
+ UDP/TCP + WiFi + Flask Cloud + TFT + I

+ UDP/TCP + WiFi + Flask Cloud + TFT + I2C +

LCD + Arduino + Sensor HAT + Node-RED + Alexa

+ IoT + MQTT + Bluetooth + Motors + Python +

5 V Power

5 V Power

Ground

GPIO 14 | (UART TX)

GPIO 15 | (UART TX)

GPIO 18* | Chip Enable-CE0 (SPI 1) | BCK (I2S)

Ground

GPIO 23

GPIO 24

Ground

GPIO 25

GPIO 8 | Chip Enable-CE0 (SPI 0)

GPIO 7 | Chip Enable-CE1 (SPI 0)

GPIO 1 | EEPROM Serial Clock (I2C)

Ground

GPIO 12*

Ground

GPIO 16 | Chip Enable-CE2 (SPI 1)

GPIO 20 | MISO (SPI 1) | DIN (I2S)

GPIO 21 | SCLK (SPI 1) | DOUT (I2S)

3.3 V Power

Serial Data (I2C) | GPIO 2

Serial Clock (I2C) | GPIO 3

GPIO 4

Ground

Chip Enable-CE1 (SPI 1) | GPIO 17

GPIO 27

GPIO 22

3.3 V Power

MOSI (SPI 0) | GPIO 10

MISO (SPI 0) | GPIO 9

 SCLK (SPI 0) | GPIO 11

Ground

EEPROM Serial DATA (I2C) | GPIO 0

GPIO 5

GPIO 6

GPIO 13*

MISO (SPI 1) | LRCK (I2S) | GPIO 19*

GPIO 26

Ground

* PWM

Dogan Ibrahim

The Raspberry Pi
Zero 2 W GO! Book

A Fast-Lane Ride From Concept to Project

The Raspberry Pi
Zero 2 W GO! Book
A Fast-Lane Ride From Concept to Project

Prof Dogan Ibrahim has a BSc
(Hons) degree in Electronic
Engineering, an MSc degree in
Automatic Control Engineering,
and a PhD degree in Digital Signal
Processing and Microprocessors.

Dogan has worked in many
organizations and is a Fellow of
the Institution of Engineering
and Technology (IET) in UK as
well as a Chartered Electrical
Engineer. He has authored over
100 technical books and over 200
technical articles on electronics,
microprocessors, microcontrollers,
and related fields. Dogan is a
certified Arduino professional and
has many years of experience with
numerous types of microprocessors
and microcontrollers.

The core of the book explains the use of the Raspberry Pi Zero 2 W
running the Python programming language, always in simple terms and
backed by many tested and working example projects. On part of the
reader, familiarity with the Python programming language and some
experience with one of the Raspberry Pi computers will prove helpful.
Although previous electronics experience is not required, some knowledge
of basic electronics is beneficial, especially when venturing out to modify
the projects for your own applications.

Over 30 tested and working hardware-based projects are given in the
book, covering the use of Wi-Fi, communication with smartphones and
with a Raspberry Pi Pico W computer. Additionally, there are Bluetooth
projects including elementary communication with smartphones and
with the popular Arduino Uno. Both Wi-Fi and Bluetooth are key features
of the Raspberry Pi Zero 2 W.

Some of the topics covered in the book are:

> Raspberry Pi OS installation on an SD card
> Python program creation and execution on the Raspberry Pi Zero 2 W
> Software-only examples of Python running on the Raspberry Pi Zero

2 W
> Hardware-based projects including LCD and Sense HAT interfacing
> UDP and TCP Wi-Fi based projects for smartphone communication
> UDP-based project for Raspberry Pi Pico W communication
> Flask-based webserver project
> Cloud storage of captured temperature, humidity, and pressure data
> TFT projects
> Node-RED projects
> Interfacing to Alexa
> MQTT projects
> Bluetooth-based projects for smartphone and Arduino Uno

communications

All programs discussed in this book are contained in an archive file
you can download free of charge from the Elektor website. Head to:
www.elektor.com/books and enter the book title in the Search box.

Elektor International Media
www.elektor.com

The Raspberry Pi Zero 2 W
 G
O
! Book • D

ogan Ibrahim

books booksbooks books

SKUxxxxx_COV_The Raspberry Pi Zero 2 W GO Book_v03.indd Alle pagina'sSKUxxxxx_COV_The Raspberry Pi Zero 2 W GO Book_v03.indd Alle pagina's 07-03-2023 15:1607-03-2023 15:16

The Raspberry Pi
Zero 2 W GO! Book

A Fast-Lane Ride From Concept to Project

●

Dogan Ibrahim

The Raspberry Pi Zero 2 W GO! - UK.indd 3The Raspberry Pi Zero 2 W GO! - UK.indd 3 08-03-2023 09:2308-03-2023 09:23

● 4

● This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.
PO Box 11, NL-6114-ZG Susteren, The Netherlands
Phone: +31 46 4389444

● All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this
publication, without the written permission of the copyright holder except in accordance with the provisions of the
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to
reproduce any part of the publication should be addressed to the publishers.

● Declaration

The author, editor, and publisher have used their best efforts in ensuring the correctness of the information contained
in this book. They do not assume, and hereby disclaim, any liability to any party for any loss or damage caused by
errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other cause.
All the programs given in the book are Copyright of the Author and Elektor International Media. These programs
may only be used for educational purposes. Written permission from the Author or Elektor must be obtained before
any of these programs can be used for commercial purposes.

● British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

● ISBN 978-3-89576-549-0 Print
ISBN 978-3-89576-550-6 eBook

● © Copyright 2023: Elektor International Media B.V.
Editor: Jan Buiting, MA
Prepress Production: D-Vision, Julian van den Berg

Elektor is the world's leading source of essential technical information and electronics products for pro engineers,

electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers

high-quality content - via a variety of media channels (including magazines, video, digital media, and social media) in

several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

The Raspberry Pi Zero 2 W GO! - UK.indd 4The Raspberry Pi Zero 2 W GO! - UK.indd 4 08-03-2023 09:2308-03-2023 09:23

Contents

● 5

Contents

Preface .11

Chapter 1 • The Raspberry Pi Zero 2 W .12

1.1 Overview . 12

1.2 The Zero 2 W development board . 12

1.2.1 Zero 2 W current consumption, and GPIO voltages and currents 15

1.3 Installing the operating system . 15

1.4 Powering-up the Zero 2 W . 18

1.5 Remote access . 18

1.5.1 Configuring Putty . 20

1.5.2 Remote access of the Desktop . 20

1.6 Assigning static IP address to your Zero 2 W . 22

Chapter 2 • Using a Text Editor in Command Mode .24

2.1 The "nano" text editor . 24

Chapter 3 • Creating and Running a Python Program .28

3.1 Overview . 28

3.2 Method 1 — Interactively from command prompt . 28

3.3 Method 2 — Create a Python file in command mode . 29

3.4 Method 3 — Create a Python file in GUI mode. 29

3.5 Which method? . 31

3.6 The Thonny screen . 31

3.6.1 Using the debugger. 31

Chapter 4 • Software-Only Python Programs using the Zero 2 W.33

4.1 Overview . 33

4.2 Example 1 — Average of two numbers read from the keyboard. 33

4.3 Example 2 — Average of 10 numbers read from the keyboard 33

4.4 Example 3 — Surface area of a cylinder . 34

4.5 Example 4 — ºC to ºF conversion . 35

4.6 Example 5 — Surface area and volume of a cylinder; user function 35

4.7 Example 6 — Table of squares of numbers . 36

4.8 Example 7 — Table of trigonometric sine . 36

Contents

The Raspberry Pi Zero 2 W GO! - UK.indd 5The Raspberry Pi Zero 2 W GO! - UK.indd 5 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 6

4.9 Example 8 — Table of trigonometric sine, cosine, and tangent 37

4.10 Example 9 — Trigonometric function of a required angle. 37

4.11 Example 10 — Series and parallel resistors . 38

4.12 Example 11 — Words in reverse order . 39

4.13 Example 12 — Calculator . 40

4.14 Example 13 — File processing: writing . 41

4.15 Example 14 — File processing: reading . 41

4.16 Example 15 — Squares and cubes of numbers . 42

4.17 Example 16 — Multiplication timetable . 42

4.18 Example 17 — Odd or even. 43

4.19 Example 18 — Binary, octal, and hexadecimal. 43

4.20 Example 19 — Add two matrices . 44

4.21 Example 20 — Shapes . 44

4.22 Example 21 — Solution of a quadratic equation. 46

4.23 Example 22 — Matrix multiplication . 47

4.24 Example 23 — Factorial of a number . 47

4.25 Example 24 — Compound interest . 48

4.26 Example 25 — Guess the number . 49

4.27 Example 26 — Numerical integration . 49

4.28 Example 27 — Practise arithmetic . 51

4.29 Plotting in Python . 52

4.29.1 Graph of a quadratic function . 53

4.29.2 Drawing multiple graphs . 54

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W58

5.1 Overview . 58

5.2 Project 1: External flashing LED . 58

5.3 Project 2: Flashing the SOS signal . 62

5.4 Project 3: Binary counting with 8 LEDs. 64

5.5 Project 4: Christmas Lights (randomly flashing 8 LEDs) . 68

5.6 Project 5: Rotating LEDs with pushbutton switch control 71

5.7 Project 6 – Morse Code exerciser with buzzer . 75

5.8 Project 7: Electronic dice . 81

The Raspberry Pi Zero 2 W GO! - UK.indd 6The Raspberry Pi Zero 2 W GO! - UK.indd 6 08-03-2023 09:2308-03-2023 09:23

Contents

● 7

5.9 Project 8: LED brightness control . 86

5.10 Project 9: Lucky day of the week . 91

5.11 Project 10: Using an I2C LCD: Seconds counter . 94

5.12 Project 11: Analog temperature sensor thermometer . 99

5.13 Project 12: Analog temperature sensor thermometer with LCD output 104

5.14 Project 13: Reaction timer . 107

5.15 Project 14: Vehicle parking aid . 109

5.16 Project 15: Real-Time graph of the temperature and humidity. 115

5.17 The Sense HAT interface. 119

5.17.1 Programming the Sense HAT . 120

5.17.2 Project 16: Displaying text on Sense HAT . 121

5.17.13 Project 17: Test your math skills: multiplication . 123

5.17.14 Project 18: Learning the times tables . 124

5.17.15 Project 19: Display temperature, humidity, and pressure 126

5.17.16 Project 20: ON-OFF temperature controller . 127

Chapter 6 • Communication over Wi-Fi .133

6.1 Overview . 133

6.2 UDP and TCP. 133

6.2.1 UDP communication . 133

6.2.2 TCP communication. 134

6.3 Project 21: Sending a text message to a smartphone using TCP/IP 135

6.4 Project 22: Two-way communication with the smartphone using TCP/IP. 138

6.5 Project 23: Communicating with a PC using TCP/IP . 140

6.6 Project 24: Controlling an LED connected to the Zero 2 W from the smartphone,
using TCP/IP. 143

6.7 Project 25: Sending a text message to a smartphone using UDP 145

6.8 Project 26: Controlling an LED connected to the Raspberry Pi Zero 2 W from the
smartphone, using UDP . 148

6.9 Using Flask to create a Web Server to control Raspberry Pi Zero 2 W GPIO ports
from the Internet . 151

6.10 Project 27: Web Server — Controlling an LED connected to the Raspberry Pi
Zero 2 W, using Flask . 154

6.11 Communicating with the Raspberry Pi Pico W over Wi-Fi. 158

The Raspberry Pi Zero 2 W GO! - UK.indd 7The Raspberry Pi Zero 2 W GO! - UK.indd 7 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 8

6.12 Project 28 – Raspberry Pi Zero 2 W and Raspberry Pi Pico W communication –
controlling a relay over Wi-Fi . 161

6.13 Project 29 — Storing ambient temperature and atmospheric pressure data
in the Cloud . 165

6.14 Useful network commands . 171

6.14.1 Ping . 171

6.14.2 hostname. 172

6.14.3 ifconfig . 172

6.14.4 route . 173

6.14.5 netstat. 173

6.14.6 host . 174

6.15 Setting-up Wi-Fi on your Raspberry Pi Zero 2 W . 174

6.15.1 During the installation of the Raspberry Pi operating system 174

6.15.2 Modifying the Wi-Fi details on the SD card . 174

6.15.3 Setting via the Task Bar. 175

6.15.4 Using the raspi-config tool . 175

6.15.5 Manual setup . 176

6.16 Finding the IP address of your Zero 2 W . 176

6.16.1 Using a smartphone app . 176

6.16.2 Using a PC program . 178

6.16.3 Using nmap . 179

6.17 Project 30 – Fetching and displaying the real-time weather data on the screen . . 179

6.18 Using TFT displays with the Raspberry Pi Zero 2 W . 182

6.18.1 TFT display used . 183

6.18.2 Connecting a TFT display to the Raspberry Pi Zero 2 W 184

6.18.3 ST7735 TFT display driver library . 184

6.18.4 Example display — writing text. 185

6.18.5 Example display — displaying various shapes . 186

6.18.6 Project 31 — Displaying the local weather data on TFT 188

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W191

7.1 Overview . 191

7.2 Installing and running Node-RED on the Raspberry Pi Zero 2 W 191

The Raspberry Pi Zero 2 W GO! - UK.indd 8The Raspberry Pi Zero 2 W GO! - UK.indd 8 08-03-2023 09:2308-03-2023 09:23

Contents

● 9

7.3 Node-RED interface to external world. 193

7.4 Project 32: Hello World! . 193

7.5 Core nodes . 196

7.5.1 Input nodes . 196

7.5.2 Output nodes . 197

7.5.3 Function nodes . 197

7.5.4 Social nodes. 198

7.5.5 Storage nodes . 198

7.5.6 Analysis nodes . 198

7.5.7 Advanced nodes . 199

7.5.8 Raspberry Pi nodes . 199

7.6 Project 33: Dice number. 199

7.7 Project 34: Double dice numbers. 200

7.8 Project 35: LED control . 202

7.9 Project 36: Flashing an LED . 204

7.10 Project 37: Pushbutton switch input . 206

7.11 Using the ALEXA in Node-RED projects with the Raspberry Pi Zero 2 W 207

7.11.1 Project 38: Controlling an LED using Alexa. 208

7.11.2 Project 39: Controlling an LED and a buzzer using Alexa 211

7.11.3 Project 40: Controlling an LED and a buzzer using Alexa – using a trigger node 213

Chapter 8 • Using MQTT with The Raspberry Pi Zero 2 W215

8.1 Overview . 215

8.2 How MQTT works. 215

8.3 The Mosquitto Broker . 217

8.4 Using MQTT in home automation and IoT projects . 218

8.5 Project 41: Controlling an LED using MQTT . 220

8.6 Project 42: Controlling an LED using ESP8266 NodeMCU with MQTT –
LED connected to Raspberry Pi Zero 2 W . 221

Chapter 9 • Communication over Bluetooth .229

9.1 Overview . 229

9.2 Project 43: Exchanging text with a smartphone. 229

9.3 Project 44: Bluetooth control of LED from a smartphone 236

The Raspberry Pi Zero 2 W GO! - UK.indd 9The Raspberry Pi Zero 2 W GO! - UK.indd 9 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 10

9.4 Arduino Uno: Raspberry Pi Zero 2 W Bluetooth communication 239

9.4.1 Project 45: Communicating with an Arduino Uno over Bluetooth. 239

9.5 Project 46: Play audio (like music) on a Bluetooth speaker via Zero 2 W 245

Appendix. .247

Bill of Materials . 247

Index .248

The Raspberry Pi Zero 2 W GO! - UK.indd 10The Raspberry Pi Zero 2 W GO! - UK.indd 10 08-03-2023 09:2308-03-2023 09:23

● 11

Preface

The Raspberry Pi Zero 2 W is the latest member of the Raspberry Pi family of credit card
sized computers that can be used in many applications including IoT, digital audio and video
media centers, as a desktop computer, in industrial controllers, robotics, and in countless
domestic, commercial, and industrial applications. In addition to many features found in
"bigger" family members, the Raspberry Pi Zero 2 W also offers Wi-Fi and Bluetooth capa-
bility which makes it highly desirable in remote and Internet-based control and monitoring
applications. The Raspberry Pi Zero 2 W replaces the older Raspberry Pi Zero W, provides
5 times more computing power, and in addition features Bluetooth capability. As a bonus
feature, the Raspberry Pi Zero 2 W comes with a colored pinheader connector, making it
easy to link hardware to its GPIO pins.

The book kicks off with the installation of the latest Raspberry Pi operating system on an
SD card, followed by the configuration and practical use of the GPIOs. Next, the core of
the book explains the use of the Raspberry Pi Zero 2 W running the Python programming
language, always in simple terms and backed by many tested and working example pro-
jects. On part of the reader, familiarity with the Python programming language and some
experience with one of the Raspberry Pi computers will prove helpful. Although previous
electronics experience is not required, some knowledge of basic electronics is beneficial,
especially when venturing out to modify the projects for your own applications.

The book includes many simple, software-only examples to widen your knowledge of Py-
thon. Besides these, over 30 tested and working hardware-based projects are given in the
book, covering the use of Wi-Fi, communication with smartphones and with a Raspberry Pi
Pico W computer. Additionally, there are Bluetooth projects including elementary commu-
nication with smartphones and with the popular Arduino Uno.

All the projects given in the book have been fully tested and are working. The following
sub-headings are used in the projects where applicable:

• Project title
• Project description
• Aim of the project
• Block diagram
• Circuit diagram
• Program description using PDL
• Program listing with full documentation

All programs discussed in this book are contained in an archive file you can download free
of charge from the Elektor website. Head to: www.elektor.com/books and enter the book
title in the Search box. You can easily download and use these programs without any mod-
ifications. Alternatively, feel free to modify the programs to suit your own applications.

I hope you find the book helpful and enjoy reading it.

Prof Dogan Ibrahim
London, January 2023

The Raspberry Pi Zero 2 W GO! - UK.indd 11The Raspberry Pi Zero 2 W GO! - UK.indd 11 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 12

Chapter 1 • The Raspberry Pi Zero 2 W

1.1 Overview
The Raspberry Pi Zero 2 W is an immensely popular member of the Raspberry Pi family
of development boards for embedded microcontroller applications. In this chapter, you"ll
discover the hardware details of this development board and also learn how to install the
latest operating system on an SD card for use with the Raspberry Pi Zero 2 W. From now
on, this development board will be referred to as the Zero 2 W for short.

1.2 The Zero 2 W development board
The Zero 2 W (Figure 1.1) is essentially an upgraded replacement to the popular Raspberry
Pi Zero W. It features an RP3A0 system-in-package (SiP), which is a quad-core 64-bit Arm
Cortex-A53 CPU clocked at 1 GHz. A Broadcom BCM2710A1 die is incorporated with 512 MB
of SDRAM (LPDDR2). The processor provides 40% more single-threaded performance and
5 times more multi-threaded performance than the standard Raspberry Pi Zero.

Figure 1.1: Raspberry Pi Zero 2 W.

The basic features of the Zero 2 W may be summarized as follows.

• 64-bit Arm Cortex-A53 processor @ 1 GHz
• Broadcom BCM2710A1 SiP
• 512 MB SDRAM
• 2.4-GHz IEEE 802.11b/g/n wireless LAN
• Bluetooth 4.2 BLE
• On-board antenna
• microSD card slot
• Mini HDMI and Composite video ports

The Raspberry Pi Zero 2 W GO! - UK.indd 12The Raspberry Pi Zero 2 W GO! - UK.indd 12 08-03-2023 09:2308-03-2023 09:23

Chapter 1 • The Raspberry Pi Zero 2 W

● 13

• CSI-2 camera connector
• 1× MicroUSB OTG
• 1× MicroUSB power input
• H.264 MPEG-4 decode (1080p30)
• OpenGL ES 1.1, 2.0 graphics
• HAT compatible 40-pin I/O header
• 5 VDC, 2.5 A input power
• Size 30 mm × 65mm × 13mm
• Weight: 39.97 grams
• Temperature range: –20º to +70º (operation)
• Stated production lifetime: until 2028

The major advantage of the Zero 2 W is that the board incorporates both Wi-Fi and Blue-
tooth interface modules along with Bluetooth Low Energy (BLE). The board shares the
same form factor as the original Raspberry Pi Zero and therefore fits inside existing Rasp-
berry Pi Zero cases. The board is powered externally with 5 V, 2.5 A via a MicroUSB socket.

The Zero 2 W board is available with pre-soldered male color-coded header (ZERO 2 WHC)
for ease of identifying the pins. This is shown in Figure 1.2. Thick internal copper layers
are used to conduct heat away from the processor and consequently achieve higher perfor-
mance without heating the processor.

Figure 1.2: Color-coded pinheader.

Table 1.1 shows a comparison of the Zero 2 W with other Raspberry Pi Zero development
boards. Notice that the Zero 2 W is a 64-bit device and about 5 times faster than the orig-
inal Zero W.

The Raspberry Pi Zero 2 W GO! - UK.indd 13The Raspberry Pi Zero 2 W GO! - UK.indd 13 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 14

ZERO ZERO W ZERO 2 W ZERO 2WH ZERO 2 WHC

Processor BCM2835 BCM2710A1

CPU 32-bit Single core Arm11 64-bit Quad core Arm Cortex-A53

Memory 512 MB SDRAM

GPU OpenGL ES 1.1, 2.0

WIFI 2.4 GHz IEEE 802.11b/g/n

Bluetooth Bluetooth 4.1 BLE Bluetooth 4.2 BLE

USB

Camera CSI-2 connector

GPIO 40-pin

Pre-soldered header Black Colored

Table 1.1: Raspberry Pi Zero W and Zero 2 W comparison.

Figure 1.3 shows the pin configuration of the Zero 2 W board. In this book, the use of a Zero
2 WHC with color-coded header is assumed. The following colors are used on the header
(Figure 1.4):

• Red = 5 V
• Orange = 3.3 V
• Black = GND
• Pink = I2C
• Purple = UART
• BLUE = SPI
• Yellow = DNC (reversed I2C)
• Green = GPIO

Figure 1.3: Pin configuration.

The Raspberry Pi Zero 2 W GO! - UK.indd 14The Raspberry Pi Zero 2 W GO! - UK.indd 14 08-03-2023 09:2308-03-2023 09:23

Chapter 1 • The Raspberry Pi Zero 2 W

● 15

Figure 1.4: Colored header.

1.2.1 Zero 2 W current consumption, and GPIO voltages and currents
The Zero 2 W has 4 cores running at 1 GHz. In idle mode, the Zero 2 W's temperature is
about 36.5 degrees Celsius and about 63.4 degrees Celsius when under heavy computing
loads. Adding a heatsink helps to reduce the chip temperature. Additional cooling from a
heatsink can reduce the temperature considerably.

The Zero 2 W operates at +3.3 V and the GPIO pins are not +5 V tolerant. It is there-
fore important not to connect any peripherals to Zero 2 W that operate at supply voltages
exceeding +3.3 V. A voltage between +1.8 V and +3.3 V is read as logic High by the pro-
cessor. A voltage lower than +1.8 V is read as logic Low.

The Zero 2 W draws about 280 mA when idle and 580 mA when under a heavy computing
load. The current limit of a GPIO pin is about 17 mA and more than 51 mA should not be
drawn from all GIO pins at any time.

The GPIO pins can be configured as inputs or outputs. By default, they are configured as
inputs on power-up, except GPIO 14 and GPIO 15.

1.3 Installing the operating system
The Raspberry Pi OS (called Raspbian previously) is an officially supported operating sys-
tem for Raspberry Pi systems. It is a 32-bit Linux based OS that has been configured and
optimized to run on Raspberry Pi systems.

The Raspberry Pi operating system is normally stored on an SD card although it is also pos-
sible to store it on other media such as an SSD drive. The Raspberry Pi operating system
is complimentary and can be downloaded to a PC and then transferred to an SD card that
can be used to boot the Raspberry Pi development boards.

The steps to download and transfer the operating system to an SD card are given below.
Please note that these are the steps that apply if you are using a Windows PC.

The Raspberry Pi Zero 2 W GO! - UK.indd 15The Raspberry Pi Zero 2 W GO! - UK.indd 15 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 16

• Go to the Raspberry Pi operating system website (Figure 1.5):

https://www.raspberrypi.com/software/

Figure 1.5: Raspberry Pi OS website.

• Scroll down and click Download for Windows.

• You should see a file with the name imager_1.7.3.exe downloaded to your PC
(this was the filename at the time of authoring this book. Your filename may be
different).

• Insert the micro SD card into the card holder of your PC (you may have to use
an adapter).

• Double-click on the file to install it on your PC.

• Click Finish to run the Raspberry Pi Imager (Figure 1.6).

Figure 1.6: Run the Raspberry Pi Imager.

The Raspberry Pi Zero 2 W GO! - UK.indd 16The Raspberry Pi Zero 2 W GO! - UK.indd 16 08-03-2023 09:2308-03-2023 09:23

Chapter 1 • The Raspberry Pi Zero 2 W

● 17

• Click CHOOSE OS and click to choose the Raspberry Pi OS (32-bit) as
shown in Figure 1.7.

Figure 1.7: Choose the Raspberry Pi OS.

• Click CHOOSE STORAGE and select the SD card (Figure 1.8) as the storage
medium. A 32-GB micro SD card was used for the examples in this book.

Figure 1.8: Select the SD card.

• Click the Settings icon (gear-shaped) at the bottom right of the screen and set
the following (Figure 1.9):

Set hostname: raspberrypi
Enable SSH
Select password authentication
Set Wi-Fi username and password
Click configure wireless LAN and set the SSID and password
Set the wireless LAN country: GB
Set local settings if desired

• Click Save to save the settings.

• Click Write to write the operating system on the micro SD card. Wait until the
write and verify operations are finished (Figure 1.10).

The Raspberry Pi Zero 2 W GO! - UK.indd 17The Raspberry Pi Zero 2 W GO! - UK.indd 17 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 18

Figure 1.9: Settings options.

Figure 1.10: Copying the operating system to the micro SD card.

• Remove the micro SD card from the PC.

1.4 Powering-up the Zero 2 W
Insert the SD card into your Zero 2 W. Plug in a monitor and a keyboard if you have these.
Plug in the MicroUSB power cable. Your Zero 2 W should boot. If you do not have a monitor
and a keyboard you can access your Zero 2 W remotely as described in the next section.

1.5 Remote access
It is much easier to access the Raspberry Pi remotely over the Internet, for example using
a PC rather than connecting a keyboard, mouse, and monitor to it. You can use the Putty
program to access your Zero 2 W remotely from your PC. Before connecting to your Zero 2
W you have to know its IP address. This can be obtained from your Wi-Fi router, or by using
an app on your smartphone. There are many freely available apps for both Android and iOS
operating systems (e.g., Who's on my Wi-Fi for Android) that will scan the Wi-Fi network
and display the IP addresses of the devices connected to the Wi-Fi router.

Copy Putty to your PC from the following website:

https://www.putty.org/

Chapter 1 • The Raspberry Pi Zero 2 W

The Raspberry Pi Zero 2 W GO! - UK.indd 18The Raspberry Pi Zero 2 W GO! - UK.indd 18 08-03-2023 09:2308-03-2023 09:23

Chapter 1 • The Raspberry Pi Zero 2 W

● 19

Putty is a standalone program and there is no need to install it. Simply double-click to run
it and the Putty startup screen will be displayed. Click SSH and enter the Raspberry Pi
IP address, then click Open (see Figure 1.11). The message shown in Figure 1.12 will be
displayed the first time you access the Raspberry Pi. Click Yes to accept this security alert.

Figure 1.11: Putty startup screen.

Figure 1.12 Click Yes to accept.

You will be prompted to enter the username and password. After a successful login, you
should see the command mode as follows:

pi@raspberrypi:~ $

You should now enable VNC so that your Zero 2 W can be accessed graphically over the
Internet using your PC. This can be done by entering the following command at the termi-
nal session:

pi$raspberrypi:~ $ sudo raspi-config

The Raspberry Pi Zero 2 W GO! - UK.indd 19The Raspberry Pi Zero 2 W GO! - UK.indd 19 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 20

Go to the configuration menu and select Interface Options. Go down to P3 VNC and
enable VNC. Click <Finish> to exit the menu.

1.5.1 Configuring Putty
By default, the Putty screen background is black with white foreground characters. The
author prefers to have white background with black foreground characters, with the char-
acter size set to 12 points bold. You should save your settings so that they are available
next time you want to use the Putty. The steps to configure the Putty with these settings
are given below.

• Restart Putty.

• Select SSH and enter the Raspberry Pi IP address.

• Click Colors under Window.

• Set the Default Foreground and Default Bold Foreground colors to black
(Red:0, Green:0, Blue:0).

• Set the Default Background and Default Bold Background to white
(Red:255, Green:255, Blue:255).

• Set the Cursor Text and Cursor Color to black (Red:0, Green:0, Blue:0).

• Select Appearance under Window and click Change in Font settings. Set
the font to Bold 12.

• Select Session and give a name to the session (e.g., MyZero) and click Save.

• Click Open to open the Putty session with the saved configuration.

• Next time you restart Putty, select the saved session, and click Load followed
by Open to start a session with the saved configuration.

1.5.2 Remote access of the Desktop
If you are using your Zero 2 W with a local keyboard, mouse, and display you can skip this
section. If, on the other hand, you want to access your Desktop remotely over the network,
you will find that SSH services cannot be used. The easiest and simplest way to access your
Desktop remotely from a computer is by installing the VNC (Virtual Network Connection)
client and server. The VNC server runs on your Pi and the VNC client runs on your comput-
er. It is recommended to use the tightvncserver on your Zero 2 W. The steps are:

• Enter the following command:

pi$raspberrypi:~ $ sudo apt-get install tightvncserver

The Raspberry Pi Zero 2 W GO! - UK.indd 20The Raspberry Pi Zero 2 W GO! - UK.indd 20 08-03-2023 09:2308-03-2023 09:23

Chapter 1 • The Raspberry Pi Zero 2 W

● 21

• Run the tightvncserver:

pi$raspberrypi:~ $ tightvncserver

You will be prompted to create a password for remotely accessing the Raspberry Pi desktop.
You can also set up an optional read-only password. The password should be entered every
time you want to access the Desktop. Enter a password and remember it.

• Start the VNC server after reboot by the following command:

pi$raspberrypi:~ $ vncserver :1

You can optionally specify the screen pixel size and color depth in bits as follows:

pi$raspberrypi:~ $ vncserver :1 –geometry 1920x1080 –depth 24

• You should now set up a VNC viewer on your laptop (or desktop) PC. There
are many VNC clients available but the recommended one which is compatible
with TightVNC is the TightVNC for the PC which can be downloaded from the
following link:

https://www.tightvnc.com/download.php

• Download and install the TightVNC software for your PC. You will have to
choose a password during the installation.

• Start the TightVNC Viewer on your PC and enter the Raspberry Pi IP address
followed by :1. Click Connect to connect to your Raspberry Pi (Figure 1.13).

Figure 1.13: Connect to TightVNC Viewer.

• Enter the password you have chosen earlier. You should now see the Raspberry
Pi Desktop displayed on your PC screen (Figure 1.14).

The Raspberry Pi Zero 2 W GO! - UK.indd 21The Raspberry Pi Zero 2 W GO! - UK.indd 21 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 22

Figure 1.14: Raspberry Pi Desktop.

• The VNC server is now running on your Raspberry Pi Zero 2 W and you have
access to the Desktop.

1.6 Assigning static IP address to your Zero 2 W
When you try to access your Raspberry Pi remotely over your local network, it is possible
that the IP address given by your Wi-Fi router changes from time to time. This is annoying
as you have to find out the new IP address allocated to your Raspberry Pi. Without a knowl-
edge of the IP address, you cannot login using the SSH or the VNC.

In this section, you will learn how to fix your IP address so that it does not change between
reboots. The steps are as follows:

• Log in to your Raspberry Pi via SSH.

• Check whether DHCP is active on your Raspberry Pi (it should normally be
active):

pi@raspberrypi:~ $ sudo service dhcpcd status

If DHCP is not active, activate it by entering the following commands:

pi@raspberrypi:~ $ sudo service dhcpcd start
pi@raspberrypi:~ $ sudo systemctl enable dhcpcd

• Find the IP address currently allocated to you by entering command ifconfig
or hostname – I (Figure 1.15). In this example the IP address was:
192.168.3.20. You can use this IP address as your fixed address since no other
device on the network is currently using it.

The Raspberry Pi Zero 2 W GO! - UK.indd 22The Raspberry Pi Zero 2 W GO! - UK.indd 22 08-03-2023 09:2308-03-2023 09:23

Chapter 1 • The Raspberry Pi Zero 2 W

● 23

Figure 1.15: Finding the IP address allocated to you.

• Find the IP address of your router by entering the command ip r (Figure 1.16).
In this example, the IP address was: 192.168.3.1.

Figure 1.16 Finding the IP address of your router.

• Find the IP address of your DNS by entering the following command (Figure
1.17). This is usually same as your router address:

pi@raspberrypi:~ $ grep "nameserver" /etc/resolv.conf

Figure 1.17: Finding the DNS address.

• Edit file /etc/dhcpcd.conf by entering the command:

pi@raspberrypi:~ $ nano /etc/dhcpcd.conf

• Add the following lines to the bottom of the file (these will be different for your
router). If these lines already exist, remove the comment character # at the
beginning of the lines and change the lines as follows (you may notice that
eth0 for Ethernet is listed):

 interface wlan0
 static_routers=192.168.3.1
 static domain_name_servers=192.168.3.1
 static ip_address=192.168.3.20/24

• Save the file by entering CNTRL + X followed by Y and reboot your Raspberry
Pi.

• In this example, the Raspberry Pi should reboot with the static IP address:
192.168.3.20.

The Raspberry Pi Zero 2 W GO! - UK.indd 23The Raspberry Pi Zero 2 W GO! - UK.indd 23 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 24

Chapter 2 • Using a Text Editor in Command Mode

A text editor is used to create or modify the contents of a text file. There are many text ed-
itors around for the Linux operating system. Some popular ones go by the names of nano,
vim, and vi. In this chapter, you will learn to use "nano" which is the most commonly used
text editor in Linux. In later chapters, you will see that the nano text editor can be used to
create your Python programs.

2.1 The "nano" text editor
Start the nano text editor by entering the word nano, followed by the filename you wish
to create or modify. An example is given below where a new file called first.txt is created:

pi@raspberrypi ~ $ nano first.txt

You should see the editor screen as in Figure 2.1. The name of the file to be edited is written
at the top middle part of the screen. The message New File at the bottom of the screen
shows that this is a newly created file. The shortcuts at the bottom of the screen are there
to perform various editing functions. These shortcuts are accessed by pressing the Ctrl key
together with another key. Some of the useful shortcuts are given below.

Ctrl+W: Search for a word

Ctrl+V: Move to next page

Ctrl+Y: Move to previous page

Ctrl+K: Cut the current row of txt

Ctrl+R: Read file

Ctrl+U: Paste the text you previously cut

Ctrl+J: Justify

Ctrl+\: Search and replace text

Ctrl+C: Display current column and row position

Ctrl+G: Get detailed help on using the nano

Ctrl+-: Go to specified line and column position

Ctrl+O: Save (write out) the file currently open

Ctrl+X: Exit nano

The Raspberry Pi Zero 2 W GO! - UK.indd 24The Raspberry Pi Zero 2 W GO! - UK.indd 24 08-03-2023 09:2308-03-2023 09:23

Chapter 2 • Using a Text Editor in Command Mode

● 25

Figure 2.1: The nano text editor startup screen.

Now, type the following text into the file:

nano is a simple and yet powerful text editor.
This simple text example demonstrates how to use nano.
This is the last line of the example.

The use of nano is now demonstrated with the following steps:

Step 1: Go the beginning of the file by moving the cursor.

Step 2: Look for word simple by pressing Ctrl+W and then typing simple in the window
opened at the bottom left hand corner of the screen. Press the Enter key. The cursor will be
positioned on the word simple (see Figure 2.2).

Figure 2.2 Searching for the word "simple".

Step 3: Cut the first line by placing the cursor anywhere on the line and then pressing
Ctrl+K. The first line will disappear.

The Raspberry Pi Zero 2 W GO! - UK.indd 25The Raspberry Pi Zero 2 W GO! - UK.indd 25 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 26

Step 4: Paste the line cut after the first line. Place the cursor on the second line and press
Ctrl+U (see Figure 2.3).

Figure 2.3: Pasting the text line you cut previously.

Step 5: Place cursor at the beginning of the word simple on the first row. Enter Ctrl+C.
The row and column positions of this word will be displayed at the bottom of the screen.

Step 6: Press Ctrl+G to display help page as in Figure 2.4. Notice that the display is many
pages long and you can jump to the next pages by pressing Ctrl+Y or to the previous pag-
es by pressing Ctrl+V. Press Ctrl+X to exit the help page.

Figure 2.4: Displaying the help page.

Step 7: Press Ctrl+- and enter line and column numbers as 2 and 5, followed by the Enter
key, to move cursor to line 2, column 5.

Step 8: Replace word example with word file. Press Ctrl+\ and type the first word as
example (see Figure 2.5). Press Enter and then type the replacement word as file. Press
Enter and accept the change by typing y.

The Raspberry Pi Zero 2 W GO! - UK.indd 26The Raspberry Pi Zero 2 W GO! - UK.indd 26 08-03-2023 09:2308-03-2023 09:23

Chapter 2 • Using a Text Editor in Command Mode

● 27

Figure 2.5: Replacing text.

Step 9: Save the changes. Press Ctrl+X to exit the file. Type Y to accept the saving, then
enter the filename to be written to, or simply press Enter to write to the existing file (first.
txt in this example). The file will be saved in your current working directory.

Step 10: Display the contents of the file:

pi@raspberrypi ~ $ cat first.txt

This simple text file demonstrates how to use nano.
Nano is a simple and yet powerful text editor.
This is the last line of the example.

pi@raspberrypi ~ $

In summary, nano is a simple and yet powerful text editor allowing us to create new text
files or edit existing files.

The Raspberry Pi Zero 2 W GO! - UK.indd 27The Raspberry Pi Zero 2 W GO! - UK.indd 27 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 28

Chapter 3 • Creating and Running a Python Program

3.1 Overview
Read this chapter and learn how to create and then run a very simple Python program.
As described here, basically there are three methods that you can use to create and run a
Python program. The text message Hello From Raspberry Pi Zero 2 W will be displayed
on your screen as an example.

Version 3.9.2 of Python was the current version at the time this book was written and this
is the version that you will be using in this book. You may find that both version 2.x and
3.x are installed on your Zero 2 W. Enter the following commands to display the versions of
Python you have on your Raspberry Pi (Figure 3.1):

 pi@raspberrypi:~ $ python –version

and pi@raspberrypi:~ $ python3 --version

The advantage of using Python 3 is that most of the new libraries are being developed for
it. Additionally, version 3.x has better error handling and improved GUI support over earlier
releases.

Figure 3.1: Displaying the Python versions.

3.2 Method 1 — Interactively from command prompt
In this method, you will login to your Zero 2 W remotely using the SSH and then create
and run your program interactively. This method is excellent for small programs. The steps
are as follows:

• Log in to the Zero 2 W using SSH.

• At the command prompt enter python3. You should see the Python command
mode which is identified by three characters >>>.

• Type the program:

print ("Hello From Raspberry Pi Zero 2 W")

• The required text will be displayed interactively on the screen as shown in
Figure 3.2.

The Raspberry Pi Zero 2 W GO! - UK.indd 28The Raspberry Pi Zero 2 W GO! - UK.indd 28 08-03-2023 09:2308-03-2023 09:23

Chapter 3 • Creating and Running a Python Program

● 29

Figure 3.2: Running a program interactively.

• Enter Cntrl+Z to exit from Python.

3.3 Method 2 — Create a Python file in command mode
In this method, you will log in to your Zero 2 W using the SSH as before and then create
a Python file. A Python file is simply a text file with the extension .py. You can use a text
editor like nano to create your file. In this example, a file called hello.py is created using
the nano text editor. Exit and save the file by entering CNTRL + X followed by Y. Figure
3.3 shows the contents of file hello.py. This figure also shows how to run the file from the
command line. Notice that the program is run by entering the command:

pi@raspberrypi:~ $ python3 hello.py

Figure 3.3: Creating and running a Python file.

3.4 Method 3 — Create a Python file in GUI mode
In this method, you will log in to your Zero 2 W using the VNC and create and run your
program in GUI mode on the Desktop. The steps are given below.

• Connect to your Zero 2 W using the SSH.

• Start the VNC server on your Pi:

pi@raspberrypi:~ $ vncserver :1

The Raspberry Pi Zero 2 W GO! - UK.indd 29The Raspberry Pi Zero 2 W GO! - UK.indd 29 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 30

• Start the VNC Viewer on your PC by entering the IP address of your Zero 2 W
followed by :1. e.g.,

192.168.3.20:1

• Click Continue.

• Enter your password and click OK.

• You should see the Desktop screen.

• Click on Applications menu on Desktop (red Raspberry Pi icon).

• Click Programming and then click Thonny Python IDE (see Figure 3.4).

Figure 3.4: Select Thonny.

• Type in your program as shown in Figure 3.5 and save it with a name, for
example, hello2.py.

Figure 3.5: Entering your program.

• Run the program by clicking Run. You should see the program output displayed
at the bottom part (Shell) of the screen as shown in Figure 3.6.

Figure 3.6: Output of the program.

The Raspberry Pi Zero 2 W GO! - UK.indd 30The Raspberry Pi Zero 2 W GO! - UK.indd 30 08-03-2023 09:2308-03-2023 09:23

Chapter 3 • Creating and Running a Python Program

● 31

Notice that you can also run interactive Python statements in the Shell part of the screen.
An example is shown in Figure 3.7.

Figure 3.7: Running Python statements in the Shell.

