which is often problematic when dealing with
data aggregated from multiple sources (data fusion) or
with non-tabular data (natural language processing and
computer vision). Often, data are poorly defined, simply
wrong or ultimately irrelevant for the purpose they were
collected for. Expert knowledge is crucial to assess them,
to integrate them and to fix them if possible. Machine
learning is widely applied to both text and images as well,
but focused mostly on modelling their hidden structure
until recently, when explainability became a hot topic
[see, for instance, 191, 325].

Computer systems are key to data science, albeit with
a different role than in machine learning. Storing
and accessing large amounts of data, exploring them
interactively, building the software pipelines that analyse
them, handling the resulting spiky workloads: these are
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all tasks that require a sophisticated use of both hardware
and software.

1.3 Software Engineering

Software engineering is the systematic application of
sound engineering principles to all phases of the software
life cycle: design, development, maintenance, testing
and evaluation [385]. Its central tenet is mastering
the complexity inherent to developing large pieces of
software that are reliable and efficient; that are usable
and can be evolved over time; and that can be developed
and maintained in a viable way in terms of both cost and
effort [252].

Early definitions of software engineering suggested
that we should treat it as if it were a traditional
engineering discipline like, say, civil engineering. The
result is the waterfall model [300], which lays out
software development as a sequence of steps starting
from collecting requirements and finishing with the
deployment of the finished product. Modern practices
recognise, however, that this model is flawed in several
ways. Firstly, civil engineering arises from and is bound
by the laws of physics, whereas we make up our own
world with its own rules when we develop software.
These rules will change over time as our understanding
of the problem space evolves; the laws of physics do
not. Secondly, the task the software is meant to perform
will change over time, and our working definition of
that task will change as well. Civil engineering mostly
deals with well-defined problems that stay well-defined
for the duration of the project. Finally, modifying a
large building after its construction is completed is very
difficult, but we routinely do that with software. Most
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FIGURE 1.2 A schematic view of the phases of the software
development life-cycle.

of the overall effort in the software lifetime is usually in
maintaining and evolving it.

Current software engineering practices take the opposite
view that software development is an open-ended
(“software is never done”), iterative (the “software life-
cycle”) process: this is the core of the “Agile Manifesto”
[36]. At a high level, it is organised as shown in
Figure 1.2: a perpetual cycle of planning, analysis, design,
implementation, testing and maintenance. The design
of the software is heavily influenced by the domain it
operates in [domain-driven development, 96]. It uses
tests [test-driven development, 35], refactoring [105] and
continuous integration [86] to incorporate new features,
to fix bugs in a timely manner and to keep the code
“in shape”. Admittedly, all of these approaches have
been touted as silver bullets to the point they have
become buzzwords, and their practical implementation
has often distorted them to the point of making software
development worse. However, the key ideas of agile
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have merit, and we will discuss and apply them in
moderation in this book. They are well suited to structure
the development of machine learning pipelines, which
are built on a combination of mutable models and input
data.

1.4 How Do They Go Together?

The centrality of computing in machine learning and data
science makes software engineering practices essential
in modern data analysis: most of the work is done by
computer systems, which are powered by software.1

Encoding the data, storing and retrieving them efficiently,
implementing machine learning models, tying them
together and with other systems: each of these tasks
is complex enough that only sound engineering practices
can ensure the overall correctness of what we are doing.
This is true, in different ways, for both academic research
and industry applications. As Kenett and Redman [179]
put it, using a car analogy:

“If data is the new oil, technology is the new engine.
The engine powers the car and, without technological
advancements, a data- and analytics-led transfor-
mation would not be possible. Technologies include
databases, communications systems and protocols,
applications that support the storage and processing
of data, and the raw computing horsepower (much of
it now in the cloud) to drive it all.”

In academia, there is a widespread belief that the software
implementations of novel methods can be treated as

1This is not to discount the role of hardware, just to set the focus
of the book. Processing units tailored to machine learning use are
an active research and engineering field as exemplified by Nvidia
[244], Google [59] and other companies [295].
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“one-off scripts”. “We only need to run it once to
write this paper, there is no point in refactoring and
re-engineering it.” is a depressingly common sentiment.
As is not sharing code to “stay ahead of the competition”.
However, research and application papers using machine
learning rely crucially on the quality of the software they
use because:

1. The models themselves are often black boxes
whose mathematical behaviour is not completely
understood (Section 9.2).

2. The data are complex enough that even experts
in the domains they come from struggle to
completely explain them (Section 9.1).

If we do not understand both the data and the models
completely, it becomes very difficult to spot problems
in the software we use to work on them: unexpected
behaviour arising from software bugs may be mistaken
for a peculiarity in either of them. It is then crucial
that we minimise the chances of this happening by
applying all the best engineering practices we have at
our disposal. Present and past failures to do so have
led to a widespread “reproducibility crisis” in fields as
diverse as drug research [272, 20–25% reproducible],
comparative psychology [332, 36% reproducible], finance
[61, 43% reproducible] and computational neuroscience
[224, only 12% of papers provide both data and code].
Machine learning and artificial intelligence research is in
a similarly sorry state: that “when the original authors
provided assistance to the reproducers, 85% of results
were successfully reproduced, compared to 4% when the
authors didn’t respond” [261] does suggest that there is
margin for improvement. Fortunately, in recent years
scientists have widely accepted this is a problem [234],
and the machine learning community has reached some
consensus on how to tackle it [340].
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In industry, poor engineering leads to lower practical and
computational performance and a quick accumulation of
technical debt [313, and Section 5.2]. Badly engineered
data may not contain the information we are looking
for in a usable form; models that are not well packaged
may be slow to deploy and difficult to roll back;
data may contain biases or may change over time in
ways that make models fail silently; or the machine
learning software may become an inscrutable black
box whose outputs are impossible to explain, making
troubleshooting impossible.

To conclude, we believe that solid machine learning
applications and research rest on three pillars:

1. The foundations of machine learning (mathe-
matics, probability, computer science), which
provide guarantees that the models work.

2. Software engineering, which provides guarantees
that the implementations of the models work
(effectively and efficiently).

3. The quality of the data in terms of features, size,
fairness, and in how they were collected.

In this book, we will concentrate on the software
engineering aspect, touching briefly on some aspects
of the data. We will not discuss the theoretical or
methodological aspects of machine learning, which
are better covered in the huge amount of specialised
literature published to date [such as 109, 122, 147, 288,
305, and many others].



Part I

Foundations of Scientific
Computing
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2

Hardware Architectures

Building a compute system to run machine learning
software requires careful planning. How well it will
perform depends on choosing the right hardware; a set of
machine learning algorithms that can attack efficiently
and effectively the task we want to perform; and how to
represent the data we will use, the models and their
outputs. For the purpose of this book, we define a
“compute system” as a computer system, not necessarily
server-class, that will perform one or more of the tasks
required to learn or use machine learning models. We
will often call it a “machine learning system” as well to
highlight its purpose. Other types of systems, such as
those focusing on storage (database servers, data lakes,
object storage) or delivery (human-readable dashboards,
computer-readable API endpoints) will be mentioned
only in passing.

In this chapter we focus on the hardware, moving to the
data in Chapter 3 and to the algorithms in Chapter 4.
After covering the key aspects of a compute system
(Section 2.1), we discuss how to use it to the best
of its potential (Section 2.2), the trade-offs involved
in integrating remote systems (Section 2.3) and how
to design it based on our requirements (Section 2.4).
Modern machine learning libraries try to make these
decisions for us, but they have limits that become
apparent in many real-world applications: in such cases,
being able to reason about the hardware is an invaluable
skill.

13
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FIGURE 2.1 A schematic view of the key components that
may appear in a modern compute system (not necessarily
all at the same time). Sizes and distances are not to scale.

2.1 Types of Hardware

Compute systems come in a variety of configurations
whose components are summarised in Figure 2.1. Broadly
speaking, we can say that they vary along three axes:
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1. compute, the processors that perform the oper-
ations required to learn and run our machine
learning models;

2. memory to store the data, the models and their
outputs as variables and data structures; and the

3. connections that we use to move the data and the
models around.

These dimensions are admittedly somewhat arbitrary, but
they are well-suited to discuss the topics we will cover in
this book. In this context, choosing the right hardware
means choosing a trade-off in terms of compute, memory
and connections that allows the machine learning system
to achieve the goals it is designed for while fitting the
available budget. To quote one of the universal truths
from RFC 1925 [55]:

“(7a) Good, Fast, Cheap: Pick any two (you can’t have
all three).”

2.1.1 Compute

The three types of processors we can commonly find in
machine learning systems are:

1. Central processing units (CPUs), usually either an
x86-64 processor from AMD or Intel or an ARM
processor.

2. Graphics processing units (GPUs) from NVidia or
AMD.

3. Tensor processingunits (TPUs), usually fromGoogle.
Other specialised hardware to accelerate machine
learning certainly exists [295] but, for practical
purposes, fulfils the same role as TPUs.

CPUs, GPUs and TPUs represent different trade-offs in
terms of speed, capabilities and versatility. Trading one
off for another is unavoidable: the end of the “easy”
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performance improvements granted by Moore’s law
(transistors per chip double each year or two) and by
Dennard’s law (power density is constant as transistors
get smaller, that is, we get more transistors) mean
that we cannot expect general-purpose processors to
become faster at the rate we were used to. Transistors
cannot get any smaller without breaking the laws of
physics. Current and voltage cannot drop any further
while keeping transistors dependable, so we cannot easily
double transistors per chip anymore. The only way out
of this conundrum is domain-specific architectures that
use their transistor- and power-budgets to the fullest
for specific types of operations [168]. Hence the rise
of GPUs and, more recently, TPUs in machine learning
applications.

CPUs are the most versatile type of compute: they
can perform a wide range of operations by means of
the instructions they implement; they can perform
multiple operations in parallel to some extent (whether
on different cores or on different threads on the same
core); and they can efficiently handle any type of
data. At the same time, CPUs contain logical units that
implement specialised single-instruction multiple-data
(SIMD) instruction sets such as the Streaming SIMD
Extensions (SSE1 to SSE4 on x86, Neon on ARM) and
the Advanced Vector Extensions (AVX, AVX2, AVX512 on
x86, SVM on ARM) to perform numerical computations
efficiently and simultaneously on multiple variables.1

The speed-ups that can be obtained by their use can
be substantial, ranging from 10–15% to a factor of 10
[see, for instance, 103, 412]. The main limitation of SIMD
instructions is that they can only operate on the contents
of the registers, the smallest and fastest memory inside
the CPU. For instance, on x86-64 CPUs each register can

1For the moment, we will use “data” and “variables” interchange-
ably. How data are actually represented in different types of variables
will be the topic of Chapter 3.
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hold 2-16 floating point numbers, and there are 16 (SSE,
AVX, AVX2) or 32 (AVX512) registers for each core.

Another type of instruction that performs multiple
operations in parallel are fused operations such as
FMA (“fused add and multiply”), which perform
predefined sets of operations on multiple variables and
in approximately the same time it would take to perform
a single operation. They also have the added benefit of
performing just one floating point rounding to precision
after the last operation, thus eliminating many rounding
issues (more on this in Section 3.1.2).

GPUs specialise in parallel computations over large
amounts of data. They are fundamentally different from
CPUs: they behave like asynchronous devices in which
we load data, we wait for data to be processed and then
we collect the results. For practical purposes, modern
GPUs can be viewed as multithreaded, multicore vector
processors [392] designed to operate on one-dimensional
arrays of data. The data is internally subdivided into
blocks that will be processed by hundreds of independent,
identical units.2 Each unit is extremely simple: it is
close to a CPU’s SIMD/FMA logical unit in terms of
functionality. It has its own set of registers and a local
memory cache, but it can only apply a single type of
operation at a time and is completely driven by the GPU
scheduler. The GPU scheduler takes care of keeping the
units busy by assigning them tasks in such a way as to
maximise occupancy (the overall load of the GPU) and by
keeping them fed with data from the global memory of
the GPU.

This level of parallelism makes them potentially much
faster than CPUs: a CPU has at most a few tens of cores,

2Naming conventions vary by vendor. In Nvidia GPUs, they are
called “streaming units” organised in “streaming multiprocessors”;
in AMD GPUs they are called “compute units” and “workgroup
processors”; in Intel GPUs “execution units” and “execution cores”.
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whereas a GPU has hundreds of units that are equally
capable of using SIMD instructions. This allows the GPU
scheduler to handle tasks of unequal sizes and with
different latencies, limiting their impact on the efficiency
of parallel computations. Furthermore, each GPU unit
has more registers3 than a CPU core and can work on a
much larger amount of data at extremely low latencies.

On the other hand, the hardware design that makes all
of this possible restricts what a GPU can do. Units are
optimised to work on 32-bit floating point and integer
numbers; modern hardware also supports 16-bit and
64-bit floating point numbers well, but working with
other types of variables is difficult. Getting data to the
units requires copying them first to the GPU global
memory, where they will be stored in one or more
memory banks. Different units cannot read different
data from the same memory bank at the same time,
so we should carefully optimise the layout of the
data in memory. Furthermore, data are assumed to be
organised into one-dimensional arrays: further structure
is disregarded. Support for branching (that is, if-then-
else programming constructs) is limited to the GPU
scheduler: units have no concept of conditional execution
at all. Finally, units are organised in groups of 32 to 64,
and the GPU scheduler can only allocate tasks to groups.
Any task whose size is not amultiple of the group size will
result in under-utilised groups and decrease occupancy.

TPUs are even more specialised: they are expressly built
for training and performing inference on deep neural
network models with the best possible average and tail
performance. The architecture of TPU cores4 rests on five
design decisions [168]:

3For instance, each unit in an Nvidia RTX 2060 has 256kB of
registers [243], while a CPU only has 32 × 16 = 512 bytes worth of
AVX512 registers for each core (hence the name of the instruction
set).

4In describing TPUs, we follow Google’s naming conventions
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• including a single, very simple core per processor;
• concentrating most computing power in a large, two-
dimensional matrix-multiply unit;

• organising memory in a mesh network that allows for
asynchronous, lockless communications between cores;

• implementing hardware support for integers and floats
with limited precision, which use less memory;

• dropping all the features that are not strictly needed
for working with deep neural networks.

This single-minded focus on deep learning makes TPUs
the best hardware to use for this kind of models, with
documented speed-ups on the order of 20-30 times
over GPUs in terms of performance per watt [168]. In
particular, [167] reports that TPUs are 50 times faster
per watt for inference and 5 to 10 times faster for
training. These improvements are largely driven by
the fact that TPU cores are much smaller than GPU
or CPU cores (38 times less area), so they consume
(13 times) less energy and leave a larger share of the
available transistors to the matrix-multiply unit. Another
important factor is the memory layout, which allows
deadlock-free communications between TPU cores at
500Gb per second and removes the need to synchronise
them periodically. Intuitively, we can expect these
performance improvements to carry over to other types
of machine learning models that require similar patterns
of mathematical operations, and particularly to those
that can be completely formulated in terms of matrix
manipulations.

The price we pay for this level of performance is the
complete lack of flexibility and versatility of TPUs,
which are really good only at multiplying matrices. TPU
cores cannot perform any instruction scheduling, do not
support multithreading, and in general have none of the

because, at the time of this writing, that is the only TPU in wide use
in machine learning.
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sophisticated features we can find in CPUs and GPUs.
They are completely driven by the CPU of the compute
system they are attached to. To make up for that, code
can be compiled with Google’s XLA compiler [343] to
require no dynamic scheduling and to maximise data-
and instruction-level parallelism, combining operations
to use SIMD/FMA instructions and to ensure that the
matrix-multiplication unit is always busy. XLA has
complete visibility into the structure of Tensorflow and
PyTorchmodels and can optimise across operations much
better than a traditional compiler or the CPU and GPU
schedulers. It is effective to the point that it can achieve
sustained 70% peak performance [167]. TPUs are also
heavily optimised for a single type of variable, Google’s
“brain” floating point format (“bfloat”), and are slower
for variables in the industry-standard IEEE 754 floating
point format [253]. (More in Section 3.1.2.) Furthermore,
they are designed specifically for 16-bit (“bfloat16”)
floating point operations over 32-bit operations. Both
formats are empirically good enough for working deep
neural networks and are eight times more efficient to
operate on than IEEE formats [167].

2.1.2 Memory

The practical performance of CPUs, GPUs and TPUs is
limited by the fact that we need to provide them data to
operate on. Each processor can only access the memory
it is directly attached to: the registers and the internal
cache for CPUs, the on-board global and local memory
for GPUs and TPUs (see Figure 2.1). This translates to
delivering input data from system RAM to their dedicated
memory and copying the outputs they produce back to
system RAM for further processing.

Moving data between different memories costs time,
as does moving them within each type of memory,
although less so. Ideally, we want to have as much data



2.1 Types of Hardware 21

as close as possible to the processor that will work on it.
Furthermore, we want that processor to keep working on
that data in place for as long as possible to amortise the
cost of moving data over a large number of operations.
This aspiration is limited by three factors:

1. the amount of memory available to and directly
accessible by each type of processor;

2. the latency of accessing different types of
memory;

3. and the bandwidth of our connections to different
types of memory, which determines how quickly
data can be transferred after it is accessed.

In other words, latency is the time spent waiting for
the memory copy to start, and the bandwidth is the
maximum amount of memory we can copy per second.

Clearly, each type of processor will be fastest in accessing
its dedicated memory because it is physically located next
to or inside it. Distance plays a key role in determining
the latency of memory accesses: the propagation speed
of electrical signals limits how quickly we can reach for
that memory. The need to process these signals along the
way, for instance, to translate the addresses of memory
locations in different formats, may further delay accesses
as well. CPU registers, the local memory of GPU units
and the local memory of TPUs are directly attached to the
respective processors to minimise distance and to make
them directly addressable. This reduces latency from

microseconds (10−6 seconds) or tens of microseconds
(10−5 seconds) to a few hundred or tens of microseconds
(10−9 to 10−7 seconds). To quote RFC 1925 once more:

“(2) No matter how hard you push and no matter what
the priority, you can’t increase the speed of light.”

The latency of accessing particular types of memory is
usually inversely proportional to their size and is bound
below by the frequency of the processor accessing it. We
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FIGURE 2.2 A schematic view of the different types of
memory, their size and their latency (the time it takes
for the CPU to access them). Times are expressed as

nanoseconds (1ns = 10−9s) or microseconds (1?s = 10−6s).

illustrate this point in Figure 2.2, focusing on the CPU,
but our considerations hold for GPUs and TPUs as well.
CPU registers and the various CPU caches are the smallest
because their size is limited by the physical size of the
CPU. For instance, the three levels of cache (L1, L2, L3)
on a Sandy Bridge Intel CPU are 32kB (L1), 256kB (L2)
and 20MB (L3) in size and can be accessed in 4, 12 and
29 cycles respectively [412]. In contrast, registers can
only store a few hundreds of bytes, but it only takes a
single cycle to access them. For practical purposes, we
can take a CPU cycle to be the reciprocal of the CPU’s
clock frequency. Say that we have a 2GHz CPU:

1 cycle /(2 × 109Hz) = 5 × 10−10s = 0.5ns.

With this equation we can derive the latencies shown in
Figure 2.2: accessing registers takes 0.5ns and accessing
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the CPU cache takes between 2ns and 14.5ns. It is easy to
see that performance degrades quickly if the CPU is forced
to wait for several nanoseconds to fetch the data from the
CPU cache for every 0.5ns it spends doing computations.
The degradation may be less noticeable for instructions
that take longer than 1 cycle to complete, such as
division, trigonometric and transcendental functions,
simply because the time spent on the computations is
larger compared to that spent waiting.

Next in the memory hierarchy are different sets of RAM:
the system RAM accessible from CPUs, the video RAM
on the GPU boards and that in TPU boards. As we can
see from Figure 2.2, the latency of accessing RAM can be
in the hundreds of nanoseconds, making it slower than
CPU caches by a factor of at least 10. The GPU and TPU
RAM, called “global memory” in Figure 2.1, can be even
slower because GPUs and TPUs are connected to the CPU
through a PCI Express bus (PCIe),5 which adds to the
latency. However, RAM is much larger than CPU caches,
ranging from a few gigabytes (GPU and TPU RAM) to a
few terabytes (for system RAM).

The latency of RAM is such that we want to read data
from it as few times as possible, and to read as much data
as possible each time. For example, consider accessing
10MB of data in RAM to apply a set of 10 FMA instructions.

• If we transfer the data to the CPU as a single batch, we
have to wait 60–100ns in order to access it, and then
5ns performing computations.

• If we transfer data in 200 50kB batches, we have to
wait 12000–10000ns (12-20?s) to spend the same 5ns
on computations.

5PCIe is in use in both x86-64 and ARM systems, and comes in
several revisions and speeds. At the time of this writing, the current
one is PCIe 4.0 which uses up to 16 channels in parallel to transfer
up to 64GB/s.
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The transfer itself takes the same time since it only
depends on the bandwidth of the PCIe connection
between the CPU and the RAM: 10MB take 216?s at 64GB/s.
However, in the first case the latency introduced by the
memory transfer is negligible, while in the second case
it increases the overall time by about 20%. This is why
both GPUs and TPUs are initialised by copying all the data
from system RAM in a single batch, making the memory
transfer (often called “kernel launch”) a fixed overhead
cost that will be amortised over the whole computation.

At the bottom of the memory hierarchy we have hot and
cold storage. Hot storage is meant to contain data that we
need to access often and right away, and will comprise
hard drives (mostly solid-state drives) that are locally
attached to the compute system. Cold storage is for data
that we access less frequently and that do not require
fast access times. It comprises a combination of tape,
slower hard drives and network-attached storage. Hot
storage usually has a size of several tens of terabytes,
with less redundancy; cold storage can potentially scale
to the petabytes, and often has more redundancy because
it contains data that should be preserved in the long term.
Hot storage is local, so it is limited by the latency and the
bandwidth of PCIe; cold storage may be remote, so it is
limited by network latencies and bandwidth. The storage
medium is rarely a limiting factor: it almost always has
more bandwidth than the connection we use to access it,
which becomes the bottleneck.

2.1.3 Connections

The last, crucial part of a compute system is the
connections that allow the data tomove between different
processors and types of memory. The performance of
memory is necessarily limited by how it is connected
to various processors. Memory directly connected to
a particular processor (CPU caches and registers, the
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memory built in GPU and TPU boards) is always the
fastest to access for that particular processor because it
works at its full native speed. This means that latency
is minimised and that bandwidth is maximised. For
example, TPU memory has a throughput of 500Gb/s [167]
and GPU memory has a throughput of 500-1000Gb/s
(Nvidia Quadro cards [227]). The latency is negligible for
both.

However, GPUs cannot access the system RAM directly;
nor can CPUs access the memory on the GPU boards.
This means that any data that is transferred to a GPU
for processing must be copied from the system RAM
to the on-board memory. Speed is then limited by the
bandwidth of the PCIe bus that connects the GPU to
the system and latency increases to the levels shown
in Figure 2.2. The same is true for TPUs.

This is the reason why data locality, keeping the data
“close” to the processor that will work on it, matters:
direct connections have the best possible latency and
bandwidth, while indirect ones are limited by the PCIe
bus. Furthermore, transferring data between different
types of memory typically involves copying it to
system RAM as an intermediate step, which degrades
performance even further.

Hot and cold storage are different from other types
of memory in several respects. Firstly, they do not
have any compute capabilities and therefore we cannot
avoid transferring the data they contain to system RAM
to work on it. Secondly, neither type of storage will
necessarily saturate its connection to the system RAM:
the connection does not introduce any bottleneck in itself.
Hot storage is typically connected to the compute system
via PCIe, but its sustained read-write speed (8GB/s for
SATA 3 to 4GB/s for NVMe) is comfortably smaller than
PCIe. Cold storage is even slower, or is only available
through a network connection such as 100Gb/s Ethernet.
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2.2 Making Hardware Live Up to Expectations

All these hardware types have powerful capabilities, each
in their own way, but in order to use them effectively we
need either compilers that can leverage them (if we can
compile software from source) or libraries that have been
built to do so (if we cannot). This means using compilers
that understand the memory layout of the system and
what specialised hardware instructions are available, or
software built on optimised libraries like CUDA [244] (for
NVidia GPUs) or Intel’s Math Kernel Library (MKL) [156]
(for CPUs). Some popular machine learning frameworks
and libraries such as PyTorch [259] go even further
and abstract all hardware-specific optimisations away,
adapting automatically to the characteristics of the
hardware they run on.

The key to getting the best possible performance out
of modern compute systems is to recognise that they
have many processors (specialised or otherwise) and that
we want to keep all those processors busy as much as
possible. In other words, we need parallelism:

• At the instruction level, we want software to use hardware
instructions that can be executed simultaneously.

• At the data level, we want tasks with modular inputs
and outputs so that we can operate on each of their
elements independently, without having to wait for
other operations to complete.

• At the thread level, we want different parts of our
machine learning software to depend on each other’s
outputs as little as possible so that we can run them
in separate threads or processes across different cores,
processors or even systems.

To what extent thread-level parallelism is possible
depends on what algorithms we are using and on how
they are implemented (see Section 4.6). The same is
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true for data-level parallelism: whether data points and
random variables can be considered to be independent,
whether parameters can be estimated independently,
and whether predictions can be computed independently
depends on what machine learning model we are using
and on how we learned it. Instruction-level parallelism,
on the other hand, depends crucially on the software
using the appropriate hardware instructions (SIMD and
FMA in CPUs and GPUs, matrix-multiplication units in
TPUs). This is true for data-level parallelism as well
because being able to operate on multiple data points
simultaneously is useless if the software does not tell
various processors to do that.

Taking advantage of parallelism requires us to feed data
to all the processors involved in the computations so
that they have something to operate on. How we do that
determines the operational intensity of the software: the
number of operations per byte of RAM accessed during
execution. Data locality is then key to improving that:
loading data has a much higher latency than operating on
data that are already in the local memory of the processor,
so the processor will end up sitting idle while waiting for
the data to arrive. This is bound to happen every time
we load data from a different level in the hierarchy in
Figure 2.2, as we discussed in Section 2.1.3. It is also
bound to happen, to some extent, as we get close to
running processors at full capacity. For instance, the CPU
will often sit idle while waiting to receive results from
GPUs and TPUs. And the closer we get to full occupancy,
the less room we have for optimising load across and
within processors. By the law of diminishing returns, we
eventually end up decreasing their overall performance as
the gains from increasing occupancy are outweighed by
the overhead of managing different threads and processes
contending for resources.

In other words, increasing operational intensity means
reducing the number of memory accesses. Performing
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data transformations in place is a way to do that: it
reduces the number and the volume of high-latency
data transfers to and from RAM while maximising the
usage of faster local memory. In doing so, we prevent the
processors from stalling while waiting for data (they are
“starving”) and we allow them to operate continuously
(we “keep them fed” with data). The price is that memory
use is likely to increase because we need to rearrange
the data in memory and possibly to keep multiple copies
around. Depending on the algorithm, it is sometimes
possible to get most of the intensity without sacrificing
space complexity, as in [103].

When we are eventually forced to read from RAM, large
RAM reads are better than many small RAM reads: we
should lay out data continuously in RAM to allow for
that. If we do not do that, most algorithms will become
memory-bound. (More on that in Chapter 3.) Limiting
memory usage in the first place will also help in this
respect. Hence the interest in numeric formats with
smaller precisions such as 16-bit floating point numbers
and integers [167, 168]; and in reducing the number of
parameters of machine learning models by compressing
them or by making the models sparser [148].

2.3 Local and Remote Hardware

The discussion of the key aspects of compute systems in
Sections 2.1 and 2.2 implicitly assumes that all hardware
is part of a single system. That is unlikely to be the case:
machine learning systems typically comprise different
systems with specific purposes because different tasks
run best on different hardware, and it is expensive to
maximise memory, storage and compute in a single
system all at the same time. Having different systems
makes it possible to specialise them and to make them
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perform better while reducing costs. We can think of
them as remote storage and remote compute, as they are
labelled in Figure 2.1, connected by either a local or a
geographical network.

Remote systems that are in the same local network are
typically connected by a high-speed Ethernet connection.
50Gb Ethernet is good enough even at the scale of
Facebook operations [148], so throughput is not a limiting
factor for smaller machine learning systems. Latencies
are more of a problem: the networking equipment that
routes the traffic in the network is likely to introduce
several microseconds of delay in establishing a new
connection.

For remote systems that are in a different geographical
location, both latency and bandwidth are limiting factors.
A prime example is cloud instances, virtual servers
that we can quickly create (“provision”) or destroy
(“decommission”) and that run on hardware that we
own (a private cloud) or that we rent from a public cloud
provider such as Amazon Web Services (AWS), Microsoft
Azure or Google Cloud Computing Services (GCP). Latency
arises from the physical time it takes for signals to
go through several layers of networking equipment to
reach a system that is possibly in a different country.
For instance, if we are located on the west coast of the
United States the latency of a connection to the east
coast is 40ms, to the United Kingdom is 81ms, and to
Australia is 183ms [135]. If the remote system is activated
on demand, we must also wait for it to boot before we can
start processing any data: this can take between 1s and
40s depending on the type of virtualisation underlying
the instances (Sections 7.1.3 and 7.1.4). Compared to the
latencies in Figure 2.2, accessing data on a remote system
is therefore 3-6 orders of magnitude slower than the
storage of a local system. This is the case, for instance,
for AWS spot instances: while they are cheaper to run,
they must be booted up every time they are used and they
may be shut down without warning.
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On the one hand, we want to preserve locality as much as
possible: colocating the data and all the compute systems
that will work on it to avoid large, repeated data transfers
across different locations. Designing the topology of the
local network connecting different systems can minimise
the impact of data transfers within the network and
can make it feasible to spread the load of training
complex models across different systems [148]. This
approach is known as distributed or federated learning
[192]: as an example, see the research done at DeepMind
for distributed deep reinforcement learning [94] and
Google’s systems architecture for federated learning from
mobile devices [47]. The latter is an instance of edge
computing [181], which addresses data privacy, security,
and latency constraints by pushing data processing to
low-power devices closer to where the data originates
(Section 5.3.1).

On the other hand, it is desirable to keep geographical
spread for the purpose of disaster recovery. Keeping
multiple copies of the data and of the models in different
locations makes it unlikely that a hardware failure will
result in the loss of crucial resources: a time-honoured
strategy to achieve that is the “3-2-1 backup rule” (3
copies of your data, your production data and 2 backup
copies, on 2 different types of storage with 1 copy off-
site). It also helps with locality, but requires some care
in synchronising the data and the models at different
locations to ensure that the correct version is used
everywhere.

2.4 Choosing the Right Hardware for the Job

No single compute system(s) configuration is best
overall: practical performance is the result of complex
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interactions between the type(s) of algorithms, the
models and the type(s) of hardware. Engineering the
best possible performance should then begin by defining
what the objectives of the machine learning system are
(Section 5.3.1) and then choosing the software and the
hardware required to achieve them. A comprehensive
discussion on this topic can be found in [135], which
explores all the different aspects of hardware, operating
systems, protocols, benchmarking and profiling. In
what follows, we will focus on the interactions between
the machine learning models, the software stack that
underlies them and the hardware. Numeric libraries such
as BLAS [41], LAPACK [17] and GSL [106], frameworks like
TensorFlow [341] and PyTorch, and low-level libraries
such as XLA and CUDA essentially act as compilers for the
models and translate them into the best available set of
hardware instructions for the most suitable processor(s).

Some tasks are better suited to particular types of
hardware. Consider, for instance, deep neural networks.
There are important computational differences between
training and inference: the latter is less parallelisable,
has higher memory requirements, and requires wider
data to keep enough precision and avoid catastrophic
errors in the final model [167]. Hence training is best
performed on compute systems generously equipped
by GPUs and TPUs, while inference performs well even
on CPUs [148]. After all, GPUs and TPUs are not magic
“go fast” devices! They only benefit certain classes of
problems that are embarrassingly parallel and mostly
consist of vector (GPU) or matrix (TPU) operations. How
many of each should we buy? That depends on the relative
scale and frequency with which we perform each task.
Typically, model training is performed every few days,
while inference runs in real-time, possibly millions of
times per day. For instance, 90% of the overall compute
cost at Amazon is inference [14]: at that scale, using GPUs
becomes a necessity again. But since GPUs are poorly
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suited for inference, an ad hoc software scheduler [162]
is required to use them efficiently and with consistent,
predictable performance. At smaller scales, compute
systems with many CPU cores will be sufficient and
simpler to set up.

Specific machine learning models may be feasible to
use only on some types of hardware. Models that make
heavy use of matrix operations naturally perform better
on GPUs and TPUs but they are limited in size by the
amount of on-board memory that the GPUs and TPUs
can access. The whole model must fit and, at the same
time, there must be enough memory left to store the
data the model will operate on. Furthermore, we want
to operate on data in batches as large as possible to
increase occupancy: performance may be disappointing
if we are forced to process data in small batches because
the model uses up most of the on-board memory. This
problem is not mitigated by putting multiple GPUs or
TPUs in the same compute system because models are
not shared between them. If memory requirements are
beyond the capabilities of GPUs and TPUs, we are limited
to running models on CPUs and system RAM, which has
a much larger capacity but is slower. CPUs, however,
may perform better for models or tasks that are not
very parallelisable because different cores can perform
completely different operations.

Finally, a note from our future selves: we should plan
for more hardware than we strictly need right now to
accommodate what are likely to be growing compute,
memory and storage needs (capacity planning). Compute
requirements for training machine learning models grew
by a factor of 10 between 2012 and 2018 [167]. In addition,
automated model selection techniques (also known as
“hyperparameter tuning” for some types of models) such
as AutoML [149] are becoming increasingly common and
use, on average, 50 times more compute power than
what is needed to learn the type of model they select. The
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amount of data [178] and the size of models [66, 421] are
likewise constantly growing over time, requiring more
hot storage and more memory (of all types) to store and
use them [34].

Cloud computing may reduce the need for capacity
planning: if instances are relatively inexpensive and if
they can be quickly created and destroyed, we may buy
less hardware up-front and scale it as needed. In fact,
dynamic scaling algorithms can do that automatically
in most cloud services. Furthermore, all major cloud
providers offer instances with GPUs and, in the case of
Google, TPUs for use in applications that require them.
However, cloud computing is not a universal solution to
capacity planning. Firstly, the cloud instances we rent
from public cloud providers are billed based on how long
they are in use and on how much/how quickly they allow
us to scale in response to sudden changes in our needs.
Therefore, it may be cheaper to buy the hardware outright
if we foresee using them often enough or for long enough
periods of time and if we have predictable workloads and
network traffic patterns. Secondly, cloud computing can
only give us horizontal scalability (increasing the number
of systems we can use) and is ill-suited to achieve vertical
scalability (increasing the computing power in individual
systems). Horizontal scalability may not improve the
performance of machine learning models that are not
modular or parallelisable to at least some extent, and may
not help at all if we need to work with large blocks of data
that must be kept in memory. Thirdly, cloud instances
are more difficult to profile and trace, making it more
difficult to understand their behaviour (the observability
of the system is limited) and to diagnose any issue they
may have. (More on this in Section 5.3.6.)
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3

Variable Types and Data Structures

In exploring the components that machine learning
systems are built on, we stressed that different types
of hardware are optimised to work with data and models
stored in specific formats. Both are complex entities
comprising a variety of elements that are organised into
data structures such as data frames (representing tabular
data) or standardised model formats like ONNX [247].
The individual elements inside these data structures
are variables of specific types such as integer numbers,
floating point numbers and strings.

In this chapter we revisit the variable types wementioned
in Chapter 2, as well as string representations, and we
discuss possible reasons to choose one over another
for different classes of data (Section 3.1). We then give
some notable examples of how variables are organised in
data structures such as vectors and lists (Section 3.2.1),
data frames (Section 3.2.2) and matrices (Section 3.2.3).
Different choices of variable types (Section 3.3) and
data structures (Section 3.4) represent different trade-
offs both in terms of hardware support, as we saw in
Chapter 2, and in terms of the computational complexity
of the machine learning algorithms that will operate on
them, as we will discuss in Chapter 4.

35
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3.1 Variable Types

Machine learning software primarily deals with numbers
that are the mathematical representation of the data
we are modelling. Images can be represented using the
values of the colour channels of each of their pixels; text
can be encoded into strings, which are then converted to
frequencies for particular words; sensor data are recorded
as a time series. We can store each of them with different
types of variables, each with pros and cons that we will
discuss in Section 3.3.

3.1.1 Integers

Integer variables can be used to represent natural (ℕ) or
integer numbers (ℤ). They are often used to represent
Boolean variables as indicators (also known as dummy
variables) as follows.

TRUE
FALSE
TRUE

FALSE
FALSE

1
0
1

0
0

More generally, they can be used to give a numeric
representation to finite sets by mapping each element to
a different integer number.
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"red"
"blue"

"green"

"red"
"green"

1
3
2

1
2

Enumerations in C or factors in R are constructed exactly
in this way to minimise memory usage. However, this
numeric representation is not suitable for modelling
discrete variables because it makes parameter estimates
dependent on the specific mapping between elements and
integer numbers.1 Instead, we map discrete variables to
their one-hot encoding:2 each element in the set is
assigned an indicator variable that takes a value of 1
if the element is observed, and 0 otherwise.

"red"
"blue"

"green"

"red"
"green"

1
0
0

1
0

0
0
1

0
1

0
1
0

0
0

"red" "blue""green"

The number of elements we want to represent determines
how many bits of memory each integer will use: 𝑛 bits
allow for 2𝑛 distinct values. A single bit is enough for a

1If we use the colour in a regression model, the effect of “green”
on the response will be twice that of “red”, which clearly does not
make any sense since the numbers associated with the colours are
arbitrary.

2One-hot encoding is a particular case of what are known as
contrasts in statistics. Since they are collinear, we usually drop one
before using them in a model.
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Boolean value, although, in practice, it is usually stored
using at least 1 byte. A finite set with 𝑘 elements can
be represented with log2 𝑘 bits: one-hot encoding side-
steps this limitation by using indicator variables at the
cost of using more memory.

Natural and integer numbers cannot be completely
represented by integer variables: that would require an
infinite number of bits. For this reason, programming
languages provide integer variables of different sizes such
as 8, 16, 32 and 64 bits. These sizes are all multiples
of 8 bits because processors are optimised to work on
bytes. The size of an integer variable determines the
largest number it can represent. For instance, the largest
(unsigned) natural number we can represent in 32 bits

is 232 − 1 ≈ 4.29 × 109, and the largest (signed) integer

number is ±231−1 ≈ ±2.14×109 because 1 bit is reserved
for encoding the sign. (If that bit is set to zero, the
number is considered to be positive.) Numbers that are
outside of this range are said to overflow, meaning that
their bit representation is larger than the size of the
integer variable and thus overflows the memory reserved
for that variable.

For the sake of the example, consider the natural number
3134 represented as a 16-bit unsigned integer variable.

0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0

Most significant bits Least significant bits

20212223242526272829210212 211213214215

It’s easy to check that this representation is equivalent
to the “natural” one, they just use different bases:

21 + 22 + 23 + 24 + 25 + 210 + 211 = 3134.

The largest number that can be represented in 16 bits is

216 − 1 = 65535, and 3134 is comfortably smaller than
that: we can easily see that the 4 most-significant bits that
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represent the 4 largest powers of 2 (215, 214, 213 and 212)
are all equal to zero. Now consider a much larger number:
247586.

1 1 0 0 0 1 1 1 0 0 1 0 0 0 1 01 1

Most significant bits Least significant bits

20212223242526272829210212 211213214215

Overflow

216217

Again, we can easily check that

21 + 25 + 28 + 29 + 210 + 214 + 215 + 216 + 217 = 247586.

Unfortunately, 247586 is larger than 65535 and cannot
be represented in 16 bits. If we try to store it in 16 bits,
we overflow: the integer variables will contain only the

16 least-significant bits representing the powers from 20 to
215. The bits corresponding to 216 and 217 will be silently
dropped, and the integer variable will contain the number

21 + 25 + 28 + 29 + 210 + 214 + 215 = 50978.

In the case of signed integers, the bits that overflow will
overwrite the sign bit, and result in the integer variable
storing a number that may be incorrect in both sign and
absolute value. Consider again the number 247586, this
time represented as a 16-bit signed integer variable.

1 1 0 0 0 1 1 1 0 0 1 0 0 0 1 01 1

Most significant bits Least significant bits

20212223242526272829210212 211213214

Overflow

216217

Sign

215

The first 15 bits of the binary representation are stored

correctly, the bit corresponding to 215 overwrites the sign
bit, and the last two bits corresponding to 216 and 217 are
again silently dropped. As a result, the integer variable
will contain the number

−(21 + 25 + 28 + 29 + 210 + 214) = −18210.
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As an exception to the rule, R represents a missing
integer value (NA) with the largest negative signed integer
for a given precision. In Python, Pandas uses masked
arrays for the same purpose and keeps a separate Boolean
variable that indicates whether the integer is a missing
value (denoted pandas.NA). NumPy does not support
missing values for integer variables.

Range limitations aside, integer variables allow exact
computer arithmetic: their bit representation coincides
with the mathematical representation of integer and
natural numbers in base 2, so there is no rounding or
loss of precision.

3.1.2 Floating Point

Floating point variables are used to represent real (ℝ) and
complex numbers (ℂ), the former with a single variable
and the latter with two (one for the real part, one for
the imaginary part). Each variable is composed of four
parts: the sign 𝑆, the bias or offset 𝑂, an exponent 𝐸 and a
mantissa 𝑀. The floating point representation of a real
number 𝑥 is then

𝑥 = (−1)𝑆 ∗ (1 +𝑀)2𝐸+𝑂.

The overall size of the variable in bits is typically one
of 16, 32, and 64 bits, often called half-precision, single-
precision, double-precision. The number of bits assigned
to each of the exponent (after adding the offset) and the
mantissa depends on what encoding is used; the sign is
always stored in a single bit. The variables defined in the
IEEE 754 standard [253] reserve:

precision exponent mantissa

half (16 bit) 5 bits 10 bits
single (32 bit) 8 bits 23 bits
double (64 bit) 11 bits 52 bits



3.1 Variable Types 41

The value of the offset is determined as 𝑂 = 2|𝐸|−1 − 1
where |𝐸| is the size of the exponent in bits.

The alternative “brain” format devised by Google in the
process of developing TPUs (see Section 2.1.1) typically
has size 16 bits and is known as “bfloat16”. It works
in the same way as the IEEE 754 floating point, so we
will not discuss it further; the only difference is that it
allocates 8 bits to the exponent and 7 bits to the mantissa.

What does this mean in terms of binary representation?
Consider the number 435.25. In the usual scientific
notation, which is in base 10, we can write it as 4.3525 ×
102. If we do the same in base 2, the scientific notation
becomes 1.7001953125 × 28. The exponent is 8, and the
mantissa is 0.7001953125. As a half-precision floating
point variable, 435.25 then has the following binary
representation:

1 0 1 1 1 1 0 1 1 0 0 1 1 0 1

Exponent (5 bits) Mantissa (10 bits)

2-1 2-2 2-3 2-4 2-5 2-6

0

Sign

2021222324 2-7 2-8 2-9 2-10

The exponent is stored after adding the offset:

8 + (25−1 − 1) = 23 = 20 + 21 + 22 + 24.

The resulting number is treated as unsigned, regardless
of whether the original exponent was positive or negative.
If the sign is stored in the most significant bit of the
variable, the exponent is adjusted with the offset, and
the mantissa is stored in the least significant bits, we can
compare floating point numbers just by ranking their
binary representations, which can be done efficiently
with hardware instructions.

The mantissa is

2−1 + 2−3 + 2−4 + 2−7 + 2−8 + 2−10 = 0.7001953,
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which differs from 0.7001953125 by 1.25 × 10−8. This
difference is known as the floating point error arising from
the limits in the precision that can be achieved with the
number of bits of the mantissa. The only numbers that
can be represented exactly are those that factorise into
the powers of 2 available in the exponent and in the
mantissa. This obviously excludes all numbers with an
infinite number of digits, such as 𝜋, 𝑒 or 1/3.
What is the range of floating point numbers? The largest
number (positive or negative) that we can represent is
limited by the size of the exponent: with |𝐸| bits we

can represent up to 2|𝐸| exponents. The offset ensures
that the available exponents are equally divided between

positive and negative numbers ranging from −2|𝐸|−1 − 2
to 2|𝐸|−1 − 1 due to the offset.

precision smallest exponent largest exponent

half −(24 − 2) = −14 24 − 1 = 15
single −(27 − 2) = −126 27 − 1 = 127
double −(210 − 2) = −1022 210 − 1 = 1023

This range is smaller than the theoretical 2|𝐸| values it
could potentially contain because some combinations of
bits are reserved for special classes of numbers:

• Zero is encoded with the exponent field and the
mantissa filled with 0s.

• Positive and negative infinity (+Inf , -Inf) are encoded
with the exponent field filled with 1s and a mantissa
filled with 0s.

• Irrepresentable numbers (usually denoted NaN) are
encoded with the exponent field filled with 1s and
at least one non-zero bit in the mantissa. Different
patterns of bits in the mantissa are used for different
types of irrepresentable numbers: the most common
is the missing value identifier NA . Typically, NaN arises
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from dividing a number by zero or by trying to apply a
mathematical function to a value outside its domain, for
instance, taking the logarithm of a negative number.

• Subnormal numbers, that is, numbers that are too
small to be written in binary scientific notation
with the available exponents. In other words, their
leading exponent is smaller than the smallest available
exponent. They are encoded with the exponent field
filled with 0s. These numbers have reduced precision
because they effectively use only part of the mantissa.

