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Preface

In recent years, the teaching curriculum of Physical Chemistry in many Indian
universities has been restructured with a greater emphasis on a theoretical and
conceptual methodology and the applications of the underlying basic concepts and
principles. This shift in the emphasis, as I have observed, has unduly frightened
undergraduates whose performance in Physical Chemistry has been otherwise
generally far from satisfactory. This poor performance is partly because of the
non-availability of a comprehensive textbook which also lays adequate stress on
the logical deduction and solution of numericals and related problems. Naturally,
the students find themselves unduly constrained when they are forced to refer to
various books to collect the necessary reading material.

It is primarily to help these students that I have ventured to present a textbook
which provides a systematic and comprehensive coverage of the theory as well as
of the illustration of the applications thereof.

The present volumes grew out of more than a decade of classroom teaching
through lecture notes and assignments prepared for my students of BSc (General)
and BSc (Honours). The schematic structure of the book is assigned to cover
the major topics of Physical Chemistry in six different volumes. Volume I
discusses the states of matter and ions in solutions. It comprises five chapters
on the gaseous state, physical properties of liquids, solid state, ionic equilibria
and conductance. Volume II describes the basic principles of thermodynamics
and chemical equilibrium in seven chapters, viz., introduction and mathematical
background, zeroth and first laws of thermodynamics, thermochemistry, second
law of thermodynamics, criteria for equilibrium and 4 and G functions, systems
of variable composition, and thermodynamics of chemical reactions. Volume I1I
seeks to present the applications of thermodynamics to the equilibria between
phases, colligative properties, phase rule, solutions, phase diagrams of one-,
two- and three-component systems, and electrochemical cells. Volume IV deals
with quantum chemistry, molecular spectroscopy and applications of molecular
symmetry. It focuses on atomic structure, chemical bonding, electrical and
magnetic properties, molecular spectroscopy and applications of molecular
symmetry. Volume V covers dynamics of chemical reactions, statistical and
irreversible thermodynamics, and macromolecules in six chapters, viz., adsorption,
chemical kinetics, photochemistry, statistical thermodynamics, macromolecules
and introduction to irreversible processes. Volume VI describes computational
aspects in physical chemistry in three chapters, viz., synopsis of commonly used
statements in BASIC language, list of programs, and projects.

The study of Physical Chemistry is incomplete if students confine themselves
to the ambit of theoretical discussions of the subject. They must grasp the practical
significance of the basic theory in all its ramifications and develop a clear
perspective to appreciate various problems and how they can be solved.



It is here that these volumes merit mention. Apart from having a lucid style
and simplicity of expression, each has a wealth of carefully selected examples and
solved illustrations. Further, three types of problems with different objectives in
view are listed at the end of each chapter: (1) Revisionary Problems, (2) Try Yourself
Problems, and (3) Numerical Problems. Under Revisionary Problems, only those
problems pertaining to the text are included which should afford an opportunity to
the students in self-evaluation. In 7y Yourself Problems, the problems related to
the text but not highlighted therein are provided. Such problems will help students
extend their knowledge of the chapter to closely related problems. Finally, unsolved
Numerical Problems are pieced together for students to practice.

Though the volumes are written on the basis of the syllabi prescribed for
undergraduate courses of the University of Delhi, they will also prove useful to
students of other universities, since the content of physical chemistry remains the
same everywhere. In general, the SI units (Systeme International d’unites), along
with some of the common non-SI units such as atm, mmHg, etc., have been used
in the books.

Salient Features

e Comprehensive coverage to adsorption, chemical kinetics, photochemistry,
statistical thermodynamics, macromolecules

e Emphasis given to applications and principles
e Explanation of equations in the form of solved problems and numericals
e [UPAC recommendations and SI units have been adopted throughout.

e Rich and illustrious pedagogy
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Adsorption

1.1 INTRODUCTION

The term adsorption implies the presence of excess concentration of any particular
component at the surface of liquid or solid phase as compared to that present in
the bulk of the material. This phenomenon of adsorption is basically due to the
presence of residual forces at the surface of the body. These residual forces, in
case of liquids, arise from the nonuniform distribution of molecules around the
molecules at the surface. In solids, these residual forces are due to the presence of
unsatisfied valence forces of atoms at the surface. The latter are created when some
of the inter-atomic bonds are broken as a result of cleavage of a bigger crystal into
the smaller units as shown by the dotted line in Fig. 1.1.1.

It is because of these residual forces that the substances stick to the surface and
thus create an excessive concentration at the surface. The phenomenon of adsorption
is a spontaneous process and hence, like any other spontaneous process, is attained
by a decrease in free energy of the system, i.e. AG of the adsorption process has a
negative value. Since AG = AH — TAS and that the entropy change AS for adsorption
is necessarily a negative quantity (since the molecules at the surface are in more
ordered state than in the solution), it may be concluded that the enthalpy change
of the adsorption process must have a negative value and must satisfy the relation

|AH| > |TAS]

Hence, the process of adsorption is an exothermic process. This also follows
directly from the fact that the adsorption process involves the forces of attraction
between the adsorbate (the substance which is being adsorbed) and the adsorbent
(the substance which adsorbed the absorbate) and hence on adsorption, there must

be a release of energy.

The term adsorption must clearly be distinguished from the term absorption.
The latter implies the presence of more or less uniform concentration throughout

the substance.
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1.2 ADSORPTION OF GASES BY SOLIDS

Preliminary
Discussions

Effect of
Temperature

Effect of Pressure

Fig. 1.2.1 Variation in
the extent of adsorption
with pressure at
different temperatures.
These are known as
adsorption isotherms

Adsorption of gases by solids is very common. The amount of a gas adsorbed,
besides depending upon the nature of the gas and the surface involved, is highly
dependent upon the surface area for a given mass of the adsorbent. The total surface
area available in a given mass of the adsorbent depends upon its size. Take, for
example, a cube of edge-length equal to 1 cm. It has a surface area of 6 cm”. If this
cube is divided into very small cublets of edge-length say of 10~ cm, then the total
surface area becomes equal to 6 x 10* cm®. More and more of residual forces are
created when a substance of bigger size is divided into the smaller units and hence
causes more of adsorption. It is because of this reason, most of the adsorbents are
available in the finely divided form. One of the extensively used adsorbents is the
activated charcoal. The process of activation involves the heating of charcoal to a
high temperature (ranging between 300 °C to 1000 °C) in vacuum or in the presence
of an inert gas. This process removes the already adsorbed gases such as hydrocarbons
and other impurities.

As stated above, the process of adsorption is an exothermic process and thus,
according to the Le-Chatelier’s principle, a decrease in temperature of the system
would result in an increase in adsorption. In fact, it is found to be so, as shown by
the broken vertical line in Fig. 1.2.1. Qualitatively, the above effect of temperature
can be understood on the basis of two parameters, namely, the thermal energy of
gaseous molecules and the residual forces of the surface. These two parameters act
in the opposite directions. If the temperature of the system is large, then because
of the larger thermal energy, lesser number of molecules are held to the surface
of the solid by the residual forces and hence lesser is the adsorption. At lower
temperatures, the thermal energy is less and thus more number of molecules remain
stick to the surface and hence larger is the adsorption.

At a constant temperature, the extent of adsorption of gases increases with increase
in pressure. This fact is in agreement with the Le-Chatelier principle. According
to the latter, the system would move in a direction of lesser number of molecules
with increase in external pressure. Since the process of adsorption decreases the

N <Dh<T3<Ty

T

T3

x/m

T4




Explanation of
Fig. 1.2.1

Freundlich
Adsorption
Equation
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number of molecules in the gaseous phase, it is expected that the extent of
adsorption would increase with the increase in external pressure as it would result
in the decrease of number of molecules in the gaseous phase.

Figure 1.2.1 displays qualitatively the variation in the extent of adsorption with
pressure at different temperatures. The adsorption isotherm shown in Fig. 1.2.1
can be easily understood on the basis of a fixed number of adsorption sites at the
surface of adsorbent where only gaseous molecules can be adsorbed. Initially as
pressure is increased, the number of molecules which strike the unit area of the
surface increases in proportion to the increase in pressure and hence adsorption
increases almost linearly with pressure. Since a fixed number of adsorption sites
are available, eventually at some high pressure a stage would be reached where all
the sites are occupied and hence further increase in pressure would not cause any
further increase in adsorption, i.e. the extent of adsorption becomes independent
of pressure. In the intermediate range of pressure, the increase in adsorption is not
as fast as the increase in pressure.

The facts shown in Fig. 1.2.1 can be explained on the basis of reversible nature
of adsorption where adsorption and desorption processes proceed simultaneously.
At equilibrium, both these processes proceed with equal speeds. This equilibrium
process may be represented as follows:

adsorption

G+S (12.1)

desorption

where G, S and GS represent, respectively, the unadsorbed gaseous molecule,
adsorption site at the surface of the solid and the adsorbed gaseous molecule.
Though the adsorption process increases in proportion to pressure but because of
the reverse reaction (i.e. desorption), the increase in adsorption is not as fast as
the increase in pressure.

An empirical expression representing the isothermal variation in the extent of
adsorption over a limited range of pressure as suggested by Freundlich is

X

=kp'" (1.2.2)

where x is the mass of gas adsorbed by the mass m of adsorbent at the pressure p,
and k and » are constants for a given pair of adsorbent and adsorbate. The value of
n is generally greater than one and thus its reciprocal is less than one. This accounts
the fact that the increase in adsorption is not as fast as the increase in pressure.

The values of k and » for a given system can be determined by following the
graphical method. If we take the logarithm of Eq. (1.2.2), we get

log log

ﬂo] (1.2.3)
p

] = log k" +

1
n

X
m
where p° is the unit pressure. A plot of log (x/m) versus log (p/p°) would be a
straight line with slope equal to (1/r) and intercept equal to log £”. From these, the
values of k and »n can be determined. Equation (1, 2, 3) is applicable over a small
range of pressure only. It may be mentioned that » = 1 at low pressures, # = oo at
high pressures and » > 1 (from 2 to 10) for the intermediate range of pressures.
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Langmuir
Adsorption
Equation

Equilibrium
Constant involving
Adsorption

Derivation
of Langmuir
Equation

Langmuir derived an expression for the variation in the extent of adsorption with
pressure on the basis of following approximations.

® The surface of solid consists of a fixed number of adsorption sites where only
adsorption of gaseous molecules can take place.

® Each site can hold only one gaseous molecule and involves a constant heat of
adsorption. The latter is identical for all adsorption sites.

® The adsorption is monolayer, i.e. only one layer of adsorption of gaseous
molecules is formed.

® The gaseous molecules adsorbed at different sites do not interact with each
other.

® The phenomenon of adsorption involves a dynamic equilibrium and can be
represented as

G+S = GS

where G, S, and GS represent, respectively the unadsorbed gaseous molecule,
the vacant site on the surface of adsorbent and the adsorbed gaseous molecule.

The above equilibrium process implies that the forward reaction (adsorption) and
backward reaction (desorption) can take place simultaneously. At equilibrium, the
rates of these two processes are identical. On equating these two rates, we get the
equilibrium constant characterizing the given equilibrium reaction.

According to the law of mass action, we can write
Rate of forward reaction = k; [G] [S]
Rate of backward reaction = & [GS]
Therefore, at equilibrium,
Rate of adsorption = Rate of desorption
ie. ke [G] [S] = ky, [GS]
ke [GS]
or K=—=—F+-
ky  [G][S]
The constant K is the equilibrium constant for distribution of adsorbate between
the surface and the gas phase.

(1.2.4)

The concentration of adsorbed molecules GS depends only on one factor, namely,
the number of occupied adsorption sites. The latter will be directly proportional to
the fraction 6 of the surface that is covered with gaseous molecules. Thus, we can
write,

Rate of desorption o< 6
Le. Rate of desorption = k;0

The concentration of unadsorbed gaseous molecules G will be directly proportional
to the pressure of the gas.

The concentration of vacant sites on the surface of an adsorbent will be directly
proportional to the fraction of the surface that remains uncovered and hence will



Physical
Significance of the
Constant K|

Fig. 1.2.2 The form of
Langmuir isotherm at
various values of K,

Adsorption 5

be directly proportional to the factor (1 — 6). Thus we can write,
Rate of adsorption < p(1 — 6)
ie. Rate of adsorption = &, p(1 — 0)
Now since at equilibrium
Rate of adsorption = rate of desorption,
it follows that
k, (1 -0)p=k,0
_ kyp _ (ky /Kq) _ Kip
ky+k,p  1+(k/k)p  1+Kp

ie. (1.2.5)

Equation (1.2.5) is known as Langmuir adsorption equation. The form of
Langmuir isotherm for several values of K is shown in Fig. 1.2.2. The surface
coverage increases with pressure, and approaches unity only at very high pressures.
Since the value of K depends only on temperature, Fig. 1.2.2 also represents the
form of Langmuir isotherm at various temperatures.

The constant K, which is equal to k,/k,, is known as distribution coefficient. The
constant K, is, in fact, an equilibrium constant for the distribution of adsorbate
between the surface and the gas phase and is given by
PR
ky 1-6 p
The equilibrium constant K, like any other equilibrium constant, depends only
on the temperature of the system. Thus, for a given pressure p, different values of
K are obtained at different temperatures. The fraction 6 of the area covered with
gases is expected to increase with decrease in temperature. Thus, from Eq. (1.2.6)
it follows that a given pressure, the equilibrium constant K, will increase with
decrease in temperature, i.e. the equilibrium constant K, and temperature will have
inverse relation with each other.

(1.2.6)

1.0
Ky =10 K;=1.0 atm™!
0.8 —
0.6 —
K, =0.1 atm™!
S
0.4
0.2
K, =0.01 atm~!
0.0 | | | |
0 2 4 6 8 10 12
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Explanation
of Adsorption
Isotherms of
Fig. 1.2.1

Determination of
the Constants in
Eq. (1.2.9)

The equilibrium constant K} can be utilized for calculating the change in standard
free energy on adsorption by the relation

AG°=—-RT In K} (1.2.7)
Since the formation of a single layer of adsorbed gaseous molecules is assumed,
it is obvious that the mass of gas adsorbed by the unit mass of adsorbent, will be
directly proportional to the factor 0 that is,

X . X
(—) x 0 ie. (—) =k,0 (1.2.8)
m m
Substituting Eq. (1.2.8) in Eq. (1.2.5), we get
x\ _ Kkp
()-8 129

Equation (1.2.9) can be used to correlate the following experimental facts regarding
the adsorption of gases as shown in Fig. 1.2.1.
(i) At low pressure, the extent of adsorption is proportional to pressure.

At low pressure, the factor K p in Eq. (1.2.9) is much smaller than 1 and hence
can be ignored. Thus, we have

(i) ~ K kyp or (ij xp
m m
that is, the extent of adsorption is directly proportional to the pressure of the gas.

(ii) At high pressure, the extent of adsorption is independent of pressure.

Here K p will be much greater than 1 and hence the factor one can be ignored in
comparison to K;p. Thus, we have

(x ) _ Kkp _
2 =22l o
m Kip
that is, the extent of adsorption is independent of pressure.
(iii) In the intermediate range of pressure, adsorption does not increase as fast as
the increase in pressure.

This is due to the presence of p dependent term in the denominator of
Eq. 1.2.9. On increasing pressure, the value of the denominator increases faster
than that of the numerator.

The values of the two constants K| and k, in Eq. (1.2.9) can be obtained by
following the graphical method. Inverting Eq. (1.2.9), we get

1 1+Kp _ 1 1

1
— +
(x/m)  Kihkyp Kk, p k

or p:1+p

£ 1.2.10
(x/m) Kk, Kk ( )

Thus, a plot of p/(x/m) versus p would yield a straight line with slope equal to
1/k, and intercept equal to 1/K,k,. From these, the values of K, and k, can be
determined.



Alternative Form
of Langmuir
Equation

Conditions for the
Applicability of
Langmuir Equation

Example 1.2.1
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Equation (1.2.5) can be written in an alternative form involving the volume of the
adsorbed gas. Since 0 is the fraction of the surface covered, it will be given by

v

vanO

where v is the volume of gas adsorbed at the given conditions of pressure and
temperature and v, is that adsorbed at sufficiently high gas pressure so as to
give a complete coverage of the surface with a single layer of gaseous molecules.
These volumes are reduced to STP conditions and then substituted in Eq. (1.2.5).
Thus, we have

v  Kp
1+K,p

> (1.2.11)

mono

Equation (1.2.11) can be written in a more suitable form by taking its reciprocal,

i.e.
Umono — M or Umono = L l +1
v Kip v K, p
)4 1 P
or p_ + (12.12)
% Klvmono 1)mono

Now, if a plot is made between p/v and p, one would get a linear plot with slope
equal to 1/v,,,,, and intercept 1/K,v,,.,- From these, the values of v, and K,
can be determined.

It is worth pointing out the temperature and pressure conditions over which the
Langmuir adsorption isotherm is expected to be applicable. While deriving the
Langmuir adsorption isotherm, two important assumptions have been made. These
are: (i) formation of monolayer adsorption, and (ii) adsorbed molecules do not
interact with each other. These assumptions are expected to hold good at low gaseous
pressure and moderately high temperature. Under these conditions, the forces of
attraction between adsorbent and adsorbate will be effective only up to the short
distances. The condition of low pressure implies that lesser number of molecules
strike the surface per unit area per unit time. On the other hand, the condition of
high temperature implies that molecules have sufficient high thermal energy to
prevent the multilayer formation.

The data below are for the adsorption of CO on charcoal at 273 K. Confirm that they
fit the Langmuir isotherm, and find (i) the constant K; and volume corresponding to
complete surface coverage, (ii) the fraction of surface covered at each pressure, and
(iii) change of standard free energy on adsorption at STP.

p/mmHg 100 200 300 400 500 600 700

v/em® 10.2 18.6 25.5 31.4 36.9 41.6 46.1
Mass of sample of charcoal = 3.022 g.
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Solution (i) The constants K, and v,,, can be determined from the slope and intercept of the graph
between p/v and p. Thus from given data, we have
p/mmHg 100 200 300 400 500 600 700
v/em’ 10.2 18.6 255 314 364 416  46.1
pimmie —9g  jos 18 127 136 144 152
v/cm

The graph between p/v and p is shown in Fig. 1.2.3. The slope and intercept of the
graph are 0.9 x 1072 and 9.0, respectively, i.e.

A{(p/mmHg)/(v/em®)} _ 0.9 x 10°2

slope =
A(p/mmHg)

intercept = A{(p/mmHg)/(v/em®)} = 9.0

For the Langmuir equation, we will have

1 A{p/v
slope = —— = Alp/v =0.9x102 em™
Unmono Ap
intercept = = (p/V), - = 9.0 mmHg em™
mono
1
Hence, v, L =111 em®

mono slope N 0.009 cm™

slope _ 0.009 cm™
intercept 9.0mmHg cm™

K = = 1.0 x 10 mmHg ' = 0.76 atm ™'

{(p/mmHg)/(v/cm?)}

slope = 20
P 410
=0.9x1072
9

between p/v and p p/mmHg ——»
from the given data
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Surface Area of
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(ii) The fractions of surface covered at the given pressures are as follows.

p/mmHg 100 200 300 400 500 600 700
vlem® 10.2 18.6 255 314 36.2 41.6 46.1
0=y 0.092 0.168 0.230  0.283 0332 0.375 0.415

mono

(iii) The change of standard free energy on adsorption at 273 K will be given by
A,4G°=— RT 1n (K /atm™")
Substituting the value of K, we get
Ay G°=—(8.314 J K mol™") (273 K) (2.303) (log 0.76)

=622.9 J mol™' ~ 0.62 kJ mol™

Since the molar volume of an ideal gas at STP is 22.414 dm®, the number of
molecules N adsorbed corresponding to the volume v, is

)

N=|———2———1 (6.022 x 10* mol ")
22.414dm" mol

where 6.022 x 10%* mol™" is Avogadro constant. Now if the area of cross-section

of a single molecule is known, it can be multiplied by the above number to give

the total surface area of the adsorbent.

The area of cross-section 4 of the molecule is usually determined from the
density of the liquefied or solidified adsorbate. If p is the density, then the volume
v occupied by a single molecule (assuming the adsorbate to be highly packed with
no void volume) is given by

M M
P= = UN,
M
or v=
Nap

Assuming the molecule to be spherical, its cross-sectional area can be computed
as follows.

If r is the radius of the molecule, it follows that

_4 s M
v= g N.p
(3 M 1/3
or r= 4TE_NAp
2/3
Hence, A=m’=n i id (1.2.13)
4 Nyp

The obtained value of r (or Ttr%) is only an approximate one since it lacks the
information regarding the exact nature of packing at the surface of the adsorbent.
Even in the above method, the presence of void volume in the crystal lattice has
been neglected. However, the latter can be accounted for provided the crystal lattice
of the solidified adsorbate is known.
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Example 1.2.2

Solution

Emmett and Brunauer employed the following expression for the computation
of area of cross-section 4 of the molecule on the assumption that the average
cross-section of the adsorbed molecule is the same as that of the molecules in the
corresponding plane of closest packing in the solidified gas.

2/3
M
A=(4) (0.866) | —— 1.2.14

Gl ) [4\/§NApj ( ‘

Table 1.2.1 records the values of 4 for some of the molecules calculated from
Eq. (1.2.14).

Table 1.2.1 Area of Cross-section of Some of the Molecules

Substance Temperature Liquid Density Area of Cross-section

°C gem? nm?

N, - 183 0.751 0.171
N, —195.8 0.808 0.162
0, -183 1.14 0.141
Ar - 183 1.374 0.144
(€[0) - 183 0.763 0.168
CoO, —-56.6 1.179 0.170
CH, - 140 0.392 0.181
NH, -36 0.688 0.129

In adsorption of hydrogen over a sample of copper, monolayer-formation volume per gram
of powder was found to be 1.36 cm® measured at STP. Calculate the specific surface area
of copper. Liquid hydrogen has a density of 0.07 g em >,

Number of molecules of hydrogen in 1.36 cm® at STP is

(1.36 cm®)

N =
(22 414 cm® mol™)

(6.022 x 10 mol ") = 3.6 x 10"

If liquid hydrogen is assumed to be closely packed (ignoring void volume), then the
molar volume of hydrogen will be equal to N, v, where N, is Avogadro constant and v is
the volume of one molecule. If p is the density of liquid hydrogen, it is obvious that

L = M)
Nyp
Substituting the volumes of M(H,), N, and p, we get

(Nyv) p = M(H,) or

v= (2g mol™) = 4742 x 1073 em’
(6.022x10%mol™)(0.07 g ecm™)

Now v= 43

1/3 23 3
Hence, r= (31)) (3><4.742><10 cm

in 4x3.14
Now the area of cross-section of hydrogen molecule will be
A=71r"=3.14 X (2.246 x 107 cm)* = 1.583 x 1075 cm?
Finally,
Specific area of copper = N'4 = (3.6 x 10") (1.583 x 107"° cm?) = 5.70 x 10* cm?

1/3
j =2246 x 10°% cm




Example 1.2.3

Solution

Multilayer
Adsorption

Derivation of BET
Equation

Adsorption 11

A solution of palmitic acid (M = 256 g mol™') in benzene contains 4.24 g of acid per
dm>. When this solution is dropped on a water surface the benzene evaporates and the
palmitic acid forms a monomolecular film of the solid type. If we wish to cover an
area of 500 cm? with a monolayer, what volume of solution should be used? The area
covered by one palmitic acid molecule may be taken to be 0.21 nm>.

Let the volume v of palmitic acid solution be required to cover the desired area of
500 cm®. The number of molecules of palmitic acid in this volume is

-3
M (6.022 x 10% mol ™)
256 g mol

= (9.976 x 10*") x (v/dm?)
The area covered by these molecules would be

= (9.976 x 10*") (v/dm?) (0.21 nm?)
(9.976 x 10*") (v/dm?) (0.21 x 107" cm?)
2.095 x 107 (v/dm?) cm?

and will be equal to the given area of 500 cm?. Thus
2.095 x 107 (v/dm*) cm® = 500 cm®* or v/dm® =2.439 x 107

The adsorption of gases on the surface of an adsorbent is no more monolayer at
high pressures and low temperatures. At high pressure, the number of molecules
striking per unit area of the surface per unit time is quite high. On the other hand,
at low temperature the thermal energy of molecules is not sufficiently large to
overcome the forces of attraction (van der Waals forces of attraction) between the
adsorbed molecule and nearby unadsorbed molecule. This results into the multilayer
adsorption, i.e. more than one layer of molecules is adsorbed at the surface. The
formation of multilayer is very much enhanced as the pressure of the gas reaches
near to the saturation vapour pressure of the liquefied adsorbent at the given
experimental temperature. Consequently, the shape of adsorption isotherm is no more
identical with that given in Fig. 1.2.1. In fact, four different types of isotherms are
observed. These are shown in Fig. 1.2.4 along with the monolayer adsorption
isotherm.

The adsorption isotherms shown in Fig 1.2.4 have been interpreted by Brunauer,
Emmett and Teller on the basis of formation of multilayer. They derived a theoretical
expression, known as BET adsorption isotherm, on the lines very similar to those
adopted by Langmuir. While deriving the expression, it was again assumed that interac-
tions amongst the adsorbed molecules in the adsorption layer along the adsorbent
surface are neglected.

The formation of multilayer may be represented by the following equilibria.
G+S = GS
G+GS = G,S
G+G,S = G;S (1.2.15)

G+G, S = G,S

n
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where G, S, GS, G,S, ---, represent, respectively, the unadsorbed gaseous molecule,
the vacant site of the adsorbent surface, single molecule adsorbed per vacant site,
two molecules adsorbed per vacant site and so on.

|
i I
1
! | T
£ i il
I ! £
: =
)
1
!
|
:p() pO
p — p —
1
1
1
1
1
1
1
| T
1
T | s
I & i v
= !
1
!
1 Po Po
p— P —
\
£
=
Po
p —

I Monolayer formation: Examples: N, at —195 °C on charcoal and O, at — 183 °C on
charcoal.

IT Examples: N, at — 195 °C on Fe catalyst and N, at — 195 °C on silica gel.

[II Examples: Br, at 79 °C on silica gel and I, at 79 °C on silica gel.
Fig.1.2.4 Five v

different types of
adsorption isotherms V' Example: Water vapour at 100 °C on charcoal.

Example: Benzene on Fe,O5 at 50 °C.
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The various equilibria of Eq. (1.2.15) may be characterized by the equilibrium
constants defined as follows.

,_ [GS]
' [G]IS]
= [GZS]
>~ 61 [GS] (1.2.16)
k- 1G:S]
[G][G,S]
.................. ,andso on.

Now, as usual, we will have:
(i) [G] o< pressure of the gas, that is,
[G] = p
(i) [S] o< the fraction of the free surface, that is,
[S] =< 6,
(iii) [GS] o= fraction of surface covered with single-molecule adsorption, that is,
[GS] =< 6,
(iv) [G,S] o< fraction of surface covered with two-molecule adsorption, that is,
[G,S] =< 6,
..................... , and so on.
With the above relations, the expressions of equilibrium constants (Eqs 1.2.16)
become

6,

6, (1.2.17)

.................. 5 and SO On.

The value of constant K, is usually very large as compared to the rest of the
equilibrium constants. The reason for this is that the interaction between the
adsorbate and the adsorbent decreases very rapidly as the distance from the surface
is increased. The remaining constants K, K, ..., etc. though will not have the same
values, but the difference between any two constants is generally much smaller
than that between K, and K. It is for this reason, it can assumed that

K, ~K;~K,~..~K (1.2.18)
where K| is the equilibrium constant corresponding to the saturated vapour-liquid
equilibrium and, by definition, is given as

saturated vapour — liquid

1

K =— (1.2.19)
Do
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With the approximation given in Eq. (1.2.18), the various equilibrium constants
of Eqgs (1.2.17) are reduced to

K=
Py

0
K,=K =—

6, (1.2.20)
K=K, = LY

rb,
.............................. . and SO On.

Rearranging the above expressions and making use of Eq. (1.2.19), we get
6, = K,p6,

1
0,= K, p6, = (—)P(Klpeo) = K]P(ij 6y
Po Do

2
1 p p
0.=K, po,=|— KP—9]—K (—je
3 LP%2 (Po)p( ! Do ‘ P Po .

................................. , and so on.

(1.2.21)

If we assume that the entire adsorbent surface is covered, then the total coverage
of the first layer will be given by

O =G+ 6+ 0, + - =1 (1.2.22)
Substituting the values of 6, 6,, --- from Eqs (1.2.21), we have
2
Oota1 = Op + K\pOy + Kip (ij 0, +Kp (ﬁ] O+ =1
Po Po
2
=6 |1+ Kp 1+(£)+(£] +oepl =1 (1.2.23)
Do Po

Since p/p, < 1, the expression within the curly brackets of Eq. (1.2.23) can be
written as

2 -1
1
i s (Aj N (ﬁ) - {1—(£ﬂ - — (1.2.24)
Po Po Po 1-(p/py)
Substituting Eq. (1.2.24) in Eq. (1.2.23), we get
p
B0 = O 1+#} =1
total 0|: 1_(p/p0)
1 1-p/
or £ P (12.25)

0, = -
O 1+Kp/{l-(p/py)}  1+K,p—p/p,
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Now the total volume of the adsorbed gas (corrected to STP) will be given by
Uiotal = Umono (01 + 292 + 393 ) (1.2.26)

where U, 1 the volume required for the monolayer adsorption. Substituting the
values of 8,, 6,, 6;, ... from Eqs (1.2.21), we get

2
1+2(£j+3(£j +:| (1.2.27)
Po Po

The expression within the bracket of Eq. (1.2.27) is simply a derivative of the
expression within the curly bracket of Eq. (1.2.23). Thus in view of Eq. (1.2.24),
we get

Vtotal = Pmono K 1P90

2
I +2(ﬁj +3(£j bom— L (1.2.28)
Do Po A-p/py)
Substituting Eq. (1.2.28) in Eq. (1.2.27), we get
Kb,
Utotal = Vmono (1_p/p0)2 (1229)
Substituting the expression of 6, from Eq. (1.2.25), we get
Vmono K
Vo = mono =17 (1.2.30)

(1= p/py)(1+ K p—p/ py)

The pressure p in the above expression may be replaced in terms of relative
pressure (p/p,) as shown below.

£l
Y A (1.2.31)
P=Po Po Ky \ py

Thus, substitution of Eq. (1.2.31) in Eq. (1.2.30) gives

Umono (KI/KL)(p/pO)

Vigpal = 1.2.32
ol = 0= ol o) 1+ (K, KL) (0! p) = (01 o)) e
The ratio K/K; is designated by the symbol C. Thus, we have
() C(p/
mono <P/ 1) (1.2.33)

Yol = (1= 1l po) 1+ C(p/ pg) — (P! o)}

Equation (1.2.33) is the required Brunauer, Emmett and Teller equation for
multilayer adsorption of gaseous molecules (written in short as BET equation).

Equation (1.2.33) may be written in the form

1 _
p _ c-1 r (1.2.34)
Vyotal (Po = P) UnnonoC UnmonoC Do
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Physical
Significance of the
Constant Cin BET
Equation

Derivation

of Langmuir
Equation from
BET Equation

Thus, a plot of p/{v,,.1 (po — p)} against p/p, should give a straight line, whose
intercept and slope are 1/(v,,,, C) and (C — 1)/(V,0n, ), respectively. The two
constants v, and C can thus be evaluated. Knowing v,,,,,, the surface area of the
adsorbent can be determined by following the method given earlier in this section

(Eq. 1.2.13).

The adsorption equilibrium constant K is related to the standard change in the free
energy A G° by the relation

AG°=AH°—-TAS°=—-RT In K} ; (where K§ =K, p°)
Therefore
K = exp(Ayq SP/R) exp(~ A g HF/RT)

| exp(AdechlJ/R T)
where g, is the entropy factor and Ay A7 is the standard enthalpy of desorption of
the monolayer formation. Similarly, for the equilibrium constant K|, one can write
K7 =g exp(Ay,,H{/RT) ; (where K} = K| p°)

where A, HY is the standard enthalpy of vaporization of the liquid adsorbate.

vap

The ratio of these two equilibrium constants, which is equal to C in BET equation,
is given by

Ky exp(A g HY/RT Ay HY — A, HY
C= (1) _ &1 p( des 1O ) ~exp des® 1 ap” ‘L (1235)
KL gL exp(AvapHL /RT) RT
Equation (1.2.34) may be written as
1 1 -
Pl _ Lo, c-1, (1.2.36)
Vtotal (pO - p) Unono c Urnono C
K 1
Now C=—-L and K = —
KL Do
Thus €= =1 S oK
us === =
K.~ Wpy 7
or K, = L
Po
Substituting the above relation in Eq. (1.2.36), we get
1 1 C-1
PPy _ (12.37)

Utotal(po - p) Unono Kl Ummono c
Now if we assume that C is much greater than one and that p, is much greater
than p, then Eq. (1.2.37) is modified to

1
p 1 1 _»
K, ()

(1.2.38)

Utotal vmono mono

which is, in fact, the Langmuir equation (1.2.12).
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Isotherms of
Fig. 1.2.4

Example 1.2.4

Solution

Adsorption 17

The five isotherms shown in Fig. 1.2.4 can be explained on the basis of BET
equation as described below.

Type I This type of adsorption is obtained whenever p/p, < 1 and C>> 1. Note
that under these conditions, we have deduced above the Langmuir equation (1.2.38)
and hence the adsorption in the present case is monolayer.

Type I This type of adsorption is observed when C is considerably greater than
one or, in other words, Ay 4}’ is greater than A, " The intermediate flattish
portion corresponds to the formation of monolayer.

Type III  This type of adsorption is observed when C is considerably smaller than
one, or in the other words, Ay /7y is less than A, AP. There is no intermediate
flattish portion indicating that the formation of multilayer takes place from the
very beginning.

Type IV  In the lower pressure region, the shape of the adsorption is very similar
to that observed in the type II indicating the formation of monolayer followed by
the development of multilayer. The essential condition of Ay /] being greater than
AypHy is still satisfied. However, the shape of the adsorption as p — p, differs
from that observed in type II. In the present case, the adsorption reaches a limit at
pressures well below the saturation vapour pressure. This has been explained on
the basis of multilayer formation along with the possibility of filling the capillary
pores as a result of condensation of the adsorbate at pressures appreciably below
the saturation vapour pressure.

Type V  Again, the lower portion of the diagram in this case is very similar to
that observed in the type III indicating that Ag.f7} is less than A, /7. The higher
portion is identical to that of type IV indicating the saturation in adsorption at
pressures below the saturation vapour pressure. This has been again explained on
the basis of filling the capillary pores as a result of condensation of the adsorbate
at pressures appreciably below the saturation vapour pressure.

In the adsorption of N, at 90.1 K on a certain solid, the following volumes of gas, reduced
to standard conditions, were found to be adsorbed per gram of solid at the indicated relative
pressures p/p,, where p,, is the saturated vapour pressure of liquid nitrogen.

P/py 0.05 0.10 0.15 0.20 0.25
v/em’ 51.3 58.8 64.0 68.9 74.2

Evaluate the constants v,

and C in the BET equation.

For testing BET equation, we plot a graph between 1/[v {(p,/p) —1}] and p/p, whose
slope and intercept are equal to (C — 1)/(Vyn, C) and 1/(Vp,,, C), respectively. Thus
from the given data, we have
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Fig. 1.2.5

3

cm
ooy v/’ Polp e’
v{(po/p)—1}
0.05 513 20 _ Y —o00103
513x19
0.10 58.8 10 L —0.00190
58.8%9
0.15 64.0 6.67 L 000276
64.0%5.67
0.20 68.9 5.0 L 000363
68.9% 4
025 742 40 L 000449
742%3

The plot of 1/[v{(p,/p) — 1}] versus p/p, is shown in Fig. 1.2.5.

T

0.006 0.0026

002
slope =015 - 0.017 3

intercept = 0.000 15

T

0.004

0.002 [~

(em* i@y p) ~ 1}

0.00015

|
0 0.05 0.10 0.15 0.20
plpy —=

The slope and intercept of the BET equation are;

slope = (l) % =0.0173 cm™

mono

intercept = ! =0.000 15 cm™

-3
slope  _ C_1= 0.017 3 cm = 1153
intercept 0.000 15 cm™
Hence, C=116.3
From the intercept expression, we have

Thus

1
v = -
e ox (intercept)
Substituting the values of C and intercept, we get
Umono = ! =57.32 cm3

(116.3)(0.000 15 cm™)
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Solution

Thermodynamic
Treatment of
Adsorption

Adsorption 19

From the answer of Example 1.2.4, find the area of the solid in square metres per gram, and the
value of Ay 17— A, Hy . Given the area of nitrogen molecule equal to 0.162 nm?.

Number of molecules in the obtained value of v,

in Example 1.2.4

v,
= | 1 | (6.022 % 10* mol™)
22 414 cm” mol

B (57.32 cm?)
22 414 cm?® mol™

j (6.022 x 10% mol ™) = 1.540 x 10*!

Thus Area/g of adsorbent = Area of nitrogen X Number of molecules adsorbed

= (0.162 x 107'® m?) (1.540 x 10"
=249.5 m’

Now, the constant C is related to Ay H7— A,,,Hy by the expression
C ~ exp{(AgeH— A HY)RT)

Hence, Age Y — Ay = RT In C

= (8314 J K mol™) (90.1 K) (2.303 x log 116.3)

vap

=3563.5J mol™

Jura and Harkins extended thermodynamically derived Gibbs equation (see Section

1.4) to the adsorption of gases on solids on the assumption that the adsorbed films

of gases on solid surfaces are similar to those at liquid-vapour interfaces. The Gibbs

equation is given by

_ 1y
RT dlna

where I is the excess concentration of solute per unit area at the surface.
For the adsorption of gases, Eq. (1.2.39) takes the form

(1.2.39)

1
r=- %

T r— 1.2.40
RT dIn(p/p°) ( )

where p is the pressure of the gas and p° is the standard-state unit pressure. Now
the excess concentration of solute per unit area at the surface will be equal to
concentration of adsorbed gas since the concentration of gas in the bulk of adsorbent
is zero. If v is the volume of gas adsorbed per unit mass of solid and ¢ is the
surface area of the solid per unit of mass, then

. v
Volume of gas adsorbed per unit surface area of adsorbent = p

Now, if V,, is the molar volume of the gas, we will have

. 1 (v
Amount of gas adsorbed per unit surface area of adsorbent = 7o (Gj

m

and this will be equal to surface excess concentration at the surface. Thus
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(3
=75 (1.2.41)
Substituting Eq. (1.2.41) in Eq. (1.2.40), we get
[
- L dr (1.2.42)
o0V RT dIn(p/p°)
dy =— 22T 410 oo 1243
or 7= gy dIn ) (1.243)

The change in surface tension dy of absorbent may be correlated with the area of
cross-section of the absorbed molecules. Lesser the area, larger the number of
molecules absorbed per unit area of the adsorbent and hence larger the decrease in
the surface tension of the latter. The dependence of surface tension ¥ on the cross-
sectional area 4 of the molecule of adsorbate may be represented as

Yo—7Y =b—ad (1.2.44)
where b and a are constants. From Eq. (1.2.44), we have
dy=ad4 (1.2.45)
Now
Number of molecules of gas adsorbed per unit area of adsorbent
N,V
=N.I =
A oV,
Thus
Area of cross-section of a molecule of gas absorbed
4= 1 _ oV,
N, NV
Hence, dA=- imz dv
Npv
Substituting d4 in Eq. (1.2.45), we get
V.
dy=ada=-2Tm gy (1.2.46)
N,V
Substituting Eq. (1.2.46) in Eq. (1.2.43), we get
= 9% gy = PR G i)
N, v? oV,
90V 0 e
o NEr p "4 er)
Integrating the above expression, we have
ac? Vrﬁ 1 .
- —2NART 2 + 1 =1In (p/p°) (1.2.47)

where / is a constant of integration. Thus, if In (p/p°) is plotted against 1/v?% we
get a straight line with slope equal to (— ac? an/ZN WRT).
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Harkins and Jura
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Solution
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According to Eq. (1.2.47), the slope of the graph of log (p/p°) versus 1/ Vs given
by

ac’V: 1
slope = - —— ——
2N,RT 2.303
2 2x2303X N,RT
Hence, o= > (- slope)
aVvy
2x2303x N,RT )
or o= |22 >; A (~ slope)'”?
aVvy
=k, (~ slope)"? (1.2.48)

where k, is a constant and is equal to (2x2.303XN,RT/aV.>)"?. For area in
square metre per gram of adsorbent, &, is equal to 4.06 X 10° m™! for nitrogen at
—-195.8 °C.

Using the data given in Example 1.2.4, determine the area per gram of the adsorbent.
Equation (1.2.47) is

2172
_aocVy 1 +7=In £
2NART 1 Po
2172
or _ ao Vm 1 % 4 1 :log L
2NART 2303 v 2.303 Do

Thus, we may plot log (p/p,) versus 1/v? to determine the surface area. The slope of the
line will be equal to (— ac* Vnz1 /4.606 N,RT). From the given data, we have

P/po v/em’ log( p/py) 10%(1/0%) cm®
0.05 51.3 2.699 0 3.80
0.10 58.3 1.0000 2.89
0.15 64.0 1.176 1 2.44
0.20 68.9 1.3010 2.17
0.25 74.2 1.3979 1.87

The plot of log (p/p,) versus 1/v* is shown in Fig. 1.2.6.
The slope of the given equation will be — 0.355 x 10% cm®, i.e. — 35.5 x 107'% m®.
Since
o=k (- slope)'?
we have
6 =(4.06 x 10° m™) (35.50 x 1071 m®)!?
=(4.06 x 10° m™) (59.58 x 10° m®)

= 241.8 m%/g of adsorbent
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Fig. 1.2.6

Problem 1.2.1

Solution

T4
slope =—0.49/(1.38 x 10%)
=-0.355x10*

T2+

10 -
= .51
S
en
2 28

138x 1074 \
2.6 | | | | | |
1.6 2.0 2.4 2.8 32 3.6 4.0

(eml/v?) x 104 —

The variation of surface tension of an adsorbent is related to the surface excess concentration
of a gas by the relation

Y-Yo=a—-bI'
where a and b are constants. Show that the Gibbs adsorption equation when applied to gas
adsorption leads to the Freundlich adsorption equation.

The Gibbs equation when applied to gas adsorption has a form

1 dy
r=—- — —+ Eq. 1.2.40
RT dIn(p/p°) Eq )

where the surface excess concentration of the gas at the surface is given by

r=_Y% (Eq. 1.2.41)

It is given that
Y=Y =a-bl
Substituting the expression of I', we get

v
- =a-b —
T oV,

Hence, dy =- b dv
o/,

m

Substituting dy from the above relation and I" from Eq. (1.2.41) in Eq. (1.2.40), we get

v _ 1 [ bdv 1
oV, RT oV, ) dln(p/p°)

or dv (EJ d1n (p/p°)
v b



Problem 1.2.2

Solution
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d 1 y
or o ;dln (p/p°) =d In (p/p°)"

where 1/n = RT/b. Integrating the above relation, we get
In (V/°) = In (P/pP°)"" + In K

where In £’ is the constant of integration. The above expression may be written as
In (v/V°) = In (kp'")

or v=kp""

which is the required Freundlich adsorption equation.

The variation of surface tension of an adsorbent is related to the surface excess concentration
of a gas by the relation

_ =g+ RTvmono Inl|l-= v
r—h oV, L,

mono
where a is a constant and v, is the volume corresponding to the monolayer formation.
Show that the Gibbs adsorption equation when applied to the gas adsorption leads to the
Langmuir adsorption equation.

It is given that

Y—Yo=a+ RTV 000 In (1_ v ]

o Vm vanO
Hence, d»}/ = RTUmono _l/vmono dv
oV, 1-0/Vp000
Substituting dy from the above relation and I" from Eq. (1.2.41) in Eq. (1.2.40), we
get
v (_L) _RT dv !
oVy RT oVnl- v/vmono dIn(p/p°)
v dv 1
or =
(l_v/vmono) dIn (p/po)
dv
or v(—viv) =d In (p/p°)
dv dv
— + — =1 o
o v Ummono (1- U/vmono) dln (p/p )
or dIn ('U/UO) —dIn ‘{(‘Umono/vo)(l_‘U/vmono)}> =dIn (p/Po)

Integrating the above relation, we get

In (V/V°) — In {(Vy0ns /09 (1= /0,0 )} = In (p/p®) + In K,

mono

where In K| is the constant of integration. The above relation may be rearranged as follows.

v

In|— | =In(K]
[vmono(l_v/vmono)) ( lp)
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Change in
Enthalpy, Entropy
and Free Energy
on Adsorption

v
or —  =K/p
Vmono (1 -/ vmono)
or ! = (l_v/vmonoj
?, p
Klvmono v
1
or ; = E — P
K 1 vmono v vmono
p 1
or — = —; + p
v Klvmono vmgng

which is the required Langmuir adsorption equation (1.2.12).

The enthalpy of adsorption can, in principle, be determined from the measurements
of the pressures required to produce a given amount of adsorption at different
temperatures. The equation used for this purpose has the same form as that of
Clausius-Clapeyron equation and can be derived thermodynamically. Since there
exists an equilibrium between the adsorbed gaseous molecules and unadsorbed
gaseous molecules, the thermodynamic condition for the equilibrium requires that

My = U (1.2.49)

where (1, and g are the chemical potentials of unadsorbed and adsorbed gaseous
molecules, respectively. Now

u, = f(T, p) (1.2.50a)

and u,=7(T, 8) (1.2.50Db)
Now if the temperature and pressure are changed while keeping 0 constant (i.e. the
extent of a adsorption constant), the changes in chemical potentials are

du,=— S, dT+ V, dp (1.2.51)
dus=-S8,dT (1.2.52)

When a new equilibrium state is reached, these two changes are identical. Thus
du, = du

Making use of Eqs (1.2.51) and (1.2.52), we get
— 8, dT+ V,dp=-S§,dT

dp . _(Ss_Sg) _ Aads S

or aT - 7, = (1.2.53)
g
where A ;.S is the change in the molar entropy on adsorption. Now
Ay H

A4S = dT (1.2.54)
Thus, Eq. (1.2.53) becomes

9o Awl (12.55)

dr v,T



Fig. 1.2.7 Plot of

In (p/p°) versus 1/T
where p is the pressure
required to produce

a fixed amount

of adsorption at
temperature T

Derivation of
Eq. (1.2.57)
from Langmuir
Equation
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If the gas behaves ideally, then

d A H
Lo Dl gp (1.2.56)
p RT
which on integration gives
Ay H 1
In [ 2] = 2a6™ © 4 constant (1.2.57)
p° R T

Thus, a plot In (p/p°) against 1/T at a fixed value of 6 gives a straight line with
slope equal to A,y H/R (Fig. 1.2.7).

From the slope, the value of A,y [ can be determined. The curve showing the
variation of the pressure with temperature is called isostere (constant volume) and
the value of A,y /1 obtained from the slope is known as the isosteric enthalpy of
adsorption. The slope of In (p/p°) versus 1/T is negative indicating that A,y H is
negative (exothermic process).

<« slope =AqdsH/R

In(p/p°)—

/7T —
If Eq. (1.2.56) is integrated within the limits, we have

T,
’de_p w1y
R T
D p L
& _ AadsH L_i
In n =R\ T (1.2.58)

Thus, knowing p,, p,, T, and T}, A,4H can be determined from Eq. (1.2.58).

Equation (1.2.57) or (1.2.58) can also be derived directly from the Langmuir
equation (1.2.6), according to which, we have

0\ 1
k=(2 )1 1.2.59
: (1—0);9 (1:239)

The equilibrium constant K, depends on temperature. Its temperature dependence
will be given by the van’t Hoff equation. According to the latter, we will have
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dinK  AH°
dr RT?
Substituting K; from Eq. (1.2.59), we get
dln(leepj AH®
—-vp
= 1.2.60
dr RT? ( )

where p° is the standard-state unit pressure. If the factor 6 is kept constant,
Eq. (1.2.60) gets modified to

l:aln(p/po):| _ AGHC
of |y RT?

where AgH® will known as isosteric enthalpy of adsorption. Equation (1.2.61)
may be written as

(1.2.61)

AgH® .
dIn (p/p°) =— =2 5 dT (6 is constant)
RT
Integrating the above expression, we get
AgH®
In (p/p°) = ;?T + constant (Eq. 1.2.57)
The integration within the limits gives
ApH®
In P2 = 2077 (i—lj (Eq. 1.2.58)
P R L, T
The change of free energy on adsorption can be calculated from the relation
A4sG° =—RT In K$ (1.2.62)

Finally, the entropy change on adsorption can be calculated from the relation
Aads]_lo — AadsGO

A4 S° =
ads T

(1.2.63)

Example 1.2.7 The data below show the pressure of CO required for the volume of adsorption to be 10.0
cm® at each temperature (all volumes corrected to 1 atm and 273 K). Determine (i) the
enthalpy of adsorption at this coverage, (ii) change of free energy on adsorption at 230 K,
and (iii) entropy change on adsorption at 230 K.

T/K 200 210 220 230 240 250
p/mmHg 30.0 37.1 45.2 54.0 63.5 73.9
Given also that ¥, = 110 cm’.

Solution (i) Isosteric enthalpy of adsorption can be determined from the slope of the graph

between log (p/p°) and 1/T. The slope is equal to A, /4/2.303R. Thus from given
data, we have

p/mmHg 30.0 37.1 452 54.0 63.5 73.9
log (p/mmHg) 1.4771 1.5694 1.6551 1.7324 1.8024 1.8680
T/K 200 210 220 230 240 250

K/T 5%107° 476 x 107 455%x 107 435%x 107 4.17x1074.02x 107
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The graph between log (p/p°) and 1/T is shown in Fig. 1.2.8. The slope of the graph is

— 395 and thus the slope of Eq. (1.2.58) will be — 395 K. Hence

Al 395 ¢
2.303R
or A H = (2.303)(8.314 J K mol™) (- 395 K)
=—7563 I mol™
(ii) At 230 K, the fraction of area covered will be given by
V 3
e
Vmono 1100 cm
Hence, K, = 6 1 _(_009%9 1
1-6 p {1-0.0909 ) \ (54.0/760) atm

= 1.4073 atm™
A,4G°= — RT In K3

=—(8.314 J K" mol™) (230 K) (2.303 x log 1.407 3)

=—653.35 J mol™!
(iii) Now since
AG° = AH° — TAS°
we have AS® = AH? - AG®

Substituting the given data, we have

-1 -1
Ay S° = —7563Jmol™ —(-653.35])mol™ _ _ 30.04 J K~ mol™
230K
185~ slope = — 0.233 / (0.59 x 10°%)
i =395
T 175
I ~0233
E 165
g
&
g
1.55 0.59 x 1073
1.45 \ \ \ \ \
4.0 42 4.4 4.6 48 5.0

(1/T) x 103 K
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Example 1.2.8

Solution

The AH of adsorption at constant amount of vapour adsorbed is called the isosteric
enthalpy of adsorption, AgH. The adsorption of N, on charcoal amounted to 0.894 cm’
(STP) g™! at p = 4.6 atm and 194 K, and at 35.4 atm and 273 K. Calculate ApH.

Employing the reaction
AgH (1 1
i 22 = S (11
D R I, T

4.6 atm] _ AgH ( 1 1 )

h I —— 1| = 3147k Tmol! | 104K ~ 273K
we have “(35_4atm 8.314JK "mol™" (194K ~ 273K

AgH = (8314 JK ™' mol™) (MKJ (2,303 log ﬂj
79 35.4

=—11376 J mol™ = — 11.376 kJ mol™

1.3 PHYSICAL ADSORPTION AND CHEMISORPTION

On the basis of forces of attraction between adsorbent and adsorbate, adsorption
has been classified into two categories, namely, van der Waals adsorption (or
physical adsorption) and chemisorption (or activated adsorption). The general
characteristics of these adsorptions are described in Table 1.3.1.

Table 1.3.1 Characteristics of Physical Adsorption and Chemisorption

Physical Adsorption Chemisorption
1. The forces of attraction between adsorbent The forces of attraction between adsorbent
and adsorbate are of van der Waals type and absorbate are of chemical nature
(weak forces). (strong forces).
2. This predominates at low temperatures. This usually occurs at high temperature.
3. Almost all gases show this type of It is highly specific in nature.

adsorption at low temperatures.

4. The enthalpy of adsorption is low and has  The enthalpy of adsorption is high and has
a value of about 20 kJ mol ! or less. a value of the order of 80 to 420 kJ mol .

5. This type of adsorption attains equilibrium This type of adsorption is relatively slower.
very rapidly on changing the temperature
and pressure of the system.

6. This is reversible in nature. This is usually irreversible in nature. For
example, O, adsorbed on charcoal, when
desorbed also contains CO and CO,.

7. The activation energy involved in this The activation energy involved in this
adsorption is small and is often less adsorption is high. It is for this reason
than 5 kJ mol . It is for this reason, this this is attained only at high temperatures.
is even attained at low temperatures.

8. Adsorption in this case is often multilayer. Adsorption in this case is monolayer and

thus Langmuir adsorption isotherm is
applicable.




Fig. 1.3.1 Potential
energy diagram for
physical adsorption (P)
and chemisorption (C);
(a) with no activation
energy, and (b) with an
activation energy
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Sometimes physical adsoprtion can pass over to chemisorption on increasing the
temperature of system. For example, hydrogen shows physical adsorption on a nickel
surface at 73 K. On increasing temperature, the extent of adsorption decreases
sharply as is to be expected. But very soon, the extent of adsorption starts increasing
and attains a maximum value at about 173 K. Beyond 173 K, the extent of adsorption
again starts decreasing. Thus, the physical adsorption which predominates at 73 K
is passed over to chemisorption at 173 K. This transformation can be explained on
the basis of intersections of potential energy curves of physical adsorption and
chemisorption as shown in Fig. 1.3.1.

v}

AE;
AEc

AEc

(2) (b)

The potential energy diagram of physical adsorption shows a shallow minimum
at a relatively long distance from the surface as compared to the larger minimum
observed in case of chemisorption. The depths of these minima are in agreement
with the enthalpies of adsorption involved in these two cases. It may be seen that
at a distance very large from the surface, the gaseous molecules have zero potential
energy in case of physical adsorption while those in case of chemisorption have a
positive value. These suggest that the molecules in physical adsorption are not very
much perturbed as a result of weak forces of attraction while those involved in
cheimsorption are very much perturbed. The perturbation may be present even up
to the extent of excited electronic state or a dissociated state and thus the molecule
in chemisorption is altogether different from the ground state of the molecule. The
two potential energy curves may intersect each other and at the point of intersection,
both of them have the same energy. As in the interaction of two atomic orbitals to
form bonding and antibonding orbitals, we have two different states, one with higher
and one with a lower energy, as shown by the dashed curves in Fig. 1.3.1b. At round
about these intersection points, the physical adsorption can pass over to the
chemisorption. Now this passing over may or may not require activation energy.
In the latter, the intersection occurs on the negative side of the potential energy of
physical adsorption while in the former, it takes place on the positive side of potential
energy. These two cases are also shown in Fig. 1.3.1.
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1.4 ADSORPTION AT THE SURFACE OF A LIQUID

Gibbs Adsorption
Equation

The concentration of a solute at the surface of a solution may be different from
that present in the bulk. While discussing the surface tension of a liquid, we
have seen that the surface tends to decrease its surface area in order to obtain a
minimum value of surface free energy. The latter arises because of the unbalanced
molecular forces experienced by the molecules at the surface. It was also seen
that the surface tension is numerically equal to the surface energy per unit area of
the surface. Now if the added solute has a surface tension lower than that of the
liquid, then it has a tendency to accumulate more at the surface of the liquid since
this way the surface tension of the liquid (or the surface free energy per unit area
of the surface) is decreased. A quantitative expression which relates the excessive
concentration of the solute at the surface (or the extent of adsorption) and the
change in surface tension of the liquid (solvent) due to the addition of the solute
was derived by J.W. Gibbs and is thus known as Gibbs adsorption equation. The
latter can be derived as follows.

Following the additivity rule, the free energy of a system consisting of two
components is given by

G=miy + mu (1.4.1)

where 7, and n, are the amounts and u; and u, are the chemical potentials of the
two components, respectively.

Since in the present case we are dealing with the change in the surface free
energy, we must also add a factor corresponding to surface energy in Eq. (1.4.1).
If y is the interfacial tension (or the interfacial energy per unit area) and s is the
surface area, then the surface free energy is equal to ys. Thus, Eq. (1.4.1), in the
present case, modifies to

G=mnp+ml,+7ys (1.4.2)
The complete differential of Eq. (1.4.2) is given by
dG = ndu, + y,dn; + n,dy, + p,dn, + yds + sdy (1.4.3)

The function G will now depend on five independent variables, namely, 7, p,
ny, n, and s, i.e.

G=f(T, p, ny, ny, s) (1.4.4)
The total differential of G will be given by

dG (E)G) dT+ (BGJ dp + (BGJ d
= | — — \p o n
oT P.ny,ny,8 ap T,n,ny,s anl T,p,ny,s 1

+(8GJ d +(8G) ds (1.4.5)
= n e 4.
anZ T,p,n,s : aS T,p,n,n,

or dG =-8dT + Vdp + w,dn; + tydn, + yds (1.4.6)
At constant temperature and pressure, Eq. (1.4.6) reduces to
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From Eqgs. (1.4.7) and (1.4.3), we get

nydy; + nydu, + sdy=10 (1.4.8)
The corresponding expression for the bulk of the liquid is
7Y duy + nS du, =0 (1.4.9)

where n(f and ng are the respective amounts of the liquid and solute in the bulk phase.

Now since the system is at equilibrium, the chemical potential of each of the
components in both phases (surface and bulk) must be identical. When the system is
slightly disturbed and it attains the new equilibrium, then the changes in chemical
potentials must be identical in both the phases, i.e. the differentials du; and du, in
Eqgs (1.4.8) and (1.4.9) are identical. Eliminating du, from these two equations, we get

0
n, (_n_%) dﬂzj + nydu, + sdy=0
n

0
or (nz—%J du, + sdy=20
1

dy nm —(nlng/nlo)

du, s
The expression within the bracket of Eq. (1.4.10) gives the amount of solute
that would be associated with the amount 7, of the liquid in the bulk phase. Since
n, is the amount of solute that is associated with the amount », of the liquid at the
surface, the numerator on the right-hand side of Eq. (1.4.10) gives the excessive
amount of solute that is present in the surface of the liquid. Dividing this quantity
with s gives the excessive concentration of solute per unit area of surface. This
quantity is represented by the symbol I",. Thus, we have

n=-3 (1.4.11)

du,
Equation (1.4.11) is the required Gibbs adsorption equation. If we eliminate dii,
instead of du | from Eqs (1.4.8) and (1.4.9), we would have got the Gibbs adsorption
equation as applicable to the solvent. It has a form

(1.4.10)

Fl:f_

1.4.12
m (1.4.12)

where I is the surface excessive concentration of the solvent at the surface of
liquid.

The chemical potential of the solute is given by
My =p3(1) + RT In a,
where (5 (1) is the chemical potential of pure solute in liquid phase. Hence
du, =RTd In a, (1.4.13)
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Example 1.4.1

Solution

Substituting Eq. (1.4.13) in Eq. (1.4.11), we get

1 dy a, dy
rn=—_— — —_ 22 1 1.4.14
2 RT dna, RT da, ( )
For a dilute solution, we have
d
n--—L__& _ 99 (1.4.15)

" RT dln(c,/c®)  RT de,

where ¢° is standard unit concentration.

According to Szyszkowski, the surface tension of an aqueous solution of butyric acid is
related at 291 K to the bulk concentration ¢ by the empirical relation

y* — y=(29.8 dyn cm™") log {1 + (19.64 mol™' dm*)c}
where y* is the surface tension of pure water. Apply the Gibbs adsorption equation to

calculate the excess concentration I” of solute per square centimetre of surface when
¢=0.01 mol dm™. What would be the value of I" when ¢ becomes infinite?

The Gibbs adsorption equation is

c dy

:*EE (H

The expression of dy/dc can be determined from the given empirical relation
y* —y =(29.8 dyn cm™) log {1 + (19.64 mol™! dm®)c}

_ (ﬁ dyn cm—l) In {1 + (19.64 mol™" dm®)c}

2.303
- dy ( 29.8 dyn cm*) 19.64 mol™! dm?
uss de 2303 1+(19.64 mol ' dm®)c

Hence, Eq. (1) becomes

c (298 O 19.64 mol™! dm?
I' =— | ——dyncm 3
RT \2.303 1+(19.64 mol™' dm*)c

Substituting the given data, we get

0.01 moldm™ ( 29.8

I = - — — dyn cm’lj
(8.314x10"ergs K™ mol™")(291K) \2.303

y 19.64 mol™! dm?
1+ (19.64 mol™! dm*)(0.01 mol dm™>)

=8.78 x 107! mol cm™2

The value of I"when ¢ becomes infinite will be given by

. . ¢\ 29.8 O 19.64 mol™! dm?
lim = lim |[ — || == dyncm
eme o [\RT N 2,303 1+(19.64 mol™! dm?)c
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Solution
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. 1 (298 r 19.64 mol™! dm?®
lim | —| ——dyncm -3
c>e= | RT\2.303 (1/¢)+19.64 mol ™! dm

_ 1 298 d -1
= — 2= dyncm
RT 2303

Thus, we have
1

. 29.8 dyn cm™
lim "= 7 B —
e (8.314x107 ergs K~ mol™)(291K)(2.303)

=535x 107" mol cm™

According to Szyszkowski, the surface tension of an aqueous solution of an acid is related
at 291 K to the bulk concentration ¢ by the empirical relation
y* — y=(0.030 8 N m™) log {I + (0.018 64 mol™! dm®)c}
where y* is the surface tension of pure water. Apply the Gibbs adsorption equation to
calculate the excess concentration I" of solute per square metre of surface when ¢ = 0.01
mol dm™. What would be the value of I" when ¢ becomes infinite?
The Gibbs adsorption equation is
r-- ¢ )
RT dc
Now dy/dc obtained from the given empirical expression is
dy  (0.0308Nm™ 0.018 64 mol ™! dm*
de 2.303 1+(0.018 64 mol ™! dm®)c

Hence, Eq. (1) becomes
ro < [o.osost‘lj [ 0.018 64 mol~' dm’ ]
RT 2.303 1+(0.018 64 mol ™ dm*)c
At the given value of ¢, we have

r- 10 mol m™ 0.0308Nm™
(8.314JK ™" mol™")(291K) 2303
y 0.018 64 mol™! (107! m)?
1+(0.018 64 mol™ dm*)(0.01 mol dm™)
=1.030 x 107® mol m™2

The value of I" when ¢ becomes infinite is

i . ( 1 ) 0.030 8N m™ 0.018 64 mol™! dm®
im r= lim || —
e coe |\ RT 2.303 (1/¢)+0.018 64 mol™" dm?

R [o.osost‘lj

T RT 2.303
- have - 1 0.030 8Nm™'
us, we have 8314 J K~ mol™)(291K) 2303

=5.53 x 10° mol m™
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Example 1.4.3

Solution

Surface-Active
Substances

Orientations of
Surfactants on
the Surface of a
Solution

The surface tension of ethanol-water mixtures follows the equation
y/(103 N m™) =72.0 - 0.5 (¢/mol dm™>) + 0.2 (¢/mol dm™>)>
where ¢ is the molar concentration of ethanol. The temperature is 298 K. Calculate the
surface excess of ethanol for a 0.5 mol dm™ solution.
From the equation
y/(10° N m™) =72.0 — 0.5 (¢/mol dm™) + 0.2 (¢/mol dm™)?
we get
d(y/103Nm™)
d(c/moldm™)

Thus, at ¢ = 0.5 mol dm™>, we have

=—-0.5+ 0.4 (¢/mol dm™)

d
d—l’ —(=0.5+04x05) (107 N m™ mol”" dm?)
=-03%x10°Nm" mol™! dm*=-03 x 10° N m? mol™
Hence, =< d—y
RT dc

3 (0.5 mol dm™)
(8.314J K" mol™!)(298K)
=6.05x 107" mol dm™ = 6.05 x 107'? mol cm™

(= 0.3 x 10° N m? mol™)

According to Eq. (1.4.15), I, is positive if (dy/dc,) is negative. In other words,
if the surface tension of a solvent is decreased as a result of adding a solute,
then the latter has relatively more concentration at the surface than in the bulk
of the solution. Substances which produce a marked reduction in surface tension
are known as surface-active substances or surfactants. The limiting value of the
decrease of surface tension with concentration, i.e. the quantity — (d)//dcz)c2 50
is called the surface activity. Most of the organic compounds if added to water,
decrease the surface tension of the latter, thus they are present in excess at
surface of water. Soaps, detergents and dyestuffs also belong to the surface-active
materials. The reason why the surface-active substances have a tendency to have
more concentration at the surface of water can be easily understood in terms of
solvent-solvent and solute-solvent interactions. In general, the interaction between
surface-active solute and solvent are of weaker nature than those existing between
solvent-solvent molecules. Because of the stronger interactions between the solvent
and solvent molecules, the solute molecules are pushed up to the surface from the
bulk of the solution and hence I, is positive. The presence of these substances
at the surface markedly decreases the molecular interaction in the surface layer.
Consequently, a sharp decrease in the surface tension is observed as more and
more of solute is added to the solvent.

In fact, any substance which exhibits positive deviations from Raoult’s law is
expected to have a positive value of I. Such a substance will be present in excess
at the surface of the solution. The orientations of surface-active materials such as
fatty acids and alcohols appear to be highly specific in nature, especially when the
concentration of the solution is fairly large. The carboxylic group or —OH group
points towards the surface of water and the hydrocarbon chain points vertically
away from the solution. This conclusion has been derived from the following
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equation as proposed by B. Szyszkowski on the variation of the surface tension of
relatively concentrated aqueous solutions of soluble fatty acids with concentration.

Lo xmE (1.4.16)
Y Y

where y and y* are the surface tensions of solution of concentration ¢ and of
pure water, respectively, and X and Y are constants. The value of X is found to
be constant for a series of fatty acids containing two to six carbon atoms whereas
that of Y decreases with increasing length of the hydrocarbon chain. Rearranging
Eq. (1.4.16), we have

y = y* {1 — X In (¢/mol dm™>) + X In (¥/mol dm™)}
Differentiating this, we have
dy = y* {- X d In (¢/mol dm™)}

dy
=— Xy* 1.4.17
or dIn(c/moldm™) Y ( )

Substituting Eq. (1.4.17) in Eq. (1.4.15), we get

Ly =x 2 (1.4.18)

RT RT

Since the right side of Eq. (1.4.18) involves only constant terms, it may be
concluded that the surface excessive concentration attains a constant value and is
independent of the length of the hydrocarbon chain of the fatty acid. This can be
explained on the basis of forming a single layer of fatty acid molecules with CO,H
groups pointing toward the surface and hydrocarbon tails pointing vertically away
from the solution. The concentration of the surface-adsorbed fatty acid increases
as the concentration of the latter is increased until a complete unimolecular layer
is formed. If the value of I"in the latter stage is known, it can be used to calculate
the area occupied by each molecule at the surface as shown in the following.

I, =

The quantity I represents the excessive concentration of solute at the surface,
thus the area 4 occupied by a single molecule will be equal to

where kg is Boltzmann constant. The reported value of X from the Szyszkowski
work is equal to 0.179. With this, the value of 4 at 293 K is found to be

e {8.314 J K 'mol ™" /(6.022 x10% mol)}(293 K)
0.179%(0.072 75 N m™)
=3.10x 107" m?

This value is slightly greater than the value obtained by other methods. This is
probably due to the intrusion of water molecules into the surface layer.

For surface-inactive substances dy/dc is positive, i.e. an increase in the
concentration of a surface-inactive substance in a solution causes an increase in
the surface tension of the solution. From Gibbs equation, it follows that the value
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Surface Pressure

Fig. 1.4.1
isotherm

F-A

of I, in such cases is negative indicating that the substance has larger concentration
in the bulk in comparison to that present at the surface. This type of behaviour is
known as negative adsorption. Examples include most of inorganic salts, sugar,
etc. With surface-inactive substances, the concentration of solvent in the surface
layer changes very slightly and, it is for this reason, the increase in surface tension
is usually very small.

The fact that surface-inactive substances have more concentration in the bulk in
comparison to that present at the surface can be explained on the basis of solvent-
solvent and solute-solvent interactions. In general, the interaction between solute
and solvent are of stronger in nature than those existing between solvent-solvent
molecules. In view of this, the concentration of the solute is larger in the bulk since
it allows more interactions between solute and solvent and hence more stability. It
may be pointed here that the above interaction conditions also lead to the negative
deviations from Raoult’s law.

Certain insoluble substances such as long chain fatty acids and alcohols form thin
films on the surface of water. Many of the film forming substances are solids at
ordinary temperatures, but they can be spread as thin films on a water surface
by adding a small quantity of a solution of the substance in benzene on to the
water and allowing the benzene to evaporate. The spreading film can be confined
between glass barriers. It is observed that the force required to compress the film
increases gradually up to a certain stage followed by a steep rise. Figure 1.4.1
displays a typical variation of force against the available area per molecule of the
film forming substance. The graph shown in Fig. 1.4.1 is known as F—4 isotherm
and is a two-dimensional analogue of a p versus V isotherm. At large areas the
pressure is small and it increases slowly with decreasing area until an area of 4
is reached. For further compression of the film, the force required increases very
rapidly. It is reasonable to assume that at the area A, the molecules of film forming
substance are closely packed.

It is found that for a series of long-chain compounds with polar end-groups,
such as fatty acids, alcohols, amides and methyl ketone, the area A4, has a constant
value of about 0.205 nm?. Thus, the area 4, is independent of their chain length. The

\
\
\Am

Area/molecule —



Adsorption 37

constant value of 4,, can be explained on the basis that the molecules of these
substances have specific orientation at the surface with the polar groups pointing
towards water and the insoluble hydrocarbon chain projecting vertically away from
water. At 4,,, the molecules are closely packed forming a monolayer and thus
represents the area of cross-section of the hydrocarbon chain. The value of 4, can
be used to determine the length of the molecule. For example, the molecular
volume of solid steric acid is 0.556 nm?>. If / is the length of the molecule, then
it is obvious that
A, x1=0.556 nm’

Therefore
(0.556 nm®)  (0.556 nm?®)
I= - 2
A (0.205 nm~)
Since the surface excess concentration I is expressed in mol per unit area, it is

obvious that the area occupied by 1 mol of the substance is

1
o] T (1.4.19)
The film is compressed between a floating barrier and one of the movable strips
and the pressure of the film against the floating barrier is measured. The surface
pressure 7 on the movable barrier is simply the difference between the surface
tension of pure water and that of the film covered surface, i.c.

T=y*—y (1.4.20)

For dilute solutions, it is observed that the surface tension decreases linearly
with the concentration such that

=0.271 nm

Y =y*—-bc (1.4.21)
where b is a constant. Combining Eqgs (1.4.20) and (1.4.21), we get
= bc (1.4.22)

Now the Gibbs adsorption equation may be represented in terms of surface
pressure. We have

c dy
~ RT de
From Eq. (1.4.21), we have
dy=-bdc (1.4.23)

Substituting Eq. (1.4.23) and ¢ in terms of 7 from Eq. (1.4.22) in the Gibbs
adsorption, we get

(/b) (—bdc)

="
/4
= — 1.4.24
RT ( )
Substituting I from Eq. (1.4.19) in Eq. (1.4.24), we have
1 T

6 RT



38 A Textbook of Physical Chemistry

or

no =RT

Equation (1.4.25) is known as the two-dimensional ideal gas law and is
applicable to the monolayer film formed at the surface. Equation (1.4.25) may be
employed to calculate either 7 (i.e. — dy, the change in surface tension on adsorption)

or O.

Example 1.4.4 A film containing 5.14 x 107 g of an alcohol X (molar mass 242 g mol™!) spread on water
was compressed into a monomolecular layer occupying an area 15.0 x 17.9 cm?. The density
of alcohol is 0.818 g cm™. Calculate: (a) the area of cross-section of the molecule, (b) its
length, and (c) the decrease in surface tension of water at 298 K. Given y* = 0.072 N m™".

Solution ()

(b)

(©)

Number of molecules in the given mass of X

_ (514 x107g)

(242 gmol) (6.022 x 10% mol™) = 1.279 x 10"
g mo

Area occupied by these molecules = 15.0 X 17.9 cm® = 268.5 cm’

Hence, area occupied by a single molecule,

(268.5 cm?)
(1279 x 107)
Volume occupied by 1 g of X
1 1
p (0818gem™)
Volume occupied by 5.14 x 107 g of X

=2.09 x 1077 cm?

=1.223 cm® g

=(5.14x 107 g) (1.223 ecm® g7') = 6.284 x 10~ cm®
Volume occupied by 1 molecule of X

_ (6284 x 107 cm’)

1279 X 10 4914 x 107 cm’
. X

Let / be the length of the given molecule. It is obvious that

Ax1=4914% 102 cm’

_ 4914 x 102 em’ _ (4.914 x 1072 cm’)
A (2.09 x 1075 cm?)
=235% 107 ¢cm = 235 nm

Amount of X,

or /

-5
no= G108 154 % 107 mol
(242 g mol™)
Area occupied by the amount » of X = 268.5 cm?
Area occupied by 1 mol of X,

B (268.5 cm?)
(2.124 x 107 mol™)

=1.264 x 10° m® mol™!

=1.264 x 10° cm? mol™
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Solution
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Using two-dimensional ideal gas law no=RT, we have

RT  (8.314NmK ™ mol™)(298K)
= —=

=0.0196 Nm!
- (1.264x10°m? mol ' m

Since 7= y* — y, therefore

y=y*-7 =0072Nm"' -0.0196Nm™
=0.0524Nm".

An insoluble compound X spreads on water to give a gaseous type film at low concentrations.
When 107 g of X is added to 200 cm? surface, the surface tension at 298 K is lowered by
0.20 dyn cm™". Calculate the molar mass of X.

Let M be the molar mass of X. Thus,

(107g)
M
m=y*—y=0.20 dyn cm™

Amount of X =

Using the two-dimensional ideal gas law, mto = RT, we have
_ RT _ (8314x10"dyn cm K" mol™")(298K)
T 0.20 dyn cm™
=1.239 x 10" em* mol™!
Now for 200 cm? surface area, the amount of the compound X is
(200 cm?)
(1.239x10" ecm? mol™)

=1.614 x 10~° mol

7
Hence, A07°8) — 1614 x 107 mol
M

(107 g)

- ——— 5 —61.94gmol”!
(1.614 10~ mol)

or

A protein with a molar mass of 60 000 g mol™' forms an ideal gaseous film on water. What
area of film per milligram of protein will produce a pressure of 0.005 N m™' at 298 K?

From the two-dimensional ideal gas law 7o = RT, we have
_ RT _ (8314NmK ' mol™")(298K)
T (0.005 Nm™)
=4.955 x 10° m? mol ™!

Amount of protein,
B (0.001g)
"7 (60 000 g mol™)

Area occupied by the amount »

60 000
=82.6 cm’

- ( 0.001 mol] (4.955 x 105 m? mol™") = 82.6 x 10~* m?
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1.1

1.3

1.4

1.5

1.6

1.7

1.8

REVISIONARY PROBLEMS

What do you understand by the terms (a) absorption, (b) adsorption,
(c) adsorbent, and (d) adsorbate? Assuming adsorption to be a spontaneous
process, show that it is always an exothermic process.

(a)Discuss how the extent of adsorption varies on,

(1) increasing the surface area per unit mass of adsorbent
(i1) increasing the temperature of the system, and
(iii) increasing the pressure of the gas.

(b) Show that the effects produced on the extent of adsorption by changing
temperature and pressure are consistent with the Le-Chatelier’s principle.
(a)What is an adsorption isotherm? Display qualitatively, how the extent of
adsorption varies with pressure at a constant temperature and also display the
effect of temperature on adsorption. Describe the five different types of adsorption
which are observed at high pressures.

(b) The adsorption of gases on solids can be described by the Freundlich’s
empirical relation

(ﬁ) — kplln
m

Explain, the terms involved in the above expression and also explain why the
value of # should be equal to or greater than one.

(c) Outline the assumptions made during the derivation of Langmuir adsorption
equation and hence derive this equation. Explain, how the variation of
adsorption is accounted for (i) at lower pressure, (ii) at higher pressure, and
(iii) in the intermediate range of pressure.
(d) Explain, how the surface area of an adsorbent can be determined with the
help of Langmuir adsorption equation.
Adsorption of gases on the surface of adsorbent is no more monolayer at high
pressures and low temperatures. Explain, why it is so.
Describe Jura and Harkins thermodynamic treatment of adsorption of gases on
solids.
If in an adsorption of a gas, surface tension of the adsorbent varies as

Yy —y*=a —-bl'
where a and b are constants, show that the Gibbs adsorption equation is reduced
to the Freundlich adsorption equation.
If in an adsorption of a gas, surface tension of the adsorbent varies as

RTv
Y=v*=a+ —2In (1 - V/Vy0n0)
m
where V,, is the molar volume of the gas and a is a constant, show that the
Gibbs adsorption equation is reduced to the Langmuir adsorption equation.

(a) Derive the BET equation

v _ vmono C(P/Po)
ol J1—(p/ p) H1+C(p/ py)—(p/ py)}
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(b) What is the physical significance of the term C in the BET equation?
(c) Show qualitatively how the BET equation accounts for the explanation of
five different types of observed adsorptions.
What do you understand by isosteric enthalpy of adsorption? Derive
thermodynamically the following relation

o) — Aacls]{

In (p/p°) >

What type of graph is expected between log (p/p°) and 1/ 7? What will be its
slope?
(a) Classify the adsorption of gases on solids on the basis of forces of interaction
between adsorbent and adsorbate. What are their main characteristics?

1
— + constant
T

(b) Sometimes physical adsorption can pass over to chemisorption as the
temperature of the system is elevated. Explain, how this can be explained on
the basis of intercrossing of potential energy diagrams of physical adsorption
and chemisorption.

(a)Derive the Gibbs adsorption equation
o 47
RT dc,

(b) What are surface-active substances? Explain, why the surface tension of a
liquid is very much modified in the presence of surface-active substances.

2

(c) Explain how on the basis of Szyszkowski work (on the variation of the
surface tension of relatively concentrated aqueous solution of fatty acids with
concentration of the latter), the specific orientation of fatty acids on the surface
of water can be derived. How does this help in determining the area occupied
by a single molecule of the fatty acid?

(d) Explain, why the surface tension of a solvent is not modified to a large
extent in the presence of surface-inactive substances.

(e) Justify the statement

“A Substance which exhibits positive deviation from Raoult’s law must also
exhibit a positive value of surface excessive concentration and if it exhibits
negative deviation then it must also exhibit a negative value of surface excessive
concentration.”

Gibbs adsorption equation is given as
r=- ¢ d
RT dc
The change in surface tension is usually expressed as the surface pressure by
the relation

T=yr-y
For dilute solutions, 7 may be taken proportional to solute concentration, i.e.
n=kc
Show that for ideal solutions, the Gibbs adsorption equation may be written as
c d
=< dt_
RT dc RT
! RT
T— =
or r,

or o = RT
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where o denotes the surface area per mole of solute. [Note that the equation
7o = RT has the form of two-dimensional ideal gas law. Hence, it may be
stated that the adsorbed film of gases (or any other adsorbate) follows two-
dimensional ideal gas law.]

TRY YOURSELF PROBLEMS

By considering the derivation of the Langmuir isotherm on the basis of a
reaction between the gas and the surface sites show that if a diatomic gas is
adsorbed as atoms on the surface (i.e. the reaction is A, + 2S == 2AS), then

o= VKP_
1+JKp
[Hint: k,p (1 - 6)* = k; 6]
Two gases, A and B compete for the binding sites on the surface of an adsorbent.
Show that the fraction of the surface covered by A molecules is

_ NN
1+bypa +bppy
In an adsorption experiment, surface tension of the adsorbent follows the relation
L _Bm (1+5)
Yo a

where B and a are constants. Show that

By, ( cla
r=—=2
RT (1+c/a)

If I' is assumed to be proportional to 6, the fraction of area covered, show that
the above expression may be written as

K,c
"1+ K,
[Note that the above relation is very similar to that of Langmuir adsorption
equation 0 = K, p/(1 + Kp).]

A

0=K

For adsorption of gases, the concentration in Gibbs adsorption equation may
be replaced by pressure, such that

S Y1 dy
RT dp RT dIn(p/p®)
If the surface pressure 7 is given by
T=y* -y
show that the film pressure may be determined from the expression

n=RT J‘Fdln (p/p°)

The surface tension of solutions of a sulphonic acid in water is found to vary as
y=y*-bc?
Derive the relation connecting 7 and o. [Ans. # 0= RT/2]

Show that at low surface coverage the Langmuir isotherm corresponds to the
Freundlich expression with » = 1. Show also that at high surface coverage the
Langmuir equation corresponds to the Freundlich expression with # equal to
infinity.
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NUMERICAL PROBLEMS

(a) What is the surface area of a cube having an edge-length of 1 cm?
(b) What would be the total surface area of the same material if it were
subdivided into colloidal-size cubes, each having an edge-length of 10”7 cm?
[Ans. (a) 6 cm? (b) 6 x 107 cm?]
The Freundlich isotherm can be written as V, = kp” " where k and n are
constants. The following data were obtained for the adsorption of methane on
10 g of carbon black at 0 °C. Show that the data follow Freundlich isotherm.
Determine the values of constants k and ».
p/mmHg 100 200 300 400
V,/cm?® 97.5 144 182 214
Predict whether following data on the adsorption of acetic acid on charcoal at
25 °C follow the Freundlich isotherm. If yes, what are the constants k" and »?
[acid]/mol dm™  0.05 0.10 0.50 1.0 1.5
m,/g 0.04 0.06 0.12 0.16 0.19
where m, is the mass adsorbed per unit mass of charcoal.
[Ans. ¥ = 0.160 and n = 2.32]
(a) The following table gives the volume v of nitrogen (reduced to 0 °C and
1 atm) adsorbed per gram of active charcoal at 0 °C at a series of pressures:
p/ Torr 3.93 12.98 22.94 34.01 56.23
v/(em® gt 0.987 3.04 5.08 7.04 10.31
Plot the data according to the Langmuir isotherm and determine the constants.
[Ans. k; = 156 Tort, v, = 40 cm’/g]
(b) If the area of nitrogen molecule is 0.162 nm?, what will be the area of 1 g
of charcoal in the above problem?

A study of adsorption of ethylene at —183 °C on a barium and stronium carbonate
coated cathode yielded the results:

p /Py Viem®
mmHg gas at | mmHg

and 25 °C
0.030 60 1.00 22.50
0.030 35 0.992 15.22
0.022 30 0.729 10.34
0.012 70 0.415 7.85
0.007 30 0.239 6.42
0.004 48 0.146 4 5.52
0.002 74 0.089 6 4.98
0.001 85 0.060 5 4.60
0.001 32 0.043 1 4.33

1.6

Compare the values for the volume of gas adsorbed for monolayer coverage
calculated from the Langmuir isotherm and the Brunauer-Emmett-Teller
equation.

One gram of activated charcoal has a surface area of 1 000 m?. If complete
coverage is assumed, how much ammonia (in cm® at STP) could be adsorbed
on the surface of 25 g of the charcoal? Given: diameter of NH; molecule =
0.3 nm.
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BET Isotherm
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Calculate the surface area of a catalyst that adsorbs 10°> cm® of nitrogen reduced
to STP per gram in order to form a monolayer. The effective area occupied by
nitrogen molecule on the surface is 0.162 nm?, i.e. 0.162 x 107 cm?.

[Ans. 449 m?]
The adsorption of water by a high polymer varies with the relative pressure of
H,0 as follows:
p/po 0.05 0.10 0.20 0.30 0.40 0.50
n/mol of H,O on
100 g polymer 0.040 0.070 0.125 0.180 0.2450  0.340

0.60 0.70 0.8 0.9 0.95

0.485 0.740 1.345 2.350 3.010

From a BET plot of p/n (p, — p) against p/p,, obtain the amount of water
adsorbed when the surface is covered by a monolayer.
Show that the data given in Problem 1.3 follow the BET and Jura and Harkins
equations. Calculate the area of the solid by each of the above two methods.
Nitrogen gas adsorbed on charcoal to the extent of 0.921 cm® g™! at a pressure
4.8 atm and at temperature of 190 K, but at 250 K the same amount of adsorption
was achieved only when the pressure was increased to 32 atm. What is the
molar enthalpy of adsorption of nitrogen on charcoal?

[Ans. — 12.7 kJ mol™']
(1) At 19 °C, the surface tensions, 7, of solutions of butyric acid in water can
be represented accurately by the equation

y=y*-—aln(1+bc)

where y* is the surface tension of water, while ¢ and b are constants. Set up
the expression for the excess surface concentration I" as a function of c.
(i1) For butyric acid, the constants a and b in the preceding problem are a =
13.1 and b = 19.62 mol™! dm®. Calculate I at a concentration of 0.20 mol
dm™. [Ans. 4.32 x 107'” mol cm™]
(iii) Calculate the limiting value of I"as ¢ becomes large.
(Hint: Assume bc > 1)
(iv) Assuming that the only molecules present in the surface are those
corresponding to the excess, calculate from the result of part (iii) the area
occupied by a molecule of butyric acid in the solution surface.

[Ans. 0.305 nm?]
The surface tensions of dilute solutions of phenol in water at 303 K were

mass % phenol 0.024 0.047 0.118 0.471
y/107° N -m™ 72.6 722 71.3 66.5
Calculate I, from the Gibbs adsorption isotherm for a 0.01 mass % solution.

The surface excess concentration of surface active reagent is found to
be 3 x 107'° mol cm™ at 25°C. Using the two-dimensional ideal gas law
7 0 = RT, calculate the surface tension of the solution. The surface tension of
pure solvent is 0.072 N m [Ans. 0.064 5 N m™']
The surface tension of an aqueous solution of a surfactant decreases linearly
with increase in concentration of the surfactant. If the surface tension of 2%
solution of the surfactant is 0.068 N m™' at 25°C and the surface excess
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concentration at this concentration is 20 x 10 g cm™, calculate the molar
mass of the surfactant. Given: y* = 0.072 N m™". [Ans. 129 g mol ']
(Hint: Use the relation n/I" = RT)

A certain substance forms a surface film that obeys the ideal two-dimensional
gas law. Calculate the excess surface concentration required to cause a surface
tension lowering of 0.01 N m™' at 25°C. [Ans. 4.04 x 10~° mol m™?]
An organic acid of molar mass 242 g mol™' forms a linearly ideal gaseous
monolayer on water at 25°C. Calculate the mass of acid per 100 cm? required
to produce a film pressure of 1 N m™. [Ans. 9.77 x 1077 g]



2.1 INTRODUCTION

Chemical Kinetics

The feasibility of a given reaction can be predicted with the help of thermodynamic
principles. Besides this, the relative amounts of reactants and products at
equilibrium position of the reaction can also be predicted. In addition, we can predict
whether changes in the experimental conditions will increase or decrease the amount
of a product at equilibrium. However, thermodynamic principles do not provide any
information regarding the speed of the given reaction, i.e. how much time a given
feasible reaction will take for its completion. Moreover, it is not possible to predict
how the speed of a given reaction gets affected by changing the concentrations of
various participants of the reaction or by changing the experimental conditions.
The study of rate of reactions including its dependence on the concentrations of
reacting species and the experimental conditions constitutes one of the topics of
physical chemistry and is known as chemical kinetics. The important application of
the study of rate of reaction is to use the kinetic data in establishing the molecular
pathway or mechanism by which the reaction takes place.

2.2 RATE OF REACTION AND RATE OF REACTION DIVIDED BY CONSTANT VOLUME

Average Rate
of Change of
the Amount of
a Reactant or a
Product

Reactions with wide difference in speeds are known. On one extreme, we have
reactions which proceed at very fast speeds. In some cases, the speed is so fast
that the reaction appears to be instantaneous, e.g. reaction between a strong acid
and a strong base. On the other extreme, reactions are known which proceed at
very slow speeds. In some cases, the speed is so slow that virtually no visible
results are observed. Examples include the reactions

H,(g) + CL(g) — 2HCI(g); (in dark)
Hy(g) + $ 0,(g) = Hy0()
C(graphite) + O,(g) = CO,(g)

Between these two extremes, we have reactions which proceed with measurable
speeds. Examples include the decomposition of dinitrogenpentoxide dissolved in
carbon tetrachloride, the hydrolysis of an ester, the reaction between persulphate
and iodide ions, and the hydrolysis of sugars.

By the term rate of change of amount of a reactant or a product, we mean the
disappearance of the amount of a reactant or appearance of the amount of a product
occurring in a unit interval of time. Its SI unit is mol s
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Consider, for example, the simplest reaction
A—B (2.2.1)

It is obvious that the amount of A will decrease whereas that of B will increase as
the reaction proceeds. Figure 2.2.1 displays a typical behaviour of the changes in the
amounts of reactant and product as the chemical reaction shown above progresses.

B

(”B)t3

(”B)t2 \
:E (”A)tl
5
=
3 (”B)t1
g
< (1A, / o

A)a+ D
(”A)r3
iy - \t5 (nA)S

4] [5) B3
t

Let (ny), and (n,), be the amounts of A at times #; and #,, respectively
(Fig. 2.2.1). The decrease in the amount of A (which we represent by —An,, note
the negative sign as the amount of A decreases with time) in the time interval
t, — t; (which we represent by Ar) is equal to (7, )t2 — (ny ),l . Hence, the decrease
in the amount of reactant A in a unit time interval becomes

—An, (my), —(my),

YAt ty—t

We will see shortly that the rate expressed by Eq. (2.2.2) changes during the
course of a reaction. In general, the rate in the beginning is fast and it decreases
as the reaction proceeds. Hence, the rate represented by Eq. (2.2.2) is an average
rate over the time interval #, — ¢,. It is for this reason, the subscript av has been
added to the symbol 7. Note that 7, is a positive quantity.

r (2.2.2)

If (ng), and (ng),, are the amounts of B at times 7, and 1,, respectively, the

increase in the amount of B (which we represent by Any, note the positive sign as
the amount of B increases with time) in the time interval ¢, — ¢, (= A¢) is equal to
(ng),, — (ng), . Hence, the average rate of increase in the amount of B over the

time interval ¢, to ¢, is

A (ng),, —(ng)
rév _ Hig _ B/t, B/t (223)
At tL—14
From Eq. (2.2.1), it follows that the decrease in the amount of A will be equal
to the increase in the amount of B and thus, we have

v, =7, 2.2.4)

av av
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Instantaneous
Rate of Change
of the Amount of
a Reactant and a
Product

lllustration
of A— 2B

The average rate of appearance of a product or disappearance of a reactant
decreases with time. For example, in the time interval ¢, — #; (Fig. 2.2.1), which
is equal to time interval ¢, — ¢,, the average rate is given by

Any (1), = (1),

P _ 225
Y s (22.5)

which is about 0.53 of that of Eq. (2.2.2).

In chemical kinetics, the rate at any particular instant rather than the average rate
over a time interval has much more practical application and importance. This rate
is known as the instantaneous rate 7, and is defined as

An dn
= lim | ——a | = & 22.6
= i, (-202] - &2 2.26)
A d
or rio= lim (ﬁ) - (2.2.7)
At—0 \ At dt

Hence, the instantaneous rate at a given time may be determined by finding out
the slope of either reactant or product curve at the given time. For example, at time
13, iy OF disappearance of A as determined from Fig. 2.2.1 is given by

d _
Fins,ty =~ ( (’;A) =_ (nA)4 (I’ZA)S (2.2.8)
t ), ty—1s
Consider now the reaction
A — 2B

where 1 mol of A on disappearing produces 2 mol of B, i.e. the amount of B will
increase twice as fast as the decrease in amount of A. Hence, the quantity dng/d?
will be twice as large as — dn,/dz. Obviously, we cannot write

_dny _ dng (2.2.9)
e dr
but write either as
S L dn (2.2.10)
i 2 A
oras —23m _ 9w 2.2.11)
dr dr

In Fig. 2.2.2 where the changes in amounts of A and B during the course of
reaction are displayed, the above expressions may be verified. For example, for the
indicated slope, we find that the slopes of A and B curves are — 0.5 mol s~ and
1.0 mol s, respectively, and hence

d¢ 2 d
d d
and - fa _ s 1.0 mol s7!
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B
T __2units__
| 7
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2 »
S | 4
=] L 14
=]
2 | dng/dt=2/2=1
<
| dnp/dt=-12/24=-0.5
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/12
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1 1 1 1
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A chemical reaction may, in general, be represented as
0= 2 VA, (2.2.12)
where v; has a positive value for a product and has a negative value for a reactant.

The change in the amount of a reactant or a product during the course of a
reaction may be represented in terms of the extent of the reaction (&) defined as

n(A) = ny(A) + v;& (2.2.13)

where ny(A,) is the amount of A; at z = 0. The unit of & is that of the amount of
the substance, i.e. mol.

The rate of change of the amount of A; during the course of a reaction is obtained
by differentiating Eq. (2.2.13) with respect to time, such that

dn(A) _ d&

; (2.2.14)
dr dr
Thus, the change in extent of reaction with time is given as
1 dn(A;
s _ 1 dn(a) (2.2.15)

dt Vv, dt

Note that v; as well as dn,(A;)/d¢ have positive values for a product and have

negative values for a reactant and thus the product of these two is always positive,
i.e. the rate of change in extent of reaction is always a positive quantity.

If we write a reaction in a conventional form, such as
VIA| T VA, = VA3 + VA, (2.2.16)

all the stoichiometric coefficients vs have positive values. If £ is the extent of
reaction at time ¢, we will have

Reaction: ViA, + WA, = VzA, + VA,

Initial amount:  ny(A|) ny(A,) ny(Az) ny(Ay)
Amount at

time t. ny(Ay) = vi§ ny(A,) = V28 ny(Az) + v38 ny(Ag) + V48
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Defining Rate of
Reaction

Rate of Reaction
Divided by Volume

The disappearance of amounts of reactants and appearance of amounts of

products will be given by

Cdn(A) dimy(A)-v&} _ v a8

dt dr dr
a dn(A,) _ d{ny(A,)—v,&} = ﬁ
dr dr ? dr
dn(Aj3) _ d{ny (As) +v;&} —v ﬁ
dr dr dr
dn(A,) _ dimA)+ved)  _ dg
dr dr *dr
From the above expressions, it follows that
a6 _ 1 dn(A) _ 1 dn(Ay) _ 1 dn(Ay) _ 1 dn(Ay)
dt v dr v, dr vy, dr v, dt

(2.2.17)

In view of the equality shown above, the rate of reaction is defined as the rate of
change of extent of the reaction. It has the unit of mol s and is represented by

the symbol g . It may be emphasized here that the rate of a reaction and rate of
change of amount of a reactant or a product are two different things except when
each of the involved stoichiometric coefficients is equal to unity. In other cases
the rate of change of amount of a reactant or a product is to be divided by the
corresponding stoichiometric coefficient to convert it into the rate of reaction. The
above definition of rate of reaction is independent of the choice of reactant and
product and is valid regardless of the conditions under which a reaction is carried
out, e.g. it is valid for a reaction in which the volume varies with time or for a
reaction involving two or more phases.

In chemical kinetics, it is more useful to use the term rate of reaction divided by
any specified volume. This volume may be dependent or independent of time and
may or may not be that of a single phase in which the reaction is taking place.

For this, Eq. (2.2.15) becomes
_E_ L& 11y

Vo v.d vV v, dt
If the specified volume V' is independent of time, then

(2.2.18)

F= 2 = AV (2.2.19)
V dt Vv, d¢

If the specified volume ¥ is such that

n;
y e

where c; is the concentration of ith species, then

r=2=———"=_ (2.2.20)
Vv dt v, dt

For the specific reaction shown in Eq. (2.2.16), we write the rate of reaction
divided by constant volume as
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= 1 _Ldn(A)| _ 1 dmAD/V) _ 1 d[A]
V| v dt 2 dr v, dt
L[ 1deay] 1 dinA)) |1 diAy)]
Vv, dt v, dt v, dt
Lo L) ldn(A) 1 din(A)/V) 1 d[As]
Vo|vy, dt Vi dr v, dt
Lo L [1daa))] |1 dinA)T) _ 1 dIA,]
Vv, dt v, dr v, dt

The extent of reaction divided by constant volume is commonly abbreviated as
x. Thus .
E_1dE_dEW) _dx

VoV dt dt dr

2.3 ORDER OF A REACTION

Law of Mass
Action

Defining Order of
a Reaction

The speed of a chemical reaction, in general, depends on the concentrations of
reacting species of the reaction. An early generalization in this regard is due to
Gulberg and Waage. This generalization is known as law of mass action and is
stated as follows.

The rate of a reaction is proportional to the product of effective concentrations
of the reacting species, each raised to a power which is equal to the corresponding
stoichiometric number of the substance in the chemical equation.

Thus, for a general reaction

we have
roc [ATY [A,] .
or r=k [Al]v‘ [AZ]V2 (2.3.2)

where k is a constant of proportionality

If the rate of a reaction divided by volume is determined experimentally, it is found
that Eq. (2.3.2) is not always applicable. However, the experimental results can
be fitted to satisfy a relation of the type of Eq. (2.3.2) where the exponents may
or may not be equal to the respective stoichiometric coefficients. In general, we
may write the rate as

r=kA " [A ... (2.3.3)
where the dimensionless exponents a, b, ... may or may not be equal to v;, v,, ...,
respectively. The constants a, b, ... may have positive or negative integral values,
fractional values or zero values. The constant a is known as the partial order of the
reaction with respect to A, b as the partial order of the reaction with respect to B,
and so on. The sum a + b + --- is known as the overall order of the reaction. If a
+ b+ --- =1, the reaction is said to be of first-order; if a + b + --- = 2, the reaction
is of second-order, and so on. The dependence of reaction rate on concentration is
of great use as it helps proposing the mechanism of a reaction.
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Comment about
Rate Law

The constant k£ which appears in Eq. (2.3.3) is known as the rate constant, since
it is numerically equal to the rate the reaction would have if all concentrations
were set equal to unity. Each reaction is characterized by its own reaction rate
constant. From Eq. (2.3.3), we find that the unit of & is (mol dm™)" s where n
=l—-(a+b+-).

The expression of Eq. (2.3.3) which relates the rate of reaction with the
concentrations of reacting species is known as the differential rate law.

It may be emphasized once again here that the rate equation with its rate constant
and order of various reacting species is an experimental finding, and cannot be
predicted from the stoichiometry of the balanced-reaction equation.

Although a great many reactions obey Eq. (2.3.3), there are numerous other

whose rate expressions are not of such simple form. A few such reactions are
listed in Table 2.3.1.

Table 2.3.1 Examples of Reactions Obeying Complicated Rate Laws

Overall Reaction Experimentally Determined Rate Law
H,+1,=2HI L dlH0 g (1, (L]~ &, [HIJ
2 dt
k[H,][Bry]"*
H, + Br, = 2HBr 1 d[HBr] _ Al ,2][ 2]
2 dt 1+ k’[HBr]/[Br,]
OCI +T <22 Ol +Cl- dict] _ Hoct i}
dr [OH ]
_H dil,] _ +
CH;COCH; + I, ——= CH;COCH,I+HI - & =k [CH;COCH;] [H']

Table 2.3.1 reveals the following facts.

® The rate law may not bear a simple relationship to the stoichiometric equation.

® The rate law may not depend on the concentrations of every reactant or product
of the reaction.

® The rate law may depend on the concentrations of species (e.g. catalysts) which
do not appear in the equation for the overall reaction.

These facts clearly indicate that the rate equation cannot be predicted from
the form of the stoichiometric equation for the overall reaction. Hence, the rate
equation must be determined experimentally. In some cases, the order of the
reaction is meaningless. For example, for the hydrogen-bromine reaction, the
reaction is of first-order with respect to hydrogen gas but it would be impossible
to assign the order with respect to bromine and to hydrogen bromide. Thus, the
concept of order of reaction has no meaning if a rate law does not have the form
as given in Eq. (2.3.3).

In the reaction between hypochloride and iodide ions, though OH™ does not
appear in the overall reaction, yet it appears in the denominator of the rate law.
This indicates that the OH acts as an inhibitor. Similarly, the reaction between
acetone and iodine does not involve H' in the overall reaction, but it appears in the
numerator of the rate law. This shows that H" acts as an accelerator or a catalyst.
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Since the expression of rate  in terms of rate of change of concentration of a
reactant or product depends on the way the chemical equation is formulated, it
follows that the value of k in the differential rate law also depends on the way
the chemical equation is formulated. For example, the decomposition of N,Os is
experimentally found to be first order with respect to N,Os. Hence, for two ways
of writing the chemical equations, we will have
1 d[N,05] _
2 4 Kk[N,Os]

NO: 5 2NO, + Lo, pr=s INOsT g6

2 dr

Since the rate at which a reactant consumed or product formed does not depend
upon the way the chemical equation is formulated, it follows that

2r=r" and 2k=¥k
Note that the rate of reaction refers to a time-independent stoichiometry, i.e. for a
specified chemical equation and, therefore, it must be stated along with rate of reaction.

2N,05 — 4NO, + O, —

2.4 ELEMENTARY REACTION AND ITS MOLECULARITY

Unimolecular
Elementary
Reaction

Most chemical reactions proceed through a series of elementary reactions. An
elementary reaction is one which is proposed to take place in a single step. These
elementary steps are classified according to the number of molecules which they
involve. A process in which only one molecule is involved is known as unimolecular
process. One involving two molecules is called bimolecular and so on. It is well
known that in elementary reactions the products are formed when the reactant
molecules come close and collide together at one and the same time. Since the
collisions in which more than three particles come together simultaneously are very
rare, the elementary process with molecularity greater than three are not known.

If a reaction involves more than one step, the overall reaction is obtained by
adding these elementary steps. In such a case, it is wrong to decide the molecularity
of the overall reaction on the basis of its stoichiometric and rate equation.

It was stated earlier that the order of a reaction, in general, cannot be predicted
from the stoichiometry of the overall reaction. However, the order of an elementary
step can be predicted from its molecularity. In fact, the order of an elementary
step is always equal to its molecularity. This follows from the following analysis.

In this process, a single activated molecule rearranges or decomposes independently
of the others. It is obvious that the number of activated molecules that decompose
in a given time interval will depend upon its total number; larger the number or
concentration of molecules, larger the number of molecules that decompose to
give product. Thus, for the unimolecular reaction.

A—B
the rate of reaction will be given by
A
__dial k [A]
dr

Hence, the unimolecular elementary process is necessarily a first-order process.



54 A Textbook of Physical Chemistry

Bimolecular Let the elementary process be represented as
Elementary A + B — products
Reaction

For a molecule of A to react with a molecule of B, the molecule A has to
come close to B and collide with it. The rate at which collisions between A and B
molecules occur is directly proportional to the concentrations of A and B. Thus,
the rate of the reaction will be given as

r=k[A][B]
which is the expression of the second-order process. Hence, a bimolecular
elementary process is necessarily a second-order process.

The above arguments can be extended to a termolecular reaction. Hence a
termolecular elementary process will follow third-order rate law.

It may be emphasized here that if the order of a reaction is known, it is not possible
to predict its molecularity. This follows immediately from the fact that the order of
a reaction is referred to the overall reaction whereas the molecularity is referred to
an elementary step. A given overall reaction may involve more than one elementary
step of different molecularities. For example, the decomposition of N,Os is a first-
order reaction, but it proceeds through the following four elementary processes.

N,05 + N,O5 = N,0% + N,O4
N,0% — NO, + NO;

NO, + NO; = NO + NO, + O,
NO + NO; — 2NO,

Here N,O% stands for an energized molecule capable of dissociating.

Sometimes, a reaction follows a complicated rate expression. For example, the
complex nature of the rate expression of H,(g) and Br,(g) shown in Table 2.3.1
is due to the fact that the said reaction involves more than one elementary step
and the rate of the overall reaction is obtained by combining the rates of all these
individual elementary reactions, which of course, follow the simple expressions
as given by Eq. (2.3.3).

2.5 THE INTEGRATED RATE LAWS

The differential rate law shows how the rate of a reaction depends on the
concentrations of reacting species. It is also worthwhile to know how the
concentrations of these species change with time. This information can be obtained
by integrating the differential rate law. In this section, we derive the integrated rate
laws for the reactions having zero-, first-, second-, and third-order, respectively,
and also derive their main characteristics.

ZERO-ORDER REACTIONS

Differential In zero-order reaction, the rate of reaction
Rate Law v;A — product (2.5.1)
will be given by
1 dA
_ L dAl ky [A]° = &, (2.5.2)

v, dt
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that is, the reaction proceeds at a constant rate and does not depend on the
concentration of A.

Let [A], be the concentration of A at = 0 and [A], be the concentration at time 7.
Equation (2.5.2) may be integrated within these limits. Thus, we have

[Al

1=t
[ A =~ vk, [ ar
[Aly =0
or [Al, — [A], = Vv, kyt (2.5.32)

From Eq. (2.5.1), it is obvious that
[Al, =[Aly— v x

where x is the extent of reaction divided by volume that occurs at time ¢. Substi-
tution of the above relation in Eq. (2.5.3a) gives

[Aly = ([Alo — Vi ) = Vi kot
or x = kyt (2.5.3b)
The unit of k, is mol dm™ s,
From Eq. (2.5.3), it is obvious that the concentration of the reactant decreases
whereas that of the product increases linearly with time. If a plot is made between x
and ¢, one would get a straight line passing through the origin (Fig. 2.5.3). Equation
(2.5.3) can be used to determine the time required for the reaction to be completed,
i.e. time at which [A], is zero. Substituting the latter in Eq. (2.5.3a), we have

Ay
completion
L

! —

Although reactions which have an overall order of zero are rare, it is not unusual
to find the reactions in which order of reaction with respect to one of the reactants
is zero. One of the well-known examples of this type is the enzyme-catalyzed
reactions, which we write as

enz

c
substrate —— product

The rate expression follows the relation
r==k [enzyme]l [substrate]’
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Differential
Rate Law

Integrated Rate
Law

Characteristics
of First-Order
Reactions

that is, the reaction is first-order with respect to the enzyme concentration and zero-
order with respect to the substrate concentration.

The decomposition of various gases on the surface of metallic catalysts, such

as decomposition of HI on gold surface also exhibits zero-order kinetics.

FIRST-ORDER REACTIONS

In first-order reactions, the rate expression depends on the concentration of one
species only. Thus, if the reaction

v;A + v,B — products

is first-order with respect to A and zero-order with respect to B, we have

1 dA]_
o e kAl
d
or % = — v, kdt (2.5.4)

Integrating Eq. (2.5.4) within the limits, we have

(A t
[ Ak Jar
[Al [A] 0

A
or In ([[A]]‘:j= vkt (2.5.52)

A
or In (ﬁ]= v kit (2.5.5b)

For most of first-order reactions, v; = 1 and thus Eq. (2.5.5b) is given as
A
In ( [Alo j= kit (2.5.6)
[Alo—x
From Eq. (2.5.6), it follows that

(AL, -3,

In [m] = kl (t2 — tl ) (257)

Since the left side of Eq. (2.5.6) or (2.5.7) is a pure number, it follows that unit of

kyiss.