3.5 Which method?
The choice of a method depends upon the size and complexity of a program. Small pro-
grams or small code to test an idea can be run interactively without creating a program file.
Larger programs can be created as Python files and then they can run either in the com-
mand mode or in the GUI mode. In this book method 2 as well as method 3 are used in pro-
gramming examples and projects depending on the size of the program to be developed.

3.6 The Thonny screen
The Thonny screen has the following menu options:

New: used to create a new file
Load: used to load a file to Thonny
Save: used to save a file
Run: click to run the current file in Thonny
Debug: used to debug the current file in Thonny
Over: debug option
Into: debug option
Out: debug option
Stop: stop debugger
Zoom: used to zoom the screen
Quit: quit Thonny
Support: help (support) on Thonny

3.6.1 Using the debugger
The debugger is very useful during problem development. A simple example of using the
debugger is shown in Figure 3.8. Variables a, b, and c are assigned integer values and
variable d calculates the sum of these variables. After writing the program, click the Debug
icon. Then, click the Into icon to step through the program. You should see the values of
the variables at the right hand side as you single step through the program.

The Raspberry Pi Zero 2 W GO! - UK.indd 31The Raspberry Pi Zero 2 W GO! - UK.indd 31 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 32

Figure 3.8: Example of using the debugger.

The Raspberry Pi Zero 2 W GO! - UK.indd 32The Raspberry Pi Zero 2 W GO! - UK.indd 32 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 33

Chapter 4 • Software-Only Python Programs using the
Zero 2 W

4.1 Overview
In this Chapter, example Python programs are given to familiarize you with the Python
programming language. The plans in this chapter are software-only and they do not access
any external or internal hardware of the Zero 2 W development board.

4.2 Example 1 — Average of two numbers read from the keyboard
In this example, two numbers are read from the keyboard and their average is displayed.
The aim of this example is to show how data can be read from the keyboard.

Solution 1
The program is named Average and the program listing and an example run of the pro-
gram are shown in Figure 4.1. Function input is used to read the numbers in the form of
strings from the keyboard. These strings are then converted into floating-point numbers
and stored in variables n1 and n2. The average is calculated by adding and then dividing
the numbers by two. The result is displayed on the screen.

Figure 4.1: Program: Average and a sample run.

4.3 Example 2 — Average of 10 numbers read from the keyboard
In this example, 10 numbers are read from the keyboard and their average is displayed.
The aim of this example is to show how a loop can be constructed in Python.

Solution 2
This demo program is named Average10 and the program listing and an example run are
shown in Figure 4.2. In this program, a loop is constructed which runs from 0 to 9 (i.e.,
10 times). Inside this loop the numbers are read from the keyboard, added, and stored in
variable sum. The average is then calculated and displayed by dividing sum by 10. Notice
that a new-line is not printed after the print statements since the option end = " " is used
inside the print statement.

The Raspberry Pi Zero 2 W GO! - UK.indd 33The Raspberry Pi Zero 2 W GO! - UK.indd 33 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 34

Figure 4.2: Program: Average10 and a sample run.

4.4 Example 3 — Surface area of a cylinder
In this example the radius and height of a cylinder are read from the keyboard and its sur-
face area is displayed on the screen.

Solution 3
The program is named CylArea and the program listing and an example run of the pro-
gram are shown in Figure 4.3. The surface area of a cylinder is given by:

Surface area = 2 π r h

Where r and h are the radius and height of the cylinder respectively. In this program the
math library is imported so that function Pi can be used in the program. The surface area
of the cylinder is displayed after reading its radius and height.

Figure 4.3: Program: CylArea and a sample run.

The Raspberry Pi Zero 2 W GO! - UK.indd 34The Raspberry Pi Zero 2 W GO! - UK.indd 34 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 35

4.5 Example 4 — ºC to ºF conversion
In this example, the program reads degrees Celsius from the keyboard and converts and
displays the equivalent in degrees Fahrenheit.

Solution 4
The program is named CtoF and the program listing and an example run of the program
are shown in Figure 4.4. The formula to convert ºC to ºF is:

F = 1.8 × C + 32

Figure 4.4: Program: CtoF and a sample run.

4.6 Example 5 — Surface area and volume of a cylinder; user function
In this example the surface area and volume of a cylinder are calculated whose radius and
height are given. The program uses a function to calculate and return the surface area and
the volume.

Solution 5
The program is named CylAreaSurf and the program listing and an example run of the
program are shown in Figure 4.5. The surface area and the volume of a cylinder are given
by:

Surface area = 2 π r h
Volume = π r2 h

Where r and h are the radius and height of the cylinder respectively. The function Calc is
used to get the radius and height of the cylinder. The function returns the surface area and
volume to the main program which puts both values on the screen.

The Raspberry Pi Zero 2 W GO! - UK.indd 35The Raspberry Pi Zero 2 W GO! - UK.indd 35 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 36

Figure 4.5 Program: CylAreaSurf and a sample run.

4.7 Example 6 — Table of squares of numbers
In this example, the squares of numbers from 1 to 11 are calculated and tabulated.

Solution 6
The program is named Squares and the program listing and an example run of the pro-
gram are shown in Figure 4.6. Notice that \t prints a tab so that the data can be tabulated
nicely.

Figure 4.6 Program: Squares and a sample run.

4.8 Example 7 — Table of trigonometric sine
In this example, the trigonometric sine is tabulated from 0 to 45 degrees in steps of 5
degrees.

Solution 7
The program is named Sines and the program listing and an example run of the program
are shown in Figure 4.7. It is important to notice that the arguments of the trigonometric
functions must be in radians and not in degrees.

The Raspberry Pi Zero 2 W GO! - UK.indd 36The Raspberry Pi Zero 2 W GO! - UK.indd 36 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 37

Figure 4.7 Program: Sines and sample output.

4.9 Example 8 — Table of trigonometric sine, cosine, and tangent
In this example, the trigonometric sine, cosine, and tangent are tabulated from 0 to 30
degrees in steps of 5 degrees.

Solution 8
The program is named Trig and the program listing and an example run of the program
are shown in Figure 4.8.

Figure 4.8: Program: Trig and sample output.

4.10 Example 9 — Trigonometric function of a required angle
In this example, an angle is read from the keyboard. Also, the user specifies whether the
sine (s), cosine (c), or the tangent (t) of the angle is required.

The Raspberry Pi Zero 2 W GO! - UK.indd 37The Raspberry Pi Zero 2 W GO! - UK.indd 37 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 38

Solution 9
The program is named TrigUser and the program listing and an example run of the pro-
gram are shown in Figure 4.9.

Figure 4.9: Program: TrigUser and sample output.

4.11 Example 10 — Series and parallel resistors
This program calculates the total resistance of a number of series or parallel-connected
resistors. The user specifies whether the connection is in series or in parallel. Additionally,
the number of resistors used is also specified at the beginning of the program.

Solution 10
When a number of resistors are in series, the resultant resistance is the sum of the resist-
ances of each individual resistor. When the resistors are in parallel, the reciprocal of the
resultant resistance is equal to the sum of the reciprocal resistances of each resistor.

Figure 4.10 shows the program listing (program: Serpal). At the beginning of the program
a heading is displayed and the program enters into a while loop. Inside his loop, the user
is prompted to enter the number of resistors in the circuit and whether they are connected
in series or in parallel. The function str converts a number into its equivalent string. For ex-
ample, number 5 is converted into string "5". If the connection is serial (mode equals "s")
then the value of each resistor is accepted from the keyboard and the result is calculated
and displayed on the screen. If, on the other hand, the connection is parallel (mode equals
"p"), then again the value of each resistor is accepted from the keyboard and the recipro-
cal of the number is added to the total. When all resistor values are entered, the resultant
resistance is displayed on the screen.

print("RESISTORS IN SERIES OR PARALLEL")
print("===============================")
yn = "y"

while yn == "y":
 N = int(input("\nHow many resistors are there?: "))

The Raspberry Pi Zero 2 W GO! - UK.indd 38The Raspberry Pi Zero 2 W GO! - UK.indd 38 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 39

 mode = input("Are the resistors series (s) or parallel (p)?: ")
 mode = mode.lower()
#
Read the resistor values and calculate the total
#
 resistor = 0.0

 if mode == "s":
 for n in range(0,N):
 s = "Enter resistor " + str(n+1) + " value in Ohms: "
 r = int(input(s))
 resistor = resistor + r
 print("Total resistance = %d Ohms" %(resistor))

 elif mode == "p":
 for n in range(0,N):
 s = "Enter resistor " + str(n+1) + " value in Ohms: "
 r = float(input(s))
 resistor = resistor + 1 / r
 print("Total resistance = %.2f Ohms" %(1 / resistor))
#
Check if the user wants to exit
#
 yn = input("\nDo you want to continue?: ")
 yn = yn.lower()

Figure 4.10: Program: Serpal.

Figure 4.11 shows a typical run of the program.

Figure 4.11: Typical run of Serpal.

4.12 Example 11 — Words in reverse order
Write a program to read a word from the keyboard and then display the letters of this word
in reverse order on the screen.

The Raspberry Pi Zero 2 W GO! - UK.indd 39The Raspberry Pi Zero 2 W GO! - UK.indd 39 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 40

Solution 11
The required program listing is shown in Figure 4.12 (program: Letters). A word is read
from the keyboard and stored in string variable word. Then the letters of this word are
displayed in reverse order. An example run of the program is shown in Figure 4.12.

Figure 4.12: Program: Letters and a sample output.

4.13 Example 12 — Calculator
Write a calculator program to carry out the four simple mathematical operations of addi-
tion, subtraction, multiplication, and division on two numbers received from the keyboard.

Solution 12
The required program listing is shown in Figure 4.13 (program: Calc). Two numbers are
received from the keyboard and stored in variables n1 and n2. Then, the required math-
ematical operation is received and it is performed. The result, stored in variable result, is
displayed on the screen. The user is given the option of terminating the program.

any = "y"
while any == "y":
 print("\nCalculator Program")
 print("==================")

 n1 = float(input("Enter first number: "))
 n2 = float(input("Enter second number: "))
 op = input("Enter operation (+-*/): ")

 if op =="+":
 result = n1 + n2
 elif op == "-":
 result = n1 - n2
 elif op == "*":
 result = n1 * n2

The Raspberry Pi Zero 2 W GO! - UK.indd 40The Raspberry Pi Zero 2 W GO! - UK.indd 40 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 41

 elif op == "/":
 result = n1 / n2
 print("Result = %f" %(result))
 any = input("\nAny more (yn): ")

Figure 4.13: Program: Calc.

An example run of the program is shown in Figure 4.14.

Figure 4.14 Example run of Calc.

4.14 Example 13 — File processing: writing
In this example a text file called MyFile.txt will be created and text Hello from Raspber-
ry Pi Pico! will be written to this file

Solution 13
The program is named Filew and its listing and an example run are shown in Figure 4.15.
The file is opened in write (w) mode and the text is written in it using function write. Notice
here that fp is the file handle.

Figure 4.15: Program: Filew.

4.15 Example 14 — File processing: reading
In this example the text file MyFile.txt created in the previous example is opened and its
contents is displayed on the screen

The Raspberry Pi Zero 2 W GO! - UK.indd 41The Raspberry Pi Zero 2 W GO! - UK.indd 41 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 42

Solution 14
The program is named Filer and its listing and an example run are shown in Figure 4.16.
The fire is opened in read (r) mode and its contents is displayed.

Figure 4.16 Program: Filer.

4.16 Example 15 — Squares and cubes of numbers
Assignment: Write a program to tabulate the squares and cubes of numbers from 1 to 10.

Solution 15
The program is named Cubes and its listing and an example run are shown in Figure 4.17.

Figure 4.17: Program: Cubes and example output.

4.17 Example 16 — Multiplication timetable
Assignment: Write a program to read a number from the keyboard and then display the
timetable for this number from 1 to 12.

Solution 16
The program is named Times and its listing and an example run are shown in Figure 4.18.

The Raspberry Pi Zero 2 W GO! - UK.indd 42The Raspberry Pi Zero 2 W GO! - UK.indd 42 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 43

Figure 4.18: Program: Times and example output.

4.18 Example 17 — Odd or even
Assignment: Write a program to read a number from the keyboard and check and display
if this number is odd or even

Solution 17
The program is named OddEven and its listing and an example run are shown in Figure
4.19.

Figure 4.19 Program: OddEven and example output.

4.19 Example 18 — Binary, octal, and hexadecimal
Assignment: Write a program to read a decimal number from the keyboard. Convert this
number into binary, octal, and hexadecimal and display it on the screen.

Solution 18
The program is named Conv and its listing and an example run are shown in Figure 4.20.

The Raspberry Pi Zero 2 W GO! - UK.indd 43The Raspberry Pi Zero 2 W GO! - UK.indd 43 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 44

Figure 4.20: Program: Conv and example output.

4.20 Example 19 — Add two matrices
Assignment: Write a program to add two given matrices and display the elements of the
new matrix.

Solution 19
The program is named AddMatrix and its listing and an example run are shown in Figure
4.21.

Figure 4.21: Program: AddMatrix and example output.

4.21 Example 20 — Shapes
Assignment: Write a program to use functions to calculate and display the areas of these
shapes: square, rectangle, triangle, circle, and cylinder. The sizes of the required sides
should be received from the keyboard.

Solution 20
The areas of the shapes to be used in the program are as follows:

The Raspberry Pi Zero 2 W GO! - UK.indd 44The Raspberry Pi Zero 2 W GO! - UK.indd 44 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 45

 Square: side = a area = a2
 Rectangle: sides a, b area = a b
 Circle: radius r area = π r2
 Triangle: base b, height h area = b h / 2
 Cylinder: radius r, height h area = 2 π r h

The required program listing is shown in Figure 4.22 (program: areas.py). A different
function is used for each shape and the sizes of the sides are received inside the functions.
The main program displays the calculated area for the chosen shape.

import math

def Square(a): # square
 return a * a

def Rectangle(a, b): # rectangle
 return(a * b)

def Triangle(b, h): # triangle
 return(b * h / 2)

def Circle(r): # circle
 return(math.pi * r * r)

def Cylinder(r, h): # cylinder
 return(2 * math.pi * r * h)

print("AREAS OF SHAPES")
print("===============\n")
print("What is the shape?: ")

shape = input("Square (s)\nRectangle(r)\nCircle(c)\n\
Triangle(t)\nCylinder(y): ")

shape = shape.lower()
if shape == 's':
 a = float(input("Enter a side of the square: "))
 area = Square(a)
 s = "Square"
elif shape == 'r':
 a = float(input("Enter one side of the rectangle: "))
 b = float(input("Enter other side of the rectangle: "))
 area = Rectangle(a, b)
 s = "Rectangle"
elif shape == 'c':
 radius = float(input("Enter radius of the circle: "))

The Raspberry Pi Zero 2 W GO! - UK.indd 45The Raspberry Pi Zero 2 W GO! - UK.indd 45 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 46

 area = Circle(radius)
 s = "Circle"
elif shape == 't':
 base = float(input("Enter base of the triangle: "))
 height = float(input("Enter height of the triangle: "))
 area = Triangle(base, height)
 s = "Triangle"
elif shape == 'y':
 radius = float(input("Enter radius of cylinder: "))
 height = float(input("Enter height of cylinder: "))
 area = Cylinder(radius, height)
 s = "Cylinder"

print("Area of %s is %f" %(s, area))

Figure 4.22: Program: areas.

An example run of the program is shown in Figure 4.23.

Figure 4.23: Example run of the program.

4.22 Example 21 — Solution of a quadratic equation
Assignment: Write a program to find the roots of a quadratic equation of the form:

 a x**2 + b x + c = 0

Solution 21
The required program listing is shown in Figure 4.24 (program: quadratic). The coeffi-
cients a, b, and c are specified at the beginning of the program. The two roots are calculat-
ed and displayed on the screen.

The Raspberry Pi Zero 2 W GO! - UK.indd 46The Raspberry Pi Zero 2 W GO! - UK.indd 46 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 47

Figure 4.24: Program: quadratic and example output.

4.23 Example 22 — Matrix multiplication
Write a program to multiply two matrices.

Solution 22
The elements of the two matrices are specified at the beginning of the program. Figure 4.25
shows the program listing (program: multmatrix).

Figure 4.25: Program: multmatrix and example output.

4.24 Example 23 — Factorial of a number
Assignment: Write a program to calculate the factorial of a number entered from the key-
board.

Solution 23
The program listing is shown in Figure 4.26 (program: factorial).

The Raspberry Pi Zero 2 W GO! - UK.indd 47The Raspberry Pi Zero 2 W GO! - UK.indd 47 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 48

Figure 4.26: Program: factorial and example output.

4.25 Example 24 — Compound interest
Assignment: Write a program to calculate the compound interest given the initial value,
interest rate, and the number of years.

Solution 24
Compound interest is calculated using the formula:

 FV = IV(1 + i / 100) ** yr
 Compound interest = FV – IV

Where FV and IV are the future and initial values, i is the interest rate and yr is the number
of years.

Figure 4.27 gives the program listing (program: compound).

Figure 4.27 Program: compound and example output.

The Raspberry Pi Zero 2 W GO! - UK.indd 48The Raspberry Pi Zero 2 W GO! - UK.indd 48 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 49

4.26 Example 25 — Guess the number
Write a program to generate a secret number between 1 and 50 and let the user guess this
number in 5 attempts.

Solution 25
The program listing is shown in Figure 4.28 (program: guess). An example run of the pro-
gram is shown in Figure 4.29.

import random
total_guesses = 0

number = random.randint(1, 50)
print ("The secret number is between 1 and 50. You have 5 attempts")

while total_guesses < 5:
 guess = int(input("Your guess: "))
 total_guesses = total_guesses + 1

 if guess < number:
 print ("Too low...")
 if guess > number:
 print ("Too high...")
 if guess == number:
 break

if guess == number:
 print ("You guessed in {0} attempts".format(total_guesses))
else:
 print ("Sorry... The secret number was {0}".format(number))

Figure 4.28: Program: guess.

Figure 4.29: Example run of the program.

4.27 Example 26 — Numerical integration
Assignment: Write a program to read a function from the keyboard and calculate and dis-
play the integral of this function between two given points.

The Raspberry Pi Zero 2 W GO! - UK.indd 49The Raspberry Pi Zero 2 W GO! - UK.indd 49 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 50

Solution 26
The program listing is shown in Figure 4.30 (program: integrate). The integration is per-
formed inside function integrate. This function is divided into equal small segments be-
tween the required lower and upper limits. The area of each segment is calculated. The
total area is equal to the required integral of the function. The arguments of this function
are the function to be integrated, low and high limits, and the number of points to consider.

def integrate(func, xlow, xhigh, n):
 length = xhigh - xlow
 sect = length / n
 area = 0
 for j in range(n):
 x = xlow + sect * j
 y = eval(func.replace("x", str(x)))
 secarea = y * sect
 area = area + abs(secarea)
 return (area)

function = input("Enter function: ")
lowl = float(input("Low limit:"))
highl = float(input("High limit:"))
N = int(input("No of points: "))
r = integrate(function, lowl, highl, N)
print("integral of %s between %5.2f and %5.2f = %6.2f" %(function,lowl,highl,r))

Figure 4.30: Program: integrate.

Figure 4.31 shows an example run of the program where the following integral is calculated
by using 100 segments and the result displayed on the Thonny screen:

Figure 4.31: Example run of the program.

The Raspberry Pi Zero 2 W GO! - UK.indd 50The Raspberry Pi Zero 2 W GO! - UK.indd 50 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 51

4.28 Example 27 — Practise arithmetic
Assignment: Write a program to display the following menu:

1. Addition
2. Subtraction
3. Multiplication
4. Division

Choice:
Generate two random integer numbers between 1 and 1000 and ask the user to carry out
the required operation. Check the user answer and display CORRECT or INCORRECT.

Solution 27
Figure 4.32 shows the required program (Program: arithmetic). Functions are used for
the addition, subtraction, multiplication, and division. The number entered by the user is
checked and appropriate message is displayed.

import random

def addition():
 n1 = random.randint(1, 1000)
 n2 = random.randint(1, 1000)
 print(n1, «+», n2, «= «)
 user_answer = int(input(«Enter answer: «))
 correct_answer = n1 + n2
 return (user_answer, correct_answer)

def subtraction():
 n1 = random.randint(1, 1000)
 n2 = random.randint(1, 1000)
 print(n1, «-», n2, «= «)
 user_answer = int(input(«Enter answer: «))
 correct_answer = n1 - n2
 return (user_answer, correct_answer)

def multiplication():
 n1 = random.randint(1, 1000)
 n2 = random.randint(1, 1000)
 print(n1, «X», n2, «= «)
 user_answer = int(input(«Enter answer: «))
 correct_answer = n1 * n2
 return (user_answer, correct_answer)

def division():
 n1 = random.randint(1, 1000)
 n2 = random.randint(1, 1000)

The Raspberry Pi Zero 2 W GO! - UK.indd 51The Raspberry Pi Zero 2 W GO! - UK.indd 51 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 52

 print(n1, «/», n2, «= «)
 user_answer = int(input(«Enter answer: «))
 correct_answer = int(n1 / n2)
 return (user_answer, correct_answer)

def chk(user, correct):
 if user ==correct:
 print(«CORRECT»)
 else:
 print(«INCORRECT»)

print(« 1. Addition»)
print(« 2. Subtraction»)
print(« 3. Multiplication»)
print(« 4. Integer Division»)
ch = int(input(«Choice: «))
if ch == 1:
 user,correct = addition()
elif ch == 2:
 user,correct = subtraction()
elif ch == 3:
 user,correct = multiplication()
else:
 user,correct = division()
chk(user,correct)

Figure 4.32: Program: arithmetic.

Figure 4.33 shows an example run of the program.

Figure 4.33: Example run.

4.29 Plotting in Python
Plotting graphs in Python is very easy with the matplotlib module. This module enables
you to plot offline as well as real-time graphs. This section explains how to draw graphs to
make the user familiar with the functions of the matplotlib module.

The matplotlib library module must be installed in Python before it can be used. This is
done in command mode by entering the following command:

The Raspberry Pi Zero 2 W GO! - UK.indd 52The Raspberry Pi Zero 2 W GO! - UK.indd 52 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 53

 pi@raspberrypi~ $ sudo apt-get install python-matplotlib

4.29.1 Graph of a quadratic function
As an example, in this section, the graph of the quadratic function y = x2 is drawn using
Python. At the beginning of the program, matplotlib module and the numpy modules are
imported into Python. numpy is a scientific package including many mathematical func-
tions that can be used in Python programs.

The graphics can only be drawn in GUI Desktop mode. You should therefore use the VNC
Viewer to get into the GUI mode and then create and run your program from there by se-
lecting Python 2 (IDLE). The program listing is as follows:

 import matplotlib.pyplot as plt
 import numpy as np
 x = np.linspace(0,4,100)
 plt.plot(x, x**2)
 plt.show()

Figure 4.34 shows the graph plotted. Function linspace(0,4,100) creates a list 100 in-
teger numbers in x, starting from 0 and terminating at 4. Function plot draws the graph
where the y value is equal to x2 . Function show() physically displays the graph. Notice
that there are some buttons at the bottom of the window. These buttons are (from left to
right as shown in Figure 4.35):

Home: Clicking this button displays the default figure as in Figure 4.34
Back: Brings back the plot after zooming
Next: This button is opposite of Back button
Pan: This button moves the window coordinates
Zoom: This button selects a zoom window
Adjust: this button adjusts the plot parameters
Save: click to save the plot

Figure 4.34: Graph of a quadratic function.

The Raspberry Pi Zero 2 W GO! - UK.indd 53The Raspberry Pi Zero 2 W GO! - UK.indd 53 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 54

Figure 4.35: Graph buttons.

The graph in Figure 4.34 can be made more user friendly by labeling the axes and giving a
title to the graph. The modified program is given below:

 import matplotlib.pyplot as plt
 import numpy as np
 x = np.linspace(0,4,100)
 plt.plot(x, x**2, label="Quadratic")
 plt.xlabel("X values")
 plt.ylabel("Y values")
 plt.title("Graph of y = x**2")
 plt.legend()
 plt.show()

The new graph is shown in Figure 4.36.

Figure 4.36: Graph with the axes labeled, and a title.

4.29.2 Drawing multiple graphs
You can easily plot more than one function on the same graph. In the example code giv-
en below, three graphs are drawn on the same axes: graph of y = x+5, y = x2 , and y =
x***3:

 import matplotlib.pyplot as plt
 import numpy as np
 x = np.linspace(0,4,100)
 plt.plot(x, x+5,label="x+5")
 plt.plot(x, x**2, label="Quadratic")

The Raspberry Pi Zero 2 W GO! - UK.indd 54The Raspberry Pi Zero 2 W GO! - UK.indd 54 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 55

 plt.plot(x, x**3,label="Cubic")
 plt.xlabel("X values")
 plt.ylabel("Y values")
 plt.title("Graphs of linear, quadratic, and cubic functions")
 plt.legend()
 plt.show()

Figure 4.37 shows the graph with three functions.

Figure 4.37: Graph with three functions.

Function plot draws a smooth graph by joining the x,y values. You can also draw different
types of graphs. For example, function scatter draws a scatter graph as shown in Figure
4.38. The program for this graph is as follows:

 import matplotlib.pyplot as plt
 import numpy as np
 x = np.linspace(0,4,100)
 plt.scatter(x, x+5,label="x+5")
 plt.scatter(x, x**2, label="Quadratic")
 plt.scatter(x, x**3,label="Cubic")
 plt.xlabel("X values")
 plt.ylabel("Y values")
 plt.title("Graphs of linear,quadratic,and cubic functions")
 plt.legend()
 plt.show()

The Raspberry Pi Zero 2 W GO! - UK.indd 55The Raspberry Pi Zero 2 W GO! - UK.indd 55 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 56

Figure 4.38: Drawing a "scatter" graph.

Function bar draws a bar chart as shown in Figure 4.39. The program for this graph is as follows.

 import matplotlib.pyplot as plt
 import numpy as np
 x = np.linspace(0,4,100)
 plt.bar(x, x+5,label="x+5")
 plt.bar(x, x**2, label="Quadratic")
 plt.bar(x, x**3,label="Cubic")
 plt.xlabel("X values")
 plt.ylabel("Y values")
 plt.title("Graphs of linear, quadratic, and cubic functions")
 plt.legend()
 plt.show()

Figure 4.39: Drawing bar chart graph.

The Raspberry Pi Zero 2 W GO! - UK.indd 56The Raspberry Pi Zero 2 W GO! - UK.indd 56 08-03-2023 09:2308-03-2023 09:23

Chapter 4 • Software-Only Python Programs using the Zero 2 W

● 57

matplotlib is a large graphics library with many functions and the details of these func-
tions are beyond the scope of this book. Interested readers can find books, tutorials, and
applications notes on matplotlib on the Internet, for example,

 https://matplotlib.org/faq/usage_faq.html

The Raspberry Pi Zero 2 W GO! - UK.indd 57The Raspberry Pi Zero 2 W GO! - UK.indd 57 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 58

Chapter 5 • Simple Projects for the Raspberry Pi
Zero 2 W

5.1 Overview
In this chapter you will be developing simple hardware projects with the Raspberry Pi Zero
2 W, using the nano text editor. The following sub-headings will be given for each project
where applicable:

• Title
• Description
• Aim
• Block diagram
• Circuit diagram
• PDL (where necessary)
• Program listing
• Suggestions for future work (where necessary)

All the programs in this chapter have been developed using the nano text editor, although
you can also use the Thonny IDE program if you prefer. A breadboard was used to construct
and test the projects where necessary.

5.2 Project 1: External flashing LED
Description: In this project, an external LED is connected to Zero 2 W and the LED is
flashed every second. The aim of this project is to show how an external LED can be con-
nected to the Zero 2 W as well as explore how an external device can be accessed using a
Python program.

Block diagram: Figure 5.1 shows the block diagram of the project. The colored header
connector is not shown in this diagram.

Figure 5.1: Block diagram of the project.

The Raspberry Pi Zero 2 W GO! - UK.indd 58The Raspberry Pi Zero 2 W GO! - UK.indd 58 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 59

Circuit diagram: The circuit diagram of the project is shown in Figure 5.2, where the LED
is connected to port pin GPIO2 (pin 3) of Zero 2 W through a 470-ohm current limiting
resistor.

Figure 5.2: Circuit diagram of the project.

The LED can be connected in either current-sourcing or in current-sinking modes. In cur-
rent-sourcing mode (Figure 5.3), the LED is turned ON when a logic High level is applied
to the port pin. In current-sinking mode (Figure 5.4) the LED is turned ON when logic Low
level is applied to the port pin.

Figure 5.3: LED in current-sourcing mode.

Figure 5.4: LED in current-sinking mode.

The Raspberry Pi Zero 2 W GO! - UK.indd 59The Raspberry Pi Zero 2 W GO! - UK.indd 59 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 60

The required value of the current limiting resistor can be calculated as follows. In cur-
rent-sourcing mode, assuming the output High voltage is +3.3 V, the voltage drop across
the LED is 2 V, and the current through the LED is 3 mA, the required value of the current
limiting resistor R is:

 R = (3.3 – 2) / 3 = 433 ohms

So you choose 470 ohms as the nearest practical value.

Program listing: Figure 5.5 shows the program listing (Program: ExtFlash.py). At the
beginning of the program, the GPIO and time libraries are imported to the program and
warning messages are disabled. Then, BCM pin numbering is used so that, for example,
port pin GPIO2 is referenced as 2 and not as the physical pin number 3. The LED at GPIO2 is
configured as an output. A while loop is then formed which runs until stopped by the user.
Inside this loop, the LED is turned ON and OFF with one second delay between each output.

#---
FLASHING AN EXTERNAL LED
========================
#
In this program an external LED is connected to port pin
GPIO2 (pin 3). The LED is flashed every second
#
Author: Dogan Ibrahim
File : ExtFlash.py
Date : December, 2022
#--
import RPi.GPIO as GPIO # import GPIO library
import time # import time library
GPIO.setwarnings(False) # disable warning messages
GPIO.setmode(GPIO.BCM) # set BCM pin numbering

LED = 2 # LED at port GPIO2
ON = 1 # ON = 1
OFF = 0 # OFF = 0
GPIO.setup(LED, GPIO.OUT) # configure LED as output

while True:
 GPIO.output(LED, ON) # turn ON LED
 time.sleep(1) # wait 1 second
 GPIO.output(LED, OFF) # turn OFF LED
 time.sleep(1) # wait 1 second

Figure 5.5: Program: ExtFlash.py.

The Raspberry Pi Zero 2 W GO! - UK.indd 60The Raspberry Pi Zero 2 W GO! - UK.indd 60 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 61

Assuming that you have created the program using the nano text editor, enter the follow-
ing statement in command mode to run the program:

 pi@raspberry~ $ python3 ExtFlash.py

The program is halted by entering CNTRL+C at the terminal. Although the program in
Figure 5.5 works perfectly well, terminating the program this way is not recommended. If
the warnings are not disabled, then a second run of the program will give error messages
since the GPIO buffers are not cleared.

Figure 5.6 shows the modified program (Program: ExtFlash2.py) where pressing CN-
TRL+C is detected and the program clears the GPIO buffers and terminates orderly. Notice
that it is not necessary to disable warnings in this version of the program.

#--
FLASHING AN EXTERNAL LED
========================
#
In this program an external LED is connected to port pin GPIO2
(pin 3). The LED is flashed every second.
#
This program detects CNTRL+C and terminates orderly
#
Author: Dogan Ibrahim
File : ExtFlash2.py
Date : December, 2022
#--
import RPi.GPIO as GPIO # import GPIO library
import time # import time library
GPIO.setmode(GPIO.BCM) # set BCM pin numbering

LED = 2 # LED at port GPIO2
ON = 1 # ON = 1
OFF = 0 # OFF = 0
GPIO.setup(LED, GPIO.OUT) # configure LED as output

try:

 while True: # DO FOREVER
 GPIO.output(LED, ON) # turn ON LED
 time.sleep(1) # wait 1 second
 GPIO.output(LED, OFF) # turn OFF LED
 time.sleep(1) # wait 1 second

except KeyboardInterrupt: # CNTRL+C detected

The Raspberry Pi Zero 2 W GO! - UK.indd 61The Raspberry Pi Zero 2 W GO! - UK.indd 61 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 62

 GPIO.output(LED, 0) # set LED OFF
 GPIO.cleanup() # clear GPIO buffers

 Figure 5.6: Program: ExtFlash2.py.

Figure 5.7 shows the project built with a resistor and an LED.

Figure 5.7: The project.

5.3 Project 2: Flashing the SOS signal
Description: In this project an external LED flashes the SOS signal (three dots, followed
by three dashes, followed by three dots) continuously. A dot is represented with the LED
being ON for 0.25 seconds (Dot time) and a dash is represented with the LED being ON for
1 second (Dash time). The delay between the dots and dashes is set to 0.2 second (GAP
time). This process is repeated continuously after 2 seconds of delay.

The block diagram and circuit diagram of this project are same as in Figure 5.1 and Figure
5.2 respectively.

Program listing. Figure 5.8 shows the program listing (Program: SOS.py). At the begin-
ning of the program, the dot, dash, and gap times are defined. Then a loop is formed using
a while statement. Inside this loop, three for loops are formed, each iterating three times.
The first loop displays three dots, the second loop, three dashes, and finally the last loop
displays three dots. This process is repeated after two seconds of delay.

#---
LED FLASHING SOS
================
#
In this program the external LED at port GPIO2 flashes the
SOS signal (... --- ...)
#
Author: Dogan Ibrahim
File : SOS.py
Date : December, 2022
#--
import RPi.GPIO as GPIO # import GPIO library
import time # import time library

The Raspberry Pi Zero 2 W GO! - UK.indd 62The Raspberry Pi Zero 2 W GO! - UK.indd 62 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 63

GPIO.setwarnings(False) # disable warning messages
GPIO.setmode(GPIO.BCM) # set BCM pin numbering

LED = 2 # LED at port GPIO2
ON = 1 # ON = 1
OFF = 0 # OFF = 0
GPIO.setup(LED, GPIO.OUT) # configure LED as output

Dot = 0.25 # Dot time
Dash = 1.0 # Dash time
Gap = 0.2 # Gap time

while True: # DO FOREVER
 for i in range(0, 3):
 GPIO.output(LED, ON)
 time.sleep(Dot) # Wait Dot time
 GPIO.output(LED, OFF) # LED OFF
 time.sleep(Gap) # Wait Gap time

 time.sleep(0.5) # 0.5 second delay

 for i in range(0, 3):
 GPIO.output(LED, ON) # LED ON
 time.sleep(Dash) # Wait Dash time
 GPIO.output(LED, OFF) # LED OFF
 time.sleep(Gap) # Wait Gap time

 time.sleep(0.5) # 0.5 second delay

 for i in range(0, 3):
 GPIO.output(LED, ON) # LED ON
 time.sleep(Dot) # Wait Dot time
 GPIO.output(LED, OFF) # LED OFF
 time.sleep(Gap) # Wait Gap time

 time.sleep(2) # Wait 2 seconds

Figure 5.8: Program: SOS.py.

Suggestions: You could easily replace the LED with a buzzer to make the SOS signal au-
dible. There are two types of buzzers: active and passive. Passive buzzers require an audio
signal to be sent to them and the frequency of the output signal depends on the frequency
of the supplied signal. Active buzzers are ON/OFF type devices and they produce audible
sound when activated. In his project you can use an active buzzer with a transistor switch
(any NPN type transistor can be used) as shown in Figure 5.9.

The Raspberry Pi Zero 2 W GO! - UK.indd 63The Raspberry Pi Zero 2 W GO! - UK.indd 63 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 64

Figure 5.9: Using an active buzzer.

Note: You may find it easier to create and run your Python programs in Desktop mode
using Thonny since the correct Python indentation is automatically placed in your code
as you type the code.

5.4 Project 3: Binary counting with 8 LEDs
Description: In this project 8 LEDs are connected to the Zero 2 W GPIO pins. The LEDs
count up in binary every second.

Aim: The aim of this project is to show how 8 LEDs can be connected to the Zero 2 W GPIO
pins. In addition, the project shows how to group the LEDs as an 8-bit port and control
them as a single port.

Block diagram: The block diagram of the project is shown in Figure 5.10.

Figure 5.10: Block diagram of the project.

The Raspberry Pi Zero 2 W GO! - UK.indd 64The Raspberry Pi Zero 2 W GO! - UK.indd 64 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 65

Circuit diagram: The circuit diagram of the project is shown in Figure 5.11. The LEDs are
connected to 8 GPIO pins through 470-ohm current limiting resistors. The following 8 GPIO
pins are grouped as an 8-bit port, where GPIO 2 is configured as the LSB and GPIO 9 is
configured as the MSB:

 MSB LSB
 GPIO: 9 10 22 27 17 4 3 2
 Pin no: 21 19 15 13 11 7 5 3

Figure 5.11: Circuit diagram of the project.

Construction: The project is constructed on a breadboard as shown in Figure 5.12. Fe-
male-to-male jumper cables are used to connect the LEDs to the GPIO ports. Notice that
the short side of the LEDs must be connected to ground.

Figure 5.12: Constructing the project on a breadboard.

The Raspberry Pi Zero 2 W GO! - UK.indd 65The Raspberry Pi Zero 2 W GO! - UK.indd 65 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 66

Project PDL: PDL (Program Description Language) describes the operation of a pro-
gram in simple English-like statements. The project PDL is shown in Figure 5.13.

BEGIN
 Import GPIO library
 Import time library
 CALL Configure Port to configure the port as output
 Set cnt = 0
 DO FOREVER
 CALL Port_Output with cnt
 Wait 1 second
 Increment cnt
 ENDDO
END

BEGIN/Configure_Port
 IF port is output THEN
 CALL GPIO.setup to configure the port as output
 ELSE
 CALL GPIO.setup to configure the port as input
 ENDIF
END/Configure_Port

BEGIN/Port_Ouput
 CALL GPIO.output to send the byte to the port
END/Port_Output

Figure 5.13: The Project PDL.

Program listing: The program is called LEDCNT.py and the listing is shown in Figure
5.14. The program was written using the nano text editor. At the beginning of the program
the RPi.GPIO and the time modules are imported to the project. Then the pin number-
ing is configured to use the BCM notation. All the 8 GPIO channels used in the project are
configured as outputs using function Configure_Port. Notice that the Configure_Port
function is general and list DIR sets the directions of the GPIO pins. An "O" sets as an
output and an "I" sets as an input. Then, a loop is formed to execute forever, and inside
this loop the LEDs count up by one in binary. Variable cnt is used as the counter. Function
Port_Output is used to control the LEDs. This function can take integer numbers from 0 to
255 and it converts the input number (x) into binary using the built-in function bin. Next,
the leading "0b" characters are removed from the output string b (bin function inserts
characters "0b" to the beginning of the converted string). Then, the converted string b is
made up of 8 characters by inserting leading 0s. The string is then sent to the PORT bit by
bit, starting from the most-significant bit (GPIO 9) position.

The Raspberry Pi Zero 2 W GO! - UK.indd 66The Raspberry Pi Zero 2 W GO! - UK.indd 66 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 67

#---
#
BINARY UP COUNTING LEDs
=======================
#
In this project 8 LEDs are connected to the following
GPIO pins:
#
9 10 22 27 17 4 3 2

The program groups these LEDs as an 8-bit port and then
the LEDs count up in binary with one second delay between
each output.
#
Program: LEDCNT.py
Date : December, 2022
Author : Dogan Ibrahim
#--
import RPi.GPIO as GPIO # import GPIO library
import time # import time library
GPIO.setwarnings(False) # disable warning messages
GPIO.setmode(GPIO.BCM) # set BCM pin numbering
PORT = [9, 10, 22, 27, 17, 4, 3, 2] # port connections
DIR = ["0","0","0","0","0","0","0","0"] # port directons

#
This function configures the port pins as outputs ("0") or
as inputs ("I")
#
def Configure_Port():
 for i in range(0, 8):
 if DIR[i] == "0":
 GPIO.setup(PORT[i], GPIO.OUT)
 else:
 GPIO.setup(PORT[i], GPIO.IN)
 return

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
 b = bin(x) # convert into binary
 b = b.replace("0b", "") # remove leading "0b"
 diff = 8 - len(b) # find the length
 for i in range (0, diff):

The Raspberry Pi Zero 2 W GO! - UK.indd 67The Raspberry Pi Zero 2 W GO! - UK.indd 67 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 68

 b = "0" + b # insert leading os

 for i in range (0, 8):
 if b[i] == "1":
 GPIO.output(PORT[i], 1)
 else:
 GPIO.output(PORT[i], 0)
 return
#
Configure PORT to all outputs
#
Configure_Port()

#
Main program loop. Count up in binary every second
#
cnt = 0
while True:
 Port_Output(cnt) # send cnt to port
 time.sleep(1) # wait 1 second
 cnt = cnt + 1 # increment cnt

Figure 5.14: Program: LEDCNT.py.

Recommended modifications: Modify the program such that the LEDs count down every
two seconds.

5.5 Project 4: Christmas Lights (randomly flashing 8 LEDs)
Description: In this project, 8 LEDs are connected to Zero 2 W GPIO pins. The LEDs flash
randomly every 0.5 seconds just like fancy Christmas Lights. The aim of this project is to
show how 8 LEDs can be connected to Zero 2 W GPIO pins. In addition, the project shows
how to generate random numbers between 1 and 255 and then shows how to use these
numbers to turn the individual LEDs ON and OFF randomly.

The block diagram and circuit diagram of this project are as in Figure 5.10 and Figure 5.11
respectively.

Project PDL: The project PDL is shown in Figure 5.15.