As an example, 2−10×2−14 ≈ 5.96×10−8 is represented
as follows in half precision:

0 10 0 0 0

Exponent (5 bits) Mantissa (10 bits)

2-1 2-2 2-3 2-4 2-5 2-6

0

Sign

2021222324 2-7 2-8 2-9 2-10

0 0 00 00000

How coarse is floating point rounding? For any given
precision, that depends on the magnitude of the number.
As we saw in the example above, the mantissa can encode

only so many significant decimal digits: log10(210) ≈
3 digits for half-precision, log10(223) ≈ 7 for single

precision, log10(251) ≈ 16 for double precision. This
effectively creates a grid of values that can be represented
exactly, and any other number is rounded to the nearest
number that can be represented exactly or to +Inf/-
Inf . The grid becomes coarser, in absolute terms, as the
exponent becomes larger. Consider a number like 0.0002
that is small for a half-precision variable:

0 1 1 0 1 0 0 1 1 01

Exponent (5 bits) Mantissa (10 bits)

2-1 2-2 2-3 2-4 2-5 2-6

0

Sign

2021222324 2-7 2-8 2-9 2-10

0 00 0

The exponent is

−13 + (25−1 − 1) = 21



44 3 Variable Types and Data Structures

and the mantissa is

2−1 + 2−3 + 2−7 + 2−8 + 2−9 = 0.638671875,

which gives

1.638671875 × 2−13 ≈ 0.000200033.

Increasing this number by the least possible amount by

adding 2−10 and decreasing it by the same amount shows
that the nearest numbers that can be represented in half

precision are ≈ 0.000200033 ± 1.19 × 10−7.
Now consider a relatively large number (for half
precision) like 10002:

1 01 1 0 1 1 0 01

Exponent (5 bits) Mantissa (10 bits)

2-1 2-2 2-3 2-4 2-5 2-6

0

Sign

2021222324 2-7 2-8 2-9 2-10

0 0 1 0 0

The exponent is

13 + (25−1 − 1) = 28 = 22 + 23 + 24

and the mantissa is

2−3 + 2−4 + 2−5 + 2−9 = 0.220703125,

which gives 1.220703125 × 213 = 10000. The closest
numbers that can be represented in half precision are
9992 and 10008: all the numbers in between are rounded.
This leaves an interval of ±8 around 10000. For large
enough numbers, floating point variables cannot even
represent integer numbers without rounding!

How can we keep the errors introduced by floating point
rounding in check? Errors compound across operations,
and machine learning models typically perform large
numbers of operations compared to the size of their
inputs. (More on that in Chapter 4.) Fortunately,
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probability theory and statistics have historically
standardised computations to work on the logarithmic
scale to make closed-form mathematical derivations
easier. Working with the logarithmic transforms of
floating point numbers reduces the chances that
large numbers will overflow to +Inf/-Inf or that small
numbers will be rounded down to zero. In the case of
numbers with subnormal floating point representations,
we also retain better precision because their logarithm
will not be subnormal. This is particularly important
in the common case of summing up large numbers
of log-probabilities. Working with numbers on the
same scale (that is, they have similar exponents) also
helps in avoiding catastrophic losses in precision. When
operations involve numbers on very different scales,
the difference in the granularity of the floating point
rounding may cause the result to have unacceptably large
errors even though all the operands are accurate. As an
extreme example, consider adding 10002 and 0.0002: the
result would be 10000, the closest floating point number
in half precision! A similar issue is catastrophic cancellation,
which may happen when subtracting two floating point
numbers that are very close to each other.

Unlike integer arithmetic, floating point arithmetic is not
exact because of the impact of floating point rounding.
The results of operations involving floating point
variables can differ in many ways from the mathematical
operations they implement, even in common scenarios.
It is easy to demonstrate with a simple recurrence such
as

𝑥0 = 4, 𝑥1 = 4.25, 𝑥𝑛+1 = 108 − (815 −
1500
𝑥𝑛−1

)
1
𝑥𝑛

,

which converges to 100 in double precision even though
the true limit in ℝ is 5 [304]. This can happen even if
all the operands are exactly representable, as proved in
[303]. Some effects of this discrepancy are:
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• Numbers that should be equal are not equal. We
should always compare numbers with a tolerance
that is a function of the floating point precision
we are using. The default in R is the square root
of the smallest representable number, obtainable as
sqrt(.Machine$double.eps) .

Rsqrt(2) * sqrt(2) == 2
## [1] FALSE

all.equal(sqrt(2) * sqrt(2), 2, tol = sqrt(.Machine$double.eps))
## [1] TRUE

• Conversely, numbers that should not be equal may end
up being equal.

R1e99 == 1e99 + 1
## [1] TRUE

1 - 1e-20 == 1
## [1] TRUE

• The order in which operations are performed matters,
even when the mathematical operations or functions
they implement are commutative and/or associative.
Structuring code so that key computations are
implemented only once and therefore ensuring that
operations are always performed in the same sequences
is the best way to prevent this issue.

Rprint(0.6 + 0.7 + 0.8, digits = 20)
## [1] 2.0999999999999996447

print(0.8 + 0.7 + 0.6, digits = 20)
## [1] 2.1000000000000000888

• The order in which operations are performed matters
also because intermediate results may underflow to zero
or overflow to +Inf/-Inf unless we reorder operations
to prevent that from happening.

• Working on a log-scale is the best option when dealing
with the small probabilities that often arise from
multivariate distributions or from a large number of
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data points. Otherwise, the final result is likely to
underflow to zero.

Rprobs = runif(10^2, min = 10^-6, max = 10^-3)
sqrt(prod(probs))
## [1] 0

exp(0.5 * sum(log(probs)))
## [1] 1.27e-170

3.1.3 Strings

Strings are sequences of characters encoded in binary
form and stored into variables. Their binary format varies,
but it typically is UTF-8 on Linux and MacOS X and
UTF-16 on Windows. Both are Unicode standards [378]
that use between 1 and 4 bytes to encode each character
and support many alphabets, mathematical symbols and
pictograms such as emoji.

In the context of machine learning software, character
strings are typically only encountered as input data in
natural language processing (NLP) applications. In other
settings, they are used as human-readable labels for the
items in a set and can be represented using integers as
we saw in Section 3.1.1. In fact, they are eventually given
a numerical representation even in NLP in order to feed
them to algorithms such as word2vec [299], GLOVE [260]
and BERT [78]. In NLP, strings are also preprocessed
taking into account their meaning and their grammatical
and syntactical properties to facilitate later analyses. For
instance:

• Common words that do not add meaning to a sentence,
often called stopwords, are removed to reduce the
dimensionality of the data.

• Words may be stemmed, that is, different words may be
reduced to their common stem after removing suffixes
and prefixes to identify which are in fact the same word.

• Words may be tagged with their syntactic role.
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• Words may be normalised by making all characters
lower-case and sometimes by removing accents and
diacritics as well. Complex, composite characters can
be encoded in different ways in both UTF-8 and UTF-
16, and transforming them into their canonical form is
essential to identify unique words correctly.

• Extraneous characters such as punctuation, hyphen-
ation and numbers may be removed as non-informative.
Abbreviations and acronyms may be expanded to make
explicit the words they correspond to. Similarly, emoji
may be replaced by a textual description.

A detailed treatment of these topics is beyond the scope
of this book, and we refer the reader to monographs such
as [2] and to the documentation of relevant software
libraries such as Spacy [97] and NLTK [240].

3.2 Data Structures

Data structures are particular ways of organising
variables of one or more types for effective and efficient
processing. Different data structures will be most
effective for different operations or different algorithms.
We will discuss both aspects further in Section 3.4
and later in Chapter 4, characterising memory and
computational efficiency in terms of space and time
complexity. Here we will only cover those data structures
that are foundational for machine learning software,
referring the reader to other excellent resources [50, 68]
for a broader coverage of the topic.

Why use data structures? Firstly, they make code more
compact by allowing us to abstract away basic variable
manipulations that would otherwise be repeatedly
implemented in different places. Our code will be clearer
and most likely have fewer bugs as a result. Secondly,
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FIGURE 3.1 A schematic view of the logical structure and
the memory layout of vectors (left) and lists (right).

data structures tell the software how particular groups of
variables belong together, both in terms of how they are
laid out in memory and how we operate on them. This
makes it possible for the software we write to be compiled
or interpreted (see Section 6.1) to operate efficiently on
the variables contained in the data structures. Thirdly,
the information that particular groups of variables belong
together will be useful to developers working on our
code. Those variables may describe the parts of a single
mathematical object or real-world entity, they may
have the same semantic meaning or they may have
attached metadata that can be used for interpretation
and debugging purposes: all facts that are useful to know
when reading and developing code.

3.2.1 Vectors and Lists

The most fundamental data structures in machine
learning software are vectors and lists. Both can contain
any type of variable, and are defined by their length
(the number of elements they contain). Their conceptual
structure is shown in Figure 3.1.

Vectors are homogeneous data structures holding sequences
of variables of the same type. The variables are stored
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sequentially in a single block of memory, so vectors can
be accessed with a single memory access using a pointer
to their first element. (A pointer is itself a variable that
contains a memory address.) Reading the variables stored
in a vector is trivial because all elements occupy the same
number of bytes in memory: the 𝑖th element is located at
a memory address that is that of the first element plus 𝑖
times the variable type size. Copying the whole vector is
also trivial, since it is stored as a single block of memory.
The same is true for subsets of variables that are adjacent
to each other within a vector.

Lists, on the other hand, are heterogeneous data structures
that can contain different kinds of elements. They
essentially act as vectors of pointers to arbitrary data
structures or variable types. Therefore, each element in
a list can be anything: a single variable of some type, a
vector of any length, a second list, a matrix, etc. However,
this means that accessing the elements of a list is less
trivial since we need to locate each element and access it
separately. However, copying the list and subsetting it
can be easier: if we do not need to modify the contents
of its elements, we can just copy (all or a subset of)
the pointers to the elements to create a new list. This is
called a shallow copy, and can significantly reduce memory
use. However, we must duplicate the elements as well
if we need to modify them later in the new list in order
to avoid altering the original list they are attached to.
Copying both the list and its elements is called a deep copy.
In contrast, subsetting vectors requires a deep copy in
the general case. Shallow copies are only possible when
copying a whole vector or when subsetting a slice of
adjacent elements.

Storing variables into vectors makes vectorised computa-
tions possible: a function can be applied independently to
each element of the vector, potentially leveraging hard-
ware’s SIMD and FMA instructions to achieve instruction-
and data-level parallelism as we discussed in Section 2.2.
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If the return value of the function is a scalar, the results
can be saved in a second vector of the same length.
Otherwise, the results can be saved in a dense matrix
(Section 3.2.3) or in a data frame (Section 3.2.2) in which
each row or column contains the return values for a single
input element. Vectorised computations are also possible
for lists using thread-level parallelism, assuming that
the function can handle all the types of variables stored
in the list. Its outputs would then be stored in a second
list regardless of whether each of them is a scalar or not.

3.2.2 Representing Data with Data Frames

A data frame is a heterogeneous two-dimensional
data structure with columns of potentially different
types. Its primary task is storing tabular data and
the associated metadata, such as column- and row-
names. The implementations in Julia (DataFrame.jl)
and Python (Pandas and Scikit-Learn [311]) have been
heavily inspired by R data frames: they only have minor
differences in their semantics. The most notable is that
operations on two data frames will match cells by position
in R and Julia (regardless of row- and column-names)
and by row- and column-names in Python (regardless
of the cell positions).

The fundamental structure of a data frame is that of a
list: each column in the tabular data is a vector that is
stored as an element along with its own metadata as
shown in Figure 3.2. Therefore, each column is stored in
a separate block of memory, and there are no constraints
on the types of variables that can be stored in different
columns. In addition, a data frame typically contains its
dimensions and the labels of the rows and of the columns
as metadata, making it possible to access its contents as
we would with a table. The dimensions are the number
of rows and columns of the data frame. The labels of the
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FIGURE 3.2 A schematic view of tabular data (bottom right)
encoded as a data frame (left, top).

columns (called “column names” in R) can be used to
access them by their names instead of by their positions
in the data frame, which improves the readability of
code and thus our ability to debug it. It makes the code
invariant to the data layout as well. The labels of the
rows (“row names” in R) serve the same function but
are not used as often: they usually have no practical use
in the common case in which we assume that data points
are independent and identically distributed.

Data frames make it efficient to operate on columns.
Creating a new data frame with a subset of columns is like
subsetting a list, with the additional step of carrying over
row and column labels as needed. Copying it can be done
efficiently with a shallow copy. Adding a column to a data
frame is similar: we perform a shallow copy into a new
data frame with an empty slot in which we can insert the
vector storing the column’s values. Applying a function
to each column of a data frame can be vectorised and
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performed in parallel, and the appropriate method can be
called for each column in the case of generic functions.

However, operating on rows is not efficient in most cases.
Adding or removing data points involves modifying the
length of each column, which will likely involve copying
the chosen data points to newly-allocated vectors of the
appropriate length.

3.2.3 Dense and Sparse Matrices

A matrix is a homogeneous two-dimensional data
structure holding a grid of variables of the same type
arranged into rows and columns. It is the programming
construct that represents the mathematical objects of
the same name studied in linear algebra. Matrices can be
dense or sparse. Most of the elements of dense matrices
are informative (that is, non-zero cells) and therefore
must be stored in the data structure. On the other hand,
most of the elements of sparse matrices are equal to
zero so we can save considerable amounts of memory
by storing only the locations and the values of the few
non-zero elements. We will cover the trade-off between
speed and memory use for these two types of matrices in
Section 4.5.2 while discussing computational complexity.

In Python, dense matrices are implemented in NumPy
as a special case of multidimensional arrays along with
vectors [141]. The same is true in R. In both cases, the data
structure encoding a multidimensional array comprises
the pointer to the first element of the array; the variable
type of the elements; and the dimensions of the array,
which determine its shape (Figure 3.3). The dimensions
and the variable type of the elements determine the
strides: the number of bytes skipped inmemory to proceed
to the next element along a given dimension. They
are pre-calculated and stored in NumPy but not in R.
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FIGURE 3.3 A schematic view of a dense matrix (left)
encoded as a multidimensional array with variables
stored in column-major format (right).

On the other hand, R arrays contain labels for their
dimensions (row and column names in the case of
matrices). The elements are stored as a vector, typically
in column-major order: the columns of the matrix are
concatenated starting from the left-most one.

Storing dense matrices as a list of columns, or as a list
of rows, is typical in C and C++ but it is less common in
higher-level languages, where we can use data frames
for the same purpose.

The fact that multidimensional arrays store their
dimensions as metadata allows three types of operations
on their elements. The first is vectorised operations in
which a function is applied individually to each element.
The second is what is called broadcasting in Python and
Julia and recycling in R: when a function operates on
two arrays with different dimensions, the shorter array
is repeated (that is, virtually concatenated to itself) to
make the shapes of the operands match. The third is
marginalisation or reduction: aggregating elements across
one or more dimensions of an array, for instance, by
summing or averaging them, to produce a second array
with fewer dimensions.
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FIGURE 3.4 A schematic view of a sparse matrix (left)
and its compressed sparse column (right) format
representation.

Sparse matrices are supported in R through the Matrix
package [30] and in Python through the SciPy package
[388]. For brevity, we will only illustrate in detail
the compressed sparse column data structure that is the
most widely used in both packages. Consider the sparse
matrix shown in Figure 3.4 along with its compressed
representation from the Matrix package. The three
vectors in the data structure contain, from top to bottom:
the start and end indexes of each column (𝐶), the row
of each non-zero cell in the matrix (𝑅) and its value
(𝑉). This representation assumes that the non-zero cells
are stored in position order, starting from the top-left
cell, moving down within each column, and considering
columns from left to right.

Say, for instance, that we would like to read the value of
the cell (2, 3) in the matrix from the data structure. The
required steps are:

1. Use the column delimiters in 𝐶 to find which
subset of 𝑅 and 𝑉 to read. The 𝑖th column of
the matrix starts at the index stored in the 𝑖th
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element of 𝐶 (𝐶[3] = 3) and ends by the index
stored in the (𝑖 + 1)th element of 𝐶 (𝐶[4] = 5),
where the next column starts. This implies that
there are 5−3 = 2 non-zero elements in the third
column. If the start and end indexes are identical,
there are no non-zero cells in the column.

2. We read the two row coordinates stored in 𝑅[3]
and 𝑅[4].
a. If we do not find the row coordinate we are

looking for, the cell has value zero.
b. Otherwise, the value of the cell will be stored

in the element of 𝑉 that has the same index
as the row coordinate. In our case, the row
coordinates of the non-zero elements of the
third column are 𝑅[3] = 2 and 𝑅[4] = 3. Row
coordinate 2 is in 𝑅[3], so we can read the
corresponding cell value from 𝑉 [3].

Other data structures for sparse matrices include the
compressed row column, which is identical to the above
save that the roles of 𝑅 and 𝐶 are reversed and the
coordinate list (called the “triplet format”), which stores
row and column coordinates directly in 𝑅 and 𝐶.

3.3 Choosing the Right Variable Types for the Job

The floating point format used to represent real numbers
in Section 3.1.2 has a more complex structure than the
fixed point format for integer variables in Section 3.1.1.
Intuitively, this might suggest that the same operation
is more efficient on integer variables than on floating
point variables. This is not usually the case for two
reasons. Firstly, high-level languages like Python and
R have additional checks to deal with integer overflow.
In R, integers are stored using 32 bits and they are



3.3 Choosing the Right Variable Types for the Job 57

either replaced with NaN or transformed into double-
precision floating point variables when they overflow. In
base Python, integers are stored with arbitrary precision:
their size is extended as needed to prevent them from
overflowing. Pandas [207] integer variables have size 64
bits, and NumPy [141] provides integer variables in sizes
8, 16, 32 and 64 bits: both can overflow and, unlike in R,
are not replaced with NaN . Consider the following vector
inner product benchmark in R:

Rlibrary(microbenchmark)
floats.vec1 = rnorm(2 * 10^7)
floats.vec2 = rnorm(2 * 10^7)
integers.vec1 = sample(10, 2 * 10^7, replace = TRUE)
integers.vec2 = sample(10, 2 * 10^7, replace = TRUE)

microbenchmark(integers.vec1 %*% integers.vec2,
floats.vec1 %*% floats.vec2, times = 200)

On average, the inner product takes 196.7% longer
with integer vectors than it does with double-precision
floating point vectors on a 7th-generation Intel Core
processor. The same benchmark in Python and NumPy
is shown below, and the results are similar: the inner
product takes 40.5% longer with integer vectors.

Pythonimport timeit
import numpy as np

ITERATION = 200

float_vector1 = np.random.normal(0, 1, 2 * pow(10, 7))
float_vector2 = np.random.normal(0, 1, 2 * pow(10, 7))

int_vector1 = np.random.choice(10, size=2 * pow(10, 7))
int_vector2 = np.random.choice(10, size=2 * pow(10, 7))

def product_int():
np.dot(int_vector1, int_vector2)
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def product_float():
np.dot(float_vector1, float_vector2)

print("Inner product with int by", ITERATION, "iteration, avg:",
np.mean(timeit.repeat(

repeat=ITERATION,
stmt=product_int,
number=1)))

print("Inner product with float by", ITERATION, "iteration, avg:",
np.mean(timeit.repeat(

repeat=ITERATION,
stmt=product_float,
number=1)))

Secondly, it should be apparent from Section 2.1.1 that
in recent years much effort has been put into improving
hardware support for floating point numbers. CPUs,
GPUs and TPUs have all been optimised to handle
single- and double-precision floating point variables
with SIMD and FMA instructions as much as they have
been optimised to handle integer variables, if not more.
Therefore, depending on the available hardware and on
the ability of compilers to leverage it, using floating point
variables may lead to faster code when using low-level
languages. However, whether that will be the case for
a specific machine learning software depends on the
exact combination of hardware and software used and
can only be ascertained by benchmarking it. Matching
software and hardware was a key point in Section 2.2
and Section 2.4.

The size of the variables also matters: we saw in
Section 2.1.2 how faster forms ofmemory are smaller, and
how copying data between different types of memory can
impact operational intensity. We should always choose
the smallest size of integer or floating point variables that
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we can handle with SIMD and FMA hardware instructions,
and that has a large enough range to represent the
numbers we are working with. The effect on performance
is noticeable even in the simple Python benchmark
above: reducing the size of the floating point and integer
variables in the vectors from 64 bits (the default) to 32
bits and then to 16 bits produces interesting patterns in
the normalised running times.

variable type 64 bits 32 bits 16 bits

floating point 100% 54.1% 887.1%
integer 100% 62.2% 61.6%

Reducing the size of both floating point and integer
variables from 64 to 32 bits improves the speed of the
inner product by a factor of 1.5–2, as we would expect.
Reducing the size of the variables further to 16 bits
provides only marginal benefits for integer variables but,
surprisingly, slows floating point variables by a factor of
nearly 9. That is a strong indication that we are unable to
leverage SIMD and FMA instructions as we do for integers
of the same size!

Size matters even more in the case of floating point
variables. As we noted in Section 3.1.2, the smaller the
precision, the larger the floating point errors are likely
to be. They also propagate with each operation and
compound each other. This can become a critical issue
with variables that are involved in most of the steps
of an algorithm, such as the accumulator variables used
to calculate a sum or product of a series of values, and
with those that are rescaled to predefined ranges with
other computed quantities. An example from classical
statistics is computing the empirical correlation between
two vectors:
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1. We compute the average of each vector, which we
store in two accumulator variables.

2. We compute the variance of each vector by
summing up the squared differences from its
average, which we store in two more accumulator
variables.

3. We do the same with the cross-product of the
differences to compute the covariance, which is
an additional accumulator variable.

4. We divide the covariance by the square root of the
product of the variances.

Each of these steps can potentially build up an error
large enough to produce a correlation coefficient that is
either greater than 1 or less than -1. Floating point errors
compound and propagate from themeans to the variances
and the covariances, affecting the final division through
the accumulator variables that store them. In such a
situation, we should store accumulator variables with a
higher precision than the variables they are accumulating
to limit the magnitude of the errors of the individual
operations: for instance, we should store the average of
numbers stored in single precision as a double precision
variable. Using FMA instructions may also help because,
as we noted in Section 2.1.1, they operate at higher
precision and only round their final result. Choosing
the scale of the numbers being accumulated may also
help by keeping all variables in a range that is not prone
to overflow or underflow. Keeping all variables on the
same scale also prevents catastrophic loss of precision,
particularly in multiplications and divisions. This is
the reason why so much numeric software works with
quantities on log-scales: large numbers are reduced in
magnitude and do not overflow or lose precision easily,
and small numbers become large negative numbers
instead of underflowing or losing precision.
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Last but not least, floating point rounding may be
unacceptable for legal reasons in some applications,
particularly in finance and accounting. Fixed point
integers may be used instead, with the convention that
the smallest possible amount of currency (say, 1/100th
of £0.01) is taken as the unit value. A rare open-source
example of this approach in the commercial world is
Oanda’s libfixed [245] library.

3.4 Choosing the Right Data Structures for the Job

The choice of data structures can have an even larger
impact than that of variable types because it determines
memory access patterns. Operational intensity depends
crucially on efficient memory use and access, as we
argued in Sections 2.1.2 and 2.2.

Lists can be more memory efficient than vectors if we
need to repeatedly subset them, for example, because
we need to work on combinations or permutations of
their values. If shallow copies are acceptable, lists are
faster to duplicate as well because we do not have to
allocate memory for and copy their elements. If shallow
copies are not acceptable, then vectors are faster to copy
because all their elements are stored as a single block
of memory and can be copied with a single operation.
And they are not less memory efficient, since their size
is determined by their length. In fact, lists use more
memory than vectors because they contain pointers to
each element in addition to the elements themselves:
the difference can be significant if the elements are
small overall. These considerations are important for
optimising performance given the effects on memory
latency discussed in Sections 2.1.2 and 2.2.
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We can make similar considerations for data frames and
matrices, since data frames essentially behave as lists
whose elements are the columns storing the variables in
the tabular data.

Ideally, we should choose which data structures to use
in our code taking into account what data structures
are used in the libraries and in the other software that
are part of the machine learning pipeline. If different
parts of the pipeline encode data and models in different
ways, we will be forced to convert between them, which
is inefficient and increases memory use. For instance,
R typically imports data as data frames. However, the
underlying BLAS and LAPACK code that powers many
models (all linear regressions among them) requires data
to be stored as dense matrices in column-major format.
Converting a data frame into a matrix requires copying all
the data into a single memory block, column by column,
which doubles memory use and wastes processor time.

We should also choose data structures based on how the
algorithms that use them access their contents. Data
that are processed together should be stored together
to allow algorithms to perform as few separate memory
accesses as possible. For instance, if we mostly process
whole columns in tabular data, then a data frame is
ideal because a single column can be efficiently read
from memory as a single memory block. However, a data
framemakes memory access very inefficient if we need to
process individual rows in various combinations because
each variable in a row is stored in a separate memory
block and because we need to access all variables to read
each row. If the data are homogeneous, storing them in
a dense matrix with cells stored in row-major order is a
better choice.
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Analysis of Algorithms

In the previous chapters we discussed how the hardware
architectures we use (Chapter 2), the nature of the
data we analyse and how we represent data with data
structures (Chapter 3) contribute to the performance of
a machine learning pipeline. The last major piece of this
puzzle is the algorithmic complexity of the algorithms
that power the machine learning models.

Algorithmic complexity is defined, in the abstract, as
the amount of resources required by an algorithm to
complete. After using pseudocode to write a high-level
description of the machine learning algorithm we would
like to implement (Section 4.1), we can determine the
complexity of its components and how they contribute to
the complexity of the algorithm as a whole. We represent
and reason about complexity in mathematical terms with
big-𝑂 notation (Section 4.2). Quantifying it (Section 4.3)
presents several issues that are specific to machine
learning (Section 4.4), which we will illustrate with three
examples (Section 4.5).

4.1 Writing Pseudocode

The first step in reasoning about an algorithm is
to write it down using pseudocode, combining the
understandability of natural language and the precision
of code to facilitate our analysis and the subsequent
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implementation in software. Natural language is easier
to read, but it is also ambiguous. Code, on the other hand,
is too specific: it forces us to think about implementation
details and programming-language conventions thus
making it harder to focus on the overall picture.

Pseudocode is meant to offset the weaknesses of natural
language and code while preserving their strong points.
Ideally, it provides a high-level description of an
algorithm that facilitates its analysis and implementation
by making the intent of each step clear while suppressing
those details that are irrelevant for understanding the
algorithm. There is no universal standard on how to write
pseudocode, although some general guidelines exist (see,
for instance, Chapter 9 in “Code Complete” [206]). The
three key guidelines that are commonly accepted are:

• Each step of the algorithm should be a separate, self-
contained item in an enumeration.

• Pseudocode should combine the styles of good code and
of good natural language to some extent. For instance,
it may fall short of full sentences. It should avoid idioms
and conventions specific to any particular programming
language, using a lax syntax for code statements. For
the same reason, variable names should come from the
domain of the problem the algorithm is trying to solve
rather than from how they will be implemented (for
instance, in terms of data structures). We will return
to this point in Section 6.2.

• Pseudocode should ignore unnecessary details and use
short-hand notation when possible, leaving the context
to more in-depth forms of documentation. In other
words, the level of detail should be that of a high-level
view of the overall structure of the algorithm so that
we can focus on its intent.

Admittedly, these recommendations are vague because
the best way of conveying a high-level view of an
algorithm to the reader depends on a combination of
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the pseudocode style and the reader’s background. As
usual, knowing the audience is key in communicating
effectively.

Writing good pseudocode for machine learning algo-
rithms, or for machine learning pipelines spanning
multiple algorithms, has two additional complications:
the role played by the data and the need to integrate some
amount of mathematical notation.

Firstly, if we are to treat data as code (Section 5.1),
we may want to include more details about them in
the pseudocode than we would in other settings. Such
information may include, for example, the dimensions
of the data and those characteristics of its features that
are crucial for the algorithm to function. In a sense, this
is similar to including some type information about key
objects, and it is useful in clarifying what the inputs and
the outputs of the algorithm are as well as in giving more
context to key steps.

Secondly, mathematical notation may be the best tool
to describe key steps in a clear and readable way, so we
may want to integrate it with natural language and code
to the best effect. In order to do that, we should define
all the variables and the functions used in the notation
while leaving additional details to a separate document.
For practical purposes, mentioning the meaning of each
symbol when introducing new mathematical notation
(for instance, “the prior Beta distribution 𝜋(𝛼, 𝛽) ∼
Be(𝛼, 𝛽)” as opposed to just “𝜋(𝛼, 𝛽) ∼ Be(𝛼, 𝛽)”) is
often enough to give context (what are properties of 𝜋,
how it will be used, etc.). Complex formulas, derivations
and formal proofs would reduce the readability of
pseudocode by making it overlong and forcing the reader
to concentrate on understanding them instead of looking
at the overall logic of the algorithm.
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Describing all algorithms used in a machine learning
pipeline using pseudocode has some further advantages
we will touch on in later chapters:

• it makes code review easier (see Section 6.6);
• it facilitates iterative refinement because pseudocode
is easier to modify than code (see Section 5.3.1);

• it provides design documentation in a form that is easy
to maintain (see Section 8.3).

4.2 Computational Complexity and Big-𝑂 Notation

Computational complexity is a branch of computer
science that focuses on classifying computational
problems according to their inherent difficulty across
three different dimensions:

• as a function of input size (say, the sample size or the
number of variables);

• as a function of how much resources will be used,
in particular time (say, CPU time spent) and space
(memory or storage use);

• on average (how long it will typically take), in the best
case or in the worst case (how long it can possibly take).

In other words, we would like to infer how much
resources an algorithmwill use just from its specification:
this is called algorithm analysis. Typically, the specifica-
tion takes the form of pseudocode. As for the resources,
we must first choose our unit of measurement. In the
case of space complexity, the choice is usually obvious:
either an absolute memory unit (such as MB, GB) or a
relative one (such as the number of double-precision
floating point values) for various types of memory (RAM,
GPU memory, storage). In the case of time complexity,
we must choose a set of fundamental operations that
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we consider to have a theoretical complexity of 1. Such
operations can range from simple (arithmetic operations)
to complex (models trained) depending on the level of
abstraction we would like to work at. On the one hand,
the lower the level of abstraction, the more we need to
know about the specific implementation details of the
algorithm. This is only feasible up to a point because
pseudocode will omit most such details. It is also unde-
sirable to some extent because it makes the analysis less
general: a different implementation of the same algo-
rithm may end up in a different class of complexity while
exhibiting about the same behaviour in practice. On the
other hand, the higher the level of abstraction, the higher
the chance of obtaining an estimate of complexity that is
only loosely connected to reality. The more complex the
operations, the more unlikely it will be that they have
the same complexity and that their complexity can be
taken to be constant.

The estimates of computational complexity produced by
algorithm analysis are written using big-𝑂 and related
notations, which define the class of complexity in the
limit of the input sizes [183, 184]. (All algorithms are fast
with small inputs.) More in detail:

• We describe the worst-case scenario using big-𝑂
notation. Formally, an algorithm with input of size
𝑁 → ∞ has a complexity 𝑓 (𝑁) = 𝑂(𝑔(𝑁)) if there
exists a 𝑐0 > 0 such that 𝑓 (𝑁) ⩽ 𝑐0𝑔(𝑁). It represents
an upper bound in complexity.

• We describe the best-case scenario using big-Ω notation:
𝑓 (𝑁) = Ω(𝑔(𝑁)), 𝑓 (𝑁) ⩾ 𝑐1𝑔(𝑁) with 𝑐1 > 0. It
represents a lower bound in complexity.

• We describe the average case using big-Θ notation:
𝑓 (𝑁) = Θ(𝑔(𝑁)), 𝑐2𝑔(𝑁) ⩽ 𝑓 (𝑁) ⩽ 𝑐3𝑔(𝑁) with
𝑐2, 𝑐3 > 0. It represents the average complexity.

In practice, we often just write things like “it is 𝑂(𝑔(𝑁))
on average and𝑂(ℎ(𝑁)) in the worst case” and use big-𝑂
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FIGURE 4.1 A graphical comparison of computational
complexity classes.

for all three cases. If we are considering inputs that are
best described with a combination of different sizes (say,
{𝑀,𝑁, 𝑃}), big-𝑂 will be a multivariate function like
𝑂(𝑔(𝑀,𝑁, 𝑃)).
Different classes of complexity in common use are
shown in Figure 4.1. Algorithms that belong to 𝑂(1),
𝑂(log𝑁), 𝑂(𝑁) and 𝑂(𝑁 log𝑁) are considered efficient,

while those that belong to 𝑂(𝑁 2) or higher classes
of complexity are more demanding. In a sense, this
classification reflects the economics of running compute
systems: it may be feasible to double our hardware
requirements every time 𝑁 doubles, but increasing it
by a power of 2 or more is rarely possible!

How can we use big-𝑂 notation? If we are comparing
algorithms in different classes of complexity, we can

concentrate only on the leading term: 𝑂(3 ⋅ 2𝑁 +
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3.42𝑁 2) ≫ 𝑂(2𝑁 3 + 3𝑁 2) is functionally equivalent

to 𝑂(2𝑁) ≫ 𝑂(𝑁 3) because the difference in the
order of magnitude makes lower-order terms and
even the coefficient of the leading term irrelevant. If
we are comparing algorithms in the same class of
complexity, we only report the leading term and its

coefficient: 𝑂(1.2𝑁 2 + 3𝑁) ≫ 𝑂(0.9𝑁 2 + 2 log𝑁)
becomes 𝑂(1.2𝑁 2) ≫ 𝑂(0.9𝑁 2). In the former case, we
can say algorithms scale in fundamentally different ways
as their inputs grow in size. In the latter, we can say that
algorithms scale similarly but still rank them.

In most practical settings, however, interpreting big-𝑂
notation requires a more nuanced approach because of
its intrinsic limitations.

• Big-𝑂 notation does not include constant terms,
so it may not necessarily map well to real-world
performance. Algorithms with complex initialisation
phases that do not scale with input sizes may be
slower than algorithms with higher complexity for
even moderate input sizes. This may be the case
of algorithms that cache partial results or sufficient
statistics when the caching is more expensive than
recomputing those quantities from scratch as needed.

• Similarly, the coefficients in big-𝑂 notation are usually
not realistic: for instance, a time complexity 𝑂(2𝑁)
does not guarantee that doubling𝑁 will double running
time. How the algorithm is implemented, on what
hardware, etc. may not affect the class of complexity
but they always have a strong effect on the associated
coefficients. As a result, we should estimate those
coefficients from empirical run-times to obtain realistic
performance curves, and use the latter to compare
algorithms within the same class of complexity.

• There is a compromise between space and time
complexity: we trade off one for the other. Arguably,
space complexity is more important than time
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complexity. In principle, we can wait a bit longer to get
the results, but if our program runs out of memory, it
will crash and we will get no results at all.

4.3 Big-𝑂 Notation and Benchmarking

Producing empirical performance curves for all relevant
dimensions of computational complexity differs from
other forms of benchmarking in a few ways. If we know
the theoretical class of complexity an algorithm belongs
to, a simple linear model will suffice for estimating the
coefficients of the terms in its big-𝑂 notation: we will
show some examples in Section 4.5. However, we should
take some care in how performance is measured and in
how we interpret the empirical curves.

Firstly, we should plan the collection of the performance
measurements following the best practices in the
design of physical [225] and computer simulation
[308] experiments. If we are measuring complexity
along a single dimension, we should collect multiple
performance measurements for each input size. The
average performance at each input size will provide
a more stable estimate than a single measurement,
and we can use the distribution of the performance
measurements to establish confidence bands around the
average. Bands based on empirical quantiles (say, the
interval between the [5%, 95%] quantiles) are often
preferable to bands based on the quantiles of the normal
distribution (say, average performance ± the standard
deviation times the 95% quantile of the standard normal)
because the latter is symmetric around the average and
fails to account for the fact that performance is skewed.
Performance is naturally bounded below by zero (instant
execution!) and the average performance may be close



4.3 Big-𝑂 Notation and Benchmarking 71

enough to zero that the bottom of the confidence band is
negative!

If we are measuring complexity along multiple dimen-
sions, it is best to use a single experimental design that
involves all of them in order to separate the main effect of
each dimension from their interactions. Big-𝑂 notation
may not include terms that contain more than one dimen-
sion, and in that case it is interesting to check whether
that is true in practice as well. Or big-𝑂 notation may
include such terms, and then the only consistent way of
estimating their coefficients is to vary all the involved
input sizes simultaneously.

If we are comparing two algorithms in the same
complexity class, we should do that on performance
differences generated on the same sets of inputs to
increase the precision of our comparison. If we use
different inputs, the performance measures we collect
for each input size are independent across algorithms: if
those algorithms are 𝑂(𝑓 (𝑁)) and 𝑂(𝑔(𝑁)) respectively,

VAR(𝑓 (𝑁) − 𝑔(𝑁)) = VAR(𝑓 (𝑁)) + VAR(𝑔(𝑁)).

However, if we use the same inputs for both algorithms

VAR(𝑓 (𝑁) − 𝑔(𝑁)) = VAR(𝑓 (𝑁)) + VAR(𝑔(𝑁))−
2 COV(𝑓 (𝑁), 𝑔(𝑁))

because the performance measures are no longer
independent. Since COV(𝑓 (𝑁), 𝑔(𝑁)) > 0, the empirical
differences in performance will have smaller variability
and thus greater precision.

Secondly, we should carefully choose the compute
system we use. The system should “stand still” while
we are taking performance measurements: if other
tasks are running at the same time, they may try
to access shared resources that are also involved in
our performance measures. This has two negative
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effects: it makes performance measures noisier and it
inflates the estimated coefficients by making the average
performance worse.

Thirdly, we should be careful in using performance curves
to predict performance outside the range of the input
sizes (or the combinations of input sizes) we actually
measured. In any compute system with finite resources,
resource contention will increase as the system reaches
saturation. Hence we should use a compute system with
enough resources to handle all the input sizes we consider
without going anywhere near capacity. We are interested
inmeasuring the performance of the algorithm, not of the
compute system, so we should put stress on the former
and not on the latter.

Finally, note that most experimental design approaches
assume that performance measures are independent.
Hence we should strive to make our empirical measures
as independent as possible by resetting the state of the
compute system before each run: for instance, we should
remove all temporary objects.

4.4 Algorithm Analysis for Machine Learning

Algorithm analysis presents some additional complica-
tions in the context of machine learning software.

The first set of complications is related to defining
the size of the input. Machine learning algorithms
typically have a large number of different inputs, and
the size of each input has several dimensions (such
as the sample size and the number of variables). Hence
algorithms will belong to different classes of complexity
for different dimensions, and it will be unlikely that any
will dominate the others in all dimensions. Sometimes we
can reduce the number of dimensions we are considering
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by assuming some are bounded because of the intrinsic
nature of the inputs or by expressing one dimension as
a function of another (say, the number of variables is

𝑝 ≈ √𝑛 where 𝑛 is the sample size).

Furthermore, computational complexity depends strongly
on the assumptions we make on the distributions of the
inputs and not just on their sizes. More assumptions
usually allow us to access algorithms with better perfor-
mance, and make it possible to use closed-form results:
the more knowledge we put in the form of assumptions,
the less we have to learn empirical measures. Assuming
some form of sparsity or regularity, or actively enforcing
it in the learning process, will reduce the complexity
of machine learning models to the point they become
tractable. In most settings, not making any such assump-
tion will mean exponential or combinatorial worst-case
complexity. It is another trade-off: assumptions versus
complexity.

For stochastic algorithms, we can only meaningfully
reason on the average case. Consider Markov chain
Monte Carlo (MCMC) posterior inference in Bayesian
models, or stochastic gradient descent (SGD) for deep
neural networks. Each time we run them, they go
through a different sequence of steps and they may
produce a different posterior distribution or model. As
a consequence, each run will take a different amount
of time and it will use a different amount of memory.
The construction of such algorithms gives convergence
guarantees and convergence rates, so we have some
expectations about average complexity, but there is
always some degree of uncertainty.

4.5 Some Examples of Algorithm Analysis

We will now apply the concepts we just introduced
by investigating the time complexity of estimating the
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coefficients of linear regression models (Section 4.5.1);
the trade-off between time and space complexity in
sparse matrices (Section 4.5.2); and the time and space
complexity of an MCMC algorithm to generate random
directed acyclic graphs from a uniform distribution
(Section 4.5.3).

4.5.1 Estimating Linear Regression Models

Linear models are the foundation upon which most of
statistics and machine learning are built: we often use
them either as standalone models or as part of more
complex ones. Generally speaking, a linear model takes
a vector y and a matrix X of real numbers and tries
to explain y as a function of X that is linear in the
parameters 𝜷. We can famously [398] estimate 𝜷 with
the closed-form expression

𝜷EX
𝑝×1

= ( XT
𝑝×𝑛

X
𝑛×𝑝

)−1 XT
𝑝×𝑛

y
𝑛×1

which is, at the same time, the ordinary least squares
estimate (from the orthogonal projection of y onto the
space spanned by the X) and the maximum likelihood
estimate of 𝜷 (under the assumption residuals are
independent and normally distributed with a common
variance). Note howwe have annotated the formula above
with the dimensions of both X and y. Those are our inputs:
their dimensions depend on the sample size 𝑛 and on
the number of variables 𝑝.1 The algorithmic complexity
of estimating 𝜷 will be a function of both.

Another option to estimate 𝜷 is to use the QR
decomposition of X [398, Appendix A.9]. Starting from

1This assumes that each row of X corresponds to a data point
and that each column corresponds to a variable. Sometimes these
dimensions are inverted (variables on the rows, data points on the
columns) in the literature.
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the X𝜷 = y formulation of the linear regression model,
we perform the following steps:

1. compute the QR decomposition of X (Q is 𝑛 × 𝑝,
R is 𝑝 × 𝑝);

2. rewrite the problem as R𝜷 = QTy;

3. compute QTy;
4. solve the resulting (triangular) linear system for

𝜷.

Let’s call this estimator 𝜷QR. If we discount numerical

issues with pathological Xs, 𝜷QR and 𝜷EX give identical

estimates of 𝜷: they are identical in terms of statistical
properties, and neither makes any assumption of the
distribution of X. However, we may still prefer one to the
other because of their time complexity.

Firstly, what is the time complexity of computing 𝜷EX?
The steps we would perform if we were estimating it by
hand are:

1. compute XTX;

2. invert it and compute (XTX)−1;
3. compute XTy;
4. multiply the results from steps 2 and 3.

Given the simplicity of 𝜷EX, this description will suffice
as the pseudocode for our analysis. From easily available
sources (say, Wikipedia), we can find the time complexity
of the operation in each step:

• multiplying an 𝑟 × 𝑠 matrix and an 𝑠 × 𝑡 matrix takes
𝑂(𝑟𝑠𝑡) operations [408];

• computing the inverse of an 𝑟×𝑟matrix is𝑂(𝑟3) using a
Cholesky decomposition [407] or Gram-Schmidt [409].

These time complexities use arithmetic operations as
the elementary operations, which is natural because
matrices are just sets of numbers that are combined and
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transformed using those operations. The actual contents
of X and y are irrelevant: both matrices appear in the
big-𝑂 notation just with their dimensions.

Therefore, step 1 is 𝑂(𝑝𝑛𝑝) = 𝑂(𝑛𝑝2), step 2 is 𝑂(𝑝3),
step 3 is 𝑂(𝑛𝑝) and step 4 is 𝑂(𝑝2). The overall time
complexity is

𝑂(𝑛𝑝2 +𝑝3 +𝑛𝑝+𝑝2) = 𝑂(𝑝3 +(𝑛+1)𝑝2 +𝑛𝑝) (4.1)

and it can be interpreted as follows:

• Estimating 𝜷EX is 𝑂(𝑝3) in the number of parameters
𝑝: if 𝑝 doubles, it takes eight times as long.

• Estimating 𝜷EX is 𝑂(𝑛) in the sample size 𝑛: if 𝑛
doubles, it takes twice as long.

Let’s look now at 𝜷QR. For time complexity we have that:

• solving an 𝑟 × 𝑠 linear system with Gram-Schmidt is

𝑂(𝑟𝑠2);2
• back-substitution to solve the triangular linear system

in step 4 is 𝑂(𝑠2).
Therefore, step 1 is 𝑂(𝑛𝑝2), step 3 is 𝑂(𝑛𝑝) and step 4 is

𝑂(𝑝2). (Step 2 is merely for notation.) The overall time
complexity is then

𝑂(𝑛𝑝2 + 𝑛𝑝 + 𝑝2) = 𝑂((𝑛 + 1)𝑝2 + 𝑛𝑝), (4.2)

making 𝜷QR quadratic in the number of parameters

and linear in the sample size. We can expect it to be

faster than the closed-form estimator as 𝑝 grows (𝑂(𝑝2)
instead of 𝑂(𝑝3)), but we cannot say which approach is
faster as 𝑛 grows because they are both 𝑂(𝑛).

2We can do better, but not much: combining Gram-Schmidt and

Householder transformations gives 𝑂(𝑟𝑠2 − 𝑠3/3).
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Therefore, which algorithm is best depends on the data
we expect to work on:

• if 𝑛 → ∞ but 𝑝 is bounded, 𝜷EX and 𝜷QR perform

similarly well;

• if 𝑝 → ∞, 𝜷QR will be faster.

How well do the time complexities in (4.1) and (4.2)
map to real-world running times? We can answer this

question by benchmarking 𝜷EX and 𝜷QR as we discussed
in Section 4.3.

Rlibrary(microbenchmark)
library(doBy)

# define the estimators.
betaEX = function(y, X) solve(crossprod(X)) %*% t(X) %*% y
betaQR = function(y, X) qr.solve(X, y)
# define the grid of input sizes to examine.
nn = c(1, 2, 5, 10, 20, 50, 100) * 1000
pp = c(10, 20, 50, 100, 200, 500)
# a data frame to store the running times.
time = data.frame(
expand.grid(n = nn, p = pp, betahat = c("EX", "QR")),
lq = NA, mean = NA, uq = NA

)
# quantiles defining a 90% confidence band.
lq = function(x) quantile(x, 0.05)
uq = function(x) quantile(x, 0.95)
# for all combinations of input sizes...
for (n in nn) {
for (p in pp) {
# ... measure the running time averaging over 100 runs...
bench = microbenchmark(betaEX(y, X), betaQR(y, X),

times = 100,
control = list(warmup = 10),
setup = {
X = matrix(rnorm(n * p), nrow = n, ncol = p)
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y = X %*% rnorm(ncol(X))
})

# ... and save the results for later analyses.
time[time$n == n & time$p == p, c("lq", "mean", "uq")] =
summaryBy(time ~ expr, data = bench,

FUN = c(lq, mean, uq))[, -1]
}#FOR

}#FOR

We plotted the results in Figure 4.2. The top panels

confirm the conclusions we reached earlier: both 𝜷EX and

𝜷QR have a time complexity that is linear in 𝑛, hence they
scale similarly; but 𝜷EX has a cubic time complexity in

𝑝, which makes it much slower than 𝜷QR as 𝑝 increases.