Equation (2.5.6) may be written as

1n([A30 ) ln( [A]Oo_xj = kyt
C C

[A]o—xj_ [Ab) &
or ln( o log( = ) 2.303t (2.5.8)

where ¢° is the standard unit concentration.
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If a plot is made between log {([A], —x)/c°} and ¢, one would get a straight line
of slope equal to — &,/2.303 (Fig. 2.5.2).

slope =—k; /2.303

log {([A]o —x) / mol dm}

t—
Equation (2.5.6) may also be written as
[A], = [Al exp(= k1) (25.9)

Equation (2.5.9), which is known as Wilhelmy's equation, indicates that the
concentration of A decreases exponentially with time. The decrease is such that
the time required for a definite fraction of the reaction (i.e. [A],/[A], is constant)
to occur is independent of the initial concentration of the reactant.

Half-life #, of a reaction is the time required for the concentration of reactant to
2
decrease by half, i.e.

1
[Al;, = 5 [Aly
Substituting the above relation in Eq. (2.5.6), we get

(AL ) _
" [[A]0 /2j fily

or 2303 log 2 =k, t,
2.303log2 2. 301 .
or f = 303log2 _ 2.303x0.301 _ 0.693 (2.5.10)
’ ky ky ky

that is, #, is independent of initial concentration.
2

Figure 2.5.3 displays the typical variation of concentration of reactant exhibiting
first-order kinetics. It may be noted that though the major portion of the first-order
kinetics may be over in a finite time, but the reaction will never cease as the con-
centration of reactant will be zero only at infinite time.

Concentration —»

0 1 2 3 4
Number of half-life ———
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Examples of First-
Order Reactions

A large number of reactions exhibiting first-order kinetics are known. A few
examples are listed below.
Decomposition of di-tert-butyl peroxide:
(CH;);COOC(CH;); — 2 CH;COCH; + C,H,
Decomposition of dinitrogenpentoxide:
N,05(g) = 2NO,(g) + 5 O0,(g)
Decomposition of azoisopropane:
(CH;),CEHN=NCH(CH;), - N, + CcH,,4
Decomposition of thionyl chloride:
SO,Cly(g) — SO4(g) + Cly(g)
Decomposition of 2,4,6-trinitrobenzoic acid:
2,4,6-trinitrobenzoic acid — Trinitrobenzene + CO,(g)
Decomposition of hydrogen peroxide:
H,0,(aq) — H,O() + %Oz(g)
All radioactive decays:

There are reactions in which more than one species is involved in the rate
determining step, but the order of the reaction is one. Such reactions are known
as pseudo-unimolecular reactions and they involve solvent molecule or a catalyst
as one of the reacting species. Examples of this type of reactions are:

Acid hydrolysis of an ester:

CH,COOC,H; + H,0 == CH,COOH + C,H.OH

Inversion of cane sugar:

H+
CpoHpOy + HHO —= C¢H,04 + CgH},04
Cane sugar Glucose Fructose
Decomposition of benzenediazonium chloride:
CcHN=NCI + H,0 — C;H;OH + N, + HCl
Isomeric change of N-chloroacetanillide to p-chloroacetanilide:

_al COCH,

CeHsN ~cocH, — C1C6H4N<H

Alternative Forms of Rate Equation of First-Order Reaction

Concentrations
Replaced in Terms
of Pressure

It is evident from Eqgs (2.5.6) and (2.5.7) that to determine the rate constant for a
first-order reaction, it is only necessary to determine the ratio of the concentrations
at two times. Quantities proportional to the concentration terms may be substituted
in these equations, since the proportionality constants cancel. We describe below a
few typical cases where concentration terms are replaced by other easily measurable
quantities.

In a reaction, if there occurs a change in the number of gaseous molecules, then the
concentration terms in Eq. (2.5.6) may be replaced in terms of pressures provided
the volume of the system is held constant.
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Let Av, be the change in the number of gaseous molecules in going from
reactants to products and let p, and p, be the pressure of the system at # = 0 and ¢
= t, respectively. If at time ¢, the concentration of A decreases by x, we will have

po x[A]ly and  p,oc[A]y+ (Avyx
Hence [A]pxp, and x o< (P, — po)/AV,
- (Avy +D)py—p
Thus  [A], = [Aly - x o pp - De—P0 - &7 0 T

Avg Avg

With these Eq. (2.5.6) becomes

In o =kt
[(Av, +1)py — p,1/Av,

Av
or In (¢J =kt (2.5.11)
(Avy +D)py—p,

If p.. is the pressure of the system at infinite time (where the reaction is assumed
to be completed), we will have

P = (Avy+ 1) py
Hence, Eq. (2.5.11) may be written as

In (u) — kt (2.5.12)
poo - pt
Equation (2.5.6) if derived in terms of amounts of reactant will take the form
In Yo _ (2.5.13)
(1p),

For a constant pressure, we may write
Vo ox (ny)y and Vioc(na)e + (Avy) &
Hence & oc (V,— Vy)/Av,
Now  (np)y x ¥,
V,-Vy (Avg +DV, =V,

Av, Av,

(1), = (np)o — § Vo—

Hence, Eq. (2.5.13) becomes

v
In 0 =kt
[(Av, + 1V, —V,1/Av,
Av )V,
or Y S s (2.5.14)
(Avg + 1V,

If V_ is the volume of the system at infinite time (where the reaction is assumed
to be completed), we will have

V.= (Av,+ 1) ¥,
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Concentration
Replaced in Terms
of Volume of
Titrant

Comment on Acid-
Catalyzed
Hydrolysis of an
Ester

Hence, Eq. (2.5.14) may be written as

V.-V,
In | =2 =k (2.5.15)
V.-V,

For a reaction in which reactant is present in the condensed form (i.e. liquid or
solid) and products involve one or more gaseous species, we will have V, << V.
Hence, Eq. (2.5.15) will modify to

In Ve =kt
V.-V,

Reactions such as the acid hydrolysis of an ester (e.g. reaction vii) can be studied
by replacing the concentration of ester in terms of volume of alkali solution required
to neutralize the produced acid. Let V, and V_, be the respective volumes of alkali
solution required to neutralize the acid produced at time # and at the end when the
reaction has gone to completion. It is obvious that

[Ester], o< V.,
[Ester], < V.-V,

Hence, Eq. (2.5.6) in the present case becomes

In Ve =kt
V.-V,

|4 V. k
or lo > ’) =1lo (ij - — 2.5.16
g ( ye g ye 2.303 ( )

where V° is the standard unit volume. A plot of log {(V., — V,)/V°} versus ¢ will
produce a straight line of slope equal to — £/2.303.

It is worthwhile to mention here that the value of rate constant k of acid-catalyzed
hydrolysis of an ester is found to be directly proportional to the concentration of
H' ion (i.e. catalyst) in the solution. Thus, the rate of hydrolysis besides depending
on the ester concentration, also depends on the concentration of H' ion. Truly
speaking, the acid hydrolysis of an ester is a third-order reaction which follows
the differential rate law given below.

dx
dr

Since, the concentration of H' ion in the solution remains constant and H,O is
present in large amount, Eq. (2.5.17) is reduced to

= I [ester] [H'] [H,0] (2.5.17)

d
—’; — J [ester] (2.5.18)

In fact, it is the constant k£ of Eq. (2.5.18) that is determined experimentally.
Hence, the obtained value of reaction rate constant & is given by

k=K [H'] [H,0] (2.5.19)
where £’ is the actual reaction rate constant of the acid hydrolysis of an ester.

Equation (2.5.19) has been utilized in comparing the acid strengths of two different
acids of equal normalities (acids having the same amount of total hydrogen ions).
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For example, if the hydrolysis of the same concentration of ester is carried out
separately with equal normalities of HCI and H,SO,, then it follows that

[H' Ty _ kg

[H'liso,  kuso,

(2.5.20)

Experimentally, kyc;/ky,g0, 1s found to be greater than one indicating that the

hydrochloric acid is a stronger acid than the sulphuric acid. This fact can be
explained on the basis that in dilute solutions, hydrochloric acid is completely
ionized whereas sulphuric acid dissociates in steps; the first dissociation is complete
and the second one incomplete, i.c.

HCl — H"+CI’
H,S0, — H" + HSO,
HSO, = H" + SO}

Equation (2.5.19) has also been utilized in determining the concentration of H"
ion in an acid solution, say that of hydrochloric acid. Acid hydrolysis of the same
quantity of ester is repeated with different known concentrations of hydrochloric
acid solutions. The experiment is repeated with the given solution of hydrochloric
acid. A graph between k and the concentration of hydrochloric acid is drawn and

from the straight-line plot, the concentration of the given solution of hydrochloric
acid is determined.

Inversion of cane sugar can be followed by measuring the rotation of the angle
of polarization of light during the experiment, since cane sugar is dextrorotatory,
while the mixture of glucose and fructose is leavo-rotatory. Let 6, and 6, be the
respective angles of rotation at time ¢ and at the end when the reaction has gone
to completion. It is obvious that

[Cane sugar], o 0.,
[Cane sugar], < 6, — 6,

Hence, Eq. (2.5.6) in this case becomes

T QLS
)

- e}
or log (9‘” 0’) = log (;"’) - Lt (2.5.21)
6° 6° 2.303

where 0° represent the unit of measuring angle . A graph between log {(6,, — 6,)/6°}
and ¢ would yield a straight line of slope — £/2.303.

The gaseous reaction
ViA(g) = v,B(g)
is first order with respect to A. It is studied at a constant pressure with g, as the initial

amount of A. Show that the volume of the system and the concentration of A at time ¢ are
given by the expressions
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Solution

V=V, |:(v2)—(v2—ljexp(—v,kt) }
Vi Vi

exp (—vikt ) }
(V2 /v) = {(va/v)) —1fexp (—vikt )

and [Al, = [Al [

where V, is the volume of the system at # = 0. Assume ideal behaviour for the gases. Derive
the expressions for V" and [A] for the systems where v = v, =1and v, =1 and v, = 2.

Let & be the extent of reaction at time 7. We will have
v;A = v,B
ay—vi§ 139
Total amount of the substances at time 7 = g, + (v, — v,) &
The kinetic expression of the reaction is

dg
— =k(ay— Vv
dr (ag—v&)
Since the gases are assumed to be ideal, we will have
pVy = aRT
and pV =lay+ (v, - v) E1RT
=pVy+ (v, —v) ERT
Hence, &= PV =N)
(Vo =V)RT
and & =—=>r gy
(v, —V)RT

Substituting Eqs (2.5.23), (2.5.25) and (2.5.26) in Eq. (2.5.22), we get
P Ay {pVo PV }

(v,—V)RT dt RT '(v,—Vv)RT
dr
or — =kWVy-vV
k)
or v kdt
voVy—wlV
Integrating within the limits, we get
v
\14 f
=k |ds
1?[ wy=-wV {
Vo—vV
or i 4 L v kt
Vo(va=w)

ie. V=1, K“?j - [‘;2 - ljexp (=vikt) }
1 1

(2.5.22)

(2.5.23)

(2.5.24)

(2.5.25)

(2.5.26)

The variation of amount A with time can be determined by integrating Eq. (2.5.22),

such that
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& t
€ [ar
0%~ vié 0
or In L‘/‘é =— vkt
9
ie. ag— v, &= ay exp(-v,kt)

The variation of the concentration of A will be given by

(‘lo - V1§) _ ay exp (—vikt)
V. Vol(va/vy) —{(vo/v)) —Lexp(—Vikt) |

exp (—Vv,kt) }
(va/v) = {(vy/v)) — 1} exp(=Vikt)

or (Al = [Al {

For a case where v, = v, = 1, we get
V=",
[A], = [Aly exp (~ k1)

For vi=1and v, = 2, we get

V ="V,[2—-exp(-kt)]

exp (—kt) }

[Al, = [Ay [ p——

The factor exp(— k)/{2 — exp(— kt)} is smaller than exp(—kt) as the value of exp(—k?)
is always less than one. This means that at constant p condition, the concentration of A
decreases more rapidly as compared to that in the constant volume condition. This is due
to the fact that the decrease in the concentration of A in the former is due to two factors,
viz. reaction in progress and increase in volume, whereas in the latter it is only due to the
reaction in progress.

SECOND-ORDER REACTIONS

In second-order reactions, the rate expression depends on the two concentration
terms. These concentration terms may refer to either the same species or different
species. Thus, two cases may be distinguished. These are:

(i) Both the concentration terms referred to the same species The general
expression for the reaction is

VA — products

The stoichiometric coefficient v in most of cases may be made equal to 1.

(i) The concentration terms referred to the different species The general
expression for the reaction is

ViA + v,B — products
In most common cases, the coefficients v, and v, are equal to unity.

The integrated rate equations for the above two cases can be derived as follows.
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Rate Equation for
vA — products

Rate Equation for
v4A +v,B—products

The reaction is
VA — products

The differential rate law is

1 .d[A
_ 1 diA] =k, [AT? (2.5.27)
v dt
Let x be the extent of reaction divided by volume at time . We will have
[A] =[A], — vx (2.5.28)

Substituting Eq. (2.5.28) in Eq. (2.5.27), we have

1 d(A], —
- W =k, ([A], - vx)? (2.5.29)
dx 4 (a 2
or dl‘ > ([Ay — vx)
dx
or — =k, d¢
(Ap-vx?

Integrating the above expression, we have

X

— dr
}[([A] —vx)? I
1 (;—L} eyt (2.5.30)
v \[A]y-vx [A]

The unit of £, is mol™' dm® s™'. Since v =1 for most of reactions, Eq. (2.5.30)

reduces to
1 1
——— =kyt (2.5.31)
[Aly—x [A]
The reaction is

v,A + v,B — products

The differential rate law is

v a =k, [A] [B] (2.5.32)

Let x be the extent of reaction divided by volume at time 7. We will have
[A]l=[A]y - le}
[B]=[B], —v,x

Substituting Eqs (2.5.33) in Eq. (2.5.32), we get

S LAY AT - v (B, - ve)

(2.5.33)

Vi dt
dx
or ar =ky ([Aly — vix) ([B]y — v»%)
dx
or =k, dt

([Aly —vix) ([Bly —V,x)
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or ! { L4 I }dx:l@dt
vi[Bly—v,[Aly [[Aly—vix [Bly—vyx

Integrating the above expression, we have

vldx jf v, dx } k2 jdt
0 0

1
vi[Bly — v, [A]y

! { ([B]o vax ), ([A]oﬂ .
Vi[Bly =V, [Aly —Vix ?

o log ([B]o—vzx] ~log ([B]oj . ((Vl[B]o_Vz[A]o)j bt (2530
[A], —V;x [A], 2.303

Since v; = v, = 1 for most of reactions, Eq. (2.5.34) reduces to

[Bly—x) _ [Bly [Bly —[Aly j
log | o0 "1 | pg | 200 Pl ~1% 5.
o ([A]o_x] % ([A]o) +( 2505 ) (2339

Two special cases where Eq. (2.5.34) is not applicable may be mentioned here.
These are:

-vix +[B],—Vvyx

1. Same stoichiometric coefficient and identical concentrations of A and B.

Let v, = v, = v and [B], = [A],. The differential rate law will be given by

1 d{[A], —
-0 A - v

which is identical to Eq. (2.5.29). The integrated rate expression for this case is
given by Eq. (2.5.30).

2. Different stoichiometric coefficients and the concentration of each reactant is
directly proportional to its stoichiometric coefficient.

Thus, we have

[Alo _ [Bl

Vi Vi
The differential rate law in this case is

1 d{[Aly —vix}

" &7 =k ([Aly — vix) ([B]y — v¥)

\%
=k ([Aly — vi%) [v—z[A]o —szj
1
V.
=k, = ([Aly— vix)
Vi
The integrated rate law is given by

1 1
- =k, Vot (2.5.36)
[Aly-vix  [Al,
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Characteristics
of Second-Order
Reactions

Examples of
Second-Order
Reactions

Problem 2.5.2

For reactions belonging to the case (i) discussed above, we have the following
main characteristics.

(1) The plot of 1/([A], — x) versus ¢ will be a straight line of slope equal to k,
(Eq. 2.5.31).
(i1) For half-life, we will have

A [A]
[ ]f%=[A]0—x= 0
Substitution of the above relation in Eq. (2.5.31) gives
1 1
—— — — =kt
[Al/2  [Aly ;
1
or 1 thatis ¢ o« —

T k[Al o [Al

Hence, for the second-order reactions involving either only one species with v =1
or two species with [A], = [B], and v, = v, = 1, (or [A], «x v, and [B], x v,)
half-life is inversely proportional to the initial concentration of the reactant(s).

For reactions belonging to case (ii) discussed above, the plot of log [([B], — x)/
([A]p — x)] versus ¢ will be a straight line of slope equal to ([B], — [A]y)k,/2.303
(Eq. 2.5.35).

Examples of reactions obeying second-order kinetics are numerous. A few of them
are listed below.

Thermal dissociation of acetaldehyde

2CH,;CHO — 2CH, + 2CO
Saponification of an ester

CH,COOC,H; + OH™ — CH,COO™ + C,H;OH
Reaction between persulphate and iodide ions

S,0%F +2I" — 2805 +1,

The gaseous reaction
ViA(g) = v, B(g)
is second-order with respect to A. It is carried out at a constant pressure with g, as the

initial amount of A. Show that the volume of the system and the concentration of A at time
t are given by the expressions

Ve 1+ vykayt
0 1+ vikayt

1 1 1 kayt

= —+ VlV()kt M

[A]t [A]o 1+ Vi kaot
where V), is the volume of the system at # = 0. Assume ideal behaviour for the gases.

Derive the expressions of V and [A] for the systems where v; = v, =1 and v, = 1 and
v, =2.
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Let & be the extent of the reaction at time 7. We will have
VA = v,B
ay—vi§ 1439

Total amount of the substance at time 7 = a, + (v, — v|)&

The kinetic expression of the reaction is

d
d—f =k (ay— v,E)* (2.5.37)
Since the gases are assumed to be ideal, we will have
pVy=aRT (2.5.38)
and pV=1lag+ (v, = v)E] RT =pVy+ (v, —v)) ERT
Hence, E= PV =h) (2.5.39)
(v, =V)RT
and = —2 gy (2.5.40)
(v, =V)RT

Substituting Eqs (2.5.38), (2.5.39) and (2.5.40) in Eq. (2.5.37), we get
2
4 ﬂ:k a _vip(V —Vy)
(v, —V)RT dt " (v,—V))RT
Replacing a, by p¥V,/RT and rearranging, we get

T
dr (v, —=V)RT
{14 _ Pk
WV Vo=vV) (va=V)RT

Integrating within the limits, we get

dt

or

1 (. 1 _ Pk,
Vi Wy —vlV v, —vl, (v, —V)RT

Rearranging the above expression for 7, we get

y=vy, [ (2.5.41)
1+ v kta,

Equation (2.5.37) on integrating gives

! L = vkt

a-vi&  a
Multiplying throughout by V, we get
14 Vv, _

- — = =Vvk
ay—vié Vo a
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Substituting V in term of V|, from Eq. (2.5.41), we get
1 1 1+ v,kt
= | —+Vyvkt T VoRIGy
[A] [Al 1+ v,kta,
For a case where v, = v, = 1, we get

Lo
(A = (Al + Vokt

V=7,

For v; = 1 and v, = 2, we get

1 _ ( 1 +V0kt) (1+2km0]
[A], [Aly 1+ kta,

y_ [+ 2ktay
O 1+ ktay,

THIRD-ORDER REACTIONS

Expression of Third-order reactions known so far fall into the category
Rate Equation 2A + B — products
The differential rate law is
1 d[A] 2
- — —— =k4[A]’[B 2.5.42
> T dr 3[A][B] ( )

Let x be the extent of reaction divided by volume at time 7. We will have
[A], = [Aly — 2x
[B], = [Blo—x

Hence, Eq. (2.5.42) becomes

- LddAL =29 _ AT, - 26 ([B], - %)

2 dr
dx
or - =k([Aly - 29" (Bl - )
On separating the variables and integrating, we get
1 - _
= : [2x<2[B]o [AL) , , [Bl(Al 2x)} (25.43)
1(2[B]y ~[Alp)” [ [Blo([A]y —2x) [Alp([Blo —x)
Simplest The simplest case is a reaction of the type
Example VA — products
for which, the differential rate law is
CLAAL AP (2.5.44)

v dr
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Let x be the extent of reaction divided by volume at time 7. We will have
[A] = [A]y — vx
With this, Eq. (2.5.43) becomes

o SRR - v

% dr
dx 3
— =k([A]l,—- Vv
or & 3([A]p — vx)
or % =k, dt
([A]lp —vx)

Integrating the above expression, we get

1 1 1
. — =k 2.5.45
2v [([A]o —vx)? [A]é} ! (2349

For a special case, where v = 1, we will have

1{ 1 1 }_k
2l -0? (AR ] T

The unit of the &, is mol > dm® s™".

We will discuss here only the characteristics of the reaction
A — products

According to Eq. (2.5.45), if a plot is made between 1/([A], — x)* and #, we would
get a straight line of slope equal to 2k;.

Half-life as calculated from Eq. (2.5.45) will be

o=

oL {;;}
2ks | ([A)/2)°  [Al;
3 .
or = > thatis fy5 < —
2ks[AlG [ATp

Only five homogeneous gas reactions of third-order are known. In these reactions,
one of the reactants is nitric oxide. These are

2NO + Cl, = 2NOCI
2NO + Br, = 2NOBr
2NO + O, — 2NO,

2NO + H, = N,0 + H,0
2NO + D, = N,0 + D,0

Reactions in aqueous solution which appear to be third-order are the oxidation of
ferrous sulphate, the reaction between iodide and ferric ions and the reduction of
FeCl; with SnCl,.
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General
Expression of
Integrated Rate
Law of a Reaction
Involving Only
One Concentration
Term

It is possible to derive a general expression of integrated rate law for a reaction
whose rate depends either on the concentration of only one reactant or on different
reactants having same stoichiometric coefficients and identical concentrations. If
all stoichiometric coefficients are assumed to be unity, we may write the general
differential rate law as

& = k1AL - (2.5.46)
where » is the overall order of the reaction. On separating the variables and

integrating, we get the general expression as

1 1 1
{ — n—l} =k,t (2.5.47)

(=D [([Aly-0"" [Alg
Equation (2.5.47) is not applicable for » = 1. The units £, is mol'™" dm**" ~ Vg7,

Half-life of the reaction can be determined by replacing [A], — x in Eq. (2.5.47)
by [A]y/2. Thus, we have

1 1 1
- =k,t,
n-1 [([A]o/z)”‘1 [A]S‘l} :

1 2o
n—1 [Al"

or =k,t,

po_ L 2l
Pk, (=1 [AL
The form of rate law as given by Eq. (2.5.46) is also obtained for a reaction

involving different stoichiometric coefficients provided the concentration of each of
reactants is proportional to its stoichiometric coefficient. For example, for a reaction

or (2.5.48)

aA + bB + ¢C — products (2.5.49)
if we have
A B C
a b c

then the differential rate law
1 dA]

[ Sl a rp1b8 4
7 k [A]* [B]” [C] (2.5.51)
will becomes
dx
5 = ATy = @) (B, — bx)’ (ICl, — &) (25.52)

where x is the extent of reaction per unit volume, Making use of Eq. (2.5.50) in
Eq. (2.5.52), we have

B Y
;ﬂ — K([A], — ax)” (Q[A]0 —bx) (E[A]O —cx)
t a a
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. dr _ kbPe? wi By
1.€. E = aﬁ—ﬂ/([A]O — ax)
kbPcr .
= (Al-ay

where n is the overall order of the reaction.

The integrated rate law is given by
1 1 1 bPer
A (2.5.53)
(=1 [([Aly—a)"" [Al}” e
The half-life of the reaction will be given by

a

n—o—1 2"—1 -1

I q
t, = - — 2.5.54
i k(n=1) pBor [A]g—l ( )

FRACTIONAL-ORDER REACTIONS

In many reactions, the order of the reaction with respect to one of the reactants is
found to be nonintegral. Examples include:

(1) The reaction between H, and D, follows the differential rate law

% = ka2 (PDZ)I/2
(i1)) The conversion of para hydrogen to ortho hydrogen at high temperature
follows the rate law
& k('
(ii1) The reaction
CH;CHO — CH, + CO

follows the expression

d[CH,CHO
_ JICH,CHO ;I Iy [CH,CHO]*?
Noninteger orders are generally due to the complex nature of reactions which
involve more than one elementary step. The overall rate law is obtained by

combining the rates of individual elementary steps.

For reactions following the differential rate equation

% =k, [AV "' (pis an integer) (2.5.55)

the integrated rate law can be obtained from Eq. (2.5.47) by replacing n by p + 1/2.
Thus, we have

1 1 1
p—1/2 {([A]o —x)P 12 - [A]pa/z } =k, + 1t (2.5.56)
0
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Half-life of the reaction will be given by

1 2p712
= — (2.5.57)
T kpan(p=1/2) (AL

NEGATIVE-ORDER REACTIONS

Sometimes, the rate of reaction decreases as the concentration of one of its
constituents is increased. For example, the transformation of ozone into oxygen, i.e.

20; = 30,

follows the rate law

1 doy] | [0sF s
-5 S =k o,y = kIO (0]

Thus, the order of the reaction with respect to O, is — 1.

It may be pointed out here again that negative orders like zero and fractional
orders are obtained whenever the desired reaction does not occur as written (i.e.
in a single step conversion) but involves more complicated reaction mechanism
consisting of more than one elementary step. We will see in Section 2.12 how
these orders result from more complex mechanism.

2.6 DETERMINATION OF ORDER OF A REACTION

As stated earlier, the order of a reaction is always determined experimentally on
the basis of the dependence of the rate of reaction on the concentrations of reacting
substances. To determine this dependence, we have to find out how the concentration
of reacting species or products vary during the course of the reaction.

To determine the concentration of a particular substance at different time
intervals, a known volume of reacting mixture is extracted at different time
intervals. It is cooled so as to decrease the speed of the reaction and the
concentration of the substance in this volume is determined by titration or by
employing any other analytical technique. For example, in the acid-catalyzed reaction

CH,COOC,H; + H,0 —

CH,COOH + C,H;0OH

the concentration of acetic acid produced at different time intervals may be
determined by the above method. A known volume of the reacting mixture is
extracted, cooled and then titrated quickly against the standard sodium hydroxide
solution. In the reaction

S,0% + 21" — 2807 +1,

the concentration of iodine produced at different time intervals may be determined
by titrating a known volume of reacting mixture against the standard solution of
sodium thiosulphate.

In many reactions, the concentration of the substance can be determined without
disturbing the reaction mixture. This is accomplished by measuring a suitable
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property of the mixture which changes due to the change in concentration of a
reactant or a product. We cite below a few typical examples.

1. Ifin areaction there occurs a change in the amount of gaseous species, then
the concentration of various species at various time intervals may be determined
from the change in pressure of a constant-volume reaction vessel or the change
in volume of a constant-pressure reaction vessel. The method of correlating the
pressure or volume of the vessel with the concentration of the reactant of the
reaction has been outlined in Section 2.5.

2. Reactions such as the inversion of cane sugar can be followed polarimetrically
without disturbing the reaction mixture (Section 2.5).

3. If in a reaction, ions are consumed or produced, or one ion is replaced by
the other, the concentration of reaction species at different time intervals may
be determined conductometrically. For example, in the saponification of ethyl
acetate, the fast conducting OH™ ions are replaced by acetate anions. The change
in conductivity will be directly proportional to the amount of OH ™ ions consumed
or acetate ions produced. Let K, k, and k, be the conductivities of the reaction
mixture at the start of the reaction, at time ¢ after the reaction has started and at
the end of the reaction, respectively. We may write

[OH ], x &, — K.,
[OHi]t X K — Ko
and XX Ky— K

where x is the extent of reaction per unit volume at time .

In order to relate conductivity directly to concentration, a graph or table of
conductivity may be constructed using solutions with known concentrations of the
ions of interest. For first-order reactions, we may substitute

[Aly x K — K.,

[Alp —x x K — K,

A —
Thus  In Lo —ln[KO K""j — kyt
[A]

4. Other analytical techniques such as potentiometry, polarography and
spectrophotometry may be employed to determine the concentration of a reactant
or product at different time intervals. Out of these, spectrophotometry constitutes
one of the common methods for determining concentration of a substance of the
reacting mixture. The principle underlying the method is Beer’s law, according
to which, we have

I
log =% = ebc
&7

where /; is the intensity of incident radiation, / is the intensity of the radiation
after passing through the solution of concentration ¢ of a light absorbing substance,
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Integration
Method

b is thickness of the cell in which the solution is placed and € is the molar
absorptivity. The latter is a function of the wavelength of the radiation and the
absorbing material. Thus, if we choose a wavelength for which € is larger for
the chemical species of interest, log (/,//) will be directly proportional to the
concentration of that material. If the substance is either a reactant or product, we
can determine how its concentration varies from the plot of log (/,/]) versus time.

Once the data on concentration versus time is available, the order of the
reaction and its reaction rate constant may be determined by following the methods
described below.

In this method, the data is substituted into the integrated rate equations for different
order reactions. The equation which gives almost a constant value of £ decides the
order of the reaction. We can start fitting data in the order given in Table 2.6.1.

Table 2.6.1 Order of Fitting Integrated Rate Equations

Kinetics

Equations to be Fitted

(1) First-order

ki = ! i [ Ak
r o \[A]

(ii) Second-order with equal concentrations k, = ! |:1 - 1}
of reactants r1[A]l [Al

(iii) Second-order with different concentrations k, = ! { ! 1n([A]0([B]0 — X)H
of reactants 1 | [B],—[A] [Blo([Aly —x)

(iv) Third-order with equal concentrations

of reactants

(v) Third-order with equal concentrations

of two of the reactants

ey = 1 [2x(2[B]o -[A]y)
1(2[B]y —[Aly)* L[AL(AL~2%)

I [[BJ()([AJO - ZX)H
[Aly([B], — )

Graphical Method

In this method, the data are plotted according to the different integrated rate
equations so as to yield a straight-line. The rate constant of the reaction can be
calculated from the slope of the resultant straight-line plot. We may start plotting
the data in the order given in Table 2.6.2.
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Order of Plotting the Straight-Line Plot
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Kinetics

Straight-line Plot

Slope of the Plot

(1) First-order

(ii)) Second-order with equal

concentrations of reactants
(i) Second-order with different
concentrations of reactants

(iv) Third-order with equal
concentrations of reactants
(v) Third-order with equal

concentrations of two of

log [A], versus ¢

versus ¢

4

log ([B]O_xj versus ¢
[Aly—x

versus ¢

[AT

2x(2[B], —[Alp)
[Alo([A]y —2x)

__h
2303

ky

([Blo ~[AJok
2303

2k,

ks (2[By - [Aly)’

reactants

+ 1 (Bl (AL —2v)
[Aly([B], - x)

versus ¢

Half-Life Method

This method can be employed only when the rate law involves only one concentration
term. According to Eq. (2.5.48), we have
1 2"
f, = ——— ——— (Eq. 2.5.48)
p k,(n-1) [A]gi
where # is the order of the reaction. If the measurements are done with two different
initial concentrations, then, we will have

(t%)l _ ([A]oz jn_l

(f%_)z - [Aly

O [Alp
or log (t%)z =m-1)log ([A]m ) (2.6.1)

log[(#,),/(1,)-]

Hence n= ——2 2

log([Alp,/[Alo1)
Knowing #, the value of & can be computed from Eq. (2.5.48).

The value of » can also be determined graphically. Taking logarithm of
Eq. (2.5.48), we get

L 2" -1 [Al,
log (s)log [k; (n—l)j F(1=n) log (moldm_3)

Thus, a plot of log (t% /s) versus log ([A]y/mol dm™) will have a slope of
(1 — n), from where the value of n can be determined.
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Van’t Hoff’s
Differential
Method

Fig.2.6.1 Concentration
of A versus time

for various initial
concentrations of A

The above method can be equally applied by using a fraction other than one half.
Thus, equations can be obtained for 7,,, where 1/y represents the fraction of the
initial concentration of reactant that has converted to products. It can be shown that

ty X ———
y [A]Ol

Thus, a plot of log (7,,,/s) versus log ([A]y/mol dm ) will have a slope of (1 — n)
irrespective of the value of the fraction.

It is not necessary to find the fractional life times in separate runs with different
initial concentrations. A single run where the time taken for successive fractions to
react is determined will suffice as the concentration at the end of one time period
may be regarded as the initial concentration for the next interval and so on.

In this method, the order of a reaction with respect to each of its reactants can be
determined. Consider, for example, a general reaction

ViA + v,B — products

Let m and n be the orders of the reaction with respect to A and B, respectively.
The differential rate law can be written as

;ﬁ =k [A]" [BY” (2.6.2)
t

Let a number of kinetic experiments be carried out with different initial
concentrations of A but with a constant concentration of B. Equation (2.6.2) in
such conditions may be written as

dx

dr
where £”is a constant and is equal to k [B]”. The concentration of A at various
time intervals are determined and are plotted as shown in Fig. 2.6.1.

= K’ [A]” (2.6.3)




Fig. 2.6.2 A plot of

log {(dx/d#), / mol dm™ s™'}
versus log ([A], /mol dm™)
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The initial rates of the reaction are determined from the initial slopes of the curves
of Fig. 2.6.1. Let (dx/df),, and (dx/dr), be the initial rates of the reaction when the
initial concentrations of A are [A],; and [A],, respectively. From Eq. (2.6.3), we have

— ’ m
(—‘Ld;jm =k’ [Al (2.6.4a)
dx -
(_dt )02 =k’ [AlR, (2.6.4b)

Dividing Eq. (2.6.4a) by Eq. (2.6.4b), we get
(dx/dn); _ [Alg

(2.6.5)
(dx/dt)g,  [Al
On taking logarithm of Eq. (2.6.5), we get
(dx/dt)g, o [Alo
(dx/dt), [Alo
L Togi(de/dny, (dx/de)g,) 266

log{[A]; /[Alp}

Hence, the order of the reaction with respect to A can be determined from
Eq. (2.6.6). Alternatively, the graphical method may be employed to determine
the value of m. From Eq. (2.6.2), we get

log {M} = log k”+ m log ([A],/mol dm™) (2.6.7)
0

Hence, a plot of log {(dx/ds), / mol dm™ s™'} versus log {[A]/mol dm~} will
yield a straight line of slope equal to m (Fig. 2.6.2).

_—

~—— slope =m

log {(dx / df)g / mol dm3s~1}

log {[A]y/ mol dm3} —

Now the experiments are repeated keeping the concentration of A constant and
varying the initial concentrations of B. Following the method described above, we
can determine the order n of the reaction with respect to B.
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In many cases, (dx/df), may be replaced by (Ax/Af), where At is the time required
to change the initial concentration of the reactant by a small amount Ax. One of
the reactions where such a replacement can be conveniently done is the reaction
between persulphate and iodide ions. The experiment is known as iodine-clock
experiment. The involved reaction is

S,03+ 21" — 2S0% + 1,

The reacting mixture besides containing S,0%™ and 17, also contains the known
volumes of very dilute solutions of sodium thiosulphate and starch. Initially, the
generated iodine reacts with Na,S,0; present in the solution. When the entire
Na,S,05 is consumed, the generated iodine gives blue colour with starch. The
strength of hypo solution is so adjusted that the blue colour appears in a very
small interval of time (say, within 30 to 40 s) when the experiment is done with
the largest concentrations of S,03 and I~ ions. Now, the different sets of solutions
may be prepared according to the scheme given in Table 2.6.3.

Table 2.6.3 Different Sets of Solutions for Iodine-Clock Experiment*

Flask 1 Flask 2
Volume of Volume of Volume of Volume of Volume of Volume of
0.1 M SzOzg Water 0.1MI™ Water Na,S,04 Starch
Viem® V/em® V/em® V/em® Solution Solution
V/em® Viem®
Set 1 10.0 0.0 10.0 0 5.0 2.0
8.0 2.0 10.0 0 5.0 2.0
6.0 4.0 10.0 0 5.0 2.0
4.0 6.0 10.0 0 5.0 2.0
Set 2 10.0 0.0 8.0 2.0 5.0 2.0
10.0 0.0 6.0 4.0 5.0 2.0
10.0 0.0 4.0 6.0 5.0 2.0

*For more accurate work, salt effect should also be taken into account (see Section 2.19).

In set 1, the volume of S,03 is varied keeping the volume of I~ constant and
in set 2, the volume of I is varied keeping the volume of S,0% constant. This
provides us different initial concentrations of S,0% and I". The two flasks are
mixed and the times are recorded till the blue colour appears. The various times
obtained may be analyzed as follows.

The rate expression of S,0% — I reaction may be written as

dx —m ry—"
— =k[S,05]1"[17] (2.6.8)
dr
For set 1, Eq. (2.6.8) reduces to
dx

_:k/ SOZ—m
py [S,05% ]
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Now (dx/df), may be replaced by (Ax)y/(Af),, where (Ax), represents the small
amount of iodine generated in the small interval of time (Af),. Thus, we have

Ax 2
— | =k"[S,051%
( A )o [S,0% To
1 k’ _
—— = —— [$,05 1§
(Ar)y  (Ax),
Now since [82028_]'3 will be proportional to its volume, we may write the above
expression as
1
(A1),
Taking logarithm, we get
log {(Af)/s}=— log k””— m log {¥(S,0%)/dm’}, (2.6.9)
where K = k” (s dm®™). Hence, a plot of log {(Ar),/s}versus log {¥(S,0%)/dm*},
will yield a straight line of slope equal to — m. For set 2, Eq. (2.6.9) will be given as
log {(Af)y/s}=—log k””— n log {M(1")/dm’}, (2.6.10)
where kK = K (s dm®"). Hence, the order » with respect to I~ can be determined
from the plot of log {(A#)y/s} versus log {V(I_)/dm3}0.

or

= k7 V(S0

The principle of this method is essentially the same as that of van’t Hoff’s
differential method. The concentration of one of the reactants is varied by a
known factor and its effect on the initial rate of the reaction is studied. Say, for
example, the order of the reaction with respect to one of its constituents is one
and if its concentration is doubled, it is obvious that the initial rate of the reaction
will also be doubled. If the order is two, then the rate will increase four times
and so on. This way, by changing the concentrations of all reactants one by one,
we can find the order of the reaction with respect to each of the reacting species.
Mathematically, for the reaction
VA + v,B — products
we may write
dx
(—) = k[A]; [Blo (2.6.11)

Now let the concentration of A be changed to j[A],, where j is a constant, may
be integral or nonintegral, and let the concentration of B remain unchanged. We
will have

@)=WWWMG (2.6.12)
t )y

Dividing Eq. (2.6.12) by Eq. (2.6.11), we get
(dx/dt)g, .,

(dv/dr)y,

or m= 1. log dX/dg -| —log dx—/‘z_l (2.6.13)
(log /) moldm™s™ /J,, moldm™ s~ J,,

Similarly, the order » with respect to B can be determined.
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Ostwald Isolation
Method

This method is based on the fact that the concentration terms of reactants except
one if present in excess remain virtually unchanged and thus can be merged with the
rate constant. In this case, the rate of the reaction depends only on the concentration
of that reactant which is not present in excess. Thus, in the rate expression

r=k[A)" [BF[C]Y
if B and C are present in large excess, we will have

r=k"[A]*
where  k”=k [B]? [C]".
The reaction is known to be pseudo o-order. Hence, we can study the kinetics
of the reaction by taking all reacting species except one (say A) in large excess.
The obtained order of the reaction will be equal to the order with respect to the

species A. This way, we can proceed for different reacting species and the order
with respect to each of them can be determined.

2.7 SOLVED NUMERICALS

Solution

1. The half-life of a first-order chemical reaction A — B is 10 min. What per
cent of A remains after 1 h?

Since 1, = 0.693/k, we have

0.693 0.693
t,  10x60s
The integrated rate expression for first-order kinetics is
[A], )
In =—kt
([A]o

Thus, after one hour we will have

=0.001155s""

1 ALY _ 0.001 155 s7") (60 x 60 s) = — 4.158
n [Al, =—(0. 55s) (60 x 60 s)=—4.15

[Al

[Alo
Hence, per cent of A remaining is 1.563.
2. In the decomposition of N,Os at 318 K according to the equation

or =e 4158 =0.015 63

N,05(g) — 2NO,(g) + 3 Ox(g)

the following concentration data were obtained.

/s [N205]3 is [N205]3
mol dm™ mol dm™
0 0.250 800 0.152
200 0.223 1 000 0.134
400 0.198 1200 0.120

600 0.174




Solution

Fig. 2.7.1

Chemical Kinetics 81

Answer the following:
(1) What is the order of the reaction? (ii) What is the rate constant of the reaction?
(ii1)) What is the rate of reaction at # = 500 s? (iv) What will be the concentration
of N,O5 at 2 000 s? (v) What is the average rate over the period 0 to 200 s?

(i) To determine the order of the reaction in the present case, we may
adopt the graphical method. For the first-order kinetics, the graph between log
([A], /mol dm™) and 7 should be a straight line. Thus, we have

ils 0 200 400 600 800 1000 1200
[N,Os}/mol dm™ 0250 0223  0.198 0.174 0.152 0.134 0.120
log {[N,Os)/mol dm>} 1.398 1.348 1.297 1.241 1.182 1.127 1.079

The graph between log (N,Os]/mol dm™) and ¢ is shown in Fig. 2.7.1. Since the
graph shown in Fig. 2.7.1 is a straight-line, the order of the decomposition of N,Os
is first-order.

(ii) The rate constant of the reaction can be obtained from the slope of the
straight-line plot shown in Fig. 2.7.1.

A{log[N,O;]/moldm™}

We have ALTS) =0.000 2826
A{log[N,Os]/moldm™
Hence, tlogN, 21 moldm 7} _ _ 600 2826 5°!
From the rate expression, we have
k
slope =— —— =—0.000 2826 s '
2.303

Hence, k= (=2.303) (- 0.000 2826 s') = 0.000 650 8 s

(iii) To determine the rate of reaction at 500 s, we determine first of all the
concentration of A at 500 s and then multiply this concentration by the rate constant
k. Thus, we have

| (ﬂ]: B
Al
=— (0.000 650 8 s)(500 s) = — 0.325 4

145

slope =—0.169 6 /600

135 =-0.0002826
T
< 125F
3
g
S 115t
z
= 600 \
an
]
- 1.05 | | 1 | 1 1

0 200 400 600 800 1000 1200

t/s —
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Hence, [A],=[A], e "%
= (0.250 mol dm)(0.722 3) = 0.180 6 mol dm™
Hence, Rate at 500 s = k [A], = (0.000 650 8 s') (0.180 6 mol dm™)
=0.000117 5 mol dm™ s
(iv) The concentration at 2 000 s will be
[A], = [A], e ¥ = (0.25 mol dm?) exp(— 0.000 6508 x 2 000)
= (0.25 mol dm ) (0.272 1) = 0.068 mol dm>

(v) Average rate over the period of 0 to 200 s will be

—(A[ADg_200s  (0.250mol dm™ —0.223 mol dm™)
Tav™ 2005 - 2005

=0.000 135 mol dm™ s~!

3. Calculate the value of rate constant and the time (minutes) required for the
solution to become optically inactive from the following data.

t/min 0.0 7.2 36.8 46.0 68.0 oo
Rotation of polarized
light/degree 24.1 21.4 12.4 10.0 55 -10.7
Solution First of all, the order of the reaction is to be determined. We may adopt graphical

method for this purpose. Trying for the first-order kinetics, we have
[A],
[Alo

Now [A], x 6,-6, and [A]p < 6., — 6,
0.-0,

Hence, In 0.6, =—kt

Thus, the graph of log {(6., — 6)/(0.. — 6,)} is made against 7. From the given data,

In =—kt

we have
t/min 0 7.2 36.8 45.0 66.8 oo
O/degree 24.1 21.4 12.4 10.0 5.5 -107
(6, — 6,)/degree  —348 -321 -231 -20.7 -16.2
6. -6,
1 0.922 0.664 0.595 0.466
0., -6,

6. -0 _ _ _ _
log ( 0 9’ ) 0 1.965 1.822 1.774  1.668
o 0
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The graph between log {(6.,— 6)/(6.,— 6,)} and ¢ is shown in Fig. 2.7.2.

1.95 —

\ slope = — 0.175/(36)

~-0.00486

=
T 185
g
D
= ~0.175
S
|
$ 175
= 36
on
&

1.65 \ \ \ |

0 20 40 60 80

t/ min ——

Since the plot obtained is a straight line, the reaction is first-order. Its rate
constant can be obtained from the slope of the straight-line plot. For the rate
expression, we will have

slope = — LI 0.004 86 min™!
2.303

k= (0.00486 min ") x 2.303 = 0.011 19 min "'
For the solution to become optically inactive, we will have 6, = 0.

0.-6, -10.7

Th Z= TP 03075
S e.-6, 348
log | =20 _ 7 487 8
og 6.6, = 1.

The time corresponding to the above value of log{(6., — 6,)/(6,. — 6,)} can be
obtained from the rate expression

| (900 —9,] k l
0 = e —
£lo. -6, 2303
2.303x 1.487 8 ,
Hence, t=—- ——————— = 105.4 min
0.011 19 min

4. The following data were obtained at a constant volume for the decomposition
of di-tertiarybutyl peroxide in the gas phase at 427.7 K.

t/min 0 3 6 9 12 15 18 21
p/Torr 169.3 189.2 207.1 2244 2402 256.0 265.7 282.6
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Solution

Fig. 2.7.3

The reaction is
(CH;);COOC(CH;); — 2CH;COCH; + C,H{

Show that the reaction is of the first-order and calculate its rate constant.
For the decomposition reaction

(CH;);COOC(CH;); — 2CH;COCH; + C,H,

(A)

we will have

[Aly x po

Av, +1)p, — 3py —
[A], x p, = {—( : Av)gpo p} = {—po p}

2
Thus from the given data, we have

t/min 0 3 6 9 12 15 18 21
p/Torr 1693 1892  207.1 2244 2402 2550 269.7 282.6
p/Torr 169.3 15935 1504  141.75 133.85 12645 119.1 112.65
log(p,/Torr) 2229 2202  2.177 2152 2126 2102 2.076 2052

To show that the reaction is first-order, we make a plot of log (p/Torr) versus ¢
(Fig. 2.7.3). Since the plot is a straight line, the decomposition reaction is first order.

slope =—0.0756/9
220
T 2151
&
G
en
< 2101
205
2.00 I | I I
0 5 10 15 20
#/min ——»
A{lo /Torr
Wehave ~ SiospTomi e
A(¢/min)
Al /T
Hence, M ~ ~0.008 4 min™"
4
For the rate expression, we will have
slope = — ko 0.008 4 min!
2.303
Hence, k = (2.303) (0.008 4 min ')

=0.0193 min"' =3.217 x 1074 5!
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5. The following data were obtained for the dimerization of butadiene according
to the equation

CHg — %CSHIZ

t/min p,/Torr t/min p,/Torr

0 632.0 42.50 509.3

6.12 606.6 60.87 482.8
12.18 584.2 90.05 453.3
17.30 567.3 119.00 432.8
29.18 535.4 176.67 405.3

Calculate (i) the average rate over the period 0 to 12.18 minutes, and (ii) the order
of the reaction and its rate constant.
(i) The average rate of the reaction over the time period 0 to 12.18 minutes is
given by
—Ap _ —(584.2Torr —632.0 Torr)
SV 12.18 min

= 3.924 Torr/min

(ii) For the reaction

C,Hy; — %CSH12
(A) B)
we will have

[Aly x po
Let x be the amount of C,H, that dimerizes in time 7. We will have
[Al,=[A]ly—x and [B],=x/2

[A],+ [B], = [Aly—x + 7 =[Al - J
Now  p, o ([A] + [B])

ie. P, X ([A]o —g)

The change in pressure is due to the change in the amount of gaseous species
which is — x/2. Hence

X
Py =Py X — 5
or x x 2(py—p)

Hence, [A], = {[A] - x} o< {po—2(po =PI} = Cp,—po) =

To determine the order of the reaction, we follow the graphical method. For the
first-order kinetics, we should get a straight-line plot between log (y,/ Torr) and z. If
a straight-line plot is not obtained, we try for the second-order kinetics and thus plot
a graph between 1/y, and ¢ and so on. We tabulate below the values of log (y,/ Torr)
and 1/y,.
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log (y,/ Torr)
[y
=y
(=}

2.40

2.20

Fig. 2.7.4

t/min p,/ Torr [A], x ¥, log (y,/ Torr) (1/y,) Torr
= (2p, = po)/ Torr
0 632.0 632 2.801 0.001 58
6.12 606.6 581.2 2.764 0.001 72
12.18 584.2 536.4 2.730 0.001 86
17.30 567.3 502.6 2.701 0.001 99
29.18 5354 438.8 2.642 0.002 28
42.50 509.3 386.6 2.587 0.002 59
60.87 482.8 333.6 2.523 0.003 00
90.05 4533 274.6 2.439 0.004 64
119.00 432.8 233.6 2.369 0.004 28
176.67 405.3 178.6 2252 0.005 60

The graph between log (/Torr) and ¢ is not a straight line (Fig. 2.7.4a) and hence
the dimerization reaction does not follow the first-order kinetics. The graph between
1/y, and ¢ is a straight-line plot (Fig. 2.7.4b). Hence the given reaction follows the
second-order kinetics. The slope of the line shown in Fig. 2.7.4b is 1.78 x 107,
that is

A(Torr/ Ad
AT 000 0178 or A = 0,000 0178 Torr™ min”
A(t/min) At

Hence, k=1.78 X 10~ Torr ' min™!

0.0055
0.0045 [
® S 0.00175
£ 0.0035
© =
e A s slope = —0'09%1 75
- 0:0023 =0.000 017 8
| ) | " | ’ | ®. 0.0015& i : | | i |
40 80 120 160 0 40 80 120 160 200
¢/ min—— ¢/ min
(a) (b)

6. For the reaction
2NO + H, —» N,O0 + H,0

the value of — dp/dr was found to be 1.50 Torr s™! for a pressure of 359 Torr of
NO and 0.25 Torr s~ for a pressure of 152 Torr, the pressure of H, being constant.
On the other hand, when the pressure of NO was kept constant, — dp/dz was 1.60
Torr s ' for a hydrogen pressure of 289 Torr and 0.79 Torr s ' for a pressure of
147 Torr. Determine the order of the reaction.
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For the given reaction, we write

dp
T k m n
a7 Pro Pu,

For the constant hydrogen pressure, we may write

(£) -+
dr 0_ Pro

Substituting the given two sets of readings, we have
1.50 Torr s ! = k" (359 Torr)”

0.25 Torr s ' = k’ (152 Torr)™
On dividing, we get

150  (359)"

iz - ()
_ 10g(1.50/0.25)  0.7782
T log(359/152) 03773

Similarly for the constant nitric oxide pressure, we get
_ log(1.60/0.79)  0.3065
log (289/147) 0.2935

Thus, the overall order of the reaction = m + n = 3.

or

7. For the reaction
I'+0CI' - OI' +CI
in basic aqueous medium, the following data were obtained.

(a) [OCI],=[OH ], = 0.1 mol dm™

[I'],/mol dm™>: 0.01 0.03 0.05 007 0.10

Initial rate/mol dm™ s7; 06 18 3.0 42 6.0
() [I]y= [OHT],=0.1 mol dm™

[OCI],/mol dm: 0.01 0.03 0.05 007 0.10

Initial rate/mol dm™ s7': 0.6 1.8 30 42 6.0
(¢) [I'ly= [OCIT,=0.1 mol dm™

[OH ]/mol dm™>; 0.01 0.03 0.05 007 0.10

Initial rate/mol dm™ s! 60.0 200 120 86 6.0

Find (i) the orders of the reaction with respect to I, OCI” and OH", and (ii) the
reaction rate constant of the reaction.

(i) The orders of the reaction with respect to I, OCl™ and OH ™ in the present
case can be determined from the inspection of the given data. In the set (a),
we observe that the initial rate of the reaction increases as fast as the increase
in concentration of I". For example, if the concentration of I" is increased
three times from 0.01 to 0.03 mol dm™, the initial rate also increases three
times, i.e. from 0.6 to 1.8 mol dm™ s™'. Thus, it follows that the order of the
reaction with respect to I" is one. From the data of set (b), we conclude that
the order of the reaction with respect to OCI™ is also one. However, in the set
(c) where the concentration of OH™ is varied, the rate decreases as fast as the
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concentration of OH™ is increased. Thus, we conclude that the order of the
reaction with respect to OH™ is —1.

To be more quantitative, we may follow graphical method to determine the order
of the reaction. We write the differential rate law as

dx B B _
(—] =k [17]% [OCI" 14 [OH T}
dr ),

For set (a), since [OCl ] and [OH ] are held constant, the above expression becomes

5o
a), =K

or {log (dx/df)/mol dm™ s™'} = log k” + o log ([I"]/mol dm™)

Thus, a plot between log{ (dx/df),/mol dm~ s} and log{[I"],/ mol dm™} should
yield a straight line of slope equal to ¢. Similarly, for other sets, we may write

Set (b): {log (dx/dz)y/mol dm™ s™'} = log k" + B log {[OCI"],/mol dm™}
Set (c): {log (dx/dr)y/mol dm™ s7'} = log k” + ylog {[OH ],/mol dm™}

The following are the logarithm values of the given data.

Set (a):
[I"],/mol dm™ 0.01  0.03 0.05 007  0.10
log{[I"],/mol dm=} 2000 2477  2.699 2.845 1.000
(dx/df)y/mol dm™ 5! 0.6 1.8 3.0 4.2 6.0
log{(dx/df),/mol dm™ s7'} 1.778 0225 0477 0.623  0.778
Set (b):
[OCI ™ ],/mol dm 0.01  0.03 0.05 007  0.10
log{[OCI1],/mol dm} 2.000 2.477 2.699 2.845 1.000
(dx/df),/mol dm™ s~ 0.6 1.8 3.0 42 6.0

log{(dx/df)y/mol dm™ s} 1.778 0255 0477 0.623  0.778

Set (¢):
[OH ],/mol dm™ 001  0.03 0.05 0.07  0.10
log {[OH],/mol dm™} 2.000 2.477 2.699 2.845 1.000

(dx/df),/mol dm™ s~ 60.0  20.0 120 86 6.0
log{(dx/d#)y/mol dm™> s} 1.778  1.301 1.079 0.935 0.778

Figure 2.7.5 depicts the required plots. The slopes are +1, +1 and —1, respectively.
Thus, the order of the reaction with respect to I, OCI™ and OH™ are +1, +1 and
—1, respectively.
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Z

Fig. 2.7.5

Solution

T 0.8 T 1.84

2 06 16

IE |$:

= 04 < 14

° °

g o2r /] £ 12

3 3

_§ 0 o 3 1.0

2 1.8 s]ope=m =l EJ 0.8
| ) | | | 1.6 1 1 1 1 I 0.6 1 1 1 ! |

.0 22 24 26 28 1.0 2 22 24 26 28 1.0 20 22 24 26 28 1.0

log {[I"]y/ mol dm}— log {[OCI"Jo/mol dm™}— log {[OH]o/ mol dm~}—

(i) The reaction rate constant can be determined by substituting the data in
the rate law:
dx) _ k[I'J[OCI]
(EJO [OH"]
Substitution of each data gives the same value of & equal to 60 s™'. Alternatively,
the graphical methods may be employed to determine the value of .
8. (a) Using the following data, obtain the differential rate expression and the
value of the rate constant for the following reaction
CO + Cl, — COCl,

Experiment number 1 2 3 4
[CO],/mol dm™ 0.10 0.10 0.05 0.05
[Cl,],/mol dm™ 0.10 0.05 0.10 0.05
ro/mol dm~ 5™ 12x107%  426x10°  6.0x107 2.13x10°

(b) Using the following data, obtain the differential rate expression and the value
of the rate constant for the following reaction

COCl, — CO + Cl,

Experiment number 1 2 3 4
[COCl,],/mol dm™ 0.16 0.16 0.04 0.04
[Cl,]o/mol dm> 0.16 0.04 0.16 0.04
ro/mol dm™ s™! 19x 102 9.6x10° 48x107 24x107

(a) We write the rate expression as

(d_x) = k[CO]y [CL;
@ ), = MCoTg L,

For the constant initial concentration of Cl,, we have

a ), = Keor;
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or log {(dx/dr)y/mol dm™ s™'} = log k” + m log {[CO],/mol dm™}

For the two sets of data, we have

o, Jog{(dv/dr)y, /mol dm™ s} —log{(dx/dt)s,/mol dm™>s™"}
log {[CO],,/mol dm™} —log {[CO],,/mol dm™}

Substitution of the data from the first and third experiments (or we may equally
use the data of the second and fourth experiments), we get

. log(1.2x107%) —log (6.0x107) _ 2.0792-3.7782 _ 0.3000 _
log (0.1)—log (0.05) 1.0000-2.6090  0.3000

Similarly for the constant initial concentration of CO, we may write

_ log{(dx/dr)y,/mol dm~s™"} —log{(dx/d)y, /mol dm~s”'}
log {[Cl,]y;/mol dm™}—log{[Cl,],,/mol dm™}

Thus, employing the data from the first and second experiments (or we may equally
use the data of third and fourth experiments), we get

log(1.2x107%)~log(4.26x107°) _ 2.0792-3.6294 _ 0.4498
log (0.10) —log (0.05) 1.0000-2.6990  0.3010

1.494 = 3/2

Thus, the differential rate expression for the given reaction is
dx 312
— = k[CO][CI]
o [COJ[CL]

The value of rate constant can be obtained by using any one of the given data
points. Making use of the data of the first experiment, we get

1.2 x 102 mol dm™ s™' = k (0.1 mol dm™)(0.1 mol dm™)*?

1.2%10%mol dm>s™

= =3.795 (mol/dm’®)>? s7!
(0.1mol dm™>)(0.1mol dm~>)*? ( )

(b) We may write the rate expression as

i—’t‘ = k [COCL]" [CL,]"

Proceeding similarly as in part (a), we will get

. log{(dv/di), /mol dm™ s} —log{(dx/dr),,/mol dm>s™"}
log {{COCl,],;/mol dm_3}—log{[COC12]02/mol dm™}

. _ log{(dx/dr)y, /mol dm™ s} —log{(dx/dr),,/mol dm~>s™"}
log {[Cl,]y;/mol dm™} —log {[Cl,],,/mol dm™}
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Thus from the first and third, and first and second experiments, we get

_ log(1.9x107)—log (4.8x107°) _ 2.2788-3.6812 _ 0.5976
log (0.16) —log (0.04) 12041-2.6021  0.6020

=1

. log(1.9x1072)~log (9.6x107°) _ 2.2788-3.9823 _ 0.2965
log (0.16) —1og (0.04) 12041-2.6021  0.6020

=12
Hence, the rate expression is

i—j = k{COCL,][CL,]"?

For the value of k, we get from the first experiment
1.9 x 102 mol dm > s ! = k (0.16 mol dm>)(0.16 mol dm )"

1.9%102moldm s~

N =0.297 (mol/dm®) "2 s!
(0.16 moldm~)(0.16 moldm™>)""2 ( )

9. For the bromination of acetone

CH,COCH, + Br, — "y CH,COCH,Br + H" + Br~

the following data were obtained.

Experiment [CH;COCH; ] [Br,] [H"] —d [Br,]/d?
Number mol dm™ mol dm™ mol dm™ moldm= s
1 0.30 0.05 0.05 57%107°
2 0.30 0.10 0.05 5.7x107°
3 0.30 0.05 0.10 1.14x 10"
4 0.40 0.05 0.20 3.04x107*
5 0.40 0.05 0.05 7.6x 107
Calculate the rate constant for the reaction.
Solution We may write the rate expression as
d[Br, ]

- 5% = k[CHCOCH,)” (Br)’ [H'}

Proceeding similarly as in Q. 8, we have
o~ logl(=d[BrJ/dr)y, /mol dm™ s} —log{(~d[Br,/df)ys/mol dm=s™"}
log {[CH;COCH;],,/mol dm™} —log{[CH,COCH;],s/mol dm™}

_ log{(-=d[Br,)/dr)y,/mol dm~s™'} —log{(~d[Br,]/d)s, /mol dm~s'}
log{[Br, ]y, /mol dm~} —log{[Br,],,/mol dm™}

B

_ log{(~d[Br,]/d);/mol dm~s™'} —log{(~d[Br,]/d#)y;/mol dm~>s™"}
r log {[H" ]y, /mol dm~} —log {[H" ],/mol dm}
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Solution

Thus, making use of experiments 1 and 5, 1 and 2, and 1 and 3, respectively, we get

oy log(5.7x107°) ~log (7.6x107°) _ 57559-5.8808 _ 1.8751 _
log (0.30) —log (0.40) 14771-1.6021  1.8750

_ log(5.7x107°)—log (5.7x10™) o

p log (0.05)—1log(0.1)
_ log(5.7x107)—log (1.14x10™) _ 5.7559-4.0569 _ 1.6990 _
log (0.05) —log (0.10) 2.6990-1.0000  1.6990
Hence, the rate expression is
d[Br,]

v [CH,COCH;] [H']

Making use of the first experiment, we get
5.7 % 107° mol dm™ s™! = & (0.30 mol dm>) (0.05 mol dm™>)

_ (57x107 mol dm~s™)
(0.3 mol dm™)(0.05 mol dm™)

10. The following data were obtained during the saponification of an ester.
Determine the order of the reaction by the half-life method and the value of rate
constant.

t/s 0 100 200 300 400
[AJ/(mol dm™) 0.050 00355 0.0275 00225 00185

=3.80 x 107 (mol/dm*) ! s!

500 600 700 800
0.016 0 0.0148 0.0140 0.0138

From the given data, we plot a graph between [A] and ¢ and determine from the
graph ¢, for various initial concentrations of A. If these times are independent of
2

[A]p, we may conclude that the reaction is of first-order. If it is not so we plot 7,
2

versus 1/[A], to determine whether the reaction is second-order. If we get a straight-
line plot, we conclude that the reaction is of second-order. If a straight-line plot
is not obtained, we may plot ¢, versus 1/[A]% to determine whether the reaction
is of third-order ’
The graph between [A] and 7 is shown in Fig. 2.7.6a. From the graph, we obtain
the following data:
[A],/mol dm™ 0.05 0.045 0.040 0.035 0.030
t /s 245 270 300 325 400

Since ¢, 2is not independent of [A],, we plot a graph between ¢, and 1/[A],

(Fig. 2.7.6b). The graph obtained is a straight line and thus the reaction is of second-
order. The slope of the rate expression, which is equal to 1/k,, is equal 11.57 mol

1 1

dm?>s. Thus k= = 5
slope  11.57moldm™ s

=0.086 4 (mol dm ) ! s!




Fig. 2.7.6

Solution

0.05

0.04
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400

350

| | |
200 400 600 800 20 24 28 32 36
t/s — mol dm=/[A]

(a) (b)

11.  The reaction 2NO + H, = N,O + H,O follows the rate law

dp(N,0) 2
7(”2 = k(Pno) P,
The following data have been obtained.
Run ®no)o ( pH2)0 Half-life Time Temperature
mmHg mmHg S °C
1 600 10 19.2 820
2 600 20 ? 820
3 10 600 830 820
4 20 600 ? 820
5 600 10 10 840

Answer the following.

(a) What is the value of half-life time not shown above?

(b) What is the value of £ at 820 °C?

(c) Calculate the half-life time at 820 °C if pyo = 20 mmHg and py, = 10 mmHg.
(d) Calculate the value of E, from the equation

k, Ea(l 1]
In =2 = =B e
ko R\TL T,

(@) Inruns I and 2, (pyo), is very large in comparison to (Py,)o . Thus, under

these conditions, we may consider the rate of reaction to be independent of p(NO)
and hence reaction will follow the rate law

deZO
2 =k
( i), (sz)O
that is, the reaction is first-order. Its half-life time will be given by

_In2 2303x0.310  0.693
k k k

t

=
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Since ¢, is independent of initial concentration, it follows that #, in run 2 will be
2 2
the same as that of run 1, i.e. 19.2 s.

Now in runs 3 and 4, (py, ), is very large and the reaction will follow the rate law

dezo
( = Jo=k(pNo>%

that is, the reaction is second-order. Its half-time will be given by
1
t,
2 (Pno)o
Now since ( pyg )y is doubled in run 4 as compared to run 3, it follows that #, 5
will be reduced to half, i.e. 830 s/2 = 415 s.
(b) For the data of run 1, we have

0.693  0.693

_ _ _ -1
Kapp " 1925) 0.036 s
2
But kapp =k (pNO)%
k 0.03657"!
o) k= —2— = (00365 ) =1x 107" mmHg* s

~ (Pno)i (600 mmHg)’
(¢) For the given data of (pyg), =20 mmHg and (py, )y = 10 mmHg, the system
becomes a special case for which the rate expression is

d H
2B pvopy pay)
=k {2p(H,)}* p(H,) = 4k {p(H,)}’
On integration, we get

1 1

— = 8kt
{p(H)}  {p(Hy}
and the half-life is given by
1 1 Sk
— = tl
{(p(H,)/2}5  {p(H}, E
3

or = T 5
5 8k{p(H,)}}

3 4
Hence, ¢ =38x10"s

P 8(1x107 mmHg s )(10 mmHg)>
(d) At 840°C, ¢, =10 s. Hence £ is given by

0693

— —1
wp= —— —0.0693s

=

o tar (0069357
(o) (600mmHg)*
Hence by using the given expression, we get

l(ﬂ)E_a 1
"U1) 7 R 1093k 113K

=192 x 10" mmHg? 5!
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v (2.303%0.2833)(8.314JK 'mol ") (1 093K) (1 113K)
a 20K
=3.299 4 x 10° J mol™' = 329.94 kJ mol™

or

2.8 REACTION ORDER AND REACTION MECHANISM

One of the most important applications of studying the order of a reaction is
to use it in establishing the molecular path or the mechanism of the reaction. A
given reaction may proceed in one elementary step or more than one elementary
step. It was stated earlier that the order of an elementary step is always equal to
its molecularity, i.e. a unimolecular elementary reaction will observe first-order
kinetics, a bimolecular elementary reaction will follow second-order kinetics and
a termolecular reaction will follow third-order kinetics. It is reasonable to assume
that the reaction of any one elementary step results when the reacting species come
close and collide with each other. Only during collision, molecular rearrangement
can take place which leads to the formation of products. Since the probability of
four molecules coming together and colliding with one another is very remote,
the elementary reactions with molecularity more than three (and order greater than
three) are not observed.

It can be stated that if the over-all order of a reaction corresponds to the
stoichiometric equation, the reaction mechanism may or may not involve only
one elementary reaction that is identical with the stoichiometric equation.” When
the reaction order does not correspond to the stoichiometry of the reaction, the
reaction certainly involves more than one elementary reaction. It is then necessary
to devise a series of elementary reactions that is consistent with the reaction
order found experimentally. In many cases, it is possible to design more than one
mechanism consistent with the experimental findings. However, additional experi-
mental evidences can be collected to prove or disprove any proposed mechanism.

In many reaction mechanisms, the following types of elementary reactions are
involved.

1. Opposed or reversible elementary reactions.
2. Side or concurrent elementary reactions.
3. Consecutive or sequential reactions.
Before considering the reaction mechanisms of important reactions, it is
worthwhile to study the characteristics of the above elementary steps.

2.9 OPPOSED OR REVERSIBLE ELEMENTARY REACTIONS

Opposed or reversible elementary reactions are those reactions in which both
forward and backward reactions take place simultaneously. To start with, the rate
of forward reaction is very large and it diminishes as the concentrations of reactants
decrease with time. On the other hand, initially the rate of backward reaction is
slow and it increases as the concentrations of products increase with time. Very

 One of the examples where it is not true is the dehydrogenation of ethane, see Eq. (2.14.10).
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Differential Rate
Law

soon, a stage is reached where the rate of forward reaction becomes equal to that
of backward reaction and thus no further net progress is observed. This situation
is known as the equilibrium state. Thus, equilibrium is a dynamic equilibrium
where all the participants of a reaction are being formed as fast as they are being
destroyed and hence no further change in the various concentrations is observed.

A reversible reaction may be classified on the basis of orders of elementary
forward and backward reactions. We describe below a few reversible reactions
classified according to the above scheme.

FIRST-ORDER OPPOSED BY FIRST-ORDER

Such type of reactions may be represented as

k,
A—B (2.9.1)
Ky

where k; and k&, are the reaction rate constants of forward and back reactions,
respectively.
The rate at which the reaction proceeds will be given by

Rate of reaction = Rate of forward reaction — Rate of backward reaction

. d[A]_d[B]_kA (B
ie. “ Ty T ar  lAl - k(B
Let the reaction be started with only reactant A. If x is the extent of reaction

divided by volume, we will have

[A] =[Alo—x
[B] =x
Substituting these in the previous expression, we get
dx
T ke([Alg—x) —ky x (2.9.2)

At equilibrium state, dx/d¢ will be equal to zero and hence Eq. (2.9.2) may
be written as

ke([Aly — Xeq) = Ky X g (2.9.3)

where x_, is the concentration of A that has been transformed into B at the

eq
equilibrium state. From Eq. (2.9.3), we get

[A]O ~ Xeq
ky=ke| =™ (2.9.4)
Xeq

Substituting Eq. (2.9.4) into Eq. (2.9.2), we get

dx [A]y — x.

5~ kellAly ) - k{#] x

Xeq

. dx _ [Aly
ie. T ke —— (xeq—X) (2.9.5)

xeq
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Law

Concentration of A
and B at Time t
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Equation (2.9.5) is the differential rate expression for the reaction given by
Eq. (2.9.1).

The integrated rate expression can be obtained by integrating Eq. (2.9.5). Thus,
we have

jﬁ dx =k %Jt‘dt

0 xeq —-X Xeq 0
which yields
AL
—In (xeq —x) +Inx=ky — 1
Xeq
X A
or In ( = J = k; (A, (2.9.6)
Xeqg =X Xeq

Equation (2.9.6) can be used to determine the value of k; from the measurable
quantities [A]y, x4 and x at time 7. Knowing ky, k, can be determined from
Eq. (2.9.4).

Equation (2.9.6) can be written in an alternative form. From Eq. (2.9.3), we

may write
kf [A]O = (kf + kb) xeq
[Aly ke + K,
=0 _ 2.9.
or Yy 0 2.9.7)
Substituting the above expression in Eq. (2.9.6), we get
Xeq
In =(kpt+ ky)t (2.9.8)
Xoq =X

Equation (2.9.8) has a form of a simple first-order reaction (Eq. 2.5.6) where
[A], has been replaced by x.,, and &k by k + k.

eq®

Rearranging Eq. (2.9.8), we get

X = Xeq [1 —expi— (k¢ + ky) 1}] (2.9.9)
Eliminating x., by making use of Eq. (2.9.7), we get
oo Bk ot Gt k) 1] (2.9.10)
(k¢ +ky) P e o
Now since [B] = x and [A] = [A], — x, we get
B] = AhK o ket k) 1] 2.9.11)
(k¢ + ky) e o
Al k
[A] = [y~ 08y e - Gk ey 1]

- (k¢ +ky)

- ki Ky _
Al G {kf T e k")t}} (2:9.12)
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Equilibrium
Constant of the
Reaction

Rate Expression if
[B], is not Equal to
Zero

Examples

The equilibrium reaction described by Eq. (2.9.1) can be characterized by the
equilibrium constant K, given as

[Bleg Yeq
K., = = (2.9.13)
a [A]eq [A]O - xeq
From Eq. (2.9.3), we find that
_ Y _ ke
[A]O —Xeq kb
and hence
ke
Koy = T (2.9.14)
b

that is, the equilibrium constant is simply the ratio of the forward and backward
rate constants. Equation (2.9.14) is, in fact, applicable to all types of one-step
reversible reactions.

Equations (2.9.5) and (2.9.6) are applicable when the equilibrium reaction (Eq.
2.9.1) is started with only A and no B. If to start with both A and B are present
with concentrations [A], and [B],, respectively, then Eq. (2.9.2) takes the form

dx
< = ke[ATg =) ~ k(B + ) (2:9.15)
Thus, at equilibrium, we will have
kf ([A]O - xeq) = kb ([B]O + xeq)
b=k | Y 2.9.16
o b [B]0+xeq ( - )
With Eq. (2.9.16), Eq. (2.9.15) becomes
dx [Aly = Xeq
KAl —x) — & [m—+ ([B]o +x)
[Alo +[B]
= kg [WJ (req = ) (2.9.17)
On integrating Eq. (2.9.17), we have
[ [A]o (8L | g,
0 Xeq =X 0t Xeq )0
ie. . ke m t (2.9.18)
qu - [B]O + xeq

Equation (2.9.18) is reduced to Eq. (2.9.8) if xq on the right-hand side is
eliminated with the help of Eq. (2.9.16) with [B], = 0.

The examples of reaction described by Eq. (2.9.1) include the mutarotation of
m-bromonitrocamphor in chloroform solution at 14 °C and isomerization of
cyclopropane into propene.
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Solution

Fig. 2.9.1 Plot of
log {x.q — X)/x¢q} versus ¢
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For the reaction
k
A :1 P

k_y

The percentage of A varies with time as follows
Time/h 0 1 2 3 4 oo
% A 100 72.5 56.8 45.6 39.5 30
Calculate k|, k| and K.

The given reaction will follow first-order kinetics with

Xog — X
In [ “
Xeq
where x and x,, are the concentrations of P at times 7 and 7, respectively. The value of

— (ky + k_;)/2.303 is determined from the straight-line plot of log{(x.q — X)/x.,} versus ¢
(Fig. 2.9.1). Thus, we have

J =—(ky + k)t (Eq. 2.9.8)

1/h 0 1 2 3 4
—_ _0
(g — )/ ¥eq = 70-(100=%A) 1 0607 038 0223  0.136
70
108 {(Xoq — X)/Xeg} 0 1.783 1.583 1348 1.133
0
18+ © slope = (—0.435/2)

=-02175

log {(xeq —x) / xeq}
—
N
T

(=]
—
[\S)
w
N

From Fig. 2.9.1, we get

slope =—-0.2175

A{log (xq —x)/xgq }
A(t/h)

=-0.2175

Hence, the slope of the rate law is

A{log(xeq —x)/Xgq} _
At

- 02175 1!
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Differential Rate
Law

Integrated Rate
Law

Examples

Differential Rate
Law

Thus, we have

ktka o017 51!
2303
or ky+ k., =2.303% 0217 5 b (1)

Now at equilibrium, we will have

K =L =29 =" -7333 )

Solving for k; and k_; from Eqs (1) and (2), we get
k; =0350 7 h' =(0.350 7/3 600) s ' =9.74 x 107 5!

k,;=0.1504h" = (0.150 4/3 600) s ' =4.18 x 107 s

FIRST-ORDER OPPOSED BY SECOND-ORDER

The general reaction may be written as
k

A kﬁ B+C (2.9.19)
b
The rate of production of B or C will be given by
% = k([A]p — x) — ky ¥ (2.9.20)

where x is the concentration of A that has transformed into products at time ¢. Since
at equilibrium dx/dr = 0, we have

ke ([A]g — Xeg) = ki X2

[A] —Xe
S (2.9.21)

xeq

Substituting the above expression in Eq. (2.9.20), we get

or kb = kf

A —
dx = k; ([A]O—x)—[]0—2x“‘x2 (2.9.22)

dr .

eq
Equation (2.9.22) is the differential rate law of the reaction given by Eq. (2.9.19).

Equation (2.9.22) can be integrated to obtain the integrated rate expression. Without
going into the details, we write only the integrated rate expression:
[Alyxeq + X ([Al) — Xeq) 'y 2[A]y — xgq ) (2.9.23)
[A]O (xeq - x) Xeq
The examples of the reaction are the decomposition of certain alkylammonium
halides into a tertiary amine and an alkyl halide in aqueous medium.

SECOND-ORDER OPPOSED BY FIRST-ORDER

The general reaction may be written as
A+B—°C (2.9.24)



Integrated Rate
Law

Examples

Differential Rate
Law

Integrated Rate
Law
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The rate of production of C will be given by

dx

& = k(A=) ([Bly~9) — by x (29.25)
where x is the concentration of A or B reacted in time 7. At equilibrium, we will have

kf([A]O - xeq) ([B] 0~ xeq) = kb xeq

. ([A]O _xeq)([B]O _xeq)
= kf

or ky (2.9.26)
Xoq
Substituting the above expression in Eq. (2.9.25), we get
dx ([AJy = xeq ) ([Bly = xeq)
m :kf[([A]ox)([B]ox) . x
! « (2.9.27)
The integrated form of Eq. (2.9.27) when [A], = [B], = a is
2 2.2
X (a” —xx a”—x
qu «) ke A (2.9.28)
a (xeq _x) xeq

One of the examples is the isomerization of an alkyl ammonium cyanate to the
corresponding substituted urea in aqueous solution, i.e.

NH,R" + CNO~ = H,NCONHR

SECOND-ORDER OPPOSED BY SECOND-ORDER

The general reaction may be represented as

A+B = C+D (2.9.29)
The rate of production of C or D will be given by

dx 2

&~ keAl ) ([Blo )~ kyx (2.9.30)

where x is the concentration of A or B reacted at time #. At equilibrium, we will have
ke([A]g — xeg)([Blo — Xeq) = Ky X

([Ay = Xeq) ([Bly = xeq)

Xeq

With the above expression, Eq. (2.9.30) becomes

dx ([Aly = xeg)([Bly — Xeq)

— =k | ([Aly —%)(B], —x)— = 47 x? (2.9.32)

dr Xoq
The integrated form of Eq. (2.9.32) when [A], = [B], =a is

x(a—2x,)+ax 2a(a—x,
n = W) Py _ ks (@~ %) t (2.9.33)

2

a(Xeq —X) Xeq
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Examples

Examples include the reactions
CH;CO,H + C,H;OH — CH,;CO,C,H5 + H,0
O;(g) + NO(g) = 0O,(g) + NO,(g)
CO(g) + NOy(g) == CO4(g) + NO(g)

PRINCIPLE OF MICROSCOPIC REVERSIBILITY

The equilibrium constant K, of the reaction A == B given by Eq. (2.9.14) is
Ko - ke (Eq. 2.9.14)

K,
The above relation was derived from the principle that at equilibrium the rate
of forward reaction is equal to the rate of backward reaction. In fact, Eq. (2.9.14)
is applicable to all types of one-step elementary reversible reactions. For example,

consider a reaction of the type second-order opposed by second-order, i.e.
A+B = C+D

At equilibrium, we will have
Rate of forward reaction = Rate of backward reaction
kf[A]eq [B]eq = kb [C]eq [D]eq

k- Dy _
[A]eq [B]eq kb
The principle that for one-step elementary reaction at equilibrium, the rate of
forward reaction is equal to the rate of backward reaction, is known as the principle
of microscopic reversibility. This principle helps us in establishing the connection
between the equilibrium constant of an elementary reaction and the rate constants
of its forward and backward processes. If a reaction mechanism involves more
than one elementary process, each elementary process follows the principle of
microscopic reversibility. For example, the reaction
2NO, + F, &= 2NO,F (2.9.34)
involves the following two elementary reactions.
NO, + F, L> NO,F +F
F + NO, L NO,F
The condition for equilibrium of the reaction of Eq. (2.9.34) is that each elementary
process and its reverse proceed at the same rate. The reverse reactions of the above
two elementary reactions are

F +NOF —% 5 NO, +F,

Hence

NOJF —% NO, + F
Thus, from the principle of microscopic reversibility, we have
kf [NOZ]eq [Fz]eq = kb [F]eq [NOZF]eq

and kt( [F]eq [NOZ]eq = kk,) [NOZF]eq
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Eliminating [F]., in the above relations, we get
kl; [NO2F]eq

ks [NO F)lea=k
f[ 2]eq[ 2] b kf[NOz]cq

eq [NOZF]eq

. keki _ INO,FI
koki  [NO, I [Fy g
The right side of the above equation is the equilibrium constant of the reaction
described by Eq. (2.9.34) and hence
_ ks
koK

(2.9.35)

210 SIDE OR CONCURRENT ELEMENTARY REACTIONS

A Typical Example

Differential Rate
Law

Sometimes the products observed are formed by the same reactants undergoing
more than one reaction. For example, o-D- glucose and B-D-glucose are formed
in solution from the aldehydic form of D-glucose following the different reactions:

1 1

HO—C—H CHO H—C—OH
H—C|—OH H—Cl—OH H—C—OH

HO—(|3—H KM owo—c—n KA HO—C—H
H—(::—OH H—C—OH H—C—OH

——O0—C—H H—C—OH ——O0—C—H
(|3H20H C|Hon (|3H20H

B-D-glucose aldehydic form o-D-glucose

of D-glucose
The example cited above may be written as

¥ B
A
K] C
The differential rate expressions for the above two reactions are
, dfA] _ .,
rp=—- —— =ki[A
! dr 1lA]
d[A]
//_ I " E— ” A
1 dr 1[A]
The overall-rate of disappearance of A is given as
4 ’” d[A] ’ ”
rptr=- 4 (k| + k")[A] = Kk [A] (2.10.1)

The first-order rate constant k, is the sum of the two rate constants k{ and k7 of
the two side reactions.
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Integrated Rate
Law

A More Involved
Example

Equation (2.10.1) can be integrated to get the integrated rate expression. Thus,
we have

[A] t
A
| % =k, [dr
[Aly [A] 0
A
In [Aly =kit=(ky+ki)t (2.10.2)
[A],
Since the rate of formation of products B and C are given by
dB] _ , dac] _ .,
— =k{[A and — =k7[A
dr AL dt vIAL
it follows that the ratio of concentrations of B and C at any instant will be given by
B] _ M
1 &

Hence, if the ratio of B and C is determined at any instant (or at the end of the
experiment) and k] + k7 is determined from the kinetic study (Eq. 2.10.2), it is
possible to determine the individual constants k] and k7.

In many cases, stoichiometric coefficients of reactants in concurrent reactions
are not the same. For example, we may have the concurrent reactions of the type

kl
A—>5B
b
2A — C
k3
3A —> D

If we assume the above reactions to be elementary, we may write their differential
rate expressions for the appearance of products as

d[B]

nT oy ki[A]
2= % = 2[A]2
r3 % —k3[A]3
The rate expressions for the disappearance of reactant will be given by
r=- % = ky[A]
== % % = kz[A]2
re- 3 B gar

The total rate of disappearance of A will be given by

— % = k\[A] + 2k,[AT + 3k;[AT
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211 CONSECUTIVE OR SEQUENTIAL REACTIONS

A Typical Example

Differential Rate
Law

Integrated Rate
Law

In many cases, the product formed in one of the elementary reactions acts as the
reactant for some other elementary reaction. One of the examples of consecutive
reactions involves the following steps.

A—b,B
B, C
Let the initial concentration of A be [A], and let after time ¢, the concentrations
of A, B and C be [A], [B] and [C], respectively. It is obvious that

[A], = [A] + [B] + [C] (2.11.1)
The differential rate expressions are
d[A]
_ =k.IA 2.11.2
7 i[A] ( )
diBj _ k,[A] — k{[B] (2.11.3)
dr
acy _
=k'IB 2.11.4
& 1[B] ( )
On integrating Eq. (2.11.2), we get
[A] = [A], e (2.11.52)
Substituting [A] from Eq. (2.11.5a) into Eq. (2.11.3), we get
d[B] kg
— =k[A T — kB
dr 1[Aly e 1[B]
d[B]

== + K|[B] = kj[A], e
dr 1[B] 1[A]y e

Multiplying the above expression throughout by exp(k] #), we get

(%Jr kl’[B]j e = I [A], e R

The left side of the above expression is equal to d([B] el )/dt. Hence, the
above expression can be written as

d{[B]e"" } = k,[A], e B~ d¢
Integrating the above expression with [B] = 0 at 7 = 0, we get
o (k=KD 1
’ + ’
—(k k) K=k

[B]e"" = k[A], {

—kyt

—k{t

e e

B] = k,[A —_—t
P 1[ ]0 |:k1,_kl kl_kl/:|

[B] =[A], (%){ek" —ehiy (2.11.5b)
1 1
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Fig. 2.11.1 Typical
variations of
concentrations of A, B
and C during the
progress of the reaction
A — B — C. The actual
variations depend on
the values of &, and &}

Maximum
Concentration of B

Substituting Eqs (2.11.5a) and (2.11.5b) in Eq. (2.11.1), we get

k ,
[Aly = [A]y ¢ + [A], (k'_lkj (k! — )+ [C]
1 1

1 ,
or [C]=[A]p {1-——— (ke ™™’ — ke ™" (2.11.5¢)
kl - kl

Figure (2.11.1) illustrates the general appearance of the variations of concentrations
of A, B and C during the progress of the reaction.

[C]

Concentration —»

[B] [A]

Time ——

In general, the concentration of A decreases exponentially, the concentration
of B initially increases up to a maximum and then decreases thereafter, and the
concentration of C increases steadily until it reaches its final value [A],, when all
A has changed into C.

Equation (2.11.5b) is

[B] = [A], ( k J{e_klt —ehiy (Eq. 2.11.5b)
ki =k,
At the maximum concentration of B, we will have
d[B] _
==
Hence, differentiating Eq. (2.11.5b) with respect to 7, we get
% =[A], (k{]ikl j (—kye™h! + K ek (2.11.6)

Equating Eq. (2.11.6) to zero, we get
_ kl e_kl inax + k{ e_klrtmmx = 0

LN
kf
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k
or In|=Lt|=(k -k)¢
(kl,j ( 1 1) max
k
or o = SR =L (2.11.7)
ky =k ki

Substituting Eq. (2.11.7) in Eq. (2.11.5b), we get
k_{ ki (e =k))
ki

One of the most common examples is the radioactive decay. Other examples
include the decomposition of dimethyl ether in the gaseous phase and that of the
ethylene oxide. The reactions are

[Blimax = [A]o( (2.11.8)

k,
CH,0CH; — CH, + HCHO
k.
HCHO —> H, + CO

kl 2
and  (CH,),0 — (CH;CHO)* —%5 CH, + CO

Two Important Conclusions from Eqs (2.11.5)

Rate-Determining
Step

From Eqs (2.11.5a), (2.11.5b) and (2.11.5¢), two important conclusions which form
the basis for deriving the differential rate laws of complex reactions can be derived.
These are: (1) the slowest elementary process (i.e. the process having the smallest
rate constant) is the rate-determining step of the reaction and (2) the steady-state
approximation (which states that the reactive intermediates are present at constant
concentrations) can be assumed to hold good for all reactive intermediates. We
derive these conclusions as follows.

Suppose that in the consecutive reactions

A-e e
the reaction rate constant k| is very much larger than k. In other words, the
reaction A — B is much slower than the reaction B — C. Qualitatively, we can
say that the moment B is formed from A, it immediately transforms to C. Thus,
the rate of formation of the product C depends wholly on the rate at which the
intermediate B is formed from A. The same conclusion can be derived from Eq.
(2.11.5¢). We have

[C] = [A], {1 #(k{e‘kl’ ~k e"‘l”)} (Eq. 2.11.5¢)

N kl,_ kl

Since k', > ky, the ¢ will be much smaller than ¢’ and hence k, ¢ may

be ignored in comparison to kf e

simplifies to

- _ kl’ —kt
[C] = [Al, {1 e }

. Hence, Eq. (2.11.5¢) in the present case
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Steady-State
Approximation

Fig.2.11.2 A

typical variation in
concentrations in a
consecutive first-order
reaction

AL) B k% C with
(@) k, > ki and
(b) ky < Ky

Since k, is much smaller than &/, we may also ignore k, in comparison to ;.
Thus, the above equation becomes

[C] = [A], (1 — ¢™f") (2.11.9)
Equation (2.11.9) can be obtained directly if we consider alone the reaction
A—C
Now % = k[A] = k,([A], - [C]) (2.11.10)
or _diel ke, dt
(Al ~[C€]
t
or [y far
0 [A], ~[C] 0
or In e 1 R kit
[Alo
JUR VN T (&
[Alo

Hence [C]=[A], (1 - e
which is identical to Eq. (2.11.9). Thus, we may conclude that the reaction with
the smaller rate constant is the rate-determining step. The same conclusion would
be obtained if we consider that the first step is much faster than the second step,
i.e. k; > k{. In this case, we will ignore k{ in comparison to k, and k{e ™" in
comparison to k, e~k Hence, Eq. (2.11.5¢) in the present case will simplify to
[C] =[A], (1 — e7"") (2.11.11)
The above equation can be obtained directly if we consider alone the reaction

B—C
with [B], = [A], as the transformation A to B is very fast.

Figures 2.11.2a and 2.11.2b illustrate the typical variations in the concentrations
of A, B and C for the two consecutive first-order reactions with &, > £k’ and
k, < k7, respectively.

=
2 [C] T
g
=
8 E [c1
s 2
“ [B] E [A]
3
s
@]
[A] [B]
Time — Time —

(@) (b)
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In Fig. 2.11.2a, the concentration of A disappears very rapidly as k,;> k{ and
since the rate at which B disappears is relatively slow, the concentration of B
increases rapidly and after attaining the maximum in a small time interval, starts
decreasing.

In Fig. 2.11.2b, the concentration of A decreases slowly as the reaction rate
constant &, has a small value. The concentration of B practically remains constant
for a reasonable length of time during the reaction, except at the very beginning
and at the end. This constancy results from the fact that the intermediate B is very
reactive as its transformation to C occurs at a very fast rate. In fact, the concentration
of B at any instant will be much smaller than that of A. This follows from
Eq. (2.11.5b) where on ignoring &, in comparisons to k” and exp(—k;?) in
comparison to exp(— k,f), we get

k
[B] = [A], k—‘ et (2.11.12)
1
Since at any instant the concentration of A is given by Eq. (2.11.5a), we get

ky
K
that is, the concentration of B is smaller than the concentration of A by a factor
of about k,/k{.

The fact that the concentration of the reactive intermediate B has a small value
and that it practically remains constant throughout the reaction is known as the
steady-state approximation. Mathematically, the latter can be written as

B
M =0 (2.11.14)
dr
The use of Eq. (2.11.14) very much simplifies the kinetics of a reaction. For

example, in a consecutive first-order reaction with k] >k, Eq. (2.11.3) gives

[B] = -L [A] (2.11.13)

d[B] ,
L = kAl - K([B] =0
k
or [B] = k—l [A] (2.11.15)
1
Substituting the above equation in Eq. (2.11.4), we get
ey _ , K
= k{[B] = ki — [A] = k[A] (2.11.16)
dr K

Note the identity of Eqs (2.11.13) and (2.11.15) and Eqs (2.11.10) and (2.11.16).

212 SIMPLE REACTION MECHANISMS

In this section, we will see how the use of steady-state approximation helps in
deriving the differential rate expression from the proposed reaction mechanism of

a given reaction.

Many of reactions fall into the following four categories of simple reaction
mechanisms.

Type | First step is the rate-determining slow step and is followed by rapid
subsequent reactions.
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Decomposition of
Ozone

Type Il First step is a rapid equilibrium which produces an intermediate which
reacts slowly in the rate determining step.

Type lll Reactions involving more than two elementary steps with at least
one slow step.

Type IV Reactions involving more than one step with comparable rate
constants (or whether the steps are slow or fast are not known).

The differential rate law for the first two types of mechanisms can be derived
without the use of the steady-state approximation. Nevertheless, the steady-state
approximation can be equally applied to derive the differential rate law of a reaction
belong to these categories. We now describe a few typical reactions belonging to
the types listed above.

TYPE |
Reactions exhibiting this type of mechanism may, in general, be represented as
A—h,B (slow)
B —2 5 products (fast)

Since the first step is slow and is the rate-determining step, the rate at which
products are formed will depend only on this reaction irrespective of the number
and nature of subsequent fast reactions. Thus, we have

dx
dt
A few examples are given below.

=k [A]

The decomposition reaction

20; = 30, (2.12.1)
follows the first-order differential rate law
1 d[O;]
_ = =k[O 2.12.2
2 s 1[04] ( )

Equation (2.12.2) suggests that the rate-determining step involves one molecule
of ozone. The proposed mechanism is

0, -5 0,+0
0+0, —2 20,
It is expected that k; <k, since the second reaction involves atomic oxygen

which is very reactive. Thus, the rate law would be

_1.di0y]
2 dt

(Note the division by 2 on the left-hand side. This is done as two molecules of O,
are removed in the over-all reaction mechanism.)

= k,[0;] (Eq. 2.12.2)
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NO, and F,
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The use of steady-state approximation also yields the rate expression of
Eq. (2.12.2). Applying the approximation to the reactive intermediate oxygen
atom, we get

d[o
A — 0 - k101~ k01 10,]
k
Hence, [O]= k—l (2.12.3)
2
The rates of decomposition of O; will be given as
d[O;]
== =% =hi0;]
d[Os]
ry== =% =hl0:)0]
The total rate of disappearance of O; will be given by
d[Oo
- % = k1 [03] + k,[05][O] (2.12.4)
Substituting the concentration of O from Eq. (2.12.3), we get
d[O5] k
- = k,[05] + ©,[03] — = 2k[O
& 1[03] + &,[O5] I, 1105]
1 d[0;]
or - = =[O Eq. 2.12.2
2 d 1105] (Eq )

The reaction
2NO, + F, = 2NO,F
is found to obey the rate expression
1 d[NO,]
2 At

Equation (2.12.5) suggests that one molecule each of NO, and F, is involved
in the rate-determining step. The proposed mechanism is

= K{NO,][F,] (2.12.5)

NO, +F, — NO,F +F (slow)
F +NO, —2 NO,F (fast)

Since the first step is slow, we immediately write
1 d[NO,]

2 dt
The use of steady-state approximation would have given us
d[F]

dar = 0 = k,[NO,][F,] — k,[NO,][F]

= k,[NO,][F,] (Eq. 2.12.5)

or [F]= L [F,] (2.12.6)

The rate of disappearance of NO, is given by

. % = k1 [NOLJ[F] + k,[NO,][F]
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Substituting the concentration of F from Eq. (2.12.6), we get

- N9 INOLIE + kNO, [ 21 )
dr k,
= 2k [NO,][F,]
or _ 1 diNO,] _ k INO,][F,] (Eq. 2.12.5)
2 dr
Reaction between  The reaction
NO, and CO at NO, + CO - NO + CO,
Low Temperatures 5 found to obey
- % = k[NO, T (2.12.7)

at low temperatures. From Eq. (2.12.7), we conclude that two molecules of NO,
are involved in the rate-determining step. The proposed mechanism is

NO, + NO, — NO; + NO (slow)
NO, + CO —2— No, + CO, (fast)
Since the first step is slow, we may write
d[NO
_d " o] _ k,[NO,T? (Eq. 2.12.7)

(Note that the left-hand side is not divided by two as one molecule of NO, reappears
in the second fast step.)

The steady-state approximation would have given us
d[NO,]
dr
or k, [NO;] [CO] = k; [NO,]? (2.12.8)
The rates of reactions in terms of concentratio of NO, are
1 d[NO,]
T a
_ dING, ]
T

=0 = k;[NO,][NO,] — k,[NO;][CO]

= Iy [NO,?

y) = k[NO;][CO]

The overall rate of disappearance of NO, is given by
d[NO, ]
dr

= 2k,[NO,]* - k,[NO;] [CO]

Making use of Eq. (2.12.18), we get

d[NO, ]
- =g = 2kINO,I’ — kNO,J*
= k,[NO, ] (Eq. 2.12.7)
At temperatures above approximately 500 K, the reaction between NO, and
CO follows the rate law
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Br~and H,0, in
Acidic Medium
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d[NO, ]
ds
indicating that the reaction may involve only a single elementary process.

= k [NO,] [CO]

The reaction is

2Br + H,0, + 2H" — Br, + 2H,0
The rate law is found to be

d[Br, ]

5 K[Br ][H,0,][H"] (2.12.9)

The proposed mechanism is
Br + H,0, + H" —% HOBr + H,0 (slow)
HOBr + H + Br —2— Br, + H,0 (fast)
Since the first step is slow, we may write
d[Br ]
Cdr
The steady-state approximation would have given us
d[HOBI]
dr
or [HOBr] = ];—1 [H,0,] (2.12.10)
2
The rate of formation of Br, from the second step is

d[B
% ~ k,[HOBI][H'][Br ]

Substituting the concentration of HOBr from Eq. (2.12.10), we get
d[Br, ]

dt

= k,[Br |[H,0,][H"] (Eq. 2.12.9)

= 0 = ky[Br J[H,0,][H"] - k[HOBrI[H][Br ]

k + —
= kz(k—l[Hzoz]j [H'][Br]
2
= k,[H,0,][H'][Br ] (Eq. 2.12.9)

TYPE I
Reactions exhibiting this type of mechanism are, in general, represented as

k

A+B k:‘] AB (in rapid equilibrium)

-1
AB —% product (slow)

Since, the second step is slow and is the rate-determining step, we have

d[product]
dt
For the first step, the equilibrium constant is given by
Ky [AB]

Rea = %, ~ [AIB]

= Iy[AB] (2.12.11)
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Reaction between
NO and O,

k
Hence, [AB]= k—‘ [A][B]
-1
Substitution of the above expression in Eq. (2.12.11) gives
d[product k
SIPrOet] _ g, L (AT [B] =y Koy [A] [B]
-1

= k[A][B] (2.12.12)
Hence, the reaction
A + B — products
follows the second-order kinetics. The reaction-rate constant k is equal to &, k /k_;.

The use of steady-state approximation also produces Eq. (2.12.12) as the

differential rate expression. The rate of formation of AB is given by
d[AB]
= = hlAIB] ~ k,[AB] - k[AB]
Since the intermediate AB dissociates at a very slow rate in comparison with the
rates at which it both forms from and decays back into A and B, the rate constant
k, may be neglected in the rate equation for the change in concentration of AB.

Thus, we have
d[AB]
dt
If we apply the steady-state approximation to AB, then we have

BB — 0~k ATBI - K, [AB]

~ Iy[A][B] - k,[AB]

ke
k_y

or [AB] = [A][B] = K [Al[B]

€q

Now, the rate of formation of product is given by
t
d[prz:luc 1_ I[AB]

k,
=k k—l [A][B] = k, K, [AB] = k[A][B]
-1

which is, in fact, Eq. (2.12.12).
A few examples are given below.

The reaction

2NO + 0, —> 2NO,

is experimentally found to obey the third-order kinetics with its differential rate
law given as

1 d[NO,]
2 dt

In order to account for the experimental fact that the rate constant decreases
with increase in temperature, the following mechanism has been proposed:

= k [NOJ? [0,] (2.12.13)
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ky

NO + NO N,O, (in rapid equilibrium)
-1

N,O0, + 0, —2 2NO, (slow)
We have

1 d[NO,]

> 2 =k, [N,0,] [0,] (2.12.14)

2 dt
For the fast equilibrium reaction, we have

=k _ N0,

“ ky,  [NOP
Hence, [N,0,] = K,, [NOJ’
Substituting this in Eq. (2.12.14), we get

1 d[NO
1 dNO,] _ kyKeq [NOT* [0,] (2.12.15)
2 dt
Comparing Eqs (2.12.13) and (2.12.15), we have
k=hkKy (2.12.16)

The experimental fact that the reaction rate decreases with increasing temperature
can be explained from Eq. (2.12.16). The rate constant of the reaction consists of two
constants k, and K. The constant k, behaves normally and increases with tempera-
ture. The equilibrium constant K, decreases with increase in temperature as the
dimerization reaction is exothermic in nature. The decrease of K, is sufficiently
large to make the term &, K, to decrease with increase in temperature.

The reaction is
NH} + OCN™ —£ OC(NH,),

urca
The reaction follows the rate law
d[urea]
dt
The proposed mechanism is

= k [NH}][OCN] (2.12.17)

NH} + OCN~ L NH,OCN (in rapid equilibrium)
k. (complex)

NH,0CN —2 OC(NH,), (slow)
We have
d[urea]
dt
From the fast equilibrium reaction, we have
_ Kk [NH,OCN]
“ k, [NH]OCN]
Hence, [NH,OCN] =K, [NH;]J[OCN]

= k,[NH,0OCN] (2.12.18)
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Saponification of
an Ester

Substituting the above relation in Eq. (2.12.18), we get

d[urea]
dr
which is the required rate law (Eq. 2.12.17).

= kK., [NH}] [OCN]

The reaction may be represented as
| _ |
R—C—OR’ +OH™ —— R—C—0O + R’OH
The reaction follows the rate law

~ d [ester]

||
=k|[R—C—OR’| [OH
k| |[OH ]

The following mechanism has been suggested.

o
| k |
R—C—OR’+OH™ kl R—C—OR’ (in rapid equilibrium)
-1
OH
A
7 P
k.
R—C—OR’+H,0 ——> R—C--O—R’
OH HO HOH
(A) B
T ||
k
R—C+--0—R’ ——> R—C—OH + R'OH + OH"
HO HOH
(B)
The rate of formation of alcohol is
R'OH
dROH] _ 18] (2.12.19)
dt
Applying steady-state approximation to B, we get
d[B]
— =k[A] - Kk[B]=0
& 2[A] = &3[B]
or k3[B] = ky[A] (2.12.20)
From the fast equilibrium reaction, we have
PO T

e k__l [ester][OH™]

or [A] = :—1 [ester][OH]
-1
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Reaction between
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Making use of the above expression and Eq. (2.12.20) in Eq. (2.12.19), we get

d[ROH] _ Ky _
4 Iy (k_l j [ester][OH ]
= k [ester][OH]

which is the required rate law.

The reaction is

H,(g) + L(g) = 2HI(g)
and the rate law is

1 d[HI]

=k [H,][1 2.12.21

> T dr [H,][1,] ( )
The proposed mechanism is
@ I, :il 21 (in rapid equilibrium)

1

(i) H, +21 —2— 2HI (slow)
From step (ii), we have

1 d[HI] 2

— 2 ETH N 2.12.22

2 H[H,][1] ( )
From the rapid step (i), we have

_ k7
koo 1]
k

or =11

[1] i (L]
Substituting the above relation in Eq. (2.12.22), we get

1 d[HI] k,

———— =k, — [H,][1

2 dr 2 [H][1,]

which is the required rate law (Eq. 2.12.21).
TYPE 1l

A few examples of reactions involving more than two elementary steps with only
one slow step are described in the following.

The reaction is
ocl +1 2L or +cr
The rate law is found to be

_dr] _ o] (2.12.23)

dt [OH™]
Though the hydroxyl ion does not appear in the reaction, yet the rate of the
reaction depends on the hydroxyl-ion concentration. The presence of [OH ] in

the denominator of Eq. (2.12.23) implies that the rate of the reaction is retarded in
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the presence of [OH ] ions. From Eq. (2.12.23) it also follows that the mechanism
of the reaction must also include elementary step (or steps) involving hydroxyl ion
as the reactant or product. The proposed mechanism is

Ky

(i) OCI” + H,0 == HOCI + OH" (fast)
(i) I +HOCI —2— HOI + CI” (slow)
(i) OH + HOI === H,0 + OI" (fast)

-3
Since step (ii) is slow, we may write
- % =k, [I"][HOCI] (2.12.24)

From the fast step (i), we have
[HOCI][OH™]

K =k _
“ k, [OCI'][H,0]
[OCI”][H,0]

2.12.25
[OH™] ( )

Hence, [HOCI] = :—1
-1

Substituting Eq. (2.12.25) in Eq. (2.12.24), we get

- % e { k. [0011[51201}
t k. [OH]

_ kk [][OCI"][H,0]
ki [OH"]

Since the reaction occurs in aqueous solution, the concentration of water does not
change appreciably during the course of the reaction. The concentration of H,O
may thus be grouped with the other constants. Hence, we have

A (@[H O]) [JIOCI'] _  [I"J[OCT]
dr k2 [OH™] [OH™]

which is the required rate law (Eq. 2.12.23).

Alternative Mechanism An alternative mechanism which also gives the rate
expression of Eq. (2.12.23) is the following:
k

(i) OCI" + H,0 k‘ HOCI + OH™ (fast)
-1

(i) T+ HOCl —2— IC1+ OH" (slow)

(iii) ICI +20H —%— OI + CI” + H,0 (fast)

Rate Expressed as d[OI']/d¢ The derivation of rate expression (Eq. 2.12.23) is
the same as given above. However, if we want to express the rate as d[OI ]/d¢ or
d[CI"]/d¢, then the derivations of rate expression differ, but both of them lead to
the same final expression. We derive below the rate expression as d[OI"]/dz.
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For the first mechanism, we have

d[gtl ] = I[OH][HOI] — k_4[H,0][OI] (2.12.26)
We can apply the steady-state approximation to HOI, which gives

d[lj:)l] =0 = k,[I"][HOCI] — k5[OH][HOI] + k_;[H,0][OI]
or (HOI] = k,[17 J[HOCI] + k_s[H,O][OI"]

ky[OH ]
Substituting the above relation in Eq. (2.12.26), we get
k,[I” J[HOCI] + k_5[H,O][O1"]
k;[OH™]

d[OI]
dr

= k5[OH'] ( ]— k 5[H,0][0T]

= k,[1"][HOCI]

Substituting [HOCI] from Eq. (2.12.25) in the above expression, we get
dfor] _ oy [1'] (ﬁ [OCl_][HzO]] _ (kzkl [I"][OCT™]
dt k., [OH™] k_, [OH™]

_ k[l’][OCl’]
[OH™]
Equation (2.12.27) is the required expression of the rate law.
For the second mechanism, we have

d[OT"]

[HzO])

(2.12.27)

= J[ICI][OH ] (2.12.28)

Applying the steady-state approximation to ICl, we get
% =0 = ky[I'][HOCI] — k,[ICI][OH ]?
or [IC1] = Ky HOCH ][HOZCI]
ks [OH]
Substituting this relation in Eq. (2.12.28), we have
- .
dforj] _ ky ky [1 ][HOZCl] [OH P
dr ky [OH™]
=k, [I"][HOCI]
Substituting [HOCI] from Eq. (2.12.25), we get
d[OI] [ k [OCI"][H,0] kyky
=k [1]|— . =
dt k_;  [OHT] k_,

[I"J[OCT"]
[OH™]

[Hzo]j

- IO (2.12.29)
[OH™]
Equation (2.12.29) is the required rate expression and has the same form as
given by Eq. (2.12.27)
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Acid Hydrolysis of
an Ester

Formation of
Phosgene from
CO and Cl,

The reaction is
I I
R—C—OR + H,0 &= R—C—OH + ROH
Acid hydrolysis of an ester is an example of pseudo first-order reaction.