BEGIN
 Import GPIO library
 Import time library
 Import random number library
 CALL Configure_Port to configure the port as output
 DO FOREVER

The Raspberry Pi Zero 2 W GO! - UK.indd 68The Raspberry Pi Zero 2 W GO! - UK.indd 68 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 69

 Get a random number between 1 and 255
 CALL Port_Output to send the number to the LEDs
 Wait 0.5 second
 ENDDO
END

BEGIN/Configure_Port
 IF port is output THEN
 CALL GPIO.setup to configure the port as output
 ELSE
 CALL GPIO.setup to configure the port as input
 ENDIF
END/Configure_Port

BEGIN/Port_Ouput
 CALL GPIO.output to send the byte to the port
END/Port_Output

Figure 5.15: Project PDL.

Program listing: The program is called XMAS.py and the listing is shown in Figure 5.16.
The program was written using the nano text editor. At the beginning of the program, the
RPi.GPIO, time, and random modules are imported to the project. Then, the pin num-
bering is configured to use the BCM notation. All the 8 GPIO channels used in the project
are configured as outputs using function Configure_Port as in the previous project. Then,
a loop is formed to execute forever, and inside this loop a random number is generated be-
tween 1 and 255. This number is used as an argument conveyed to function Port_Output.
The binary pattern corresponding to the generated number is sent to the port which turns
the LEDs ON or OFF in a random manner.

#---
#
CHRISTMAS LIGHTS
================
#
In this project 8 LEDs are connected to the Raspberry Pi 3
and these LEDs flash randomly at 0.5 second intervals. The
connections of the LEDs are to the following GPIO pins:
#
9 10 22 27 17 4 3 2

The program groups these LEDs as an 8-bit port and then
generates random numbers between 1 and 255 and turns the
LEDs ON and OFF depending on the generated number.

The Raspberry Pi Zero 2 W GO! - UK.indd 69The Raspberry Pi Zero 2 W GO! - UK.indd 69 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 70

#
Program: XMAS.py
Date : December, 2022
Author : Dogan Ibrahim
#--
import RPi.GPIO as GPIO # import GPIO library
import time # import time library
import random # import random library
GPIO.setwarnings(False) # disable warning messages
GPIO.setmode(GPIO.BCM) # set BCM pin numbering
PORT = [9, 10, 22, 27, 17, 4, 3, 2] # port connections
DIR = ["0","0","0","0","0","0","0","0"] # port directons

#
This function configures the port pins as outputs ("0") or
as inputs ("I")
#
def Configure_Port():
 for i in range(0, 8):
 if DIR[i] == "0":
 GPIO.setup(PORT[i], GPIO.OUT)
 else:
 GPIO.setup(PORT[i], GPIO.IN)
 return

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
 b = bin(x) # convert into binary
 b = b.replace("0b", "") # remove leading "0b"
 diff = 8 - len(b) # find the length
 for i in range (0, diff):
 b = "0" + b # insert leading os

 for i in range (0, 8):
 if b[i] == "1":
 GPIO.output(PORT[i], 1)
 else:
 GPIO.output(PORT[i], 0)
 return
#
Configure PORT to all outputs
#
Configure_Port()

The Raspberry Pi Zero 2 W GO! - UK.indd 70The Raspberry Pi Zero 2 W GO! - UK.indd 70 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 71

#
Main program loop. Count up in binary every second
#
while True:
 numbr = random.randint(1, 255) # generate a random number
 Port_Output(numbr) # send cnt to port
 time.sleep(0.5) # wait 0.5 second

 Figure 5.16: Program: XMAS.py.

Recommended modifications: Modify the program such that 10 LEDs can be connected
to the Zero 2 W and flashed randomly.

5.6 Project 5: Rotating LEDs with pushbutton switch control
Description: In this project 8 LEDs are connected to the Zero 2 W GPIO pins as in the pre-
vious project. In addition, a pushbutton switch is connected to one of the GPIO ports. The
LEDs rotate in one direction when the button is not pressed, and in the opposite direction
when the button is pressed. Only one LED is ON at any time. One second delay is inserted
between each output. The aim of this project is to show how a pushbutton switch can be
software-connected to a GPIO pin.

Block diagram: The block diagram of the project is shown in Figure 5.17.

Figure 5.17: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 5.18. The LEDs are
connected to 8 GPIO pins through 470-ohm current limiting resistors as in the previous
project. The pushbutton switch is connected to GPIO 11 (pin 23) of the Zero 2 W. The push-
button switch is connected through a 10 k-ohm resistor. When the switch is not pressed,
the input is at logic 1. When the switch is pressed the input changes to logic 0.

The Raspberry Pi Zero 2 W GO! - UK.indd 71The Raspberry Pi Zero 2 W GO! - UK.indd 71 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 72

Figure 5.18: Circuit diagram of the project.

 Project PDL: The project PDL is shown in Figure 5.19.

BEGIN
 Import GPIO library
 Import time library
 CALL Configure_Port to configure the port as output
 Configure GPIO 11 as input
 Set rot = 1
 DO FOREVER
 IF button is pressed THEN
 Shift rot left
 ELSE
 Shift rot right
 ENDIF
 CALL Port_Output to send rot to the LEDs
 Wait one second
 ENDDO
END

BEGIN/Configure_Port
 IF port is output THEN
 CALL GPIO.setup to configure the port as output
 ELSE
 CALL GPIO.setup to configure the port as input
 ENDIF
END/Configure_Port

The Raspberry Pi Zero 2 W GO! - UK.indd 72The Raspberry Pi Zero 2 W GO! - UK.indd 72 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 73

BEGIN/Port_Ouput
 CALL GPIO.output to send the byte to the port
END/Port_Output

Figure 5.19: Project PDL.

Program listing: The program is called rotate.py and the listing is shown in Figure 5.20.
The program was written using the nano text editor. At the beginning of the program,
the RPi.GPIO, and time modules are imported to the project. Then, the pin numbering is
configured to use the BCM notation. All the 8 GPIO channels used in the project are con-
figured as outputs using function Configure_Port as in the previous project. Then, a loop
is formed to execute forever and inside this loop variable rot is used as an argument to
the Port_Output function. If the button is not pressed, then rot is shifted right and the
LED ON sequence is from left to right (from MSB to LSB). If, on the other hand, the button
is pressed, then the LED On sequence is from right to left (from LSB to MSB). A 1-second
delay is inserted between each output.

#--
#
ROTATING LEDs WITH PUSH-BUTTON
==============================
#
In this project 8 LEDs are connected to the Raspberry Pi 3.
In addition, a push-button switch is connected to GPIO 11
(pin 23) through resistors. Normally the output of the button
is at logic 1 and goes to logic 0 when the button is pressed.
The LEds rotate in one direction when the button is not pressed
and in the opposite direction when the button is pressed.
#
Connections of the LEDs are to the following GPIO pins:
#
9 10 22 27 17 4 3 2

On second delay is inserted between each output.
#
Program: rotate.py
Date : December, 2022
Author : Dogan Ibrahim
#--
import RPi.GPIO as GPIO # import GPIO library
import time # import time library
GPIO.setwarnings(False) # disable warning messages
GPIO.setmode(GPIO.BCM) # set BCM pin numbering
PORT = [9, 10, 22, 27, 17, 4, 3, 2] # port connections
DIR = ["0","0","0","0","0","0","0","0"] # port directions

The Raspberry Pi Zero 2 W GO! - UK.indd 73The Raspberry Pi Zero 2 W GO! - UK.indd 73 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 74

GPIO.setup(11, GPIO.IN) # GPIO 11 is input

#
This function configures the port pins as outputs ("0") or
as inputs ("I")
#
def Configure_Port():
 for i in range(0, 8):
 if DIR[i] == "0":
 GPIO.setup(PORT[i], GPIO.OUT)
 else:
 GPIO.setup(PORT[i], GPIO.IN)
 return

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
 b = bin(x) # convert into binary
 b = b.replace("0b", "") # remove leading "0b"
 diff = 8 - len(b) # find the length
 for i in range (0, diff):
 b = "0" + b # insert leading os

 for i in range (0, 8):
 if b[i] == "1":
 GPIO.output(PORT[i], 1)
 else:
 GPIO.output(PORT[i], 0)
 return
#
Configure PORT
#
Configure_Port()

#
Main program loop. Rotate the LEDs
#
rot = 1
while True:
 Port_Output(rot)
 time.sleep(1) # wait 1 second
 if GPIO.input(11) == 0: # button pressed?
 rot = rot << 1 # shift left
 if rot > 128: # at the end

The Raspberry Pi Zero 2 W GO! - UK.indd 74The Raspberry Pi Zero 2 W GO! - UK.indd 74 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 75

 rot = 1 # back to beginning
 else: # button not pressed
 rot = rot >> 1 # shift right
 if rot == 0: # at the end
 rot = 128 # back to beginning

 Figure 5.20: Program: rotate.py.

5.7 Project 6 – Morse Code exerciser with buzzer
Description: In this project, a buzzer is connected to GPIO 2 (pin 3) of the Zero 2 W. The
user enters a text from the keyboard. The buzzer is then turned ON and OFF to sound the
entered letters of the text in Morse code. The aim of this project is to show how a buzzer
can be connected to a Zero 2 W, and also how to use various statements in Python pro-
grams.

Block diagram: The block diagram of the project is shown in Figure 5.21.

Figure 5.21: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 5.22 where an ac-
tive buzzer is connected to GPIO 2 of the Zero 2 W.

Figure 5.22: Circuit diagram of the project.

The Raspberry Pi Zero 2 W GO! - UK.indd 75The Raspberry Pi Zero 2 W GO! - UK.indd 75 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 76

Project PDL: In a Morse code, each letter is made up of dots and dashes. Figure 5.23
shows the Morse code of all the letters in the English alphabet (this table can be extended
by adding the Morse code of numbers and punctuation marks). The following rules apply to
the timing of dots and dashes:

• The duration of a dot is taken as the unit time and this determines the speed
of the transmission. Normally the speed of transmission is quoted in words
per minute (wpm). The standard required minimum in Morse code based
communication is 12 wpm.

• The duration of a dash is 3 unit times

• The time between each dot and dash is a unit time

• The time between the letters is 3 unit times

• The time between the words is 7 unit times

The unit time in milliseconds is calculated using the following formula:

Time (ms) = 1200 / wpm

In this project the Morse code is simulated at 10 wpm. Thus, the unit time is taken to be
1200 / 10 = 120 ms.

 Letter Morse code
 A: .-
 B : -...
 C : -.-.
 D : -..
 E : .
 F : ..-.
 G : --.
 H :
 I : ..
 J : .---
 K : -.-
 L : .-..
 M : --
 N : -.
 O : ---
 P : .--.
 Q : --.-
 R : .-.
 S : ...
 T : -

The Raspberry Pi Zero 2 W GO! - UK.indd 76The Raspberry Pi Zero 2 W GO! - UK.indd 76 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 77

 U : ..-
 V : ...-
 W : .--
 X : -..-
 Y : -.--
 Z : --..

Figure 5.23: Morse code of English letters.

The project PDL is shown in Figure 5.24.

BEGIN
 Import GPIO library
 Import time library
 Configure channel 2 as an output pin
DO until text QUIT is received
 Read text from the keyboard
 IF space detected (inter-word character) THEN
 CALL Do_SPACE
 ELSE
 DO for all letters of the text
 Find the Morse code
 IF the code contains a dot THEN
 CALL DO_DOT
 ELSE IF code contains a dash THEN
 CALL DO_DASH
 ENDIF
 ENDDO
 Wait 2 seconds
ENDDO
Cleanup the I/O resources used
END

BEGIN/DO_DOT
 Send 1 to GPIO pin 2
 Wait 120ms (unit time)
 Send 0 to GPIO pin 2
 Wait 120ms (unit time)
END/DO_DOT

BEGIN/DO_DASH
 Send 1 to GPIO pin 2
 Wait 360ms (3 x unit time)
 Send 0 to GPIO pin 2

The Raspberry Pi Zero 2 W GO! - UK.indd 77The Raspberry Pi Zero 2 W GO! - UK.indd 77 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 78

 Wait 120ms (unit time)
END/DO_DASH

BEGIN/DO_SPACE
 Wait 7 unit time
END/DO_SPACE

Figure 5.24 Project PDL.

Program listing: The program is called morse.py and the listing is shown in Figure 5.25.
At the beginning of the program, the RPi.GPIO and the time modules are imported to the
project. Then the pin numbering is configured to use the BCM notation. GPIO 2 is config-
ured as an output pin and this is where the buzzer is connected to. The Morse code alphabet
is stored in list Morse_Code. Function DO_DOT implement a single dot with a duration of
one unit time. Function DO_DASH implement a single dash with duration of 3 unit times.
Function DO_SPACE implements a space character with a duration of 7 unit times. The rest
of the program is executed in a loop where a text is read from the keyboard and the buzzer
sounds in such a way to represent the Morse code of this text. The program terminates if
the user enters the text QUIT.

You should run the program from the command mode as follows:

pi@raspberrypi:~ $ python3 morse.py

#---
#
MORSE CODE EXERCISER
====================
#
This project can be used to learn the Morse code. A buzzer is
connected to GPIO 2 of the Zero 2 W.
#
The program reads a text from the keyboard and then sounds the
buzzer to simulate sending or receiving the Morse code of this
text.
#
In this project the Morse code speed is assumed to be 10 wpm,
but can easily be changed by changing the parameter wpm.
#
File : morse.py
Date : December, 2022
Author: Dogan Ibrahim
#---
import RPi.GPIO as GPIO # import GPIO module

The Raspberry Pi Zero 2 W GO! - UK.indd 78The Raspberry Pi Zero 2 W GO! - UK.indd 78 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 79

import time # import time module
GPIO.setwarnings(False)

Pin = 2
words_per_minute = 10 # define words per min
wpm = 1200/words_per_minute # unit time in milliseconds
unit_time = wpm / 1000

GPIO.setmode(GPIO.BCM) # set BCM pin numbering
GPIO.setup(Pin, GPIO.OUT) # Configure GPIO 2 as output

Morse_Code = {
 'A': '.-',
 'B': '-...',
 'C': '-.-.',
 'D': '-..',
 'E': '.',
 'F': '..-.',
 'G': '--.',
 'H': '....',
 'I': '..',
 'J': '.---',
 'K': '-.-',
 'L': '.-..',
 'M': '--',
 'N': '-.',
 'O': '---',
 'P': '.--.',
 'Q': '--.-',
 'R': '.-.',
 'S': '...',
 'T': '-',
 'U': '..-',
 'V': '...-',
 'W': '.--',
 'X': '-..-',
 'Y': '-.--',
 'Z': '--..'
 }

#
This function sends a DOT (unit time)
#
def DO_DOT():
 GPIO.output(Pin, 1)

The Raspberry Pi Zero 2 W GO! - UK.indd 79The Raspberry Pi Zero 2 W GO! - UK.indd 79 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 80

 time.sleep(unit_time)
 GPIO.output(Pin, 0)
 time.sleep(unit_time)
 return

#
This function sends a DASH (3*unit time)
#
def DO_DASH():
 GPIO.output(Pin, 1)
 time.sleep(3*unit_time)
 GPIO.output(Pin, 0)
 time.sleep(unit_time)
 return

#
This function sends inter-word space (7*unit time)
#
def DO_SPACE():
 time.sleep(7*unit_time)
 return

#
Main program code
#
text = ""
while text != "QUIT":
 text = input("Enter text to send: ")
 if text != "QUIT":
 for letter in text:
 if letter == ' ':
 DO_SPACE()
 else:
 for code in Morse_Code[letter.upper()]:
 if code == '-':
 DO_DASH()
 elif code == '.':
 DO_DOT()
 time.sleep(unit_time)
 time.sleep(2)

Figure 5.25: Program: morse.py.

Recommended Modifications: An LED can be connected to the GPIO pin instead of the
buzzer so that the Morse code can be seen in visual form.

The Raspberry Pi Zero 2 W GO! - UK.indd 80The Raspberry Pi Zero 2 W GO! - UK.indd 80 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 81

5.8 Project 7: Electronic dice
Description: In this project 7 LEDs are arranged in the form of the faces of a dice, and a
pushbutton switch is used. When the button is pressed, the LEDs turn ON to display num-
bers 1 through 6 as if on a real dice. The display is turned OFF after 3 seconds, ready for the
next game. The aim of this project is to show how a dice can be constructed with 7 LEDs.

Block diagram: The block diagram of the project is shown in Figure 5.26.

Figure 5.26: Block diagram of the project.

Figure 5.27 shows the LEDs that should be turned ON to display the 6 dice face numbers.

Figure 5.27: LED Dice.

Circuit diagram: The circuit diagram of the project is shown in Figure 5.28. Here, 8 GPIO
pins are collected to form a PORT. The following pins are used for the LEDs (there are 7
LEDs, but 8 port pins are used in the form of a byte where the most-significant bit position
is not used):

PORT bit 7 6 5 4 3 2 1 0
GPIO: 9 10 22 27 17 4 3 2

The Raspberry Pi Zero 2 W GO! - UK.indd 81The Raspberry Pi Zero 2 W GO! - UK.indd 81 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 82

Figure 5.28: Circuit diagram of the project.

The pushbutton switch is connected to port pin GPIO 11 (pin 23).

Project PDL: The project PDL is shown in Figure 5.29.

BEGIN
 Import GPIO library
 Import time library
 Import random library
 Configure GPIO 11 as input
 Create DICE_NO list for LED bit patterns
 CALL Configure_Port to configure the PORT as output
 Declare callback handler (DICE) on pin GPIO 11
 DO FOREVER
 Wait for the button to be pressed
 ENDDO
END

BEGIN/Configure_Port
 IF port is output THEN
 CALL GPIO.setup to configure the port as output
 ELSE
 CALL GPIO.setup to configure the port as input
 ENDIF
END/Configure_Port

BEGIN/Port_Ouput

The Raspberry Pi Zero 2 W GO! - UK.indd 82The Raspberry Pi Zero 2 W GO! - UK.indd 82 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 83

 CALL GPIO.output to send the byte to the port
END/Port_Output

BEGIN/DICE
 Generate a random number between 1 and 6
 Get the LED bit pattern corresponding to this number
 CALL Port_Output to send the data to the LEDs
 Wait 3 seconds
 Turn OFF all LEDs
END/DICE

Figure 5.29: Project PDL.

Table 5.1 gives the relationship between a dice number and the corresponding LEDs to be
turned ON to imitate the faces of a real dice. For example, to display number 1 (i.e., only
the middle LED is ON), you have to turn LED D3 ON. Similarly, to display number 4, you
have to turn ON D0, D2, D4 and D6.

Required number LEDs to be turned on

1 D3

2 D0, D6

3 D0, D3, D6

4 D0, D2, D4, D6

5 D0, D2, D3, D4, D6

6 D0, D1, D2, D4, D5, D6

Table 5.1: Dice number and LEDs to be turned ON.

The relationship between the required number and the data to be sent to the PORT to turn
on the correct LEDs is given in Table 5.2. For example, to display dice number 2, you have
to send hexadecimal 0x22 to the PORT. Similarly, to display number 5, you have to send
hexadecimal 0x5D to the PORT, and so on.

Required number PORT data (Hex)

1 0x08

2 0x41

3 0x49

4 0x55

5 0x5D

6 0x77

Table 5.2: Required number and PORT data.

Program listing: The program is called dice.py and the listing is shown in Figure 5.30.

The Raspberry Pi Zero 2 W GO! - UK.indd 83The Raspberry Pi Zero 2 W GO! - UK.indd 83 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 84

At the beginning of the program, the RPi.GPIO, time and random modules are imported
to the project. Then, port pins are declared as a list in variable PORT, and the direction of
each pin is declared as output ("O") in a list variable called DIR. The bit pattern to be sent
to the LEDs corresponding to each dice number is stored in hexadecimal format in a list
called DICE_NO (see Table 5.2).

The pin numbering is configured to use the BCM notation. GPIO 11 is configured as an input
pin and the pushbutton switch is connected to this pin to simulate the throwing of a dice.
A callback routine called DICE is created so that when the button is pressed, the program
jumps to this function. The callback function is set up to trigger when the button is pressed
(i.e., when it goes from logic 1 to 0). Switch debouncing is also used in the callback routine.
Inside the callback function, a random number is generated between 1 and 6. Then, the
list called DICE_NO is used to find the LEDs that should be turned ON, and the required
bit pattern is sent to the PORT to display the dice number. The program displays the dice
number for 3 seconds and then all the LEDs are turned OFF to indicate that the program is
ready for the next game.

#--
#
ELECTRONIC DICE
===============
#
This program is an electronic dice. GPIO 11 of Zero 2 W is
configured as an input and a push-button switch is connected to
this port pin. When the button is pressed a random dice number is
displayed between 1 and 6 on the LEDs.
#
7 LEDs are mounted on the breadboard in the form of the face of
a real dice. The following GPIO pins are used for the LEDs (bit
7 is mot used):
#
Port pin: 7 6 5 4 3 2 1 0
GPIO : 10 22 27 17 4 3 2
#
The following PORT pins are used to construct the dice:
#
D0 D4
D1 D3 D5
D2 D6
#
Program: dice.py
Date : December, 2022
Author : Dogan Ibrahim
#--
import RPi.GPIO as GPIO # import GPIO library

The Raspberry Pi Zero 2 W GO! - UK.indd 84The Raspberry Pi Zero 2 W GO! - UK.indd 84 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 85

import time # import time library
import random # import random library
GPIO.setwarnings(False)

PORT = [9, 10, 22, 27, 17, 4, 3, 2]

DICE_NO = [0, 0x08, 0x41, 0x49, 0x55, 0x5D, 0x77]

#
This function configures the port directions
#
def Configure_Port():
 for i in range (0, 8):
 GPIO.setup(PORT[i], GPIO.OUT)
 return

#
This function sends a byte (8-bit) data to the PORT
#
def Port_Output(x):
 b = bin(x) # convert into binary
 b = b.replace("0b", "") # remove leading 0b
 diff = 8 - len(b) # find the difference
 for i in range (0, diff):
 b = "0" + b # insert leading 0s

 for i in range (0, 8):
 if b[i] == "1":
 GPIO.output(PORT[i], 1)
 else:
 GPIO.output(PORT[i], 0)
 return

#
The program jumps here after the button is pressed
#
def DICE(dummy):
 n = random.randint(1, 6) # generate a random number
 pattern = DICE_NO[n] # find the pattern
 Port_Output(pattern) # turn ON required LEDs
 time.sleep(3) # wait for 3 seconds
 Port_Output(0) # turn OFF all LEDs
 return

#

The Raspberry Pi Zero 2 W GO! - UK.indd 85The Raspberry Pi Zero 2 W GO! - UK.indd 85 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 86

Start of main program
#
Dice_Pin = 11
GPIO.setmode(GPIO.BCM)

GPIO.setup(Dice_Pin, GPIO.IN)
#
Configure PORT as outputs
#
Configure_Port()
#
Setup callback to function DICE when the button is pressed
#
GPIO.add_event_detect(Dice_Pin, GPIO.FALLING, bouncetime=50,
 callback=DICE)
#
Program waits here for the button to be pressed, then a random
number is generated between 1 and 6 and is displayed on the LEDs
#
while True:
 pass # Do nothing

Figure 5.30: Program: dice.py.

5.9 Project 8: LED brightness control
Description: In this project, an LED and two buttons are connected to GPIO ports of the
Zero 2 W. Pressing button BRIGHTER makes the LED brighter. Similarly, pressing button
DIMMER makes the LED dimmer. PWM waveform is used to control the LED brightness
where the Duty Cycle of the waveform is changed each time a button is pressed.

Background: PWM waves are frequently used in power control applications. The waveform
is basically a positive squarewave with variable ON and OFF times. As shown in Figure 5.31,
the total of the ON and OFF times is known as the period of the waveform. The ratio of the
ON time to the period is known as the Duty Cycle and it is represented as a percentage. i.e.,

 Duty Cycle = (T / P) × 100%

where T is the ON time, and P, the period (ON time + OFF time).

The Raspberry Pi Zero 2 W GO! - UK.indd 86The Raspberry Pi Zero 2 W GO! - UK.indd 86 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 87

Figure 5.31: PWM waveform.

By varying the duty cycle from 0% to 100% you can easily control a load, say, a motor. For
example, at 50% duty cycle the load receives half of the total power. Similarly, at 100%
duty cycle the load receives full power.

The average value of the voltage applied to the load can be calculated by considering a
general PWM waveform shown in Figure 5.31. The average value A of waveform f(t) with
period T and peak value ymax and minimum value ymin is calculated from:

or

In a PWM waveform, ymin = 0 and the above equation becomes

or

As it can be seen from the above equation, the average value of the voltage supplied to
the load is directly proportional to the duty cycle of the PWM waveform and by varying the
duty cycle you control the average load voltage. Figure 5.32 shows the average voltage for
different values of the duty cycle.

The Raspberry Pi Zero 2 W GO! - UK.indd 87The Raspberry Pi Zero 2 W GO! - UK.indd 87 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 88

Figure 5.32: Average voltage (shown as a dashed line) supplied to a load.

It is interesting to notice that with correct low-pass filtering, the PWM can be used as a DAC
if the MCU does not have a DAC channel. By varying the duty cycle you can effectively vary
the average analog voltage supplied to the load.

Block diagram: The block diagram of the project is shown in Figure 5.33.

Figure 5.33: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 5.34. Buttons
BRIGHTER and DIMMER are connected to port pins GPIO 2 (pin 3) and GPIO 3 (pin 5) re-
spectively. The LED is connected to port pin GPIO 4 (pin 7).

The Raspberry Pi Zero 2 W GO! - UK.indd 88The Raspberry Pi Zero 2 W GO! - UK.indd 88 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 89

Figure 5.34: Circuit diagram of the project.

Program listing: The program is called pwm.py, and its listing is shown in Figure 5.35. At
the beginning of the program, the RPi.GPIO module is imported to the project. Ports GPIO
2 and GPIO 3 are configured as inputs and LED port (GPIO 4) is configured as output. The
default state of the buttons is logic 1 and they go to logic 0 when pressed.

GPIO pin 4 is configured as a PWM port with a frequency of 200 Hz using the following
statement:

P = GPIO.PWM(LED, 200)

Then, the PWM is started with 50% Duty Cycle using the statement:

p.start(Duty)

where Duty is set to 50 initially.

Inside the program loop the state of both buttons are checked. Every time button BRIGHT-
ER is pressed, the Duty Cycle is incremented by 5 until it reaches to maximum (100%).
Similarly, every time button DIMMER is pressed, the Duty Cycle is decremented by 5 until
it reaches the minimum (0%). The program runs until stopped by the user.

#---
LED BRIGHTNESS CONTROL
======================
#
In this program two buttons and an LED are used. Pressing button

The Raspberry Pi Zero 2 W GO! - UK.indd 89The Raspberry Pi Zero 2 W GO! - UK.indd 89 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 90

BRIGHTER makes the LED brighter. Simialrly, pressing button DIMMER
makes the LED dimmer. PWM waveform is used to drive the LED where
the Duty Cycle is changed (increased or decreased by 5) each time
a button is pressed. PWM frequency is set to 200 Hz
#
File : pwm.py
Date : December, 2022
Author: Dogan Ibrahim
#---
import RPi.GPIO as GPIO # import GPIO module
GPIO.setwarnings(False)
import time

GPIO.setmode(GPIO.BCM)
BRIGHTER = 2 # button BRIGHTER
DIMMER = 3 # button DIMMER
LED = 4 # LED

GPIO.setup(LED, GPIO.OUT) # configure LED output
GPIO.setup(BRIGHTER, GPIO.IN) # configure BRIGHTER input
GPIO.setup(DIMMER, GPIO.IN) # configure DIMMER input

p = GPIO.PWM(LED, 200) # generate PWM waveform
Duty = 50 # Initial Duty Cycle
p.start(Duty) # set duty cycle to 50%

while True: # wait here
 p.ChangeDutyCycle(Duty) # set/change Duty Cycle
 if GPIO.input(BRIGHTER) == 0: # if BRIGHTER pressed
 if Duty < 100: # if not max Duty Cycle
 Duty = Duty + 5 # increase Duty Cycle
 time.sleep(0.25) # wait a bit
 else:
 Duty = 100 # set to max Duty Cycle

 elif GPIO.input(DIMMER) == 0: # if DIMMER is pressed
 if Duty > 0:
 Duty = Duty - 5 # decrease Duty Cycle
 time.sleep(0.25) # wait a bit
 else:
 Duty = 0 # set to min Duty Cycle

Figure 5.35: Program: pwm.py.

The Raspberry Pi Zero 2 W GO! - UK.indd 90The Raspberry Pi Zero 2 W GO! - UK.indd 90 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 91

The PWM library supports the following commands:

P = GPIO.PWM(channel, frequency) - Configure channel for PWM with
specified frequency

p.start(Duty) - Start PWM with specified Duty Cycle

p.stop() - Stop PWM

p.ChangeFrequency(frequency) - Change PWM frequency

p.ChangeDutyCycle(Duty) - Change Duty Cycle

5.10 Project 9: Lucky day of the week
Description: In this project, 7 LEDs are positioned in the form of a circle and are connect-
ed to the Zero 2 W. Each LED is assumed to represent a day of the week. Pressing a button
generates a random number between 1 and 7 and lights up only one of the LEDs. The day
name corresponding to this LED is assumed to be your lucky day of the week!

Block diagram: Figure 5.36 shows the block diagram of the project.

Figure 5.36: Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 5.37, where 7 LEDs
are connected to the Zero 2 W through current limiting resistors. The button is connected to
GPIO11 (pin 23). Normally, the output of the button is at logic 1 and goes to logic 0 when
the button is pressed.

The Raspberry Pi Zero 2 W GO! - UK.indd 91The Raspberry Pi Zero 2 W GO! - UK.indd 91 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 92

Figure 5.37: Circuit diagram of the project.

Program listing: Figure 5.38 shows the program listing (Program: LuckyDay.py). At the
beginning of the program, all the 8 LED GPIO pins are combined into a single port and is
addressed as a single 8-bit port using function PORT_Output. Notice that the system date
and time are jointly used as the seed value to the random number generator function so
that different values are available every time the program is started. An integer random
number is generated between 1 and 7 and this number is used to turn ON one of the LEDs
corresponding to a day of the week.

#--
LUCKY DAY OF THE WEEK
=====================
#
In this program 7 LEDs are connected to Zero 2 W where each
LED represents a day of the week. Pressing a button
turns ON one of the LEDs randomly and this corresponds to
your lucky day of the week
#
Author: Dogan Ibrahim
File : LuckyDay.py
Date : December, 2022
#---
import RPi.GPIO as GPIO # import GPIO library
import time # import time library
GPIO.setwarnings(False) # disable warning messages
GPIO.setmode(GPIO.BCM) # set BCM pin numbering
import random # random no
from datetime import datetime

PORT = [9, 10, 22, 27, 17, 4, 3, 2] # port connections
DIR = ["0","0","0","0","0","0","0","0"] # port directons
BUTTON = 11

The Raspberry Pi Zero 2 W GO! - UK.indd 92The Raspberry Pi Zero 2 W GO! - UK.indd 92 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 93

GPIO.setup(BUTTON, GPIO.IN)

#
This function configures the port pins as outputs ("0") or
as inputs ("I")
#
def Configure_Port():
 for i in range(0, 8):
 if DIR[i] == "0":
 GPIO.setup(PORT[i], GPIO.OUT)
 else:
 GPIO.setup(PORT[i], GPIO.IN)
 return

#
This function sends 8-bit data (0 to 255) to the PORT
#
def Port_Output(x):
 b = bin(x) # convert into binary
 b = b.replace("0b", "") # remove leading "0b"
 diff = 8 - len(b) # find the length
 for i in range (0, diff):
 b = "0" + b # insert leading os

 for i in range (0, 8):
 if b[i] == "1":
 GPIO.output(PORT[i], 1)
 else:
 GPIO.output(PORT[i], 0)
 return
#
Configure PORT to all outputs
#
Configure_Port()

#
Main program loop, check if Button is pressed
#
print("Press the Button to display your lucky number...")
dt = datetime.today()
seconds = dt.timestamp()
random.seed(seconds)

while GPIO.input(BUTTON) == 1: # If Button not pressed
 pass

The Raspberry Pi Zero 2 W GO! - UK.indd 93The Raspberry Pi Zero 2 W GO! - UK.indd 93 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 94

r = random.randint(1, 7) # Generate random number
r = pow(2, r-1) # LED to be turned ON
Port_Output(r) # Send to LEDs

Figure 5.38: Program: LuckyDay.

5.11 Project 10: Using an I2C LCD: Seconds counter
Description: In this project an I2C type LCD is connected to the Zero 2 W. The program
counts up in seconds and displays on the LCD. The aim of this project is to show how an
I2C type LCD can be used in Raspberry Pi Zero 2 W projects.

Block Diagram: Figure 5.39 shows the block diagram of the project.

Figure 5.39: Block diagram of the project.

Circuit Diagram: The I2C LCD has 4 pins: GND, +V, SDA, and SCL. SDA is connected to
pin GPIO 2 and SCL is connected to pin GPIO 3. The +V pin of the display should be con-
nected to +5 V (pin 2) on the Zero 2 W. Notice that Zero 2 W pins are not +5 V tolerant,
but the I2C LCD operates with +5 V where its SDA and SCL pins are pulled to +5 V. It is
not a good idea to connect the LCD directly to the Zero 2 W as it can damage the latter"s
I/O circuitry. There are several solutions here. One solution is to remove the I2C pull-up
resistors on the LCD module. The other option is to use an I2C device which does operate
at +3.3 V. The other solution is to use a bidirectional +3.3 V to +5 V logic level converter
chip. In this project, you will use the TXS0102 bidirectional logic level converter chip like
the one shown in Figure 5.40. The circuit diagram of the project is shown in Figure 5.41.

The Raspberry Pi Zero 2 W GO! - UK.indd 94The Raspberry Pi Zero 2 W GO! - UK.indd 94 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 95

Figure 5.40: Logic level converter.

Figure 5.41: Circuit diagram of the project.

The LCD used in this project is based on the I2C interface. I2C is a multi-slave, multi-mas-
ter, single-ended serial bus used to attach low-speed peripheral devices to microcontrollers.
The bus consists of only two wires called SDA and SCL where SDA is the data line and SCL is
the clock line and up to 1008 slave devices can be supported on the bus. Both lines must be
pulled up to the supply voltage by suitable resistors. The clock signal is always generated
by the bus master. The devices on the I2C bus can communicate at 100 kHz or 400 kHz.

Figure 5.42 shows the front and back of the I2C based LCD. Notice that the LCD has a
small board mounted at its back to control the I2C interface. The LCD contrast is adjusted
through the small potentiometer mounted on this board. A jumper is provided on this board
to disable the backlight if required.

The Raspberry Pi Zero 2 W GO! - UK.indd 95The Raspberry Pi Zero 2 W GO! - UK.indd 95 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 96

Figure 5.42: I2C-based LCD (front and back views).

Program Listing: Before using the I2C pins of the Zero 2 W you have to enable the I2C
peripheral interface on the device. The steps for this are as follows:

• Start the configuration menu from the command prompt:

pi@raspberrypi:~ $ sudo raspi-config

• Go down the menu to Interface Options

• Go down and select I2C

• Enable the I2C interface

• Select Finish to complete

Now you have to install the I2C library on your Zero 2 W. The steps are as follows:

• Enter the following commands from the command menu:

pi@raspberrypi:~ $ sudo apt install -y i2c-tools python3-smbus
pi@raspberrypi:~ $ sudo reboot

• Connect the I2C display to your Zero 2 W and enter the following command to
test the installation and LCD hardware address:

pi@raspberrypi:~ $ sudo i2cdetect –y 1

You should see a table similar to the one shown below. A number in the table
means that the LCD has been recognized correctly and the I2C slave address of the
LCD is shown in the table. In this example, the LCD address is 27:

1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- 27 -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

The Raspberry Pi Zero 2 W GO! - UK.indd 96The Raspberry Pi Zero 2 W GO! - UK.indd 96 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 97

70: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

Now install an I2C LCD library so you can send commands and data to your LCD. There are
many Python libraries available for the I2C type LCDs. The one chosen here is called the
RPLCD and it can be installed as follows:

• pi@raspberrypi:~ $ sudo pip3 install RPLCD

The I2C LCD library supports the following functions (see the RPLCD I2C LCD library docu-
mentation for more details):

lcd_clear() clear LCD and set to home position
cursor_pos = (row, column) position cursor
lcd.write_string(text) display text
lcd.write_string(text\r\n) display text followed by new line
lcd.home() home cursor
lcd.cr() insert carriage-return
lcd.lf() insert linefeed
lcd.crlf() insert carriage-return and linefeed

Testing the I2C bus and LCD
It is worthwhile testing the LCD display before developing any controller program. Create
the simple test program shown in Figure 5.43 (Program: lcdtest.py) which sends the text
MY LCD to the LCD.
If you have used a text editor (like nano) to create the program, you can run it by entering
the following command:

 pi@raspberrypi:~ $ python3 lcdtest.py

Alternatively, if you have used the Thonny IDE, then just run the program.

#---------------------------------------
#
LCD TEST PROGRAM
================
#
Author: Dogan Ibrahim
File : lcdtest.py
Date : December, 2022
#---------------------------------------
from RPLCD.i2c import CharLCD
lcd=CharLCD('PCF8574', 0x27)

lcd.clear()

The Raspberry Pi Zero 2 W GO! - UK.indd 97The Raspberry Pi Zero 2 W GO! - UK.indd 97 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 98

lcd.home
lcd.write_string("MY LCD")

Figure 5.43: LCD test program.

You are now all set to write your program. Figure 5.44 shows the program listing (lcd.py).
At the beginning of the program, libraries RPi.GPIO, timer, and the LCD driver library are
all imported to the program. The heading SECONDS COUNTER is displayed for 2 seconds.
The program then clears the LCD screen and enters into an infinite loop. Inside this loop,
variable cnt is incremented every second and the total value of cnt is displayed on the LCD
continuously.

#---
I2C LCD SECONDS COUNTER
=======================
#
In this program an I2C LCD is connected to the Zero 2 W.
The program counts up in seconds and displays on the LCD.
#
At the beginning of the program the text SECONDS COUNTER is
displayed for 2 seconds
#
Program: lcd.py
Date : December, 2022
Author : Dogan Ibrahim
#--
import time
from RPLCD.i2c import CharLCD
lcd=CharLCD('PCF8574', 0x27) # Init LCD

lcd.clear() # clear LCD
lcd.write_string("SECONDS COUNTER") # display string
time.sleep(2) # wait 2 seconds

cnt = 0 # initialize cnt
lcd.clear() # clear lcd

while True: # infinite loop
 cnt = cnt + 1 # increment count
 lcd.cursor_pos = (0, 0) # Top row
 lcd.write_string(str(cnt)) # display cnt
 time.sleep(1) # wait one second

Figure 5.44: Program: lcd.py.

The Raspberry Pi Zero 2 W GO! - UK.indd 98The Raspberry Pi Zero 2 W GO! - UK.indd 98 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 99

5.12 Project 11: Analog temperature sensor thermometer
Description: In this project, an analog temperature sensor chip is used to measure and
then display the ambient temperature on the monitor, every second. Because the Zero 2
W does not have any analog-to-digital converters (ADC) on-board, an external ADC chip is
used in this project. The aim of this project is to show ways of connecting an external ADC
chip to a Zero 2 W and how the temperature can be read and displayed on the monitor
using an analog temperature sensor chip.

Block Diagram: Figure 5.45 shows the block diagram of the project.

Figure 5.45: Block diagram of the project.

Circuit Diagram: The dual MCP3002 ADC chip is used in this project to provide analog
input capability to the Zero 2 W. This chip has the following features:

• 10-bit resolution (0 to 1023 quantization levels)
• On-chip sample and hold
• SPI bus compatible
• Wide operating voltage (+2.7 V to +5.5 V)
• 75 Ksps sampling rate
• 5 nA standby current, 50 µA active current

The MCP3002 is a successive approximation 10-bit ADC with on-chip sample and hold
amplifier. The device is programmable to operate as either differential input pair or as dual
single-ended inputs. The device is offered in 8-pin package. Figure 5.46 shows the pin con-
figuration of the MCP3002.

Figure 5.46: Pin configuration of the MCP3002.

The Raspberry Pi Zero 2 W GO! - UK.indd 99The Raspberry Pi Zero 2 W GO! - UK.indd 99 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 100

The pin definitions are as follows:

Vdd/Vref: Power supply and reference voltage input
CH0: Channel 0 analog input
CH1: Channel 1 analog input
CLK: SPI clock input
DIN: SPI serial data in
DOUT: SPI serial data out
CS/SHDN: Chip select/shutdown input

In this project, the supply voltage and the reference voltage are set to +3.3 V. Thus, the
digital output code is given by:

 Digital output code = 1024 × Vin / 3.3

or Digital output code = 310.30 × Vin

each quantization level corresponds to 3300 mV / 1024 = 3.22 mV. Thus, for example,
input data "00 0000001" corresponds to 3.22 mV, "00 0000010" corresponds to 6.44 mV,
and so on.

The MCP3002 ADC has two configuration bits: SGL/DIFF and ODD/SIGN. These bits follow
the sign bit and are used to select the input channel configuration. The SGL/DIFF is used
to select single ended or pseudo-differential mode. The ODD/SIGN bit selects which chan-
nel is used in single ended mode and is used to determine polarity in pseudo-differential
mode. In this project, you are using channel 0 (CH0) in single-ended mode. According to
the MCP3002 datasheet, SGL/DIFF and ODD/SIGN must be set to 1 and 0, respectively.

Figure 5.47 shows the circuit diagram of the project. A type TMP36DZ analog temperature
sensor chip is connected to CH0 of the ADC. TMP36DZ is a 3 terminal small sensor chip
with pins: Vs, GND, and Vo. Vs is connected to +3.3V, GND is connected to system ground,
and Vo is the analog output voltage. The temperature in degrees Centigrade is given by:

 Temperature = (Vo – 500) / 10

Where Vo is the sensor output voltage in millivolts.