The level plots in the bottom panels show that 𝑛 and 𝑝
jointly influence running times, which we should expect
since both (4.1) and (4.2) contain mixed terms in which
both 𝑛 and 𝑝 appear.

Considering how little noise is in the running times we
measured, we can reliably estimate the coefficients of the
terms in (4.1) and (4.2) using a simple linear regression.

R# rescale to make the coefficients easier to interpret.
time$mean = time$mean * 10^(-9)
time$n = time$n / 1000
bigO.EX = lm(mean ~ I(p^3) + I((n + 1) * p^2) + I(n * p),

data = subset(time, betahat == "EX"))
coefficients(bigO.EX)
## (Intercept) I(p^3) I((n + 1) * p^2)
## -0.0120329302 -0.0000000025 0.0000017156
## I(n * p)
## 0.0000244271

bigO.QR = lm(mean ~ I((n + 1) * p^2) + I(n * p),
data = subset(time, betahat == "QR"))

coefficients(bigO.QR)
## (Intercept) I((n + 1) * p^2) I(n * p)
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FIGURE 4.2 Marginal running times as a function of 𝑛
(with 𝑝 = 200, top left) and of 𝑝 (with 𝑛 = 50000,
top right); the closed-form formula is shown in orange
and the QR estimator in blue, each with 90% confidence
bands. Joint running times in (𝑛, 𝑝) are shown in the
bottom left and right panels for the closed-form formula
and the QR estimator, respectively.

## -0.1103315 0.0000013 0.0000502

The models in bigO.EX and bigO.QR allow us to predict
the running times for any combinations of 𝑛 and 𝑝. We
can also use them to check how much the empirical
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complexity curves they encode overlap the corresponding
empirical running times and check for outliers.

As a final note, there are several additional considerations
we should weigh before choosing which algorithm

to use: the matrix inverse in 𝜷EX is known to be

numerically unstable, which is why 𝜷QR is preferred in

scientific software. lm() in both R and Julia, fitlm() in
MATLAB are implemented on top of QR but, interestingly,
LinearRegression() in Scikit-learn [311] is not.

4.5.2 Sparse Matrices Representation

Matrices in which most cells are zero are called sparse
matrices, as opposed to dense matrices in which most or
all elements are non-zero. In the case of dense (𝑚× 𝑛)
matrices, we need to store in memory the values of all
the cells, which means that their complexity is 𝑂(𝑚𝑛).
However, in the case of sparse matrices, we can just
store the non-zero values and their coordinates, with the
understanding that all other cells are equal to zero.

R provides several such representations in the Matrix
package [30], and Python does the same in scipy [388]:
the default is the column-oriented, compressed format
described in Section 3.2.3. Consider the matrix originally
shown in Figure 3.4, in which 9 cells out of 15 are zeroes.

Rlibrary(Matrix)
m = Matrix(c(0, 0, 2:0), 3, 5)
m
## 3 x 5 sparse Matrix of class "dgCMatrix"
##
## [1,] . 1 . . 2
## [2,] . . 2 . 1
## [3,] 2 . 1 . .

How are the elements of m stored in memory?
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Rstr(m)
## Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
## ..@ i : int [1:6] 2 0 1 2 0 1
## ..@ p : int [1:6] 0 1 2 4 4 6
## ..@ Dim : int [1:2] 3 5
## ..@ Dimnames:List of 2
## .. ..$ : NULL
## .. ..$ : NULL
## ..@ x : num [1:6] 2 1 2 1 2 1
## ..@ factors : list()

Comparing the notation in Section 3.2.3 and the
documentation of Matrix, we can see that:

• i contains the vector𝑅, row coordinates of the non-zero
cells in the matrix;

• p contains the vector 𝐶, the start and end indexes of
the columns; and

• x contains the vector 𝑉 of the values of the non-zero
cells.

Note that both i and p are 0-based indexes to facilitate
the use of the dgCMatrix class in the C++ code inside the
Matrix package, while R uses 1-based indexing.

The overall space complexity of such a sparse matrix is
then 𝑂(3𝑧), where 𝑧 is the number of non-zero cells. R
stores real numbers in double precision (64 bits each)
and indexes as 32-bits integers, which means m needs
128 bits (16 bytes) of memory for each non-zero cell. So
dense matrices use 8𝑚𝑛 bytes of memory while sparse
matrices use 16𝑧 bytes; if 𝑧 ll 𝑚𝑛 we can save most of
the memory we would have allocated for a dense matrix.

The catch is that operations may have a higher time
complexity for sparse matrices than for dense matrices.
Even the most simple: looking up the value of a cell (𝑖, 𝑗)
has time complexity 𝑂(1) in a dense matrix, but for a
sparse matrix such as m we need to:
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• Look up what are the first and the last values in x for
the column 𝑗 by reading the 𝑗th element of p .

• Position ourselves on the row number for that first value
in i , and read every successive number until we find
the row number 𝑗 or we reach the end of the column.

• Read the value of the cell from x , which has the same
position in x as the row number in i ; or return zero if
we reach the end of the column.

These three steps have an overall time complexity of
𝑂(1) + 𝑂(𝑧/𝑛) + 𝑂(1) = 𝑂(2 + 𝑧/𝑛) assuming 𝑧/𝑛 non-
zero elements per column on average. Hence reading a
cell from a sparse matrix appears to be more expensive
than reading the same cell from a dense matrix.

Assigning a non-zero value to a cell in a sparse matrix is
more expensive as well. For each of i and x we need to:

• allocate a new array of length 𝑧 + 1;
• copy the 𝑧 values from the old array;
• add the values corresponding to the new cell;
• replace the old array with the new one.

Therefore, time and space complexity both are 𝑂(𝑧).
Handling p is also 𝑂(𝑧), and it is more complex since
we will need to recompute half of the values on average.

This is troubling because we cannot predict the average
time and space complexity just by looking at the input
size: we can only do that by making assumptions on
the distribution of the values in the cells. Furthermore,
this distribution may change during the execution of our
software as we assign new non-zero values to the sparse
matrix. We can, however, compare the empirical running
times of read and write operations on dense and sparse
matrices to get a practical understanding of how they

differ, as we did in the previous section with 𝜷EX and

𝜷QR.
Consider a square matrix allocated as either a sparse or
a dense matrix with 𝑛 = 1000 and the proportions of
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non-zero cells of 𝑧/𝑛 = {0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 1}.
We can measure the time it takes to read (with the
read10() function) or write (with the write10() func-
tion) the values of 10 random cells for either type of
matrix as 𝑧 (zz in the code below) increases.

Rread10 = function(m) m[sample(length(m), 10)]
write10 = function(m) m[sample(length(m), 10)] = 1
[...]
for (z in zz) {
bench = microbenchmark(

read10(sparse), read10(dense),
write10(sparse), write10(dense),
times = 200,
control = list(warmup = 10),
setup = {
sparse = Matrix(0, n, n)
sparse[sample(length(sparse), round(z))] = 1
dense = matrix(0, n, n)

})
[...]

}#FOR

The resulting running times are shown in Figure 4.3.
As we expected, both reading from and writing to a
dense matrix is 𝑂(1): running times do not change as 𝑧
increases. This is not true in the case of a sparse matrix.
The running time of write10() increases linearly in 𝑧/𝑛,
and so does that of read10() until 𝑧/𝑛 = 0.5. Reading
times do not increase further for 𝑧/𝑛 = 1: in fact, they
decrease slightly. We can interpret this as 𝑂(2 + 𝑧/𝑛)
converging to a constant 𝑂(3) as 𝑧/𝑛 → 1, making a (no
longer) sparse matrix just an inefficient dense matrix
that requires extra coordinate look-ups.

Finally, we can regress the running times (in seconds) on
𝑂(𝑧/𝑛) to determine the slope of the linear trends we see
for sparse matrices, that is, the orange lines in the two
panels of Figure 4.3. For writing performance, the slope
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FIGURE 4.3 Read (left) and write (right panel) performance
for sparse (orange) and dense (blue) square matrices of
size 1000. 90% confidence bars are so thin as to not be
visible.

is 0.09; while for reading performance it is 0.03 if we
consider only 𝑧/𝑛 ⩽ 0.5. Hence writing times increase by
approximately 10% for every million cells in the matrix,
and read times by 3%. This, of course, is true for large
matrices with millions of elements; performance may
very well be different for smaller matrices with just a
few tens of elements.

4.5.3 Uniform Simulations of Directed Acyclic Graphs

Many complex probabilistic models can be represented
graphically as directed acyclic graphs (DAGs), in which
each node is associated with a random variable and
arcs represent dependence relationships between those
variables: notable examples are Bayesian networks [314],
neural networks [122], Bayesian hierarchical models
[109] and vector auto-regressive (VAR) time series [375].
The DAGs make it possible to divide and conquer large
multivariate distributions into smaller ones in which
each variable only depends on its parents.
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When evaluating various aspects of these models, it may
be useful to be able to generate random DAGs to use
in simulation studies. In particular, we may want to
generate DAGs with uniform probability since this is
considered a non-informative prior distribution on the
space of the possible model structures. A simple MCMC
algorithm to do this is illustrated in [209]. We wrote it
down as pseudocode in Algorithm 1. For simplicity, we
omit both burn-in (dropping the DAGs generated in the
initial iterations to give time to the algorithm to converge
to the uniform distributions over DAGs) and thinning
(returning only one DAG every several generated DAGs to
return a set of DAGs that are more nearly independent)
even though both are standard practice in the literature.

Algorithm 1 Random DAG Generation

Input: a set of nodes V (possibly with associated labels),
the number 𝑁 of graphs to generate.
Output: a set G of 𝑁 directed acyclic graphs.

1. Initialise an empty graph with nodes V and arcs
𝐴0 = {∅}.

2. Initialise an empty set of graphs G.
3. For a large number of iterations 𝑛 = 1,… ,𝑁:

(a) Sample two random nodes 𝑣𝑖 and 𝑣𝑗 ∈ V with
𝑣𝑖 ≠ 𝑣𝑗.

(b) If {𝑣𝑖 → 𝑣𝑗} ∈ 𝐴𝑛−1, then 𝐴𝑛 ← 𝐴𝑛−1 ⧵ {𝑣𝑖 →
𝑣𝑗}.

(c) If {𝑣𝑖 → 𝑣𝑗} ∉ 𝐴𝑛−1, check whether the graph

is still acyclic after adding {𝑣𝑖 → 𝑣𝑗}.
i. If the graph is still acyclic, 𝐴𝑛 ← 𝐴𝑛−1 ∪
{𝑣𝑖 → 𝑣𝑗}.

ii. If the graph is no longer acyclic, nothing is
done.

(d) G← G ∪ 𝐴𝑛.
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How can we represent DAGs in this algorithm? Any
graph is uniquely identified by its nodes V and its arc
set 𝐴. As an example, consider a graph with nodes
V = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and arcs {{𝑣1 → 𝑣3}, {𝑣2 → 𝑣3},
{𝑣3 → 𝑣4}}. Its adjacency matrix is a square matrix in
which the cell (𝑖, 𝑗) is equal to 1 if the arc 𝑣𝑖 → 𝑣𝑗 is
present in the DAG, and to 0 if it is not:

⎛
⎜
⎝

𝑣1 𝑣2 𝑣3 𝑣4
𝑣1 0 0 1 0
𝑣2 0 0 1 0
𝑣3 0 0 0 1
𝑣4 0 0 0 0

⎞
⎟
⎠
.

We can store an adjacency matrix in a dense or a sparse
matrix of size |V|: depending on how many arcs we
expect to see in the DAG, the trade-off between space
and time complexity may be acceptable as discussed
in Section 4.5.2. The adjacency list of a graph is a set
containing the children sets of each node:

{𝑣1 = {𝑣3}, 𝑣2 = {𝑣3}, 𝑣3 = {𝑣4}, 𝑣4 = ∅} .

This representation is competitive with a sparse
adjacency matrix in terms of space complexity: both are
𝑂(|𝐴|), where |𝐴| is the size of the arc set of the DAG
(that is, the number of arcs it contains). If we assume
that the DAGs contain few arcs so that 𝑂(|𝐴|) = 𝑂(|V|),
then space complexity is better than the 𝑂(|V|2) of
adjacency matrices. As for time complexity, path finding

is 𝑂(|V|+|𝐴|) in adjacency lists but 𝑂(|V|2) for adjacency
matrices. Adjacency matrices, on the other hand, allow
for 𝑂(1) arc insertion, arc deletion, and finding whether
an arc is present or not in the DAG. All these operations
are either 𝑂(|V|) or 𝑂(|𝐴|) in adjacency lists.

For the moment, let’s represent DAGs with dense adja-
cency matrices. We can determine the time complexity
of an MCMC step in Algorithm 1 as follows:
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• For each iteration, adding and removing arcs is 𝑂(1)
since we just read or write a value in a specific cell of
the adjacency matrix.

• Choosing a pair of nodes at random can also be
considered 𝑂(1), since we choose two nodes regardless
of |V| or |𝐴𝑛|.

• Both depth-first and breadth-first search have time

complexity 𝑂(|V|2) since we have to scan the whole
adjacency matrix to look for each node’s children. We
only perform such a search if we sample a candidate arc
that is not already present, because in order to include
an arc 𝑣𝑖 → 𝑣𝑗 we must make sure that there is no path

from 𝑣𝑗 to 𝑣𝑖 in order to keep the DAG acyclic. That in

turn happens with probability 𝑂(|𝐴𝑛|/|V|2).
The overall time complexity of Algorithm 1 for 𝑁 MCMC
iterations then is:

𝑂 (𝑁 (1 + 1 + |V|2
|𝐴𝑛|
|V|2

)) ≈ 𝑂(𝑁|𝐴𝑛|).

However, we are assuming a uniform probability distribu-
tion over all possible DAGs: under this assumption [209]

reports that 𝑂(|𝐴𝑛|) ≈ 𝑂(|V|2/4), making Algorithm 1

𝑂(𝑁|V|2/4). If we assumed a different probability distri-
bution for the DAGs, the time complexity of the algorithm
would change even if V and𝑁 stayed the same because the
average |𝐴𝑛| would be different. Furthermore, note that
computing the overall time complexity of Algorithm 1
as 𝑁 times the complexity of an individual step implies
that we are assuming that all MCMC steps have the same
time complexity. This is not exactly true because of the

𝑂(|𝐴𝑛|/|V|2) term, which may be lower for early MCMC
steps (when |𝐴𝑛| is bound by the number of steps 𝑛)
that for later steps (when |𝐴𝑛| ≈ |V|2/4 because Algo-
rithm 1 has converged to the uniform distribution). It is,
however, a reasonable working assumption if 𝑁 is large
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enough and if most MCMC steps will be performed after
reaching the stationary distribution.

For each DAG we generate, we also have to consider the
cost of saving it in a different data structure for later
use. Transforming the adjacency matrix into another

data structure is necessarily 𝑂(|V|2) since we need to
read every cell in the adjacency matrix to find out which
arcs are in the DAG. We do not always perform that
transformation because we may reject a new DAG instead
of returning it, but it is difficult to evaluate how often that
happens. A reasonable guess is that we almost always
save sparse graphs, since there will typically be no path
between 𝑣𝑗 and 𝑣𝑖 (that is the only case in which we

do reject the current DAG proposal, and we do not need
the transformation). As |𝐴𝑛| → |V| that condition will
become easier to meet, so we can say that for a large

number of iterations ≈ 𝑂(|V|2 ⋅ 0) = 𝑂(1) for most
iterations.

As for space complexity, the adjacency matrix uses

𝑂(|V|2) space: it is the most wasteful way of representing
a graph. Any other data structure we may save DAGs into
will likely use less space.

We can investigate all the statements above as in
Sections 4.5.1 and 4.5.2.

Rlibrary(bnlearn)

melancon = function(nodes, n) {
# step (1)
dag = empty.graph(nodes)
adjmat = matrix(0, nrow = length(nodes), ncol = length(nodes),

dimnames = list(nodes, nodes))
# step (2)
ret = vector(n, mode = "list")
for (i in seq(n)) {
# step (3a)
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candidate.arc = sample(nodes, 2, replace = FALSE)
# step (3b)
if (adjmat[candidate.arc[1], candidate.arc[2]] == 1) {

adjmat[candidate.arc[1], candidate.arc[2]] = 0
amat(dag) = adjmat

}#THEN
else {

# step (3c)
if (!path.exists(dag, from = candidate.arc[2],

to = candidate.arc[1])) {
adjmat[candidate.arc[1], candidate.arc[2]] = 1
amat(dag) = adjmat

}#THEN
}#ELSE
# step (3d)
ret[[i]] = dag

}#FOR
return(ret)

}#MELANCON

How do time and space complexity change if we represent
DAGs with adjacency lists instead? Both path finding (say,
by depth-first search) and saving DAGs in a different
data structure have a time complexity of 𝑂(|V| + |𝐴𝑛|)
for adjacency lists. However, the overall time complexity
of each MCMC iteration is still quadratic:

𝑂(𝑁 (1 + 1 + (|V| + |𝐴𝑛|)
|𝐴𝑛|
|V|2

)) ≈

𝑂 (𝑁 (1 + 1 + (|V| + |V|2)
|V|2

|V|2
)) ≈ 𝑂(𝑁|V|2),

again assuming that 𝑂(|𝐴𝑛|) ≈ 𝑂(|V|2/4). The space
complexity of an adjacency list is 𝑂(|V| + |𝐴𝑛|).
On average, this becomes 𝑂(|V|2) under the same
assumption.
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FIGURE 4.4 Running times for Algorithm 1 as a function
of the number of nodes, generating 200 DAGs.

4.6 Big-𝑂 Notation and Real-World Performance

Big-𝑂 notation is a useful measure to assess scalability,
and it can often be related to the practical performance of
real machine learning software. However, this becomes
increasingly difficult as such software becomes more
complex, for several reasons. For instance:

• Software in a machine learning pipeline is heteroge-
neous: various parts are typically written in different
programming languages and are built on different
libraries. Each part may be faster or slower than another
because of that, even when they belong to the same
class of complexity. More on that in Section 6.1. Soft-
ware upgrades may also change the relative speeds of
different parts of the pipeline and introduce new bottle-
necks.
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• Both these things being equal, the same algorithm may
be faster or slower depending on the data structures
used to store its inputs and outputs. We saw that to be
the case in Section 4.5.2, and we touched on this point
in Section 3.4 as well. The same is true for variable
types, as discussed in Section 3.3. High-level languages
abstract these details to a large extent, which may lead
to surprises when benchmarking software.

• Differences in hardware can be impactful enough to
completely hide differences in the class of complexity
of different algorithms for practical ranges of input
sizes. Conversely, they can also introduce apparent
discrepancies in performance. This can realistically
happen when the input sizes are small enough to make

adjacent classes of complexity comparable: an 𝑂(𝑁 2)
algorithm on a CPU core will be slower than an 𝑂(𝑁 3)
algorithm on a GPU with a hundred of free units for
𝑁 ⩽ 100. Fixed costs that are ignored when deriving
computational complexity may also be relevant due to
the relative difference, for instance, in the latency of
different types of memory (Section 2.1.2).

• If we use any remote systems (Section 2.3), the
hardware we are running a machine learning pipeline
on may vary without our knowledge, either in its
configuration or in its overall load. Furthermore,
benchmarking remote systems accurately is inherently
more difficult, as is troubleshooting them.

• The performance of some parts of the pipeline may
be artificially limited by that of the external systems
that provide the inputs to the machine learning models
or that consume their outputs. Individual parts of the
same system may also slow down each other as they
consume each other’s outputs.

To summarise, we may be able to map computational
complexity to real-world performance for the individual
components of a machine learning pipeline running on
simple hardware configurations. It is unlikely that we
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can do that with any degree of accuracy when systems
become larger and contain a larger number of software
and hardware components. The resulting complexity
can easily make our expectations and intuitions
about performance unreliable. In such a situation,
identifying performance issues requires measuring the
current performance of each component as a baseline,
identifying which components are executed most often
(which are sometimes said to be in the “critical path” or
in the “hot path”) and trying to redesign them to make
them more efficient.



Part II

Best Practices for Machine
Learning Pipelines
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5

Designing and Structuring Pipelines

When we start writing a new piece of software, one of
our first challenges is to identify its logical components
and how they interact with each other. We can then
structure our software into a series of modules, be they
classes, libraries or completely separate programs, that
implement those logical components in such a way as to
make reasoning about the software as easy as possible.
In other words, we design software to divide and conquer
complexity into manageable chunks so that we only
need to face a small fraction of it at any given time
[252]. Failure to do so quickly leads to software that
is impossible to understand and to work on (Chapter 6),
which in turn makes it difficult to deploy (Chapter 7),
document (Chapter 8), test or troubleshoot (Chapter 9),
and in general to keep running.

In this chapter we discuss the unique challenges that
define machine learning software design: the role
of data (Section 5.1), the nature of technical debt
(Section 5.2) and the anatomy of a machine learning
pipeline (Section 5.3).

5.1 Data as Code

Machine learning software is fundamentally different
from most other software in one important respect:
it is tightly linked with data [25]. The structure and the

95
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FIGURE 5.1 The inversion of roles in machine learning
software (right) compared to other software (left).

behaviour of a piece of traditional software1 arise from
some combination of processes gleaned from experts in
the field, a specification of the desired output, and the
set of technologies we can use to support its operations
(Figure 5.1, left). We are in charge of designing a
software architecture that produces the desired behaviour.
For instance, we structure web services to direct user
navigation patterns through established procedures for
different tasks, taking information retrieved from some
database or from various vendor APIs and producing
outputs to be consumed through some dashboard
(by humans) or API (from other computer systems).
Desktop applications do the same through windows and
dialogs. Obviously, our freedom in designing software
architectures is limited for good reasons (performance
requirements, good practices and maintainability among
them) as well as bad reasons (like less-than-ideal
requirements, limitations in the chosen technological
stack and unclear requirements) but this still leaves us a
substantial amount of control.

On the other hand, the behaviour of machine learning
software is dictated as much by the data we train our
models on as it is by our design choices. We may
decide how to measure model performance but the
best performer will then be determined by the data:
the distribution of the variables in the data and their
probabilistic structure will be better captured by some

1By “traditional software”, we mean any software that is not
related to analytics, data science or machine learning.
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models than others. So wemay choose to try, say, random
forests, deep neural networks and some hierarchical
Bayesian model but, in the end, we will end up using the
model that the data say is best regardless of our personal
preferences. The information in the data is compiled into the
software through the models, which program the software
automatically: developers do not completely encode its
behaviour in the code (Figure 5.1, right).

This realisation leads to a paradigm shift: we should treat
data as code because data functionally replaces parts of
our source code and because changes in the data may
change the behaviour of the software. Hence we should
test the data to ensure that their characteristics do not
change over time (Section 5.2.1). After all, if the data
change, our models may no longer be fit for purpose
and we may have to retrain them to retain suitable
levels of performance. In the case of offline data, this
means that data should be versioned along with the code and
that changes in either of them should trigger testing
by continuous integration tools. In the case of online
data, we should also implement a real-time monitoring
and logging of the characteristics of new data and of
the performance of the deployed models (Section 5.3.6).
Once we are confident that the data are as we expect
them to be, we can use them to test that our software
(the implementation) is behaving correctly and ensure
that the models themselves are correctly specified (in
their mathematical and probabilistic formulation). We
will discuss the troubleshooting and testing of both data
and machine learning models in more detail in the next
section and in Chapter 9.

Ideally, we should have a configurationmanagement plat-
form (often called an “experiment tracking” or “exper-
iment management” platform in this context) using
version control (Section 6.5) to track the hardware, the
source code, the environment configurations, the param-
eters, the hyperparameters, the model characteristics,



98 5 Designing and Structuring Pipelines

the input data and the outputs of all instances of model
training and inference. (Including those we use to
explore the data.) We can then tag the exact version
of all the components used in each development and
production environment, as we would do in a tradi-
tional software engineering setting. In turn, this means
that we can (re)create any of those environments as
needed, which makes automated deployments possible
(Chapter 7) and greatly facilitates troubleshooting. Given
the limited interpretability and explainability of most
machine learning models, which are essentially black
boxes, only a solution approaching a reproducible build
setup [153] can hope to make in-depth debugging and
root cause analyses possible.

5.2 Technical Debt

Treating data as code means we should consider data a
potential source of technical debt. Models can also be sources
of technical debt because of their dependence on data and
in their own right. In practice, the data and the models
are dependencies of our machine learning code: like all
dependencies, they are a potential liability and should be
handled as such.

The term “technical debt” has commonly had a negative
connotation since it was first introduced [73, 74]:
it highlights how hasty design choices can lead to
unexpected costs, not only in purely economic terms,
but by introducing latent complexity that makes the
software more difficult to evolve over time. Technical
debt allows us to produce results faster by trading
quality for speed but, as with borrowed money, we must
eventually pay it off with (compound) interest. It is
unavoidable when tight deadlines reduce the time spent
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on analysis and design [96], leading to solutions that
are suboptimal in terms of functionality, code quality
or technical implementation. Establishing and following
the practices we advocate in Part II of this book is a good
way of keeping it in check and of paying it off quickly
enough to reduce it over time.

Machine learning models and the underlying training,
testing and serving software infrastructure, which we
will introduce in Section 5.3 as a machine learning
pipeline, combine all the complexities of traditional
software development with the issues arising from the
experimental nature of data analysis. (More about this
in Chapter 6.) Therefore, we find it useful to rethink the
nature of technical debt in machine learning software in
a unified, comprehensive way. We classify it into four
broad areas: data, model, architecture (design) and code
debt. These areas span issues both in various parts of
the machine learning practice, such as data collection,
data validation, feature extraction, data visualisation and
observability; and in the software that we use to interact
with machine learning models, such as monitoring,
configurations, training and serving infrastructure. The
libraries that power the models themselves, like PyTorch
[259] or Scikit-learn [311], are typically very stable and
we rarely find them to be a source of technical debt.

5.2.1 At the Data Level

Section 5.1 suggests that data can be a liability for three
reasons. Firstly, theymay originate from untrusted sources,
either from in-house or from third-party systems. Data
sources that are outside of our control or that do not
have strict quality standards should be treated as an
unknown quantity: data may unexpectedly change over
time in shape (raw data structure or type change), in
general quality (data duplication, missing data, null
data or incorrectly normalised data) or in relevance
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and statistical properties (data or concept drift). This
is particularly the case for online data that come in
the form of event streams or that are generated by
aggregating data from multiple sources. (More on that
in Sections 9.1 and 9.4.3.) In order to prevent such
anomalies from affecting both the training of models
and their subsequent use, we should only allow data
that have been versioned and validated by our suite of
software tests (Section 9.4) to enter the machine learning
pipeline. Systematic testing acts as a quality gate that the
data must pass before entering later processing stages.
Data drift will make models become stale: their accuracy
will decrease as the data they will perform inference
on become increasingly different from those that were
used to train them [107, is an extensive review of this
topic]. The same may happen if the general quality of the
data degrades over time. Unless such changes are sudden
enough and sharp enough, their effects will be difficult to
detect without a test suite. This is what appears to have
happened to Zillow [319], the online real-estate company:
the machine learning model they used to price properties
to buy was trained on self-reported data, which were
untrusted and difficult to validate, and it was left to
overestimate prices for too long as the market cooled
down. By the time the model was retired in 2021, Zillow
had to sell between 60% and 85% of the properties it
bought at a loss and fire 25% of its staff just to remain
afloat.

Secondly, data may originate from untracked sources: we
should always take into account that third-party sources
can be volatile and can also suddenly become unavailable.
If that happens to a data source we are not aware we
depend on, troubleshooting the resulting issues may be
challenging. Furthermore, untracked sources are often
untrusted as well, but unlike tracked sources they are not
systematically versioned and validated: any issue they
may have can potentially go unnoticed for long periods of
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time. In this context, where a piece of data comes from
and how it was produced is called data provenance or data
lineage [63].

Finally, we may introduce in the data when we prepare
them for use in the pipeline. In many applications, we
can only collect unlabelled data that we have to annotate
manually: this is an expensive, time-consuming and
error-prone process that requires a team of domain
experts. Automated labelling using machine learning
models is a poor substitute as it is known to have
0.15–0.20 lower accuracy for both natural language
processing and computer vision tasks [413]. The lack of
ground truth labels makes it very difficult to spot these
errors, which in turn impacts both other data quality
controls and model training. Furthermore, manual
labelling is too slow to allow us to monitor the outputs of
the pipeline in real time, limiting our ability to detect data
drift and model staleness. Hence this issue can produce
technical debt at different levels in ways that are difficult
to detect.

5.2.2 At the Model Level

Issues with model performance, caused by data or
otherwise, are unlikely to be limited to a single model.
Consider data drift again: if any output of machine
learning model A is used as an input to another machine
learning model B , any degradation in accuracy in model
A will propagate to model B and possibly be amplified in
the process. As was the case with the data, we can detect
such issues by using integration tests as quality gates
to ensure that the inputs and the outputs of each model
behave as expected. This is only possible if we track
the dependencies between the models, for instance, by
recording them as-code in the orchestrator configuration
(Section 7.1.4) or by putting in place authentication and
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authorisation mechanisms to access models (say, with
OAuth2 [95]).

Therefore, we can say that technical debt at the model
level arises mainly from feature and model entanglement:
any issue that impacts one model’s inference capabilities
will propagate to all the downstream models that depend
on it, directly or indirectly, in what is called a correction
cascade (Section 9.1.2). Entanglement between features,
between models, and between features and models
is unavoidable in practical applications: “changing
anything changes everything” [312]. Features are rarely
completely independent of each other, and black-
box models (Section 9.2.2) like deep neural networks
deliberately “entangle them” in ways that are difficult
to understand. Models are also entangled with each
other because they consume each other’s outputs
(Section 9.1.2). This complex interplay unfortunately
means that it can be difficult to find the root causes of
the issues we are troubleshooting even when we observe
tell-tale signs that something is wrong (Section 9.3).

On top of that, models are entangled with the real world:
for instance, if the suggestions made by the model that
drives a recommender system change, the behaviour of
the system’s users will change in response. This creates
a feedback loop because the users consume the model’s
outputs and at the same time provide the data the model
is trained on. Whether this is desirable or not depends
on the specific application and on whether this feedback
loop has a positive or negative effect: uncontrolled direct
feedback loops can lead to an amplification of bias while
artificially improving the model’s accuracy. Microsoft’s
Tay chatbot [154] is a good case in point. Launched on
Twitter in 2016 to “engage and entertain people through
casual and playful conversation” while self-training
from those conversations, it was shut down a few days
later because every tweet it posted contained conspiracy
theories or racist, inflammatory statements. (Maybe it
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maximised some abstract engagement metric in doing
so?) Hidden feedback loopswhere machine learning models
directly affect each other through exogenous events are
also possible and harder to spot. Techniques such as reject
inference [71] and contextual bandits [79, 80], collecting
feedback from users and domain experts (Sections 5.3.4
and 5.3.5) and including additional features can help
to break such loops by exploring new models and by
suggesting whether the current ones should be retrained.

Finally, models may be entangled with each other when
we take a pre-trained model and we fine-tune it for
different tasks. This practice reduces computational
requirements and speeds up model development: we buy
a pre-trained model A for a general task (say, object
detection) and then use tightly-focused data sets to
specialise it into models B , C , etc. for specific tasks (say,
detecting impurities in the semi-finished products of an
industrial process). However, models B , C , etc. are likely
to inherit similar failure modes from A , thus introducing
coupling between models with no tracked dependencies
and producing unexpected correction cascades in the
machine learning pipeline. Furthermore, models B , C , etc.
become more difficult to evolve independently because
any bug we fix in model B should also be fixed in models A ,
C , etc. (or confirmed not to affect them) and the software
tests for all models should be updated at the same time.
Similarly, any enhancement that is meaningful for model
B is likely to be meaningful for models A , C , etc. as well.
We can manage these issues by using a configuration
management platform, as we pointed out in Section 5.1, to
track dependencies between models and between models
and data, to version them and to enable systematic
testing (Section 9.4.2).
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5.2.3 At the Architecture (Design) Level

The architecture of a machine learning pipeline directs
how data and models interact to achieve its goals: it is
implemented as an orchestration system that schedules
and coordinates various tasks such as data ingestion,
data validation, feature engineering, model training and
validation, model deployment on production systems,
and serving. We will discuss them in detail in Section 5.3.

Machine learning pipelines are inherently complex
systems with many moving parts, and they can easily
hide architecture (design) debt. The key to keeping this
type of technical debt in check is to give visibility into
all aspects of their configuration as code using files in a
human-readable data serialisation language like XML,
YAML or JSON.2 These files should be under version
control in a configuration management solution along
with the data (Section 5.1) and the models (Section 5.2.2),
and for similar reasons. Each change in design can
then be expressed in those configuration files or using
environment variables. Configuration files should be
used for parameters, options and settings for which
we need complete versioning across iterations, such
as data set locations, training hyperparameters and
model parameters. These files can also be linked to and
supplement architecture documentation, which describes
the pipeline using the more accessible ubiquitous
language (Section 8.3). Environment variables should
be used to store runtime configurations such as log-
levels (Section 5.3.6), feature flags (Section 6.5) and
the labels of target testing or production environments.
Environment variables are also commonly used for
secrets management, that is, to store credentials,
certificates and other sensitive information. All modern

2The choice of the language is often dictated by the orchestration
software. However, YAML is becoming a de facto standard because
of its readability, portability and maturity.
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software solutions to build machine learning pipelines
provide mechanisms for configuring, overriding and
exposing environment variables, including secrets.
Only with a comprehensive formal description of the
pipeline and of all its components we may be able to
evolve and extend both over time without accidentally
accruing architecture debt. Tracking and versioning the
architecture along with the data and the models reduces
the time spent on troubleshooting and debugging, and
makes it possible to implement efficient deployment
strategies (Section 7.2) and to roll back problematic
models (Section 7.6). The alternative is to perform these
operations manually, which is time-consuming and error
prone: Knight Capital [317] proved that clearly to the
world by burning $460 million in 45 minutes due to a
botched manual deployment of their algorithmic trading
software.

Unfortunately, we cannot control and version models
from third-party libraries or remote systems as easily as
those we train ourselves. Hence we are left to integrate
them by wrapping their APIs with glue code to interface
them with the rest of the machine learning pipeline.
Glue code is a piece of ad hoc code, often in the form of a
one-off script, that has no function other than to adapt
software that would otherwise be incompatible. It is a
common source of technical debt both at the model level
(if shipped in the model) and at the architecture level (if
used to bind together different modules in non-standard
ways) where it creates what is known as the “pipeline
jungle” anti-pattern [45].

Glue code is also commonly used to wrap libraries and
remote APIs because it allows us to quickly expose them
with new domain-specific names, interfaces and data
structures (Section 8.2). While this practice may seem
expedient, it can couple glue code tightly with what
it is wrapping, causing it to break when the library
or the remote API changes its public interface. We
should only use glue code wrappers when we strictly
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need them, for example: to instrument a function for
debugging purposes; to expose different versions or
different features of the same library to different modules
in the pipeline; or to integrate a legacy library or API that
we would be otherwise unable to use.

5.2.4 At the Code Level

As for codedebt, we should avoidmixing different versions
of interpreters, programming languages and frameworks
in the same machine learning pipeline. Unfortunately,
this is a common issue for two reasons. Firstly, machine
learning experts and data scientists often work in
isolation, without a shared development environment.
Secondly, microservices and similar architectures favour
the use of multiple programming languages inside the
same application in what they call polyglot programming.
While it is often the case that different programming
languages are better suited to different parts of a
pipeline (Section 6.1), having too much variety can
lead to organisational anti-patterns like an unbalanced
distribution of skills and skill levels (say, there is only
one developer with expertise in a key framework) and
inadequate knowledge transfer (because there are too
many technologies to keep track of). From a practical
standpoint, a good compromise is to build any new
machine learning pipeline from a small, up-to-date
set of technologies and to involve all developers when
incorporating new ones. The latter should be done
sparingly: resume-driven development rarely ends well.

A related problem is that of vendoring software libraries,
that is, including the source code of a specific version of a
third-party software in our codebase instead of managing
it as an external library through a package manager.
Vendored libraries become untracked dependencies
(Section 6.3), are often integrated using glue code, and
are problematic to update because package managers and
other automated tooling are unaware of their existence.



5.3 Machine Learning Pipeline 107

Another source of code debt is the amount of exploration
and experimentation involved in creating machine
learning models. It can easily produce dead experimental
code paths, which are usually badly documented by
comments (Section 8.1) and can lead to wasted effort
as we try to achieve code coverage (Section 9.4.6). It can
also limit the time we can spend on improving the quality
of the code we produce from prototype to production level.
Practices such as code review (Section 6.6) and constant
refactoring (Section 6.7) can address both these issues, as
we will discuss in the next chapter. They will also help in
tackling low-quality code which, as a source of technical
debt, significantly increases the number of bugs and the
time required to fix them, slowing down development
[371].

5.3 Machine Learning Pipeline

Modern software development schools like Agile [36] and
DevOps [153] have pushed for the automation of testing,
release management and deployment processes since
the early 2000s, leading to the adoption of continuous
integration / continuous delivery and deployment (CI/CD)
solutions [86] to manage the software development
life cycle. Continuous integration is the practice of
developing code by committing small changes frequently
to a version control repository. Each change is validated
by an automated software testing solution, manually
reviewed, and then integrated into the mainline branch
the production builds are created from. As a result, the
mainline branch is always in a working state and changes
to the code are immediately visible to all developers.
(More on that in Chapter 6.) Continuous delivery and
continuous deployment focus on being able to release a
working version of the software at any time and to deploy
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FIGURE 5.2 Life cycle of a machine learning pipeline.

it on production systems. (More on that in Chapter 7.) In
both cases, the emphasis is on using automated processes,
versioning, configuration management, software testing
and code review to enable an effortless, fast and reliable
software development life cycle.

Nowadays, we have many integrated CI/CD solutions
to build machine learning pipelines (called “MLOps”).
However, a complete understanding of how a pipeline
works becomes crucial when its development evolves
from a simple proof of concept running on some
developer’s local environment into a larger piece of
software managed by a team and running on multiple
systems. (Most real-world pipelines are complex enough
to require a team to manage them.) At first, we explore
some sample data and we try different models to gauge
their performance, spending little to no time on software
tests. Developing a pipeline then becomes the iterative
and increasingly complex process shown in Figure 5.2:
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feeding new data from the ingestion phase to existing
models for validating, monitoring and troubleshooting
them; generating new models as the data change;
deploying models and serving them continuously to
downstream models or to the application or service that
users will access. This is what we call a machine learning
pipeline: the codification of these steps into independent,
reusable, modular parts that can be pipelined together
to orchestrate the flow of data into, and outputs
from, machine learning models.3 MLOps practices
standardise and automate how a pipeline is developed,
giving us all the advantages that CI/CD brought to
traditional software engineering, and builds on the same
foundations: effective use of versioning, configuration
management, automated testing, code review and
automated deployments. Continuous integration, in
addition to the testing and validation of code, now
covers the testing and validation of the data and the
models. Continuous delivery and continuous deployment
expand to the production and deployment of the entire
machine learning pipeline, again including the models.
This extended definition of CI/CD allows us to focus on
the development, testing and validation of the machine
learning models, replacing homegrown solutions based
on glue code with systematic solutions based on industry
standards.

Figure 5.2 takes the software development life-cycle
representation from Figure 1.2 and puts it into context.
It shows the key logical steps of reproducible machine
learning: what we should take care of to build a
solid and maintainable pipeline. Some boxes represent
development stages, some are actual pieces of software

3In software engineering, “pipeline” is used to mean the process
of developing and delivering software: CI/CD is a pipeline. In this
book, we use it to mean the software infrastructure to develop and
put to use the machine learning models and, by extension, the
process of building and operating it.
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that will become modules in our pipeline, others are
both. Broadly speaking, we can group the modules in a
pipeline into four stages: data ingestion and preparation;
model training, evaluation and validation; model deployment
and serving; and monitoring, logging and reporting. How
the functionality provided by each stage is split into
modules is something that we can decide when we
define the scope of the pipeline; we can then produce a
baseline implementation to develop an understanding of
its size and structure. However, well-established design
principles from software engineering apply [252, 369].
Each module should do one thing and do it completely
(the “Single Responsibility Principle”), encapsulating as
much complexity as possible and abstracting it behind
a simple interface (a “deep module”). Thus, we can
keep the complexity of the pipeline in check by avoiding
change amplification (making a simple change requires
modifying codemany different locations) and by reducing
cognitive load (how much does a developer need to know
in order to successfully make the change) as well as
unknown unknowns (which parts of the code should
be touched is not obvious). Simple interfaces are less
likely to change: they also reduce coupling between the
modules if we limit the number of dependencies and
avoid common anti-patterns such as implicit constraints
(say, functions should be called in a specific order) and
pass-through variables containing all kinds of unrelated
information (say, the whole global state in a context
object). Simple interfaces should also reflect domain
knowledge by exposing methods and data structures with
domain meaning, with names taken from the ubiquitous
language (Chapter 8) and with default settings that
make common cases simple to implement. This approach
is likely to result in a pipeline architecture patterned
after the workflow of domain experts, which allows
them to help validate models and inference outputs in a
“human-in-the-loop” setup [413, 416]. Furthermore, a
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modular pipeline can be easily managed by an orchestrator
which can deploy the modules (Chapter 7), allocate them
to systems with the appropriate hardware resources
(Chapter 2) and control their execution.

5.3.1 Project Scoping

Starting from the top of Figure 5.2, the first step in
building a machine learning pipeline is to understand
the problem it should solve, what data it can use to do so,
what outputs it should produce, and who its end users will
be. To clarify these points, we should first identify who
will be involved in developing the pipeline or will interact
with it (the “stakeholders”): a combination of software
developers, machine learning experts, domain experts
and users. Together they will have all the information
necessary to define the scope of the pipeline.

The process of scoping a machine learning pipeline and
the underlying systems (Chapter 2) involves the following
steps:

1. Identifying the problem we want to solve: the
stakeholders should work together to explicitly
define the problem that the pipeline should solve
and to evaluate its impact. Domain experts should
have a concrete business or academic need to
address and, together with the other stakeholders,
they should decide whether the problem is worth
solving and whether solving it will be valuable to
enough people. This process is much smoother
if the domain experts have some familiarity with
the classes of problems that can be effectively
tackled with machine learning.

2. Identifying the targets we want to optimise for: the
stakeholders should decide what it means to have
solved the problem successfully. To this end, the
domain experts should set measurable domain
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metrics with achievable threshold values to define
“success”. These metrics should be:

•comparable across different data, models and
technical solutions to make it possible to
contrast different pipeline implementations;
•easy to understand and to interpret;
•simple enough that they can be collected
in real-time for logging and monitoring
(Section 5.3.6);
•actionable.

3. Identifying what data we need: data are a crit-
ical component of a machine learning pipeline
because they determine its performance
(Section 5.1). Therefore, it is essential to iden-
tify all the data sources we want to use, who
owns them, and the technical details of how the
data are stored (files, databases or data lakes)
and structured (data schema). This allows us to
track data provenance and reduce technical debt
(Section 5.2.1). In particular, we should be wary
about data sources that provide overlapping infor-
mation because they introduce hidden dependen-
cies in the pipeline. They can easily be incon-
sistent because of differences in their schemas
(say, the same variable is scaled or discretised
in different ways) and, even if they are consis-
tent, they can diverge over time (say, one data
source changes schema and the others do not). A
common case is that of partially pre-processed
data, which should always be reconciled with
the raw data they originate from and stored
in the same versioned repository. In addition,
we should collect data following the best prac-
tices accumulated in decades of survey sampling
[137, 198] and experimental design [225] to make
sure that the data we collect to train the machine



5.3 Machine Learning Pipeline 113

learning models (Section 5.3.4) are representa-
tive of the data the models will perform inference
on (Section 5.3.5). Sampling bias can have unpre-
dictable effects on the performance of the pipeline.

4. Analysis: we should assess how much data we can
collect and what variable types they will contain.
With this information, we can start evaluating
different models based on their sample size
requirements, their probabilistic assumptions
and the inference types they support (prediction,
classification, etc.). As a general rule, it is always
preferable to start with simpler models because
they enable a fast feedback loop: if simple models
cannot achieve our targets, we can move to
more complex models and use the simpler ones
as baselines. In addition, we should take into
consideration:

•The robustness of the model against the noise
in the data, against model misspecification
and adversarial attacks.

•Interpretability and explainability, that is,
how well we can understand the behaviour
and the outputs of the models. Some
models are inherently interpretable either
because of their simple structure (say,
regression models) or because of their
construction (say, Bayesian networks [314]).
For others (say, deep neural networks),
we can introduce auxiliary models to provide
post hoc explanations: some of them are
application-agnostic [193] while others are
specific to natural language processing [191]
or computer vision [325].

•The fairness of model outputs, which should
not induce the machine learning pipeline to
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discriminate against individuals or groups
based on sensitive attributes such as gender,
race or age. While there is much literature on
this topic [208], there is no consensus on how
fairness should be measured. What there is
consensus on is that machine learning models
can easily incorporate the biases present in
the data they are trained from. Therefore, we
should consider carefully how the data are
collected and we should constrain models to
limit or disregard the discriminating effect
of known sensitive attributes. Failures to do
so have often ended in the news: Amazon’s
sexist recruitment tool [31], Facebook image
recognition labelling black men as primates
[32] and Twitter’s racist preview cropping
[33] are just a few examples.

•Privacy and security concerns for sensitive
data [258]. Machine learning models excel at
extracting useful information from data, but
at the same time, they should protect privacy
by not disclosing personally identifiable
information. How to achieve that is an
open problem, with research investigating
approaches like differential privacy [121],
defences against adversarial attacks and
data re-identification [232], and distributed
learning implementations such as federated
learning [192] and edge computing [181]
(Section 2.3).