I
o I
d[Rg—tOH] - k R—C—OR] (2.12.30)
The proposed mechanism is
0 "OH OH
I I o .
R—C—OR’ ———= R—C—OR R—C—OR
(fast) (slow) . |
(A) ) (B) (ii) OH,
©
1 (fast)
(ii1)
OH OH
-H* | N —R’'OH [
R—C—OH <—7/——= R—C = R—C—OR’
(fast) | (slow) | H
) OH (iv) OH
D)

Steps (ii) and (iv) are slower steps as these involve making and breaking of bond,
respectively. The proton transfer steps are fast. Step (iv) is slower than step (ii),
The rate of reaction may be written as

r=ky[D] = ky(K;5[C]) = k4 K;5(K,[B][H,0])
= kyK3K, (K, [A][H][H,0])
that is, = k[ester] [H " ][H,0] (2.12.31)

In the above expressions K, K, and Kj; are the equilibrium constants for the
steps (i), (ii) and (iii), respectively. Since H,O is present in excess amount and
[H'] remains constant throughout, we can write

r =k’ [ester] (2.12.32)
which is the required rate expression (Eq. 2.12.30).

The reaction is
CO + Cl, — COCl,

and the rate expression is

d[CgtCIZ] — k [COJICLT? (2.12.33)

The proposed mechanism is
k

1 ClL k—\f], 2C1 (fast equilibrium)

= Cocl (fast equilibrium)

-2

(i) Cl+CO
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(iii) COCl1 + Cl, b, COCl, + Cl1 (slow)
The rate of formation of phosgene from step (iii) is
d[COCL,]
dr
For steps (i) and (ii), we may write
k _ [CI?

ko [ClL]
k _ [COCl)

ko, [CI[CO]
From Eqs (2.12.35) and (2.12.36), we get

= Iy [COCI] [Cl,]

) k_2 ) k_z ﬁ 1/2
[COCl] 0 [C1][CO] 0 (k—l [Clz]] [CO]

Substituting Eq. (2.12.37) in Eq. (2.12.34), we get

dlcocl] _, {kz [kl
dicoch) _, 1k [k

dr k.

1/2
p [Cl, ]J [CO]} [Cly]
-2

-1

1/2
k k.
=ky = (—1) [CL]*? [CO]
k 2 k—l

= k [CO][CL,]*?
which is the required rate expression (Eq. 2.12.33).
The reaction in aqueous medium is
H,C—C—CH, + I, — > H,C—C—CH,I + HI
I !

and the rate expression is
(0]

|
- % = k [H'] [CH3;—C—CHj|

(2.12.34)

(2.12.35)

(2.12.36)

(2.12.37)

(2.12.38)

Thus, the reaction is first-order with respect to each of H' and acetone and zero

order with respect to iodine. The proposed mechanism is
o *OH

| k |
() CH—C—CH,+H" 1 H,C—C—CH,

-1
+OH OH
.. | ky |
(i) CH&~C—CH; —— H,C=C—CH;+ H'
8 i
(i) H,C=C—CH,+L,—2 , ICH,~C—CH,+HI

(fast)

(slow)

(fast)
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From step (iii), we have

OH

|
4] _  ( Hyc—C—CHy L) (2.12.39)

OH

|
Applying the steady-state approximation to H,C—C—CHs;, we get

OH .
| (H)H (‘)H

d [H,C=C—CH

L 3 _ 0 = Iy [CHy— C—CH3]— ky[HyC—C—CHi] L]

dr
‘OH
OH I
. | t. [CHs—C—CHyg] (2.12.40)
1.€. [H,C=C—CH;] = 2
ks 1]
From the fast step (i), we have
+ﬁH
K [CH;—C—CHsl
L -
k [CH3*(H3*CH3] [H']
o)
b i
k
or [CH;—C—CH;] = k—l [CH3—C—CH;sl[H"]

-1

Substituting the above relation in Eq. (2.12.40), we get
(0]
OH I

N k, (k/k_)[CH3—C—CH;][H"]
[CH,—C—CH3] = b, i)

which on substituting in Eq. (2.12.39) gives

_dlb) (kR [CH;COCHJH'])
dr Nk ke [L,] g

ke .
2 % [CH;COCH,][H"]

dfl,]

or el k [CH,COCH,][H"]

which is the required rate expression (Eq. 2.12.38). Note that iodine does not appear
in the final rate expression as it appears only in the fast reaction.
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TYPE IV

A few examples of reactions involving more than one elementary step with
comparable rate constants (or whether the steps are slow or fast are not known)

are described below.
The reaction is

2 N,O5 = 4NO, + O,
and the rate law is

d[O
% = k[N,Os] (2.12.41)
The proposed mechanism is
(i) N,05 == NO, + NO,
-1
k
(i) NO;+NO, — NO + NO, + O,
k.
(i) NO,+NO — 2 NO,
From step (ii), the rate of formation of O, is
d[o
[dtz] = k,[NO,][NO,] (2.12.42)
Applying the steady-state approximation to NO and NO;, we get
% =0 = k,[NO4][NO,] — &5[NO;][NO] (2.12.43)
d[NO;]
dr =0 =k [N;Os] — £ [NO,][NO;] — &[NO;][NO, ] — &3[NO;][NO]

Equation (2.12.43) gives

From Eq. (2.12.44), we have

[NO3] — p kl[N205]
L1[NO, ]+ &, [NO, ]+ &3[NO]

Substituting [NO] from Eq. (2.12.45), we get
k[N,Os]
INOj] = ——1 o2 —
(k_y +2ky)[NO, |
Substituting Eq. (2.12.46) in Eq. (2.12.42), we get
k[N
d[O,] _ k 1[N,O5] [NO,]
dr (k_y +2k,)[NO, ]
__kk
k_; +2k,
which is the required rate law (Eq. 2.12.41).

[N,0O5] = A[N,Os]

(2.12.44)

(2.12.45)

(2.12.46)
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Problem 2.12.1 Nitramide O,NNH, decomposes slowly in aqueous solution according to the reaction
O,NNH, — N,O + H,0
The experimental rate law is
d[N,O] 4 [O2NNH, ]

dr [H']
Which one of the following mechanisms seems most appropriate?

1. O,NNH, —% N,0 + H,0 (slow)

kl e .

2. O,NNH, + H* O,NNH;} (fast equilibrium)
O,NNH} —%2 5 N,0 + H,0" (slow)

3. O,NNH, == O,NNH +H" (fast equilibrium)
O,NNH™ —2 N,0 + OH" (slow)
H'+OH —% H,0 (fast)

Solution 1. For mechanism 1, the rate law would be given as
d[N,0]
= k,;[O,NNH,]

dr

Obviously, this mechanism is not applicable.

2. For mechanism 2, we have
d[N,0]

5~ klONNH]]
From the fast equilibrium step, we have
K- o [O,NNHj]
k, [O,NNH,]H]
Therefore

k
[O,NNH}] = k—ll[ozNNHz][H*]

With this, the rate law becomes
d[N,O] ki

=k, —

dr k_1

The above rate law also does not match with the given one and hence this mechanism is
also ruled out.

[O,NNH,][H"]

3. For mechanism 3, we have
d[N,0] _

e

From the fast equilibrium step, we have

k,[O,NNH ]

_ ki _ [O,NNHTJ[H]
k., [0,NNH, ]
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Therefore
[O,NNH ] = 41 [O:NNH,]
k_y [H']

With this, the rate law becomes
d[N,0] s ﬁ[ozNNHz]
dr >k, [HY]
The above rate law agrees with the given one and hence this mechanism seems most
appropriate for the given reaction.

213 A GENERAL MECHANISM FOR THE THERMAL DECOMPOSITION AND
ISOMERIZATION REACTIONS

Mechanism

Many thermal decomposition and isomerization reactions follow the mechanism
given below:
k
i A+M \k—l A*+M (2.13.1)

-1

(i) A* —2 products (2.13.2)

where A represents the molecule undergoing the thermal decomposition or
isomerization reaction, and M represents any other molecule. Step (i) represents an
equilibrium reaction. The forward reaction represents a collision of molecule A with
a molecule of M and thereby the molecule A is activated. The backward reaction
represents the deactivation of A molecule. Step (ii) represents the decomposition
of the activated A molecule. Two simple cases may be distinguished.

Step (i) is Rate-Determining Step 1f step (i) is slow and rate-determining, then
the reaction follows second-order kinetics with the rate law given by
d[product] _
dt

Step (ii) is Rate-Determining Step 1f step (i) represents a fast equilibrium process
and step (ii) is slow, then we have

k[A]M] (2.13.3)

k %
SR e [A%] (2.13.4)
ko [A]
and d[product] — Iy[A¥] (2.13.5)
dt
From Eq. (2.13.4), we have
k
A*¥]= L [A
[A*] i [A]
Substituting the above relation in Eq. (2.13.5), we get
k
dlproduct] _ = &y 5 (2.13.6)
dr k_,

Thus, the reaction follows first-order kinetics.



126 A Textbook of Physical Chemistry

General Treatment

Lindemann
Mechanism for
the First-Order
Reactions

If, in advance, it is not known which step is slow or if all the rate constants
have comparable values, we can derive the rate law by using the steady-state
approximation. Since products are formed in step (ii), we may write

W = k, [A¥] (2.13.7)
Applying the steady-state approximation to A*, we get
d[A*
ST — 0= kAT o [AIIM) - KfA%)
(Ax] = LAIM]
k_[M]+k,

Substitution of the above relation in Eq. (2.13.7) gives the rate law as

d[product] _ kk[A]M]
dr k_[M]+k,

(2.13.8)

Equations (2.13.3) and (2.13.6) which are applicable to specific cases may be
derived from Eq. (2.13.8).

Equation (2.13.3) is obtained if we neglect k_; [M] in comparison to k, (i.e.
k_; [M] < k,) in Eq. (2.13.8). The factor &_, [M] will be negligible in comparison
to k, under the following three conditions.

(i) The rate constant k, has a large value, i.e. step (ii) represents a fast reaction.
(i1) The backward reaction rate constant k_; has a small value, i.e. the step (ii)
does not represent a rapid equilibrium reaction.
(iii) The concentration of M may be low. For gaseous reactions, this condition
may be realized at low gaseous pressures.

Equation (2.13.6) is obtained if we neglect k, in comparison to k_; [M] (i.e.
ky, < k_; [M]) in Eq. (2.13.8). The factor k, will be negligible in comparison to
k_, [M] under the following three conditions.

(i) The backward reaction rate constant &_; has a large value, i.e. step (i) represents

a rapid equilibrium reaction.

(i1) The concentration of M may be high. For gaseous reactions, this condition
may be realized at high gaseous pressures.

(iii) The rate constant k, has a low value, i.e. step (ii) is slow and rate-determining
step.

It was stated in Section 2.4 that the products are formed only when reactant

molecules come close and collide together at one and the same time. During the

collision, molecular rearrangement takes place which leads to the formation of

products. For example, a second-order reaction of the types

A + B — products

or A + A — products

may be traced to a bimolecular collision process involving A and B, and A and
A, respectively. However, the first-order reactions in the gas phase cannot be
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accounted for by the above collision theory. The first successful explanation of
first-order reactions was provided by Lindemann. The mechanism is

i A+A kk\:‘l A* + A (in rapid equilibrium)
-1
(i) A* —25 products (slow)

Step (i) involves a rapid equilibrium reaction where in the forward reaction, a
molecule A is activated by colliding with another A molecule and in the backward
reaction, the excited molecule A is deactivated by colliding with another A molecule.
Step (ii) represents another possibility of deactivation where the excited molecule is
decomposed to give the products. Since the step (ii) is slow and rate determining,
the rate at which products are formed will be determined by the unimolecular
decay and hence first-order kinetics will be observed.

The Lindemann scheme is similar to the general scheme as given by Eqs (2.13.1)
and (2.13.2) where a molecule of M is replaced by a molecule of A. The general
rate law (Eq. 2.13.8), in the present case, will become

d[product] _ kzkl[A]2
dr k_[Al+k,

From Eq. (2.13.9), it is obvious that the Lindemann mechanism will follow a
complicated rate law if the rate constants k,, k; and k_; have comparable values.
However, the first-order kinetics will emerge only under the condition that
ky, <k_,[A]. As stated earlier, this condition will be observed only when the reaction
is carried out at high gaseous pressures.

(2.13.9)

At low pressures where k_j[A] < k,, the Lindemann mechanism will follow
the rate law

d[product]
dr

that is, a second-order kinetics. The reason for the above rate law is that at low
pressures the rate-determining step is the bimolecular formation of the excited
molecules.

= Iy [AT

Therefore, a real test for the Lindemann mechanism is to study the reaction over
a wide range of pressure starting from a very low pressure to a high pressure.’
If the rate r of formation of products is determined by the initial slope of the
curve of concentration of a product versus time and if log (#/r°) is plotted against
log {[A}Y/M} {or log (p/p°)}, the plot will show a slope of two at low concentrations
(or pressures) and a slope one at high concentrations (or pressures).

At the end, a very important point may be mentioned. The steady-state
approximation used above seems to be self-contradictory. From Eq. (2.13.7), the

¥ One of the ways to increase the gaseous pressure is to introduce an inactive gas into
the system.
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rate of reaction is proportional to [A*], which is assumed to be constant, yet from
Eq. (2.13.8) the rate of the reaction is a function of [A], which is steadily decreasing
as the reaction proceeds. This contradiction is removed if the rate of formation
of product is determined with the help of initial-slope method. The initial slope
refers to the rate at fixed values of [A] and [A*]. It is assumed that at the very
first measurement on the concentration of product with time, the steady-state has
been reached.

2.14 CHAIN REACTIONS

Characteristics of
Chain Reactions

Chain Length

Chain reactions proceed through a complex sequence of elementary steps. The
various steps can be classified as follows.

Chain Initiation Step  The first step in which highly reactive intermediate species
such as atoms, free radicals are produced is known as the chain initiation step.

Chain Propagation Steps In these steps, the highly reactive intermediate from
the chain initiation step reacts with one of the reactant molecules and thereby
produce a product molecule and another reactive intermediate. The produced
reactive intermediate, in turn, reacts with another reactant molecule and produce
a product molecule and another reactive intermediate. The above process of
generating a new reactive intermediate when an old reactive intermediate combines
with a reactant molecule is continued till the reactive intermediate is somehow
destroyed. Thus, one reactive intermediate produced in the initiation step may result
in thousands of product molecules via the propagation steps.

Chain Inhibition Step In this step, the reactive intermediate combines with a
product molecule producing a reactant molecule and another reactive intermediate.
Though a reactive intermediate is generated, the net effect of chain inhibition step
is to decrease the rate of overall reaction.

Chain Termination Step In this step, the reactive intermediate is destroyed by
combining with another reactive intermediate. This combination may result at the
wall of the vessel or by direct collision between the two reactive intermediates within
the vessel. Certain substances when added also help in terminating the reactive
intermediates. For example, nitric oxide molecule can react very rapidly with free
radicals and thus may be introduced to remove radicals in a chain reaction.

The number of chain propagation steps in between the chain initiation step and
termination step is usually expressed as the chain length. The latter may be
defined as the number of product molecules formed per chain carrier produced
in the initiation reaction. The chain length depends on the relative rates of chain
propagation and chain-terminating step. Mathematically, the chain length may
be defined as the ratio of the overall rate of formation of product and the rate of
initiation reaction, i.e.

d[product]/dt
d(initiation step)/d¢

Chain length = (2.14.1)
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A chain reaction may be classified into two categories namely, stationary (or
nonbranched) and nonstationary (or branched) chain reactions depending on one
or more than one radical produced in each chain propagation step, respectively.
In general, a chain reaction may be represented as follows.

Initiation A A, Re
Propagation R* +A —25 P+ R
Termination R* —% 5 destruction

where A, R and P represent the reactant, radical and product molecules, respectively.
If a = 1, we have stationary chain reaction and if ¢ > 1, the chain reaction is a
nonstationary one. The destruction of radical may result at the walls of the vessel
or by direct collision with other radical within the gaseous phase. The concentration
of radical can be determined by applying steady-state approximation to the radical.
Thus, we have

B 0 - AT + ke DIRIA] - k(R')
. R KIAl

(I -o)[Al+ ks

Since the destruction of radical can occur in two ways, namely, at the wall, and
within the gaseous phase, the constant k3 may be replaced by &, + k,. Thus, we have

IOJE—L
LA —0)[A]+ &, + K,

We now discuss a few examples of stationary and nonstationary chain reactions.

(2.14.2)

STATIONARY CHAIN REACTIONS

In stationary chain reactions o = 1 and Eq. (2.14.2) is given by

. k[A
RI= 1[+ l]c
w T g
that is, the concentration of radical is simply equal to the ratio of rate of formation
of radical in the chain initiation step and rate of destruction of radical in the chain

termination step. A few examples of reactions in this category are discussed below.

One of the well-known examples of chain reactions is the reaction between H,

and Br,, i.e.
H, + Br, — 2HBr
The elementary steps proposed for this reaction are

Initiation Br, — 2Br

Propagation Br+H, —% 5 HBr+H
H + Br, —2 HBr + Br

Inhibition H +HBr —“— H, + Br

L k
Termination Br + Br —— Br,
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The rate law for the above reaction can be conveniently derived by using the
steady-state approximation. The rate of formation of HBr is given by

d[HBr

% =k, [Br][H,] + k[H][Br,] — &,[H][HBr] (2.14.3)
Applying the steady-state approximation to H and Br, we get

d[H]

o = 0 = ky[Br][H,] — &;[H][Br,] — k,[H][HBr] (2.14.4)

d[Br]

= 0 = 2k)[Br,] — ky[Br][H,] + &3 [H][Br,]
+ ky[H][HBr] — 2 k5[Br]* (2.14.5)
Making use of Eq. (2.14.4) in Eq. (2.14.5), we get

de

2/, [Br,] — 2ks[Br]* = 0

K, 12
or [Br] = T [Br,] (2.14.6)

5
From Eq. (2.14.4), we get

5[Br, ] + k,[HBr]

Substituting [Br] from Eq. (2.14.6) in the above relation, we get

_ ky(ky/ks) " [Bry ] [H,]

[H] (2.14.7)
k;y[Br, ]+ k,[HBr]
Invoking Eq. (2.14.4) in Eq. (2.14.3), we get
d[HBr]
= 2k;[H][B
4 3[H][Br]
Substituting [H] from Eq. (2.14.7) in the above expression, we get
d[HBr] _ 2, kz(kl/ks)l/z[Brz]l/z[Hz] (Br,]
dz k[ Br, ] +k,[HBr]
_ 2k, (ky /ks)"*[Br, ]"*[H,]
1+ (k,/k;) [HBr]/[Br,]
B 1/2TH
- _FBr] TH,] (2.14.8)
1 +k”[HBr]/[Br, ]

where K = 2ky(k,/ks)""
and k"= ky/ky
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In the initial stage of the reaction, [HBr] is negligibly small and hence
1 + k” [HBr)/ [Br,], = 1
and the initial rate becomes
d[HBr]
&

that is, in the initial stage, the order of the reaction is 1.5.

) = K[Br,]5” [H]o (2.14.9)
0

The reaction is
CH;CH; —» CH,=CH,+H,
The observed rate law is
d[CH,=CH,]
dr
Though the observed rate law follows a simple first-order kinetics and could be
interpreted by a Lindemann-type process, yet it proceeds through a complex chain

mechanism as the formation of free radicals are observed during the course of the
reaction. The following mechanism has been proposed.

= k[CH,CH,] (2.14.10)

Initiation (i) CH,CH, —%— 2 *CH,
Propagation (i) *CH; + CH,CH; —2— CH, + *CH,CH,

(ili) *CH,CH,; —%— CH,=CH,+H"
(iv) *H + CH,CH,; —— H, + *CH,CH,

Termination (v) *H + *CH,CH; —%— CH,CH,
The rate of formation of ethylene from step (iii) is
d[CH,=CH
% = ky[*CH,CH,] (2.14.11)
Applying the steady-state approximation to *CH;, "“CH,CH; and *H, we get
d[‘CH
% = 0 = 2k;[CH;CH;] — &,[*CH;][CH;CH;] (2.14.12)
d[‘CH,CH
% = 0 = ky[*CH,][CH;CH;] — A;[*CH,CH;]
+ ky[H*][CH;CH;] — ks[H*]["CH,CHj;] (2.14.13)
d[H’
B = 0= K[ CH,CH] — K HIICH,CH,] - K{HICH,CH,]
(2.14.14)
Equations (2.14.12) and (2.14.14) respectively give
2k
‘CH,]= —
[*CH;] X
[H.] — k3[.CH2CH3]

k,[CH,CH, ]+ ks[*CH,CH,]
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Thermal
Decomposition of
Acetaldehyde

Substituting the above two relations in Eq. (2.14.13), we get
2k,
k, (k—lj [CH;CH;] — k5[*CH,CHj;] + (k4[CH;CH;] — ks[*CH,CHj;])

2
5 Jey[*CH,CH, ] 0
ky[CH,CH, ]+ ks[*CH,CH,]

or kyks [*CH,CH;)* — kyks [CHy;CH;] [*CH,CH;] — kyky [CH;CH;)* = 0

Solving the above quadratic equation, we get

[12,2
[*CH,CH,] = kyks + ki ks + 4ksksk ky [CH,CH,]
2 ksyks
Substituting the above relation in Eq. (2.14.11), we get

d[CH,=CH,] _ kyks +\kPk2 + dhikskyk (CH,CH,]
dr 2 ks
= k [CH;CH,] (2.14.15)
Equation (2.14.15) is the required rate law (Eq. 2.14.10). The rate constant k is
given as
kiks + (kT2 + 4 kykskyks )
k=
2k
Since the chain initiation step is a slow step, the rate constant k; has a very small
value. Hence, the above expression may be simplified by ignoring (i) kfk% in
comparison to 4k, k;k,ks and (ii) k ks in comparison to (4k,kykks)"%.

(2.14.16)

Thus, we get
1/2
j = | Kakska (2.14.17)
ks
The chain length of the reaction as defined by Eq. (2.14.1) is
kyksky 'ks)"*[CH,CH
Chain length= ‘d.[I.’TO.dUCt]/df _ (kksky/ks) "[CH;CH;]
d (initiation step) / df k[CH;CH,]
1/2
- [ Bk (2.14.18)
ke ks

Since k, is small, the chain length is expected to have a large value.

The reaction is
CH,CHO — CH, + CO
The observed rate law is
d[CH,]
dr

= k [CH,CHOT** (2.14.19)
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The proposed mechanism is

Initiation (i) CH,CHO —%— *CH, + *CHO
Propagation (i) *CH, + CH,CHO —2— CH, + *CH,CHO
(iii) *CH,CHO —&— *CH, + CO
Termination (iv) *CH; + *CH,4 TN CH,;CH;
The rate of formation of CH, from step (ii) is
% = k, [*CH,;][CH,CHO] (2.14.20)
Applying the steady-state approximation to “CH; and *CH,CHO, we get
% = 0 = k;[CH;CHO] - k,[*CH;][CH;CHO]
+ ky[*CH,CHO] — 2k,[*CH, ] (2.14.21)
d["CH,CHO]

7 = 0 = k,['CH;][CH,CHO] — k;[*CH,CHO]  (2.14.22)

Making use of Eq. (2.14.22) in Eq. (2.14.21), we get
k,[CH,CHO] — 2k,[*CH;]* = 0
i 1/2
or ['CH;] = | —~ [CH,CHO]

Substituting the above relation in Eq. (2.14.20), we get

d[CH,]
dr

k 1/2 k
=k, | ——[CH,CHO]| [CH;CHO] = k,| ——
2k, 2k,

1/2
] [CH;CHOJ*?

= k[CH,CHO]*?
which is the required rate law (Eq. 2.14.19).
The chain length of the reaction is

d[product]/dr  _ ky(k/2ky)"*[CH;CHOJ?
d (initiation step)/d¢ k, [CH;CHO]

k
- —(2k k2 7 [CH,CHO]"?
174

The formation of many of the synthetic vinyl polymers involves chain mechanism.

The various involved steps are as follows.

The polymerization reaction is initiated with the help of free radical which may
be produced by using a suitable catalyst. For example, lead tetramethyl which
produces methyl radicals has been found to induce polymerization in methyl

o-methylacrylate (CH,=C—COCHj3), and hydrogen atoms induce polymerization
HC O



134 A Textbook of Physical Chemistry

Chain Propagation
Steps

Chain Termination
Step

in ethylene. Benzoyl or substituted benzoyl peroxides are found to be very good
catalyst as they readily decompose according to the reaction

C6H5ﬁ00(“:C6H5_> 2C6H.5 + 2C02

Let the reaction producing radical R* from a catalyst C be represented as

c—ts R
The rate of formation of radical is given by
d[R"]
dt

The radical produced in the chain initiation step adds to the double bond of vinyl
derivative CH,=CHX (X may be H, CI, C¢Hs, COOH, etc.) and thus produces

a new radical. The latter, on adding to another vinyl derivative, produces the next
higher radical. This addition process is continued to produce polymerized radical.
Thus, we have

=k, [C] (2.14.23)

CH,=CHX +R* —%2 RCH,CHX"
RCH,CHX* + CH,=CHX ___, R(CH,CHX)}
and so on. The addition of monomer into the polymer chain is quite rapid.

The rate at which the monomer disappears is given by

d[CH,=CHX]
dt
The growth of the chain is terminated when the free radical is destroyed. One of
the ways involves the combination of two polymerized radicals, i.e.

= k,[ CH,=CHX ][R] (2.14.24)

R(CH,CHX)’, + ((XCHCH,),R L TN R(CH,CHX), — (XCHCH,),R
The rate of disappearance of polymerized radical will be given by
d[R(CH,CHX), ]
dr
or written simply as
_ AR
ds

Since the concentration of radical is usually very small, the steady-state approximation
in the following form may be assumed.

= 2/, [R(CH,CHX);]?

= 2k,[R*T (2.14.25)

Rate of producing radicals Rate of consumption of radicals
in the initiation step B in the termination step

Thus, from Eqs (2.14.23) and (2.14.25), we get
ki[C] = 23[R
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i 12
or [R]= (j [C])
3

Substituting the above relation in Eq. (2.14.24), we get
_ d[CH,=CHX] _ ‘ ( k-
dr > 2k,
The chain length or the number-average degree of polymerization Py, as given
by Eq. (2.14.1) is
B - d[product]/d¢ __ —d[reactant]/ds
v d(initiation step)/d¢  d(initiation step)/d¢

1/2
) [C]"? [CH,=CHX ] (2.14.26)

_ ky(ky/2k;)""*[C]"?[CH, = CHX]
k[C]

~ k,  [CH,=CHX]

@kk)? )

(2.14.27)

NONSTATIONARY CHAIN REACTIONS

In nonstationary reactions, & > 1, i.e. chain propagative steps include reactions
which consume one radical and produce more than one radical. The explosion
characteristic of nonstationary chain reactions can be best understood from
Eq. (2.14.2). We have
k[A]

k[AJ1-a) + ky, + &,
= fA] (2.14.28)

—ky[All—1) + (ky, + k)
Since o> 1, more and more radicals are produced during the course of the reaction.
Eventually, a stage may be reached when

ky [A (o~ 1) = ky, + ky

At this stage, the denominator of Eq. (2.14.28) becomes zero and radical
concentration becomes infinite. Since the reaction rate is expected to be proportional
to the concentration of radicals, the reaction proceeds with such a large rate that
an explosion occurs.

[R*]=

The occurrence of an explosion depends on the temperature and pressure of
the reacting system. In general, three explosion limits are observed as the pressure
of the system increases during the course of the reaction. These explosions may
be understood from the change in the value of denominator of Eq. (2.14.28) with
pressure. We have

denominator = — ky[A] (0 — 1) + (ky, + k) (2.14.29)
Fist-Explosion Limit At low pressures, the diffusion of radicals to the walls
of the vessel is rapid and thus the rate at which these radicals are destroyed is
quite high, i.e. k,, has a large value. On the other hand, the rate constant k, has
a small value. Thus at low pressures, Eq. (2.14.29) has a positive value and the
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Fig. 2.14.1 Variation
of rate reaction with
pressure and the three
explosion limits

Fig. 2.14.2 Explosion
regions

Example Exhibiting
Three Explosion
Limits

reaction proceeds smoothly without any explosion. As the pressure is increased, &,
decreases more rapidly than the increase in the value of k,. At a certain pressure,
the condition of explosion, i.e.
k[Al(a—1) = ky, + k,

is reached and thus an explosion is observed. This gives the first explosion limit.
Second-Explosion Limit The explosion continues over a range of pressure. Now
as the pressure is further raised, the value of k,, becomes less and less while that
of kg becomes more and more, and thus the rate at which radicals are destroyed
at the walls decreases while that within the gaseous phase increases. Ultimately, a
pressure is reached when &, has become so high that Eq. (2.14.29) again becomes
positive and the reaction starts proceeding with a finite rate. This gives the second
explosion limit.

Third-Explosion Limit 1f the pressure is raised still further, the reaction continues
to proceed with finite rate. The temperature of the system continues to rise as the
heat liberated in various elementary steps cannot escape at the rate at which it is
produced. Consequently, the rate of reaction continues to increase which leads
ultimately to an explosion. This gives the third explosion limit and is entirely due
to the thermal effects.

Figures (2.14.1) and (2.14.2) illustrate the three explosion limits of a branched
chain reactions.

Lower limit

1
1
1
1
i
1
- - : Thermal _
- g 2 ; explosion
g = 9 Steady !
= = .S = reaction |
=1 172) (5] i
© £ .2 L g T !
2 = = 3 o !
< =} o =] » ) ..
s Steafiy § 2 2 Stea§1y % g ~ /"Upper limit
g | reaction|'z S ¥'|reaction |2 = X |
.2 e = o £ B ) i
]
g g 43 = 2 ‘
3 CH & |
27 5] 1 .
.= 0 1 Explosions
= i
!
1
1
1
1

Pressure ——

One of the reactions which exhibit the three explosion limits is the reaction between
H, and O,. Although the net reaction is very simple:

2H, + O, — 2H,0
the mechanism is very complex. The proposed mechanism includes the following steps.
Initiation H, + 0, —— HO; + H*
Propagation H, + HO3, —— HO"® + H,0
H, + HO* —— H*+ H,0
H*+0, —— HO"+O* (branching)

O°+H, — HO'+H’ (branching)
Nuclear explosion is an another example of nonstationary chain reaction.
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215 KINETICS OF STEP-GROWTH POLYMERIZATION

Polymerization
Reaction

Kinetics of
Polymerization

Polymerization
without adding
Acid Catalyst

The step-growth polymerization involves the reactions between two functional
groups present in two different difunctional species with the elimination of small
molecule such as water. For example, a polyester can be formed by the reaction
of diacids with dialcohols:

xHOOC—R—COOH + xHO—R’—OH — HJFO—(H‘—R—(H‘—O_R%C OH

+(2x - 1) H,0

In polymerization reaction, two monomers react to form a dimer. The dimer then
reacts with another monomer to form a trimer, and so on. The individual reactions
occurring in polymerization may be represented as

A+B— AB
AB + A5 A,B
AB + B — AB,
Am Bn + Am'Bn' - Am+ m'Bn+n'

where m, n, m" and n’ can have any integral values including zero. Each of the
above reactions occurs independently of the other reactions and proceeds with
more or less identical rate constant.

The polymerization reaction is also catalysed by acids. The rate of polymerization
is proportional to the concentration of —CO,H groups and —OH groups.

Two cases may be distinguished as described in the following.

In this case, the polymerization is catalysed by the carboxylic groups of the reactant.
Its rate expression may be written as

_ d[COOH]

< ~ NCOOH][OH][COOH]

(catalyst)
= K[COOHJ*[OH] (2.15.1)
If the species containing COOH and OH groups are present in equal amounts (the
ratio of these two species remains same throughout), then we can write
d[COOH] _

- ) = K{COOH]? 2.15.2
o [ ] ( )

which on integration yields
1 1

= - = =2kt (2.15.3)
[COOH]?  [COOHT

It is convenient to express the extent of reaction in terms of the fraction p of
—COOH group reacted. In terms of p, we will have

[COOH] = [COOH], (I - p)
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Polymerization
with the addition
of Acid Catalyst

With this, Eq. (2.15.3) becomes
1

(1-p)’
The above expression is found to be obeyed very well after 80% conversion.

=1+ 2 [COOHJ? kt (2.15.4)

In this case, the rate expression may be written as
d[COOH]

<~ [COOH][OH]{k" [COOH] + k[H' ]} (2.15.5)

(catalyst)

If k¥’ [COOH] << k” [H "], we can write
~ d[COOH]
dt

If we have equal concentrations of species containing COOH and OH groups, the
rate expression becomes

= k” [COOH][OH][H "] = K{COOH][OH] (2.15.6)

- @ = k [COOH]? (2.15.7)
Its integrated rate expression is
! - ! =kt (2.15.8)
[COOH] [COOH],
In terms of the fraction p (= — [COOH]/ [COOH],), we have
o 1 + k [COOH], ¢ (2.15.9)

(1-p)

216 EFFECT OF TEMPERATURE ON REACTION RATE

Arrhenius
Equation

The dependence of rate constant on temperature may be derived from the van’t
Hoff equation as applicable to a reaction at equilibrium. Consider a general
equilibrium reaction

A+B —= C+D

-1

The equilibrium constant of the reaction is given by

ky
Key= k_4 (2.16.1)
The van’t Hoff equation is
dInk
g _ AE (2.16.2)
dt RT?

where AFE is the energy change of the reaction. Substituting Eq. (2.16.1) in
Eq. (2.16.2), we get

din(k/k,)  AE

dT RT?
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din(k /k din(k_,/k AE
nk /9 - din(h /K (2.16.3)f
dr dr RT?
The term AE in Eq. (2.16.3) may be written as
AE=E -E (2.16.4)
Substituting Eq. (2.16.4) in Eq. (2.16.3), we get
din(k /k9  din(k/k _ E  E, (2.16.5)
dr dr RT*  RT?
From Eq. (2.16.5), it may be concluded that
din(k /k9) _ E L _— dn(k_,/k) _ E L
dr RT? dr RT?

where / represents a constant which may have any value including a value of zero.
If we take it to be zero, then the above two relations may be written as

din(k/k®) _ E,

2.16.6
dr RT? ( ;
Integrating Eq. (2.16.6), we get
In (k/k°) = — £ + constant (2.16.7a)
RT
or k=Aexp(— E,/RT) (2.16.7b)

Equations (2.16.7a) and (2.16.7b) are the alternative forms of Arrhenius equation.
According to Eq. (2.16.7b), the rate constant increases exponentially with
temperature. The constant A is frequently referred to as the pre-exponential factor.
According to Eq. (2.16.7a), if a plot is made between In (k/k°) and 1/T, one would
get a straight line of slope —E,/R (Fig. 2.16.1).

slope=—E,/R

v

In (/A°)

1/T —

The constant £, in Eq. (2.16.7) is known as the energy of activation. Its significance
may be explained as follows.

It was stated in Section 2.4 that the products are formed only when the reactant
molecules come close and collide each other at one and the same time. During

T The symbol k° represents the unit of rate constant .
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Energies of
Activation in
a Reversible
Reaction

Fig. 2.16.2 The
concept of energy of
activation

Temperature
Coefficient of
Reaction Rates

the collision the molecular rearrangement takes place which leads to the formation
of products. The molecular rearrangement usually involves breaking of some bonds
and making others. The breaking of bonds or in general molecular rearrangement
can take place only when the colliding molecules have energy equal to or greater
than the minimum energy required for the said rearrangement. If the energy of
colliding molecules is less than this minimum energy, it is obvious that molecular
rearrangement will not take place and thus the molecules will remain unchanged
after the collision, i.e. no product will be formed. Thus, all collisions will not lead
to the formation of products but only those collisions which involve sufficient
energy are expected to form products. The difference between the minimum energy
required to bring about molecular rearrangement and the average energy of reactant
molecules is identified with the constant £, and is known as energy of activation.

Figure 2.16.2 illustrates the activation energies of forward and backward reactions
of a reversible reaction. State X represents the average energy of the reactants, state
Y represents that of products and state Z represents the minimum energy which the
reactants or products must possess in order to react. Molecules in state Z are said
to be activated or to be in an activated state. From Fig. 2.16.2, it is obvious that

Ey,p=Ez - Ex

Eawy = Ez — Ey
Thus  E,q — Eypy = (E7 — Ex) — (E; — Ey) = Ey — Ex = AE
which is, in fact, Eq. (2.16.4).

Energy—»

Reaction coordinate —»

The temperature coefficient of a reaction is defined as the ratio of rate constants at
two temperatures differing by 10 K. Thus, from Eq. (2.16.7a), we have

E
In (k;/k°) = — =% + constant
RT
In (k7 /%) = — ——2— -+ constant
T R(T +10K)
E E
Hence In (k. o/ k°) — In (k/k°) = — ————— a

+
R(T +10K) RT
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kri0x _E, (10K)

or In Il e ——
ky R T(T +10K)
k
or THOK (10K) E, (2.16.8)
ky RT(T +10K)

For many reactions at ordinary temperatures, the energy of activation is of the
order of 80 kJ mol~'. Thus at 300 K, temperature coefficient of many reactions
has a value of

kriok o (10 K) (80 000 J mol ™) - o0 53
ky (8-314 T K "mol™) (300 K) (310K) '

that is, the rate constant for the given value of E, increases about 2.8 for every
ten degree rise in temperature. For most reactions, the observed value usually lies
between 2 and 3.

The main characteristics of Arrhenius equation are described below.

1. Larger the activation energy, smaller the value of rate constant. This follows
immediately from Eq. (2.16.7b).

2. Larger the activation energy, greater the effect of a given temperature rise
on k. This follows from Eq. (2.16.8) as k;, ox/k; will be larger for a large
value of E,.

3. At lower temperatures, increase in temperature causes more change in the
value of £ than that at higher temperatures. This also follows from Eq. (2.16.8)
where T appears in the denominator.

The above characteristics are in agreement with the experimental results.

In many complex reactions, the observed rate constant is found to decrease with
increase in temperature. One of the examples cited in Section 2.12 is the reaction
between NO and O,. The explanation given there was that the reaction involves
more than one step. The mechanism is

NO +NO —4 . N,0, (in rapid equilibrium)
-1
N,O, + 0, —2 2NO, (slow)

The observed rate constant & is given by

k
k=k, (k—‘j = kK,
-1

Since the reaction is exothermic, the decrease in K, with increase in temperature
outweighs the increase in k, and thus k decreases with increasing temperature.

The dependence of the observed rate constant of a reaction following simple
differential rate law but proceeding through a complex mechanism may be
rationalized if we equate the observed rate constant with that found in the
rate expression derived from the steady-state approximation. For example, the
decomposition of ethane follows the simple kinetics
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Example 2.16.1

Solution

d[CH,CH,] _
~ =g ~kI[CHCH] (2.16.9)

but proceeds through a complex mechanism. According to Eq. (2.14.17), we have

(k1k3k4 JI/Z
= | 124
kS

where k,, k3, k, and ks are the rate constants of various elementary steps. If the
temperature dependence of rate constant of each elementary step is replaced by
the Arrhenius equation, we get

1/2
k= (%) exp{— (E, + E,; + E,y — E,5)/ 2RT} (2.16.10)

This is equivalent to the Arrhenius equation for the complex reaction

k=A exp(— E,/RT) (2.16.11)
From Egs (2.16.10) and (2.16.11), we get

e (A1A3A4jl/2

As

E= 5 [Ey + Ey+ Ey— Ey)
The values of E,s of elementary reactions were found to be

E,, = 351.47 kJ mol™

E,; = 167.37 kJ mol ™!

E,, =29.29 kJ mol™

Es=0

The activation energy of the overall reaction is

1
E,= = (351.47 + 167.37 + 29.29) kJ mol ! = 274.06 kJ mol !

For the reaction
C,Hil + OH" — C,H;,OH + I"
the rate constant was found to have a value of 5.03 x 102 mol™' dm® s™' at 289 K and

6.71 mol' dm® s at 333 K. What is the activation energy of the reaction? What is the
rate constant at 305 K?

We have
k; =5.03x 102 mol' dm® s at 7, = 289 K
ky=6.71 mol" dm®s™ at 7, = 333 K
Substituting the above data in the expression
In {k/mol™" dm® s7!} = — Ey + constant
RT
we get

In (5.03 x 10%) =— _ B + constant
R(289K)
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In (6.71) = — + constant

a
R(333K)

Subtracting the former from the latter, we get
6.71 E, 1 1
n | = "a -
5.03x107° R (289K 333K
_ £, 44K
(8.314J K 'mol™) (289K)(333K)

-1
Hence E, = (8.314Tmol™)(289)(333) 2303 log &2
44 503%10

=88 999 J mol ' = 88.999 kJ mol ™’
The rate constant at 305 K may be determined from the relation

g o - B (1_1
% 230r 7T

Jy/mol ™" dm?s™! 88 999 J mol™ 1 1
Thus, log — = 5 -
5.03x10 2.303(8.314J K ' mol™") (289K 305K

log (ky/mol™ dm® s™') — log (5.03 x 107%) = 0.843 7
or log (ky/mol™ dm® s™') = log (5.03 x 107%) + 0.843 7
= 2.7016 + 0.843 4 = 1 .5450

Hence k, =0.35 mol™! dm’ s™

Example 2.16.2 For the reaction
2 NOClI(g) — 2 NO(g) + Cly(g)
the rate constant is 2.8 x 10~ mol™' dm® s™' at 300 K and 7.0 x 107! mol™" dm® s™" at
400 K. What is the energy of activation for the reaction?
Solution We have &, = 2.8 x 10° mol ! dm’ s™" at T} = 300 K
ky=7.0 x 10" mol" dm’ s at 7, = 400 K

Substituting the above data in the expression

E
In (k/mol™" dm® s™') = — =2 + constant
RT

we get
In (2.8 107°) =— ——2_ + constant
R(300K)
—1 Ea
In (7.0 x 107) = - ———2—— + constant
R (400 K)

Subtracting the former from the latter, we get

n[70x107Y B (1 1) E, 100
28x107°) R (300K 400K/  (8.314J mol™") 300 x 400
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Example 2.16.3

Solution

-1
Hence, F,= (83147 mol™) (—300“‘)(’) 2,303 log| 12X10_
100 2.8%x10

=101 048 J mol™" = 101.048 kJ mol™

For the first-order reaction
2N,05(g) — 4NO,(g) + Oy(g)
Ais 43 x 10" s and E, is 103.35 kJ mol™'. What is k at 300 K?

We have
k= A exp(- E,/RT)
E
In (k/s') =InA/s") - ==
or n (k/s™) n(A/s™) RT
or log (k/s™") = log (A/s™") — _ B
2303 RT

Substituting the given data, we get

103350 J mol™
2.303(8.314 T K~ mol™)(300 K)

log (kis™h) = log (4.3 x 103 —

=13.634 - 17.992 = — 4358 = 5 .642
Hence, k=4329x107 ¢!

2.17 COLLISION THEORY OF BIMOLECULAR GASEOUS REACTIONS

Principle
Underlying
Collision Theory

Collision theory of bimolecular gaseous reactions aims at the quantitative calculation
of the rate of a reaction based on the following two postulates.

1. The products are formed only when the reactant molecules come close and
collide with each other.

2. Only those collisions are effective in producing the products which satisfy the
criteria of energy of activation and the specific orientation of molecules.

If every collision leads to the formation of product, then the rate of the reaction will
entirely be determined by the collision rate, i.e. the frequency with which reactants
collide. The calculated rate on this basis sets the upper limit of the reaction rate, i.e.
the maximum reaction rate that can be observed experimentally. If the molecules
are considered to be rigid, hard spheres with no forces of attraction and repulsion,
then for the bimolecular elementary reaction

A + A — products (2.17.1)
the number of collisions per unit volume per unit time is given by
1
Znw=75 no’ u N*2 @-192)

where o is the diameter of the molecule A and represents the closeness of approach

for the molecular collisions, # is the average speed of molecules and NA* is the
number of molecules per unit volume of the vessel. The average speed is given by
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z = 8kgT
where kg is Boltzmann constant and m, is the mass of a single molecule.

For a general elementary reaction
A + B — products (2.17.3)

the number of collisions per unit volume per unit time between A and B is given by

1/2

Zy =102, (ngT ] NE N 2.17.4)
T

where o, is the closeness of approach for the collisions and is equal to the sum

of the radii of the molecules A and B or o,z = (1/2)(04 + 0Op), U is the reduced

mass and is given by U = mmg/(m, + mg), N and N§ are the respective number

of molecules of A and B per unit volume of the vessel.

As stated above, Eq. (2.17.4) provides the maximum possible rate of the reaction
as given by Eq. (2.17.3). Thus, we may write

% 1/2
- [ddﬂj — Zyy = MO, (SkBT) NENE (2.17.5)
t max Tcu

The amounts of A and B per unit volume will be related to N’; and N by the
relations

* *
NR and [B] = N

[A] = N, N,

where N, is the Avogadro constant. Substituting the above concentration terms in
the conventional rate expression

(—Mj — ky[A][B]

dr
we get
_ L AN [ MR Ns
Ny de ) PN, (N,
%
or — (dNAJ =k, L NiNy (2.17.6)
dr N
max A
Comparing Eqs (2.17.5) and (2.17.6), we get
1/2
ky = Nymoly (SkBT) 2.17.7)
TU

As an illustration, let us calculate the expected maximum rate from Eq. (2.17.5)
for most of bimolecular gaseous reactions at 1 atm and 0 °C. We may assume
common values of 3 x 10~ dm and 5 x 10° dm s' for cand # , respectively. At
the given conditions of temperature and pressure, we have
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Comment on the
Computed Value of
Rate of Reaction

Vi - (0022 10% mol™)
(22.414 dm® mol ™)

= 2.8 x 10* dm™

Hence

3k
- (%) =n o 4 NiN;,
dr
max
= (3.14)(3 x 107 dm)? (5 x 10* dm s7")(2.8 x 10%* dm>)?

=1.11 x 102 dm> ™!

_(dlAal)y LAV
dt ) Naldr )

_ (L11x102dm>s™)

> - = 2X 10 mol dm™ s
(6.022 X107 mol ™)

Since the number of collisions are 1.11 x 10*? dm™ s7!, it is obvious that the same
number of molecules of A and B will react per second. But the number of available
molecules of A or B per dm® are 2.8 x 10%* and hence the reaction is expected to
be over in a very small interval of time of the order of 1071 . Few reactions are
known which proceed with such a large speed. They invariably contain reactive
atomic species; amongst them are

N+NO - N, +0
0 +NO, - NO + 0,

It is worthwhile to consider the effect of temperature on the maximum rate
(Eq. 2.17.5) of a bimolecular reaction. From Eq. (2.17.5), we find that

Fonax  ofT (2.17.8)

and hence if we raise the temperature from 300 K to 310 K (i.e. a difference of
10 K), the ratio of the two rates is given by

’ 1/2
(max 310K _ (ﬂ) = 1.015 (2.17.9)
(max )300k 300

that is, the maximum rate is not very sensitive to temperature.

Most chemical reactions neither have rates as fast as given by Eq. (2.17.7) nor are
they insensitive to temperature as predicted by Eq. (2.17.9). The observed rates are
about 102 and 10 mol dm > 5! (i.e. the maximum rate of Eq. (2.17.7) is 10'° or
10" times as fast as the observed ones) and they become double or triple with every
10 K rise in temperature. These facts are accounted for by the second postulate
given in the beginning of this section which states that only those collisions which
meet the criteria of energy of activation and the specific orientations of molecules
are effective in producing the products. These two criteria are now discussed.
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The term energy of activation implies that the colliding molecules must be
sufficiently energetic to cause the molecular rearrangement which ultimately gives
rise to the products. The energy which is effective in promoting reaction is not the
total kinetic energy of the two colliding molecules, but rather the kinetic energy
corresponding to the component of the relative velocity of the two molecules along
the line of their centres at the moment of collision. This is the energy with which
the two molecules are pressed together and for a reaction to occur, this energy must
be equal to or greater than some minimum energy €,. The difference between this
minimum energy and the average energy of reacting molecules is known as the
energy of activation, and is represented by the symbol E,.

It can be shown that the fraction of all collisions with a line-of-centres
component of the kinetic energy greater than the minimum energy &, is given by
the Boltzmann factor exp(— &,/kT).

Thus, the rate of a bimolecular gaseous reaction will be given by

Rat (total number of) fraction of molecules having
ate = -
collisions component energy equalto g,
dNy _ _
or arvale Pinax €XP(— €o/kT) = Z g exp(— £y/kT)

8T 1/2
= {n o,iB( n]; j N N{;}exp(— £y/kT) (2.17.10)

The constant &, as given by Eq. (2.17.7) will now become

1/2
8k T
ky = N,mois [ n’; ) exp(—£y/kT) (2.17.11)

The variation of k& with temperature is largely due to the Boltzmann factor
exp(— &y/kT). For example, if we change the temperature from 300 K to 310 K of
a reaction, the ratio of the two Boltzmann factor is

300K 310K

exP(k ;19001()

Ratio = —+BCL0K) {8—0( 1 L)}
exp| ——2>—

(%(300 K)j

kg
cexplBof L1
P17& \300K ~ 310K

where E; is the minimum energy per mole. Taking a typical case of E, =
80.0 kJ mol™', we have

(80000Jm01‘1)( 11 j
(8.314J K 'mol™)\ 300K 310K

= exp(1.035) = 2.8

According to this criterion, the formation of products when the two molecules
collide also depends upon the relative orientations of the two molecules at the time
of collision. This may be understood from the following example.

Ratio = exp{
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Reaction between
Br and H,

Fig. 2.17.1 (i) Three
atoms lie on a straight
line, and (ii) three atoms
do not lie on a straight
line

Fig. 2.17.2 Potential
energy of H, and

Br molecules versus
reaction coordinates
involving (a) a linear
structure, and (b) a
bent structure

The reaction is
Br+H, - HBr + H

The collision between Br and H, may involve a structure where all the three atoms
either lie or do not lie on a straight line such as shown in Fig. 2.17.1.

H, Br H, Br

@ (i)
If we draw a potential energy diagram as a function of the reaction coordinate
that represents the progress of three atoms from the form of reactants to that of
products, we get plots as shown in Fig. 2.17.2.

Vi
\
/N
/ \\_.__(b)

(a)

Potential energy

Reaction coordinarste ——»

Initial decrease in potential energy is due to the van der Waals attractions. But when
Br atom comes closer to H,, the potential energy of the system increases. It attains
a maximum value when the three atoms are partially bonded to each other. This
configuration is known as the activated complex. The activated complex decays
to give products, and as H atom is moved away from HBr, the potential energy
decreases. The potential energy diagram of Fig. 2.17.2 explains the following two
facts regarding the rate of the said reaction.

(i) It explains very nicely the concept of minimum energy which the colliding
molecules must possess so that on collisions they form the products. This minimum
energy may be identified with the maximum of the potential energy curve.

(i) The maximum of potential energy curve depends on the structure of the
activated complex. In Fig. 2.17.2, the maximum for the linear structure lies at a
lower value than that of the bent structure. It implies that the energy &, which
appeared in Eq. (2.17.11) has a lesser value for the linear structure and consequently
the rate constant k, has a comparatively larger value. Thus, the formation of
products is a much quicker when the reaction coordinate involves a straight line.
Thus, we may conclude that:
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The rate of formation of products not only depends on E but also on the
orientation of molecules at the time of collision.

For more complicated reactions, the criterion of specific orientation of molecules
plays a very important role. For example, the reaction between CO and NO,, the
geometry of the activated complex having lowest energy is zigzag.

N N
7N 7N
oc+0 O — O0—C:-O0 O| — OCO+NO

Thus, if a molecule of CO collides the way it is shown above, the chance of forming
the products is most favourable. If the collision involves some other geometry,
the chance of forming the product is fairly low owing to the higher energy barrier
between reactants and products. Similarly, the reaction between NO and O; must
involve the geometry given below.

O o 0
N O N O N O
O e R — |+ ]
0O O O O 0O O

The criterion of specific orientation of molecules at the time of collision is taken
into account by multiplying Eq. (2.17.10) by a term p known as the steric factor.
The steric factor p is usually less than 1 and consequently predicts a reduced rate:

V=D Foax €XP(— EG/RT) = p Zpg exp(— Ey/RT)

Qp.7 V2
=p {no}m( B ) NN}, }exp(— Ey/RT) (2.17.12)
U
Equation (2.17.11) will be given as

1/2
ky = pNam 025 (8kBT J exp(— E/RT) (2.17.13)
mu

The bimolecular decomposition of hydrogen iodide is given by the equation 2HI — H, + I,.
Assuming a collision diameter of 3.5 nm and an activation energy of 183.9 kJ mol~! for
the reaction, calculate (a) the collision rate, (b) the rate of reaction, and (c) the rate constant
for the above reaction at 700 K and one atmospheric pressure.

(a) The number of collisions per unit volume per unit time between two identical molecules
is given by

z= L notun?

NG

1 ] 1/2
where 7 — [SRT _[8(8314JK m(;l )T00K) | _ 3404 m !
M (3.14)(128 107 kg mol™")
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Arrhenius
Equation and
Collision Theory

N (6.022x10* mol™")
Vo (8.314TK 'mol™)(700 K)/(101.325x10° Pa)
=1.05% 10® m™
1 2 — Ark2
Hence, Z=—= no°uN
V2

= (ﬁ) (3.14) (3.5 x 107 m)? (340.4 m s7') (1.05 x 10%° m™)?

=1.02x 10 m?> 5!
The exponential factor is
e PR = exp[— 183.9 x 10° T mol '/{(8.314 J K" mol™") (700 K)}]
= exp(— 31.6) = 1.89 x 107"

1 dNf _Ea/RT 36 3 -1 _14
Hence, =3 T:Ze =(1.02x107"m~s ) (1.89x1077)
=1.93x102m> s
22 -3 -1
1 d[HI] _ 1.93x10%m™s ~0.032 mol m3 !
2 dt 6.022x10% mol™!
25 -3
Now = 2 - %Bm_l = 17.43 mol m™
Ny 6.022 10" mol
_ -3 -1
Hence, k= (U2)d[HI)/dr _ 0.032molm™s™ o s

[HI? (17.43 mol m™)?

The Arrhenius equation is

k, = A exp(— E,/RT) (Eq. 2.16.7b)

and according to the collision theory, the rate constant is given by
1/2
k, = pNoTO s (8" BT) exp(— Ey/RT) (Eq. 2.17.13)
H

Equation (2.17.13) may be written as

ky=K~NT exp(- E/RT) (2.17.14)
where K represents a term which is independent of temperature and is given by

1/2
K =pNmol, [ 8ks (2.17.15)
U

The relation between the activation energy E, (appeared in Eq. 2.16.7b) and
the minimum energy E, (appeared in Eq. 2.17.14) may be obtained through the
derivation of the expression d In (k/k°)/dT. Equation (2.16.7b) gives
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In (k,/k°) = In (A/k°) — Lo
RT
din(h,/k°)  E

ie. = 2 2.17.16
dr RT? ( )
and Eq. (2.17.14) gives
E,
In (k,/k°) = In (K/K°) + & g (TIK) - =% 2.17.17)7
2 RT
In (k, /k° E,
ie. din(lp /) _ 1 By (2.17.18)
dT 2T  RT?
Equating (2.17.16) with (2.17.18), we have
E, _ 1 | B
RT?> 2T  RT?
or E,= % +E, (2.17.19)

Thus, the activation energy E, shows temperature dependence. Since E;, is usually
much larger than R7/2, the difference between the Arrhenius activation energy £,
and the minimum energy E|, of the simple kinetic theory is not sufficient.
Substitution of Eq. (2.17.19) in Eq. (2.17.14), we get

k, = KNT exp{- (E, — RT/2)/RT}

or ky, = KNT &'? exp(— E,/RT)
Comparing the above relation with the Arrhenius equation, we have
A=KNT "
1/2
ie. A=pN,nol, (%) JT &' (2.17.20a)
TH
Zag 12
or A=pN, e (2.17.20b)
NiNg

2.18 THE ACTIVATED COMPLEX THEORY

Figure 2.16.2 displays the variation of potential energy with the reaction coordinate
for the reaction between Br and H,. The maximum of the curve corresponds to the
energy of the activated complex (or transition state complex) where all the three
atoms are bonded to each other as shown below:
Br+H, - [Br---H---H] - Br—H + H
activated complex

The conversion of reactants to products (or vice versa) is through the formation of
the activated complex shown above. It is thus obvious that the reacting species can
combine only if their energy is equal to or greater than that of the activated complex.

" The symbol K° represents the unit of K (= mol™ m? s™! K™'2).
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Concentration of
Activated Complex

Frequency of
Decomposition
of the Activated
Complex

The activated complex is not an intermediate compound. It is a molecule in
the process of breaking or forming bonds. The reacting molecules can undergo
a variety of vibrational motions and can be thought of as existing in a potential
energy minimum. However, the activated complex is not stable because it exists

at a potential energy maximum.

Eyring and others have developed the quantitative treatment of the activated
complex theory (or transition state theory or absolute rate theory) based on the
assumptions that there exists an equilibrium between the reactants and the activated
complex and that the products are obtained by decomposing the activated complex.
Thus, the reaction between the two reactants A and B may be written as

A+B = Xi> product (2.18.1)

where X* is the activated complex. The rate of the reaction depends on two factors,
namely, the concentration of activated complex and the frequency of decomposition
of activated complex. Thus, we have

_ (concentratlon of ) (frequencyof decomposmonj (2.18.2)

activated complex ) \ of activated complex

The two terms appearing in the above rate equation have been determined as
follows.

Since the reactants are in equilibrium with the activated complex, we may
characterize the equilibrium with the equilibrium constant written as

s XA
[AI[B] |
The equilibrium constant K* may be determined by using tPe ideas of
thermodynamics and statistical mechanics. Thus, the concentration of X* is given by
[X*] = K*[A] [B] (2.18.4)

Since the activated complex is in a process of decomposing, one of its vibrational
degrees of freedom is in the process of becoming a translational degree of freedom.

Let E,;;, be the average vibrational energy which results in the rupture of the bond.
According to the Planck’s equation for the quantum of energy, we have

Evib =hv (2185)

where Vv is the vibrational frequency. In the activated complex theory, v is taken
as the frequency of decomposition of the activated complex.

(2.18.3)

The rupture of bond in the activated complex is due to the large vibrational
energy which it acquires during the formation of the complex. The vibrational
quantum number corresponding to such a large vibrational energy will be quite
high and thus we may equate E;, with the classical vibrational energy expression
which is equal to k37T, where kg is the Boltzmann constant. Thus, we have

Ey, = kgT (2.18.6)
Equating (2.18.5) and (2.18.6), we get
R
hv=rkgT = (—) T
N

A
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RT
or V= — (2.18.7)
Nph

where N, is the Avogadro constant.

Substituting Eqs (2.18.4) and (2.18.7) in Eq. (2.18.2), we have

r = (K*[A][B]) RT or r=|K* RT [A][B] (2.18.8)
Nyh Nph
Comparing Eq. (2.18.8) with the experimentally obtained rate law
r =k, [A][B]
we get k, = RT g (2.18.9)
Nyh

Now from thermodynamics, we have

A'G® =~ RT In K°F
where A'G® is change in the standard free energy in going from reactants to the
activated complex, i.e. for a reaction

A+B > X}

and is given by

AG°= G°(X}) - G°(A) — G°(B)
Hence, K is given by

K% = exp(— A*G°/RT)

Since A'G® = APH® — TA'S®, we may write the above expression as
K% = exp{— (A*H® — TA*S°)/RT}

= exp(— A*H°/RT) exp(A*S°/R) (2.18.10)
The constants K ° and K* are related to each other through the expression
Ko*=Kte® (2.18.11)

where ¢° is the unit concentration, i.e. 1 mol dm™.

Substituting Eqs (2.18.10) and (2.18.11) in Eq. (2.18.9), we get

k, = RT exp(— A*H°/RT) exp(A* S°/R) (2:18.12)
C°Nph

The Arrhenius equation is
k, = A exp(— E,/RT) (Eq. 2.16.7b)

and according to the activated complex theory, the rate constant is given by

RT t
ky = exp(A*S°/R) exp(— A*H°/RT) (Eq. 2.18.12)
c°Nph

Also  A'H® = A'U° + (A'v,y) RT
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Therefore, we have

k= RT exp(A*S°/R) exp{ — (A*U° + A'v, RT)RT}
c°Nph

RT '
or = exp(A*S°/R) exp(-At v, ) exp(— AT U°/RT) (2.18.13)
c°Nph
The relation between the activation energy £, of Eq. (2.16.7b) and the energy
change A*U° in the formation of activated complex from reactants may be obtained
through the derivation of the expression d In (k/k°)/dT. Equation (2.16.7b) gives
E
In (ky/k°) = In (A/k°) — =2
2 RT

din(ky/k°) _ E, 2.18.14)
dr RT? o

and Eq. (2.18.13) gives

i o i o
In (ky/k°) = In R Jek] + 1 (T/IK) + NS pry, AU
N, h R & RT

A

where k° represent the unit of &, i.e. mol”" dm® s,

din (k, /k 1 fye
Hence, /&) _ 1, AU2 (2.18.15)
dr T RT
Equating (2.18.14) and (2.18.15), we get
E, 1 Ave
T B L
RT* T  RT
or E,=RT + A*U° (2.18.16)

Substituting Eq. (2.18.16) in Eq. (2.18.13), we get

by = — exp(A*S°/R) exp(- A'v,) expi~ (E, ~ RTYRT}

cNy
= exp(A*S°/R) exp(l — Atv,) exp(~ E,/RT) (2.18.17)
N h
which on comparing with the Arrhenius equation gives
A= R exp(A*S°/R) exp(1 — Atv,) (2.18.18a)
N h
= (Vy/c®) exp(A*S°/R) exp(1 — A*v,) (2.18.18b)

where v,;, is the frequency of decomposition of the activated complex.

Note that Axvg represents the change in the stoichiometric number of gaseous
molecules in going from reactants to the activate complex and is given by

Aivg=l— >V,

reactant
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The relation connecting E, and A*H® is
AH® = A'U° + (Atv,) RT = (E, — RT) + (A*v,) RT (2.18.19)
=E,+(A'v, - ) RT

The expressions for the rate constant are as follows.

Collision theory

Sk T 1/2
ky=pNy T 635 (—Bj exp(— Ey/RT) (Eq. 2.17.14)
it
The activated complex theory
ey = — T - exp(A*S°/R) exp(— A*U°/RT) exp(— A'v,) (2.18.20)
A

The expressions for d In (k/k°)/dT are as follows.

Collision theory
o E
dln(;;/k) - 21T v .

The activated complex theory
din(ky,/k°) 1 A U°

= — + Eq. 2.18.15
dr T  RT? = )
Equating the above two relations, we get
1 E, 1 AIU°
2T RT* T  RT?
1
E, = A'U° + 5 RT (2.18.21)

Substituting Eq. (2.18.21) in Eq. (2.18.20), we get

k= T exp(A'S®R) expl- (Eq — RTI2VRT} exp(- Alv,)
c°Nnh

exp(A*S°/R) exp(1/2) exp(~ A*v,) exp(— Ey/RT)
N

which on comparing with Eq. (2.17.13) gives

QT2

pN, 10> ( 2 ) __RT exp(A*S°/R) exp{— (Atv, — 1/2)}  (2.18.22a)

ATOAB |y N I o h A8,

ZaB

N Ng

The unit of the term RT/N,/ is s and thus approximately corresponds to the
frequency of collision Z,5. Thus, the steric factor p may be interpreted in terms
of entropy of activation. The latter is expected to have a negative value as the
activated complex represents a more ordered state than the reactants. If reactants
are only atoms or simple molecules, then there is a relatively small amount of
rearrangement of energy among the various degrees of freedom in the activated

or PN, = Vc—b exp(AfS°/R) exp{- (Alv, — 1/2)} (2.18.22b)
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Activated Complex

Theory applied
to a Reaction at
Equilibrium

Fig. 2.18.1 Free

energy change versus

reaction coordinate

complex. Consequently, AbSe is expected to have a small negative value so that
exp(A* $°/R) or p is close to unity. On the other hand, if the activated complex is
formed from the larger number of reactants or the activated complex formed is
relatively rigid (i.e. the bonds formed in the activated complex are relatively strong),
then the entropy of activation has a large negative value, and thus exp(AISO/R)
or p has a small value.

For a process of the type
AB > AB'* 5 A+B

the entropy of activation will generally be positive, since the activated complex
will most likely have acquired some of the disorder which eventually results in
its total breakdown into A and B.

In the activated complex theory, an equilibrium reaction such as
A+B—=—=C+D

will be represented as
A+B—=—X = C+D

where X* is the activated complex. Figure 2.18.1 displays A*G° for the forward and
backward reactions. Obviously, free energy change of the reaction will be given by
AG® = A'GS - A'GY (2.18.23)

The rate constants for the forward and backward reactions will be given by

RT
ke = exp(— A*G® /RT) (2.18.24)
c°Nph
RT
ky = exp(— A*GY/RT) (2.18.25)
c°Nph
xt
/| -\\\
% ’/ i \\\
8 // + 0 i ¥ \\
& /&G NGy \
éf A
etk \TAG
¥ AU (P
C+D

Reaction coordinate —

The rate laws are given by
rp = ky [A][B]
r, = ky [C][D]
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At equilibrium, we will have
Vf = I"b
or ki [A][B] = k,[C][D]
Substituting k¢ and k, from Eqs (2.18.24) and (2.18.25), we get

( RT exp(-A* G2 /RT) [A][B]=( exp(—A} %/RT) [C] [D]
c°Nph

c°Nph

On rearranging, we get

[C][D] i i
= K2 =expf{ — (A*GS— A*GQ)/RT} = exp(— AG°/RT
[A][B] eq p{ — (A*GY p)/RT} p( )
or AG°=-RT In K¢,

an expression which can be derived thermodynamically.

Equation (2.18.23) predicts correctly the fact that some reactions proceed with
a very slow rate (or do not occur at all) even though AG® of the reaction is highly
negative. This happens when AiG"f has a very large positive value and the rate as
predicted by Eq. (2.18.24) is quite small.

A dimerization reaction at about 300 K in the gaseous phase follows the Arrhenius equation
ky = A exp(—E,/RT)

where A = 10°%" mol™! dm®s™! and E, = 6540 kJ mol~!. Calculate AiH°, AIS",
AP and ATGP for the reaction.

For the Arrhenius equation

k, = A exp(—E,/RT)

I go
we have A = RT exp A'S +1-Aby (Eq. 2.18.18)
C°Nyh ¢
and E, = A'E°+RT (Eq. 2.18.16)
For the dimerization reaction A’ Ve =-— 1. Hence, we have
RT + o
exp( +2] =A=10"°" mol™! dm®s™!
c°Nph R

Taking the natural logarithm on the both sides, we get

o
m R fer] 4 [A5 = In (10"
Nyh R

or 2.303 log RT )+ [25% 5] —2303 x 5.61
N h R
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i go
or log RT s _1 a8 +2 | =5.61
Nh 2303 R
-1 -1 1 qo
(8.314;1( 1201 )(30052 ), (A N +2) A
(6.023%10% mol™)(6.6x107* J5) 2303\ R
I o
or 12797 6 + — A8 o) =56
2303 | R
or 1 (A8 o) =s61-127976=-7.1876
2.303
or NRS +2=_7.187 6 x 2.303 = — 16.553
or AYS® = R(- 16.553 — 2) = (8.314 J K ' mol )(~ 18.553)

=—154.25 J K™ mol™
Now  AtU° =E,-RT
=65 400 J mol™' — (8.314 J K™' mol™")(300 K)
=62 906 J mol™' = 62.906 kJ mol !
A*H® = A*UP + (A*VRT = A*UP - RT
= (62 906 J mol™") — (8.314 J K™' mol™")(300 K) = 60 412 J mol™
= 60.412 kJ mol '

A*G® = A*H® - T Ats®
= (60 412 J mol™") — (300 K) (- 154.25 J K™' mol™")

=106 687 J mol™" = 106.687 kJ mol™!

Alternatively, A G°, AYHP and AfUe may be calculated as follows.
We have

exp(—A¥G°/RT)

& =
: c°Nh

where k, is obtained from the Arrhenius equation. Thus, we have

A exp(—E,/RT) = —L. — e AFGoRT)

c®°N,
Taking the natural logarithm on both sides, we get

o
In (cfA/s™h) — L _ In RT. s - A'G
RT N,h RT
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Converting into the common logarithm and substituting the given values, we have

(65400 J mol™)

10g(105‘(")— - —
2.303(8.314 T K" mol™")(300K)

e (8.314 J K™ mol™) (300 K) -
(6.022x10% mol™)(6.6x10734 J 5)
- Arge
2.303(8.314 J K 'mol™) (300 K)

AFGe
2.303(8.314 J mol ™) (300)

5.61 — 11.386 = 12.798 —

or A*G® = (18.574) (2.303) (8.314 J mol ") (300)
=106 692 J mol™! = 106.692 kJ mol ™'
Now AYEP = AYGe + T AYS© = (106 692 T mol ™) + (300 K)(~154.25 J K mol™)
=60 417 mol™' = 60.417 kJ mol ™!
Atre = AtHe— (Afvy) RT
= (60417 J mol™") — (= 1) (8.314 J K" mol™) (300 K)

=62911 J mol™! = 62.911 kJ mol™

Example 2.18.2 The electron-exchange reaction between naphthalene (C,Hg) and its anion radical can be
represented by

CioHg + CyoHg = CoHg + CjoHg
The reaction is second-order as well as bimolecular. The rate constants are

T/K | 307 299 289 273

kx 10" %/mol™" dm® s 2.71 2.40 1.96 1.43

Calculate AIH", E, A¥se and AYH® at 307 K for the reaction.

Solution We may employ Eq. (2.18.12) to compute A*S° and A* H#° Equation (2.18.12) is

exp(A¥S°/R) exp(— AYHP/RT) (1)

c°Nph

Dividing by T and taking logarithm, we get
1 go iryo
log (E/mol_l dm?®s™! K‘lj =log (L/s'1 K‘lj + ATS® _ _AH 2)
T N, h 2303R  2.303RT

Thus, if a plot is made between log (;/mol_1 dm? s7! K_l) and 1/7, one would get a
straight line with
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A He
slope = — 3
P 2.303R ®)
)
intercept = log (R/s_1 K_lj + AS “)
Ny h 2.303R
We have

T/K 307 299 289 273
K/T 0.003 26 0.003 34 0.003 46 0.003 66
k/mol™ dm® s7! 271x10°  240x10° 196x10° 143 x10°
; /mor1 dm?s™'K! 8.827 x 10° 8.027 x 10° 6.782 x 10° 5.238 x 10°
log (; /mor1 dm’s™! K'l) 6.946 6.905 6.831 6.719

The plot of log {(k/T)/mol_l dm=s™! K_l}versus (K/T) is shown in Fig. 2.18.2.

Its slope is — 560.98, i.e.

Alog{?/mol_1 dm?® 57! K_l}

— 560.98
AK/T)
Alog{ﬁ/mol’1 dm’s™! K"}
Hence, T : ~ ~560.98 K
A(T)

7.0 —

slope =—0.115/0.000 205
6.9 — =-1560.98

|
6.8 - —0.11.5%
|
|

0.000 205 \\

log (%/mol_1 dm>3s7! K_l) _—

6.6 | | | | |
0 0.0033 0.0034  0.0035 0.0036  0.0037

KIT ———

Fig. 2.18.2

Hence from Eq. (3),we get
A*H® = — (- 560.98 K)(2.303)(8.314 J K™! mol ™)

=10 741 J mol™ = 10.741 kJ mol™
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Now substituting the data at 307 K in Eq. (2), we get

(8.314JK ' mol™) o4
(6.022x10*mol™)(6.6x107* J 5)

log (8.827 x 10°%) = log {

N AtS° ~ 10 741J mol ™!
(2.303)(8.314J K "mol™)  2.303(8.314J K~ mol™")(307 K)

At s°
6.946 = 10.320 + ———————— — 1.827
19.147 J K™ mol

AYS°= (6.946 — 10.320 + 1.827)(19.147 T K" mol™)
=-29.62 ] K" mol™
Now AYGe = ATHe — T Abse
Substituting the values, we get
AYG® = (10 741 T mol™") — (307 K)(~ 29.62 J K" mol ™)
=19 834 J mol™' = 19.834 kJ mol ™!
Now A*H® = A'U° + (Atv,) RT= A*U°- RT
and A*U° =E, - RT
Therefore
A*H® = E,— 2RT
or E=AYH° + 2RT
Substituting the values, we get
E,= (10741 Jmol ") + 2 x (8.314 ] K" mol™") (307 K) = 15 846 J mol

= 15.846 kJ mol™

Alternatively, we may plot a graph between log (k/k°) and 1/T which will give us slope
equal to E,/2.303R. Hence, E, can be determined. Knowing E,, we will calculate A, the
pre-exponential factor. From A, we will calculate A*S$° as indicated in the last problem.
From E,, we can calculate Al ue, AYH® and then finally AfGe.

Example 2.18.3 A certain reaction can proceed in the absence as well as in the presence of a catalyst. The
rate constants for two mechanisms are k, and &, respectively. If At S, is 41.84 J K" mol™
greater than A S, and AH o 15 20.92 kJ mol ' greater than A* H_, show which rate constant
is larger at 298 K and in what proportion.

Solution The rate constant in terms of A*S° and A*H° is given by

ky= —L_ exp(— AYH®/RT) exp(AtS©/R)
c°Nph
Thus, we have
k, _ exp(-A*H2/RT)  exp(A*S°/R)

k. exp(—APHC/RT)  exp(AtS°/ R)

= exp{— (AYH® — AYHS)/RT} exp{(A*S° — A*S°, )R}
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Substituting the given values, we get

bl

2 = exp{— (20920 J mol )/(8.314 J K™' mol™) (298 K)}
k. x exp{(41.84 J K™ mol")/(8.314 J K mol™)}

= exp(— 8.444) exp(5.033) = 0.033

Example 2.18.4 The frequency factors for a unimolecular gas reaction occurring at 473 K is 2.5 x 10'* s7!.
Calculate the entropy of activation.
Solution We have
RT
A= exp(A*S/R) exp(1 - Afv,)

A

In this case, Aivg = 0. Thus

A= RT exp(Aj’-S/R)e1
Nuh

or exp(AI S/R)=A (N—Ahj ¢!
RT

or AYS =2303 x R x log (ALAh) ~R
RT
Substituting the values, we get
Ars=2303 (8.314 J K ' mol ™)

% log {(2.5 x10s71)(6.022 x }1023 m_(l)l’l)(6.626><10’34 J s)}
(8.314 J K™' mol™") (473 K)
— (8314 J K" mol™)
=2.303 (8.314 J K" mol™") log (2.537) — (8.314 J K™ mol™)
= (7.742 J K" mol™") — (8.314 T K™' mol™")
=-0.572 J K" mol™

2.19 EFFECT OF PRESSURE ON REACTION RATE

The effect of pressure on the rate of the reaction

A+B —%2 products

may conveniently be derived with the help of the activated complex theory.
According to Eq. (2.18.9), we have

ky = RT gt (2.19.1)

where K* is the equilibrium constant of the reaction between the reactants and
the activated complex, i.e.

A+B — AB?
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Taking the logarithm of Eq. (2.19.1), we get

RT |,
In (k,/k3) =1 +1In K
n (ky/k3) n(NAh/S ] n

Differentiating it with respect to pressure at constant temperature, we get

(aln(kz/k )) _ (aan j 2.192)
op T op r
From thermodynamics, we have
o Irro i o
mget=_ A0 _ AH A (2.19.3)
RT RT R
Now  ATH® = A'LP + pAty
Therefore
Irro i Iqo
mget—_ AU pAV AS (2.19.4)
RT RT R
Hence,
In K% Af
(a n j - AL, (2.19.5)
o ), RT
Substituting Eq. (2.19.5) in Eq. (2.19.2), we get
In (k, /K5 !
(a nky/k3) ) = BV (2.19.6)
ap r RT

Equation (2.19.6) implies that the rate constant of a chemical reaction increases
with increasing pressure, when the volume of the activated complex is less than
the total volume of the reactants.

Equation (2.19.6) may be written as

AtV
dIn (k/k°) = —— d (2.19.7)
2 RT \p
Integrated form of the above equation is
(ky) Aty
In|—2|=- — (p,- 2.19.8
[(kl)pl RT (2 —p1) ( )
The open integration of Eq. (2.19.7) gives
i
In (ky/k°) = — % p + constant (2.19.9)

The value of A*V (i.e. the volume change due to the formation of an activated
complex) can be determined from the slope of the plot of log (k,/k°) versus p.
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2.20 EFFECT OF IONIC STRENGTH AND DIELECTRIC CONSTANT ON IONIC REACTIONS

Effect of lonic
Strength (Primary
and Secondary Salt
Effects)

For an ionic reaction

A* +B® — C (2.20.1)
we may write it as
APA + BB —— [AB(ZA +ZB):] >C (2.20.2)

where AB* %)% is the transition-state complex. For the equilibrium between the
reactants and the activated complex, we may write
- a(AB(ZA”B)i )

° (where a stands for activity)

a(A™)a(B™)
(za+zp)i (zp+zp)i
e [A% ' ] y(A? § ) (2.20.3)
[AT][B™] y(A™)y(B™)
z z i z Z; AZA)’}/(BZB)
or [AB® © )] = Ki[A%] [B¥) Y(A™)y(B™) (2.20.4)
,}/(AB(ZA‘*'ZB)I)
Now according to the activated complex theory, we have
[ RT
=TABGA T 2)iy | 22 Eq. 2.18.2
. ] (NA]J (Eq. 2.18.2)
e RT Y(A A)Y(B;) [A*] [B*] (2.20.5)
N h ,J/(AB(ZA+ZB) )

Equating Eq. (2.20.5) with
r = k[A*] [B*]

oy [ gt RT fo | [ YA Y(B™)
weeet W= (K NAh/ ‘ j (y(AB‘ZA“B’i)J

or log (k/k°) = log( Ki%/ o) +log {y(A™)} + log {y(B™)}
A

~log {y(AB® " =)i); (2.20.6)

The activity coefficient of the ion depends upon the ionic strength u of the
solution. The latter is defined as

1
u= o Yo (2.20.7)

where c; is the molarity and z; is the charge number of the ith ionic species. The
summation is to be carried over all the ionic species present in the solution. The
relation connecting y with u as given by Debye-Hiickel law is

logy,=—Az Ju (2.20.8)
where A is a constant.
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salt effect

Primary

Chemical Kinetics 165

Making use of Eq. (2.20.8) in Eq. (2.20.6), we get
log (k/k°) = log (K*%/koj —AA U —AZL Ju + Ay + 20

A
o log (k%) = log | K* XL feo | + 242,251t
For aqueous solution at 25 °C, A = 0.5 mol ™2 dm*?, thus we have
log (k/k°) = log (ky/k°) + zpzg 1/ C° (2.20.9)
RT
where ky = K*
Nh

Equation (2.20.9) is the required relation which depicts the effect of ionic
strength on the rate constant of ionic reactions. According to this relation, if a plot

is made between log (k/k°) and /1 /c® , in dilute solution one would get a straight
line with a slope equal to z, zg (Fig. 2.20.1).

zpazg=+4
04 ZAZB=+2
02 [
—~ ZAZB=O
hS 0
=)
on
<
zazg=-—1
—02 [ e
ZAZB:—Z
-4.0 | |
0 0.1 0.2 0.3

N

Examples of the plots given in Fig. 2.20.1 are described below.

System Reactants Slope
ZpZB
I Co(NH;)sBr*" + Hg* 4
I S,07 +1° 2
I11 NO,NCO,C,H; + 1 1
v C,H,,0,, + OH" 0
\% H,0, +H" + Br —1

VI Co(NH;)sBr*" + OH~ —2
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Primary Salt Effect

Secondary Salt
Effect

The change in & with ionic strength is known as the primary salt effect. Thus, in
principle, we can have

Product of z, zg k

+ Increases with ionic strength
- Decreases with ionic strength

0 Independent of ionic strength

The primary salt effect is due to the change in the value of activity coefficients
of reactants and intermediate complex due to the ionic strength of the solution.

There is another type of salt action, known as the secondary salt effect which
influences the rate of reaction by altering the effective concentration of the
catalyzing species. Take, for example, the hydrolysis of cane sugar catalyzed by
a weak acid. The experimental rate constant is given by

kexp = k[H30"] (2.20.10)

The catalyst comes from the dissociation of weak acid HA by the equilibrium
reaction

HA + H,0 —— H;0" + A~

characterized by the equilibrium constant

- HOTIAT] y(H;0")y(A)
[HA] y(HA)
Therefore

HA
R LAy e
(AT y(H;07)y(AT)
If the reaction is carried out at fixed ratio of [HA]/[A], by making use of a
buffer solution, then

[H;0"] = (constant) y(HA)

Y(H;07)y(A7)
Substituting Eq. (2.20.11) in Eq. (2.20.10), we get

(2.20.11)

L Y(HA)
y(H;0")y(A7)
so that log (key,/k°) = log (k'/k°) + log yya — log Yot — log s~

exp

Using Debye-Hiickel limiting law (Eq. 2.20.8), we get

log (key,/k®) = constant + /el (2.20.12)

that is, we have positive salt effect and thus k, increases with the increase in
ionic strength of the solution.

If the catalyzing acid is NH}, giving H;0" by the reaction
NH + H, O —— H;0" + NH,



Effect of Dielectric
Constant
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then, we will have
log (key,/k°) = constant + log 3, .. —logy, o« — log)/NH3
4 3
On using Debye—Hiickel limiting law, we will have
log (Key,/k°) = constant

that is, we will have zero salt effect.
If H;0" is produced from Fe(H,0)3" according to the reaction

H,y0 + [Fe(H,0)]*" == H;0" + [Fe(H,0)5(OH)]*"

Then, we will have
log (key,/k®) = constant — 2/p1/c® (2.20.13)

that is, we will have negative salt effect.

According to the theory of absolute reaction rate, the rate constant is given by

RT
c°Nph

exp(— A*G°/RT) (2.20.14)

where A*G° is the change in standard free energy in going from reactants to the
activated complex state. In case of ionic reactions, A*G° includes two contributions
due to non-electrostatic and electrostatic interactions, i.e.

A*GO = AYGS, + AFGO (2.20.15)

If we assume that the two ions of charges z,e and zge, respectively, are brought
together from the distance of infinity to the distance d to form the activated complex
in a medium of dielectric constant D, then the work involved in this process is

_ (ZAe)(ZBe) 1
e IFdx j(41:e)D 2%

(200 1
(4ney)D d
For one mole of each ion, we get

_ (zp0)(zge) Ny

= 2.20.16
¢ (4ne,)D  d ( )

Since AG = w, Eq. (2.20.15) on making use of Eq. (2.20.16) becomes

ArGe = AlGe — M
ne (4ney)Dd

Substitution of Eq. (2.20.16) in Eq. (2.20.14) gives

PR L, _AG, exp _zpzge’ Ny 1
c®Nyh RT (4ng,)D dRT
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2
N
or In (K/k°) = In (ky/k%) — ZAZBE A ! (2.20.17)
dRT (4rey)D
1o
where ko = exp | A Cne (220.18)
ENN RT

According to Eq. (2.20.17), In (k/k°) varies linearly with 1/D with a slope of
= ZAZB62 NA/(4TC 80) dRT.

If the activated complex is considered to be a single entity with a charge of
(zp * zp)e, then Eq. (2.20.17) takes the form of

2 2 2 2
In (K/K°) = In (ky/k?) — — VA Catzp) Za_Z| (32019
2(4mey) DRT 7 ry I

where r, is the radius of the activated complex.

2.21 KINETICS OF CATALYTIC REACTIONS

Characteristic
Effects of a
Catalyst

Sometimes, the rate of a chemical reaction is very much enhanced in the presence
of a substance, called the catalyst. Though catalyst is involved in the reaction, it
does not appear in the overall reaction. Thus, its concentration remains constant
throughout the chemical reaction. In fact, a catalyst goes through a cycle in which
it is used up and regenerated so that it is used over and over again. The mechanism
of catalytic reactions depends on a reaction to reaction. Broadly, two types of
catalyst are known, namely, homogeneous catalyst and heterogeneous catalyst.
A homogeneous catalyst exists in the same phase as the reaction whose rate it
increases. Examples include acid hydrolysis of an ester, saponification of an ester
and enzyme reactions. A heterogeneous catalyst exists in a different phase from
the reaction it catalyzes. Generally, solid surfaces act as heterogeneous catalyst.
Examples include decomposition of NH; on tungsten, decomposition of N,O on
gold and decomposition of ethyl alcohol vapour on the surface of Cu. The rate of
a catalytic reaction is usually proportional to the concentration of the catalyst or
to the area of the surface.

The function of a catalyst can be best understood in terms of transition-state
theory. In general, it operates by providing another path for the reaction that has a
lower free energy of activation (Fig. 2.21.1). The lowering of free energy may be
due to the decrease in the energy of activation or higher frequency factor or both.
Thus from the transition state theory, the rate of a reaction changes from

RT
ko= exp(— AYGYR 2.21.1
SN p( ¢/ RT) ( )

RT
to ki= exp(— A*G2’/RT) (2.21.2)
c°Nph




Fig. 2.21.1 Lowering
of free energy of
activation in the
presence of a catalyst.
Path 1 is without
catalyst; Path 2 with
catalyst
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Since A*GY”is less than A*Gg, it is obvious that / is greater than k;, i.e. the
rate of forward reaction is increased. From Fig. 2.21.1, it is obvious that the
free-energy of activation is lowered for both the forward and backward reactions
without changing the overall free energy change of the reaction. Thus, a catalyst
not only changes the rate of forward reaction but also that of the backward
reaction. Since AG® is not changed, the equilibrium constant remains unchanged
in the presence of a catalyst. Thus, the use of a catalyst can help in attaining the
equilibrium position rapidly but cannot help in changing the relative proportion
of products and reactants at equilibrium, i.e. the relative amounts of products that
can be obtained at equilibrium cannot be altered. Mathematically, we may derive
the above conclusion as follows.

The rates of forward and backward reactions in the presence of a catalyst are

RT

ke= — exp(— A*G$ //RT) (2.21.3)
c°N h

Ky = RT exp(— A*GY/RT) (2.21.4)
c°Nph

Hence, K = ko _ (RT/c°N yh)exp(—A*G;'/ RT)
"%k, (RT/°Nh)exp(-A'G,'/RT)
= exp(— (AI G%' _ AiGob’) /RT) = eXp(_ AG°/RT) (2.21.5)

Since AG®, which is A*G$” — A*GY’ has the same value with or without a catalyst,
K, remains the same in the presence or absence of a catalyst.

The mechanism of a catalytic reaction depends on the type of the catalyst, i.e.
whether the catalyst is homogeneous or heterogeneous. In the present section,
we discuss the mechanism of a few important examples of homogeneous and
heterogeneous catalysis.

HOMOGENEOUS CATALYSIS

The first step of reaction mechanism of homogeneous catalysis generally involves
an equilibrium reaction between one of the reactants (known as the substrate of
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Acid Catalyzed
Reactions

Two Specific
Cases

the catalytic reaction) and the catalyst. We discuss below the mechanisms of the
two important examples of homogeneous catalysis, namely, acid and base catalysis,
and the enzyme catalysis.

The mechanism of acid catalyzed reactions involves an equilibrium reaction in
which there occurs a transfer of proton from an acid to a substrate S. The protonated
substrate then reacts with water to form the product P.

k
— SH" + A"
k

S + HA

SH™ + H,0 —2— P+ H,0"

The rate of appearance of product is given by
—— =k, [SH'] (2.21.6)

(Note that the concentration of H,O is not included in the above rate expression
as its concentration does not change appreciably.)

The concentration of SH" can be obtained by applying the steady-state
approximation to SH'. Thus, we have

d[SH* =
B 0 [SIHAT - & [SHITA ] - klSH]
k [SI[HA
Hence, [SH']= _KISIHAT 2217
ko [A7]+k,
Substituting Eq. (2.21.7) in Eq. (2.21.6), we get
d[P] _ kpk[SIHA] (2.21.8)
dr k[A™]+k,
Two cases may be distinguished.
(i) k, > k_; [A7]. In this case, Eq. (2.21.8) may be written as
% = k,[S][HA] (2.21.9)

that is, the reaction rate is first-order with respect to each of the substrate and acid
molecules. The reaction for which the rate depends on the concentration of HA is
said to be subject to general acid catalysis.

(ii) ky, < k_; [A7]. In this case, Eq. (2.21.8) may be written as

dP] _, k.

_ [HA]
- "2

— S] — 2.21.10
. e (2.21.10)
Invoking the equilibrium constant expression
_[H'AT]
! [HA]



Base Catalyzed
Reactions

Generalization of
Rate Constant

Chemical Kinetics 171

for [HA] in Eq. (2.21.10), we get

d[P] ko1 +
— =k, — — [S][H 2.21:11
& 21 K [SI[H"] ( )
Thus, the reaction rate depends on the hydrogen-ion concentration although
the proton is initially transferred from HA. In this case, the reaction is said to be
subject to specific hydrogen-ion catalysis.

Since H' acts as a catalyst, its concentration remains constant and thus
Eq. (2.21.11) may be written as

dip] _
— =k’ [S 2:.21.12
& (S] ( )
’ kl 1 + +
where  k'=ky -~ [H'] = k- [H'] (2.21.13)
-1 a

The constant ky;+ is known as the catalytic coefficient of hydrogen ion. Writing
Eq. (2.21.13) in the logarithm form, we have

log (k’/s™") = log (kg +/mol™! dm®s') — pH
Thus, if a plot is made between log (k’/s™") and pH, it would yield a straight line
of slope — 1.

The base catalyzed reactions involve the transfer of a proton from the substrate
molecule to the base. If the rate of the reaction depends on the concentration of
the base, the reaction is said to be subject to general base catalysis. For a reaction
catalyzed by OH", the rate constant is given by

k = koy- [OH"]

that is, it varies linearly with the hydroxyl-ion concentration.

In general, if a reaction which follows the rate law

s _
rralalat)

and is catalyzed by all of the catalytic species H", OH™, HA and A", then the first-
order rate constant k in a buffer solution containing HA and A~ may be written as

k= ko + kyr [H'] + koy— [OH'] + kyy [HA] + ko [A7] (2.21.14)

where the constants ky+, ko ks and k- are the various catalytic coefficients and
k, is the rate constant at low concentrations of all of the catalytic species.

It may happen that the constant ky;+ is much larger than other constants and
thus Eq. (2.21.14) reduces to

k=ky+ ky+ [H']

and the reaction to which this belongs to is an example of specific hydrogen-ion
catalyst reaction.
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Enzyme Catalysis

Michaelis-Menten
Mechanism

Derivation of Rate
Expression

One of the most important examples of homogeneous catalysis is the catalysis of
reactions in biological systems by enzymes. Enzymes are complex protein molecules
and are usually very specific, catalyzing only one type of reaction.

The mechanism of enzyme-catalyzed reactions was initially proposed by L.
Michaelis and M.L. Menten and is known as Michaelis-Menten mechanism. The
mechanism involves the following steps:

E+S —L— ES

1
ES —2 5 p+E

where E is the enzyme, S the substrate, ES an enzyme complex, and P the product.

The rate of appearance of product is given by

aPT _ 4 (es) (2.21.15)
dt
Applying the steady-state approximation to ES, we get
d[ES
) 0 kIS - k(B8] - AofES)
[ES] = RIENS] (2.21.16)
k_,+k,

The proposed mechanism is usually tested with the experimentally determined
initial rate of reaction under the condition that [S], > [E],. Thus, in Eq. (2.21.16),
we may replace [E] and [S] be the relations

[S] = [S]

[E] = [E], — [ES] (2.21.17)
Substituting the above relations in Eq. (2.21.16), we get
ki ([E]o —[ES][S

ES] =
[ES] k_,+k,
which on rearranging gives
[ES] — kl [E]O [S]O _ [E]O [S]O
k[Slg+k_y+ky  [Sly+{(k_y +ky)/ Ky}
[EJo [Slo
= 2.21.18
[Sly + Ky ( )
where Ky, = kathy (2.21.19)

ki

and is known as the Michaelis-Menten constant. The constants K, and k,
are characteristic constants for a particular enzyme-catalyzed reaction. When

k_, > k,, Ky is equal to k_;/k; which represents the dissociation constant of the
enzyme-substrate complex.



Initial Rate at High
Concentration of S

Initial Rate at Low
Concentration of S

Fig. 2.21.2 A typical
variation of initial rate
versus initial substrate
concentration
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Substituting Eq. (2.21.18) in the rate expression (Eq. 2.21.15), we have

(@j = ky[E]y [Sly
0

(2.21.20)
dr [S], + Ky

It is of interest to see how the initial rate as given by Eq. (2.21.20) behaves
under the two extreme conditions of high and low concentrations of S.

When the concentration of S is very high, the constant K,; may be ignored in
comparison to [S],. With this, Eq. (2.21.20) modifies to

(@j =k, [E], (2.21.21)
that is, the initial rate is independent of the concentration of S. In order words, the
reaction is zero-order with respect to S. Equation (2.21.21) gives the maximum
possible rate for the enzyme reaction at a given initial concentration of the enzyme.
Hence, we may write Eq. (2.21.21) as

Tmax = K2[Elo (2.21.22)

At low substrate concentration, Eq. (2.21.20) reduces to

(%) -5 g, s, (2.21.23)
t /o

that is, the reaction is first-order with respect to the enzyme and also first-order
with respect to the substrate. Using Eq. (2.21.22), Eq. (2.21.23) may be written as

ro= - [S]y (2.21.24)

Figure 2.21.2 represents the typical variation of initial rate with the initial substrate
concentration. In the beginning, the reaction is first-order with respect to S and its
slope as given by Eq. (2.21.24) is 7,,,,/Ky. At very high concentration of S, initial
rate is zero-order with respect to S and its slope as given by Eq. (2.21.22) is zero.
Thus from data at low and high substrate concentrations, both 7,,,, and 7, /Ky
can be determined. Knowing r,,,,, k, can also be determined from Eq. (2.21.22).

”
max
Zero-order

First-order region

region

"max ___/_ ______

Initial substrate concentration —

Initial rate —
(3]

K
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Determination of
I'max by Lineweaver
and Burk Method

Fig. 2.21.3 A typical
Lineweaver-Burk plot

Determination
of r,.x by Eadie
Method

Fig. 2.21.4 A typical
Eadie plot

For many reactions, it is not possible to obtain data close enough to the plateau
region to determine r,,,. However, the characteristic constants r,,, and Ky,
can be obtained following the procedure given by Lineweaver and Burk where
Eq. (2.21.20) is rearranged by taking the inverse of both sides which gives

1_ 1t Ky
o klEly  k[E] (Sl

or 11 K (2.21.25)
o Tmax rmax[S]O

Thus, a plot of 1/, versus 1/[S], will be a straight line with slope Ky/r,,, and
with an intercept on the 1/r, axis of 1/r,,,, (Fig. 2.21.3). The extrapolated intercept
on the 1/[S], axis is equal to — 1/Ky. Thus, from the two intercepts or from the
slope and the intercept on either of two axes, the constants r,,, and Ky can be
determined.

~—— slope = Ky / 7max

=)
=
—_

1/rmax —

7
e

“UKy

1/[Slp—

The above method involves a considerable extrapolation to the intercept. Since a
small absolute uncertainty in 1/r,,, may produce a large relative uncertainty in
the value of r_,., an alternate graphical method as suggested by G.S. Eadie may

max?

be followed. In this method, Eq. (2.21.25) is written as

0, - mex (2.21.26)

Thus, a plot of r,/[S], against 7, gives a straight line with an intercept on
ro/[S]y axis equal to r,,. /Ky, and that on r, axis equal to r,,, (Fig. 2.21.4).

Tmax / KM N

ro/ [Slo—

70— Fmax



Potential Energy
Diagram

Fig. 2.21.5 The
potential energy
diagram of the
Michaelis-Menten
mechanism

Problem 2.21.1

Solution
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Equation (2.21.25) may be rewritten as
Ky = (”max "’_OJ [ST, (2.21.27)
To
From Eq. (2.21.27), it follows that
Ky =[Sy

when 1y =r,../2.

The potential energy diagram of enzyme catalyzed reaction will contain two
potential energy barriers, one for the equilibrium reaction and the second for the
dissociation of the enzyme-substrate complex. Since the first step is usually fast,
the corresponding energy of activation has a small value (Fig. 2.21.5). The energy
of activation for the dissociation step has a large value.

Potential energy

ES
Products

Reaction coordinate ——

Michaelis and Menten originally derived the rate equation (2.21.20) without the use of steady-
state approximation and making the assumption, that k, < k_;. For the latter assumption,
the equilibrium
E+S —'= ES
=1

may be described by the constant
k _ [ES]

“ ko [EIS]
Using the above equation, derive Eq. (2.21.20) and show that Ky; = 1/K,.

We have the relation
[Elo = [E] + [ES]
Replacing [E] in terms of [ES], we get
[ES]
Ko [S]
Rearranging this, we get

s)- _ [Eb__ _ _[SIE
1+1/K[S] [SI+1/K,

+ [ES]

[El, =
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Problem 2.21.2

Solution

Fig. 2.21.6 The
required potential
energy diagram

Example 2.21.1

Substituting the above relation in the rate expression

r =k, [ES]
weget ro JaISIEL
[S1+1/K,,

For the initial rate, we may write
[S]=1[Sly
Thus, we have
_ kI[S]h[E]y

* Sl + VUK,

Comparing the above relation with Eq. (2.21.20), we get
1
Ky= =

Ko

The above relation also follows directly since
Ky = (k| + k)/k, and k_; > k,,
kyt+ky
ky

1
therefore Ky, = % = ra
1 eq

The hydrolysis of p-nitrophenylacetate to p-nitrophenol is catalyzed by o-chymotrypsin
enzyme. The proposed mechanism is

fi
E+S ——= ES' —% ES+P, — 25 E+P,

where ES’, P, and P, are acetyl enzyme, nitrophenol and acetate ion, respectively. If &, is

much smaller than k,, draw a qualitative plot of potential energy versus reaction coordinate

for the above reaction.

Since the equilibrium reaction is fast, the energy of activation for this step will have a small
value in comparison to other steps. The energy of activation for the second step will be
much larger than the third step since k; < k,. Hence, the required potential energy diagram
will have an appearance as shown in Fig. 2.21.6.

Potential energy

ES
ES+P,

Reaction coordinate —>

The following data are obtained in an enzyme catalyzed reaction
[S] x 10*mol dm™ 25 5.0 10.0 15.0
rox 10%mol dm™> min™' 2.2 3.8 5.9 7.1



Chemical Kinetics 177

Assuming Michaelis-Menten kinetics, calculate 7, K); and &, using the Lineweaver-Burk

plot and Eadie plot. Given: [E], = 4.0 x 10® mol dm™.

Solution For the given data, we have
[S]o x 10%/mol dm™ 25 5.0 10.0 15.0
ﬁ x 107%mol ' dm®  0.4000 0.2000 0.1000 0.066 7
rox 10%mol dm> min™' 2.2 3.8 5.9 7.1
ri x 10°%mol™! dm® min  0.454 5 0.263 2 0.169 5 0.140 8
%

—0 % 10%min"’ 0.88 0.76 0.59 0.473
0

Lineweaver-Burk Plot A graph between 1/r, and 1/[S], is drawn (Fig. 2.21.7) and its
slope and intercept are determined.

045 o 6_0.185><106
' P 0195 % 107
£ =94.88
= !
& 035 |
o 1
T 10.185
g |
Z 025 |
3 i
S ]
X
2 o1sft
~ 7
7
ig. 2.21. 0.05 I | | |
Fig. 2.21.7 0 0.1 02 03 0.4

(1/[S]p) x 104/ mol™! dm3 —
Thus, for Eq. (2.21.25) we have

1
Intercept= — = 0.08 x 10% mol™! dm® min
max

Slope = K 94.88 min

max
1 _ 1
Intercept  0.08x10®(mol dm™)"" min

Hence, 7, =

=1.25 % 10"° mol dm™ min™!
Ky = Slope X 7, = (94.88 min) (1.25 x 10> mol dm™ min"’
=1.19 x 10~ mol dm™
Now  rpe = ki [Elp

1

Fowe 1.25%107>mol dm™ min~

=3.125 min!
[E], 4.0x107° mol dm™>

Hence, k=
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Eadie plot A graph between r(/[S], and r is plotted (Fig. 2.21.8) and its intercepts on
the two axes are determined.

1.0532

1.0
0.8
0.6
0.4

0.2
Fig. 2.21.8

(ro/ [S]o) * 102/ min~!

0 | \ | | \ AN
0 2 4 6 8 10 12 14

ro % 106/ mol dm=> min™! —

Thus, for Eq. (2.21.26) we have

Intercept on ry/[S], axis = ;?J =1.053 2 x 10 min"'
M
Intercept on 7y axis = r, = 13.463 x 10°° mol dm™ min™'

max

=1.346 x 10~ mol dm™ min™’

Ko = Fnax _ 1.346x107° mol dm™ min~"!
M 1.0532x10 2 min! 1.0532 %102 min™"
=1.278 x 10~ mol dm™
-5 -3 -1
k= Fmax _ 1.346x10 ir6101 dm _r;nn — 3365 min”!
[Ely 4.0x10"°mol dm

ENZYME INHIBITIONS

Inhibitors are compounds that decrease the rate of a catalyzed reaction. The
equations that describe the most common kinds of reversible enzyme inhibition
will be derived in this section.

Fully Competitive The conditions of fully competitive inhibiton are: (a) E will bind with both S and
Inhibition I, separately and (b) only ES will break down to the products. Mathematically,
we may write it as

L\ k
E+S - ES 2 E+P
1

k'&
E+1—— EI
3
Applying the steady-state approximation to ES, we get
d[ES
% = 0= ky [E][S] — k,[ES] ~ k[ES]
ki [E][S]

or S1= % 4kl (2.21.28)
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If [S], > [E],, we will have

[S] = [S]p (2.21.29)
[E] = [E], — [ES] — [EI] (2.21.30)
Now -1— =K;= —[E][I]
K, [EI]
Therefore
_ [E]]
[EI] = K,

Substituting this in Eq. (2.21.30), we get
[E] = [E], — [ES] — [E][I}/K;

or [E] = [E]o ~[ES] (2.21.31)
1+[1J/ K,
Substituting Eqs (2.21.29) and (2.21.31) in Eq. (2.21.28), we get
[ES]= ki [S]y ([E]o —[ES]D/(+[1})/K})
k_,+k,
{h[Sly/A+[IV KD} +k_ +ky
E 1+[1[/K
__[BLIS/A+IV/K) 22132
{[Slo/A+[VK)} + Ky
The rate of formation of product is given by
ry = ky [ES]
Substituting the concentration of ES from Eq. (2.21.32), we get
E 1+[1)/K
ro = ky[Eo[S]o /(A +[1)/Ky) (221.33)
{[Slo/A+[1}/K )} + Ky
If the factor [S]y/(1 + [1V/K)) > Ky, we get the maximum rate as
Tmax = k> [Elg (2.21.34)

Taking the inverse of Eq. (2.21.33) and making use of Eq. (2.21.34), we get the
required Lineweaver-Burk equation

1= L+K_M(1+EJL (2.21.35)
o Tmax Tmax KI [S]O

On comparing Eq. (2.21.35) with Eq. (2.21.25) we find that the intercept is the

same whereas the slope has increased from Ky;/r,« t0 Ky (1 + [1J/K)/7 oy In

other words, 7, is same but K,; has modified to Ky, (1 + [I]/K}). Figure 2.21.9

2 " max

displays the two plots.
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Fig. 2.21.9 Display of
the two plots

Partially
Competitive
Inhibition

1/}’0 R

Intercept
= 71/KM(1+[I] /KI)

BN
e / 1/Fmax

V[Slp—

In this type of inhibition, E combines with both I and S. The complexes EI and ES
also combine respectively with S and I to give the same EIS complex. Both ES
and EIS break down to products at the same rate. Thus the mechanism involves

the following equations:

P
E+S —— ES —&2 5 E+P

K3
E+1 —— EI
K3
EI + S —— EIS
K

ES +I —— EIS

EIS — 2 5 EI+pP

We may follow the classical Michaelis-Menten treatment (where we assume
k, < k” | and thus Ky, = 1/K{) to derive the rate expression. For the given equilibrium

reactions, we may write

1 E][S
R
1 _ . _[ENS]
K 3 [EIS]
1 _ [ESI]
K, * [EIS]

The enzyme conservation reaction is
[E], = [E] + [ES] + [EI] + [EIS]
Making use of Eqgs (2.21.36), we get

[Elo=[E] +

(E1(S] | [E]0N | [EJ(L(S]

Ky K,

Ky K

(2.21.36a)

(2.21.36b)

(2.21.36¢)

(2.21.36d)
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[E,
ST 10, (6]

Ky Ky K)K;

or [E]=

= Ky [Ely (2.21.37)
Ky 1+ [11/K,) +[SIA+ 11Ky, / K, K3)

The rate of the reaction is given by
r =k, ([ES] + [EIS])
i [[E][S] N [E][I][S])
Ky KK,

1 I
= kofS] [—+L] [E]
Ky KK
Substituting [E] from Eq. (2.21.37), we get

ky[ST{A/ Ky ) + 1V K5 K33 [Elo K
Ky (1+[11/K,) +[SIA+ 11K / K, K)

Iy [E]o[SIA+[I]1 Ky / K, K5)
Ky +[11/Ky) +[S]A+[1]Ky /K, K5)

ky[Eo[S]
K (L [1/K5)/(1+ 1Ky /K K5) } +[S]

The Lineweaver-Burk equation is

I _ K (YK (+ Ky /KoK 1]

r ky[Ely [S]  k[E]
A plot between 1/r, and 1/[S], will be linear with intercept 1/r,,, (same for all
K 1+[1)/K
[1]) and slope —%- _ 1+IVK, .
Toax \ 1+ Ky /KK

The general nature of the graph is thus same as that of Fig. 2.21.9.

Fully In this type of inhibition, an inhibitor binds reversibly with E, the complexes ES
Noncompetitive and EI bind respectively with I and S, to give the same EIS complex and the
Inhibition product is obtained only through the decomposition of ES. Thus, the mechanism

includes the following reactions:
E+S —=— ES %, E+p

K3
E+1 —— EI
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El+S == EIS

K3
ES + I —— EIS

Following the classical Michaelis-Menten treatment, we may proceed as follows.
From the given equilibrium expressions, we have

1 (E][S] _ [EI[S]

K/ ES]  [EIS]

; (since k, <k’ ) (2.21.38a)

1 [E][1] _ [ES][I]
K3 El] [EIS]

(2.21.38b)

The enzyme conservation equation is
[E], = [E] + [ES] + [EI] + [EIS]
Making use of Eqs (2.21.38), we get
[EI(S]  [EJ] . [EJ(S]]
Ky K; Ky Ky

_ [E]y
1+ ([SY Ky) + (VKD + (ST KK

[Elo=[E] +

or [E]

_ [E],
(A+[SV Ky )(+[IVK})

(2.21.39)

The rate of formation of product is given by

(E][S]

M

Substituting [E] from Eq. (2.21.39), we get

=l g { [Ey }
Ky A+[SVKy)A+[11/Ky)

_ k[ES]
(Ky HISDA+[TVKY)

Since r,,,,, = k, [E]y, we may write the above expression as

r= rmax [S]
(Ky HISDA+[TVKY)

v [S]

max

" Ky (+[/K,) + IS+ I/K,)

(2.21.40a)



Fig. 2.21.10

Partially
Noncompetitive
Inhibition

Chemical Kinetics 183

Inverting the above expression, we get

1_ Ky [Hmj 1, (Hmj
r Fmax KT [S] Fmax Kl

Equation (2.21.40b) is the required rate expression.