The CS, Dout, CLK, and Din pins of the ADC are connected to SPI pins CE0, MISO, SCLK,
and MOSI pins of the Raspberry Pi 3, respectively.

The Raspberry Pi Zero 2 W GO! - UK.indd 100The Raspberry Pi Zero 2 W GO! - UK.indd 100 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 101

Figure 5.47: Circuit diagram of the project.

Program listing: Figure 5.48 shows the program listing (program: tmp36.py). The func-
tion get_adc_data is used to read the analog data, where the channel number (chan-
nel_no) is specified in the function argument as 0 or 1. Notice that you have to send the
start bit, followed by the SGL/DIFF and ODD/SIGN bits and the MSBF bit to the chip.

It is recommended to send leading zeroes on the input line before the start bit. This is often
done when using microcontroller-based systems that are required to send 8 bits at a time.

The following data can be sent to the ADC (SGL/DIFF = 1 and ODD/SIGN = channel_no) as
bytes with leading zeroes for more stable clock cycle. The general data format is:

 0000 000S DCM0 0000 0000 0000

Where, S = start bit, D = SGL/DIFF bit, C = ODD/SIGN bit, M = MSBF bit

For channel 0: 0000 0001 1000 0000 0000 0000 (0x01, 0x80, 0x00)

For channel 1: 0000 0001 1100 0000 0000 0000 (0x01, 0xC0, 0x00)

Notice that the second byte can be sent by adding 2 to the channel number (to make it 2
or 3) and then shifting 6 bits to the left as shown above to give 0x80 or 0xC0.

The chip returns 24 bit data (3 bytes) and you must extract the correct 10 bit ADC data
from this 24 bit data. The 24 bit data is in the following format ("X" is a don"t-care bit):

 XXXX XXXX XXXX DDDD DDDD DDXX

Assuming that the returned data is stored in 24 bit variable ADC, you have:

The Raspberry Pi Zero 2 W GO! - UK.indd 101The Raspberry Pi Zero 2 W GO! - UK.indd 101 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 102

 ADC[0] = "XXXX XXXX"
 ADC[1] = "XXXX DDDD"
 ADC[2] = "DDDD DDXX"

Thus, you can extract the 10 bit ADC data with the following operations:

 (ADC[2] >> 2) so, low byte = "00DD DDDD"

and

 (ADC[1] & 15) << 6) so, high byte = "DD DD00 0000"

Adding the low byte and the high byte you get the 10-bit converted ADC data as:

 DD DDDD DDDD

The SPI bus on the Raspberry Pi supports the following functions:

Function Description

open (0,0) Open SPI bus 0 using CE0

open (0,1) Open SPI bus 0 using CE1

close() disconnect the device from the SPI bus

writebytes([array of bytes]) Write an array of bytes to SPI bus device

readbytes(len) Read len bytes from SPI bus device

xfer2([array of bytes]) Send an array of bytes to the device with CEx asserted
at all times

xfer([array of bytes]) Send an array of bytes de-asserting and asserting CEx
with every byte transmitted

The module spidev must be imported at the beginning of the program before any of the
above functions are called. Also, you must enable the SPI interface on your Zero 2 W in the
configuration menu. The steps are:

• Get into command mode (e.g., from Putty)

• Enter the following command:

pi@raspberrypi:~ $ sudo raspi-config

• Select the Interface Options

The Raspberry Pi Zero 2 W GO! - UK.indd 102The Raspberry Pi Zero 2 W GO! - UK.indd 102 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 103

• Enable SPI interface

• Finish and exit the configuration menu

At the beginning of the program in Figure 5.48, modules RPi.GPIO and spidev are imported
to the program and an instance of the SPI is created. Function get_adc_data reads the
temperature from sensor chip MCP3002 and returns a digital value comprised between 0
and 1023. This value is then converted into millivolts, 500 is subtracted from it, and the
result is divided by 10 to find the temperature in degrees Centigrade. The temperature is
displayed on the monitor every second.

#---
ANALOG TEMPERATURE SENSOR
=========================
#
In this project a TMP36 type analog temperature chip is used
to measure the ambient temperature. The temperature is read
using a MCP3002 type ADC chip. The result is converted into
degrees Centigrade and is displayed on the monitor
#
Program: tmp36.py
Date : December, 2022
Author : Dogan Ibrahim
#--
import RPi.GPIO as GPIO
import spidev
import time
GPIO.setwarnings(False)

#
Create SPI instance and open the SPI bus
#
spi = spidev.SpiDev()
spi.open(0,0) # we are using CE0 for CS
spi.max_speed_hz = 4000

GPIO.setmode(GPIO.BCM)

#
This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):
 ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])
 rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)
 return rcv

The Raspberry Pi Zero 2 W GO! - UK.indd 103The Raspberry Pi Zero 2 W GO! - UK.indd 103 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 104

#
Start of main program. Read the analog temperature, convert
into degrees Centigrade and display on the monitor every second
#
while True:
 adc = get_adc_data(0)
 mV = adc * 3300.0 / 1023.0 # convert to mV
 Temp = (mV - 500.0) / 10.0 # temperature in C
 print("Temperature = %5.2f " %Temp) # display temperature
 time.sleep(1) # wait one second

Figure 5.48: Program: tmp36.py.

A typical display on the monitor is shown in Figure 5.49.

Figure 5.49: Typical display.

5.13 Project 12: Analog temperature sensor thermometer with LCD
output
Description: This project is similar to the previous one but here the temperature is dis-
played on LCD every 2 seconds

Block diagram: Figure 5.50 shows the block diagram of the project

Figure 5.50: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 5.51. The I2C LCD is connected

The Raspberry Pi Zero 2 W GO! - UK.indd 104The Raspberry Pi Zero 2 W GO! - UK.indd 104 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 105

to Zero 2 W using a voltage translator chip. The ADC chip is connected as in the previous
project.

Figure 5.51: Circuit diagram of the project.

Program listing: Figure 5.52 shows the program listing (Program: tmp36lcd.py). The
program is similar to the one in Figure 5.48 but here an I2C LCD is used to display the
temperature. At the beginning of the program, the LCD library and other libraries used in
the program are imported. The LCD is configured to 16 characters and 2 rows. Inside the
program loop, the temperature is read from TMP36DZ via the ADC and gets converted into
degrees Celsius and subsequently displayed on the LCD.

#---
ANALOG TEMPERATURE SENSOR - LCD OUTPUT
======================================
#
In this project a TMP36 type analog temperature chip is used
to measure the ambient temperature. The temperature is read
using a MCP3002 type ADC chip. The result is converted into
degrees Centigrade and is displayed on I2C LCD
#
Program: tmp36lcd.py
Date : December, 2022
Author : Dogan Ibrahim
#--
import RPi.GPIO as GPIO
import spidev
import time
from RPLCD.i2c import CharLCD
lcd=CharLCD('PCF8574', 0x27)
GPIO.setwarnings(False)

#
Create SPI instance and open the SPI bus

The Raspberry Pi Zero 2 W GO! - UK.indd 105The Raspberry Pi Zero 2 W GO! - UK.indd 105 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 106

#
spi = spidev.SpiDev()
spi.open(0,0) # we are using CE0 for CS
spi.max_speed_hz = 4000

GPIO.setmode(GPIO.BCM)

#
This function returns the ADC data read from the MCP3002
#
def get_adc_data(channel_no):
 ADC = spi.xfer2([1, (2 + channel_no) << 6, 0])
 rcv = ((ADC[1] & 15) << 6) + (ADC[2] >> 2)
 return rcv

lcd.clear()
lcd.home()
lcd.write_string("TEMP - TMP36")
time.sleep(2)

#
Start of main program. Read the analog temperature, convert
into degrees Centigrade and display on the monitor every second
#
while True:
 adc = get_adc_data(0)
 lcd.clear()
 lcd.home()
 lcd.write_string("Temperature") # heading
 lcd.cursor_pos = (1, 0) # cursor at (1, 0)
 mV = adc * 3300.0 / 1023.0 # convert to mV
 Temp = (mV - 500.0) / 10.0 # temperature in C
 T = str(Temp)[:5]
 lcd.write_string(T) # display temperature
 time.sleep(2) # wait two seconds

Figure 5.52: Program: tmp36lcd.py.

Figure 5.53 shows an example display.

Figure 5.53: Typical display.

The Raspberry Pi Zero 2 W GO! - UK.indd 106The Raspberry Pi Zero 2 W GO! - UK.indd 106 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 107

5.14 Project 13: Reaction timer
Description: This is a reaction timer project. The user presses a button as soon as he/she
sees an LED lighting. The time delay between seeing the light and pressing the button is
measured and displayed on the monitor. The LED then turns OFF and the process is repeat-
ed after a random delay of 1 to 10 seconds. The aim of this project is to show how the time
can be read and how a simple reaction timer project can be designed.

Block Diagram: Figure 5.54 shows the block diagram of the project.

Figure 5.54: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is simple (Figure 5.55), consisting of
an LED and a pushbutton switch. The LED and the button are connected to GPIO 2 and
GPIO 3 port pins respectively. The button is connected such that by default its output is at
logic 1, and goes to logic 0 when pressed.

Figure 5.55: Circuit diagram of the project.

Program listing: The program is called reaction.py and its listing is given in Figure 5.56.
At the beginning of the program, RPi.GPIO, time, and random libraries are imported. The

The Raspberry Pi Zero 2 W GO! - UK.indd 107The Raspberry Pi Zero 2 W GO! - UK.indd 107 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 108

button is configured as an input and the LED, as an output. The program runs in a loop
where the system time is recorded as soon as the LED is turned ON. The program waits
for the user to press the button, and the system time is read again at this moment. The
difference between this time and the first time is displayed as the reaction time of the user.
This process repeats after a random delay of 1 to 10 seconds. Notice that the floating-point
function time.time() returns the time in seconds since the epoch.

#--
REACTION TIMER
==============
#
This is a reaction timer program. The user presses a button
as soon as he/she see a light. The time between seeing the
light and pressing the button is measured and is displayed
in milliseconds as the reaction time of the user. The light
comes ON after a random number of seconds between 1 and 10
seconds.
#
Program: reaction.py
Date : December, 2022
Author : Dogan Ibrahim
#---
import RPi.GPIO as GPIO
import time
import random

LED = 2 # LED at GPIO 2
Button = 3 # Button at GPIO 3

GPIO.setwarnings(False) # Disable warnings
GPIO.setmode(GPIO.BCM) # BCM mode

#
LED is output, button is input
#
GPIO.setup(Button, GPIO.IN)
GPIO.setup(LED, GPIO.OUT)

GPIO.output(LED, 0) # LED OFF to start with

#
Start of main program
#
while True:
 T = random.randint(1, 10)
 time.sleep(T)

The Raspberry Pi Zero 2 W GO! - UK.indd 108The Raspberry Pi Zero 2 W GO! - UK.indd 108 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 109

 GPIO.output(LED, 1)
 start_time = time.time() # start time
 while (GPIO.input(Button) == 1): # wait until button pressed
 pass
 end_time = time.time()
 diff_time = 1000.0*(end_time - start_time)
 diff_int = int(diff_time)
 print("Reaction time=%d " %diff_int)
 GPIO.output(LED, 0)
 time.sleep(3)

Figure 5.56: Program: reaction.py.

A typical display is shown in Figure 5.57.

Figure 5.57: Typical display.

5.15 Project 14: Vehicle parking aid
Description: This is a vehicle parking aid project to help a person park a car safely and
easily. A pair of ultrasonic transmitter/receiver sensors is mounted in the front and back of
a vehicle to sense the distance to the objects . A buzzer sounds if the sensors are too close
to the objects in front of them. In this project, the safe distance is assumed to be 10 cm.
The aim of this project is to show how ultrasonic sensors can be attached to a Zero 2 W and
how distance can be measured using these sensors.

Block Diagram: Figure 5.58 shows the block diagram of the project.

Figure 5.58: Block diagram of the project.

The Raspberry Pi Zero 2 W GO! - UK.indd 109The Raspberry Pi Zero 2 W GO! - UK.indd 109 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 110

Circuit Diagram: A pair of U/S sensors are used to sense the distance both at the front
and at the rear of a vehicle. The outputs of the ultrasonic sensors are at +5 V and therefore
are not compatible with the inputs of Zero 2 W. Resistive potential divider circuits are used
to lower the voltage to +3.3 V. The voltage at the output of the potential divider resistor is:

 Vo = 5 × 2000 / (2000 + 1000) = 3.3 V

In this project, type HC-SR04 ultrasonic transmitter/receiver modules are used (see Fig-
ure 5.59). These modules have the following specifications:

• Operating voltage (current): 5 V (2 mA) operation
• Detection distance: 2 cm – 450 cm
• Input trigger signal: 10 μs TTL
• Sensor angle: under 15 degrees

The sensor modules have the following pins:

Vcc: +V power
Trig: Trigger input
Echo: Echo output
Gnd: Power ground

Figure 5.59: Ultrasonic (U/S) transmitter/receiver module.

The principle of operation of the ultrasonic sensor module is as follows:

• A 10-μs trigger pulse is sent to the module
• The module then sends eight 40-kHz square wave signals and automatically

detects the returned (echoed) pulse signal
• If an echo signal is returned the time to receive this signal is recorded

The Raspberry Pi Zero 2 W GO! - UK.indd 110The Raspberry Pi Zero 2 W GO! - UK.indd 110 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 111

The distance to the object is calculated as:

 Distance to object (in meters) = (time to received echo in seconds ×
speed of sound) / 2

The speed of sound is 340 m/s, or 0.034 cm/µs

Therefore,

Distance to object (in cm) = (time to received echo in µs) × 0.034 / 2

or,

Distance to object (in cm) = (time to received echo in µs) × 0.017

 Figure 5.60 shows the principle of operation of the ultrasonic sensor module. For exam-
ple, if the time to receive the echo is 294 microseconds, then the distance to the object is
calculated as:

Distance to object (cm) = 294 × 0.017 = 5 cm

Figure 5.60: Operation of the ultrasonic sensor module.

Figure 5.61 shows the circuit diagram of the project. The trig and echo pins of the Front
ultrasonic sensor are connected to GPIO 2 and GPIO 3 respectively. Similarly, the trig and
echo pins of the Rear ultrasonic sensor are connected to GPIO 4 and GPIO 17, respective-
ly. To drop the voltage levels to +3.3 V, the Echo outputs of the ultrasonic sensors are
connected to the Zero 2 W through potential divider resistors. The buzzer is connected to
GPIO 27.

The Raspberry Pi Zero 2 W GO! - UK.indd 111The Raspberry Pi Zero 2 W GO! - UK.indd 111 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 112

Figure 5.61: Circuit diagram of the project.

Program listing: Figure 5.62 shows the program listing (program parking.py). The front
sensor pins are named trig_f and echo_f. Similarly, the rear sensor pins are named trig_r
and echo_r. The distances from both sensors to obstacles are measured using function
GetDistance, where the trig and echo pin names of the sensor whose distance to the ob-
stacles is to be measured. A 10-microsecond trigger pulse is sent and then the time taken
to receive the echo pulse is measured. Here, the time.time() function is used after send-
ing the trigger pulse and the same function is used as soon as the echo pulse is received.
The difference between the two times is the time taken to receive the echo pulse. This time
is divided by 2 and the distance to the object expressed in cms is found as follows:

 Speed of sound = 340 m/s, or 34000 cm/s
 Distance to object (cm) = 34000 × time / 2

where "time" is in seconds and the time taken to receive the echo pulse. We can re-write
the above equation as:

 Distance to object (cm) = 17000 × time

If the distances of either sensors to the objects is less than or equal to the Allowed_Dis-
tance (which is set to 10 cm) then the buzzer is sounded to indicate that the vehicle is too
close to objects (either at the front or at the rear).

Since the parking sensor is to be operated away from a PC, it is necessary to auto start
the program when power is applied to the Raspberry Pi. The program name parking.py
must be included in file /etc/rc.local in the following format for it to launch as soon as the
Raspberry Pi starts after a power-up or after a reboot:

 python /home/pi/robot2.py &

The Raspberry Pi Zero 2 W GO! - UK.indd 112The Raspberry Pi Zero 2 W GO! - UK.indd 112 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 113

#---
PARKING SENSORS
===============
#
This is a parking sensors project. Ultrasonic tranamitter/receiver
sensors are attached to the front and rear of a vehicle. In addition
an active buzzer is connected to the Zero 2 W. The program senses
the objects in the front and rear of the vehicle and sounds the buzzer
if the vehicle is too close to the objects. In this project a distance
less than 10cm is considered to be too close.
#
File : parking.py
Date : December, 2022
Author: Dogan Ibrahim
#--
import RPi.GPIO as GPIO
import time
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
Allowed_Distance = 10 # Distance in cm

#
Front Ultrasonic sensor pins
#
trig_f = 2 # GPIO 2
echo_f = 3 # GPIO 3

#
Rear ultrasonic sensor pins
#
trig_r = 4 # GPIO 4
echo_r = 17 # GPIO 17

#
BUZZER pin
#
Buzzer = 27 # GPIO 27

#
Configure trig and buzzer as outputs, echos as inputs
#
GPIO.setup(trig_f, GPIO.OUT)
GPIO.setup(trig_r, GPIO.OUT)
GPIO.setup(echo_f, GPIO.IN)
GPIO.setup(echo_r, GPIO.IN)

The Raspberry Pi Zero 2 W GO! - UK.indd 113The Raspberry Pi Zero 2 W GO! - UK.indd 113 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 114

GPIO.setup(Buzzer, GPIO.OUT)

#
Turn ON the Buzzer
#
def BUZZERON():
 GPIO.output(Buzzer, 1)
 return

#
Turn OFF the Buzzer
#
def BUZZEROFF():
 GPIO.output(Buzzer, 0)
 return

def GetDistance(trig, echo):
 GPIO.output(trig, 0) # Wait to settle
 time.sleep(0.08)
 GPIO.output(trig,1) # Send trig
 time.sleep(0.00001) # Wait 10 microseconds
 GPIO.output(trig, 0) # Remove trig
 while GPIO.input(echo) == 0: # Wait until echo is received
 start_time = time.time() # Start time

 while GPIO.input(echo) == 1: # Echo is received
 end_time = time.time() # End time

 pulse_width = end_time - start_time # Pulse duration
 distance = pulse_width * 17150 # Distance in cm
 return distance # Return distance

#
Start of the main program loop. Measure the distance to obstacles
at the front and rear of the vehicle and activate the buzzer if the
distance is below the allowed distance
#
BUZZEROFF()

while True:
 obstacle_f = GetDistance(trig_f, echo_f) # distance to front obstacles
 obstacle_r = GetDistance(trig_r, echo_r) # distance to rear obstacles
 if (obstacle_f <= Allowed_Distance or obstacle_r <= Allowed_Distance):
 BUZZERON() # Turn Buzzer ON
 else:

The Raspberry Pi Zero 2 W GO! - UK.indd 114The Raspberry Pi Zero 2 W GO! - UK.indd 114 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 115

 BUZZEROFF() # Turn Buzzer OFF

Figure 5.62: Program: parking.py.

After applying power, wait until the Raspberry Pi Zero 2 W boots and the program should
launch automatically. You should remove your Python program name from file /etc/rc.lo-
cal after testing and completing your project so that the program does not start every time
you restart your Pi.

5.16 Project 15: Real-Time graph of the temperature and humidity
Description: In this project you will read the temperature and the humidity using a sensor
with the Zero 2 W and then plot the change in the temperature and humidity in real-time
as the data is captured continuously. The aim of this project is to show how a sensor data
captured by the Zero 2 W can be plotted in real-time. The project also shows how to use a
temperature and humidity sensor with the Zero 2 W (See Section 4.29 for more details on
plotting graphs).

Block diagram: The block diagram of the project is shown in Figure 5.63.

Figure 5.63: Block diagram of the project.

Circuit diagram: A type DHT11 temperature and relative humidity sensor chip (see Figure
5.64) is used in this project. This is normally a 3-pin sensor (there is also a 4-pin version
of this sensor where one of the pins is not used) with pins GND, +V, and Data. GND and
+V are connected to Ground and the +3.3 V power supply pins of the Raspberry Pi Zero
2 W. The Data pin must be connected to +V through a 10 k-ohm resistor. In this project,
a 3-pin version of the DHT11 is used with built-in 10 k-ohm pull-up resistor. As shown in
Figure 5.65, the Data pin of the sensor is named as S and it is connected to GPIO 2 of the
Zero 2 W.

The Raspberry Pi Zero 2 W GO! - UK.indd 115The Raspberry Pi Zero 2 W GO! - UK.indd 115 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 116

Figure 5.64: DHT11 sensor.

The DHT11 uses a capacitive humidity sensor, and a thermistor to measure the ambient
temperature. Data output is available from the chip at a rate of about one second. The basic
features of DHT11 are:

• 3 to 5 V operation
• 2.5 mA current consumption (during a conversion)
• Temperature reading in the range 0–50 ºC with an accuracy of ±2 ºC
• Humidity reading in the range 20-80% with 5% accuracy
• Breadboard-compatible with 0.1-inch pin spacings

Figure 5.65: Circuit diagram of the project.

Program listing: In this program, the Adafruit DHT11 library and matplotlib modules
are used. These modules should be installed into Python before they can be used. The in-
structions for are as follows:

• Go to command mode and enter:

 pi@raspberrypi:~ $ git clone https://github.com/adafruit/Adafruit_
Python_DHT.git

• Change directory to:

pi@raspberrypi:~ $ cd Adafruit_Python_DHT

The Raspberry Pi Zero 2 W GO! - UK.indd 116The Raspberry Pi Zero 2 W GO! - UK.indd 116 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 117

• Enter the following commands:

 pi@raspberrypi:~/Adafruit_Python_DHT $ sudo apt-get install build-
essential python3-dev
 pi@raspberrypi:~/Adafruit_Python_DHT $ sudo python3 setup.py install
pi@raspberrypi:~/Adafruit_Python_DHT $ cd ..

• Install matplotlib:

pi@raspberrypi:~ $ sudo apt install python3-matplotlib python3-tk

Figure 5.66 shows the program listing (program: graph.py). At the beginning of the pro-
gram, the matplotlib, numpy, time, and Adafruit modules are imported. The sensor
type (variable sensor) is set to be DHT11, and it is connected to port GPIO 2. The X and
Y axes are labeled and a title is given to the graph. The graph is set to be interactive by
the statement ion(). The remainder of the program runs in a for loop which executes as
variable i changed from 0 to 100 in steps of 2, and this corresponds to the time axis (the
length of the data collection time and hence the length of the X-axis can be changed if de-
sired). The humidity and temperature are then read from the DHT11 and stored in variables
humidity and temperature respectively. These values are then converted into floating
and are stored in variables t and h, ready to be plotted. Scatter graphs are then drawn in
real-time as the temperature and humidity data are received from the DHT11. A 5-second
delay is introduced between each loop.

#---
REAL TIME GRAPH OF HUMIDITY AND TEMPERATURE
===
#
This program reads the ambient temperature and himidity from
a DHT11 type sensor and displays them on the monitor in real-time
as a graph.
#
In this program data is collected every 5 seconds
#
Program: graph.py
Date : December, 2022
Author : Dogan Ibrahim
#--
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import numpy as np
import time
import Adafruit_DHT

sensor = Adafruit_DHT.DHT11

The Raspberry Pi Zero 2 W GO! - UK.indd 117The Raspberry Pi Zero 2 W GO! - UK.indd 117 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 118

GPIO = 2

#
Start of main program. Humidity and temperature are read from
DHT11 and are plotted in real time as the data are being read
#
plt.axis([0,100,0,100])
plt.title('Humidity and Temperature')
plt.xlabel('Time')
plt.ylabel('Hum. & Temp')
plt.clf()

j=1
plt.ion()

for i in range (0,102,2):
 humidity,temperature = Adafruit_DHT.read_retry(sensor,GPIO)
 x = float(i)
 t = float(temperature)
 h = float(humidity)
 plt.scatter(x,t,color='blue',label='Tempeature')
 plt.scatter(x,h,color='black',label='Humidity')
 plt.draw()
 if j == 1:
 j=0
 plt.legend()
 plt.pause(0.0001)
 time.sleep(5)

 Figure 5.66: Program: graph.py.

The real-time changes in temperature and humidity are shown in Figure 5.67. In this im-
age, the top graph is the humidity (RH) and the bottom one is the temperature (T).

Figure 5.67: Change of temperature and humidity.

The Raspberry Pi Zero 2 W GO! - UK.indd 118The Raspberry Pi Zero 2 W GO! - UK.indd 118 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 119

5.17 The Sense HAT interface
The Sense HAT is a small plug-in board developed by the Raspberry Pi Foundation in col-
laboration with the UK Space Agency and the European Space Agency (ESA). The board
includes a number of sensors and that"s why it is called "Sense". The word "HAT" stands for
hardware attached on top to indicate that the board is attached or plugged in on top of the
Raspberry Pi. The Sense HAT gives the flexibility to carry out various environmental meas-
urements using its built-in sensors and the board was specially developed for the Astro Pi
challenge and competition. An emulator-based version of the Sense HAT is also available to
enable students to carry out experiments without having the physical board.

The Sense HAT board (Figure 5.68) consists of 7 main components and an LED matrix.
The components on the board are controlled via the I2C bus interface. The following are the
main components on the board:

Component I2C bus address Function
HTS221 0x5F humidity sensor
LPS254H 0x5C Pressure / temperature sensor
LSM9DS1 0x1C,0x6A Accelerometer + magnetometer
SKRHABE010 - joystick
LED2472G 0x46 LED matrix controller
LED matrix - -
ATTINY88 - Atmel microcontroller

The Sense HAT board is normally plugged into the 40-way connector of the Raspberry Pi.
In order to interface external components to the Raspberry Pi in addition to the Sense HAT
board, you need to connect the Sense HAT to the Raspberry Pi using either a ribbon cable
or jumper wires allowing other Raspberry Pi pins to remain accessible. In other words, you
need to know which pins of the Sense HAT board are used by Raspberry Pi, and which pins
of Raspberry Pi are free.

Figure 5.68: The Sense HAT board.

In addition to the I2C control lines, the ATTINY88 microcontroller on the board can be
programmed via the SPI bus control lines (MOSI, MISO, SCK, CE0) provided on the board.

The Raspberry Pi Zero 2 W GO! - UK.indd 119The Raspberry Pi Zero 2 W GO! - UK.indd 119 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 120

The following pins are used by the Sense HAT 40-way connector:

Pin number Raspberry Pi port Function
 3 GPIO2 SDA (I2C)
 5 GPIO3 SCL (I2C)
 1 +3.3 V power
 19 GPIO10 MOSI (SPI)
 21 GPIO9 MISO (SPI)
 23 GPIO11 SCK (SPI)
 24 GPIO8 CE0 (SPI
 9 GND power ground
 2 +5 V power
 16 GPIO23 INT
 18 GPIO24 INT
 22 GPIO25 PROG
 27 ID_SD EEPROM
 28 ID_SC EEPROM

The Sense HAT board can be connected to the Zero 2 W using only the following 9 pins of
the 40-way connectors:

Sense HAT pin Zero 2 W Pin Function
 3 3 (GPIO2) SDA (I2C)
 5 5 (GPIO3) SCL (I2C)
 1 1 (+3.3 V) power
 9 9 (GND) power ground
 2 2 (+5 V) power
 16 16 (GPIO23) joystick
 18 18 (GPIO24) joystick
 27 27 (ID_SD) EEPROM
 28 28 (ID_SC) EEPROM

Note: You can also plug in the Sense HAT board directly on top of the Zero 2 W board
instead of making the above connections.

5.17.1 Programming the Sense HAT
The Sense HAT is installed by default on your latest Raspberry Pi SD card. You may, how-
ever, enter the following command to install the latest version of the Sense HAT:

pi@raspberrypi:~ $ sudo apt-get install sense-hat

Before developing a project using the Sense HAT board, the Sense HAT library must be im-
ported into your Python program. Also, the sense object must be created at the beginning
of the program, meaning the following two statements must be included at the beginning
of your programs:

The Raspberry Pi Zero 2 W GO! - UK.indd 120The Raspberry Pi Zero 2 W GO! - UK.indd 120 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 121

from sense_hat import SenseHat
sense = SenseHat()

The remainder parts of this Chapter is devoted to developing simple projects with the Sense
HAT using the Raspberry Pi Zero W.

5.17.2 Project 16: Displaying text on Sense HAT
Description: In this project, you will learn how to display as well as to scroll text messag-
es on the Sense HAT. The statement show_message is used to scroll a text message. In
the following code, the message Sense HAT is scrolled on the LED matrix. Notice that the
message is displayed only once:

from sense_hat import SenseHat
sense = SenseHat()
sense.show_message("Sense HAT")

If you get an error message saying that the RPi-Sense FB device cannot be detected,
then do the following:

• pi@raspberrypi:~ $ sudo nano /boot/config.txt
• go to the end of the file and enter the following statement:
• dtoverlay=rpi-sense
• Press CNTRL+X followed by Y to save the change
• Reboot the Zero 2 W
• pi@raspberrypi:~ $ sudo reboot now

Notice that there are two versions of the Sense HAT board. Version 1.0 has no color sensor
while Version 2.0 does have it. You may get a warning message saying that it failed to ini-
tialize the color sensor if you are using Version 1.0.

You can also display a single letter using the statement: sense.show_letter, for example:
sense.show_letter("A"). Notice that the letter is displayed permanently.

In addition to displaying text in default mode, you can use the following options.

scroll_speed: This floating point number changes the speed that the text scrolls. The de-
fault value is 0.1. A bigger number slows down the scroll speed.

text_colour: Used to change the text color. The color is specified as (Red, Green, Blue)
where each color can take a value between 0 and 255 and you can mix the colors to obtain
any other colour. For example, (255, 0, 0) is red and so on.

back_colour: used to change the color of the background. Color is defined as in the
text_color option.

The Raspberry Pi Zero 2 W GO! - UK.indd 121The Raspberry Pi Zero 2 W GO! - UK.indd 121 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 122

In the following example, the same text as above is scrolled slowly, in red, with a yellow
background color:

from sense_hat import SenseHat
sense = SenseHat()
sense.show_message("Sense HAT", scroll_speed=0.3,

text_colour=[255,0,0], back_colour=[255,255,0])

Notice that in the above program the text is displayed only once, but the background color
remains yellow.

If, for example, you wish to repeat displaying the text — say, every two seconds — then
the required program is as shown in Figure 5.69 (program: txt.py). Notice how the contin-
uation line is used in Python.

#---
Display Text

#
This program displays the text Sense HAT every 2 seconds.
the text colour is RED and back ground colour is YELLOW
#
Author: Dogan Ibrahim
File : txt.py
Date : December, 2022
#--
from sense_hat import SenseHat
import time
sense = SenseHat()

while True:
 sense.show_message("Sense HAT",scroll_speed=0.3,\
text_colour=[255,0,0],back_colour=[255,255,0])
 time.sleep(2)

Figure 5.69: Program: txt.py.

The sense.clear() statement can be used to turn OFF all the LEDs. This may be necessary
to ensure that all the LEDs are turned OFF at the beginning of a program. Similarly, a color
can be passed to the clear statement to set all the LEDs to the same color, like so:

red = (255, 0, 0)
sense.clear(red)

The brightness of the LED matrix can be changed by toggling the low_light statement. In
the following examples the brightness is toggled:

The Raspberry Pi Zero 2 W GO! - UK.indd 122The Raspberry Pi Zero 2 W GO! - UK.indd 122 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 123

sense.low_light = True

or

sense.low_light = False

The displayed text (or image) can be rotated by using the statement set_rotation(n)
where n is the rotation angle in degrees, taking the values of 0, 90, 180, or 270. The
following statement rotates character s by 90 degrees and displays it on the LED matrix:

sense.set_rotation(90)
sense.show_letter("s")

Text (or image) can be flipped horizontally or vertically by using the statements flip_h or
flip_v respectively. In the following example the character X is flipped horizontally and is
then displayed:

sense.flip_h
sense.show_letter("X")

5.17.13 Project 17: Test your math skills: multiplication
Description: This project is aimed at younger readers who may want to test their mul-
tiplication skills. The program displays two numbers which are required to be multiplied
together. The result of the multiplication is hidden for 10 seconds and time is given to the
user to find the correct answer. After 10 seconds the correct answer is displayed so that
the user can check it against his/her answer. Only numbers from 1 to 99 are considered
for simplicity.

Figure 5.70 shows the program listing (program: mult.py). Two integer random numbers
are generated between 1 and 99 and are stored in variables no1 and no2. Variable ques-
tion holds the question as a string and this is displayed in green as shown in the following
example:

25 x 10 =

The program waits for 10 seconds and after this time the result 250 is displayed in red.
After 2 seconds the LEDs are cleared and the program continues displaying two new num-
bers.

#---
Multiplication Test

#
This program displays two numbers between 1 and 99 and waits
for 10 seconds until the user finds the correct answer. The
correct answer is then displayed so that the user can check with

The Raspberry Pi Zero 2 W GO! - UK.indd 123The Raspberry Pi Zero 2 W GO! - UK.indd 123 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 124

his/her answer
#
Author: Dogan Ibrahim
File : mult.py
Date : December, 2022
#--
from sense_hat import SenseHat
sense = SenseHat()
import time
import random
spd = 0.2 # Scroll speed
red = (255, 0, 0) # Red colour
green = (0, 255, 0) # Green colour

try:

 while True:
 no1 = random.randint(1,99) # First number
 no2 = random.randint(1, 99) # Second number
 question = str(no1) + "x" + str(no2) + "="
 sense.show_message(question, scroll_speed = spd, text_colour=(green))
 time.sleep(10)
 result = str(no1 * no2)
 sense.show_message(result, scroll_speed = spd, text_colour=(red))
 time.sleep(2)
 sense.clear()
 time.sleep(1)

except KeyboardInterrupt:
 exit()

Figure 5.70: Program: mult.py.

5.17.14 Project 18: Learning the times tables
Description: This project helps children to practice their multiplication tables or "times
tables" (not: timetables). A number (which can be changed) is hardcoded into the program.
The program displays the times table for the selected number. For example, if the hardcod-
ed number is 5 then the following is displayed on the LED matrix:

 5×1=5
 5×2=10
 5×3=15
 5×4=20
 5×5=25
 5×6=30
 5×7=35

The Raspberry Pi Zero 2 W GO! - UK.indd 124The Raspberry Pi Zero 2 W GO! - UK.indd 124 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 125

 5×8=40
 5×9=45
 5×10=50
 5×11=55
 5×12=60

Figure 5.71 shows the program listing (program: timestab.py). Variable Tablefor stores
the number whose times table is required. A loop is formed which goes from 0 to 11. Inside
this loop variable j takes values from 1 to 12. Variable result stores the result of the mul-
tiplication at each iteration of the loop. String variable disp stores the data to be displayed
by the LED matrix at each iteration. Users can easily change the value of Tablefor to gen-
erate times table for another number.

#---
Times Table

#
This program generates a times table. The table is selected at the
beginning of the program by setting variable Tablefor.
#
Author: Dogan Ibrahim
File : timestab.py
Date : December, 2022
#---
from sense_hat import SenseHat
sense = SenseHat()
import time

spd = 0.2 # Scroll speed
red = (255, 0, 0) # Red colour
Tablefor = 5 # Table for 5

try:

 for k in range(12): # Do 0 to 11
 j = k + 1 # 1 to 12
 result = Tablefor * j
 disp = str(Tablefor) + "x" + str(j) + "=" + str(result)
 sense.show_message(disp, scroll_speed = spd, text_colour=(red))
 time.sleep(1)
 sense.clear()

except KeyboardInterrupt:
 exit()

Figure 5.71: Program: timestab.py.

The Raspberry Pi Zero 2 W GO! - UK.indd 125The Raspberry Pi Zero 2 W GO! - UK.indd 125 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 126

5.17.15 Project 19: Display temperature, humidity, and pressure
Description: In this project you learn all about displaying the ambient temperature, hu-
midity and pressure on the Raspberry Pi Sense HAT.

Figure 5.72 shows the program listing (program: thp.py). The program runs in a loop every
two seconds where the temperature, humidity, and pressure readings are displayed on the
scrolling LED. Notice that the readings are all in floating-point format and the round()
function is used to configure them to have one digit after the decimal point.

#--
TEMPERATURE,HUMIDITY & PRESSURE

#
This program reads the temperature, humidity and pressure and
displays on the scrolling LEDs. The data is displayed in the
following format:
#
T=nn.nC H=nn.n% P=nnnn.nmb
#
Author: Dogan Ibrahim
Date : December, 2022
File : thp.py
#--
from sense_hat import SenseHat
sense=SenseHat()
import time

while True:
 T = round(sense.get_temperature(), 1) # Get temperature
 H = round(sense.get_humidity(), 1) # Get humidity
 P = round(sense.get_pressure(), 1) # Get pressure
 enviro = "T="+str(T)+ "C H="+str(H)+ "% P="+str(P)+"mb "
 sense.show_message(enviro, scroll_speed = 0.2)
 time.sleep(2)

Figure 5.72: Program thp.py.

We could have also displayed the data on the PC screen by running the following program
code. Figure 5.73 shows the output of the program:

 from sense_hat import SenseHat
 import time
 sense = SenseHat()
 while True:
 T = sense.get_temperature()
 H = sense.get_humidity()

The Raspberry Pi Zero 2 W GO! - UK.indd 126The Raspberry Pi Zero 2 W GO! - UK.indd 126 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 127

 P = sense.get_pressure()
 TT = round(T, 1)
 HH = round(H, 1)
 PP = round(P, 1)
 print("Temperature: %s, Humidity: %s, Pressure:%s"
 %(TT, HH, PP))
 time.sleep(1)

Figure 5.73: Displaying the data on the PC screen.

We could also display the temperature or the humidity as integer variables on non-scrolling
LEDs by using the Disp function.

5.17.16 Project 20: ON-OFF temperature controller
Description: This is an on-off temperature controller project. The Sense HAT is connected
to the Zero 2 W to measure the ambient temperature. Additionally, a small buzzer is con-
nected to one of the ports of the Zero 2 W. The set temperature value is hardcoded in the
program. If the ambient temperature is lower than the set temperature, then the buzzer
is activated and the LED matrix displays the ambient temperature in red. If, on the other
hand, the ambient temperature exceeds the set temperature value, the buzzer is deactivat-
ed and the ambient temperature is displayed in blue. The buzzer in this project can easily
be replaced with a relay whose contacts apply mains power to a heater. The heater will turn
ON if the ambient temperature is lower than the set value.

Block diagram: Figure 5.74 shows the block diagram of the project.

Figure 5.74: Block diagram of the project.

The Raspberry Pi Zero 2 W GO! - UK.indd 127The Raspberry Pi Zero 2 W GO! - UK.indd 127 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 128

Circuit diagram: The circuit diagram of the project is shown in Figure 5.75, where the
buzzer is connected to port pin GPIO 4 of the Zero 2 W. Both the buzzer and the Sense HAT
board are connected to the Zero 2 W using jumper wires.

Figure 5.75: Circuit diagram of the project.

Program listing: In this program, the library function created by the author, named
Disp() is used. This function has 3 arguments: number to be displayed, color, and mode (0
or 1, 1 to clear the display). This function is contained in the Python program called dis-
play.py which can be found in software archive for this book hosted on the Elektor website.
Calling function Disp() displays a number without scrolling the display. Figure 5.76 shows
the full program listing of display.py. Make sure that display.py is in the same directory
as your main program.

#---
FUNCTION TO DISPLAY NUMBERS

#
This function displays a two-digit number on the LED matrix
without scrolling the display. The number to be displayed and
its colour are entered as the arguments of the function.The
third parameter controls whether or not to clear the display
before displaying the number. Setting this parameter to 1
will clear the display
#
Author: Dogan Ibrahim
Date : March 2022
File : display.py
#--
from sense_hat import SenseHat
sense = SenseHat()

def Disp(no, colour, mode):
#

The Raspberry Pi Zero 2 W GO! - UK.indd 128The Raspberry Pi Zero 2 W GO! - UK.indd 128 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 129

Number patterns for all the numbers 0 to 9
#
 numbers = [
 [[0,1,1,0], # 0
 [1,0,0,1],
 [1,0,0,1],
 [1,0,0,1],
 [1,0,0,1],
 [1,0,0,1],
 [1,0,0,1],
 [0,1,1,0]],

 [[0,0,1,0], # 1
 [0,1,1,0],
 [0,0,1,0],
 [0,0,1,0],
 [0,0,1,0],
 [0,0,1,0],
 [0,0,1,0],
 [0,1,1,1]],

 [[0,1,1,0], # 2
 [1,0,0,1],
 [0,0,0,1],
 [0,0,0,1],
 [0,0,1,0],
 [0,1,0,0],
 [1,0,0,0,],
 [1,1,1,1]],

 [[1,1,1,1], # 3
 [0,0,1,1],
 [0,0,1,1],
 [1,1,1,1],
 [1,1,1,1],
 [0,0,1,1],
 [0,0,1,1],
 [1,1,1,1]],

 [[0,0,1,0], # 4
 [0,1,1,0],
 [1,1,1,0],
 [1,0,1,0],
 [1,1,1,1],
 [0,0,1,0],
 [0,0,1,0],

The Raspberry Pi Zero 2 W GO! - UK.indd 129The Raspberry Pi Zero 2 W GO! - UK.indd 129 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 130

 [0,0,1,0]],

 [[1,1,1,1], # 5
 [1,0,0,0],
 [1,0,0,0],
 [1,1,1,1],
 [0,0,0,1],
 [0,0,0,1],
 [0,0,0,1],
 [1,1,1,1]],

 [[1,1,1,1], # 6
 [1,0,0,0],
 [1,0,0,0],
 [1,1,1,1],
 [1,0,0,1],
 [1,0,0,1],
 [1,0,0,1],
 [1,1,1,1]],

 [[1,1,1,1], # 7
 [0,0,0,1],
 [0,0,0,1],
 [0,0,0,1],
 [0,0,0,1],
 [0,0,0,1],
 [0,0,0,1],
 [0,0,0,1]],

 [[0,1,1,0], # 8
 [1,0,0,1],
 [1,0,0,1],
 [1,1,1,1],
 [1,0,0,1],
 [1,0,0,1],
 [1,0,0,1],
 [0,1,1,0]],

 [[1,1,1,1], # 9
 [1,0,0,1],
 [1,0,0,1],
 [1,1,1,1],
 [0,0,0,1],
 [0,0,0,1],
 [0,0,0,1],
 [1,1,1,1]]

The Raspberry Pi Zero 2 W GO! - UK.indd 130The Raspberry Pi Zero 2 W GO! - UK.indd 130 08-03-2023 09:2308-03-2023 09:23

Chapter 5 • Simple Projects for the Raspberry Pi Zero 2 W

● 131

]

 blank = [0,0,0]
 blanks=[0,0,0,0]
 Disp = [] # List to store patterns

 for index in range(0, 8):
 if (no >= 10): # If >= 10
 intno = int(no / 10) # MSD digit
 Disp.extend(numbers[intno][index])
 else:
 Disp.extend(blanks)
 remno = int(no % 10) # LSD digit
 Disp.extend(numbers[remno][index])

 for index in range(64):
 if(Disp[index]):
 Disp[index]=colour # Colour
 else:
 Disp[index]=blank

 if mode == 1:
 sense.clear() # Clear LEDs

 sense.set_pixels(Disp) # Display number

Figure 5.76: Program: display.py.