A machine learning pipeline typically spans several data
sources and several models: as a result, we will iterate
over these steps a few times depending on the nature
of the project and of the organisation undertaking it.
In the end, we will have the information we need to
compile a mission statement document (Section 8.4) and
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to sketch the layout of the architecture (Section 8.3) and
of our software test suite (Section 9.4.1). The architecture
is typically represented with a directed acyclic graph
(DAG): see Figure 8.2 for an illustrative example. Each
node will correspond to one of the modules in the
pipeline, with incoming and outgoing arcs showing its
inputs and outputs, respectively. The DAG therefore maps
the paths of execution of the pipeline and the flow of
data and information from data ingestion to training,
inference and reporting. The DAG may be quite large for
particularly complex pipelines: splitting it into smaller
DAGs corresponding to different sections of the pipeline
and working with them independently may be more
convenient.

5.3.2 Producing a Baseline Implementation

Data validation, model development, tuning, training and
validation are initially explored by individual developers
and machine learning experts on local hardware, if
suitable hardware is available. After experimentation,
they will eventually produce a minimal, working
prototype of some part of the pipeline. This is often called
a baseline implementation or proof of concept, and it will
only involve the smallest amount of code that allows us
to check whether we can achieve our targets.

This initial exploration of the problem does not
typically involve all the CI/CD development workflows
discussed above and in Chapter 6: at this stage,
the code and the models are too volatile. However,
developers and machine learning experts should at least
agree on a common, unified development environment
(software dependencies management, build processes
and configurations). This environment should be
buildable in a reproducible and reliable way, which
requires configuration management, and it should be
as close as possible to our target production environment.
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For convenience, the development environment should
be modular in the same way as the pipeline, so that
we can run only the modules we are working on: it
is typically impossible to run the whole pipeline on a
developer workstation.

After checking that our proof of concept achieves all its
targets, we then:

1. Construct a suite of software tests (Section 9.4.2)
and push both to our version control repository to
start taking advantage of continuous integration.
We can then transform the proof of concept into
production-quality code by gradually refactoring
(Section 6.7) and documenting it (Chapter 8) with
the help of code review (Section 6.6).

2. Improve scalability. A proof of concept is typically
built using a small fraction of the available
data, so we must ensure that its computational
complexity (Chapter 4) is small enough to make
learning and inference feasible in production
when all data are used. Time complexity is
important to allow for timely model retraining
and for inference under latency constraints; space
complexity must fit themachine learning systems
(Chapter 2) we have available. If our development
system is similar to the production systems, we
can expect computational complexity to translate
into practical performance in similar ways and
predict the latter reliably.

5.3.3 Data Ingestion and Preparation

After scoping the pipeline and producing a baseline
implementation of its parts, we can start designing and
implementing its modules in a more structured way.
A machine learning pipeline is the formalisation of a
data processing workflow. Therefore, the first part of
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the pipeline will comprise one or more data ingestion
modules where we collect data from various sources such
as relational databases, legacy OLTP/OLAP systems and
modern in-house or cloud data lakes. These modules
vary in nature depending on the machine learning
systems the pipeline will run on: their design will
be heavily influenced by factors such as data locality
(Sections 2.2 and 2.3), data provenance (Section 5.2.1),
the availability of different types of storage (Section 2.1.2)
and compliance with privacy frameworks like HIPAA
and FCRA in the United Stated or GDPR in Europe
(Section 5.3.1).

Data ingestion is followed by data preparation. Preparing
and cleaning the data is a hard but crucial step involving
data scientists, domain experts and machine learning
experts [179]. Modules for data preparation build on
the exploratory analysis of the data used to produce the
baseline implementation of the models, which is often
limited to a high-level analysis of summary statistics,
graphical visualisations and some basic feature selection.
Their purpose is to clean and improve the quality of
the data in the most automatic and reproducible way
possible, making subsequent stages of the pipeline
more reliable. In addition to validating the types, the
acceptable values and the statistical distribution of each
feature, data preparation modules should address the
issues discussed in Section 9.1. They can also automate
both feature selection and feature engineering (that is,
the transformation of existing features into new ones
that are better suited to model training or that are
more meaningful in domain terms). Current software
solutions for data and machine learning pipelines handle
these tasks in a flexible way by taking as configuration
arguments a processing function and a validation
function that checks the properties of the now-clean data.
The former may, for example, remove outliers, impute
missing data and sort labels and features; the latter serves



118 5 Designing and Structuring Pipelines

as a quality gate (Section 5.2.1) and as the kernel of a
property-based software test (Section 9.4.2).

Finally, the data are split into multiple sets for later
use as training, validation and test sets. (Making sure
to avoid data leakage, see Section 9.3.) Each data set is
tagged with information about its origin and with the
version of the code that was used to extract and clean it,
to track data provenance. These tags become part of our
configuration management, and the data is stored as an
artefact under versioning for later use.

5.3.4 Model Training, Evaluation and Validation

After ingestion and preparation, a machine learning
pipeline passes the data either to model training modules
or to inference modules (which we will discuss in
Section 5.3.5). The trained models are then evaluated (on
their statistical performance) and validated (in domain
terms) using software tests and human expert judgement
to ensure they are efficient, reproducible and scalable.
Only models that perform sufficiently well in both
statistical and domain terms will be considered suitable
for deployment and serving.

Training a machine learning model consists in identifying
an optimal instance in some model class (neural
networks, random forests, etc.) by iteratively applying
a combination of feature engineering, hyperparameter
tuning and parameter optimisation. This is what the
“learning” in “machine learning” refers to: a computer
system is trained to learn a working model of some
piece of the real world from the information contained
in the data. The probabilistic techniques used for this
purpose are specific to each model class and are beyond
the scope of this book: see Kuhn and Johnson [188]
for an approachable treatment of this topic. Training
is a computationally demanding task, especially in the
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case of deep learning. The role of the pipeline is to
schedule the training workload on compute systems
with the appropriate hardware capabilities (as discussed
in Section 2.4) and to monitor its progress. It should
also simplify the parallel training of models with
predefined, regular patterns of hyperparameters; and it
should automate software tests implementing property-
based testing of the model’s probabilistic properties
(Section 9.4.2).

Training can take quite different forms depending on
the nature of the data (Section 9.4.3). In static learning,
the model is trained from scratch on cold (offline)
data selected to be representative of the data currently
observed in production. Its statistical performance is
then evaluated against either a separate set of cold
data or a small stream of production data. In either
case, the data should be labelled or validated by domain
experts to address the issues discussed in Section 5.2.1
and to maximise model quality. In dynamic learning, the
model is continuously trained and evaluated on a live
stream of (online) production data collected in real time.
This requires fine-grained monitoring to be in place
(Section 5.3.6). If data drift is gradual, we may prevent
the model from going stale by fine-tuning it [107]. If, on
the other hand, data drift is sudden, it may be preferable
to retrain the model from scratch with a batch of recent
data.

Model evaluation modules check whether the predictive
accuracy of the model the pipeline just trained is better
in statistical terms than that of the corresponding model
currently in production. To assess both simultaneously,
we can perform a canary deployment: running the current
and the new model in parallel on the same data to
compare them directly. (More on this in Chapter 7.) In
the case of streaming data, it is standard practice to
use A/B testing [7, 425] for this purpose, assigning new
data points at random to either model. At the same time,
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we can check whether the new model is preferable to
the current one in domain terms using the metrics we
decided to optimise for (Section 5.3.1). We call this model
validation, in contrast with the evaluation of the model in
purely statistical terms. The two may be related because
models with poor statistical properties will typically
not encode the domain well enough for practical use.
However, models with good statistical properties are
not always of practical use either: in particular when
the loss function the model is trained to minimise is
too different from that implied by how costly prediction
errors are in business or domain terms. In general, it
is better to choose well-matched domain metrics and
statistical accuracy measures for consistency. Unlike
model evaluation, which can be automated to a large
extent using software tests and continuous integration,
model validation should involve domain experts. Even if
we practise domain-driven development [96] and involve
them in the design of the pipeline, in implementing it
(Chapter 6) and in documenting it (Chapter 8), there
will always be some domain knowledge or intuition that
they were not able to convey to developers and machine
learning experts. As unscientific as it may sound, there
is knowledge that is essentially impossible to put into
numbers. Therefore, there will be issues we cannot write
tests for, but that experts can “eyeball” and flag in model
outputs because “they look wrong” and “do not quite
make sense.” This approach is known as “human-in-
the-loop” in the literature, and it is known to improve the
quality of machine learning across tasks and application
fields [413, 416].

When a model is finally found to perform well in both
statistical and domain terms, the pipeline should trigger
a CI/CD process to generate an artefact containing the
model and all the relevant information from the training
process. An artefact can be, from simple to complex:

1. A (usually binary) file in a standardised format
that will be stored and versioned in a
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general-purpose artefact registry. The format can
be either model-independent, like ONNX [247],
or specific to the machine learning framework
used for training.

2. A (usually Docker [82]) container that embeds
the model and wraps it with application code
that provides APIs for inference, health checking
and monitoring. The container is then stored and
versioned in a container registry.

3. An annotated file uploaded to a model registry
that provides experiment tracking, model serving,
monitoring and comparison between models in
addition to versioning.

Platforms like GitHub and GitLab integrate both a
general-purpose artefact registry [112, 114] and a
container registry [113, 115], as does Nexus [328].
MLOps platforms like TensorFlow Extended (TFX) [342]
implement experiment tracking and other machine-
learning-specific features. We will return to this topic in
Section 7.1.

Regardless of their form, artefacts should be immutable:
they cannot be altered once generated so they can be
used as the single source of truth for the model. Data
artefacts (Section 5.3.3), code (Section 6.5) and often
other software artefacts are also stored as immutable
artefacts and versioned. When their versions are linked,
we have a complete configuration management solution
that allows for reproducible builds of any development,
testing or production environment that has ever been
used in the pipeline.

5.3.5 Deployment, Serving and Inference

Not all the artefacts we produce will be deployed
immediately, or at all: continuous delivery only ensures
that we are always ready to deploy our latest models.
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In academia, we cannot make any change to a pipeline
halfway through a set of experiments without potentially
introducing confounding in the results. In business, we
may have service-level agreements with our customers
that make it risky to deploy new models without a
compelling reason to do so. Artefacts may also be
found to be unsuitable for deployment for security
reasons: for instance, we may find out that a container
contains vulnerable dependencies or is misconfigured
(Section 7.1.4).

Model deployment is not implemented as a module:
rather, it is the part of the pipeline orchestration that
enables models to be deployed to a target environment.
Models deployed in production will be served so that users,
applications or other models can access their inference
capabilities. Models deployed to test environments will
be evaluated by software tests and expert judgement, and
those deployed to development environments can be used
for troubleshooting bugs or further investigation of the
data.

How a machine learning model is deployed depends on
how it has been packaged into an artefact and on how
it will be used. File artefacts can be either embedded
in a software library that exposes inference methods
locally or served “as-a-service” from a model registry
using suitable remote APIs and protocols (such as RESTful
or, when we need low latency, gRPC [108]). Container
artefacts can be deployed by all orchestration platforms
in common use, which provide built-in monitoring and
logging of hardware and software metrics (load, memory
and I/O use) as well as troubleshooting facilities. Despite
being intrinsically more complex, container artefacts are
easier to deploy because they are ephemeral and highly
portable, and because we can manage as-a-code both
their runtime dependencies and configuration. We will
develop this topic in detail in Sections 7.1.4 and 7.2 using
Dockerfiles as a reference.
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5.3.6 Monitoring, Logging and Reporting

Monitoring modules collect the metrics we identified in
the scoping phase (Section 5.3.1) to track at all times
whether the pipeline achieves the required statistical and
domain performance levels. The metrics should describe
both the pipeline as a whole and individual modules to
allow us to pinpoint the source of any issue we may have
to troubleshoot. In particular:

• Data ingestion and preparation modules (Section 5.3.3):
we should monitor the same data metrics we check
with property-based software tests to guard against
data drift and data degradation.

• Training modules (Section 5.3.4): we should monitor
the same metrics we use for model validation and
evaluation consistently across all models in the pipeline
to separate issues with individual models from issues
arising from the data. Especially when using online
data.

• Serving and inference modules (Section 5.3.5): we
should monitor the same metrics we monitor during
training to ensure that performance has not degraded
over time (the so-called “training-serving skew”). And
we should do that for all inference requests (possibly in
small batches) so that we can guarantee that outputs
are always in line with our targets. This is crucial
to enable human-in-the-loop validation by domain
experts for black-box models whose failure modes are
mostly unknown and difficult to test.

The coverage of monitoring facilities is important for the
same reason why test coverage is important: both are
tasked to identify a broad range of issues with the data
(Section 9.1), with the models (Section 9.2) and with the
pipeline (Section 9.2.4) with enough precision to allow for
root-cause analyses. Software tests perform this function
at development and deployment time; monitoring does
it at runtime.
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In practice, we can implement monitoring with a client-
server software such as Prometheus [275]. Each module
in the pipeline produces all relevant metrics internally,
tags them to track provenance (which module, and which
instance of the module if we havemultiple copies running
in parallel) and makes them available in a structured
format through the client interface. Monitoring modules
then provide the corresponding server that pulls the
metrics from all clients and saves them into an event store
database. They will also filter the metrics, sanitise them,
and run frequent checks for anomalies. If any is found,
the monitoring modules can then trigger alerts and
send failure reports to the appropriate people using, for
instance, Alertmanager (which is part of Prometheus) or
PagerDuty [255]. If our pipeline is sufficiently automated,
we may also trigger model retraining automatically at the
same time. This is the only way to address anomalies in
a timely manner and to provide guarantees on the quality
of the outputs of the pipeline. Cross-referencing the
information in the event store to that in our configuration
management system is invaluable in comparing the
performance of our current production environment
against that of past (now unavailable) environments.
The same metrics may also be useful for troubleshooting
infrastructure issues, like excessive consumption of
computing resources, memory and I/O, as well service
issues that impact downstream services and models,
like readiness (whether a specific API is ready to accept
requests) and excessive inference latency (how long it
takes for the API to respond).

Logging modules complement monitoring by recording
relevant information about events that occur inside
individual modules or within the pipeline orchestration,
capturing exceptions and errors. Typically, at least part
of a machine learning pipeline runs on remote systems:
since we cannot access them directly, especially in the
case of cloud instances (Section 2.3), we are limited in our
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ability to debug and troubleshoot issues. Logging makes
this problem less severe by recording what eachmodule is
doing in a sequence of timestamped logmessages, ranging
from simple plain-text messages (as we may produce
ourselves) to more structured JSON or binary objects
(from frameworks or language interpreters). Each log
message has a “level” that determines its severity and
that allows us to control how much we want to log for
each module: for instance, a set of labels like DEBUG ,
INFO , WARNING , ERROR , and CRITICAL . Each log message
is also tagged with its provenance, which allows us to
distinguish between:

• system logs, which provide information on the
load of the machine learning systems, the runtime
environment and the versions of relevant dependencies;

• training logs, which describe the model structure, how
well it fits the data and the values of its parameters and
hyperparameters for each training iteration;

• inference logs, which describe inputs, outputs, accuracy
and latency for each request and each API.

Therefore, logs provide a measure of observability when
we otherwise would have none: all modules should
implement logging as much as monitoring. However, the
more messages we generate, the more resources logging
requires: which poses practical limits on how much we
can afford to log, especially on production systems. In
development environments, we may just append log
messages to a file. In production environments, we
should aggregate log messages from the whole pipeline
to a remote log collector instead of locally. Log collectors
can normalise log messages, make them easy to browse
and make it possible to correlate events happening in
different modules.

Similar to monitoring modules, logging modules are
implemented with a client-server software such as
Fluentd [359] complemented by a search engine like
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Elasticsearch and a web frontend like Kibana [91]. The
two software stacks have some apparent similarities:
both have a remote server aggregating information from
clients inside the modules. The underlying reason for
this architecture is that we should locate the server
on a system that is completely separate from those
the machine learning pipeline runs on: when the latter
crashes and burns, we need to be able to access the
information stored by monitoring and logging servers to
investigate what its last known status was and decide
how to best restore it.

However, monitoring and logging have two key technical
differences. Firstly, logging should support unstructured
data, whereas monitoring only handles data in the
form of {key, type, value} triplets. Logging gives
observability from outside the code we wrote to
implement a module, reporting information that we
do not produce directly and whose format we cannot
necessarily control. Monitoring gives observability from
the inside: we incorporate the client component into our
code and we give it access to its internal state. Hence
the information we expose to the monitoring server is
necessarily structured in various data types and data
structures (Chapter 3). Secondly, logs are pushed from
the clients to the servers as they are generated, whereas
monitoring servers pull the metrics from the clients in
the modules at regular intervals. Therefore, the databases
used by the logging servers are general-purpose event
stores, whereas those used for monitoring are optimised
for time series data. The ability to access the internal
state of all modules at regular intervals makesmonitoring
servers ideal for observing any gradual degradation in
the machine learning pipeline.

Reporting modules implement graphical interfaces that
display the information collected by the monitoring and
logging modules. Building on best practices from data
science [179], they provide web interfaces with intuitive,
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interactive dashboards that can be used by developers,
machine learning experts and domain experts alike.
Graphical displays in common use are:

• Data ingestion and preparation modules (Section 5.3.3):
– Plots of the empirical distribution both of individual
features and of pairs of features against each
other such as histograms, boxplots, heatmaps and
pairwise scatterplots (for continuous features) or
barplots and tileplots (for discrete features).

– Plots of key summaries from minimal statistical
models such as simple linear regressions to assess
the magnitude and the sign of the relationships
between features and to explore potential fairness
issues.

• Training modules (Section 5.3.4):
– Plots of model performance over the course and at

the end of the training process, like profile plots of
the loss function against epochs for deep neural
networks and heatmaps for confusion matrices
produced by classification models.

– Plots that help interpret the model behaviour,
showing either its parameters or the outputs of
explainability approaches like LIME [296] and SHAP
[201].

– For less computationally-intensive models, inter-
active dashboards that can trigger model training,
with sliders to pick hyperparameters on the fly.

• Serving and inference modules (Section 5.3.5):
– Plots of the empirical distribution of input data

against historical data, to detect data drift.
– Time series plots of the accuracy measures used in
model validation and the metrics used for model
evaluation, to detect when models become stale.

– Time series plots of latency and readiness.

All plots should also include confidence intervals to
convey the likely range of values for each of the quantities
they display, wherever it makes sense.
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Domains like natural language processing and computer
vision may require specialised graphical interfaces in
addition to the above: for instance, visualising word
relevance in natural language processing [191] and pixel
relevance in computer vision [325] or splitting images
into layers with semantic meaning [296]. Such interfaces
can be very useful to involve domain experts in validating
model training and the outputs from the inference
modules. Instances that were not classified or predicted
correctly can then be visually inspected, labelled and used
to retrain the machine learning models.



6

Writing Machine Learning Code

Programming is, in many ways, a conversation with
a computer, but it is also conversation with other
developers [105]. As vague as it sounds, we should strive
to write code that is simple to read and whose meaning
is obvious [252]. Code is read much more often than it
is written: most of the cost of a piece of software is in
its maintenance, which is typically performed by people
other than those who first wrote the code.

Achieving clarity involves effort on several fronts.
Different trade-offs between clarity, consistency, devel-
opment speed and the existence of useful libraries may
motivate the use of particular programming languages for
different modules (Section 6.1). Things should be named
appropriately (Section 6.2), code should be formatted
and laid out consistently (Section 6.3), functions and
modules should be organised tidily in files and directo-
ries (Section 6.4).

Finally, having multiple people go through the code
and review it (Section 6.6) helps in identifying how to
improve it. We can then change it gradually by refactoring
it (Section 6.7), which is the safest way to make sure we
do not introduce any new bugs. Both activities require an
efficient use of source version control (Section 6.5), which
will also be key for deploying (Chapter 7), documenting
(Chapter 8) and testing (Chapter 9) our machine learning
pipeline. As an example, we will refactor a sample of code
used for teaching in academia (Section 6.8).

129
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6.1 Choosing Languages and Libraries

The choice of what programming languages to use to
write machine learning software is mainly determined
by their performance, their observability, the availability
of libraries whose functionality we can use and ease of
programming.

The performance of a programming language depends
mainly on whether it is compiled (like C, C++ and Rust)
or interpreted (like R and Python). Compilation takes
a program and generates machine instructions that
are stored in binary executable files or libraries, which
can then be run repeatedly. Compiled code is generally
high-performance because it does not require further
processing when run: all the work of finding the most
efficient sequence of machine instructions is done ahead
of runtime. This includes deciding what instructions are
appropriate to use for taking advantage of the CPUs, GPUs
and TPUs on the system the program will run on. In
contrast, interpreted languages execute a program by
translating it into machine instruction during runtime.
Interpreted code, therefore, does not necessarily exhibit
high performance but is typically higher level (in the
sense that it is more abstracted from hardware specifics,
such as managing memory) and is easier to program
because we can work with it interactively in REPLs.1

In practice, programming languages used for machine
learning exist on a spectrum between these two extremes.
Both R and Python, despite being interpreted languages,
have packages that are just thin wrappers around

1A REPL (“Read-Eval-Print Loop”) is an interactive programming
environment where the user can write code statements that are
instantly evaluated and whose outputs are returned to the user.
They are invaluable to run software piecewise and understand the
behaviour of its components.
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high-performance libraries like BLAS, LAPACK, Tensor-
Flow or Torch that are written in compiled code.
Depending on what packages we use in our machine
learning code, we may achieve performance comparable
to that of compiled code without sacrificing ease of
programming for those parts of our code that are not
computationally intensive. Julia, on the other hand, uses
just-in-time compilation to compile and optimise code just
before each module or function is called at runtime. As a
result, the time it takes to start executing Julia code is
fairly slow but has little overhead once running.

Compiled and interpreted languages are very different
in terms of observability as well. We can observe
the behaviour of compiled code easily by profiling it
(recording relevant metrics at regular intervals) or by
tracing it (recording the program and the compute
system status when particular events are recorded) at the
system level because it runs exactly the same sequence
of instructions every time it is executed. On the other
hand, interpreted code is mapped to machine instructions
dynamically by the interpreter as the software is run.
Mapping performance to specific blocks of code is more
difficult unless the interpreter can expose its internal
state to a profiler while running the program. As a result,
interpreted code is often studied by simply adding print
statements and timestamps. A more rigorous alternative
is to instrument the code itself, that is, to ask the
interpreter to record its state at predetermined intervals
or events. However, most types of instrumentation
dramatically increase execution time and are unwieldy
to use even for debugging. This is well known to be the
case for R’s Rprof() and Rprofmem() , for instance.
In terms of ease of programming, all compiled languages
in common use are low-level languages: the code we write
in them is not abstracted away from the compute system
it will run on. Manual memory management, dependency
management, heavy focus on the implementation details
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of data structures (Chapter 3), structuring code to take
advantage of specific hardware capabilities (Chapter 2)
are everyday concerns when working with languages
like C or C++. In contrast, interpreted languages in
common use are high-level languages. They allow us to
write code that is in many respects like pseudocode and
to concentrate to a greater extent on the models and
the algorithms we are implementing. As a result, they
make it easier to keep track of the overall design and
of the structure of the machine learning pipeline. High-
level languages such as R, Python and Julia also come
with package repositories and dependency management
[70, 171, 280]. Once more, this suggests that the best
trade-off is to use low-level, compiled languages for
the few parts of the machine learning pipeline that are
performance-critical and to use high-level languages for
everything else. The former will include model training
and inference; the latter may include data cleaning,
visualisation and performance monitoring. Orchestrating
the different parts of the pipeline may or may not
be performance-critical, depending on its scale and
complexity.

Finally, the availability of libraries that we can build
on is important as well. Ideally, we want to focus
our efforts on implementing, optimising and running
our machine learning systems and pipelines instead of
reimplementing functionality that is already available
elsewhere. And even if we were fine with reinventing
the wheel, we are unlikely to match the design quality
and performance optimisations of most popular software
libraries. There is a significant overlap in the machine
learning models available in various languages, but
some have better implementations than others in
particular cases. Python is probably the best choice for
neural networks, for probabilistic programming and for
applications in computer vision and natural language
processing. R has the widest selection of models from
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classical and modern statistics, including the reference
implementation of popular ones such as mixed-effects
models and the elastic net penalised regression. Behind
the scenes, both languages (and Julia as well) use the
same standard numerical libraries so they often have
similar levels of performance.

Last but not least, consider again the discussion on
the modular nature of machine learning software
in Section 5.3. When modules in our software have
well-defined interfaces that specify what their inputs
and outputs are, and both inputs and outputs are
serialised using standard formats, we can implement
them in different languages. Model training and
inference modules (Sections 5.3.4 and 5.3.5) are more
computationally intensive and, therefore, should be
implemented in compiled languages like C or C++.
Modules that do not require as many resources like
user interfaces, dashboards (Section 5.3.6) and often
data ingestion (Section 5.3.3) may be implemented in
interpreted languages like R or Python. Orchestration,
model deployment and serving (Section 5.3.5), logging
and monitoring (Section 5.3.6) are usually provided by
third-party software; any glue code that complements
them may be in a completely unrelated systems or
scripting language. The isolation between the modules,
and between the modules and the underlying compute
systems, makes the choice of the language used internally
in each module irrelevant for all the others. However,
some degree of homogeneity in programming languages
and module structures is desirable to make it easier for
different people to work on the code (Section 5.2.4).

6.2 Naming Things

Carefully naming variables, functions, models and
modules is essential to convey their meaning to other
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people reading the code [252, 369]. But who are those
people in the case of machine learning software? They
will be a combination of final users, developers, machine
learning experts and domain experts. Each group will have
a different view of what names are meaningful to them.
Similarly, we will argue in Chapter 8 that we should
complement software with documentation written from
different perspectives to make sure that all the people
working on it can understand it well.

Names that are most useful to users and domain experts
describe what a function is supposed to do, what a
variable contains or how it is supposed to be used, which
model is implemented by a module, and so on. They
can do that by leveraging the naming conventions of
the domain the software is used in. Such names do not
describe how a function works internally, what is the type
of a variable or other implementation details: most users
and domain experts will not be developers themselves, so
this type of information will not be useful to them. They
will mainly be interested in using functions, modules,
etc. for their own purposes without having to understand
the implementation of every piece of code they call.
Doing so would increase the cognitive load involved in
working with any complex piece of software beyond
what is reasonable. For the same reason, we suggested
using names that come from the domain in pseudocode
(Section 4.1).

Names that describe the implementation details of
what they refer to can be useful to other developers
working on the same module. Similarly, short names
that map directly to the mathematical notation used in
the scientific literature will be most useful to machine
learning experts. Both types of names assume familiarity
with the mathematical and implementation details of
the relevant models and algorithms, and assume that
whoever is reading the code will refer to the literature
to understand what the code does and why it does it
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that way. Such names are usually quite short, making for
terse code. Users and domain experts are unlikely to be
familiar with the notation and they will find such code
impossible to understand without a significant amount of
effort and the help of extensive comments (Section 8.1).
On the other hand, people who are familiar with the
mathematical notation can grasp the code much faster if
the naming convention is the same as in the literature.
This is advantageous when writing research code that will
only be shared among collaborators working on similar
topics. However, using mathematical notation can also be
a source of misunderstandings because the same concepts
are expressed with different notation and, vice versa, the
same notation is used to represent very different concepts
in different subfields of machine learning.

Therefore, in practice it is impossible to establish a
single suitable naming convention across a machine
learning pipeline: the code it contains is too varied,
as will be the people interacting with it. (This is true
more in general for any kind of coding convention, as
we will see in the next section.) However, the general
guidelines from Kernigham and Pike [180] apply even
across naming conventions. Use descriptive names for
globals, short names for locals: it may be fine to adhere
to mathematical notation inside modules implementing
machine learning models and algorithms because only
developers and machine learning experts are likely
to touch such code. Both the module scope and the
comments it contains will narrow down the context
(Section 8.1) and make short names as understandable as
longer names would be (but faster to read). Variables
and functions that can be accessed from outside the
module, on the other hand, are better named following
their domain meaning because they are likely to be
used by final users and domain experts. Public interface
documentation (Section 8.2) can help in fleshing out their
relationships with models and data as well as expand on
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their meaning. Be consistent: code of the same type should
follow the same naming convention across all modules in
the machine learning pipeline, practising either the same
ubiquitous language used in the comments, interface
and architecture documentation (Section 8.3) or the
same mathematical notation established in the technical
documentations (Section 8.4). Be accurate: avoid vague
names and names that can be misunderstood to mean
different things to people from different backgrounds.2

6.3 Coding Styles and Coding Standards

Code clarity is also a function of its readability. At a low
level, we can improve readability by adopting code styles
that standardise how code is formatted (indentation, use
of braces, name casing, line length, etc.) and that give
it a uniform look across the whole machine learning
software. The idea is that consistently using the same
style makes code easier to read and to understand both
by the person who wrote it and by others. Therefore,
adhering to a coding style reduces the risk of mistakes
and makes it easier to collaborate within and across
teams of developers. All programming languages in
common use in machine learning software including
Python [128, 384], R [400] and Julia [38] have industry-
standard code styles which apply well in this context.
However, a machine learning pipeline will comprise code
written in different programming languages (Section 6.1):
we may want to consider making small changes to these

2Many technical terms have completely different meanings in
software engineering: consider “test” (statistical test vs unit test),
“regression” (the statistical model vs adversely affecting existing
software functionality) or “feature” (a variable in a data set vs a
distinguishing characteristic of a piece of software). Similar conflicts
may happen with the terminology from other domains as well.
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styles to make them more similar to each other and
to reduce friction when working with more than one
language at the same time.

At a higher level, we may want to adopt code standards
that limit what programming constructs are considered
safe to use and that lay out best practices to structure
code at a local level (say, blocks within a function,
or functions within a module). Such standards are
language-agnostic and complement rather than replace
code styles: for instance, they may describe how to handle
exceptions, how inputs and outputs should be structured
at the function and module level, how to track software
dependencies, how code should be instrumented for
logging and observability, and what code patterns to
avoid for performance reasons. Lopes [199] shows how
much of a difference these choices can make in practice.
At an even higher level, code standards may also address
software security concerns. Unlike code styles, there are
no universal code standards: their breadth makes them
necessarily application- or domain-specific. Combining
both with a modular pipeline design (Section 5.3) allows
us to make assumptions about the code’s behaviour,
which in turn makes it easier to read, to deploy, to
maintain and to integrate with other code by reducing
the need for refactoring (Section 6.7) and by making
code easier to test (Section 9.4). They can be adopted
systematically by having automated tools to check for
compliance and by enforcing them during code review
(Section 6.6).

The adoption of code styles and standards is, at the
time of this writing, one of the low-hanging fruits to
pick to improve machine learning software across the
board. The prevalence of Jupyter notebooks [274] as a
development platform encourages one-off code that does
not need to follow any particular convention because
it does not interact with other software and interacts
with users in very limited ways. As a result, code in
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Jupyter notebooks is not well organised into functions
(which are 1.5 times more coupled compared to normal
software, even though they are individually simpler),
its dependencies are not well managed (twice as many
undeclared, indirect, or unused imports), and, in general,
code has more quality issues (1.3 times more) [136].
Even disregarding Jupyter notebooks, all systematic
analyses of open-source machine learning code have
found significant andwidespread issues. After controlling
for age and popularity, machine learning software has
similar complexity and open tickets to other types of
software. However, individual projects seem to have
fewer contributors and more forks, suggesting code may
not be reviewed as thoroughly [324]. Reproducibility
and maintainability are problematic because software
dependencies are often not properly tracked [383]: either
they are not listed, they are vendored (Section 5.2.4),
their versions are not pinned, or they are unresolvable
because they are detected automatically and never vetted.
Pylint’s inability to reliably check local imports and
imports in packages with C/C++ backends (that is, all
foundational packages including TensorFlow, NumPy
and PyTorch) makes this worse for Python projects.
Furthermore, users are often unaware of the documented
issues and pitfalls of the machine learning software
they use [423], in part because they are only reported in
independent blog posts if they are library-specific.

These general issues are made worse by several smells
that are specific to machine learning code and that
arise from how such code is developed. Many of the
sources we have referenced [313, 324, 339, 383, 423]
point out issues with module interfaces and functions
having too many arguments (because they map to the
mathematical notation of the underlying models too
closely); duplicate code (because of experimentation by
cut-and-paste and no pruning of dead code); functions
being too long, with too many variables and too many
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branches (because they perform multiple tasks and were
never refactored into smaller functions); and lack of
configuration management (such as the experiment
tracking and infrastructure-as-code approaches we
argued for in Chapter 5). Some of these issues could
be tolerated as inherent to machine learning code: we
argued earlier (Section 6.2) that naming local variables
after mathematical notation is fine even if names are
not descriptive. However, most should not. To be fair,
we acknowledge that many of these issues cannot be
addressed on a purely technical level because they arise
from wrong incentives. In academia, code is treated as a
one-off throwaway [234, 340] because job performance
is measured by the number of publications (“publish
or perish!”), not by the quality of the code itself. The
resulting software is typically neither maintained nor
deployed to a production system. In the industry, many
professionals working on machine learning pipelines
have little or no background in software engineering [313]
and companies have come to accept re-implementing
machine learning code from scratch to use it in
production as inevitable. A culture change is needed for
the adoption of best practices such as code styles and
code standards (as well as modular pipeline design) to
become the norm.

6.4 Filesystem Structure

Keeping code organised into files and directories
contributes to clarity by making it easier to find any
specific piece of code. This is true for machine learning
pipelines as much as for other types of software:
functions performing related tasks should be stored
together, and functions performing orthogonal tasks
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should be stored in separate parts of the filesystem.
(The Single Responsibility Principle [369] applied to file
hierarchies.) Each module should be stored in a separate
directory, with functionality split coherently into files.
Methods and variables exported from a module should
be stored in a separate set of files than internal code, to
make it easier for users to inspect them and to link them
with interface documentation (Section 8.2). Unit tests for
the module (Section 9.4.4) should be placed in a separate
subdirectory but versioned alongside the code they test.

What is the best filesystem structure to use for a
module in a machine learning pipeline? There is no
single, universal standard: both language-agnostic [186]
and language-specific proposals for Python [3, 134], R
[42] and Go [284] are available and have been used in
real-world software. They overlap substantially, broadly
agreeing on the following set of subdirectories and files:

• An src directory for the source code of the module,
possibly subdivided into further subdirectories.

• A build or dist directory to store the artefacts
created during the build process, like object files,
machine learning models and the files used for testing,
deployment and CI/CD.

• A directory for the specification files for any containers
used in CI/CD, say, docker for Dockerfiles [82]. Further
configuration files controlling how containers are
deployed and managed, such as Kubernetes [364] YAML
configurations, may be placed in the same directory for
convenience.

• A config directory containing the configuration files
required to build and develop the module, including
a complete list of versioned software dependencies
(say, requirements.txt for Python modules) and IDE
settings.

• A test directory for the unit tests and their reference
outputs.
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• A docs directory containing the module documentation,
either in source or final form. Interface documentation
can be stored alongside the code it refers to as discussed
in Section 8.2 as an alternative.

• A vendor directory to store third-party code and
software tools to build the module.

• A tools directory for the executable files built from src .
• An examples directory to store sample usage patterns
and other documents describing algorithms and domain
knowledge such as those discussed in Sections 8.4
and 8.5. Often in the form of Jupyter notebooks.

• A .secrets directory for credentials, certificates,
authentication tokens and other privileged information
that should be stored in encrypted form (for instance,
using git-crypt [28]).

• The configuration file of the build system that produces
the artefacts (stored in the build directory) and that
runs the tests (in test). For instance, a .Makefile .

• A README file with short description of the module.
• A LICENSE file containing the copyright statement and
the licence text if the module can be distributed as a
self-contained, standalone piece of software.

It is also interesting to consider how these directories and
files should be stored in a source version control system
(Section 6.5). On the one hand, we can follow Google’s
“monorepo” approach [269] and store all of them (the
code for the whole pipeline) in a single repository. This
choice provides unified versioning with a single source
of truth, simplifies dependency management, facilitates
code reuse and large-scale refactoring spanning multiple
modules, and increases code visibility by making it easier
to collaborate between different teams of developers.
Integration, system and acceptance tests (Section 9.4.4)
become more straightforward to implement and to run
as well. However, monorepos require more hardware
resources and high-quality tooling to navigate code, to
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modify it and to keep it organised because of the size of
the repository.

On the other hand, we can store eachmodule in a separate
repository. Cross-module code and configurations are
stored in separate “parent” repositories implementing
the orchestration and the deployment of the “child”
repositories for the modules using tools such as git-repo
[129] or meta git [395]. In other words, these “parent”
repositories clone, set up and manage the “child”
repositories (say, using docker-compose) to give the
illusion of working with a monorepo. Individual “child”
repositories will be smaller, requiring less hardware
resources, and working on individual modules will not
require any particular tooling. However, tracking the
dependencies between the modules and keeping the
dependencies on third-party software consistent across
the whole pipeline cannot be automated as easily as in
a monorepo: this is an important source of technical
debt (Section 5.2) that we should address manually
in the “parent” repositories. Navigating the codebase
of the whole pipeline requires additional tooling to
hide the boundaries between the repositories and to
give the appearance of a unified repository. Any task
spanning multiple modules is no longer atomic: moving
code between modules, splitting or merging modules, or
changing the interface of a module along with all the
places where that interface is used in other modules
can no longer be performed as a single commit in a
single repository. Similarly, we are now required to
create and maintain “parent” repositories to set up the
environment to run integration and system tests. As with
many other design choices, there is no optimal solution,
just choices with different trade-offs: which one is best
for a particular pipeline will depend on how large it is,
on how many modules it contains, and on how models
are trained and served.
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6.5 Effective Versioning

Storing code in a version control system (“versioning”
for short) has become a standard practice in software
engineering [86, 105], and it benefits machine learning
pipelines as much as traditional software. We can track
the evolution of code over time, navigating its history
and reverting it back to a functioning state if it breaks.
We can also track the data, the models and the pipeline
configurations together with the code as discussed in
Section 5.2.3. Multiple developers can work on the code
at the same time, merge their changes, resolve any
conflicts that may arise with the help of dedicated
tools and produce releases tagged with a semantic
versioning scheme [271]. Versioning also ensures that all
changes to the code are tracked (for code integrity and
developer accountability) and applied by appending them
to a read-only ledger of commits (to obtain immutable
releases and snapshots). Therefore, versioning provides
the “single source of truth” of our code that enables the
automated workflows of MLOps (Section 5.3), continuous
deployment (Chapter 7), software testing (Section 9.4)
and refactoring (Section 6.7).

How can we use versioning to the best effect when
working on a machine learning pipeline? Two practices
from modern software engineering are especially
relevant. Firstly, keeping the gap between development
and production code as small as possible (often called
“dev-prod parity” [406]) to use CI/CD development
workflows to best advantage (Section 5.3). Introducing
changes in small, self-contained sets of commits makes
them easy to review (Section 6.6), easy to test for
continuous integration (because only a fraction of all
tests will be relevant) and makes it possible to merge
them into the mainline branch very frequently (say,
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daily). As a result, changes to the code are immediately
visible to all developers allowing them to collaborate
effectively. Dividing code into modules stored in separate
directories and storing functions implementing different
functionality in separate files (Section 6.4) can drastically
reduce the likelihood of conflicts: any two developers
working on different features are unlikely to modify the
same files. However, it cannot completely prevent higher-
level problems such as correction cascades (Sections 5.2.2
and 9.1.2) that may arise as the behaviour of various
parts of the pipeline change. The best way to both reduce
conflicts and detect such problems early is to only use
short-lived branches that are immediately merged into
the mainline branch from which the production releases
are cut. Incomplete changes should be hidden behind
feature flags that prevent new code from running by
default and that can be toggled easily using environment
variables. In other words:

1. Place the existing code we would like to change
behind a feature flag that controls whether it is
run or not, switched on to keep the code running.

2. Introduce the new code behind the same flag,
configuring it to run when the flag is switched
off.

3. Test the machine learning software with existing
unit, integration and system tests with the flag
switched off, checking whether there are any
regressions and whether the new code is an
improvement over the existing code.

4. If the new code is suitable, remove the existing
code and the feature flag. There are tools that do
that automatically [376] when flags become stale.

This practice is known as “trunk-based development”
[138] (“trunk” being a traditional name for the mainline
branch, along with “master”). In the case of machine
learning software, we should extend this approach to data
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and models as well. Versioning both data and models
together with the code is crucial to reduce technical
debt (Section 5.1) by allowing experiment tracking and
reproducible model training. It also makes it possible to
construct property-based tests in non-trivial settings
by allowing us to match models, their inputs and their
outputs (Section 9.4.2). Troubleshooting issues with the
pipeline and reverting it to a known good release on
botched updates (Section 7.6) also becomes possible, for
the same reasons.

Secondly, it is important to write commit messages that
are informative and that follow established conventions: the
Linux Kernel [194] and Git [360] are great examples of
how to do this well. A commit message should provide
enough context to the changes it describes to understand
what changes were made, why they were made and why
(not how) they were made in that particular way [370].
Nontrivial code changes usually span multiple files, and
often there is no single place where it makes sense to
place a comment explaining their rationale. Duplicating
that comment in all the places we modified increases the
likelihood of stale comments (Section 8.1) because we
must remember to update all the copies of that comment
at once every time we revisit the code we changed. The
natural place to put such information is in the commit
message since the commit references all changed files
[252]. In any long-running codebase, commit messages
might be the only source of information left for future
developers to understand changes to the code after
the developers who originally made them have left. If
practising trunk-based development, we can squash
together the commits in our short-lived development
branches and only write meaningful commit messages
as we merge code into the mainline branch. Furthermore,
we should write a short title summarising the change
(say, 50–60 characters) followed by a more thorough
description. Navigating the history of the code will be
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much easier because we can now skim through the
commit titles and read the detailed commit messages
only for those commits that are relevant to us. If we
use modern code review practices (Section 6.6), we may
also be able to read the comments of the developers
who reviewed the commit: they are linked or included
in the commit message by all current version control
systems when the code is merged. Finally, we may
want to include structured information: sign-off lines
from the developers who performed code review, labels
that identify the commit as part of a series, ticket
numbers and their status. All this information can then
be processed by CI/CD tools to automate merging and
deploying the code in the commit. For reference, Tian et
al. [370] discuss in detail the characteristics of “good”
commit messages and of their contents for different types
of commits.

6.6 Code Review

Code quality is crucial for the effectiveness of a
machine learning pipeline: coding styles and standards
(Section 6.3), versioning (Section 6.5), refactoring
(Section 6.7), testing (Section 9.4), MLOps (Section 5.3)
and continuous deployment (Chapter 7) all aim to
minimise the number of defects. The increased risk of
technical debt (Section 5.2) because of the interplay of
data, models and code and because of their mutable
nature (Sections 9.1 and 9.2) makes code quality all the
more important.

However, the practices and the automated workflows
described in this book are not enough in themselves:
while they can significantly reduce the number of defects,
there are classes of issues that can only be spotted and
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addressed by the developers themselves. This is the
reason for code review [298]. Developers other than those
who wrote a particular piece of code should inspect it and
work together to ensure that:

• It implements the desired functionality.
• It is efficient and accompanied by software tests.
• It follows the spirit and the letter of coding styles,
coding standards and naming conventions.

• It is well organised and documented.

The benefits are many:

• We ensure that each developer writes code that other
developers can understand.

• Exchanging constructive criticism is a valuable way of
teaching junior and future developers.

• More people working on the machine learning pipeline
will have a practical understanding of its design,
making it more likely to find ways to improve it.

• We encourage a feeling of collective ownership of the
code.

Clearly, each module will have a primary “owner” who is
ultimately responsible for it and controls what changes
are merged into the mainline branch. That developer will
be the ideal reviewer for changes to that module because
he will be the person who knows its code and design
best. However, other people should feel comfortable
contributing to it, fixing it, and providing feedback on the
quality and design of the code. At the same time nobody
should be able to commit code without oversight, which
code review provides.

Reviewing code is usually performed in two complemen-
tary ways:

• Taking advantage of code review tools [306, 372]: the
developer proposing a code change prepares a commit
and submits it to some software tool that tests it and
then assigns it to one or more reviewers. The review
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itself is asynchronous and informal in nature, with
developer and reviewers exchanging comments and
refining code via the tool until they are satisfied with
the commit’s quality. The tool then merges the commit
into the mainline branch, linking the comments in the
commit message.

• Practising pair (mob) programming [267, 335] while
developing software: two (or more) developers write,
debug, or explore code together. One of the developers
(the “driver”) is responsible for the implementation,
focusing on writing high-quality and error-free code.
The other developer(s) (the “navigators”) focus on
the broader scope of the problem and on keeping
the process on track. The navigator(s) in practice act
as reviewers “live” as the code is written. At fairly
short intervals (say, 30 minutes), the current “driver”
commits the code it is working on and passes the role to
another developer, who will pull the code and become
the next “navigator”.

Both approaches encourage writing small incremental
changes and submitting them frequently, like in trunk-
based development (Section 6.5): it is difficult to find
experienced reviewers with a deep knowledge of larger
portions of a machine learning pipeline, and it is more
difficult for reviewers to find the time to review a large
piece of code. Ideally, the code to be reviewed should
address a single issue and do that completely, involving
just one or two reviewers. This makes it easier to identify
where errors were introduced if something goes wrong
and to roll back just the offending change.

In a tool-based code review setting, the developer writing
the code should first perform a personal code review
in order not to waste the reviewers’ time. Having code
automatically tested by linters, static code analysers and
our suite of software tests before sending it out for review
will also speed code review iterations up: the reviewer
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will be presented with their outputs to help examine the
commit. For the same reason, the developer should add
comments to the code (Section 8.1) and write a descriptive
commit message (Section 6.5) covering the reason for the
proposed change, its possible impact and any relevant
design decisions.