(2.21.40b)

On comparing Eq. (2.21.40) with Eq. (2.21.25), we find that K, is unaffected
whereas 7,,,,, has modified to r,,/(1 + [I]/K}). This is just opposite from what

occurs in a fully competitive inhibition.

Figure 2.21.10 displays the plots of normal enzyme and fully noncompetitive
enzyme reactions.

(1

1/r —

=0

Intercept =

1 [1]
14+ 4L
’max [ i K; J\\\j

1S] ——

In this case, the mechanism is the same as that of fully noncompetitive inhibition
with one more step.

EIS — EI+P
Thus, the overall speed of enzyme reaction is given by

r =k, [ES] + k’[EIS]

_, [EIS] . [ENSI
2 KM KMKI

_ (kz[s] . k'[S][I]J ( [Ely )
Ky KK A+[SV Ky A+[1VK;)

_ k[EL[SVA+[IVK,) | KTEL[SI(IVKD/(A+[1V/K;)
Ky +[S] Ky +[S]

_ (K, [E]o[S]+ K’[E]o [SI[I)/ K )/(1+[1])/K,)
Ky +[8]
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Uncompetitive
Inhibition

The Lineweaver-Burk equation is

Ky(+[IVK) 1 1+[1)/K,
(ky[Elo + K’[EJ[TV/Ky) [S] ky[E]y +K[E] [T/ K,

1

- = (2.21.41)
r

In this case, inhibitor can react only with the complex ES. Thus, the mechanism is

E+S —— ESs — 2 y E+P

K
ES +I —=— EIS

We may write

1 _ . _[EIS]
K Ky (ES] (2.21.42a)
L _ g - [ESI (2.21.42b)
K} [EIS]

The conservation equation is
[E], = [E] + [ES] + [EIS]

Making use of Eqs (2.21.42), we get

_ [EJ(S] . [EI(S]]
[E]o=[E] + Xy, + KK,

or [E]= [Ey
1+ ([SVKy) + ([T Ky Ky)

The rate expression is

Km Ky +[SIA+ 1)/ Ky)
_ Vinax [S] (2.21.43)
Ky +[S]A+[IV/Ky)
The Lineweaver-Burk form of the equation will be
1_ Ky 1 1+[IVE (2.21.44)
r Foax [S] 7,

max max

Thus, slope of the plot between 1/r and 1/[S] is the same as that of a simple

enzyme reaction but the intercept increases with the increase in concentration of
I (Fig. 2.21.11).
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Solution
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1/r —»

\m

1+[11/K; =0

Tmax

1[S] —
L+ 1)/

Km

An enzyme-catalyzed reaction (K, = 2.7 X 10 mol dm™>) is inhibited by a competitive
inhibitor I (K} =3.1 % 107> mol dm™). Suppose the substrate concentration is 3.6 x 10~* mol
dm™. How much of the inhibitor is needed for a 65% inhibition? How much does the
substrate concentration have to be increased in order to reduce the inhibition to 25%?

For a noninhibition reaction, we have

_ k[E]y[S]y
("0)non Sh+Ky (Eq. 2.21.20)

For a competitive inhibition reaction, we have

ky[E]o[Slo/( +[1)/Ky)
{[Sl/(1+[1V/K D)} + Ky

("0)inn = (Eq. 2.21.33)

Dividing Eq. (2.21.33) by Eq. (2.21.20), we get

(o)inn _ ([Sly + Ky)/(A+[1)/K})

()non — STo/A+[IV K} + Ky

Rearranging for [I] and [S],, we get

[I] _ ((ro)non _(rO)inh] [([S]O +KM)KIJ
("0 )inn Kym

- ()inh (KM[I]]
S], = - K
[ ]0 (VO)non - (ro)inh KI M

Substituting the given data, we get
[1] = (1—0.35)
0.35
“ (3.6x107*moldm™ +2.7x 10> moldm)(3.1x 10" moldm™)
2.7%10*moldm™

=6.524 x 10~ mol dm™
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Example 2.21.3

Solution

Characteristics of
Heterogeneous
Catalysts

[S], - ( 0.75 )[(2.7><10‘3 mol dm™) (6.524 %10~ mol dm™)
0=

= ~ ~2.7% 107 mol dm™
1-0.75 3.1x107° mol dm

=14.346 x 107> mol dm™ = 0.014 3 mol dm™

Calculate the concentration of a noncompetitive inhibitor (K; = 2.9 X 10~* mol dm™?) needed
to yield a 90% inhibition of an enzyme-catalyzed reaction.

For a normal enzyme-catalyzed reaction, we have

— Fmax [S]O
Ky +[S]y

and for a fully noncompetitive inhibition, we have

)

— Vmax [S]O
(0)inn Ko+l (+1T7K) (Eq. 2.21.40a)

Dividing the two, we get

4

.
(" Dinn K,

Therefore [I] = K, [Wj
7o Jinh

Substituting the given values, we get

[1] = (2.9 x 107* mol dm™) [%) =2.61 x 107 mol dm>

HETEROGENEOUS CATALYSIS

Most heterogeneous catalytic reactions involve the solid surface as the catalyst. The
catalytic effect has been explained on the basis of adsorption of reactants on the
active sites available at the surface of the catalyst. Invariably, the adsorption is of
chemisorption in nature where the adsorbed molecules are held to the surface by
valence forces. This, in turn, weakens some of the bonds within the molecule and
thereby the molecule gets activated and its reactivity is enhanced. For example,
platinum catalyst which is used in many reactions involving hydrogen involves the
adsorption of the hydrogen molecule on the surface of the metal which weakens
the bond holding the two hydrogen atoms together. This facilitates the cleavage
of that bond and thus accelerates the rate of reaction.

The adsorbed molecules are more near to the transition state and thus
heterogeneous catalyst primarily function by lowering of activation energy. If a
reaction involves more than one substance, the catalytic effect has been explained
on the basis that the reacting molecules are adsorbed in the neighbouring active
centres which facilitate the intermolecular arrangement more rapidly. In general,
a gaseous reaction on the surface of a catalyst involves the following major steps.

1. Diffusion of reactant molecules to the surface.
2. Adsorption of reactant molecules onto the surface.
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3. Chemical reaction on the surface.
4. Desorption of product molecules from the surface.
5. Diffusion of product molecules away from the surface.

The rate of overall reaction may depend on any or all the the steps listed above.

In general, the catalytic effect depends upon the surface area available for
adsorption. A solid catalyst present in the powder form is more effective as it has
larger surface area. The catalyst may be activated by heating to a high temperature
in vacuum.

The kinetics of gaseous reactions on solid surfaces may be accounted for by
postulating the reactions of the following types.

(i) An equilibrium reaction involving monolayer adsorption and desorption at
the surface of the catalyst. There will be as many equilibrium reactions as
the number of reacting molecules.

(i) Chemical reaction between the adsorbed molecules to give product molecules.

The first reaction will lead to the Langmuir adsorption isotherm. According to
the second reaction, the rate of reaction depends on the concentration of adsorbed
molecules, which in turns, depends on the fraction of surface covered. Thus,
according to Langmuir and Hinshelwood, the rate of reaction may be written as

ro 0
ie. r=ro (2.21.45)
where k| is the constant of proportionality. For bimolecular reaction, we have
r=5k0,0;

where 6, and 8 are the fractions of surface covered by A and B molecules,
respectively.

We give below an account of unimolecular and bimolecular surface reactions.

A unimolecular surface reaction involves the following elementary processes.

A+S+AS

-1

AS —2 5 products

where A is the reacting molecule, S is the vacant site on the surface and AS is the
adsorbed molecule (or the occupied sites at the surface of the catalyst).

According to Langmuir and Hinshelwood, the rate of reaction is given by
r=k,0 (Eq. 2.21.45)

where 6 is the fraction of the surface covered. If ¢, is the total concentration of
surface sites of the catalyst, then we will have

Concentration of vacant sites, i.e. [S]=¢c(1-6) (2.21.46)

Concentration of occupied sites, i.e. [AS] =c0 (2.21.47)
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Limiting Cases of
Eq. (2.21.51)

The steady-state approximation is assumed to hold good for AS. Thus, we have

d[AS]

Cdr

Substituting the [S] and [AS] in terms of 6, we get
ki [Aleg(1—60)—k c0—Fkyc0=0

= 0 = Kk [A][S] - k ,[AS] ~ k,[AS]

A
or 6= _hIAY (2.21.48)
k[Al+k_ +k,
Substituting Eq. (2.21.48) in Eq. (2.21.45), we get
A
po _ RkIA] (2.21.49)
k[A]l+k_ +k,
Inverting the above relation, we get
Lol itk 1 (2.21.50)

roky kyky  [A]
Thus, a plot of 1/r versus 1/[A] would yield a straight line of slope and intercept
equal to (k_; + k,)/kyk, and 1/k,, respectively.

For the gaseous reactions, partial pressures may be used instead of the
concentration terms. Thus, Eq. (2.21.49) modifies to

ek
PR 1V N— (2.21.51)
kypa +k_ +k,
|
or 11, Btk 1 (2.21.52)
ro k kiky  pa

Hence, a plot of 1/r versus 1/p, would yield a straight line.

Two limiting cases of (2.21.51) are discussed below.

® > (ky pp + k_): Since k, is very large in comparison to k, p, + k_;, it means
that the rate of formation of products is very fast as compared to the rate of adsorption
and desorption. Equation (2.20.51) in the presence case may be written as

ry= klpA (2.21.53)

Thus, the surface reaction is first-order with respect to the pressure of adsorbent.
The rate constant is &, indicating that the adsorption is the rate determining step.
Examples of reactions which follow Eq. (2.21.53) include the decomposition
reactions: N,O on gold, HI on platinium, phosphine on glass, and formic acid
vapours on platinum.

® o, <<k, ps+k_;: Since k, is very small in comparison to k; p, + k_;, it means
that the rate at which products is formed is a slow step and the adsorption and
desorption processes are fast. Equation (2.21.51), in the present case becomes

.= kyky pa _ (ky Tk )ky pao _ KegkaPa
kipa+k_y  (k/k_)ps +1 Kqpa +1

where K, is the adsorption equilibrium constant. Equation (2.21.54) is identical
with the Langmuir adsorption isotherm (Eq. 2.1.9).

(2.21.54)
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Fig. 2.21.12 Variation
of rate of unimolecular
surface reaction with
pressure

Classification of
Gaseous Reactions
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Two subcases may be distinguished. These are

(a) Low pressure region At low pressures K., p, < 1, and thus (Eq. 2.21.54)
reduces to

r= Keq k2 Pa (2.21.55)

that is, the reaction is first order with to A.
(b) High pressure region At high pressure K., py> 1, and thus Eq. (2.21.54)
reduces to

r=rk (2.21.56)

that is, the reaction is zero order with respect to A.

Equation (2.21.55) and (2.21.56) may be explained by the fact that the rate
determining step is the decomposition reaction at the surface. At low pressures,
the fraction of area covered by the molecules (or the concentration of adsorbed
molecules) increases linearly with pressure and so also the rate of the surface
reaction. In the high pressure region, all the sites on the surface are occupied
(i.e. 8 = 1) and thus the concentration of adsorbed molecules remains constant
and hence the reaction becomes zero-order with respect to the adsorbed substance.
The variation of rate of reaction with pressure is shown in Fig. 2.21.12. Example
of reactions exhibiting above characteristics include decomposition of HI on gold
and that of NH, on molybdenum.

. Zero
First-order order
region region

Rate —

Pressure ——

Gaseous reactions on the surface may be classified depending on the extent of
adsorption of reactant. Thus, we have

Reactant slightly adsorbed In this case, K, is small and hence K., p, may be
ignored in comparison to 1 in Eq. (2.21.54) which gives
7 =Kok pa=Kk'py (2.21.57)

that is, the reaction is first order with respect to A. Equation (2.21.57) may be
written as

_dpa

=k’
dr Pa
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Bimolecular
Surface Reaction

Hence, the variation of pressure with time will be given as

in Pado _ (2.21.58)
(P
Reactant strongly absorbed In this case, we have
Kegpa>1
and hence Eq. (2.21.54) modifies to
r=rk (2.21.59)

that is, the reaction is zero order with respect to A. The variation of pressure with
time will be given as

(PA)o = (Pa), = kt (2.21.60)

Reactant moderately adsorbed 1In this case, rate will be given by Eq. (2.21.54)

and the rate may be approximated by the expression
1/n

r=kp
which makes the rate proportional to the amount adsorbed as given by the
Freundlich isotherm.

A bimolecular surface reaction involves the following elementary processes.
k
— AS
k

-1

A+S

B+s:# BS

2

AS +BS —5 5 products + 2S
The rate of formation of products is given by
7 =Fk;0,6g (2.21.61)

where 6, and 6y are the fractions of surface covered by A and B molecules,
respectively. If ¢ is the total concentration of surface sites, it is obvious that

Concentration of sites occupied by A, i.e. [AS] = ¢.6,
Concentration of sites occupied by B, i.e. [BS] = ¢,6
Concentration of vacant sites, i.e. [S]=c(l—-6,—6y)

We can apply steady-state approximation to AS and BS to determine 6, and 8.
Thus, we have

d[AS
B o — [ATS] - K [AS] - KASIBS]
d[BS
S~ = kBs) - £0BS] - K ASIBS)
Substituting the concentrations of S, AS and BS in terms of 6, we get
ky[AJeu(1 — 65 — 05) — k1,00 — k3c20,65 = 0 (2.21.62)

ky [Blef(1 — 6, — 6g) — k .0 — kyc26,65 = 0 (2.21.63)
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There are two equations and two unknown variables 6, and 65, and hence
can be solved for 6, and 5. These can be substituted in the rate Eq. (2.21.61) to
determine rate of the reaction.

We may, however, discuss a simple case where k; has a very small value, i.e.
the rate determining step is the chemical reaction between the adsorbed molecules.
Equations (2.21.62) and (2.21.63) in the present case become

ki[AJ(1 = 6y — 6g) —k_; 6,=0

ky[BI(1 — 65— 6) —k, 65 =0
or K.[Al(1 - 0,—63)—60,=0

K p[BI(1 =6, —6) —65=0

where K., = ky/k_, and K, = ky/k_, and are the two adsorption equilibrium
constants. Solving for 6, and 65, we get

9. = Keql[A]

. 1+ch1 [A]+ch2[B]
0. = Kqu[B]

’ 1-’_I(taql [A]+Keq2[B]

Substituting the above relations in Eq. (2.21.61), we get

( Keql [A] j [ Kqu[B] ]
} l+K’eq1 [A]+Keq2 [B] 1'i_Kveql [A]+Keq2[B]

K. K. ,[A][B
_ 38 eql cq2[ 1(B] 5 (2.21.64)
(14 Ko [A]+ K o[B])
For gaseous reactions, Eq. (2.21.64) may be written as
kK. K
;= 3 eql™req2 PaPs (22165)

(1 + Keql Pa + Keq2 Ps )2

Three subcases may be distinguished. These are:

Both A and B are weakly adsorbed In the present case, K., p, and K, ,pp
will be very small and may be ignored in comparison to 1. Thus, Eq. (2.21.65)
becomes

r =l Keq1 Kqu PAPB (2.21.66)
that is, the reaction is first order with respect to each of A and B.

Example includes the reaction between NO and O, on glass.

One of the components (say, A) is more strongly adsorbed than other In the
present case, we have

chl Pa> chz Ps



192 A Textbook of Physical Chemistry

and hence Eq. (2.21.65) may be written as
_ k3Keq1Keq2 Pa PB
(1+ Koy o)

Examples include the reactions between NH; and O, on iron surface and between
CO, and H, on platinum.

(2.21.67)

One of the components (Say, A) is very strongly adsorbed 1In the present case,
we have

chl Pa=> chz PB
and Koq pa>1

C

Hence, Eq. (2.21.65) reduces to
= k3 Keq2 PB
K Pa

eql
that is, rate depends inversely on the concentration of strongly adsorbed component.

(2.21.68)

Examples include the reaction between ethylene and hydrogen on copper,
between hydrogen and oxygen on platinum, and between carbon monoxide and
nitrogen on quartz at about 300 °C.

EFFECT OF TEMPERATURE ON HETEROGENEOUS REACTIONS

Unimolecular
Surface Reaction

Arrhenius equation holds good for the effect of temperature on the heterogeneous
reactions. Thus, we have
dink _ E;
dT  RT?
where k is rate constant and E; is known as the apparent energy of activation.
We may describe below the effect of temperature on the rate constant for a few
typical cases.

(2.21.69)

Reactant slightly adsorbed From Eq. (2.21.57), we have
r= (chk2) Pa
dIn (Kequ) _ Ez:

Thus 3
dr RT
dinK dink E;
or S (2.21.70)
dr dr RT
dinK
Now 4 = Aa‘“f (2.21.71)
dr RT
Ink E
and A0k _ B (2.21.72)
dr RT?

+ From Eq. (2.21.69) onwards, it is assumed that the logarithm is taken only of the numerical
values of the rate constants and equilibrium constants.
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where E, is the true activation energy. Comparing Eqs (2.21.70), (2.21.71) and
(2.21.72), we find that

E; = Ea + AadsH
Since A,y H is negative, it is obvious that
E/<E,

that is, the activation energy of the reaction is lowered. Hence, it may be concluded
that the decrease of energy of activation in the heterogeneous catalytic reactions
is largely due to the lowering of activation energy.

Reactant strongly adsorbed From Eq. (2.21.59), we find that
r = kz
and hence in this case, apparent energy of activation equals the true energy of
activation.
Both reactants are weakly adsorbed From Eq. (2.21.66), we have
r= k3Keq1Keq2 PaPB ™ kpApB

dink _ dink; dInK,, . dIn K,

Thus
dr dr dr dr
Ee: — Ea + Aads]—[l + Aads[_12
RT*  RT? RT? RT?

Hence, E]=E,+ AyH, + Ay,
Since A,y and A,y H, are negative, it follows that
E;<E,
One of the components is very strongly adsorbed From Eq. (2.21.68), we have
;= [l@ @] P _ PB
Keqi) pa Pa

where A is very strongly adsorbed. Thus

dlnk _ dInk; . dinK., dnK,

dr dr dr dr
Ea, _ Ea + Aadst o Aadsl—ll
RT*  RT? RT? RT?
Hence, E,=E,+ A H, — AyH,

If the reactant A is very strongly adsorbed, the term —A, A, will have a large
positive value and hence the energy of activation instead of lowering may become
more positive.
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Problem 2.21.1

Solution

(a) The following mechanism has been proposed for the catalyzed dissociation of molecule
AB at a metal surface.

AB(g) + S k":‘ ABS (fast)
1
ABS —2 5 AS + BS (slow)
k
AS k3 A(g) +S (fast)
BS —t= B(g)+S (fast)
k4
Show that the rate law is given by
B dpsp _ kpap
ds Pa

provided if it be assumed that (i) the adsorption of B is negligible and (ii) A is strongly
adsorbed and AB weakly.

(b) If the activation energy of the overall catalyzed reaction is 70 kJ mol™" and the
enthalpies of adsorption of A and AB are —80 kJ mol ™! and —105 kJ mol ™, respectively,
what is the activation energy for the postulated rate-determining step?

(a) The rate of reaction will be given by

dpsp
- =22 =L0
d1 29AB

For the fast adsorption equilibrium for A and AB, we have

_ [As] _ N

A JAIS] paA(l—6a5— 64— 6p)
[ABS] _ Osn

AB -

[AB][S] Pap(l—0xp — 04 —0p)

Since B is negligibly adsorbed, we have

K= L/ N
Pal=6,5-0,)

0
Kag = AB
Pas(l—=0sp—0,)

S VY
Ky 0 Pas

K
or 05 = (6ap) (M)(Aj
Pas )\ Kxp
Substituting 6, in the expression of K, and rearranging, we get

0. = KrPas
AB 14K K
+ KApPaB T KpAPA
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Substituting 6,5 in the rate expression, we get
_ dpap _ kK apPag
dr 1+ Kpgpag + KpPa
Since A is strongly adsorbed whereas AB is weakly adsorbed, we may assume

Kappa> 1+ Ky Pag
Hence, the rate law reduces to

_ dpag _ kyKag  Pag -k PaB

dr LN Pa Pa
(b) Since
k= ky K ap
Ka
we have dink _ dlnk, + dnK,; dnK,
dt dr dTr dar

E, _ E,_, AHy, AH,
RT?> RT*> RT? RT?
or E\=E,+ AH,, — AH,

Hence, E,=E,—AH\g+ AH,

ie.

Substituting the given values, we get

E, = (70 + 105 — 80) kJ mol' = 95 kJ mol !

2.22 AUTOCATALYSIS AND OSCILLATORY CHEMICAL REACTIONS

AUTOCATLYSIS

If one of the products of a reaction acts as a catalyst, it is said to be an autocatalyst
and the phenomenon is known as autocatalysis. One of the well-known examples
is the oxidation of Fe’" ions by MnO); ions in acidic medium:

5Fe’” + MnO; + 8H —— 5Fe’" + Mn*" + 4H,0

In this reaction, Mn>" ions act as an autocatalyst.

Kinetics of Catalytic Reaction A+ C — 2C

Differential Rate

Let the mechanism of the reaction
A+C —> 2C
with an autocatalyst C involves the following steps.

ky

A+C — D (fast)
1
D %25 2C (Slow)
The rate of the reaction is given by
€ _ 5 1, (2.22.1)

dt
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Integrated Rate
Expression

From the fast equilibrium reaction, we have
k=t __ D]
ko [A][C]
With this, Eq. (2.22.1) becomes

% =2 kK [A] [C] = k,,, [A] [C] (2.22.2)

The initial concentration of autocatalyst C must be nonzero for the reaction to
proceed in the forward direction.

Let [A], and [C], be the initial concentrations of A and C, respectively. We will have

A + C —> 2C
t=t [Aly-x [Cly—-x 2x

The concentration of C at time ¢ will be
[C1=[Clp—x+2x=[C]y +x
The rate law (Eq. 2.22.2) becomes
d([Cly+x) _
dt PP

dx
=k,
([Alo—x) ([Cly +x) o

([Alp —x) ([C]p + x) (2.22.3)

dt

Resolving the left side into partial fractions, we get

! { dr + dx }—Kappdz
([Aly +[C]p) L[ALy—x [Cly+x

which on carrying out the integration gives

1 x dx dx t
=k d
([A]y +[Clo) '([ [[A]o i [Cly +x} app -([ !

. ! Al 1 Sl ”} — ey !

In
([Aly +[C]0){ [Aly—x [Clo
The above expression may be rearranged as

[C, (P -1)

= 2.22.4
1+([Cy [Aly)e” 229
where = ([A]y + [Cly) kypp- Equation (2.22.4) may be written as
Br _
> el ; where B = [C],/[A], (2.22.5)

[Cly 1+
Figure 2.22.1 displays the plot of x/[C], versus # for some values of 3 in which
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B =0.1. Figure 2.22.2 displays the corresponding rate of reaction. From this figure,
it follows that the rate of reaction starts with a smaller value and it increases rapidly
due to the formation of more and more of the catalyst. After some time, the rate
starts decreasing after attaining a maximum value. This results from the decreasing
concentration of the reactant A. Eventually, the rate becomes zero where all the
reactant has been consumed.

10
8
T 6
Z 4
Fig. 2.22.1 Plots of
x/[C], versus ¢ for
B=0.1and 3=0.02, 2
0.04, 0.06, 0.08 and
0.10 o
0 40 80 120 160 200
t/s ——-
10
l
o
X
2
<
-4
Fig. 2.22.2 Plots of rate
of reaction verses ¢
for B=0.1 and
B=10.02, 0.04, 0.06, 1 I
0.08 and 0.10. 0 40 80 120 160 200
t/s —
Time Correspond-  The rate expression (Eq. 2.22.3) is
ing to Maximum d
Rate of Reaction m = kypp ([Aly —x) ([C]y +x)

To determine ¢,,, we set d*x/d7* = 0. From Eq. (2.22.3), We get
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d’x

dx dx
? = kapp |:([A]0 - X)a - ([C]O + x)g}

dx
= kapp (Al —[Cl - Zx)(—j
dt
Setting this equal to zero, we have
[Alp—[Clo—2x=0

(Al —[Clo
2
Substituting x from Eq. (2.22.4), we get

or X =

[Ch(e” 1) (A} -ICl,

1+ ([C), /[A]y)e” 2

which on simplification gives

(Al _ ! in LA (2.22.6)

[Cly Ky ([Alg+[Cly)  [Cly

1
Tmax E

In

OSCILLATORY CHEMICAL REACTIONS

Some of the reactions involving autocatalyst exhibit the periodic variation in
concentration of intermediate with the progress of chemical reaction. In some
reaction the periodic variation in concentration may be displayed by the change
in colour of the reacting system. This oscillation in concentration is not about the
equilibrium concentration as such a movement will be contrary to the second law
of thermodynamics.

All chemical oscillatory reactions have three common features in their reaction
mechanism. These are as follows.

e The reacting system is far from thermodynamic equilibrium. The system
still moves towards equilibrium position with the periodic variation in
concentrations of some of the intermediates.

e The mechanism of reaction involves at least two different paths. The system
periodically switches from one pathway to another.

One of the pathway involves the production of a certain intermediate
causing its concentration to increase with time and the other pathway involves
the consumption of this intermediate causing its concentration to decrease.
When the concentration of the intermediate is low, the reaction follows the
producing pathway and its concentration rises. When this concentration is
reached to some high value, the reaction switches to the consuming pathway
and its concentration decreases. When this concentration is reduced to some
low value, the entire cycle of switching the pathways is repeated.

The mechanisms of some the well-known oscillatory reactions are described in
the following.
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The simplest mechanism of an oscillatory chemical reaction is the Lotka-Volterra
mechanism which involves the following steps.

(i) A+X—2Xx

(i) X+Y—252v

(i) Y—2>B

In the above mechanism A is the reactant (whose concentration is kept constant),
B is the product (whose concentration does not appear in the rate law, but it

is normally removed from the reaction) and X and Y are intermediates whose
concentrations show periodic variations.

The rate expressions for X and Y are
d[X]

B LA - k1Y) (2.22.7)
% = by [X][Y]- ky[Y] (2.22.8)

Equations (2.22.7) and (2.22.8) may be solved by the fourth-order Runge Kutta
method.

The results obtained from the data

ky=10mol' Lmin" ; k& =5mol! Lmin" ;k; =2 min™'

[A], = 0.1 mol L™ : [X]y= 0.1 mol L™ ; [Y]y=0.1 mol L
are shown in Fig. 2.22.3.

Figure 2.22.3a displays the periodic variations in the concentratinos of X and Y
with time.

Figure 2.22.3b displays the corresponding rates of change in concentrations of X
and Y which also display the periodic variations. For example,

from xtoy, d [Y]/dt > d [X]/dt

and from y to z, d[X]/dt > d [Y]/dt.

To start with d[X]/d¢ is positive while d[Y]/d¢ is negative. This trend follows
from Eqgs (2.22.7) and (2.22.8) where the term k,[X][Y] has a smaller value in
comparison to the second term. Initially, both d[X]/d¢ and d[Y]/d¢ increase, the
former increases rapidly than the latter. The rapid increase in d[X]/d¢# may be
attributed to the autocatalytic effect of X. As more and more of X is produced in
reaction (i), the rate of reaction (ii) also increases along with. Beyond x, d[Y]/d¢
becomes larger than d[X]/d¢ with the result that X is consumed rapidly and thus
its concentration after attaining a maximum value starts decreasing. At y, d[X]/d¢
again becomes larger than d[Y]/dz and this may be attributed to sufficient decrease
in the concentration of X due to the reaction (ii), consequently, the rate of reaction
(1) becomes larger causing the increase in production of X. Thus, there is competition
between the reactions (i) and (ii). If the concentration of X is low, the reaction
(i) takes over the reaction (ii) causing the increase in the concentration of X. When
the concentratin of X becomes larger, the reaction (ii) takes over the reaction
(i) causing its consumption faster than its formation.
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Fig. 2.22.3 (a)
Schematic periodic
variations in the [X]
and [Y]. (b) periodic
variations in the rates
of change in [X] and
[Y]. intersection points
on the zero x-axis
represent maxima and
minima. (c) Plot of
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Beyond z, the above pattern is repeated and continues to repeat displaying the

periodic variations in the concentrations of X and Y.

The timings at which [X] and [Y] exhibit maximum/minimum are as follows:

(a) H([X]y)/min —
(b) #([X]y)/ min —
(©) #[X],,.)/min —
(d) A[X] )/ min —

1.7
3.7
3.1
4.9

7.0
9.0
8.4
10.1

12.3
14.3
13.7
15.4

17.6
19.6
18.9
20.7
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The periodic variations in [X] and [Y] are also depicted by the plot between [Y]
and [X]. This plot form a closed loop on which the concentraation of X and Y
always lie with the progress of the reaction (Fig. 2.22.3c):

The change in concentrations of X and Y depicted in Fig. 2.22.3a may be correlated
with those shown in Fig. 2.22.3b.

The oscillator reaction, named as Brusselator, involves the following steps.

() A—tsx

(i) B+X—2>Y+C

(i) 2X+Y—253X

(iv) x—%,p

where A and B are reactants (whose concentrations are kept constant) and C and
D are products (which are removed as they are formed). The intermediates are X
and Y and the step (iii) is an autocatalytic reaction.

The rate expressions for X and Y are

X — (AT~ ko[BI + iy DX [Y] - 4y 1X)
% ~ &, [B][X] — ks [XI* [Y]

The above differential equations may be solved by the fourth-order Runge-Kutta
method. The results of the reaction with

ky =1 min™' ; ky=10mol" Lmin" ; k =1.0 mol? L? min'
k,=10min" ; [A],=1.0mol L : [Bly=3.0mol L™
[X]o=1.0mol L™"; [Y],=1.0mol L™
are shown in Fig. 2.22.4.
From Fig. 2.22.4b, it is obvious that whenever d[X]/d¢ is maximum, the value of
d[Y]/dt is minimum and vice versa. Also, when the concentration of X is maximum,
the concentration of Y is minimum, and vice versa. The periodic difference between
two maximum and two minimum concentrations of X (or Y) is about 7.2 min.
The timings at which [X] and [Y] exhibit maximum/minimum are as follows.
(@) #([X])yin)/min — 1.6 10.2 17.4 24.6
(b) #([X]pay)/min — 6.8 14.0 21.2 28.3
(©) 1([Y]pq)/min — 5.7 12.9 20.0 27.2

(d) £([Y],y,)/min — 7.0 141 213 285

The Belousove-Zhabotinsky oscillatory reaction involves a mixture of potassium
bromate, cerium(I'V) sulphate and propanedioic acid (HOOCCH,COOH) in dilute
sulphuric acid. In this reaction, the ratio [Ce*"]/[Ce*'] oscillates causing the colour
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Fig. 2.22.4 (a) Schematic periodic oscillation of [X] and [Y] with time. (b) Rates of change in [X] and and [Y].
Intersection on the zero point on x-axis represent maxima and minima.

of the solution to oscillate between a yellow solution and a colourless solution.
This is due to the fact that Ce*" is reduced by propanedioic acid to Ce>" whereas
the latter is oxidized back to Ce** by BrOj ion. The Belousov-Zhabotinsky reaction
is a complex reaction involving a large number of reactions steps.

This complex reaction was, studied by Field, Korés and Noyes (FKN) and
developed model, known as the FKN model (also known as Oregonator)’ based
on which the main features of the reaction can be explained. Identifying

A = BrO; ; X =HBrO, ; Y = Br,

Z=Ce* ; P = HBrO ; B = organic molecule

+Oregonator comes from the place Oregon where Noyes and his group worked out the model.
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the main steps of FKN model are as follows.
(i) Generation of intermediate X The reaction is formulated as

A+Y—BoxX4P
that is, BrO3 +Br~ —— HBrO, + HBrO

(Note: the concentration of H is included in the rate constants.)
(ii) Autocatalytic generation of X The reaction is formulated as

A+X—R yox 427

thatis  BrO3 +HBrO, —<,2HBr0, +2Cc*
2

This reaction involves two steps:
BrOj + HBrO, —2Br0} + H,0
BrO, —1 S HBrO, +Ce**
This complete balanced reaction is
HBrO, + 2Ce’" + BrO; + 3H" —— 2Ce*" + 2HBrO, + H,0
(iii) Consumption of X This occurs in two reactions.
X+Y—850p
2X—4 5 A+P
that is HBrO, + Br~ —— 2HBrO
2HBrO, ——» BrO; +HBrO
(iv) Oxidation of organic molecule The reactions are

CH,(COOH), + Br, —— BrCH(COOH), + H" + Br

Ce*'+ L [CH,(COOH), + BrCH(COOH),] Ll Br + Ce*" + Products
@ 2 (B) 2

The actual oxidation of the malonic acid is a complex reaction. The concentrations
of A and B are kept constant during the reaction. The value of f lies in the range
0.5 — 2.4 so as to observe oscillations in the concentrations of intermediates X,

Y and Z.

The Belousov—Zhabotinsky reaction consists of two main parts:

(i) The autocatalytic oxidation of Ce** by HBrO,
(ii) The reduction of Ce*" by malonic acid and its bromoderivative.

The production of Br in the oxidation of organic molecule is a strong inhibitor
of the autocatalytic oxidation of Ce*” because of its rapid reaction with the
autocatalyst, HBrO,.

HBrO, + H" + Br —— 2HBrO (Step iii)

Thus, Br™ prevents accumulation of autocatalyst HBrO,.
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The rates of change in concentrations of X, Y and Z as given by the FKN model

are as follows.

UX] _ jIAIY] + IAIDX] — KIXIY] - 2k, [XP

d
% =k [AI[Y] - k[XI[Y] + § ks[BIIZ]
A2 _ o, [ATX] - s [BIIZ]

dt
The above differential equations may be solved by the fourth-order Runge-Kutta

method. The results of the reaction with the data

k=128 mol' Ls™ ; ky=80mol'Ls' ; k;=8.0x10"mol" Ls™

ky=20x10°mol"' Ls'; ks=10mol"' Ls™

[A]=0.6 M ;  [B]=0.02M ; Z=0.0002M and f= 1.5
are shown in Fig. 2.25.5. The starting concentrations of X and Y are zero.
0.0018
— [Z]
T 10x [X]
'?E | !
el 1
E :'
0 ! \\L ________ | 4 ‘\ B L=~ \~~+ ___________
100 200 300 400 500 600
tls —

Fig. 2.22.5. Schematic periodic variations in the concentratinos of X, Y and Z
The Belousove-Zhabotinsky reaction may be qualitatively explained as follows.

When [Ce*'] is high, Br is produced rapidly and its concentration will also be
high (Step iv). This will cause the complete inhibition of oxidation of Ce>" (Step ii)
due to inhibiting reaction of Br~ with HBrO, (Step iii). Soon, the concentration
of Ce*" is decreased due ot its reduction by malonic acid and bromomalonic
acid. This concentration of Br  also decreases along with that of Ce*' ions.
When the conentration of the latter drops to a minimum, the concentration of
Br also decreases abruptly due to the inhibitor reaction (Step iii). Here, the rapid
autocatalytic oxidation of Ce*" starts and thus raising the concentration of Ce*"
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ions. When the concentration of Ce*" ions has reached to its maximum value,
there is rapid production of Br~ ions and again it inhibits the oxidation of Ce*"
ions. This cycle is repeated periodically. The timing between the two maximum
or two minimum concentrations of X or Y as shown in Fig. 2.22.5 in about 194 s.

The timings at which Y and Z exhibit maximum/minimum are as follows.

t([Yla)/s = 94 288 482
t([Yl)s > 56 249 442
t(ZDwe)ls = 77 270 464
t(Z],./s) > 34 228 422

The steps involved in this reactions are
(i) Nalo, —%— Na' +10;
(A) X)
AsO3 -
(i) 105 T’)I + products
x W
— — AsO7; -
(iii) 105 +2I T3>3I
© w W
_ ok 1
(iv) Ir— 512
(Y) (B)

In the above scheme, X and Y are intermediates and their rates of change of
concentrations are given by the expressions

d[Xx
% = ki [A] = ky [X] = s [X] YT

% =k, [X] + ks [X] [Y] — Ky [Y]

The concentration of [A] is kept constant.

These equations may be solved by the fourth-order Runge-Kutta method. From
the data

k; = 0.001 min'; k&, = 0.01 min™" ; &y = 2.5 x 10° L? mol > min"; k, = 1.0 min"!
[A], = 0.01 mol L™, [B], = 0,

[X]o =0, [Y]p=0

the results obtained are shown in Fig. 2.22.6.
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Fig. 2.22.6 (a) Schematic variations in [X] and [Y] with time. (b) The variations in rates d[X]/dt and
d[Y]/ dz. Intersection points on the zero x-axis represent maxima and minima

The timings at which [X] and [Y] exhibit maximum/minimum are as follows.

@) 1((X],)/min — 157 346 536
(b) t([X],;)/min — 168 357 547
©) t([Y],)/min — 166 355 545
) t(Y],)/min — 254

2.23 KINETICS OF THE RELAXATION METHOD

In the relaxation method, a system at equilibrium is perturbed by a sudden change
in the experimental condition such as temperature, pressure or concentration and
then observing the appropriate property of the system as it approaches to the
new equilibrium state corresponding to the new condition. This approach is, in
particular, useful for studying the fast reactions. For an aqueous system containing
ionic species, the temperature can be raised by applying an electric discharge that
last not more than 1 s.
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Consider an exothermic reaction

kg
A+B——=C
Ky

At equilibrium, we have
Rate of forward reaction, ;= k; [A] [B]
Rate of backward reaction, 7, = &, [C]

and also e =y (2.23.1)

Let the temperature of the system be raised suddenly. At any time, after the
temperature jump, the concentrations of reactants and products are the same as in
Eq. (2.23.1) but the rate constants is changed to k; and k. Thus, we have

—% = k/[A][B]- k;[C] (2.23.2)

At the new temperature, let [A], [B],q and [C], be the equilibrium concentrations
of A, B and C, respectively. Let we represent

[A] = [Alq t [Vale = [A]q T x (2.23.3a)
[B] = [Bleg * [Vglx = [Bloq + x (2.23.3b)
[C] = [Clog = Vex = [Cleg — x (2.23.3¢)"

These changes for an exothermic reaction are in accordance with the Le-Chatelier
principle. With these, Eq. (2.23.2) becomes

d([Aleg+x) ,
- T = kf([A]eq +x) ([B]eq + 'x) - kb([c]eq - x)
. dx ’ ’ ’ ’
L.C. - E = (kf [A]eq [B]eq - kb [C]eq) + kfx ([A]eq + [B]eq + x) + kbx
Since at equilibrium, Eq. (2.23.1) holds good, we will have
dr_ A ’ 2234
E——kfx([ Jeq T[Bleg +x) —kyx (2.23.4)

Since the perturbation is small, x << ([A]q * [Bleg), thus Eq. (2.23.4) may be
written as

d—x 7 ’
5 = _kf x([A]eq +[B]eq) - kbx

=_—x (2.23.5)"
T

where 1= k{ ([Alyg +[Bleg) + ki (2.23.6)
T

f For an endothermic reaction, [A] = [A],, — x ; [B] = [B],, —x and [C] = [C]¢, + x.
1 Ignoring x in comparison to [A],, + [B],y makes dx/dz a linear function of x. This
procedure is known as the linearization of the rate constant.
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Integrated Rate

Expression

Fig. 2.23.1 Plot of 1/1

versus ([A], + [B]

Comment

eq)

Equation (2.23.5) indicates that the movement of the system towards new
equilibrium position is first order with respect to x (= [A] — [A],)-

If x, is the value of x at # = 0 (the instant time at which temperature jump takes
place), then we will have

X l t

J&-—Lfa

Xy X T 0
which gives

T . p—— (2.23.7)
X T
The term 7 in Eq. (2.23.7) is known as the relaxation time. It is the time taken to
reduce the value of x to x,/e value. From Eq. (2.23.6), it follows that 1/7is a linear
function of [A], + [Bleq- The graph between 1/7and [A],, + [B]g, is a straight line
with slope equal to k{ and intercept equal to &, (Fig.2.23.1). Equation (2.23.6) is
valid whether the reaction is exothermic or endothermic.

1/t —>

Slope =kt

([A]cq + [B]cq) —

In some cases, there may be practical difficulties in determining [A],, and [B],.
This difficulty may be overcome by taking one of the reactants (say, A) in a large
excess over the other reactant (i.e. B). In this case, the reaction A+ B —— C
becomes a pseudo-first order and one can write Eq. (2.23.6) as

1

—= kAl +k,

Thus the plot of 1/t versus [A], is a straight line with slope = k{ and intercept = ;.
For any type of reaction involving a single step, the chemical relaxation is always

a first order process because the rate equation can always be linearized by ignoring
the higher term in x in the rate equation provided the perturbation is small.

It may be noted that the process of linearization is not needed where the
reaction is of first order or pseudo-first order in both directions and also the
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restriction of small perturbation in this case is not the prerequisite requirement as
the rate equation does not involve higher terms in x.

Table 2.23.1 records some of the most common single-step equilibria.

Table 2.23.1 Expressions of Relaxation time for some single-step equilibria

Equilibrium reaction Relaxation time'
A— B lt=ke+ kK
A+B —— C Ut = ke + ([Algg + [Bleg) * 4
nA —— B 1= ke[ Al + K,
A+B == C+D 1/t = ki ([Aleg + [Bleg) + Ky ([Cleq + [Dleg)
A+B — 2C 1t = ke ([Aleg + [Bleg) + 4 K[Cleq

T k; is the rate constant for the forward reaction and 4, is that of backward reaction.

The relaxation time for the reaction H'(aq) + OH (aq) == H,0(]) is found to be 36 us
at 25 °C. Determine the values of k; and &,?

From the expression of relaxation time (Eq. 2.23.6), we get

ke ([H' ], + [OH 1) + ky = 1/36 X 107% 1)
Also, we have

ke [H'],q [OH 1,y = &, [H,0] @)
where [HJr]aq =[OH ], =1x 107 mol dm™

[H,0] =1 000 g dm /18 g mol™' = 55.56 mol dm™
With these, Eqs (1) and (2), respectively, become

ke (2 x 107 mol dm™) + &, = 1/(36 x 10 %) 3)
and Kk (1 x 107 mol® dm™®) = k, (55.56 mol dm™)
ie. ke (1 x 107 mol dm™) — 55.56 x k, = 0 )

Multiplying Eq. (3) by 55.56 and them adding it to Eq. (4), we get
ke (55.56 x 2 x 107 + 1 x 107*) mol dm™ = 55.56/(36 x 10 s)
55.56/(36 x107°)
or £ —7 —14
55.56x2x107" +1x10

=139 x 10" mol™! dm> s

Finally, from Eq. (4) we get

mol™" dm? s~

‘o ke(1x10¥moldm™) _ (1.39x10" mol™" dm’ s™")(1x10™*mol dm™)
b 55.56 55.56

=251%x107 5!
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2.1

2.2

23

24

2.5

REVISIONARY PROBLEMS

Distinguish between:

(i) Reaction rate and reaction rate constant.

(i) Average rate and instantaneous rate.
(iii) Order and molecularity.
(iv) Differential rate law and integrated rate law.
(v) Overall reaction and elementary reaction.
For the reaction

VIA| + VA, — V;A; + VA,

show that the rate of the reaction is given by any one of the terms given below.

_dx o Td[A]_ T d[A]_ 1 d[A;]_ 1 d[A,]

1 — = =

dr v, dt v, dt vy dt v, dt

Comment upon the following:
(i) Thermodynamic principles can help predicting the feasibility of a reaction not
about the time the reaction will require for completion.
(i) Elementary processes with molecularity greater than three are not known.
(iii) Order of a reaction cannot be predicted from its equation.
(iv) Order of an elementary step is always equal to its molecularity.
(v) Wall effects can also predict a useful criterion for chain reactions. If the reaction
is unaffected by changing the wall or by raising the surface to volume ratio, the
reaction is probably simple in nature.
(vi) On raising the pressure, the wall effects gradually becomes less important.
The reaction

VA — products
is zero-order with respect to A. Write down its differential rate law and deduce from
it the integrated rate law. What is the unit of rate constant of the above reaction?
(a) The reaction

ViA + v,B — products
is first-order with respect to A and zero-order with respect to B. Write down its
differential rate law and deduce from it the integrated rate law. What is the unit of
rate constant of the above reaction?
(b) Define the term half-life. Show that for a first-order reaction, half-life has a
constant value.
(c¢) An acid hydrolysis of an ester is a first-order reaction. What is the role of the
acid? What is the order of the reaction with respect to H" ions of the solution? Does
the rate constant of such a reaction is independent of hydrogen-ion concentration?
(d) The acid hydrolysis of the same quantity of ester is done separately with equal
normal solutions of HCI and H,SO,. Show that

H'lha _  kuc

(H'lis0,  Huso,

where £ stands for the rate constant. State with adequate explanation, whether the
value of kye/ky,so, is less than, equal or greater than one.
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(a) The reaction

V;A + v,B — products
is first-order with respect to each of A and B. Write down its differential rate law
and deduce from it the integrated rate law. What is the unit of rate constant of the
above reaction?
(b) The reaction

VA — products
is second-order with respect to A. Write down its differential rate law and deduce
from it the integrated rate law.
Show that the half-life of the above reaction is inversely proportional to the initial
concentration A.
(a) The reaction

2A + B — products
is second-order with respect to A and first-order with respect to B. Write down its
differential and integrated rate laws.
(b) The reaction

VA — products

is third-order with respect to A. Write down its differential rate law and deduce
from it the integrated rate law. What is the unit of rate constant of such a reaction?
Show that the half-life of such a reaction is inversely proportional to the square of
the initial concentration of A.
Derive the integrated rate law for a reaction which follows the differential rate law:

. d[A] 12
hal Skt Ay T
() & [A]
. dx "
(ii) a =k, ([A], —x)" ; show also that
|
t[ -

2 k(=1 [AL
What is the unit of &,?
Outline the methods which are employed to determine the order of a reaction.

(a) For the following reversible (first-order opposed by first-order) reaction

ki
A== B
b

derive the integrated rate expressions

X,
In 0 =g A,
Xeqg =X Xeq
X,
In —— = (kp+ ky) 1
Xog =X

eq
(b) Show that the variations in concentrations of A and B in the reversible reaction
of part (a) is given by

()= [Aly L (’Z’+exp{(— ke +kb>t}]
f b f
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(B, = [Alo - [A],
(c) Show that the equilibrium constant of the reversible reaction of part (a) is given
by

-
kb

2.11 Set up the differential rate law for each of the following types of reversible reactions.
(i) First-order opposed by second-order.
(ii) Second-order opposed by first-order.
(iii) Second-order opposed by second-order.

2.12 State the principle of microscopic reversibility and apply it to find out the equilibrium
constant of the reaction

2NO, + F, —— 2NO,F

Given that the above reaction proceeds through the following two elementary
reactions.

NO, +F, — %+ NO,F +F

KZ
F + NO, —— NO,F
2.13 (a) What do you understand by concurrent elementary reactions?
(b) Show that the integrated rate expression for the concurrent elementary reactions
A—f,B
A5 c
is given by
A
In b _ (ki + k)t
[A],

(c) Show that for the reaction given in part (b)

LS

€1 &
(d) How will you determine experimentally the values of rate constants k| and k7
of the reactions given in part (b).
(e) For the reaction

At B
2A L5 ¢
3A -5 D

set up the differential rate law in terms of the disappearance of A with time.
2.14 (a) What do you understand by consecutive or sequential reactions?
(b) For the reactions

Aty B
B—H—>C

derive the expressions
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[A] = [Aly exp(= &17)

[B] = [Al, ( e j {exp(- ky1) — exp(-k{D)}
1 1

1
[C]=T[Aly [1 - m{/ﬁ' exp(=kit) — k; exp(—kit )}}
17K
Draw a graph illustrating the typical variations of concentrations of A, B and
C with time.

(c) Show that the time at which B attains a maximum concentration is given by

1 k,
foae = —— In [ 2L
ky—k K

and the maximum concentration B is given by

k/ kl,/(kl 7kl’)
[Blax = [Al (kl)

1
(d) Suppose that the rate constant k| is very much larger than k;. Show that the
concentration of C with time is given by

[C] = [Aly {1 - exp(- k1)}
and hence justify the statement that the reaction with the smaller rate constant is
the rate-determining step.

(e) Now suppose k> k]. Show that it leads to the same statement given in
part (d).

(f) Define the steady-state approximation as applicable to the reactive intermediates.
Justify the approximation by taking the consecutive reactions given in part (b) with
a very small value of k;.

Given the following mechanisms. Set up the corresponding differential rate law:

) At B (slow)
B products (fast)

(i1) A+B % AB (in rapid equilibrium)
AB —2 products (slow)

Reaction between NO and O, follows the following mechanism:

NO +NO == N,0, (in rapid equilibrium)
-1
N,0, + 0, —2 2 NO, (slow)
Show that the rate of the reaction is given by
d[NO, ]
1S58 kNoP [0y)
2 dt

How will you account for the decrease in rate constant with increase in temperature?

Derive the differential rate law for each of the following reaction mechanism.
(i) Decomposition of ozone
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0, -5 0,+0
0+0, —2 20,

(ii) Reaction between NO, and F,

NO, + F, —% NO,F +F (slow)
F + NO, —2— NO,F (fast)
(iii) Reaction between NO, and CO
NO, + NO, —% NO, + NO (slow)
NO, + CO —2— No, + CO, (fast)
(iv) Reaction between Br~ and H,0, in acidic medium
Br +H,0, + H* —— HOBr + H,0 (slow)
HOBr + H' + Br —2— Br, + H,0 (fast)
(v) Reaction between NO and O,
NO + NO™ kk:‘l N,0, (in rapid equilibrium)
N,0, + 0, —2 2NO, (slow)
(vi) Reaction between ammonium and cyanate ions
NH; + OCN"~ :’ NH,OCN (in rapid equilibrium)
NH,OCN —2 5 OC(NH,), (slow)
(vii) Saponification of an ester
o-
i kl | N
R—C—OR’ + OH™ . R—Cll—OR' (in rapid equilibrium)
~1
OH
o~ o~

| k |
R—C—OR’ + H0 ——> R—C---0—FR’

OH HO HOH

It

R—C—OH+R'OH+ OH™

(viii) Reaction between hydrogen and iodine
kl

I, ki 21 (in rapid equilibrium)
—1
H, + 21 —2 2HI (slow)

(ix) Reaction between hypochlorite and iodide ions in alkaline medium

OCI + H,0 == HOCI + OH" (fast)

-1
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I+ HOCl —2— HOI + CI- (slow)
OH™+ HOI == H,0 + OI (fast)
3

An alternative mechanism is
k

OCl” + H,0 k' HOCI + OH™ (fast)
-1
I + HOCl —2— 1C1+ OH" (slow)
ICl + 20H —2 oI +CI' + H,0 (fast)
(x) Acid hydrolysis of an ester
"OH OH
H' I H,0
R—C—OR’ =— R—C—OR’ =—- R—C—OR
(A) (fast) (B) (slow) |
"OH,
©
(fast)
OH OH
-H" | -R'OH .
—_ p— — T ‘—_‘ — ’
R—C—OH (fast) R (lj (slow) R (|: (})IR
OH OH
(E) (D)
(xi) Reaction between CO and Cl,
Cl, == 2l (fast equilibrium)
-1
Cl+ CO :z COCl1 (fast equilibrium)
cocl + cl, —&— cocl, + Cl (slow)
(xii) Iodination of acetone
(0] “OH
l .k |
CH;—C—CH; +H - H,C—C— CH; (fast)
—1
+Tl)H OH
I
CH;—C—CH; —— H,C=C— CH;+H" (slow)
OH OH

| ks l
H2C=C—CH3 + 12 — ICHZ—C—CH3 + HI (fast)

(xiii) Decomposition of gaseous N,O5
k
N,O; k:\‘ NO, + NO,
NO; + NO, —2 NO + NO, + 0,

NO; + NO —4 2No,
2.18 Many thermal decomposition and isomerization reactions follow the mechanism
given below.
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2.19

2.20

A+M If:\‘AMM

-1

A* —% 5 products

where A represents the molecule undergoing the thermal decomposition or
isomerization reaction and M represents any other molecule. Show that the above
mechanism leads to the following differential rate law:

d(product) _ kk[A][M]
dr k_ [M]+ k,

Determine the order of the reaction when (i) k_> k, and (ii) k, > k_,. Does the
order of the reaction change with the change in the pressure of the system?
(a) Lindemann mechanism for the first-order reaction is as follows:

A+ A:\ﬁ A*¥ + A (in rapid equilibrium)
-1
Ax L2y product (slow)

show that it leads to

d(product) _  kk[AT
dr k[Al+k,

Under what conditions will the order of the reaction be equal to one?
(b) Given a first-order gaseous reaction. Is it possible to change it to a second order
by changing the experimental conditions?
(a) What are chain reactions? The various elementary steps of chain reactions can be
classified as follows?
Chain initiation step.
Chain propagation step.
Chain inhibition step.
Chain termination step.
Explain the above steps with appropriate examples.
(b) What do you understand by the following terms:
(1) Chain length
(ii) Stationary (or nonbranched) and nonstationary (or branched) chain reactions.

(c) In general, a chain reaction may be represented as follows:
AR
R°+A —25 P+aR

R* —5 5 destruction

where k3 = k,, + k,. Show that the concentration of the radical is given by

RY] = k[A]
ky(1—00) + ky + k,
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(i) What is the value of « for stationary reactions?

(ii) For nonstationary reactions, ¢ is greater than one. Under what conditions,
does the concentration of radical R* become infinite? What would happen when R*
becomes infinite? What are the first-, second- and third-explosion limits and under
what conditions are these explosions observed?

2.21 Derive the differential rate law shown along with each of the following chain
reactions.

(1) Reaction between H, and Br,
Br, —h 5 oBr
Br+H, —2 HBr+H
H+Br, —% HBr+Br
H+HBr —* H, + Br
Br+Br —5 Br,
d[HBr] _ 2ky(k/ks)"*[Br,]"*[H,]
dt 1+ (ky/ky)[HBr]/[Br, ]

(ii) Dehydrogenation of ethane
CH,CH, — 2°CH,
*CH, + CH,;CH, —%— CH, + *CH,CH,
*CH,CH, —“— CH, =CH, + H"*
H* + CH,CH, —— H, + *CH,CH,
H® + *CH,CH; —“— CH,CH,
d[CH,=CH,]

dr
where £ is given by

_ ks + (RS + 4kisk k)

2k

= k [CH,CH,]

k

where k| is usually very small, show that the above expression may be simplified

to
1/2
k= klk3k4
ks

and further show that the chain length is given by
1/2
Chain length = Kshs
kiks
(iii) Thermal decomposition of acetaldehyde

kl

CH,CHO > *CH, + *CHO
*CH, + CH,CHO —®2 CH, + *CH,CHO
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*CH,CHO —2— *CH, + CO
*CH, + *CH; —%—» CH,CH,

diCH,] [CH;CHOP*?
dr
where k = k, (k,/2k,)".
Show that the chain length is given by

d[product] _ ( k,

1/2
— [CH,CHO]'"?
d[initiation step]/dz 2k,

(iv) Polymerization of vinyl derivatives
c -t
CH, = CHX + R* —2 RCH,CHX"
RCH,CHX"® + CH, = CHX —— R(CH,CHX)}
R(CH,CHX)’, + “(XHCCH,), R —&— R(CH,CHX),~ (XHCCH,),R
where C acts as a catalyst. Show that

1/2
_ dCH,=CHX] _ (5] e fen, = cnx)
dr ks

Number-average degree of polymerization ﬁN is given as

P = k, [CH,=CHX]
N (k1k3)”2 [C]I/Z

2.22 (a) What effect does temperature has on the rate of chemical reactions?
(b) Arrhenius equation is
k = A exp(-E,/RT)
Explain the term A and E, involved in the above expression.
(c) What type of graph do you expect between log (k/k°) and 1/7? What is its slope?
(d) Show that for a reversible reaction
AE = Eyq — Eypy
where the symbols have their usual meanings.
(e) AE of a reaction varies with temperature. What about £, and E,,?
(f) For the reaction

2 NO + 0, — 2NO,

the rate constant & is observed to decrease with temperature. Is it violation of the
Arrhenius equation? Support your answer.
(g) The rate constant of thermal decomposition of ethane given in Problem 2.21 is

given as
1/2
k= kyksky
ks
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Following Arrhenius equation, show that the activation energy of the reaction is
1
Ea = 5 [Eal + Ea3 + Ea4 - EaS]

(a) Describe the collision theory of bimolecular gaseous reactions. Show that
it leads to the rate expression

1/2
r=p {nGiB (ST]EZT] Ny N;} exp(—Ey/RT)

Explain the significance of the term p in the above expression. The factor p is
usually less than 1. Explain, why it is so.

(b) Compare the rate constants as given by Arrhenius equation and the collision
theory and show that

RT
R 2 12
A =pNm oy [3ksT | "¢'?
i
- N, Z*AB* L
Np Ng

where the various symbols have their usual meanings.
(a) Describe the activated complex theory. Show that it leads to the rate expression

_ [ gt RT
r [K NAh) [A][B]

where the various symbols have their usual meaning.
(b) Show that
RT RT

k= — Kf= exp(— AYH°/RT) exp(A*S°/R
2" N NG p( ) exp( )

(c) Compare the rate constants as given by Arrhenius equation and the activated
complex theory and show that

E, = AYE° + RT
E,=A'H° + (1 - Atv,) RT

fgo t
NG exp(A*S° /R) exp(1l — A*v,)
= Vyip eXp(AFS/R) exp(1 — Atv,)
where v, is the frequency of decomposition of the activated complex.
What is the value of A} v, for a reaction involving only condensed phases?
(d) Compare the rate constants as given by collision theory and the activated complex
theory and show that

o1
Ey=E%+ — RT

PNy ~ZAB =y exp(ASUIR) expl- (Atv, - 172)]
NA NB
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2.25
2.26

227

2.28

(e) Comment on the following:
(1) The steric factor p of collision theory may be interpreted in terms of
entropy of activation.
(i1) For most of reactions, entropy of activation is negative except of the type
AB — AB* - A+B
where entropy of activation may be positive.
(f) Apply the activated complex theory for a reaction

A+B — C+D
at equilibrium and show that it leads to the thermodynamic expression
AG°=—-RTIn K3

How will you explain the fact that some reactions proceed with a very slow speed
(or do not occur at all) even though AG® of the reaction is highly negative.

What is the effect of pressure on the rate constant?

What do you understand by the primary salt effect? Derive the relation

In (k/A°) = In (ko/k%) + 24z [/ e

(a) What is the effect of a catalyst on AH° and AG® of a reaction?

(b) What do you understand by homogeneous and heterogeneous catalysts?

(c) Show by drawing a potential energy diagram that the catalyst lowers the free
energy of activation of forward and backward reactions without changing the overall
free energy of the reaction.

(d) How do homogeneous and heterogeneous catalysts act?

Given below are the mechanisms of a few homogeneous catalyzed reactions.
Derive the corresponding rate law shown along with.

(1) Acid-base catalysis
kl
k_y

S + HA SHY + A~

SH' + H,0 —2— P+ H,0"
d[P] _ kk[S][HA]
ds k[AT]+k,
Show under what conditions a given catalytic reaction may be classified into a
general acid catalysis and a specific hydrogen-ion catalysis.
(i) Enzyme catalysis

E+S —— ES

ki
k_y

ES —2 5 p+E

(d[P]j =y, = KBl Sl
0

dr [S]y + Kyt

where Ky, = (k, + k_))/k; and is known as Michaelis-Menten constant. Also, answer
the following:

(a) Show that the enzyme reaction is first-order and zero-order with respect to S at
low and high concentrations of S, respectively.
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(b) What type of a graph is expected between the initial rate and the initial substrate
concentration?

(c) If b, < k_j, then K\, represents the dissociation constant for the enzyme-substrate
complex.

(d) The rate expression given above can be written as

1 K
- = — 4 M
o Fmax rmax[s]o
0 _ Tmax "o

Sy  Ku Ku
What types of graphs are expected between 1/r, and 1/[S],, and r,/[S] and r,?

Show how these plots help in deriving the values of r,,, and Ky;.
(e) What type of the potential energy diagram is expected for the mechanism of
enzyme-catayzed reaction given above?

2.29 What are enzyme inhibitors? Derive the rate expressions for the following types of
inhibitors:

(i) Fully competitive inhibition.
(i) Partially competitive inhibition.
(iii) Fully noncompetitive inhibition.
(iv) Partially noncompetitive inhibition.
(v) Uncompetitive inhibition.
Write the expressions in the Linearweaver-Burk form and draw the plots between
1/ry and 1/[S],. What are their slopes and intercepts? Compare these with those of
normal enzyme reaction.

2.30 Explain how Langmuir and Hinshelwood theory can account for the rate of the
following types of surface catalyzed reactions. Derive the corresponding rate
expression shown along with and discuss the limiting cases of the rate expression.

(1) Unimolecular surface reaction

b
A+S \k—AS
~1

AS —f products

L+ k_y+k, 1
ky koky  pa

(i1) Bimolecular surface reaction
k
A+S = AS
-1

ky
B+S ——BS
ko,

AS + BS L products

_ k3K K, paPg
(+ K, ps + K, pp)*
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2.1

(a) Show that for the unimolecular surface reaction: (i) order with respect to the
reactant is first-order if the reactant is slightly adsorbed, (ii) zero-order if it is
strongly adsorbed, and (iii) fractional order if it is moderately adsorbed.

(b) Support the following statements:

(1) The lowering of free energy of activation in the unimolecular surface reactions is
largely due to the lowering of activation energy if the reactant is slightly adsorbed.
(i1) The apparent energy of activation equals to the true energy of activation if the
reactant is strongly adsorbed.

(iii) For a bimolecular surface reaction, there may be an increase instead of lowering
of energy of activation if one of the components is very strongly adsorbed.

TRY YOURSELF PROBLEMS

(a) For the hypothetical reaction
5A+8B — 6C + 12D

set up the differential rate expression in terms of disappearance of A and B and
appearance of C and D. Given that the reaction is first-order with respect to each
of A and B.

(b) For the reaction given in part (a), the following equalities have been established.
What are the relations between the various ks?

Ldial _ 1d[B]_ 1d[C]_ 1 d[D]

k de K dt k7 dr k7 de
(c) For each of the following rate laws, write the stoichiometric equation for the
reaction

M % —k@-x? G-
dr
() ¥ —k@-27 (b
dr
o dx
(ii1) ; =k(a—-x)(b-x/2)
(iv) d—f = kb (a—x)
dx
(v) a =k(a-x)(b+x
t

(d) For each of the following reactions express the rate of change of concentration
of the reactants and products given in terms of the rate of change of concentration

of the other reactants or products in that reaction.
d[H,]

(1) Nz + 3H2 = 2NH3; 2 =9
dr
i 1 d[H,0]
ii) H, + — 0O, = H,0; =9
3 0=t dr
-
(iii) H,0,+2H" + 31" = + 2H,0; o4y,
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(a) Show that for a first-order reaction, the concentration of the reactant A after n
half-life times is given by

[A], = [Aly @

(b) Show that Eq. (2.6.1), i.e.

loef() /)]

~ log([Aly /[Aly)

is, in fact, applicable for the time required to complete any fraction of reaction (say
1/4, 10%, etc.); the only change to be made is to put corresponding ¢ instead of ¢ s.

(a) The mean life-time of a reaction is defined as
[Al. [Al.

W= [ Al [ dial

Ay [Aly

Show that for the first-order reaction (stoichiometric v = 1) if [A]., is taken to be
zero, the mean life-time is given by

_ !
0=

(b) Show also that the mean life-time (¢) is equal to the time taken for the
concentration of A to drop from [A], to [A]/e, where e is the natural number 2.718.
Given the standard integral

oo

[ texp(- ki) de= 1.
0
(a) In a first-order gaseous reaction

4A(g) — B(g) + 6C(g)

Derive the expression

In [3”0] = kt
dpy—p

where p, and p are total pressure of the system at =0 and ¢ = ¢.
(b) Show that for a first-order reaction, the time required for 99.9 per cent completion
is three times than that required for the completion of 50 per cent of the reaction.
By what factor would the time change if the reaction were of the (i) second-order,
(i1) zero-order, and (iii) —1-order.
Using Eq. (2.5.9), show that for the first-order reaction

A58
the concentration of B is given by

[B] = [Aly {1 — exp(= k1)
Using Eq. (2.5.30), show that for second-order reaction
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2.7

2.8

2.9

2.10

2.11

2.12

the concentration of B is given by
[B] - B, + [Al, {1 - 1}
1+ 2k,t[A]
Show that for the second-order reaction
A +B—Ff
1=0 [A], [Bly 0

the concentration of C is given by

c] - ([A]O [B]y {1 - exp(~k([B, - [A]o)f)})
[Blo —[Aly {exp(=ky([Bly —[Alp) D)}
Using Eq. (2.5.43), show that for a third-order reaction

2A+B—>C
the concentration of C is given by

_ [Al[B], > ([A]O [B]H
Cl= ——————| (2[B], —[A kt +1
] 2(2[B]o—[A]o)[( Bl =AW & In| 5 A

Using Eq. (2.5.45) show that for a third-order reaction

A — product

the concentration of A is given by

A
[A]= AL SINTE)
(+2k[Als?)
Consider the reversible reaction of first-order opposed by first-order:
kl
A——8B
k 1
=0 [Aly [Blo
1=t [A] (B]

If the relationship [B] — [B], = [A], — [A] holds good, show that

[A] = ([B]o +[A]o] _ ([Bly =k /k_)[ ALy
(+k/k_y) (+k/k_))

jeXP{— (ky + k)t

(B] = ( [Bly +[A]oj ~ ([A]o — (k_ /k)IBI,

(+ky/hy) +k_/k) )exp{— (b + k)t

Using Eqs (2.11.5a) and (2.11.5¢) show that
k= ! In (1+@+gj
t (Al [A]
For the following parallel reactions
At c

B %2,
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show that
[A] = [A] exp (= k1)
[B] = [Bly exp (- k1)
[C]=[Aly {1 — exp(~ ky)} + [Bl, {1 - exp(~ ky)}
2.13 For the following parallel first-order reactions
At B
At c

A—b5D
show that

[A] = [Aly expi= (ky + &y + ky)ty = [Al, exp (= k)

8] = Bl + A 1 exp ke
c1=1cl+ 220 1 - exp ko
(D] = ], + A ey

2.14 For the following parallel reactions of first- and second-order
A b product

A+A —2 product

write down the differential rate expression and then derive from it the integrated
rate expression.

d
[ Ans. d*); = ki([Ao] - x) + 2ky([A]y - x)%;

o AL [k + 2 ([ALy = 0] _ klt]
([Ay — x) (kg + 2k, [A]y)
(Hint: Write the differential rate law as
dx _
([Aly —0) [k + Ky ([A]y — x)]

resolve into partial fractions and integrate the resultant expression.)

dt

2.15 For the following parallel first- and second-order reactions
A5 D+E

A+B -2 5 c+D

Write down the differential rate expression and then derive from it the integrated
rate expression.

[ Ans. &= (A0 )+ K[ATy - (B, -

! {m[ [Aly ] [<[B]o—x>+k]/kz):k,}]
([Bly —[Aly) + K/ k, [Aly—x [Bly + & /k, :
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2.16

2.17

2.18

2.19

2.20

221

The value of AS for the unimolecular decomposition of isopropyl nitrite in the gas
phase is small and positive. Can you explain this?

Show that the proposed mechanism of

2Br + H,0, + 2H" —— Br, + 2H,0
leads to the same rate law when written as

- % d[Br}J/dt or —d[H,O,}/dt or — % d[H")/dz.
The mechanism is

Br + H,0, + H* —f HOBr + H,0

HOBr + H' + Br —2— Br, + H,0

For the reaction
2NO + O, —— 2NO,
Two mechanisms have been proposed:

1) NO + NO % N,O, (fast, at equilibrium)
N,0, + 0, —2 2NO, (slow)
(i) NO + 0, === NO, (fast, at equilibrium)
NO + NO, —2 2NO, (slow)
Show that both the mechanisms lead to the same rate law
d[o,]

e’ L 2
- =4 =kMNoOP [0y

An endothermic reaction has a positive internal energy change AU. In such a case,
what is the minimum value that the activation energy can have?

Given an exothermic reaction, what effect will an increase in temperature have on (i)
the amount of product formed, and (ii) the time required for the same amount of
product as that at lower temperature.

(a) For the reaction

Hg% + TP = 2Hg* + T

the rate law is

(_d[ﬂ“] k[Hg?][ij

de 7 [Hg™]
Devise a mechanism that gives such a law. A rate law with inverse dependence on
a particular concentration occurs when the substance is the product of a reversible
step prior to the rate determining reaction.
(b) A proposed mechanism for the reaction

2Cr%" + 3As°T = 20 + 3As%
is the following:

Cr6+ +AS3+ ;q'_ CI‘4++ASS+

4+ 6+ 5+
Cr" +Cr’" ———— 2Cr

5+ 3+ 3+ 5+
Cr'+As ——— Cr +As
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The observed rate law is

7=k, [Cr] [AS™]

app
What are possible rate laws for the reverse reaction?

Predict the effect of increase in ionic strength on the rate constant for each of the
following reactions:

(a) [Pr(NH;);Cl]" + NO,
(b) [PtCI]; + OH"

(c) Pt(NH,),Cl, + OH"

[Ans. (a) decrease, (b) increase, (c) no effect]

What conclusion can be reached about adsorption on the surface from each of the

following facts:

(a) The rate of decomposition of HI on platinum is proportional to the concentration

of HI.

(b) On gold, the rate of decomposition of HI is independent of the pressure of HI.

(c) On platinum, the rate of the reaction SO, + (1/2)0, — SOj; is inversely

proportional to the pressure of SO;.

(d) On platinum the rate of the reaction CO, + H, = H,0 + CO is proportional

to the pressure of CO, at low CO, pressure and is inversely proportional to the

pressure of CO, at high CO, pressures.

(e) The decomposition of NH; on W is zero-order.

(f) The decomposition of N,O on Au is first-order.

(g) The recombination of H atoms on Au is second-order.

(h) The decomposition rate of NH; on Pt is proportional to pNH3/pH2.

(1) The decomposition rate of NH; on Mo is strongly retarded by N, but does not

approach zero as the surface becomes saturated with N,.

(j) The rate of 2SO, + O, — 280, on Pt is &,[SO,]/[SO;]"* when O, is in excess.
[Ans. (a) HI is weakly adsorbed. (b) HI is strongly adsorbed. (c) SO;
is strongly adsorbed. (d) CO, is weakly adsorbed at low p, strongly
at high p. (e) NH; is strongly adsorbed on W, surface completely
covered. (f) N,O is weakly adsorbed on Au, linear region of Langmuir
isotherm. (g) H atoms are weakly adsorbed and rate is proportional
to collisions of two H atoms on the surface or of a gaseous H atom
with surface H atom. (h) Product H, is strongly, and reactant NH; is
weakly adsorbed. (i) Product N, is strongly adsorbed but adsorption
coefficient decreases with surface coverage so that N, and NH; can
compete for available surface when it is nearly covered with N,.
(j) The surface is covered to great extent by adsorbed oxygen so
that the reaction is zero-order with respect to O,. The SO, and SO,
compete for remaining surface, with the SO; being adsorbed more
strongly than SO, but less than O,.]

Studies of the reaction C¢Hy + 3H, = C¢H,, show that the forward reaction is

first-order with respect to each of C4Hg and H,. What is the rate expression for the
reverse reaction?
[Ans. 1y, = k, [CqH ,]/[H,]%]
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2.25 Given the following information:
C,H, + H, — C,H, AE® = — 125.52 kJ mol !
re = ke [Hy] holds everywhere
(a) Write the expression for the reverse rate at equilibrium.
(b) If the temperature is increased, does the forward rate constant k; or the reverse
rate constant k,, increase more percentagewise?
(¢) If the activation energy is 117.16 kJ mol™" for the forward reaction, what is the
activation energy for the reverse reaction?
(d) If a catalyst is added, the activation energy for the forward direction drops to
44.77 kJ mol ™. What is the activation energy for the reverse rate of the catalyzed
reaction?
(e) The use of a catalyst speeds up forward rate by a factor of ten million. By what
factor does the reverse rate increase?
(f) The equilibrium constant at 773 K is 10°. What is it (approximately) at
873 K?
(g) What is the value of equilibrium constant at 773 K in the presence of the catalyst
of part (c)?
[Ans. (b) k,, (c) 242.68 kJ mol ™, (d) 170.30 kJ mol ]
2.26 Work out the following problems on reaction mechanisms.

1. The following mechanism has been suggested for the pyrolysis of diborane:

k
B,H, % 2BH, (fast)

k
BH; + B,H kﬁ Intermediate hydride + H,
3

Intermediate hydride + B,H{ SELIEEN Higher hydrides

(a) Show that the above mechanism leads to the following rate law:

 d[B,H] _ 2k, (ky/ky) K] *[ByH, T
dr (k4 /k3)[BoHg ]+ H,

(b) Initial rate law expression is

B (d[BZHG]

s ) =k, Ki"? [ByHg? = k" [B,Hgl
0

The value of k" were found to be 8.6 x 10~° and 5.8 x 10 dm*? mol * s at 358 K
and 436.5 K, respectively. Calculate the apparent activation energy of the reaction.

(c) Show that the apparent activation energy is given by
1
E,=E, + 5 AH,

where AH, is the dissociation energy of B,Hy. If the latter has a value of 35 kcal mol !,
what is the value of E,?
[Ans. (b) 108.79 kJ mol™, (¢) 35.57 kJ mol™']

2. The following mechanism has been suggested for the thermal decomposition of
NO,.
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Overall reaction: 2NO, — 2NO + O,
Mechanism

NO, + NO, —— NO + NO + 0,
NO, + NO, —2 NO, + NO

NO; + NO —&-5 2NO,

NO, + NO, —% 5 NO + 0, + NO,

Show that the above mechanism leads to the following rate law:

d[NO,] 2
- ——== =2k, [NO
s 4 [NO,]
where
kd — kl + k2k4 [NO2]
k3 [NO] + £, [NO, ]

3. The thermal decomposition of H,0, proceeds according to the reaction
1
H,0, - H,0 + 5 0,
and follows the rate law

d[H,0,]

—===—F H,0

ds homo [ 2 2]

Show that the following mechanism accounts for the above rate law:
H,0, +M —%520H + M

OH + H,0, —= H,0 + HO,
2

HO, + HO, —2— H,0, + 0,
HO, + OH —— H,0 + 0,

4. The following mechanism has been suggested for the pyrolysis of
monosilane.

SiH, —%— SiH, + H®

H* + SiH, —2— SiH% + H,
SiH; + SiH, —%— Si,H, + H*
2SiH; —% 5 Si,H,

Show that

dr dr

. 12
d[H,] _ d[Si,He] _ {lﬁ Uj) [SiH4]”2+k1} [SiH,]
4

5. The reaction for the thermal decomposition of HNOj; in the presence of
NO is

2HNO; + NO — 3NO, + H,0

229



230 A Textbook of Physical Chemistry

and the proposed mechanism is
Ky
k_y

HNO, + M OH +NO, + M

OH +HNO;, —2 H,0 + NO,

NO, + NO, —%5 NO, + NO + 0,
NO, + NO —% 5 2NO,

OH + NO + HNO; —5— H,0 + 2NO,

Show that the reaction scheme leads to the rate expression

d[HNO;] _ 2 ky [M][HNO, T’ (k, + k5 [NO])

ds k_,[NO,][M]+ k, [HNO,; ]+ ks [NO][HNO;]

Show that in the presence of excess of NO, the reaction is first order in HNO,
and zero-order in NO.

6. (a) The following mechanism has been suggested for the reaction involving
F,, O, and H,.
F,+M —%5 2F* + M

F*+H, —2» HF +H
H'+F, —5 HF +F*

H' +0,+M —“ 5 HO, + M
HO, +F, —% 5 HF + 0, + F*
HO, +F —% 5 HF +0,

Assuming that k, [O,] > k; [F,], show that

1/2 .
N di%) = ki Ky ks ks [By] + k4 [O,][M] 12 12
dr ( ks ] ( k, [0,]1[M] ] [F,] [Hy]™ [M]

At large [O,], the above expression becomes

d[R] _ [klkzks

1/2
172 172
&t ke ) [M]™" [H,] ™ [Fy]

(b) An alternate mechanism suggested for the reaction involving F,, O,, and
H, is

F,+M —%5 2F+M

F+0, +M —25 FO,+M

H, +FO, — HF +0,+H

H+F, —» HF +F

H+0,+M —% HO, +M
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HO, + F, —% HF + 0, +F
FO, + HO, —%— HF + 20,

Assuming k; [FO,] < k4 [F,], show that it leads to

AR _ [kl ks )1/2(164 [F,]+ ks [OZJ[M])” M [ F]
dt kg ks [0,]1[M] B

which in the limit of large O, becomes

d[E] _ [ kkske
d¢ ky
7. (a) The thermal decomposition of N,O5 follows the mechanism:

1/2
j [M]"? [Hy]"? [F,]

N,0; —% NO, + NO,

NO; +NO, —F 5 N0

NO; + NO, —2— NO, + 0, + NO
NO + NO;, —% 2NoO,

Show that
d[N,O 2k k
_ [ 2 5] — 13 [N2OS]
dr ky +2ky
If k) > ks, then
d[N,Os]

T = 2k % [N>0s]
(b) In the presence of NO, the mechanism is
N,0; —15NO, + NO,
NO; + NO, —2— N,0;
NO, + NO —& 2NO,

Show that
~ d[N,Os] _ k[N,Os]
dt 1+ {k,[NO, ]/ k;[NO]}
In the presence of excess of NO the above expression becomes
d[N,05]
- ——= =k [N,O
dl 1 [ 2 5]

8. The conversion of O; to O, in the gas phase is catalyzed by N,Os. The

rate law is
d[O5]

dr
The proposed mechanism is

N,0; —%5NO, + NO;

NO, + NO, —2 N,0;
NO, + 0; —% NO, + 0,
2NO, — NO, + 0, + NO,

= k[N,05]*°[05]”
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Applying steady-state approximation for NO, and NO;, show that

1/3

d[O kY
N [dta] ) {2 (";j k32k4} [N,O5* [05]

9. The following mechanisms were proposed for the reaction between Cl, and
O; at 308 K and 323 K.

(a) Cl, + 0, — ClO + ClO,
Clo, + 0, —2— 10, + 0,
Clo, + 0, — Cl10, + 20,
2C10;, —* cl, + 30,
2c10 —% 1, + 0,
Applying steady-state approximation to ClO, and ClO;, show that

1/2
dro 2k
_ [ 3] — 2k1 [Clz][03] + k3 [1] [C12]1/2 [03]3/2
dr ky
(b) Cl, + O, —4 5 Clo+ ClO,

Clo, + 0, —2 Clo + 20,
Clo +0; —% €10, + 0,
2C10 —% ¢, +0,
Applying steady-state approximation to CIO and ClO,, show that

1/2
B CRPYRY {k1[012]+k3(’“[clz][031) }
dr ky

For the long chains, the expression reduces to

1/2
d[0s] Ky 12 302
- =2k Cl (0]
& 3 (k4 [CL]™ [O5]

(©) ClL +0, — ClO + ClO,
Clo, + 0, —2— 10, + 0,
clo, + 0, —2 Cl0, + 20,
2C10, —%— 2Cl10, + 0,
2c10, — clo, + Clo,
2C10, — Cl, + 30,
Clo, + Cl0; —1— C1,0,

2c10 —%5 1, + 0,
Show that
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d[Os]
dr

= K [CL][0] (2+2"4”‘5)

2(ks + k)

k 1/2
2%k 1 Cl 12 0 32
3[2(ks+ks)j [CL,]™ [Os]

For long chains, the expression reduces to

1/2
d[O5] 2k, 12 312
- =k Cl o
dr 3[ ks [CL]™ [O5]

10. The effect of adding N, Oy to the reaction
NOCI + O; = NO,Cl + O,

was studied and the mechanism proposed is
N,05; —5 NO, + NO,
NO; + NO, —23 N,O;
NO, + 0; —25 NO, + O,

NOCI + NO; —*5 NO,CI + NO,
Show that it leads to

d[NOCI] _ (kl ky kg

1/2
< j [NOC] ] 172 [03]1/2 [Nzos] 172

2
11. For the reaction
H, + NO, — H,0 + NO

the suggested mechanism is
H, + NO, —%— H + HNO,
H+NO, —2 5 NO + OH
OH+H, —% H,0+H
OH +NO, + M —% HNO, + M
OH +NO +M —% HNO, + M

State the approximations at which the rate law would be given by

d[NO,] k& [NO,1[H, ]

dr k4[NO, J[M]+ ks[NOJ[M]

12. The rate of attachment of gaseous electrons to NO, has been found to follow
the rate law
dfe’]
dr

= k[NO,][e]
The proposed mechanism is
NO, + ¢ —1s (NO,)*

(NOy)* —25 NO, + &
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(NOY)*+M —8 5 NO, +M
(NOy* +M —% 5 NO, +M + ¢

Applying steady-state concentration to (NO;)*, show that

dle”] _ ki[NO,][M][e7]
dr ky + (ky + ky)[M]

Under what condition does the above expression reduce to the experimentally found
rate law?

13. The thermal decomposition of NO at higher temperature is catalyzed by oxygen.
The proposed mechanism is

2NO —55 N, + 0,
0O+NO —f5 0,+N
N+0, -5 0+NO
NO+N —% 5 N, +0
o+0 —£5 0,

0, 5 0+0

Show that it leads to

1/2
_d[NO] _ k,[NOP + 2k, K[NO,][O]
dr 1+ (k3[0,1/k4[NOT)
where K= \kglks
14. For the thermal decomposition of N,O, the proposed mechanism is
N,O —%5 N, +0
0+0+M —250,+M
0 +N,0 e N, + O,

0+N,0 —% 52 N0
Derive the rate law.
15.The reaction between H,0, and nitrous acid in acidic medium follows the rate
law
d[HOONO] Kk, [H* ][HNO,]
d 1k [H,0]/ky[H,0, 1} +1

Show that the following mechanism is consistent with the above rate law.
H* + HNO, == H,NO; (fast)

H,NO, == NO" + H,0
k.

-1

NO* + H,0,—2 5 HOONO + H*
16. The oxidation of hypophosphorus acid (H;PO,) and of phosphorous acid (H;PO;)



Chemical Kinetics 235

by szoig have been studied. The reactions are

H,PO, + S,0% + H,0 — H PO, + 2H" + 2507

H,PO, + S,02 + H,0 — H,PO, + 2H" + 2S07%
The chain mechanism has been proposed:
Initiation

S,03 —f 230,

S,02+ H,PO, —2S02+ SO, + H,PO,
Propagation

SO, + H,0 —%— HSO; + OH

OH + H,PO, —%— OH™ + H,PO,

H,PO, + S,03 —% SO% + H,PO} + SO,
Termination

2H,PO, —f H,PO} + H,PO;
with the rapid reaction

H,PO; + H,0 — H;PO, + H"
An analogous mechanism is applicable for H;PO;. Derive the expression for the
rate law.
17. For the oxidation reaction

(CH,;),CHOH + S,0%3 —— (CH;), C=0 + 2H" + 2807

the proposed mechanism is

$,05 —f 280,

k .
SO, + (CH;),CHOH — (CH;), COH + HSO,
(CH,), COH + S,0% %, (CH;),C=0 + HSO; + SO;

(CH,),COH + SO; —* (CH,),C=0 + HSO;

If it is assumed that k,k, is very much smaller than +/kkyksk,[(CH,), CHOH] ,
show that the above mechanism leads to

92—
- SO (k) 15,08 1 (CH,) sCHOMY 2

18. For the reaction between CH;OH and S,0%, the following mechanism was
proposed.

$,05 —f 280,
SO, + CH,OH —2— CH,OH + HSO,
CH,OH +S,0% —% 5 HCHO + HSO; + SO;

2C H,0H i products

Derive the expression for the law.
19. For the oxidation of oxalic acid by SZOZ’, the following mechanism was proposed.
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S,00 —5 250,

SO, + H,0 —2 5 HSO; + OH

OH +C,07 —% 5 €O, +CO, + OH"

OH +H" —5 H,0

COo, +8,0 —% 5 o, + 80, + 50>

CO; +80; — co, + 80}
If it be assumed that 4(k ko/ksks) > (k,/ks)*, show that the steady-state
approximation applied to the concentration of the radical leads to the rate equation

dis,057]
dt

20. The decomposition of CHCI; at 450-525 °C follows the rate law

= (kykoks/kg) * 18,05 1

d[CHCL,]  k[CHCL]

ds {1+ b[HCI]}?

where
k = 2k kokylhy)

b=k /k,
Under what approximation will the following mechanism account for the above
rate law?
CHCl, —% CHCI, + CI

Cl+ CHCly === HCI + CCl,
-2

Cl+ccl, —42 ccl,
ccl, —4 cal, + al
CCl, + CHCl; —% C,Cl, + HCI

21.The decomposition of dimethylether may be explained by means of RICE-
HERZFELD mechanism with the following steps.

Initiation: 1 CH;0CH; —— CH; + CH;0
Chain I: 2 CH,; + CH;0CH; —— CH, + CH,0CH;
3 CH,0CH; —> CH,0 + CH,
Chain II: 4,5 CH,0 2 cH0+H
6 H+ CH;0CH; —— H, + CH,0CH;
7 H+ CH,0 — H,+ CHO
Chain III: 8 CH; + CH,0 —— CH,+ CHO
9 M+CHO — CO+H+M
Termination: 10 2CH; —— GC,Hi
Chain
transfer: 11 CH;+H, — CH,+H
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Show that
~ d[CH;0CH;] _ k, CH3OCH3 12 (14 ks[CH,0]
dr 2k, k,[CH,OCH;,]
[H,]
k2 [CH,OCH, ]

+ M ] + k, [CH,;OCH,]

Show that the initial rate law is given by
1/2
d[CH;0CH k
- ([33]) =k, (1] [CH,0CH, 13 + k,[CH,0CH, ],
dr 0 10
22. The reaction between F, and ClO, follows the rate law
d[FCIO,]
dr
The proposed mechanism is
F, + ClO, —% FCIO, + F
F + Cl0, —2— Fclo,

F+F+M —25 F+M

= ky [F,] [C1O,]

What do you conclude about the relative speeds of elementary steps?
23. The following mechanism has been proposed for the reaction between NO,"
and O,.
NO, + 0, —% NO; + 0
0 +NO;, —25Noj;
o+0—% 0,
Show that
d[NO;]
dr

= &, [NO;3 ][0, ] {H"Z[NOE]}

2k [O]+ k> [NO; ]

24. The following mechanism has been proposed for the thermal decomposition of
acetone

CH,COCH, —4 CH, + «CH;CO E, =351.47 kJ mol !
«CH,CO —2— «CH, + CO E, = 41.84 kJ mol ™’
«CH, + CH,COCH; —“— CH, + -CH,COCH, Ey = 62.76 kJ mol !
«CH,COCH, — «CH, ++«CH,CO E, = 200.84 kJ mol '
«CH, ++CH,COCH, —— C,H,COCH, E5 =20.92 kJ mol !

Express the overall rate in terms of the individual rate constants. Calculate the
overall energy of activation.
25. Nitramide, O,NNH,, decomposes slowly in aqueous solution according to the
reaction

O,NNH, —— N,0 + H,0
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The experimental rate law is

d[N,O] _ , [O,NNH,]
dr [H*]
(a) Which of the following mechanisms seems most appropriate?
(i) O,NNH, —% 5 N,0 + H,0 (slow)
(i) O,NNH, +H" .\:; O,NNH; (fast equilibrium)
2
O,NNH; —2 5 N,0 + H,;0" (slow)
(iii) O,NNH, == O,NNH +H’ (fast equilibrium)
O,NNH™ —& 5 N,0 + OH" (slow)
H'+OH — H,0 (fast)
26. The proposed mechanism for the decomposition of acetaldehyde catalyzed by
iodine is
kl ]
12 —2I

kg

I' + CH;CHO —“ HI+ CH,CO

CH;CO —& CHy+CO
CH; +1, —& CHJI+T°
CH; +HI —S5cH,+1°

CH,I + HI —f CH, +1,

Show that the rate equation for this reaction expressed as the formation of carbon
monoxide is given by

d[CO] _k[kl
— k|
dr k.,

1/2
j [ 1,]"* [CH,;CHO]

27.The aqueous oxidation of Cr*" ions to CrO?( can be accomplished in buffered
H* solution with ceric ion, Ce**, as oxidizing agent. The rate of the reaction is
found to depend upon concentrations as follows.

dier*] . [Ce* PCr]
dr [Ce**]

(a) How is the rate of reaction expressed in terms of the production of Ce3+(aq)

related to the rate of consumption of Cr’'(aq)?

(b) If all concentrations were diluted by a factor of ten, by what factor would the

rate change?

(c) Which of the following reaction mechanisms are consistent with the observed

rate law?

Mech. A Mech. B
ce' + o’ Ay ce? + ot slow fast
Ce* + Ce?t —f 5 20e fast fast

Ce*" + Cr’ + 4H,0 — ce + Cro} + 8H” fast slow
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Mech. C Mech. D  Mech. E

Ce* +Crt —hy et 4ot slow fast fast
cet + ot Ry e+ ot fast fast fast
Ce*" + Cr’t + 4H,0 —8 Ce?" + CrO? + 8H ™ fast fast slow

[Ans. Mech. D]

28. For the reaction Cl, + CO(g) —— COCl,(g), the rate law is

—d [COY/dr = k [CL,]**[CO]
Which of the following mechanisms are consistent with the observed rate law?
Mech. A Mech. B Mech. C

Cl, + CO —h 5 cico+cl slow fast fast
Cl+co —%- cico fast slow fast
CICO + Cl, — C1,COo +Cl slow fast slow
Mech. D Mech. E Mech. F
Cl, —h 500 slow fast fast
co+cl —£ cico fast slow fast
CICO + Cl, SN CL,CO + Cl1 fast fast slow
Mech. G Mech. H  Mech.l
Cl, EELENETe) slow fast fast
Cl+Cl, L EN Cly fast slow fast
Cl, + CO—% C1,CO +Cl fast fast slow

2.27 A substance decomposes according to a zero-order reaction with a rate constant
k. (a) Derive the expression of half-life when the initial concentration is a.
(b) How long will it take the reaction to go to completion?

2.28 Decomposition of a substance X to produce Y and Z can result by any of the
following mechanisms:
(i) Simple first-order decomposition

X 45 v+z
(ii) By parallel reaction
Zh o x by

The decomposition reaction is followed by measuring the concentrations of Y and
Z as a function of time. Prove that the above mechanisms can be distinguished
from each other by measuring the ratio [Y]/[Z] as a function of time. Show that
for these two mechanisms the ratio [Y]/[Z] will be independent of time.

2.29 The hypothetical reaction A — B is of the —1-order; that is

—d[A)dt =k [A]™
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(a) Obtain an equation for [A] as a function of ¢, k£ and the initial concentration
[Alo.

(b) Find the time required for the concentration to fall to 10 per cent of its initial
value in terms of k and [A],,.

(c) Does this reaction ever reach completion?

[Ans. [A] = ([A]3 - 2k0)"2, 1= 0.99 [A]3 12k ¢

completion =

[AT3/2K]

2.30 The following mechanism has been proposed for the hydrogen-oxygen reaction:

AH,gq ¢/ kJ mol ™!
Initiation: H,+0, —%5 2°OH 72
Propagation: ‘OH+H, —% H,0+H" - 62
Chain branching: H'+0, —&5 *0OH+0° 70
0'+H, —* *OH+H" 8
Gas phase
Termination: H'+0,+M —%5 HOY+M ~196

Using the steady-state approximation of [H"] and [*OH], show that

d[H,O .
% = k,["OH][H,]
_ 2kks[H,][0,][M]
ks[M] -2k,

Show that the second explosion limit occurs when k5[M] = 2k;.
2.31 Predict the effect of pressure on the rate constant of the following reactions:

Co(NH;)sBr*" + OH —— Co(NH;);OH*" + Br A*) =8.5 cm® mol !
Sucrose + H,O AN glucose + fructose A*V'=2.5 cm® mol ™!
CH,COOCH, + H,0 — 5 CH,COOH + CH,0H  A'}' = — 8.7 cm® mol !
C¢HsCCl,—— C¢HsCClY + Cl™ AV = -14.5 cm® mol™!

2.32 The following mechanism has been proposed for the aldol condensation.

| y |
H—C—CH,;+B H—C—CH; + BH'
kg
(base
catalyst)
O H (0) H
| I ks | I

H—C—CH; + C=0 —> H—C—CH,—C—0"
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T T
k
H—C—CH,—C—0~ + BHY ————> H—C—CH,—C—OH + B
| (rapid) |
Show that
dfaldol] _ K ky[CH;CHOF[B]
dr k,[CH,CHO]+k_,[BH"]

Deduce also the following reduced equations:
(i) When k,[CH;CHO] > k_, [BH']
d[aldol] _
dt
(i) When k_; > k, [CH,CHO]

k,[CH;CHO] [B]; (General basis catalysis)

dlalchol] _ k k,[CH;CHOJ'[B]
dr k_,[BH*]

L [CH,CHOJ*[OH ]
kK, L3

(Specific catalysis by hydroxide ion)

NUMERICAL PROBLEMS

At 773 K dimethyl ether decomposes according to the equation
(CH;),0 —— CH,+H, +CO

At this temperature the following data were obtained:
tls 0 390 777 1195 3155
Diotal/ TOIT 312 408 488 562 779
Determine the order of the reaction and calculate rate constant at 773 K. How much
time will be required for the decomposition of half of the ether?
[Ans. First-order, 4.3 x 107 s

(a) The reaction SO,Cl, —— SO, + Cl, is a first-order gas reaction with
k=22 x 107 s at 573 K. What per cent of SO,Cl, is decomposed on heating
at 573 K for 90 min? [Ans. 11.2%]
(b) A first-order reaction is 40 per cent complete after 8 minutes. How long will
it be before it is 90 per cent complete? What is the value of the first-order rate
constant?
The half-life period and the initial concentration for a reaction are as follows. What
is the order of the reaction? Calculate the rate constant.
to.5/s 425 275 941
a/mmHg 354 540 158
[Ans. n =2, k=6.722 x 107" mmHg ' s7']
The radioactive decay follows the first-order kinetics. If half of a sample disintegrates
in 1 590 years, what is the rate constant for the disintegration?
[Ans. 436 x 10* year ']
The conversion of acetochloroacetanilide (A) into p-chloroacetanilide (B) was
followed by adding KI solution and titrating the iodine liberated with standardized
thiosulphate solution. The KI reacts with A only.



242 A Textbook of Physical Chemistry

Time/h 0 1 2 3 4 6 8
V(0.1M S,03) /cm® 49.3 356 2574 185 140 73 46

Determine the order of the reaction and its rate constant.
[Ans. first, 8.5 X 107 s7']

2.6 The table given below gives kinetic data for the following reaction at 298 K.

2.7

2.8

29

2.10

OClI +1I" - OI' +CI'

d[1o7]

_ _ _ ——x10™
[OCT] [17] [OH™] dr
mol dm™ mol dm™> mol dm™ moldm™ s™!
0.001 7 0.001 7 1.00 1.75
0.003 4 0.001 7 1.00 3.50
0.001 7 0.003 4 1.00 3.50
0.001 7 0.001 7 0.5 3.50

What is the rate law and what is the value rate constant?

{ Ans, 4071 _ (60 s_l)[I_][OCI"]}
dr [OH™]

The decomposition of NH; on tungsten wire at 856 °C gave the following results.
Total pressure/Torr 228 250 273 318

Time/s 200 400 600 1000
Determine the order of the reaction and calculate its rate constant.
In a spectroscopic study for the first-order isomerization of cis-biethylene-
diaminedichlorocobalt(III) chloride in methanol, the rate of disappearance of the
absorption peak at 540 nm was followed as a function of time.

Time/min 0 10 20 33 47 62
Absorbance  0.119 0.115 0.108 0.102 0.096  0.089
80 93 107 121 140 oo

0.081 0.075 0.071 0.066 0.058  0.005

Show that the reaction is first-order and calculate the half-life of the reaction.
[Ans. 8 050 s]
The solvolysis of cinnamyl chloride can be studied spectrophotometrically by
observing the decrease in absorbance of the absorption maximum at 260 nm. The
following observations were made in ethalonic sodium hydroxide at 298 K.
Time/min 0 10 31 74 133 oo

Absorbance

at 260 nm 0.41 0.38 034 0.26 0.18 0
What are the order and rate constant of this reaction?
[Ans. First-order, k = 1.01 x 107*s7!]
(Hint: Absorbance is directly proportional to the concentration of cinnamyl chloride.)
The overall reaction
CH,;CONH, + HCI + H,0 — CH;COOH + NH,Cl
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can be followed conductometrically. If the resistance of an equimolar mixture of
acetamide and hydrochloric acid varies with time as follows.
Time/min 0 5 15 25 35 oo
Resistance/ohm 245 350 479 546 587 759
determine the order of the reaction.
[Ans. First-order with respect to both HCI and acetamide]
(Hint: [HC1], x K,— K, and [HCI], x k,— K..)

A solution of A is mixed with an equal volume of a solution of B containing the
same amount and the reaction A + B — C occurs. At the end of one hour A is 75
per cent reacted. How much of A will be left unreacted at the end of two hours if
the reaction is (a) first-order with respect to A and zero-order with respect to B,
(b) first-order with respect to both A and B, and (c) zero-order with respect to both
A and B?

A solution at 25 °C initially contains 0.063 mol dm FeCl, and 0.031 5 mol dm™
SnCl,. After the elapsed time given, the concentration of the ferrous chloride
produced is determined by a titration procedure:

t/min 1 3 7 17 40
[Fe¥*]/moldm™ 00143 00259 00361 00450 0.0506

Determine the reaction order and the rate constant.
For the consecutive first-order reaction
FNRLEN : B Y e
the values of k, and k, are 45 h™' and 15 h™", respectively. If the reaction is carried
out with pure A at a concentration of 1.0 mol dm™: (a) How much time will be
required for the concentration of B to reach a maximum? (b) What will be the
maximum concentration of B? (c) What will be the composition of the reacting
system after a time interval of 10 min?
[Ans. (a) 132 s, (b) 0.58 mol dm>, (c) [A] =0,
[B] = 0.12 mol dm™, [C] = 0.88 mol dm™]

2.14 The following mechanism has been proposed for the reaction

S,F,o = SF, + SF,
S,Fy _h_, 2SF;
SFs+S,F)y _k_, SF,+S,F,

S,F, —2 5 SF, +SF,
S,Fo + SF; —% SF, + 2SF,

() If k/ky < (kyky/hyky )%, show that its differential rate law is given by

_ dSFe] _ (klkaS

1/2
S,F
dr k. ) [S2Fy0]

(i) For the above reaction, the Arrhenius equation is

k/s™h = (4.98 x 10"®) exp (— 20; .;;5 kJ mol_lj

What are the values of £, and ArS?
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Collision Theory
of Bimolecular
Reaction

Energy of
Activation

Thermodynamic
Parameters of a
Reaction

2.15

2.16

2.17

2.18

2.19

2.20

2.21

The bimolecular decomposition of hydrogen iodide is given by the equation
2HI — H, + 1,

Assuming a collision diameter of 0.35 x 10~® cm and an activation energy of 183.90

kJ mol™! for the reaction, calculate (a) the collision rate, (b) the rate of reaction, and

(c) the rate constant for the above reaction at 500 K and one atmosphere pressure.

[Ans. (a) 1.686 x 10** m™> s, (b) 1.71 x 10" mol m> 57!,

(c) 2.88 x 107" mol ' m® s7!]

Using the expression from the collision theory, compute the rate constant for the
reaction

H, +1, —> 2HI

at 700 K. Use 6, + 65 =2 X 107® cm and energy of activation as 167.4 kJ mol™' The
experimental value is 6.42 x 102 dm® mol™! s™'. Explain the discrepancy between
the calculated and experimental values, if any.
At 300 K, a certain reaction is 50 per cent complete in 20 min. At 350 K, the same
reaction is 50 per cent complete in 5.0 min. Calculate the activation energy for the
reaction.
(Hint: kysox/kypox = 4)
The half-life for a first-order decomposition reaction at 650 K is 363 min and
its energy of activation is 217.58 kJ mol™!. (a) What fraction of the molecules at
650 K have sufficient energy to react? (b) Calculate the time required for the
compound to be 75 per cent decomposed at 723 K.
[Ans. (a) 4.0 x 1073, (b) 12.5 min]
For the decomposition of N,Os
T/K 298 308 318 328 338
10%,/s™! 1.72 6.65 24.95 75 240
Calculate A and E for the reaction, in the equation £, = A exp(—E/RT). Calculate
AIG, A'H and A®S for the reaction at 323 K.
[Ans. E = 102.09 kJ mol™, 4 = 1.51 x 103 s}, A*G = 101. 68 kJ mol !,
AYH=99.17 kI mol™' A'S=-7.95 T K mol™']
(a) The rate constant of a first-order reaction is represented by the equation
kis =43 x 10" exp (~104.6 kJ mol"\/RT)
Calculate (i) the value of rate constant at 373 K, and (ii) the entropy of activation.
(b) The reaction considered in part (a) can be carried out in the presence of a
catalyst that lowers the entropy of activation by 8.368 J K™! mol™! and lowers the
activation energy by 20.92 kJ mol™!. Calculate the ratio of the rate constants of
the catalyzed reaction to that of the uncatalyzed reaction at 373 K.
[Ans. 310]

The rate constant for the first order decomposition of 2-chloropropane into propylene
and hydrogen chloride was found to vary with temperature as follows:

Rate constant x 10%/s™! 0.162 0.238 0.311 0.475 0.706
Temperature/K 640.6 646.7 6512 6575  665.1
0.901 1.225 1.593

669.0 674.9 679.7
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Calculate the energy of activation and the frequency factor.
[Ans. A" E=211 kI mol™', A =2.5x 10" s7']
The following data were obtained for the reaction
Co(NH;);NO;" + OH™ —— Co(NH;);OH*" + NO;
uwM 2.34 5.61 8.10 11.73 16.90
kx 10*/mol dm’s™  5.808 5.164 4786 4383 3.972

Evaluate k), the rate constant at zero ionic strength.

The rate determining step for the reaction
S,05 +2I" —— 2S0; +1,

is S,05 +17 —— [S,04I7]
When the persulphate and iodide ion concentrations are 1 x 10~* mol dm™ and
2 x 107* mol dm™, respectively, the rate constant is 1.6 x 10> mol™ dm® s7\.
What approximately is the rate constant if the reaction mixture is made
1072 mol dm™> with respect to KCI? [Ans. 2.33 x 107 mol ™ dm’ s™']
For the reaction
NH,SO,0H + H,0 — NH,HSO,

in aqueous solution at 30.35 °C, the following rate constants were observed at the
indicated ionic strengths:

Ux10*/M 5.06 11.21 15.85 22.94

k/mol ™" dm’ h™! 1.07 1.02 0.976 0.886

From these data ascertain (a) the valencies of reacting ions, and (b) the rate constant
corrected for the primary salt effect. At this temperature the Debye-Hiickel constant
A =0.574 mol"? dm*”.

The rate constant for the exchange reaction

Cr(H,0);" + Hy*0 —— [Cr(H,0)5(H,*0)]*" + H,0
is 5.0 x 10 mol™! dm?® s™! at 298 K and 101.325 kPa pressure, and AtV s
—9.3 em® mol™!. Calculate the rate constant for 2 kbar pressure.

The data below relate to the first-order hydrolysis of 2-chloro-2-methylbut-3-yne
in aqueous ethanol at 25 °C.

(CH,),CClI C=CH + H,0 —— (CH;),(OH) C=CH + HCI

Rate constant x 10%/s7! 0.23 038 074 127  2.04
Pressure/bar 0.0 10.7  21.3 31.7 42.1
Calculate the volume of activation. [Ans. A'V = —13.1 cm® mol™!]

The initial rate of oxidation of sodium succinate to form sodium fumarate in the
presence of the enzyme succinate dehydrogenase at different sodium succinate
concentrations is given below:

Sodium succinate

cone. x 10%/mol dm™ 10 2.0 1.0 05 0.33

Initial rate x 10°moldm~s™  1.17 099 079 062  0.50
Determine the Michaelis constant and the limiting rate of equation.

[Ans. 7, = 1.22 x 10°mol dm™ 57!, Ky, = 4.8 x 10 mol dm ]
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Homogeneous
Catalyst

Reversible
Reaction

2.28

2.29

2.30

The rate for the reaction, H,0, + 2H;0" + 2Br —— 4H,0 + Br,, is
— d[H,0,]/d = k[H,0,][H;0"][Br’]
At 298 K, k varies with the hydrogen bromide concentration as follows:
[HBr]/millimole dm™ 13.5 22.0 28.8 432 67.7
kx10*/mol? dm® min™" 377 347 338 318 297

Determine k, the rate constant for the uncatalyzed reaction.
[Ans. 0.467]
The hydrolysis of ethyl acetate
CH,COOC,H; + H,0 — CH;COOH + C,H;OH
in aqueous solution is first-order with respect to ethyl acetate. Upon varying the
pH of the solution the first-order rate constant varies as follows:

pH 3 2 1

k1074 57! 1.1 11 110
What is the order of the reaction with respect to H* and the value of the rate
constant? [Ans. First order, 1.1 x 107" dm® mol™! s7!]

The formation of phosgene COCIl, from CO and Cl, is a reversible reaction. The
Arrhenius parameters are

o 26300K) 1

log (k.. /dm® mol™'s™! :8.023—(7—

Og( form mol s ) 458 T
52400K) 1

10g (kyecomp/s ') = 13.48 — %?

Answer the following
(i) What are the activation energies of forward and backward reactions at
298 K?

(i) What is the value of AE at 298 K
(iii) What is the equilibrium constant of the reaction?
(iv) What are the values of A*S; and A*S,?