The program listing is shown in Figure 5.77 (program: tempcont.py). At the beginning of
the program, the modules used in the program are imported to the program. The buzzer is
assigned to number 4 which will correspond to GPIO 4. The set temperature value is stored
in variable SetTemperature and is hardcoded as "24" in his example. The buzzer is turned
OFF at the beginning of the program. The remainder of the program runs in an endless
loop. Inside this loop, the ambient temperature is read from the Sense HAT, and this tem-
perature is compared with the setpoint value. If the ambient temperature is less than the
set value, then the buzzer is turned ON and the ambient temperature is displayed in red as
non-scrolling. If, on the other hand, the ambient temperature exceeds the set value, the
buzzer is turned OFF and the ambient temperature is displayed in blue.

#--
ON-OFF TEMPERATURE CONTROLLER

#
This is an ON-OFF temperature control project. In this project
a buzzer is connected to port pin GPIO 4 of the Zero 2 W in
addition to the Sense HAT. The Sense HAT is connected using

The Raspberry Pi Zero 2 W GO! - UK.indd 131The Raspberry Pi Zero 2 W GO! - UK.indd 131 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 132

jumper wires. The buzzer is turned ON if the ambient temperature
is below the setpoint temperature. At the same time, the ambient
temperature is displayed in red colour. If on the other hand the
ambient temperature is higher than the setpoint value then the
buzzer is turned OFF and the display is in blue colour.
#
The buzzer in this program can be replaced with a relay for
example to control a heater
#
Author: Dogan Ibrahim
Date : December, 2022
File : tempcont.py
#--
from display import Disp # import Disp
from sense_hat import SenseHat # import Sense HAT
sense=SenseHat()
import time # import time
import RPi.GPIO as GPIO # import GPIO

GPIO.setwarnings(False) # disable warnings
GPIO.setmode(GPIO.BCM) # set GPIO mode

Buzzer = 4 # Buzzer at GPIO4
SetTemperature = 24 # setpoint temp
red = (255, 0 ,0) # red colour
blue = (0, 0, 255) # blue colour

GPIO.setup(Buzzer, GPIO.OUT) # Buzzer is output
GPIO.output(Buzzer, 0) # Buzzer OFF

while True:
 T = int(sense.get_temperature_from_humidity()) # get temperature
 if(T < SetTemperature): # T < setpoint?
 Disp(T, red, 0) # display in red
 GPIO.output(Buzzer, 1) # Buzzer ON
 else:
 Disp(T, blue, 0) # display in blue
 GPIO.output(Buzzer, 0) # Buzzer OFF

 time.sleep(5) # wait 5 secs

Figure 5.77: Program: tempcont.py.

The buzzer used in this project can easily be replaced with a relay and a heater can be
connected to the relay contacts to permit powering from the mains. The room temperature
is then effectively governed by the program.

The Raspberry Pi Zero 2 W GO! - UK.indd 132The Raspberry Pi Zero 2 W GO! - UK.indd 132 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 133

Chapter 6 • Communication over Wi-Fi

6.1 Overview
Two of the key features of the Raspberry Pi Zero 2 W are its Wi-Fi and Bluetooth com-
munication capabilities. Your Raspberry Pi Zero 2 W is equipped with a 2.4-GHz 802.11
b/g/n wireless LAN module. Without such features, you"d have to resort to external
communication modules. Network communication is handled using either UDP or TCP-
type protocols. In this chapter, you will be learn how to write Python programs using
both the UDP and TCP type protocols using the on-board Wi-Fi module.

6.2 UDP and TCP
Communication over a Wi-Fi link takes place based on client-and-server structures,
while "sockets" are used to send and receive data packets. The server-side device usu-
ally waits for connection from the client(s). Once a connection is established, two-way
communication can start. Two protocols are chiefly used for sending and receiving data
packets over a Wi-Fi link: UDP and TCP. TCP is a connection-based protocol which guar-
antees the delivery of packets. Packets are given sequence numbers, and the receipt of
all the packets are acknowledged to avoid them arriving in the wrong order. As a result
of this confirmation, TCP is usually slow but it is reliable as it guarantees the deliv-
ery of packets. UDP, on the other hand, is not connection-based. Packets do not have
sequence numbers, and consequently there is no guarantee that the packets will arrive
at their destinations, or in the correct sequence. UDP has less overhead than TCP and
as a result it is faster. Table 6.1 lists some of the differences between the TCP and UDP
protocols.

TCP UDP

Packets have sequence numbers and delivery of
every packet is acknowledged

No delivery acknowledgement

Slow Fast

No packet loss Packets may be lost

Large overhead Small overhead

Requires more resources Requires less resources

Connection based Not connection based

More difficult to program Easier to program

Examples: HTTP, HTTPS, FTP Examples: DNS, DHCP, Computer games

Table 6.1: TCP and UDP packet communications.

6.2.1 UDP communication
Figure 6.1 shows the UDP communication over a Wi-Fi link.

The Raspberry Pi Zero 2 W GO! - UK.indd 133The Raspberry Pi Zero 2 W GO! - UK.indd 133 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 134

Server tasks
1. Create UDP socket
2. Bind the socket to server address
3. Wait until datagram packet arrives from client
4. Process the datagram packet
5. Send a reply to the client, or close the socket
6. Go back to Step 3 (if not closed)

Client tasks

1. Create UDP socket (and optionally Bind)
2. Send message to the server
3. Wait until response from the server is received
4. Process reply
5. Go back to step 2, or close the socket

Figure 6.1: UDP communication.

6.2.2 TCP communication
Figure 6.2 shows the TCP communication over a Wi-Fi link:

Server tasks

1. Create UDP socket
2. Bind the socket to server address
3. Listen for connections
4. Accept connection
5. Wait until datagram packet arrives from client
6. Process the datagram packet
7. Send a reply to the client, or close the socket
8. Go back to Step 3 (if not closed)

The Raspberry Pi Zero 2 W GO! - UK.indd 134The Raspberry Pi Zero 2 W GO! - UK.indd 134 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 135

Client tasks

1. Create UDP socket
2. Connect to server
3. Send message to the server
4. Wait until response from the server is received
5. Process reply
6. Go back to step 2, or close the socket

Figure 6.2: TCP communication.

6.3 Project 21: Sending a text message to a smartphone using TCP/IP
Description: In this Case Study, a TCP/IP based communication is established with an
Android smartphone. The program reads text messages from the keyboard and sends them
to the smartphone. The aim of this project is to show how TCP/IP communication can be
established with an Android smartphone.

Background information: Port numbers range from 0 to 65535. Numbers from 0 to 1023
are reserved and called as established ports. For example, port 23 is the Telnet port, port
25 is the SMTP port etc. In this chapter you"ll use port number 5000 in your programs.

Block diagram: Figure 6.3 shows the project block diagram where the Zero 2 W and
smartphone communicate over a Wi-Fi router.

The Raspberry Pi Zero 2 W GO! - UK.indd 135The Raspberry Pi Zero 2 W GO! - UK.indd 135 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 136

Figure 6.3: Block diagram of the project.

Raspberry Pi Zero 2 W program listing: In this project, the Zero 2 W is the server.
Figure 6.4 shows the program listing (Program: tcpserver.py). At the beginning of the
program, a TCP/IP socket is created (sock.SOCK_STREAM) and is then bound to port
5000. The program listens for a connection. Notice that it is possible for the server to listen
to multiple clients, but it can of course communicate with only one at any time. When the
client makes a connection, this is accepted by the server. The server then reads a message
from the keyboard and sends it to the client over the Wi-Fi link. Notice that the setsock-
opt() statement makes sure that the program can be used again without having to wait for
the socket timeout of 30 seconds.

#===
SEND TEXT MESSAGES USING TCP/IP
===============================
#
This is the TCP/IP server program. It receives text messages
from the keyboard and sends to an Android smart phone over
a Wi-Fi link
#
Author: Dogan Ibrahim
File : tcpserver.py
Date : December, 2022
#==
import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(("192.168.3.21", 5000))
sock.listen(1)

client, addr = sock.accept() # accept connection
print("Connected to client: ", addr) # connected message

yn = 'y'

The Raspberry Pi Zero 2 W GO! - UK.indd 136The Raspberry Pi Zero 2 W GO! - UK.indd 136 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 137

while yn == 'y':
 msg = input("Enter your message: ") # read a message
 client.send(msg.encode('utf-8')) # send the message

 yn = input("Send more messages?: ")
 yn = yn.lower()

print("\nClosing connection to client")
sock.close()

Figure 6.4: Program: tcpserver.py.

Testing
There are many TCP apps available free of charge for smartphones. In this project, the TCP
Client by JOY S.R.L. app is utilized on an Android smartphone. This app is available free
of charge in the Play Store (see Figure 6.5).

Figure 6.5: The app used in the project.

The program is run as follows:

• Run the server program first:

pi@raspberrypi:~ $ python3 tcpserver.py

• Run the Android app and configure it as shown in Figure 6.6, where
192.168.3.21 is the IP address of the Zero 2 W.

The Raspberry Pi Zero 2 W GO! - UK.indd 137The Raspberry Pi Zero 2 W GO! - UK.indd 137 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 138

Figure 6.6: Configuring the TCP Client app.

• Click the icon at the top left corner of the app (disconnected) to connect to the
Zero 2 W over TCP/IP.

• You should see a connection message on your Zero 2 W screen as well as on
the IP address of the remote Android smartphone. Now enter a message and
press the Enter key. In this example, the message HELLO FROM RASPBERRY
PI ZERO 2 W is sent to the client (Figure 6.7). Enter n to terminate the Zero 2
W program. Figure 6.8 shows the message displayed on the smartphone.

Figure 6.7: Entering the message on the keyboard.

Figure 6.8: Message displayed on smartphone.

6.4 Project 22: Two-way communication with the smartphone using
TCP/IP
Description: This project is similar to the previous one but here, two-way communication
is established between the Zero 2 W and the smartphone.

The block diagram of the project is same as Figure 6.3.

The Raspberry Pi Zero 2 W GO! - UK.indd 138The Raspberry Pi Zero 2 W GO! - UK.indd 138 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 139

Program listing: Figure 6.9 shows the program listing (Program: tcp2way.py). Here,
port 5000 is used as in the previous project. The program has been changed to send and
receive messages from the smartphone. Socket function recv(byte count) sends mes-
sage over the TCP/IP link to the connected node.

#===
SEND/RECEIVE TEXT MESSAGES USING TCP/IP
=======================================
#
This is the TCP/IP server program. It receives text messages
from the keyboard and sends to an Android smart phone over
a Wi-Fi link
#
Author: Dogan Ibrahim
File : tcp2way.py
Date : December, 2022
#==
import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(("192.168.3.21", 5000))
sock.listen(1)

client, addr = sock.accept() # accept connection
print("Connected to client: ", addr) # connected message

yn = 'y'

try:
 while yn == 'y':
 msg = input("Enter your message: ") # read a message
 msg = msg +"\n"
 client.send(msg.encode('utf-8')) # send the message

 msg = client.recv(1024)
 print("Received message: ")
 print(msg.decode('utf-8'))

 yn = input("Send more messages?: ")
 yn = yn.lower()

except KeyboardInterrupt:
 print("\nClosing connection to client")
 sock.close()

Figure 6.9: Program: tcp2way.py.

The Raspberry Pi Zero 2 W GO! - UK.indd 139The Raspberry Pi Zero 2 W GO! - UK.indd 139 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 140

Testing
You will be using the Android app as in Figure 6.5. Start the Zero 2 W server program and
then exchange messages between the Zero 2 W and the smartphone. An example com-
munication session is shown in Figure 6.10. In this example, the Zero 2 W sends message
MESSAGE FROM ZERO 2 W. In reply, the Android smartphone sends the message: mes-
sage from Android.

Figure 6.10: Example communication between the Zero 2 W and the Android app.

6.5 Project 23: Communicating with a PC using TCP/IP
Description: In this project, TCP/IP-based communication is established between the
Raspberry Pi Zero 2 W and a PC (laptop/tablet) running Python. Messages are exchanged
between the Zero 2 W and the PC. The aim of this project is to show how TCP/IP commu-
nication can be established with a PC.

Background Information: In the project, the Raspberry Pi Zero 2 W is the server and the
PC is the client. The programs at either side are developed using the Python programming
language. Python 3.10 is used on the PC. If you do not have Python on your PC, you could
install it from the following website:

https://www.python.org/downloads/

Block diagram: Figure 6.11 shows the block diagram where the Zero 2 W and the PC
communicate over a Wi-Fi router.

Figure 6.11: Block diagram.

The Raspberry Pi Zero 2 W GO! - UK.indd 140The Raspberry Pi Zero 2 W GO! - UK.indd 140 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 141

Zero 2 W program Listing: The Zero 2 W program listing is shown in Figure 6.12 (Pro-
gram: tcppc.py). The program is very similar to the one given in Figure 6.9, i.e., program:
tcp2way.py. You should terminate the program by entering Cntrl+C.

#===
SEND/RECEIVE TEXT MESSAGES USING TCP/IP
=======================================
#
This is the TCP/IP server program. It communicates with a PC
running TCP/IP on the same port
#
Author: Dogan Ibrahim
File : tcppc.py
Date : December, 2022
#==
import socket
import time

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(("192.168.3.21", 5000))
sock.listen(1)

client, addr = sock.accept() # accept connection
print("Connected to client: ", addr) # connected message

try:
 while True:
 msg = input("Enter your message: ") # read a message
 msg = msg +"\n"
 client.send(msg.encode('utf-8')) # send the message

 msg = client.recv(1024)
 print("Received message: ", msg.decode('utf-8'))

except KeyboardInterrupt:
 print("\nClosing connection to client")
 sock.close()
 time.sleep(1)

Figure 6.12: Program: tcppc.py.

PC Program Listing: The PC program listing is shown in Figure 6.13 (program: client.
py). The program creates a socket and then connects to the server. Next, messages are
exchanged between the client and the server.

The Raspberry Pi Zero 2 W GO! - UK.indd 141The Raspberry Pi Zero 2 W GO! - UK.indd 141 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 142

#===
TCP/IP CLIENT
=============
#
This is the client program on the PC.The program exchanges
messages with the server on the Raspberry Pi Zero 2 W
#
Author: Dogan Ibrahim
File : client.py
Date : December 2022
#===
import socket
import time
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.connect(("192.168.3.21", 5000))

try:
 while True:
 msg = sock.recv(1024)
 print("Received message: ", msg.decode('utf-8'))
 data = input("Enter message to send: ")
 sock.send(data.encode('utf-8'))

except KeyboardInterrupt:
 print("Closing connection to server")
 sock.close()
 time.sleep(1)

Figure 6.13: PC program listing.

The steps to run the program are as follows.

• Run the server program on the Raspberry Pi Zero 2 W.
• Run the client program on the PC.
• Write messages as desired.

Figure 6.14 shows a typical run of the two programs.

The Raspberry Pi Zero 2 W GO! - UK.indd 142The Raspberry Pi Zero 2 W GO! - UK.indd 142 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 143

Figure 6.14: Example run of the program.

Note: You may find that after exiting the program you may not be able to run it again.
This is because the socket stays open for about 30 seconds and the error message saying
Address is already in use may be displayed. You can check the state of the port with the
following command:

 pi@raspberrypi:~ $ netstat –n | grep 5000

If the display includes the text ESTABLISHED, it means that the socket has not been
closed properly and you will have to restart your Zero 2 W to run the program again. If, on
the other hand, you see the message TIME_WAIT, simply wait about 30 seconds before
restarting the program.

6.6 Project 24: Controlling an LED connected to the Zero 2 W from the
smartphone, using TCP/IP
Description: In this project, an LED is connected to the Zero 2 W. The LED is turned ON
and OFF by sending commands ON and OFF respectively from an Android smartphone. The
aim of this project is to show how an LED connected to the Zero 2 W can be controlled from
an Android smartphone by sending commands using the TCP/IP protocol over a Wi-Fi link.
In this project, your Zero 2 W is the server and your smartphone acts as the client.

Block diagram: Figure 6.15 shows the block diagram of the project.

Figure 6.15: Block diagram of the project.

The Raspberry Pi Zero 2 W GO! - UK.indd 143The Raspberry Pi Zero 2 W GO! - UK.indd 143 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 144

The LED is connected to port pin GPIO 2 (pin 3) through a 470-ohm current-limiting resis-
tor.

Program Listing: Figure 6.16 shows the program listing (program: serverled.py). As in
the previous program, a socket is created and port 5000 is used. The LED is assigned to
port GPIO 2, configured as output, and turned OFF at the beginning of the program. The
server waits for a connection from the client and then accepts the connection and displays
message Connected. It then waits to receive a command from the client. If the command
is ON, the LED is turned ON. If, on the other hand, the command is OFF, the LED is turned
OFF. Sending command X terminates the server connection and exits the program.

#===
CONTROL LED FROM SMART PHONE
============================
#
In this program TCP/IP is used where Zero 2 W is the server
and smart phone is the client. An LED connected to Zero 2 W
GPIO 2 and is controlled from the smart phone
#
Author: DOgan Ibrahim
File : serverled.py
Date : December, 2022
#===
import socket
import RPi.GPIO as GPIO
import time

LED = 2 # LED port
GPIO.setwarnings(False) # No warnings
GPIO.setmode(GPIO.BCM) # BCM numbering
GPIO.setup(LED, GPIO.OUT) # LED is output
GPIO.output(LED, 0) # LED OFF

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(("192.168.3.21", 5000)) # Zero 2 W IP, port
sock.listen(1)
client, addr = sock.accept()
print("Connected")

data = [' '] * 10

while data != b'X\n': # Terminate?
 data = client.recv(1024)
 if data == b'ON\n': # ON
 GPIO.output(LED, 1)

The Raspberry Pi Zero 2 W GO! - UK.indd 144The Raspberry Pi Zero 2 W GO! - UK.indd 144 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 145

 elif data == b'OFF\n': # OFF
 GPIO.output(LED, 0)

print("Closing connection")
GPIO.cleanup()
sock.close()
time.sleep(1)

Figure 6.16: Program: serverled.py.

The program is evaluated using the Android app TCP client (Figure 6.5) used in Project 21.
The server program started, then the client is started. Figure 6.17 shows sending the ON
command to turn ON the LED.

Figure 6.17: Command sent to turn ON the LED.

6.7 Project 25: Sending a text message to a smartphone using UDP
Description: In this project, UDP-based communication is established with an Android
smartphone. The program reads text messages from the keyboard and sends them to the
smartphone. The aim of the project is to show how UDP communication can be established
with an Android smartphone.

The block diagram is same as in Figure 6.3.

Program Listing: In this project, your Zero 2 W is the server and your smartphone is the
client. Figure 6.18 shows the program listing (program: udpserver.py). At the beginning
of the program, a UDP socket is created (sock.SOCK_DGRAM) and is subsequently bound
to port 5000. The server program then reads text messages sent from the smartphone and
displays them on the screen. Messages sent by the Zero 2 W are displayed on the smart-
phone.

The Raspberry Pi Zero 2 W GO! - UK.indd 145The Raspberry Pi Zero 2 W GO! - UK.indd 145 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 146

#===
SEND TEXT MESSAGES USING UDP
============================
#
This is the UDP server program running on Zero 2 W.
The program exchanges text messages with an Android
smart phone

Author: Dogan Ibrahim
File : udpserver.py
Date : December, 2022
#===
import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(("192.168.3.21", 5000))

try:
 while True:
 data, addr = sock.recvfrom(1024)
 print("Received msg:", data.decode('utf-8'))
 msg = input("Message to send: ")
 sock.sendto(msg.encode('utf-8'), addr)

except KeyboardInterrupt:
 print("\nClosing connection to client")
 sock.close()

Figure 6.18: Program: udpserver.py.

There are many UDP apps available free of charge for both Android and iOS smartphones.
In this pΩroject UDP Sender/Receiver by JC Accounting & Innovative Technologies
Inc. for Android smartphones is used with good results (Figure 6.19).

Figure 6.19: UDP Sender/Receiver app.

The Raspberry Pi Zero 2 W GO! - UK.indd 146The Raspberry Pi Zero 2 W GO! - UK.indd 146 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 147

The steps to test the program are as follows:

• Start the server program on your Raspberry Pi Zero 2 W:

pi@raspberrypi:~ $ python3 udpserver.py

• Start the smartphone app and configure it as shown in Figure 6.20.

Figure 6.20: Configuring the smartphone app.

• Write a message on the mobile phone app and click Send/Receive. The
message: Message from smartphone was sent as an example (Figure 6.21).

• Write a message on Zero 2 W and this message will be displayed on the
smartphone. Message from Zero 2 W was sent as an example (Figure 6.21).

• Enter Cntrl+C on the Zero 2 W to close the socket.

The Raspberry Pi Zero 2 W GO! - UK.indd 147The Raspberry Pi Zero 2 W GO! - UK.indd 147 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 148

Figure 6.21: Sending and receiving messages.

6.8 Project 26: Controlling an LED connected to the Raspberry Pi Zero
2 W from the smartphone, using UDP
Description: In this project, an LED is connected to the Zero 2 W port pin GPIO 2 (pin 3)
through a 470-ohm current limiting resistor. The LED is turned ON and OFF by sending
commands ON and OFF respectively from an Android smartphone. The aim of this project
is to show how an LED on the Zero 2 W can be controlled from a smartphone by sending
commands using the UDP protocol over a Wi-Fi link. Here, the Raspberry Pi Zero 2 W is the
server and the smartphone is a client.

The LED can easily be replaced with a relay, for example, to control electrical appliances
from a smartphone.

The block diagram of the project is same as in Figure 6.14, but here port 2000 is used
instead of 5000.

Program Listing: Figure 6.22 shows the program listing (program: udpled.py). As in the
previous program, a socket is created and the server waits to receive commands from a cli-
ent to control the LED. If the command is ON, the LED is turned ON. If, on the other hand,
the command is OFF, the LED is turned OFF. Command X terminates the server program.

The Raspberry Pi Zero 2 W GO! - UK.indd 148The Raspberry Pi Zero 2 W GO! - UK.indd 148 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 149

#==
CONTROL LED FROM SMART PHONE
============================
#
In this program UDP is used where Zero 2 W is the server
and smart phone is the client. An LED connected to the server
and is controlled from the smart phone
#
Author: DOgan Ibrahim
File : udpled.py
Date : December, 2022
#===
import socket
import RPi.GPIO as GPIO
import time

LED = 2 # LED port
GPIO.setwarnings(False) # No warnings
GPIO.setmode(GPIO.BCM) # BCM numbering
GPIO.setup(LED, GPIO.OUT) # LED is output
GPIO.output(LED, 0) # LED OFF at start

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(("192.168.3.21", 2000)) # Bind to Zero 2 W IP,port

data = [' '] * 10
while data != b'X':
 data, addr = sock.recvfrom(1024)
 if data == b'ON': # ON command
 GPIO.output(LED, 1) # LED ON
 elif data == b'OFF': # OFF command
 GPIO.output(LED, 0) # LED OFF

print("Closing connection")
GPIO.cleanup()
sock.close()
time.sleep(1)

Figure 6.22 Program: udpled.py.

The program can be evaluated using the UDP Sender/Receiver app used in Figure 6.18.

The steps to evaluate the program are as follows:

• Construct the circuit on your Zero 2 W with the LED.

The Raspberry Pi Zero 2 W GO! - UK.indd 149The Raspberry Pi Zero 2 W GO! - UK.indd 149 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 150

• Start the server program on Raspberry Pi Zero 2 W:

pi@raspberrypi:~ $ python3 udpled.py

• Start the smartphone app as shown in Figure 6.19.

• Configure the app as shown in Figure 6.23.

Figure 6.23: Configure the app.

• Write command ON and press Send on the smartphone (Figure 6.24). The LED
should turn ON. Similarly, write OFF and the LED should turn OFF. Sending X
should terminate the Zero 2 W program.

The Raspberry Pi Zero 2 W GO! - UK.indd 150The Raspberry Pi Zero 2 W GO! - UK.indd 150 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 151

Figure 6.24: Turning ON the LED.

6.9 Using Flask to create a Web Server to control Raspberry Pi Zero 2
W GPIO ports from the Internet
Flask is a simple microframework written in Python, for Python. It is free of charge and
can be used to create a web server on Raspberry Pi Zero 2 W and other members of the
family (excluding the Pico) to control its GPIO ports over the Internet. The big advantage
of Flask is that it does not require special tools or libraries, has no database, or any other
third-party libraries.

Flask should already be available in Python on your Raspberry Pi Zero W. If not, it can be
installed with the following command:

 pi@raspberrypi:~ $ sudo apt-get install python-flask

It"s wise to create a new folder on your Raspberry Pi Zero W and store all of your Flask-re-
lated documents there. So go ahead and create a folder called MyFlask under your default
directory /home/pi:

 pi@raspberrypi:~ $ mkdir MyFlask

Make MyFlask your default directory:

 pi@raspberrypi:~ $ cd MyFlask

You are now ready to create your first web server application using Flask. To evaluate Flask
on your Zero 2 W development board, use the nano text editor and create a file called
flasktest.py with the following lines in it:

The Raspberry Pi Zero 2 W GO! - UK.indd 151The Raspberry Pi Zero 2 W GO! - UK.indd 151 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 152

 from flask import Flask # import module flask
 app = Flask(__name__) # create a flask object called
app

 @app.route("/")
 def index(): # run index when called
 return "Hello from Flask" # msg to display when run

 if __name__ == "__main__":
 app.run(debug=True, port=80, host="0.0.0.0") # listen on port 80

Now, run the above program:

 pi@raspberrypi:~ $ sudo python3 flasktest.py

You should see messages similar to the ones shown in Figure 6.25.

Figure 6.25: Flask messages.

Now, open a web browser (e.g. Google Chrome) from a computer connected to the same
Wi-Fi router and then enter the IP address of your Raspberry Pi Zero 2 W — in this exam-
ple: 192.168.3.21. You should see the Hello from Flask message appear on a web page
as shown in Figure 6.26.

Figure 6.26: Message on the web page.

You can now create an HTML page and pass variables from a Python program. Create a
folder called templates under MyFlask, move to directory templates and create a file
called index.html using the nano text editor with the following lines (notice that the
variables inside the double curly brackets will have data passed to them from the Python
program):

The Raspberry Pi Zero 2 W GO! - UK.indd 152The Raspberry Pi Zero 2 W GO! - UK.indd 152 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 153

 <head>
 <title>{{ title }}</title>
 </head>
 <body>
 <h1>Hello from Flask</h1>
 <h2>The time on the server is: {{ time }}</h2>
 </body>

You will now modify our flasktest.py program under directory MyFlask as follows:

 from flask import Flask, render_template
 import time

 app = Flask(__name__)

 @app.route("/")

 def index():
 now = time.ctime()
 DataToPass = {
 "title" : "TESTING FLASK",
 "time": now
 }
 return render_template("index.html", **DataToPass)

 if __name__ == "__main__":
 app.run(debug=True, port=80, host="0.0.0.0") # listen on port 80

The current date and time set is obtained using the function call time.ctime() and gets
stored in a variable now. Then, a dictionary called DataToPass is created and values of title
and time are stored in this dictionary. These values will be passed to the items in double
curly brackets in the web page defined by index.html. When the function returns, variables
inside the dictionary are returned to the web browser through the dictionary.

Now, run the program flasktest.py with the command

 sudo python3 flasktest.py

Next, go to a web browser and enter the IP address of your Raspberry Pi Zero 2 W
(192.168.3.21 for author"s Zero 2 W). You should see a display similar to the one shown
in Figure 6.27.

The Raspberry Pi Zero 2 W GO! - UK.indd 153The Raspberry Pi Zero 2 W GO! - UK.indd 153 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 154

Figure 6.27: Web page displaying the date and time.

Now that you have learned how to pass variables from a Python program to a web page,
you can monitor the status of a GPIO pin, or control a GPIO pin from a web page.

6.10 Project 27: Web Server — Controlling an LED connected to the
Raspberry Pi Zero 2 W, using Flask
Description: In this project, an LED is connected to port GPIO 2 of the Raspberry Pi Zero
2 W through a 470-ohm current-limiting resistor. The LED is turned ON or OFF via remote
web pages using Flask. The aim of this project is to show how Flask can be used to control
an LED connected to the Zero 2 W.

HTML Template Program Listing: The HTML template index.html in folder /home/
pi/MyFlask/templates is simple and it consists of a title and two buttons: ON and OFF.
The title is in double curly brackets and therefore it expects data to be passed to it from
Python. Two buttons are defined called LED ON and LED OFF with green and red colors,
respectively. The LED ON button is referenced as /LED/on and the LED OFF button, as /
LED/off. Figure 6.28 shows the program listing.

<head>
 <title>{{ title }}</title>
</head>

<body>
 <h3>
 <button type="button">LED ON
</button>
 <button type="button">LED OFF
</button>
 </h3>
</body>

Figure 6.28: HTML template program listing.

Raspberry Pi Program Listing: Figure 6.29 shows the Python program listing for the
Raspberry Pi Zero 2 W in folder /home/pi/MyFlask (program: flasktest.py). The pro-
gram has the basic Flask type template as shown earlier with some additional code. Port
pin GPIO 2 is configured as an output and the LED is turned OFF at the beginning of the
program. The title to be passed to index.html is named LED CONTROL and function
index is used to pass this string. Notice that another app.route is created with parame-

The Raspberry Pi Zero 2 W GO! - UK.indd 154The Raspberry Pi Zero 2 W GO! - UK.indd 154 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 155

ters device and action. In this example the device is LED and its actions are on and off.
Function action checks the device and if it is LED then the actuator is set to LED. For
every actuator you must have an action. If the action is on, the LED is turned ON by the
statement GPIO.output(actuator, GPIO.HIGH), otherwise, if the action is off, the LED
is turned OFF.

#==
CONTROLLING LED FROM WEB PAGE
=============================
#
This program turns the LED ON or OFF from a web browser
activated from any computer on the same Wi-Fi router as
the Zero 2 W. The LED is controlled by clicking buttons
when the web page is started
#
Author: Dogan Ibrahim
File : flasktest.py
Date : December, 2022
#===
from flask import Flask,render_template
import RPi.GPIO as GPIO

app=Flask(__name__)

#
Define GPIO2 as output and turn OFF LED at beginning
#
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
LED = 2
GPIO.setup(LED, GPIO.OUT)
GPIO.output(LED, 0)

@app.route('/')
def index():
 DataToPass = {
 'title': "LED CONTROL"
 }
 return render_template('index.html', **DataToPass)

@app.route("/<device>/<action>")
def action(device, action):
 if device == "LED":
 actuator = LED

The Raspberry Pi Zero 2 W GO! - UK.indd 155The Raspberry Pi Zero 2 W GO! - UK.indd 155 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 156

 if action == "on":
 GPIO.output(actuator, GPIO.HIGH)
 if action == "off":
 GPIO.output(actuator, GPIO.LOW)
 return render_template('index.html')

if __name__ == '__main__':
 app.run(debug=True, port=80,host='0.0.0.0')

Figure 6.29 Program: flasktest.py.

To run the program, you should follow the steps given below:

• Connect an LED to GPIO 2 through a current limiting resistor.

• Run program flasktest.py

pi@raspberrypi:~/MyFlask $ sudo python3 flasktest.py

• Activate a web browser from a computer connected to the same Wi-Fi router
and enter the IP address of your Raspberry Pi Zero 2 W. As shown in Figure
6.29, you should see two buttons to control the LED. Clicking the buttons turns
the LED ON or OFF.

Figure 6.30 Controlling the LED from a web page.

• Terminate your program by entering Cntrl+C.

Modified Program
You could remove file index.html from the project and use only flasktest.py to control
the LED. The modified program (flasktest2.py) is shown in Figure 6.31. To control the
LED, you should enter the following web commands after starting flasktest2.py (Here
192.168.3.21 is the IP address of the Raspberry Pi Zero 2 W). Run program flasktest2.py
as sudo python3 flasktest2.py:

• To turn the LED ON: 192.168.3.21/LED/on
• To turn the LED OFF: 192.168.3.21/LED/off

The Raspberry Pi Zero 2 W GO! - UK.indd 156The Raspberry Pi Zero 2 W GO! - UK.indd 156 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 157

#==
CONTROLLING LED FROM WEB PAGE
=============================
#
This program turns the LED ON or OFF from a web browser
activated from any computer on the same Wi-Fi router as
the Zero 2 W. The commands are (assuming that the IP
address of Raspberry Pi is: 192.168.3.21):
#
192.168.1.202/LED/on turn LED ON
192.168.1.202/LED/off turn LED OFF
#
Author: Dogan Ibrahim
File : flasktest2.py
Date : December, 2022
#===
from flask import Flask,render_template
import RPi.GPIO as GPIO

app=Flask(__name__)

#
Define GPIO2 as output and turn OFF LED at beginning
#
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
LED = 2
GPIO.setup(LED, GPIO.OUT)
GPIO.output(LED, 0)

@app.route("/<device>/<action>")
def action(device, action):
 if device == "LED":
 actuator = LED

 if action == "on":
 GPIO.output(actuator, GPIO.HIGH)
 return "LED turned ON"
 if action == "off":
 GPIO.output(actuator, GPIO.LOW)
 return "LED turned OFF"

if __name__ == '__main__':
 app.run(debug=True, port=80,host='0.0.0.0')

Figure 6.31 Modified program (flasktest2.py).

The Raspberry Pi Zero 2 W GO! - UK.indd 157The Raspberry Pi Zero 2 W GO! - UK.indd 157 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 158

The modified program displays messages LED turned ON and LED turned OFF. Figure 6.32
shows the web command to turn ON the LED.

Figure 6.32 Turning ON the LED.

6.11 Communicating with the Raspberry Pi Pico W over Wi-Fi
The Raspberry Pi Pico W (called "Pico" from here on) is a very low-cost $6 microcontroller
module based on the RP2040 microcontroller chip with dual-core Cortex-M0+ processor
with on-board Wi-Fi module. Figure 6.33 shows the front view of the Pico hardware module
which is basically a small board. At the middle of the board is the tiny 7 × 7mm size type
RP2040 microcontroller chip housed in a QFN-56 package.

At the two edges of the board there are 40 gold-colored metal GPIO (General-Input-Out-
put) pins with holes. You should solder pins to these holes so that external connections
can easily be made to the board. The holes are marked starting with number 1 at the top
left corner of the board and the numbers increase downwards up to number 40 which is
at the top right-hand corner of the board. The board is breadboard-compatible (i.e., 0.1-
inch pin spacing), and after soldering the pins, it can be plugged on a breadboard for easy
connection to the GPIO pins using jumper wires. Next to these holes you will see bumpy
circular cut-outs which can be plugged in on top of other modules not having any physical
pins fitted.

Figure 6.33 Front view of the Pico hardware module.

At one edge of the board there is the micro-USB B port for providing power to the board and
for programming it. Next to the USB port there is an on-board user LED that can be used
during program development. Next to this LED there is a button named BOOTSEL that"s
used during programming of the microcontroller as you will see in next chapters. Next to
the processor chip, there are three holes where external connections can be made to. These
are used to debug your programs using Serial Wire Debug (SWD). At the other edge of the
board is the single-band 2.4-GHz Wi-Fi module (802.11n). Next to the Wi-Fi module is the
on-board antenna.

The Raspberry Pi Zero 2 W GO! - UK.indd 158The Raspberry Pi Zero 2 W GO! - UK.indd 158 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 159

Figure 6.34 shows the back view of the Pico hardware module. Here, all the GPIO pins are
identified with letters and numbers. You will notice the following types of letters and num-
bers:

GND - power supply ground (digital ground)
AGND - power supply ground (analog ground)
3V3 - +3.3 V power supply (output)
GP0 – GP22 - digital GPIO
GP26_A0 – GP28_A2 - analog inputs
ADC_VREF - ADC reference voltage
TP1 – TP6 - test points
SWDIO, GND, SWCLK - debug interface
RUN - default RUN pin. Connect LOW to reset the

RP2040
3V3_EN - this pin by default enables the +3.3 V power

supply.
 +3.3 V can be disabled by connecting this pin

LOW
VSYS - system input voltage (1.8 V to 5.5 V) used by

the on-board SMPS to generate +3.3 V supply
for the board

VBUS - micro-USB input voltage (+5 V)

Figure 6.34: Back view of the Pico hardware module.

Some of the GPIO pins are used for internal board functions. These are:

GP29 (input) - used in ADC mode (ADC3) to measure VSYS/3
GP24 (input) - VBUS sense - HIGH if VBUS is present, else LOW
GP23 (output) - Controls the on-board SMPS Power Save pin

The specifications of the Pico hardware module are as follows:

• 32-bit RP2040 Cortex-M0+ dual-core processor operating at 133 MHz
• 2 MBbyte Q-SPI Flash memory
• 264 Kbyte SRAM memory
• 26 GPIO (+3.3V compatible)
• 3× 12-bit ADC pins

The Raspberry Pi Zero 2 W GO! - UK.indd 159The Raspberry Pi Zero 2 W GO! - UK.indd 159 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 160

• Accelerated floating point libraries on-chip
• On-board single-band Infineon CYW43439 wireless chip, 2.4-GHz wireless

interface (802.11b/g/n) and Bluetooth 5.2 (not supported at the time of
writing)

• Serial Wire Debug (SWD) port
• Micro-USB port (USB 1.1) for power (+5 V) and data (programming)
• 2× UART, 2× I2C, 2× SPI bus interface
• 16× PWM channels
• 1× Timer (with 4 alarms), 1× Real Time Counter
• On-board temperature sensor
• On-board LED at GPIO0, controlled by the 43439 module
• Castellated module allowing soldering direct to carrier boards
• 8× Programmable IO (PIO) state machines for custom peripheral support
• MicroPython, C, C++ programming
• Drag & drop programming using mass storage over USB

The Pico GPIO hardware is +3.3 V compatible which makes it important to be careful not
to exceed this voltage when interfacing external input devices to the GPIO pins. +5 V to
+3.3 V logic converter circuits or resistive potential divider circuits must be used if it is
required to interface devices with +5 V outputs to the Pico GPIO pins.

The Pico can be programmed using MicroPython or C/C++ languages. In this section, you
will be using the MicroPython with the Thonny editor to program your Pico. It is assumed
that you have Pico development boards with MicroPython ready installed. It will also be
useful if you are familiar with Thonny running on the Pico. An excellent book entitled Rasp-
berry Pi Pico W is available at the Elektor web site and interested readers should purchase
it for developing Raspberry Pi Pico-based projects.

Figure 6.35 shows the pin configuration of the Pico.

The Raspberry Pi Zero 2 W GO! - UK.indd 160The Raspberry Pi Zero 2 W GO! - UK.indd 160 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 161

Figure 6.35 Pico pin configuration.

6.12 Project 28 – Raspberry Pi Zero 2 W and Raspberry Pi Pico W com-
munication – controlling a relay over Wi-Fi
Description: In this project, you have a Raspberry Pi Zero 2 W and Raspberry Pi Pico W
working together. A pushbutton is connected to the Raspberry Pi Pico W, and a +3.3 V
relay is connected to the Raspberry Pi Zero 2 W. Pressing the button on the Pico sends a
command to the Zero 2 W over the Wi-Fi to activate the relay. The relay remains active for
5 seconds. In this project, the Zero 2 W and the Pico communicate using the UDP protocol.
The Zero 2 W is the server while the Pico is the client.

Block diagram: Figure 6.36 shows the block diagram of the project.

The Raspberry Pi Zero 2 W GO! - UK.indd 161The Raspberry Pi Zero 2 W GO! - UK.indd 161 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 162

Figure 6.36 Block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 6.37 with the button
and relay connected to the Pico and Zero 2 W, respectively.

Figure 6.37 Circuit diagram of the project.

Pico program listing: Figure 6.38 shows the Pico program listing (Program: picoudp.
py). At the beginning of the program, an LED is assigned to port GP2 and is turned OFF.
Function Connect() is called to connect to local Wi-Fi. Then, a socket is created with port
number 2000 and IP address 192.168.3.21. When the Button is pressed, the program
sends "1" to the Zero 2 W so that the LED can be turned ON. This process is repeated after
a 1-second delay.