With pair and mob programming, repeatedly rotating
the “driver” and “navigator” roles effectively ensures
that the code is reviewed, and helps in engaging more
developers with the code. Domain experts can be involved
as well: even if they have only marginal familiarity
with programming, they can be guided by developers
when they are acting as the “driver”; and they can
contribute their knowledge to the developer writing
code when they are acting as the “navigator”. However,
this approach works smoothly only if development
environments can be set up quickly and if pulling and
pushing code is effortless: frequent and smooth role
transitions are crucial in keeping everybody engaged and
discussing with each other, which is the main point of
this approach. Particularly hard coding tasks benefit the
most from having more eyeballs looking at problems and
collaborating on both the low- and high-level design of
the code.

Both approaches to code review require effort and an
initial investment to establish as a standard practice
but they will pay themselves back by making developers
more productive. And, perhaps unlike other practices, the
overwhelming majority of programmers enjoy them [306,
411]! Tool-based review processes require the appropriate
tooling to be well-maintained and scalable. Pair and mob
programming require developers to coordinate and to
spend time together working on the same piece of code.
But that does not mean that the people involved will be
less productive.
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In the case of tool-based code review, one or at most
two developers are sufficient to review a commit, and if
the commit touches only one or two files, the reviewers
can easily provide feedback within a few hours or
a day at most [298, 306]. Developers will produce
increasingly better code over time, resulting in faster
reviews and fewer comments on each commit. Bugs and
architectural issues will be identified quickly, so they
will be easier and faster to fix [371]. As a result, we
will reduce the need for large-scale refactorings and
outright code rewrites, leaving more time to write better
code, tests and documentation. (By definition, this means
productivity will increase over time since we will make
progress faster instead of running in circles.) In addition,
senior developers will widen their understanding of
the architecture of the machine learning pipeline as
they review code for different modules. Furthermore,
reviewing patches does not have to be time-consuming
for the reviewer: at Google, developers review about 4
commits in 2.6 hours (median) per week, taking about
40 minutes per commit [306]; at Microsoft, developers
devote 20 minutes per day (1.6 hours per week) on
average to code review [161].

We can make similar considerations for pair and mob
programming: several studies over the last 30 years
[77, 321, 411], including some on machine learning
software and data science applications [307], have found
that they improve productivity and code quality. For them
to be most effective, we need tasks that are complex
enough to warrant the attention of more than one person
(trivial tasks have little margin for errors) and enough
experience to address them effectively in the pair (either
a senior and a junior developer, or two “intermediate”
developers) or in the mob [24, 267].
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6.7 Refactoring

Formally, refactoring is the process of changing a piece of
code in a way that does not alter its external behaviour
yet improves its internal structure and clarifies its intent
and assumptions [105]. Following Section 6.5, we do
that with a sequence of small incremental changes
which are individually validated by running our suite
of tests (Chapter 9.4) with continuous integration
tools. At the end of the process, we can squash all
the commits together and submit them for review
(Chapter 6.6) as we do for other code changes. We refactor
when adding a new feature, to alter the design of the
existing code and accommodate it. We refactor when
attacking bugs, both to fix them and to accommodate
the tests that exercise them (and ensure that they
stay fixed). We refactor to improve compliance with
naming conventions (Section 6.2), coding styles and
coding standards (Section 6.3). Refactoring can make us
confident that we start each commit from correct code,
making it easy to track any bugs we might introduce,
and that the code does not spend much time (if at all) in
a broken state.

Fowler [105] provides an extensive catalogue of refac-
toring approaches. Depending on the programming
language, some can be automated: for example, both
PyCharm [166] and Visual Studio Code [220] have a
“refactor” button for Python code. (This is another factor
we may want to consider when choosing a programming
language in addition to those we discussed in Section 6.1.)
Only a few of them are commonly used for machine
learning code, and there are refactoring approaches that
are specific to it: Tang et al. [339] constructed a taxonomy
of both from a large survey of machine learning software.
Machine learning code is only a small part of a typical
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pipeline, so mastering the refactoring approaches from
Fowler [105] is still valuable to address the code smells we
discussed in Section 6.3. Refactoring approaches that are
specific tomachine learning code, on the other hand, keep
in check the various types of technical debt we covered
in Section 5.2.4. Tang et al. [339] point out three in
particular: using inheritance to reduce duplicate config-
uration and model code; changing variable types and
data structures to allow for performance optimisations
(Sections 3.3 and 3.4); and hiding the raw model param-
eters and hyperparameters and exposing custom types
that have a domain meaning to achieve better separation
between training and inference on one side and general
metaheuristics and domain rules on the other.

There is, however, an additional point that makes the
code implementing machine learning models inherently
different from other code as far as refactoring is
concerned: we cannot slice and dice it in the process
of refactoring it as easily as we would other code.
Some models perform a single task (say, smoothing
or prediction) and compose well with other code, but
others are black-boxes that integrate multiple tasks (say,
feature extraction and prediction) in ways that make it
impossible to split them. Deep neural networks are a
prime example of this. And even if we can refactor a
model and the associated code into well-separated sub-
models, it is not a given that we can change them as
we would like. The probabilistic properties of each sub-
model are inherited from the model we started from:
we should make sure that the probabilistic properties of
any new sub-model we introduce are compatible with
those of the others. Failing to do so will produce outputs
that are biased in ways that are difficult to diagnose and
impossible to correct because they lack the mathematical
properties we usually take for granted. (The same is
true for swapping whole models in an existing pipeline.)
A possibly obvious example: we should match a model
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that uses a quadratic loss function, such as most linear
regressions, with feature selection and extraction that
work on variances and linear correlations and with model
selection strategies that evaluate models using the same
quadratic loss function on a validation set. If we extract
features in ways that do not necessarily preserve linear
dependencies, we may lose information that the model
could capture from the data. If we evaluate themodel with
a different loss function than that it was optimised for,
we may end up with a fragile model that will misbehave
easily on new data. In other words, refactoring a machine
learningmodel means refactoring both the code implementing
it and its mathematical formulation at the same time. We
want to preserve both the external behaviour of the code
and the probabilistic behaviour of the inputs and the
outputs of the model. Property-based testing can help
with the latter, as we will discuss in Section 9.4.2.

6.8 Reworking Academic Code: An Example

Consider the following piece of code used in teaching
machine learning to graduate students at a top-
10 university in the QS rankings [283]. It is fairly
representative of what we can find in many GitHub
repositories and in many answers in Stack Overflow,
which end up imported or cut-and-pasted in machine
learning codebases.

Rf<-function(x,mu1,mu2,S1i,S2i,p1=0.5) {
#mixture of normals, density up to constant factor
c1<-exp(-t(x-mu1)%*%S1i%*%(x-mu1))
c2<-exp(-t(x-mu2)%*%S2i%*%(x-mu2))
return(p1*c1+(1-p1)*c2)

}
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a=3
n=2000
mu1=c(1,1)
mu2=c(4,4)
S=diag(2)
S1i=S2i=solve(S)
X=matrix(NA,2,n)
X[,1]=x=mu1
for (t in 1:(n-1)) {
y<-x+(2*runif(2)-1)*a
MHR<-f(y,mu1,mu2,S1i,S2i)/f(x,mu1,mu2,S1i,S2i)
if (runif(1)<MHR)
x<-y
X[,t+1]<-x
}

Guessing what this code is supposed to implement is
harder than it should be, because functions and variables
have nondescript names that mirror some mathematical
notation. This does not help in itself since there is no
comment in the code giving a literature reference we
could use to look up what the notation is. The only hints
we have are a comment mentioning mixtures of normals
and a variable named MHR .
Attending the lecture this code was presented in would
tell us that this code implements the Metropolis-Hasting
algorithm for sampling from a mixture of normals.
Knowing this, we can givemore descriptive names to both
functions and variables: naming some of the variables
after their de facto standard notation [say, from 204] is
an acceptable trade-off between conciseness and clarity.
We can now guess that MHR is the Metropolis-Hastings
ratio used to accept or reject a new random sample from
the mixture. At the same time, we can add spacing and
indentation to make the code easier to read.
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R

dmix2norm = function(x, mu, Sigma, pi, log = FALSE) {

Omega1 = MASS::ginv(Sigma[1:2, 1:2])
Omega2 = MASS::ginv(Sigma[3:4, 3:4])

elem1 = exp(-t(x - mu[1]) %*% Omega1 %*% (x - mu[1]))
elem2 = exp(-t(x - mu[2]) %*% Omega2 %*% (x - mu[2]))

return(pi[1] * elem1 + pi[2] * elem2)

}#DMIX2NORM

metropolis.hastings = function(mu, Sigma, pi, iter) {

X = matrix(NA, 2, iter)
X[, 1] = old = mu[1:2]
for (t in seq(iter - 1)) {

new = old + (2 * runif(2) - 1) * a
acceptance.probability =

dmix2norm(new, mu = mu, Sigma = Sigma, pi = pi) /
dmix2norm(old, mu = mu, Sigma = Sigma, pi = pi)

if (runif(1) < acceptance.probability)
old = new

else
old = old

X[, t + 1] = old

}#FOR

return(X)

}#METROPOLIS.HASTINGS
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mu = c(c(1, 1), c(4, 4))
Sigma = diag(rep(1, 4))
pi = c(0.5, 0.5)
metropolis.hastings(mu = mu, Sigma = Sigma, pi = pi, iter = 2000)

We complete this first refactoring step by creating a
temporary (local) commit and testing it. While better
organised and easier to read, this code falls short of
what it purports to do in two ways: the number of
components in the mixture is hard-coded to two, and
the densities themselves are hard-coded to be normals.
Now that we have organised the code into functions,
we can move on to the next refactoring step: adding
two arguments to metropolis.hastings() to allow the
user to control the definition of the mixture. We can call
them density , for the density function to be called for
each component of the mixture, and density.args , a list
of additional arguments to that function. To keep the
existing behaviour of the code, we update dmix2norm()
to work with more than two components while making
sure that its return value remains unchanged when the
mixture has only two components. Furthermore, we do
the same for the proposal function that generates the new
random sample, adding two further arguments proposal
and proposal.args to metropolis.hastings() .
These changes make the code more flexible and more
readable. The functional programming approach we
have adopted allows us to rewrite metropolis.hastings()
in such a way that it almost looks like pseudocode
(Section 4.1). As a result, there is less of a need for
comments on what the code is doing, apart from a
reference to some textbook in which we can find the
pseudocode for Metropolis-Hastings and an in-depth
explanation of how and why it works. Comments on
why the code is structured the way it is may of course
still be useful, since they will contain information that
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is specific to this particular implementation and that
cannot be found anywhere else.

Rdmix2norm = function(x, mu, Sigma, pi, log = FALSE) {

nmix = length(mu)
mixture.component.density = function(x, mu, Sigma)

exp(-t(x - mu[1]) %*% MASS::ginv(Sigma) %*% (x - mu[1]))

comp = sapply(seq(nmix), function(i)
mixture.component.density(x, mu[[i]], Sigma[[i]]))

return(sum(pi * comp))

}#DMIX2NORM

proposal.update = function(dim = 2, a) {

return((2 * runif(dim) - 1) * a)

}#PROPOSAL.UPDATE

metropolis.hastings = function(density, density.args, proposal,
proposal.args, pi, start, iter) {

X = matrix(NA, length(start), iter)
X[, 1] = old = start
for (t in seq(iter - 1)) {

new = old +
do.call(proposal, c(list(dim = nrow(X)), proposal.args))

update.threshold =
do.call(density, c(list(x = new, pi = pi), density.args)) /
do.call(density, c(list(x = old, pi = pi), density.args))

if (runif(1) < update.threshold)
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old = new
else

old = old

X[, t + 1] = old

}#FOR

return(X)

}#METROPOLIS.HASTINGS

mu = list(c(1, 1), c(4, 4))
Sigma = list(diag(2), diag(2))
metropolis.hastings(density = dmix2norm,

density.args = list(mu = mu, Sigma = Sigma),
proposal = proposal.update, proposal.args = list(a = 3),
pi = c(0.5, 0.5), start = c(2, 2), iter = 2000)

We create one more temporary commit and test whether
the code is still working. Finally, we want to make the
code more reusable. In order to do that, we store the
instance of the Metropolis-Hastings simulation we run
in metropolis.hastings() into a data structure that
contains both the random samples that we generated
and the functions that we passed via the density
and proposal arguments to generate them, along
with the respective argument sets density.args and
proposal.args . For convenience, we assign the class
name "metropolis-hastings" to this data structure to
be able to write methods for it later.

Rmetropolis.hastings = function(density, density.args, proposal,
proposal.args, pi, start, iter) {

[...]
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return(structure(list(values = X, call = match.call(),
density = density, density.args = density.args,
proposal = proposal, proposal.args = proposal.args,
start = start), class = "metropolis.hastings"))

}#METROPOLIS.HASTINGS

If we are satisfied with how the code now looks (or we
have other stuff to do), we can create one last temporary
commit and squash it together with the previous two. A
suitable commit message for the new commit could be:

Refactoring Metropolis-Hastings mixture of Gaussians.

* Clarify function and variable names, following Bayesian Essentials
with R (Marin and Robert, 2014).

* Switch to a functional implementation that takes arbitrary density
functions as arguments, each with separate optional arguments.

* Store the simulation in an S3 object, to allow for methods.

Before submitting this commit for code review, we should
write some unit tests to exercise the new functional
interface of metropolis.hastings() . We will discuss this
topic at length in Chapter 9: for the moment, let’s say we
want to ensure that metropolis.hastings() only accepts
valid values for all its arguments. For this purpose, we
add code to sanitise them and to produce informative
error messages along the lines of

Rif (missing(density))
stop("missing a 'density' a function, with no default.")

if (!is.function(density))
stop("the 'density' argument must be a density function.")

and then we add tests to check that valid values are
accepted and invalid values are rejected.

Rerror = try(metropolis.hastings(density = dmix2norm, [...])
stopifnot(!is(error, "try-error"))
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error = try(metropolis.hastings(density = "not.a.function", [...])
stopifnot(is(error, "try-error"))

We should do the same for the function passed via the
proposal argument. Furthermore, we should call both
functions with the respective lists of optional arguments
density.args and proposal.args to make sure that they
execute successfully: individual argument values may
look fine in isolation, but make metropolis.hastings()
fail when passed together. As an example, the code to
sanitise proposal.args may look like

Rif (missing(proposal.args))
proposal.args = list()

if (!is.list(proposal.args))
stop("the 'proposal.args' argument must be a list.")

where we set proposal.args to an empty list as a fallback,
default choice if the user does not provide it. The code to
sanitise both proposal and proposal.args can then check
that the proposal function runs and that its output has
the right type and dimension.

Rtry.proposal = try(do.call(proposal, proposal.args))
if (is(try.proposal, "try-error"))

stop("the 'proposal' function fails to run with ",
"the arguments in 'proposal.args'.")

if (!is.numeric(try.proposal) ||
(length(try.proposal) != length(start)))

stop("the 'proposal' function returns invalid samples.")

The tests that exercise this code should call
metropolis.hastings() with and without valid proposal
functions, and with proposal functions with valid and
invalid sets of optional arguments.

As another example, we should check the number of
iterations in the iter argument, picking again a sensible
default value.
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Rif (missing(iter))
iter = 10

if (!is.numeric(iter) || ((x %/% 1) == x))
stop("the 'iter' argument must be a non-negative integer.")

The corresponding software tests can then try boundary
values (0), valid values (10), invalid values (Inf) and
special values (NaN) to confirm that the sanitisation code
is working as expected.

Rerror = try(metropolis.hastings([...], iter = 0)
stopifnot(!is(error, "try-error"))
error = try(metropolis.hastings([...], iter = 10)
stopifnot(!is(error, "try-error"))
error = try(metropolis.hastings([...], iter = Inf)
stopifnot(is(error, "try-error"))
error = try(metropolis.hastings([...], iter = NaN)
stopifnot(is(error, "try-error"))

The sanitisation code should be included in one commit,
and the tests in another: they will be in different files
and have different purposes, so it would be inappropriate
to commit them together. After doing that, our new
implementation of Metropolis-Hastings is ready to be
submitted for code review.
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Packaging and Deploying Pipelines

Packaging machine learning models into artefacts is an
important step in making pipelines reproducible. It also
makes models easier to deploy, that is, to bring them into
production (or another target) systems and to put them to
use. Choosing the right combination of packaging formats
and deployment strategies ensures that we can build on
CI/CD solutions [86] to do that efficiently and effectively.
Our ultimate goal is to ship a pipeline with confidence
because we have designed (Chapter 5), implemented
(Chapter 6), documented (Chapter 8) and tested it well
(Chapter 9).

Models are part of a machine learning pipeline as
much as code is, and are packaged (Section 7.1) and
deployed (Sections 7.2 and 7.3) in similar ways to
traditional software. However, their behaviour is less
predictable (Sections 5.2 and 9.2): we should monitor
them when they are deployed and when they are
running in production (Section 7.4). We should also have
contingency plans for when they fail (Section 7.5) so
that we can restore the pipeline to a functional state
(Section 7.6).

7.1 Model Packaging

Models can be stored into different types of artefacts, as
we briefly discussed in Section 5.3.4. There are several
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ways in which model artefacts can be integrated into a
pipeline, with varying degrees of abstraction from the
underlying machine learning systems.

7.1.1 Standalone Packaging

The most minimalist form of packaging is simply the
artefact produced by the machine learning framework
that we used to train the model: for instance, a
SavedModel file from TensorFlow [341] or an ONNX
[247] file. Such files are easy to make available to
third parties and convenient to embed in a library or
in a (desktop or mobile) application with frameworks
like Apple Core ML [21]. They can also be shipped as
standalone packages via a generic artefact registry such
as those offered by GitHub [113], GitLab [115] or Nexus
[328]. Tracking the version of the trained model, its
parameters, its configurations and its dependencies is
delegated to the configuration management platform
supporting the pipeline (Section 5.3.5).

7.1.2 Programming Language Package Managers

Python has become the most popular programming
language in machine learning applications because of
the availability of mature and versatile frameworks such
as TensorFlow [341] and PyTorch [259] (Section 6.1). As
a result, it is increasingly common to ship models as
Python packages to simplify the deployment process,
and to make the model depend on a specific version of
the Python interpreter and of those frameworks. Doing
so throughout the pipeline helps avoid the technical debt
arising from polyglot programming (Section 5.2.4). In
practice, this involves distributing packages, modules
and resource files following the Python standard (known
as “Distribution Package”), using tools like Setuptools
[278] and Pip [280] to install them, and possibly
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uploading them to the central Python Package Index to
make them easily accessible.

7.1.3 Virtual Machines

All modern CPUs (Section 2.1.1) implement instruction
sets to support hardware virtualisation: for instance,
Intel CPUs have Virtualisation Technology (VT-x) and
AMD CPUs have AMD-V. This has made virtual machines
(VMs, also known as “guest operating systems”) a
convenient choice on local hardware and resulted in
the wide availability of cloud instances. VMs run on
top of a hypervisor, a specialised software allowing
multiple guest systems to share a single compute system
(the host hardware). A VM is like a normal compute
system: the main difference is that its CPU, memory,
storage and network interfaces are shared with the
underlying hardware through the hypervisor which
allocates them to the guests as needed. vSphere [389],
KVM [249] and HyperV [219] are some examples of type-1
hypervisors (Figure 7.1, left panel): they run directly
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on the host hardware, either as standalone pieces of
software or integrated in the host operating system.
Type-2 hypervisors (Figure 7.1, right panel) like Virtual
box [251] and VMware Workstation [390], on the other
hand, run on top of the host operating system. Both types
are limited to executing applications compiled for the
same type of CPU they are running on.

Thanks to hardware virtualisation, VMs can run on the
host CPU and can access the host’s hardware resources
with limited overhead via PCIe pass-through (GPUs are
a typical example, see Section 2.1.1). Overhead can be
further reduced by moving from (complete) virtualisation
to paravirtualisation, which trades off complete isolation
of the guests for better throughput and latency. The guest
operating system is now aware of running in a virtualised
environment, and it can use a special set system of calls
(hypercalls) and I/O drivers (especially for storage and
networking) to communicate directly with the hypervisor.

VMs are the second type of artefact we mentioned in
Section 5.3.4. We can either create them from scratch,
installing and configuring the operating system and all
the libraries we need, or we can start from pre-baked
images that come configured withmost of the software we
need. For the former, we have tools like Hashicorp Packer
[143] or Vagrant [146], which can install the operating
system, and configuration management software like
Ansible [18], which can install the models as well as
the software stack they depend on. As for the latter,
a vast selection of pre-baked images is available from
cloud providers: an example is the catalogue of Amazon
Machine Images (AMIs) [13]. VM configurations and
images are typically stored in a standardised open format
such as the Open Virtualisation Format (OVF) [81]. Finally,
VMs can be managed automatically by the orchestrator
of the machine learning pipeline through the hypervisor
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and the associated software tools, which can create, clone,
snapshot, start and stop individual VMs.

VMs offer three main advantages:

• They are flexible to operate: we can run multiple
instances of different operating systems and of different
software stacks on the same host, consolidating their
configurations using pre-baked images and managing
them centrally as individual entities.

• They can also be easily scaled to deal with peak loads,
both by starting new ones (horizontal scalability) or by
increasing the hardware resources they have access to
(vertical scalability, Section 2.4).

• They can be moved to another host (portability) and are
easy to snapshot, facilitating disaster recovery in the
case of hardware failure.

However, VMs have one important disadvantage: they
contain an entire operating system and therefore require
large amounts of hot storage. As a result, the deployment
time of a VM can range from tens of seconds (in the best
case) to minutes (in the average case) [139], depending
on the cloud provider or the on-premises hypervisor
configuration.

7.1.4 Containers

In contrast, containers are more lightweight [93] because
they only virtualise the libraries and the applications
running on top of the operating system, not an entire
machine learning system (Figure 7.2). Instead of a
hypervisor, they are managed by a container runtime
(sometimes called a “container engine”) like Docker [82]
which controls the access to the hardware and to the
operating system of the host.

Container runtimes are typically built on top of a set of
Linux kernel capabilities [297]:

• Namespaces: an isolation layer that allows each process
to see and access only those processes, directories and
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system resources of the host that are bound to the same
namespace it is running in.

• Cgroups (control groups): a resource management layer
that sets and limits CPU, memory and network
bandwidth for a collection of processes.

• Seccomp (secure computing): a security layer that limits
a container to a restricted subset of system calls (the
kernel’s APIs).

As was the case with VMs, containers can package
machine learning applications with all the associated
libraries, dependencies and tools in a single self-
contained artefact: a container image which is immutable,
stateless and ephemeral by design.1 In the case of Docker,
we commonly refer to it as a Docker image. Container

1Containers are ephemeral in the sense that they should be built
with the expectation that they may go down at any time. Therefore,
they should be easy to (re)create and to destroy, and they should be
stateless: any valuable information they contain will be irrevocably
lost when they are destroyed. These characteristics make them a key
tool in “The Twelve-Factor App” [406] and other modern software
engineering practices.
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images are created from declarative configuration files,
also known as Dockerfiles , that define all the necessary
commands. Each command produces an immutable layer
reflecting the changes that the command itself introduces
into the image, allowing for incremental changes and
minimising disk space usage. The starting point of this
process are base images that provide a stripped-down
environment (not a complete operating system, as was
the case for pre-baked VM images) to which we can add
our models and the libraries, tools and applications that
complement them.

Below is an example of a Dockerfile that creates an image
for a FastAPI RESTful application (a framework to create
web services and APIs). For reproducibility, both the
Dockerfile and the requirements.txt file it references
should be stored under version control in a configuration
management platform (Section 6.4).

DockerFROM python:3.10.6-bullseye

WORKDIR /app

COPY requirements.txt .
RUN pip3 install --no-cache-dir -r requirements.txt

COPY . .

CMD [ "uvicorn", "main:app", "--host=0.0.0.0"]

Firstly, the Dockerfile explicitly identifies the system
dependencies of the image it generates. The first line,
“FROM python:3.10.5-bullseye” identifies a base image
with the stable release of Debian GNU/Linux, codenamed
“Bullseye”, and version 3.10.5 of the Python interpreter.
Secondly, it identifies the Python packages we depend
on. The third and fourth lines, “COPY requirements.txt
.” and “RUN pip3 install -r requirements.txt”, copy
the file requirements.txt which lists the Python
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dependencies into the image and uses the Python package
manager (pip) to install them. It is important that
all dependencies are listed and pinned to the exact
versions we have tested, to avoid accruing technical
debt (Sections 5.2.4 and 6.3). If we upgrade one or
more dependencies, the corresponding container layer
is invalidated. Docker caches layers as they are created:
those that have not been affected by our changes will be
taken from that cache instead of being re-created from
scratch. The second line (“WORKDIR /app”) changes the
working directory to that containing the application files,
the fifth line (“COPY . .”) copies them into the container
image, and the last line defines the command that is run
when the container is started.

After a successful build, we can store containers into a
container registry such as Docker registry [83] or Harbour
[140]. Container registries are server applications that
provide a standardised API for uploading (push),
versioning (tag) and downloading (pull) container images.
The registry structure is organised into repositories (like
Git [360]) where each repository holds all the versions
of a specific container image. The container’s runtime,
registry and image specifications are based on the Open
Container Initiative (OCI) [248], an open standard by
the Linux Foundation, and are therefore highly portable
across platforms and vendors.

Like any other software artefact, container images
may have security vulnerabilities [39] inherited from
vulnerable libraries in an outdated base image, rogue
images in an untrusted container registry or a vulnerable
Dockerfile . To identify these vulnerabilities, we should
enforce compliance and security checks to validate both
the Dockerfiles , with tools such as Hadolint [361], and
the resulting images, with static analysis and image
scanner tools such as Trivy [22]. Cloud providers such as
Amazon AWS [316] and Google Cloud [126] have public
container registries with secure and tested base images
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ranging from vanilla operating system installations
to pre-configured machine learning stacks built on
TensorFlow [341] and PyTorch [259].

Container runtimes integrate with orchestrators to allow
for a seamless use of container images. The orchestrator
is responsible for managing a fleet of containers in terms
of deployment, scaling, networking and security policies.
The containers are responsible for providing different
pieces of functionality as modular and decoupled services
that communicate over the network, that can be deployed
independently and that are highly observable. This is,
in essence, the microservices architecture [239]. In
addition, container runtimes integrate with CI to enable
reproducible software testing: base container images
provide a clean environment that ensures that test results
are not tainted by external factors (Section 9.4 and 10.3).

Kubernetes [364] is the de facto standard among
orchestrators.2 Orchestrators specialising in machine
learning pipelines integrate Kubernetes with experiment
tracking and model serving to provide complete MLOps
solutions: two examples are Kubeflow [363], which is
more integrated, and MLflow [420], which is more
programmatic. Container runtimes enhance them by
implementing a GPU pass-through from the physical
host to the container (with the “--gpus” flag, in the
case of Docker). Kubernetes can use this functionality to
apply the appropriate label selector [365] to each container
and to schedule training and inference workloads on
machine learning systems with the appropriate hardware
(Section 2.1.1).

2A group of one or more containers that encapsulates an
application is called a “pod” in the Kubernetes documentation.
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7.2 Model Deployment: Strategies

A deployment strategy or deployment pattern is a technique
to replace or upgrade an artefact or a service in a
production environment while minimising downtime
and impact on users. Here we will focus on how we
can deploy machine learning models (Section 5.3.5)
without impacting their consumers, that is, the final
users and the modules in the pipeline that depend on
the models’ outputs. Clearly, there are similarities to
how traditional software is deployed: we want automated
and reproducible releases via CI/CD, in most cases using
containers as artefacts (Section 7.1.4). Furthermore, parts
of a machine learning pipeline are in fact traditional
software and are deployed as such.

Model deployment can take advantage of modern
software deployment strategies from progressive delivery.
A pipeline will usually contain multiple instances of
each model (say, version A) to be able to process
multiple inference requests and data preparation queues
in parallel. Therefore, we can initially replace a small
subset of these instances with a new model (say,
version B). If no issues emerge, we then gradually
replace the remaining instances: the new model has
effectively passed acceptance testing (Section 9.4.4). If
any issues do arise, our logging and monitoring facilities
(Section 5.3.6) will have recorded the information we
need to troubleshoot them. We can also deploy multiple
models at the same time to compare their performance
in terms of accuracy, throughput and latency. As a
result, progressive delivery speeds up model deployment
(by reducing the amount of pre-deployment testing),
decreases deployment risk (because most consumers
will not be impacted by any issues that may emerge
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in the initial deployment) and makes rollbacks easier
(Section 7.6).

We can implement progressive delivery with a number
of related deployment strategies [373]:

• The blue-green deployment pattern [153] assumes that
we are using a router (typically a load balancer) to
spread requests over a pool of instances that serve the
version A of a machine learning model (Figure 7.3, left).
When we deploy a new version B of the model, we create
a second pool of instances that serves it and send a
subset of the new incoming requests to this new pool.
If no issues arise, the router will then gradually send
more and more requests to the pool that serves model B
instead of that serving model A . Existing requests being
processed by model A are allowed to complete to avoid
disruptions. The pool serving model A will eventually
not be assigned any more requests and may then be
decommissioned. If any issues arise, rollback is simple:
we can send all requests to the pool serving model A
again. Keeping the two pools in separate environments
or even separate machine learning systems will further
reduce deployment risk.

• We already mentioned the canary deployment pattern
[153] in Section 5.3.4: the main difference with the
blue-green pattern is that we deploy instances with
model B in the same pool that is already serving model
A (Figure 7.3, top tight). The router will redirect a
small number of requests to the instances with model
B , taking care of session affinity.3 Other requests
act as our control group: we can inspect and compare
the performance of the two models without any bias
because they run in the same environment. Again, if no

3Each consumer or user is always served the same version of
the model. This happens implicitly in the blue-green deployment
pattern because each consumer or user is assigned to a pool, and all
instances within each pool serve the same model.
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issues arise we can gradually retire the instances with
model A . Canary deployments are typically slower than
other deployment patterns because collecting enough
data on the performance of model B with a small number
of instances requires time. However, they provide an
easy way to test new models in production with real
data and in the same environment as existing models.

• In a shadow deployment [218], a new model B is
deployed in parallel to model A and each request is
sent to both models (Figure 7.3, bottom right). We can
compare their accuracy using the outputs they produce
from the same input, as well as their latency and any
other metric we collect through logging and monitoring.
In fact, we can deploy several models in parallel to
test different approaches and keep only the model that
performs best. Shadow deployment therefore requires
us to set up a different API endpoint for each model we
are testing, and to allocate enough hardware resources
to handle the increased inference workload. However,
it allows for testing new models without disturbing
operations.

• In the rolling or ramped deployment pattern, we simply
replace the instances with model A in batches on a pre-
determined schedule until all the running instances are
serving model B . Rolling deployments are easy both to
schedule and to roll back.

• Another deployment pattern we mentioned elsewhere
(Sections 5.3.4 and 9.4.3) is A/B testing [7, 425]: the
router randomly splits the requests 50%-50% across
two models A and B , we evaluate the relevant metrics
for each model, and we promote model B if and only if
it outperforms model A . The key difference from canary
deployments is that in the latter only a small proportion
of the requests is sent to instances with model B to
reduce deployment risk: the split is 90%-10% or at
most 80%-20% (Figure 7.3, top right).

• Destroy and re-create is the most basic deployment
strategy: we stop all the instances with model A and
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we create from scratch a new set of instances with
model B to deploy in their place. As a result, the
pipeline will be unavailable and consumers that are
performing multiple requests in a sequence may receive
inconsistent outputs.

We can integrate these deployment patterns by adding
feature flags (Section 6.5) to our models: then models A
and B can share large portions of code. In this way, we
can easily create new models just by switching different
combinations of flags, without building and deploying
new artefacts at all. However, both models will be served
at the same time during the progressive delivery process:
all consumers should support both their APIs or model B
should be fully backward compatible with model A .

7.3 Model Deployment: Infrastructure

In a machine learning pipeline, model deployment is the
part of the pipeline orchestration that enables models
to be deployed and served in the development, testing
and production environments (Section 5.3.5). Ideally,
it should be completely automated via CI/CD to avoid
catastrophic failures like that at Knight Capital [317]
which we touched on in Section 5.2.3.

The nature of the continuous deployment part of CI/CD
can vary depending on the type of artefact (Section 7.1)
and on the type of compute systems (Section 2.4) we are
deploying to. Our artefacts may be container images that
wrap and serve our models through APIs: we can deploy
them locally by manually invoking Docker, or remotely by
instructing Kubernetes to call an automated script stored
in the pipeline’s CI/CD configuration. In both cases,
the image is fetched from the registry at deployment
time if it is not available locally. Our artefacts may
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also be VMs: continuous deployment can then leverage
configuration management tools like Ansible [18] to
deploy and upgrade them. In both these cases, the CI/CD
pipeline standardises the deployment process, hiding
the differences between local and cloud environments
(Section 2.3) and shifting complexity from glue code to
declarative configuration files (Sections 5.2.3). This has
standardised the deployment process to the point where
it is largely the same to target orchestrator platforms like
Kubernetes [364] and commercial providers like Amazon
AWS ECS.

We may also run machine learning pipelines on top of
an integrated MLOps platform: model deployment then
depends entirely on the platform’s opinionated work-
flows. For example, an MLOps platform like Databricks
[76] integrates many open-source components through
MLflow [420] and wraps them with APIs that support
multiple deployment targets. These APIs present a stan-
dardised interface similar to that of Docker and Kuber-
netes regardless of what target we choose. Machine
learning platforms from cloud vendors (“Machine
Learning as a Service”) like Azure ML [214] or Amazon
AWS SageMaker [11] provide a much higher level of
abstraction. On the one hand, they give us little control
over how the pipeline is implemented and how models
are deployed. On the other hand, they are accessible for
teams that do not have the skills or the budget to manage
their own CI/CD, monitoring and logging infrastructure.
They also provide an experiment tracking web interface
(with an API to use it programmatically) to test new
models and to visualise them along with their parame-
ters and performance metrics.

7.4 Model Deployment: Monitoring and Logging

We should track automated model deployments through
all their stages with our logging and monitoring
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infrastructure to achieve the observability we need to
diagnose any issue we may run into (Section 5.3.6). All
continuous deployment platforms allow that: MLflow
[420] has MLflow tracking, Airflow [348] can use Fluentd
[359] and general-purpose CI/CD solutions like GitLab
have built-in mechanisms for issuing metrics and log
events as well as support for Prometheus [275]. It is
essential to log every entry and exit point of everymodule,
as well as any retries and the successful conclusion of
all tasks in the pipeline: we should be able to construct
descriptive activity reports that include comprehensive
stack traces. Machine learning pipelines have many
moving parts and can fail in many different places and in
ways that are difficult to diagnose even with that much
information (Sections 9.1, 9.2 and 9.3). Furthermore,
logging should automatically trigger external notification
systems like PagerDuty [255] to become aware of any
issues during deployment as early as possible.

After a model is deployed, we should check that it is
being served, that it is ready to accept inference requests
(readiness) and that it produces correct results (liveness).
The software that we use to serve the model may expose a
health-check API (like the readiness and liveness probes
in Kubernetes [364]) which the orchestrator can use
to only route inference requests to models that can to
process them. The monitoring client inside the model
itself can serve the same purpose by exposing metrics
to check that performance has not degraded over time.
As we discussed in Section 5.3.6, we should locate the
logging and monitoring servers on dedicated systems
to make sure that they are not affected by any of the
issues caused by or affecting the models and that they
can be used to perform a root cause analysis of what went
wrong.
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7.5 What Can Possibly Go Wrong?

Many kinds of issues can arise when we deploy a
new model, for different reasons: lack of control or
observability for either the deployment process or its
targets (Section 2.4); manually executing pre- or post-
deployment operations (Section 5.2.3); or a critical defect
in a model or in a module slipping through our software
test suite (Section 9.4). We canminimise deployment risk
by taking advantage of CI/CD (Chapter 5) and following
modern development practices (Chapter 6), but some
problems cannot be fully resolved or even detected
automatically.

Hardware resources may be unavailable. The environment
we are deploying to may be running on machine learning
systems that have inadequate resources (say, not enough
storage space or memory), hardware faults or network
connectivity issues (say, the systems themselves are
unreachable, or they cannot access remote third-party
resources needed by the model).4 These problems can
occur both in local (on-premises) and remote (cloud)
environments; in the latter, scheduling a new deployment
will typically solve them since the underlying hardware
will change (Section 2.3).

Hardware resources may not be accessible. The machine
learning systems may be fine, but there are access
restrictions in place that prevent us from using them.
Firewalls may be preventing us from connecting to them
across networks; file permissions may be preventing us
from reading data and configurations from their storage.
This is a common issue with cloud instances andmanaged

4Connectivity issues between compute systems, clusters or data
centers due to the failure of network devices or network connections
are also called “network splits” or “network partitioning” [5].
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services because their identity and access management
(IAM) policies are difficult to write and to understand. In
fact, it is often only possible to test the configurations
controlling authentication and authorisation to those
services interactively which makes it easy to break them
accidentally. As a result, there have been many instances
of machine learning engineers removing too many access
restrictions and leaving S3 buckets full of personal data
publicly accessible on AWS (Twilio [368] and Switch [394]
are two notable examples from recent years). This is also
clearly undesirable, but it can be prevented by writing
IAM policies according to the principle of least privilege,
by tracking them with configuration management tools
(Section 11.1) and by including them in code reviews
(Section 6.6) before applying them.

People do not talk to each other. Model deployment is when
we actually put to use the models we trained and the
code that supports them. Therefore, it is also when
defects arising from the lack of communication between
domain experts, machine learning experts, software
engineers and users may come to light. Scoping and
designing the pipeline (Section 5.3), validating machine
learning models (Section 5.3.4) and inference outputs
(Section 5.3.6), designing and naming modules and their
arguments (Section 6.2), code reviews (Section 6.6) and
writing various forms of documentation (Chapter 8)
should all be collaborative efforts involving all the people
working and using the pipeline. When this collaboration
is not effective, different people will be responsible for
different parts of the pipeline and the resulting lack
of coordination may cause issues at the boundaries of
the different areas of responsibility. Machine learning
engineers may develop models without consulting the
domain experts (“Are themodelsmeaningful? Do we have
the right data to train them?”) or the software engineers
(“Can the models run on the available systems and
produce inference with low enough latency?”). Domain
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experts may fail to get across their expert knowledge to
machine learning engineers (“This model class cannot
express some relevant domain facts!”) or to software
engineers (“This variable should be coded in a specific
way to make sense!”). Software engineers may take
liberties in implementing machine learning models that
change their statistical properties without the machine
learning engineers noticing (“Maybe I can use this other
library… or it may be faster to reimplement it myself!”)
or structure the code in ways that make it difficult for a
domain expert to understand (“What does this theta_hat
argument mean again?”). The segregation of roles is an
organisational anti-pattern that should be avoided at all
costs in favour of the shared responsibility and constant
sharing of skills and knowledge originally advocated by
DevOps [153].

Missing dependencies. The deployment of a module may
fail because one or more of its dependencies (inside or
outside the pipeline) is missing or is not functional. For
instance, if module A requires the outputs of module B as
inputs, we should ensure that module B is present and in
a working state before deploying module A . In practice,
this requires a coordinated deployment of the two modules,
which is an anti-pattern when we strive for modules to
be decoupled from each other. We can, of course, also
implement appropriate retry policies in module A to make
it resilient to module B being temporarily offline. On
Kubernetes [364], we can use liveness and readiness
probes (Section 7.4) together with “init containers”
(specialised containers that run before app containers in
a pod) for this purpose.

Incomplete or incorrect configuration management. Configu-
ration management tools (Section 10.1 and 11.1) promote
and automate the reuse of templates, environment vari-
ables and configuration files. However, this means that
we should be careful to store those that correspond to
different environments separately, and to keep them
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clean and complete at all times. In a complex pipeline
with many modules and environments, it is easy to
mistakenly use the configuration of a different environ-
ment than what we intended. In the best case, what
we are trying to do will fail and an exception will be
logged. In the worst case, we will apparently succeed in
what we are trying to do but the results will be silently
wrong because we are accessing different resources than
we think we are. For instance, we may inadvertently
cause an information leakage by accessing training data
instead of validation data. Similar misconfiguration issues
may involve any part of the pipeline (training, software
testing, inference, etc.) and any of the entities tracked by
configuration management (database references, secrets,
model parameters, features, etc.).

7.6 Rolling Back

When a model that is deployed in production fails to
meet the required performance and quality standards
(Section 8.3), we have two choices: either we replace it
with a previous model that is still fit for use (rolling back)
or with a new model that we train specifically to address
the reason why the current model is failing (rolling
forward). In the following, we will focus on rollbacks,
but our discussion will be as relevant for rolling a model
forward.

Model rollbacks are only possible if the model APIs
are backward compatible between releases. Then every
version of our model can be restored to any previous
version at any given moment in time without disrupting
the rest of the pipeline because we can guarantee that
the model delivers the same functionality, with the same
protocol specifications and the same signature. Achieving
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backward compatibility requires a significant amount of
planning and effort in terms of software engineering.
In addition to wrapping models in a container that
abstracts and standardises their interface, encapsulating
their peculiarities and their implementation, we also
need an experiment management platform that versions
the pipeline modules, the models and the respective
configurations. At a minimum, such a setup involves
a model registry (Section 5.3.4) and a version control
system for the code (Section 6.5).

Sometimes maintaining backward compatibility is simply
not possible: if we replace a model with another from a
completely different model class, or if the task the model
was trained for has changed, the APIs should change to
reflect the new model capabilities and purpose. We can
transition between the two different sets of APIs by versioning
them. For example, the old set of APIs may be available
from the URL path https://api.mlmodel.local/v1/
while the new ones may be made available from
https://api.mlmodel.local/v2/ , and the old APIs may
raise a warning to signal that they are deprecated.
(OpenAPI supports deprecating API “Operations” [326]).
We can then deploy new, incompatible models with the
strategies we discussed in Section 7.2, and the pipeline
modules will be able to access both sets of APIs at the
same time and without any ambiguity about what version
they are using. This in turn makes it possible to update
individual modules in an orderly transition.

If a model is shipped with a built-in configuration that is
versioned along with its APIs, the function that loads it
should support the older versions. Similarly, if a model is
stateful and needs to access a database to retrieve assets
and configurations, the function that accesses these
resources should be able to deal with different database
schemas. Our ability to perform rollbacks will then
depend on our ability to perform database migrations.

https://api.mlmodel.local
https://api.mlmodel.local
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Whether rollbacks should be manual (that is, triggered by
a human-in-the-loop domain expert) or automatic (that
is, triggered by the pipeline orchestrator on the basis of
the metrics collected by the monitoring infrastructure)
is not a simple decision to make. From a technical
perspective, we should evaluate the impact of the
deployment strategy we plan to use in terms of how long
it will take to return the pipeline to a fully functional state.
From a business perspective, domain experts may want
more solid evidence before asking for a rollback: they
may be fine with an underperforming model while they
acquire more data points and they better understand the
underlying reason why the model is no longer accurate.
Machine learning experts can help during that time by
deploying alternative models with a canary or shadow
deployment strategy to investigate their performance
and compare it with that of the failing model. The
only case in which an automatic rollback is clearly the
best option is when the model’s poor performance is
not caused by changes in the data or in the inference
requests but by issues with the hardware and software
infrastructure underlying the pipeline. (For instance, a
newly deployed model uses too muchmemory or becomes
unresponsive.) Even in such a case, the decision to roll
back should be supported by monitoring and logging
evidence (Section 5.3.6).
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Documenting Pipelines

Ideally, the code we write should be self-explanatory:
everyone should be able to understand how it works and
why it was implemented the way it was just by reading
it. In practice, this aspiration is impossible to achieve
for real-world codebases of any significant size even
if we put effort into making code as clear as possible
(Chapter 6). Hence we need documentation: a living,
natural-language explanation of the machine learning
systems and of the pipeline that evolves along with them.

Documentation is not a single entity, but rather a
collection of information with different scopes, levels
of detail, technical levels and audiences: comments
explaining the “whats” and especially the “whys”
of different chunks of code (Section 8.1); documents
describing the public interface of each module and
how to use it (Section 8.2); a holistic description of
how the pipeline is structured and of how its parts
fit together (Section 8.3); white papers detailing what
machine learning models have been implemented and
why, and what business or academic needs they address
(Section 8.4). To complement these pieces of information,
we should showcase how we envisage the machine
learning pipeline will be used in practical day-to-day
operations (Section 8.5).

185
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8.1 Comments

There is no consensus among software engineers about
the need to include comments in the code, nor about their
frequency and contents. Some argue that “comments are,
at best, a necessary evil […] to compensate for our failure
to express ourselves in code” [205]; some that “too many
comments are as bad as too few, and you can achieve
a middle ground economically” [206]; and others that
“good code has lots of comments […] keep the low-level
knowledge in the code, where it belongs, and reserve the
comments for other, high-level explanations” [369]. The
only things that everybody agrees on are that comments
can easily become out-of-date as the code they refer
to changes over time, and that comments that do not
provide any additional information over the code itself
are redundant.

Machine learning pipelines can be reasoned about from
three different perspectives (Section 5.3.1): the domain
they operate in, such as the business operation or the
academic field that generates the data it will process; the
software architecture, that is, the engineering effort of
organising the software in separate modules that can
be worked on efficiently and that have a well-defined
purpose; and the models that power them with their
probabilistic properties. The interplay between these
perspectives determines both low-level and high-level
design decisions in ways that are extremely difficult
to represent in the code. We choose machine learning
models considering the characteristics of the data they
will process; performance optimisations (Sections 2.2
and 2.4) may (or may not) be worthwhile depending
on the combination of models and compute systems;
and our efforts to structure the software into modules
(Section 5.3) and data structures (Sections 3.3 and 3.4)
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must reconcile the conflicting goals of representing
abstract mathematical concepts and real-world domain
concepts at the same time.