Photochemistry

3.1 INTRODUCTION

Many reactions can be initiated by the absorption of radiation lying in the visible
and ultraviolet regions (roughly from 800 nm to 200 nm). These reactions are
called photochemical reactions. The science of photochemistry deals with the
study of the effect of radiant energy on chemical reactions and with rates and
mechanisms by which photochemical reactions proceed. The energy carried by the
above mentioned region of radiation is sufficient to cause an electronic excitation
in the molecule and thereby makes it more reactive which may result in a chemical
reaction. Thus with the help of absorption of radiations, many reactions of different
types, e.g. synthesis, decomposition, polymerization, isomeric change, oxidation
and reduction, can be carried out.

Before we discuss the kinetics of photochemical reactions, a few definitions
are in order.

3.2 TWO BASIC LAWS OF PHOTOCHEMISTRY

The Grothuss-
Draper Law

Law of
Photochemical
Equivalence

To all photochemical reactions, two basic laws hold good. These are:

This law states that

Only those radiations which are absorbed by the reacting system are effective
in producing chemical change.

This law can be easily accounted for as the molecules acquire energy for reaction
by absorbing photons.

It should be clearly understood that though the law states that a photochemical
reaction must have resulted because of the absorption of light, the reverse of this
is not always true, i.e. the system on absorbing light may or may not result into a
chemical reaction. In many cases, the absorbed light is converted into the kinetic
energy of the absorbing molecules and thereby only heat effects are produced. In
many cases, the absorbed light is re-emitted as fluorescence or phosphorescence.

The amount of light absorbed by a system is given by Lambert-Beer’s law, a
brief description of which is given in the next section.

The second law of photochemistry is the law of photochemical equivalence proposed
by Stark and Einstein. According to this law, we have
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Each light absorbing molecule in a photochemical reaction absorbs only one
quantum of light which causes the activation.

If v is the frequency of the absorbed light, its energy as given by the Planck’s
relation is

AE =hv
Hence, energy absorbed per mol of the substance is
AE = Njhv

and is conventionally known as one Einstein of energy.
3.3 LAMBERT-BEER’S LAW

Statement of The amount of light absorbed by a pure substance follows Lambert’s law which
Lambert Law states that:

Equal fractions of the incident radiation are absorbed by successive layers of
equal thickness of the light absorbing substance.

Mathematically,

d7 . d/
- — o« (d) ie. - — =kd) (3.3.)

1 1
where the constant k is known as absorption coefficient and is characteristic of
the given material and the wavelength of the radiation. It has the unit of length ™.

Alternative Alternatively, Lambert’s law may be written as:
Definition
A
d/

that is, the rate of decrease in intensity with thickness of the medium (i.e. — dI/dl)
is proportional to the intensity of the radiation.

Integration Form Equation (3.3.1) on integration yields
of Lambert Law I /
_J'g s J' d/
1
Iy 0

i 1 L—kl 332
ie. nl =— (3.3.2)

0
or I=1I,¢e" (3.3.3)
Equation (3.3.2) may be written as

e
&1, 2303

d !
or — =10 (3.3.4)
Iy
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The constant @ which is equal to £/2.303 is known as absorption coefficient (formely
as absorptivity or extinction coefficient). It has the unit of length™.

The absorption of light by solutions of known concentration ¢ is given by Beer’s
law, according to which, we have

d/
- — xc
1
Combining the above equation with Eq. (3.3.1), we get
d/
- — o (d) (o)
1
or - % = kd)) () (3.3.5)
Equation (3.3.5) is known as Lambert-Beer’s law which on integration gives
1
In — =—kic (3.3.62)
Iy
or I=1,(10) (3.3.6b)

where € = £/2.303 and has the unit of (concentration)(length)ﬁl. It is knows as
molar absorption coefficient (formerly as the molar extinction coefficient or molar
absorptivity):

Beer’s law is applicable for dilute solutions, deviations are observed for
concentrated solutions. There is no exception of Lambert’s law.

The absolute value of the exponent in Eq. (3.3.6b) is defined as the absorbance A
or (formerly as extinction or optical density).
A= ¢l (3.3.7)

The terms absorptivity (for absorption coefficient) and molar absorptivity (for molar
absorption coefficient) are to be avoided as these terms have been recommended
for the absorptance per unit length. Also the terms extinction (for absorbance),
extinction coefficient (for absorption coefficient) and molar extinction coefficient
(for molar absorption coefficient) are to be avoided as the term extinction is now
reserved for diffusion of radiation rather than absorption.

The ratio 1/1, is called the transmittance. The amount of light absorbed is given
by

Iy—1=1y—I, 1075 = [, (1 — 107 (3.3.8)

For a solution containing more than one light absorbing substance, Lambert-Beer’s
law takes the form

d7
- =@ (2 ki) (3.3.9)
On integration the above expression yields
I =1y exp(~I(X kcy)) (3.3.10a)

or I :IO 10—1(2,'5:"3,') (3310b)
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Example 3.3.1

Solution

Example 3.3.2

Solution

The absorbance of the solution in this case is given by
A=1Y,&¢ = 2&C 1= 2,4 (3.3.11)
where A; is the absorbance of the ith constituent.

Equation (3.3.11) indicates that the absorbance is additive, i.e. the absorbance of
a solution is equal to the sum of absorbances of its constituents.

At 460 nm a blue filter transmits 72.7% of the light and a yellow filter 40.7% of the light.
What is the transmittance at the same wavelength of two filters in combination?

We have

Blue Yellow
It is given that

]l ]2
—=0727 and  —* =0407

I I
I, I Iy

Hence, — = — x — =0.727 x 0.407 = 0.296
Iy I Iy

In a given absorption cell transmittance of 0.1 mol dm™ of A is 0.75 and that of
0.1 mol dm™ of B is 0.55 at a given wavelength. Calculate the transmittance of a solution
that is simultaneous 0.1 mol dm™ in A and 0.1 mol dm™ in B.

The absorbance of 0.1 mol dm™ in A is
I
A, =¢€lc=—-log 7T log (0.75) = 0.124 9
0

Similarly, for 0.1 mol dm™ in B is
1
Ap = €lc =—log = log (0.55) =0.259 6
0

Now, the absorbance of the solution which is simultaneously 0.1 mol dm™ in A and 0.1
mol dm™ in B is
A=A, +A3=0.1249+02596=0.3845

Si 1 !
ince =—log | —
2 T,

therefore

1 _
7" antilog (—A) = antilog (- 0.384 5) = antilog (1 .6165) =0.412 5
0

(Note: Since absorbance is additive, transmittance will be multiplicative. Hence,
I/I,=0.55 x0.75 = 0412 5.)
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Example 3.3.3 A certain substance in a cell of length / absorbs 10 per cent of the incident light. What
fraction of the incident light will be absorbed in a cell five times as long?
Solution We have
o (1) =eetwnee (1] =00
og | —| =-écl, where — 1| =0.
Iy ), Iy ),
1
log (j = ec(5)
Iy ),
q log(1/1y),
enee, log(1/1,),
or log (I/1,), = 5 x log (I/l,), = 5 x log (0.9) = 5 x 1.954 2 = 1.771
Thus I/1,=0.590 2

Hence, light absorbed is 40.98 per cent.

Example 3.3.4 In a cell of a certain length and at a pressure of 100 mmHg, gaseous acetone transmits 25.1
per cent of the incident radiation of wavelength 265 nm. Assuming Beer’s law to apply,
calculate the pressure at which 98 per cent of the incident radiation will be absorbed by
acetone in the same cell at the same temperature.

Solution For gaseous system, c in the Lambert-Beer’s law may be replaced by p. Thus, we have

1
o 5] =

Since at 100 mmHg transmittance is 0.251, we have
log (0.251) = — €l(100 mmHg)

— M =0.006 003 H -1
o (€h =~ 100mmHg mmes

For 98 per cent absorption or 2 per cent transmittance, we have
log (0.02) =— (el)p =— (0.006 003 mmHgﬁl)p

log(0.02) 283.0 0
T = ——— = .0 mm
© P =7 0,006 003 mmHg ' g
Example 3.3.5 In an experiment to determine the concentrations of the two substances A and B in a certain

solution spectrophotometrically, the following data were obtained.

Solution [A] [B] Per cent Per cent
mol dm™ mol dm™ Transmittance  Transmittance
at 400 nm at 500 nm
1 0.001 0 10 60
2 0 0.005 80 20
3 unknown unknown 40 50

Determine the concentrations of A and B in solution 3.
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Solution

Spectrophotometric
Determination of
Equilibrium
Constant

The relation between absorbance and transmittance is

1
A=¢lc=-1og ([]
0

For solution 1, we have

A, at 400 nm = g,lc, = —log (10/100) = 1
A, at 500 nm = g,lc, = — log (60/100) = 0.22
Since ¢, = 0.001 mol dm™, we have

- _ 143
(€Da00 = 5 001 mol dm2 1000 mol dm

0.22

——— =220 mol™ dm?
0.001 mol dm

(&a7)500 nm =

For solution 2, we have

Ag at 400 nm = g5lcg, = — log (80/100) = 0.097

Ag at 500 nm = g5lcg = — log (20/100) = 0.699

Since ¢z = 0.005 mol dm ™, we have

0.097

—————= =194 mol™! dm?
0.005 mol dm

(€87)400 nm =

0.669

— -1 3
W =139.8 mol™ dm

(€871)500 nm =

For solution 3, we have

At 400 nm:  (€a7)400 nm €A T (€87)a00 nm ¢ = — log (40/100) = 0.398

At 500 nm:  (€a1)500 om €A+ (€8D)500 nm €8 = — 102 (50/100) = 0.301
Substituting the values, we have

(1000 mol™" dm®) ¢, + (19.4 mol™' dm?) ¢y = 0.398

(220 mol™" dm?) ¢, + (139.8 mol™' dm?) ¢ = 0.301

Solving for ¢, and cp, we get

cx =0.000 368 mol dm> and ¢ =0.001 57 mol dm™

Lambert-Beer’s law has been used to determine the equilibrium constant of the
reaction

AB

n

A +nB

First of all, a wavelength is chosen where only complex AB,, absorbs appreciably.
The absorbance of the solution is entirely due to AB,, and we may write it as

A= {l ’ E(AB”)}[AB,,]
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The value of the expression within the bracket can be determined by taking a
known concentration of A (say, c¢) to which a very large excess of B is added so
that the equilibrium is shifted to left and thus

[AB,] = [A]

For the above solution, A, is determined experimentally and thus, we have

{1 e(am,) - S

Now the absorbance of a solution containing, respectively, the concentrations
¢ and nc of A and B, is determined. Let it be represented by A,. At these
concentrations, the concentrations of various species at equilibrium are

[A] = ac
[B] =nac
[AB,]=(1-0o)c

Thus A,={/-e(AB,)}(1 - ) c= ﬁ l-a)c=A4,,,(1-00
c
Hence, «= %

Knowing o, K, can be determined from the expression

« _ MBI _ (@) (nac)’
¢ [AB,] (I-o)c

We may proceed as follows.

Let two solutions containing different amounts of A and B be prepared in such a
way that they have the same absorbance. Since absorbance is due to the absorption
of AB, only, we have

{1 < &(AB,)}[AB,]; = {/-&(AB,)}[AB,], = A

A
~ {l-e(AB,)}
where x is an unknown parameter.

or [AB,]; = [AB,], x

Now the concentrations of A and B in the two solutions at equilibrium will be
[Aly =a, - [AB,]=a, —x

]
[B]l, = b, —n[AB,] = b, — nx
[Al, =a, - [AB,] =a, —x
[Bl, = b, — n[AB,] = b, — nx
Substituting these in the expression of equilibrium constant

k. [AIBY
[AB,]
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Example 3.3.6

Solution

Example 3.3.7

Solution

we get
K = (ay —x)(b — nx)"
¢ X
K. = (ay —x)(b, —nx)"

X

which may be solved by eliminating x.

The complex between ferric and trion ions dissociates following the equation

FeR} == Fe’" + 3R*
The absorbance of a solution in which the initial concentration of Fe** was 6 x 10~ mol
dm™ and that of R was 18 x 10> mol dm™, was found to be 0.25. By adding a large excess
of R*, the absorbance changes to 0.35. All measurements were made at the wavelength
where only FeRg’ absorbs appreciably. Determine the values of ¢ and K..
We have

o= Amax - As
Amax
Substituting the values, we get
_ 035-025 _ 0.10 — 0286
0.35 0.35
F3H IR TP n
Now K - [Fe ][3_ I' _ (ao)(nac)
[FeR37] (1-o)c

where ¢ = 6.0 x 10~ mol dm™ and n = 3. Substituting the value of @, ¢ and n, we get

(0.286%6.0x107 mol dm™)(3x0.286x6.0x107> mol dm™)?
(1-0.286)(6.0x107> mol dm™)

5.465 x 107 (mol dm™)°

K =

c

(a) A solution containing 2.5 x 107 mol dm > Bi*" ions and a large excess of SCN™ was
found to have an absorbance 0.417 when placed in a cell of 2.0 cm thick and exposed
to 360 nm light where only Bi(SCN)z’ absorbs appreciably. The equilibrium reaction
setup is Bi(SCN)36’ == BIi(SCN), + 2SCN". Calculate the extinction coefficient of
Bi(SCN); -

(b) If the initial concentrations of Bi*" and SCN™ were 2.5 x 10> mol dm and
0.50 mol dm™, respectively, the absorbance was found to be 0.280. Calculate K for
the reaction

Bi(SCN);” == Bi(SCN), + 2SCN"~

(a) Since =¢&c/, we have

€ {Bi(SCN); } = 4 0417
6 el (2.5%107° mol dm=)(2 cm)

= 8340 dm® mol' cm™
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(b) Let ¢, be the concentration of complex Bi(SCN);~ when the initial concentrations
of Bi*" and SCN™ are 2.5 x 10~ mol dm™ and 0.50 mol dm™, respectively. Since A

is proportional to ¢, we have
where ¢, = 2.5 x 10 mol dm™

Amax X cmax;
A, x ¢
Hence, i A
cmax Amax
0.280 W 5
or ¢ = ﬁ mx = G a17 X 2.5 x 10~ mol dm

=1.68 x 10~ mol dm™

Thus, the concentrations of various species at equilibrium are
[Bi(SCN),] = 2.5 x 107> mol dm™ — 1.68 x 10~ mol dm™

=0.82 x 10 mol dm™®
[SCN] = 0.5 mol dm™> — 6 (1.68 x 10> mol dm™>)
— 4 (0.82 x 10”° mol dm™)

~ 0.50 mol dm™
i " -2
Hence, K, = [BI(SCN)4][SEN ]
[Bi(SCN); "]
~(0.82x107° mol dm~)(0.5 mol dm>)?

(1.68x10™ mol dm™)

=0.122 (mol dm?)?

A solution of m-nitrophenol indicator of concentration 6.36 x 10 mol dm™ was

prepared and the following spectrophotometric measurements were made.
Absorbance

Example 3.3.8
Condition Form of indicator
strongly acidic HIn 0.142
strongly alkaline In™ 0.943
pH=8.321 HIn + In~ 0.527
Determine the equilibrium constant of the reaction
Hn —— H +In”

The absorbance is given by

Solution

=¢le

0.142 L
= 636x10~ moldm™ _ 223 moldm

A),

Hence, {/e(HIn)} = ( )Zmdm
0.943 L
= 1483 mol " dm

— (A)alkaline
Je(In)} = ~alkaline _
{7e(In )} c 63610~ mol dm™>
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Example 3.3.9

Solution

At any other H, we will have
A = {leHIn)} oy, + {le(In)} cp-

Since e + € = 6.36 x 107 mol dm™®
we have A = {le(HIn)} (6.36 x 10~ mol dm™ — ¢;, /) + {/&(In)} ¢},
or A = {le(HIn)} (6.36 x 107 mol dm ) + ¢~ [{/&(In")} — {/£(HIn)}]
~ A—{lg(HIn)}(6.36x10~* mol dm™)
€= {le(In")} — (/e(HIn)}

Substituting the given value of A and those of {/&(HIn)} and {/g(In")}, we get

. 0.527-223x6.36x107*
1483 mol™dm”® — 223 mol ! dm’

=3.057 x 10~* mol dm™

Hence, iy = 6.36 X 10 mol dm™ — 3.057 x 10~ mol dm™
=3.303 x 10* mol dm™”
Since pH = 8.321, we have
[H'] = 4.775 x 10~ mol dm™

[H'][ln"] _ (4.775x107° mol dm—)(3.057 x10™* mol dm™)
[HIn] (3.303 %107 mol dm™)

Now K=

=4.419 x 10~ mol dm™

The per cent transmittance of a solution of bromophenol blue were determined at 590 nm
under the following conditions.

At pH = 4.39, transmittance is 20%.
At strongly basic conditions, transmittance is 5.4%.
At the given wavelength, only the base form In~ absorbs appreciably. Determine Kpyy,.

Since =—log (I/I)

we get A =—log L =—log (ﬂ) =1.2676
]0 strongly alkaline 100

A, =—log L =—log 200 _ 0.699
* I 100
0/ givenpH

If o is the degree of dissociation of the indicator, we have

HIn = H ' +In"
ol - o) co
Now A = l€(In)-c

A, =le(In)(co)



Example 3.3.10

Solution

Determination of
Composition of
the Complex AB,,

Photochemistry 257

C[HYn]  [H')(ca)  [H']a
Now BT T T i) I-a

Since pH = 4.39, we will have
[H'] = 4.074 x 10° mol dm™

Hence, Ky, = (4.074x 107 mol dm~)(0.551)
(0.449)

=5.0x 10° mol dm™

In studying the dissociation of the complex between Cu*" and sulphosalicylate ions, i.e.

CuR — Cu*"+R*
it was found that a solution in which the initial concentrations of Cu®>" and R*~ were

0.016 mol dm™ and 0.026 3 mol dm=, respectively, has the same absorbance as
a solution in which initial concentrations were Cu®" = 0.019 mol dm™> and R* =

0.019 mol dm™. The wavelength used is such that only CuR absorbs appreciably. Determine
K, of the reaction.

We will have

_ [CuIR*] _ (0.016 mol dm™ — x)(0.0263 mol dm™ — x)
< [CuR] X

_ (0.019 mol dm™ —x)(0.019 mol dm™ — x)
x

where x is the amount per dm> of complex CuR that has formed.
Hence, (0.016 mol dm™ — x)(0.026 3 mol dm™ — x) = (0.019 mol dm™ — x)*
. (0.016mol dm™)(0.026 3 mol dm™)—(0.019 mol dm™)?

or 3 3
(0.042 3mol dm™ —0.038 mol dm™)
=0.013 9 mol dm™
Now K - [Cu®™ J[R*] _ (0.019 mol dm™ — x)(0.019 mol dm > - x)

¢ [CuR] X

~ (0.019mol dm™ —0.013 9 mol dm™*)*

= =0.001 870 mol dm™
(0.013 9 mol dm™)

The value of » in the complex AB,, can be determined spectrophotometrically.
Considering the equilibrium expression

AB, A+nB
we have
_ [A][BY"
¢ [AB,]

Taking logarithm, we have
log K? = log {[A]/c°} + n log {[B]/c°} —log {[AB,]/c°}
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Example 3.3.11

Solution

A wavelength is chosen where only AB,, absorbs appreciably. We will have
A=I&AB,)[AB,]
or [AB,] = Te(AB) (AB,)
Substituting the above expression in the previous expression, we get
log K? = log {[A]/c°} + n log {[B]/c°} —log A + log {/&(AB,)/c°}
or log A = [log {{&(AB,)/c°} + log {[A)/c°} —log K%] + n log {[B]/c°}
Hence when [A] is kept constant, a plot of log A versus log {[B]/c°} gives a
straight line whose slope is equal to 7.
Alternatively, from the two readings, » may be calculated from the expression
B log A, —log A,
"~ log{[B], /%) ~ log {[BI, /c°}

For the determination of the value of z in Fe(SCN)ﬁ ~", two experiments were done whose
data are recorded below.

Initial concentrations of

Experiment Fe** SCN™ Absorbance
No. mol dmﬁ3 mol dm’3
1 3.582% 107 8.28 X 107 3.0
2 3.582% 1073 3.05x 107 0.127

What is the value of »n?

Using the expression

log A —log A,
"7 log{[B], /% ~ log {[B,/c°}
log(3.0) — log(0.127) 04771-1.1038 13763
wegel 1= 0(0.008 28)— 10g(0.000 305)  3.9180—44843 14337
=096 ~ 1

3.4 PRIMARY AND SECONDARY PROCESSES

Primary Process

Photochemical reactions can be classified as primary and secondary processes.

The primary process of the reaction is the light absorbing process which follows
the law of photochemical equivalence. As stated earlier, the photon absorbed by
a molecule causes the electronic excitation. The electronic transitions follow the
Franck-Condon rule, according to which, the time required for the electronic
excitation is so small that the internuclear distance remains unchanged during the
excitation.

Based on the relationship between the lower and the upper electronic levels,
four types of primary processes are possible. A brief discussion on these four
processes is in order.”

T For detail, see chapter 4 of volume 4 of the book.
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Type I In this case, the vibrational energy of the molecule in the upper electronic
state exceeds the maximum value, which leads to the dissociation of molecule
in its first oscillation. The electronic spectrum consists of a series of discrete
vibration-rotation bands converging to a limit and followed by a region of continu-
ous absorption.

Type II In this case, the molecule is simply excited to the upper electronic state.
The electronic spectrum consists of a series of bands with no continuous region.

Type III The molecule is again dissociated as the upper level represents an
unstable state. The electronic spectrum is continuous throughout.

Type IV In this case, stable and unstable upper levels overlap each other.
Transition occurs from the lower level to the stable upper level. During the course
of vibration, the molecule is switched over to the unstable one at the point where
two levels cross each other; and the molecule then dissociates. This behaviour is
referred to as predissociation. The electronic spectrum consists of a banded region.
In the predissociation region, the rotational lines are absent and the vibrational
bands have diffuse appearance.

The products of primary process may involve in subsequent thermal reactions.
These processes are known as secondary processes. The secondary process may
involve only one step or more than one step. Sometimes, the secondary processes
represent the chain reaction.

For example, the photochemical decomposition of HI involves the following
processes:
Primary process HI — 5 H+1

Secondary Processes H+HI —H, +1

I+ —— 12

3.5 QUANTUM EFFICIENCY

Definition

An important parameter of a photochemical reaction is the quantum efficiency or
quantum yield which is defined as
Rate of conversion ~_ d&/dr

 Rate of photon absorption - dn,/dt
For a finite time, this may be expressed as

_ Amount of the substance reacted

Amount of photons absorbed
In terms of number of substance reacted, we have
_ Number of molecules reacted

Number of photons absorbed
According to the law of photochemical equivalence, the quantum efficiency will
always be equal to one. But reactions of low and high quantum yields (as low as
0.04 and as high as 10°) are known.
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Determination
of Number of
Photons Absorbed

Experimental
set up of
Photochemical
Reactions

Fig. 3.5.1 Experimental
set up to study
photochemical reactions

For a primary process, the quantum yield is always one, it is the secondary
processes which alter the overall quantum yield of the reaction. Therefore, the
determination of quantum yield helps understanding the nature of secondary
processes.

The amount of photons absorbed are counted either with a thermopile or a chemical
actinometer.

The thermopile is made up of a large number of junctions of two dissimilar
metals. The radiation falling on it is converted into thermal energy. The increase in
temperature is a measure of the intensity of radiation. The instrument is calibrated
with standard lamps.

A chemical actinometer depends on the use of a photochemical reaction of
known quantum yield. A common reaction used in actinometers is the decomposition
of oxalic acid, sensitized by uranyl ion. The uranyl ion UO%+ absorbs light in
the wavelength region from 250 nm to 440 nm. The excited UO%+ transfers the
absorbed energy to the oxalic acid which is decomposed. The reactions are

U0 + hv —— (UOFH*

(UO3"* + (COOH), —— UO03" +CO, + CO + H,0

The amount of oxalic acid decomposed can be determined by titrating
undecomposed oxalic acid against KMnO, solution. The quantum efficiency of the
above reaction is 0.57. Hence, knowing the amount of oxalic acid decomposed,
the amount of photons absorbed can be determined.

The radiation used for the photochemical reaction must be monochromatic. These
are usually obtained by using discharge tubes which give atomic line spectra; the
line of desired wavelength is isolated by means of a filter or by passage through a
prism in a spectrograph. A device of this kind is called a monochromator.

A schematic diagram of the apparatus used for the study of a photochemical reaction
is shown in Fig. 3.5.1, where A represents a light source emitting radiation of
suitable intensity in the desired spectral range, B is the lens, C is the monochromator
or filter, D photochemical cell which contains the reaction mixture, and E is the
recorder where its intensity is measured.

B C D E

First of all, the cell filled with the solvent is exposed to the radiation and the
reading is recorded. This gives the total energy incident upon the system in a given
interval of time. Next the cell is filled with the reacting mixture and is exposed
to the radiation over the same interval of time and the reading is recorded. This
gives the total energy transmitted. The difference between the two readings gives
the total energy absorbed by the reacting mixture in the given interval of time.
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The quantum efficiency of a reaction helps understanding the nature of secondary
processes and hence the mechanism of chemical reactions. If the absorption of
radiation lies in the banded region, the electron is excited to the upper level without
causing decomposition of the molecule. The excited molecule may deactivate itself
by any one of the following steps.

® The excited molecule may simply emit the radiation of the frequency which it
absorbed. The emitted radiation is called resonance radiation.

® The absorbed energy may be re-emitted as fluorescence or phosphorescence. The
intensity of fluorescence depends on the concentration or pressure of the system.
The frequency of fluorescent light is different from that of the absorbed light.

® The molecule may collide with other molecules and pass on them some or all
of its excitation energy. This energy either can cause a reaction in the other
molecule or can gradually be degraded into heat.

® The excited molecule may react with other molecules.

® The excited molecule may decompose through predissociation.

On the other side, if the absorption lies in the continuous region, the molecule
dissociates to produce active species which react with the reactant molecules or
other molecules in the secondary processes.

With the above facts, it is easy to understand the reasons for obtaining the low
and high quantum efficiency. Some of the reasons are as follows.

A few reasons are:

1. The excited molecule is deactivated through fluorescence or phosphorescence.

2. The excited molecule is deactivated by converting its energy into the kinetic
energy of other molecules (heating effects are produced).

3. The secondary process may involve a step which produces the reactant molecule
as one of the products.

4. The energy absorbed might not be sufficient to cause any fruitful excitation of
the molecule.

The high quantum yield is attributed to the chain reactions caused by the generation
of atoms or free radicals in the primary process. The quantum yield depends on
the length of the chain propagating steps.

In the photochemical decomposition of ethylene iodide
CH)L, + hv —— CH, + 1,

with radiation of 424 nm, the iodine formed after 20 minutes required 41.14 em?® of
0.002 5 mol dm solution of Na,S,0;. The intensity of the light source was 9.15 x 1047
s”'. Calculate the quantum yield assuming absorption of the energy was complete.

The quantity of energy consumed in 20 minutes
=(9.15x 1047 s) (20 x 60 s) = 1.098 J

Energy associated with 1 mol of photons of wavelength 424 nm
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Example 3.5.2

Solution

Example 3.5.3

_ Nahe  (6.022x10% mol™)(6.626 x10* T5)(3x10° ms™

A (424 %10 m)

=2.823 x 10° J mol !
Amount of radiation consumed

B 1.098J

(2.823x10° Jmol ™)

=3.890 x 107 mol

Amount of Szog’consumed
= (0.002 5 mol dm™>) (0.041 14 dm®) = 1.028 x 10~ mol
From the reaction 28,03 + I, — S,07 + 2I", we get

Amount of ethylene iodide reacted = amount of iodine formed

_ 1.028x10 * mol
2

=0.514 x 10* mol

Amount of ethylene iodide reacted

Hence, Quantum yield = —
Amount of radiation absorbed

(05145 x10™* mol)
(3.890x107° mol)

=13.225

The photochemical dissociation of gaseous HI to form hydrogen and iodine atoms requires
radiation of 404 nm or less. (a) Determine the molar energy of dissociation of HI. (b) If
radiation of 253.7 nm is used, how much energy will appear as kinetic energy of atoms?
(a) On absorbing one photon of wavelength 404 nm, one molecule of HI is dissociated. For
the decomposition of one mole of HI, we will require N, photons. Hence, energy carried
by these photons is

_ Nphe  (6.022x10%mol™) (6.626x107* Ts) 3x10° ms™)
A (404 %107 m)

E

=2.963 x 10° J mol™!
which is molar energy of dissociation of HI.

(b) If the wavelength of the incident light is less than 404 nm, the atoms after dissociating
will fly apart with the total kinetic energy equivalent to the excessive energy. One mole of
radiation of wavelength 253.7 nm will carry an energy

Nphe  (6.022x10% mol™)(6.626x107* J5)(3x10° ms™)
A (253.7x107° m)

=4.719 x 10° J mol"!
Hence, extra energy which appears as kinetic energy

= (4.719 x 10° — 2.963 x 10°) J mol™' = 1.756 x 10° J mol™

When acetone vapour is irradiated with light of wavelength 313 nm it decomposes to form
ethane and carbon monoxide.

(CH,),CO + hv —— C,H, + CO
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Using a reaction cell of 60.3 cm’ capacity and a temperature of 329 K irradiation for 23 000 s
at the rate of 8.52 x 107 J 5! produced a change in pressure from 760.0 to 790.4 mmHg.
Calculate (a) the number of molecules of acetone decomposed, and (b) the quantum yield.

(a) Change in pressure = 790.4 mmHg — 760.0 mmHg = 30.4 mmHg. This increase in
pressure is due to the increase in the number of gaseous molecules. There is an increase of
one molecule per molecule of acetone dissociated. Hence, number of molecules of acetone
dissociated as given by ideal gas law is

5
LOI3X10° 0 o2 (60.3 m3)
760 10°

Ap)V 0
( RPT) Ny = — % (6.022 x 10% mol™)
(8314 NmK™' mol™)(329K)

=5.38x 10"
(b) Quantity of energy absorbed

=(8.52x 107 I 57" (23 000 5) = 195.96 J
Number of photons absorbed

_(195.96)) (195.96 1)(313x107° m)
hel A (6.626 x107* I §)(3x108 ms™
=3.086 x 10%°
538 x10"
Hence, @ = 73.086><1020 =0.174

In the photochemical combination of H,(g), and Cl,(g), a quantum efficiency of about
1 x 10° is obtained with a wavelength of 480 nm. What amount of HCI(g) would be produced
under these conditions per calories of radiant energy absorbed?

Energy associated with 1 mol of photons of wavelength 480 nm

_ Nphe  (6.022x10% mol™)(6.626x107* J5)(3x10° ms™
A (480107 m)

=2.494 x 10° J mol ™'
Amount of photons in 1 cal (i.e. 4.184 J)
(4.1841))

= W =1.677 x 10~ mol
. mo

. Amount of substance reacted
Since @ = , we have
Amount of photons absorbed

Amount of Cl, reacted
1.677 %10 mol

1 x10°=
Hence,

Amount of Cl, reacted = (1 X 106)(1.677 x 107 mol) = 16.77 mol

1 mol of Cl, on reacting produces 2 mol of HCl. Hence, amount of HCI produced is
33.54 mol.
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Example 3.5.5

Solution

Example 3.5.6

Solution

In 10 cm?® of a solution of 0.049 5 mol dm™ oxalic acid and 0.01 mol dm™ uranyl sulphate
was passed a radiation of 254 nm. After the mixture had absorbed 88.1 J, the concentration
of the oxalic acid was found to be 0.038 3 mol dm>. What is the quantum yield at this
wavelength for the decomposition of oxalic acid?

1 mol of photons of wavelength 254 nm carries energy
_ Nphe  (6.022x10% mol™')(6.626 x107* J5)(3x10° ms™)
A (254%10™° m)
4714 x 10° J mol™!

Amount of photons absorbed

(88.11)

= < — =1.869 x 10~* mol
(4.714x10° T mol™)

Amount of oxalic acid reacted in 10 cm® of the solution

_[0.0495 mol —0.038 3 mol
1000 cm?

](10 cm3)

=1.12 x 10~* mol

Amount of oxalic acid reacted _ 1.12X 10~ mol

Hence, ®@= = -
Amount of photons absorbed 1.869x107" mol

=0.599

Absorption of UV radiation decomposes acetone according to the reaction
h
(CH;),CO ——— C,H, + CO

The quantum yield of the reaction at 280 nm is 0.2. A sample of acetone absorbs
monochromatic radiation at 280 nm at the rate of 7.50 x 107 J s”'. Calculate the rate of
formation of CO.

Energy carried by 1 mol of photons

Nyhe  (6.022x10% mol™)(6.626x107* J5)(3x10° ms™)
A (280x107° m)

=4.275 % 10° J mol™

Amount of photons absorbed per second

7.50x107 Js! " »
= m =1.754 x 10"° mol s

Since 1 mol of acetone of decomposing produces 1 mol of CO, therefore
Amount of CO produced in one second

= (Amount of photon absorbed) (Quantum yield)
= (1.754 x 10~ mol s71) (0.2)
=3.508 x 10~ mol s~
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3.6 KINETICS OF PHOTOCHEMICAL REACTIONS

As indicated earlier, a photochemical reaction includes two types of processes,
namely primary and secondary processes. In the primary process, the radiation is
absorbed by the light absorbing substance. The quantum efficiency of this process
is always equal to one (law of photochemical equivalence). Hence, the number
of molecules of light absorbing substance removed per unit time (i.e. the rate at
which light absorbing substance is removed) in the primary process is equal to
the intensity of the light.

To be specific, let us take an example of the following light absorbing primary

process;
Br, —— 2Br
Now &= Amount of Br.2 c?ecomposed per unlt. tlrlne
Amount of radiation absorbed per unit time
_ —d[Br,]/dt
I abs
Now since @ = 1, we will have
—d[Br,] _ L,
dr
If the amount of Br formed in primary step is required, we will have
d[Br]
dt = 2Iabs

The nature of products formed in the primary process depends on the obtained
absorption spectrum. If the spectrum includes only a series of lines (i.e. banded),
then the product formed is an excited molecule. If it also includes a continuum,
then the molecule on absorption dissociates and thus active atoms of radicals are
produced.

The secondary processes represent the thermal reactions which also include
the reaction (or reactions) between the products of primary process and other
substances. The rate at which these reactions proceed can be represented as usual
by the differential rate law.

The steady-state approximation can be applied to the reactive intermediates.
Thus, the differential rate law of a photochemical reaction can be worked out as
for any other thermal reaction. The only difference that appears is while writing
the differential rate law of the primary process.

In general, the rate of photochemical reactions depends on the intensity of
absorbed light.

To illustrate the procedure, we describe below a few photochemical reactions.
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Decomposition
of HI

The decomposition of HI has been studied with wavelengths of 207, 253 and
282 nm. The electronic spectrum of hydrogen iodide is continuous in the region
from about 332 nm to below 200 nm wavelength, hence the dissociation of HI is
involved in the primary process. Thus the mechanism of the reaction is:

Primary process HI —" S H+1
Secondary processes H+HI —% H,+1

1+1 —5 51,
The rate of disappearance of HI

- S =g+ ) (3.6.1)
Applying the steady-state approximation to hydrogen atoms, we get
% =0=1I,, -k, [H] [HI] (3.6.2)
t
Hence, Kk, [H] [HI] = I, (3.6.3)
Substituting Eq. (3.6.3) in Eq. (3.6.2), we get
_ dHD _ 21 (3.6.4)
dr
The quantum efficiency is
_ _ Rateof disappearance of HI _ d[HI]/dr
Rateat which photon is absorbed Lops
21
= [—abs =2 (3.6.5)

abs
As the reaction proceeds, the quantum efficiency decreases. The reason behind

this is that as iodine accumulates, the thermal reaction

H+1, —f5 HI+1
becomes appreciable. With the inclusion of this reaction, the steady-state
approximation as applied to H atoms gives

d[H]
T 0=1I,,—k, [H][HI] - k, [H][1,]
I [H] Iabs
ence, T R
ky[HI]+ &, 1]
Substituting this in the expression
d[HI]
= T~ labs * ko[ HIHI] — k,[H] [1,]
o 9D oD kL)) e
we get — = - o, [HI+ k[0,
g ds abs 2 4L2 kz[HI]+k4 [12]

d[HI] ( 2 ]
of T Tdr ™ (14 &, [L] /Ay [HI]
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Hence, (3.6.6)

G LD

With time, the concentration of I, increases and that of HI decreases, with the
result the @ decreases from its original value of 2.

The mechanism of thermal decomposition of HI is quite different, where we have

Heeoeos H
2HI—: o> Hy+
I ...... I
and the rate law is
_ 1 dHn k [HI]?
2 dt

The mechanism of photochemical reaction between H, and Br, is similar to that
established for the thermal reaction. The mechanism is

@) Br, —2Br
(ii) Br+H, —25HBr+H
(iii) H+Br, —% 3HBr+ Br
(iv) H+HBr —% 5 H,+Br
v) Br+Br —% 5Br,
The rate of formation of HBr is given by
d[HBr]
& = kalH][Br] + ky[H][Br,] - k,[H][HBr] (3.6.7)
The steady-state approximation applied to H and Br atoms gives
d[H]
4 = 0= kalFL][Br] - k;[H][Br,] - k,[HBr][H] (3.6.8)
d[Br] )
~ar = s~ kalH][Br] + ks[H][Bry] + k,[HBr][H] — 2ks[Br] (3.6.9)

(Note the factor of 2 in the first term and in last term; in the first term it is due to
the fact that 2 atoms of Br are produced per bromine molecule decomposed; in the
last term, it is due to the fact that the rate expression of reaction (v) is
— (1/2)d[Br)/dt = ks [Br]?, hence — d[Br]/d¢ = 2k5 [Br]*.)

On adding Eqgs (3.6.8) and (3.6.9), we get
21, — 2ks [Br]* =0

)i 1/2
or [Br] = (—bj (3.6.10)

Substituting Eq. (3.6.10) in Eq. (3.6.8), we get

ey (I Ths)' 2 [H, ]
k5 [Br, ]+ k, [HBr]

(3.6.11)
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Now substituting Eqs (3.6.10) and (3.6.11) in Eq. (3.6.7), we get

d[HBr] _ g [ Lo 12 . key (1, /) "2 [H, ]
dr 2 PR 5[ Br, ]+ k,[HBr]

(k3[Br,] — k4[HBr])

1/2
— [abs k3 [Bl’z ] _ k4 [HBI']
= ky[H,] (z) {1 - k;[Br, ]+ k4[HBr]}

2kz([abs /kS)I/Z[H2]

= 3.6.12
1+ (k,[HBr]/ k5[Br, ) ( )
While evaluating the quantum efficiency, we require — d[Br,]/d?, which is given
as
d[Br, ]
= =g = s+ [HIBry] — ks[Br)’

Substituting [Br] and [H] from Eqs (3.6.10) and (3.6.11), we get

_d[Br] _ by (s /Ks) *[H,]) (l_bj
dt ]abs + k3[Bl‘2] ( k3 [Br2]+k4[HBr] kS kS
d[Br, ] _ kz(labs/ks)l/z[Hz]
of " T dr 1+ (k[HBr]/k[Bn)) (3.6.13)

(Note that d [HBr]/d¢ = 2 (- d [Br,]/df). This follows immediately from the fact
that 1 mol of Br, on reacting with 1 mol of H, will produce 2 mol of HBr.)

Hence,
| ZdBu)dt 1 k(Uk) i) 3614
Tw  TW (R [HBI K Br) -

The activation energy for the reaction (ii), i.e. between Br and H, is about
75 kJ mol™". Consequently, the reaction (ii) is slow at room temperature and thus
k, has a small value. From Eq. (3.6.14), it follows that the quantum efficiency will
have a small value in spite of the fact that the HBr is formed in a chain reaction.
On increasing the temperature, k, increases (k5 is nearly independent of temperature
as it involves the reaction between two atoms) and thus @ is also increased.

Reaction between The proposed mechanism of photochemical reaction between CO and Cl, is

CO and Cl, (i) cl, 520l
(ii) Cl+Cco —%2cocl
(iii) cocl —5 5co+cl
(iv) COCl + Cl, —% CoCl,+ Cl

) cocl+ ¢l —%5 5 co+cl,
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The rate of formation of phosgene is given by

d[COCl, ]
T k,[COCI][Cl,] (3.6.15)
Applying the steady-state approximation to Cl and COCI, we get
d[Cl1
% =0=21I,,— k,[Cl][CO] + k[COCI] + k,[COCI][CL,]
— ks[COCI][C] (3.6.16)
d[COoCl]
TR 0 = k,[CI][CO] — /k3[COCI] — k,[COCI][CL, ]
— ks[COCI][C]] (3.6.17)
Adding Eqgs (3.6.16) and (3.6.17), we get
21 — 2ks [COCI][CI] = 0
1
or [COCI] = —abs_ (3.6.18)

ks[C1]

Reactions (ii) and (iii) together constitute a reversible reaction system. Hence
applying the principle of microscopic reversibility (the rates of forward and
backward reactions are equal), we get

I,[C1][CO] = k5[COCI]

k
Hence, [Cl]= ——=— [COCI]

k,[CO]

Making use of Eq. (3.6.18), we get
k 1
[Cl]] = _ ™ _fabs
k,[CO]  ks[C]]
1/2

or [Cl] = s lans (3.6.19)

kyks[CO]

Substituting Eq. (3.6.19) in Eq. (3.6.18), we get

koks[COTY 2 (Ky[CONL,
k! gk

abs

I
[cocl) = &= (
kS

which on substituting in Eq. (3.6.15) gives
d[COCL] _ (ky[COIL, )"
S | 2 | [y
dr ksks
= kI ? [CO]" [CL,]
where k = ky(ky/kyks)"2.
The rate of disappearance of Cl, is given by

_ _d[gtlz] = Iy + k,[COCI[CL,] — k[COCI[CI]

(3.6.20)
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Substituting the expressions of [COCI] and [COCI] [Cl], we get

d[CL,] I [COL, )
dl2 = Laps + k4 [@J [C12] - [abs

1/2

k,[CO]1,

=k, (%) [CL,] (3.6.21)
305

which is the same as given by Eq. (3.6.20). Hence

1/2
_ =d[Cl,]/dt k,[CO]
D= I AV [Cl,] (3.6.22)
Photolysis of The proposed mechanism is

Acetaldehyde CH,CHO hv CH, + CHO
CH, + CH,CHO —%— CH, + CH,CO
CH,CO —% o + CH,
CH, + CH, —%— C,H;
The rate of formation of CO is
d[CO]
dr
Applying the steady-state approximation to CH,CO and CH;, we get

d[CH,CO]
dr

= k;[CH,CO] (3.6.23)

= 0 = k,[CH,][CH,;CHO] - k;[CH,CO] (3.6.24)

d[CH;] o )
= = 0= Iy~ B[CHS][CH;CHO] + kj[CH;CO] - 2k,[CH; ]
(3.6.25)

Adding Eqgs (3.6.24) and (3.6.25), we get
7o\
CH,] = | 2= 3.6.26
[CH;] (ZkJ ( )
Substituting Eq. (3.6.26) in Eq. (3.6.24), we have

1/2

ky ([_b) [CH,CHO] - &;[CH,CO] = 0

4
k2

1/2

I

or [CH,CO] = -2 | = | [CH,CHO] (3.6.27)
Iy \ 2k,

Substituting Eq. (3.6.27) in Eq. (3.6.23), we get

1/2
d[COl (I
- —kz( 2k4) [CH,CHO] (3.6.28)
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The proposed mechanism is
H,0, —— 20H
OH + CO—%2— COOH
COOH + H,0,—% 5 CO, + H,0 + OH
H,0, + OH —%— H,0 + HO,
2HO, —% 5 0, + H,0,
The rate of formation of O, is given by
d[O,]

- ky[HO,T* (3.6.29)
Applying the steady-state approximation to HO,, OH and COOH, we get
MO _ - 4, [11,0,170H] - 24[HO, )2 3.6.30
1 = 0= K[H,0,][0H] - 2k[HO,] (3.6.30)
d[OH]
Y 0 =21, — K,[OH][CO] + k5[COOH][H,0,]
— k,[H,0,][OH] (3.6.31)
d[COOH]
4, 0= k[OH][CO] - k;[COOH][H,0,] (3.6.32)
Adding Eqgs (3.6.31) in (3.6.32), we get
2[abs - k4[H202][OH] =0
21
or [OH] = —2 (3.6.33)
k4[H,0,]
Substituting Egs (3.6.33) in (3.6.30), we get
21
ky[H,0,] (—b] — 2kJHO,* =0
B VAT NCH)
7o\
or [HO,] = (;—“) (3.6.34)
5
which on substituting in Eq. (3.6.29) gives
d[O,]
dt2 = ]abs

For calculating @, we have to evaluate — d [H,0,]/dz. From the given mechanism,
we have

d[H,0,] )
T Ly T I5[COOH][H,0,] + k,[H,0,][OH] — ks[HO, ]
(3.6.35)
From Eq. (3.6.32), we get
k,[OH][CO]
COOH] = —F—
OO = T 0,1
which on making use of Eq. (3.6.33) becomes
2k2 Iabs [CO]
[COOH] = —————— (3.6.36)

k3k4[H202 ]2
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Substituting for [OH], [HO,] and [COOH] from Eqs (3.6.33), (3.6.34) and

(3.6.36) in Eq. (3.6.35), we get

d[H,0,] 2k, 1,4, [CO]
- dz : :Iabs+k3( — 5 | [(HyO,]
t k3k4[H,0,]

21

abs

+ ky[H,0,] (
= 2y (1+—k2 [€O] J
ky[H,0,]

—d[H,0,]/dt k,[CO
Hence, D = ~d[H,0,]/dr =2 (1+—2[ ] j

Iabs k4 [HZOZ]

Chlorination of For the gaseous reaction

Chloroform hv
Cl, + CHCl; ——> CCl, + HCI

the proposed mechanism is

cL,—s ¢

k
Cl+ CHCl; —2— CCl, + HCI
ccl, + ClL,—5 5 cel, + cl

2CCL + Cl, —s acql,
The rate of formation of CCl, is
d[CCl,]
dr
Applying the steady-state approximation to CCl; and CI, we get

% = 0 = k,[CI][CHCI,] — k5[CCL][C,]

~ 2k,[CCL PCL)
d[CI]

o = 0= 2L~ k[CIICHCL] + k[CCL[CL, )

Adding Eqgs (3.6.40) and (3.6.41), we get
21, — 2k,[CCLI[CL] = 0

1/2
[abs
or  ICCLI= (m[mz])

Substituting Eq. (3.6.42) in Eq. (3.6.39), we get
drcc,] ( L
Ukl

1/2
= [CL,] + 2k s [CLy]
dt Cl,] 2 4 k,[Cl,] R

= k;[CCL|[C1,] + 2k,[CCL[CLy]

1/2
s [0
4

k4[H,0,]

)+f2)

(3.6.37)

(3.6.38)

(3.6.39)

(3.6.40)
(3.6.41)

(3.6.42)

(3.6.43)
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For the quantum yield, we determine — d[Cl,]/d¢. From the given mechanism, we

have
d[Cl, ] )
= =3 = L+ [CCLICL] + k[CCLCL]
Substituting for [CCl;] from Eq. (3.6.42), we get
1/2
d[CIZ] [abi Iabs
- =l tk . Cl,] +k Cl
dt abs 3 (k4[C12] [ 2] 4 k4 [C]z] [ 2]

1/2

= 2y + ks (—Iabs [CIZ]) (3.6.44)
ky

Equation (3.6.44) follows from Eq. (3.6.43), since — d[Cl,]/d¢ = d[CCl,]/dz.

1/2
Cl
=2+ k3 [M)
Iabs ]abs k4

3.7 EFFECT OF TEMPERATURE ON PHOTOCHEMICAL REACTIONS

—d[Cl,]/d¢

Hence, @ = (3.6.45)

The effect of temperature on photochemical reactions is primarily due to the type
and nature of secondary processes. The primary process of light absorption is
practically independent of temperature.

If the secondary process involves the active atom or radical produced in the
primary process, its activation energy is usually very small and thus very small
temperature coefficient of the overall process is observed. If one or more of the
secondary processes possess a large activation energy, then the photochemical
reaction exhibits a larger value of temperature coefficient. If the secondary processes
involve a reversible reaction of appreciable energy of reaction and if its equilibrium
constant appears in the final rate expression, then obviously, a large temperature
coefficient is expected. The effect of temperature on the photochemical reaction
between CO and Cl, may be described here. The rate of formation of COCI, as
given by Eq. (3.6.20) is

d[COCl,]
dr

1/2 1/2 1/2
1
where  k=k, (k—Z) (ij =k, K'? (—j
ky ks ks

We write the above expression as

1/2
k _ k4 kz /k3 11’10171 dm3 87l
mol " dm®s 2~ {mol™'dm?®s™? ) | mol™ dm’ ks

1/2
k(K J [k‘g j
_— = o K oy | ——
k° (k4 ( ¢ ) k5

=k I, [CO]"* [Cly]

that is
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Taking logarithm and then differentiating with respect to temperature, we get
din(k/k°) _ dln(k,/k;) N 1 dIn(Kc®) B 1 dln(ks/ksS)
dr dr 2 dT 2 dr

| 1 1
= || E,+-AH——E
RT? [( 72 2 5)}

where £, and E; are the activation energies of reactions
COCl + Cl, —— COClL, + Cl

COCl+Cl — CO + (1,
and AH is the enthalpy change of the reaction

Cl+CO CocCl
Hence, the variation of the overall rate constant of the reaction depends on E,,
Es and AH values.
In many cases, a negative temperature coefficient is observed. This is again due to
a reversible reaction in secondary processes with a large negative value of AH.

If a photochemical reaction has a quantum efficiency of one and shows no
temperature dependence, it is very likely that the reaction involves only primary
process, i.e. the reaction proceeds in one step with the absorption of radiation.
Thus, the determination of temperature coefficient of a photochemical reaction
helps establishing the mechanism of a reaction.

3.8 THE PHOTOSTATIONARY STATE

Explanation of the
Photostationary
State

Dimerization of
Anthracene

Absorption of radiation by reactants of a reaction at equilibrium increases the rate
of forward reaction without directly affecting the rate of the reverse reaction. The
latter is, however, increased due to the increase in the concentration of products.
Thus, a new state called the photostationary state (or photochemical equilibrium) is
established when the increase in the rate of forward reaction (due to the absorption
of light) becomes equal to the increase in the rate of reverse reaction (due to the
enhanced concentration of the products).

One of the well-known examples exhibiting photostationary state is the dimerization
of anthracene. This example also illustrates another interesting feature of
photochemical reactions, namely, the quenching of fluorescence.

When a dilute solution of anthracene in benzene or other intert solvent, is
exposed to ultraviolet light, the system exhibits fluorescence with a small quantum
efficiency of dimerization reaction. As the concentration of anthracene is increased,
the fluorescence falls off and the quantum efficiency of dimerization increases
towards a limiting value where fluorescence is practically eliminated (Fig. 3.8.1).
In other words, the fluorescence is said to be quenched as the concentration of
light absorbing substance is increased. The explanation of the above phenomenon is
straight forward. The natural life-time of an excited state in a molecule undisturbed
by collisions is about 10~% second. At higher concentrations, a molecule experiences
a large number of collisions in 10~® second. Consequently, the excited molecule
loses its energy by collisions with other molecules before it has a chance to exhibit
fluorescence. As the concentration is decreased, the collision frequency decreases
and the chance for the fluorescence is increased.



Fig. 3.8.1 Quenching
of fluorescence
exhibited by
anthracene in solution

Kinetics of
Quenching of
Fluorescence
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@ or Fluorescence —»

Fluorescence

[A)/mol dm—3 —

For gaseous reactions, the fluorescence is quenched even at ordinary pressures.
This is because of the fact that the excited molecules in gaseous systems at ordinary
pressures usually lose their energies by collision before they have a chance to fluo-
resce (there are about 100 collisions in 10~® second at a pressure of 1 atm). The
fluorescence can, however, be observed if the pressure of the system is reduced
significantly.

A kinetic expression for the quenching of fluorescence is obtained by considering
the following scheme.

1
Absorption M+ hy —8b 5 M*
k.
Fluorescence M* —L SsM + by’
k. .
Quenching M* + Q —1— M + Q + kinetic energy

Applying steady-state approximation to M*, we get
d[M*]
=3 =l ke IM¥] - K IM¥[Q] = 0
or L = ke[M*] + k [M*][Q]
The intensity of fluorescence /; will be given by
Iy = k[M*]
The fraction of excited molecules that fluoresce, called the fluorescence yield, is
given by
I ke [M*] 1

Ly~ ke [MF+EIMAQ] 1+ (k /kpIQ]

1 1 (kg /ke)
or — = —+
]abs

The above relationship is known as Stern-Volmer relation. According to this, a plot
between 1/7; and [Q] will be linear of slope (ky /k¢)/1,;,, and intercept 1/7,,.. Hence,
(ky/k¢) can be determined. If k. is known from an independent determination of
the life-time 7 of excited state in the absence of quencher Q, the constant kq can
be evaluated.
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Mechanism of Coming back to the photostationary state as exhibited by dimerization of anthracene,
Dimerization of the following mechanism has been proposed.
Anth
nthracene Primary Process (i) A —s A rate = [
Secondary Processes >ii)) A*+ A LN A,; rate = k, [A*][A]
(i) A, —5 2A; rate = k; [A,]
(iv) A* —K s A+ v rate = k, [A*]
The rate of formation of A, is
d[A
Ba) — kraniia) - kA, (3.8.1)
Applying the steady-state approximation to A*, we get
d[A*] . .
= = 0= Ly~ B[AX)[A] - K [A%]
Hence, [A*]= s (3.8.2)
’ ko [Al+ky
Substituting Eq. (3.8.2) in Eq. (3.8.1), we get
dlA,] Lo
R Ty Ak A (38.3)

In the photostationary state, the reactions (ii) and (iii) represent an equilibrium
reaction for which d[A,]/dr = 0. Thus, from Eq. (3.8.3), we get
ky[A]L 1
2[ ] abs _ abs (384)
Iy (ky [Al+ky) k(14 ky/ky[A])
If the concentration of monomer is very large, Eq. (3.8.4) reduces to

[A,] = Labs (3.8.5)

ky
that is, when the reaction is at photostationary state the concentration of dimer is
independent of the concentration of monomer. This is in contrast to the reaction
at the thermal equilibrium state where the concentration of dimer depends on the
monomer concentration through the equilibrium constant expression [A,] =K [A].

[A,] =

The system at photostationary state, unlike a thermal equilibrium state, is
unaffected by the change in temperature of the system.

The system reverts back to the normal equilibrium state as soon as the source
of radiation is removed.

3.9 PHOTOSENSITIZED REACTIONS

In many photochemical reactions, the reacting substance does not absorb radiation
directly, but acquires the energy from some other light absorbing foreign substance.
The latter is known as a senmsitizer. Thus, in the absence of photosensitized no
reaction can take place as the reacting substance cannot absorb radiation of its own.
Processes in which photosensitizer is used are known as photosensitizer reactions.
Mercury or cadmium vapour are often used as the sensitizer.
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Many mercury-photosensitized reactions are known. One of the examples is
the combination of carbon monoxide and hydrogen. The proposed mechanism is
Hg + hv —— Hg*

Hg*+H, —— Hg + 2H

H+ CO —— HCO

HCO + H, —— HCHO + H
2HCO —— HCHO + CO
2HCO —— HCOCHO (glyoxal)

In uranyl actinometer, uranyl is used as photosensitizer.

Many other photosensitized reactions of practical importance are known. One
of the most important examples is the photosynthesis of carbohydrates in plants
where chlorophyll acts as the sensitizer.

3.10 CHEMILUMINESCENCE

Many reactions are accompanied by the emission of visible radiation. This
phenomenon is known as chemiluminescence. The explanation of chemiluminescence
is very easy to understand; one of the products formed is in the electronically
excited state which emits radiation of appropriate wavelength in the visible region
of the spectrum.

Examples exhibiting chemiluminescence include phosphorus and its trioxide
in air, oxidation by air oxygen of many of the Grignard reagents and oxidation
of alkaline aqueous solutions of 5-aminophthalic hydrazide. The light of the
firefly, the light emitted by some micro-organisms in the course of metabolism,
bioluminescence are other examples of chemiluminescence.
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3.1
32

3.3

3.4

REVISIONARY PROBLEMS

What are photochemical reactions? How do they differ from thermal reactions?
Define the following two laws of photochemistry.

(i) The Grotthuss-Draper law.

(ii)) Law of photochemical equivalence.

Is there any exception to the above laws?

Define Lambert-Beer’s law. Does it hold good in a concentrated solution of
light absorbing substance?

Define the following terms.

(i) Absorption coefficient.

(ii) Molar absorptivity or extinction coefficient.

(iii) Extinction or absorbance or optical density.
(iv) Transmittance.

(v) Absorption.

(vi) One einstein of energy.
(vii) Primary and secondary processes.

(viii) Photosensitizers.

3.5

3.6
3.7
3.8
39

3.10
3.11

3.12

(ix) Actinometer.

[llustrate, how Lambert-Beer’s law can be employed to determine (i) equilibrium
constant of a complex compound, (ii) composition of the complex AB,,, and
(iii) the concentrations of A and B in a solution.

Ilustrate with diagrams, the four types of primary processes classified on the
basis of electronic excitation in the molecule.

Define the term ‘Quantum efficiency’. Justify the statement that the quantum
efficiency of a primary process is always one.

Elaborate the reasons for obtaining low and high quantum efficiencies.
Explain the effect of temperature on the photochemical reactions.

Explain the term, ‘quenching of fluorescence’. On what factors does it depend?
Explain the phenomenon of photostationary state. Given below is the mechanism
of photochemical dimerization of anthracene (A):

AV Ax
A* A — A
Ay —— 2A
A A+

(a) Derive the expression for the rate of formation of the dimer.

(b) Deduce from the latter the expression for the concentration of dimer at
photochemical equilibrium.

(c) How does this concentration depend upon the intensity of absorbed light?
The intensity of fluorescence and phosphorescence from an excited molecule M
will depend on the efficiency of any competitive chemical quenching process.
Consider the following mechanism:

k
M + hy; —— M*
k
M*+Q —% 5 M + Q; second-order reaction

k
M* L 5 M+ hv,
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If I;is the fluorescence intensity, show that
1 1 k
— = — J1+-40Q]
]f Ia kf

Explain, how does the above expression help determining the value of k;.
3.13 Given below are mechanisms of a few photochemical reactions. Derive the

corresponding differential rate law and the expression of quantum yield.

(i) Decomposition of HI

HI ", H+1
H+HI —2 5 {41

k3
[+1 —>1,

drHr
s
D=2
(i) Reaction between hydrogen and bromine

Br, —™ 5 2Br

Br+H, —2 , HBr+H
k

H + Br, —> HBr+ Br

H+ HBr —% 5 H,+Br

k
Br + Br —— Br,

d[HBr] _ 2k, /ks)"*[H,]

dr 1+ (k4[HBr]/k5[Br, )

o | dHBr]
2146 dr
(iif) Reaction between CO and Cl,

c, — 5 o

cl+co 2 coa

k
COCl —*— CO +Cl

cocl +cl, —4 -, coct, + ¢

cocl + ¢l —%55 co +
1/2
d[COCL, ] ky 12 12
=k 12 1co1”? [cl
dl 4 k3k5 abs [ ] [ 2]

1 d[COCl]
Ly

b =
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(iv) Photolysis of acetaldehyde

CH,CHO —™ CH, + CHO

CH, + CH,;CHO —2_5 CH, + CH,CO
k

CH,CO —— CO + CH,

k
CH; + CH; —4— C,H,

4[CO] ;o2

_ abs

P ky (2k4) [CH;CHO]

(v) Decomposition of H,0, in the presence of CO

H,0, — 20H

OH +CO —2, cooH
k
COOH + H,0, —— CO, + H,0 + OH
k
H,0, + OH —4— H,0 + HO,

k
2HO, —>— 0, + H,0,

_ d[H,0,] _ ( ky[CO] ]
dr 2 77 k4[Hy0,]
_ —d[H,0,]/di _ (1 . _k[CO] )
@ 1 2 k4[H,0,]

abs

(vi) Chlorination of chloroform

cl, — aci

Cl+ CHCl, —25 cct, + Hel
k

CCl, + Cl, —— CCl, + Cl

2ccl + ¢, —* ocq,

1/2
dcel] Lotk (1abs[c12]j
abs

dt 4

172
D=2 +k, ([c12] j
Iabs k4
TRY YOURSELF PROBLEMS
3.1 For the photochemical decomposition of ammonia

INH,(g) — 5 Ny(g) + 3H,(g)

The following mechanism has been proposed:

NH; —™ 5 NH, + H

NH, + H —25 NH,

k
H+H —— H,
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33

34

3.5

3.6

3.7

Photochemistry 281

NH, +NH, _ % | N,H,

k
N,H, + H —— NH; + NH,
NH, + NH, —6_, N, + 2H,

show that
d[NZ ] — kGIabs
dr kg + kg + by (g /oy
1
1+ 2k / ey (kg og) 2 + Ky}

For the photochemical reaction

A= oA

the following mechanism has been proposed:

Ay s A7
A% LN

D=1

2A

At A, 35 oA,
show that
M _ 2kZ Iabs
dt ky+h[A,]
Derive the expression for the quantum efficiency of decomposition of
chloroacetic acid which follows the mechanism
CICH,COOH + hv —— CICH,COOH*

CICH,COOH* + H,0 —— HOCH,COOH + HCl
(a)Using the mechanism for the formation of dianthracene in Section 3.8, write
the expression for the quantum yield in the initial stage of the reaction when
[A,] = 0. (b) The observed value of @ is one. What conclusion can be reached
regarding the fluorescence of A* ?

[Ans. (a) @ =k, [A)/(k, [A] + k3), (b) Fluorescence is weak]

The following mechanism has been proposed for the photochlorination of
trichloroethylene:

Cl, + hv —— 2Cl

Cl + C,HCl; —— +C,HCl,

*C,HCl, + Cl, —— C,HCI; + Cl

2+C,HCl, —— inert products
Derive the rate law. [Ans. d [C,HCLs)/ds = k 112 [CL,]]
The photolysis of COBr, is found to have quantum efficiency of 1 with no
temperature coefficient. What do you conclude about its mechanism?
Formaldehyde can be synthesized by irradiating a mixture of CO and H,
containing a trace of Hg with light of wavelength 253.7 nm. Show that the
reaction mechanism

I
Hg abs 5 Hg*

He* + H, —2 5 2H + Hg
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3.10

k
H+CO —— HCO

k
HCO + H, —*— HCHO +H

k
2 HCO —2— HCHO + CO
k CHO
21C0 Koy |
. CHO
leads to the rate equation

1/2
d[HCHO] _ ok, [y s
dr M VS

The mechanism for the photochemical reaction between H, and Cl, is

() ¢, - ac

k5 I abs
ks + kg

Cl+H, —2 5 HCI+H

(i1)
Iy
(iii)) H+ Cl, —— HCl1 +Cl
(va) Cl —X4 5 (112 c, (on wall)
or
@ivb) C1+Cl —— Cl, (in gas)
Show that
d[zItCI] =k [Hy] s for (iva) termination reaction
or
% =K [H,] 1}? for (ivb) termination reaction

(a) The mechanisms of thermal and photochemical reactions of H, + Cl, and
H, + Br, are of similar nature but those of H, + I, are altogether different.
From the following data, explain why it is so.
Cl+H, —— HCI+H
Br+H, —— HBr+H E, = 73.64 kJ mol!
[+H, — HI+H E, = 139.75 kJ mol™'

(b) The quantum efficiency of H, + Cl, reaction is very large (10*-10°) whereas
that of H, + Br, is low. Explain why it is so.
[Ans. (a) because of high E,, (b) comparatively larger E,.]

E, =20.92 kJ mol '

The photolysis of O; in liquid Ar solution at 87 K by wavelength 353.7 nm
and 313 nm follows the mechanism given below:

O; + hv—— O, + O%*

0* +0, —25 20,

o* k50

0+0,+M —f5 0,+M

(a) If ¢ is the quantum yield of the first step and @ is the overall quantum yield,
show that

1 _ -1 l k3
oo {2+2k2[03]}
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(b) The experimental results for @ at 353.7 nm fit the equation

@' =0.538+0.81 [0;]"
Show that
¢ =0.93 and ky/k, = 1.51 mol dm™

(Hint: For the first step — d [O;]/df = ¢ I, and for the overall — d[O;]/df = @ 1)
NUMERICAL PROBLEMS

At 360 nm a blue filter transmits 37.0 per cent and a yellow filter 19.0 per cent
of a radiation. What is the transmittance at the same wavelength of the two
filters in combination? [Ans. 0.07]

In a certain cell 107> mol dm™ solution of a substance absorbs 10% of incident
radiation. What concentration of the same solute in the same cell will absorb
90% of incident radiation? [Ans. 0.022 mol dm’3]

An 0.03 mol dm™ solution of a substance has an absorbance of 2.0 at 660
nm using a 1-cm cell. Calculate (a) the value of absorption coefficient, (b) the
value of /1, and (c) the per cent absorption for an 0.015 mol dm™ solution in
the same cell. [Ans. 66.7 mol ™' dm® cm™ 0.01, 90%]
A cell of 5.5 cm length and 125 cm® capacity contains a gas of molar absorptivity
2.5 dm® mol™' em™" at a pressure of 10 cmHg and a temperature 300 K. If the
radiation of wavelength 400 nm and intensity 9.05 x 10> J s~ is passed through
the gas, what per cent of it will be absorbed? [Ans. 15.75]
In a given cell, solution I transmits 42.0 per cent and solution IT 85.0 per cent
of radiation having a certain wavelength. What is the transmittance at the same
wavelength of a solution made by mixing 35.0 cm® solution I and 55.0 cm®
solution II, if no reaction occurs? [Ans. 0.646]
The concentrations of two solutes were estimated in the same solution of
absorption spectroscopy at the two wavelengths. At A,, the molar absorptivities
were 300 and 30 dm® mol™! cm™!; at A,, 10 and 200 dm® mol™' cm™!
(respectively). When measured in a cell 2.0 cm in length, the percentage
transmitted was 1.77% at A, and 20.3% at A,, calculate the concentrations of
the two solutes. [Ans. 0.002 76 mol dm >, 0.001 59 mol dm™]
The absorbance of a solution in which Bi** was very large and SCN™ was
5.0 x 107 mol dm™ in a cell of 1.0 em thickness was found to be 0.286. The
reaction which occurs is

Bi(SCN)*" —= Bi*" + SCN~
What was the absorption coefficient of Bi(SCN)**? In an another experiment,
absorbance was found to be 0.24 when the initial [Bi3+] was 0.50 mol dm™.
What is the value of K, of the above equilibrium?
[Ans. 5 720 dm> mol™ ecm™, 9.5 x 1072 mol dm™]
When propanal is irradiated at 200 Torr and 30 °C with radiation of wavelength
302 nm the quantum yield for CO production is found to be 0.54. If the incident
radiation intensity is 15 x 10™* J s™!, calculate the rate of CO formation. What
is the radiation intensity in einstein per second?
[Ans. 2.04 x 10~ mol s7%; 3.78 x 107
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3.10

3.11

[Cr(NH;] 5(NCS)]2+ reacts photochemically in the following manner.

[CrNH,J5(NCS)P" + Hy0 — [Cr(NHy), (H,0) (NCS)* + NH,
In an experiment, a beam of monochromatic radiation of intensity 6 x 10~
einstein/second is incident on a cell containing 20 cm® of 0.01 mol dm™ solution
of [Cr(NH3)5(NCS)]2+. It is estimated that 80% of incident light is absorbed
and after 10 minutes exposure, analysis showed that 0.6% of the reactant had
undergone the change. Calculate the quantum yield and the molar absorption
coefficient if the path length for the beam is 1 cm.
[Ans. 4.16, 69.9 dm® mol ! cm™']
An actinometer using the following reaction

HN; + H,0 + v —— N, + NH,OH
was used to find the number of quanta absorbed by a sample of HX(g). The
concentrations of nitrogen in the actinometer after 30.0 min of light absorption
were 43.1 x 10~ mol dm™ and 51.2 x 10~ mol dm, respectively, for the
transmitted and the incident beam. (i) Find the quanta absorbed by the HX(g)
sample if the actinometer had a volume of 1 dm®. (ii) If 0.158 x 10 mol of
HX decomposed upon absorption of these quanta, find the quantum yield of
the reaction. [Ans. 4.5 x 10 mol s', 1.94]
An uranyl oxalate actinometer is irradiated for 15 minutes with the radiation
of 435 nm. At the end of this time, it is found that oxalic acid equivalent to
12 cm?® of 0.001 molar KMnO, has been decomposed by the radiation. At this
wavelength, the quantum efficiency is 0.58. Find the average intensity of the
radiation used. [Ans. 0.015 8 J s’l]
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Statistical Thermodynamics

41 INTRODUCTION TO STATISTICAL THERMODYNAMICS

A thermodynamic system is a macrosystem consisting of a large number of
molecules. In establishing the various thermodynamic functions, the structural
model of the system is no where required. In fact, all thermodynamic properties
of a system can be derived without knowing whether the system is composed of
atoms or molecules and how these are moving or interacting with each other. By
treating the molecules on a statistical formalism, it is possible to develop the subject
of statistical thermodynamics where the thermodynamic properties of a system can
be expressed in terms of molecular properties. In establishing the expressions for
the computation, one is not concerned with the motion of individual molecules
but only with the number of ways the molecules are distributed over the available
quantum mechanical energy states subject to the constancy of the energy of the
system. The various distributions are known as the various complexions or the
microstates of the system.

Throughout the chapter, we restrict to a system containing noninteracting particles.
Example of such a system is an ideal gas.

4.2 BOLTZMANN STATISTICS

A Typical Example
of Distribution

Analysis of
Distribution

In Boltzmann statistics, we deal with the distribution of distinguishable particles
amongst energy levels with no restriction on the number of particles in any energy level.

Let five distinguishable particles be distributed over the five energy levels with
energies 0, € 2¢& 3¢ and 4¢, respectively. Let the total energy of the system in
any one distribution be 4&. Assuming equal accessibility of all energy levels to all
particles, the possible microstates are shown in Table 4.2.1, which also includes the
number of ways of achieving the microstates and the corresponding mathematical
probabilities of their occurrence in the system.

The following comments regarding the microstates of a system may be made.
® The number of microstates in a distribution is given by

N!
W= ———
I, N,
where N is the total number of particles and N;s are the number of particles in
various energy levels.

4.2.1)
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Table 4.21 Number of Ways of Distributing Five Distinguishable Particles

Distribution ~ Number of Particles Procedure of Distribution Number Mathematical
in the Energy Levels of Microstates ~ Probability
0 ¢ 2¢ 3¢ 4e of Occurrence
5
1 40 0 0 1 Any one of the 5 molecules can be 5 — =0.071
. 70
placed in the 4¢ level
. 20
1I 310 1 0 5 ways of placing 1st molecule 5x4=20 20 =0.286
4 ways of placing 2nd molecule
. S5x4 10
1 30 2 0 O 5 ways of placing 1st molecule — =10 70 " 0.143
4 ways of placing 2nd molecule 2
Since the molecules are placed
in the same energy level, the
distribution containing the same
molecules is counted twice, hence
division by two.
v 22 1 0 0 5 ways of placing 1st molecule 5%4%3 30
4 ways of placing 2nd molecule 5 =30 70 0.429
3 ways of placing 3rd molecule
In the energy level g, each
distribution is counted twice,
hence divison by two.
1 4 f placing 1 lecul
v o 0 O 5 ways 0 placing st molecule SxAx3x2 5
4 ways of placing 2nd molecule ARGl 720 " 0.071
3 ways of placing 3rd molecule 4x3x2
2 ways of placing 4th molecule =5
In the energy level &, each distri-
bution is counted 4 X 3 X 2 ways,
hence division by 4!
Total Number of Distributions 70

® The total number of microstates in all distributions may be computed by using

the expression
_ (N+E-D)!
total (N_l)'E‘

(4.2.2)

where E is the number of quanta of energy in the maximum energy level.

® The mathematical probability of occurrence of a distribution is given by

w w
p= -
I/Vtotal ZIVVz

(4.2.3)

® The most probable distribution corresponds to the maximum probability of

occurrence.
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® With the increase in the number of particles, the probability of the most probable
distribution increases towards the maximum value of unity (e.g. for N = 10,
P =0.503; N=20, P=0.547; N=50, P =0.786 and N = 100, P = 0.887). In
a real system where very large number of particles (e.g. 1023) is involved, the
probability of the most probable distribution will be almost equal to one.

® The macroscopic properties of a system depend upon the various microscopic
states of the system. The fact that the probability of the most probable distribution
is nearly unity, the macroscopic properties of a system at equilibrium is largely
governed by the most probable distribution.

® In a real system, energy levels may involve degeneracy (i.e. more than one
energy state is involved in an energy level). In such a case, the number of ways
of distributing the particles is enhanced. For example, the number of ways of
distributing two distinguishable particles is increased from one in a nondegenerate
energy level to four in a doubly degenerate energy levels, as shown in the
following.

-—0— -—e—0— e —— —0

o— —e— —e—0—
Nondegenerate Doubly degenerate energy levels
energy level

The general expression for computing the number of microstates for distinguishable
particles occupying degenerate energy levels with no restriction on the number of
particles in any energy level is given by

N;
W=(N") [ni %J 4.2.4)7

where g; is the degeneracy of ith energy level.

® The quantity W is frequently called the thermodynamic probability, which is not
the same as mathematical probability which for a given distribution is defined

as W, /Y, W;.

As stated earlier, out of many distributions of a large number of particles over the
available energy levels in a system at equilibrium, the probability of occurrence
of the most probable distribution is nearly unity, the contributions from other
distributions are vanishingly small. In this section, we derive the expression to
compute the number of particles in various energy levels corresponding to the
most probable distribution.

In deriving the expression, the principle of equal a priori probabilities is assumed
to be applicable. This implies that the system at any instant may be present in
any one of the possible microstates but the contribution from the most probable
distribution has a maximum value. So, we maximize the number of microstates ¥,
or more conveniently In W, associated with the most probable distribution subject
to the following two conditions.

T For indistinguishable particles, W = TI i(giN’ I/N; 1)
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1. The total number of particles in a system has a constant value, i.e.

N = 2..N; = constant (4.2.5)
or equivalently,
dN =2, dN;=0 (4.2.6)
2. The total energy of the system has a constant value, i.e.
U = Y,,N;&; = constant (4.2.7)

Comment All energies ¢; are measured with respect to the lowest available energy
at 7= 0 K. For translational and rotational motions, £,= 0, but for vibrational motion,
& = (1/2)hv,. Correctly speaking, the internal energy of a system is given by

U =Uy+ 2, Né&
Throughout this chapter, we represent U’ — U, as U.
The condition of constant U implies that
dU = 2 & dN,=0 (4.2.8)

The expression of In W is

&i
o{n )

=InN!+ Y, (N;Ing,—In N}
For a large value of x, one can simplify In x! by using Stirling approximation

In W=1In

Inx!=xInx-x

Hence, InW={InN-N)+ 3, [N Ing —(®;InN,—N)]

The condition of maximizing In W is

almw=3 [} v o 42.9
n - i aNl i ( e )
ow aan: BN N+ N.LB_N_aN
oN; BN, N oN; N,
1
+ {lngi—lnNi—Ni—+1}
N;
oN 821-Ni
i — = =1 h
Since A, N , we have
JdlnWw N,
o, =hN+Ihg-InN=-1In N_g,
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With this, Eq. (4.2.9) becomes

Y, —In (Nij dN, =0 (4.2.10)

1

The constancy of number of particles (Eq. 4.2.6) and energy of the system
(Eq. 4.2.8) are introduced in Eq. (4.2.10) by the method of Lagrange multipliers.
In this method, Eqs (4.2.6) and (4.2.8) are multiplied by undetermined multipliers
and added in Eq. (4.2.10). Hence, we can write

N.
P {—m(N—’jm—ﬂs,}d]vi—o (4.2.11)
i
where o and — [ are the undetermined multipliers.

For the sum to be equal to zero, each coefficient of dV; is set equal to zero. Hence,
we write

N.

~In (—J+ a-Beg=0 (4.2.12)
N i

or N, = Ng,e%Pé (4.2.13)

Equation (4.2.13) is known as Boltzmann distribution law. This specifies the most
probable distribution of particles among the energy levels.

The constant « may be eliminated by using the relation
N=3,N

Substituting &, from Eq. (4.2.13), we get
N= Y, Nge%Pe

This gives
1
= ———
ngi e
With this, Eq. (4.2.13) becomes
_.BS
ge N _
N,=N e Pe (4.2.14)

zigi e—ﬁsi = q &i
where g, known as molecular partition function, is given by
q=%, gePe (4.2.15)

The degeneracy of the energy levels is taken care of by the term g;. However, if
we take summation over quantum states, Eq. (4.2.15) may be written as

q= Z,- e Pe
(states)

It is for this reason, the molecular partition function is sometimes referred to as
a ‘sum over states’.
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Identification of
the Constant 3

Equation (4.2.14) indicates that the fraction of particles in any energy state
is equal to the term exp(— f3 ¢) divided by the sum of all such terms for all the
energy states. Since the physical quantity ¢ governs the partition of molecules in
the energy states, it is called the molecular partition function.

The importance of molecular partition function is that it contains all the
information needed to calculate the thermodynamic properties of a system of
independent particles.

The constant 8 may be identified by equating the internal energy of a monatomic
gas with that obtained from the kinetic theory of gases.

Since the atoms of a monatomic gas have only translational energy, the expression
of internal energy is given by

U=2,Ng (4.2.16)

Using the Boltzmann distribution expression, we get

N N
U= X & exn-Be) = 3, & exp-pe) (4.2.17)
(level) (state)

The expression of ¢; in terms of velocity components of a molecule is
1

€= %m(vi,— + U+ v2) (4.2.18)

Substituting this expression along with the expression of molecular partition
function in Eq. (4.2.17), we get

Nzlém(vf,- +0% +v§,~)eXP{—ﬂ7m(v§,~ +0}; +vf,}
U (4.2.19)
2., exp {_'BTM(U; + U)Zzi + v?i)}

The summation i in the above expression may be considered as the summation
over all possible values of velocity components. Since the translational energies
are very closely spaced, the velocity components may be considered continuous
variables, with the summations replaced by integrals.

Bm

+oo
%mNJ. J J.(vi +v§ +vf)exp{—7(v§ +v§ +v§)}dvxdvydvz

U= ~
_[ _[ jexp{—ﬁTm(vf +v§ +Uf}dvxdvydvz

(4.2.20)
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+oo +oo

j 2 exp(—fmv? /2)dv, j v exp(-fmv?/2)dv,
1 2 -
ie. U= EmN o + —=
2 2
[ exp(=rm?/2)dv, [ exp(=Bm}/2)dv,

—oco —oco

oo
_[ v2 exp(—Bmv? /2)dv,

+oo

J‘ exp(—Bmv?/2)dv,

—oo

+

Since v,, v, and v, are independent, and each of the three terms has the same
form, we can write

+oo
| exp(=pmv?/2)dv

—oo

T _ 2
3 :[ov exp(—Bmv~/2)dv 3 (I/Z)W
U= sz = —mN —'—EE/ﬁm

3N
2
The expression of average kinetic energy becomes
— U 3
U= N ﬁ (4.2.21)
From the kinetic theory of gases, we have
— 3
U= EkT
3 3
Hence, 25 =3 kT
This gives
1
B= T (4.2.22)

Although, the above expression has been derived for a monatomic gas, it is valid
for all types of system.

Comment on the The expression of molecular partition function is
Molecular Partition g = 2,8 exp(—€;/kT)
Function

At temperature T close to zero, the value of each of the term exp(— &/kT) will
be close to zero. If g, = 0, then leaving the first term, for which exp(— €,/kT) will
have a value of one, the partition function will have a value close to g, i.e.

lim g = gy
T—0
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At very high temperature, the value of each of the term exp(— &/kT) will be
close to one, and the value of partition function will be close to the number of
available energy states.

Thus, the molecular partition function gives an idea about the average number
of states that are thermally accessible to a particle at the temperature of the system.
At T =0 K, only the lowest energy state will be accessible while at very high
temperature, a large number of higher energy states are accessible.

4.3 BOSE-EINSTEIN STATISTICS

Expression to
Compute the
Arrangements

In Bose-Einstein statistics, we deal with the distribution of indistinguishable
particles among the energy levels with no limit on the number of particles in any
of the energy state.

Let N indistinguishable identical particles (p;, py, ..., py) be distributed over g
distinguishable degenerate energy states (£}, E,, ..., E,) with no limit on the number
of particles in any of the energy states.

Let we represent a particular distribution in the following way.

Ey p1 Ps P7 E2 P2 Po E3 E4 Py Ps -
This implies that the energy state
E, is occupied by the particles p;, ps and p-,
E, is occupied by the particles p, and po,
E5 is unoccupied, and,
E, is occupied by the particles p, and pg, ... and so on.

Leaving the energy state £, the number of ways of arranging the remaining
N + g — 1 energy states and particles is equal to (VN + g — 1)!.

In the above arrangement, the interchange of two energy states along with their
occupied particles leads to the same distribution. There will be (g — 1)! arrangements
which correspond to the same numbered particles in the same order placed in the
same numbered energy states. Thus, the total arrangements (N + g — 1)! are reduced
by the factor (g — 1)!.

Since all the particles are identical and indistinguishable, and we are concerned
with no specific order in any energy state, the total number of arrangement is further
reduced by a factor N!. Hence, the number of ways of placing N indistinguishable
particles in g distinguishable energy states with no restriction on the number per
energy state is given by

_ (g+N-D!
(g—-D!IN!
The thermodynamic probability of a given distribution of particles over the energy
levels is the product of number of arrangements of all energy levels, i.e.
(g; +N; =D!
(g -DIN;!

4.3.1)

wW=T1 (4.3.2)
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Let five identical indistinguishable particles be distributed over five energy levels with
energies 0, & 2¢, 3¢ and 4¢, each one is fivefold degenerate. Let the total energy
of the system be 4&. The possible distribution along with their thermodynamic
probabilities are shown in Table 4.3.1.

Table 4.3.1 Distributions of Five Bosons Amongst Energy Levels

Distribution Number of Particles Thermodynamic Probability
in Energy Levels : 1)
W= 1_Ii((]\f,+i,'Nl)'.
&g — 1)V
0 € 2 3¢ A4
| ! | | !
L a0 o (i) (oo ) () () 30
141) 410! )14!0!)\410!)\ 41!
7! 51 4! 5! 4!
II 3 1 0 1 0 a31) Lamn ) Laron) Lam) L aron 875
| ! | 41 !
11 30 2 0 0 (7—) (4—) (6—) (—J (4—] =525
131 10! 12! 10!1)\ 410!
6! 6! 5! 4! 4!
v 2 2 1 0 0 PTEY 21 !1! 01) | 2101 =1125
51 8! 4! 4! 4!
v b4 000 a) Lara ) (@0 ) Laron) Lo ) =30

The Equilibrium
Distribution

The system to which Bose-Einstein statistics is applicable is found to have the
characteristics of g; > 1. In such a situation, the number 1 appearing in the
numerator and denominator of thermodynamic probability (Eq. 4.3.2) can be
neglected. The expression is reduced to

N +g)!
- I7, ——=2
w= 11, 2 N, (4.3.3)
The expression of In # becomes
InwW=2,[In(N,+g)! —Ing ! —InN,] (4.3.4)

For a system containing very large values of g; and N,, one can use Stirling
approximation to eliminate factorials. Hence, we get

In W =2, [{(N;+g) In(V,+g)— (N, +g)} — {g Ing,— g}
— {N;In N, - N}}]
=2, (N;+g)In(N;+g)—gIng,—N;InN,
The condition of maximizing In W is

olnw
dan—Zi[ ]dN,-—O

N (4.3.5)
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Reduction to
the Boltzmann
Distribution Law

N M (Nt g)+ 1IN 1= In —
ow AN, =In(N;+g) —mN,—1=-1In N, +g,
With this, Eq. (4.3.5) becomes
N.
dln W= | —In : dN, | =0 4.3.6
! 21|: (Ni+gij l} ( )

The constancy of number of particles (Eq. 4.2.6) and energy of the system
(Eq. 4.2.8) are introduced in Eq. (4.3.6) to give

N.
| —In ! + o — Pe; =
Z,[ (Ni"'gij p l}le 0

For the sum to be equal to zero, each coefficient of dA, is set equal to zero. Hence,
we write

N;
—In [Ni+gij +a-Pg=0 4.3.7)
N.
4 — o0 o BE;
or N tg e%e

Inverting this equation, we get

8i

ot —oa P
1+ N, e e (4.3.8)
&i
or Ny= ———— 439
e %ePe 1 (439
For a system in which g;/N; > 1, Eq. (4.3.8) may be approximated as
f]_ii =e % e
or N, =g, e% ¢ Pei
We can eliminate ¢ by using the fact that
N= Zi ]\[1’: zigi eoc eiﬁgi
N
or %= ————
Zigi e P
—Be,
e N
Hence, N,=N —2— = =g ¥ (4.3.10)
zigi € ' 9q

which is identical to Boltzmann distribution law (Eq. 4.2.14), i.e. the Bose-Einstein
statistics predicts the same distribution of particles among energy level as does
Boltzmann statistics.
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Under the approximation g; > N,, the thermodynamic probability also reduces
to a form identical to that of Boltzmann statistics, since one can write

(g;+N, -D!
(g —D!

In an atom or molecule, the number of translational energy states alone is
sufficient to guarantee the number of energy states available to any atom/molecule
much greater than the number of atoms/molecules in the system.

4.4 FERMI-DIRAC STATISTICS

—g(g+ D (g+2) .. (g +N—-1) =~ g 43.11)

Expression to In Fermi-Dirac statistics, we deal with the distribution of indistinguishable particles
Compute the among the energy levels with only one particle in any of the energy state.
Arrangements

Let N indistinguishable identical particles be distributed over g distinguishable
degenerate energy states with the restriction of only one particle in any of energy
state. The latter condition requires that N < g.

For distinguishable particles, we will have
g choices for the 1st particle
g — 1 choices for the 2nd particle

g — N+ 1 choices for the Nth particle

The total choices or arrangements will be

g!
@@E-1D..g-N+1)=—+1=
(g-M)!

Since the particles are indistinguishable, the above arrangement has to be divided
by N! permutations of the N particles. Hence, the number of ways of placing N
indistinguishable particles in g distinguishable degenerate energy states with a limit
of no more than one particle per energy state is

g!

W= m 4.4.1)

The thermodynamic probability of a given distribution of particles over energy
levels is the product of number of arrangements of all energy levels, i.e.

W= 8! (4.4.2)

g —N)IN,!

A Typical Example  Let five identical indistinguishable particles be distributed over five energy levels
with energies 0, €, 2¢, 3¢ and 4¢, each one is fivefold degenerate. Let the total energy
of the system be 4&. The possible distributions along with their thermodynamic
probabilities are shown in Table 4.4.1.
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Table 4.4.1 Distributions of Five Fermions Amongst Energy Levels

Distribution Number of Particles Thermodynamic Probability
in Energy Levels w =TI g!
I_Il(gi_Ni)!Ni!
0 & 2 3e 4e
5! 5! 5! ! 5!
R () ) () () () =
141\ 5101) (5101 (510! L 4!1!
51 51 51 51 51
I 3 1 0 0 — === === =250
131 1) (50! 11) {50!
51 5! 51 51 5!
111 30 2 0 2131 Usr01) (3121 Usto1) U510 =100
51 51 51 51 51
v 2 2 0 (on) (om) (2] (551) (551) =500
3121\ 312! 1) (5101) \ 510!
5! 51 51 51 51
O ol ) () () ) -2
1)\ 1r4t) (5101 (5101 510!
The Equilibrium The expression of In W is
Distribution

g;!
=In |TT,—5C
i =ln [ l(gi_Ni)!Ni!:|

=Y [ng!—In(g—N)!—InN!] (4.4.3)

Using Stirling approximation, we get

In W= 2%, [(gng-g) —{g—N)In(g-N)—(g—N)} - InN,~N)]

= Zi [giIng,—(g;— Ny In(g,—N)~- N, InN]

The condition of maximizing In W is

Now

_y olnw B
dln W= o, dN,=0 (4.4.4)
(g - N)—1}— {In N+ 1
aN, =0-{-In(g-N)-1} - {In N, }
——ln( N; j 4.4.5)
g—N;
With this, Eq. (4.4.4) becomes
dln W= z{—m( N; jdzv,} =0 (4.4.6)
g ~—N,

The constancy of number of particles (Eq. 4.2.6) and energy of the system
(Eq. 4.2.8) are introduced in Eq. (4.4.6) to give
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N;
Zi[—ln( gy jﬂ%—ﬂa} dN,=0 (4.4.7)
For the sum to be equal to zero, each coefficient of dAV; is set equal to zero. Hence,
we write
n [ 2] =0 4438
~In g N o-Pg= (4.4.8)
or Ni o ebe (4.4.9)
g&—N;
Inverting this equation, we get
& _ o Pe
N, I=¢e"e
&i
or N=—"="— (4.4.10)
e %P 41
Reduction to For a system in which g;/ N; > 1, Eq. (4.4.10) may be approximated as
the Boltzmann g
Distribution Law = =e%efe
or N, =g % e Pei

We can eliminate e¢* by using the fact that
N=3,N=3,g¢" e P
N
or %= ————
2 i 8i e

—PBe;
gie N _Be;
—— = — g e P (4.4.11)
Z,-g i© e q ™
which is identical to Boltzmann distribution law (Eq. 4.2.14), i.e. the Fermi-Dirac
statistics predicts the same distribution of particles among energy levels as does
Boltzmann statistics.

Hence, N;=N

Under the approximation g; > N,, the thermodynamic probability also reduces
to a form identical to that of Boltzmann statistics, since we can write

g! :
W =g; (gi_ 1) (gi_Ni+ 1) ~ gIN’ (4412)

In an atom or molecule, the number of translational energy states alone is
sufficient to guarantee the number of energy states available to any atom/molecule
much greater than the number of atoms/molecules in the system.

4.5 THERMODYNAMIC PROPERTIES IN TERMS OF MOLECULAR PARTITION FUNCTION

In this section, we express some of the properties of a system in terms of molecular
partition function.
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Internal Energy

Identification of
the Terms Heat
and Work in

the First Law of
Thermodynamics

The expression of internal energy is

U=, N¢g
From the Boltzmann expression, we have
N .
N, = = g ePei; (where B = 1/kT)
q

N
Hence, U = (2,—7&3 ﬁg")ei

From the fact that

oe~Pe ]
— B
=—g¢
%5,

we can write the above expression as

__N G e\ __ N [9%
U‘?Z"g"[ op ]V‘ op (Zisie )V__(BIJV

q

B Blnq]
=—N|— 4.5.1
(8/3 , (4.5.1)

In terms of 7, we have
o= (%) &)
o oT ), \dB
Since T = 1/k, we have
ar 1 1 eT?

B kB> kATY?

, (dIng
Thus U= NkT* | —— (4.5.2)
oT )y
From the first law of thermodynamics, we have
dU=dq + dw 4.5.3)

where ¢’ and w stand for heat and work, respectively.

Since U = )., N, €, we also have

1

dU= 3, &dN;+ X N dg (4.5.4)

The first term of Eq. (4.5.4) expresses the change in internal energy due to the
change in population of particles in the energy levels. This fact may be attributed
to the term dg” of Eq. (4.5.3). Hence, we write

dg =Y, & dN, (4.5.5)

The second term of Eq. (4.5.4) expresses the change in internal energy due to
the change in the magnitude of energy levels. This fact may be attributed to the
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term dw of Eq. (4.5.3) as the magnitude of energy level is affected by the change
in the boundary parameters (say, volume) of the system. Hence, we write

dw= 3 . N, dg; (4.5.6)
The expression of mechanical work is

dw=—-pdV
Using Eq. (4.5.6), this becomes

—pdV'=73 N, dg
Using the Boltzmann expression, we get

N

—pdV= " Y. (gePhide); (where 8= 1/kT) (4.5.7)
The differential change in the molecular partition function ¢ at fixed temperature is

dg =3, ge (P de
With this, Eq. (4.5.7) becomes

dv N1 d ol dl
pdV=— — dg=—4 dlng
B B
N (9Ing
Hence, = - 4.5.8
p B ( v ), ( )
Since 8= 1/kT, we have
d lnq)
= NkT | —— 459
p ( ) (4.5.9)
By definition,
d ’
ds = Hrev (4.5.10)
T
Using Eq. (4.5.5), this becomes
1
ds= T > & dN; (4.5.11)
Since B= 1/kT, we get
dS=Bk 3, & dN;=k X, (Be) dN, (4.5.12)
From the Boltzmann expression
olnw
aN, +a-Peg;=0 (Eq. 4.2.12)
olnw
we get fe; = +a

oN;

1
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Entropy of
Distinguishable
Particles

With this, Eq. (4.5.12) becomes

olnWw
ds=k Y, N ) ANt ka > .dN;

But ), dN;= 0. Hence

olnw
ds=k Y. (

or S=klnWw

]dN k(d In W)

Equation (4.5.14) is known as Botlzmann-Planck equation.

Since W= N'Hg

InW=InN!+ Y Nng -

N,

i

N; !’

we get

Using Stirling approximation, we get

InwW=NIhN-N)+ } N Ing -

=NInN+ ) N;/Ing,—

. InN;!

2. N;In N,

>, (N;In N; = N)

From the Boltzmann expression N, = (N/g) g; exp(— B&,), we get

N;
- YN;In Ne,
Ni e_ﬁgi
Ng; q
g L/ 1
or n Ne, =—fBg-Ing

With this, Eq. (4.5.15) becomes

In W= 3, N; (Be; +In q) :ﬁ(ZiNigi) +

=BU+Nlng
Hence, the expression of entropy is
S=klnW=kBU+kNlng

(ZiNi)lnq

_ U
— +kNIn
T q
Substituting the expression of U from Eq. (4.5.2), we get
S = NkT (a lnq) + Nklng
14

- H oT

0 Ing

) v

(4.5.13)

(4.5.14)

(4.5.15)

(4.5.16)

(4.5.17a)

(4.5.18a)
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For indistinguishable particles

W= TI, gz
N;!
Hence, In W =Y, (N;Ing,—In N;!)
Using Stirling approximation, we get
In W= 3, (N;Ing—N;InN;+N)

=Y, NIn &+ p
N;
From Boltzmann expression N, = (N/q) g; exp(-f¢€,), we get
& _ 49 o Pei

N, N

or In (]g\’_llj =In (%)+ Be;

Hence, In W= Y N, [ln(%)"'ﬁsx} +N
=NIn ( ) B(XiNe) +n

—Nln( )+[3U+N

The expression of entropy is
S=klnW

— {Nln (N)+/3U+N}

_ q dlng
Nk [m(N)JrT( o )V+1} (4.5.17b)

Since H= U+ pV, the expression of H is

H = NkT> (alnq) + pV (4.5.18b)
T ),

Since C),, = (U/dT),, the expression of C), is

[ a 2(81nq) } 9 2(31HQ) }
C,=|—NKkT =Nk |—T"| —— 4.5.19
4 _aT aT Vv 14 _aT aT V 174 ( )

Since  C,= (dH/JT),, the expression of C, is

" 2(81nq) }
c = |LInkr v 4520
p _aT{ ar ), 7 (4.5.20)
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Helmholtz Free
Energy

Gibbs Free Energy

Since A = U — TS, the expression of A for distinguishable particles is
A=U-T (%+kNlnq)
=—NkTIngq (4.5.21a)
For indistinguishable particles, the expression is
A = NkT (m%ﬂ) (4.5.21b)

Since G = H — T'S, the expression of G for distinguishable particles is
G=U+pN-TS=U-TS)+pV=A+pV
=—NkTlng+pV (4.5.22a)
For indistinguishable particles, the expression is
G’ =— NkT (ln%+ 1) +pV
Since pV = NkT, we get

G’=-NkTln (%) (4.5.22b)

4.6 MOLECULAR PARTITION FUNCTION OF A DIATOMIC MOLECULE

Factorization of
Partition Function

A diatomic molecule has various kinds of energy, viz., translational, rotational,
vibrational, electronic and nuclear energies. All these energies are quantized.
Since the nuclear energy levels are not involved in chemical reactions, these are
simply ignored.

If the molecules of a system are considered independent molecules (say, molecules
in an ideal gas), the energy of a diatomic molecule, under the assumption that
there exists no interactions amongst different modes of energies, can be written as
the sum of its translational, rotational, vibrational and electronic energies (Born-
Oppenheimer approximation), i.e.

e=¢gtete te, (4.6.1)
The degeneracy of energy € is equal to the product of degeneracies of g, €, €,
and ¢, energy levels.

The molecular partition function is given by

g =Y &8 & exp(-Pe)
t,r,v,e

= trzve 2 & & & exp{— B (g+e +e,+ &)} (4.6.2)

Since a sum of independent products can be written as a product of sums, the
above expression can be written as

q= [ ;gt exp(~ ﬁet)} [ ;gr exp(~ ﬁsr)} { %gv exp(- ﬁev)} [ %ge exp(— Bee)}

= 419: v 9e (4.6.3)
that is, molecular partition function is equal to the product of translational,
rotational, vibrational, and electronic molecular partition functions.
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Taking logarithm of Eq. (4.6.3), we get
Ing=Ing +Ing +Ing,+1ng,

Since the thermodynamic functions of distinguishable independent molecules
involve In ¢ or the differentials (0 In ¢/dV); and (9 In ¢/dT),, the expression
of overall thermodynamic function will be equal to the sum of thermodynamic
functions of different modes of motion. For example, the internal energy is given by

dlIng

U= NkTZ(—) = NkT? {W}
or )y )

aT

— NET? {a(lnqt +Ing, +Ing, +1nqe)}
oT y
a1
- Nsz(—n %] w2 A0 2 ANGy o dinge
ar ), dr dr dr
=U+U+U, +U, (4.6.4)

Note: For rotational, vibrational and electronic modes, the notation of partial
derivative is not used, because the corresponding molecular partition functions
are independent of volume.

The expression of entropy (also those of Helmholtz and Gibbs functions) for
indistinguishable particles is different from that of distinguishable particles.

Sgis = Nkln g + % (Eq. 4.5.17a)
q U

Singis = NkIn — + — + Nk (Eq. 4.5.17b)
N T

Since the translational motion makes the particles indistinguishable, all extra
terms in entropy of indistinguishable particles are attributed to translational entropy.
The expression of entropy of indistinguishable diatomic molecules is given by

s=nin L +Y s m
N T

— Nkln 919:9v9e U +U, +U, +U, + Nk
N T
Hence, we have
q: U,
S;=Nkln|—=|+ — +Nk (4.6.5)
N T
_ U
S,=NklIng, + =L (4.6.6)
T
S, = Nkln g, + U? (4.6.7)
U
S,=Nklng, + == (4.6.8)

T
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In a similar manner, the expressions of Helmholtz and Gibbs functions for

indistinguishable particles are given by

A =— NkT (ln N+1j
=—NkTIn g,
y=—NkTIn g,
e=—NkTIn g,

G,= - NkTn (q—]\‘,)

G.=—NkTn g,

G,=—NkT g,

and G.,=—-NkT1n g,

4.7 THERMODYNAMIC PROPERTIES OF A MONATOMIC IDEAL GAS

Translational An atom has two kinds of energy, viz., translational and
Partition Function partition function can be written as

9~ 4919,

(4.6.9)

(4.6.10)
4.6.11)
(4.6.12)

(4.6.13)

(4.6.14)
(4.6.15)
(4.6.16)

electronic energies. The

4.7.1)

In this section, we derive the expressions of g, and ¢, and then proceed to compute

the thermodynamic properties of monatomic ideal gases.

The translational energy of an atom in a volume V' is given by

h2

— 2 2 2

8_8 V2/3 (nl+n2+n3)
m

(4.7.2)

where n,, n, and n, are quantum numbers, each having values of 1, 2, 3, ....

The partition function written as a sum over quantum states is

-3 3 Z exp(~ fe)

n=1 ny=1 ny=

-y ¥ ¥ W B 2.2, 2
=2 X X exp —8—(171 +n; +n3
m

m=1 n,=1 ny=1

(where 8= 1/kT)

h2 o h2
{ Z exp( Vg“ i ﬂ Lz:lexp(_wf;s " H
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Since the three exponential functions and summation over #,, 1, and »; are identical,
we can write the above expression as

3
4 = ZeXp( B ZH (4.7.3)

smp3
Equation (4.7.3) may be written as
r 3
oo hzﬁ
q, = Eoexp[— TR nzj—l} (4.7.4)

Neglecting one in comparison to the summation term, we get

3
q = Zexp[ "B 2}} (4.7.5)

8m V2/3

Since the translational energy levels are very close to each other, the summation
in the above expression may be replaced by integration. Hence

r 3
g4 = j exp(—mnzjdn} (4.7.6)

Lo
which on integrating gives

1 S V2/3 1/2 (21‘5_}71)3/2
q: = \/—( hﬁ ] ] V hzﬁ

2nmkT \*'?
_y ( - ) “.7.7)
Equation (4.7.7) may be written as
V
q, = F (4.7.8)

where A = (W*/2rmkT)"* and is called the thermal de Broglie wavelength.

Evaluate translational partition function for oxygen atoms at 300 K contained in a volume
of 22.414 dm’.

The expression of thermal de Broglie wavelength is

PEENE
- [Qnkaj

Substituting the data, we get

2(3.14)(16 x 1.66 x 1027 kg) (1.38 x 10723 T K1) (300 K)
=252x10"m

[ (6.626 X 107 J 5)? }”2

T See Annexure I at the end of the chapter for the alternative method of computing
translational partition function.
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The value of translational partition function is

Vo 22.414%107° m’

_ 30
B 252x107 my ~ 14010

qr =

Variation of q, with  Taking logarithm of Eq. (4.7.7), we get

Tand V
In g,= In (V/m®) + > In (ank /m—2 K‘lj 3K
2 W 2
dlng, 1 dlng, 3
H = — d =
ence, ( 37 jT 7 an ar ), " 21
Internal Energy From Eq. (4.5.2), we have
dln
U = NkT* (—qt)
oT Jy
H U = NkT* (i) = 2Nt
ence, T >
In terms of amount of gas, we have
3 3 3
U= E(nNA)kT: En (NAK)T = EnRT
Pressure From Eq. (4.5.9), we get
dl
p = NkT ( 1 "’)
v Jr
Hence, p = NkT (l) _ Nk
14 14
In terms of amount of gas, we have
_ (WNJDKT _ n(NAOT _ aRT
14 vV V
Heat Capacity at Since  Cj, = (9U/dT),, we get
Constant Volume d (3 3
= — | =nRT | == nR
= ar ( " ) 2"
C
and Cy =L = ER
’ n 2
Enthalpy Since H =U+ pV, we get

3
H:—nRT-i-nRT:énRT
2 2

Heat Capacity at Since  C, = (0H/dT),, we get

Constant Pressure 4 /5
C (—nRT) =
Poodr\2

nR

>
2

R

ol 3

and Cp =

, m

(4.7.9)

(4.7.10)

4.7.11)

(4.7.12)

(4.7.13)

(4.7.14)

(4.7.15)

(4.7.16)

4.7.17)
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Entropy Since the molecules in a gaseous phase are indistinguishable, the entropy of
monatomic gas is given by

q4 dIn g, )
= In—=+7|——| +1
S=Nk [ N ( o ), (Eq. 4.5.17b)
3/2
= Nk |In K(znkaj +T(i)+1
NU W 27
emkT 32
= Nk |In K( ik ) £ (4.7.18)
NU »? 2
In terms of pressure of the gas, we have
KT (2mmkT '
S, =Nk {m{—( = ) }+§} (4.7.19)
P\ h 2
Sackur-Tetrode The atomic mass is given by
Equation m=A,m, (4.7.20)

where 4, is the relative atomic mass and m,, is the atomic mass unit (= 1.66 X 1027 kg).
Substituting Eq. (4.7.20) in Eq. (4.7.19) and expressing 7 and p as dimensionless
quantities, we get

ERT/K)Y? (27‘cArmu jm 5
= 1 2
S, =Nk { n{ (0l p°) ¥ + 2

5/2 5/2 2 3/2
S;=Nk |In 1K) ( nmu) +§1n1‘1r +§1n(1) | 242
1 p°) W 2 2 \K p°) 2

4.7.21)

or

The numerical value of the constant terms within the brackets is

L[ A38X10P KT AK)? (2614 166x107 k)| | | 5
(10° Pa) (6.626x107*1 5)? 2

=1n (0.02588) + % =-36541+25=-1.1541

With this, Eq. (4.7.21) can be written as

o

8¢ 3 5 (T) (pj
o — = —-1.1541+=In 4. +—=In| — |- In| —
s° R [ 5 A, S| % s (4.7.22)

n

Equation (4.7.22) is known as Sackur-Tetrode equation.



308 A Textbook of Physical Chemistry

Helmholtz Free
Energy

Gibbs Free Energy

Example 4.7.2

Solution

Electronic Partition
Function

Since A4=U-TS, we get

kT 2nka 2] 5
A= NkT NkT +=

2
ie. —NkT[ {

3/2
“ka ) } 1} (4.7.23)
Since G=H-TS, we get

3/2
G ——NkT NkT{ {kT 2“’””) }+§}

2

3/2
— _ NkTIn | K[ 2mmkT (4.7.24)
p\ w

Calculate the translational contributions to US, Hy,, S5, Ag, and Gy, for helium at 25 °C.

We have
U3 = (3/2) RT = (3/2)(8.314 J K" mol ")(298 K) = 3 716.4 J mol"

H° = (5/2) RT = (5/2)(8.314 T K" mol )(298 K) = 6 193.9 J mol ™"

m

5o =R —1.1541+31n4+§1n(5)—1n £
2 2 \K »°

=(8.314 J K mol™) [—1_1541 +%1n4 +%1n298 ~In 1}
=126.1 J K™ mol™!

AS = U° —T5° =(3716.4Jmol ™) — (298 K) (126.1 J K" mol™)
=33 861.4 J mol!
G® = H —T5°=(6193.9 J mol™") — (298 K) (126.1 J K" mol ™)

=—31382.9 J mol™

By convention, the energy of the ground electronic level is taken as the reference
state and assign its value equal to zero. The electronic partition function is given by

ge=g tg eV rg et (4.7.25)

The summation is carried out by direct addition of different terms.