The Raspberry Pi Zero 2 W GO! - UK.indd 162The Raspberry Pi Zero 2 W GO! - UK.indd 162 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 163

#--
RASPBERRY PI PICO W - RASPBERRY PI ZERO 2 W COMMS
===
#
In this project a pushbutton is connected to GP2 of PICO W.
Presingthe button sends a command to Zero 2 W to activate
a relay. UDP protocol is used in this project
#
Author: Dogan Ibrahim
File : picoudp.py
Date : December, 2022
#---
from machine import Pin
import network
import socket
import utime
global wlan

BUTTON = Pin(2, Pin.IN) # Button at GP2

#
This function attempts to connect to Wi-Fi
#
def connect():
 global wlan
 wlan = network.WLAN(network.STA_IF)
 while wlan.isconnected() == False:
 print("Waiting to be connected")
 wlan.active(True)
 wlan.connect("TP-Link_6138_EXT", "24844994")
 utime.sleep(5)

connect()
print("Connected")
UDP_PORT = 2000 # Port used
UDP_IP = "192.168.3.21" # Zero 2W IP
cmd = b"1" # Cmd to turn ON
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

while True:
 while BUTTON.value() == 1: # Not pressed
 pass
 while BUTTON.value() == 0: # Not released
 pass
 sock.sendto(cmd, (UDP_IP, UDP_PORT)) # Send cmd

The Raspberry Pi Zero 2 W GO! - UK.indd 163The Raspberry Pi Zero 2 W GO! - UK.indd 163 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 164

 print("Command sent") # Message
 utime.sleep(1) # Wait 1 sec

Figure 6.38 The Raspberry Pi Pico W program listing (picoudp.py).

Zero 2 W program listing: Figure 6.39 shows the Zero 2 W program listing (Program:
zeroudp.py). At the beginning of the program, the libraries used are imported, while Relay
is configured at port GPIO 2 and deactivated. Then, a socket is created and the program
binds to it with the Zero 2 W IP address. The program then waits to receive a command
from the Pico. The received command is stored in variable data and if it is 1, the Relay is
activated for 5 seconds. At the end of this time the Relay is deactivated and the program
repeats waiting for a command.

#===
RASPBERRY PI PICO W - RASPBERRY PI ZERO 2 W COMMS
============================
#
This is the UDP server program running on Zero 2 W. The
program receives a command from PICO W and activates a
relay connected to GPIO 2 for 5 seconds

Author: Dogan Ibrahim
File : zeroudp.py
Date : December, 2022
#===
import RPi.GPIO as GPIO
GPIO.setwarnings (False)
GPIO.setmode(GPIO.BCM)
import socket
import time

RELAY = 2 # Relay at port 2
GPIO.setup(RELAY, GPIO.OUT) # Relay is output
GPIO.output(RELAY, 0) # Deenergize Relay

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(("192.168.3.21", 2000))

try:
 while True:
 data, addr = sock.recvfrom(1024) # GEt command
 if data == b'1': # Command is 1?
 GPIO.output(RELAY, 1) # Activate Relay
 time.sleep(5) # 5 seconds delay
 GPIO.output(RELAY, 0) # Deactivate Relay

The Raspberry Pi Zero 2 W GO! - UK.indd 164The Raspberry Pi Zero 2 W GO! - UK.indd 164 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 165

except KeyboardInterrupt: # Keyboard interrupt
 print("\nClosing connection to client")
 sock.close()

Figure 6.39 Raspberry Pi Zero 2 W program listing (zeroudp.py).

Evaluating the project
The steps to evaluate the project are:

• Run the server on the Zero 2 W:

pi@raspberry: ~$ python3 zeroudp.py

• Run the Pico program in Thonny by clicking the green Run button. You should
see the message Connected when Pico connects to the local router.

• Push the button on Pico. The message Command sent will be displayed on the
Pico terminal. A packet will be sent to the Zero 2 W which will turn ON the LED
for 5 seconds.

• Enter Cntrl+C to terminate the program.

6.13 Project 29 — Storing ambient temperature and atmospheric pres-
sure data in the Cloud
Description: In this project the ambient temperature and atmospheric pressure are read
and stored in the Cloud. A BMP280 type sensor module is used in this project.

BMP280
The BMP280 is an absolute barometric pressure and temperature sensor chip, originally
developed for mobile applications. Its small dimensions and low power consumption allow
easy implementation in battery-powered devices such as mobile phones, GPS modules,
and watches. The BMP280 is based on Bosch"s proven piezo-resistive pressure sensor
technology featuring high accuracy and linearity as well as long-term stability and high EMC
robustness. The device is optimized in terms of power consumption, resolution and filter
performance. The basic specifications of the BMP280 include:

• Pressure range: 300 to 1100 hPa
• Relative accuracy: ±0.12 hPa
• Absolute accuracy: ±1 hPa
• Digital interface: I2C, SPI
• Temperature range: –40 ºC to +85 ºC
• Current consumption: 2.7 μA

Block diagram: The block diagram of the project is shown in Figure 6.40.

The Raspberry Pi Zero 2 W GO! - UK.indd 165The Raspberry Pi Zero 2 W GO! - UK.indd 165 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 166

Figure 6.40 Block diagram of the project.

Circuit diagram: Figure 6.41 shows the circuit diagram. SCL and SDA pins of BMP280 are
connected to the SDA (pin 3) and SCL (pin 5) of your Zero 2 W. 10 k-ohm pull-up resis-
tors are used for the I2C bus as the BMP280 board has no pull-up resistors (some BMP280
modules may already have on-board pull-up resistors). The sensor is powered from +3.3 V.

Figure 6.41 Circuit diagram of the project.

The Cloud
There are several cloud services that can be used to store data (for example, SparkFun,
ThingSpeak, Cloudino, Bluemix, etc). In this project, ThingSpeak is used. This is a free
cloud service where sensor data can be stored and retrieved using simple HTTP requests.
Before using the ThingSpeak, you have to create an account from their website and then
log in to this account.

Go to the ThingSpeak web site:

 https://thingspeak.com/

The Raspberry Pi Zero 2 W GO! - UK.indd 166The Raspberry Pi Zero 2 W GO! - UK.indd 166 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 167

Click Get Started For Free and create an account if you don"t already have one. Then, you
should create a new channel by clicking on… New Channel! Fill in the form as shown in
Figure 6.42. Give the name Raspberry Pi Zero 2 W to the application, give a description,
and create two fields called Atmospheric Pressure and Temperature. You can option-
ally fill in the other items as well if you wish.

Figure 6.42: Create a New Channel (only part of the ThingSpeak form shown).

Click Save Channel at the bottom of the form. Your channel is now ready to be used with
your data. You will now see tabs with the following names. You can click on these tabs and
view the contents to make corrections, if necessary:

• Private View: This tab displays private information about your channel which
only you can see.

• Public View: If your channel is public, use this tab to display selected fields
and channel visualizations.

• Channel Settings: This tab shows all the channel options you set at creation.
You can edit, clear, or delete the channel from this tab.

• API Keys: This tab displays your channel API keys. Use the keys to read from
and write to your channel.

• Data Import/Export: This tab enables you to import and export channel
data.

The Raspberry Pi Zero 2 W GO! - UK.indd 167The Raspberry Pi Zero 2 W GO! - UK.indd 167 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 168

• You should click the API Keys tab and save your Write API and Read API
keys and the Channel ID in a safe place as you will need to use them in our
program. The API Keys and the Channel ID in this project were:

Also, note your Channel ID: 2004389

Also, select the Public View and navigate to Sharing. You may select option Share chan-
nel view with everyone so that everyone can access your data remotely.

Program listing: In this program, you will use a BMP280 library for Raspberry Pi. The
steps to install the library are as follows:

pi@raspberrypi:~ $ sudo pip install bmp280

After constructing the circuit, you should check to make sure that the BMP280 is detected
by the Zero 2 W. Enter the following command:

pi@raspberrypi:~ $ sudo i2cdetect –y 1

You should see the hardware address of the BMP280 chip displayed as: 76 (see Figure
6.43).

Figure 6.43: BMP280 hardware address detected.

Figure 6.44 shows the program listing (Program: Cloud.py). At the beginning of the pro-
gram, the libraries used get imported to the program. The ThingSpeak Write Key and
Host Address are defined. The main program loop starts with the while statement. Inside

The Raspberry Pi Zero 2 W GO! - UK.indd 168The Raspberry Pi Zero 2 W GO! - UK.indd 168 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 169

this loop, the IP address of the ThingSpeak website is extracted and a connection is made
to this site at port 80. Then, the atmospheric pressure and temperature readings are ob-
tained from the BMP280 module and are included in the path statement. The sock.send
statement sends an HTTP GET request to the ThingSpeak site and uploads the pressure
and temperature values. This process is repeated every 30 seconds.

Figure 6.45 shows the pressure and temperature data plotted by ThingSpeak. The Chart
Options can be clicked on to change various parameters of the charts. For example, Figure
6.46 shows the temperature as a column display. In Figure 6.47, the pressure is shown
as a step graph. A title and X-axis label are added in Figure 6.48 to the pressure graph.
Figure 6.49, finally, shows the atmospheric pressure displayed in a clock format (click Add
Widgets for this type display).

Because the Channel was saved as Public, you can view the graph from a web browser
by entering the Channel ID. In this project, the link to view the data graphs from a web
browser is:

 https://api.thingspeak.com/channels/2004389

You can also export some or all of the fields in CSV format by clicking Export recent data,
so that it can be analyzed by external statistical packages such as Excel.

#---
ATMOSPHERIC PRESSURE AND TEMPERATURE ON THE CLOUD
===
#
The ambient temperature and pressure sensor BMP280 is connected to Zero 2 W.
The project reads the temperature and atmospheric pressure and sends
to the Cloud where it can be accessed from anywhere. In addition, change
of the temperature and the pressure can be plotted in the cloud.
#
#
The program uses the Thingspeak cloud service
#
Author: Dogan Ibrahim
File : Cloud.py
Date : January, 2022
#--
import socket
import time
from bmp280 import BMP280
from smbus import SMBus

bus = SMBus(1)
bmp280 = BMP280(i2c_dev=bus)

The Raspberry Pi Zero 2 W GO! - UK.indd 169The Raspberry Pi Zero 2 W GO! - UK.indd 169 08-03-2023 09:2308-03-2023 09:23

.

The Raspberry Pi Zero 2 W GO! Book

● 170

APIKEY = "2TE7WHRAWTWKGXZ4" # Thingspeak API key
host = "api.thingspeak.com" # Thigspeak host

#
Send data to Thingspeak. This function sends the temperature and
humidity data to the cloud every 30 seconds
#
while True:
 sock = socket.socket()
 addr = socket.getaddrinfo("api.thingspeak.com",80)[0][-1]
 sock.connect(addr)
 p=bmp280.get_pressure()
 t=bmp280.get_temperature() # Temperature in C
 path = "api_key="+APIKEY+"&field1="+str(p)+"&field2="+str(t)
 sock.send(bytes("GET /update?%s HTTP/1.0\r\nHost: %s\r\n\r\n"
%(path,host),"utf8"))
 time.sleep(5)
 sock.close()
 time.sleep(25)

Figure 6.44: Program: Cloud.py.

Figure 6.45: Plotting the pressure and temperature.

Figure 6.46: Displaying temperature as columns.

The Raspberry Pi Zero 2 W GO! - UK.indd 170The Raspberry Pi Zero 2 W GO! - UK.indd 170 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 171

Figure 6.47: Displaying pressure as steps.

Figure 6.48: Adding title and x-axis label.

Figure 6.49: Displaying pressure in a clock format.

6.14 Useful network commands
In this section, you will explore some of the useful network commands that can be accessed
from the Zero 2 W command mode.

6.14.1 Ping
This is one of the useful commands that is used to detect devices on a network. The general
form of the command is:

 ping hostname or ping IPaddress

The Raspberry Pi Zero 2 W GO! - UK.indd 171The Raspberry Pi Zero 2 W GO! - UK.indd 171 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 172

The display is repeated every second. You can restrict the number of attempts with the –c
option. For example, to restrict to 5 attempts, use ping hostname –c 5. An example is
shown in Figure 6.50.

Figure 6.50: The ping command.

6.14.2 hostname
This command has several options. Command hostname shows the host name. host-
name –I shows the IP address assigned to our Pi, hostname – d shows the DNS name.
An example is shown in Figure 6.51.

Figure 6.51: The hostname command.

6.14.3 ifconfig
This command displays network information about your RPi. The options are:

ifconfig full network display
ifconfig wlan0 show Wi-Fi interface details
ifconfig eth0 show Ethernet interface details

An example is shown in Figure 6.52.

The Raspberry Pi Zero 2 W GO! - UK.indd 172The Raspberry Pi Zero 2 W GO! - UK.indd 172 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 173

Figure 6.52: Command: ifconfig.

You can shutdown or bring up our Wi-Fi network interface with the commands: sudo ifcon-
fig wlan0 down and sudo ifconfig wlan0 up respectively.

6.14.4 route
This command is used to configure and display Wi-Fi router information. An example is
shown in Figure 6.53. In this example, your Wi-Fi router IP address is 192.168.3.0, having
the mask 255.255.255.0.

Figure 6.53 Command: route.

6.14.5 netstat
This command displays information about your network and ports. An example is shown
in Figure 6.54. The following options are useful (enter netstat –help to display a list of all
options):

netstat –i display interface table
netstat –s display network statistics
netstat –l display listening server sockets
netstat – o display timers

The Raspberry Pi Zero 2 W GO! - UK.indd 173The Raspberry Pi Zero 2 W GO! - UK.indd 173 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 174

Figure 6.54: Command: netstat.

6.14.6 host
The host command is used to find the IP address of a particular DNS. An example is shown
in Figure 6.55.

Figure 6.55: Command: host.

6.15 Setting-up Wi-Fi on your Raspberry Pi Zero 2 W
There are many ways to set up Wi-Fi on the Zero 2 W and these are described briefly in
this section.

6.15.1 During the installation of the Raspberry Pi operating system
As described in section 1.3, the local Wi-Fi router SSID and password can be specified dur-
ing the installation of the Raspberry Pi operating system.

6.15.2 Modifying the Wi-Fi details on the SD card
The SD card stores the Raspberry Pi operating system. You can easily modify the Wi-Fi
SSID and password by editing a file on the SD card. The steps are as follows:

• Power down your Zero 2 W orderly.
• Remove the SD card and insert it into your PC.
• Open the Notepad text editor on your PC.
• Create a new, empty file with the Notepad and save it in the boot folder of

the SD card with the name ssh (without any extension), where this file will
enable the SSH to be used to access your Raspberry Pi Zero 2 W remotely. In
Windows, this is the only folder you will see which contains items like: loader.
bin, start.elf, kernel.img, etc.

• Close the file.
• Create a new file called wpa_supplicant.conf and copy the following lines to

this file (replace the MySSID and MyPassword with the details of your own
Wi-Fi router):

 country=GB
 update_config=1
 ctrl_interface=/var/run/wpa_supplicant

 network={

The Raspberry Pi Zero 2 W GO! - UK.indd 174The Raspberry Pi Zero 2 W GO! - UK.indd 174 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 175

 scan_ssid=1
 ssid="MySSID"
 psk="MyPassword"
 }

• Save the file to the boot folder on your SD card with the name: wpa_
supplicant.conf.

• Insert the SD card back into your Raspberry Pi Zero 2 W and power-up the
device.

• The Raspberry Pi Zero 2 W should boot and access the local Wi-Fi router.

6.15.3 Setting via the Task Bar
If you are directly connected to your Zero 2 W using a monitor, there should be a network
icon near the clock at the top right-hand side of the Desktop. Click on the icon to see all
the available Wi-Fi networks. Select your network from the list and enter the network
password.

6.15.4 Using the raspi-config tool
If you are directly connected to your Zero 2 W using a monitor, you can use the raspi-con-
fig tool to set up the local network details. The steps are:

• Start the raspi-config:

pi@raspberrypi:~ $ sudo raspi-config

• Select option 1 (System Options) and press Enter.
• Select option S1 (Wireless LAN) and enter your network details (Figure 6.56).

Figure 6.56: Select Wireless LAN.

•	 Finish and Exit the tool.

The Raspberry Pi Zero 2 W GO! - UK.indd 175The Raspberry Pi Zero 2 W GO! - UK.indd 175 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 176

6.15.5 Manual setup
If you are directly connected to your Zero 2 W using a monitor, you can edit a file to set up
your network details. The steps are as follows:

• Create/edit the following file:

pi@raspberrypi:~ $ sudo nano /etc/wpa_supplicant/
wpa_supplicant.conf

• Enter (or change) to the following details:

 country=GB
 update_config=1
 ctrl_interface=/var/run/wpa_supplicant

 network={
 scan_ssid=1
 ssid="MySSID"
 psk="MyPassword"
 }

• Enter Cntrl+X followed by Y to save and exit the file.
• Reboot your Zero 2 W, which will come up connected to you Wi-Fi:

pi@raspberrypi:~ $ sudo reboot

6.16 Finding the IP address of your Zero 2 W
There are times when you cannot log in to your Zero 2 W remotely since you may not know
the IP address allocated by the Wi-Fi router. Fortunately, there are several ways to find
your RPi"s IP address.

6.16.1 Using a smartphone app
• Install a network scan app on your smartphone and scan your network to

find out the connected devices to your Wi-Fi router. For example, the WiFi
Router Warden-Analyzer is a freely available app (Figure 6.57) for Android
smartphones (apps may contain many advertisements).

The Raspberry Pi Zero 2 W GO! - UK.indd 176The Raspberry Pi Zero 2 W GO! - UK.indd 176 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 177

Figure 6.57: WiFi Router Warden-Analyzer app.

• Open the app and tick on Who is Using My WiFi? (Figure 6.58)

Figure 6.58: Select Who is Using My WiFi?.

• Yu should see a list of the devices connected to your Router. Note the one with
the Name: raspberrypi. In this example, the IP address was 192.168.3.21
(Figure 6.59)

The Raspberry Pi Zero 2 W GO! - UK.indd 177The Raspberry Pi Zero 2 W GO! - UK.indd 177 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 178

Figure 6.59: Note the one called "raspberrypi".

6.16.2 Using a PC program
There are many PC programs that can be used to scan a Wi-Fi router. Here, you will be
using the one called Wireless Network Watcher. It can be downloaded from the follow-
ing website (scroll down to click on Download). At the time of writing this book, the setup
program was called: wnetwatcher_setup.exe:

 http://www.nirsoft.net/utils/wireless_network_watcher.html

Download and click on the setup file to run the program. Figure 6.60 shows an example
output from the program (only part of the output is shown here. The output displays more
information about each node on the right hand side of the screen). From this output, you
can see that the IP address of our Pi is 192.168.3.21.

The Raspberry Pi Zero 2 W GO! - UK.indd 178The Raspberry Pi Zero 2 W GO! - UK.indd 178 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 179

Figure 6.60: Example display of Wireless Network Watcher.

6.16.3 Using nmap
Nmap is a program that enables you to gauge the security of the network your RPi is con-
nected to. This program has many options, but here you will only look at the option that
can be used to list all the devices connected to the same Wi-Fi as your Pi. The steps are:

• install nmap

pi@raspberrypi:~ $ sudo apt install nmap

• After the installation, assuming the IP address of your Zero 2 W is:
192.168.3.21, enter the following command:

p@raspberrypi:~ $ sudo nmap –sn 192.168.3.21/34

• You should get a display showing all the devices connected to your Wi-Fi,
together with their names and MAC addresses. Part of the display is shown in
Figure 6.61.

Figure 6.61: Displaying the devices on the same network.

6.17 Project 30 – Fetching and displaying the real-time weather data
on the screen
Description: In this project, you fetch the local data from the Open Weather Map and dis-
play some of its parameters on the screen. The aim of this project is to show how Weather
Map can be accessed from the Internet.

The Raspberry Pi Zero 2 W GO! - UK.indd 179The Raspberry Pi Zero 2 W GO! - UK.indd 179 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 180

Open Weather Map
The Open Weather Map API can be used to fetch the real-time weather data anywhere on
earth. In this project, as an example, you will fetch the current real-time weather data in
London and then display the important weather parameters.

Before using the Open Weather Map, you have to register to it and get an API key free of
charge (up to 1000 API calls per day are free!). The steps are as follows:

• Go to Open Weather Map website:

https://openweathermap.org/

• Click Sign In at the top menu and end then click Create an Account (Figure
6.62)

Figure 6.62: Click Create an Account.

• Login to your email to confirm the registration.
• Click to Subscribe to Current Weather Data (Figure 6.63)

Figure 6.63 Subscribe to Current Weather Data.

• You should now click Get API key to get an API. The API key will be sent to your
email address. It is something like: 05ff9a8a5d66e4f3115c50d50ff7dAA9. The
key will be activated in a few hours.

The Raspberry Pi Zero 2 W GO! - UK.indd 180The Raspberry Pi Zero 2 W GO! - UK.indd 180 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 181

• Now, you have to install the Python library (called: pyowm) for Open Weather
Map. Enter the following command to install the library:

pi@raspberrypi:~ $ pip install pyowm

• You are now ready to write your Python program and fetch and display the
current weather every 15 seconds (until stopped by the user). See the following
website for a detailed list of available commands:

https://pyowm.readthedocs.io/en/latest/v3/code-recipes.html

Program listing: Figure 6.64 shows the program listing (Program: LondonWeather.py).
At the beginning of the program, you imported the pyowm library. After entering the API
key assigned to you, go ahead and display the weather data as shown in the program. The
display is updated every 15 seconds until stopped by the user.

#===
DISPLAY LONDON WEATHER IN REAL-TIME
#
This program fetches the real-time weather data
for a give city from Open Weather MAp and displays
on the screen every 15 seconds
#
Author: Dogan Ibrahim
File : LondonWeather.py
Date : January, 2023
#===
from pyowm import OWM # import Open Weather Map
import time # import time

#
Enter your API key below
#
weather = OWM('05ff9a8a5d66e4f3115c5YOUR API')
manager = weather.weather_manager()

#
Now we enter the city and country details
#
cty = manager.weather_at_place('London,GB')
MyWeather = cty.weather

while True:
 W = MyWeather.wind()
 print(" Wind: ", W['speed'], " m/s")
 print(" Wind: ", W['deg'], " Degrees")

The Raspberry Pi Zero 2 W GO! - UK.indd 181The Raspberry Pi Zero 2 W GO! - UK.indd 181 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 182

 print(" Humidity: " , MyWeather.humidity)

 print(" Rain: " , MyWeather.rain)

 T = MyWeather.temperature('celsius')
 print(" Min Temp: ", T['temp_min'], " C")
 print(" Max Temp: ", T['temp_max'], " C")
 print(" Feels like: ", T['feels_like'], " C")

 print(" Pressure: ", MyWeather.barometric_pressure(), " hPa")

 print(" Clouds: " , MyWeather.clouds)

 print("Visibility : ", MyWeather.visibility_distance, " km")

 print(" Sunrise: ", MyWeather.sunrise_time(timeformat='date'))
 print(" Sunset: ", MyWeather.sunset_time(timeformat='date'))

 time.sleep(15)

Figure 6.64: Program: LondonWeather.py.

Run the program as follows (notice that the program is run from directory pyowm):

 pi@raspberrypi:~/pyowm $ python3 LondonWeather.py

A sample output from the program is shown in Figure 6.65.

Figure 6.65: Sample output.

6.18 Using TFT displays with the Raspberry Pi Zero 2 W
A thin-film transistor display is a type of liquid crystal display that makes use of thin-film
transistor technology in order to improve qualities such as contrast and addressability. TFT
is also called active-matrix LCD technology. In TFT technology, an individual transistor is
used to drive each individual pixel, allowing for much faster response times. The TFT in the
LCD controls individual pixels in the display by setting the level of the electric field across
the three (red, green, blue) liquid crystal capacitors in the pixel in order to control the

The Raspberry Pi Zero 2 W GO! - UK.indd 182The Raspberry Pi Zero 2 W GO! - UK.indd 182 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 183

polarization of the crystal material which determines the amount of light that reaches the
color filter from the backlight. TFT displays are available in many different physical sizes
and also by different number pixel numbers.

In this section, you will use a 1.8-inch TFT display within a Raspberry Pi Zero 2 W project.

6.18.1 TFT display used
The TFT display used in the project in this book is shown in Figure 6.66. This display has
the following specifications:

Size: 1.8 inch
Resolution: 128 × 160
Driver IC: ST7735
Interface: 4-wire SPI
SD: On-board SD card adapter

Figure 6.66: TFT display used.

The display has an 8-bit connector on one side for the display logic, and a 4-bit connector
on the other side for the SD card interface. You will be using the display logic interface
which has the following pins:

8-pin connector

LED Display backlight control
SCK Display SPI Clock
SDA Display SPI Data
A0 Display address select (data/command, DC)
RESET Display reset (RST)
CS Display chip select (CS)
GND Power supply ground
VCC Power supply

The Raspberry Pi Zero 2 W GO! - UK.indd 183The Raspberry Pi Zero 2 W GO! - UK.indd 183 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 184

6.18.2 Connecting a TFT display to the Raspberry Pi Zero 2 W
The TFT display is connected to the Zero 2 W as follows (see Figure 6.67), where SPI0 is
used for the communication:

TFT display Pico port pin
 SCK GPIO11 – SCLK
 SDA (or MOSI) GPIO10 – MOSI
 A0 (or DC) GP17
 RESET (or RST) GP27
 CS GPIO8 – CE0
 GND GND
 VCC +3.3 V
 LED +3.3 V

Figure 6.67: TFT display-to-RPi Zero 2 W interface.

6.18.3 ST7735 TFT display driver library
Before using the 1.8-inch TFT display with your Zero 2 W, you have to install the display
driver ST7735 to your Zero 2 W. The steps are as follows:

• Start raspi-config and enable the SPI interface under Interface Options:

pi@raspberrypi:~ $ sudo raspi-config

• Install the following:

pi@raspberrypi:~ $ sudo apt update
pi@raspberrypi:~ $ sudo apt install python3-spidev python3-pip
python3-pil python3-numpy
pi@raspberrypi:~ $ sudo python3 -m pip install st7735

Figure 6.68 shows the pixel co-ordinates of the TFT display used.

Figure 6.68: Co-ordinates of the display used.

The Raspberry Pi Zero 2 W GO! - UK.indd 184The Raspberry Pi Zero 2 W GO! - UK.indd 184 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 185

6.18.4 Example display — writing text
Figure 6.69 shows an example program (Program: TFTexample.py) for displaying text on
the TFT. Here, text RASPBERRY PI ZERO 2 W is displayed. At the beginning of the pro-
gram, the PIL library and the ST7735 libraries are imported, Then, the display interface is
configured and text is written starting from TFT coordinate (5, 60). For more examples on
how to use the TFT library, head over to the following web site:

 https://github.com/pimoroni/st7735-python

#===
DISPLAY TEXT ON TFT
===================
#
Author: Dogan Ibrahim
File : TFTexample.py
Date : January, 2023
#===
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
import ST7735

msg = "RASPBERRY PI ZERO 2 W"
disp = ST7735.ST7735(port=0,cs=0,rst=27,dc=17,width=128,height=160,
rotation=90,invert=False,offset_left=0,offset_top=0)
disp.begin()

width = disp.width
height =disp.height
img=Image.new('RGB', (160,128),color=(0,0,0))
draw=ImageDraw.Draw(img)
font=ImageFont.load_default()

draw.text((5,60),msg, font=font)
disp.display(img)

Figure 6.69: Program: TFTexample.py.

Figure 6.70 shows the text on the display. The display background is set to black using the
statement color=(0, 0, 0).

The Raspberry Pi Zero 2 W GO! - UK.indd 185The Raspberry Pi Zero 2 W GO! - UK.indd 185 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 186

Figure 6.70: Displayed text.

Some useful TFT commands are given below:

Rectangle
To draw a rectangle with the desired outline color and fill color, use the following statement.
x0 any y0 are the top-left coordinates and xm and ym, are the bottom-right coordinates:

draw.rectangle((x0, y0, xm, ym), outline = (0, 0, 0), fill = (0, 0, 0))

For example, the statement draw.rectangle((5, 5, 150, 120), outline = (0, 255,
0)) draws a green empty rectangle with the top left coordinate at (5, 5) and bottom
right coordinate at (150, 120).

Ellipse
To draw an ellipse, use the following statement:

 draw.ellipse((x0, y0, xm, ym), outline = (0, 0, 0), fill = (0, 0, 0))

Line
To draw a line, use the following statement:

 draw.line((x0, y0, xm, ym), fill = (0, 0, 0))

Polygon
To draw a polygon, use the following statement:

 draw.polygon([(x1, y1), (x2, y2), (x3, y3), x4, y4)], outline = (0, 0, 0),
fill = (0, 0, 0))

6.18.5 Example display — displaying various shapes
Figure 6.71 shows a program (Program: TFTshapes.py) which displays various shapes.
The display is shown in Figure 6.72.

The Raspberry Pi Zero 2 W GO! - UK.indd 186The Raspberry Pi Zero 2 W GO! - UK.indd 186 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 187

#===
DISPLAY VARIOUS SHAPES ON TFT
=============================
#
Author: Dogan Ibrahim
File : TFTshapes.py
Date : January, 2023
#===
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
import ST7735

msg = "RASPBERRY PI ZERO 2 W"
disp = ST7735.ST7735(port=0,cs=0,rst=27,dc=17,width=128,height=160,
rotation=90,invert=False,offset_left=0,offset_top=0)
disp.begin()

width = disp.width
height =disp.height
img=Image.new('RGB', (160,128),color=(0,0,0))
draw=ImageDraw.Draw(img)
font=ImageFont.load_default()

draw.rectangle((5, 5, 150, 120), outline = (0, 255, 0))
draw.ellipse((20, 20, 100, 80), outline = (0, 0, 255))
draw.line((10, 100, 60, 100), fill = (0, 255, 0))
draw.polygon([(100, 80), (100, 110), (130, 90), (145, 80)], outline = (0, 255,
255),
fill = (0, 255, 0))
draw.text((7,7),msg, font=font,fill=(0,255,0))
disp.display(img)

Figure 6.71: Program: TFTshapes.py.

Figure 6.72: Displayed shapes.

The Raspberry Pi Zero 2 W GO! - UK.indd 187The Raspberry Pi Zero 2 W GO! - UK.indd 187 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 188

6.18.6 Project 31 — Displaying the local weather data on TFT
Description: This project is similar to Project 30, but here the local weather in London is
displayed in real time on the TFT display and is updated every 5 seconds.

The circuit diagram of the project is same as in Figure 6.67.

Program listing: Figure 6.73 shows the program listing (Program: TFTweather.py).
Make sure the required libraries are imported to the program as illustrated in Figure 6.64.
After configuring the TFT display and Open Map Weather, an endless loop is formed. Inside
this loop the heading LONDON WEATHER is displayed inside a double rectangle. Then, the
following weather parameters are extracted and displayed:

• Humidity
• Minimum temperature
• Maximum temperature
• Wind speed
• Wind direction
• Atmospheric pressure
• Current date and time

The display is updated every 5 seconds.

#===
DISPLAY LONDON WEATHER IN REAL-TIME ON TFT
#
This program fetches the real-time weather data
for a give city from Open Weather MAp and displays
on the screen every 5 seconds
#
Author: Dogan Ibrahim
File : TFTweather.py
Date : January, 2023
#===
from pyowm import OWM # import Open Weather Map
import time # import time
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
import ST7735
from datetime import datetime

#
Enter your API key below
#
weather = OWM('05ff9a8a5d66e4f3115c50d YOUR API')
manager = weather.weather_manager()

The Raspberry Pi Zero 2 W GO! - UK.indd 188The Raspberry Pi Zero 2 W GO! - UK.indd 188 08-03-2023 09:2308-03-2023 09:23

Chapter 6 • Communication over Wi-Fi

● 189

#
TFT configuration
#
disp=ST7735.ST7735(port=0,cs=0,rst=27,dc=17,width=128,height=160,
rotation=90,invert=False,offset_left=0,offset_top=0)

disp.begin()
width=disp.width
height=disp.height

while True:
 img = Image.new('RGB', (160, 128), color=(0, 0, 0))
 draw = ImageDraw.Draw(img)
 font = ImageFont.load_default()

 draw.rectangle((3, 3, 150, 124), outline = (0, 0, 255))
 draw.rectangle((6, 8, 147, 120), outline = (0, 0, 255))

 draw.text((30, 20), "LONDON WEATHER", fill = (0,255, 0))

#
Now we enter the city and country details
#
 cty = manager.weather_at_place('London,GB')
 MyWeather = cty.weather

 h = "Humidity (%) = " + str(MyWeather.humidity)
 temp = MyWeather.temperature('celsius')
 wind = MyWeather.wind()
 p = MyWeather.barometric_pressure()

 tmin = "Temp Min (C) = " + str(temp['temp_min'])
 tmax = "Temp Max (C) = " + str(temp['temp_max'])

 wspeed = "Wind (m/s) = " + str(wind['speed'])
 wdir = "Wind (deg) = " + str(wind['deg'])

 press = "Pressure = " + str(p['press'])

 draw.text((20, 40), h, fill = (255, 255, 255))
 draw.text((20, 50), tmin, fill = (255, 255, 255))
 draw.text((20, 60), tmax, fill = (255, 255, 255))
 draw.text((20, 70), wspeed, fill = (255, 255, 255))
 draw.text((20, 80), wdir, fill = (255, 255, 255))
 draw.text((20, 90), press, fill = (255, 255, 255))

The Raspberry Pi Zero 2 W GO! - UK.indd 189The Raspberry Pi Zero 2 W GO! - UK.indd 189 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 190

 d = datetime.now().strftime("%d-%m-%y %H:%M:%S")
 draw.text((20, 105), str(d), fill = (0, 255, 0))
 disp.display(img)
 time.sleep(5)

Figure 6.73: Program: TFTweather.py.

Figure 6.74 shows the local weather data in London displayed on the TFT.

Figure 6.74: Displaying the local weather data.

The Raspberry Pi Zero 2 W GO! - UK.indd 190The Raspberry Pi Zero 2 W GO! - UK.indd 190 08-03-2023 09:2308-03-2023 09:23

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W

● 191

CHAPTER 7 • Using Node-Red with the Raspberry Pi
Zero 2 W

7.1 Overview
Node-RED is an open-source visual editor for wiring the Internet of Things, produced by
IBM. Node-RED comes with substantial number of nodes to manage a variety of tasks. The
required nodes are selected and joined together to perform a certain task. Node-RED is
based on flow-type programming where nodes are configured and joined together to form
the application program. There are nodes for doing fairly complex tasks, including web ac-
cess, Twitter, E-mail, HTTP, Bluetooth, MQTT, controlling the GPIO ports, etc. The nice thing
about Node-RED is that the programmer does not need to learn to do complex programs.
For example, an email can be sent by joining a few nodes together and writing a few lines
of code. In this chapter, you will develop some projects using Node-RED running on your
Raspberry Pi Zero 2 W.

7.2 Installing and running Node-RED on the Raspberry Pi Zero 2 W
Node-RED should already be installed on your Zero 2 W. If not, you can easily install it by
entering the following command:

pi@raspberrypi:~ $ bash <(curl -sL https://raw.githubusercontent.com/node-
red/linux-installers/master/deb/update-nodejs-and-nodered) --node16

You can start Node-RED by entering the following command in the command mode (char-
acters entered by the user are in bold for clarity):

pi@raspberrypi:~ $ node-red-start

When started, you should see some messages scrolling on your screen. A part of these
messages is shown in Figure 7.1.

Figure 7.1: Part of the messages displayed when Node-RED started.

A list of the important commands is given below:

node-red-start: start Node-RED

The Raspberry Pi Zero 2 W GO! - UK.indd 191The Raspberry Pi Zero 2 W GO! - UK.indd 191 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 192

node-red-stop: stop Node-RED
node-red-log: view the recent log output
sudo systemctl enable nodered.service: autostart Node-RED after every boot
sudo systemctl disable nodered.service: disable autostart after every boot

Notice that this is a "service" type application and therefore it can be accessed from any-
where on the network, as well from other computers. To do this, you have to know the IP
address of your Raspberry Pi Zero 2 W. This can be found by entering the following com-
mand at the command prompt:

pi@raspberrypi:~ $ ifconfig

The IP address of your Raspberry Pi Zero 2 W in this example is: 192.168.1.238.

You can now enter the following command on your web browser to display the Node-RED
startup screen:

 http://192.168.1.238:1880

When started, you should see the Node-RED startup screen as in Figure 7.2. When Node-
RED is started as a service, pressing Cntrl+C does not stop the service since it keeps run-
ning in the background.

Figure 7.2: Node-RED startup screen (partial screen shown).

Notice that, if you are using a browser running on the same computer as Node-RED, you
can access Node-RED using the following url:

 http://localhost:1880

The Raspberry Pi Zero 2 W GO! - UK.indd 192The Raspberry Pi Zero 2 W GO! - UK.indd 192 08-03-2023 09:2308-03-2023 09:23

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W

● 193

7.3 Node-RED interface to external world
Node-RED is normally accessed from a web browser. Figure 7.3 shows the Node-RED in-
terface to the external world. The Raspberry Pi Zero 2 W accesses the Node-RED software
through the local Wi-Fi router (or Internet). Sensors, actuators, and any other hardware
are interfaced directly to the Raspberry Pi GPIO ports through the 40-pin header mounted
on the Zero 2 W. The Raspberry Pi communicates with the external hardware by receiving
commands from the Node-RED through the local Wi-Fi router.

Figure 7.3: Node-RED Interface to external world.

7.4 Project 32: Hello World!
Possibly the easiest way to understand how to use Node-RED is to look at a simple flow
program. In this program you will display the message Hello World! In the Debug window.
The steps are given below.

• Start Node-RED on your Raspberry Pi Zero 2 W:

pi@raspberrypi:~ $ node-red-start

• Enter the following url into your web browser to display the Node-RED screen
(you will have to enter the IP address of your own Zero 2 W):

http://192.168.1.202:1880

• From the node palette, Click on inject node at the left-hand side and drag it to
the workspace.

• Double-click on this node, click on Payload, select String and enter the
following string Hello World! as shown in Figure 7.4.

The Raspberry Pi Zero 2 W GO! - UK.indd 193The Raspberry Pi Zero 2 W GO! - UK.indd 193 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 194

Figure 7.4: Enter Hello World!

• Click Done.

• Add node debug by clicking on debug node and dragging it to the right-hand
side of the inject node already in the workspace.

• Wire the two nodes together. Place the mouse cursor over the inject node"s
output port (a small grey square on the right-hand side of the node), then left-
click and drag a wire over to the input port of the Debug node. A wire should
now connect the two nodes as shown in Figure 7.5.

Figure 7.5: Connecting the two nodes together.

• Click the Deploy button at the top right-hand side of the screen.

• Click the small grey square at the right-hand side of node debug to activate
the node. You should see the message Successfully activated: debug
displayed by the console window.

• Select the Debug messages tab at the top right-hand side.

• Click the inject node's button, which is the small square coming out from the
left-hand side of the node. Clicking the button will inject the message into the
flow and towards the debug node. The output should be displayed in the debug
window as shown in Figure 7.6.

The Raspberry Pi Zero 2 W GO! - UK.indd 194The Raspberry Pi Zero 2 W GO! - UK.indd 194 08-03-2023 09:2308-03-2023 09:23

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W

● 195

Figure 7.6: Displaying the output in the debug window.

• Notice that, if you place a wrong node on the workspace, you can click on the
node and then use the keyboard Delete button to remove it.

In this example, you first created an inject node. The inject node can be used to manually
trigger a flow by clicking the node's button within the workspace. It can also be used to
automatically trigger flows at regular intervals. You then stored the string Hello World! in
this node. Next, you created a debug node and connected the two nodes together and ac-
tivated the debug node. By triggering the inject node, the string is sent to the debug node
and is subsequently displayed in the debug window. The Debug node can be used to display
messages in the Debug sidebar within the editor. In addition to the displayed messages,
the debug sidebar includes information about the time the message was received as well
as the ID of the Debug node that sent the message. Clicking on the ID reveals the node
that sent the message.

Modified Program

You can modify the flow program, for example to display the string every 5 seconds. The
steps to do this are given below:

• Double-click on inject node.

• Set the Repeat Interval to every 5 seconds (Figure 7.7) and click Done.

Figure 7.7: Setting the repeat interval to 5 seconds.

• Click Deploy.

The Raspberry Pi Zero 2 W GO! - UK.indd 195The Raspberry Pi Zero 2 W GO! - UK.indd 195 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 196

• Activate the debug node.

• Click the inject node"s button. You should see the message displayed every 5
seconds like in Figure 7.8.

Figure 7.8: Displaying the text every 5 seconds.

7.5 Core nodes
When Node-RED is installed on the Raspberry Pi Zero 2 W, it starts with categories of nodes
known as the core nodes. Let"s now briefly look at the nodes in each category.

7.5.1 Input nodes
inject: this node injects a timestamp or text into a message. The node can be configured
either to inject manually or at regular intervals.

catch: If a node gives an error while managing a message, it is likely that the flow will
halt. The catch node can be used to catch the errors and return messages about the error.

mqtt in: this node connects to a MQTT broker and subscribes to messages from the spec-
ified topic.

http in: this node creates an HTTP end-point for creating web services.

websocket: this node provides an endpoint for a browser so that a websocket connection
can be established with Node-RED.

tcp: this node is used to establish TCP communications on a specified port. It accepts in-
coming TCP requests.

udp: this node is used to establish communication using the UDP protocol. It accepts in-
coming UDP packets.

The Raspberry Pi Zero 2 W GO! - UK.indd 196The Raspberry Pi Zero 2 W GO! - UK.indd 196 08-03-2023 09:2308-03-2023 09:23

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W

● 197

serial in: this node reads serial data from the serial port of the local device. The node can
be configured to read at specific times.