As a result, the idea that comments should focus on
complementing code by stating the “whys” (say, the
rationales for particular design decisions and how non-
obvious low-level optimisations work and why they
are needed) and that they should leave the code itself
to illustrate the “whats” (say, the sequence of steps
that produces the outputs of a function) is much more
nuanced than it is in either enterprise or academic
software. In both these settings, modern development
practices ensure that domain experts and software
engineers have a shared conceptual model of the key
domain concepts and, in doing so, establish a ubiquitous
language [96] to identify and discuss them. This language
is used throughout all documentation and in the code
(to name classes, methods and variables), so that all
the people involved have a common understanding of
the “whats” and the “whys” of what the code is doing.
However, it is difficult to establish such a ubiquitous
language in the context of machine learning software
(Section 6.2) because the backgrounds of the people
involved aremore varied: it is rare for any single person to
have a broad enough background to be able to understand
the machine learning systems and software well from
a domain, software and machine learning perspectives
at any given time. The rise of professional figures such
as domain (data) analysts (domain + machine learning)
and machine learning engineers (software engineering +
machine learning) who can work on pipelines from two
different perspectives is partly a response to this issue.

Therefore, we believe that there is value in annotating
code with comments describing both the “whats” and
the “whys” but that do so from a perspective that
is different from the one the code is written from.
Code implementing models (Section 5.3.4) should be
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structured well enough for a machine learning engineer
to understand its behaviour clearly: comments should
focus on how the parameters of the model and its
outputs map to domain concepts, and they can also
state how optimising the model for a compute system’s
hardware led to the use of specific data structures.
Code that pre-processes inputs to a machine learning
pipeline (Section 5.3.3) and post-processes its outputs for
consumption by third parties (Sections 5.3.5 and 5.3.6)
should be clear to domain experts, since it is just encoding
domain concepts into data structures and vice versa; but
it is worthwhile to comment on the statistical properties
we expect those inputs and outputs to have, and to relate
them to the machine learning models they are produced
from or fed to. Finally, code that orchestrates themodules
in the pipeline (either directly or by configuring a third-
party MLOps solution, see Section 5.3) should be clear
from both domain and machine learning perspectives
because it is linking different models in a data processing
pipeline designed after domain workflows. However,
the algorithmic complexity of particular models and the
hardware characteristics of the compute systems the
models run on can influence how the code is organised
into modules and how the modules are connected to each
other in ways that should be documented because they
may not be readily apparent.

Other than that, the advice in [96, 105, 252, 369] on
how to write comments applies well to machine learning
software. The goal of comments is to ensure that the
structure and the behaviour of the software is obvious to
the readers: other developers, so that they can modify the
code quickly and with confidence, and users, so that they
can understand it and use it appropriately. The readers
could eventually deduce such information by reading
the code, but the process would be time-consuming and
error-prone: especially when they are approaching the
code from a different perspective than the one fromwhich
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the code was written. Comments should be concise and
located close to the code: for instance, prefacing a block
of code performing a particular task with a description of
the implementation issues that were considered and the
probability results that shaped it. (This may also help in
relating tests to the code, see Section 9.4.2. Additional
information that does not belong in any single place in
the code may be found in commit messages as discussed
in Section 6.5.) They should be written just before or at
the same time as the code to ensure that they are written
in the first place and that any design issues are still
fresh in the developer’s minds. For the same reason, they
should be updated along with the code whenever the code
is modified. This approach may also help in refining the
architecture of the code early on (Sections 5.3.1 and 5.3.2)
by making it easier to discuss pros and cons of different
designs and by allowing domain experts to look into the
implementation of key domain concepts to some extent.
Finally, expressing the same idea twice, in the code and
in the comments, and from different perspectives can
have similar benefits to code review (Section 6.6) because
it forces developers to rethink what they are doing from
the point of view of a user of the software.

8.2 Documenting Public Interfaces

In addition to augmenting blocks of code inside functions
and modules, we should use comments to document
module interfaces, their methods and their general
behaviour. In particular, each module should come with
a high-level description of what it does and of the
situations in which it makes sense to use it. Both should
be written from the point of view of a prospective user:
in the spirit of abstracting away complexity and reducing
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cognitive load, users should be able to use the module
without reading its implementation [252]. As discussed
earlier, people working on and using machine learning
pipelines will come from a variety of backgrounds,
and many may struggle to read code written from a
perspective far from their own. Therefore, comments
prefacing module interfaces should describe them from
all relevant perspectives to make them approachable
in the same way as other comments (Section 8.1).
These descriptions, together with the method signatures,
should provide all the essential information on the
modules: the meaning of the methods and of their
arguments as well as any constraints, side effects and
preconditions they may have. If we find it difficult to put
such information in writing in a clear and concise way,
it may well be that the interface is not a good abstraction
and that the module should be refactored (Section 6.7)
to give it a better sense of purpose. The documentation
that describes it should be changed at the same time to
remain up-to-date.

Documenting individual functions in a similar way
may make sense for those few functions that are not
completely encapsulated inside a single module. Other
functions are either not visible to the module users, so
they only need to be documented to the extent that
is required by the developers of that module; or they
are visible to the module users, and they should be
documented among its methods.

In order to keep this type of documentation close to
the code it refers to, so that it is easier to keep the
two in sync, we can annotate each module with a long-
form comment covering the information above. These
comments should be structured in a standard format,
possibly with additional in-house conventions, to ensure
consistency and to make it more straightforward to write
them. Tools such as Doxygen [382] can enforce comment
formats for all programming languages typically found
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in machine learning pipelines (namely, C, C++, R and
Python), which is convenient because different modules
may be implemented in different languages (Section 6.1).
They can also generate documents in common formats
such as HTML, PDF and DOCX from the comments. This
is especially convenient for keeping documentation up
to date as interfaces change, because we can just update
the comments along with the code and regenerate those
documents as needed. We can also use language-specific
tools such as Roxygen [401] in R or Sphinx [49] in Python
if either language is dominant in the machine learning
pipeline.

What should we write in these long-form comments in
practice?

1. What we can expect from the module: the
signatures of the methods, its semantics and its
behaviour in both success and failure scenarios.
These include the meaning and the data types
of exported variables as well as a list of all
the possible error conditions and how they are
handled.

2. What problem the module solves, and a brief
summary of why it was designed the way it was.
This might include a discussion of alternative
solutions that have been evaluated and discarded
(Section 5.3.1) to avoid re-evaluating them unless
we are changing themodule in a fundamental way.
However, such decisions typically span across
module boundaries and are better documented in
the architecture documentation (Section 8.3).

3. Short examples of how the module is used,
possibly in combination with other modules, are
also nice to have.

4. Pointers to the relevant sections of the technical
documentation (Section 8.4) and to books or
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papers that describe the algorithms used in the
module.

Popular open-source machine learning software provides
many examples of how to do this well. Take, for instance,
Scikit-learn. We can access the documentation of its
module interfaces from the landing page of its website
[311] via a link labelled “API”. All modules are listed
in alphabetical order, from sklearn.base all the way
to sklearn.utils . For each of them, we have a short
description summarising what algorithms, models or
general functionality it implements, links to long-form
documentation that gives further details and shows
typical usage patterns, and a list of all the attributes
and the functions it exports. The page documenting each
class further details its methods and their arguments as
well as any variables it exports. All this documentation is
generated by Sphinx from comments in the Scikit-learn
code. The source files in which the comments appear are
linked from each page, making it easy to explore the code
the page describes.

For example, consider the documentation of the module
implementing the DBSCAN clustering algorithm [310].
The online documentation is shown in Figure 8.1. The
Sphinx comment the module description is generated
from appears just before its declaration and it is enclosed
in triple double-quotes ("""). Section headers are marked
by ten dashes (-----------) and the lists of parameters
and attributes are formatted using indentation.

class DBSCAN(ClusterMixin, BaseEstimator):
"""Perform DBSCAN clustering from vector array or distance
matrix.

DBSCAN - Density-Based Spatial Clustering of Applications with
Noise. Finds core samples of high density and expands clusters
from them. Good for data which contains clusters of similar
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algorithm='auto', leaf_size=30, p=None, n_jobs=None)

FIGURE 8.1 An abridged version of the online documen-
tation generated by Sphinx from the comments in the
DBSCAN module of Scikit-learn.

density.

Read more in the :ref:`User Guide <dbscan>`.

Parameters
----------
eps : float, default=0.5

[...]
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Attributes
----------
core_sample_indices_ : ndarray of shape (n_core_samples,)

[...]

See Also
--------
OPTICS : A similar clustering at multiple values of eps. Our

implementation is optimized for memory usage.

Notes
-----
[...]

References
----------
[...]

Examples
--------
[...]
"""

The “Notes” section links further examples and
illustrates the computational complexity (Chapter 4)
of DBSCAN, complementing the pointers to similar
functionality in the OPTICS module and the layman’s
explanation of how DBSCAN works in the User Guide.

In addition, the documentation of DBSCAN provides a list
of all the exported methods along with a short description
of what each of them implements, of its arguments
(including their types and default values) and of its return
value. The comment generating the documentation of
the fit() method, for instance, is the following.

def fit(self, X, y=None, sample_weight=None):
"""Perform DBSCAN clustering from features, or distance matrix.
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Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, \

n_features), or (n_samples, n_samples)
Training instances to cluster, or distances between instances
if ``metric='precomputed'``. If a sparse matrix is provided,
it will be converted into a sparse ``csr_matrix``.

y : Ignored
Not used, present here for API consistency by convention.

sample_weight : array-like of shape (n_samples,), default=None
Weight of each sample, such that a sample with a weight of at
least ``min_samples`` is by itself a core sample; a sample
with a negative weight may inhibit its eps-neighbor from
being core. Note that weights are absolute, and default to 1.

Returns
-------
self : object

Returns a fitted instance of self.
"""

Unfortunately, the comment conflates function argu-
ments with the parameters of the underlying models and
algorithms: this is not ideal because it implies that they
can be reasoned about interchangeably (which is not true,
for instance, for floating point variables, see Section 3.1.2)
and because it suggests that function arguments should
map one-to-one to parameters (which depends entirely
on how the machine learning pipeline is structured, see
in particular Sections 5.2.3, 5.2.4 and 5.3.4). On the good
side, however, it specifies what is the expected type for
all arguments, which is a useful detail for module users
to have in a dynamically-typed language like Python.
Types can be enforced using a type checker such as mypy
[367], effectively turning Python into a statically-typed
language for any function with type annotations.

Another example of documenting interfaces at scale is
the infrastructure that CRAN [70] uses to distribute and
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enforce quality standards on R packages. Each package
has a dedicated web page on CRAN’s website, which
includes a short description of the functionality provided
by the package and links to its Changelog, to relevant
web pages and to its reference manual. Its entries follow
a structured “R Documentation” format, based on a
subset of LaTeX, with predefined sections (“Description”,
“Arguments”, “Details”, “Examples”, “References”) that
package authors are required to fill for each function they
export from the package. R Documentation files can be
generated by including comments in the Doxygen format
in the code and processing them with Roxygen: CRAN
does not require that, but cross-checks that function
names and arguments are consistent between the code
and the documentation, and it executes all the examples
to make sure they run. Furthermore, CRAN reports the
status of any tests shipped with the package on its
web page. The package’s web page also links long-form
documentation that provides further details on relevant
algorithms and models and that showcases them with
comprehensive examples. These long-form documents,
known as vignettes, are notebooks interleaving R code
with Markdown or LaTeX prose whose sources are part
of the package. CRAN will compile them to make them
available alongside the package sources.

A popular R package that contains all these types of
documentation is rstanarm [230], which implements
a suite of Bayesian regression models on top of Stan
[58]. The authors provide both the reference manual
and a set of vignettes illustrating how to use it. Its
web page on CRAN links the GitHub repository with
the package’s source code where we can easily see the
Doxygen comments the reference manual is created from.
For instance, the comment prefacing the stan_mvmer()
function looks as follows.
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#' Bayesian multivariate generalized linear models with correlated
#' group-specific terms via Stan
#'
#' Bayesian inference for multivariate GLMs with group-specific
#' coefficients that are assumed to be correlated across the GLM
#' submodels.
#'
#' @export
#' [...]
#'
#' @param formula A two-sided linear formula object describing both
#' the fixed-effects and random-effects parts of the longitudinal
#' submodel similar in vein to formula specification in the
#' \strong{lme4} package (see \code{\link[lme4]{glmer}} or the
#' \strong{lme4} vignette for details). [...]
#' [...]
#' @param data A data frame containing the variables specified in
#' \code{formula}. For a multivariate GLM, this can be either a
#' single data frame which contains the data for all GLM
#' submodels, or it can be a list of data frames where each
#' element of the list provides the data for one of the GLM
#' submodels.
#' [...]
#'
#' @details The \code{stan_mvmer} function can be used to fit a
#' multivariate generalized linear model (GLM) with group-specific
#" terms. The model consists of distinct GLM submodels, each which
#' contains group-specific terms; within a grouping factor (for
#' example, patient ID) the grouping-specific terms are assumed
#' to be correlated across the different GLM submodels. It is
#' possible to specify a different outcome type (for example a
#' different family and/or link function) for each of the GLM
#' submodels. [...]
#'
#' @return A \link[=stanreg-objects]{stanmvreg} object is returned.
#'
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#' @seealso \code{\link{stan_glmer}}, \code{\link{stan_jm}}, [...]
#'
#' @examples
#' [...]

The Doxygen comment is identified by the fact that each
line starts with a single quote. The first paragraph gives
the title of the entry in the reference manual for the
function, which is declared to be public by the @export .
The second paragraph is the “Description”, the @params
are the “Arguments”, and the @return describes the
return value of the function. The text that follows the
@details ends up in the “Details” section, and the code
after the @examples provides short examples.

Longer examples and technical discussions that are
too cumbersome to include in the reference manual
are shipped as a set of vignettes, which in the case
of rstanarm are R Markdown documents. Unlike the
reference manual, vignettes can include figures and
mathematical equations typeset in LaTeX, and they can
easily be converted to PDF, HTML and DOCX documents
using the knitr package [414]. The R Markdown format
differs from plain Markdown only in its YAML header,
which tells knitr the type of document the file should be
compiled into and some of its metadata. For instance, in
glmer.Rmd :

YAML---
title: "Estimating Generalized (Non-)Linear Models with" >

"Group-Specific Terms with rstanarm"
author: "Jonah Gabry and Ben Goodrich"
date: "`r Sys.Date()`"
output:
html_vignette:
toc: yes

---
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Code chunks are delimited by triple backticks, followed
by the language label (R in this case) and by a list of
options that will be evaluated by knitr when compiling
the document.

```{r, results = "hide"}\n',
post1 <- stan_nlmer(circumference ~ SSlogis(age, Asym, xmid, scal)

~ Asym|Tree,
data = Orange, cores = 2, seed = 12345, init_r = 0.5)

```

Note that, by default, knitr executes all code every time
the document is compiled, in the order in which it
appears. Therefore, we cannot have the issues with out-
of-order execution and inconsistent state that affect
Jupyter notebooks [274] (Section 10.2.2).

8.3 Documenting Architecture and Design

Architecture documentation binds together the public
interface documentation of the individual modules to
give an overall view of how the machine learning
systems and the pipeline are structured as a whole. It
summarises the rationale of the decisions made when
designing them, the properties of their (hardware and
software) components and their interactions, and how
they relate to the requirements for the pipeline [64]
(Section 5.3.1). All this should be written in the same
ubiquitous language as the comments and the module
interfaces documentation, and for the same reasons:
the architecture is the primary means of evaluating
how the pipeline and the underlying systems work,
whether they can be modified in specific ways, and
whether they meet current or new requirements we may
have. These activities necessarily involve discussions
among domain experts, software engineers and machine
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learning specialists that greatly benefit from the clarity
brought by the ubiquitous language. In particular,
architecture documentation should document all those
cross-module design decisions that do not belong in any
single module interface documentation: a prime example
is the design and workings of glue code (Sections 5.2.3
and 9.2.4), which is often the least documented part of a
machine learning pipeline.

A natural starting point to document the architecture
and the design of a machine learning pipeline is the DAG
that describes its paths of execution (Section 5.3). The
nodes in the DAG represent the modules that implement
the different processing stages the data go through, and
an explanation of their roles in the pipeline should be
linked to the documentation of the respective interfaces.
The presence of arcs linking the nodes suggests that
the corresponding modules have been designed to be
interoperable, and the design decisions that make it
possible should also be documented. Furthermore, arcs
determine the temporal sequence of the processing stages
and may be associated with event triggers (say, pull
updated models for serving as they become available),
scheduled tasks (say, retrain a model after a certain
amount of new data becomes available) or human inputs
(say, for model validation). Accommodating future needs
that are not yet made explicit in the form of arcs in the
DAGmay have influenced the design of module interfaces,
and such considerations should be documented as well.

This is, however, just one possible perspective from
which we can describe a machine learning pipeline. Its
design is likely to be influenced by the combination of
the local and remote compute systems it runs on or it
may run on in the future because individual modules
will have different requirements (Section 2.4). How the
overall functionality of the pipeline is structured into
modules may be influenced by the domain or the business
it operates in. For instance, a machine learning pipeline
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that uses computer vision for supporting clinicians in
diagnosing diseases from medical images (like the use
case example in Section 8.5) may have the DAG patterned
after the tasks performed by different specialists and
after the progression of clinical information in the
diagnostic process. Or, in a business context, different
parts of the pipeline may be under the supervision of
different units within the company, with clear boundaries
to avoid overlaps for personnel and budget reasons. The
interplay of the models and of various algorithms at a
probabilistic level provides one more view of the machine
learning pipeline as an overarching, hierarchical model
whose components may or may not be related to how the
code is organised into modules.

Thorough documentation of the architecture and of the
design decisions behind a machine learning pipeline
and the underlying systems will naturally comprise a
set of documents written from different perspectives to
provide different conceptual views. Using the ubiquitous
language (Section 8.1) across all documents will help
cross-referencing them and make them accessible to
all the people working on or using different modules.
Cross-referencing the documents with each other and
with the interface documentation of each module will
allow readers to navigate them and to jump from
one document to another to view related pieces of
information. Describing a real-world pipeline and the
systems it runs on in a single document is not practical:
the result would be unwieldy and difficult to keep up to
date.

Overall, the DAG can provide a suitable outline of the
structure of the whole documentation for the machine
learning pipeline and a map to navigate it. A systems
diagram like Figure 2.1 can serve a similar purpose for
documenting the machine learning systems. Domain
concepts can then be organised informally with a
diagram of some sort; it will rarely be worthwhile
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to use a formal graphical specification such as UML
[104]. Ideally, all these graphical representations will
share some similarities and will be meaningful to all of
domain experts, machine learning experts and software
engineers. If the domain experts do not understand the
architecture of the system, there may be something
wrong with it: they can communicate any issues they
may have using the ubiquitous language, and discuss
them while we iterate project scoping (Section 5.3.1) and
prototyping (Section 5.3.2) until everybody is comfortable
with the design.

For obvious reasons, it is difficult to find public,
detailed examples of design documentation because
companies consider their machine learning pipelines to
be valuable assets that give them a competitive advantage.
Much of that information, however, is available on the
engineering blogs of companies like Uber [377] and
Spotify [330]. We will use them as sources to outline
an example of how design documentation and mission
statements (Section 8.4) should be organised.

Consider the machine learning pipeline for early fraud
detection at Uber [422]. After briefly describing what
business problem the pipeline is solving, the blog post
illustrates the pipeline from each of the domain, machine
learning and software architecture perspectives. We show
each of them in Figure 8.2:

• The domain perspective (top panel): Uber receives from
its customers a constant stream of orders which will
be initially screened by a machine learning model for
frauds. If found to be suspicious, they will be passed
to a human expert for manual validation and either
approved or rejected (Section 5.3.6). The decisions
made by the human experts are then fed back into the
machine learning model doing the automatic screening
to improve its performance over time and to prevent
issues with data drift (see Sections 5.2.1 and 9.1.3).
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FIGURE 8.2 Uber’s machine learning pipeline for early
fraud detection, based on [422]: the domain DAG (top),
the machine learning DAG (middle) and the software
architecture DAG (bottom).
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• The machine learning perspective (middle panel): the
data flows through different pre-processing algorithms,
including feature selection, to the models tasked to
detect suspicious transactions. The same models will
prioritise such transactions and schedule them for
manual review.

• The software architecture perspective (bottom panel):
each node in the DAG is a piece of software (possibly
running on specific hardware) implementing the
algorithms and the models found in the previous
pipeline, storing data, or moving information around.

Each of these pipelines will be easier to reason about
for people with different backgrounds, and it can be
used to provide pointers to more detailed information
on the data processing steps, the models or the modules
associated with the individual nodes. All pipelines span
the same four stages (data ingestion and preparation,
automatic screening, manual screening, outcome) but
provide very different views and insights on how fraud
detection is implemented. For instance, the second and
the third pipelines highlight the feedback loop tying
model retraining to manual review, which doubles as
a data labelling step, and to the statistical distribution
of the relevant features in the data. However, looking
at the pipelines side by side makes it possible to relate
the different perspectives they come from as well as
the relationships between the nodes that appear in the
same stage but in different DAGs. In a sense, the DAGs
provide a visual representation of the conceptual model
behind the ubiquitous language. Their main limitation
is the inability to describe the semantic meaning of the
arcs effectively, as is the case for UML: this information
is what the various documents in the architecture
documentation provide, complementing what we can
see from the DAGs.
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8.4 Documenting Algorithms and Business Cases

The documentation of individual modules and of how they
work together in the machine learning pipeline should
be supplemented by two other documents:

1. a technical report detailing the relevant proba-
bilistic and statistical properties of the machine
learning models; and

2. a mission statement describing, at a high level,
what is the goal of the machine learning pipeline
from a domain or business perspective.

There are several reasons for preparing a technical
report covering the relevant facts about the algorithms
and the models. Firstly, we can establish a coherent
mathematical notation that agrees with the ubiquitous
language (Section 8.1) and with the variable naming
scheme used by our modules (Section 6.2), and that can
be related to that of any external libraries we may be
using. Different parts of the scientific literature have
different notation practices: the same concepts may
be expressed with different notation or have different
definitions, or the same notation may have different
meanings. This is likely to cause some confusion because
of the variety of approaches involved in a real-world
machine learning pipeline. Secondly, a technical report
will reduce the need to access the academic literature,
which can become difficult over time because journal
papers, conference proceedings and their supplementary
materials can be locked behind paywalls or simply vanish
from the Internet when their authors change employers.
Thirdly, we can limit ourselves to the properties of the
models and of the algorithms that are relevant to us,
and we can concentrate on documenting those properties
well and in an approachable way. (It is not common
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for the canonical reference for a model to be its clearest
illustration, especially in machine learning where 8-page
conference papers represent a fair share of the literature!)
In particular, we can focus on the pros and cons of any
models and algorithms we evaluate for use in the pipeline
with respect to the specific domain that is relevant to us.
This will be more informative than most benchmarking
efforts based on reference data sets from the literature.
Finally, we can easily cross-reference the technical report
with both module interface (Section 8.2) and design
documentation (Section 8.3).

A mission statement, which [64] calls a “domain vision
statement”, is a brief document of 1–2 pages identifying
the core domain of the machine learning pipeline and its
aims as established during project scoping (Section 5.3.1).
It serves two purposes: evaluating whether the pipeline
is fit for its intended purpose and guiding its evolution
at a strategic level. By stating its purpose, the mission
statement tells us what outcome we should judge. In
turn, this allows us to define a scale of measurement
ranging from “bad performance” to “good performance”
according to how effectively and efficiently the pipeline
fulfils its purpose. At the same time, it can serve as a high-
level guideline for evolving it. The compute systems, the
machine learning models and the domain concepts the
pipeline is built upon will inevitably change over time.
With each change, we can plan at the tactical level how
to evolve it by pinpointing which components we should
update and how. However, all these local changes should
be consistent with a long-term strategy that ensures that
the pipeline evolves coherently as a whole over time as its
intended purpose changes. In other words, the mission
statement is the “aspirational” counterpart of the more
technical design documentation (Section 8.3) and of the
more practical use cases (Section 8.5).
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For example, consider the mission statement behind
the machine learning pipeline powering Spotify’s home
screen [90]. Firstly:

“At Spotify, our goal is to connect listeners with
creators, and one way we do that is by recommending
quality music and podcasts on the Home page.
Machine learning is central to how we personalize
the Home page user experience and connect listeners
to the creators that are most relevant to them.”

The pipeline is a recommender system that matches users
with contents. This requires tracking the users’ listening
data and Spotify’s catalogue of music and podcasts, which
has implications in terms of hardware, data ingestion
and data processing capabilities in the pipeline. Both
user data and the catalogue will change over time, as
will their features: hence the models predicting which
music and which podcasts the users may like should
be updated at regular intervals. How often will depend
on how quickly the catalogue changes, on how quickly
the size of the users’ listening data grows and on what
models we will use, so it is not appropriate nor possible
to recommend a schedule for the updates. For the same
reason, what features of the data will be used to provide
the recommendations is left unstated. Furthermore,
the exact definition of “quality” and “relevant” will
depend on the specific technical criteria putting them
into numbers, on how engagement will be measured, on
the models, and on how their accuracy metrics relate to
revenue.

Secondly, the two final outputs of the pipeline are
introduced in domain terms:

“Stage 1: Candidate generation: The best albums,
playlists, artists, and podcasts are selected for each
listener. Stage 2: Ranking: Candidates are ranked in
the best order for each listener.”
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The pipeline is expected to present the users with recom-
mendations ranked in terms of (predicted) preference.
Again, details such as how many items are recommended
and how they are ranked are implementation details that
are bound to change over time and thus do not belong in
the mission statement. The outputs are then described
in more detail:

“The Podcast Model: Predicts podcasts a listener is
likely to listen to in the ‘Shows you might like’ shelf.
The Shortcuts Model: Predicts the listener’s next
familiar listen in the Shortcuts feature. The Playlists
Model: Predicts the playlists a new listener is likely
to listen to in the ‘Try something else’ shelf.”

The statement does not specify which models will be
used, nor how many. It does not even state that they will
be machine learning models: in fact, it later says that
“some content is generated via heuristics and rules and
some content is manually curated by editors.” Which
models or heuristics are appropriate will depend on what
features will be available in the data, on what state-of-
the-art models will be available from the literature, and
on what software and hardware will be needed to provide
recommendations in real time.

Thirdly, how the outputs of the pipeline are presented to
the users:

“The Home page consists of cards — the square items
that represent an album, playlist, etc. — and shelves
— the horizontal rows that contain multiple cards.”

Note how the statement introduces the metaphor the user
interface will be based on, but without describing any
implementation details. It would not be appropriate to
do it here: we will want to change the interface over time
in response to any insights from usability studies and
from usage patterns collected by telemetry. Furthermore,
different platforms and operating systems will have
different capabilities and will require at least some levels
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of customisation. For instance, it is often impossible to
design a user interface with good ergonomics on both
mobile and desktop systems.

8.5 Illustrating Practical Use Cases

Last but not least, topical examples showcasing the
machine learning pipeline in action can be very valuable.
Pipelines are built to address some need like automating
and speeding up analyses or improving products: the best
way to motivate their development, use and maintenance
is to show that they can address that need effectively and
efficiently in the context of the domain or of the business
line of the prospective users. Users will then be able to
relate to the problems the machine learning pipeline
is tackling and they will be in a position to appreciate
the advantages of using it. The types of documentation
presented in the previous sections are either too technical,
too abstract or too focused on the inner workings of the
pipeline for this purpose.

An example of a very effective use case is the InnerEye
project [222] from Microsoft Research Cambridge (UK),
which aims to develop machine learning pipelines for
medical imaging. The video linked in the reference
talks about the specific application of performing image
segmentation in 3D medical images taken from cancer
patients scheduled to be treated with radiotherapy.

1. It states the need in clinical terms: speeding up
the segmentation in magnetic resonance (MR)
and computerised tomography (CT) scans while
retaining a sufficient degree of accuracy.

2. It states the problem in a way prospective users can
relate to: radiologists do segmentation manually,
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outlining the tumour in a sequence of dozens
of cross-section images with a visual tool to
obtain a 3D contour. This is a slow process, and
the precision of the contour is limited. It takes
hours of preparation to map tumours and healthy
tissues to target treatment for the former and to
limit exposure for the latter.

3. It states how the machine learning pipeline can
address the need from the perspective of the user:
automatic or human-assisted segmentation. The
video shows the user interface that would be
used by the radiologists, to give them a feeling
of how it would fit in their everyday work. This
makes it possible to contrast, live, the time it
takes for manual, automatic and human-assisted
segmentation as well as the level of detail and
precision of the segmentation.

4. It states the value of the solution to the user: it takes
minutes instead of hours to prepare a treatment
plan for a patient with the desired accuracy.
Furthermore, the same tools can be used to
track how cancer is responding to therapy. These
improvements will lead to better treatments and
better outcomes.

Note that the video does not make any quantitative
statements about running times nor about the statistical
accuracy of the segmentation as neither would be easily
interpretable for radiologists. Instead, the InnerEye
project has a web page linking all the scientific
publications where we can find these numbers. Machine
learning engineers can use them to evaluate the pipeline
from the perspective of their own discipline. Furthermore,
the InnerEye project news page highlights that the
machine learning pipeline has been deployed and is
currently used on actual patients at Addenbrooke’s
Hospital in Cambridge. The implication that it obtained
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regulatory approval and that a radiology department
finds it worthwhile to use it are strong indications
that the machine learning pipeline is not an academic
endeavour but something that provides value in real-
world clinical practice.

Finally, we would like to point out that practical use
cases may also be instrumental in gathering feedback
from prospective users. Illustrating them will provide
a natural venue for users to discuss how the machine
learning pipeline would be useful (or not) and what their
strong (weak) points appear to be from their perspective.
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9

Troubleshooting and Testing Pipelines

Troubleshooting machine learning software is compli-
cated for several reasons: the data may be huge
(Section 9.1.1), may be collated from a number of different
sources fed by different pipelines (Section 9.1.2) or may
change over time (Section 9.1.3). Models may be too
large for mere humans to interpret their parameters and
eyeball incorrect behaviour patterns (Section 9.2.1) espe-
cially in the case of black-box models (Section 9.2.2).
The time and cost of training them may also limit our
ability to investigate any issues that require updating
models (Section 9.2.3), especially if we are using several
of them chained together in the pipeline (Section 9.2.4).

Software testing is a natural complement to trou-
bleshooting: once we knowwhere trouble lies (Sections 9.1
and 9.2), we can either actively prevent it by “defining
errors out of existence” [252] or we can put in
place tests to detect it before it can meaningfully
degrade our software’s performance. While every bug
is unique, some patterns of behaviour are indicative
that something is amiss that we should be aware of
(Section 9.3). When expected and observed behaviour
are markedly different, it is worth looking into it! What
we should test (Section 9.4.2) depends on the data
(Section 9.4.3), but it should span local and global
behaviour (Sections 9.4.4) as well as conceptual and
implementation errors (Sections 9.4.5 and 9.4.6).

213
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9.1 Data Are the Problem

Machine learning models effectively compile data into
code and dictate to a large extent the behaviour of the
software they are embedded in (Section 5.1). Hence
it is only logical that issues in the data will impact
the software by affecting model training or predictions.
Before we do anything else, we should make sure that
the data are correctly recorded, properly labelled and
without duplicates: only 3% of data are acceptable in this
respect even with pretty loose quality standards [179]
and technical debt arising from data is a common issue
(Section 5.2.1).

The shape of the data and how the data are collected can
result in very different types of issues. For the former, we
may have tall data (large sample size, few variables), wide
data (small sample size, many variables; also known as
“small 𝑛, large 𝑝”) and big data (large sample size, many
variables, changing over time and possibly unstructured
[178]). For the latter, we should distinguish between
experimental and observational data. Experimental data
are collected following some experimental design [225]
that involves identifying a limited set of variables of
interest from available knowledge (domain experts, the
literature, small-scale preliminary experiments, etc.) and
a small number of variables we wish to intervene on
(like giving targeted discounts and recommendations
or administering specific medical treatments). Eligible
data points are chosen based on their characteristics
to ensure that the conclusions we draw from models
apply to the population of interest, and are randomly
assigned different interventions. Randomisation ensures
that all types of individuals are observed with different
interventions and prevents confounding to some extent.
(More on this later.) In contrast, observational data are



9.1 Data Are the Problem 215

collected as they arise. Often individuals are added to the
data as their information is recorded, without taking their
characteristics into account. This, along with the fact
that we are not performing any randomised intervention,
can bias the models we learn from observational data:
either we do not observe data points with certain
characteristics (enough of them, or at all) or we do
not observe them in a wide-enough range of situations
to model their behaviour. This issue is called sampling
bias (Section 5.3.1) and affects many applications of
machine learning. For instance, 96% of participants
in genome-wide studies were of European descent in
2009; while new studies performed on Asian populations
have reduced that figure to around 80% by 2016,
other ethnicities remain chronically underrepresented
[266]. The practical consequence of this disparity is
that personalised medicine treatments currently under
development will not benefit individuals from those
backgrounds.

9.1.1 Large Data

Consider the three possible dimensions of datamentioned
above: the sample size, the number of variables and the
number of time points. The larger the data are in at
least one of these dimensions, the more difficult it is to
troubleshoot the models we learn from them.

If the data are wide, changes in one variable may induce
changes in the contributions of other variables to the
model: this phenomenon is called entanglement [312, 313].
As the number of variables grows (“why not add onemore
input?”), it becomes increasingly likely that multiple
variables will express the same information in different
ways. The parameters that encode that information in the
model will then be jointly determined by those variables.
If the distribution of one such variable changes, making
it a legacy feature that is no longer significant in the
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model, the effects of the other variables will increase to
compensate. And even if it still retains some degree of
statistical significance, it may become an epsilon feature
that contributes so little to the model that it is not worth
the effort of including it in the first place. (Both legacy
and epsilon features should in principle be dropped from
models, but they are often not when they are included
as a bundle with features that are actually useful.) In
other words, “changing anything changes everything”
[312], as we discussed in Section 5.2.2 with respect to
technical debt. This is all the more true for time series
data because, in addition to different variables being
entangled with each other, each variable is entangled
with itself at previous time points (Section 9.1.3).

As a side effect, entanglement makes it difficult to
identify true causal features1 within a set of correlated
features. This is problematic because it prevents us from
keeping models simple and small without a significant
amount of feature engineering.

The other problem in troubleshooting large data is
latency: accessing the data takes time and computational
resources, which in turn slows down our iteration
speed. This is particularly true for models like deep
neural networks that require GPUs and TPUs, which
have limited bandwidth and memory (Section 2.2).
One possible solution is to choose a good-quality,
representative subset of the data and work with that
(more in Section 9.1.2), keeping in mind that (repeated)
subsampling also has a cost. Another is taking the last
known-good snapshot of the model and working on it
with a subset of recent data as if we were doing online
training.

1That is, a feature that is built on a variable with a (direct) causal
effect on the target variable of interest.
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9.1.2 Heterogeneous Data

Furthermore, we must consider that data may be hetero-
geneous, comprising variables encoded with different
data types and complex data structures. Data ingestion
and preparation (Section 5.3.3) then require several algo-
rithms and auxiliary models to filter out poor-quality
data points, impute missing data and extract relevant
features. Additional models may also be required to post-
process the outputs of the core machine learning models.
If one input variable changes, it is bound to affect one
or more of these models: their output will in turn affect
even more models in what we called a correction cascade
[312] in Section 5.2.1. In a sense, we can see it as a form of
entanglement that spans multiple models (Section 9.1.1);
or as a form of coupling between models that are (some-
times undeclared) consumers of each others’ outputs,
effectively making them work as a single large model
(Section 9.2.1).

Heterogeneous data are difficult to subsample as well:
choosing data points at random is unlikely to yield
a subset that is representative of the overall data
set. Observations belonging to less-frequent classes
in imbalanced data are unlikely to appear in a
random subsample in sufficient numbers or at all:
our estimates of predictive accuracy for the machine
learning models can remain high even if they are
consistently mispredicted. Subsets are also likely to
have a different distribution (as captured by summary
statistics) compared to the overall data, which may
trigger calibration issues. Outliers that may be causing
trouble in the original data are likely to be dropped,
making it difficult to replicate the issues we are
troubleshooting (reliably or at all). All these problems
become more and more pronounced as the difference in
size between the original data and the subsamples grows.
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9.1.3 Dynamic Data

The data, the models, the code and the architecture can
all be sources of technical debt in a machine learning
pipeline (Section 5.2). The data sources we use to feed our
machine learning models, in particular, are often outside
of our control. Hence data dependencies are more costly
than code dependencies [313]: it takes more effort to
troubleshoot their behaviour and to quantify and mitigate
their potential impact on the performance of our pipeline.

Data may change slowly over time, either following a
medium- to long-term trend or in periodic patterns.
(The former is known as data drift, and the latter is
called seasonality in statistics.) Both can be encoded
in machine learning models at the cost of increasing
model complexity. However, models take time to adapt to
change: if change is sudden or drastic enough predictions
will be miscalibrated. Using dynamic thresholds that are
updated regularly and frequently allows models to adjust
to change, but there may be a noticeable lag. Setting such
thresholds, however, will require additional, dedicated
models thus introducing additional complexity. Any
fixed threshold, whether implicit or explicit, will require
domain experts to constantly monitor (Section 5.3.6) the
inputs and outputs of data ingestion and preparation
modules (Section 5.3.3) to keep it up to date, possibly
introducing an even longer lag. (This is an instance of
the human-in-the-loop approach we recommended in
different places in Chapter 5).

A type of change that is particularly difficult to identify
is when a feature we are using in our models stops
correlating with a causal feature. If we include the
former instead of the latter by mistake (Section 9.1.1),
we suddenly lose access to the information that the
causal feature was indirectly providing to the models.
Recovering that information may require re-evaluating
our data sources and an extensive re-engineering of our
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data ingestion and preparation modules. And it may be
difficult to understand what happened: if two features
showed a significant degree of association at the time
the models were trained, but gradually drifted apart over
time, the (non-causal) feature we included may suddenly
become irrelevant for no apparent reason.

9.2 Models Are the Problem

Machine learning models tend to be complex beasts:
this is especially the case for deep neural networks
but holds for many Bayesian hierarchical models as
well. Our ability to troubleshoot models with a large
number of parameters estimated from data (and with
hyperparameters as well, usually) is severely limited by
the sheer number of moving parts we need to track.

9.2.1 Large Models

Firstly, it is difficult to map the effect of any change in the
model behaviour or in the data to individual parameters
because parameters interact with each other. In order
to capture complex patterns of behaviour from the data,
machine learning models mix the information present
in individual input variables in many (linear and non-
linear) ways that are encoded in different parameters. As
a result, any change in even a single variable will affect
multiple parameters at the same time in ways that may
be difficult to understand. Changing the values of some
parameters in a way that locally improves some part of
a model may have a knock-off effect on the parameters
in other parts of the same model. Both these effects
compound across the models in a pipeline as we discussed
in Sections 5.2.2 and 9.1.2.
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Secondly, dealing with a large number of parameters
makes it impractical to investigate them individually.
Each parameter may have little or no real-world meaning
by itself. As we just discussed, its behaviour will be
intertwined with that of other parameters: they should
be grouped and each group investigated as a single,
meaningful entity. Hence we have to resort to an auxiliary
model that investigates the parameters for us: it may
be something simple like a diagnostic plot based on
summary statistics, or something more complex like a
second, independent machine learning model. However,
summary statistics by their nature lose information,
making bugs easily go undetected, and adding a second
machine learning model may not be worth the additional
complexity of ensuring that model is also working
properly. It is troubleshooting all the way down!

9.2.2 Black-Box Models

Thirdly, most large machine learning models are
effectively black boxes. Individual parameters are
mathematical constructs that often have no real-
world meaning, even when considered in groups. An
entire research field, focusing on explainability and
interpretability, has sprung up in an effort to relate
changes in the model inputs to changes in the model
outputs. Ideally, we want to do that in a way that
can make these relationships meaningful to a domain
expert: for instance, visualising word relevance in NLP
[191] and pixel relevance in computer vision [325] or
splitting images into layers with semantic meaning [296].
Observing the behaviour of a model around key input
values with local approaches like LIME [296] and SHAP
[201] can also provide insights: both approaches work by
perturbing the inputs and checking whether the outputs
are stable, and mapping any instabilities to specific
subsets of parameters.
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9.2.3 Costly Models

Fourthly, training large machine learning models is
expensive and time-consuming. This makes for slow
iterations and may very well make troubleshooting
impractical. Among recent deep neural network archi-
tectures for NLP, Google’s XLNet [418] costs an esti-
mated $61,440 to train, taking 2 ½ days with 512 TPU
v3 chips (Google’s proprietary AI coprocessors); Univer-
sity of Washington’s Grover-Mega [421] takes two weeks
and $25,000; Google’s BERT [78] costs between $500 and
$6,912 and takes 4 days to 2 weeks to train. It is currently
unknown how much OpenAI’s GPT-2 [285] originally
cost to train, but the open-source OpenGPT-2 [66] took
$50,000. And this only covers training: hyper-parameter
tuning can easily involve training 10-100 models before
finding a well-performing one. A recent study from the
American Medical Association has found that simply
reproducing one of these models using publicly available
resources can cost between $1 million to $3.2 million
[34].

The numbers above represent a worst-case scenario.
Deep neural networks for applications other than NLP
are typically much smaller and thus much cheaper and
quicker to train. For instance, the ResNet-50 architecture
for computer vision tasks can be trained in minutes
for a few dollars [338] because it only has 25 million
parameters (Grover-Mega and GPT-2 have 1.5 billion,
XLNet has 340 million). And we rarely have to retrain
models from scratch: it is common to use the current
model as a pre-trained starting point or to buy a pre-
trained model from a commercial vendor. (However,
this practice may produce technical debt at the model
level as discussed in Section 5.2.2.) We can also trade
training speed for cost and vice versa: slower solutions
are cheaper, and their prices have been steadily falling
in recent years. We may also be tempted to reduce the
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overall computing costs with lazy code execution but
that may introduce non-deterministic behaviour and
make troubleshooting even harder. Using cloud resources
as massive parallel compute facilities to divide-and-
conquer trainingmay complicate things rather thanmake
them easier because remote debugging in the cloud comes
with its own set of problems (Section 2.3).

Finally, let’s not forget that there are machine learning
models other than deep neural networks: random forests
and gradient-boosted trees [233] are much faster and
cheaper to train and quite often achieve competitive
performance, especially on tabular data.

9.2.4 Many Models

As we mentioned in Section 9.1.2, dealing with complex
data may require a complex machine learning pipeline
involving several models linked by an orchestrator and
to some extent by glue code. On the one hand, such
code may be helpful in isolating the peculiarities of the
different models and of the libraries that are used to
implement them. On the other hand, glue code may
introduce bugs in how models interact. Such bugs are
not easily detected without extensive integration tests,
and are common in the “pipeline jungles” we discussed
in Section 5.2.3. Unit tests would cover the correctness
of individual models, but not the correctness of how
they are wired together. The more models we include
in our pipeline, the more difficult it is to troubleshoot
their interactions because the number of possible pipeline
configurations explodes combinatorially as the number
of models increases. This may be compounded by the
presence of dead and experimental code paths that are
not essential to the functioning of the machine learning
models (Section 5.2.4).

Another issue, which we covered in Section 5.2.2, is that
the more models we have in our pipeline, the more likely
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it is that they will create feedback loops or correction
cascades.

9.3 Common Signs That Something Is Up

How can we tell whether one or more of the issues
discussed above are affecting the performance of
our machine learning pipeline? There are so many
(combinations of) things that can go wrong that it is
difficult to compile an exhaustive list of signs that
something is up. There are, however, some common
patterns of behaviour that should be regarded as
suspicious.

Predictive accuracy is really bad. Models may be unable to
capture enough relevant information from the training
data to be able to predict new data points. The data may
not contain such relevant information in the first place.
That information may not be usable without further
effort into engineering a suitable set of features. Or the
information may be there, but the models fail to capture
it due to computational issues or because they make the
wrong assumptions on the distribution of the data. If
any of these is true, we should focus our troubleshooting
efforts on data preparation (Section 5.3.3) and model
training (Section 5.3.4) modules. We should also re-
evaluate our data sources: were there any changes that
made (some of) them no longer useful?

Predictive accuracy is really good. If the models we are
implementing are appropriate for the problem they
are tasked to solve, and if the data provide relevant
information to train them, we would expect them to
perform “well”. How well is “well” depends on a
combination of these two factors, and on how we chose
the problem and the metrics with which we define
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success (Section 5.3.1). Narrowly-defined tasks are easier
to put into precise mathematical terms, making them
easier to optimise for. On the other hand, tasks with
broad definitions typically conflate multiple subtasks
with different requirements and goals that may conflict
with each other. However, if a task is nontrivial we should
treat extremely high performance (say, like 99.9+%
classification accuracy) as a possible red flag. Unbalanced
data sets in which not all the classes we are trying to
predict are well represented may result in unrealistically
high accuracy if the models always predict the most
common 1-2 classes and miss the rest. The different
types of feedback loops we discussed in Section 5.2.2
may have a similar effect. Finally, high accuracy may be
indicative of an information leakage between what we
are trying to predict and the data we use to train our
models, for instance because one of the variables is an
alias2 of the prediction target.

Furthermore, data leakage will also happen when part of
the training set is implicitly used in the test or validation
sets. This may involve different data points originating
from the same individual or from related individuals
being included in either data set. For instance, these
may be two sentences from the same page of text, two
web product accounts opened by the same person or
by people in the same family, health information from
siblings or online questionnaires administered to the
same person at different times. In any of these cases,
instead of validating the machine learning models with
a realistic simulation of the production setting they will
work in (completely new data points), we are validating
them against data points they already know about at

2Data leakage arises when information from outside the training
data set is used to learn a model, typically because one or more
variables carry the same information as the prediction target but in
different form. Such variables are sometimes called aliases in the
context of linear regression models.
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least to some extent. Hence our assessment will give us
a biased estimate of the models’ predictive accuracy and
overconfidence in their capabilities.

Predictive accuracy suddenly changes. Mathematical models
of reality, including machine learning models, make
various regularity assumptions that encode the idea that
reality varies smoothly: small changes in the inputs of the
models should produce small changes in their outputs;
and the larger the changes in the inputs, the potentially
larger the changes in the outputs. Any marked change in
a model’s behaviour that cannot be immediately linked
to a known real-world event may be indicative of an
incorrect model that just happened to work and finally
broke down, making it apparent that it was wrong in the
first place. (Losing any connection between the training
data and unobserved causal features as described in
Sections 9.1.1 and 9.1.3, for instance.) It may also be
indicative of some inputs changing in a fundamental way
(changes in the variable types or meaning, feedback loops,
etc.) or becoming unavailable (Sections 5.2.1 and 5.2.2).
The only way of troubleshooting such issues is to put in
place comprehensive monitoring facilities covering all
the modules in the pipeline and to aggregate all metrics
in a monitoring server, where they can be correlated and
cross-referenced across time (Section 5.3.6).