Using the following definitions

i -r () -r [Tl )]

£.
- = -& kT
2 g,( ij e (4.7.26)
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dg; d (. dg. dg d’q
” o _ _ T _ e 4 2 e
and g =T gy =T {dT( ar )] " ar T e

2
2¢; & —e
_ & | -glkT 5 D B oG/
‘T{z’g"[wzje }” [Z’g’{ kT* (WJ} }

2
E.: _ E. B
_ E[gi( ljegi/kT-l_ Eigi( lj eS,'/kT

kT kT
e V2
’ i —&;lk
=—q¢'+ 2.8 (ﬁ) e & (4.7.27)
we can write the expressions of thermodynamic molar quantities as
dlng RT? dg q.
U=H=RT* ——~=—— — - =RT —* 4.7.28
€ € dar q. dT 9e ( )
U 4
S.,=RIng,+ = =R {lnqe + &} (4.7.29)
T 9e
A.=G.=—RTlIngq, (4.7.30)

d q; q; q7 ()
- = — |RT | =p 2= g 1= _p =~
(G = (E1e dT( j Ry "Ry R

¢ e

’ ” ’ 2
at+al (4e
R l 7 (qej 1 (4.7.31)

Comment For an atom where only the ground electronic state is of significance, the
partition function g, reduces to the degeneracy of the ground level, and both ¢/ and ¢
are zero. Consequently, the electronic contributions to U, H, Cp and Cj, are all zero,
while those of S, G and A4 are zero only if the degeneracy of ground level is unity.

Equations (4.7.26) — (4.7.31) are also applicable to rotational and vibrational motions.

The following first three electronic energy levels of atomic fluorine are available.
(15)%(25)%(2p)° Py 0; P,  404cm’
(1s)*(2s)°(2p)*(3s)  *Ps), 102 406 cm™!

Calculate:

(a) The fraction of atoms in each of the first three electronic levels at 1000 K.

(b) The internal energy, heat capacity at constant volume, enthalpy, heat capacity at

constant pressure, entropy and Gibbs free energy at 1000 K and 1 bar pressure.
We have

& hevp _ (6.626x107* Js)(3x10°ms™) (404 x 102 m™)
kT kT (1.38%x1072 J K1) (1000 K)
=0.582

& _ hev,  (6.626x107*J5)(3x10° m s7)(102406x10% m™!
kT kT (1.38x1072 J K11 000K)
147.51
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The value of electronic partition function is

_ —& kT _
qe=8o+ g e + g, g

= (2><§+1) + (2xl+1) ¢ 9+ (2x§+1) R
2 2 2

=4+2(0.559) +0=>5.118
(a) The fractions of fluorine atoms in the first three electronic levels are

N, ge @ 2%0559

— = = =0.218
N 9e 5.118
N, ge @ 6x0
N 9e 5.118
(b) The translational contributions to thermodynamic properties of fluorine atoms are
as follows.
3 3 _ -1
U3)= 5 RT 5 (8.314 J K" mol™) (1 000 K) = 12 471 J mol
3 3 - - 1
(Cymh= 5 = > (8.314 JK ' mol™") = 12.471 T K" mol”
5 5 - 1
(Hy), = ) RT 5 (8.314 T K" mol™) (1 000 K) = 20 785 J mol
5 5 -1 -1 -1 -1
(o 5 R= > (8.314 J K" mol ) =20.785 J K mol

(So) = R {—1.154l+§1nAr +§1n(5)_1n(£ﬂ
2 2 K p°

=(8.314 J K mol™) [—1.1541+%1n19+%1n1000—1n1}

= (8314 JK ' mol™) (— 1.154 1 + 4.4167 + 17.2694 — 0)
=(8.314 T K mol™) (20.5320) = 170.70 J K mol!
(G2), = (H), — T(52), = (20 785 J mol ™) — (1 000 K) (170.70 J K" mol ™)

=- 149 915 J mol '
The electronic contributions to thermodynamic properties of fluorine atoms can
be computed by considering the first two electronic levels as the population in the
third and higher electronic energy levels are negligible.

0o 3, (5o

kT
= 4(0) (1) + 2 (0.582) (0.559) = 0.651

2
E; s ,
=3, gi(ﬁj e Mg
= 4(0) (1) + 2 (0.582)% (0.559) — 0.651 = — 0.272
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. 651
Hence, (Up),=(H,),=RT L& = (8314 7K " mol™) (1 000 K) (_0 65 )
ge 5.118
=1057.5J mol!
’ ” N\2
9. +4q. (q
(Cp,m)e: (CV,m)e =R [u_(i) :l
9e qe

(8314 7K' mol ) {0.651—0.272 (o.éslﬂ
= (2. mo -

5.118 5.118

=(8.314 J K" mol™) (0.0741 — 0.0162)
=0.481 TK ' mol

(S2).= R [ln 9. +q—6}
q

€

= (8314 J K mol™) [ms.us + 0'651}

5.118
= (8314 J K mol™") (1.633 + 0.127)
=14.63 J K mol™

(G°).= (H2), —T (%), =1 057.5 T mol ' —(1 000 K)(14.63 J K" mol ™)
=—13572.5 ] mol!

The values of thermodynamic properties of fluorine at 1 000 K and 1 bar pressure
are as follows:

U, = Uy, + (U, = (12 471 + 1 057.5) T mol ™' = 13 528.5 J mol ™’
H, = (H,),+ (H,), = (20 785 + 1 057.5) J mol ' = 21 842.5 J mol !
Cpmn = (Cpp) + (Cp)e = (20.79 +0.48) TK ™ mol™'=21.27 J K™ mol ™
Cym = (Cym)+ (Cpp)e = (12.47 +0.48) TK ' mol ' = 12.95 J K mol!
S =S+ (S,). =(170.70 + 14.63) T K™ mol' = 185.33 J K" mol ™!
G, =(G,),+(G,), = (- 149 915 — 13 572.5) T mol ' = — 163 487.5 J mol*

4.8 THERMODYNAMIC PROPERTIES OF A DIATOMIC IDEAL GAS

Expression of
Molecular Partition
Function

A diatomic molecule has all the four kinds of energy, i.e. translation, rotational,
vibrational and electronic. Assuming no interactions amongst different modes of
energies, we can write

e=¢gtete te, (4.8.1)
The expression of its partition function is
q =499 9. (48.2)
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Contribution from Translational Motion

The translational contributions towards the various thermodynamic properties of a
molecule are the same as those of atoms. Hence, the expressions derived in Section
4.7 are also applicable to diatomic gases.

Contribution from Rotational Motion

Expression of
Rotational Energy

Expression of
Partition Function

The rotational energy of a diatomic molecule assuming it to be rigid rotator is
given by

&=BhcJ(J+1); J=0,1,2, ... (4.8.3)
where B, rotational constant, is given by

B - }; (4.8.4)

8 lc

In the above expression, / is moment of inertia (/ = urz, W= m;m,/(m; +m,)) and
c is the speed of light.

The degeneracy of energy levels is given by
g&=2J+1 (4.8.5)
The rotational partition function is given by

g.= S (J+1)exp{— Bhe(J + 1)/kT} (4.8.6)
J=0

If it is assumed that the rotational energy levels are spaced sufficiently close
together, then the summation in Eq. (4.8.6) may be replaced by integration to give

qr=T (J + 1) exp{— BheJ(J + 1YkT} dJ (4.8.7)
0

LetJ(J+1)= y2 such that (2J + 1) dJ = 2y dy. With this, the above integration
becomes

! 2Bhe/kT ) Bhe  (W8TIc)he
8n’l k
= { % J T (4.8.8)
The above expression is usually written as
T
= — 4.8.9
%=y (4.8.9)

T
where 0,, known as characteristic rotational temperature, is given by

h2
 8mllk

(4.8.10)

T
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Symmetry Number

Expressions of
Thermodynamic
Functions
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Calculate the characteristic rotational temperature for N, molecule. Given: The internuclear
distance of N, is 109.76 pm.

The reduced mass of N, is

The moment of inertia of N, is
I =ur*=(1.162 x 10° kg) (109.76 x 1072 m)>?
=1.40 x 107* kg m?

The characteristic rotational temperature is

PO (6.626 107 J5)°
"o8ntlk  8(3.14)%(1.40x107*kg m?)(1.38x1072 JK ™)
=288K

Symmetry number (symbol: 6) of a molecule is the number of indistinguishable
configurations the molecule assumes when it is rotated once by an angle 360°.

For a homonuclear molecule (e.g. H,, O,, N,, ...), 6 = 2 as the rotation by 180°
produces indistinguishable configuration from its original configuration.

For a heteronuclear molecule (e.g. HCI, HBr, ...), 6 = 1.
To avoid more than one counting of indistinguishable configurations of a

molecule during the rotation by 360°, the partition function is divided by its
symmetry number to give

T
- = 4.8.11
ey ( )
The expression of In ¢, is
Ing,=1n (7/K) —In 6 — In (6,/K) (4.8.12)
dl 1
Hence, ——dr _ = (4.8.13)

The thermodynamic properties of diatomic gases are given by the following
expressions.

_ _ p2 dlIng, _ p72 (l) _
(Un),= (H,), =RT 5 “RT ) =RT (4.8.14)
(Cp,m)r = (CV,m)r =R (4815)
_ Y _ T
(Sw), =R Ing, + 7 R [ln(cerjﬂ} (4.8.16)
(Aw), = (Gy), =~ RTIng,=—RT'n [Giej @817

Calculate the rotational contributions to internal energy, entropy and Gibbs free energy for
diatomic oxygen at 500 K. Given: Internuclear distance of O, = 121 pm.

T See Annexure II at the end of the chapter for the quantum mechanical explanation of
symmetry number.
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Solution

Comment on the
Replacement of
Summation by
Integration in

the Expression

of Rotational
Partition Function

We have

Reduced mass

~ 16x107 kg mol™
2(6.022 x 10% mol™)
Moment of inertia
I =u?=(133x102%kg) (121 x 1072 m)?
=1.95 x 107* kg m?
Characteristic rotational temperature
Y S (6.626 x1073* J 5)?
C8n’lk 8(3.14)2(1.95x 10 kg m?)(1.38 x 102 JK ™)

=133x 10 kg

=2.07K

T

Rotational partition function

T (500K)
G0, 2(2.07K)
The values of thermodynamic properties are as follows.

Un), = (Hy), =RT=(8.314 TK ' mol™") (500 K) = 4 157 J mol ™’
(Sy), =R (Ing,+ 1) = (8314 J K ' mol™") {In (120.77) + 1}
= (8314 J K ' mol™) (4.79 + 1) = 48.17 J K™ mol™

(Gp), =—RTIn g, =— (8314 JK ' mol) (500 K) (In 120.77)
=—19928.2 J mol™!

The replacement of summation in Eq. (4.8.6) by integration is found to be valid
provided 776, = 100. For a low T or high 6, (i.e. low I), the value of 7/6, may be
less than 100. In such a situation, the value of rotational partition function should
be evaluated by term-by-term summation. Using the Euler-Maclaurin summation
theorem, it can be shown that the rotational partition function is given by

7i 1+l(ﬂ)+$(ﬂ)2+i(i)3 A 4.8.18
50 | "3\ r) 15\r) T3s\T (4.8.18)

The various thermodynamic molar properties may be evaluated by using Eqs
(4.7.28) to (4.7.31), where

(4 T I_L(ﬂ)z_i(ﬂ)3+...
“T\ar )" o6, | T15\7) T31s\7 (4.8.19)

” dqr, L 1+L(ﬂ)2+£(ﬂ)3+
and v =47 ) T e | T15\7) T315\T (4.8.20)

~

q

fon

Contribution from Vibrational Motion

Expression of
Vibrational Energy

Assuming diatomic molecule as a harmonic oscillator, its vibrational energy is

given by



Expression of
Partition Function

Example 4.8.3

Solution
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g, = (v+%)hvo; v=0,1,2, ... (4.8.21)

where v, the classical frequency of oscillation, is given by
_ 1k 4822
Vy = A\ (4.8.22)

In Eq. (4.8.22), k; represents force constant and u represents reduced mass of the
molecule.

The molecule has a ground state energy of (1/2) v, where vibrational quantum
number v = 0. The vibrational energy with reference to the ground-state energy
is given by

& —&=hvyv; v=0,1,2, ... (4.8.23)

For convenience (though it is not necessary, see Example 4.8.4) the vibrational
contribution to the partition function is considered by using Eq. (4.8.23).

Since the vibrational energy levels are nondegenerate, the expression of vibrational
partition function is given by

oo

q,= 2 expi{— (g, — &)/kT} (4.8.24)

Using Eq. (4.8.23), this becomes

oo

q,= 2 exp(— hvyu/kT) (4.8.25)

For exp(— hvy/kT) < 1, the above summation is given by
1

=T 4.8.26
D —exp(—hvy /kT) (4.8.26)
Equation (4.8.26) is usually written as
1
(4.8.27)

&= l1—exp(-0,/T)
where 0,, known as the characteristic vibrational temperature, is given by

g - ™o

4.8.28
v ( )

Calculate the characteristic vibrational temperature of N, molecule. Given: v, =2 357.6 cm'*
for N, molecule.

The characteristic vibrational temperature is given by

o M _ hev
k k

Substituting the values, we get
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Expressions of
Thermodynamic
Properties

Example 4.8.4

_ hev _ (6.626 X107 T5)(3x10° ms™)(2357.6 x10° m™
v k (138x1072 JK™)
3396 K

Since the partition function (Eq. 4.8.27) is evaluated with respect to the ground
vibrational state energy &, the expression of internal energy due to the vibrational
mode will be given by

, ,(dlIng,
U=U"-Uy=NkT"| ——— (4.8.29)
dr
Taking logarithm of Eq. (4.8.27), we get
Ing,=—In(1-e%7

dlng, 1 -6,/T e_v 1 6,
Hence, a7 =— (m) (—e ) 72) " T_2 W (4.8.30)
Substituting Eq. (4.8.30) in Eq. (4.8.29), we get

o1 Nk,
Uv = UV - E NhVO = W (4831)

Since H;,, = U, for the internal motions, we also have
, 1 Nk,
Hv: HV - 5 NhVO = W (4832)

The expression of heat capacities is

dU Nk, /T)*e%'"

C,=Cy= ar = W (4.8.33)
The entropy contribution is given by
U
S, =Nklngqg,+ ?V (Eq. 4.6.7)
0,/T
-6,/T
= Nk [—ln(l—e Y+ 9v7T } (4.8.34)
e -1
The expressions of Helmholtz and Gibbs free energies are
A,~Uy=G,— Uy=NkTIn (1-e"'T) (4.8.35)

It is important to point out here that the zero-point vibrational energy is involved
in the expressions of U, H, A and G and not in S, Cp and Cj, of the molecule.

Taking the zero reference as the bottom of potential energy diagram to express vibrational
energies of a diatomic molecule (executing harmonic oscillations), derive the expressions
of molecular partition function and various thermodynamic properties.

The expression of vibrational energies is
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Solution 1
£U=(v+5) hvy; v=0,1,2, ...

The expression of molecular partition function is

qy = Y, exp[— (v + 1/2)hv/kT]

exp(~hVy/2KT) S yexp(~v hv,y/kT)]

exp(—hvy/2kT) _ exp(=6,/2T)

1—exp(—=hvy/kT) 1—exp(-6,/T)
The expression of In g, is

0
Ing, =—— —1In [l —exp(- 6,/
¢ == [ p(- 6,/7)]

ding, 0, 0, 1
Hence, = + = | —
dr 27 T? |exp(6,/T)-1

The expression of internal energy is

dlng 0, 0,
- 72 - il AOTINS A
U= Nk ar N k { 2 exp(8,,T)~ 1}

For internal motion, H, = U..

The expression of entropy is

SV=Nk1nqv+%

e/T
= — —exp(— + — .4.8.
Nk[ In {1 —exp(-06,/7)} exp(OV/T)—l} (Eq. 4.8.34)
NkO
G, =H,-TS, = TV + NkT In [1 — exp(— 6,/T)] (Eq. 4.8.35)
Example 4.8.5 Calculate the vibrational contributions to internal energy, enthalpy, entropy and Gibbs free

energy for 1 mol of diatomic oxygen at 298 K. Given: The vibrational frequency of O,
corresponds to 1580 cm™.

Solution We have

Characteristic vibrational temperature

v hev {(6.626><1034Js)(3><108ms‘)(1580><102 m! }

Vook k (1.38 10723 J mol™)
=22759K
Value of exp(6,/T)

QOVT = o(2275.91298) _ (76372 _ 5 (y74.0)

Values of thermodynamic properties

U = NpkO, RO,  (8314JK ' mol™)(2275.9K)
m= 6T /T (2074.0-1)

=9.123 J mol!
H,=U,=9.123 J mol™
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S,

m

6,/T
- -6,/T
—R[—ln(l—e )+ 07 1]

e

= (8314 J K mol™) {—m (1-(1/2 074.0)} + 22759/298}

2074.0-1
= (8314 TK ' mol™") (4.823 x 107 + 3.684 x 107)
=0.034 6 J K" mol™

G,=RTIn(1-e%T
= (8314 J K ' mol™) (298 K) In {1 — 1/2 074.0}
=—1.195 J mol!

The zero-point vibrational energy is
! 1
Y= NA(EWJ = (6023 x 10 mol ) (E) (6.626 x 1074 T s)
X {(3x 10 m s™) (1580 x 10> m 1)}
=9.46 x 10* J mol™!

This value is to be added in the values of U,,, H,, and G,. Hence,
U’ =(9.123 +9.46 x 10%) I mol ' = 9.47 x 10° J mol
H/, = U, =947x10° I mol!
G’ = (~1.195 + 9.46 x 10* J mol ! = 9.46 x 10*> J mol ™

Contribution from Electronic Energy Levels

In most cases, the molecules are present in the ground electronic state unless
temperature is very high. Since the electronic energy in the ground electronic level
is, by convention, assigned a value of zero, only the ground level degeneracy is
involved in the determination of electronic contributions to various thermodynamic
properties. Exception to this statement are nitric oxide and the monatomic halogens,
where the energy of the first excited state is not far away from that of the ground
state.

Since the degeneracy of the ground electronic level is independent of temperature
(i.e. d In ¢/dT = 0), the electronic contributions to U, H, Cj, and Cp are all
zero. However, entropy, helmholtz free energy and Gibbs free energy do include
contributions as they involve In g.. Hence

Spe.=RIng, (4.8.306)

(Am)e = (Gm)e =—RTIn 8o (4837)

Contribution from the Chemical Energy of a Molecule

The chemical energy of a molecule is the energy released when the molecule is
formed from the gaseous atoms. This is equal to the minus of the dissociation
energy (symbol: D,) of the molecule (Fig. 4.8.1).



Fig. 4.8.1 Electronic
energy of a molecule
relative to its
dissociated gaseous
atoms
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or Gaseous atoms

—Dy - Molecule

The thermodynamic contributions of the molecule relative to those of gaseous
atoms are obtained by taking the ground state electronic energy of the molecule
equal to —D,. Hence, we have

q.= go ' (4.8.38)
(Up)e= (Hy)e =— D, (4.8.39)
(€. =0 (4.8.40)
(82).= RIn g, (4.8.41)
(G%),= —Dy—RT In g, (4.8.42)

Contribution from Nuclear Energy Levels

Summary of
Expressions

Since the nuclear excited levels are energetically very far away from the ground
level (assumed to have zero energy), only the degeneracy of ground nuclear
energy contributes towards the nuclear partition function unless the temperature
is exceedingly high.

The degeneracy of the ground level in atom is determined by the nuclear
spin quantum number /, which is equal to 2/ + 1. The nuclear degeneracy of the
molecule is given by

&= 2L+1)
where the multiplication is carried over the number of atoms in the molecule. Since
the ground nuclear level is considered to have zero energy, the nuclear partition
function is given by

9n = &n

The nuclear partition function does not contribute towards the thermodynamic
properties in a given chemical reaction, since nuclear energy levels of reactants
and products are not affected.

At the end, we summarize the expressions of partition function and thermodynamic
properties for an ideal diatomic gas under the harmonic oscillator-rigid rotator
approximation.

2n(my +my) kT 3/2 812 IKT |: | }
q= Hh—z} v o || T exp(hvikT) [g. exp(Dy/kT)]

v
NKT

[hv hv/kT } D,
+1 —

3
== + _
2 2kT  exp(hv/kT)—1] kT
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c, 3 Y exp(hv/kT)
|| ——————
kT ) [exp(hv/kT)—1]

S 21(my +my) kT Y'* V exp(5/2) 8’ Ik Te
— =In 3 +1n 7
h N oh

o |V exp(-hvikT)] | + In g,
exp(hV/kT)_l
pV =NkT
G (M)”"l Lkl
NkT " pl77 o

hv D
—+In{l- —hv/kT)} | - =0 _
*{m n{1—exp(~hv )}} g,

Comment The values of thermodynamic properties calculated by using the
above expressions agree more or less with the values determined experimentally.
The agreement can be made more perfect by invoking nonrigid rotation and
anharmonic oscillation. The necessary data are determined spectroscopically.
It may be pointed here that the above expressions are strictly valid only when
T > 0,. At this condition, the molecules are in states with large enough rotational
quantum numbers. Consequently, the coupling between the angular momenta due
to the rotation of molecules and electronic state does not take place. This results
into the separation of rotational-electronic partition function into the product of
partition functions of the individual components.

49 THERMODYNAMIC PROPERTIES OF A POLYATOMIC IDEAL GAS

Introduction Assuming the different modes of energy independent of each other, the energy of
a polyatomic molecule can be written as
E=¢gtete te, (4.9.1)

The molecular partition function is given by

9 =919 9y 9e (4.9.2)
Translational The translational contributions towards the various thermodynamic properties
Contribution of a molecule are given by the expressions derived earlier for a monatomic gas

(see Section 4.7).

LINEAR MOLECULE

Rotational For a linear molecule, the expression of the rotational partition function and those
Contribution of various thermodynamic properties are the same as those of a diatomic molecule.
The moment of inertia of the molecule is given by

=3 mr’ (4.9.3)

where the summation is over the atoms of the molecule. The distances r; s are



Vibrational
Contribution

Electronic
Contribution

Example 4.9.1

Solution
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measured from the centre of mass of the molecule which can be located by using
the expression

2mr=0 (4.9.4)

The value of symmetric number ¢ depends upon the structure of the molecule. For
symmetrical molecules, 6 = 2 while for asymmetric molecules, ¢ = 1.

A linear molecule has 3N — 5 independent modes of vibration. Assuming no
interactions amongst these modes of vibration, we will have 3N — 5 characteristic
vibrational temperatures 6, (= & v,/k). For each vibrational mode, the contributions
to thermodynamic properties can be computed by using Eqs (4.8.31) to (4.8.35).

The electronic contributions to thermodynamic properties can be computed by
using Eqs (4.8.38) to (4.8.42).

Calculate the values of translational, rotational and vibrational molecular partition functions for
carbon dioxide at 1 200 K and 1 atm pressure. Also calculate the contributions made by these
motions toward the molar internal energy and molar entropy. Given: Vibrational frequencies
of CO, are 4.03 x 10" Hz, 2.00 x 10" Hz (doubly degenerate) and 7.05 x 10'* Hz. The
distance between C and O in CO, is 116.2 pm.

Translational molecular partition function

The mass of CO, molecule is
m=me + 2mg = (12.0 + 2 x 16.0) (1.66 x 107 kg)

=730 x 102 kg

The molar volume of CO, at 1200 K and 1 atm pressure is

RT _ (8.314J K 'mol')(1200K)
p (101325 Pa)

2nmkT\'?
14 o
=(9.85 x 102 m* mol™)

V= =9.85x% 1072 m> mol™

m

Hence, ¢,

. [26.14)(7.30x107 g)(1.38 %107 TK™)(1 200 K) ¥
(6.626x107* J5)?

=234 % 10" mol”'
Rotational molecular partition function
Taking the centre of C atom as a centre of mass, we have

1= mr; =2(16.0x 1.66 x 1077 kg) (116.2 x 10" m)’
=7.17 x 10"* kg m?

W (6.626x107* J5)?

= = =0.563 K
8n2lk  8(3.14)%(7.17x 107 kg m?)(1.38x1072 JK ™)

Hence, 6,

q:L: 1200K  _
" 066, 2(0.563K)
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Vibrational molecular partition function

hvy _ (6.626x107% 15)(4.03x10"s7")

6, = =1935K
ok (1.38x102JK ™)
626x10775)(2.00x10" 57!
0V2=m=(66 6x10 Js)_(2300i<10 S )=960.3K
k (1.38x1072JK™)
(doubly degenerate)
hv —34 13 ~1
o, - hvs (6626 x10 Js)_(zz.05i<110 s7) — 3385 K
k (1.38x1072JK™)
_ 1 _ 1 _ 1
Hence, ¢, = ———7—— = =
I1—exp(—=0,;/T)  1-exp(-1935K/1200K) 1—exp(-1.613)
=1.249
Gr = 1 _ 1 _ 1
v 1—exp(=0,,/T)  1-exp(—960.3K/1200K)  1—exp(—0.800)
=1.816
go=— L 1 _ 1
P 1-exp(—0,5/T)  1—exp(—3385K/1200K)  1—exp(—2.821)
=1.063
Contribution towards molar internal energy
dln 3
Since U= Nk | 220 g () = 2 e
oT ), 2T 2
3 3 SR
we have - 5 RT = 5 (8.314 J K~ mol ™) (1 200 K)
= 1.497 x 10* J mol !
Since U= ner? 30— 2 (1) 2 ey
ar T

we have Up, . =RT=(8314JK " mol™) (1 200 K)

=9.98 x 10° J mol™

dl
Since U, = NkT? SN NkT? (i . o, j
T2 o8 /T _
R . -1 -1
wehave Uy, = - /ervl _ (B3147K™ mol (1 935K)
’ e’ —1 (e -1
=4.00 x 10> J mol™!
-1 -1
Un w2 = (8.314J K™ mol™")(960.3K) — 6.52 % 10° ] mol!

(%0 _1)
(doubly degenerate)
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~ (8.314JK'mol™")(3385 K)
l]m, v3 T 2.821 _
(e 1)

=1.78 x 10°> J mol™

The sum of internal energies is
U, = (1497 + 9.98 + 4.00 + 2 x 6.52 + 1.78) x 10°> J mol "
=43.77 x 10° J mol™!

The above internal energy is with reference to zero energy of the ground vibrational state.

The actual internal energy is obtained by adding ground vibrational energies, which,
respectively, are

1
U, =N, —hvj
01 A(z 1

= (6.023 x 10% mol™) (1/2) (6.626 x 1074 J 5) (4.03 x 10" s7)
=8 041.5 ] mol!

Uy, = (6.023 x 10% mol ™) (1/2) (6.626 x 107* J 5) (2.00 x 10" s7")
(doubly degenerate)

=3990.8 J mol™!
Uy = (6.023 x 10% mol™") (1/2) (6.626 x 107* I s) (7.05 x 10" s™)
=14 067.7 J mol ™
Hence, the molar internal energy including zero-point vibrational energies is
U= (43.77 + 8.04 + 3.99 x 2 + 14.07) x 10> J mol™
=73.86 x 10° J mol ™’
Contribution towards molar entropy

. _ q: Um,t
Since S; =NkIn | —= | + —— + Nk, we have
N T

S, =Rln|]+3 rer
: N, 2
2.34%10**mol™!
= (8314 JK ' mol™") | In Lﬂ +2
6.023%x10%mol 2
= (164.43 +20.79) T K mol™!
=185.22 T K~! mol™

U
Sm,rzRln qr+ ;,r

9977 J mol™

=(8.314 J K ' mol™) In (1 066) +
1200K

=(57.96 + 8.31) I K™ mol™
=66.27 J K™ mol™!

. U
Since S,y=RIng,+ —=Y  we have
’ T

>

4000 J mol™
1200 K
=(1.85+3.33) J K ' mol ! =5.18 ] K! mol™

Sm.v1 = (8314 TK ™" mol ") In (1.249) +
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Rotational
Contribution

6520 J mol™
1200 K

= (4.96 +5.43) J K mol™! =10.39 J K! mol™!

Sm.v2 = (8314 J K™ mol™") In (1.816) +

1780 J mol ™!

S, 3 =(8314JK "' mol™) In (1.063) +
= )i (1003 = 0K

=(0.51 + 1.48) J K mol' =1.99 J K mol!
The sum of entropies is
Sm = Sm,t+ Sm,r +Sm,vl +2 Sm,v2 +Sm,v3

= (18522 + 66.27 + 5.18 + 2 x 10.39 + 1.99) J K™' mol™
=279.44 J K" mol’!

NONLINEAR MOLECULE

For a nonlinear molecule, the rotational partition function is given by

N (8n21ka]1/2 [8n21ykT J”z (SRZIZkTJm

ql’ = o h2 h2 h2
8’ 3
= 5 (L1 CnkD) 49.5)
p )

where /,, [, and [, are the three principal moments of inertia of the molecule along
the three principal Cartesian-coordinate axes with the centre of mass of molecule
as the origin. The latter is defined by the expressions

domx;= Y my;= Y, . mz;=0 (4.9.6)
In the principal set of axes, we have

I, =Y, m(+z) (4.9.7)

- 2, 2

I, = %, m{z; +x7) (4.9.8)

L =Y, m&i+y) (4.9.9)
and the products of inertia are zero, i.e.

L,=1,=%,mxy=0 (4.9.10)

I,=L,=%,myz=0 (4.9.11)

L,=1.=2%, mzx=0 (4.9.12)

The principal set of axes can be conveniently selected by letting any one of the
coordinate directions x, y and z to coincide with a line of symmetry in the molecule.
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In general, the expressions given by Egs (4.9.7) to (4.9.9) are represented as /., [,
and 1, respectively. It is found that the values of /,, [,,,, I, I, I, and I, depend

upon the orientations of the three Cartesian axes keeping the origin at the centre of
mass of the molecule. However, in one particular orientation, the value of each of

I, I, and ,  is zero. This particular orientation is called the principal set of axes.

For any orientation, the product /, /, I is given by

]xx _Ixy _Ixz
LI L=ty 1, Iy (4.9.13)
_Izr _Izy Izz

and for the principal set of axes,

I, 0 0
LI,L=]0 I, O0|=I,1,L (4.9.14)
0o 0 I

zz

A given molecule may be classified based on the values of the principal moments
of inertia as described in Table 4.9.1.

Table 4.9.1 Classification of Rotating Molecules

Characteristics Name Example
L=1=1, Spherical top CCl,
L=1#I Symmetric top NH;
L#1,#1, Asymmetric top CH,Cl,
1.=0, I} =I=1 Linear HC=CH
L+1,=1, Planar CHe

It is not necessary to locate the centre of mass of the molecule to determine
the moment of inertia / of a linear molecule or the product 7./, of a nonlinear
molecule. The following procedure may be adopted.

Linear Molecule Take any point on the molecular axis (labelled as x axis) as the
origin and determine the x; coordinate of each atom. The expression of moment
of inertia is then given by

1= X mxi - (%) (E s

where M is the molar mass of the molecule. Alternatively, the following expression
may be used

1 ) 1 N-1 N )
I = W Zizj‘mimjrij: M 2 Z m;m; v,

i=1 =i+l

(4.9.15)

(4.9.16)

where r;; is the distance between ith and jth atoms.
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Vibrational
Contribution

Example 4.9.2

Solution

Nonlinear Molecule Take any one point as the origin (preferably on the symmetry
axis or symmetry plane if existed). Determine the coordinates x;, y; and z; of every
atom with reference to a convenient rectangular coordinate system. Evaluate the
terms given below.

=S o (L) @ me) - (L) (@ ma)
B = 3,m et (ﬁj (Z,mx) - (ﬁ) (mz)
¢ =3 mieh- (5 Ema) - (1) (Emn)
D= Smxv (o) (L) (£mn)

S (;4) S ) (2me)

Fo=2myz- (i) (Zm2) (Zimz)

and evaluate /, /, I, by using the following determinant.

A -D -E
LI,L.=|-D B ~-F
-E -F C

A nonlinear molecule has 3N — 6 independent modes of vibration. Assuming no
interactions amongst these modes of vibration, we will have 3N — 6 characteristic
vibrational temperatures 6, (= ~#V/k). For each vibrational mode, the contributions
to thermodynamic properties can be computed by using Eqs (4.8.31) to (4.8.35).

Calculate the values of translational, rotational and vibrational molecular partition functions
for gaseous H,0 molecules at 1 200 K and 1 bar pressure. Also, calculate the contributions
made by these motions toward the molar internal energy and molar entropy. Given:
Vibrational frequencies of H,0 are 1.10 x 10'* Hz, 4.78 x 10" Hz and 1.13 x 10" Hz.
The distance O—H is 95.8 pm and the angle HOH is 104.5°.

Translational molecular partition function
The mass of H,0 molecule is

m=mg+2my = (16.0 + 2 x 1.0) (1.66 x 107 kg) =2.99 x 10° kg
The molar volume of H,O(g) at 1200 K and 1 bar pressure is

-1 -l
y - RT _ 83141K nslol )I200K) g o 102 3 mol'!
» (10°Pa)
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(2mmkTY?
q‘fV( e )

=(9.98 x 1072 m> mol™)

L [26192.99x107 k)38 10T K™)2(1 200K) 32
(6.626x10734J 5)?
=5.95x 10" mol™!

Rotational molecular partition function
To calculate the rotational partition function, we need the moment of inertia of water.

Let the water molecule may be represented as shown in Fig. 4.9.1.

y

(~75.75 pm, 58.65 pm) (75.75 pm, 58.65 pm)
H, Hp

32.25° /95.8 pm

Fig. 4.9.1 Orientation
of H,0 molecule

O X

Let (x,, y.) be the coordinates of the centre of mass of the molecule. To calculate (x, y.),
we set
mg (x, — 0) + my (x, — 75.75 pm) + myy (x, + 75.75 pm) = 0

mo (v, — 0) + my (v, — 58.65 pm) + myy (v, — 58.65 pm) = 0
where  mg =16 x 1.66 x 107%" kg = 2.66 x 10® kg
my =1x1.66x 1027 kg =1.66 x 107" kg

This gives

x, =0

- (2my) (58.68 pm) _ 2(58.65 pm) _ 6.52 pm
(mg +2myy) 16+2)

Taking (x,, y,) as the origin and the y-axis along the line of symmetry, the coordinates of
atoms are

xo =0 Yo =—6.52 pm

xy, =—75.75 pm vy, = (58.65 — 6.52) pm = 52.13 pm

Xy, =+ 75.75 pm Yuy = (58.65 — 6.52) pm = 52.13 pm

L, = Zi mi(yiz+ Zz'z) = 2,- miyiz (as z;s are zero)

=[(2.66 x 1072%) (= 6.52)% + (1.66 x 10727) (52.13)* + (1.66 x 107>7)
x (52.13)"] kg pm®
=1.02 x 10 kg pm?
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1, = zi m,(zf-&- xi2) = Z,- mix? (as z;s are zero)

=[(2.66 x 1072%) (0)* + (1.66 x 1077) (- 75.75)* + (1.66 x 107)
x (75.75)] kg pm?
=1.91 x 102 kg pm?
Izz = Zi mi(xi2 +ylz)
= [(2.66 x 1072°) [0% + (= 6.52)*] + (1.66 x 107%") [(- 75.75)* + (52.13)’]
+(1.66 x 107%7) [(75.75)* + (52.13)*]] kg pm?
=2.92 x 10 kg pm?
Ixy = zl‘ m; Xx; y;
= [(2.66 x 107%%) (0) (- 6.52) + (1.66 x 107%") (= 75.75) (52.13)
+(1.66 x 10727) (75.75) (52.13)] kg pm?
=0

I, =1,=0 (as z;s are zero)

Hence, the principal moments of inertia are
I =1.02x 107 kg pm* = 1.02 x 10" kg m*
_ -23 2 _ —47 2
I, =191 x 107 kg pm” = 1.91 x 107" kg m
I =292 % 10 kg pm? =2.92 x 10*7 kg m?

The value of rotational partition function is

2
g = SL;P (I, 1, 1) erk1) (where & = 2 for H,0)
(&)

2
= . 6232111‘:))_34J . [(1.02 x 107 kg m?) (1.91 x 10~ kg m?)

% (2.92 x 10# kg m?)]"2 [2(3.14) (1.38 x 1072 T K™ (1200 K)I*?

=343

Vibrational molecular partition function

v, (6.626x107*J5)(1.10x10"s™")

6, = =5281.6K
vl k (1.38x1072 7K™
0. _ hvy _ (6.626x107*15)(4.78x10"s™") 52051 K
ok (1.38x10°23 7K™ '
0. _ M _ (6.626x107>*J5)(1.13x10"s™") S 5.6 K
v3 k (1.38x1073TK™) ’
B 1 B 1 B 1
DT exp(=60,,/T)  1-exp(—5 281.6/1 200)  1—exp(—4.401)
=1.012
1 1 1
qva =

I—exp(—6,,/T)  1-exp(—2 295.1/1200)  1—exp(~1.913)
1173
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1 1 1

T3 7 1 _exp(-0,/T)  1-exp(—5425.6/1200)  1—exp(—4.521)

=1.011

Contribution towards molar internal energy

Since

we have

Since

we have

Since

we have

U=k (Oa) —erz (2] = 2 er
' FYa 2

2T
3 3 I 4 1
Up, = 5 RT= 2 (83147 K" mol™) (1200 K) = 1.50 x 10° J mol
1
U= vkr? e _ e (3023 np
dr 27) 2
3 3 -1 -1 4 -1
Up,r= 5 RT= 2 (83147K " mol™) (1200 K) = 150 x 10* J mol
dlng 2 ( 1 0 j
U,=NkT? — = NkT? | — —2
v dr 72 o0 IT 4
R . ! mol™ )
Un = = /OT” _ (8314JK 4111(31 J(S2BLOK) _ opc iy o
’ e’ —1 ™ =1
RO 314 JK™' mol™)(2295.1K
Up o= vz - (318 TK mol J@2931K) 5505 1 o
: ef/T G

U . _Ros (8314 JK ™ 'mol™)(5425.6 K)

= =496.1 J mol™
m, v3 69V3 /T _ 1 (e4.521 _ 1)

The sum of internal energies is

Um = l]m,t+ []m,r+ Um,vl + Um,v2+ Um,v3
= (15.0 + 15.0 + 0.543 + 3.305 + 0.496) x 10 J mol™!

=3434 % 10° J mol™

The above internal energy refers to zero energy of the ground vibrational state. The actual

internal energy is obtained by adding ground-state vibrational energies, which, respectively,

are

Uy = Ny (lhvl) = (6.022 x 10% mol™) (1) (6.626 x 107*J 5)
2 2 x (1.10 x 10" 57

=21.95 x 10* J mol™!
Uy, = (6.022 x 10% mol ") G) (6.626 x 10°* I s) (4.78 x 10" s71)

=9.54 % 10° J mol™
Uy = (6.022 x 10%* mol ™" G) (6.626 x 1074 T s) (1.13 x 10" s7h

=22.55 % 10° J mol™!
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Hence, the molar internal energy including zero-point vibrational energies is
U = (34.34 + 21.95 + 9.54 + 22.55) x 10° J mol !
=88.38 x 10° J mol

Contribution towards molar entropy

U;*‘ + Nk, we have

Since S;=Nkln (ﬁ) +
N

Spy=RIn (qt] + 3 R+R
. N, 2

2

31 -1
= (8314 J K mol) |1p[ 2:23%107 mol” 1 5
6.023 %103 mol ™!

=173.83 J K" mol™

S, . =Rlng,+ Yns
’ T

4 -1
= (8314 J K ' mol™") In (343) + 1.50x107J mol™

1200 K
= (48.53 + 12.5) J K™! mol™!
=61.03 J K! mol™!
Since S, ,=RIng,+ Ui,y , we have
’ T
_ _ 545.3 J mol™
S, v1= (8314 JK " mol ™) In (1.012) + ok

= (0.099 + 0.453) J K" mol' = 0.552 J K™! mol™

3305.1J mol™!

S »,=(8314TK " mol") In (1.173) +
= ) In (1.173) 200K

= (1327 +2.754) J K mol' = 4.081 J K™' mol™

496.1J mol™!

Sm.v3= (8314 T K mol™") In (1.011) + 00K

= (0.091 +0.413) JK™' mol™' = 0.504 J K™! mol™
The sum of entropies is
Sm:Sm,t+ Sm,r+S

m, vl

+S

m, v2
=(173.83 + 61.03 + 0.552 + 4.081 + 0.504) J K" mol ™’
=239.95 ] K™ mol™

+S

m, v3

Note: The total entropy of the system can be evaluated by using the expression

S =RIn 419r9v19v29vs 4 Um,t +Um,r +Um,v1 +Um,v2 +Um,v3
t N, T

+ R
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31
= {8.314ln{[%)(343)(1.012)(1.173)(1.011)}

. (I.SOXIO“+1.50><104+545.3+3305.1+496.1
1200

=(203.10 + 28.62 + 8.314) J K™' mol!
=240.0 J K" mol™

J+8.314} JK " mol™!

4.10 STANDARD EQUILIBRIUM CONSTANT OF A REACTION INVOLVING IDEAL GASES

The thermodynamic relation for a reaction at equilibrium is

v;is +ve for products
0= 2V v;is —ve for reactants (4.10.1)
The expression of chemical potential, y;, in terms of molecular partition function
is given by
G, —N;kTln(q,/N,)
U=—=—— " (4.10.2)
n; n;
Since N, =n;N,, we get
q; 4qi
Wi =—(Npok) Tln [Vij——RTln (Flj
Using ideal gas equation
N;
p;V=nRT= (—j RT=N;kT
Ny
the above expression becomes
kT
@;=—RTIn (q’—j
iV
kT °
—_RTIn (q—j ~RTn (p—j (4.10.3)
p°V bi
where  p° =1 bar.
Substituting Eq. (4.10.3) in Eq. (4.10.1), we get
kT .
0= 2i|:—RT v; ln(q’Tj +RT v;In (—;ﬂ
YV P
N\ kT
or  RTInTI, (&) =RTIn T, (q—) (4.10.4)
p° p°V

By definition, the standard equilibrium constant of a reaction is given by

Vi
Ko=TI, (&) (4.10.5)

1 o

p
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Fig. 4.10.1 Energy
change in a reaction in
terms of dissociation
energies of reactants
and products

Example 4.10.1

With this, Eq. (4.10.4) gives

Vi 2‘.\/, . Vi
Ke = H,(q" kVT) _ (k_T] I, (%) (4.10.6)
p° p

While computing the various molecular partition functions, it is essential to use
the same reference of zero energy for all species. For this purpose, the zero of
energy is assigned to the dissociated atoms of each species. This reference affects
the expressions of electronic partition function. The expression of the latter with
respect to the ground electronic state of the molecule is

=g +g e—sl/kT+g2 e—Ez/kT+
This is changed to
q;= eDokT q; (4.10.7)

when the reference of zero energy is shifted to ground-state dissociated atoms
(Fig 4.10.1).

0 r ] y Gaseous atoms
Dy(reactants)
Dy(products)
= o Reactants
l AUy ==Dog) + Doy
AU°
~Dy(p) - —

Products

The expression of the standard equilibrium constant with this shift of reference
of energy is

Koo k_T Eivz ZiviDOi I 4; V;
2 po exXp RT i 7

_ K%)zm} i {Hi (%)v} (4.10.8)

Determine the standard equilibrium constant for the reaction

Ny(g) == 2N(g)

at 5000 K. Given: r,, = 110 pm for N,, classical frequency of vibration of
N,(g) = 7.07 x 10" 57!, dissociation energy of N,(g) = 940.3 kJ mol ™! and degeneracy of

ground electronic level of N, is 1 while that of N(g) is 4.
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Solution Partition function of N(g)
For monatomic species
q9 = 4t9.
The expression of translational partition function is

3/2
4=V (2“}’2’;" T ) (Eq. 4.7.7)

Thus 9o — (2mmkT )"
V h?

_[23.14)14x 166107 kg)(138x102 K™ (5000 K) |
(6.626 X107 J 5)?

=3474%x10* m™
The electronic partition function is
4. =g =4
Hence, gy =q,q, = {(3.474 x 10* m™®) '} (4) = (1.390 x 10* m>) v

Partition function of N,(g)

For diatomic species, we have
9= 9:9:9v 9

For N, the value of translational partition function is
4, _ QrumkT)*?
v h?

_ [263.14)(28x1.66 x 102 kg) (138 x 10 T K1) (5 000K) |
(6.626x1074 J5)?
=9.826 x 10 m™

The value of rotational partition function is calculated as follows.

27
po= e _mt_m_ 14xX1.66X107Kg _ 61026k

my +my 2m 2 2
I =ur*=(1.16 x 102% kg) (110 x 10712 m)?
=1.40 x 107 kg m?

2
g = (8“ ”“jT (Eq. 4.8.8)

W o

_ 8(3.14)°(1.40 X 107* kg m*) (1.38 x 107 TK™") (5 000 K)
(6.626 X107 I'5)?(2)

The value of vibrational partition function is calculated as follows.

=867.7

hv _ (6.626x107*15)(7.07x10"s7)

8~ =3395K
k (1.38x10°2TK™)
1 1 1
G =TT (oo  1_os07 | 0%
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The value of electronic partition function is
9de=8 =1
The partition function of N, is
N, = 404 9y 9e
= {(9.826 x 10¥* m™) 1"} (867.7) (2.029) (1)
=(1.73x10 " m?) ¥

Equilibrium constant of the reaction

The value of equilibrium constant is

i Vi
Ko (k_Tj o~ AU/RT I, (ﬁ)
14 p° V

_[a38x10% JK)(5000K) o] (940300 mol™)
10° Pa (8.314 T K™ mol™)(5 000 K)

" (1.39x10** m™)?
1.73%10 m™
= (6.9 x 105 m®) (1.50 x 107'%) (1.12 x 10>! m™)
=0.001 16

Alternative Solution  Alternatively, we may compute molar values of Gy and G, by using partition functions
and determine

AG® =2G} ~ G},

and use A,G°=—RT In K}, to determine the equilibrium constant.

For N(g), we have
(mkaT/z , (mkaT/z (Nij
q, = | —— =
t h2 h2 po
Hence,

@ (kT)> (anjz/z
N p° h?

[1.38x10 TK™)(5000 )2 [2(3.14)(14 % 1.66 X107 k) [
(10° Pa) (6.626 X107 I 5)2

= (1.25 x 107 (1.92 x 10%) = 2.40 x 10°

G°=-RTIn (%) =— (8314 T K mol™") (5 000 K) In (2.40 x 10°)
=-8.98 x 10° J mol ™
q. =4
°=_RT1Ing,=- (8314 J K" mol™) (5 000 K) In 4
=-5.76 x 10* J mol!
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Hence, GY =G{+ Gy
=(—8.98 % 10° — 5.76 x 10* J mol™
=-9.556 x 10° J mol!

For N,(g), we have

& _ (kT)5/2 (znmj3/2
N po h2

_[038x102IK (5000 K2 [23.14)(28x1.66x10 7 kg) |
10° Pa (6.626x1074J5)?

=(1.25 x 107%) (5.42 x 10%?)

=6.78 x 10°

G°=—-RTIn (‘L]\;) =—(8.314 T K mol™") (5000 K) In (6.78 x 10°)

=-9.41x10° J mol™
q, = 867.7
°=_RTIn g, =— (8314 J K" mol™) (5000 K) In (867.7)
=-2.81x10° J mol™
q, =2.029
G°— Uy=—RTIn g, =—(8.314 T K" mol™) (5000 K) In (2.029)
=-2.94x10* J mol!
q.=1
G3=—-RTIng,=0
Ghem = — Dy = — 940 300 J mol !
Thus, for N, we have
N, =Gt G (GY - Uy + Get Goen
=(=9.41 x 10° - 2.81 x 10> — 2.94 x 10* + 0 — 940 300) J mol™
=-12.192 x 10° J mol™
The standard free energy change of the given reaction is
A,G° =2G¥ - GR, =2(~ 9.556 X 10° J mol™") — (- 2.192 x 10° J mol ")
=2.81 % 10° J mol™!
Finally, the standard equilibrium constant of the reaction is

mre - AG° (2.81x10° J mol™)
s RT (8314 T K 'mol™) (5 000 K)
=-6.76

Hence, K% =e¢ *7°=0.001 16

Show that the standard equilibrium constant at 400 K for the reaction
H, + D,=—=2HD

is equal to 3.54. Given:

335
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Ix 10%/kg m? 6,/K Dy/kJ mol™
H, 4.60 5 986 431.8
D, 9.20 4308 439.2
HD 6.13 5226 435.2
Solution The standard equilibrium constant is given by

ivi A\Vi R
- (2 (1] o

For the given reaction, ziv,- =Vpgp * Vg, + Vp,=2-1-1=0.

Hence,

2 -1 -1
Ko 9up qu, 4p, o AUIRT
I Vv vV Vv

_ (4:9:9)ip —AU°/RT
(qt q: 4y )H2 (qt 9 qv)Dz

=[ ()i }{ ()i }[ (¢t :|e—A,U°/RT
(90u,(@p, | | @)n,@)p, | | (@)u, (@),

-0,/T\2
_ mI%ID H ]IEID }GHZ GDZ] (l—e )HD
(mﬂz)a/z(sz)m Iy )Up) | ofp (1_6-9V/T)—1 (l_e_ev/r)—l
H, D,
x exp(— AU°/RT)

AP == 2Dfy, + Dy, + Dpy, = (- 2 x 4352+ 431.8 + 439.2) kJ mol !

T

=0.60 kJ mol™

Substituting the given values, we get

3’ 6.13>  \(2x2 (1 = ¢~5226/400y2
K= (23/2 43/2j {(4.60 X 9.20)( 12 j} Ll _ e—5986/400)—1 (1— e-43og/400)_1}

—600/(8.314x 400)]

X [e

=(1.193) (0.888 x 4) (%) (0.835)=3.54

4.11 TRANSITION-STATE THEORY

In the transition-state theory, the reaction between the reactants A and B is visualized
as follows.
A + B = X*= Products (4.11.1)

where X* is the activated complex (Fig. 4.11.1).



Fig. 4.11.1 Aschematic
potential-energy profile
of converting reactants
into products via the
transition-state complex
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Energy

Reactants

Products

Reaction coordinates ——>

The rate of reaction A + B — products depends on two factors, namely, the
concentration of activated complex and the frequency of decomposition of the
complex, i.e.

. ( concentration of j (frequency of decompositionj 4.11.2)

activated complex | | of activated complex

Since the reactants are in equilibrium with the activated complex, we can write
.S

¢ [A]B]

The equilibrium constant K, in terms of molecular partition function is given by

2 Vi q
K= (N—) ¢ MUIRT | 11, (Vj 4.11.4)*
A

(4.11.3)

Since ), v; =— 1 for the reaction A + B =— X*, we will have
\ . (q*V)
Ki=(Ny) e 4V RT — 4.11.5
T W @x/V V) @1

Since the activated complex is in a process of decomposing, one of its vibrational
degree of freedom is in a process of becoming a translation degree of freedom.
This fact in terms of vibrational partition function is expressed as

1
lim g, = im 3 o hvikT)

" Forareaction reactants = X} = products, Eq. (4.11.2) is given by r = ([Xi]/Z) 2v),
i.e. the first term is halved as only half of the activated complex is converted into products
and the second term is doubled as the activated complex takes only half of time period for
the conversion into products.

* The conversion expressmns 1nv01V1ng equilibrium constant are K, = K°(p°)AVg;
K, =K ()™ K, =K, (RT)™s K5 = K2 (c°RT/p°)™.
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Example 4.11.1

Expanding the exponential and retaining only the first two terms, we get

. 1 kT
lim ¢, =

—_—— = — 4.11.
V0 1-(1-hv/kT) hv ( 0

The complete partition function of the activated complex is written as

i —(lim ) g K4y (4.11.7)
vV vaoqV vV hv \V T

where (g;/V) is the remaining portion of partition function which includes the
contribution from 3(N, + Ng) — 7 (for a nonlinear molecule) or 3(N, + Ng) — 6
(for a linear molecule) modes of vibration of the activated complex.

Substituting Eq. (4.11.7) in Eq. (4.11.5), we get
(kT/hv)(q;t /V)}
(ga/V)qg/V)

The concentration of activated complex as given by Eq. (4.11.3) is

K:=(N,) e MU { (4.11.8)

(kT /hv)(q. /V)} | [B]
(ga/V)qg/V)

Substituting the above expression in Eq. (4.11.2), we get

—au/rr ) KT (qi—/V)
r= |:(NA)e {(hV)(QA/V)(qB/V)

[X*] = KL[A] [B] = (N,) e V4T [

[A][B]} W)

_ (Ej(e—A,U/RT) qi/V
I\ h (g !V)qg/V) [A] [B] (4.11.9)

The expression of rate constant is given by

q,
RT _ I
o= (A e {(%/V)(qB/V)} @.11.10)

The expression of pre-exponential is

RT @,/")
4= (7) 97V )qs /) 1111

On the basis of transition-state theory, calculate the rate constant at 300 K for the reaction

H + HBr — H, + Br

Given are the following data.
Barrier height from zero-point level = 5.0 kJ mol™

H—Br internuclear distance = 141.4 pm
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H—Br vibrational frequency = 7.95 x 10'* Hz

The activated complex is linear with H—H distance = 150 pm, H—Br distance = 142 pm,
vibrational frequency for the symmetrical stretch = 7.02 x 10"* Hz and that of bending
modes is 1.38 x 10'* Hz. The antisymmetrical stretching mode is converted into translational
degree of freedom of the products. Assume electronic contribution to molecular partition
functions to be negligible.

The expression of rate constant is

RT ~AU/RT qi/V }
k=== : e
( h ) (e ) {<qA/V)(qB/V)

Evaluation of ¢,/V Let A represent H atom. We will have

g (Zrcka)yz

v U »

[26.14)1.67x107 kg)(1.38x 102 JKH)300K) |
(6.626x10734 J 5)?

=9.83x 107 m”
Evaluation of gg/V Let B represent HBr molecule. We will have

My, 80.90 x 107 kg mol™ s
= = —134x 105k
(Y 6.023 x 102 mol ™! &

4 _ (27:ka)3/2
14 W

[26.14)1.34x 10 kg)(1.38 x 102 JK 300 K) [
(6.626 107 J 5)?

=7.07x 102 m>

The reduced mass of HBr is

my Mg, _ MyMg ) 1
my +mpg, My + Mg, ) Ny

u

(1.0 x 107 kg mol™)(79.9 kg mol™) 1
(1.0x1073 +79.9%x103) kg mol™" | | (6.022 x10% mol™)

=1.64x 107 kg
I =pur=(1.64 x 1027 kg) (141.4 x 1072 m)?
3.28 x 107 kg m?

8’IAT _ 8(3.14)°(3.28 x10™" kg m*)(1.38 x 107 JK)(300 K)
W (6.626 x107* J 5)?

4% =

=24.40

_ o (6.626x107* J$)(7.95%x10"% s7)
Finally, — = 3 - =12.72
kT (1.38 %1072 JKH(300K)
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1 1
&= | _exp(—hv/kT) ~ 1—exp(-12.72)

1.0
The complete partition function of HBr is

%‘3 - (%) 4. 4y = (6.99 x 10°2 m™3) (24.40) (1)

=171 x10* m">
Evaluation of ¢, /V The mass of activated complex is

2My + My,

+
m*=2my + mg, =
Ny

2x107 kg mol™" +79.9 x 10~ kg mol™!
6.022 x10% mol™

135 x 10 kg

q, 2nmkT 2
- h2

14

 [26.14)1.35x10 kg)(1.38 x 10 TK 300 K) |
(6.626 X107 I 5)?

=7.15x%x10* m™
To calculate g,, we first determine the moment of inertia of H—H—DBr.

We have
H H Br
[ @ @
r<7150 pm4>'<7142 pm—»{

- P

Centre of mass

For the location of centre of mass, we write
my x + my (x — 150 pm) = mp, (292 pm — x)

This gives
_ my (150 pm) + mp, (292 pm) My (150 pm) + My, (292 pm)
- (2myy +mg,) - (2My + My,)
_ (150 pm) +§(§Z99.9)(292 pm) _ 2867 pm

The expression of moment of inertia is

1= Zi mir?; (r; is measured from the centre of mass)
= (1.67 x 10?7 kg) (286.7 pm)* + (1.67 x 107" kg) (136.7 pm)*
+(1.33 x 107 kg) (5.3 pm)*
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=(1.37%x 102 +3.12 x 10 + 3.74 x 10**) kg pm’
=1.69 x 10 kg pm* = 1.69 x 10* kg m’

_8mIAT  8(3.14)*(1.69 x 107* kg m’) (1.38 x 107> TK™)(300 K)

“T o T (6.626 X107 J )2
=125.7
v (6.626x107 Ts)(7.02x105%s7!) 2
kT (1.38x1072 JK™) (300 K)
hvy,  (6.626x107* T5)(1.38x10%s™) -
kT (1.38 %107 T K™)(300 K) '
= : = : =1.000
M7 Zexp(—hv/KT) ~ 1—exp(-112)
1 1
=1.123

D27 1 —exp(—hv,/kT) ~ 1—exp(-2.21)
(doubly degenerate)

(4
Hence, vy Ty qr 9v1 9v2 9v2

= (7.15 x 10 m™) (125.7) (1.000) (1.123) (1.123)
=113 x10¥ m>
Rate constant of the reaction Finally, the rate constant is

(R gy |4
k_(h)(e >{<qA/V>(qB/V>

_ | @8314) K™ mol™)(300 K) |:e—5><103/(8‘314><300):|
6.626 1074 J's

1.13x10¥ m™
X
9.83x10¥ m™>)(1.70x10** m™

= (3.76 x 10* mol™ s71) (0.135) (6.68 x 107" m?)

=339 x 10° mol™' m® 57!

=3.39 x 10° mol™! dm> s~

412 MONATOMIC SOLIDS

The atoms in a crystalline solid vibrate about their mean positions. They may be
treated as distinguishable harmonic oscillators by virtue of their fixed positions

in the solid.
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The vibrational energy of a harmonic oscillator is given by
1
£,=hv, (v+5) ; v=0,1,2, ... (4.12.1)

where v, is the classical frequency of oscillator and is given by

Vo= o \/E 4.12.2)
2n m

The term k; in Eq. (4.12.2) is known as force constant.

The vibrational energy relative to that of the ground state is given by
E,— & =hvv; v=0,1,2, ... (4.12.3)
The vibrational partition function with energies given by Eq. (4.12.3) is
q, = Y. exp{— (hvy/kT)v} (4.12.4)
=0
The above summation has to be carried out term-by-term as the energy levels are

not close to each other to permit the replacement of summation by integration.

Equation (4.12.4) is
g =1+ o VKT o g 2hVokT
=14+x+x>+ -

1 1
“hvy /KT (4.12.5)

; {where x = exp(— hv,/kT)}

1-x - I-e
Equation (4.12.5) is usually written as

1
- 4.12.6
4y l—e /T ( )

where 0, = hv,/k, and is known as characteristic vibrational temperature.
The contributions towards the thermodynamic properties are as follows.

U, - Up= Nkr? 41090
dr

w4 (m;):Nsz d [In(—e /7))
dr 1-¢ dr

_ .6,/

-0,/T
= _ NkT? __c" 0_\’
l_efev/T T2

6,
e v —
Nk6,
H,—Uy=U, - Uy= —57— (4.12.8)

0T _|



The Einstein Solids

Fig. 4.12.1 The
variation of Cy, /R
versus 7/6y for an
Einstein solid
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The expressions of heat capacity is

d [ Nke, Nk, /T)* e™'"
G =Cy= ar | 8T 1] T 12 (4.12.9)
The expression of entropy is
S,=Nklng,+ L=
0,/T
- -6,/T
=—Nkln(1-e™V") + eevjr—l (4.12.10)

The expression of Helmholtz and Gibbs free energies is
A,-Uy,=G,—Uy=—NkT n g,
= NkT In (1- ¢ %'T) (4.12.11)

In Einstein model of a solid, it is assumed that the atoms vibrate about their mean
positions without being affected by their neighbours in spite of the fact that there
exist forces of attraction between them and a continued exchange of energy. The
overall vibration of an atom is considered to be three dimensional. It may be
considered as the superposition of three one-dimensional oscillators, each vibrating
with the same frequency. The properties of such a solid are 3N times those of
a single oscillator. The expression of heat capacity will be three times the heat
capacity as given by Eq. (4.12.9), that is
 3Nk(B/T)*e% T

(ef/T — 1)2
where 6; (= hvy/k) is called the Einstein temperature. The expression of molar
heat capacity is
 3R(0p/T)*e*T

(ef:/T — 1)2

The plot of C, , versus 7/6 is shown in Fig. 4.12.1

. (4.12.12)

(4.12.13)

V, m

Tt S
: (2,2.9)
(1,2.76)
T P (0.5,2.17)
A
T
O 0
X (0.3, 1.28)
5 (0.2,0.51)
1 1 1 1 1
0.5 1 1.5 2 2.5

T/0,—>
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Limiting Value of
CymasT—

Limiting Value of
C/ymasT—0

Debye
Contribution

When T assumes a large value, one can write Eq. (4.12.13) as

3R(6, /T)* %7
B 2
[l+w+%m+ 1}

1! 2!

Cancelling one in the denominator and taking (OE/T)2 of the numerator in the
denominator, we get

3Re%T
CV m = 2
[1+9E/T+m]
2!
Now as T — oo, exp(6s/T) — 1 and 6;/T — 0. With this, the above expression
reduces to
Cym=3R (4.12.14)
The above expression is in agreement with the experimental data on molar heat

capacity of most solids. The limiting value of 3R was observed by Dulong and
Petit and is known as Dulong and Petit rule.

As T'— 0, the value 6;/T — oe. In such a situation, one in the denominator of
Eq. (4.12.13) may be ignored in comparison to exp(8;/7). With this, Eq. (4.12.13)
reduces to
Cy,m=3R(6/T) %" (4.12.15)

and approaches zero as the temperature approaches zero kelvin. This fact is found
to be correct experimentally. However, the quantitative agreement with experimental
values is poor. The calculated values are considerably smaller than the experimental
values which are very closely proportional to 7°. This disagreement is attributed
to the assumption that all the atoms in solid oscillate with the same frequency.

Comment According to Eq. (4.12.13), two monatomic solids have the same
value of molar heat capacity if they have the same value of 8;/7. For example,
lead and diamond solids will have the same value of molar heat capacity, provided

(%), (%)
T Pb T diamond

But (6p)pp < (6p)giamonas it follows that

TPb < Tdiamond
for the two solids to have the same molar heat capacity.

In general, the increase in the value of molar heat capacity with increase in
temperature is more gradual for the elements having lower atomic masses.

Debye explained the disagreement between molar heat capacity at lower
temperatures and the experimental values by the atoms with a continuous varying
frequencies instead of a single frequency. His theory being more involved is not
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described here. The Debye equation of molar heat capacity is

3x
Cym=3R {4D— —D } (4.12.16)
’ e? —1
hvp op .
where Xp = T T ;  (6p is called the Debye temperature) (4.12.17)
3000
and D=— J 1 dx; (D is called the Debye function) (4.12.18)
Xp € -~

The value of D has to be evaluated numerically. At high temperature, the Debye
function approaches unity and the molar heat capacity approaches a limiting value
of 3R.

At very low temperature, the Debye function reduces to the form

D= 1
5
so that, at low temperature
Cym= E R i 3 (4.12.19)
V, m 5 GD . .

Thus, the value of C), , is proportional to 7 3. Tts value approaches zero as T
approaches zero.

413 STATISTICAL TREATMENT OF THE BLACK-BODY RADIATIONS

The Photon Gas

Most Probable
Distribution in the
Photon Gas

The radiation emitted by a black body may be regarded as an ideal gas consisting
of photons, known as photon gas. The behaviour of a body can be analysed in
terms of radiant field which is considered to be in equilibrium with the body.

The photons in the radiant field are bosons and thus follow Bose-Einstein
statistics with only one constraint of constant radiant energy, i.e.

U= YN, & = constant (4.13.1)

where N, is the number of photons carrying energy €;. The constraint of constant
number of photons is not necessary since the body can absorb or emit photons of
different energies without changing its energy. For example, two photons of energy
€ may be absorbed and at the same time one photon of energy 2¢€ may be emitted.

The most probable distribution of number of photons N; having energy ¢; in the
photon gas emitted by a black body may be obtained by setting the Lagrange
multiplier ¢ in Eq. (4.3.9) equal to zero. This gives

No= 8i _ 8i
" oexp(g,/kT)—-1  exp(hv,/kT)—1

(4.13.2)

where g; represents the number of degenerate quantum states in the frequency
range Vv; to v; + dv.
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Degeneracy of
Energy Levels

Considering the black body to be a cube of edge-length / and the emitted photons
as the de Broglie particles, we may write

P> (WA
E= — = —0£
2m 2m
SRR
Also e= n,tn,+n,
8mi* ( d )
Equating the two expressions, we get
" 0 2. .2, 2
= n,tn,tn
2mA*  8ml? (4 + o)
1 1
or ?:F(ni-i-ni-i-nzz)
c
or V= (n; + )+ )" (4.13.3)

Representing quantum states of photons by points in a three-dimensional space
of coordinates n,, ny, n as described in Annexure I, we can write
cr

V=, (4.13.4)

where r (=1/n§ + n; + nz2 ) is the distance of the point, representing quantum state

Ry Ny M, from the origin.

The number of quantum states in the portion of spherical shell from r to » + dr
and lying in the first quadrant of the space coordinates derived in Eq. (Al.4) is
given by

g = % (4 * dr) (4.13.5)

From Eq. (4.13.4), we get
)
r=|—|v
¢

21
Hence, dr= (?) dv

With these two expressions, Eq. (4.13.5) becomes

L (2 (L)
gv= g (4m |~ B
dnl® 4y
=—5vidv= —5—vidv (4.13.6)
c C

<

Equation (4.13.6) gives the number of quantum states in the frequency range v
and v + dv. However, this equation needs to be multiplied by 2 since the radiation
has two planes of polarization normal to the direction of propagation of photons.



Radiant Energy
Emitted by the
Black Body

Fig. 4.13.1 Variation of
E, versus v

Frequency
Corresponding to
Maximum E,
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Thus
g,= —5 vidv (4.13.7)
c
When the above equation is made use in Eq. (4.13.2), we get

_ 8nV v d
YT A expviky -1

(4.13.8)

where dN,, is the number of photons having frequency in the range v and v + dv.

The radiant energy emitted per unit volume of the black body in the frequency
range v and v + dv is given by

e, dN, _ 8mh v v
|24 A exp(hv/kT)—-1
=E,dv (4.13.9)

Equation (4.13.9) is known as Planck’s distribution expression. Figure 4.13.1
displays the variation of £, versus v at two temperatures. The area under the curve
gives the energy density emitted by a black body at the indicated temperature.

15~

—
© 5
T ]

E, x10"%/Jsm™ —»
7

| | | | J
3 6 9 12 15

vx1013/Hz —

The frequency at which £, has a maximum value is obtained by setting
dE,/dv equal to zero. Starting with the simpler expression obtained by ignoring 1
in comparison to the exponential term, we get

d (8nhv3e—hv/kT) -0

dv \ ¢
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Maximum Value
of E,

Radiant Energy
in Terms of
Wavelength

Fig. 4.13.2 Variation of
E; versus A

ie. @ [3v? — V3(WkT)]e ™ T =0
This givesc
LT
‘max h
From Eq. (4.13.10), it follows that
V..../ T = constant (4.13.11)

max

(4.13.10)

This implies that increases with increase in temperature.

vmax

v, max 1S

8mh (3kTY
Ey max = c—3 ) (4.13.12)
From this, we find that £ < T°.

V, max

The approximate value of £

In terms of wavelength, Eq. (4.13.9) becomes
g,dN,  8mh (c/A)? ( ¢4 /,Lj

v & exp(he/ AkT) -1

B 8mhe 1 da
2> exp(he/AkT)—1
=E,dA (4.13.13)

Figure 4.13.2 displays the variation of E; versus A at two temperatures. The area under
the curve gives the energy density emitted by a black body at the indicated temperature.

2’2

3201~
240
v 160
g
B
i
80+
1200 K
1000 K
| | | | |
2 4 6 8 10

AX10%m —
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The wavelength at which £, has a maximum value is obtained by setting d E,;/dA4
equal to zero. Starting with the simpler expression obtained by ignoring 1 in
comparison to the exponential term, we get

d (875/70 ehc//lkT) -0

a\ s
ie. 8he [(— SHAC + (1/A°) (he/A? kT)] e "HT = ¢
This gives

A = he/SKT (4.13.14)
From Eq. (4.13.14), it follows that

Amax T = constant (4.13.15)

This is, in fact, Wien's displacement law. This implies that A, decreases with
increasing temperature.

The approximate value of £, .. is

_ 8m(SkT) =
(he)*
From Eq. (4.13.16), it follows that E; . o< T°.

(4.13.16)

A, max

Note: From Eqs (4.13.10) and (4.13.14) and also from Eqs (4.13.12) and (4.13.16), it seems
that the behaviour of a black body depends whether it is treated in terms of wavelength
A or frequency v (= ¢/A). In fact, it is not so. The black body has the same value of
E,dN,/Vand E, dN,/V when evaluated by using Eqs (4.13.9) and (4.13.13), respectively,
for known values of A (or v = c/A) and dA (or dv = — cdA/A?).

In the low frequency range, we may write

Hence, exp(ﬂ) —1= (1+_+ ) 1~
kT kT kT

With this, Eq. (4.13.9) reduces to
g,dN,  8mkTV’
vV o
Equation (4.13.17) is known as Rayleigh-Jean distribution expression. In terms of
wavelength, Eq. (4.13.17) is given by
g, dN, _ 8mkT(c/A)’ (_L i
14 i A?

In the high frequency range, we may write

dv (4.13.17)

da (4.13.18)

8TkT
- _ e

— > 1
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Hence, VAT _ |~ VT

With this, Eq. (4.13.9) reduces to
dv, 8mh
v o TR 3 Ty (4.13.19)
V c
Equation (4.13.19) is known as Wien's relation. In terms of wavelength,
Eq. (4.13.19) is given by

E;dN, 8nh(c)3 { c }
—L—L= —— | — | exp(— hc/AkT){——dA
7 5 2 Xp(— he/AKT) ¥
_ 8mhe
BT exp(— hc/AkT) (4.13.20)
Total Energy The total energy emitted per unit volume of black body is given by
Emitted per Unit “led
Volume v_ J'(M) dv
Vo V
Making use of Eq. (4.13.9), this becomes
U T(snh vV gnh TV
v .([( JE ehv/kT_JdV_ e ,(’)-ehv/kT_l dv

Let x = hv/kT, such that dx = (h/kT') dv. With these, the above expression becomes

U 8n(kD)* "f X

d
Vo (hey ter—1

0

15

15 (he)’

8m(kT)* (n*)  8m° (kT)*
_ 8mkT) (“ j— n (KT) (4.13.21)
Hence, the energy density is found to be proportional to 7%, The rate of flow of
radiant field from the black body will also be proportional to the energy density
and hence to the fourth power of the temperature. This fact is known as Stefan-
Boltzmann radiation law.

414 MAXWELL-BOLTZMANN PROBABILITY DISTRIBUTION OF
MOLECULAR VELOCITIES AND SPEEDS

For a gas involving noninteracting molecules, the fraction N,/N of molecules in
the energy state i with energy ¢; is given by

N. e—S,» kT

1 _
N 4 (4.14.1)
where ¢, the molecular partition function, is given by
g =y, i (4.14.2)

(state)
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Restricting only to the translational motion, we know that the energy of a molecule
moving in a three-dimensional box with sides /,, /, and /. is given by

2 2,2 2
g == . (4.14.3)
8m | I I [
where n,, n, and n, are the quantum numbers, each having values of 1, 2, 3, .... We

also know that the translational energy levels are closely spaced for a macroscopic
box. This permit us to replace the summation in Eq. (4.14.2) by integration. In other
words, the numbers n,, n, and », may be considered to vary in a continuous manner.

Equation (4.14.3) may be written in terms of components of momentum as

1 2, 2, 2
&=~ (p+pi+p?) (4.14.4)
where pi = nih2/4 li , and so on. Substituting Eq. (4.14.4) in Eq. (4.14.1), we get

N.

N1 exp{—(L)(pf +p? +p22)/kT:l (4.14.5)
N q 2m Y

Let 7,(p,, Py, p.) be the probability distribution function which identifies the
probability of finding a molecule having the components of momentum p,, p,,

and p.. Obviously, the function will be proportional to the fraction N/N given by
Eq. (4.14.5). Hence, we can write

N.
oo Py P2 = —
P y N

. c 1

Le. Jo®w Py, P2) = — €xp [—(—) (pi+p;+ pf)/kT} (4.14.6)
q 2m

The constant of proportionality ¢ can be determined from the fact that the probability

of a molecule having all possible momentum will be equal to unity. Hence, we
can write

j+foj J;(px’ Py, p.) dp, dpy dp,=1

oo +oo +oo0
—(/2m 2 ~(1/2mkT) p? —(1/2m 2
e % [J‘ o—(/2mkT) 2 dpx][J o (1/2mkT) p; dpy][_[e (1/2mkT) p? dpz] 1
or % [QrmkT)?] [(QrmkT)"] [(QrmkT)?] = 1
c ! (4.14.7)
or -~ = T . .
9  QumkT)*'?
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Probability
Distribution
Function of
Velocity

Substituting Eq. (4.14.7) in Eq. (4.14.6), we get
= ! Vo2 4 2+ 2T
oy Dy P2) = kT exp|~| 5 (px +py+p2) (4.14.8)

The probability of finding a molecule in the momentum components in the range
prtop,+dp,,p,top,+dp, and p. to p. +dp, is given by

1 1 2, 2, 2
S0 Py P2) dp,dp dp. = QramkT)y® exp {‘ (—Zm T ](Px +py+p2)|dpdp,dp.

(4.14.9)

Since p, = mv,, the distribution function which identifies the probability of finding
a molecule with velocity components in the range v, to v, + dv,, v, to v, + dv,
and v, to v, + dv, can be written as

(v, v, v,) du, dv, dv,

! m 2,2, .2
= Qamkry? P {_(%_Tj(“x UL )} (mdv,) (mdv,) (mdv.)

3/2
m m 2 2 2
=|— - —[(vi+vi+0v dv, dv, dv 4.14.10
(o] o] e vieod) avav oo a0

The function f;, is called the velocity probability density function.

Equation (4.14.10) can be written as

1/2 1/2
m o2 12T m —mv2 /2kT
- = LN e dv
1y (0, v, ) dv,dudo, ﬂzm) e d“xmzm) y}

m 1/2 R
e—ml)z /2devZ
2nkT

= [/(v) dv] [f (v) dv] [ (v,) dv,]
=f(v) £ (V) f(v.) dv, dv, dv, (4.14.11)

that is, the probability of a molecule having velocities in the range v, to v, + dv,,
v, to v, +dv, and v, to v, + dv, is equal to the product of individual probabilities
of a molecule having component velocities in the range v, to v, + dv,, v, to

v, +dv, and v, to v, + dv,, respectively.

The fact that

1/2
f(v) = (_271:ZTJ o U2 (4.14.12)

can also be established by finding the probability of a molecule having component
velocity range from v, to v, + dv, with all possible velocity components v, and v..



Fig. 4.14.1
Plot of f(v,) versus v,
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This probability is given by

400
f,(0)dv, =dv, [[ f(v, v, v)dv,dv,

3/2 +oo , +oo
m —mv? —mv?/2kT —mv?
=du, ( j oMV /24T J‘ &Y dv, J oMV /2kT du,

2nkT e e
3/2
— | do, m e—mvf/ZkT 2mkT\'"? (2mkT\'?
2nkT m m
m \2
_ -mv?/2kT
(21[ij e dv, (4.14.13)

Equation (4.14.13) gives

1/2
m —mv?/2kT
= x Eq. 4.14.12
/@) (ZMJ ¢ (Eq. 4.14.12)
In terms of molar mass, we have
1/2
M —Mv?/2RT
= | — ¥ 4.14.14
/@) [MRT) ¢ (4.14.14)

The plot of f(v,) versus v, for oxygen gas is shown in Fig. 4.13.1. The distribution
is symmetrical.
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The average velocity in the x direction will be zero for a gas at rest. This follows
from the fact that

+oo

()= [ v, e gy =0 (4.14.15)

—oo
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Principle of
Equipartition of
Energy

Fig. 4.14.2 Velocity
space

Probability
Distribution
Function of Speed

The average kinetic energy in the x-direction is given by
(KEL=%m<ﬁ>
The expression for <v§ ) is
2\ _ i 2 _ m v 2 —mv?/2kT
Wi = | vl dv, = [Mj J vie v,

—oo

" 1/2 1 - 1/2
:(ﬁ) [5{<m/2kn3} ]
m 1/2 1 2TCkT 3/2
) (=051

kT

_ (4.14.16)

m

—oo

_ 1
Hmmg(KEL::Em<u@::—m(——)=-EkT (4.14.17)

Similar expressions can be written for y- and z- components of kinetic energies.
Equation (4.14.17) is, in fact, the proof of the classical principle of equipartition
of energy which states that each quadratic term in component velocity or position
coordinate contributes (1/2) kT towards the average energy of a molecule.

MAXWELL DISTRIBUTION OF SPEEDS

The speed of a molecule is related to its component velocities by
Vi =)+ v+ v (4.14.18)

The velocity components of a molecule can be represented by a point in velocity
space as shown in Fig. 4.14.2.

The velocity of a molecule is represented by an arrow starting from the origin to
the point representing the components v,, v, and v..

Since the speed of a molecule is represented by the magnitude of velocity vector
without reference to its orientation, the probability of a molecule having speed in
the range v to v + dv is represented by the number of points included in a spherical
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shell at a distance v from the origin and having thickness of dv. This probability
function can be obtained by integrating Eq. (4.14.10), i.e.

F(v) dv= | f(v, v, v) dv, dv, dv, (4.14.19)

The above integration is conveniently carried out by converting the differential
volume element dv,dv,dv, in terms of spherical polar coordinates by using the
expressions

v, = v cosf

v, = L sinf cos @

v, = U sinb sin @
and carrying out the integration over 6 from 0 to © and over ¢ from 0 to 2.
The differential volume element dv, dv, dv. in the spherical polar coordinates is

dv.dv,dv, = v’ dv sin6 d6 de (4.14.20)
Substitution of Eq. (4.14.20) in Eq. (4.14.19) gives

T 27
F(v) dv= j j f(V, v,, ) V* dvsin 6d6 dg
6=0 ¢=0

Substituting the expression of f(v,, v,, v,) from Eq. (4.14.10), we get

n2n 3/2
m m 2 2 2 2 .
F(v)dv= —|—|(v:+vi+v v°dv sinf d6 d
(v) GL AO(WT) exp{ (M)< e 2)} sinf do d

which on using Eq. (4.14.18) becomes

mv?

m V2 T 2m
= —_ —_—— 2 1
F(v)dv (anT) exp( 2ij v-dv 'gsm 6de .([ do

m 3/2 mvz
= 4mv? (—) exp| ——— | dv (4.14.21)
2mkT 2kT

Hence, the function F'(v) which gives the probability of a molecule having the
speed v is given by

3/2 5
F(v) =4nv?| _mv 41422
() (anT) eXp( 2T ( )

In terms of molar mass, the expression is

Mv? j
(4.14.23)

3/2
M
F(v) =4m0? | ——=| exp|-
2nRT 2RT
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Fig. 4.14.3 Plot of F(v)
versus v

Characteristics
of Distribution of
Speeds

The plot of F(v) versus v for oxygen is shown in Fig. 4.14.3.
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The various characteristics of the plot shown in Fig. 4.14.3 are as follows.

The function F(v) is a product of two terms of opposite characteristics. The
term v’ increases quadratically while the term exp(— MV*2RT) decreases
exponentially with increase in the value of speed v.

In the lower range of speeds the change in the term v* predominates over that
of exponential term with the result that the function F'(v) increases with increase
in the value of v.

In the high range of speeds, the change in the exponential term predominates
over that of v* with the result that the function F(v) decreases with increase in
the value of v.

As a consequence of the above two characteristics, the function F(v) initially
increases and after passing through a maximum, it starts decreasing with increase
in the value of speed.

The speed corresponding to the maximum value of F(v) can be obtained
mathematically by setting dF/dv equal to zero. Hence, we have

3/2
dF Ax l:zve—Mvz/ZRT 412 (_ ZMUJG—MUZ/ZRT:I
dv 2RT

Hence at v,,, (most probable speed), we have

3/2 M2
M 2
4mv,,, R A
2nRT

The expression v, is obtained from the expression

MV . 2RT
2- ™ =0 je  y,,= 1/— (4.14.24)
RT M

2nRT
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Since J. F(v) dv =1, the area under the plot is equal to one. In Fig. 4.11.3,

0
two plots of F'(v) versus v at two temperatures (300 K and 500 K) are shown.
The area under each of the two curves will be equal to one.
The probability that a molecule has a speed between any two values is equal
to the area under the plot between the two values of the speed.
The function F(v) decreases in the lower speed range with increase in temperature.
The function F(v) increases in the higher speed range with increase in temperature.
The maximum of F(v) moves to higher v with increase in temperature.
The width of F(v) at its maximum point becomes larger with increase in
temperature. Also, its value decreases with increase in temperature.
The probability distribution also depends on the mass of the molecule. At the
same temperature, a heavy gas has a narrower distribution of speeds than a light
gas. In general, the probability distribution depends upon the value of M/T. Thus,
the distribution will be the same for a gas of molar mass 2M at temperature 27
since the ratio remains the same. For example, the distribution of O, molecules
at temperature 7 will be the same as those of SO, molecules at temperature 27.

The average speed of molecules is given by

(v) = ]o VF, dr= T VF, (Vdv) = T V'F, dv
0 0

3/2 o
—an M J U3e—Mvz/2RT dv
2nRT 0

2nRT {2(15M/2RT) }

8RT
(WJ (4.14.25)

The mean square speed of molecules is given by

(W)= [ v F,de= [ F, (0 dv) = [ v'F, dv
0 0 0

3/2
=4n M
2rRT

3/2
2nRT 8

A2
1)46 Mv /2RTd,U

S — 3

W

n 1/2 ART
GIARTF == (4.14.26)

The expression of root mean square speed is

3RT

2\1/2

v = | — 4.14.27
W) M ( )
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Pressure of an Ideal The pressure of a gas is due to the molecular collisions with the sides of the vessel.

Gas We known that
F ma m dv 1 d(mv)

Pm A7 A " A &t A &

(4.14.28)

that is, the pressure is equal to the rate of change of momentum per unit area of the

wall.

Consider the wall of area A perpendicular to the x-direction (Fig. 4.14.3). If
v, is the velocity with which a molecule moves towards the wall, the change in
magnitude of momentum of the molecule after it has undergone elastic collision

with the wall is | - mv, — (mv,) | = 2mv,.

y

Fig. 4.14.3 Collision of a .......................................
molecule having
x-component of velocity v,

X

The number of collisions per unit time made by the molecules with the side of
area A will be equal to the number of molecules N’ contained within the volume
VA immediately in the vicinity of the wall. If N is the number of molecules in

the volume V of the gas, then

N
N = —(vA
V(x)

(4.14.29)

The rate of change in momentum (i.e. force exterted) due to these collisions will be

_ d(mv,)
e

The probability of molecules moving with the velocity v, is

’ N 2
= N'@mv) = - (2mA) v,

12
(" 2
J() (275ij exp(— mv,/2kT)

Hence, the net rate of change of momentum will be given by

1/2
N N m 0?2k
a (2mA) Vi f(v,) = 5 (@mA) (—mkr) v2 e AT

(4.14.30)

(4.14.31)

The pressure of the gas is obtained by integrating Eq. (4.14.31) over all possible
positive v, and dividing the resultant expression by the area of the wall, i.e.

1/2 o

m 2 —mv*/2kT
— 2m) | —— v:e dv
Ty em () [ :

() en ) Mo |- 22
v) O Gmr) |2k | T 7

P

N
v

(4.14.32)
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The number of molecules striking a wall of a container in a unit time is given by
the expression

N’ = [ Nf(@,)do,

where N is the number of molecules contained within the volume v, A immediately
in the vicinity of the wall of area A and f(v,) is the probability of the molecules
moving with the velocity v,. If N* is the number of molecules per unit volume of
the gas in the container then

N’ =N*(v,A)

1/2
m _ 2
f(vx) — ( \J e lex/ZkT

2nkT

12
Hence N’ =N*A[-" T e 2T gy
O X X

Thus

that is,

4.1

4.2

43

44

4.5

2nkT

() ()
2nkT m

’ 1/2
T
4 4

the number of molecules per unit area of the wall is equal to (1/4) N' & .

m

REVISIONARY PROBLEMS

Show that the equilibrium distribution of particles following Boltzmann statistics
is given by

o Bs&
N;=N i€ Where B=1kT
_ﬁg
2 8i¢€
Show that the equilibrium distribution of particles following Bose-Einstein statistic
is given by

&i

M= e %ePi -1

i

where o and 3 are constants. Also show that for a system in which g,/N;, > 1,
the equilibrium distribution can be computed by using Boltzmann distribution law.
Show that the equilibrium distribution of particles following Fermi-Dirac statistics
is given by

&i
e %P 11
where o and f are constants. Also show that for a system in which
g;/N; > 1, the equilibrium distribution can be computed by using Boltzmann
distribution law.
How is molecular partition function defined? What is the physical significance of this
quantity? What is the effect of temperature on the molecular partition function?
Show that the expression relating internal energy of a system to the molecular
partition functions is given by

U=NkT2(Lh“1)

N, =
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4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14
4.15

4.16
4.17

Show that the differentials of heat (¢”) and work (w) are giving by
dg’= Y, &dN;, and dw= 3 Ndg
Show that the pressure of a system is given by
p = NKT dln q]
v )r
Show that the entropy of a system is given by
S=klnWw
What is this equation known as?

Show that the entropy of a system involving distinguishable particles in terms of
molecular partition function is given by

s=U kNmg=nk |7[29) g
T oT 14

Show that the entropy of a system involving indistinguishable particles is given by

S =Nk [ln(l)+T(alnq) +1}

Derive the following thermodynamic relations in terms of molecular partition function.

H = NkT? (L lnqj +p¥

) 2(81nqj } [ d { z(alnq) H
= —T : = | —< NkT V
Cy =Nk {BT or )y )0 & ar or ), PN

A =— NkT In g for distinguishable particles

A=—NkT (ln% + 1) for indistinguishable particles
G =— NkT In q + pV for distinguishable particles

G =—NkT In (1) for indistinguishable particles
N

Show that the molecular partition function of a diatomic molecule is given by
q = 99,94, Where the various subscripts have their usual meanings.
Show that for monatomic gases, the translational partition function is given by

2nmkTY"?
@=V ( 3 )
h
What is thermal de Broglie wavelength? What is its unit?

Show that the internal energy of a monatomic gas is given by U = (3/2) NkT.
Show that the pressure of a monatomic gas is given by p = NkT/V.

Show that the entropy of a monatomic gas is given by

n kl(znka)3/2 L5
Se= Nk |1 = = 5
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Show that the above expression can be written as

S2 =R [~115414 21 A +2In (Zj—ln (ﬂj
2 2 (K P°

What is the above relation called?

4.18 Show that for a monatomic gas,
kT (2mmkT '
A=— NkT |In{— 3 +1];
p h

3/2
G=— NkT'In {”(2””’”) }
P

h2

4.19 Show that the electronic contributions towards the thermodynamic properties of a
monatomic gas can be expressed as

ge %
UeRT(qu; SeR|:lnqe+qe}

€

’ ” ’ 2
9e + 9. 9e
Ae:Ge:_RTln qe s (Cp)e:(CV)e:R |:qe - (qu :|
where ¢. =T (dg./dT) and g7 = T (dq./dT).
4.20 Show that for an ideal diatomic gas,

8l k T
@=|—— | T= —
o h’ co,

U,=RT

T
=R |In| — [+1];
s [nfa )

A,=G.,=—RTIn (Tj
G0,

1
Iy 1- -6/T

where 0 = hvik

(5]
ke,
v 66"/T—1
0,/T
-6,/T v
S, = Nk |:—ln(1—e )+et9v/T_1]

A,—Uy=G,—Uy=NkTIn (1 —¢ %7
S.=RIng,

4.=G.,=-RTn g,

g, = I, 2L + 1)
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4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

Show that the standard equilibrium constant of a reaction involving ideal diatomic
gases can be expressed as

e[ el

Derive the expression of rate constant in terms of partition function for the reaction
A+ B — X* - Products

Show that for a monatomic solid, the heat capacity is given by

 Nk(8,/T)* ™'

G =C (ee\,/r_l)z

g4

What are the limiting values of C, when (a) 7 — 0 and (b) 7 — ?

Show that the temperature at which lead has the same heat capacity as that of
diamond is smaller than the temperature of diamond.

Give a brief description of statistical treatment of the black-body radiation.
Derive the Planck’s distribution expression

14 & exp(hv/kT)-1
Derive the limiting cases of the above expression for (a) low frequency and
(b) high frequency ranges.
Show that the probability function of gaseous molecules having the components
Py Dy and p, of momentum is given by

1
P Py P = (g2 P (o + p; + p2)2mkT]

Show that the probability function of gaseous molecules having the components
U,, U, and v, of velocity is given by

3/2
— m 2, .2 2
Jo(V 0, V) = (2757] expl-m(v, + v, + v;)/2kT']

Show that

Jo (Vs v, ) = f(0) () f(V,)
Show that for an ideal gas

(V* = kTIm

(KE), = (1/2)kT

Show that the probability distribution function of speeds in an ideal gas is
given by

3/2
F(v) = 410> (%) exp(— mv¥/2kT)
TC
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4.31 Show that for an ideal gas

Vnmp = J2RT/M

p=NkTIV

W)= ~8RT/nM

(V¥ =3RT/IM

NUMERICAL PROBLEMS

4.1 Using Boltzmann probability distribution expression, calculate the possible
ways of distributing 7 distinguishable particles among 4 energy levels with
energies 0, & 2€ and 3 ¢, respectively. The total energy of the system remains
constant at 3e.

[Ans. W(ny =6, n3,=1)="17, W(ny=5,n,=1, ny),=1)=42 and

W(ny =4, n,=3) = 35]

4.2 (a) Using Stirling approximation, calculate the value of In 10!. If the correct
value is 15.1044, what is the per cent error? [Ans. 13.0259, 13.76%]

(b) Repeat the calculations for In 50!. If the correct value is 148.478, what is the
per cent error? [Ans. 145.601, 1.94%)]

4.3 Calculate the fraction of equilibrium population in the five energy levels with
energies 0, € 2¢, 3¢ and 4&, where £ = 1.106 x 102° J at T = 300 K and
T =500 K.
[Ans. At 300 K, p, = 0.930 7, p, = 0.064 5, p, = 0.004 5,
p3 =0.000 3 and p, =
At 500 K, p, =0.798 8, p, = 0.161 0, p, = 0.032 4
p3 =0.006 6 and p, = 0.001 3]

4.4 Using Bose-Einstein probability distribution expression, calculate the possible ways
of distributing 5 bosons among 5 energy levels (each one is sixfold degenerate) with
energies 0, €, 2¢, 3¢ and 4e¢, respectively. The total energy of the system remains
at 4¢&.

[Ans. W(ny=4,n,=1)="756 W(ny=3,n=1,n3=1)=2016
Wny=3,n,=2)=1176 Wmny=2,n,=2,n,=1)=2 646
W(ng =1, n; = 4) = 756]

4.5 Using Fermi-Dirac probability distribution expression, calculate the possible ways
of distributing 5 fermions among 5 energy levels (each one is sixfold degenerate)
with energies 0, &, 2¢, 3¢ and 4¢ such that the total energy of the system remains
at 4¢.

[Ans. W(ny =4, ny=1) =90 Wny=5,n=1,n;=1)=720
W(ny =3, n, = 2) = 300 Wny=2,n=2,n,= 1) =1350
W(ny =1, n; = 4) = 15]

4.6 Evaluate the translational partition function for hydrogen atom at 300 K contained
in a volume of 22.414 dm®. [Ans. 2.18 x 10%]

4.7 Calculate the translational contributions to U, Hy, Sp, 4y, and Gy for hydrogen
atom at 300 K.

[Ans. 3 741.3 Jmol ', 6 235.5 J mol ', 108.96 J K" mol ', — 28 946.7 J mol ",
—26452.5 ] mol™]

4.8 Calculate the characteristic rotational constant for H, molecule. Given: The

internuclear distance of H, is 74.17 pm. [Ans. 88.34]
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4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16
4.17

4.18

4.19

4.20

4.21

Calculate the rotational contributions to internal energy, entropy and Gibbs free
energy for diatomic chlorine at 500 K. Given: Internuclear distance of N, = 198.8

pm. [Ans. 4 157 J mol ™, 63.04 J K™ mol™, 27.36 kJ mol™']
Calculate the characteristic vibrational temperature of Cl, molecule. Given:
Ve =561.1 cm™ for Cl, molecule. [Ans. 808.2 K]

Calculate the vibrational contributions to internal energy, enthalpy, entropy and
Gibbs free energy for 1 mole of diatomic fluorine at 298 K. Given: The vibrational
frequency of F, corresponds to 923.1 em ™
[Ans. 129.1 Jmol ™', 129.1 J mol™', 1.30 T K ™! mol ™!, — 28.76 T mol™']
Calculate the equilibrium constant of the reaction (1/2 )0, == O at 1000 K. Given:
Dy (0,) = 491.888 kJ mol ', 6, of O, = 2.079 and 6, of O, = 2273.64 K. g, for the
ground electronic level of O, = 3 and that of O is 5.
[Ans. 1.75 x 1079]
Calculate the standard equilibrium constant K? for the reaction H, == 2H at 3 000 K.
Given: Ground state of H atom is 2Sl 1»» H—H dissociation energy is 431.8 kJ mol ™,
H—H internuclear distance is 74 pm and 6,(H,) = 6 210 K.
[Ans. 1.14 x 1074
Calculate the values of x-component of velocity probability density, f(v,), for oxygen
molecules at 300 K for the speeds from 0 to 1 000 m/s at the regular interval of
100 m/s. Plot the obtain data of f(v,) versus v,.
[Ans. The values of f(v,) x 10%m's are 14.29, 13.4, 11.06, 8.02, 5.12, 2.88,
1.42, 0.236 and 0.023 4]
Calculate the values of speed probability density, F, for oxygen molecules at
300 K for the speeds from 100 m/s to 1200 m/s at the regular interval of 100 m/s.
Plot the obtain data of F' versus v,.
[Ans. The values of F X 10%m™'s are 3.54, 11.35, 18.53, 21.0, 18.4, 13.1, 7.75,
3.87, 1.65, 0.6, 0.19 and 0.05]
Calculate the v, U,, and v, for oxygen molecules at 300 K.
Calculate the per cent composition of para and ortho dihydrogen at 20 K, 60 K,
100 K, 150 K, 200 K, 250 K, 300 K and 400 K. Draw a graph between per cent
of ortho dihydrogen and temperature. Use 6, = 86.5 K.
The Euler-Maclaurin theorem is

S 1= onan=2 ro)- L(2) L(Lf) .
Z'()f(n)_{f(")dn_zf(o) 12 (an w=o" 720 \an® Ju=o
Show that this theorem when applied to the rotational partition function leads to
Eq. (4.8.18).
Comment on the following statement.
The vibrational contribution towards molar heat capacity of a diatomic gas varies
with temperature. It attains a maximum value of R at high temperature dependent
on the characteristic temperature (6,) of the gas and approaches a zero value as
temperature is lowered towards 7' — 0.

For a homonuclear diatomic molecule having even number of protons and equal
number of neutrons in the nuclei (e.g. '>C,, “He, and '°0,), the contribution to the
combined rotational-nuclear partition function from the odd rotational quantum
numbers is zero. Explain. [Hint. /=0 in Eq. (AlL2).]

Show that the limiting value of N, /N, ., for dideuterium is 2/3 at high temperature.

para



ANNEXURE 1

Fig. ALL1 Two-
dimensional cross-
section of three-
dimensional space
coordinates of n,, n,
and n,

Alternative Method of Computing Translational
Partition Function

The translational energy of a particle in a cubical box of edge-length / is given by

hZ

h? 2, 2,2
£ = (n.x+nv+nz) =

2,2, .2
= o (”x +n, +nz) (AL1)

where n,, n, and n, are the quantum numbers, each having integral values of
1,2,3, ...

A translational state may be represented by a point in a three-dimensional space
of coordinates n,, n, and n,, a two-dimensional cross-section of which is shown
in Fig. AL L.

The distance of a point in this space coordinates from the origin is given by

P = ni + ni + n? (AL2)

With this, the expression of translational energy is given by
”oo,

We consider the quantum states for which »>> 1, so that » as well as € may be
considered to vary in a continuous manner.

(AL3)

The number of quantum states within the energy range € to € + d& will be equal
to the volume of the spherical shell from r to » + dr lying in the first quadrant
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of the space coordinates. The latter condition is due to the fact that the quantum
numbers n,, n, and n, have only positive values.

The volume of spherical shell from r to » + dr lying in the first quadrant will
be 1/8 of the total volume of the shell which is 4mr*dr. Hence, the number of
quantum states having energies in the range € to € + de is given by

g = % (4nridr) (AL4)
The differential of energy as given by Eq. (AL3) is
h 4my?"3
de= ———~ (Qrdr ie. dr = de
8my?'3 ( ) nr
2/3
Hence, ridr = dmy_7r de (ALS)
2
Making use of Eq. (AL3), we get
1/2
amy?3 (8nv* e &mV
2 9. 20 & _ 12
r-dr= h—z h2 de = h3 (2m8) de (AI6)
ubstituting Eq. (AL.6) in Eq. (AL.4), we get
Substituting Eq. (AL6) in Eq. (AL.4)
1 _|8mV 4emV
g —En[ 3 (2me)”2d£} -3 2 me)'? de (AL7)

With the above expression of degeneracy of translational levels, the expression of
translational partition function

_ —&;/kT
9y = zl‘gi e
becomes

4tmV
qc = z,‘ [ nhf;l (zmgi)l/zdgi}egi/kT

_ 4nmV (2m)"? T el o /T ¢

ie. q; 3

0
Let x* = g, such that 2x dx = de. With these, the above expression becomes

dnmv 2m)"'? T
_ onm h(3 m) J’ 2 2 T gy
0

AmV (2m)"? 1 2
{ v Hz{z(“m /]

2mmkT \*'?
= V( e ) (ALS)

t




ANNEXURE 1I

Expression of Total
Wave Function of a
Molecule

Classification of
Atoms into Bosons
and Fermions

Nature of Wave
Functions for
Bosons and
Fermions

Symmetry
Characteristics of
Wave Functions

Quantum Mechanical Explantion of Symmetry Number
and Heat Capacity of Hydrogen Gas

The total wave function of a molecule is given by

Viotat = Vi Vi Wy, Ve Yy (AHl)

where the subscripts t, 1, v, e and n stand for translational, rotational, vibrational,
electronic and nuclear, respectively.

Two types of atoms may be distinguished based on the nuclear spin quantum
number. These are

Bosons  The nuclei of these atoms have integral spin quantum number. Examples
include *H (I = 1), "N (/= 1) and '°B (I = 3).

Fermions The nuclei of these atoms have half-integral spin quantum number. Examples
include 'H (I = 1/2), N (I = 1/2), 'O (I = 5/2) and **C1 (I = 3/2).

We have the following requirements about the total wave function of bosons and
fermions under the exchange of the two identical nuclei in a molecule.

For bosons the total wave function is symmetric.
For fermions, the total wave function is antisymmetric.

The above symmetry requirement has profound consequences on the thermodynamic
properties of homonuclear diatomic molecules at low temperatures.

We have the following facts about the symmetry characteristics of the wave
functions involved in the total wave function.

® Translational wave function depends only upon the coordinates of the centre of
mass of the molecule, and thus this wave function is not affected by the exchange
of two identical nuclei, i.e. the translational wave function is symmetric under
the exchange of two identical nuclei.

® Vibrational wave function depends upon the magnitude of » — r, and thus this
wave function is also unaffected under the exchange of two identical nuclei, i.e.
the vibration wave function is symmetric under the exchange of two identical
nuclei.

® Most of molecules in the ground electronic state have the symmetric electronic
wave function.

® The rotational wave functions have the same symmetry characteristics as those
of the angular functions of the hydrogen atom.
Y, are symmetric for even values of rotational quantum number J
y, are antisymmetric for odd values of rotational quantum number J.
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Diagrammatic
Display of
Symmetries of
Wave Functions

Factor Deciding
Symmetry of Total
Wave Function

® A nucleus with spin quantum number / has a total of 27+ 1 spin states. These
states are represented by the magnetic spin quantum number which can have
values of
+L+I-1),...,—U-1),-1
For example, for a proton (I = 1/2) the two states are

m;=+1/2, known as o spin. Its wave function is represented by the
symbol .

m;=—1/2, known as B spin. Its wave function is represented by the
symbol .
A diatomic molecule involving identical nuclei with spin quantum number /,
has a total of (2/ + 1)? nuclear wave functions. Of these wave functions, we have

I+ 1) (2D/2, ie. I(2I+ 1) wave functions are antisymmetric
and [+ 1)*—1QI+1), ie. (I+1)(2I+ 1)wave functions are symmetric.

From example, in hydrogen molecule we have

Three symmetric nuclear spin wave functions. These are aa, B and

(1/32) (e + ).
One antisymmetric nuclear spin wave function. This is (1/ V2 ) (ef — Bex) .

The above characteristics about the various wave functions may be depicted as
follows.

v o= v W 178

(symmetric) 4 (symmetric)

Ground state
symmetric

(J = even; symmetric

1(21 + 1) functions are
J =odd; antisymmetricj

antisymmetric
(I + 1)(21 + 1) function are
symmetric

The symmetric/antisymmetric characteristic of the total wave function is decided
by the proper coupling of rotational and nuclear wave function. We can have the
following combinations.

1. For bosons, the total wave function has to be symmetric. This is possible when
121 + 1) antisymmetric nuclear spin functions couple with antisymmetric
rotational wave functions for which rotational quantum number J has odd values.
(I +1) (21 + 1) symmetric nuclear spin functions couple with symmetric rotational
wave functions for which rotational quantum number J has even values.

2. For fermions, the total wave function has to be antisymmetric. This is possible
only when 7 (27 + 1) antisymmetric nuclear spin functions couple with symmetric
rotational wave functions for which rotational quantum number J has even values.
(I + 1)(2I + 1) symmetric nuclear spin functions couple with antisymmetric
rotational wave functions for which rotational quantum number J has odd values.
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The above combinations are also applicable to linear polyatomic molecules
such as CO, and C,H,.

For bosons, we have
Go=U+DQRI+1) Y @J+1) /DT
(evgn)
+IQI+1) Y (2J+1) e /U7 (ALL2)
J

(odd)
For fermions, we have

Gn=U+1D)QI+1)Y @J+1) &/
J
(0dd)
+IQI+1)Y (2J+1) /T (AIL3)
J

(even)

From the above expressions, it is obvious that the combined rotational and
nuclear partition function cannot be factored into ¢, and ¢,. However, if 6./T <
0.20 for homonuclear diatomic molecules, this factorization is possible since

T @J+1) o O JUHDIT Y @J+1) e 0 /AT

J J
(even) (odd)
— l 2 (2J+ 1) e—G,J(J+1)/T — loj (2]_,'_ 1) e—G,J(J-%—l)/T — i
27 2 o 26,
(all)
With this, Eqs (AIL.2) and (AIlL3) can be written as
, T
Gn=Q21I+1) 26 (AIL4)

in which ¢, = 2/+1)> and ¢, = T/26.
For heteronuclear diatomic molecules, g, = 7/6..

The factor 2 in the denominator of Eq. (All.4) is known as symmetry number.
This factor is due to the fact that for homonuclear diatomic molecules, the rotational
partition function is given by Eq. (AIL.2) or (AIL3). This is applicable only to the
high-temperature limit such that 6,/7 < 0.20. For most of homonuclear diatomic
molecules, the condition 6/7 < 0.20 holds goods since their characteristic rotational
temperatures have low values. Hydrogen is somewhat unusual in that its rotational
constant is much greater than its boiling point.

COMMENT ON THE HEAT CAPACITY OF HYDROGEN GAS

Rotational Partition For hydrogen atom, 7/ = 1/2. Hence, from Eq. (AIl.3) we can write

Function

Ga=(D)Y @J+1) %/UDT L 3) 3 @7+1) %V (ALLS)
J J
(even) (odd)
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Ortho- and Para-
Hydrogens

Example AIlL1

Solution

Example AIL2

Solution

The hydrogen molecule with opposite nuclear spins (i.e. antisymmetric nuclear spin
function) is called para-hydrogen. It is associated with rotational wave functions
having only even values of rotational quantum numbers.

The hydrogen molecule with parallel (or same) nuclear spins (i.e. symmetric
nuclear spin function) is called ortho-hydrogen. It is associated with rotational
wave functions having only odd values of rotational quantum numbers.

The ratio of molecules of ortho and para dihydrogen is given by

(3) Z (2J+1)e*9‘.J(J+1)/T

Northo odd J
Vo : (AIL6)
Nyara M > 2J+1e 6,J(J+)/T
even J

This ratio depends on the temperature of the system. The percentage of para
dihydrogen is 100 at 0 K. It decreases with increase in temperature and attains a
value of 25 per cent at high temperatures.

Calculate the per cent equilibrium composition of para and ortho dihydrogens at its
normal boiling point (20.4 K). Given: At low temperature condition, the value of
0. =854 K.

We have
6./T = 85.4/20.4 = 4.186

Since
M Y @J+1e VT
Npara — even J
Northo 3) 2 (2J+1)e—9,J(J+1)/T
odd J
we have
Npa (D[ 1456763156 4 ge 204186 4 ]
N ortho (3)[36—2><4.186 1 Je12x4186 ]

(D[1+5(1.237 x107'") + 9(4.374 x 1077 ) 4+
C B[32313x107) +7(1.529 x 1072+

1
©2.082x107°

Per cent of para H, = (480.4/481.4) x 100 = 99.79
Per cent of ortho H, = 0.21

=480.4

Calculate the per cent equilibrium composition of para and ortho dihydrogens at
300 K. Given: At high temperature condition, the value of 6, = 87.5 K.
We have

6,/T = 87.5/300 = 0.292
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Since

N (1) Z (2J+1)e_9"J(‘]+l)/T

para even J

N ortho 3 X (2J +1)e %/ UHIT
odd J

we have
M _ (1)[1+5e—6><0292 4 9g20X0292 | |3,~42x0292 | }
N orho 3) [36—2><0.292 4 7e712%0292 | {1,-30%0292 ]

(D[ 1+5(0.173) + 9(2.909 x 107°) +13(4.718 x 10 + -1 |
(3)[ 3(0.558) + 7(0.030) +11(1.569 x 10~ + -+ |

_1.891 0334
C 5657
P t of H, = 0.334 100 = 25.0
er cent o para 2 = 1334 X = .

Per cent of ortho H, = 75.0

The conversion of para into ortho as the temperature is increased (or the vice versa
as the temperature is decreased) is extremely slow unless a catalyst (such as activated
charcoal) is used. Without a catalyst, the experimental values of heat capacity of
H, as its temperature is lowered from room temperature (where the ratio of ortho
to para is 3 : 1) do not agree with those calculated by using the partition function
given by Eq. (AILS). This is due to the fact that the experimental values involve
more or less 3 : 1 ratio of ortho : para dihydrogen while it changes in the calculated
values. However, if experiments are carried out in the presence of activated charcoal,
the disagreement between experimental and calculated values disappears. The use
of activated charcoal ensures an equilibrium mixture of ortho and para dihydrogen
at all temperatures.