7.5.2 Output nodes
debug: this node is used to view messages on the Debug window. The node can be con-
figured to display either the entire message or just the msg.payload.

mqtt out: this node connects to a MQTT broker and publishes messages.

http response: this node sends responses back to the HTTP requests received from HTTP
input node.

http request: this node sends HTTP requests and returns the response.

websocket: this node sends msg.payload to the configured websocket.

tcp: this node replies to a configured TCP port.

udp: this node sends UDP messages to the configured UDP host where the IP address and
port number are specified. Broadcast is supported.

serial out: this node sends data to the defined serial port of the local device. The node can
be configured to send some control characters such as newline after a message.

7.5.3 Function nodes
function: this is a processing node, used to write JavaScript compatible functions.

template: this node is useful for constructing messages and configuration files where
name:value pairs are inserted into the template.

delay: this node delays messages by a random or specific time.

trigger: this node can be used as a watchdog timer. It can also be used to create two out-
put messages with time intervals when an input message is received.

comment: this node is used to insert comments.

http request: this node is used to construct and then send a HTTP request to a given URL.

tcp request: this node sends msg.payload to a TCP server and expects a response. The
node is configurable — for example, it can be configured to wait for a specific character, or
to return immediately.

switch: this node is used to route messages based on their properties.

The Raspberry Pi Zero 2 W GO! - UK.indd 197The Raspberry Pi Zero 2 W GO! - UK.indd 197 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 198

change: this node can be used to set, change, or delete the properties of incoming mes-
sages.

range: this node maps numerical input data to new output data.

csv: this node parses msg.payload and converts to or from CSV format. The input can be
a string in which case a JavaScript object is output. If on the other hand the input is a Ja-
vaScript object, then a CSV formatted string is outputted.

html: this node is used to extract data from an html type document in msg.payload.

json: this node converts to or from a JSON object and JavaScript object.

xml: this node converts to or from XML format and JavaScript object.

random: this node generates a random number between a high and a low value.

smooth: this node is used for various functions such as max, min, mean, high, and low
pass filter.

rbe: this is the "rbe" (Report By Exception) node which generates message if its input is
different from the previous input.

7.5.4 Social nodes
email in: this node is used to read new emails as they arrive at the local host. It can be
configured to read repeatedly.

twitter in: this node is used to return tweeter messages.

email out: this node is used to send email messages.

twitter out: this node Tweets the msg.payload on the configured user account. Text and
binary (image) messages can be sent.

7.5.5 Storage nodes
tail: this node tails a file and injects the contents into the flow.

file in: this node reads the specified file and sends it contents as msg.payload.

file: this node writes the msg.payload to the specified file.

7.5.6 Analysis nodes
sentiment: this node analyses the msg.payload and scores incoming words using the AF-
INN-165 wordlist and attaches a "sentiment.score" property to the msg.

The Raspberry Pi Zero 2 W GO! - UK.indd 198The Raspberry Pi Zero 2 W GO! - UK.indd 198 08-03-2023 09:2308-03-2023 09:23

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W

● 199

7.5.7 Advanced nodes
watch: this node watches a folder for changes and sends events when files are added,
changed. created or deleted.

feedparse: this node monitors an RSS/atom feed for new entries and if there are new
entries, it delivers them as messages.

exec: this node calls to a system command and provides stdout, stderr, and the return
code.

7.5.8 Raspberry Pi nodes
rpi gpio in: this is the Raspberry Pi input node. Depending on the state of the input, this
node generates a msg.payload with either a 0 or 1. You"ll be using this node in the Rasp-
berry Pi-based projects in later chapters.

rpi gpio out: this is the Raspberry Pi output node. The selected hardware pin of the Rasp-
berry Pi is set High or Low depending whether msg.payload is 0 or 1. You"ll be using this
node in the Raspberry Pi-based projects in later chapters.

rpi mouse: this is the Raspberry Pi mouse button node. The node generates a 0 or 1 when
the selected mouse button is clicked and released. A USB mouse is required.

rpi keyboard: this node is used to capture keystrokes from a USB keyboard.

7.6 Project 33: Dice number
In this project, you will explore the random node. The program will display a random num-
ber between 1 and 6 every time it is clicked to start. The steps are as follows:

• Create an injection node with the title Your Chance.

• Create a random node and name it as Dice. Double-click to edit it and set to
generate whole integer numbers between 1 and 6 as shown in Figure 7.9. Click
Done.

Figure 7.9: Generating random numbers between 1 and 6.

The Raspberry Pi Zero 2 W GO! - UK.indd 199The Raspberry Pi Zero 2 W GO! - UK.indd 199 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 200

• Create a debug node.

• Join all three nodes as shown in Figure 7.10 and click Deploy.

Figure 7.10: Joining all three nodes.

• Click the inject node"s button. You should see a number between 1 and 6
displayed in the Debug window. Every time you click the inject node"s button, a
random number will be generated and displayed between 1 and 6 as pictured in
Figure 7.11.

Figure 7.11: The Debug window.

7.7 Project 34: Double dice numbers
Description: In many dice games such as backgammon, two dice are thrown at a time by
each player before making a move. The program given in the previous project is modified
in this project, so that two random dice numbers are generated and displayed every time
the inject node's button is clicked. This program uses two random nodes and a join node,
and the steps to design the flow are given below.

• Create an injection node with the title Your Chance.

• Create two random nodes with the names Dice1 and Dice2. Double-click to
edit them and set to generate whole integer numbers between 1 and 6 for both
nodes as in the previous project.

• Create a join node with the name join payloads. Double-click this node and
edit as shown in Figure 7.12. Notice that the message parts is set to 2 and are
separated with a space character. Click Done.

The Raspberry Pi Zero 2 W GO! - UK.indd 200The Raspberry Pi Zero 2 W GO! - UK.indd 200 08-03-2023 09:2308-03-2023 09:23

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W

● 201

Figure 7.12: Editing the "join" node.

• Create a debug node as before and activate it.

• Join the five nodes as shown in Figure 7.13 and click Deploy.

Figure 7.13: Joining the five nodes together.

• Click the inject node"s button to generate two random numbers next to each
other in the Debug window as shown in Figure 7.14.

Figure 7.14: The Debug window.

Notice here that, if the After a number of message parts in node "join" was set to 1,
then the two dice numbers would not have been displayed adjoining as shown in Figure
7.15.

The Raspberry Pi Zero 2 W GO! - UK.indd 201The Raspberry Pi Zero 2 W GO! - UK.indd 201 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 202

Figure 7.15: Displaying the two numbers separately.

7.8 Project 35: LED control
Description: In this project, you will connect an LED to one of the Raspberry Pi Zero 2 W
GPIO pins and then turn the LED ON or OFF from a Node-RED flow program. The aim of
this project is to show how an LED can be connected to a GPIO port pin and how it can be
controlled from a Node-RED flow program.

Circuit Diagram: In this project, an LED is connected to port pin GPIO17 (pin 11) of the
Zero 2 W through a 470-ohm current-limiting resistor.

Node-RED flow program: Figure 7.16 shows the flow program. In this program, two
inject nodes and an rpi gpio out node are used.

Figure 7.16: Flow program of the project.

The steps are as follows:

• Create an inject node with the configuration as shown in Figure 7.17.

Figure 7.17: Create an inject node.

The Raspberry Pi Zero 2 W GO! - UK.indd 202The Raspberry Pi Zero 2 W GO! - UK.indd 202 08-03-2023 09:2308-03-2023 09:23

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W

● 203

• Create another inject node with the configuration as shown in Figure 7.18.

Figure 7.18: Create another inject node.

• Create a rpi gpio out node with the configuration as shown in Figure 7.19, set
the Type to Digital output, initialize pin state to 0, and name it as LED. Click
Done.

Figure 7.19: Creating an "rpi gpio out" node.

• Join the 3 nodes together as shown in Figure 7.16, and click Deploy.

• Connect the LED to your Raspberry Pi Zero 2 W.

• Click the button of inject node ON, you should see the LED turning ON. Click
the button of inject node OFF, and this time the LED should turn OFF.

The Raspberry Pi Zero 2 W GO! - UK.indd 203The Raspberry Pi Zero 2 W GO! - UK.indd 203 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 204

As shown in Figure 7.20, if desired, you can connect debug nodes to the flow so that the
state of the LED can be displayed at any time in the Debug window (don't forget to click
Deploy and then Debug messages). Figure 7.21 shows the LED state as the LED is
turned ON or OFF.

Figure 7.20: Connecting debug nodes to the flow.

Figure 7.21: State of the LED displayed.

7.9 Project 36: Flashing an LED
Description: In this project, you will connect an LED to one of the Raspberry Pi Zero 2 W
GPIO pins as in the previous project, and then flash the LED every second. The aim of the
project is to show how an LED connected to a GPIO port pin can be flashed using a trigger
node.

Node-RED flow program: Figure 7.22 shows the flow program. In this program, an in-
ject node, a trigger node, and a rpi gpio out node are used.

Figure 7.22: Flow program of the project.

The Raspberry Pi Zero 2 W GO! - UK.indd 204The Raspberry Pi Zero 2 W GO! - UK.indd 204 08-03-2023 09:2308-03-2023 09:23

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W

● 205

The steps are as follows:

• Create an inject node which runs regularly every 2 seconds, whose
configuration is shown in Figure 7.23. Click Done.

Figure 7.23: Creating an "inject" node.

• Create a trigger node to send out 1, wait for 1 second and then send out 0,
with the configuration as shown in Figure 7.24. Click Done.

Figure 7.24: Creating a trigger node.

• Create the rpi gpio out node as in the previous project. Join the three nodes
and click Deploy.

The Raspberry Pi Zero 2 W GO! - UK.indd 205The Raspberry Pi Zero 2 W GO! - UK.indd 205 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 206

• Click the inject node's button. You should see the LED flashing every second.

In this project, the inject node activates the trigger node every two seconds, which in turn
controls the LED by turning it ON for a second, and OFF for a second.

You could insert a debug node to the flow program so that the state of the LED can be dis-
played. Additionally, you can see the timing accuracy of the project in the Debug window.

7.10 Project 37: Pushbutton switch input
Description: This is a quite simple project in which a pushbutton switch and an LED are
connected to the Zero 2 W. The project turns ON the LED when the button is pressed. The
aim of this project is to show how a button can be used in a Node-RED based project.

The button used in this project is a small component with four pins as shown in Figure 7.25.
Actually, the button is a 2-pin device with the pins paralleled for convenience.

Figure 7.25: Small button and its connection diagram.

Mechanical switches have bouncing problems. When a mechanical switch is operated, its
mechanical contacts bounce rapidly (i.e., move from one state to another state) until they
settle. Although this settling time may seem to be small (around 10 ms), it is actually a long
time considering a microcontroller"s processing time. Special switch debouncing circuits
can be used to eliminate this effect called "contact bounce." Luckily, the rpi gpio in the
node provides a parameter to set the switch debouncing time so that the contacts are not
read before this time expires. This makes sure that the correct switch output state (ON or
OFF) is read by the microcontroller.

Circuit Diagram: The LED is connected to port pin GPIO17 through a 470-ohm cur-
rent-limiting resistor. Port pin GPIO2 is connected to one side of the button at GND poten-
tial, while the other side of the button is connected to +3.3 V through a 10 k-ohm resistor
(Figure 7.26)

The Raspberry Pi Zero 2 W GO! - UK.indd 206The Raspberry Pi Zero 2 W GO! - UK.indd 206 08-03-2023 09:2308-03-2023 09:23

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W

● 207

Figure 7.26: Circuit diagram.

Node-RED flow program: Figure 7.27 shows the flow program. In this program two
nodes are used.

Figure 7.27: Flow program of the project.

The steps are:

• Create an rpi gpio in node and name it as BUTTON, set the pin name to
GPIO2, set the resistor to pulldown.

• Create a rpi gpio out node and name it as LED, set the pin name to GPIO17,
and initialize the pin level to 0.

• Join the two nodes as shown in Figure 7.27, and click Deploy.

• You should see that the LED is initially OFF. Pressing the button should change
the state of port GPIO2 and the LED will turn ON. You should see the state of
port GPIO2 on the flow diagram under node BUTTON.

7.11 Using the ALEXA in Node-RED projects with the Raspberry Pi
Zero 2 W
Alexa is a sound-based virtual assistant device developed by Amazon in 2014, and first
used in Amazon Echo and Amazon Echo Dot. Alexa interacts with the user through sound
and it can obey the commands given by a speaker. For example, Alexa can play a required
piece of music, it can provide weather reports, ask questions, give traffic reports, supply
current news, give recipes, translate words to other languages, and many more. Alexa can
also be used to control a device through sound commands and therefore it can be used
in home automation. The device is activated by giving the "attention, please" expression:
"Alexa". The user can then communicate with the system. Alexa is connected to the user"s
local Wi-Fi router and gets the answers to the user"s questions from the Amazon cloud. The

The Raspberry Pi Zero 2 W GO! - UK.indd 207The Raspberry Pi Zero 2 W GO! - UK.indd 207 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 208

latest model of Alexa at the time of authoring this book was the 3rd generation of devices.
Figure 7.28 shows the 3rd Gen Alexa Dot device.

 Figure 7.28: Third-Gen Alexa Dot.

In this section, you will combine Node-RED with Alexa and the Raspberry Pi Zero 2 W and
learn how to control the GPIO ports of the Zero 2 W by issuing spoken commands to Alexa.

7.11.1 Project 38: Controlling an LED using Alexa
Description: In this project, an LED is connected to one of the Raspberry Pi Zero 2 W GPIO
ports. The LED is turned ON and OFF by giving spoken commands to Alexa. The aim of this
project is to show how Alexa can be used with Node-RED in Zero 2 W projects to control a
device remotely.

Block Diagram: The block diagram of the project is shown in Figure 7.29.

Figure 7.29: Block diagram of the project.

Circuit Diagram: In this project, a small LED is connected to port pin GPIO17 (pin 11) of
the Zero 2 W through a 470-ohm current-limiting resistor.

Node-RED flow program: Before developing your flow program, you have to install Alexa
node to your Node Palette. Because the Alexa nodes "listen" on port 80, it is important that
you start your Node-RED on the Raspberry Pi with a super user command. i.e.,

pi@raspberrypi:~ $ sudo node-red-start

The Raspberry Pi Zero 2 W GO! - UK.indd 208The Raspberry Pi Zero 2 W GO! - UK.indd 208 08-03-2023 09:2308-03-2023 09:23

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W

● 209

Then, the steps to install Alexa are as follows:

• Start the node-red screen on your PC web browser by entering the Zero 2 W IP
address followed by :1880.

• Click Menu Manage palette, click Install.

• Enter node-red-contrib-amazon-echo and click install.

• You should see two new nodes called amazon echo hub and amazon echo
device added to your Node Palette.

If you find that your Raspberry Pi GPIO nodes are not listed in the Nodes Palette, you can
re-install them using the following steps:

• Click Menu Manage palette, click Install.

• Enter node-red-node-pi-gpio and click install.

You are now ready to develop our flow program.

Figure 7.30 shows the flow program which consists just four nodes: an amazon echo hub
node, an amazon echo device node, a function node, and an rpi gpio out node.

Figure 7.30: Flow program of the project.

The steps to perform are as follows.

• Create an amazon echo hub node and make sure that the Port is set to 80
and Process Input is set to No.

• Create an amazon echo device node and set the Name to Bedroom Light
(this is the name that Alexa will associate with the LED — you should choose
your own name here).

• Create a function node and name it as ON/OFF. Enter the following
statements inside this node. This node outputs 1 if the message coming from
Alexa is on, or it outputs 0 if the message coming from Alexa is off (Figure
7.31).

The Raspberry Pi Zero 2 W GO! - UK.indd 209The Raspberry Pi Zero 2 W GO! - UK.indd 209 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 210

var out = 0;
if(msg.payload == "on")
 out = 1;
else
if(msg.payload == "off")
 out = 0;
msg.payload = out;
return msg;

Figure 7.31: Node "Function" contents.

• Create an rpi gpio out node and name it as LED. Set the Pin to GPIO17 Type:
digital output, and Initialize the pin state to logic 0.

• Join all the nodes as in Figure 7.30 and click Deploy.

Note: Alexa Echo uses port 80 for communication, You may find that port 80 is not available
on your Zero 2 W and the message unable to start port 80 may be displayed under the
Amazon Echo Hub. Also, you may get the following error message in Debug window:

"Error: listen EACCES: permission denied 0.0.0.0.:80".

If you get this error message, redirect port 80 to say 8080 using the following commands.
Also change the port number to 8080 by double-clicking on node Amazon Echo Hub:

sudo iptables -t nat -I OUTPUT -p tcp -d 127.0.0.1 --dport 80 -j REDIRECT
--to-ports 8080

sudo iptables -t nat -I PREROUTING -p tcp --dport 80 -j REDIRECT --to-ports
8080

Note that the above port redirection commands are not retained after a reboot.

The Raspberry Pi Zero 2 W GO! - UK.indd 210The Raspberry Pi Zero 2 W GO! - UK.indd 210 08-03-2023 09:2308-03-2023 09:23

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W

● 211

To test the project, ask Alexa: "Alexa, discover devices". After a minute or so Alexa will
confirm that it has detected your device (Bedroom Light in this project).

To turn the LED ON, ask Alexa: "Alexa, turn on bedroom light". Alexa will respond with
OK and the light will turn ON.

To turn the LED OFF, ask Alexa "Alexa, turn off bedroom light". Alexa will respond with
OK and the light will turn OFF.

The nodes can be used to turn on/off a device or to dim a light and it is supported by the
1st, 2nd, and 3rd generation Alexa devices. Notice that you can add as many amazon echo
devices as you wish to your design for the control of various equipment. An example pro-
ject isgiven below where you get to add a buzzer to your design.

7.11.2 Project 39: Controlling an LED and a buzzer using Alexa
Description: In this project, an LED and a buzzer are connected to the Raspberry Pi Zero
2 W GPIO ports. The LED and the buzzer are turned ON and OFF by issuing spoken com-
mands to Alexa. The aim of this project is to show how multiple devices can be controlled
by Alexa.

Block Diagram: The block diagram of the project is shown in Figure 7.32.

Figure 7.32: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 7.33. The LED is
connected to GPIO17 (pin 11) and the buzzer to GPIO27 (pin 13).

The Raspberry Pi Zero 2 W GO! - UK.indd 211The Raspberry Pi Zero 2 W GO! - UK.indd 211 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 212

Figure 7.33: Circuit diagram of the project.

Node-RED flow program: Figure 7.34 shows the flow program. Notice that you have
added another amazon echo device node to our program and named it Buzzer. Now, you
have two devices with the names: Bedroom and Buzzer. This second node drives another
function node which has exactly the same content as the previous one. The second rpi
gpio out node is used to drive the buzzer where its Pin is set to GPIO27 and its Type is
digital output as before. Because the new amazon echo device is not known to Alexa, you
have to ask Alexa to discover nodes again: "Alexa, discover devices". After this, you can
control the LED and the buzzer by asking the Alexa:

To turn the LED ON, ask Alexa: "Alexa, turn on bedroom"
To turn the LED OFF, ask Alexa: "Alexa, turn off bedroom"
To turn the Buzzer ON, ask Alexa: "Alexa, turn on buzzer"
To turn the Buzzer OFF, ask Alexa: "Alexa, turn off buzzer"

Figure 7.34: Flow program of the project.

Notice that if you change the names of the devices in nodes Amazon-echo-device, you will
have to go to Alexa apps and remove the old device names from Alexa.

Also notice that you could have used another Alexa node called node-red-contrib-alexa-
home-skill for more sophisticated Alexa based control tasks. This node, called the Alexa
Home node, requires the user to be registered and have an account before using it. Alexa
Home node supports the following commands:

The Raspberry Pi Zero 2 W GO! - UK.indd 212The Raspberry Pi Zero 2 W GO! - UK.indd 212 08-03-2023 09:2308-03-2023 09:23

CHAPTER 7 • Using Node-Red with the Raspberry Pi Zero 2 W

● 213

• TurnOnRequest
• TurnOffRequest
• SetPercentageRequest
• IncrementPercentageRequest
• DecrementPercentageRequest
• SetTargetTemperatureRequest
• IncrementTargetTemperatureRequest
• DecrementTargetTemperatureRequest
• GetTemperatureReadingRequest
• GetTargetTemperatureRequest
• SetLockState
• GetLockState
• SetColorRequest
• SetColorTemperatureRequest

Interested readers can get much more information from the web link:

https://alexa-node-red.bm.hardill.me.uk/docs

7.11.3 Project 40: Controlling an LED and a buzzer using Alexa – using
a trigger node
Description: In the previous Alexa based projects, the LED is turned ON and OFF by send-
ing spoken commands to Alexa. In some applications, you may want to turn the LED ON
by sensing a command, then you may want the LED to turn OFF automatically after some
time. For example, before entering a room, you may ask Alexa to turn the light ON and
after 15 seconds you may want the light to turn OFF automatically. This shows how it can
be done in this project.

Node-RED flow program: This can be done easily by adding a trigger node to Figure
7.30. In the example flow program shown in Figure 7.35, the LED is turned OFF after 15
seconds. The trigger node is configured to send 1 for 15 seconds and then it sends 0. Figure
7.36 shows the trigger node contents. Notice that the output of the trigger node is reset
if msg.payload is equal to 0 (i.e., if Alexa is asked to turn the Bedroom Light OFF).

Figure 7.35: Modified flow program.

The Raspberry Pi Zero 2 W GO! - UK.indd 213The Raspberry Pi Zero 2 W GO! - UK.indd 213 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 214

Figure 7.36: Configuring the trigger node.

The Raspberry Pi Zero 2 W GO! - UK.indd 214The Raspberry Pi Zero 2 W GO! - UK.indd 214 08-03-2023 09:2308-03-2023 09:23

Chapter 8 • Using MQTT with The Raspberry Pi Zero 2 W

● 215

Chapter 8 • Using MQTT with The Raspberry Pi Zero 2 W

8.1 Overview
MQTT stands for Message Queuing Telemetry Transport. It is a message protocol created
for machine-to-machine (M2M) communication and based on publishing and subscribing.
MQTT is especially useful when it comes to sending data and controlling information with
low bandwidth and high response times. This protocol is especially worth considering when
it is required to send data to actuators and retrieve data from sensors. MQTT was first de-
veloped by IBM in 1999 mainly for satellite communications, and since then has become
the standard communications protocol for the Internet of Things (IoT) applications. MQTT
uses your existing home network to send messages to your IoT devices and receive re-
sponses from them. The official website of MQTT is: http://mqtt.org.

MQTT works on top of the TCP/IP protocol and is faster than sending HTTP requests since a
message can be as small as two bytes and there are no headers as with HTTP. Additionally,
in MQTT, messages are distributed automatically to the interested clients.

In this chapter, you will be using MQTT with Node-RED on the Raspberry Pi Zero 2 W.

8.2 How MQTT works
It is worthwhile to learn how MQTT works before it is used in any of your projects. In the
MQTT protocol, there is a sender called the Publisher, and a receiver called the Subscrib-
er. Between these two, a server called a Broker is used to function as the intermediary.
Figure 8.1 shows the basic structure of an MQTT based system.

Figure 8.1: Basic MQTT structure.

In Figure 8.1, for example, the temperature sensor publishes (or sends) its measured value
to the broker, who accepts and saves the data. The broker then sends this measured value
to other devices which have subscribed to receive this data.

The Raspberry Pi Zero 2 W GO! - UK.indd 215The Raspberry Pi Zero 2 W GO! - UK.indd 215 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 216

In MQTT there are five basic concepts that you should understand:

• Publisher
• Subscriber
• Messages
• Topics
• Broker

Publisher: The publisher is the node that sends data or the message on a topic. For exam-
ple, a publisher can be a sensor node that sends the ambient temperature values.

Subscriber: The subscriber can be a computer, a smartphone, a microcontroller or any
other processor that subscribes to receive the data or the message. For example, a device
publishes on a topic, another device subscribes to the same topic and receives the pub-
lished message.

Messages: Messages are the information exchanged within the MQTT network. A message
can be data or a command. For example, a message can be the temperature value, or a
command to turn ON a switch.

Topics: Topics are important concepts of MQTT. These are the ways you register interest
for incoming messages or how you specify where you want to publish the message. i.e.,
the message exchange takes place via the topics. Topics in MQTT are represented with
character strings, separated by a forward slash. Each forward slash indicates a topic level.
An example is shown below; this one creates a topic for an LED in your kitchen:

home/kitchen/led

In the above example, home, kitchen, and led are the topic levels and they are separated
by the topic level separators. The topics are case sensitive and for example, Home/kitchen/
led is not the same as above.

Single Level Wildcards: You can use wildcards in topics enabling several sensors to be
queried at the same time. A "+" sign is used to identify a single-level wildcard. An example
is given below:

home/+/led topic with singe-level wildcard
home/bedroom/led wildcard replaced with bedroom
home/livingroom/led wildcard replaced with livingroom
home/garden/led wildcard replaced with garden

Multi-Level Wildcards: You can also use multi-level wildcard, represented by the sign
"#". This must always be used at the end of a topic. An example is given below:

The Raspberry Pi Zero 2 W GO! - UK.indd 216The Raspberry Pi Zero 2 W GO! - UK.indd 216 08-03-2023 09:2308-03-2023 09:23

Chapter 8 • Using MQTT with The Raspberry Pi Zero 2 W

● 217

home/kitchen/# topic with multi-level wildcard
home/bedroom/led kitchen replaced with bedroom
home/livingroom/light livingroom and light replaced

Broker: the broker receives all messages, filters them, decides who are interested in them,
and then sends the message to all subscribed clients.

Figure 8.2 illustrates the operation of the MQTT, which can be summarized as follows:

• The processor (and sensor) publishes ON and OFF messages on topic home/
kitchen/led.

• You have a Raspberry Pi Zero 2 W that controls an LED. The Zero 2 W is
subscribed to topic: /home/kitchen/led.

• When a new message is published on topic home/kitchen/led, the Zero 2 W
receives the ON or OFF messages and turns the LED ON or OFF.

Figure 8.2: MQTT operation.

8.3 The Mosquitto Broker
The broker is one of the important parts of MQTT. There are several brokers that one can
use. In most home automation projects, the Mosquitto broker is used. The steps to install
this broker on the Raspberry Pi Zero 2 W is as follows:

pi@raspberrypi:~ $ sudo apt-get update
pi@raspberrypi:~ $ sudo apt-get install mosquitto mosquitto-clients

You can make Mosquitto to auto-start on boot by entering the following command:

pi@raspberry:~ $ sudo systemctl enable mosquitto.service

To evaluate the Mosquitto installation, enter the command mosquitto –v as shown in Fig-
ure 8.3. This command displays the version of the Mosquitto running on your system (don't
worry about the Error: Address already in use).

The Raspberry Pi Zero 2 W GO! - UK.indd 217The Raspberry Pi Zero 2 W GO! - UK.indd 217 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 218

Figure 8.3: Testing the Mosquitto installation.

You can evaluate if your broker is working correctly, as follows:

Subscribe to the topic "TestTopic" by entering the following command. Mosquitto_sub
tells that you want to subscribe to a topic, and the name following –t is the topic name.
Now, every time you publish (i.e., send a message) to TestTopic, the message will appear
in the window:

pi@raspberrypi:~ $ mosquitto_sub –t «TestTopic»

Now, because the terminal is listening for messages from your broker, you have to open an-
other session with your Zero 2 W so that you can publish messages. After opening another
window, enter the following command to publish to TestTopic:

pi@raspberrypi:~ $ mosquitto_pub –t "TestTopic" –m "Hello There!"

Here, the topic name is after –t, and the message is after –m. After hitting the Enter you
will see the message appear on your subscriber terminal as shown in Figure 8.4.

Figure 8.4: Broker example.

8.4 Using MQTT in home automation and IoT projects
To be able to use MQTT in home automation and in IoT projects, you need the following:

• a Raspberry Pi, e.g., a Raspberry Pi Zero 2 W.
• Node-RED and MQTT nodes.
• A Raspberry Pi, an Arduino, an ESP32, an ESP8266, or any other compatible

microcontroller.

Figure 8.5 shows the basic MQTT system setup. The sensors, actuators, relays, switches,
lamps, LEDs, and so on are connected to the system via an Arduino, ESP32, ESP8266, or
any other compatible processor (system).

The Raspberry Pi Zero 2 W GO! - UK.indd 218The Raspberry Pi Zero 2 W GO! - UK.indd 218 08-03-2023 09:2308-03-2023 09:23

Chapter 8 • Using MQTT with The Raspberry Pi Zero 2 W

● 219

Figure 8.5: MQTT system setup.

Node-RED offers two MQTT nodes (mqtt in and mqtt out) which can be found in the net-
work palette as shown in Figure 8.6.

Figure 8.6: MQTT nodes.

You can send a message to the MQTT broker using an inject node of Node-RED as shown
in Figure 8.7. Notice that the small green box under the mqtt out node indicates that the
connection from the mqtt out node to the broker has been established. In Figure 8.7, the
topic is set to TestTopic, and the inject node Payload is set to message Hello From
Me!!. This message is displayed on the MQTT subscriber as shown in the image. In this flow
program, the mqtt out node Server was set to localhost and the Port number was set
to 1883 (network ports 1883 and 8883 are reserved by default):

Figure 8.7: Sending a message to the MQTT broker.

Notice that, by using different topics you can send (publish) different messages, and these
messages will be received by the subscribers having the same topics.

The Raspberry Pi Zero 2 W GO! - UK.indd 219The Raspberry Pi Zero 2 W GO! - UK.indd 219 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 220

A quite simple example is given below which illustrates how an LED can be controlled using
the MQTT.

8.5 Project 41: Controlling an LED using MQTT
Description: In this project, you will explore how an LED can be controlled using MQTT
with Node-RED. The aim of this project is to show how the MQTT can be used in a remark-
ably simple project.

Circuit Diagram: In this project, an LED is connected to Raspberry Pi Zero 2 W port pin
GPIO17 (pin 11) through a 470-ohm current-limiting resistor.

Node-RED flow program: Figure 8.8 shows the flow program of the project. Basically,
two inject nodes are used with the Payloads set to 1 and 0 respectively (see Figure 8.9 for
one of the nodes). Use an mqtt out node with the name TestTopic, Server set to local-
host, and port set to 1883. Connect the two inject nodes as shown in Figure 8.9. When,
for example, the button of the upper inject node is clicked, then a 1 is sent to the broker
via the mqtt out node. The mqtt in node in the lower flow is given the same topic name
as the mqtt out node, and this node drives the rpi gpio out node which controls the LED
accordingly. Name the rpi gpio out node as LED and configure it for GPIO17 with the initial
pin state set to digital 0. Click Deploy. Click the left part of the upper inject node to turn
ON the LED, Similarly, click the left part of the bottom inject node to turn OFF the LED.
The Raspberry Pi Zero 2 W console displays the data received by the GPIO port since it is
subscribed to the same topic, as shown in Figure 8.11.

Figure 8.8: Flow program of the project.

Figure 8.9: Setting the payload to 1.

The Raspberry Pi Zero 2 W GO! - UK.indd 220The Raspberry Pi Zero 2 W GO! - UK.indd 220 08-03-2023 09:2308-03-2023 09:23

Chapter 8 • Using MQTT with The Raspberry Pi Zero 2 W

● 221

Figure 8.10: Configuring the mqtt nodes.

Figure 8.11: Raspberry Pi console subscribed to the same topic.

In more complex projects, instead of using inject nodes, you usually have processors with
sensors connected to their inputs. The data from these sensors gets sent to the broker via
the mqtt out node. The mqtt in node then receives and processes this data (e.g., display
or activate an actuator).

In the next section, you will learn how to use the ESP8266 NodeMCU development board
as the client in an MQTT application.

8.6 Project 42: Controlling an LED using ESP8266 NodeMCU with MQTT
– LED connected to Raspberry Pi Zero 2 W
Description: This is quite a simple project where an LED is connected to one of the GPIO
ports of the Raspberry Pi Zero 2 W. Additionally, a pushbutton switch is connected to the
ESP8266 NodeMCU. The LED is toggled when the button is pressed. The aim of this project
is to show how the MQTT can be used with the ESP8266 NodeMCU and the Zero 2 W. Here,
the NodeMCU is the client (publisher) and the Zero 2 W is the subscriber which receives
the messages.

Block Diagram: Figure 8.12 shows the block diagram of the project.

The Raspberry Pi Zero 2 W GO! - UK.indd 221The Raspberry Pi Zero 2 W GO! - UK.indd 221 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 222

Figure 8.12: Block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 8.13. The button is
connected to port pin GPIO2 of the ESP8266 NodeMCU. Similarly, the LED is connected to
port pin GPIO2 of the Raspberry Pi Zero 2 W.

Figure 8.13: Circuit diagram of the project.

ESP8266 NodeMCU Program Listing: Figure 8.14 shows the program listing (program:
mqttesp8266). NodeMCU employs the Wi-Fi link to communicate with the Raspberry Pi
Zero 2 W in MQTT-based applications. Therefore, you need to know the SSID name and the
password of your Wi-Fi router and the IP address of your Raspberry Pi Zero 2 W. In this
example you have the following settings (you will have to enter your own settings):

 SSID: BTHomeSpot-XNH
 Password: 49350baeb
 Raspberry Pi IP address: 192.168.1.238

You have to enter these values into your program. Notice that the Button is connected to
port pin GPIO2 of the ESP8266:

#include <ESP8266WiFi.h>
 #include <PubSubClient.h>

const char* ssid = "BTHomeSpot-XNH";
const char* password = "49350bbbb";
const char* mqtt_server = "192.168.1.202";

The Raspberry Pi Zero 2 W GO! - UK.indd 222The Raspberry Pi Zero 2 W GO! - UK.indd 222 08-03-2023 09:2308-03-2023 09:23

Chapter 8 • Using MQTT with The Raspberry Pi Zero 2 W

● 223

 const byte Button = 2;
 const char *ID = "Example_Button";
 bool SwitchState = 0;

In this example, you have chosen the MQTT topic as: kitchen/light

 const char *Topic = "kitchen/light/"

you have to setup a Wi-Fi client, and a PubSubClient:

 WiFiClient wclient;
 PubSubClient client(wclient);

Inside the setup() function you will initialize the Arduino IDE Serial Monitor at 115200
Baud so that you can trace the execution of the code easily. You will also have to configure
port pin GPIO2 where the button is connected to as input and enable the pull-up resistor,
and then enable the Wi-Fi on your ESP8266 NodeMCU:

void setup()
{
 Serial.begin(115200);
 pinMode(Button, INPUT);
 digitalWrite(Button, HIGH);
 delay(100);
 setup_wifi();
 client.setServer(mqtt_server, 1883);
 }

The Wi-Fi is set up inside the setup routine as follows (readers who used the ESP8266 be-
fore should be familiar with the following code):

 void setup_wifi()
 {
 Serial.print("\nESP32 NodeMCU connecting to: ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED)
 {
 delay(500);
 Serial.print(".");
 }
 Serial.println("\nConnected to Wi-Fi");
 }

The Raspberry Pi Zero 2 W GO! - UK.indd 223The Raspberry Pi Zero 2 W GO! - UK.indd 223 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 224

The main program loop attempts to reconnect to the client by calling function reconnect if
the connection is lost, and reads the status of the button to check if it is pressed.

The main loop code is:

 void loop()
 {
 if (!client.connected()) reconnect();
 client.loop();

 if(digitalRead(Button) == 0) // If button is pressed
 {
 ButtonState = !ButtonState; // Toggle ButtonState
 if(ButtonState == 1) // ON
 {
 client.publish(Topic, "on");
 Serial.println((String)Topic + " is ON");
 }
 else
 {
 client.publish(Topic, "off");
 Serial.println((String)Topic + " is OFF");
 }

 while(digitalRead(Button) == 0) // Await switch release
 {
 yield();
 delay(20);
 }
 }

/**
 * ESP8266 NodeMCU MQTT PROGRAM
 * ============================
 * In this program a push-button switch is conencted to port
 * GPIO2 of the EXP8266 NodeMCU. Similarly, an LED is connected
 * to port GPIO2 of the Zero 2 W. The NodeMCU is the client.
 * Pressing the button toggles the LED.
 *
 * Author: Dogan Ibrahim
 * File : mqttesp8266
 * Date : Janury, 2022
 *
 **/
#include <ESP8266WiFi.h>

The Raspberry Pi Zero 2 W GO! - UK.indd 224The Raspberry Pi Zero 2 W GO! - UK.indd 224 08-03-2023 09:2308-03-2023 09:23

Chapter 8 • Using MQTT with The Raspberry Pi Zero 2 W

● 225

#include <PubSubClient.h>

const char* ssid = "BTHomeSpot-XNH"; // WiFi SSID
const char* password = "49350bbbb"; // WiFi password
const char* mqtt_server = "192.168.1.238"; // Zero 2 W IP
const byte Button = 2; // Button pin
const char *ID = "Example_Button";
bool ButtonState = 0;
const char *Topic = "kitchen/light/"; // MQTT TOPIC

WiFiClient wclient;
PubSubClient client(wclient);

//
// Connect to local Wi-Fi router. This function connects the
// NodeMCU to the local WiFi router. Because the Serial Monitor
// is enabled, we can see the progress in the monitor
//
void setup_wifi()
{
 Serial.print("\nESP32 NodeMCU connecting to: ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED)
 {
 delay(500);
 Serial.print(".");
 }
 Serial.println("\nConnected to Wi-Fi");
}

//
// This is the setup routine. Here the Serial Monitor is enabled,
// Button is configured as digital input, and the WiFi is setup.
// Notice that the MQTT server (Zero 2 W) operate on port 1883
//
void setup()
{
 Serial.begin(115200); // Enable Serial Monitor
 pinMode(Button, INPUT); // Button is input
 digitalWrite(Button, HIGH); // Pull Button HIGH
 delay(100); // Small delay
 setup_wifi(); // Setup WiFi
 client.setServer(mqtt_server, 1883); // Define client

The Raspberry Pi Zero 2 W GO! - UK.indd 225The Raspberry Pi Zero 2 W GO! - UK.indd 225 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 226

}

//
// Reconnect to client if the connection is lost
//
void reconnect()
{
 while (!client.connected())
 {
 Serial.print("Attempting MQTT connection...");
 if (client.connect(ID))
 {
 Serial.println("connected");
 Serial.print("Publishing to: ");
 Serial.println(Topic);
 Serial.println('\n');
 }
 else
 {
 Serial.println(" Trying to connect again in 5 seconds");
 delay(5000);
 }
 }
}

//
// Main program loop. Check the Button status and publish on or off
// depending on this status
//
void loop()
{
 if (!client.connected()) reconnect();
 client.loop();

 if(digitalRead(Button) == 0) // If button pressed
 {
 ButtonState = !ButtonState; // Toggle ButtonState
 if(ButtonState == 1) // If ON
 {
 client.publish(Topic, "on"); // Publish "on"
 Serial.println((String)Topic + " is ON");
 }
 else
 {
 client.publish(Topic, "off"); // Publish "off"

The Raspberry Pi Zero 2 W GO! - UK.indd 226The Raspberry Pi Zero 2 W GO! - UK.indd 226 08-03-2023 09:2308-03-2023 09:23

Chapter 8 • Using MQTT with The Raspberry Pi Zero 2 W

● 227

 Serial.println((String)Topic + " is OFF");
 }

 while(digitalRead(Button) == 0) // Wait switch to release
 {
 delay(50);
 }
}
}

Figure 8.14: mqttesp8266 program listing.

Node-RED flow program: Figure 8.15 shows the flow program for the Raspberry Pi Zero
2 W which consists of just three nodes: an mqtt in node, a function node, and an rpi
gpio out node.

Figure 8.15: Flow program of the project.

The steps are as follows:

• Create an mqtt in node and set its Server to localhost, Port to 1883, and the
Topic to kitchen/light/.

• Create a function node named ON/OFF and enter the following statements
inside this function:

if(msg.payload == "on")
 msg.payload = 1;
else if(msg.payload == "off")
 msg.payload = 0;
return msg;

• Create an rpi gpio out node and set the Pin to GPIO2, Type to digital output,
and Initialize to 0.

• Connect all the nodes as in Figure 8.15 and click Deploy.

Testing
The project can be evaluated as follows:

• Power on the ESP8266 NodeMCU and open the Serial Monitor and set its Baud
rate to 115200.

The Raspberry Pi Zero 2 W GO! - UK.indd 227The Raspberry Pi Zero 2 W GO! - UK.indd 227 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 228

• You should see messages on the Serial Monitor saying that the NodeMCU is
connected to your Wi-Fi (see Figure 8.16) and that it can publish to the MQTT
with the topic kitchen/light/

Figure 8.16: Connection messages on the Serial Monitor.

• Press the button. You should see the following message displayed on the Serial
Monitor (see Figure 8.17). At the same time, the LED will turn ON:

kitchen/light/ is ON

• Release the button and press again. You should see the following message
displayed on the Serial Monitor. At the same time, the LED will turn OFF:

kitchen/light/ is OFF

Figure 8.17: Messages on the Serial Monitor.

• If you subscribe your Raspberry Pi Zero 2 W console to topic kitchen/light/,
then you should see the messages displayed there as well (see Figure 8.18).

Figure 8.18: Messages on the Raspberry Pi console.

The Raspberry Pi Zero 2 W GO! - UK.indd 228The Raspberry Pi Zero 2 W GO! - UK.indd 228 08-03-2023 09:2308-03-2023 09:23

Chapter 9 • Communication over Bluetooth

● 229

Chapter 9 • Communication over Bluetooth

9.1 Overview
In the previous chapter, you explored the writing of programs aiming to use Wi-Fi and then
communicate with other devices over LAN using the UDP and TCP protocols. In this chapter,
you will develop programs for using Bluetooth communication.