The resources required to train the models or to make
predictionswith themachine learning pipeline are at oddswith
the computational complexity of the algorithms it implements.
As we discussed in Section 4.6, real-world resource usage
is not a perfect reflection of big-O notation: it does not
take constant factors and different hardware capabilities
(parallel execution, cache sizes, etc.) into account, nor
can it easily incorporate all the optimisations performed
by modern compilers and language interpreters. There
should be, however, some discernible relationship
between the two. Large discrepancies suggest that
training data or input features may be breaking some
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of the assumptions on the model, or that there are
too few data points. In either case, model training
and hyperparameter tuning will struggle to identify an
optimal model, taking more time than expected. Large
clusters of related variables (Section 9.1.1) may have
a similar effect, because model training will struggle
to separate their (overlapping) effects. Prediction, by
comparison, is less likely to be problematic. As before,
we should be able to point out any anomalies in resource
usage by a combination of monitoring and logging across
modules.

9.4 Tests Are the Solution

Current practices from software engineering strongly
suggest that the most reliable way of identifying
defects in software is testing. Much has been written
on this topic in classic books such as “The Pragmatic
Programmer” [369] and “Test-Driven Development”
[35]. Few resources touch on the topic of testing machine
learning software: among them are Alice Zheng’s
“Evaluating Machine Learning Models” [425], the “ML
Test Score” rubric from Google Research [51] as well as a
few survey papers in academic literature [48, 424]. We
will do our best to give an overview of all the facets of
testing machine learning pipelines in the remainder of
this chapter, complementing our discussion of software
testing from Chapters 5 and 6. We will also rely heavily
on the automated and reproducible deployment practices
we discussed in Chapter 7: we should run each test
in a clean environment to make sure that its results
are not influenced by external factors (including other
tests). That is typically implemented by using the base
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container images we use for our production systems in
our continuous integration setup.

9.4.1 What Do We Want to Achieve?

Following [424], we can summarise our goals as:

• Model correctness: if input data follow the distribution
we expect them to, outputs should be correct and
predictions should be accurate with high probability.

• Empirical correctness: outputs should be correct and
predictions accurate for new data points, that is,
the empirical performance of the models should be
reliably above the threshold we set for our metrics
(Section 5.3.1).

• Model relevance: models should be able to represent the
distribution of the data and to fit them well without
overfitting.

• Robustness: models should handle invalid or extreme
inputs gracefully.

• Adversarial robustness: models should also handle
malicious inputs that are crafted to be hard to detect
and to produce specific outputs.

• Efficiency: model training and inference should use the
least possible amount of compute and memory that
produces the desired level of predictive accuracy.

• Interpretability, fairness and privacy: as discussed in
Section 5.3.1.

Tests should strive to ensure that these goals are met
by investigating a variety of valid and invalid inputs
and outputs for both individual models and the machine
learning pipeline as a whole. They should give confidence
in the ability of the pipeline to perform its assigned
task well for common inputs and to degrade gracefully
otherwise.
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9.4.2 What Should We Test?

In principle, a comprehensive test suite should cover:

• The raw data, covering invalid or missing values,
variable representations (scaling, one-hot encoding,
etc.), variables that are of little to no use along with
those that are redundant because they encode the same
information (legacy and epsilon variables). We should
also have offline and online tests for:
– Insufficient sample size: Do we have enough
data points to (re)train the model? Is the sample
size large enough to make it possible to observe
infrequent configurations of the variables?

– Data drift: Does new data have a distribution
comparable to that of the data themodel was trained
from?

– Outliers: Are there any data points with values
different enough from the rest that we may think
of them as recording errors?

• The key components of the models:
– Models: Are they appropriate for the data? Can they

regularise (smooth) noisy outputs?
– Parameters: Are parameter values unusually large

or small? Are there parameters that have no effect
on predictions (for instance, because they are equal
to zero)?

– Hyperparameters: Do they encode expert knowledge
correctly? Or, conversely, are they really non-
informative? Do they restrict the range of models
we can learn?

– Loss functions: Do they express meaningful
properties of the model outputs (Section 5.3.4)?
Can they differentiate between models well, picking
models that predict well and that capture the key
relationships between the variables?

– Optimisers: Can they explore a wide range of models
efficiently? Do they converge reliably or are they
prone to settling for suboptimal models?
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• The post-processed data and inference outputs to spot
features that become problematic or are not worth
keeping and to ensure that predictions are accurate
enough to be fit for purpose.

• Any glue code that is used to wrap models, to help
access their inference capabilities or to orchestrate them
(Sections 5.2.3 and 5.2.4).

This is, of course, in addition to any tests required to
ensure that the underlying infrastructure is working,
feeding inputs to the pipeline and putting its outputs
to use. For this to be possible, we must be able
to track data, models, predictions, hyperparameters
and parameters simultaneously through configuration
management under version control (see also Sections 5.1
and 5.2).

Even if we can effectively test all the above, a crucial
problem remains: how do we determine whether a test
should pass or fail? In order to do so we must be able
to determine what is the expected behaviour of each
individual model and of the pipeline as a whole, which
is difficult when dealing with the stochastic nature of
machine learning models. Typically, we do not have
access to an oracle:3 we do not know in advance what
the “correct behaviour” should be or we would not need
the models in the first place! The models give us some
clues in their assumptions and their mathematical and
probabilistic properties: the former determine what valid
inputs are, the latter suggest what output we should get
for a given input. Model invariants (that is, changes in
the inputs that should not change the output) give more
theoretical properties that should be empirically satisfied.
This is a form of property-based testing in which the
properties to test are mathematical statements that we

3A test oracle is a mechanism for determining whether a test has
passed or failed; it has no relationship with oracle properties from
the statistics literature.
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can derive frommodel definitions. If we are using models
that havemultiple implementations, we can also compare
the output of the implementation we are using to that of
other implementations. If they agree up to some tolerance
threshold, and we trust those other implementations
to be correct, we can take them as pseudo-oracles and
validate our models. This practice is called differential
testing, and can supplement property-based testing for
models without easily-testable properties like black-box
models (Section 9.2.2).

9.4.3 Offline and Online Data

Tests based on offline data and online data are quite
different.

Offline data are mainly used for tuning hyperparameters
and training models, and they are collected by combining
historical data and new data points into a static sample
until its size is large enough (Section 5.3.4). These data
will then be labelled to obtain a ground truth to train the
model. Images will be tagged based on which items they
display; sentences will be tagged by their main topic(s);
lab samples will be tested to detect the phenomena we
would like models to identify. (Note that in many cases
a label is a discrete, categorical variable, but it needs
not to be. It can be an ordinal variable, such as age
brackets, or a numeric value.) The labelling process acts
as a pseudo-oracle: it is expensive, time-consuming, and
with a non-zero error rate, but it is the closest thing to
ground truth we can access in most settings. In a sense,
it allows us to train a model and compare its performance
against human performance (assuming labelling is done
by domain experts, see Section 5.2.1).

Therefore, testing model training and hyperparameter
tuning with offline data together with the offline data
themselves is relatively straightforward. We have a large
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sample, which allows us to test the pre-processing of
raw data and feature engineering to ensure that they
produce suitable inputs for the models. In the spirit
of property-based testing, we can test that the models
behave correctly when they are fed features that satisfy
their assumptions; and that they either report errors
or degrade gracefully otherwise. From the empirical
distributions of the data and the model assumptions,
we can identify both corner cases to test limit behaviour
and cases that are well-spaced in the sample space and
cover a variety of typical behaviour. Thanks to the labels,
we can estimate the model’s predictive performance with
some sort of train-test-validation data split, making it
possible to perform hyperparameter tuning and to rank
different model choices. The accuracy observed during
training will also serve as a benchmark to monitor the
performance of the models in production (Section 5.3.6).

Online data are generated as a constant stream from
external sources in the form of individual data points
or small batches. Therefore, testing takes the form of
online monitoring, A/B testing (which is covered in
depth in [425]) or one of the other strategies outlined
in Section 7.2. Online data often come without labels,
so we cannot directly assess whether models handle
them correctly. We can test whether the data we see in
production follow the same distribution as the training
data by collecting data points across a short period of
time and testing whether their empirical distribution
is different from what we would expect. If the data are
unlabelled, we will be limited in doing so either by the
availability of domain experts to perform the labelling in
a short time frame or by the limited accuracy of machine
learning models at this task. We can then set dynamic
thresholds to detect both sudden and gradual losses
in accuracy. Similarly, we can test for changes in the
distribution of input features. In either case, we can flag
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the test to be reviewed by a domain expert or assume
that the model is now out of date and must be retrained
automatically. In practice, such tests can fail in benign
ways for a number of reasons, so keeping a human in the
loop to check why failing tests are failing is preferable
(Section 5.3.4).

If we do not have enough data to both train the models
and to test them, we can generate more either by
resampling or by stochastic simulation. Both bootstrap
and cross-validation make it possible to create new
data sets by resampling an offline data set (see, for
instance, [188] for a brief introduction and several
examples). They both start from the idea that data
are sampled from the population of interest, hence the
distribution of the variables in the data is an empirical
approximation of their distributions in the population.
Sampling again from the data can be implemented so
that the bootstrap samples and cross-validation splits
preserve this property. The resulting data sets are
perturbed versions of the original containing a subset of
its data points: 63.2% in case of bootstrap, in proportion
to the fold structure in the case of cross-validation. The
remaining data points can then be used to build test
and validation sets to evaluate the models, as in random
forests [52, 53].

Preserving the empirical distribution of a variable while
resampling is a simple endeavour if all data points are
independent, but it can become very complicated very
quickly when the data have some kind of structure such
as spatial and temporal dependencies. Using stochastic
simulations may be more straightforward in such cases.
A simple approach is to perturb data points with
either stochastic noise or randomly-chosen deterministic
transformations (addition, subtraction, multiplication,
etc.). Small perturbations should not alter the outputs of a
model if the model is sufficiently robust for practical use.
Theymake overfitting less likely by effectively smoothing
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the data in the same way as ridge regression [40],
which will help us in identifying whether our models are
overfitting or are singular in places. Using deterministic
transformations, on the other hand, facilitates testing
model invariants and some types of model properties. If
a transformation is invariant, the model and its outputs
should not change: the original and transformed data
belong to the same equivalence class, in the sense that
they result in equivalent models.4 If a transformation is
not invariant, wemay still be able tomap the transformed
inputs to the corresponding parameter estimates and
predictions based on the properties of the model. For
instance, models constructed using linear functions
of the data, like linear regression models, are closed
against linear transformation: multiplying a variable by
a constant will result in an equivalent change in the
associated regression coefficient; adding a constant to
a variable should not change the associated regression
coefficient, which expresses the change in the response
for a unit change in the variable; and adding a constant
to all variables will shift the intercept of the model
by the same amount. These are all properties that are
easy to test and that our model implementation must
satisfy. If we think of including and excluding data points
as a deterministic transformation of the data, we can
consider bootstrap and cross-validation themselves as
stochastic simulations! Which makes intuitive sense if
we consider that they use random sampling with and
without replacement, respectively.

A more complex approach to stochastic simulation is
to train a generative model on the data, and use it as
an auxiliary model that generates new data points to
build tests with. If the generative model captures the

4There may be other equivalence classes beyond those we can
identify in this way: domain knowledge about the data may help in
identifying them.
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distribution of the data well, the data points that it
generates should follow the same distribution and thus
be a valid substitute. Generative Adversarial Networks
(GANs) [123] are a popular choice, but graphical models
[314] may provide an alternative that is simpler to learn
and that requires fewer data to train. The advantage of
this approach is that it is more flexible than those we
discussed above: it can be tweaked to generate outliers
and adversarial data points as well as data points with
the expected distribution. We can also make sure that the
generated data sets are sufficiently different from each
other to test the model under various scenarios. However,
training a generative model requires a significant amount
of data, and it adds to the complexity of the machine
learning pipeline (see Sections 9.2.1 and 9.2.4). If nothing
else, it means more models to test. A cheaper alternative
may be an interpolation algorithm like SMOTE [100],
which is more computationally efficient at the cost of
being more limited in the data points it can generate.

9.4.4 Testing Local and Testing Global

We can only understand the emergent properties of a
machine learning pipeline by considering it as a whole,
which suggests that testing the whole pipeline is as
important as testing the individual models it orchestrates.
Hence the following classes of tests are all equally
important to implement:

• Unit tests: testing that the individual models display the
theoretical properties we know they have, including
their resource usage based on big-O notation.

• Integration tests: testing that all models accept valid
inputs, reject invalid inputs, produce valid outputs, and
generate errors instead of producing bad outputs. We
want to make sure that if models are wired up properly
they will not trip each other up.

• System tests: feeding raw data to the pipeline and testing
that the final output is correct, insofar as we can
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determine that from theoretical considerations (like
model evaluation in Section 5.3.4).

• Acceptance tests: checking whether the final outputs of
the pipeline are of sufficient quality for their intended
use (like model validation in Section 5.3.4).

This list broadly follows standard naming conventions
for different types of tests established in Code Complete
[206], but requires some clarifications to make sense in
the context of machine learning pipelines. First of all,
what is a “unit”? The traditional definition is “a complete
class, routine, or small program that has been written
by a single programmer or team of programmers”. In
our case, we consider that to be a single model in the
pipeline or a module performing associated tasks like
data ingestion or data preparation (Section 5.3.3) or
inference (Section 5.3.5). Often we will be able to use
models that are already implemented in third-party
libraries, in which case unit tests should be provided
by their developers. (Given the realities of the software
produced in academia, that may very well not happen,
leaving all the testing to us.) If we are implementing any
machine learning models ourselves, we can make model
evaluation code double as a suite of tests as well.

Integration testing is “the combined execution of two
or more classes, packages, components or subsystems
that have been created by multiple programmers or
programming teams”. Since we are treating each
machine learning model and each module as a unit, we
should test that their outputs are valid inputs for the
modules that consume them. In particular, integration
tests involving data ingestion and data preparation
together with models ensure that our quality gates are
effective (Section 5.3.3). Often these tests can only be
very basic, because even with property-based testing we
may only have some very general knowledge about what
a module inputs and outputs look like. As for machine
learning models, their sample and parameter spaces are
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both very large and difficult to test in a comprehensive
way.

This leaves system testing, “the execution of the software
in its final form” focusing on “security, performance,
resource loss, timing problems, and other issues that
can’t be tested at lower levels of integration”. Ideally
we can implement it by starting from a limited,
representative set of data and tracing how the data is
acted upon by all the modules in the pipeline, all the
way from data ingestion (Section 5.3.3) to reporting
(Section 5.3.6). Or we can do the same with randomly
generated data. System testing provides themost realistic
assessment of the correctness and the performance of
the pipeline, especially if we are using real-world data to
seed the test. It allows us to test the propagation of errors,
meaning both programming errors (like incorrect code
and floating point errors) and stochastic errors (errors in
the distributions of intermediate outputs that are taken
as input by other models). Even in the absence of errors,
we usually do not know what the distribution of the
output of a model looks like, so it is difficult to simulate
it to build integration tests.

If a machine learning pipeline passes unit, integration
and system testing, we may have some degree of
confidence that it works like it is supposed to. This,
however, does not necessarily mean that it will prove
to be useful to the people it was designed for, be
they scientists trying to figure out how nature works
or marketing people trying to make people click on
ads. That is what acceptance testing is for: checking
whether the pipeline solves the problem that motivated
its development during project scoping (Section 5.3.1)
and whether it meets all its targets. The software may
be too slow, while users need real-time feedback; it
may be too resource intensive, so it does not scale
well enough to work on future data sets; or it may
not be accurate enough in its predictions to meet
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service-level agreements or relevant regulations. The
difference between being technically correct and being
useful is, in a sense, a reflection of the difference
between statistical significance and practical significance.
Even if one machine learning model performs better
than another, and even if the difference is statistically
significant, it does not necessarily mean we should pick
that model over other alternatives. The metric we are
measuring may not correlate well with the task we are
trying to model; the difference between the two models
may be real but too small to matter in practice; or the
better model has some undesirable characteristics that
make it difficult to deploy it. None of these issues are,
per se, the concern of unit, integration or system tests.
Nevertheless they are real issues for the users of the
machine learning pipeline and thus we should give them
serious consideration.

9.4.5 Conceptual and Implementation Errors

What types of errors do we expect to catch with tests? If
we exclude issues with infrastructure and input data, one
way we can think about them is in terms of conceptual
errors and implementation errors.

Machine learning models with a closed-form formula-
tion, from simple logistic and ridge regression models
[147] to hierarchical Bayesian models implemented via
variational inference [43], often have closed-from esti-
mators for their parameters and the respective distri-
butions (for a given choice of the hyperparameters) as
well as for loss functions and key statistical tests. The
algebraic derivations involved in constructing them are
prone to human errors. Some of these errors will be incor-
rect algebraic manipulations that can be spotted, albeit
with difficulty, either by machine learning experts or by
software for the symbolic manipulation of mathematical
expressions. Errors involving modelling choices are more
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difficult to catch: for instance, incorrect assumptions on
model inputs, approximations that prove to be too coarse,
asymptotic considerations that do not work out or the
inability to capture particular patterns of dependence
between variables. These kinds of conceptual errors may
require an experienced machine learning expert or two
and much eyeballing to identify, and they are especially
difficult to detect when the model uses stochastic optimi-
sation for hyperparameter tuning or inference because
stochastic noise tends to hide errors with relatively small
magnitudes.

On the other hand, many machine learning models
have an implicit formulation that relies on numeric or
stochastic optimisation to learn a model that has some
set of properties for some loss function. It is less common
for such models to be affected by conceptual errors,
simply because their mathematical formulation is not
explicit and thus requires fewer algebraic derivations or
probabilistic assumptions. However, implicit models are
more prone to implementation issues. In order to make
optimisation computationally feasible, or to be able to
use commercial solvers, their implementation often looks
nothing like their theoretical specification. For example,
in the last 20 years many machine learning models have
been reimplemented on top of CUDA [244] to leverage the
parallelism of GPU linear algebra operations. To benefit
from parallelism, model training had to be refactored in
as many small, independent operations as possible. On
top of that, mathematical operations were restricted to
those implemented in silicon on GPUs and TPUs which
means, for the most part, linear operations on vectors
and matrices.5 GPUs and TPUs have limited memory,

5This is not as severe a limitation as it may seem. Non-linear
models are mathematically harder to work with, so most have linear
formulations that operate on transformed inputs to encode non-
linear relationships. A common example are kernel-based methods
[176].
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which has encouraged the use of single-precision floating
point instead of the more common double-precision and
made floating point errors and rounding a pressing issue
to consider. They also have limited bandwidth, so the
code they run had to be designed not to require frequent
interaction with the main program running on the CPU.
And given limited memory and bandwidth, models were
also required to operate on limited subsets of the data
and collate the results instead of loading all data into
memory. Another example is implementing machine
learning models as distributed models over cheap cloud
compute instances. (More on this in Chapter 2.)

9.4.6 Code Coverage and Test Prioritisation

Then, the more tests we put in place, the better? Not quite.
Each test comes at a cost. Software tests are themselves
software: they involve writing code, troubleshooting it
and ensuring that it is correct. We should also keep them
in sync with the modules they are testing and with the
machine learning pipeline. Every time we introduce a
new model or a new module, remove or modify one,
and every time we revisit how they are wired up, we
should also review the associated software tests. In
other words, every time the specification of the pipeline
in our configuration management platform changes
(Section 5.1), continuous integration will re-run all the
tests (Section 5.3) and we will have to revisit those that
fail. Furthermore, running tests to check whether they
pass or not can take a significant amount of time and
hardware resources.

Wewalk a fine line between having enough tests to ensure
the pipeline works well and having as few tests as we can
get away with. Given the constraints of what hardware
we have available and of how much time is acceptable
for the tests to complete, we should aim for the tests
to cover as much of the functionality of the pipeline as
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possible. How can we prioritise tests to achieve the best
possible coverage with limited resources?

For traditional software, the answer is to measure code
coverage [231]: the proportion of the code executed
by the tests. The goal is to make sure that as many
functions, conditional branches and code paths are
executed as possible so that it is difficult for bugs to
remain undetected. Implicitly, what we are saying is that
the algorithms and the logic we are implementing in the
software are encoded in the code, hence the more code we
test, the more we can ensure that the expected behaviour
of the software matches our expectations. At the same
time, we want tests to overlap as little as possible in
terms of what they cover so as to implement as few as
possible.

Machine learning software, however, differs from
traditional software in that its behaviour is determined by
data as much as by code (Section 5.1). Using different data
for training, or predicting data points that are markedly
different from what the models expect, may very well
exercise the same code paths as “typical data” while
producing pathological outputs. Hence code coverage is
not a useful measure of how much of the functionality
of the pipeline is being tested, because code is only
part of the story. Sample space, for both inputs and
outputs, parameter space and model space coverage are
more meaningful indicators. This is not to say that code
coverage is useless: but it is orthogonal to measures
of coverage built on data, models and parameters. By
all means, we should test code paths to be working to
specification if in use, and remove them as dead code if
not.

What does that mean in terms of choosing and
prioritising tests? Sample space, parameter space and
model space are effectively infinite in size so we cannot
fully cover them. We can, however, make sure that we
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test a good selection of boundary values, typical values and
invalid values [369]. In a very limited way, this is what we
did at the end of the refactoring example in Section 6.8.

Boundary values are data points or parameter values that
are close either to the boundary of their domain or to a
decision boundary. The former are typically corner cases
that produce some sort of limit behaviour, like hugely
inflated or biased values in prediction or singular models
in training. In general, limit behaviour is never desirable
because extreme predictions will be wrong in most cases;
and because singular models are overfitting the training
data and will have a very poor predictive accuracy. The
latter are values which make a model’s outputs unstable
because a small change in such values will lead to
the model producing outputs that lead to a different
course of action. This is common in classification models,
where we map continuous inputs (the variables in the
data) to a discrete output (the class set) by dividing the
input space in regions separated by hard thresholds. If
one or more variables take values close to the boundary
for a data point, a small change in their values will make
themodel choose different classes for practically identical
data points.

Typical values are data points or parameter values
that the model should handle well, without displaying
any kind of pathological behaviour. They are mainly
useful to implement property-based tests verifying that
the theoretical properties of themodel hold in its software
implementation. Ideally, we would like to cover the space
of typical values with a grid such that each point in
the grid is sufficiently different from its neighbours
and that all regions in the space are tested. This
would ensure little or no duplication in the tests while
ensuring coverage of the sample space (in the case of
data points) or of the parameter space (in the case of
parameter values). We can choose grid points either
deterministically (a regular grid) or stochastically (by
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sampling them at random); the latter may be easier
to implement if the space of typical values is high-
dimensional or if we are making assumptions on the
distribution of the typical values (say, prior distributions
for the parameters). A practical example of this approach
is the TensorFuzz debugging library for neural networks
[246]. TensorFuzz implements coverage-guided fuzzing:
it samples possible inputs to a neural network from a
corpus of test data, creates new inputs by changing them
using a set of possible transformations, and checks which
neurons are activated by the transformed inputs. If the
transformed inputs result in a pattern of activations that
is too similar to that of one of the inputs already in the
corpus, as established by an auxiliary nearest-neighbour
model [147], then they are discarded because they are
deemed not to increase coverage. If, on the other hand,
the pattern of activations is sufficiently different from
those we have already observed, the transformed inputs
are added to the corpus. Therefore, TensorFuzz gradually
builds a corpus of inputs that contains data points with
typical values for all variables and that puts the neural
network in a variety of states, increasing the likelihood
of finding instances of misbehaviour that would not be
caught by the original test data.

Finally, invalid values lie beyond the boundaries of the
acceptable inputs or outputs of a model. If valid values
are limited to an interval, that means any values outside
of that interval. Values that are of the wrong type (say,
a character string when a real number is expected)
and special values like NaN , +Inf or -Inf (Section 3.1)
should also be considered. NA may or may not be invalid
depending on the context: it is certainly desirable for
machine learning models to be able to handle missing
data, and if they are able to do so, NA should be treated
as a boundary value. Otherwise, we should ensure that
the output is NA if any input is NA , that is, that we
are propagating missing values correctly; or the model
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should fail with an error. In general, we test invalid values
to verify that model performance degrades gracefully and
to make sure errors are generated when no meaningful
output can be produced.

Testing a good selection of boundary, typical and invalid
values will provide insights on the behaviour of our
machine learning software. Testing both typical values
and corner or invalid values, we can ensure that models
are robust and display the expected theoretical properties.
Testing pairs of values for data and parameters (in
addition individual values in isolation) increases the
probability of finding bugs from 67% to 93% [187];
testing higher-order combinations produces quickly-
diminishing returns and may not be worth the effort in
applications that are not life-critical. As a side effect, we
can also achieve some degree of code coverage: if different
code paths map to different regions of the sample and
parameter spaces, testing both well will execute many
code paths.
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Tools and Technologies



http://taylorandfrancis.com


10

Tools for Developing Pipelines

In Part II we discussed how we may adapt software
engineering practices to the development of machine
learning pipelines. Practices are predicated on the tools
we adopt to implement them, which will be the focus of
Part III.

In this chapter, we present an up-to-date selection
of tools for data exploration, experiment tracking
(Section 10.1), for developing code (Section 10.2) and
for building, testing and documenting it (Section 10.3).
Together, these tools provide a development environment
suitable for creating machine learning pipelines. We
will then move to those used to manage pipelines in
production and maintain them (Chapter 11). We fully
expect that the tools available at the time of this writing
will consolidate over time, as has happened to other types
of productivity tools in software engineering and systems
administration.

10.1 Data Exploration and Experiment Tracking

Many issues in machine learning pipelines can be traced
to data that are not sufficiently clean or well-structured
and therefore are not suitable for training or inference.
Early exploratory analyses, together with domain experts,
will improve our understanding of the data and can
help us improve their quality to the point where we can
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address the issues we discussed in Section 5.2.1 and 9.1.
The code we write in these explorations is the initial
prototype that, after much polishing and refactoring, will
become the data ingestion and preparationmodules of the
pipeline (Section 5.3.3). Using a programmatic approach
to data exploration, cleaning and transformation is
always preferable because it provides reproducible results
and enables code versioning (Section 6.5). The code we
produce should be tested using property-based testing
(Section 9.4.2) with sample data to check whether it
works correctly; the same tests can be reused as quality
gates for new data during the pipeline lifetime. We will
suggest different tools to write such code in Section 10.2:
notebooks like Jupyter [274]; IDEs like RStudio [301];
Python libraries like NumPy [141] and Pandas [207]; R
packages like dplyr [402], tidyr [403] and janitor [101]
are just a few examples. In addition, most integrated
MLOps tools incorporate experiment tracking, so we can
save these explorations in a centralised and versioned
repository and then compare different approaches and
their parameters on the basis of the metrics that we
chose (Section 5.3.1) for model evaluation and validation
(Section 5.3.4).

In addition, high-level visual tools to explore and clean
the data may be useful to involve domain experts
who may not be comfortable with programming. Some
examples are:

• Openrefine [250]: an open-source client-server solu-
tion that provides a collaborative web interface for
working on data, as well as client libraries to automate
tasks using the API exposed by the server.

• Trifacta [374]: a commercial solution that provides an
easy-to-use interface to work on data quality, data
transformation and data processing pipelines in general.
It is designed for non-technical users and supports
deployment on all major cloud providers.
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• Tableau Prep Builder [337]: offers a straightforward
interface to interactively clean, format and visualise
data from different sources. It is available both as a
local, graphical application and as a web application.

• Web solutions like Airtable [102], which provides the
functionality of a database combined with the features
of a spreadsheet, may also be suitable for working on
small datasets in a collaborative manner.

Data exploration is an iterative process: interactively
visualising its outputs as they change is essential. We
can do that directly from the Python and R code we
use to explore the data if we are using either Jupyter
or RMarkdown [415]. As an alternative, we can produce
a dedicated interactive dashboard from Python, R, Julia
or Bokeh [46] code and from Jupyter notebooks with a
visual tool like Tableau [337] or with a programmatic tool
like Dash [262] that can generate one. We will discuss
more tools in Section 11.3.

If the data are too large for the tools above to handle,
we can store them using “big data” frameworks based
on Hadoop [350] like Cloudera [65]. We can then use
tools like Apache Pig [352], Apache Hive [351], Apache
Impala [20] and Apache Spark [353] to manipulate them
and implement our own data ingestion and cleaning;
or we can use integrated cloud-based solutions like
Snowflake [327] and Databricks Lakehouse [76]. The
advantage of these integrated solutions is that they
handle all the aspects of data management as well as
machine learning applications development and delivery,
supporting integration with data engineering, data
science and machine learning open-source projects.

Databricks, for instance, includes many open-source
components. One is Delta Lake [355]: an abstraction layer
for existing data lakes and object storage like S3 which is
fully compatible with Apache Spark and which supports
features such as ACID transactions, schema enforcing
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and data versioning. Databricks also offers a managed
version of MLflow [420] an open-source library-agnostic
platform to manage machine learning pipelines which
we will describe in more detail in Section 11.2.

DVC (Data Version Control) [158] is an open-source tool
that applies GitOps principles to data.1 DVC manages data
and machine learning models through metadata stored
in text files, and it uses Git [360] to version them and to
track their provenance. DVC is both a command-line tool
and a library, and is language- and framework-agnostic.

DVC and MLflow [420] implement experiment tracking
in two different ways. DVC organises experiments
within Git projects using commits, branches and tags.
It automatically tracks data dependencies, machine
learning code, parameters and model artefacts: we can
compare different experiments through the associated
metrics using either its command line or its web interface.
MLflow instead provides a tracking server and client
libraries that can be integrated into Python, R and
Java code as discussed in Section 5.3.6. The tracking
server stores the metadata, parameters, metrics and tags
collected by the clients for each experiment run into a
file or a database. Larger outputs like data files, images
and model artefacts are saved separately, for instance, in
an object storage.

In addition, there are also proprietary SaaS offerings with
experiment tracking and model registry functionalities,
to name a few: Neptune [238], Comet [67] and Weights
& Biases [397]; more details on this type of software are
in Section 11.2.

1GitOps is an application of DevOps practices such as version
control, collaboration, compliance, and CI/CD, and applies them to
automate infrastructure management [118].
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10.2 Code Development

Modern software development is a collaborative effort
based on knowledge sharing, constant iteration and
continuous feedback. Distributed version control systems
and Git [360] in particular make all this possible by
setting the standard for code versioning and collaborative
development and by powering popular platforms such
as GitHub and GitLab. Our ability to deliver and deploy
software using DevOps relies heavily on Git together with
semantic versioning [271] and commit tags. Therefore,
Git is a tool that every software engineer should
be familiar with. Machine learning and data science
professionals should be familiar with it as well because
it is used in and influences the design of software like
DVC that is used to work with pipelines.

Choosing the right set of tools for writing code is a matter
of prior experience with specific tools and personal taste.
It may be a decision made either by individual developers
or at the level of the team, research group or company
the developers belong to in order to standardise on a
predetermined set of software. In either case, to work
efficiently on a machine learning pipeline we will need
support for:

• the programming languages that wewill use (Section 6.1);
• enforcing coding standards (Section 6.3);
• automated refactoring (Section 6.7);
• integrations with source code versioning (Section 6.5);
• running software tests and summarising their results
(Section 9.4);

• interactive debugging (Section 9.4);
• managing the containers (Section 7.1.4) that encap-
sulate the developing environment, and the ability to
remotely work within them.
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Ensuring that all developers use similar tooling is useful
for compliance, to simplify the training of new developers
and to improve reproducibility. (For the same reasons,
we should avoid polyglot programming as discussed in
Section 5.2.4). There is a wide variety of tools to choose
from, falling into the following categories:

• modern and relatively lightweight code editors such as
Atom [27] and Visual Studio Code [215, also known as
VS Code] that can be extended to provide the features
above with the use of third-party extensions;

• integrated development environments (IDEs) such as
Eclipse [88] and JetBrains IntelliJ IDEA [165];

• shared interactive computing platforms such as Jupyter
notebooks [274].

10.2.1 Code Editors and IDEs

The main difference between an IDE and a code
editor is the amount of functionality that is built-
in and configured with sane defaults. On the one
hand, IDEs integrate most functionality out of the
box on a single programming language. For instance,
PyCharm [166] offers features such as code inspection,
code completion, syntax highlighting, version control,
debugging, refactoring, test execution and container
integration like other major IDEs, but also supports the
Python REPL and provides introspection into the objects
created by scientific computing libraries such as NumPy
and Pandas. The reference IDE for the R language is
RStudio [301], which integrates a console, an editor that
supports syntax highlighting and direct code execution,
tools for plotting and inspecting R objects as well as
history, debugging and workspace management.

On the other hand, code editors are more limited out of
the box, but they can reach feature parity with IDEs by
installing and configuring third-party extensions. For
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example, VS Code can provide similar functionality to
PyCharm by using a language server like the Python
Language Server [256] that is compliant with the language
server protocol specification [217]. Other alternatives are
Mypy [367], Pylance [212] (based on the Pyright [277]
static type checker from Microsoft), Pytype [29] (from
Google) and Pyre [210] (from Facebook). The same level of
integration can be accomplished with the languageserver
package [189] and the VS Code R extension [291] for R
and with LanguageServer.jl [169] and the VS Code Julia
extension [170] for Julia.

Both code editors and IDEs can also run as web appli-
cations: a web browser session connects to a cloud
instance replicating a common, unified development
environment. This approach has two advantages: it
reduces technical debt arising from polyglot program-
ming (Section 5.2.4) and makes it possible to develop
in environments that are too complex or too resource-
intensive to run locally (Section 5.3.2). Code editors
like VS Code provide web interfaces [221] to navigate
files and repositories and to commit small code changes,
while IDEs like GitHub Codespaces [111] and AWS Cloud9
[10] provide complete cloud development environments
backed by virtual machines (Section 7.1.3). We also have
the option to self-host them using Docker [82] and
Kubernetes [364]: base container images are readily avail-
able for Eclipse Che [87], Eclipse Theia [89] and GitPod
[119]. As for R, RStudio Server [302] makes available the
same features as the RStudio IDE through a browser-
based interface that is connected to R sessions running
on a remote server. We would also like to point out
DagsHub [75] as a collaboration platform: it provides
a shared work environment for data science and machine
learning projects that follows the development patterns
and the practices presented in this book. It integrates
with GitHub, DVC, MLflow, Jenkins [164] and many other
open-source tools.
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Finally, we would like to mention one last set of code
editors: Vim, Neovim [237] and Emacs [120]. They are
valued by developers who prefer to create a modular
development environment that fits their specific needs.
Both editors provide full support for R, Julia and Python
through plug-ins that communicate with the respective
language servers. Although their learning curve is steep
at first, they allow for unparalleled speed of action on
code bases of any size in the long run.

10.2.2 Notebooks

In recent years, notebooks have seenwidespread adoption
in machine learning projects and, more in general,
in scientific research. They are typically implemented
as Jupyter notebooks [274, from the programming
languages Julia, Python and R they support], an
interactive development tool that is ideal for building
proofs of concept. Jupyter notebooks are designed to
quickly test ideas, to evaluate the trade-offs of different
alternatives and to share code, results and figures
intermixed with documentation in Markdown format.
They can be executed interactively directly from GitHub
and GitLab, from a dedicated collaboration platform such
as Google Colaboratory [131, also known as Colab] or
from MLOps platforms such as Amazon SageMaker [11]
or Azure Machine Learning [214].

Despite considerable programming language support and
a significant adoption by the scientific community, the
use of Jupyter notebooks has several shortcomings in the
context of modern development practices (Chapter 6, in
particular Section 6.3). The Jupyter notebook file format
stores code, outputs, images and Markdown text in a
single huge JSON object to produce a self-contained,
portable artefact. This architectural choice has four major
shortcomings:
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1. It is challenging to version a notebook correctly
because stochastic outputs change every time it
runs.

2. Representing code in “cells” that can be executed
in any order is at odds with the imperative nature
of the programming languages used in machine
learning software.

3. Dividing code into cells to interleave their outputs
and the surrounding text impacts code modularity
and code reuse and reduces our ability to produce
good abstractions. We can accept some level of
coupling between cells (because they run code
in a shared, hidden global environment) and add
glue code to make things work, but that leads
to an increase in technical debt (Sections 5.2.3
and 5.2.4).

4. Notebooks do not have any built-in support for
automated testing (Section 9.4) or deployment
(Chapter 7). While this can be acceptable
for exploring data and prototyping models
(Section 5.3.2), it makes them unsuitable for
developing production-level software.

In particular, executing cells in a non-linear order can
lead to inconsistent results because cells affect each
other’s environment, effectively creating a “hidden state”
that is very difficult to track. The only way to achieve
reproducibility is to always execute all the code in the
notebook from the top in a clean environment. For
these reasons, we cannot use notebooks directly to serve
machine learning models in a production environment.
However, this may change in the future: there are
ongoing efforts to develop tools for diffing and merging
(nbtime [4] and nbstripout [289]), automatic testing
(testbook [242] and nbval [69]), automation (Papermill
[241]) and quality assurance (nbQA [235]).



256 10 Tools for Developing Pipelines

RMarkdown and Julia notebooks are fully reproducible
because they execute all the code in the notebook from
the top in a clean environment by default, so there is
no state inconsistency after we change the code in a cell
and re-run it. Furthermore, both are easier to version
and to diff than Jupyter notebooks because they store
text, outputs and figures in a separate Markdown, PDF
or HTML file when compiled. RMarkdown notebooks
are well supported by RStudio, which provides code
auto-complete, linting and suggestions, but they can
be edited with any text editor and compiled through the
command line as well. We can also enhance them with
the workflowr R package [44], which combines literate
programming (with knitr [414]) and version control
(with git2r [405]) to generate shareable HTML pages
containing time-stamped, versioned code blocks and
outputs. For reproducibility, each analysis is run in a
new R session.

Given how Jupyter notebooks are geared towards
prototyping, we suggest that they should be integrated
in a modern development workflow as follows:

1. Experiment and build a prototype of the code
using notebooks.

2. When the prototype is complete, move the code to
a new Git repository and start refactoring it using
an IDE or a code editor to make it modular and
scalable. At the same time, add software tests.

3. Add docstrings [124] to the code using the text in
Jupyter Markdown as a base.

4. Package your artefact using pip [280] and
setuptool [278] (Section 7.1.2) for later use as
a module within the machine learning pipeline or
as a library that will be imported by other Jupyter
notebooks.
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10.2.3 Accessing Data and Documentation

Quickly accessing documentation during development
is invaluable when working on complex code bases.
We can use offline documentation browsers such
as Velocity [323] or Dash, or the open-source Zeal
[356]. All three can automatically download the docsets
(HTML documentation archives for offline usage) for
major programming languages and machine learning
frameworks, and also integrate with the leading IDEs
and code editors. Overall, they are interchangeable in
terms of features.

As for accessing data, object storage like AWS Amazon S3
is becoming the de facto standard for data interchange
in data science and machine learning. Therefore, it is
very useful to integrate code editors and IDEs with
libraries capable of abstracting the listing, downloading
and uploading of data into object storage buckets across
multiple cloud vendors. A popular example is MinIO [223],
which is fully compatible with the S3 APIs and provides
an open-source SDK for multiple languages.

10.3 Build, Test and Documentation Tools

Using appropriate tools for building, testing and
performing software quality assurance is important
to improve ergonomics and reduce the likelihood of
errors. In addition, we may want to use the same set
of tools in all environments (developer workstations,
staging and production environments) and in all stages
of development, both to avoid inconsistencies and to
maintain a common environment shared by all the people
who work on the pipeline.

Currently, containers (Section 7.1.4) are the most
common way of packaging the modules of a machine
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learning pipeline: either individually with Docker, in
groups with Docker compose [84] or Podman [354],
or as a single-node Kubernetes with Minikube [366]
or MicroK8s [57]. All these solutions build on Docker,
with different trade-offs in terms of architecture and
functionality, and therefore support the deployment
practices described in Chapter 7.

One of the points of using containers is to isolate different
modules and applications from each other. We can
further decouple our code from the software installed
within each container by using pipenv or pip [280] plus
virtualenv [279] to create isolated Python environments
and to manage dependencies on packages and on specific
versions of the Python interpreter (without collisions
with the globally installed ones). We can install and
switch between multiple versions of Python using pyenv
[417] or Poetry [173], or a more general-purpose tool like
asdf [203] that supports multiple runtime versions for
the most used interpreters, compilers and development
tools. If our needs are too complex for this approach, we
might consider tools such as Pipenv [294] and Conda
[16]. Conda in particular has a broad support for machine
learning and data science applications [15] but is rather
cumbersome to use. The R counterpart of Pipenv is the
packrat package [380], which also uses a locally installed
R interpreter.

Automated tests are another key feature of modern
practices for developing (Section 6.5), refactoring
(Section 6.7) and maintaining software (Section 9.4).
Each test should be run in a clean environment such as
a container that is re-created at each run: we want to
avoid the execution of one test influencing the results of
another. (The automated and reproducible deployment
practices we discussed in Chapter 7 are a key enabler of
automated testing!) Test results should be included as
pass/fail by the CI/CD pipeline to facilitate code review
(Section 6.6) and to ensure that the pipeline is always
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in a functioning state. There are many frameworks and
libraries that we can use to implement the types of tests
described in Section 9.4. For individual modules, we can
use the unittest [282] and doctest [281] packages in the
Python standard library, the testthat R [404] package
and the Julia test module.

We should also test that the machine learning pipeline
as a whole works as expected. Tools like Airflow [348],
DVC and Pachyderm [254] use the DAG that maps the
dependencies between the modules to allow for local,
iterative testing. In DVC and Pachyderm, dependencies
are specified in a declarative configuration file (say,
dvc.yaml for DVC) which can be either written manually
or built programmatically using helper commands. DVC
does not have any built-in support for testing, so we
should instrument modules ourselves (for unit tests) and
embed the whole pipeline in a testing framework (for
integration, system and acceptance tests). In Airflow, the
pipeline is implemented in Python code and dependencies
are encoded in a dedicated DAG object: this makes it easy
to test individual modules with unittest and to validate
data with frameworks such as Great Expectations [334].
As for pipelines running on GitHub, GitLab or Jenkins, we
can use actions and runners [116, 163, 236] that, albeit
with some limitations, can run the complete pipeline or
some of its parts using containers. Another alternative is
to validate the pipeline directly by iteratively committing
changes to a test branch and pushing them to the
mainline branch to force the CI to run any tests that may
be relevant. Jenkins also provides a testing framework
for implementing unit tests on the configuration and on
the conditional logic of the pipeline code and a command-
line tool for linting the pipeline. GitLab provides APIs to
trigger validation and linting for the same purpose.

Enforcing code styles and standards, which we discussed
in Section 6.3, is a crucial complement to testing to
ensure that we produce maintainable, working software.
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Pylint [197] is the reference static code analyser and linter
for Python: it is based on PEP-8 (Python Enhancement
Proposal 8), the official document that contains the
guidelines and best practices on how to write Python
code. An alternative is Flake8 [331], which builds on other
tools such as pycodestyle (a style guide checker), pyflakes
(a source files checker for errors) and mccabe (a tool
to check the complexity of the code). A comprehensive
linting step for Python code should apply a sequence of
tools such as the following:

1. isort [72] to sort imports alphabetically and
separate into sections by type;

2. black [190] to format the code;
3. flake8 to check the code style;
4. pylint as the final step to run static code analysis.

The styler package [228], which enforces compliance with
the tidyverse style guide [400], and the lintr package
[150], which performs static code analysis and which
identifies syntax errors and possible semantic issues,
fill the roles of the Python packages above for R code.
Both lintr (see vignette("continuous-integration"))
and styler support CI/CD integration [229], accept user-
provided code style policies and integrate with RStudio.

Writing documentation and keeping it up-to-date is also
key to maintaining machine learning pipelines over time.
Documentation should be versioned like code and kept as
close as possible to the code it refers to. Documentation
on module, function and class interfaces or on method
definitions can placed in both Python [124] and Julia
[185] code using structured comments in the docstring
or native Sphinx format; Sphinx [49] can then compile
those comments into documents in various file formats
via the Sphinx autodoc extension (see Section 8.2 for
an example). Sphinx can also be used to (re)compile
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documentation automatically using CI (with “Read the
Docs” [290]) and to render OpenAPI specification files as
static HTML pages [175]. The OpenAPI specification files
can in turn be automatically generated from docstrings
using Sphinx [174], Apispec [200] or a framework such
as FastApi [286] and Flask [257].

In R, we can use comments in the Doxygen [382] format
for the same purpose: they can be parsed by the Roxygen2
package [401] to generate R documentation in various
formats as discussed in Section 8.2.



http://taylorandfrancis.com


11

Tools to Manage Pipelines in Production

The production environments of machine learning
pipe-lines often have more moving parts than those
of traditional software, and the MLOps software to
manage them is a broad and fast-moving field with
many platforms, projects and tools. The underlying
infrastructure may be more complex (Section 11.1),
and the combination of data, code and models that
makes up the pipeline is certainly more heterogeneous
(Section 11.2). In addition to the tools and technologies we
need to manage them, we also discuss those that we may
use to complement pipelines with the dashboards and
reporting capabilities that are common in data science
(Section 11.3).

11.1 Infrastructure Management

Successfully running a machine learning application in
production goes beyond just implementing a pipeline: it
involves managing different local and remote compute
systems and integrating different pieces of software
that communicate with each other through various
APIs. Confusingly enough, the literature often refers
to both as “systems”, meaning anything that requires
configuration, takes some inputs and produces some
outputs in response. With such an abstract definition,
compute systems, the GitHub organisation that hosts
our code, the Amazon AWS EC2 instances that run

263
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part of it in the cloud and the Kubernetes cluster than
manages the resources of our local systems are all
systems. Considering the prominent role hardware plays
in a machine learning application (Chapter 2), we find
this definition unhelpful because it is too abstract to
reason about the architecture and the performance of
the application itself (Chapter 5). The same goes for the
even-more-abstracted view that “everything is just an
API”.