ANNEXURE III The Concept of Ensemble

Introduction

Treatment
of Canonical
Ensemble

For a system involving noninteracting particles, the partition function is called the
molecular partition function because the energy levels in its expression refer to those
of individual molecules. This is, however, not true for a system involving interacting
particles and hence the expressions derived earlier for the thermodynamic properties
in terms of molecular partition function are not applicable for such a system. To
extend the statistical evaluation of thermodynamic properties of a system involving
interacting particles as well, Gibbs invented the concept of ensemble which is a
hypothetical collection of a large number of systems, each constructed to be a replica
of the system under study. Each system of an ensemble has the same values of
some of the macroscopic properties of the system under study. The various types
of ensemble have been visualized. The commonly used ensembles are as follows.

Microcanonical Ensemble Each members of this ensemble has the same values
of N, V" and U. The expressions derived earlier for a system of noninteracting
particles can be derived by using this ensemble.

Canonical Ensemble Each members of this ensemble has the same values of
N, V and T. This type of ensemble finds more practical applications in statistical
thermodynamics.

Grand Canonical Ensemble Each members of this ensemble has the same
values of V, T and L.

Isothermal-Isobaric Ensemble Each members of this ensemble has the same
values of N, T and p.

In this section, we deal with only canonical ensemble.

Some of the guidelines of computing thermodynamic properties of a system by
using the concept of canonical ensemble are as follows.

® The diagrammatic representation of canonical ensemble is shown in Fig. AIIL.1.
Each system has the same values of N, V' and 7. The walls of each system is
heat conducting. The entire ensemble is surrounded by thermal insulation, it is
an isolated system with volume 4V, number of molecules 4N and some total
energy E; where 4 is the number of systems in the ensemble.



Fig. AIII.1 A
diagrammatic
representation of
canonical ensemble
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N% 14 N% 14 ° ° ° ° N}w 14 System
- Thermal
reservoir
NV N,V N,V
T T ° ° ° °
° ° °
° ° °
° ° °
N,V N,V N,V ~——— Thermal
* ® hd d T insulation

® The available energy states for a N-body system can, in principle, be obtained

from the solution of Schrédinger equation
Hop¥; = E; v where i=1,2,3, .. (AIIL1)

The principle of equal a priori probabilities is applicable, according to which,
any particular system of the ensemble might be found in any of the available
energy state.

® A state of the ensemble can be specified by stating the number of systems in

each and every quantum states, say, for example,

Energyof the state E, E, E; ... El}

Occupation number a; a, a; ... g

(AIIL2)

The above distribution is subject to the following restrictions;

Fixed number of systems in the ensemble: A= Ziai (AIIL3)

Fixed energy of isolated ensemble: E = ),,a,E; (AlllL4)

The number of ways of realizing a particular distribution of 4 distinguishable
systems over the available energy states is given by
!
W= A (AIILS)
IT; a;!
One can obtain many distributions varying in the values of g; in different energy
states U; subject to the two constraints as given by Eqs (AIIl.3) and (AIIL4).

® For an ensemble involving a very large number of systems, the average value

of any mechanical property (e.g. pressure, energy) is largely governed by the
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most probable distribution which has a maximum value of W for a particular
set of a;s (denoted by a*s). The average of value of mechanical property (say,
energy) is given by

U=Y.PU, (AIIL6)

*

where P,= 2 (AIIL7)
YA

This average value of energy corresponds to the thermodynamic energy of the
system.

® The mathematical procedure to determine the most probable distribution
is exactly the same as described earlier. We maximize In W subject to the
constraints of Eqs (AIIl.3) and (AIIL.4), i.e.

olnw
dinw=7Y%. da; =0 (AIIL.8)
' dg
da= Y da;=0 (AIILY)
dE=Y Uda,=0 (AIIL10)

Using the method of Lagrange multipliers, we get

Zi[aan+a—,BUijdai—0 (AIIL11)
da;
For the sum to be equal to zero, each of the coefficients of dg; is equated to zero, i.e.
olnWw
S ta-pU=0 (ATIL12)

Now InW=InA!-3 Ina!
Using Stirling’s approximation, we get

Inw=Aalna-A4-73, (aIna-a)

=AIlnA-Y ana

olnw
da;

1

Hence, =—Ing -1

With this, Eq. (AIIL.12) becomes
~Ina*-1+0-BU=0
or at =e* ¢ PU (where & = a— 1) (AIIL13)

Equation (AIIL.13) gives the most probable distribution in terms of ¢ and S.
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Carrying out the summation over i on both sides of Eq. (AIll.13) gives

= o -BU;
d,ar=¢e" Y. e
af a
o i

or e = = Alll.14
Zl_e_ﬁUi Zie_ﬁUi ( )

-BU; -BU;

Ae i Ae 7
Hence, a¥ = = (AIIL15)

D ORI
where Q is known as canonical (ensemble) partition function.
By definition
EZZiPiUi: % ZiaTUi
Using Eq. (AIIL.15), this becomes

— 1
U= — .Uie’ﬁUf
QZ’

d d —BU,
Since (—Qj == (2,»6 AU, )N == > U ¢ PYi the above expression may
aﬁ NV aﬁ ’

be written as

- (SQ/aﬁ) - (aanJ
- Q N,Vi_ aﬁ N,V

Since 8 = 1/kT, this expression may be written as

— aanj
— 72 ==
U =kT ( T vy (AIIL.16)

From thermodynamics, the expression of pressure p; is

_ (al)
bi W Jyr

Hence, the canonical average of pressure is

— aU, a;“
p=3,pP=-%, (W)NTE

(% ) e X -BePHEUY),
= 72,‘ aV NT Q - ,BQ
P) _
(X e 2012V
_ aV( )N,T _ (00 )N,T — kT (aan) (AHI,17)
ﬂQ ﬂQ aV N,T
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Expression of
Entropy

Expression of
Helmholtz Free
Energy

Expression of
Enthalpy

Expression of
Gibbs Free Energy

We will have

*1]

T a

S l(kl )
2 - = n
A

Substituting the expression of W from Eq. (AIIL5), we get

S =

1 A k
a2 | T A -

Invoking Stirling’s approximation, we get

S =

[(}lln/’l—ﬂ)—(zia;‘ lnai*—al’-“):|

A
k R
E[ Zalng}

Making use of Eq. (AIL.15), this becomes

Rl B 2 e .
WA o |- E[ziai U +¥.af Q)]

k [ﬁ(Zi% ij+an: ~k[BU +1nQ]

Substituting Eq. (AIIL.16) in the above expression, we get

s —k{ﬂkﬂ(alﬂ) +InQ| = kT (aanj +klnQ  (AILIS)
N,V | N,V

aT oT

From thermodynamics, we have

A=U-TS

Substituting the expressions of U and S, we get

A=—kThQ (AIIL19)

It may be mentioned here that both 4 and Q have the same natural independent

variables, i.e.

Since 7

Since G

Ql

N, Vand T.

=y + PV, we get

PN

JdlnQ dlnQ
72 [ j + VkT ( j AIIL20
T Juy W yr ( )

A+ PV, we get

—kTInQ+ VKT (a anj (AIL21)
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For distinguishable noninteracting particles, N-body Hamiltonian operator can be
written as a sum of N individual terms, one for each particle. The number of quantum
states available to N-body system will be equal to the product of number of quantum
states available to individual particles. The expression of canonical partition function
can be written as

QN,V,T: Zi e_Ui/kT: Zi 2_/ Zk""

where numbers 1, 2, 3, ... refer to the particles. The above expression can be written
as

¢ Wi+ Up Ups = )T (A 111.22)

_ -Uj kT ~Ujp /KT ~U, 3/ kT
Q}\/,V,T_(Zie il )(zje J )(Zk'e k3 )

=49199;3 --- (A.II1.23)

that is, the canonical partition function of a N-body system involving distinguishable
noninteracting particles is equal to the product of individual molecular partition
function.

If the energy states of all the particles are the same, then Eq. (AIIl.22) becomes

Ovrr=(qy T)N (Distinguishable particles) (AIlL.24)

If the particles are indistinguishable (i.e. the particles cannot be labelled as 1, 2,
3, ...), many of summation terms in Eq. (AIIl.22) will represent one and the same
case. It can be shown that the summation of Eq. (AIIl.22) includes N! identical
terms. Hence, the canonical partition function in this case as given by Eq. (AIll.24)
is divided by N!, i.e.

((INy)N

I (Indistinguishable particles)

Onvr= (AII1.25)

Derive the expression of entropy of a system involving N indistinguishable noninteracting
particles in terms of molecular partition function starting from the corresponding expression
involving canonical partition function.

The expression of entropy in terms of canonical partition function is

= aan)
S =kT (7BT N’V+kan

For indistinguishable noninteracting particles, we have

0 -1
M

Hence InQ =Nlng-InN
Invoking Stirling’s approximation, we get

InQ =Nlng-NInhN+N
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Hence, (aan) _ N(alnq)
aT N,V aT N,V

The expression of entropy becomes

S =kT |:N(alnq) }+k[NlnqunN+N]

= NkT (M) + Nk In (1) + kN
NV N

= Nk {T(alnq) +ln(q)+1}
aT N,V N

(AIIL.26)




ANNEXURE IV Some Useful Data

1. Data for a few Diatomic Molecules

-
Molecule Ground - v Do
pm Hz kJmol™
H, iy 74.17 132 x 10 431.44
F, iy 140.9 2.77 x 101 153.42
Cl, iy 198.8 1.68 x 10" 238.32
Br, iy 228.4 9.70 x 102 189.94
L iy 266.7 6.44 x 10" 148.79
N, iy 109.76 7.07 x 101 940.26
0, 5 120.74 474 x 101 492.92
HF iy 91.68 124 x 10" 563.18
HCI 'y 127.46 8.97 x 10" 426.53
HBr 'y 141.4 7.95 x 10" 361.76
HI iy 160.4 6.93 x 10" 29431
Co 'y 112.81 6.51x 10" 1068.63

2. Data for a few Triatomic Molecules

Molecule Bond Distance ~ Bond Angle v
r/pm cm”!
Co, C—0; 192.6 180° 1342.9,667.3 (2),2349.3
CS, C—S; 1553 180° 658,396.8 (2), 1 532.5
N,O N—N; 112.82 180° 1276.5,589.2 (2),2 223.7
N—O; 118.42
H,0 O—H; 9584 104.45° 3657.1,1594.6 3755.8
H,S S—H; 134.55 93.3° 2614.6,1182.7,2627.5
NH, N—H; 102.5 103° 3400, 1 550, 3 650
NO, N—O; 119.7 134.25° 1357.8,756.8, 1 665.5
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3. Values of Some Standard Integrals

oo

@A) _[ xX"e ax? dx
0

1 ()2
For n=20 5(;) n=3
1
n=1 Z n=4
1 (2
"2 z(a—s) n=3

+oo
2
(ii) jx" e dx=0whenn=1,3,5, ...

—oco

" 2
:2j x"e ™ dx whenn=0,2, 4, ...
0



5.1

S

INTRODUCTION

Macromolecules

Macromolecules, also known as polymers, are formed by the covalent linkages
between many repeating small molecules called monomers. The polymers may be
classified into two categories, namely, synthetic polymers and biological polymers.

Synthetic polymers are man-made polymers. The starting materials are small
number of identical repeating units, usually one or two. These polymers may be
classified into two categories based on their methods of preparation.

Condensation (or Step Growth) Polymers The condensation polymers are formed
by the reaction between two difunctional monomers with the elimination of a small
molecule such as water. Examples include

Polyester ~ 4-O—CO(CH,),COOCH,CH,},
Polyurethane  |O(CH,){0CONH(CH,){NHCO-,

Addition (or Chain Reaction) Polymers The addition polymers are formed in a
chain reaction of monomers containing double bonds. Examples include

Polyethylene + CH,—CH, +n
Polyvinyl chloride +CH,—CHCI,
Polystyrene + CH,—CH (CéHsH“n
Poly(methylmethacrylate) + CH,—C(CH3) ﬁ
‘COOCH3

In terms of repeating units, the polymers may be classified as homopolymers and
copolymers. In homopolymers, there is only one monomer as repeating unit while
in copolymer, there are two or more different monomers as repeating units.

Biological polymers include proteins and polysaccharides.

5.2 MOLAR MASS AVERAGES

In the preparation of a polymer from monomer molecules, the polymerization
reactions proceed through different extent of reaction. This results into polydispersity
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Number Average
Molar Mass

Mass Average
Molar Mass

with respect to molecular masses. To describe the distribution of molecular masses,
the following averages are commonly used.

The number average molar mass is obtained by carrying out the summation over
the fraction of molecules multiplied by their corresponding molar mass, i.e.

My =Y. f; M; (5.2.1)

(The subscript ‘n’ stands for number and bar over the symbol M, represents
average.)

The fraction f; is given by
N.
fi = = (5.2.2)
Ntotal

where N, is the number of molecules each having molar mass M; and N, is the
total number of molecules which is given by

Nigar = 2 Ni (5.2.3)
Substituting Eq. (5.2.2) in Eq. (5.2.1), we get

N. ZiNiMi
1 M: - - -
Nt Nt

M, - zi[

otal otal

which in view of Eq. (5.2.3) becomes
— Zl‘NiMi
My = ———
zl'Ni

The mass average molar mass is obtained by carrying out the summation over the
mass fraction multiplied by their corresponding molar mass, i.e.

My =Y, WM, (5.2.5)

(The subscript m stands for mass and bar over the symbol A, stands for average.)

(5.2.4)

The mass fraction w; is given by

w, = (5.2.6)

i
Myota)

where m; is the mass of the polymer molecules, each having molar mass M; and
My 15 the total mass of the sample of the polymer which is given by

Miotal = Zimi (5.2.7)
Substituting Eq. (5.2.6) in Eq. (5.2.5), we get

e 3 [y 2

Mmzzi : -

Myotal Myotal
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which in view of Eq. (5.2.7) becomes
2 mM,

M, = 2—’" (5.2.8)
i

Since m; = N; (M;/N,), we get

_ DANMINOIM; X N M

= = 529

Mn= "5 N.(M,IN,) Y NM, (529
In terms of fraction of molecules, we have

o T (5.2.10)

M = — VN

" zifiMi

For all polydisperse system, ]\_/[m > Mn. This follows from the fact that the number
average molar mass of a distribution counts the contribution of molecules in each
class while the mass average molar mass is based on the mass contribution of each
class. The molecules with higher molar mass contribute relatively more to the average
when mass fraction rather than number fraction is used as the weighing factor.

The ratio Hm/ j\_/[n is a measure of the polydispersity of a sample of a polymer.

The z-average molar mass is defined as
ziN i M 13

M - = - -
‘ EH“NiZMi2

(5.2.11)

Since the weighing factors in the z-average molar mass is N; Mzi , the molecules
having higher molecular mass are weighed even more heavily resulting into

M,> M, > M, (5.2.12)

The viscosity average molar mass is defined as

o ZiNl.MiaH 1/a

My=|———— (5.2.13)
ZiN i M i

where the variable a is characterized by the system under investigation and generally

lies in the range 0.5 < a < 1.0. Note that A/, = M, when a = 1. The constant a

is known as Mark-Houwink exponent.

The viscosity average molar mass is not an absolute value, but a relative
molar mass based on prior calibration with known molar mass for the same
polymer-solvent-temperature conditions. The variable a depends on all these three
conditions.
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Example 5.2.1

Solution

Example 5.2.2

Solution

Table 5.2.1 lists the different molar masses described above along with the
experimental methods to determine these averages.

Table 5.2.1 Description of Average Molar Masses

Average Definition Methods
_— Z iNiMi . . . .
M, NN Osmotic pressure and other colligative properties
2N End group analysis
M 2N Light scatteri
m ight scattering

2N, Sedimentation velocity

M D/ Sedimentation equilibri
edimentation equilibrium
MZ 2 ,‘NiMzz d
- 2 N»M«Ha 1/a
M, U Intrinsic viscosity
2 ,‘Nth

A solution contains equal number of particles with molar masses 10000 g mol ™! and
20 000 g mol™, respectively. Calculate A7, and M,,.

By definition,
_ N,M,+ N, M
M, = 1T
N, +N,
Since Ny = N,, we have

M, +M, _ (10000+20000) g mol”

M, =

2 2
= 15000 g mol™
By definition
— NM}+N,Mj
M = "N M+ N,M,

Since N; = N,, we have

7 - M? + M3 _ [(10000)* +(20 000)*] g* mol
" M+ M, (10 000+20 000) g mol ™!

=16 666.6 g mol !

A suspension contains equal masses of particles with molar masses 10 000 g mol ™! and
20 000 g mol ™, respectively. Calculate M, and M,
Since m = nM = (N/N,)M, we have

N = (m/M)N,



Macromolecules

NM, + NoMy - {(my/ My)NpFM +{(my | My)N j } M

H M, =
enee. N, +N, (my/ M)N 5 + (my/ My)N,,

B my + my
(my/ My)+ (my/ M)

Since m; = m,, we have

- 1+1 _ 2M1M2

" UM)+UM,) My +M,

~2(10000 g mol™")(20 000 g mol™)
(20 000+10 000) g mol ™!

=13333.3 g mol™
M= mM, +m,M,
ny +m2
Since m; = m,, we get

— _ M;+M, _ (10000+20000)gmol™

My
2 2
=15 000 g mol™
Problem 5.2.1 Show that for a equimolar mixture of two substances
o _2\2
Ml =M,y +(Man_Mn)
o _2\2
MZ = Mn_(Man_Mn)
Solution We have
— NM, +N,M, M, + M, )
M, = = ; (since Ny = N,)

N, +N, 2 ’

— NM?+N,M3 M+ M?
My = ——L—2r-—2 _ 177 . (since Ny = N)
NM{+N,My M, + M,

From these two expressions, we get
Ml + M2 = 2 Mn

M + M? = M, (M + My) =2 M, My,
Since (M, + M2)2 = M12 + Mz2 + 2M,M,, we have
2MMy = (M + M)’ — (M] + M)
=4, —2 My M
Also  (M; — My)? = (M, + My)? — 4M, M,
—4My —8 M + 4 Mo Mo

=4 M, My — 431

385

(M
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Example 5.2.3

Solution

This gives
2
MI_M2:2(Man_Mn) (2)
Solving M and M, from Eqgs (1) and (2), we get

My =, + (2,5, -1)

M2 = Mn - (Mnﬁm_ﬁi)]/z

The Mark-Houwink exponent for poly(methylmethacrylate) has the value of 0.69 in acetone.
Calculate the value of A7, that would be obtained with the following molar mass distribution
if the sample was studied by the viscosity measurement.

n; x 10*/mol 12 2.7 49 3.1 0.9
M, x105/gmol™ 2.0 4.0 60 80 200
Since
> NMEN (S )
. = [ e _ i VL
' [ Z,—NiM,— ] [ ZiniMi ]
we have

Y M =[(12 % 107) (2.0 x 1099 + (2.7 x 107%) (4.0 x 10%)"®
+(4.9 % 107 (6.0 x 10°)1%° + (3.1 x 107%) (8.0 x 10%)"%?
+(0.9 x 107 (20.0 x 10%)1¢%] g!'6? mo1 ¢
=11.091 2 x 10° + 7.922 2 x 10° + 2.852 8 x 107 + 2.934 8 x 10’
+4.0085 x 107] g"%° mo1 ¢
=1.069 7 x 108 g"%? mo1 *-®°
Y mM; = [(1.2x 107 (2.0 x 10°) + (2.7 x 107) (4.0 x 10°)

+(4.9x107%) (6.0 x 10°) + (3.1 x 107%) (8.0 x 10°)
+(0.9x 107 (20.0 x 109)] g

=[2.4000 x 10> + 1.080 0 x 10 +2.940 0 x 10° + 2.480 0 x 10°

+1.8000x 10°] g
=18.540 0 x 10°g

=(1.252 5 x 10H1493 g mol !

— (1.0697x10°g"® mol 06 )"*®
My = ( 8.5400x10° g J

=18.68 x 10° g mol™!

5.3 DISTRIBUTION OF MOLECULAR SIZES IN STEP-GROWTH POLYMERIZATION

Consider the polymerization of molecules, each containing two active groups A
and B (e.g. HO—(CH,),—COOH) such that the end group A of a monomer gets
attached to the end group B of another monomer in succession to form a polymer
chain, represented as Ababab ... abaB. In this notations, the units a and b represent,
respectively, the groups A and B which have undergone reactions to form ab
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linkages. For a chain containing £ monomer molecules (known as kmer), there are
k — 1 number of units of a and one A group.

Let N, be the initial number of active groups A (which is also equal to the initial
number of monomer molecules). At any extent of reaction, let N be the number of
active groups A. It follows that

Number of A groups undergone reactions = Ny — N

The fraction of groups A undergone reactions (known as extent of polymerization)
is

Ny-N N

p= N, =1- N_o (5.3.1)
The fraction of groups A which remain unreacted is
1-p= N (5.3.2)
Ny

The probability of each of the group A reacted to give a linkage ab in a polymer
chain is taken to be equal to the fraction of groups A reacted, i.e. p. The probability
of groups A remain unreacted will be equal to 1- p.

Since in a kmer, there are £k — 1 numbers of groups A reacted (to give k£ — 1
number of ab linkages) and one group A unreacted, the probability of forming
kmer is given by

P=p" "1 (1-p) (53.3)

Since the sum of probabilities (P;s) and the number fractions (f;s) of all possible
kmer in solution are individually equal to one, i.e.

S.h=1 and ¥ f=1 (5.3.4)

we identify P, equal to f;. If N, is the number of species that are & units long and
N is the total number of species in the solution, then

N
P.=f = Wk (5.3.5)
Equating Eqgs (5.3.3) and (5.3.5), we get
N=Np-1a-p (5.3.6)

The average value of k, known as number average degree of polymerization, is
given by

Ny
kow = Y kP, (5.3.7)
k=1
where N, is the initial number of monomers. In Eq. (5.3.7), N, may be replaced
by infinity as the value of P, drops off rapidly with increasing value of k. Hence,
we write Eq. (5.3.7) as

k,, = kZ kP, (5.3.8)
=1
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Making use of Eq. (5.3.5), the above expression becomes

< o Ni 1
kyy = ;El k(y) = A (5.3.9)
In terms of fraction p of molecules reacted (Eq. 5.3.3), the expression of k&, is
k= 2 kP (1 - p) (5.3.10)
k=1
< - 1
=(1-p) (Z kp* 1) =(1-p) - (5.3.10)f
i 1-p)
1
= — (5.3.12)
I-p
Total Number Since kmer contains k monomer molecules, the total number of monomer molecules
of Monomer to start with is given by
Molecules o
Ny = Y kN, (5.3.13)
k=1
Using Eq. (5.3.5), this becomes
Ny = X k(NP)=N Y kP, (5.3.14)
k=1 k=1
which in view of Eq. (5.3.8) becomes
Ny= Nk, (5.3.15)
Substituting k,, from Eq. (5.3.12), we get
Ny= N 5.3.16
0~ 1=, (5.3.16)
Number of kmer The number of kmer in terms of number N of species in the solution as given by
in Terms of Eq. (5.3.6) is o
Initial Number Ne=Np~ = (1-p) (5.3.17)
of Monomer The number N in terms of N, is given by Eq. (5.3.16). Hence
Molecules -
Ny =Ny p* 1 (1= p)? (5.3.18)
Number Average If M, is the molar mass of repeating unit then the molar mass of kmer is given by
Molar Mass M, =k M| + M oss (5.3.19)
where M, 15 the excess molar mass due to the presence of end groups.

- 1
T We know that Zpk:1+p+p2+...: -
k=0 1-p

Differentiating both sides with respect to p, we get

= 1
Dhptls ——
P (a-py
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The number average molar mass of the polymer is given by
2N My
" 2 k N, k

Substituting M, from Eq. (5.3.19), we get

<|

iy Zk Nk(le +Mexcess)
M,=
2N
_ Mle Nkk+Mexces52ka
2N

Since ) N, =N and Y N k=N k,, we get

Mn = Ml kav + Mexcess (5~3'20)
Substituting k,, from Eq. (5.3.12), we get

_ M1

M= 1+ Moces (5:321)
Neglecting M., in comparison to M;/(1 — p), we get

_ M1

M,=— (5.3.22)

I-p

The total mass of the system is given by

oo M )
Mygtal = kZ Ny (_k j ; (N, is Avogadro constant)
-l

In terms of number average molar mass (M, =>,N,M,;/N), the above
expression becomes

1 —
Miotal — N_A(NMn)
Replacing N in terms of N, (Eq. 5.3.16), we get
1 —
Mioal = 3 (No (1 =-p)] M, (5.3.23)
A

(Alternatively, m, = Ny (M;/N,), which in view of Eq. (5.3.22) becomes
Migiar = No (1 = p) M,/Ny.)
By definition

_ Mass of kmer
Total mass of the system

Wik

_ _N(M/Ny)
2N (M /Ny )
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Graphical display
of wy versus k

Fig.5.3.1 Plot of w;
versus k

Using Eq. (5.3.18) for N, Eq. (5.3.19) for M, and Eq. (5.3.23) for m,, we get

Wy = [Nopk_l(l_p)z][(k% +Mexcess)/NA)
No(l—=p)Mn/N

— pk_](l_p)(k_Ml+Mexcess) (5324)
My

Substituting M, from Eq. (5.3.21), we get

k-1
1-p) kM, + M, ..,
Wy = P ( P)( 1 excess) (5325)
Ml/(l_p)+Mexcess
NegleCting Mexcess’ we get
oy = kpk7 'a _p)z (5.3.26)

Figure 5.3.1 displays the plot of w; versus k for the three larger values of p.
The main characteristics of Fig. 5.3.1 are as follows.

® The contributions from smaller and larger values of k are smaller than those of
the intermediate values of k.

® The maximum in the plots is shifted to larger value of £ with increasing value of

p.
2.0
p=095

1.5
T Lo
E
% =097
g

0.5

p=0.99
0 \ \
0 50 100 150 200

k —
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The value of k corresponding to w,,,, can be obtained by setting dw/dk equal
to zero. Taking natural logarithm of Eq. (5.3.26), we get

Inw,=Ink+@(k-1)Inp+2In(-p)

Differentiating this with respect to £ keeping p constant, we get

we\ ok ), k ne

This gives
awkj _ 1 el 2 (1
(5], = (rme) et 0o [

Setting dw,/dk equal to zero, we get

1

Koy = — —— (5.3.27)
Inp
Hence for p = 0.95, 0.97 and 0.99, the values of &, are 19.5, 32.8 and 99.5,
respectively.
® The distribution becomes more broad with increasing value of p.
Mass Average By definition
Molar Mass —
M, = X, WM,
Using Eq. (5.3.26) for w; and Eq. (5.3.19) for M, we get
My, = St (1= )] (M) + Mogeeqs] (53.28)
Ignoring Mgy e, WE get
M, = (Zk2p") (a-p? M, (53.29)"
1+p 5 I+p
= 5| (L=p) My = —— M, (5.3.30)
1-p) 1-p

T We have Zkkpk*1 =1/(1 7p)2. Multiplying by p, we get

V4
Zk kpk =
(1-p)?
Differentiating both sides with respect to p, we get
1 2p 1+p
Z kzpk*] — + —
¢ a-p?  a-p’  (A-p)
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Comparison
between M,, and
M,

Example 5.3.1

Solution

From Egs (5.3.22) and (5.3.30), we get

M, [A+p)/(-piM;
T M) =1+p (5.3.31)

n

For p ~ 1, the value of Mm is twice that of Mn.

A hydroxyacid HO—(CH,); — COOH is polymerized and it is found that the product
has a number average molar mass of 20 000 g mol™!. (a) What is the extent of reaction
p? (b) What is the degree of polymerization? (¢) What is the mass average molar
mass?

(a) From the expression M” = M;/(1 - p), we get
p =1 —Ml/ﬁn =1-132/20 000 =1 — 0.006 6
=0.993 4
(b) ke =1/(1—p)=1/(1-0.993 4)=151.5
© M, = M,(1+p)
(20 000 g mol™) (1 +0.993 4)
=39868 g mol ™!

5.4 END-TO-END DISTANCE IN A MACROMOLECULAR CHAIN

Description of
One-Dimensional
Random Walk

The statistical method has been used to describe the spatial configuration of
macroscopic molecules. For a perfectly flexible one-dimensional chain of a
macromolecule with negligible excluded volume of its repeat units (so that more
than one repeat unit can be placed on the same site), the method adopted is known
as one-dimensional random walk.

Let a chain involve » repeat linkages. It is built with the random placement of the
successive repeat linkage in the increasing and decreasing directions of the chain.
Let their respective numbers be n; and n,, such that

n=m +n2 (541)

The probability of occurrence of such a chain as given by Binomial distribution
is given by

B n! 1 m 1 n
P= () 5 (3) 642

The first term in Eq. (5.4.2) gives the number of ways of selecting »; and n,
out of the total of # repeat units and the factor 1/2 in the second and third terms is
due to the fact that the placement of the successive repeat linkage in the increasing
and decreasing directions of the chain is equally likely.

If / is the length of the repeat linkage, the displacement of the chain from the
starting point (taken to be origin) is given by
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x=my—ny) !l (54.3)
From Egs (5.4.1) and (5.4.3), we get
n+x/1 n—x/l
n = and n, =

Substituting these in Eq. (5.4.2), we get
p- i 5) (5.44)
{(n+x/D)/2} 1 {(n—x/D)/2}! \2 o

Equation (5.4.4) is known as Bernoulli’s equation.

For a polymer chain, » has a large value and thus Eq. (5.4.4) can be simplified
by invoking Stirling approximation.

Iny!l=ylny-y (5.4.5)
Taking logarithm of Eq. (5.4.4) and using Stirling approximation, we get

InP=(nlnn—n- B(l + %)m {%(1 + %)}—g(l + %ﬂ
(8- el D40- ) e
2 D)ee2) b 2)n-2) e

Since x < nl, we can approximate logarithm terms as

(en)==5 5 ()
In|[l1+—| @+ — - — | =
nl nl 2 \nl

With this, Eq. (5.4.6) is reduced to

e 5 s} -G

which on simplification gives

2 3
X n( x
InP=- -—|= 5.4.7
2nl* 2 (nl ) 647
Retaining only the first term, Eq. (5.4.7) may be written as
2
InP=- 5 + constant (5.4.8)
2nl
The expression of probability function may be written as
P = k exp(— x*12nl%) (5.4.9)

where £ is a constant known as a normalization factor. Since x can have any value,
the normalization factor is obtained from the expression

+o0
k j exp(— x*2n) dx = 1

—oo
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Computation of
Mean Square End-
to-End Distance

Extension to
Three-Dimensional
Chains

This gives
kQrnH)'"? =1 ie. k=1

Hence, the probability function of locating the growing end of the chain at the
distance x from the origin (i.e. the starting point) is given by

1 x?
P= —— exp|-——— 5.4.10
(2mni*)"? p( 2nlzj ( )

The probability that the growing end lies in between x and x + dx is

dx ! ) g (5.4.11)
= T 5 1,5 €X - .
Qrn?)’? P\ 2

The mean square end-to-end distance of a one-dimensional flexible chain is given
by

_ +oo +oo
x? = J‘ Px*dx= m J. X exp(— x2/2n12) dx
B 1 | - 1/2
Qnnl*)"? | 2(1/2n1*)\ 1/2ni?
= nl? (5.4.12)

Since x, y, z-directions in a three-dimensional space are equally probable, a three-
dimensional perfectly flexible chain consisting of # repeat linkages with zero
excluded volume may be considered to contain /3 repeat linkages growing in each
of the three directions. If the chain is considered to start from the origin (0, 0, 0),
the probability that the growing end of the chain lies within the infinitesimal volume
dxdydz situated at the point (x, y, z) will be equal to the product of probabilities of

(1) the growing end of the #/3 repeat linkages in the x-direction has the coordinates
between x and x + dx,

(i1) the growing end of the n/3 repeat linkages in the y-direction has the coordinates
between y and y + dy, and

(iii) the growing end of the 7/3 repeat linkages in the z-direction has the coordinates
between z and z + dz.

Since Eq. (5.4.8) is applicable to each of the three directions, we have

P(x, , z, n) dxdydz = {P(x, n/3) dx} {P(y, n/3) dy} {P(z, n/3) dz}

e el e
- expl — -
2n(n/3)1*}"? P 2(n/3)? 2n(n/3)1*}"?

) e )]
eXp( 2(n/3)I* & (2n(n/3)1*}'? P 2(n/3)I? &
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3/2 2 2 2
3(x* +y° +
ie. P dxdydz = ( j ex (—M

e ) drdydz

27nl?

In spherical polar coordinates, we have

3/2 3,2
_ 2 ;
) exp( ] r* drsin 6.d6 do

Pdr= (
21nl? 2nl?

Since the growing end can lie anywhere all around the origin, we will have

3/2 3,2 T 2
Pdr= (270112) exp __2n12 2 dr J-SlnedOJ’ do
0 0
3/2 2
_ 2 31”
= (Znnlzj 4nr exp[——znl2 dr (5.4.13)

The probability function for the end-to-end distance r is the product of two
r—dependent terms, namely, #* and exp(— 3r2/2n12). For the lower values of r, the
term r* predominates over the exponential term while for the larger value of r,
the reverse is true. Consequently, the probability function initially increases and
after passing through maximum, it starts decreasing with increasing value of r.

The mean square end-to-end distance is given by

2

= 3/2 e
r = 7 (P dr) = 41 (L) 7 ex _3r dr
'([ £ 2mnl? '[ P

0 2nl*

:4n( 3 )3/2 1 (2mni® )
2nl? 6 3

_ P (5.4.14)

Average End-to-End Distance for Polymethylene Chain with Free Rotation about the Bond

The expression of end-to-end distance for a polymethylene chain with free rotation
about the C—C bond is given by

»2 = NP (”Cosej (5.4.15)"

1—cos@

where / is the length of C—C bond, N is the number of linkages and 6 is the
angle between the positive directions of successive bonds. It has a value of
180° — 109°28° = 70°32’.

Substituting cos 70°32” = 0.333 in Eq. (5.4.15), we get

»2 =2 NP (5.4.16)

which is twice that for an unrestricted polymer chain.

T See Annexure I at the end of the chapter for the derivation of Eq. (5.4.15).
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Example 5.4.1

Solution

If the rotation about C—C bond is also restricted within the angle ¢, then
Eq. (5.4.15) takes the form of

- 1+
2 NP (1+cos0) COS(pj (5.4.17)
1-cos6 l1-cos¢@

where cos¢ is the average value of cos ¢.

Calculate the most probable end-to-end distance of a polymer chain C,yHy,, given that the
C—C bond length is 154 pm and the bond angle is 109°28’. What would be the distance
if the polymer chain is considered completely flexible?

In C,,Hy, molecule, there will be 19 repeat linkages. Hence

72 NP 1+cos6

1—cos6

1+ cos (180°—109°28")
1—-cos (180°—109°28")

1+0.333
= (19) (154 mz( j
(19) (134 pm)” | 70233

= (19) (154 pm)* (2) = 901208 pm>

=(19) (154 pm)* [

Hence, \/r:2 =949.3 pm

For a completely flexible polymer chain
#2 =N P=19 (154 pm)* = 450604 pm>

Hence, \/r:2 =671.3 pm

5.5 OSMOTIC PRESSURE FOR THE MEASUREMENT OF MOLAR MASS

Expression of
Osmotic Pressure
for a Dilute Solution

Osmotic pressure is one of the four colligative properties which is used to determine
the number average molar mass of a sample of polymer. The other three properties
(namely, the relative lowering of vapour pressure, elevation of the boiling point and
depression of the freezing point of a solvent) are not as sensitive as the osmotic
pressure and hence are not used for this purpose.

The thermodynamic derivation of osmotic pressure of a solution results into
the expression

nv,,=-RTha, (5.5.1)

where Vl*m is the molar volume of the solvent and a, is its activity in the solution.

For a dilute solution, Eq. (5.5.1) is simplified by using the following approximations.

1. The activity a; of the solvent is equal to its amount fraction, i.e. a; ~ x;, such

that
Ina, ~ Inx, (5.5.2)

f Throughout, the solvent is represented by the subscript 1 and solute by the subscript 2.
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2. Since in a solution x; + x, = 1, we can write
Inx;=In(1-x,)

= |x +ﬁ+ﬁ+ (5.5.3)
7203 o
For a dilute solution, we retain only the first term on the right side. Hence
Inx; ~ -x, (5.5.4)
3. Since the solution is dilute, we will have n, < n,. Hence, we write

n n

xy= —— ~ % (5.5.5)
n +n, n

4. For the dilute solution, we also have
Vzanl’ pm+n2V2’ pm ~ anl, pm ~ nl I/:m (556)

where the subscript pm stands for partial molar and V:m is the molar volume of
pure solvent.

With these approximations, Eq. (5.5.1) is modified to

o) e ()

n
ie. = (72) RT=c¢, RT (5.5.7)

A polymer solution does not behave as an ideal solution, probably due to the large
difference in molecular volumes between polymeric solute and low molecular-mass
solvent. This fact is taken into account by not truncating Eq. (5.5.3) to the first
term, and thus Eq. (5.5.1) is expressed as

- 1 1
v, =RT (xz +EB’x§ +§C’x§ +) (5.5.8)
where B’ and C” are respectively known as the second and third virial coefficients.

If the solution concentration is expressed as mass of solute per unit volume of
solution, we will have
~ '
X, & — (Eq. 5.5.5)
n
which on using the expressions n, = m,/M, and ny = V/ me (Eq. 5.5.6), becomes
myMy,  (mVViw el

: = 5.5.9
Vil M, M, 539

Xy =

Substituting Eq. (5.5.9) in Eq. (5.5.8), we get

* * 2
X HoMm 1 HVm
Imv,,, =RT 2bm oy —p| 2
M, 2 2
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Nature of Molar
Mass

n 1 1BV
or = — 4| —" |t
¢, RT M, 2\ M;
1
=— +Bcy+ - (5.5.10)
M,
Retaining only the first two terms on right side as the higher terms are insignificant, we get
I
—— =7 +Bc 5.5.11
oRT M, 77 G310

Equation (5.5.11) predicts that for a dilute nonideal solution, the graph between
I1/c,RT and c, is linear with slope equal to the second virial coefficient B and
intercept equal to the inverse of molar mass M, of the solute.

Alternatively, one can plot I1/c, (known as reduced osmotic pressure) versus
¢,. The slope and intercept of this plot is BRT and RT/M,, respectively.

For a polydisperse solute such as polymer, we will have
Z,—”z,i Zin2,i
ST v,
The mass of polymer per unit volume of the solution is given by

Zimz,,- zi”z,iMz,i zinz,iMz,i Zgnz,i
= 26 = = =

(5.5.12)

X

4 V Ym, 4
— Zin2,i
=M, v
oV
or Dy = MZ (5.5.13)

Substituting Eq. (5.5.13) in Eq. (5.5.12), we get

x= == Vi, (5.5.14)
n

Substituting Eq. (5.5.14) in Eq. (5.5.8), we get

2
oV Vi
vy, =Rr | 20m | lgl[gj +

Mn 2 n
. o _ 1 1|87
1.€. czRT Mn 5 Mrzl Cy
1
= — +Bcy+ - (5.5.15)

n

Retaining only the first two terms on right sight of Eq. (5.5.15), we get

- — +Bc, (5.5.16)
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Solution

Fig. 5.5.1
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Hence, the graph between I1/c,RT and c, provides the number average molar
mass of the polysystem from the intercept which is equal to 1/ A7,,. The slope of
the graph gives the value of second virial coefficient. It can be shown that the
second virial coefficient is related to the excluded volume (symbol: u) of the solute
through the expression

1 Nju

B=— 5.5.17
2 (55.17)
The following data were obtained for the osmotic pressure of nitrocellulose in acetone at 20 °C.
c/gL! 1.16 3.66 8.38 19.0
II/emH,0 0.69 2.56 7.52 254

Calculate the limiting value of IT/c and Mn. Also calculate the value of second virial
coefficient.
From the given data, we have

10° ¢/g cm™ 1.16 3.66 8.38 19.0
" (= M pyog)/dyn cm > 676.6 2510 7374 24 907
107 (IT/c)lerg g 583 686 879 1311

The plot of IT’/c versus ¢ is shown in Fig. 5.5.1. Its slope = 40.54 and intercept = 520.
Thus, we have
A0 1T /c)lerg g™
A(10%¢)/g ecm™

AT’/
- 4054 = % ~ 40.56 x 10° erg cm® g

Intercept = 520 x 10° erg gﬁ1

RT  (8.314 x 107 erg K™' mol™")(293K)
Intercept 520%10° erg g_l

Hence, MH =
= 46846 g mol ' >~ 47 000 g mol ™!

The value of second virial coefficient is

B = slope = 40.54 x 10° erg cm? gﬁ2

1400 -
1200
1000

800

(103 /c)/erg g ! —>

600

400

103¢/e cm™ —>
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5.6 VISCOSITY FOR THE MEASUREMENT OF MOLAR MASS

Definition of
Viscosity

Fig. 5.6.1 Shear force
F, applied to a fluid

Unit of Viscosity

Suppose a fluid capable of flowing in a set of infinitesimal thin layers be placed
between two rigid parallel plates of area 4. Let a shear force F be applied at the
top of the surface as shown in Fig. 5.6.1. When the system acquires stationary
state, there exists a velocity gradient (= AV/Ay, also known as shear strain) between
the layers of the fluid. The lowest layer in touch with the plate remains stationary

(see Fig. 5.6.1).
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By definition, the viscosity of the fluid is defined as

shear stress

shear strain

= /4 (5.6.1)

© AV/AY
Equation (5.6.1) is known as Newton’s law of viscosity.

In CGS system, we have
dyn/cm?

——— =idyn cm’s
(cms™')/cm

unit of viscosity =

Since 1 dyn=1 g cm s, we have
unit of viscosity = (g cm s2) (em?2s) = g em s
The unit 1 g cm™' s is known as 1 poise (= 1 P).

In SI units,

2
N/m -

unit of viscosity = =Nm"~s

(ms™")/m
Obviously,
INm?s =1 (kg m s?) (m?2s)=1 kg m's!

-1

Also 1 kg m's 1(10° g) (10 cm) 's'= 10gcm"' s'=10P



Definition of
Viscosity in
Terms of Energy
Dissipation

Viscosity of a
Dilute Solution
Involving
Spherical Solute
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The deforming force which induces flow in liquid is not recovered when the
force is removed. The force imparts kinetic energy to the fluid, an energy which
is dissipated within the fluid. The viscosity represents an internal friction which
resists the flow of the fluid. This friction is due to molecular interactions during
the flow of the fluid.

The viscosity may be expressed in terms of the rate of shear energy dissipated
per unit volume of the fluid. This follows from the following identity.
FAv _F (Ax/At) _ (FAx)/At _ (AU/A1)

AN 4 A (AAy) AV

_(AU/AY) AW

v v (5.6.2)

where AW is the energy dissipated per unit volume. We can write Eq. (5.6.1) as
F Av

A n Ay
Multiplying both sides by Av/Ay, we get

Foav_(AvY
A Ay Ay

which on using Eq. (5.6.2) becomes

A (&2 -
a1y (5.6.3)

Equations (5.6.1) and (5.6.3) require that the velocity gradient is uniform
throughout the fluid. Since this may not be the case over macroscopic distances,
we write Egs (5.6.1) and (5.6.3) for infinitesimal distances as

F/4 dw/dt
= — an n=-——5 (5.6.4)
dv/dy (dv/dy)
For a dilute solution involving spherical solute, the shear force required to impart
the potential gradient identical to that for pure solvent is found to be greater than
that required for the pure solvent and is given by the expression

E,
Fsolution = —solvent (565)
1-¢
where ¢ is the volume fraction of solute particles in the solution. For a solution,
we have

_ Fsolution/A 1 F ! _ 1

solvent

Msolution — dl)/dy = 1-¢ d’l)/dy 1-¢ Msolvent

(5.6.6)

Since (b < 1’ nsolution> Nsolvent-
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Viscosity of a
Polymer Solution

The more involved consideration of individual spherical particles of solute requires
the addition of one more term in Eq. (5.6.6). The modified expression is

n . = Msolvent + 1'5¢nsolvent
solution 1_¢ (1_¢)2

1+0.5¢
(1 _ ¢)2 r’solvcnt

(5.6.7)

The alternative form of Eq. (5.6.7) is obtained by the following replacement.

1
=(1-0)2=1+¢+ ¢+ ---)?
(oo (7=t 0484
Hence, Tyoiyion = (1 +0.50) (1 + ¢+ ¢ + ) Ngpyen
= (1 + 25¢+ 4¢2 + ) Nsolvent (568)

Equation (5.6.8) is known as FEinsteins equation for the viscosity of a solution.

While dealing with a polymer solution, the solute concentration is usually expressed
in terms of mass per unit volume. We can express volume fraction of solute in
terms mass per unit volume of solution as follows.

We have

anl,pm +n2V2,pm o

For a dilute solution, this is simplified as

I’Z2V2’pm ) (mZ/MZ)VZ,pm
anl,pm B V

_ ﬂ V2,pm _ V2,pm
() () o) s

Substituting Eq. (5.6.10) in Eq. (5.6.8), we get

V. Vom )
2,pm 2( “2,pm
Msolution = [1 +2.5¢ ( M, J+4 ) ( M, j e :| Msolvent (5.6.11)

The above expression is a special case of the expression

(V is the volume of solution)

n=mn,+Bc,+C 5 + - (5.6.12)

where the constants B, C, ... are determined by fitting the experimental data on
the variation of viscosity with concentration of the solution and 1), is the viscosity
of the pure solvent.



Definitions of a
few Terms
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While dealing with the data on viscosity, the following terms are often used.

Relative Viscosity This is defined as
n

n= - (5.6.13)
r no
From Eq. (5.6.12), we get
n=1+Bc,+C'c + - (5.6.14)

The IUPAC name of n, is the viscosity ratio.
Specific Viscosity This is defined as

_n
Ny = % -1 (5.6.15)
From Eq. (5.6.14), we get
Ny =B c;+C'¢ci + - (5.6.16)
Reduced Viscosity This is defined as
1 n nsp
=—|=-1|=2 5.6.17
"o ) (770 ] ) B617
From Eq. (5.6.16), we get
Nea =B +Clcy + -+ (5.6.18)

The IUPAC name of 1,4 is the viscosity number.

Intrinsic Viscoisity This is defined as
(] = lim 70,4 (5.6.19)
¢, —0
From Eq. (5.6.18), we find that
(N =8 (5.6.20)

The value of intrinsic viscosity is obtained by determining the value of intercept
of the graph of 1,4 versus c¢,. The intrinsic viscosity is often used as its value
directly reflects the molecular properties of the solute. The IUPAC name of [7] is
the limiting viscosity number.

According to Eq. (5.6.11), the intrinsic viscosity is given by

VZ, pm

m %
M= lim — |—-1|=25 (5.6.21)

2

where 1 and 1, are viscosities of solution and solvent, respectively.

Assuming the macromolecule to be globular, its radius of gyration can be
computed from the expression

25N, (4 5)"?
M ==, 3™ (5.6.22)
2

3 g
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The Mark-Houwink
Equation

Inherent Viscosity This is defined as

Ly [ L ) (5.6.23)
inh = 7 | o
"l %) Mo
From Eq. (5.6.14), we get
1
Man = - In(1+B ¢+ C’ o+ ) (5.6.24)
2

A graph between 1, and ¢, also provides the intrinsic viscosity when extrapolated
to ¢, = 0. The IUPAC name of 1, is the logarithmic viscosity number.

The intrinsic viscosity of a polymer solution is found to increase with increase in
the average molar mass of the polymer. This dependence is expressed as

(] =kM (5.6.25)
Equation (5.6.25) is known as the Mark-Houwink equation. The constants £ and
a are known as the Mark-Houwink constants for a system. The values of £ and a
depend on the (i) nature of polymer, (ii) nature of the solvent, and (iii) temperature.
In Eq. (5.6.25), both [n] and & are expressed in the same unit (say, cm® g '; dL g ™).
The molar mass M carries the unit of mass used in the concentration term appeared
in the quantity [1].

The extensive tabulations of k and a are available in the literature.

The average molar mass referred to in Eq. (5.6.25) is the viscosity average
defined earlier in Eq. (5.2.13). This follows from the following analysis.

Since [7] is a limiting value as ¢, — 0, the concentration effect it contains can
be written as

[n] = L] (5.6.26)
)

For a polydisperse system, we also have
Nsp = Zinsp,i = Zici[n]i = Z,-ci (kM)
¢ =2

2 ik M)
Hence, [n]= Z—C (5.6.27)

But [n]= kﬁa. Hence

a
—a 2 ici Mi
M= —- (5.6.28)
i€
Since ¢/s are mass per unit volume, the above expression can be written as

—a zimiMia
M = —- (5.6.29)
zimi
where m; is the mass of the ith category of the polymer having molar mass M,
Since m; = (N;/N,) M, we get



Example 5.6.1

Solution

Fig. 5.6.2
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1/a
I+a
et _ ziNiMi

5.6.30
ZiNiMi ( )

In general Mn> MV > Mm. Fora=1, My = Mu. For most polymer system,
the value a lies in the range 0.5-1.0.

The relative viscosities of solutions of a sample of polystyrene in toluene were determined
with an Ostwald viscometer at 25 °C.

/102 gem™  0.249 0.499 0.999 1.998

n/n, 1.355 1.782 2.879 6.090
If the values of the Mark-Houwink constants are k= 3.7 x 10 g cm® mol® and g = 0.62
for this polymer, when the concentrations are expressed in g cm™>, calculate the molar mass.

From the given values, we calculate the values of 7,,/c and then plot 7/c versus ¢ to get
the intercept at ¢ — 0. The obtained values 1,/c are as follows.

c/10? gem™ 0.249 0.499 0.999 1.998
n/n, 1.335 1.782 2.879 6.90

Mo 0.335 0.782 1.879 5.90
1,p/(c/g cm™) 1.35 x 10 1.57 x 10° 1.88 x 107 2.55 % 10%

The graph between 1)3,/c and c is shown in Fig. 5.6.2. The intercept of the graph is 1.225.
Hence, [1], - o = 1.225 x 10% g cm®.

m)”a _ (1225%10° 11062
3.7x1072

MV/ mol™! = (
& k

My=48 x 10° g mol™!

102 nep/(clg cm3) —»

1225

l 1 1 1 1
0.5 1.0 15 2.0

/1072 g e —»




406 A Textbook of Physical Chemistry

5.7 ULTRACENTRIFUGE SEDIMENTATION FOR THE MEASUREMENT OF MOLAR MASS

Stationary-State
Velocity of a
Macromolecule

The phenomenon of ultracentrifuge sedimentation involves the migration of
macromolecules from the bulk of the solution towards the bottom of a cell under
the influence of a centrifugal force which is about 10° times greater than the
gravitational force. The solution of the sample of macromolecules is taken in a
transparent cell and is placed in the cavity of a rotor operating at very high speed
(say, 60 000 rotations per minute) in an instrument which allows vibration-free,
constant temperature operation. The movement of molecules in the sample solution
is monitored by the optical systems.

In the sample solution, a molecule of mass m at a distance » from the axis of
rotation is under the influence of the following forces.

® The centrifugal force due to the rotation of molecule. This imparts radial
acceleration @’r to the molecule, where @ is the angular velocity (expressed in
radians per second). The expression of centrifugal force is

F,=m (&’r) = (MIN,) (0*r) (5.7.1)

® The buoyant force due to the replacement of volume ¥ of solution equivalent
to that of the molecule. This is given by

M
Fy =V, par = (—] ’r 5.72
b 2 P NAp2 P ( )
® The viscous force as given by Stokes law is
Fe=fv, (5.7.3)

where f'is the frictional coefficient (for spherical molecule it is equal to 6xnR)
and v, the stationary-state velocity of the macromolecule.
The molecule attains v, when

F.=F,+F;
M M
ie. — wr= o’ + [, (5.7.4)
Na (NApzj P 4
This gives
1 M pj
o=~ L [1-L)
s f NA ( Pz
=5 o'r (5.7.5)
1 M pj
where s=—— |1-— (5.7.6)
S Na ( P2

and is known as sedimentation coefficient which is equal to the stationary-
state velocity per unit acceleration. The values of sedimentation coefficient are
characteristic of the settling molecules. The unit of s is second. A unit of 10~ is
known as svedberg (symbol: S) after the name of Svedberg — a pioneer worker in
the field of ultracentrifuge sedimentation.



Radial Location of
Molecule with Time

Example 5.7.1

Solution

Comments on
Sedimentation
Coefficient

Use of
Sedimentation
Coefficient

Macromolecules 407
Since v, = dr/dt, Eq. (5.7.5) can be written as
dr _ so*r (5.7.7)
dt
This gives
dr = s’ds
r
which on integration gives
In (#/r°) = s@’t + constant (5.7.8)

where r° is the unit value of r.

Thus, In (#/°) of the molecule varies linearly with 7 with slope equal to se’,
from which the value of s can be calculated.

About how long will it take the boundary of a polymer sample to move 1 mm in a centrifuge
operating at 50 000 rotations per minute if the initial distance of the sample boundary from
the centre of rotation is 6.0 cm? The sedimentation coefficient for the sample is 2.20 X
107" s at 20 °C.

Equation (5.7.8) for the two sets of data is given by

In (r—zj = sa(AD)

n
Since @ = 2wV, we have
~ 50000x2x3.14
@ 60

In (,/ In (6.1/6.0
Hence, Af = n(rzzrl)_ a1 )

so>  (220x107%s)(5.233%x10%s7')?
=2.744 x 10° s = 45.73 min

rad/s = 5.233 x 10° rad/s

The sedimentation coefficients are frequently corrected for concentration
dependence and reduced to standard conditions.

® To eliminate concentration dependence, the values of s are determined at different
concentrations and then extrapolated to zero concentration. This limiting value
is represented by s°.

® The sedimentation coefficient are reduced to standard conditions by using the
expression

Sso — (I_P/Pz)s rIO,exp
sgxp (I_P/Pz )exp nO,s

The sedimentation coefficient can be used in the following ways.

(5.7.9)

® Assuming the macromolecule to be spherical of radius R, we will have

M (4 s
m= N (31:1% ) P, (5.7.10)
f=6T1 R (5.7.11)
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Example 5.7.2

Solution

Substituting these expressions in Eq. (5.7.6), we get

_ ! 4 03 (l_ﬂj
T [67U70R] (3nR sz %)

_2R*(p,-p)
91,
Knowing the values of p,, p (from separate experiments) and 1),, the above
expression can be used to determine R from the experimentally determined
value of s, which, in turn, can be used to compute M from Eq. (5.7.6). This
value of M corresponds to a hypothetical spherical particle which settles at the
same rate as the actual molecule.

(5.7.12)

It can shown that the frictional coefficient is given by

_ AT

=

(5.7.13)
where D, the diffusion coefficient, is defined as the rate at which material diffuses
per unit area, perpendicular to the concentration gradient of unity.Jr The value of
D can be determined experimentally and hence the value of frictional coefficient
can be estimated. Substituting this value in Eq. (5.7.6) helps determining the
value of molar mass. The resultant expression is

D M pY DM
= TN, (1—/)—2)— (1-Tp) (5.7.14)

* " KT N,
where D is the specific volume of solute.

For polydisperse systems, the value of M calculated by the above method
corresponds to mass average molar mass. To avoid concentration dependence,
the value of s/D extrapolated to ¢ = 0 may be used.

A sample of y globulin gives the following experimental results at 20 °C: Specific
volume of solute 0.718 mL g~', density of solvent 1.00 g mL™', sedimentation
coefficient 7.12 x 1073 s, diffusion coefficient 4.0 x 10™'" m? s™'. Calculate the molar
mass of y globulin.

From Eq. (5.7.14) we get

skTNy,  sRT

D(1-vp) D(-0p)

- (7.12 x 10735)(8.314 T K™ mol™) (293 K)
(4.0x10™" m? s {1-(0.718 mL g™!)(1.00 g mL™")}

=153.76 kg mol ™

T By definition, the rate at which material diffuses per unit area perpendicular to the
concentration gradient is given by Fick’s first law, expressed as J = — D (dc/dx). See also
Annuxure II at the end of the chapter.
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5.8 SEDIMENTATION EQUILIBRIUM FOR THE MEASUREMENT OF MOLAR MASS

If a sedimentation experiment is carried out over a long period, a state of equilibrium
is reached where the rate of sedimentation (due to the centrifugal field) becomes
equal to the rate of diffusion (due to the concentration gradient) which operates
in the opposite direction of sedimentation.

We have

® The rate of sedimentation is the given by
J,

sed — €U
which in view of Eq. (5.7.7) becomes
Jed = € (s07r) (5.8.1)
® The rate of diffusion as given by Fick’s first law is given by

Jaigr=—D £ (5.8.2)
dr

Hence, at sedimentation equilibrium

D % =cswr (5.8.3)
dr

Separating the variables followed by integration, we get

J% = S_Z)Z_ frdr

2
; c S0
— ===+
ie. ln( O) 5 # + constant (5.8.4)

c
Substituting the expressions of s from Eq. (5.7.6) and D from Eq. (5.7.13), we get

| (c) _{WU/f)(MINH(A-plpy)}e*
i _

— 26T 7) # + constant

cO

MQA-p/
= ﬁ @’ + constant (5.8.5)T
Thus, a plot of In (c/c®) versus 7 is linear with slope equal to M(1 — p/p,) /2N W KT.
Knowing p and p, in separate experiments, the slope can be used to determine
the molar mass.

For a polydisperse sample with a continuous distribution of molar masses,
several kinds of average molar masses can be obtained by using the technique of
sedimentation equilibrium. If a polymer consists of molecules involving discrete
molar masses (such as protein sample) rather than a broad distribution of molar
masses, it is possible to resolve the data so as yield the molar masses of individual
components.

T 1/p, in Eq. (5.8.5) may be written as specific volume U of the solute.
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Example 5.8.1 For the following data on sedimentation equilibrium at 25 °C, calculate the molar mass.
Initial concentration = 0.10 g L™', rotation speed 299.6 rps, p, = 1.67 g em™ and
p=1.0gcm> At r, =575 cm, ¢, = 42.18 (arbitrary units) and at r, = 5.72 cm,
¢, = 39.76 (arbitrary units).

Solution Equation (5.8.5) for the two data set is given by
) MQA-p/py) 5, 5
In & = —————== —
" N )
2RT 1 ¢
Hence, M In =

S (-p/py) @5 -1) g
Now o =2nv=2(3.14) (299.6) rad/s = 1 881.5 rad/s
1 - plp,=1-1.0/1.67=0.40

=1 =(5.75% - 5.72%) cm® = 0.344 cm® = 0.344 x 10* m*

Thus

_ 2(8.314 J K™ mol™) (298 K) In (42.18)
(0.40)(1 881.5571)2(0.344 x 10™* m?) 39.76

= (101.73 kg mol ") (0.0591)
=6.01 kg mol™

5.9 LIGHT SCATTERING FOR THE MEASUREMENT OF MOLAR MASS

Definition of If a non-absorbing light is passed through a substance, nearly all of it is transmitted
Turbidity and a very small fraction of it is scattered in all directions (Fig. 5.9.1).

Incident 20

light

I; Transmitted
light

Fig.5.9.1 Scattering of
light by a sample Scattered light

The scattering (known as Rayleigh scattering) of light is due to the interaction
of oscillating electric field of the incident light with the particles of the medium.
This interaction induces oscillating dipole in the particle, which is responsible for
emitting scattered light. The frequency of the scattered light is identical to that of
the incident light. The intensity of scattered light is given by

L=1,-1 (5.9.1)



Turbidity of a
Gaseous System
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For a system exhibiting only scattering, the intensity of the transmitted light is
related to that of incident light by the expression

I,
In —=—-1x (5.9.2)
1y
where x is the path over which light passes and 7 is known as the rurbidity of the
system.

1 Iy—1 1 I
Since ln—t=ln(0—5)=1n(1——sjg_s

Iy 1y 1y 1
we write Eq. (5.9.2) as

1 1
7= = (5.9.3)
X ]()

The derivation of expressions of turbidity of a system in terms of molecular
parameters is quite involved, we describe only the derived expressions which are
useful in determining the mass average molar mass of the particles of the system.

For a gaseous system involving particles of dimensions smaller than the wavelength
of the incident light, the expression of turbidity is given by

3.2
=5 (pNA) (5.9.4)
380),0

where o is the polarizability of the particle, &, is the permittivity of vacuum.

Ay is the wavelength of incident light, p is the density of the medium,

N, is Avogadro constant, and M is the molar mass of particles of the
sample.
In many cases, turbidity 7 is expressed in terms of the quantity known as optical-
molecular factor R,. These two are related through the expression

T= RGJ(1+cos 0)31n9d6Jd¢ Re(lin)

3 3 8ma PNy 1 n*a’pN,
Th Rog=|—|1=|— = S = 5.9.5
T (mn)f (167t) (380/14 M )2 eatum e

The polarizability in Eq. (5.9.4) can be replaced in terms of index of refraction (n)
of the medium through the Lorentz-Lorenz equation

nw—-1M N,
] (5.9.6)
n +2p 3g,
For the gaseous system » ~ 1, we can write
n® -1 (n+1)(n D 2

212 242 ( — 1) (5.9.7)

380 26 M
Hence, [ (n- DKP)(NAJ PR n-1) (5.9.8)
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T
[383%‘ M

Turbidity of a
Liquid System

3 2
8m pNAJ {280 M(n—l)}
p Na

R (M )
3% \pN, "

8m’ (p Ny ) 5
T
et \ v ) O

2
o dnj
dp

dn]z Lo
dp) N P

8’ (
T 3% eley))
3
8 (214
3
Ao
nop

2

dp

kT
(0G/ap?),

5p?

8’ s
3g2A! N 8o
N*
da?
1
2
N op
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Substituting Eq. (6.1.17) in Eq. (6.1.16), we get

1| A
dsS= —[2(—/Jivi)Jd§=—d§ (6.1.18)
T\ T
where A is the affinity of the chemical reaction. The rate at which entropy is produced
is given by
d T d (6119

Various Criteria of Irreversible Processes
The criteria dUg <0, dHg , <0, dA, <0 and dGy, , < 0 for the spontaneous
processes can be conveniently derived in terms of d; S as shown in the following.
Criterion of From the first law of thermodynamics, we have
dUs,y<0 dU = dg + dw
=T7d.S—-pdV=T@WAS-d;S)—pdV
=TdS-Td;S—pdV
Hence dUg p=-T4d;S

Since  d;S > 0 for the irreversible processes, it follows that

dUs <0
Criterion of Since  H= U+ pV, we have
dHs p<0 dH=dU+p dv+Vdp

=(TdS-TdS—pdV)+pdV+Vdp
=T7dS-Td;S+Vdp

Hence dHg ,=-Td;S<0 (as d;S>0)
Criterion of Since A =U- TS, we have
dA7y<0 dA=dU—TdS—S§dT

=(TdS-Td&S—pdV)—TdS—SdT
= TdS-pdV-SdT

Hence dA; ,=-Td;S<0 (as d;S > 0)
Criterion of Since G = H - TS, we have
dGr,p<0 dG = dH - TdS— S dT

=(TdS-TdS+Vdp)—-TdS-SdT
=—TdS+Vdp-S§drT
Hence dGy ,=-Td;S<0 (as d;5 > 0)
6.2 THERMODYNAMIC PROOF OF A; S ASSOCIATED WITH A CHEMICAL REACTION
The state of a closed system involving a chemical reaction may be defined by the

three variables, namely, T, p and & (extent of reaction). For example, the enthalpy
of the system may be written as

H=f(T, p, %



Result of Eq. (6.2.4)
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o0H oH oH
=| == dT + d — d
Hence dH (8T)F§ (apl,é P"{agl,p ¢

H=U+pV, we will have
dH=dU+pdV+ Vdp
=(dg +dw)+pdV+Vdp
=(dg-pdV)+pdV+Vdp
=dg+ Vdp
Comparing Eqs (6.2.1) and (6.2.2), we get

(57, or+|(5), o (),

Dividing throughout by 7, we get

Rk I (€ T 6
T (aT pédTJrT{ ) vV |dp+ PR Tpdé (6.2.3)

Let us assume that dg/T (= dS) is an axact differential, for which, the following
Euler's reciprocity relations must hold good.

i), ) ]
%:%[g_[;)pé: aaT{ (?;ZJT J &

T,p

e -2l ]

Carrying out the differentiation in Eq. (6.2.4), we get
(87 ) }
a P, §

1 (E)Hj Tl o’H

Since 9°H/AT dp = 0*H/dp 9T, we get

150, =),

. [
ap T,g aT p,g

(6.2.1)

Since

(First law of thermodynamics)

(6.2.2)

(6.2.4)

(6.2.5)

and (6.2.6)

1 9°H
T dp ar

(6.2.7)
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Result of Eq. (6.2.5)

Result of Eq. (6.2.6)

Comment on Eqs
(6.2.8) and (6.2.9)

Introducing Entropy
Production in
Eq. (6.2.3)

Equation (6.2.7) is the expression of thermodynamic equation of state, which we
know holds good for all substances.

Carrying out the differentiation in Eq. (6.2.5), we get
100 LA, it
o T.p T oT 9&

TOEIT 17
Since 9°H/OE AT = 0> H/OT O&, we get

oH
AH= (85 )T’p -0 (6.2.8)

that is, the enthalpy of reaction must be equal to zero.

Carrying out the differentiation in Eq. (6.2.6), we get

1| 0°H _(a_Vj _19H
T|d&dp \ 38 );,| Tpdd

Since 0*H/OE dp = 0*H/dp &, we get

Y4
AV = (86 jm =0 (6.2.9)

that is, the change in volume involved in a chemical reaction must be equal to zero.

In general, Eqgs (6.2.8) and (6.2.9) may not be satisfied for a chemical reaction.
This is due to the fact that the term dgq/T in Eq. (6.2.3), which is assumed to be
exact differential, is not valid because of irreversible nature of the chemical reaction.

There is a need of introducting the term d; S (entropy production) in the expression
of dg/T (= dS). Thus, we must have

ds = d7‘1 +4;S (6.2.10)

Introducing Eq. (6.2.3) in the above expression, we get

1 (9H 1|(oH 1(9H
ds = —(—) dr +— (—j . dp+—(—J dé+d,S
T\ a7 ), ; T[ p ). T\ ¢ ), ,

which in view of Eq. (6.2.7) and the fact that (0H/dT),, ¢ = C, ¢ and (0H/dS)y, ,
=A_H, we get

C 14 AH

€ r

ds = (L)dT_(—j dp + dé+d;S (6.2.11)
T T ), T

In order that the expressions (95/07), = C,, /T and (9S/dp); = —(dV/dT), remain
unaffected and the application of Euler's reciprocity relations do not lead to
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Eqgs (6.2.8) and (6.2.9), it is required that the term d;S should depend only
on d&. In fact, the expression as guided by Eq. (6.1.18) is

4S= ?dg (6.2.12)

where A4, known as affinity of a chemical reaction, is given by
where v; is the stoichimetric number (negative for reactants and positive for

products) and y; is the chemical potential of ith species involved in the balanced
chemical equation of the reaction.

Introducing Eq. (6.2.12) in Eq. (6.2.11), we get

1(0H aV AH+A
= = — d7 - | — dp+——d
ds T(aT)p,é (aij,é vt T s (6.2.14)

For dS in Eq. (6.2.14) to be an exact differential, we will have to verify the
following cross derivatives.

i l(a_H) _i[—ArH+Ai| 6.2.15
oG(T\oT )y, ~orL T (62.15)

. a{ (an } d [ArH+A} 62.16)
an —_— - — et —_— <y
85 8T p. & . p ap T T,&

Verification of Eq. (6.2.15) The left side of Eq. (6.2.15) gives

iy 11w
oG\ T\OT ), |, =~ TofoT

The right side of Eq. (6.2.15) gives

i[ArH“‘} _il(a_H] ~T v
orl” 1, or|T|\3g ), " & e

_ 1|(oH 1 o’H o,
- Tz{(agjw va"“"}’f_arag zf"’(ar)p,i

Since (d/dT), ¢ =— S, we get

ATAH+A 1 [(oH I
R e G R 5 ]

aH 1 9°H
_ T2 +F[ziviui+T2iviSi:|+?m
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AH 1 1 9°H
=——L—+—=|AG+TAS|+—=
T2 Tz[ T l"] TaTag

AH AH 1 0*H
7> T? T AT

_ 1 9H
T OT 9¢

Since ’H/QEIT = 9*H/OTIE, both sides of Eq. (6.2.15) are identical. Hence,
Euler's reciprocity relation is satisfied.

Verification of Eq. (6.2.16) The left side of Eq. (6.2.16) gives

AL b, e

B %aa;]a{p _(aa_gjr,j

M 32
1| o°H AV}

T|oEop
The right side of Eq. (6.2.16) gives

E[AJHA} a1 (a_Hj iy
op T lre op|T\3E);, e r.e

1P Ly ()
T Topos T\ 0p ).

Since (dy;/ dp)y, ¢ = V;, we get

oTAH+A 1 *°H 1
I e st [ — V.
ap{ T Lg Topag 72"

2
L IH Ay
T|dpd&
Since 9*H/0Edp = 9*H/Ip dE. both sides of Eq. (6.2.16) are identical. Hence,
Euler's reciprocity relation is satisfied.

6.3 ALTERNATIVE EXPRESSIONS OF AFFINITY OF A CHEMICAL REACTION

For an irreversible process, the second law of thermodynamics gives

d
dS=d,S+d;S = ?q +d.S (63.1)
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From the first law of thermodynamics, we have
dg=dU—-dw =dU+pdV

dU+pdV

Hence dS= +d;S (6.3.2)

For a chemical reaction

A
diS: ? dg
dU+pdVy A
=— < 4+ =
Hence dS 7 T dé
or dU=TdS-pdV-Ad& (6.3.3)
From this, it follows that
A= —(a—Uj (6.3.4)
9S Js.v

Since H=U+ pV, we get
dH=dU+pdV+Vdp
Substituting dU from Eq. (6.3.3) in the above expression, we get

dH=(TdS—pdV—Adé)+pdV+ Vdp

=TdS+Vdp—-4dE (6.3.5)
From Eq. (6.3.5), it follows that
A= —(a—H) (6.3.6)
a'g S,p

We use the symbol F for the Helmholtz function in order to distinguish it from
the symbel A used for affinity of a chemical reaction.

Since F=U- TS, we get

dF=dU-TdS-Sdr
Substituting dU from Eq. (6.3.3) in the above expression, we get
dF=(TdS—-pdV-Ad&{)-TdS-SdT

=-SdT-pdVr-Adé (6.3.7)
From Eq. (6.3.7), it follows that
A= _(B_Fj (6.3.8)
9 Jr.y

Since G = H — TS, we have
dG=dH-TdS-SdT
Substituting dH from Eq. (6.3.5), we get
dG=(TdS+Vdp-AdE)-TdS-SdT
=-SdT+Vdp-Adé (6.3.9)
From Eq. (6.3.9), it follows that

A= _(a_c) (6.3.10)
ag T,p
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This, we have

{30, (), (), (3,

(Note: The variables kept constant in each derivative are the corresponding natural
independent variables.)

Problem 6.3.1 Starting from U = /(T V, §) and H = (T, p, &), prove that

(i) '4:7(g%jnV_(%%JﬂV

aS oH
G - T(—j _(_j
aé T,p ag T,p

Solution (i) Taking U = f (T, V, &), we write

oU oU oU
dU = (—) dT+(—) dV+(—) dé
oT Jy ¢ o Jr.e 9 Jry

Also dU=dg—-pdV=T@W@S-d,8)-pdV
=TdS-pdV-Td;S=TdS-pdV-Ad¢
Equating the two expression of dU, we get

oU oU oU
TdS—pdV-AdéE=| — dr — dv —_— d
P ¢ (aT)V,g +(aV)T,<§ +(aé jT,V :

1(oU 1|(oU 1{(oU
or T(aijjg +T[(9V)T,§+p:| +T (aéjT,V+ } =0

Since dS is an exact differential, the cross derivatives of the first two terms gives

9 l(QQJ 9|1 (@!) N
oV [T\oT Jye . . o[ T[\oV )r; b v

1 U 1 (auj 1[( *u (ap)
. Pkl | v IR 4 = + 5
Tovor 12|\l ¢ r|\arov ) \aT ), ¢

Since 9°U/QV OT = 9°U/AT 9V, we get

), oerl
W e FT\or )y,

With this, Eq. (1) becomes

1(oU apj 1 (au)
= = — dT +| — dV+—|| — Ald
dS T(aT)Vyé +(8T V,f +T|: 85 T,V+ 5
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From this expression, we get

(2) -4[(%%) ] o a-r() -3,

(ii) Taking H = f (T, p, &), we write

oH oH oH
w= (2] (%) () e
T )¢ ap Jr¢ <& J)r,

Also dH=dU+p)=dU+pdV+Vdp
=(dg— pdV)+pdV+Vdp=dg+ Vdg
=T7WdS- 4,8+ Vdp=TdS+Vdp-T4d;S
=TdS+ VdS—-A dé

Equating the two expressions of dH, we get

TdS+Vdp-AdéE= (3—?) dT+[%—Hj dp+(aa—Hj dé
P& P It ¢ ¢ T,p

1 (0H 1 ((0H 1((oH
or ds= —(—) dT +— (—j -Vidp+— (—) +Al dE(2)
T\JT Ir¢ T{ dp 7.6 NS T.p T.p

The cross derivatives of the first two terms, we get

3{1(8_1{) ] _o|L (a_H) Ly
dp|T\OT J, ¢ r.e dT|T \dp Jr ¢ b.c

« 10 1 (3_1{) e L(2H _(B_V)
" Topor 12 |\ op s r{\orap) \or ).

Since 9*H/dp oT = 9*H/OT dp, we get

@), r=-r(2)
9p T.¢ oT p.¢

With this, Eq. (2) becomes

1 8Hj (aV) 1 (BH)
dS=—=| — | dT-|=— dp+=|| =— +A|dé
T(E)p T,& oT Jp.¢ T{ 98 T,p
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From this expression, it is obvious that

%), -3, ]

or A=T (g_gjw _(%_Z)T,p

(Note: This derivation also follows from the definition of A as shown in the
following.)

6.4 THERMODYNAMIC TREATMENT OF IRREVERSIBLE PROCESSES

System at Local
Equilibrium

A system involving an irreversible process does not have uniform value
of any of the intensive variable within the system. The total value of its
thermodynamic function, such as U, H, S, 4 and G, cannot be defined in
terms of its independent variables (e.g., U=f(S, V), H=f(S,p), A=f(T, V)
and G = f (T, p)). However, such a system can be treated thermodynamically
by considering it to be in local equilibrium® which involves the following
characteristics.

e The system is treated as a large number of elemental cells of small volume,
each in equilibrium, exchanging energy and matter with the neighbouring
cells.

e Though the volume of elemental cell is small, yet it is large enough to
ignore the influence of fluctuations on the physical properties of the
subsystem.*

e The intensive variables have well defined values in each cell and may vary
from cell to cell. These are considered as the point functions which depend on
position x and time ¢, i.e.

T=flx, 1); p =/ 10; w=rfx, 1), (6.4.1)

e Since intensive variables have well defined values in an elemental cell,
these form the basis of defining extensive variables. The expression of these
variables are exactly the same as those applicable to a thermodynamic system
at equilibrium. Representing extensive variables in a cell by the lower case
letters, we will have 4 = u + pv; g = h — Ts and so on.

T See Annexure I at the and of this chapter for the concept of local equilibrium

See Annexure 11 at the end of this chapter for the theory of fluctuations. See Eq. (AIl.34c)
which states that the relative fluctuation of number of particles in a small volume depends
inverseley upon the square root of average number of particles.
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For example, the expression
U=TS-pV+ X nu, (6.4.2)

which is applicable to a system and can be derived by using Euler's theorem for
homogeneous function, will take the following form for an elemental cell of the
system

u=Ts—po+ 3 np, (6.4.3)F

o In local equilibrium, the extensive variables are replaced by their densities, i.e.
extensive variable per unit volume of the elemental cell. These densities are
represented as u,, S,, ;... such that

u, =

In terms of local quantities, Eq. (6.4.3) becomes
u, 0 = T(s,0) — po + 2, (c; 0)
Canelling v, we get
u,=Ts,—p+ 2l (6.4.4)

e The changes in thermodynamic variables are also given by expressions
similar to those of a system at equilibrium. For example, if s, # and »; are
the entropy, intrinsic energy and amount of ith component, respectively, in
an elemental cell of volume v, then the change in intrinsic energy at constant
T and p is given by

"Derivation of Eq. (6.4.3) by using Euler's theorem For a homogeneous function
D(x, y, z, ...) of order n, Euler's theorem is

(5. () (5)
nP=x|— +y|— +z|— +---
ox /. W /.. 0z /)y,

The extensive property of a thermodynamic system is a homogeneous function of first order.
Hence, the property u(s, v, n;) is given by

Ju ou du

Also from thermodynamics,

Ju Jdu Jdu
— =T; — =— d _— =Uu.
(asl,,ni (avlm’ pan (8}1] Hi

Hence u=Ts—pv+ X;n L
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du=Tds—pdv+ X, wdn, +3,(z;,F¢) dn, (6.4.5)
where

T ds corresponds to heat exchange

—p dov corresponds to mechanical work
U; dn; corresponds to change in the amount dn; of ith species

and (z;F 9) dn, is the electrical work (dw,;) associated with the amount dn; of
ith species carrying the charge z; (may be positive or negative) under the influence
of potential difference ¢ at the point under study. For an uncharged species,
z; =0 and thus dw, = 0.

Equation (6.4.5) may be written as
du=Tds—pdv+ X, i, dn (6.4.6)
where f[i; = u;+z; F$, and is known as electrochemical potential. For an uncharged

species fI; = U;.
Expressing Eq. (6.4.6) in Terms of Local Quantities Substituting u = u,0,
s =s,0 and n; = ¢;v in Eq. (6.4.6), we get
d(u0) = T d(s,0) - p do+ X, f; d(;0)
This gives
u,dv+ovdu,=T(s,dv+vds,) —pdv+ X, [ (c; dv + vdc;)
ie. U(duv -Tds, -2, i dcl-)+dv (u,—Ts,+ p—2, 1, ¢;)=0
which is view of Eq. (6.4.4) becomes
v(du, =T ds, =3, fi; de;)= 0
Since v is not zero, we get

du, — Tds, — 3, fi; dc; = 0 (6.4.7)

e The system is not far away from the equilibrium so as to have very small
gradients in the intensive quantities within the system. This ensures constant
values of intensive variables within the small volume of the elemental cell of
the system. A system far away from equilibrium leads to large gradients in the
intensive variables and the assumption of constant values of intensive variables
within the small volume v may not be applicable.

6.5 FIRST LAW OF THERMODYNAMICS FOR AN OPEN SYSTEM

In an open system, the matter can be exchanged between the system and
surroundings. If the exchange of pure heat is represented by dg” and that due to
the exchange of matter by %; h; ,\, dn;, (where h; ,,, is the partial molar enthalpy
of ith constituent), then the first law of thermodynamics (du = dg — p dv) may
be written as



Eq. (6.5.1) in Local
Quantities

Introduction to Irreversible Processes 449
du =dg + dw

= (dg’ +Z; by pymdn;) - p do 6.5.1)f

(Note: For an open system dg = dg’ + X, A; pmd”; while for a closed system
dg = dq’ as dn; = 0.)
We write

u=u,v; n;=c¢v and dq =dq,v
where dg;, the heat exchanged per unit volume of the system. Substituting these
expressions in Eq. (6.5.1), we get

d(uvv) =0 dqv + 21 hl ,pm d(ci ’U) P do
This gives
u, dv + v du, = v dgj, + X; by, (¢; dv + 0 dc)) —p do
ie. v (du,—dg) =3k o de;)+do(u, = Sl e+ p)=0 (6.5.2)

Since 4 =u + pv, we get
hp=uo+pov ie. hy,=u,+p

N Xk o n
Also S.h ¢ =3 h pm("’j=¢=ﬁ=hv
i % v

With these, Eq. (6.5.2) becomes

v (duv —dg, =2 ;o dcl-) =0
Since v is not zero, we must have

du _dq zz zpmdci:()
ie. du,—dq,=0 or du,=dgq, (6.5.3)

(Note: For a closed system dc; = 0 and hence du,, = dq;, and also dg}, = dq,,).

Let the two compartments containing a fluid be separated from each other by a rigid
membrane through which the fluid can be made to pass through from one compartment to
the other. Let U,,, and ¥, be the molar energy and molar volume, respectively, of the fluid.
If the amount dr of the fluid is transferred from one compartment to the other, then the
energy associated with this are as follows.

* The energy U, dn associated with the amount d» of the fluid.
* In pushing fluid from one compartment to the other, the work equal to p(V,,dn) is
involved where p is the pressure offered by the fluid in the compartment receiving the fluid.

Hence, the total energy involved with the transfer of the amount dn of the fluid is

Up @+ p (Vi dn) = (Up, + pVyp) dn = Hy, dn
where H,, is the molar enthalpy of the fluid. If, besides flow of matter, there is a flow of
heat also, then the total energy involved is given by

dU=dq + H, dn
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6.6 EXPRESSION OF ENTROPY PRODUCTION AND DISSIPATION FUNCTION

Rate of Change of
Local Quantities

Equation (6.6.2)
Expressed in
Divergence

Equation (6.4.7) is
du, — Tds, — ¥, fi; dc; =0
Since du, = dgq, (Eq. 6.5.3), we get
Tds, =dg,— ¥, i, de; (6.6.1)

Dividing Eq. (6.6.1) by d¢ and keeping in mind that the space coordinates are
constant, we get

ds, 0q - dc
T —*t=—%- i—+ 6.6.2
ot ot 2"” ot ( )

Equation (6.6.2) is used to determine the local rate of entropy production in a
continuous system.

According to the laws of conservation and continuity, we have

% - —div/J,+o (Eq. AL 20)
t

ac; . .

i div (¢;v) +v; Jy=—div J; + v; J, (Eq. AL 19)
The expression of dg,, / df may be written as

%o _ _ giy J,

ot

where J, is the total heat flow across the boundary of the volume v of the elemental
cell. Introducing the above expressions in Eq. (6.6.2), we get

T(—divJ;+o)=—divd, - X (~divJ; +v; J)

Le. —divJ,+o= _ldiVJ +2A&diin+z"(_V" :ui)J
T 1 iT T

T

1. g .. A
= —pdivJ, +2’_?dw Ji+ 7 (6.6.3)

where A(: - ¥, v, fi;) represents the affinity of chemical reaction involving both

charged and uncharged species. Expressing it explicitly, we have

A ==X fi; ==Zvi(l + Z,F )

=A —(X,v, z;) Fo (6.6.4)
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Expression of Local Since

Entropy Production

divab=adivh+ b« grada 6.6.5)
we can write
adivb=divab—b.grad a

Using this expression in the first two terms on the right side of Eq. (6.6.3), we get

J,
—d1VJ —dlv(Tj J-grad( j

Hi iy g, =div(“” J"j J. . grad(’u’)
T T T

With these, Eq. (6.3.3) becomes

. [ 1
—divJ,+oc=- |:le (—qj —J,+ grad (—ﬂ
T T

+Y div [(%) —J, ~grad (“7)} + ? J. (6.6.6)

Comparing the left and right sides of the above expression, we get

J =i J
Tz (6.6.7)
‘ T
_ 1 i
and 6= J .grad - +Y.J; e grad| - R J (6.6.8)

Equation (6.6.7) gives the external flow of entropy across the boundary of the
elemental cell and Eq. (6.6.8) gives the production of local entropy within the
elemental cell. The production of entropy is expressed as the sum of products of
flow with the corresponding conjugate force. There is one term for each process
(i.e. energy transfer, material transfer or diffusion and chemical reaction). Each
of these terms vanishes when the corresponding process is no more operative.
Equation (6.6.8) is usually expressed as

T div (ab) =V « ab

= (i? +—} +i12) -(abx It\ + aby;'+ ab, I/;) :% (ab,) +%(aby) +%(abz)

ob. db, b da da da
= Lt —+—=|+|b—+b, —+b —
“(ax o asz j

=adivb+bs grada




452 A Textbook of Physical Chemistry

G = ZI_J[, . X,
where X; is the force conjugate to the flow J;. In Eq. (6.6.8), we have

(6.6.9)"

e Flow of heat J, and the conjugate force X, is grad (1/7)
¢ Flow of matter J; and the conjugate force X; is grad (-, /7T)
e Occurring of a chemical reaction J, and the conjugate force is A/T
The product of each of the flow and the corresponding conjugate force has the

dimension of entropy production.

1 1
grad (?j =- ) grad T

Alternative Since
Expression of Local
Entropy Production fi. 1 fi;

and grad( ! ) =7 grad fi, — Tl grad T

we can write Eq. (6.6.8) as

_ ! L A
c=J, -(—FgradT)+ZiJi-(—?gradﬂi+—2gradT)+Jr?

N e

Ji ~
Jy e grad (<T)+ 3~ grad (=f1;) -

2 i,
72 e grad (-T') + J,

Sy =2 i, J; - A
q—z-grad(—T)+zi T -grad(—,ul-)+Jr?

T

T The form of Eq. (6.6.9) can be derived on the basis of fluctuation theory of Einstein (see
Annexure AlI). It can be shown that

n
Y gjoua

i,j=i

where o represents fluctuation of a parameter from its equilibrium value and g; ; is given by
j (Eq. AIL22)

(Eq. AIL21)

l\)\'—‘

82
e [aé- %
The thermodynamic force is defined by
d(AS <
AS) __ Y g (Eq. AIL52)
de j=1

A}([,:

The expression of entropy production is

2(AS) Z(az)i( gi].aj)ng,.X

ot

where the flux J; is dot;/0¢ and the force is X;
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which in view of Eq. (6.6.7) becomes

c= ';f egrad (-T) + Z;% « grad (—(1;) +Jr$ (6.6.10)

Equation (6.6.10) is also made up of different terms, each one is a product of a flow
and the corresponding force and thus it is in the same form as given by Eq. (6.6.9),

thatis, o=2;J;+X; (6.6.11)
In the above expression, we find that
¢ Conjugate force for the flow of entropy (J) is grad(-7) /T

¢ Conjugate force for the flow of meterial (J;) is grad (-{;) /T
e Conjugate force for the chemical reaction (flow is J,) is A/T.

Each of the term in Eq. (6.6.10) has a dimension of entropy production. Equation
(6.6.10) is a transformed expression of Eq. (6.6.8) and such a transformation has
on effect on the production of entropy in a system.

Lord Rayleigh defined a function which has a dimension of free energy instead of
entropy. This function, known as dissipation function, is given by the expression

o=To (6.6.12)
Equation (6.6.12) gives the rate of local dissipation of free energy per unit time as

a result of irreversible process occurring in the elemental cell of a system. From
Eq. (6.6.10), we find that

D= Js . grad (—T) + Zi"i -grad (—[ll.)+Jr A (6613)

Equation (6.6.13), like Eq. (6.6.11), is the sum of different terms involving the
product of a flow and its conjugate force, i.e.

D= 3,J;-(IX)=2%,J; - X] (6.6.14)

Examples of Entropy Production as a Product of Flow and Force

Electrical
Conduction in a Wire

Fig. 6.6.1 Flow of
charge in a wire

Consider a wire of uniform cross-sectional area A at a constant uniform temperature.
Let a steady current (due to the movement of electrons) flow in the wire under the
influence of a potential gradient (from less potential to the more potential) along the
wire. Consider an infinitesimal section of the wire of lenght dx as shown in Fig. 6.6.1

X x+ dx

¢ ¢+ do
The system shown in Fig. 6.6.1 is in a steady state with the characteristics of
dU=0 and dS=0
Since dS=d.,S+d;S=dq/T+d;S, we will have
0=dq/T+d;S ie. d;S=-dqg/T (6.6.15)

T For scalar quantities, only product is involved. Also for one-dimensional system, the
vectors J; and X; may be treated as scalar quantities.
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Heat Condution
in a Bar

Fig. 6.6.2 Heat
Conduction in a bar
withd7 <0

From the first law of thermodynamics, we have
dU=dg +dw ie. 0=dg+dw
Hence dg=-dw

Work done by the electrostatic force in moving the charge dQ (which has a negative
value) from x to x + dx is

dw=-dQ [(¢p + dp) — ¢] =-d0O do
With this, the expression of dg becomes
dg =— (- dQ dg) = dQ do
Hence, Eq. (6.6.15) gives
d5=- _dQTd‘P (6.6.16)

Since dQ = —ve, it follows that d;S' = +ve, i.e. the production of entropy is positive.
The rate of production of entropy per unit volume (= A dx) of the wire is

o= L&S_ 1 (-d0d¢/T) :{L (d_QH(_Mj (6.6.17)
V dt Adx dr A\ dt dx
=] grad (— ¢/T)

Thus, G is the product of flow (of electric current per unit area) and the conjugate
force (which is grad (— @/T)).

The expression of dissipation function is

o (H9])
= J X (6.6.18)

where J; = AL (i—?) , rate of flow of charge per unit area

and X;=—(d¢/ dx)p, force due to which charge flows in the wire

Consider a bar of uniform cross section A whose ends are maintained at different
temperatures. Let the surface of the bar is insulated so that the heat flows entirely in
the bar. Consider a small section of the bar of thickness dx as shown in Fig. 6.7.2.

x x+ dx
dg —p E—» dg—d@¢)  (dT has a negative value)
T T+dT

Let the heat dg enters at x where temperature is T and the heat dg — d(8q) leaves
at x + dx where temperature is 7 + d7T in the time interval dz. Thus,

Heat retained by the small section of the bar = d(dq)

Assuming the above heat is absorbed by the small section of the bar at temperature
T (as d7 may be considered to have a small value in comparison to 7), the change



Introduction to Irreversible Processes 455

in entropy of this section of bar is

d(d
ds= d(%g) (6.6.19)
T
The expression of d S is
a5 d_da—ddg)
T T+dT
_ T'dg+dgdT —T dg +T d(8q)
T(T+dT)
Assuming d7 to be negligible in comparison to 7, we get
dgdT  d(8q)
d.S= T + T
which in view of Eq. (6.6.19) becomes
dg dT
d.S= 4 5—+dS
T
T
or ds=deS—%=des+diS
where  d;S = (dg) (—(;—7;) (6.6.20)

Since dg > 0 and d7 < 0, it follow that d;.S > 0. The rate of production of entropy
per unit volume is

o- LS __L (%) D)
vV odt  Adx\ ds 7’

L5
" Lala U 77 ax
=J, X, (6.6.21)

where J, is the rate of heat flow per unit area and X, is the corresponding force

(= grad (1/17))

The dissipation function is

A\ dt T dx
d(-T)
=g, 2D

6.7 DEPENDENCE OF FLOW ON ITS CONJUGATE FORCE

(6.6.22)

Many examples are known in which flow of a quantity depends directly on its
conjugate force. A few examples are listed in the following

T Both J, and X, may be treated as scalar quantities as these act in x-direction
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Fourier Law

Ohm’s Law

Fick’s Law

Comments on the
Laws

Problem 6.7.1

Solution

Phenomenological
Equation

The flow of heat is linearly dependent on the negative gradient of its temperature, i.e.
J,=—Agrad T (6.7.1)
where A is known as thermal conductivity of the system.
The flow of electricity is linearly dependent on the electromotive force, i.e.
J,=—vygrad ¢ (6.7.2)
where ¥ is known as electrical conductivity.
The rate of diffusion (i.e. flow of a material) is linearly dependent on the negative
gradient of concentration, i.e.
J;=-D grad ¢; (6.7.3)
where D is known as diffusion coefficient.

The constants A, ¥ and D are all positive quantities. These are not function of space
and time. Fourier’s law is applicable to an isotropic material and Ohm’s law is
applicable to a metallic conductor. The validity of the above mentioned laws is
limited to a single flow and their applications require small gradients of forces.

The entropy production due to flow of heat is given by 6 = J,, . grad (1/7). Using
the fact that ¢ > 0. show that the thermal conductivity has a positive value.

J
We have 6 =J, grad (1/T) = _Tg egrad T

Introducing J,, = - A grad T (Fourier law), we get
2
o= (lgra;dT) wgrad T = (gradzT)
T

Since (grad T )2 and T are always positive, and the fact that o> 0 for an irreversible
process, it follows that A has a positive value.

In the thermodynamic of irreversible processes, the dependence of flow (J) on its,
conjugate force (X) such as involved in Eq. (6.6.11) is expressed as

J=1LX 6.7.4)"
where L is known as the phenomenological coefficient. It is a function of defining
parameters of the volume element. It does not depend on the gradients of these
parameters which define the appropriate force and also on the resultant flow.

6.8 COUPLING PHENOMENON

Example of Coupling
Phenomenon

Many examples are known in which flow of a quantity, besides depending on its
conjugate force, is also linearly dependent on a nonconjugative force. Similarly, a
force, besides causing the flow of its conjugate quantity, also causes the flow of a
nonconjugative quantity. This type of example is known as coupling phenomenon.

One of the examples of a coupling phenomenon is described in the following.

Seeback Effect A gradient in temperature in a bimetallic system causes the
generation of a gradient in electric potential.

For dissipation function such as given by Eq. (6.6.14), the dependence of flow (J) on the
conjugate force (X’) is expressedas J=L X' =L XT)=(LT)X=L"X
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Peltier Effect Passage of electric current through a bimetallic circuit due to a potential
difference causes absorption of heat at one junction and liberation of heat at the
other junction.

From the above two effects, it may be concluded that the flow of heat is dependent
upon the gradient of electrtic potential as well as upon the gradient of temperature.
Also, the flow of electricity is a function of not only on the potential gradient but
also on the temperature gradient.

As proved earlier, the forces corresponding to flow of electricity and heat are given
by the expressions

X,=—grad (¢ / T) (6.8.1)
X, = grad (1/7) (6.8.2)

Due to coupling phenomenon, it is expected that the fluxes J,, and J,, depend both
on the forces X and X,. The fluxes J, and J, may be expanded in a Taylor series
about the points X, = 0 and X, = 0. The zero order terms J(0, 0) and J,(0, 0) are
zero as the flows of electricity and heat vanish when the forces are zero, i.e. the
gradients in the expressions of these are zero. The expressions in Taylor series are:

J(X,,X)=X dJe +X 9/, + higher differential
e NO0X )y Cox oo lOX, terms
e Xe=0.%,=0 (6.8.3)

q

9/, aJ + higher difft i

Y X )=X q X q igher differential
Jq( e’ q)_ e[ ] + q[ ]

XC:O,Xq:O q XC:O,Xq:O

oX, X, terms
(6.8.4)

If the gradients X, and X, are very small in comparison to unity, the higher
differential terms may be ignored relative to the respective first order terms. The
resultant expressions may be represented as

Jo=Loe X + Ly X, (6.8.5)1
Jy=Lye Xe+ Loy X, (6.8.6)

s eq —
X, X,=0,X,=0 X, X,=0,X,=0

aJ, a/,
Loe= |55 R e
0X, X, =0,X,=0 9X, X, =0,X,=0

Equations (6.8.5) and (6.8.6) are known as the phenomenological equations and
the terms L, Ly, L, and L, , known as phenomenological coefficients, provide
the weighing factors to the forces in the phenomenological equations. The terms
L, and L are indicative of coupling effects between electrical and thermal effects

in the thermoelectric phenomenon.

where L. = (

"In Eq. (6.8.5) and (6.8.6), the vectorial notation is not used since all forces and flows
need not be vector quantities
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Comparison with
Ohm's Law

Comparison with
Fourier’s Law

For an isothemal condition,

1
X, = grad (1/T) = - -7 grad T=0
With this, Eq. (6.8.5) gives

Je = Lee Xe
= Le, {—grad (¢ /T)} =— L? grad ¢ (6.8.7)
Comparing Eq. (6.8.7) with Ohm’s law (Eq. 6.8.2), we get
LCC
= 6.8.8
= (6.8.8)

Under the condition of J, = 0, Eq. (6.8.5) becomes
0 = LCCXC + LCqu

. Leq
ie. X, =— 7 X, (6.8.9)

ee

Substituting Eq. (6.8.9) in Eq. (6.8.6), we get

_ L, Lye Legy
Jque(_L quJquq Xq:(qu_ I Xy

ee ce

Substituting X, from Eq. (6.8.2); we get

L. L
J, = (qu - "L °‘1) grad (1/7)
cC
L L.—L,.L 1
_ qq “ee qe eq v
(—Lee j( Tz) grad T (6.8.10)
Comparing Eq. (6.8.10) with Fourier Law (Eq. 6.7.1), we get
1= Log Lee = Lge Leq (6.8.11)
L, T?

6.9 GENERAL TREATMENT OF THE PHENOMENOLOGICAL EQUATIONS

Generalized
Equations

The linear dependence of various flows in a system on the conjugate and
nonconjugate forces as suggested by Onsager in 1931 are as follows.

Ji=LpyX)t L X+ -+ L, X,
Hh =Ly Xi+ Ly Xo+ -+ L, X,

Jn = Lnlxl + an X2 + o+ Lnn Xn (691)*

where J, J,, ..., J, are the flows and X}, X,, ..., X, are the corresponding conjugate forces.

*The explanation of double subscripts is as follows.

The first subscript refers to the component moving (and is thus the same as the subscript
on the correspsonding J) and the second subscript refers to the component whose gradient
is being taken into account.



Applicability of
Eq. (6.9.3)

Equation (6.9.1)
Expressed in Vector
Form

The Curie-Prigogine
Principle
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The above expression may be written as

Ji= 2 LX, (i=1,2,...n) (6.9.2)
j=1
where L;; = (;i) (6.9.3)
Xj k(k# J)

The partial derivatives in Eq. (6.9.3) are evaluated at the points X, = 0 except
X; = 0. The terms appeared in Eq. (6.9.2) are the first-order contribution in a
Taylor expansion of J; as a function of X; (see, Eq. 6.8.4). Thus, these equations
are applicable only when the higher-order differentials are smaller than the first-
order differentials. This holds good only when the forces are small and the system
is close to equilibrium conditions.

The choices of flows and conjugate forces are such that the product J; X; has
the dimension of entropy production.

The coefficients Ly;, Ly, ..., L, are known as straight coefficients indicating
the proportionality of flows on their conjugate forces. The coefficients L5, L3,
..., etc. are known as coupling or mutual influence cross coefficients indicating
the proportionality of flows on the nonconjugate forces.

In the vector notations Eq. (6.9.1) is written as

Jl L’ll 1‘12 Lln Xl

‘]2 _ L21 L22 o L2n X 2
: : (6.9.4)
‘]n Lnl Ln2 o Lnn X, n
Vector of Matrix of phenomeno- Vectors of
flows logical coefficients flows

The equations representing forces in terms of flows may be worked out through
the following manipulation.

-1
Xl Lll L12 e Lln Jl
XZ _ L21 L22 L2n JZ (6 9 5)
Xn Lnl Ln2 T Lnn Jn

A flow and its conjugative force may be either scalar quantities or vector
quantities. The example of scalar quantities is chemical reaction and its associated
affinity. The transfer of heat or matter and its associated force is an example of
vector quantities.

Statement of Principle The Curie-Prigogine principle states that there exists no
coupling between scalar flow and vectorial force or vice versa for an isotropic
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Onsager Symmetry
Rule

Restriction on
Phenomenological
Coefficients

system (a system in which the properties are identical in all directions). For such a
system, the phenomenological equations split into two sets of equations representing
the coupling between the same types of flows and forces. These may be expressed as

J,= L, X, ; where n goes over scalar quantities
J,=L,, X where n goes over vector quantities

Hllustration Let a system involve simultaneous occurrence of a chemical reaction
and flow of heat. If there exists coupling between them, we would have

Jy =Ly X, + Ly X,
V=L X, + L, X
where X, = grad (I/7) and X, =A/T.

In an isothermal condition, X, = 0. Hence, we would have
Unless L, = 0, the above expression implies that a scalar force X, produces a

vectorial flow, which is not in agreement with the Curie-Prigogine principle. Hence,
L, must be equal to zero.

If the flows and forces in the phenomenological equations are properly selected
so as to satisfy the expression

0=2J; X
then, the matrix of phenomenological coefficients is symmetric, that is, the
coefficients satisfy the expression

Lij;=L; ; (i #)) (6.9.6)
Expressed in words this implies that the coefficient which expresses the influence
of the force j on the flux of 7 is the same as the coefficient which expresses the
effect of the force i on the flux of ;.

Equation (6.9.6) is known as Onsager symmetry rule. It holds good for
irreversible processes close to equilibrium. This law may be considered as an
axiom supplementary to classical thermodynamics.

Equation (6.9.6) implies that

%), "lar)
) Ty, (6.9.7)

ks (ke j) KXiteeiy

that is, the change in the flux J; caused by unit change in the force X; keeping all
other forces constant is equal to the change in the flux J; caused by unit change
in the force X; keeping all other forces constant.

Though the phenomenological coefficients involved in Eq. (6.9.1) are independent
of each other, yet the absolute magnitude of the coupling coefficients is restricted
by the magnitude of the straight coefficients because of the positive-definite value
of the entropy production. This restriction may be illustrated by taking an example
involving two flows and two forces. The entropy production is given by
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Eq. (6.9.15)
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G:J] X] +J2 X2 (698)

Substituting Egs (6.9.9) and (6.9.10) in Eq. (6.9.8), we get
6= (L Xy + Lip X)X + (Ly Xy + Ly XH)X,

= Ly X3+ (Lyg + Ly)X; Xo + Loy X3 (6.9.11)

Since L;, = L,; (Onsager law) and ¢ > 0, we must have
Ly X]+2 LX) Xy + Ly X3>0 (6.9.12)
Since either X; or X, may be made to vanish, we must have the requirements of
Ly X720 and L,y X320 (6.9.13)

This leads to the conclusion that both straight coefficients L and L,, must be positive.
Equation (6.9.13) may be written as

(\/L_qu + @Xz)z = 2Ly Ly X1 Xy + 21, X, X, 20
or (VI + I X, ) 22 (VI Ly = Ly ) X0, (6.9.14)

In order that the right side of this expression is to be zero or positive, we must have

I s
LyLy —L,20 or LjLy2L, or LyLy,2L, (6.9.15)

In general, the two conditions, involving any number of flows and forces are as follows.

L,;>0 (6.9.16)
Lll L12 T Lln

and i >0 (6.9.17)
Lnl Ln2 o Lnn

6.10 COMMENT ON THE CHOICE OF FLUXES AND FORCES

The entropy production in an irreversible process is given by the expression

o= 2J; X, (6.10.1)
i=1

TA]ternatively, this expression may be derived by using the matrix notation for Eq. (6.9.12).

We have
L X
[X1X2]|: 11 L12i||: 1]20
Ly Ly jl Xy
The satisfaction of this expression requires that

Lll L12
L2l L22
which, in view of Onsager law, leads to L;;Ly, > L?,

>0 ie. L”L22 - L12L21 > 0
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Expression of
Transformed
Fluxes

Expression of
Original Forces
in Terms of
Transformed
Forces

Transformed
Phenomenological
Equations

The phenomenological relations are
Ji= 2 LiX; (=12 ..n (6.10.2)
j=1

with L, =L; (Onsager reciprocal relation) (6.10.3)

Though the entropy production in an irreversible process is unique, yet the choices
of J; and X; are not unique, the only condition to be satisfied is given by Eq. (6.10.1).
It can be shown that the Onsager reciprocal relation holds good even when a set
of linearly transformed fluxes and forces are used in Eq. (6.10.1).

Let the transformed fluxes be given as

Ji= Y BJ; (i=1,2,...n) (6.10.4)
j=1

The expression of original force X; in terms of transformed forces may be worked
out as follows. The entropy production in terms of transformed fluxes and forces is

o= Y JX] (6.10.5)
i=1
Replacing J; by using Eq. (6.10.4), we get
o= (S |- £ 1]
i=1\j=1 j=1 \i=1
From this, it follows that
X, = Zﬁlj)(i’ (6.10.6)
i=1
The phenomenological relation involving transformed flexes and forces are

J =Y LX; (with Lj; = L})) (6.10.7)
Jj=1

This expression Lg,- = Ljfl- may be generated as follows. Equation (6.10.4) is

Ji= 2By,
j=1

Replacing J; by using Eq. (6.10.2), we get

Ji = Zﬁij zijXk:l
j=1 k=1

Now replacing X, by using Eq. (6.10.6), we get

J=3B iL,k[i ﬂmkx,;ﬂ
j=1  |k=1 m=1




Validity of Onsager
Reciprocal
Relations
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This may be written as

N Z |:i i ﬁg’j ij .Bmk:lX:n= z {Z i ﬁij ij ﬁk:rn}X
m=1 | j=1 k=1 m=1|j=1 k=1

Comparing this, with Eq. (6.10.7), we get

=22 (ﬁii L IBkTm)
j=1k=1

=

Now since
B“:ﬁf. Lo=1,.: B“r :ﬂ
ij Ji» ik kj > km mk
the above expression may be written as

n

2 Z (Bﬂ Lk/ mk)z z": (ﬁmk ij ﬂ)

j=1k=1 j=1k=1

=L (6.10.8)

6.11 AN EXAMPLE ILLUSTRATING PHENOMENOLOGICAL EQUATION

General Expression
of a Chemical
Reaction

Progress of a
Chemical Reaction

One of the examples illustrating phenomenological equation is a chemical reaction
near to its equilibrium position.

In general, a chemical reaction may be depicted as
0= Y,vB (6.11.1)

where v is the stoichiometric numbers of the species B in the chemical equation
of the reaction. It has a negative value for a reactant and a positive value for a
product.