Bluetooth is a short-range communication technology commonly used to exchange data
with other devices, mainly developed with IoT applications in mind. All smartphones now-
adays support communication through Bluetooth. Bluetooth operates at 2.4 GHz with data
rates lower than those of Wi-Fi. Bluetooth is not as secure as Wi-Fi but it is easier to use.
The power consumption of Bluetooth is low compared to Wi-Fi and it offers shorter ranges
overall than Wi-Fi. Bluetooth is a packet-based protocol with a master-slave architecture
where one master may communicate with up to seven slaves. The effective range of Blue-
tooth depends on propagation conditions, antenna configurations, power supply conditions,
material coverage and so on. Most Bluetooth applications are for indoor use where the sig-
nals are attenuated owing to walls, floors, and ceilings, usually resulting in shorter ranges
than hoped for.

The Raspberry Pi Zero 2 W supports both classic Bluetooth and Bluetooth Low Energy
(BLE). BLE is intended for reduced-power applications while providing reasonable range.
Most smartphones including Android, iOS, Windows Phone, Blackberry, macOS and many
others, support BLE. BLE uses the same 2.4-GHz radio frequency as the classic Bluetooth
and dual-mode devices, therefore can share the same, single antenna. Classic Bluetooth
can handle large amounts of data quickly, whereas BLE has been developed to handle
smaller amounts of data.

9.2 Project 43: Exchanging text with a smartphone
Description: In this project, Bluetooth communication is established between the Zero 2
W and an Android smartphone. Text messages are exchanged between the two devices.

Block diagram: Figure 9.1 shows the block diagram of the project.

Figure 9.1: Block diagram of the project.

The Raspberry Pi Zero 2 W GO! - UK.indd 229The Raspberry Pi Zero 2 W GO! - UK.indd 229 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 230

Enabling Bluetooth
Before using your smartphone for Bluetooth applications, you have to enable it. Depending
on the model of the smartphone you have, this is usually done from the Settings menu.

Similarly, before using Bluetooth on your Zero 2 W, you have to enable it. There are two
ways you can enable Bluetooth on the Zero 2 W: using the graphical desktop (GUI mode)
or using the command mode.

Using the Graphical Desktop
The steps for enabling Bluetooth on the Zero 2 W by way of the graphical desktop are given
below.

• Enable Bluetooth on your smartphone.

• If you have a monitor connected directly to the Zero 2 W, skip the next item.

• Start the VNC server on your Zero 2 W and log in using the VNC Viewer.

• Click on the blue Bluetooth icon on your Zero 2 W screen at the top right
hand side, and turn Bluetooth ON if it is not already ON. Then, select Make
Discoverable. You should see the Bluetooth icon flashing. Click Add Device.

• Select raspberrypi in the Bluetooth menu (raspberrypi is the default
Bluetooth name of your Zero 2 W) on your mobile device (you may have to
scan on your mobile device). You should see the Connecting message on your
smart device.

• Click Pair to accept the pairing request on your Zero 2 W as shown in Figure
9.2.

Figure 9.2: Bluetooth pairing request on Zero 2 W.

• You should now see the message Pairing Successfully on your Zero 2 W.

Using Command Mode

The Raspberry Pi Zero 2 W GO! - UK.indd 230The Raspberry Pi Zero 2 W GO! - UK.indd 230 08-03-2023 09:2308-03-2023 09:23

Chapter 9 • Communication over Bluetooth

● 231

You can enable Bluetooth on your Zero 2 W using the command mode. Additionally, you
can make Bluetooth discoverable, scan for nearby Bluetooth devices and then connect to a
Bluetooth device. The steps are given below (characters typed by the user are in bold for
clarity):

• Find the Bluetooth MAC address of your smartphone. For Android phones, the
steps are usually:

 - Go to the Settings menu
 - Tap About Phone
 - Tap Status information
 - Scroll down to see your Bluetooth address (e.g., Figure 9.3). In this
example, the MAC address was 50:50:A4:0F:62:3F

Figure 9.3: Bluetooth MAC address.

• Make your Bluetooth discoverable with the following command:

pi@raspberrypi: ~ $ sudo hciconfig hci0 piscan

• Start the Bluetooth tool on your Zero 2 W from the command mode:

pi@raspberrypi:~ $ bluetoothctl

• Turn Bluetooth ON:

bluetooth]# power on

• Configure Bluetooth to run:

The Raspberry Pi Zero 2 W GO! - UK.indd 231The Raspberry Pi Zero 2 W GO! - UK.indd 231 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 232

bluetooth]# agent on
[bluetooth]# default-agent

• Make the device discoverable:

[bluetooth]# discoverable on

• Scan for nearby Bluetooth devices; this may take several minutes:

[bluetooth]# scan on

• Enter the command devices to detect any nearby Bluetooth devices (see
Figure 9.4). You may have to wait couple of minutes for the display to update.
Make a note of the MAC address of the device you wish to connect to (Android
mobile phone in this project) as you will be using this address to connect to the
device.

[Bluetooth]# devices

Figure 9.4: Nearby Bluetooth devices.

In this example, the author's smartphone is Galaxy A71 and the Bluetooth MAC
address is: 50:50:A4:0F:62:3F

• Pair the device:

[bluetooth]# pair 50:50:A4:0F:62:3F

• Connect to your smartphone:

[bluetooth]# connect 50:50:A4:0F:62:3F

• Enter yes to confirm passkey.

• Accept pairing on your smartphone.

• You should see message device 50:50:A4:0F:62:3F Connected : yes
displayed.

• Exit from the Bluetooth tool by entering Cntrl+Z.

The Raspberry Pi Zero 2 W GO! - UK.indd 232The Raspberry Pi Zero 2 W GO! - UK.indd 232 08-03-2023 09:2308-03-2023 09:23

Chapter 9 • Communication over Bluetooth

● 233

You can find the Bluetooth MAC address of your Zero 2 W by entering the following com-
mand:

pi@raspberrypi:~ $ hciconfig | grep "BD Address"

You can change the Bluetooth broadcast name by the following command:

pi@raspberrypi:~ $ sudo hciconfig hci0 name "new name"

To see your Bluetooth broadcast name, enter:

pi@raspberrypi:~ $ sudo hciconfig hci0 name

Some other useful Zero 2 W Bluetooth commands are:

• To reset Bluetooth adapter: sudo hciconfig hci0 reset
• To restart Bluetooth: sudo invoke-rc.d bluetooth restart
• To list Bluetooth adapters: hciconfig

Python Bluetooth Library
You will need to install the Python Bluetooth library before developing your program. This
is done by entering the following command in the command mode:

pi@raspberrypi:~ $ sudo apt-get install bluez python3-bluez

Accessing from the Mobile Phone
To be able to access the Zero 2 W from a smartphone app, make the following changes to
your Zero 2 W from the command line:

• Start nano to edit the following file:

pi@raspberrypi:~ $ sudo nano /etc/systemd/system/
dbus-org.bluez.service

• Add –C at the end of the ExecStart= line. Also add another line after the
ExecStart line. The final two lines should look like:

 ExecStart=/usr/lib/bluetooth/bluetoothd -C
 ExecStartPost=/usr/bin/sdptool add SP

• Exit and save the file by entering Ctrl+X followed by Y
• Reboot the Zero 2 W:

pi@raspberrypi:~ $ sudo reboot

The Raspberry Pi Zero 2 W GO! - UK.indd 233The Raspberry Pi Zero 2 W GO! - UK.indd 233 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 234

Program listing: Figure 9.5 shows the program listing (Program: bluetxt.py). Do not call
your program: Bluetooth.py! The Bluetooth code is similar to TCP/IP code. At the begin-
ning of the program, the modules socket and Bluetooth are imported to the program. The
program then creates a Bluetooth socket, binds, and listens on this socket, and then waits
to accept a connection. The remainder of the program is executed in a loop where the pro-
gram issues the statement ClientSock.recv and waits to read data from the smartphone.
The received data is decoded and displayed on the screen. The user is then expected
to send text message to the smartphone. This message is displayed on the smartphone
screen. This process is repeated until halted by the user.

#===
BLUETOOTH COMMUNICATION
=======================
#
In this project text messages are exchanged with a smart
phone using the Bluetooth protocol
#
Author: Dogan Ibrahim
File : bluetxt.py
Date : December, 2022
#==
import socket
import bluetooth

#
Start of main program loop.Configure Bluetooth, create a
port, listen for client connections, and accept connection
#
port = 1
ServerSock = bluetooth.BluetoothSocket(bluetooth.RFCOMM)
ServerSock.bind(("", port))
ServerSock.listen(1)
ClientSock, addr = ServerSock.accept()

#
Now receive text from smart phone and display
#
try:

 while True:
 data = ClientSock.recv(1024) # receive text
 print("Received data: ", data.decode('utf-8'))
 msg = input("Enter data to send: ") # TExt to send
 ClientSock.send(msg.encode('utf-8')) # Send text

The Raspberry Pi Zero 2 W GO! - UK.indd 234The Raspberry Pi Zero 2 W GO! - UK.indd 234 08-03-2023 09:2308-03-2023 09:23

Chapter 9 • Communication over Bluetooth

● 235

except KeyboardInterrupt: # Keyboard int
 ServerSock.close() # Close socket

Figure 9.5: Program: bluetxt.py.

Testing
The project can be evaluated by the following steps:

• Make sure that Bluetooth is enabled on both the smartphone and the Zero 2 W
and the devices are paired.

• You will be using the freely available Bluetooth app on your smartphone to
communicate with your Zero 2 W. In this project, the app called Bluetooth
Terminal HC05 by mightyIT is used (Figure 9.6).

Figure 9.6: Android Bluetooth app used in the project.

• Start the Zero 2 W program:

pi@raspberrypi:~ $ python3 bluetxt.py

• Start the smartphone app and select the paired Zero 2 W device (e.g.,
raspberrypi).

• Enter a message in column Enter ASCII Command and press Send ASCII.
The message will be sent to the Zero 2 W.

• Enter a message on the Zero 2 W. This message will be sent and displayed on
the smartphone top part of the screen.

• Figure 9.7 shows a sample message exchange between the Zero 2 W and the
smartphone. In this example, the smartphone sends the message: message
from the smartphone and the Zero 2 W sends message: message from
Zero 2 W.

The Raspberry Pi Zero 2 W GO! - UK.indd 235The Raspberry Pi Zero 2 W GO! - UK.indd 235 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 236

Figure 9.7: Message exchange between the Zero 2 W and smartphone.

• Enter Cntrl+C to close the socket and terminate the program.

9.3 Project 44: Bluetooth control of LED from a smartphone
Description: In this project, an LED is connected to port GPIO 17 (pin 11) of Zero 2 W
through a 470-ohm current-limiting resistor. The LED is controlled by sending commands
from an Android smartphone using Bluetooth communication.

The following commands can be sent from the Android smartphone to control the LED:

L1 Turn the LED ON
L0 Turn the LED OFF

Block diagram: Figure 9.8 shows the block diagram of the project.

Figure 9.8: Block diagram of the project.

Program Listing: Figure 9.9 shows the program listing of the project (program: blueled.
py; do not call your program Bluetooth.py!). The Bluetooth code is similar to TCP/IP
code. At the beginning of the program, the modules socket, RPi.GPIO, and Bluetooth are
imported to the program. The LED port is defined and configured as output. The program

The Raspberry Pi Zero 2 W GO! - UK.indd 236The Raspberry Pi Zero 2 W GO! - UK.indd 236 08-03-2023 09:2308-03-2023 09:23

Chapter 9 • Communication over Bluetooth

● 237

then creates a Bluetooth socket, binds, and listens on this socket, and then waits to accept
a connection. The remainder of the program is executed in a loop where the program issues
the statement ClientSock.recv and waits to read data from the smartphone. Note that the
smartphone app automatically appends carriage-return (CR) and line-feed (LF) characters
to the end of the data (i.e. \r\n).

#===
LED CONTROL BY BLUETOOTH
========================
#
In this project an LED is connected to GPIO 17.The LED
LED is controlled by sending commands from an Android
smart phone using a Bluetooth apps.
#
Valid comamdns are:
L1 Turn ON the LED
L0 Turn OFF the LED
#
Author: Dogan Ibrahim
File : blueled.py
Date : December, 2022
#==
import socket
import RPi.GPIO as GPIO
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
import bluetooth

#
LED is at GPIO 17, configure as output and turn OFF
#
LED = 17 # LED at port 17
GPIO.setup(LED, GPIO.OUT) # LED as output
GPIO.output(LED, 0) # LED OFF

#
Start of main program loop.Configure Bluetooth, create a
port, listen for client connections, and accept connection
#
port = 1
ServerSock = bluetooth.BluetoothSocket(bluetooth.RFCOMM)
ServerSock.bind(("", port))
ServerSock.listen(1)
ClientSock, addr = ServerSock.accept()

#

The Raspberry Pi Zero 2 W GO! - UK.indd 237The Raspberry Pi Zero 2 W GO! - UK.indd 237 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 238

Now receive comamnds and decode
#
try:

 while True:
 data = ClientSock.recv(1024) # receive command
 if data == b'L1\r\n': # L1?
 GPIO.output(LED, 1) # turn ON LED
 elif data == b'L0\r\n': # L0?
 GPIO.output(LED, 0) # turn OFF LED

except KeyboardInterrupt: # Interrupt
 ServerSock.close()

Figure 9.9: Program: blueled.py.

Testing
The same Android app as in the previous project is used. The steps are:

• Make sure that the Bluetooth is enabled on both the smartphone and Zero 2 W
and that they are already paired.

• Start the Zero 2 W program:

pi@raspberrypi:~ $ python3 blueled.py

• Start the app as before. To send command L1, enter L1 and click Send ASCII.
The LED should turn ON.

Suggestion for additional work

You could enter the program name in the following format inside file /etc/rc.local so that
the program automatically starts every time the Zero 2 W re-starts:

python /home/pi/blueled.py &

When you finish your project, don"t forget to remove the above line from file /etc/rc.lo-
cal, otherwise the program will run every time your Zero 2 W is restarted. You should also
shut down your Zero 2 W orderly instead of just unplugging the power cable. The command
to shut down properly is:

pi@raspberrypi:~ $ sudo shutdown now

The Raspberry Pi Zero 2 W GO! - UK.indd 238The Raspberry Pi Zero 2 W GO! - UK.indd 238 08-03-2023 09:2308-03-2023 09:23

Chapter 9 • Communication over Bluetooth

● 239

9.4 Arduino Uno: Raspberry Pi Zero 2 W Bluetooth communication
The Arduino Uno has no built-in Bluetooth module so you have to use an external Bluetooth
module to enable the Uno to communicate with other devices via Bluetooth. You can, how-
ever, use a serial Bluetooth module such as the HC-06. In the next section, you will embark
on developing a project and learn how to connect an HC-06 type low-cost Bluetooth module
to your Arduino Uno and then communicate with the Zero 2 W.

9.4.1 Project 45: Communicating with an Arduino Uno over Bluetooth
Description: In this project, a button is connected to the Arduino Uno. Also, a +3.3 V re-
lay is connected to the Zero 2 W. Pressing the button on the Arduino sends command "1"
to the Zero 2 W which then activates the relay for 5 seconds. The aim of this project is to
show how your Arduino Uno and Zero 2 W can communicate by using an external Bluetooth
module on the Arduino Uno.

The HC-06 Bluetooth module
The HC-06 is a low-cost, popular, 4-pin, serially controlled module with the following pins
(see Figure 9.10):

Figure 9.10: The HC-06 Bluetooth module.

The HC-06 is a serial-controlled module with the following basic specifications:

• +3.3 V to +6 V operation
• 30-mA unpaired current (10-mA matched current)
• Built-in antenna
• Band: 2.40 GHz – 2.48 GHz
• Power level: +6 dBm
• Default communication: 9600 baud, 8 data bits, no parity, 1 stop bit
• Signal coverage 30 feet (approx. 10 m)
• Safety feature: Authentication and encryption
• Modulation mode: Gaussian frequency-shift keying (FSK)

Block diagram: Figure 9.11 shows the block diagram of the project.

The Raspberry Pi Zero 2 W GO! - UK.indd 239The Raspberry Pi Zero 2 W GO! - UK.indd 239 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 240

Figure 9.11: Block diagram of the project.

Circuit diagram: The circuit diagram is shown in Figure 9.12. The button is connected to
pin 2 of the Arduino Uno through a pull-up resistor. The relay is connected to port GPIO
4 of the Zero 2 W. The HC-06 is a serial device with TX and RX pins. Only the RX input of
the HC-06 are used since in this project you only send data to the Bluetooth module. The
output pin voltage of Arduino Uno is +5 V but the HC-06 is not +5 V compatible. Therefore,
a resistive voltage divider circuit is used to lower the Arduino voltage to +3.3 V. The TX pin
of HC-06 is connected to pin 3 of Arduino Uno (pin 3 is software-configured as a "software
serial port").

Figure 9.12: Circuit diagram of the project.

Connecting to Arduino over Bluetooth
You should find the MAC address of your HC-06 and then use this address to connect to it.
The default HC-06 passcode is 1234. The steps to find the MAC address are:

• Construct the Arduino circuit (Figure 9.12) and apply power so that HC-06 can
be accessed. The red LED on HC-06 will flash to indicate that it is not currently
connected to any device.

• Make your Zero 2 W Bluetooth discoverable:

pi@raspberrypi: ~ $ sudo hciconfig hci0 piscan

• Start the Bluetooth tool:

pi@raspberrypi:~ $ bluetoothctl

The Raspberry Pi Zero 2 W GO! - UK.indd 240The Raspberry Pi Zero 2 W GO! - UK.indd 240 08-03-2023 09:2308-03-2023 09:23

Chapter 9 • Communication over Bluetooth

● 241

• Turn Bluetooth ON:

[bluetooth]# power on

• Configure Bluetooth to run:

[bluetooth]# agent on
[bluetooth]# default-agent

• Make device discoverable:

[bluetooth]# discoverable on

• Scan for nearby Bluetooth devices, you may have to wait several minutes:

[bluetooth]# scan on

• Enter command devices to see the nearby Bluetooth devices. You may have to
wait several minutes for the display to update. You should see the HC-06 listed
with its MAC address.

[Bluetooth]# devices

In this example, the author"s HC-06 was identified with the MAC address:
98:D3:91:F9:6C:19

• After finding out the MAC address, you may get information about the HC-06 by
entering the following command:

[Bluetooth]# info 98:D3:91:F9:6C:19

Which may display as in Figure 9.13.

Figure 9.13: Getting information on HC-06.

If Trusted: no is displayed, enter command: trust 98:D3:91:F9:6C:19.

The Raspberry Pi Zero 2 W GO! - UK.indd 241The Raspberry Pi Zero 2 W GO! - UK.indd 241 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 242

Exit the Bluetooth tool by entering Cntrl+Z and then enter the following statement to make
a connection in command mode (enter your own HC-06 MAC address):

• pi@raspberrypi:~ $ sudo rfcomm connect hcio 98:D3:91:F9:6C:19 &
• Enter Cntrl+C to exit

You should be connected now and the red LED on HC-06 should stop flashing. You are now
ready to develop your programs for the Arduino Uno and Zero 2 W concurrently or sepa-
rately.

RPi Zero 2 W program: Figure 9.14 shows the Zero 2 W program (Program: zeroprog.
py). In this program, you will not be using the Bluetooth library. When you connect to the
HC-06, a virtual serial terminal named /dev/rfcomm0 is created on the Zero 2 W. You
can read the commands sent by the HC-06 by opening this serial port and then viewing
the traffic.

Serial port /dev/rfcomm0 is opened with the baud rate set to 9600 (the default baud rate
of the HC-06 is 9600) using the following statement:

 ser = serial.Serial(port="/dev/rfcomm0", baudrate=9600)

Data sent by HC-06 is then read using the statement:

 data = ser.read()

If the received data is b"1" then the Relay can be activated for 5 seconds by the following
statements:

 GPIO.output(RELAY, 1)
 Time.sleep(5)
 GPIO.output(RELAY, 0)

#===
RELAY CONTROL BY BLUETOOTH
==========================
#
In this Case Study a Relay is connected to GPIO 4.The
Relay is controlled by sending command from an Arduino
Uno using a Bluetooth apps.
#
Valid command is: "1"
#
Author: Dogan Ibrahim
File : zeroprog.py
Date : December, 2022
#==

The Raspberry Pi Zero 2 W GO! - UK.indd 242The Raspberry Pi Zero 2 W GO! - UK.indd 242 08-03-2023 09:2308-03-2023 09:23

Chapter 9 • Communication over Bluetooth

● 243

import RPi.GPIO as GPIO
import serial
import time
GPIO.setmode(GPIO.BCM)

#
Relay is on GPIO 2, configure as output and turn OFF
#
RELAY = 4 # Relay at port 4
GPIO.setup(RELAY, GPIO.OUT) # Relay as output
GPIO.output(RELAY, 0) # Relay OFF

#
Attach to virtual serial port /dev/rfcomm0
#
ser = serial.Serial(port='/dev/rfcomm0', baudrate=9600)

#
Now receive commands and decode
#
try:

 while True:
 data = ser.read() # receive comman
 if data == b'1': # 1?
 GPIO.output(RELAY, 1) # activate Relay
 time.sleep(5) # 5 seconds
 GPIO.output(RELAY, 0) # Relay OFF

except KeyboardInterrupt: # Interrupt
 GPIO.output(RELAY, 0) # deactivate Relay
 GPIO.cleanup()

Figure 9.14: Program: zeroprog.py.

Arduino Uno program: Figure 9.15 shows the Arduino Uno program (Program: ard-
prog). Software serial port is used in this program where pin 3 is configured as the TX pin
and pin 4 as the RX pin (RX is not used in this project). Button is then assigned to port 2.
Inside the setup() function, the serial port baud rate is set to 9600 and Button is config-
ured as an input pin. Inside the main program loop, the program waits until the button is
pressed and then released. A "1" is then sent to the HC-06, with the Zero 2 W responding
by turning ON the LED upon reception of this command.

The Raspberry Pi Zero 2 W GO! - UK.indd 243The Raspberry Pi Zero 2 W GO! - UK.indd 243 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 244

/*==
 ARDUINO UNO - RASPBERRY PI ZERO 2 W COMMS
 ===
In this project a button is connectd to Arduino Uno
pin 2. HC-06 Bluetooth module is connected to pin 3
The program sends command "1" over the Bluetooth when
the button is pressed

Autjor: Dogan Ibrahim
File : ardprog
Date : December, 2022
==*/
#include <SoftwareSerial.h>
SoftwareSerial MySerial(4, 3); // rx, tx

int Button = 2; // Button at pin 2

void setup()
{
 MySerial.begin(9600); // Baud rate
 pinMode(Button, INPUT); // Button is input
}

//
// MAin program looop
//
void loop()
{
 while (digitalRead(Button) == 1); // Button not pressed
 while (digitalRead(Button) == 0); // Button not released
 MySerial.print("1"); // Send "1"
 delay(1000);
}

Figure 9.15: Program: ardprog.

Testing

• Run the Zero 2 W program:

pi@raspberrypi:~ $ python3 zeroprog,py

• Compile and upload the Arduino Uno program.

• Press and release the button. The LED should turn ON for 5 seconds.

The Raspberry Pi Zero 2 W GO! - UK.indd 244The Raspberry Pi Zero 2 W GO! - UK.indd 244 08-03-2023 09:2308-03-2023 09:23

Chapter 9 • Communication over Bluetooth

● 245

9.5 Project 46: Play audio (like music) on a Bluetooth speaker via
Zero 2 W
Description: In this project you will play music on an external Bluetooth speaker via your
Raspberry Pi Zero 2 W. You will discover how to store your MP3 music files on the Zero 2 W
and then play them on the Bluetooth speaker.

Before you can send audio to a Bluetooth speaker, you have to have a program on your
Zero 2 W that can play audio files like MP3's. In this project, you will be using the popular
VLC Media Player program on your Zero 2 W. The steps to install VLC are:

• pi@reaspberrypi:~ $ sudo apt-get update
• pi@reaspberrypi:~ $ sudo apt-get upgrade
• pi@raspberrypi:~ $ sudo apt-get install vlc
• Wait until the VLC program is installed. You now need to have MP3 files so that

you can evaluate your project. Download or copy some of your favorite MP3
music files to your Raspberry Pi Zero 2 W (say, to directory /home/pi or a newly
created directory).

You now have to pair with your Bluetooth speaker and connect to it. You will do this from
the Desktop. The steps are:

• Start Desktop on your Zero 2 W

• Click the Bluetooth icon at the top right-hand corner of Desktop and select to
turn ON Bluetooth.

• Click on Bluetooth icon and set to make it Discoverable.

• Click on Bluetooth icon and click Add Device to pair and add your speaker,
or if your speaker is already listed., click on it and click to Connect (in the
author"s case, the Bluetooth speaker had the name BT-888). See Figure 9.16.

Figure 9.16: Click on Bluetooth speaker device to connect to it.

• You are now connected to your speaker. Next thing to do is to direct your audio
output to the speaker. Right-click on the Volume icon at the top right-hand
corner of Desktop and select your Bluetooth speaker"s name (like BT-888 in
author"s case).

The Raspberry Pi Zero 2 W GO! - UK.indd 245The Raspberry Pi Zero 2 W GO! - UK.indd 245 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 246

• Open File Manager in Desktop (Accessories File Manager) and double-
click on your MP3 file. The Bluetooth speaker should start playing your chosen
music.

• Click Media Quit to stop playing the music and exit from VLC.

• Click File Close Window to exit File Manager.

Suggestion: You can create a Play List using the VLC Media Player and store your fa-
vorite music files in this list for playing later.

The Raspberry Pi Zero 2 W GO! - UK.indd 246The Raspberry Pi Zero 2 W GO! - UK.indd 246 08-03-2023 09:2308-03-2023 09:23

Appendix

● 247

Appendix

Bill of Materials
Components and modules used to replicate the projects described in this book.

• 8× red LED
• 8× 470 ohm resistor
• 1× MCP3002 ADC
• 1× TMP36
• 2× HC-SR04 ultrasonic module
• 1× I2C LCD
• 1× Sense HAT
• 1× Buzzer
• 2× 10 k-ohm resistor
• 2× pushbutton switch
• 1× TXS0102
• 1× DHT11
• 1× BMP280
• 1× HC-06

Additionally
• 1× Raspberry Pi Zero 2 W
• 1× Raspberry Pi Pico W
• 1× Arduino Uno
• Jumper cables
• microUSB cables
• Breadboard

The Raspberry Pi Zero 2 W GO! - UK.indd 247The Raspberry Pi Zero 2 W GO! - UK.indd 247 08-03-2023 09:2308-03-2023 09:23

The Raspberry Pi Zero 2 W GO! Book

● 248

Index

A
Advanced nodes 199
ALEXA 207
ambient temperature 165
Analysis nodes 198
API Keys 167
Arduino Uno 239
atmospheric pressure data 165
Average of 10 numbers 33
Average of two numbers 33

B
BCM2710A1 12
BCM notation 84
bidirectional logic level converter 94
Binary counting 64
Binary, octal, and hexadecimal 43
Bluemix 166
Bluetooth 229
bluetoothct 231
BMP280 165
Broker 215

C
Calculator 40
Channel Settings 167
CHOOSE OS 17
CHOOSE STORAGE 17
Christmas Lights 68
Cloud 165
Cloudino 166
Compound interest 48
Configuring Putty 20
Core nodes 196
Cursor Color 20
Cursor Text 20

D
Data Import/Export 167
debugger 31
Default Background 20
Default Foreground 20
DHT11 115
display driver library 184

E
echo 112
Electronic dice 81
Enabling Bluetooth 230

F
Factorial 47
File processing 41
Flask 151
Function nodes 197

G
GUI mode 29

H
HC-06 Bluetooth module 239
home automation 218
host 174
hostname 172

I
ifconfig 172
Input nodes 196
integration 49
Interface Options 20
IoT 218
IP address 176

L
LED brightness 86
local weather 188

M
matplotlib 52, 117
matrices 44
Matrix multiplication 47
MCP3002 99
Morse Code exerciser 75
Mosquitto Broker 217
MQTT 215
Multi-Level Wildcards 216
multiple graphs 54

The Raspberry Pi Zero 2 W GO! - UK.indd 248The Raspberry Pi Zero 2 W GO! - UK.indd 248 08-03-2023 09:2308-03-2023 09:23

Index

● 249

N
nano 24
netstat 173
nmap 179
Node-RED 191
numpy 117

O
Odd or even 43
Output nodes 197

P
Play audio 245
Plotting in Python 52
Private View 167
Public View 167
Publisher 215
Putty 18

Q
quadratic equation 46

R
Raspberry Pi Pico W 158
Raspbian 15
raspi-config tool 175
Reaction timer 107
Real-Time graph 115
Rotating LEDs 71
route 173
RP3A0 12
running Node-RED 191

S
Seconds counter 94
Sense HAT 119
Shapes 44
Single Level Wildcards 216
Social nodes 198
SOCK_STREAM 136
SOS signal 62
SparkFun 166
SPI 103
Squares and cubes of numbers 42
SSH 19
ST7735 184

static IP address 22
Storage nodes 198
Subscriber 215
Surface area of a cylinder 34
T
Table of squares 36
Table of trigonometric sine 36
TCP 133
temperature controller 127
TFT displays 182
ThingSpeak 166
Thonny screen 31
TightVNC for the PC 21
tightvncserver 20
TightVNC Viewer 21
timetable 42
trig 112
Trigonometric function 37
TXS0102 94

U
UDP 133
UDP Sender/Receiver 146
ultrasonic transmitter/receiver 109
Using MQTT 215

V
vehicle parking 109
vi 24
vim 24
VNC 19

W
weather data 179
Weather Map 180
Web Server 151, 154
Wi-Fi 133

Z
ZERO 2 WHC 13

The Raspberry Pi Zero 2 W GO! - UK.indd 249The Raspberry Pi Zero 2 W GO! - UK.indd 249 08-03-2023 09:2308-03-2023 09:23

+ UDP/TCP + WiFi + Flask Cloud + TFT + I

+ UDP/TCP + WiFi + Flask Cloud + TFT + I2C +

LCD + Arduino + Sensor HAT + Node-RED + Alexa

+ IoT + MQTT + Bluetooth + Motors + Python +

5 V Power

5 V Power

Ground

GPIO 14 | (UART TX)

GPIO 15 | (UART TX)

GPIO 18* | Chip Enable-CE0 (SPI 1) | BCK (I2S)

Ground

GPIO 23

GPIO 24

Ground

GPIO 25

GPIO 8 | Chip Enable-CE0 (SPI 0)

GPIO 7 | Chip Enable-CE1 (SPI 0)

GPIO 1 | EEPROM Serial Clock (I2C)

Ground

GPIO 12*

Ground

GPIO 16 | Chip Enable-CE2 (SPI 1)

GPIO 20 | MISO (SPI 1) | DIN (I2S)

GPIO 21 | SCLK (SPI 1) | DOUT (I2S)

3.3 V Power

Serial Data (I2C) | GPIO 2

Serial Clock (I2C) | GPIO 3

GPIO 4

Ground

Chip Enable-CE1 (SPI 1) | GPIO 17

GPIO 27

GPIO 22

3.3 V Power

MOSI (SPI 0) | GPIO 10

MISO (SPI 0) | GPIO 9

 SCLK (SPI 0) | GPIO 11

Ground

EEPROM Serial DATA (I2C) | GPIO 0

GPIO 5

GPIO 6

GPIO 13*

MISO (SPI 1) | LRCK (I2S) | GPIO 19*

GPIO 26

Ground

* PWM

Dogan Ibrahim

The Raspberry Pi
Zero 2 W GO! Book

A Fast-Lane Ride From Concept to Project

The Raspberry Pi
Zero 2 W GO! Book
A Fast-Lane Ride From Concept to Project

Prof Dogan Ibrahim has a BSc
(Hons) degree in Electronic
Engineering, an MSc degree in
Automatic Control Engineering,
and a PhD degree in Digital Signal
Processing and Microprocessors.

Dogan has worked in many
organizations and is a Fellow of
the Institution of Engineering
and Technology (IET) in UK as
well as a Chartered Electrical
Engineer. He has authored over
100 technical books and over 200
technical articles on electronics,
microprocessors, microcontrollers,
and related fields. Dogan is a
certified Arduino professional and
has many years of experience with
numerous types of microprocessors
and microcontrollers.

The core of the book explains the use of the Raspberry Pi Zero 2 W
running the Python programming language, always in simple terms and
backed by many tested and working example projects. On part of the
reader, familiarity with the Python programming language and some
experience with one of the Raspberry Pi computers will prove helpful.
Although previous electronics experience is not required, some knowledge
of basic electronics is beneficial, especially when venturing out to modify
the projects for your own applications.

Over 30 tested and working hardware-based projects are given in the
book, covering the use of Wi-Fi, communication with smartphones and
with a Raspberry Pi Pico W computer. Additionally, there are Bluetooth
projects including elementary communication with smartphones and
with the popular Arduino Uno. Both Wi-Fi and Bluetooth are key features
of the Raspberry Pi Zero 2 W.

Some of the topics covered in the book are:

> Raspberry Pi OS installation on an SD card
> Python program creation and execution on the Raspberry Pi Zero 2 W
> Software-only examples of Python running on the Raspberry Pi Zero

2 W
> Hardware-based projects including LCD and Sense HAT interfacing
> UDP and TCP Wi-Fi based projects for smartphone communication
> UDP-based project for Raspberry Pi Pico W communication
> Flask-based webserver project
> Cloud storage of captured temperature, humidity, and pressure data
> TFT projects
> Node-RED projects
> Interfacing to Alexa
> MQTT projects
> Bluetooth-based projects for smartphone and Arduino Uno

communications

All programs discussed in this book are contained in an archive file
you can download free of charge from the Elektor website. Head to:
www.elektor.com/books and enter the book title in the Search box.

Elektor International Media
www.elektor.com

The Raspberry Pi Zero 2 W
 G
O
! Book • D

ogan Ibrahim

books booksbooks books

SKUxxxxx_COV_The Raspberry Pi Zero 2 W GO Book_v03.indd Alle pagina'sSKUxxxxx_COV_The Raspberry Pi Zero 2 W GO Book_v03.indd Alle pagina's 07-03-2023 15:1607-03-2023 15:16

	Search…
	The Raspberry Pi Zero 2 W GO! Book
	All rights reserved.
	Contents
	Preface

	1 • The Raspberry Pi Zero 2 W
	1.1 Overview
	1.2 The Zero 2 W development board
	1.3 Installing the operating system
	1.4 Powering-up the Zero 2 W
	1.5 Remote access
	1.5.1 Configuring Putty
	1.5.2 Remote access of the Desktop

	1.6 Assigning static IP address to your Zero 2 W

	2 • Using a Text Editor in Command Mode
	2.1 The "nano" text editor

	3 • Creating and Running a Python Program
	3.1 Overview
	3.2 Method 1 — Interactively from command prompt
	3.3 Method 2 — Create a Python file in command mode
	3.4 Method 3 — Create a Python file in GUI mode
	3.5 Which method?
	3.6 The Thonny screen

	4 • Software-Only Python Programs using the Zero 2 W
	4.1 Overview
	4.2 Example 1 — Average of two numbers read from the keyboard
	4.3 Example 2 — Average of 10 numbers read from the keyboard
	4.4 Example 3 — Surface area of a cylinder
	4.5 Example 4 — ºC to ºF conversion
	4.6 Example 5 — Surface area and volume of a cylinder; user function
	4.7 Example 6 — Table of squares of numbers
	4.8 Example 7 — Table of trigonometric sine
	4.9 Example 8 — Table of trigonometric sine, cosine, and tangent
	4.10 Example 9 — Trigonometric function of a required angle
	4.11 Example 10 — Series and parallel resistors
	4.12 Example 11 — Words in reverse order
	4.13 Example 12 — Calculator
	4.14 Example 13 — File processing: writing
	4.15 Example 14 — File processing: reading
	4.16 Example 15 — Squares and cubes of numbers
	4.17 Example 16 — Multiplication timetable
	4.18 Example 17 — Odd or even
	4.19 Example 18 — Binary, octal, and hexadecimal
	4.20 Example 19 — Add two matrices
	4.21 Example 20 — Shapes
	4.22 Example 21 — Solution of a quadratic equation
	4.23 Example 22 — Matrix multiplication
	4.24 Example 23 — Factorial of a number
	4.25 Example 24 — Compound interest
	4.26 Example 25 — Guess the number
	4.27 Example 26 — Numerical integration
	4.28 Example 27 — Practise arithmetic
	4.29 Plotting in Python
	4.29.1 Graph of a quadratic function
	4.29.2 Drawing multiple graphs

	5 • Simple Projects for the Raspberry Pi Zero 2 W
	5.1 Overview
	5.2 Project 1: External flashing LED
	5.3 Project 2: Flashing the SOS signal
	5.4 Project 3: Binary counting with 8 LEDs
	5.5 Project 4: Christmas Lights (randomly flashing 8 LEDs)
	5.6 Project 5: Rotating LEDs with pushbutton switch control
	5.7 Project 6 – Morse Code exerciser with buzzer
	5.8 Project 7: Electronic dice
	5.9 Project 8: LED brightness control
	5.10 Project 9: Lucky day of the week
	5.11 Project 10: Using an I2C LCD: Seconds counter
	5.12 Project 11: Analog temperature sensor thermometer
	5.13 Project 12: Analog temperature sensor thermometer with LCD output
	5.14 Project 13: Reaction timer
	5.15 Project 14: Vehicle parking aid
	5.16 Project 15: Real-Time graph of the temperature and humidity
	5.17 The Sense HAT interface
	5.17.1 Programming the Sense HAT
	5.17.2 Project 16: Displaying text on Sense HAT
	5.17.13 Project 17: Test your math skills: multiplication
	5.17.14 Project 18: Learning the times tables
	5.17.15 Project 19: Display temperature, humidity, and pressure
	5.17.16 Project 20: ON-OFF temperature controller

	6 • Communication over Wi-Fi
	6.1 Overview
	6.2 UDP and TCP
	6.2.1 UDP communication
	6.2.2 TCP communication

	6.3 Project 21: Sending a text message to a smartphone using TCP/IP
	6.4 Project 22: Two-way communication with the smartphone using TCP/IP
	6.5 Project 23: Communicating with a PC using TCP/IP
	6.6 Project 24: Controlling an LED connected to the Zero 2 W from the smartphone, using TCP/IP
	6.7 Project 25: Sending a text message to a smartphone using UDP
	6.8 Project 26: Controlling an LED connected to the Raspberry Pi Zero 2 W from the smartphone, using UDP
	6.9 Using Flask to create a Web Server to control Raspberry Pi Zero 2 W GPIO ports from the Internet
	6.10 Project 27: Web Server — Controlling an LED connected to the Raspberry Pi Zero 2 W, using Flask
	6.11 Communicating with the Raspberry Pi Pico W over Wi-Fi
	6.12 Project 28 – Raspberry Pi Zero 2 W and Raspberry Pi Pico W communication – controlling a relay over Wi-Fi
	6.13 Project 29 — Storing ambient temperature and atmospheric pressure data in the Cloud
	6.14 Useful network commands
	6.14.1 Ping
	6.14.2 hostname
	6.14.3 ifconfig
	6.14.4 route
	6.14.5 netstat
	6.14.6 host

	6.15 Setting-up Wi-Fi on your Raspberry Pi Zero 2 W
	6.15.1 During the installation of the Raspberry Pi operating system
	6.15.2 Modifying the Wi-Fi details on the SD card
	6.15.3 Setting via the Task Bar
	6.15.4 Using the raspi-config tool
	6.15.5 Manual setup

	6.16 Finding the IP address of your Zero 2 W
	6.16.1 Using a smartphone app
	6.16.2 Using a PC program
	6.16.3 Using nmap

	6.17 Project 30 – Fetching and displaying the real-time weather data on the screen
	6.18 Using TFT displays with the Raspberry Pi Zero 2 W
	6.18.1 TFT display used
	6.18.2 Connecting a TFT display to the Raspberry Pi Zero 2 W
	6.18.3 ST7735 TFT display driver library
	6.18.4 Example display — writing text
	6.18.5 Example display — displaying various shapes
	6.18.6 Project 31 — Displaying the local weather data on TFT

	7 • Using Node-Red with the Raspberry Pi Zero 2 W
	7.1 Overview
	7.2 Installing and running Node-RED on the Raspberry Pi Zero 2 W
	7.3 Node-RED interface to external world
	7.4 Project 32: Hello World!
	7.5 Core nodes
	7.5.1 Input nodes
	7.5.2 Output nodes
	7.5.3 Function nodes
	7.5.4 Social nodes
	7.5.5 Storage nodes
	7.5.6 Analysis nodes
	7.5.7 Advanced nodes
	7.5.8 Raspberry Pi nodes

	7.6 Project 33: Dice number
	7.7 Project 34: Double dice numbers
	7.8 Project 35: LED control
	7.9 Project 36: Flashing an LED
	7.10 Project 37: Pushbutton switch input
	7.11 Using the ALEXA in Node-RED projects with the Raspberry Pi Zero 2 W
	7.11.1 Project 38: Controlling an LED using Alexa
	7.11.2 Project 39: Controlling an LED and a buzzer using Alexa
	7.11.3 Project 40: Controlling an LED and a buzzer using Alexa – using a trigger node

	8 • Using MQTT with The Raspberry Pi Zero 2 W
	8.1 Overview
	8.2 How MQTT works
	8.3 The Mosquitto Broker
	8.4 Using MQTT in home automation and IoT projects
	8.5 Project 41: Controlling an LED using MQTT
	8.6 Project 42: Controlling an LED using ESP8266 NodeMCU with MQTT – LED connected to Raspberry Pi Zero 2 W

	9 • Communication over Bluetooth
	9.1 Overview
	9.2 Project 43: Exchanging text with a smartphone
	9.3 Project 44: Bluetooth control of LED from a smartphone
	9.4 Arduino Uno: Raspberry Pi Zero 2 W Bluetooth communication
	9.4.1 Project 45: Communicating with an Arduino Uno over Bluetooth

	9.5 Project 46: Play audio (like music) on a Bluetooth speaker via Zero 2 W

	Appendix: Bill of Materials
	Index