Managing the compute systems and the software in a
real-world pipeline either manually or with a few simple
scripts (which would qualify as glue code, Section 5.2.3)
is often too burdensome: there are toomany of them, they
follow different conventions (because they are produced
by different vendors), they are not backward compatible
and their configuration files use different languages and
formats. Configuration management is the only possible
approach to keep this complexity under control and to
ensure that the pipeline is reproducible and auditable.

One of the most widely-used tools for this task is
Terraform [144], which defines itself as a tool to achieve
“infrastructure as code”. Terraform is essentially an
abstraction layer for a wide range of services [145]
and platforms including Amazon AWS, Microsoft Azure,
GitHub, GitLab and Airflow. Each platform is exposed as
a service “provider” that communicates through APIs
that we control, effectively decoupling our infrastructure
from the APIs of the original service. Terraform takes
care of initialising resources in the original service and
of configuring them. For instance, we can use it to
create remote resources such as an EC2 instance on
Amazon AWS, an object storage on Azure or a VM on
a local vSphere [389]. However, it does not handle the
installation or the configuration of operating systems
and software packages.

Cloud instances, VMs and development machines based
on Vagrant [146] and Packer [143] can be installed and
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configured using specialised tools such as Ansible [18],
Puppet [276] and Chef [273]. All three tools provide a
complete solution to configuration management: we can
define all resources and their configurations as code and
store that code in a version control system. They also
have modules for testing the configuration management
code, for validating changes before applying them to a
specific target environment, and for identifying manual
modifications or tampering of the configuration files. As
a result, they are convenient to integrate and automate
in a CI/CD pipeline. Furthermore, Ansible, Puppet and
Chef can all be invoked on instances and VMs created by
Terraform on their first boot by software like cloud-init
[56]. However, they have different learning curves and
they require different technical skills to operate. Ansible
is written in Python, uses YAML declarative configuration
files and has an agentless architecture (that is, it can be
run without installing anything on the instances we want
to configure). Puppet and Chef use Ruby-based domain-
specific languages and have a master-slave architecture
(that is, we install “agents” on the instances to configure
them).

As for containers, the de facto standard management
tool is Kubernetes [364], an open-source orchestration
system originally developed by Google and now main-
tained by the Cloud Native Computing Foundation (CNCF).
Kubeflow [363] extends Kubernetes by integrating it with
popular machine learning frameworks like Tensorflow,
notebooks like Jupyter and data pipelines like Pachyderm:
the result is an integrated platform specifically geared
towards managing, developing, deploying and scaling
machine learning pipelines. Kubeflow can be deployed
on managed Kubernetes services like Amazon EKS [12],
Azure AKS [213] or Google Kubernetes Engine [127] as
well as on local Kubernetes clusters. The latter, which are
admittedly more complex to run, can be set up with CNCF-
certified open-source solutions like the Kubernetes Fury
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Distribution [322] and Typhoon [268]. Both are based on
Terraform and Ansible and integrate with other CNCF
components like software-defined networking, moni-
toring and logging (Section 5.3.6) to facilitate the inter-
operability between cloud and local deployments.

11.2 Machine Learning Software Management

Machine learning applications can be designed, tested,
maintained and delivered in production using integrated
MLOps platforms that blend tooling and practices from
DevOps (Section 5.3) with data processing (Section 5.3.3),
model training and serving (Sections 5.3.4, 5.3.5 and 7.2).
This is a very recent trend at the time of this writing,
so the label “MLOps platform” (or “Machine Learning
Platform”) has been attached to quite a variety of tools.
At one end of the spectrum, we have online platforms
like AWS Sagemaker [11], Vertex AI [130], Tensorflow
Extended [347], Databricks [76] and Neptune [238]. At
the other, we have more lightweight solutions like
Airflow, MLflow and DVC that are built on top of a
collection of smaller open-source tools that are not
specific to machine learning applications. On top of that,
we have established CI/CD platforms such as GitLab that
are working on MLOps features [117] which overlap with
those of the platforms above. We expect it will take a few
years before MLOps platforms consolidate into a small
number of clear categories. In the meantime, we are
choosing between tools that are not mature and have
different, unclear trade-offs: there certainly is no one-
size-fits-all solution at the moment! However, we can
safely mention one trade-off: integrated platforms are
limiting because they are often opinionated (they make it
difficult to support configurations and workflows other
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than those envisaged by the authors) and because they
are opaque (their components are not visible from the
outside). Adopting them early in the life of the pipeline
may limit our ability to change its architecture at a
later time, may prevent us from exploring different
configurations to explore their trade-offs, and may limit
our ability to develop software engineering skills. In
contrast, manually integrating smaller open-source tools
gives us more freedom but requires more work and some
level of software engineering skills up front.

Solutions based on Kubernetes such as Kubeflow
and Polyaxon [265] integrate and compose different
tools, including Jupyter notebooks; model training
(on both CPUs or GPUs) and experiment tracking for
TensorFlow and other frameworks; and model serving
with different solutions such as TensorFlow Serving
[345], SeldonCore [315] and Kserve [362]. Kubeflow
focuses on managing machine learning workflows end-
to-end, while Polyaxon complements it by providing
distributed training, hyperparameter tuning and parallel
task execution. Polyaxon can also schedule and manage
Kubeflow operators and track metrics, outputs, models
and resource usage to compare experiments. If a solution
like Kubeflow is over-complicated for managing our
pipeline, we can also consider replacing it with Argo
Workflow [23], a simpler orchestrator that can run
parallel jobs on a Kubernetes cluster.

The architecture of Kubeflow builds on the same key ideas
as Kubernetes, in particular operators and namespaces.
In fact, each machine learning library that is supported
by Kubeflow (TensorFlow [341], PyTorch [259], etc.)
is encapsulated in a Kubernetes operator that can
run local and distributed jobs. Pipelines are executed
inside separate namespaces: each user can leverage the
Kubernetes namespace isolation to prevent others from
accessing notebooks, models or inference endpoints
without proper authorisation (Section 5.2.2).
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Seldon core [315] and KServe [362] are specialised
MLOps frameworks to package, deploy, monitor and
manage machine learning models as custom resources
on Kubernetes [364]. Both encapsulate models stored
in binary artefacts or code wrappers into containers
that expose the models’ capabilities via REST/gRPC
APIs with auto-generated OpenAPI specification files.
Furthermore, both integrate with Prometheus [275]
and Grafana [133] (for monitoring metrics), with
Elasticsearch [91] or Grafana Loki [132] (for logging),
and with other tools (for features like detecting data
drift and performing progressive deployments, which we
discussed in Section 5.2.1 and 7.2). Two other options
with a similar architecture are BentoML [37] and MLEM
[160]. The former is a Python framework with a simple
object-oriented interface for packaging models into
containers and creating HTTP(S) services. The latter,
which is from the same authors as DVC, stores model
metadata as plain text files versioned in a Git repo, which
becomes the single source of truth.

Tensorflow Extended [347, also known as TFX] is a
platform to host end-to-end machine learning pipelines
based on Tensorflow. TFX is designed to run on top
of different platforms (Google Cloud via Vertex AI,
Amazon AWS) and orchestration frameworks (Apache
Airflow, Kubeflow and Apache Beam [349]), supports
distributed processing (with frameworks like Apache
Spark), and allows for local model and data exploration
using TensorBoard [346] and Jupyter notebooks. The TFX
pipeline is highly modular and is structured in different
components along the lines of those we discussed in
Chapter 5, all tied together by dependencies represented
as a DAG. The metadata required for experiment tracking
are saved using the ML metadata library [344, also
known as MLMD], along with monitoring information
and the pipeline’s logs, in a data store that supports
relational databases. All this functionality comes at the
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cost of complexity and lack of flexibility in certain areas:
choosing whether to use TFX requires a careful evaluation
of our use case before deciding whether to adopt it or
not.

Unlike Kubeflow (built around Kubernetes) or TFX (built
around Tensorflow), MLflow [420] is a library-agnostic
platform written in Python that can be integrated with
any machine learning library through lightweight APIs.
The goal of MLflow is to support MLOps by providing
four key features:

• a project packaging format built on Conda [16] and
Docker [82] which guarantees reproducibility and which
makes projects easy to share;

• an experiment tracking API to log parameters, code and
results together with an interactive user interface to
compare models and data across experiments;

• a model packaging format and a set of APIs for
deploying models to target platforms such as Docker,
Apache Spark and AWS Sagemaker; and

• a model registry with a graphical interface and a set of
APIs to work collaboratively on models.

As we mentioned earlier, we can implement machine
learning pipelines using general-purpose open-source
orchestrators like Airflow and Luigi [329] or using more
integrated tools such as Dagster [92] and Prefect 2.0
[270]. Both Dagster and Prefect 2.0 implement pipelines
in Python as modules linked in a DAG, and they provide
a web interface that makes it easy to visualise pipelines
running in production, to monitor their progress and
to troubleshoot them. Monitoring is outsourced to
Prometheus in both Airflow and Luigi. Pachyderm, unlike
Airflow and Luigi, supports unstructured data like videos
and images as well as tabular data from data warehouses.
Furthermore, it can trigger pipelines automatically based
on data changes, version data of any type and scale
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resources automatically (since it is built on containers
and runs on Kubernetes).

We can implement experiment tracking using more
lightweight tools than Kubeflow: two examples are
MLflow Tracking and DVC (integrated with a CI/CD
pipeline such as Gitlab’s or Jenkins), which we discussed
in Section 10.1. A related tool is CML [157], which is
developed by the same authors as DVC: an open-source
command-line tool that can be easily integrated into any
CI/CD pipeline to add auto-generated reports with plots
of model metrics in each pull request/merge request. In
order to do that, CML monitors changes in the data and
automates model training and evaluation as well as the
comparison of ML experiments across project iterations.
Neptune [238] is also designed specifically for storing
and tracking metadata across multiple experiments. It
implements the practices we presented in Section 5.3.4:
in particular, saving model artefacts in a model registry
along with references to the associated data, code,
metrics and environment configurations.

The other option we have is using managed cloud plat-
forms such as Sagemaker and Vertex AI. Their strength
is the deep integration with Amazon AWS and Google
Cloud, respectively, which makes it straightforward to
implement progressive delivery techniques, to centralise
logging and monitoring, and to train and serve models
using GPUs. AWS also offers integrations with Redshift
[8] and with Databricks to access data; Vertex AI does the
same with BigQuery [125], and supports working with
feature stores as well. Both platforms support Jupyter
notebooks for interactive exploration, and both support
pipelines: Sagemaker via a custom Python library, Vertex
AI via Kubeflow and TFX. In addition, Vertex AI allows us
to develop machine learning models in Jupyter notebooks,
to deploy models saved in object storage buckets, and to
upload them to a dedicated model registry. In conclusion,
both platforms are chasing each other’s features, and
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they are very comprehensive: but they can be confusing
because of that.

Finally, feature stores are increasing in popularity in
MLOps for storing and cataloguing frequently used
features and for enabling feature reuse across models,
thus reducing coupling and duplication. They are
available from open-source tools such as Feast [98] and
Hopsworks [152], Vertex AI and Databricks.

11.3 Dashboards, Visualisation and Reporting

Data visualisation is an essential part of data science
and machine learning: it helps explain complex data
and makes them understandable by users and domain
experts, allowing them to participate in the design
and maintenance of the pipeline (Chapter 5). As in
Section 11.2, we can choose to implement it with a
spectrum of solutions, from low-level libraries for
data exploration to more comprehensive visualisation
platforms that create interactive dashboards and data
reports.

The decade-old Matplotlib [155] library is the most widely
adopted Python package for basic data visualisation,
followed by its descendant Seaborn [396], which tries
to tackle some of the complexity of Matplotlib while
producing figures with a more modern look.

At a higher level, we have Plotly [264], Bokeh [46]
and Altair [6] for Python, and the ggplot2 package
[399] for R. These libraries have similar features and
aesthetics, and they can create static, animated and
interactive visualisation. Plotly, Bokeh and ggplot2 are
programmatic; Altair uses the declarative JSON syntax of
the Vega-Lite [309] language and a simple set of APIs
to implement the “Grammar of Graphics” [410], which
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has inspired the design of ggplot2 as well. Ggplot2 has
a Python port called Plotnine [182] and Altair has an R
wrapper [202] based on the reticulate package [379].

These packages are the foundation upon which more
advanced web dashboards like Dash [263], Bokeh Server
and Shiny [62] are built. Dash provides interfaces for
Jupyter notebooks and for multiple languages such as
Python, R and Julia, while Bokeh only supports Python.
Both libraries are good starting points for creating
dashboards, although Plotly has a faster learning curve.
Shiny, on the other hand, is the de facto standard for
creating web-based interactive visualisations in R due to
its deep integration with RStudio and R Markdown. Other
open-source options are Voillà [391], Streamlit [333],
and Panel [151]. Voilà can turn Jupyter notebooks into
standalone applications and dashboards, which is useful
when generating quick data analysis reports. Streamlit
and Panel build web dashboards that interact with data by
composing widgets, tables and plots from Plotly, Bokeh
and Altair, as well as viewable objects and controls. Panel
has better support for Jupyter notebooks compared to
Streamlit and Voilà.

Applications for visual analytics and business intelligence
like Tableau [337] and Microsoft PowerBI [216] are also
suitable for creating dashboards, and are especially useful
to management or domain experts who need to create
their own dashboards but whomay not be as familiar with
programming. Tableau can execute Python code on the
fly and display its outputs within Tableau visualisations
via TabPy [336]. PowerBI, on the other hand, does not yet
have a complete integration with Python: it only allows
reports to be placed within Jupyter notebooks but without
a direct connection between the data in the notebook and
the PowerBI report.

Finally, we can leverage standard monitoring and
reporting tools such as Prometheus [275] and Grafana
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[133] to display metrics related to data, features and
models. We discussed in Section 5.3.6 how important
it is to monitor every part of the pipeline: this makes it
likely that we are already using Prometheus and Grafana
to monitor other things, and we may as well use them to
track and compare data and models across environments
in addition to other metrics. This approach is certainly
robust: it uses highly-tested components. However, it
requires a significant engineering effort to integrate
the training and serving modules with Prometheus
and to integrate the dashboards into the server-side
infrastructure. We can build a similar setup with a more
opinionated approach using the TFX validation module
on Google Vertex AI, which implements training-serving
skew detection [347], or using Amazon Sagemaker with
its Monitor [9].
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Recommending Recommendations: A
Recommender System Using Natural
Language Understanding

In collaborationwithCarlo Lipizzi, TeachingAssociate Professor
& Program Lead, School of Systems and Enterprises, Stevens
Institute of Technology.

In Part I we covered the foundations underlying machine
learning pipelines; in Part II we discussed how to create
and maintain them well; and in Part III we provided a
brief overview of the tools and technologies involved.
We now put all this material into context by discussing
an abridged version of a real-world machine learning
pipeline that Carlo Lipizzi built for the U.S. Department
of Defense. We base our discussion on Lipizzi et al. [195]
and the references therein. An adapted version of the
pipeline code and configurations is available at

https://github.com/pragprogml .

We first define the scope of the pipeline and put it into
the appropriate domain context (Section 12.1). We then
outline the machine learning models involved and how
we can think of them as a data processing pipeline
(Section 12.2). Finally, we sketch a suitable hardware
and software infrastructure for the pipeline to run on
(Section 12.3) and the modules that are most interesting
from a software engineering perspective (Section 12.4).
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12.1 The Domain Problem

The first step in creating a machine learning pipeline is
to define its scope, starting with the problem it will try
to solve (Section 5.3.1). Lipizzi et al. [195] frame it as
follows:

“a system to determine what are the most relevant
recommendations that stakeholders are providing to
the Defense Acquisition community […] extracting
user-specific relevance from text and recommending
a document or part of it.”

In other words, we envisage that users will submit one or
more documents and that the machine learning pipeline
will rank them in terms of overall relevance, highlighting
the most relevant passages in each document at the same
time. This would be an ideal opening in the mission
statement document (Section 8.4).

The domain metrics that Lipizzi et al. [195] focus on are
the relevance of each document, which is defined as:

“By counting the number of words with a similarity
more than a threshold (such as 0.50) and normalising
it with respect to the number of the words in each
document, an average similarity measure is calculated
that presents the level of similarity of the entire
document with respect to the entire benchmarks. […]
A document with a higher measure is more relevant
or like the benchmarks.”

and the relevance of individual passages, which is defined
as follows:

“To determine the relevant parts of each recommen-
dation, the document was looked at in segments of
words. […] It was found that with a window of 20
words from the similarity matrix, the actual docu-
ment (which includes the raw text) would have a
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window of 35 words that would make up impor-
tant and relevant recommendations. To assure high-
quality moving average windows, the threshold of
average similarity is set to 0.75. Any window of words
above that threshold is then traced back to the original
document and is highlighted.”

What is the threshold for success? From a domain
perspective, we want relevant documents to be ranked
consistently higher than unrelated documents.

“A good indicator that the model learned is that the
control document’s similarity (0.25) was significantly
lower than the worst recommendation document (0.5).
This means that the model did an accurate job of
learning the domain of recommendations and finding
the parallels in the documents.”

In statistical terms, we can evaluate the performance
of the pipeline using any of the popular measures of
rank agreement. If we have access to a set of documents
labelled by domain experts as either relevant or unrelated,
a simple but effective choice may be the hit ratio among
the top 𝑘 documents:

HR =
number of relevant documents among the top 𝑘

𝑘
.

Firstly, we may assume that users will only look for
relevant results among the first 𝑘 of documents: after
all, 70%–90% of users never go beyond the first page
of Google results [318]. Therefore, the accuracy of
the ranking of later documents is not as important
from a domain perspective. Secondly, the labelling of
the documents will inevitably be noisy (Section 5.2.1):
different domain experts will produce different rankings.
Hopefully, we can estimate HR using a subset of
documents that all experts agree are either highly
relevant or unrelated. Granular measures of rank
agreement such as Kendall’s 𝜏 or Spearman’s 𝜌 may
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not be robust against the noise in the labels, limiting
our ability to contrast the performance of different
machine learning models. In turn, this may impact the
ability of the monitoring infrastructure (Section 5.3.6) to
automatically trigger model retraining (Section 5.3.4) or
rollbacks (Section 7.6).

For the ranking to be well-defined, we should specify
what “relevant” means. Lipizzi et al. [195] base the
pipeline design on the room theory framework developed
in their previous work [196]. The key idea behind this
framework is that we need to make machine learning
models aware of the context they operate in to achieve a
semantic understanding of the documents they analyse.
The same word may have different meanings in different
domains: disambiguating them and their relevance is
essential to move from natural language processing
(NLP) to natural language understanding (NLU). Lipizzi
et al. [196] propose to achieve NLU by having domain
experts carefully select the documents the models will
be trained on to form a knowledge base for a specific
topic. In addition, experts identify the key terms in the
domain and give them weights to encode their relative
importance. New documents will be compared to this
knowledge base, as distilled by a machine learning model:
the more similar they are to those in the knowledge
base, the more they are considered relevant. Clearly, this
approach does not work if we train our models on a large
general-purpose data set like the Wikipedia corpus: as
we argued in Section 5.3.1, identifying what data we need
to collect is essential for the pipeline to perform well. In
the case of Lipizzi et al. [195], these data are a corpus of
documents on a specific type of goods or services that
is within the purview of the procurement processes of
the U.S. Department of Defense. The corpus should be
large enough to cover all the relevant information on that
type of goods or services: if it is too small, it may not
contain all key terms and phrases or it may not allow
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us to model their relationships accurately. On the other
hand, if it is too large, it may lack focus and it may lower
the quality of the rankings produced by the models. We
should train the machine learning models in the pipeline
using only documents on the exact same topic as those
that the pipeline will be ranking (Section 9.1). Limiting
the focus of the pipeline in this way may also help in
preventing models from becoming stale (Section 5.2.1)
as quickly, since there will be fewer relevant terms and
they will only be used with a specific technical meaning.

12.2 The Machine Learning Model

The pipeline in Lipizzi et al. [195] is relatively
straightforward from a machine learning perspective
because it includes just a single model. As a result, it is
not susceptible to model feedback loops (Section 5.2.2)
and is robust against correction cascades (Sections 5.2.2
and 9.1.2). The data and the models interact in the
pipeline as follows:

1. The documents that encode the domain knowl-
edge on the acquisition of a specific type of
goods or services are ingested and prepared
(Section 5.3.3) using standard NLP techniques
including those described in Section 3.1.3. They
are a static data set that is used for training
(Section 5.3.4).

2. The domain knowledge is distilled from the
documents into word embeddings using word2vec
[299] and the list of key terms with the associated
weights provided by the domain experts. The
embeddings represent what Lipizzi et al. [196]
call the “room” and are the core of our machine
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learning model. The key terms are the vocabulary
we pass to word2vec.

3. Inference (Section 5.3.5) involves users submit-
ting new documents which are then prepared in
the same way as those in the training set. The
relevance of each document is measured as the
degree of similarity with the “room” by pooling
cosine distance and scaling it by the document’s
length. Therefore, the machine learning model
outputs a scalar number between 0 and 1 which
is then used to rank the model.

4. At the same time, the model parses each new
document sequentially, identifies sequences of
words with high relevance and highlights them.
Therefore, each inference request also returns
a modified version of the document that was
submitted by the user.

Training and inference are both computationally efficient.
The time complexity (Chapter 4) of training varies
between 𝑂(𝑁 log(𝑉 )) and 𝑂(𝑁𝑉 ), where 𝑁 is the
number of documents and 𝑉 is the number of words
in the vocabulary, depending on the implementation
of word2vec. Inference is 𝑂(𝑁) both for estimating
relevance and for highlighting relevant portions of text,
and it can be implemented as a single pass over each
document. In addition, word embeddings can be updated
when new documents are available [172]: there is no
need to relearn them from scratch when the embeddings
become stale.

In practice, Lipizzi et al. [195] limit 𝑉 by asking the
domain experts to provide a list of a few hundred
key terms: manually assembling such a list is feasible
because we are targeting a single type of goods or
services as discussed in Section 12.1. The sample size
requirements of word2vec are dramatically reduced for
the same reason [85], so both 𝑁 and 𝑉 are limited for
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practical purposes. We can, however, expand the scope by
extending the pipeline to include an ensemble of models
(one for each type of goods or services) in which the
appropriate model is selected either (manually) by the
user or (automatically) by matching the new document
to the closest “room”. The latter task can reuse the
inference module that computes document similarity, so
it has linear time complexity and should not noticeably
impact the time complexity of the pipeline.

The inputs and outputs of each of data ingestion, data
preparation, model training and inference have well-
defined characteristics that make it easy to construct
a suite of software tests based on property-based
testing (Section 9.4) and to monitor their behaviour
in production (Section 5.3.6). The models and the
algorithms involved are easy to replace with new ones
that have better performance in model evaluation and
validation (Section 5.3.4) because we can demonstrate
them to be functionally equivalent to those we are
currently using. In particular:

• Data ingestion takes PDFs containing text as inputs and
outputs the words therein as a vector of strings.

• Data preparation takes a vector of strings as input,
performs the operations discussed in Section 3.1.3 and
outputs a second vector of strings containing only the
key terms in the list provided by the domain experts.

• Model training takes the output from data preparation
as an input and outputs the word embeddings, which
can be either a sparse or a dense matrix (Sections 3.2.3
and 4.5.2).

• Inference takes the word embeddings and one or more
new, preprocessed documents as inputs and outputs
a relevance score (a scalar) and a document with
highlights as outputs. The outputs may or may not
be ordered in order of reverse relevance, depending on
whether they are meant for programmatic use rr for a
dashboard.
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We should test that data ingestion correctly handles
well-formed PDFs, and either fails outright or degrades
gracefully when handed malformed PDFs or PDFs with
structured data that cannot be parsed as text (for instance,
tables and equations). Optionally, we could augment data
ingestion with bitmapping and OCR to try and salvage
such documents. Data preparation should handle text
related to the goods or services within the scope of the
pipeline, dropping unrelated words and rejecting texts
in a language different from English. We should also test
that model training and inference complete successfully
for boundary and valid inputs (say, documents with
no relevant keyword, just one relevant keyword, all
relevant keywords) and to fail for invalid inputs (say,
empty documents, NA strings). Finally, we should add
integration and system testing to examine the stability
of all outputs and of the pipeline as a whole: submitting
PDFs containing text with small perturbations (replacing
a word with a synonym, etc.) should result in very similar
relevance scores. We can do the same with invariants like
punctuation and capitalisation, both of which should be
removed during data preparation. These tests and the
corresponding monitoring facilities should be designed
to cover all parts of the pipeline, to be as few as possible
(Section 9.4.6) and to be fast enough to allow for live
monitoring.

Having such a suite of software tests integrated in our
CI/CD and monitoring facilities makes it possible to
safely plug in new software and models to upgrade
different parts of the pipeline. However, we should
measure and log how many resources the upgraded
parts use (Section 5.3.6). Firstly, we should ensure
that the hardware infrastructure we will draw up in
Section 12.3 is sufficient to run them or scale it as
appropriate (Section 2.4). Secondly, monitoring facilities
should still be able to provide real-time feedback. After
all, NLPmodels are notorious for being resource intensive
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(Section 9.2.3)! For the particular application in Lipizzi et
al. [195], it is particularly important for inference to have
low latency because we envisage that users will expect
the documents to be ranked in real time.

12.3 The Infrastructure

How the software implementation of the pipeline should
be divided into modules should be apparent: the data
processing steps we described in Section 12.2 map well
to the general architecture we discussed in Section 5.3.
In order to support it, we should perform some capacity
planning and estimate its compute, memory and storage
needs (Section 2.4).

The pipeline described in Lipizzi et al. [195] is not
particularly demanding in terms of computing power.
The narrow focus of the “room” on a single type of
goods or services means that we can keep our training
set small and limit our storage needs as well. We do not
have stringent memory requirements either: the word
embeddings are limited in size because of the limited
number of key terms in the vocabulary. Furthermore,
we do not need to load the complete training set into
memory to learn them: we can use the documents in
smaller batches and learn the embeddings incrementally
[172].

Therefore, at a bare minimum, we need:

• a machine learning system for model training,
optimised for compute and memory;

• a set of systems with less memory and compute but
good network connectivity to distribute the inference
load and keep latency low;

• a storage system to hold the PDF documents used for
training, the prepared textual data we extract from
them and a model repository with the embeddings;
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• a separate system hosting the pipeline orchestrator,
the CI/CD infrastructure and the server components of
logging and monitoring (Section 5.3.6).

We should also take care of assigning sufficient resources
to all the environments we use (test, pre-production,
production) and of making as similar as possible in their
hardware configurations.

The machine learning system dedicated to model training
may be a local system: this facilitates experimentation
because observability is more limited on remote systems
(Section 2.3). Furthermore, we should plan for the future:
we should equip it with GPUs or TPUs to be able to explore
more complicated NLP models (with an eye towards
adopting them and replacing word2vec if they perform
better) and to accelerate word2vec to the point where
increasing the size of the training set over time becomes
a non-issue. It then makes sense for the storage systems
holding the raw and prepared data to be local systems
as well, and to be placed in the same facility as that
performing model training to reduce the overhead of
data access in model training. Cold storage (Section 2.1.2)
is suitable for raw data (the PDF documents): we need to
access them only when working on data ingestion and
preparation, not for training. Hot storage may be better
for the prepared data, again to limit the overhead of data
accesses and increase operational intensity (Section 2.2).

In contrast, the machine learning systems running the
inference modules are better placed in geographically-
distributed cloud instances if the users are spread over
the world, which is definitely the case for U.S. Defense
personnel, to reduce latency across the board. We may
locate the model repository in the same cloud to facilitate
model deployment (Section 5.3.5 and Chapter 7).

Finally, the orchestrator, the CI/CD infrastructure, and
the logging and monitoring facilities should be placed on
completely separate hardware and network connections
to ensure they will be available and accessible regardless



12.4 The Infrastructure 287

of any hardware or software issues affecting the other
modules in the pipeline. We should also set them
up (or the MLOps platform, if we are using one in
their place) in a clustered configuration to avoid single
points of failure and strive for maximum scalability
and reliability. They will be required to restore the
pipeline to a functional state, for instance, by rolling
back malfunctioning machine learning models. Keeping
the model registry in the cloud makes replicating it it
in different geographical regions easier, increasing its
availability and reliability in adverse scenarios.

How can we design a backup and disaster recovery
strategy? That depends on how we manage our
infrastructure and on whether the infrastructure is local,
remote or a mix of both. If we can rely on configuration
management and we have our infrastructure completely
described as-code, it may be preferable to re-create
it from scratch and re-run the CI/CD pipeline. Just
re-running the CI/CD pipeline may be enough to fix
minor issues such as a botched module deployment. For
instance, Kubernetes [364] can back up the state of any
cluster it manages and restore from a single component
to the complete cluster in case of disaster [387]. If our
infrastructure is not stored as-code, which may be the
case for legacy environments, we can only rely on taking
regular snapshots of all systems and restoring them as
needed.

If part of our infrastructure is remote, we should keep in
mind that cloud providers and third-party services can
fail and have downtimes of a day or two. Therefore, it is
safer to have a set of geographically-distributed systems
with a mix of cloud and local deployments. In the case of
inference modules, we can thus ensure that the users or
the services that consume the inference outputs can fall
back to a functioning system in case of failures (hopefully
handling retries and fallbacks transparently).
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12.4 The Architecture of the Pipeline

We aim to develop a pipeline that is as close as possible to
production grade for the use case presented by Lipizzi et
al. [195], while keeping it simple enough that it can serve
as a useful illustration of the practices we discussed in
Parts II and III. To make it completely reproducible, we
use only open-source components, installed and executed
as standalone applications or from container images
[82]. Furthermore, we choose to manage the whole
pipeline with a Git [360] monorepo (Section 6.4) that
encloses all the components to configure, provision, start
and monitor its execution. Additional documentation
on the pipeline architecture and a list of the software
prerequisites for our development environment can be
found on the README.md file in the repository’s root.

We will use as reference architecture the pipeline
structure presented in Section 5.3, which outlines at
a high level a pipeline enclosed in five architectural
modules:

• data ingestion and data preparation (Section 12.4.1);
• data tracking and versioning (Section 12.4.2);
• model training, validation and experiment tracking
(Section 12.4.3);

• model packaging (Section 12.4.4);
• CI/CD deployment and inference (Section 12.4.5).

We decided on this design, shown in Figure 12.1, for two
reasons:

• Pipelines are rarely managed end-to-end by a single
software solution in practice: in the vast majority of
cases, they comprise and integrate multiple platforms
and components working together.

• Different pieces of software have different strengths
and weaknesses and each excels in a specific area: as we
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FIGURE 12.1 The architecture of our NLU ML pipeline.

have pointed out in Part III, there is no one-size-fits-
all MLOps solution! Using separate solutions for data
engineering, model training and experimental tracking,
we can illustrate different open-source tools and how
to interface them.

12.4.1 Data Ingestion and Data Preparation

For reproducibility, we decided to use a set of freely-
accessible documents instead of those originally used in
Lipizzi et al. [195]: a corpus of scientific articles belonging
to a research topic that is fairly homogeneous but, at the
same time, has a large enough number of publications.
The corpus we chose comprises the arXiv preprints whose
abstract contains the terms “causal inference”, “causal
network”, “counterfactual” or “causal reasoning”, and
that were submitted between August 1, 2021 and August
31, 2022. The resulting query

date_range:from 2021-08-01 to 2022-08-31;abs:"causal inference" OR
"causal network" OR "counterfactual" OR "causal reasoning"
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FIGURE 12.2 Data ingestion and data preparation steps.

submitted using the arXiv’s public APIs [26], returns
a corpus of 1044 articles with the associated metadata,
including the HTTP URL of the PDF file.

We implement this part of the pipeline using Apache
Airflow [348], which we introduced in Section 10.3.
The DAG that represents the data ingestion and
data preparation steps is shown in Figure 12.2: each
step is implemented as a Python function and called
by Airflow using the generic PythonOperator and
pythonVirtualenvOperator interfaces. More in detail:

1. ArXiv Query: we call the arXiv APIs and process
the returned list to extract the PDF URLs.

2. Article Download: we download the PDFs returned
by the query with a multi-threaded HTTP Python
client, respecting the rate limits imposed by arXiv,
and we store them in a local filesystem or local
object storage (implemented with MinIO [223]).

3. Text Conversion: we extract the text in PDF into
a plain-text file using one of the many available
Python libraries, such as PyPDF2 [99], PdfMiner
[320] or Spacy [97]. As before, we process
multiple documents in parallel using a thread
pool.

4. Basic Cleaning, n-Gramming, Stopwords Removal:
we preprocess the text files using NLP libraries
such NLTK [240], Spacy [97] and Gensim
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[292]. In particular, we perform case conversion,
punctuation and stopword removal, stemming,
lemmatisation and n-gramming.

5. Tokens: what is left are tokens1 suitable for
modelling in NLP and NLU applications.

The Python code for the Airflow DAG provides a
programmatic view of how the blocks in Figure 12.1 are
implemented and linked together.

Pythonwith DAG('ingestion', ...) as dag:
[...]
get_article_urls = PythonOperator(

task_id='query_arxiv_archive',
python_callable=query_arxiv,
op_kwargs={'query': query}

)

download_article = PythonOperator(
task_id='download_from_arxiv_archive',
python_callable=download_arxiv,
op_kwargs={}

)

extract_text_from_article = PythonOperator(
task_id='extract_text',
python_callable=convert_pdf_to_text
op_kwargs={},

)
[...]
get_article_urls >> download_article
download_article >> extract_text_from_article
[...]

The two main challenges we tackle are the scalability
of extracting the text from the PDF files and the

1A sequence of characters grouped to provide a semantic unit for
NLP processing.
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robustness of the software tests. We achieve scalability
with multithreading in the Python code we call from
Airflow; we could have achieved similar results at
the level of the Airflow DAG using Celery [19] or the
Kubernetes [364] executor, or by completely replacing
Airflow with Apache Spark [353]. As for cleaning the
extracted text, we develop a set of custom methods to
perform the basic NLP cleaning tasks, and a custom n-
gramming method for detecting the unigrams, bigrams
and trigrams identified as the key terms by experts in
the domain of causal inference. Both are organised in
dedicated submodules and complemented by unit tests.
The n-grams list is a static resource file versioned in Git
and referenced via environment variables in the pipeline
stages.

The output of the DAG is a list of tokens that we will
model with word2vec. The tokens, the list of the PDF
URLs, the list of n-grams and the metadata that define
the arXiv query are stored inside a data tracking and
versioning repository backed by DVC [158] to ensure
reproducibility and to allow us to track data provenance,
as discussed in Section 5.3.3. We can integrate Airflow
and DVC with a custom Airflow operator or by calling
the dvc commandline client from the Airflow built-in
operator BashOperator .
The Airflow DAG is configured to write task logs to
stdout , where they are collected by a tool such as Fluentd
[359] and forwarded to a logging database such as
Elasticsearch [91]. Airflow can also be configured to
export task execution metrics to dashboards built by tools
such as Grafana [133]. The logs themselves take the form
of a JSON object representation of the LogRecord object
in the Python Airflow code, which can be passed to the
Python logging module.
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12.4.2 Data Tracking and Versioning

In addition to ingesting and cleaning the data in a
reproducible way, we also want to track all the data sets
that are produced by the steps described in Section 12.4.1:
the DAG may be scheduled to run daily with different
search queries to create additional knowledge domains
as described in Lipizzi et al. [195] or to retrain existing
word2vec models. Therefore, we choose to version the
machine learning code (Section 6.5) together with the
text corpus. This allows us to evaluate different NLP
frameworks, choices for the parameters of word2vec and
sets of n-grams from the domain experts.

As we mentioned in Section 12.4.1, we choose DVC
to implement data versioning. DVC can also perform
experiment tracking, but we will implement that in
Section 12.4.3 with MLflow (which we introduced in
Section 10.1 along with DVC). We initialise the Git
repository for use by DVC, and we pull the tokens
produced by the Airflow DAG from the remote object-
storage we stored them in with the command dvc pull.
This also pulls the corresponding metadata, which are
versioned and stored in a YAML .dvc file like that below.

YAMLouts:
- md5: 853c9693c5aac78162da1c3b46aec63e
size: 2190841
path: causal_inference.txt

meta:
search_query: "causal inference"
search_start: 1629410400
search_end: 1672441200
[...]

The md5 attribute represents the hash of content and
the path attribute is the path of the file or directory
relative to the working directory, which defaults to the
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file’s location. We can then start experimenting using a
development flow like the following.

Shell$ git log --oneline
669a39e (HEAD -> master, tag: v0.0.1) - w2v baseline impl.
[...]
$ dvc remote list # list remote storage configured in DVC
exp_bucket s3://exp_bucket
$ dvc pull # fetch data from remote storage into the project
A datasets/causal_inference.txt
A datasets/causal_inference_small.txt
2 files added
$ nvim src/train-cli.py # tune the training code
$ pipenv run src/train-cli.py --dataset=datasets/causal_inference.txt
...

$ git status -s
M src/train.py
$ git add src/train-cli.py
$ git commit -m 'Changed word2vec window size to 4'
$ git tag -a 'v0.0.2' -m 'Changed word2vec window size to 4'

12.4.3 Training and Experiment Tracking

The tokens we produced in Section 12.4.1 and tracked in
Section 12.4.2 are the input for the word2vec implementa-
tion in Gensim, available from models.word2vec , together
with the list of n-grams provided by the domain experts
(the vocabulary variable in the code below). word2vec
returns a wv object that stores each embedding (that is, a
word vector) in a structure called KeyedVectors that maps
the n-grams (the “keys”) to vectors. The KeyedVectors
can be used to perform operations on the vectors, such
as computing their distance or their similarity.

Python[...]
model = Word2Vec(

callbacks=[Word2vecCallback()],
compute_loss=True,
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vector_size=vector_size,
min_count=min_count,
window=window,
workers=workers)

)

model.build_vocab(
corpus_iterable=vocabulary,
progress_per=1,
trim_rule=_rule

)

model.train(
sentences,
total_examples=model.corpus_count,
epochs=epochs,
report_delay=1.0,
compute_loss=True,
callbacks=[Word2vecCallback()],

)

word_vectors = model.wv
[...]

We obtain the tokens by calling the get_url() method
of the DVC Python API [159], which returns the URL of
the storage location of corpus_path for a specific revision
defined in revision of the dataset present in the path .

Pythonimport dvc.api
...
corpus_path = dvc.api.get_url(

path=corpus_path,
repo=repo_path,
rev=revision,
remote=remote



296 12 Recommending Recommendations

)
...

The corpus is sequentially read, tokenised and fed
directly to the train() method of word2vec. We set
the arguments of the train() method [293] using
environment variables, as suggested in Section 5.1,
to facilitate multiple experimentations with different
combinations of:

• vector_size: the number of dimensions of the word
vectors (default: 100);

• window: the maximum distance between the current
and predicted word within a sentence (default: 5).

• min_count: the minimum frequency for a word to be
considered (default: 5).

• workers: the number of worker threads to train the
model (default: 3).

As for experiment tracking, we implement it using the
following MLflow tracking APIs:

• log_param() : for tracking the word2vec parameters
and the metadata associated with the input tokens, in
particular the arXiv query that produced them and the
DVC file path and hash they were pulled from;

• log_metric() : for logging the dimensions of the
embeddings produced by the model;

• log_artifact() : for logging the name of a local file or
directory, such as those containing the n-grams from
the domain experts and the word vectors of the trained
model, as an artefact of the experiment.

Here is a short example of how we use these methods in
our code.

Pythonfrom mlflow import (log_metric,log_param,log_artifacts,
create_experiment,start_run,end_run)

[...]
experiment_id = create_experiment(
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"NLU experiments on causal inference corpus",
artifact_location=Path.cwd().joinpath("mlruns").as_uri(),
tags={},

)
start_run(experiment_id=experiment_id)
log_param("query", query)
[...]
log_param("window", window)
log_param("stop_date", stop_data)
[...]
log_metric("wv_size", model.wv.vector_size)
[...]
log_artifact("corpus.txt")
log_artifact("keywords.txt")
log_artifact("vectors.kv")
end_run()
[...]

We save the model in MLflow using its python_function
interface, which supports custom models implemented
as generic Python functions. Specifically, we serialise
the learned word vectors contained in model.wv with
the Gensim function save() , and we reload them later
with the function KeyedVectors.load() when the serving
model.

12.4.4 Model Packaging

BentoML [37], which we introduced in Section 11.2, can
import a serialised Python model or an MLflow model,
and it can bind its API to a RESTful endpoint with a
minimal use of glue code. Therefore, it is a convenient
choice to package and serve the word2vec model. In our
case, the classification API that computes the degree of
similarity between the PDF document submitted by the
user and those used to train the word2vec model (that is,
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what we call the “room” in Section 12.1) is exposed as a
/classify endpoint.
The code snippet below shows the declaration of the
service with the API and decorator provided by BentoML.
Once the service is running, the API will be available at
/classify : it will accept a PDF file as input and return
a scalar between 0 and 1. As a future enhancement, we
could build an additional /rank API endpoint that accepts
a JSON-formatted list of PDF URLs as input, runs calls
/classify API for each of them and returns a sorted list of
documents with the associated ranking and similarities.

Pythonfrom __future__ import annotations

import io
from typing import Any
import typing

import numpy as np

import bentoml
from bentoml.io import File
from bentoml.io import JSON

nlu_runner = bentoml.picklable_model.get("nlu_exp:v0.0.2).to_runner()
svc = bentoml.Service("pdf_classifier", runners=[nlu_runner])

@svc.api(input=File(), output=JSON())
def classify(input_pdf: io.BytesIO[Any]) -> typing.List[float]:

return nlu_runner.classify.run(input_pdf)

12.4.5 Deployment and Inference

One advantage of using containers to deploy and serve
models is that they can be deployed locally using Docker
or in a target (possibly remote) environment using
Kubernetes (Section 7.1.4). This is an important point in
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our use case: as discussed in Section 12.3, our pipeline
runs on a combination of local and remote systems.
Therefore, we use the bentoml containerize command to
build a container image with all the requirements needed
to run the inference API we defined in Section 12.4.4:
the output is a Docker container with a stateless RESTful
API server implemented in Python. The commands for
building the container are shown below.

Shell$ bentoml containerise nlu_exp:v0.0.2
$ docker run -d --rm -p 3000:300 nlu_exp:v0.0.2

After starting the container, the API server is reachable at
http://127.0.0.1:3000 . The URL http://127.0.0.1:3000
/classify serves the API from Section 12.4.4 and
http://127.0.0.1:3000/ displays a web page with the
dynamically-generated OpenAPI documentation [326]
(Figure 12.3). We also make available additional liveness
and readiness APIs to support deployment on Kubernetes,

POSTPOST / cl assi f y InferenceAPI( → JSON)

Cancel

No parameters

Request body application/octet-stream

no file selectedChoose File

Execute

Responses

Code Description Links

200 Successful Response No links

Parameters

required

FIGURE 12.3 The OpenAPI specification generated by
BentoML.

http://127.0.0.1:3000
http://127.0.0.1:3000
http://127.0.0.1:3000
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as well as a /metrics endpoint that returns the service
metrics in Prometheus format [275].

The RESTful interface is designed to be used program-
matically: we can access it using tools like curl or API
testing tools like Postman [386]. We can also query it in
our continuous integration setup to run integration tests
and verify that the build process successfully created
the container image. However, the RESTful interface can
also serve as a backend to build web applications that
consume the API outputs and display them through dash-
boards (using the tools we discussed in Section 11.3) or
simple web interfaces (using libraries such as React [211]
or frameworks such as Vue.js [419]; or libraries for UI
development in Python such as Gradio [1] and Streamlit
[333]). They are useful to domain experts to inspect the
inference outputs and validate them and the model that
generates them as humans-in-the loop (Sections 5.3.4
and 5.3.6). In particular, they make it possible for domain
experts to iteratively refine the list of key terms we use
as the vocabulary of word2vec as envisaged by Lipizzi et
al. [195].

To validate the /classify API, we can upload (POST) the
PDF of a scientific article on causal inference with the
command-line tool curl ,

Shell$ curl -H "Content-Type: multipart/form-data" \
-F 'fileobj=@good-article.pdf;type=application/octet-stream' \
http://remote:3000/classify

{"value":0.8203434225167339}%

and another on a completely different topic.

Shell$ curl -H "Content-Type: multipart/form-data" \
-F 'fileobj=@bad-article.pdf;type=application/octet-stream' \
http://remote:3000/classify

{"value":0.24675693999330117}%

As we can see from the relevance scores, the “/classify”
API responds correctly for both relevant and unrelated
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documents (Section 9.4.6). The underlying classify()
method computes the cosine distance between the
KeyedVectors , returns the degree of similarity as a float,
and logs the PDF metadata and the relevance to a remote
logging database via Fluentd.

Python[...]
# load serialised KeyedVectors from the `knowledge_ww_fp` path
knowledge_wv = KeyedVectors.load(knowledge_ww_fp, mmap="r")
# get the KeyedVectors pairs that match the
# vocabulary word (the keyword list from the expert)
knowledge_v = get_word2vec_vectors(

word_vectors=knowledge_wv,
vocabulary=vocab

)
# train on the fly a word2vec model on
# the PDF converted into text
model = word2vec(text, vocab)
document_v = get_word2vec_vectors(

word_vectors=model.wv,
vocabulary=vocab

)
[...]
dist = 1 - distance.cosine(document_v.mean(0), knowledge_v.mean(0))
[...]
logger.warning("Classify request with distance %f for %s",

dist, metadata)
[...]
return dist

The Docker image that serves the APIs can be
automatically rebuilt using tools like Jenkins [164],
GitLab CI or GitHub Actions each time we release a new
model. We can deploy it to a container service or to an
orchestrator by applying one of the techniques discussed
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in Section 7.2. Thanks to its stateless composition, the
container can scale horizontally if necessary (we just
deploy more instances of it) so we can handle increasing
loads over time.
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