The progress of a chemical reaction is depicted by the physical quantity known
as extent of reaction. If the reaction has proceeded to the extent &, then the
concentration of the species B in the reaction is given by

[B] = [Bly + vg§ (6.11.2)
where [B], is the inital concentration of B in the reaction where £ = 0.
If & is the extent of reaction at equilibtium, then
[B]eq = [B]O g ‘seq (6113)
Let the extent of reaction near to the equilibrium be represented as

E=E,q(1+x) (6.11.4)



464 A Textbook of Physical Chemistry

Affinity of a Reaction

Affinity of a Reaction
Near to Equilibrium
Position

where | x | << 1. It has a negative value just before the equilibrium and has a
positive value just after the equilibrium position of the reaction. In terms of x,
Eq. (6.11.2) becomes

[B] = [By + Vg[&eq (1 + X)]

= ([B]O T v éeq) T v éeqx

= [Bleq T VB Seq ¥ (6.11.5)
By definition, the affinity of a chemical reaction is
A:*ZB VB.“B (6116)

where the chemical potential, ug, is given by

Ug=Uug + RT In (@j (6.11.7)
c

where 3y is the standard chemical potential of B where [B] = ¢° (=1 mol dm_3).
Substitution of Eq. (6.11.7) in Eq. (6.11.6) gives

A=-D v [u]‘; +RT In ([%H

—a° =Y v [RTln ([3)} (6.11.8)

c
Substitution of Eq. (6.11.2) in Eq. (6.11.7) gives

A=4° =Y v RTIn (Mﬂ
L c

which in view of Eq. (6.11.4) becomes

i [B]y + vg&eq (1+x)
A= =Y v _RTln( 2 VBfoq u ﬂ
B
a0 =Y v {RTln(W]} (6.11.8b)

where Eq. (6.11.3) has been used to replace [B], by [B],q. Equation (6.11.8) may
be written as

B
A= -F v, RTln(%j—szB RTln(1+@J (6.11.9)
c [Bl,
At the equillibrium position A = 0 and x = 0. With these, Eq. (6.11.9) reduces to

A° =), vg RTn (%j =0

Cc

With this, Eq. (6.11.9) reduces to
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A=) RTln[lJr [f]eq j

€q

Since vaeq x / [B]eq < 1, we approximate the above expression as

vg&og X
A= -y v RT| 22 (6.11.10)
[Bleg
Rate of Forward The rate of forward reaction is
Reaction Near the
Equilibrium re=ky H([R] 'v“‘)
R

where R stands for reactants. Using Eq. (6.11.5), we write the above expression as

re= ke H[[R]eq + VRéeqx]w
g X " [vr| ngeqx b
i H{ R (1 "R, ﬂ (ka MU[I "R, H

[vel
VRgeqx
=ry, eq l:l;[[l+ —[R]eq ] }

Since vRéeq x / [R]eq << 1, the above expression may be approximated as

FE= T e [1+Z vR|V[R€]°q } (6.11.11)

Rate of Backward The Rate of backward reaction is
Reaction Near the

Equilibrium o = kg E[([P]W)

where P stands for products. Proceeding similarly as in the case of forward reaction,
we have

ry = kb H([P]vp ) = kb H([P]O +v
P P

k, ];[[[P]0 +vpeg 1+ ) |7 =k [T ((P1eg + vp&eg)

e )]
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Net Rate of Reaction

Form of
Phenomenological
Equation

_ vy VPée X N
_ (kb I;I[P]CZ){H[1+—[P]; H

P

_ VPéeqx "
~The [TJ(” Pl H

Since vp éeq x / [P]eq << 1, the above expression may be approximated as

Vp&. X
To = To,eq | 1 2,pVp Poeg (6.11.12)
[P]Bq
The net rate of reaction is given by
r = rf* l"b
_ VR eqx vPéeqx
=Tpeq |1+ [vg | e | TH D, v
eq |: ZR [R]eq ,eq ZP [P]eq

Since at equilibrium, ry 4 = 1y, g, We write the above expression as

VR eqx _ vl’éeqx
[R]eq ZPVP [P]eq :I

F'=Tf eq |:ZRVR

Since |vg| = —vg, we get

- VRSeq® VpSegX
r=- rf, €q I:ZRVR [R]eq +ZPVP = :|
eq

[Pleg
= e | D Ve (6.11.13)
> €q B [B]eq
which in view of Eq. (6.11.10) becomes
r=re e (i) (6.11.14)
RT
Writing flow and force of a chemical reaction as
Jo=r and X = ? (6.11.15)
and substituting these in Eq. (6.11.14), we get
_ gy _
J. = X, =LX, (6.11.16)

where L, the phenomenological coefficient, is

L=r; e/ R (6.11.17)

The phenomenological coefficient is not a constant, it is a function of the
characteristic parameters, 7y o4, of the reaction. It may be emphasised here that
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Eq. (6.11.16) holds good only when the reaction is close to its equilibrium position
where the reaction is expected to proceed with slow speed.

Expression of The expression of entropy production is
Entropy Production 6 = (Flow) (Force)
A A A
-0 (7)aGE)F)
v 2 2 2
_ ﬂ(é) :L(éj :l(Lé) _ 1o (6.11.18)
R \T T L\ T L

6.12 AN EXAMPLE ILLUSTRATING ONSAGER PRINCIPLE

One of the examples illustrating Onsager principle of symmetry of phenomenological
coefficient is provided by the cyclic reactions depicted in the following.

A
k,
B > C

L

Rates and Affinities The affinities and rates of the three reactions are

of Reactions Ay =g — g Jy =k [A] =k, [B] (6.12.1a)
Ay=ig—tics S =k, [B]—k, [C] (6.12.1b)
Ay=lc—Mp;  J3=k3 [C] - k3 [A] (6.12.1¢)
The affinity A; may be considered as dependent on A; and A,, since
Ay =—(A T Ay (6.12.2)

The thermodynamic criterion of equilibrium for the reactions are
(.UA)eq = (:uB)eq = (.UC)eq
With this, we have
(Al)eq = (A2)eq = (A3)eq =0
Also, the principle of microscopic reversibility requires that a molecular process

and its reverse process on an average with the same speed at equilibrium.
Hence, we will have

kl[A]eq = k—l[B]eq N (Jl)eq =0 (6123&)
ky[Bleq = ko[Cleqs  (J2)eg =0 (6.12.3b)
k3[C]eq = k73[A]eq 5 (J3)eq = 0 (6123C)
Expressions of Rates Consider each of the three reactions near to equilibrium, We may write
and Affinities Near [A] = [Aly + €4 (6.12.42)
the Equilibrium [B] = [Bl,, + <5 (6.12.4b)

[C]=1[Cleq + €c (6.12.4¢)
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With these, Eq. (6.12.1a) becomes
Ji = ki([Aleg T €4) —
= (ki[Aleq
=kiep—k €ep;
Similarly,
JH=kyeg—k,ec
Jy=kyec—ks€e,
The affinity A, is
Ay = lUp — B

A
= | ux +RT In Al

= ,uA+RT1n{

= —RT ln(

Hmm(

where A4 =i — Ug

Eq. (6.12.6) and get

A’ —RTIn (%jzo
[Aleg

With this, Eq. (6.12.6) becomes

Al =RTIn [14‘

(u;+RZ ln—[ ]j—(ul°3+RZ ln—[ ]j
c° c°
H [ﬂB + RT In (—[ ]eqo e H
c
( ]}i|_|:”§+ RT ln{[B]eq
eq c®

SA_|_RTIn|1+
Al

For the reaction A = B at equilibrium, we substitute 4,

€A ] —RTIn [1 n
Aleq

kfl ([B]eq + EB)
—k_y [Bleg) + (ky €5~ k_y €p)

(using Eq. 6.12.3a)

g J
[B]eq

L

€B

eq

(6.12.5a)

(6.12.5b)
(6.12.5¢)

=S

] (6.12.6)

=0,ep,=0and eg=0in

Since € 5/[A]eq << 1 and €p/[B]q << 1, the above expression may be approximated

as

A, =RT [E_A _ E_BJ
: [Aly  [Bly

which in view of Eq. (6.12.3a), becomes

RT
k €
A7 g, G

—k_; €5)
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Using Eq. (6.12.5a), this becomes

RT kl[A]eq
= L
Al kl[A]eq Jl or J] RT 1 (61263)
Similarly,
RT ky[Bleq
= = 2y
A, ko[Bl, J, or J, RT 2 (6.12.6b)
RT k3[Cleq
and Ay = m@ or Jy;= RT 4, (6.12.6¢)
In view of Eq. (6.12.2), we can write Eq. (6.12.6¢) as
ks[C]
= RTeq (4 + Ay) (6.12.6d)

The entropy production is given by
0=J (4 /T)+Jy (A 1 T) + J3 (43 /T)
=S A D)+ Ay /D) =J3 (A, +4) | T
= (i~ J)AYT) + (Jy — J5) (A, 1T (6.12.7)
where the flows J; —J; and J, — J; as given by Egs. (6.12.6a) — (6.12.6d) are as follows.

k[A ks[C
J —J3_[ I[RT]“‘jAw[ 3EQT]qu(A1+Az)

- (Mj 4+ (k3[c]eq ) 4 (6.12.82)
RT RT

k,[B ks[C
J2_J3_[ ZEH}quAz"'( 352;qu(141+142)

_(KlCl ), (FlBleg +R3[CLeg ) (6.12.8b)
RT )™ RT ’ .

The phenomenological equations correponding to Eq. (6.12.7) are
Jy=S3=Lyy A/ )+ LA/ T) (6.12.9a)
Jy—=J3=Lyi A1/ T+ Ly A2/ T) (6.12.9b)
Comparing Egs. (6.12.8) and (6.12.9), we get
_ kl [A]eq + k3[C]eq
11 R
k3 [C]cq

Lip=Ly=—"p (6.12.10b)

ky[B]., + &[C
L22: 2[ ]eqR 3[ ]eq (612100)

(6.12.10a)
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Equation (6.12.10b) establishes the Onsager principle of symmetry of
phenomenological coefficients.

6.13 ELECTROKINETIC EFFECTS

Phenomenon of
Electro-Osmosis

Fig. 6.13.1 Illustration of
electrokinetic effect

Expression of
Entropy Production

Consider a system of two compartments separated by a porous diaphragm. The
two compartments are occupied by a fluid of uniform composition inclusive of
ionic species at a constant temperature. A potential difference across the diaphragm
is applied by inserting electrodes in the fluid on either side of the diaphragm
(Fig. 6.13.1).

LR

Because of the applied potential, a current / flows and due to this, the fluid flows
through the diaphragm. Eventually, a stage is reached where the pressure difference,
Ap, developed across the diaphragm just balances the effect of applied potential.
This causes the stoppage of flow of the fluid. The observed value of Ap is found
to be dependent on both the fluid and the nature of the diaphragm. Its value is
proportional to the applied potential. The flow of fluid under the influence of applied
potential is known as electro-osmosis.

The entropy production due to transfer of fluid from the phase o to the phase [ is
given by the expression

45 = 3, B) dn, - o) dn)] (6.13.1)

where [I;, the electrochemical potential of the ith species, is related to its chemical
potential by the expression

g =W+ zFo (6.13.2)
where z; is the charge number of the ith species and ¢ is the potential of the
electrode dipped in the solution.
Substituting Eq. (6.13.2) in Eq. (6.13.1), we get

1
&=~ 3 (1) +2F0p) - (1w + =Fa)}an]

o %[Zi{(:ui ® = Hie )+ 5 (95 = 9 )}dn ]

1

- F[Zi(A,ui +z,FAp) dn; | (6.13.3)

The expression of Al; as a result of pressure difference at constant temperature is



Phenomenological
Equations

Applications of
Egs. (6.13.6a) and
(6.13.6b)
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With this, Eq. (6.13.3) becomes

TdS= Y (V;pm dn) (=Ap) + Y, (z,Fdn;) (-A@) (6.13.4)

The rate of production of entropy is given by the expression

d;s dn, Ap) ( dn, )( A(p)
17 = V. ke | I < DR Foi | 2%
dr z'( LRy )( T zf T T

=J. X, +IX (6.13.5)

The phenomenological equations corresponding to entropy production as given
by Eq. (6.13.5) are

Jm=L11(_%)+Ll2(_%j (6.13.6a)
Jy= Ly, (_ﬁ) N Lzz(_%j (=) (6.13.6b)
T T

Streaming Potential The value of Ag for a given value of Ap at which /=0 is
known as streaming potential. From Eq. (6.13.6b), we can write

Ap A
o-ta(-3F) , +(-F)
1=0 1=0

or AQ)-o=——"(4p);_, (6.13.7)

Steaming Current The streaming current is defined as

I
I = |7 (6.13.8a)
Jm Ap=0

Suppose the electrodes are short-circuited in order to have Ag = 0. The fluid is
forced to passed through the diaphragm under the influence of pressure difference,
Ap. The current flowing in the wires of the short-circuited electrodes is known
as streaming current. This may be measured with the help of ammeter. From
Egs. (6.13.6a) and (6.13.6b), we find that

. #
J —o=Li|— and _o=1L Eaia—
(map=0 11( T oo Dap=0=La1 ("7 rp0

J L,

m

Hence, I, = (i) L (6.13.8b)
Ap=0

Electro-Osmotic Pressure The value of Ap at which J,, = 0 for the given value
of Ag is known as electro-osmotic pressure. From Eq. (6.13.6a), we get

A A
o=t (-3, +l-F)
JlTl :0 Jln:O
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Saxen’s Relations

Lip
Ly

Electro-Osmosis Effect The electro-osmosis effect is the flow of fluid under the
influence of Ag keeping Ap = 0. From Eqs. (6.13.6a) and (6.13.6b), we get

Umap=0= L1z (—ﬂj and  (Dpp-0 =L (—%)
Ap=0

Hence (Ap)Jm =0 = — (A(p)Jm =0 (6139)

Ap=0 T

L,
Hence (—“) =—= 6.13.10
I Jap=0 Ly ( )

e From Egs. (6.13.7) and (6.13.10), we have

(%j T TR (J_m) _Ln
ApJiog Ly, I Jap=0 Ly

Since Ly, = L,; (Onsager principle), we have

(ﬂj =—(‘]ﬂj (6.13.11)
Ap)i—g I Jap=o

e From Egs. (6.13.8b) and (6.13.9), we have

[L) L g (ﬁ) L
i Jag=0 L ApJ; o Lu

Since L, = L,;, we have

[i) =—(ﬂj (6.13.12)
I Jag=0 A9y —o

Equations (6.13.11) and (6.13.12) are known as reciprocity relations.

6.14 THERMOELECTRICITY

The themoelectric phenomena were the first coupled processes for which a detailed
study has been carried out.

Consider a thermocouple consisting of two metals A and B whose junctions in
electrical contact are at temperatures 7 and 7 + AT as shown in Fig. 6.14.1.

Heat Metal A Heat
reservoir reservoir

Fig. 6.14.1 Schematic
set up of thermocouple ¢ d



Seebeck Effect

Peltier Effect

Thomson Effect

Fig. 6.14.2 Illsutration
of Thomson effect
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As a result of the temperature difference, thermal and potential gradients will be
set up in the thermocouple and thus flow of both heat and electricity take place
in a thermocouple.

Three observations with reference to the thermocouple shown in Fig. 6.14.1
are described here.

In Seebeck effect, the points ¢ and d in the metal B are held at the same temperature
across which emf generated in the circuit is determined with a potentiometer
ensuring no current flow in the circuit.

The relative thermoelectric power of the metal B against the metal A is defined as
d(A¢eq)r =0
&= ———
dr
where A¢4 is the potential devolved across cd in Fig. 6.14.1.

(6.14.1)

In the Peltier effect, the two junctions are kept at the same temperature, but a current
is passed through the wires. A quantity of heat J, is absorbed at one junction and
equal quantity of heat is released at the other junction. On reversing the direction
of current, heat liberated and absorbed at the two junctions are also reversed.

The rate at which heat must be supplied to or removed from the junctions to
maintain temperature constant for unit current is known as Peltier heat (symbol: IT).
It is expressed as

dg/dr
n= (q—) (6.14.2)
I Jar-o

The unit of Peltier heat is J A~ s7! (=] C’l)

Thomson observation is based on the following experiment.

Consider a homogeneous metallic conductor as shown in Fig. 6.14.2.

0°C 100°C 0°C

I ] | | |

B C A C B
Let the metallic conductor be maintained at 100 °C at some point (say, A) as shown
in Fig. 6.14.2. At the two neighbouring points (say, B) on either sides of the point
A, let the temperature of 0 °C be maintained. It is found that at the two points
equidistant from hot and cold points (shown by the points C) the temperatures were
found to be identical. However, when a current is passed through the conductor,
the temperature at the points C were found to be different. The passage of current
disturbs the temperature gradient, and thus the original gradient can be maintained
only be addition or removal of heat from the appropriate region of the metallic
conductor.

Thomson heat is defined as the rate at which heat is added or removed for

unit current to maintain a unit temperature gradient in the metallic conductor.
Mathematically, Thomson heat is defined as

_ (dg/dr)
1(dT)

(6.14.3)
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Entropy Production

Phenomenological
Equations

Explanation of
Seebeck Effect

The unit of Thomson heat is J KT A 57! (=] K! Cﬁl) Thomson heat is a function
of the nature of the metallic conductor and its temperature.

The above three effects, namely, Seebeck, Peltier and Thomson, indicate the
coupling between thermal and electrical phenomena does exist.

Theoretical Treatment of Thermoelectricity

The entropy production due to thermal flow and the flow of electrons at any point
in the themocouple as given by Eq. (6.6.8) is

I _
6= J, grad (?j +J, grad (—%j (6.14.4)

Now [, =p,—Fo=—F¢ ; (since u, = 0)

Moreover, the potential is measured across the points at the same temperature,
we can write

J, grad (—&) =(=FJ,) grad(-@) _ J grad(—o)
T T T

With this, Eq. (6.14.4) becomes

1 grad(—¢)
c=J d| = |+ =— 6.14.5
, &2 (T) T (6.14.5)
The phenomenological equations may be written
1 grad(—o)
J, =1L grad(?ijLu(T (6.14.6)
I=1L, grad (%)+L22 ( WJ (6.14.7)

In the experiment of Seebeck effect two junctions a and b of the bimetallic couple
shown in Fig. 6.14.1 are held at different temperatures, but the points ¢ and d
across which potential is determined with the help of a potentiometer (ensuring
no flow of electrons) are held at the same temperature. For this condition, we set
1=0in Eq. (6.14.7).

Hence
0= L,, grad (%j + L, ( grad;—(P)j
_ %gradT—L—;zgrad(p
Thus —(wj = lﬂ
gradT ),_, T Ly,

. d‘P) 1 Ly
e B e ) . el 6.14.8
e (dT oo T Ly, (6.14.8)



Explanationn of
Peltier Effect

Heat of Transfer of
Electrons

Introduction to Irreversible Processes 475

Since the emf € is negative of ¢, we have

de 1 Ly,

(d_le—O = ?L_zz (6.14.9)
Equation (6.14.8) implies that in the absence of electric current but in the presence
of temperature gradient, a potential difference appears in the circuit. This is, in
fact, Seebeck effect.

In the Peltier effect, the two junctions are kept at the same temperature and a

current is passed through the circuit. In this case, we set AT=0, i.e. grad (1/7) =0
in Egs (6.14.6) and (6.14.7) and thus get

rad(— rad(—
Par=0= Ly g2d9) ng Uar=0= Lzzg—(@
T T
J
Hence (_qj - Lo (6.14.10)
1 AT=0 Ly

Combining Eqs (6.14.9) and (6.14.10), we get the expression of Peltier heat

J
e (M) H :T(d_ej 6.14.11)
1 AT=0 1 AT=0 dT I1=0

where L, = L,; has been used. Equation (6.14.11) is known as Kelvin's relation.
Experimentally, this relation holds good for a large number of thermocouples
indicating the validity of Onsager symmetry principle.

By definition, heat of transfer of electrons in the metallic strip of a thermocouple
is given by the expression

J
g* = (—qj (6.14.12)
J, AT=0

€

From Eq. (6.14.10), it follows that

S5 W
1 AT=0 _F‘]e AT=0 L22

J
o gt - (_qj __ply (6.14.13)
Je Jar-o Ly,
Also, from Eq. (6.14.8), we have
(d—"’j =(d—‘pj __ LIy (6.14.14)
dT');-0 \dTJ; -0 T Ly

From Eqs (6.14.13) and (6.14.14), it follows that

*
(j_(;j - % (since L1 = Ly)) (6.14.15)
J.=0
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Expression of
Relative
Thermoelectric
Power

First Equation of
Thomson

As defined in Eq. (6.14.1), the relative thermoelectric power of the metal B against
the metal A is defined as

_ d(Ad)r—o
&= ———
dr
where A¢, is the potential across cd in Fig. 6.14.1.

(Eq. 6.14.1)

From Fig. 6.14.1, we will have
(APed)s,=0=(Pa =0y, =0 T (% — Py =0+ (D= D)s -0

T+AT T,

T
= j(d—(”) dT + j (d—‘p) dT + (d—‘pj dr
7 \dT Jy 2 \dr ), 22 \dT g
T+ At T+ At
= | (d—(”) a7 - | (di) ar
2 \dr ), 1 \dr )y
Making use of Eq. (6.14.15), we get
(A¢) :q;T+Atd_T__§T+.—I.Afd_T
cd)Je =0 F T F T
T T
i, (T+AT]_§1H(T+AT)
F T F T
_ | 9A-45 |, (T+AT)= A —4p ln(1+£j
F T F
g — 9B (ﬂj
F T
Hence (%) _4i-48 (6.14.16)
AT ),_, FT

Thus, the relative thermoelectric power of the metal B against A depends on the
heats of transfer of electrons of metals B and A. Since the heat of transfer depends
on the cross phenomenological coefficient (Eq. 6.14.13), Eq. (6.14.16) is one of the
expressions indicating the coupling between the electrical and thermal phenomena.

The first relation of Thomson for thermoelectricity is obtained by writing the
energy balance for the circuit shown in Fig. 6.14.1. The involved energies in the
circuit are as follows,

(1) Let the amount dn, of electrons enter at the point ¢ and leave from the point d
of the circuit due to the potential difference A¢ (@3 — ¢.). The electrical energy
received by the circuit is

Ey, = F (Ag) dn,
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(i1) The electrons move from c to a with the change in temperature from 7; to T.
The energy received by the circuit from the surroundings is

(iii) At the junction a, the electrons enters from the metal B to the metal A at
temperature 7. The circuit absorbs Petlier heat from the surroundings. This energy is

Ey = FITdn, (Eq. 6.14.2)

(iv) The electrons move from the point a to the point b with the change in temperature
from T to T+ AT. The energy received from the surroundings is

Ey=F oy dn {(T—AT) - T}
:FGA dl’leAT

(v) At the junction b, the electrons enters from the metal A to the metal B at
temperature 7 + AT. The circuit leaves Petlier heat to the surroundings. This
energy is

Es=-F (H+d—nAT) dn,
dTr

(vi) The electrons move from b to d with the change in temperature from
T + AT to Tj. The energy received from the surroundings is

E¢ = F op dn, {(Ty — (T + AT)}
Since the .energy of the entire circuit remains unchanged, we must have

E| +(Ey+ EQ)+ Ey+ Ey+ Es=0

ie.
ar

[A@+ 6 {(T—Ty) + (Ty— T— AT)} + [T+ G, AT — {H+(H)AT}]Fdrze= 0

A I1
o ar %o

Ap dIl

r Og—0p = ———— 6.14.17
o B=OA= 74T ( )

Equation (6.14.17) is known as first equation of Thomson.
It will shown that

H—T(%) Eq. 6.14.22
= AT, o (Eq. 6.14.22)
drr A(p) d (A(p)
- = = +T_ —
Hence 47 (AT AT\ AT

With this, Eq. (6.14.17) becomes

_ o d(Ap)_
Gy—op=T d—T(E):Ta? (6.14.17b)
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Second Equation
of Thomson

The second equation of Thomson for thermoelectricity can be derived by
considering the processes occurring at the junction of two metals A and B during
a steady current flow under the condition of constant temperature.

Under the condition of constant temperature, the phenomenological equations
(Egs. 6.14.6 and 6.14.7) give

[=- ) 840 __m gradgy (6.14.18)
T T
J(;): o) grai Pa. J;B) __ Lgl;)gra‘dT‘PB (6.14.19)

The quantities JCEA) and Jq(B) will not be equal since Peltier heat IT (Eq. 6.14.2) is
either absorbed or released at the junction to maintain its temperature constant. If
more heat flows in the conductor B (i.e. Jq(B) > JCEA)) then it leads to cooling at the
junction a and heating at the junction b. For this situation, we write

JN=J® 1

B) _ 7(A)
_ Jq Jq
1

or
Substituting J;A) and JC([B) from Eq. (6.14.19), we get

II=

1 grad @ A grad @
L mgrads ) grad @y
I( 12 Ly T

which in view of Eq. (6.14.18) becomes

1B W
=" (6.14.20)
Ly Ly o

Since g*/ F'=—-Ly, / Ly, (Eq. 6.14.13), we write the above expression as

* *
m=92"98 (6.14.21)
F
which on making use of Eq. (6.14.16) can be written as
A¢dj
Mn=T|—= .14.22
( N (6 )

Equation (6.14.22) is known as second equation of Thomson.

6.15 ISOTHERMAL DIFFUSION IN A CONTINUOUS SYSTEM

Thermodynamic
Background

The chemical potential of ith constituent in a solution depends on temperature,
pressure and amounts of other constituents present in the solution. We can write



Entropy Production

Diffusion of Solutes
Relative to Solvent
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_ (oy, ou; & (I,
du,»—(—l) dr+(—'J dp+2[ Ll dn,
J
oT o op Ton anj T
= S; om AT+ V; y dp + D 1 dn; (6.15.1)
j=1

where w; = (d; / an)y, , n , ; For a case in which y; does not depend upon the
amounts of other components, we will have

M;;=0 for i#j (6.15.2)
In this case, Eq. (6.15.1) becomes
d; = =S; pm AT+ V; o dp + 11; dm; (6.15.3)

Since u; depends on the concentration of ith species (for example, for an ideal

solution, ; = U5 + RT In (c/c®), we can write U; as
_ oo
Hi on,  om

1

where ,LL,-(C) is the concentration-dependent term of the chemical potential y;. With
this, Eq. (6.15. 3) becomes

dpt; = =S; o AT+ V; pry dp + dpt(© (6.15.4)
In terms of gradients, Eq. (6.15.4) is given by
grad () = S,y grad (1) + V; , grad (-p) + grad (1) (6.15.5)

For an isothermal-isobaric diffusional flow, Eq. (6.15.5) may be written as

grad (—u;) = grad (1)) (6.15.6)
Assuming isothermal diffusion to take place in one direction, the entropy production
in this process is given by

To= 2 J grad (-4)

i=1
which in view of Eq. (6.15.6) becomes
o= 2 Jgrad (-4
i=1
Equation (6.15.7) includes the flows of both solvent and solutes. Representing
solvent by the subscript 1 and solutes by 2, 3,..., etc., we may write Eq. (6.15.7) as

(°)) ZJ grad( ,ul(‘))

The flows and forces mentioned in Eq. (6.15.8) are not independent. These are
related to each other as mentioned in the following.

(6.15.7)

To=J grad (- (6.15.8)

e The various forces are related through Gibbs-Duhem equation

Zc grad( (”))

(6.15.9)
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Fick's Law of
Diffusion

e The various flows are related through the expression based on the fact that there
occurs no flow of volume of the solution. The volume of the solution is

V= Zn G, pm

where V; ., is the partial molar volume of the ith constituent in the solution.

Assummg these to remain constants, the rate of flow of volume of the solution is

= ()i

Since dV/d¢ = 0 (the condition of no flow of volume of the solution), we have

J; Vi, pm

1

n
i—1

1

2 Viom = (6.15.10)

Using Egs. (6.15.9) and (6.15.10), one can eliminate the dependent solvent term in
Eq. (6.15.8). We will have

grad( (C)) i(—’)grad( (C)) (6.15.11)

6.15.12
-5 =] @152

Substituting these in Eq. (6.15.8), we get

)8 (ematr )} B it
0, 8 5 ama )+ S0 ma ()

To

j=2 i=2€ 1,pm i=2
- ZJ {2[ + Vfﬂ]grad( uf”)} (6.15.13)
i=2 G 1, pm

where 8 is Kronecker delta (it is equal to 1 for i = and is zero for i # ). Equation
(6.15. 13) can be written as

To= Y JY, (6.15.14)
j=2
: ¢ Viom
where Y= Y [6”+—’L]grad( ) (6.15.15)
= q 1,pm

Isothermal Diffusion in a Binary Solution

A binary solution involves a solute dissolved in a solvent. In this solution, the
velocity of diffusion may be assumed to depend linearly on the driving force of
diffusion (which is —grad ). Hence, we may write
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V=—wgrad u (6.15.16)
where @, the proportionality constant, is the velocity per unit force. For dilute solution,

RT
grad = — grad ¢ (6.15.17)
¢

and J=cv=—wRT grad ¢
=D grad ¢ (6.15.18)

where D’ is known as diffusion constant. Equation (6.15.18) is known as Fick’s

law of diffusion. The expression
D= wRT (6.15.19)

is known as Planck-Einstein relation.
The phenomenological expression corresponding to Eq. (6.15.14) is

SHr=L Y,
V-
=L, |1+ =2 |orad (—,uz("))
clVl,pm
cVy .+l
-1, 1”1, pm T €2¥2 pm grad (_‘uz(c’)):L2 grad (—‘I.lz(c))
(&} Vl,pm G Vl,pm
) (%) grad (—1,") where ¢ = ¢,V pm (6.15.20)"
|

Since the concentration of solute is a function of its position in the solution, we
write the concentration-dependent portion of chemical potential as
out®
il grad ¢,
oc,

grad ug‘f) =

For a dilute solution, 11, = RT In c¢,. Hence

owy” _ RT

dc, ¢
Also ¢1 = Vl, pm = (nl/V) Vl, pm =n Vl,pm/Vz 1
With these, Eq. (6.15.20) becomes

L=1L, B grad e, (6.15.21)
)
Comparing Eqgs. (6.15.18) and (6.15.21), we get
,  L,RT
= (6.15.22)
)

Isothermal Diffusion in a Ternary Solution

A ternary solution involves two solutes and one solvent. Representing the two solutes
by the subscripts 2 and 3, we may write the expression of entropy production as

TclVl,pm+c2V2,pm: IV pm T 2/ V)V o = V) pom T 12V o) V=V IV =1
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To=Jy,Y,+J; 13 (Eq. 6.15.14)
3
where Z (8 +—— G lpm grad (—/.LI(C)) G=2,3)
i=2 clVl pm
The phenomenological equations are
NG [N
where Y, =— [1 + 2—] grad ) — [ﬂ] grad u{® (6.15.25)
clVl pm lVl,pm
e,V c;V;
4] 1, pm ] 1, pm

The dependence of chemical potential on position is due to the local changes in

the solute concentrations ¢, and ¢; and may be expressed as

() (©)
grad ufd) = Ok grad ¢, + J grad ¢,
ac, I
oule oule
grad u© = ! grad ¢, + grad ¢,
de, 4

Writing au,@/ dc; as W, the above expressions become

grad p5” = 15, grad ¢, + iy grad ¢

grad pif”) = 3, grad ¢, + pi3; grad c3
With these, the expression of ¥, becomes

N%
Y,=- (1 + 2 Z,pmJ (U, grad c; + 3 grad c3)
q 1, pm

C3V2, pm
clVl, pm

V2 pm V2, pm
=- Kl + —p] My + ﬂsz}gmd %)

] (U35 grad ¢, + 33 grad c3)

clVl,pm lVl ,pm

V- N
- l[1+ - 2’ij“23+ [ : z’pm],“w}gradca
ClVl,pm clVl,pm

=—a’ grad ¢, — b’ grad c;

(6.15.27)

(6.15.28)

(6.15.29)
(6.15.30)

(6.15.31)
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Working similarly of Y5, we get
v,
3=- [czﬂ] (U grad ¢; + lhp3 grad c3)
ClVl,pm
C3V3,pm
— | 1+ ——= (U3, grad c; + pi35 grad ¢3)
clVl,pm
_ C3V3, m C2V3, m
== {[1‘* : J.Un + (710 My |grad c,
clVl, pm ClVl,pm
N4 eV,
KH‘ el T +( - 3’pm)ﬂ23}gr3dc3
clVl,pm ClVl,pm
=— (" grad ¢, — d’ grad 3 (6.15.32)
The explicit expressions of J, and J; become
Jy =—Lyy (' grad ¢, + b’ grad ¢3) —L,3 (¢" grad ¢, + d” grad ¢3)
== (a, L22 + C, L23) gl‘ad Cy — (b, L22 + d’ L23) grad C3 (61533)
Jy = —Ls, (' grad ¢, + b’ grad ¢3) —L33 (¢" grad ¢, + d’ grad ¢3)
= — (a' L32 + C, L33) grad Cy — (b, L32 + d’ L33) grad C3 (61534)
According to Fick's law, the diffusion flows are given by the expressions
J2 = —D22 grad Cy —D23 grad C3 (61535)
J3 = —D32 grad Cy) — D33 grad C3 (61536)

where D,, and D35 are the principal or main coefficients, and D,; and D5, are the

interaction or cross coefficients.

Comparing phenomenological equations with the corresponding expressions of

Fick's law, we get
Dyy=d' Ly + ¢ Ly
Doy =b" Ly +d" Ly
D3y =d Ly + " Lz
D33 =b" Ly +d’ Ly

In the matrix form these can be represented

{Dzz Dzs}:{Lzz LstG' b'}
Dy, Dsy Ly Ly |l d

(6.15.37a)

(6.15.37b)
(6.15.37¢)

(6.15.37d)
as

(6.15.38)

The values of phenomenological coefficients can be evaluated through the

expression
{Lzz Lzﬂ _ [Dzz
Ly Ly Ds,

_ {Dzz
Dy,

D23 a b -1
Dy ||l d

D,, 1 [d =
Dy; | (Det |- o

(6.15.39)
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where Det = a’d’ — b’c’. Thus

_ d’'D,, —b'Dyy a’Dyy —c'Dy,
L22 - ’ 37 7’ 5 23 = ’ 7 ’
ad —-bc ad —-bc

Lo = d’ Dy, — b’ Dy, a’'Dyy; — ' Dy,
32 - 7’ 7 7 7 ; 33 = ’ ’ 7 7
ad -bc ad -bc

For Onsager relation to hold good, it follows from the above expressions that we
must have
a D23 - D22 =d’ D32 - D33 (615408)
and ad —b'c+0 (6.15.40D)
From the limited experimental data available, it is verified that the Onsager
reciprocal relation holds good.
From Egs. (6.15.37b) and (6.15.37¢), it follows that D,3; # D5, in a case where

Ly3 = L3, (Onsager reciprocal relation). Moreover, the requirement L,3 = L3, =0
does not lead to D,3 = D3, = 0 unless Ly, = L33 = 0.

6.16 ISOTHERMAL ULTRACENTRIFUGE SEDIMENTATION

Introduction

Entropy Production

Kinetic Energy
Acquired by the
Particles

In the ultracentrifuge sedimentation, the solute particles migrate from the bulk of
solution towards the bottom of a cell under the influence of a centrifugal force
which is about 105 times greater than the gravitational force. The solution is taken
in a transparent cell and is placed in the cavity of a rotor operating at very high
speed in an apparatus which allows vibration-free operation at constant temperature.
If the sedimentation is carried over a longer time, eventually a state of equilibrium
is reached where the forces acting in the opposite directions balance each other.
Based on this, the equations applicable to solute particles at sedimentation
equilibrium can be derived. However, the same equations are deriveable by treating
the sedimentation on the basis of theory of irreversible processes.
Since the solute particles flow under the influence of centrifugation, the expression
of entropy production has the same form as that of diffusional process:

To=YJ; grad (-u) 6.16.1)"
i=1
The chemical potential y; in Eq. (6.16.1) besides containing the concentration-
dependent term includes a term which accounts for the kinetic energy acquired
by the particles in the solution.

If w is the angular velocity of the rotor, then the linear velocity of particles at a
distane » from the centre of rotation is

v=qr (6.16.2)
The kinetic energy acquired by the ith particles is
1 1
By =3 mu* = 5 m,(wr)* (6.16.3)

TEquation 6.16.1 is considered to be applicable to solute particles only.



Chemical Potential of
ith Particles

Expression of
grad (-;)

Phenomenological
Equation
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For one mole of the ith particles, the mass m; is given by

m;=M;—pV;om (6.16.4)
where M; and V; ,;;, are the molar mass and partial molar volume of ith particles,
respectively, and p is the density of the solution. The term pV; ., in Eq. (6.16.4)
accounts for the buoyance correction of mass of solvent displaced by the solute

particles.

Substituting Eq. (6.16.4) in Eq. (6.16.3), we get
1
Ek = E (Ml -p Vi,pm)()ozr2

= %M,. (1-p v, )01 (6.15.5)

where v; i (= V; pm / M;,) is the partial specific volume of the ith particles.

The chemical potential of ith particles is lowered by the amount given by the
kinetic energy acquired by one mole of particles and is thus given by

1
My = 1 ) =2 M1 = po ) @77 (6.16.6)

where p? is the standard chemical potential (dependent on temperature only) and

19 is the concentration-dependent term.

Since the chemical potential varies with the distance  from the axis of rotation,
the term grad (—;) is simply given by the expression —du,;/dr. With this,
Eq. (6.16.6) gives

(©)

du, du
—E:—?+Mi(l ~ P ) @ (6.16.7)

For a solution containing one solute particles, the phenomenological equation is
given by

du
neta (-]
dus” 2 i
== L[ S |- My (1= poy ) 0 (6.16.8)
The du,"/dr may be written as
dus” _ duf? dey
dr de, dr

Assuming solution to be dilute, we have

duy” (ﬂjd_

B bl by (6.16.9)

dr

"The solute is represented by the subscript 2.
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Sedimentation
Equilibrium

Determination of
Molar Mass of the
Solute

Substitution of Eq. (6.16.9) in Eq. (6.16.8), we get

L,RT \dc

Jz_—( 2 jd_2+L2M2(1_p02,pm) o’
C2 r

- pY v 2 6.16.10

-tk Hh (1 =Py o) O°F (6.16.10)

where D(= L,RT/c,) is the diffusion coefficient.

The term My(1 - pv, ) in Eq. (6.16.10) may be replaced in terms of sedimentation
coefficient, s, defined by the expression

= LMy (1-pv; )

(6.16.11)
]
With this, Eq. (6.16.10) becomes
d
Jy :ng + scy0Pr (6.16.12)

The term sczwzr in Eq. (6.16.12) represents flow due to centrifugal sedimentation
and —D dc,/ dr is the flow in the opposite direction due to diffusion of solute. If the
sedimentation is carried over a long period, a state of equilibrium is reached where
the net flow J, becomes zero. At this stage, we have

D czlﬁ = scy@Pr (6.16.13)
r

Equation (6.16.13) forms the basis of determining the molar mass of solute.
Separating the variables and integrating the resultant expression, we get

2
d& = rdr
)
¢ sw?
ie. In 2 -2 2+ constant. (6.16.14)
c® 2D

Thus, a plot of In (¢, / ¢°) versus #? is linear with slope equal to s@*/2D. From the
slope, s is evaluated which is used in Eq. (6.16.11) to determine the molar mass
of the solute as described in the following.

Equation (6.16.11) is

o= LyM,(1 _pUZ,pm)
(%)

Since L,RT/c, = D (Eq. 6.16.10), we get

s MyA-pvy )

D RT



Evaluation of
s/D.

6.17 TRANSPORT P

Fig. 6.17.1 Demonstration
of transport process
between two homogeneous
phases

Expression of
Entropy Production
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_ (s/D)RT

or =
: 1 _pv2,pm

(6.16.15)

Equation (6.16.15) is known as Svedberg equation.

The value of s/D in Eq. (6.16.15) may be determined by using Archibald

suggestion which states that at the bottom end of the centrifugal cell (whose

distance from the axis of rotation is ry,), the flow of solute is zero and as per
Eq. (6.16.12) we will have

f; - Eﬂfiigfzigﬂa (6.16.16)

(02)r=rk7 °r,

Knowing (cz)r:rb, (dc, /dr)r:rb and @, the value of s/D may be determined by

using Eq. (6.16.16). This value can be substituted in Eq. (6.16.15) to determine
the value of M,.

ROCESS BETWEEN TWO HOMOGENEOUS PHASES

Let the two compartments o and B of constant volumes (Fig. 6.17.1) contain the
same gas (or fluid such as water) at temperatures 7 and 7 + AT and pressures p
and p + Ap, respectively. Let the two compartments be connected through a small
orfice (or a rigid membrane). Due to the temperature and pressure difference, energy
(both heat and matter) will flow from the compartment o to the compartment f.

a B
T T+ AT
ptAp
P
dg ——»
dn ——»

From the Gibbs relation (dU = T dS — pdV + u dn), we write the expression for the
change in entropy at constant volume as
dU u

ds = T—Fdn (6.17.1)

Since the compartments o and B taken together represents a closed system, the
entropy production in the two compartments will be given by the expressions.

dUu 'u(ﬂf)
4s =
dU u(ﬁ)

ds® =+ - dn
T+AT T+AT

The total entropy production is
ds=ds®+ds5®

®) (o)
:M]Gl+_J_J+Mf_“ - ) (6.17.2)

T T+AT T+AT T
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If AT is small in comparison to 7, we may write

L, 1 _-(T+AD)+T AT 6.173)
T T+AT  T(T +AT) 7

Also, we have

u® . w @ —1u® (1 + AT) @ __ u® -y @ (AT)

CT+AT T T(T + AT) T 72
Ap—-S. AT AT
=— % + (Hm -T Sm) (F) (Supersript o is dropped)
A
_TwlP (Af) (6.17.4)
T T

Substituting Eqs (6.17.3) and (6.17.4) in Eq. (6.17.2), we get

ds = dU(—£j+dn( PlP gy Af) (6.17.5)
T’ T T

The rate of entropy production is

d.s (de( AT) (dnj( VAp AT)
=2 o = +|— +H,
ds ds T2 de T o

=JyXy+Jn Xy (6.17.6)
where X;; (-AT/ Tz) is the force correponding to the energy flow, J; (= dU/d¢)
and X, (=— V,Ap/T + H AT/ T2) is the force corresponding to the matter flow,

I (= dn/df).
Phenomenological The phenomenological equations corresponding to Eq. (6.17.6) are
Equations Ju=LyXy+ L Xy
AT V.Ap AT
_LH(—T—)+L12( T +H,, Tz)
VA
= (L= 1 125 o 1 (-T2 6.17.7)

Im= Loy Xy + Lyy Xy

AT VuAp AT
=Ly|-—|+L +H, —
21( 72 ) 22( T sz

AT v, A
= Ly —LpHy )( T) Lzz( ij (6.17.8)

A Few Derivations When AT =0 From Eq. (6.17.7), it is obvious that J;; # 0 even when AT = 0.
From Eqs (6.17.7) and (6.17.18), we find that

(‘]—UJ ~Ln (6.17.9)
J, AT=0 L22

m
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Equation (6.17.9) gives the energy tranferred for a unit flow of matter. This quantity
is represented by the symbol U*. Hence

o Ly (6.17.10)
‘]m AT=0 L22

e When J, = 0 The corresponds to the stationary state of the system which
describes no flow of matter. From Eq. (6.17.8), we have

B AT V. Ap
0=(Ly - Ly Hm)(—FjJFLzz (_ mT )

This gives

AT L,V,T V.T

which in view of Eq. (6.17.10) gives

(ﬁ) :_LZI_LZZHm__(LZI/LZZ)_Hm
Ju=0

A U*—H * '
(A_;)") =— T m _ _ I;]T (since Ly, = Ly) (6.17,11)T
Ju=0 n .

where ¢* is known as heat of transfer.

The pressure difference Ap for a given temperature differene to observe stationary
state is known as thermomolecular pressure difference.

Alternative Choice Alternatively, Eq. (6.17.6) may be written as

of Flux and Force _ds (dU dnj( AT) (dnj( VmAp)
o= = — — Hm J— — |4 — __m-r
ds dr T dt T
b (8)52)
dr T dr T

dr
-G
dt 7? dt T
=Jy Xy + I X (6.17.12)
where X, (=-AT/ Tz) is the force corresponding to the heat flow, J, (= dg/df) and X .
=— V,Ap/T ) is the force corresponding to the matter flow J,, (= dn/dr). The

phenomenological equations corresponding to Eq. (6.17.12) are
Jq :L,ll Xl] +L’12X;n

, [_AT . (VAP
I = Loy Xy + Ly X7y
=Ly (—A—f)u;z (— VmA”) (6.17.14)
T T

Tt may be mentioned here that to the terms U and H,, an arbitary constant can be
added. In both cases the zero value has been assugned at 7= 0. However, the quantity g*
is uniquely determined.
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A Few Derivations

Reciprocity Relation

Thermo-Osmosis

Problem 6.17.1

When AT =0 From Eq. (6.17.13), it is obvious that J, # 0 even when AT = 0.
From Eqs (6.17.13) and (6.17.14), we find that
J,

(_q) _ Ly (6.17.152)
J, AT=0 L;Z

m

Equation (6.17.15) descibes the heat transferred for unit flow of matter. This quantity
is known as heat of transfer and represented by the symbol ¢*. Hence

J ’
q*= (‘1] =L% (6.17.15b)
J AT=0 L22

m

e When J,, =0 from Eq. (6.17.14), we get

0=1L [ PR £ (_m_)
2 ( T2 ) 2\

This gives
(ﬁ) _ Ly 1 (6.17.16a)
AT )y =0 L, VT
which in view of Eq. (6.17.15b) gives
*k
(%) __ 4 (6.17.16b)
AT); _g  Val
Making use of Eqs (6.17.15b) and (6.17.16b) in Eq. (6.17.15a), we get
J A
(—‘1) _— VmT(—p) (6.17.17)
I Jar=0 AT /g, =0

Equation (6.17.17) is known as reciprocity relation. A second such relation is
obtained with the conditions of (i) Ap =0 in Eqgs (6.17.13) and (6.17.14) and (ii)
J, =0 in Eq. (6.17.13). We get

J 4 /
[_q) “L an (ﬂ) - L (6.17.18)
I Jap=o L3 AT )y =0 VTl L,
J
Hence (—q) =—V.T (ﬂ) (6.17.19)
I Ap=0 AT Jy=0

When the two compartments are separated with the help of a rigid membrane,
the transfer of matter due to temperature difference is known as thermo-osmosis.

For transport process between two homogeneous phases, show that

L2 AT L, L V_Ap
i J _n= L. — 12 (_7): L, — 11 =22 (_ m )
@ q)Jm 0 ( 11 L, ] 72 12 L T
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) . Lyly ( AT) . L3 ( VmAp)
g A P 5 O b i Y 5 e P | o 8
(i) m)Jqfo [ 21 I P ) L, T

We have

. , AT , VAP

(i) Jo= L |5z )+ (- (Eq. 6.17.13)
(M) __ Ly 1 (Eq. 6.17.16a)
AT )y =0 Ly Vil

Eliminating Ap in Eq. (6.17.13) with the help of Eq. (6.17.16a), we get

, AT |4 1 L
sy =0=1L (——)+L’ o 2L AT
N AR A VA 7

_ (L Ly \(_ATY_(,, _ L3 )(_AT
Ly, ; > = L, 3
L, T L, T

Eliminating AT in Eq. (6.17.13) with the help of Eq. (6.17.16a), we get

s VT (Lyy /L5 , VA
(Jq)JmoLn(m ;; 2) AP]+L12 (_ mT p)

_ (L, Ly L, J(_ VmAp)
12 L T
21

AT V. A
(i) J. =L (——2)+L32 (— m p) (Eq. 6.17.14)
T T
(&) __ ULy (Eq. 6.17.18)
AT Jq:0 VmT L1,2

Eliminating Ap in Eq. (6.17.14) with the help of Eq. (6.17.18), we get

Uy, =0 = L2 (—A—Z)Jrng V| L Ly a7
T T \V,T L,

i {L, Lt ](_M)
- 21 ’ 2
L, T

Eliminating AT in Eq. (6.17.14) with the help of Eq. (6.17.18), we get

, (VT (L, /L s (VA
mdy, =0 = L2y ((12“) APJ+L22 (— pj

T? T

— L! _Lél LI’2 (_ VmAp): Lr _ L1,22 (_VLM)
2L r) T U
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Stationary State and Minimum Entropy Production

A system not in equilibrium involves fluxes and the forces. These fluxes and the
forces move in a direction which help the system to attain equilibrium. In the latter
state, all the fluxes and forces become zero. The system at equilibrium is said to
be at the stationary state. However, there is another way of stationary state where
one or more of the forces are held constant and allow to vary the other forces till
the fluxes become zero. At this state, the system attains stationary state and it can
be shown that this stationary state involves the minimum production of entropy.
This principle may be illustrated with a system involving two forces, such as the
phenomenon of thermo-osmosis.

The flux of matter as given by Eq. (6.17.14) is
Jo = L’ZIXquL;2 X (Eq. 6.17.14)

where X, = -AT/T* and X,] = -V, Ap/T.

Suppose AT is held constant and allow Ap to vary till it attains the value as governed
by Eq. (6.17.16b) which is Ap = —g* AT/V,,T. At this value, J,, becomes zero and
the system attains the stationary state where

0=1L X, +Ly X, (6.17.20)
The entropy production is given by
o =J, X, +JXn (Eq. 6.17.12)

Substituting the expressions of J, and J,, from the phenomenological equations
(Egs 6.17.13 and 6.17.14), we get

o= (Li, X, +Li, X, )X, +(L5 X, +L% X, )X},
= Ly XJ+ X}, X, (L{, +Ly )+Ly X727

Since L[, =Lj, we have

o=L{ X, +2L3 X[ X, + L}, X (6.17.21)
For the entropy production to have a minimum value for fixed value of X, we get
Jc
oXr,

and also we prove that d*c/0X’2 >0.

Differentiating ¢ with respects to X7, at constant X, we get

Jdo
——=2L% X +2L5 X, =0
BX;n 21 q 22 m
ie. Ly X, +LpX,=0 (6.17.22)

which is identical to that given by Eq. (6.17.20). To show that the production of
entropy is minimum, we find that

82_0' =215 >0 (since L,, is positive)

3 Xr’nz 22 2 18P
Hence, the attainment of stationary state involves the production of minimum

entropy. This fact, which have been established for a system involving two forces,



Knudsen Gas

Introduction to Irreversible Processes 493

is universally applicable to a system involving any number of flexes and forces.
It can be broadly stated as follows.

Suppose a system involves a number of independent forces X}, X,...., X,. Let the
forces X X,,...,X; be held constant. The system moves in a direction where the
fluxes corresponding to the rest the forces progressively become zero. The system
attains stationary state when the forces X} , |, X; 1 5, ..., X, assume the values
satisfying the condition of minimum entropy production or energy dissipation.
The stationary state is set to be kth order since k forces are held constant. For
example, the phenomenon of thermo-osmosis involves stationary state of the
first order. The true thermodynamic equilibrium may be called a stationary state
of zero order.

Knudsen Effect

If the two compartments o and 3 at temperatures T and T + AT, respectively, are
connected through a capillary tube or a small hole, the developed thermomolecular
pressure difference is known as Knudsen effect.

The gas is said to be Knudsen gas if the diameter of capillary or hole connecting
two compartments is small compared to the mean free path of the gaseous
molecules. The molecule of a Knudsen gas, when arrives at the opening of capillary
or hole with a nonzero velocity component, passes freely through it. The number
of such molecules striking the tiny hole in a unit time is given by

N = Gﬁ N*)Ahole (6.17.23)

where (= \J8kgT / nm) is the average speed of gaseous molecules, N* (= p /kgT)
is the number of gaseous molecules per unit volume and 4, is the area of tiny
hole. From Eq. (6.17.23), it follows that

N’ p /T (6.17.24)

In the stationary state, the number of molecules passing from the compartment
to the compartment o will be equal to those passing from the compartment o to
the compartment 3. Hence, we will have

p _ ptip

Taking square on both sides and rearranging, we get
p?z = ((‘”T:—AZ’T))Z ie.  pXT+ AT)=T(p* + Ap* + 2pAp)
or PPAT = T(Ap* + 2pAp)
Neglecting Ap? term, we get
pPPAT=2pT Ap ie. pAT=2TAp
Thus, the expression of Ap/AT at the stationary state is



494 A Textbook of Physical Chemistry

Generalized
Statement

(ﬂ) =L (6.17.26)
AT ), -y 2T

As per ideal gas equation (pV,, = RT), Eq. (6.17.26) becomes

(ﬂ) - R (6.17.27)
AT )y —o 2V,

Also, from Eq. (6.17.11), we get

*
(ﬂ’) = —d— (6.17.28)
AT )y o VT

Comparing Eqs (6.17.27) and (6.17.28), we get
* R RT
. T, (6.17.29)
V.T 2V, 2

Since g* = U* — H,, (Eq. 6.17.11), we get

U*—Hmz—% ie. U*=Hm—% (6.17.30)
For monatomic gas, H,, = (5/2) RT. Hence
U*:Hm—R—szgRT—%RT=2RT (6.17.31)"

If the value of U* is compared with the average kinetic energy per mole of gaseous
molecules, we find that

U* — KE = 2RT — (3/2)RT = (1/2) RT (6.17.32)
that is, the gaseous molecules acquire an additional average kinetic energy of
(1/2)RT along the axis of the capillary tube or hole.

If the diameter of the capillary tube or hole is quite large, the gaseous molecules
move in the bulk from one compartment to the other. Consequently, the pressure
difference between the two compartments cannot be maintained and thus Ap
becomes zero. According to Eq. (6.17.14), the stationary state can be established
(i.e. J, = 0) provided L’,; = 0 and as per Eq. (6.17.16b), this requires that g* = 0.
Hence,

U* =H,

n (6.17.33)
In actual practice, all possible values of g* from —R7/2 to zero are observed
depending upon the ratio of diameter of the capillary tube or hole and the mean

free path of gaseous molecules.

6.18 THERMAL DIFFUSION IN A CONTINUOUS SYSTEM

Entropy Production If there exists a temperature gradient in a continuous system, then there occurs a

flow of matter caused by the nonconjugate force of temperature gradient. If the

* See Annexure A-III at the end of this chapter for the derivation of the expression of energy
of transfer on the basis of kinetic considerations.
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system does not involve charged particles and if no reaction is involved, then
the entropy production in the system due to the flow of matter in the direction of
temperature gradient is given by

n
To = J, grad(-T)+ Y. J; grad (-1, (Eq. 6.6.10)
i=1
Jq - Z:ui‘]i
where J, = + (Eq. 6.6.7)
Since W; = H; = TS; pms Eq. (6.6.7) may be written as

1 n
= ?|:Jq_;(Hi,pm zpm)J:|
|:{‘]q_214 i,pm l}:|+2Sl pm z

ZS, om Ji (6.18.1)

~ =

~N |>Qk'

where J,=J, - H J; (6.18.2)
i,pm
i=l1

The quantity J,, known as reduced heat flow. This is equal to the total heat flow
minus the heat flow due to the flow of matter.

We have
d; = =S, pdT + ¥,y dp + dp

i,pm
where ,u(‘) is the concentration-dependent term in the expression of 4. For a system
at mechanical equilibrium, dp = 0. Hence

d‘ui == Si,pm dr + d‘u(C)
Thus, we can write
grad (1) = — S,y grad (-T) + grad (-4) (6.18.3)

Substituting Eqs (6.18.1) and (6.18.3) in the expression of entropy production,
we get

J.,
To = (7‘]+2Si’pm J,»)grad (-7)
i=1

+§n:Ji (—Si’pm grad (-T') + grad ( u® ))
i=1

= %grad (—T)+zn:Ji grad (—u() (6.18.4)
i=1
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Diffusion of
Solutes

Equation (6.18.4) includes the flows of both solvent and solutes. Representing
solvent by the subscript 1 and solutes by 2, 3,..., etc., we may write Eq. (6.18.4) as

To = %grad (-T)+J, grad( (c)) ZJ grad( ,u(c)) (6.18.5)
i=2

The material flows and their forces mentioned in Eq. (6.18.5) are not independent.
These are related to each other as mentioned in the following.

e The various forces are related through Gibbs-Duhem equation

Zc grad (-p?) =0 (6.18.6)

o The various flows are related through the expression based on the fact that there
occurs no flow of volume of the system. The volume of the system is

V= znz i,pm

where V; ., is the partial molar volume of the ith constituent in the solution.
Assummg these remain constants, the rate of flow of volume of the solution is

I T

i=1
Since dV/d¢ = 0 (the condition of no flow of volume of the solution), we have

IV m=0 (6.18.7)
i=1

Using Eqs (6.18.6) and (6.18.7), one can eliminate the dependent solvent term in
Eq. (6.18.5). We will have

wrad (i) =3 & ma ()

i=2

EJ(V]WJ

Substituting these in Eq. (6.18.5), we get

w5 [l

j=2 1, pm i=2

+§n: J; grad ( /J,(C))

i=2

_J—grad( T)+ZJ {z me ! grad( /,Lf‘))}

Jj=2 121pm

+iJi grad( /.tf‘))
i=2
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J, n n V. ¢
= 7"grad D)+ J; {Z[Sij +V’"—‘“0J grad (—u}“’)} (6.18.8)

j=2 i=2 1,pm €1

where Sﬁ is Kronecker delta (it is equal to 1 for i = and is zero for i #j). Equation
(6.18.8) may be written as

J, "
7o = 7" grad (-7 + ZZJ]. Y, (6.18.9)
=
< Vi pm€i (©
where V=Y 6,.j+—c grad (-p() (6.18.10)
i=2 1,pm ~1

Thermal Diffusion in a Binary Continuous System

Entropy A binary system involves a single solute dissolved in a system. For this system,
Production Eq. (6.18.9) is
Jy
To = 7grad(—T)+JzY2 (6.18.11)
Vy omC M om€ Vo om €
where Y, = (l+ﬂ] grad (—,ué”)) =( bpm 1 2.pm 2 ] grad (— ,u(?)
Vl,pmcl Vl,pm 51
rad (—pl” )
= M (6.18.12)"
Vl,pmcl
The term grad (—ugc)) may be expressed as
(©) _ Oty
grad (~pf”) =32 grad (-¢y)
)
With this, Eq. (6.18.12) becomes
v, = Ha219 bad (—e)) (6.18.13)
Vl,pm G
Phenomenological The phenomenological equations corresponding to Eq. (6.18.11) are
Equations AT
Sy =Ly Yo+ Ly, g T(_ ) (6.18.14)
_ grad (-T)
Jy=Lp Yot Ly Y (6.18.15)

f € Vl.pm + C2V2‘pm = (nl/V)Vl,pm + (nZ/V)VZ pm = (nl V]. pm + nZVZ,pm)/V: Viv=1
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Accordig to Eq. (6.18.14), the flow of solute consists of two flows as mentioned
in the following

o The diffusion of solute due the force Y, which, in turn, depends on (grad (—c,).

The phenomenological coefficient may be identified with the diffusion coefficient
D of the solute:

D= i(aﬁ] (6.18.16)"
ClVl, pm aCZ

For a dilute solution,

[aﬂj_ d(RTInc,) _ RT

oc, dc, ¢y
and aVipm =1
With these, Eq. (6.17.16) becomes
L, RT
D= 22" (6.18.17)
)

o The diffusion of solute due to the temperature gradient

This diffusion is known as thermal diffusion. The corresponding phenomenological
coefficient is generally dependent linearly on the concentration of solute. Hence
Ly, Ly,

T < Cy ie. T = Dthcrmal &) (61818)

where Dy,emar 18 known as thermal diffusion coefficient. In terms of D and D
Eq. (6.18.14) becomes

J, =D grad (—c;) + Dyermar €2 grad (=7) (6.18.19)
Thermal diffusion measurements can be made in a cell consisting of two parallel
metal plates, with the warm plate at the top and the cold plate at the bottom. This
arrangement of plates prevent convection currents. A homogeneous binary solution
is introduced between the plates. A stationary temperature gradient is set up in the
solution almost immediately. The time required to attain stationary temperature
gradient is much less than the time for the diffusion of solute in the solution. Due
to the temperature gradient in the solution, solute starts diffusing relative to the
solvent in accordance to the Eq. (6.18.14) with ¥, =0, i.e.

grad (-7) _ Loy
T T

= 7Dthcrmal () grad (T)
The solute diffuses towards cold plate if the thermal diffusion is positive and will
diffuse towards hot plate if the thermal diffusion is negative. For most of strong

electrolytes in aqueous solution, the thermal diffusion is positive and thus solute
diffuses towards cold plate.

thermal

Jy=Lyy grad (7)

* Equation (6.18.16) is obtained by making use of Eq. (6.18.14).
Jy=Lyp Yy=1y [MJ grad (—¢;) = D grad (—¢,)

< 1,pm
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The thermal diffusion produces a concentration gradient of the solute in the solution,
which in turn causes a diffusion flux in the opposite direction to the thermal
diffusive flow. After a while, the thermal diffusion exactly balances the counter
diffusion due to the concentration gradient and the system attains a stationary state.
The penomenon of establishing a concentration gradient as a result of a temperature
gradient in condensed phases is known as Soret effect.

Mathematically, Soret effect is described by setting J, = 0 in Eq. (6.18.19), which
gives
0 =D grad (—¢,) + Dyermal €2 grad (=T)
Dthermal _ grad(_CZ) — grad &)

ie. s = = =
D ¢, grad (-7) c, gradT

(6.18.20)

where s is known as soret coefficient. According to Eq. (6.18.18), the soret

coefficient is given as
D thermal _ LZ‘I' /TCZ
D D

The heat of transfer is defined as the reduced heat flow per unit flow of matter at
zero temperature gradient, i.e.

5= (6.18.21)

Jy
q* = T (6.18.22)
2 Jerad T =0
From Eqs (6.18.14) and (6.18.15), we get
L.
* = 12 (6.18.23)
Ly,
The Soret coefficient is
Ly, /Tc,
§= —== Eq. 6.18.21
. (Eq )
and the heat of transfer is
L,
g* = — (Eq. 6.18.23)
Ly,

If Onsager reciprocal relation (L,, = L) holds good, then it follows that
_ q* Ly /Te
T p
Substituting the expression of D from Eq. (6.18.17), we get
- TG g7 (6.18.24)
LyRT/c, RT?

The verification of Eq. (6.18.24) provides an experimental test of Onsager reciprocal
relation.

The phenomenon of generating a temperature gradient as a result of concentration
gradient is known as Dufour effect. Consider a system at uniform temperature

(i.e. grad (7) = 0).
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From Eq. (6.18.15), we find that

U, /dc
Jy =Ly, Yy =Lyy ——2=grad (—¢,)
Sl 1,pm

For a dilute solution, we have ¢,V ,, =1, and thus
RT
Jy =Ly — grad (—c,) = Dy grad (—¢,)
2

where Dy (= L, RT/c,) is known as Dufour coefficients. The ratio of Dufour and
thermal cofficients is

Dy _LpRTIe) o
Dy, Ly /e,T

(since L, =Lyy)
ermal
Dufour effect has been observed in mixing of two gases by diffusion into each other,
initially at the same temperature. For liquids, Dufour effect has not yet observed
due to insignificant Dufour coefficient.

6.19 TRANSPORT PROCESS IN AN ELECTROLYTIC SOLUTION

Entropy Production For an electrolytic solution involving transport process in one direction at constant

Flow of Solutes
Relative to Solvent

temperature without a chemical reaction, the entropy production is given by

To = iJ,- grad (—fi,) (6.19.1)

i=l
where the electrochemical potential fi; is given by the expression
= +z Fo (6.19.2)

In this expression, y; is the chemical potential, z; is the charge number (positive
for cations, negative for anions and zero for nonelectrolytes), ¢ is the electrical
potential and F is Faraday constant.

Equation (6.19.1) involves the flow of solvent as well as solute species. However,
the flow of solvent can be eliminated by expressing the flows of solutes relative
to that of solvent. This is achieved by using Gibbs-Duhem equation

S, grad () =0 (6.19.3)
i=1

Representing solvent by the subscript 1 and solute species by 2, 3, ..., etc., we
write Eq. (6.19.3) as

¢ grad (fiy)+ Y, ¢; grad (&) =0

i=2

ie. grad(f;) =— i(ci/cl) grad (f1;) (6.19.4)

i=2
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Substitution of Eq. (6.19.4) in Eq. (6.19.1) gives

To = J, grad (=) + Y J; grad (=)
=2

=J, {— Zc— grad(—ﬂ,»)} + iJ s grad (~11;)

i=2 €1 i=2

- i( i_ﬁ‘]l)grad (—4;) (6.19.5)

i=2 G

Transport Process in a Solution Involving a Single Electrolyte

Entropy Production Representing the positive and negative ions of an electrolyte by the subscripts “+”
and “-”, respectively, Eq. (6.19.5) gives

Toc = (J+ —%Jljgrad(—ﬂ+)+(J_ —Z—’Jl)grad(—[t_)
1 1

= J W grad(~fi,)+JY grad (-fi_) (6.19.6)

where J9 and J9 are known as diffusional flows of positive and negative ions,
respectively.

Phenomenological The phenomenological equations corresponding to Eq. (6.19.6) are
Equations

JWO =1, grad (=fi,)+L, grad(—i ) (6.19.7)
JO =1  grad(-fi,)+L_ grad(—fi ) (6.19.8)

with Onsager reciprocal relation L, =L _,.

Note: From Eq. (6.19.7), it is obvious that J¥ is not equal to zero if grad (—f,)
alone is zero. Similarly, J9 is not zero if grad (—fi_) alone is zero. This indicates
that the flow of negatively-charged species has a dragging effect on the positively.
charged species and vice-versa.

Expression The electric conductance is determined under isothermal condition with uniform
for Electrical concentration of electrolyte in a conductance cell. Under these conditions, we have
Conductivity grad g1, = 0 (6.19.9)

The electric conduction in the cell is due to the electric potential difference
across the two electrodes. The local electric field intensity in the cell is given by

E=—grad ¢ (6.19.10)
From Eq. (6.19.2), we get

grad fi; = grad 1, + z,F grad ¢
which in view of Eqgs (6.19.9) and (6.19.10) becomes
grad (i, =—z,FE (6.19.11)
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Expressions of
Transport Number

Substituting Eq. (6.19.11) in the phenomenological equation (Eqs 6.19.7 and
6.19.8), we get

JO =z, L, +z L )FE (6.19.12)
JO =L, +zL )FE (6.19.13)

The electric current density (i.e. current per unit area) in the cell due to the flow
of ions in the solution is given by

j= Yz FJY (6.19.14)"
i=2
In the present case, we have

j=[z 00+ JV]F (6.19.15)

Substituting the expressions of Jfrd) and J9 from Eqs (6.19.12) and (6.19.13),
respectively, we get

j=lz, (z . L,y tz L, )FE+z (z,L ,+z L )FE]F
=[zZL +zz (L +L,)+z22L JF°E

=KFE (6.19.16)
where K=2z2L,, +z.z(L, +L )+z*L _
=z2L,,+2z,z L, +z°L _ (since L, =L ,) (16.19.17)

The expression of electrical conductivity (k) is

= Current density (f)

Electrical field (E)
Substituting the expression j from Eq. (6.19.16), we get
k=[z2L.+z z(L, +L . )+z2L ]F?=KF? (6.19.18)

The transport number of an ion in the solution is the fraction of current carried
by the ion. Hence

t, =

; £ @
Je ZFI (6.19.19)
J J

+ It is immaterial to use diffusional flows or absolute flows in Eq. (6.19.14). This may be
proved as follows.

J= [z 00+ 9)F
= [z,(J, = (e, /e))+z_(J_—(c_/e)I))]
= [(z,J, +z_J_ )= )Nz, +z_c)|F

The condition of electroneutrality requires that z, ¢, + z_c_ = 0. Hence

n
J= (2, J,+zJ)F =Y zF J,
i=2
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Substituting J ¥ and j from Egs (6.19.12) and (6.19.16), respectively, we get

z Flz, L, , +z_L,__]FE

t =
o L4z (L +L)+ZL |FPE
_ zfzly+z L (6.19.20)
K
Similarly
L L
= zlzl vz L] (6.19.21)
K
Derivation Considering the diffusion of ions without flow of current, we have from Eq. (6.19.15)
of Diffusion . 4
Coefficient 0=[z, JV+zJV]F
which gives
2 JO+z J9=0 (6.19.22)

Using Egs (6.19.7) and (6.19.8) for J¥ and J9, respectively, we get
z [Ly, grad(—fi, )+ L, grad (—f_)]+z_[L_, grad (-1, )+ L _ grad (-i_)]=0
This gives

grad (f1,) = —[

z L _+z L

— | grad ({1 6.19.23
St ) 61929

Expressing grad (u,) and grad (u_) in Terms of grad (salt)

For the electrolyte A, B, dissociating as

A, B, ==V,A" +v B” (6.19.24)
we have My = Vo, +V_I_
Thus grad (Ug) = v, grad (i, )+v_ grad (@) (6.19.25)"

To express grad (i, ) in terms of grad (i), we eliminate grad (fi_) in Eq. (6.19.23)
with the help of Eq. (6.19.25). Thus, we get

)| Lttt v, s

z, L,_+z L _

d(i,)=-
w7, =< 2P

Rearranging this, we get
[V— (zilyy+z L )-v (2, L, +z L _ ] grad (/:L+ )
=—(zy Ly +z L) grad (Ug,) (6.19.26)

T,usauz Vil +vop = v, (@ -z, Fe)+v_(I_—z_ Fo)
= (V+/:l++V_,a_)—(V+Z++V_Z_)F(p

=V, [, +Vv_ji_ (since v,z +v_z_=0)
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From the condition of electroneutrality (v,z, + vz = 0), we get

V4
v.= -V, (—+j (6.19.27)

z

Eliminating v_ in Eq. (6.19.26) with the help of Eq. (6.19.27), we get

2 et ) e e L) )

= —(Z+L+_ + Z_L__) gfad (:usalt)

This gives
z z L _+z L
rad ({1, )=— R rad
8 (#J v, |:ZiL+++Z+Z(L++L+)+ZZL:|g (Hsan)
oz |z L _+z L _ }
= —|—+—————orad 6.19.28
V+ [ K g (‘u'salt) ( )

Proceeding similarly to express grad (fi_) in terms of grad (i), we get

z z L  +z L
rad ({1_)=— e T by rad (1,
¢ (‘u ) v_ |:Z+2-L++ tz,z_ (L_++L+_)+zEL__i|g (Hsare)

z |z L, ,+zL
_ v;[%} grad (11, ) (6.19.29)

Expressing J+(d) and JY in terms of grad (i)
Substituting Eqgs (6.19.28) and (6.19.29) in Eq. (6.19.7), we get

L (z_/v )Nz L,_+z L )+L, (z,/v.)
(z_L_,+z.L,,)

Jid) == K grad (:usall)
z,Z_ zi ZE Z,Z_ o
V—+v— L++L+_+V—L++L__+ y L
= ra —— | erad (U (6:19:30)

where L, = L_, has been used in the numerator. Since z, v, + z_v_. =0
(the condition of electroneutrality), we will have

Z zZ_
=“4+==0
|2

With this £+—+=Z+[2—-+Z—+)=o

Vi
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2
z* z z z,7_
and —=z_(—j:z_(——+j=— L
v, v, V. V.

With these, Eq. (6.19.30) becomes

@_ 72 | Ly L_—I2_
0= 2 _ B grad (fg) (6.19.31)
Proceeding similarly for de), we have
r 72
g0 = 2o el T g 1) (6.19:32)
v, | K
The diffusional flow of the salt is given by
d d
S S0 IO
salt v
f _
2
= i Bl Tl | g (u) (6.19.33)
V,V_ K

The chemical potential of the salt in the solution changes point to point due to
dependence of concentration on location, we will have

d Sal
grad (fly) = [ = “jgrad ©

With this, Eq. (6.19.33) becomes

2
JG = Zee {LHL_[_{_ L }( G )grad (¢

(6.19.34)
V,V_ dc

Expression of Diffusion Constant Comparing Eq. (6.19.34) with Fick’s law

J@ -

salt

=—D grad (¢)
zyz | L LI (d:usalt )
V+V_ K dc

Experimental Deterination of Phenomenological Coefficients

we get D=-— (6.19.35)

The expressions of conductivity, transference numbers and diffusion coefficient are

k=K F* (Eq. 6.19.18)

Z+(ZL +z_L, )

+H4+

K

(Eq. 6.19.20)
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_Z (27L77 + Z+L7+)

g ~ (Eq. 6.19.21)
po _ZiLul —L (dﬂsan ) (Eq.6.19.35)

V,.V_ K dc
where K=z2L, +z z (L, +L )+z2L _ (6.19.36)

From the electroneutrality condition (v, z, + v z_ = 0), we get

2 2
Hence - Z+Z_ B (Z_-Fj(_z__j B [_Z__) B (Z__)
vove (v )L vy v, v,

With this, the expression of diffusional constant becomes

2 2
b (2 V(Lal —12 (d.usalt j (6.19.37)
v, K de,

From the expression of z,, we get

2
(K L j —(z Ly, +z L, Y=L, 422,z L, L+ 1% (6.19.38)

Z+
From the expression of D in Eq. (6.19.37), we get
VKD
d.usa]t /dc
Adding Eqs (6.19.38) and (6.19.39), we get

2 2

K KD

( L ] - =222, +2z,z L, L, +z*L,_ L _
z (d‘usalt /dc)

=z’ L, L2215 (6.19.39)

+

= L, (L +2z,2 L, +2°L )
=LK (where L, = L _, is used)
Cancelling K from both sides, we get
2 2
D
L. = K(’L] P
Zy (d‘usalt /dc)
which in view of Eq. (6.19.18) becomes

2 2
t viD
L, =x|— +— 6.19.40

o (Z+F) (d:usalt /dC‘) ( )
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Proceeding similarly, it can be shown that

2 2
L =K(t;) 4D (6.19.41)
Z—F (dnusalt /dC)
L. = K‘( bl ]+ v, v.D (6.19.42)
Z+Z—F (d:usalt /dc)

Knowing the experimentally determined values of «, 7, £, D and dug,/dc,
Eqgs (6.19.40) — (6.19.42) can be used to determine the values of phenomenological
coefficients. The results on sodium chloride solutions have shown that the straight
coefficients (L, and L__) are nearly linear functions of concentration, and the
cross coefficient (L, _) depends on concentration and decreases rapidly as the

concentration of sodium chloride is decreased.

Reduced Phenomenological Mobilities
By definition, ionic mobility is the velocity acquired by the ion under the influence
of unit magnitude of potential gradient, i.e.

v _ v
|d(Ap/dD))| ||

where | E| is the magnitude of electric field.

(6.19.43)"

The diffusional flows in terms of ionic mobilities are given by the expressions
JO=¢, (v.-v)=c,u, E (6.19.44)
JY9=¢c v -v)=-c u E (6.19.45)

The negative sign in Eq. (6.19.45) is due to the fact that the negative ions move
in the direction opposite to the electric field.

For the salt 4, B, , we have

c.=Vicy, and c_= Vg,

With these, Eqs (6.19.44) and (6.19.45) become

JO=(v, cyu. E (6.19.46)

JOY=_(v cy)u E (6.19.47)
The phenomenological equations representing diffusional flows as

JY=@G L.+zL )FE (Eq. 6.19.12)

JY= L,+zL )FE (Eq. 6.19.13)

"The ionic mobility is the proportionality constant between ionic velocity and the electric
field, i.e. v = u E. It is a scalar quantity. Here after, | E| is simply represented as E.
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Equating Eq. (6.19.46) with expression of J¥ given above, we get
Vicauuy E=(z Ltz L, )FE

(z,L,,+z L, )F zIL_F L nzlL F

Hence u, =
v+csa]t V+Z+Csalt V+Z+Csa]t
=u, tu, (6.19.48)
2
zo L, F z.z L, F
where wu,, = ——— and u, =—"—"— (6.19.49)
V+Z+csalt V+Z+Csalt

Proceeding similarly for J9D | we get

—~Veguu E=, L ,+zL )FE

(L +zL )F z,z L,F ZL_F
V_c

Hence u_=

V_z_c V_zZ_c

salt salt salt

Using the condition of electroneutrality (v, z, + v.z_ = 0), we get
_zz L F 2L F

V+ Z4Caalt V+ Z4Cat

—u, +u_ (6.19.50)
2
where u_, = zzl F and u__= AL (6.19.51)
ViZi Caant ViZiCaant

Note that u, =wu_,,since L, =L .

Molar Conductivity The physical quantities u,, and u__ are known as reduced phenomenological

and Reduced lonic  mobilities of cation and anion, respectively, and the quantity u, is a measure of
Mobilities interaction between cation and anion of the salt in the solution.

The expressions relating ionic mobility and molar ionic conductivity are

u, = A and wu_= A (6.19.52)
z F |z_| F
Molar conductivity in terms of molar ionic conductivities is
A=V, A+ V. A (6.19.53)

Substituting A, and A_ from Eq. (6.19.52), we get
Ap=Vi(upz, F)+ v (u |z | F)
=(Viz)u F+(v |z | JuF
Since v,z, = v_|z_| (the condition of electroneutrality), the above expression may
be written as
Ay =Vyzy Flu, +u) (6.19.54)
Since A, = K/c, the expression of conductivity is

K= Ay Caqn = (Ve 2p) e F (uy +u) (6.19.55)

salt
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Using Egs (6.19.48) and (6.19.50) in Eq. (6.19.54), we get
An=Viz, Flu, +2u,_+u_) (6.19.56)
Substituting the expression of u,,, u, and u__, we get
2
= —(ZELJrJr +2z,z L, _ +ZEL__) (6.19.57)
Csalt
Similarly, Eq. (6.19.55) becomes
K=(Vyzy) Co (U +2u_+u__) (6.19.58)
which on substituting the expressions of u,,, #, and u__ becomes
k=F? (L, +2z,z L, +22L ) (6.19.59)
Note: Equation (6.19.59) is the same expression as given by Eq. (6.19.18).
Transport Numbers We have
and Reduced V. A, V_A_
Mobilities = A and 1= ™ (6.19.60)
Replacing A’s and A, in terms of ionic mobilities, we get
= v,z Fu, __ U U, ‘tu,_ (6.19.61)
vz, Flu, tu ) wu,+u_  wu,, +2u,_ +u__
_ V_|z_|Fu_ __u u__+u_, (6.19.62)
Ve, Flu, +u_) wu, +u_  u +2u,_ +u__
Diffusion Constant From Eq. (6.19.35), we have
and Reduced 2
Mobilities D= _ 2 Lol —Li ( Aty )
V,.V_ zf L, +2zz L, +2L de
From Eqs (6.19.49) and (6.19.51), we find that
V.z. Co | U
L++= +<+ salt(i]
F o2
L = ViZiCoalt | Ui
- F Z,Z_
L = V+Z+csalt M;
—= =5 2
Substituting these in the expression of D, we get
D= — Calt U u__ — ui— (d:usalt )
vz F\u,, +2u,_+u__ dc
_ Calt U u__— uf—— (d:usalt ) (6 19633)
Viz,F\u,, +2u,_+u__ dc
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Using Eq. (6.19.56), this becomes

2
u u__—uy \(du
D= csan( — - * J( dsc""‘) (6.19.63b)
Expression of For an ideal solution, no interactions exist between cation and anions. Hence
gflort.an ideal u, =0 (6.19.64)
olution
Also g = Vi U T VU
=v,(UW+RTInc)+v(u+RTInc)
=, us+v u)+RT(vilnc,+v Inc)
Since €= Vicgy and c = v, for A, B, electrolyte, we have
Mgy = Mgy T RT [vy In (Vi) + v In(v cgy,)]
Hence
(—d“”“ j - RT(V—+ 4 V—j _ VetV RT, (6.19.65)
dcsalt Csalt  Csalt Calt
Making use of Eqs (6.19.64) and (6.19.65) in Eq. (6.19.63a), we get
D= (Vi +VORT ([ uu__ ) _ i+ Vo \RT( u u__
vz, F U, tu__ z, Vyz, ) F\u,, +u__
_ (L_LJE( Uy U ) (6.19.66)
z, z_) F\u,, +u__
Evaluation of From Eq. (6.19.49), we have
Reduced Mobilities
2
ziF
Upp = —— L,
V+Z+Csalt

Substituting for L, from Eq. (6.19.40), we get

2
_ Z_%_F K( t, j + VED
ViZ Cot Z+F (d:usa]t / dcsalt)

_ 1 [L](V+/1+j2+ v, z, FD
V+Z+F Csalt Am Csalt (d:usa]t / dcsalt)
2
v, A N v,z FD

Z+F Am Caalt (d:usalt / dcsalt)
From Eq. (6.19.51), we get

Uiy

(6.19.67)

Z22F
u__= L__
V. Z, Coe

Substituting for L__ from Eq. (6.19.41), we get
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22F ( t jz viD
= Kf— | +——mmm
V+Z+Csalt Z—F (d:usalt / dcsalt)

_ 1 (LJ(V_LJZ“L V22 FD
V+Z+F Csalt Am V+ ZyCalt (d:usalt / dcsalt)

2 2
_ v [L}# (6.19.68)
V+Z+F Am Csa]t (d:usalt /dcsalt )

In Eq. (6.19.68), the condition of electroneutrality (v, z, + v_z_ = 0) has been
used. From Eq. (6.19.49), we have

_ zz F I
u, = ——1~L,
V,z.C

N
|

salt

Substituting for L, from Eq. (6.19.42), we get
", = zz F [K( 1t . )+ v,v_D }
ViZy Ct Z+Z—F (d:usalt / dcsalt)

1 (Lj[h/t v_/l_j+ v_z_FD
V+ z +F Csalt Am Am Csalt (d:usalt / dcsalt)
Vo A N vzFD
Z+F Am Csalt (d:usalt / dcsalt)

(6.19.69)

Knowing the quantities appeared in Eqs (6.19.67)—(6.19.69), the values of u_,,
u__and u, may be evaluated.

Expressions in Terms of Equivalent Conductivity

In Eqs (6.19.67)—(6.19.69), the quantities A, A_ and A,, stand for molar
conductivities of positive ion, negative ion and salt, respectively. These may
be changed to the respective equivalent conductivity by using the following
expressions.

Ay =228 0 AT 2148

An= Vi AD v AD =v,z A8 +v |z |2Y)

m
=v,z, (/lg) + le(;)) =Vv,z, Ay

v vz Ag) A
A, vz Ay Ag

vy vl 1)) Ag
A vz Ay A

m eq

t
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When these expressions are used in Eqs (6.19.67) — (6.19.69), we get

20 \?
u,, = | e | Vem FD (6.19.70)
AeqF Caalt (d:usalt / dcsa]t)
20 )?
w = | fe | 4 VezFD (6.19.71)
AeqF Csalt (d:usalt / dcsalt)
)V(Jr) A(*)
u, = e " vz FD (6.19.72)

AeqF Csalt (d:usalt / dcsalt)

REVISIONARY EXERCISES

6.1 Show that the criterion of an irreversible process in a system is A; S > 0, where A; S is
the entropy production in the system.
6.2 Show that the rate of production of entropy during the progress of a chemical reaction

is given by
45 _Ade
de T dt

where A (= —Xg vglp) is the affinity of the chemical reaction.
6.3 Considering d; S > 0 for irreversible processes, show that the criteria of irreversibility
can be expressed by any one of the following expressions
dUs <0, dHs , <0, dd7, , <0 and dGp,<0

6.4 Show that the affinity of a reaction can be expressed by any one of the following
expressions

(%), -, 5,9,

where the symbol F stands for Helmholtz function.'
6.5 Show that the affinity 4 of a chemical reaction is given by

{3y (W (8] _(m
@ AT(af:jm (85)” (b)A‘T(ang,p (aél,p

6.6 Mention the salient features of thermodynamic treatment of irreversible process.
6.7 Show that for an elemental cell of volume v in a system, the following expressions

hold good.
uy =T sy —p+ %l
du,=Tds,— Y, i,dc; =0
6.8 Show that for an open system, the expression
duv = dqz; - Z,-hf, pmdci =0

where dg;; is the heat transfer and 4, ,,., is the heat due to the transfer of ith species
into/from the system.
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6.9 Show that the rate of entropy production in a system involving irreversible process
is given by

. I N
O-qu ° grad (;)-ﬁ-zi.}i -grad (—?)‘F?JV

N o

o= ';f o grad (—T)+2i%-grad (=,)+J,

where the various symbols have their usual units.
6.10 Derive the following expressions.

1
For electrical conduction in a wire : T 0 = [Z(gj:l [— 8_(p:|
T

dr ox
For heat conduction in a bar : To= i(d_q) (— L a_T)
A\ dr T? ox
Show that these expressions can be written as

To=JX
Explain the terms J and X in this expression.
6.11 What is a coupling phenomenon? Explain with examples.
6.12 What are phenomenolgical equations? State the Onsager symmetry principle for
the cross phenomenological coefficients.
6.13 State and explain Curie-Prigogine principle as applicable to phenomenological

equations.
6.14 Show that the phenomenological coefficients satisfies the expressions:
L;>0
Ly Ly - L,
L. L eee L
21 2 21150
Lnl Ln2 e Lnn

6.15 For a reaction 0 = ZzvB near the equilibrium position, L = r¢ /R and ¢ = PIL,
where r is the rate of reaction and L is the phenomenological coefficient defining
the expression J, = L X, where J, = r and X, = A/T.

6.16 For the reations

L

near to equilibrium, show that
Lyy = (ky [Aleq * k5 [Cleg)/R
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Ly =L, =k [Clyq /R
L22 = (k2 [B]eq + k3 [C]eq)/R

6.17 (a) Describe the phenomenon of electro-osmosis. Show that the entropy production

6.18

6.19

6.20

6.21.

in this case may be expressed as
To=J,X,+tI1X;

What are the expressions of J,, X, and X,?

(b) Derive the expressions of the following physical quantities applicable to electro-
osmosis in terms of phenomenological coefficients,
(i) Streaming potential, (ii) Streaming current, (iii) Electro-osmotic pressure,
(iv) Electro-osmosis effect and (v) Saxen’s relations.

(a) Describe the phenomenon of thermoelectricity highlighting (i) Seebeck effect
and (ii) Peltier effect.

(b) How are the Seebeck effect and Peltier effect explained on the basis of theory
of irreversible proceses?

(¢) Define the terms (i) heat of transfer and relative thermoelectric power involved
in the phenomenon of thermoelectricity.

(d) What is Thomson effect? Derive first and second equations of Thomson
applicable to a thermocouple.

(a) Show that the entropy production in isothermal diffusion in a continuous system
is given by the expression

To=XJY,

Jj=2

V¢
Me

where  ¥,= 3 (Bl.j + Jgrad (1)
i=2
where J’s stand for partial molar volumes. The subscript 1 stands for the solvent
and subscripts 2, 3,..., stand for the solutes.
(b) Show that in a binary solution, the diffusion coefficient of solute is given by
_ LRT
= T

’

(c) Show that in a ternary solution, the diffusion constants D, is not equal to Ds,,
even though L,; = L;,.
On the basis of theory of irreversible processes, show that

5=-p%a

+L, My (1 = pvy) @

for the isothemal ultracentrifuge sedimentation in a binary solution. How is this

equation used for the determination of molar mass of the solute?

(a) For the two compartments containing the same gas and connected through a
small orifice (or a rigid membrane), the transfer of heat (dg) and gas (dn) from
the compartment 7 and p to 7+ AT and p + Ap is associated with the entropy
production given by the expression

o= (d_U) (_£)+(%j (_MH{m M)
dr T dr T T?

By setting the phenomenological equations, derive the expressions of
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®) GyMmar-o (i) (AP/AT)Jm =0
(b) Show that the entropy production given in part (a) may be expressed as

o= (44 (&) )

By setting the phenomenological equations, derive the expressions of
© q* = Mar-0 (D) (Ap/AD); _,
Also show that

U mar-0=— "V T(Ap/AT);

Udap=0=— Ve T (BpIAT); —
(c) Describe Knudsen effect. Show that

H*—-KE = (1/2) RT

where H* is the energy transferred due to the mirgation of 1 mol of the gas from
the compartment at 7 to the compartment 7 + AT.
6.22 (a) What is Soret effect. Show that the Soret coefficient is given by

qu//Tc
D

s =

where L, is cross phenomenological coefficient that represents interaction
between the solute flow and the heat flow in a thermal diffusion in a continuous
system.

(b) Show that in a thermal diffusion in a continous system, heat of transfer is given

by
[Jq,] Lq,
q* = | = =2y
JZ gradT=0 L22

and it is related to the soret coefficient by the expression
q* = s RT?
6.23 (a) Show that the entropy production in the transport process in a solution involving
a single electrolyte is given by
To=J9 grad (-i,)+J9 grad (—fi_)
Set up the phenomenologival equations for the above expression and show that
i k= [ziLH +2z,z L,_+ ZEL”} F?

Zy [L++ Zy t L+—Z—]
ZJ%LJHr +2zz L, _+ 2L

(i) ¢, =

2
@iy = %= Ll —Li (aﬂsan )
v |22L,, +2z,z L, +2°L _ dr

(b) Express L,,, L__in terms of k; 7, £, D, and du,/dc.
(c) Define reduced phenomenological mobilities and show that
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U, , U__= and wu, =
ViZ Calt ViZiCaalt ViZ,C,

2L F 2L F z,z L, F

salt

(d) Show that

F2
A= — (2L, 422,z L, +2°L )
csalt

(e) Express ¢,, ¢, and D in terms of redueced ionic mobilities. How are the reduced
mobilities determined experimentally?



ANNEXURE 1

Gradient of a
Scalar Function

Divergence of a
Vector Field

The Divergence
Theorem

Explanation of
Divergence of a
Vector Field

Introduction to Irreversible Processes 517

Basic Concepts Involved in the Treatment of
Irreversible Processes

In this appendix, we describe a few concepts which are involved while treating
with irreversible processes.

For a scalar function f(x, y, z), the gradient is defined as

of . of . I
df==—i+—j+=—k
g S = e  a  a
=Vf (AL1)
where V, a differential operator known as nabla or del, is
V:ii+ij+ik (AL2)
ox dy~ oz

For a scalar function f that is defined and differentiable in a domain D in space,
the gradient of fat P on a level surface S of f'in the domain D is perpendicular to
S at P, provided it is a nonzero vector. Its direction coincides with the maximum
increase in the value of fat P.

For a differentiable vector function ¥ (x, y, z), where x, y and z are the Cartesian
coordinates, the divergence of ¥ is defined as
Jdv, dv, IV

o 9V,  9Us

ox dy 0

where v, U, and v; are the components of ¥ alogn x, y, and z directions, respectively.
The divergence of ¥ can also be expressed as

div v = (AL3)

z

V.V:(ii+ij+aik).(vli+v2j+v3k)
4

ox dy
oV,  dv, JdU

= A 772 7 Al4
> oy oz (AL4)

The divergence theorem, also known as Gauss's theorem, may be stated as follows.
For a simple solid region D whose boundary S is oriented by the normal n directed
outward from D, the vector field F whose component functions have continuous
derivative on D satisfies the expression

ij.ndszmdideV (ALS)
S D

The divergence theorem helps evaluating a volume integral by replacing it by the
surface integral and vice versa.

By means of the Divergence theorem, it is possible to explain the divergence of a
vector field in terms of fluid motion. Suppose (x,, ¥, zo) is a fixed point in space and
D is a small volume element centred at (x,, v, z,) with boundary S and volume V.
Let a fluid of density p flow through the space D and let V' (x,, y,, z,) be the velocity
of fluid particles at (x,, 1, zo). Consider a small surface dS of S and let n be the
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Local Time-Rate of
Change of a Point
Function

Total Time-Rate
of Change of a
Function

Relationship
Between Local
and Total Time-
Rates

outward normal vector to this area. The fluid will scan a volume V(x, y, z) - n dS
in a unit time. Multiplying this quantity with density p of fluid gives the mass of
fluid flown in a unit time across the surface dS. The mass of fluid flowing outward

through the entire area S is given by “s p (Ven) dS and according to the Divergence
theorem, we can write

[[p(vemyds = [[[div (pv)dr
S D

If D is small, the integral on the right side of the above expression may be
approximated as [div (p ¥ (xy, Vo, Z9))]V. Hence

[[p v e m)ds =[div (p¥ (xg, 30, 20DV
S

that is, div (pV(xy, ¥y, 29)) may be interpreted as the rate of mass flown per
unit volume at (x,, yy, z,) in the direction of outward normal. Hence, the name
divergence of ¥ at a point.

Two type of time-rate of change of a function may be identified in a physical system.

In a system, such as fluid in motion, there exists several point functions such as
pressure, density and velocity. These point functions also depend upon time. In
local time-rate of change of a point function, a point in the system is fixed and
the change in the value of the function at this point within the time interval ¢ and
¢t + Ot is determined. Let the change be represented as @ (x, y, z, ¢t + &f) — D(x, y,
z, £). The limit

lim D(x,y,z,t +0t)—D(x,,z,t)

510 ot
is known as the local time-rate of change of the function @. By convention, this
change is represented as d@/dt.

In total (also knowns as individual or substantial) time-rate of change of a function,
focus is made on a particle and the change in the function @ of the same particle
is determined within the time interval ¢ and ¢ + &¢. Let this change be represented
as @(x +dx,y +8y,z+ 8z, 1t +df) — D (x,y, z ). The limit

lim D(x+0x,y+0y,z+0z,t +0t)—D(x,y,z,1)
8t—0 ot

is known as the total time-rate of change of the function @. By convention, this
change is represented as d@/dz.

For a function @(x, y, z, f), we have

4o _ (ﬂ)(a_@}(d_q o0 +(%j(a_‘1")+a_@

dr dr )\ ox dr )\ gy dr )\ oz ot
where d@/dt is the total derivative of @ with respect to 7, allowing for the variations
in x, y and z as a result of change in time ¢, and 0®/dx, dP/dy, dD/dz, and dD/ot
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are the partial derivatives of @ with respect to x, y, z and ¢, respectively. Equation
(AL10 ) may be written as

00 _, (22),,,[20),., (20, (20)
dr '\ox Loy oz ot
0D

= (VeV)D+ = (AL6)

where ¥ is the velocity of the particle and v, v, and v are its components along
x—, y— and z— axes, respectively. In the vector form

V=0 i+0,j+0k
where v, = dx/d¢, v, = dy/df and v; = dz/dr.

While dealing with a system undergoing reversible processes, the values of
variables such as T, p, etc. have the same value throughout the system and thus
one can express the changes in thermodynamic properties such as energy, enthalpy,
entropy, etc. of the system in terms of independent variables. The same is also
true regarding the thermodynamic properties of a system existing at equilibrium.
However, this is not possible for a system undergoing irreversible processes
because thermodynamic variables such as 7, p, etc. may vary from point to point
within the system. However such a system can be treated on the basis of local
equilibrium in which the system is considered as an ensemble of large number of
elemental cells of volume AV, each in equilibrium, exchanging energy and matter
with neighbouring cells. The size of elemental cell is large enough to have a well
defined temperature, density, etc., ignoring the influence of fluctuations on these
variables and also describe the spatial variations of thermodynamic quantities. In
local equilibrium, all thermodynamic intensive variables such as 7 and p are treated
to be dependent on position x and time ¢, i.e. T =f(x, #); p = f(x, ).

The extensive variables are replaced by their densities (represented by the lower
case symbols) which are also function of position x and time ¢, i.e., u(x, ?), h(x, f),
s(x, #) and so on.

The total value of extensive variable, say entropy, is obtained by the expression
S = jVs(x, Hdv (AL7)

Consider a fixed closed surface within a region of a moving fluid. Consider an
elemental volume d} around a fixed point within the closed surface. Let p be the
local density of the fluid at the chosen point. The mass of fluid within the closed
surface at time ¢ is given by

mzijdV (ALS)

where the integration is over the volume enclosed by the fixed surface. The time-
rate of change of mass is

dm 9 J
aslhoan)=l (5 19
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where dp/ 0t is the time-rate of change of local density.

Consider now any element dS of the fixed surface and n be the unit vector
drawn outwardly, normal to the surface dS at the point P. At time ¢, let V" be the
velocity of the fluid particles at the point P. The resolved part of the velocity v
along the outward-drawn normal at P is V- n. and that along the inward normal
atPis—v- n.

The mass of fluid entering per unit time across the area dS is
dm’
dr

The mass of fluid entering per unit time across the entire surface is

=—p(Vo n) ds

dm
E=—J.Sp(V-n)dS

According to the Divergence theorem

Isp(V.n)dS:IVdiv(pV)dV

dm .
Hence, T —IV div (pr)dV (AL.10)

From Eqgs (AL.9) and (AI.10) , we get

jVaa—’; av = —J.Vdiv (pv)dv

ap . }
or —+div(py) |[dV =0
jV[ o div(py)
Since the surface is arbitrary, we must have

) .

a—/t)+d1v(pV) =0 (AL11)
Equation (AL 11) is the required expression of continuity of mass which applies at
any point (x, y, z) and at any time ¢. This equation is, in fact, the local equivalent
of law of conservation of mass.

The vector pv has the unit of

kg \( m -2 -1
(a3

Thus, this vector represents the flow of mass through a unit area of the surface in
a unit time. It is represented by the symbol J,, and is known as mass-flux density
vector. In terms of the symbol J,,, Eq. (AL.11) becomes
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aa—’;+div J, =0 (AL12)}

The divergence of J,, gives the flow of mass per unit volume in a unit time. A
positive value of J,, implies the net outward flow of mass. This results in the
negative value of dp/ds (i.e. a decrease in the value of local density per unit time)
so that the sum of div J,, and dp/ot is zero which is in agreement with the law of
conservation of mass. On the other hand, a negative value of J, implies the net
inward flow of mass which causes an increase in the value of local density of the
substance in the enclosed surface.

In terms of amount of substance, Eq. (ALS8) takes the form

n =_[ch' dr

dn; dc;
H —L = Lidy
ence Fy J;/( Fy )

The inward flow through a closed surface is

%:— §Ci (Ven)dS
= —JV div (¢;v)dV (Divergence theorem)
Hence j % gy = —j div (¢;v)dV
v\ of 14 !
or j [(%)+div (c V)}dV—O
|\ o !
ac; ..
Hence a—t’ +div(c;¥)=0 (Al.13a)
dc; ..
or a—t’+dlv J; =0 (AL13b)

where J; represents the flow of amout of ith species through a unit area of the
surface in a unit time.

For any physical quantity, which obey the law of conservation, the equation of
continuity can be written. For example, the total energy is conserved both locally
and for the system as a whole as per the first law of thermodynamics. If p,, is the
local energy density at a point, then the equation of continuity is

1 If the flowing fluid contains more than one constituent, the continuity equation holds good
for each constituent leading to the expression

Wi, diva =0
ot
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Equation of
Continuty of Entropy

Equation of
Continuity for a
Nonconservative
system

aai;*+div(puv)=o ie. aai;'+div1u=0 (AL14)

where J, (= p,V) is the energy flux density.

The total entropy of the system enclosed in the closed surface of volume V' is

S = JV s, dV (s, is the local entropy density)
ds s

Thus == |=2|dV AL15
dr -[V ( ot ) ( )

The entropy entering per unit time across the entire surface of the system is

ds
o=l v emds==[ T ends (AL16)
where J|, the entropy flux vector, is s; V. This vector coincides with the direction
of entropy flow and has a magnitude equal to the entropy crossing per unit area
perpendicular to the direction of flow in a unit time. As per the divergence theorem,
Eq. (AL 16) becomes

s .
o —jV divJ, dv (AL17)

Equating Eqs (AI.15) and (AL.17), we get the equation of continuity of entropy.

aﬁ+<:1iV J, =0 (AL 18)
ot
A nonconservative system besides involving transportation of a substance (or
a thermodynamic property) also involves the production or consumption of the
substance (or a thermodynamic property). The production of a substance may be
due to a chemical reaction occurring in the system and that of entropy may be due
to some irreversible process occurring in the system.

System Involving a Chemical Reaction The consumption or generation of
a substance in a chemical reaction is given by
1 dn,

v; dt

where v; is the stoichiometric number of ith substance in a balanced chemical
equation. It has a negative value for a reactant and a positive value for a product
of the chemical reaction. At constant volume, we have

d(»/V)y r dc

v,i— or —t=vJ,
dr V dr

With this, the equation of continuity (Eq. AL.13) becomes



Thermodynamic
Force and Fluxes

Introduction to Irreversible Processes 523

% =—div (¢, ;) +V,J, (AL19)

Equation (AI.19) is the local balance of amount of ith substance with a flux term
and a source term.

Local Balance of Entropy If a system besides transportation of entropy also
involves production of entropy due to some irreversible process occurring in the
system, the equation of continuity as given by Eq. (Al.18) is modified to

os, .

—L=—divJ/ +0o (AL.20)

ot
where ¢ is the local entropy production per unit volume of the system in a unit
time. Equation (AI.20) is the local balance of entropy with a flux term and a source
term. For the entire system, we have

jvaa%v dV:—deiv J, dv +jVodV (AL21)

In the above expression, we have
o The left side gives the overall rate of change of entropy of the system. It
is represented by dS/dr.

e The first term on the right side gives the rate of transportation of entropy
from/to the system. It is represented as d.S/dz, where the subscript e to d
stands for the “external” contribution.

e The second term on the right side gives the rate of production of entropy
within the system. It is represented as d;.S/dz, where the subscript i to d
stands for “internal” contribution.

With these, Eq. (AL.21) is often written as

dr dr dr

(Note: For a system involving reversible process, d.S/d¢ = 0 while for an irreversible
process, d;S/dt > 0.)

(AL.22)

Equation (Al.22) implies that
dS=d.5+d;S§ (AL23)

A conservative force is equal to negative of change in potential energy and is
given as

=—grad U (AL24)

A driving force occurs whenever there exists a difference in potential energy
and its direction is the direction of maximum decrease in potential energy. In
thermodynamic, the flow of a substance is due to the driving force governed by
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of Irreversible
Processes

the difference in its chemical potential. This force is given by
X; =— grad ; (AL25)

Considering y; to be dependent on a single coordinate, say x-direction, we can write

x = —i% (A1.26)
ox
Since y; = dG/dn;, we will have
d (G d (dG
x =i %8| ;0% AL27
' lax(anl—j lan,(ax) ( :

For a reversible process, dG = dw,, where w, stands for nonmechanical
work. Also, the differential of work with distance represents force, we can write
Eq. (AL27) as

ST (A1.28)
on;
that is, the thermodynamic force X; represents the force per unit amount of ith
substance operating in the direction of unit vector ¢ (which is the direction of
greatest change in the chemical potential). The negative sign indicates that the
force acts in the direction of maximum decrease in the chemical potential.

The other examples of forces in the thermodynamic of irreversible processes are
(i) a temperature gradient, (ii) a concentration gradient, (iii) a potential gradient
and (iv) a chemical affinity. Theses forces are represented by the symbol X;.
These forces cause irreversible process of flow of heat, diffusion, electric current
and chemical reaction, respectively. These are known as fluxes or flows and are
represented by the symbol J,.
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Statistical Treatment of Fluctuation and Derivation of
Onsager Symmetry Rule

Smoluchowski Method

The fluctuating number » of noninteracting particles in a volume element v of
a large volume ¥ of a solution containing N particles may be determined by the
method developed by Smoluchowski. The probability p of finding any particle in
volume v is

v
=— AllL1
P=y (AILI)
Probability of finding the particle in the rest of the volume is
v _V-v
l-p=1-—== All2
P =y (AIL2)

Probability of finding #» particles in v and N — » particles in V' — v will be
proportional to p” (1 — p)¥ "

The number of ways of selecting » indistinguishable particles out of N particles
is given by

!
"Cy= _ M (AIL3)
n!(N —n)!
Hence, the total probability of finding » particles in the volume v is
P,="Cyp"(1-p)"~" (AIL4)

For a large value of N, Poisson has shown that the above probability takes the
simple form

n _—v
p=r" (AILS)
n!
where v is the average value of » satisfying the relation
v N
v_»o& (AIL6)
v ¥V

Equation (AILS) is the normalied expression satisfying the condition that the sum
of all probabilities of finding any number of particles in v is unity, that is

= oo n _-v el n
Y=Y oY= (AIL7)
n=0 n=0 n! n=0 n!
The average value of » is given by
n=YnP, (AIL8)
n=0
oo n _—-v =3 n
—Zn(v © j:e_v|:0+ A }
n=0 n! n=l1 n!
o vn—]
_ -V _ -V v)_
- 2]‘(17—1)' = (e")=v (AIL9)
— !
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The fluctuation in the number of particles in the volume v is defined as
f=n-v (AIL10)

The average value of fluctuation is

Fen—v=3(-vP,
n=0

=Y nP-vY P =v-v()=0 (AIL11)
n=0 n=0
The average value of f equal to zero follows from the fact that the probabilities
of positive and negative deviations will have identical values and thus their sum
will be equal to zero.

Since the average value of fluctuation is zero, the fluctuation in number is measured
by the root mean square value of fluctuation, defined as

Fims =\ (n=V)? (AIL12)

The value of f;,, may be derived as follows.

2 5 =
(n=v) =n*+v?-2nv

Now n_2=in21),,=i[(n(”—l)+”]Pn

n=0 n=0
= Zn(n—l)Pn+2nPn
n=0 n=0
oo n _—v n _—v
= Zn(n—l)v ° _4v= VC v
=0 n! i (n=2)!
2 o Vv 2
=y eV +v=v-e V(e )+V
S
=vitvy
Also n=v (Eq. AIL9)

Hence (n-v)? =[(v’+v)+v2 =200~ =W (AIL13)

In studing the fluctuation, the relative fluctuation plays more dominating role.
This is defined as

_ANe=v? W1
£ i e o (AIL14)

The relative fluctuation decreases with increase in the square root of the average
number of particle in the volume v.
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The above analysis of fluctuation holds good for noninteracting independent
particles. This treatment is not valid for interacting particles. While dealing with
thermodynamic of irreversible processes, a statistics based on the interacting particle
is required. Einstein's probability treatment provides such a method.

Einstein's Probability Treatment

Einstein's probability treatment is based on the entropy of the system. The
Boltymann expression relating entropy with the number of configurations in which
a system may be realized is given by

S=kgln W (AIL15)
where kg is the Boltzmann constant. For a system at equilibrium, we write
So = kg In W, (AIL16)

The fluctuation in the entropy of a system from its equilibrium value due to the
parameter

o =& & (AIL17)

is given by the expression
AS=S-S,=kgIn s
o

=kyln (AIL18)

In Eq. (AIL17), & and &9 are the physical quantities (say, 7, U, H, c) describing
the given system and that at equilibrium, respectively.

The symbol g in Eq. (AIlL.18) represents probability of finding the system at a
given state of fluctuation. Equation (AIl.18) may be written as

=K exp(AS/kg) (AIL19)

where K the normalizing factor satisfying the expression

[ [pdoy.da,.da, =1 (AIL.20)

that is, the total probability of finding the system in any state of fluctuation described
by any physical quantity is unity.

For any fluctuation from the equilibrium position, the value of AS = § — S;)
is negative because the system has a maximum value of entropy at equilibrium
position and thus § < §.).

For the small fluctuation from the equilibrium position, one can express the
entropy of the system in terms of entropy at the equilibrium position by using the
Taylor's series:

S=So+§(§—g)(§i—§?)+l Y [az—sj(é—éf)(éj—éf?%"-

2~ 0¢ 9,
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where the partial derivatives are evaluated at equilibrium position. Since S, has a
maximum value at equilibrium, the first derivative (dS/d&;), will have a zero value.

Hence,
1 & 0°S 0 0
AS= §—8,=— & =& )l —¢;
35 (55 et -2)
1 n
==Y g0 (AIL21)
2 l"‘]'=1 L P
where g, = (aZS/ag,.agj)O (AI1.22)
Substitution of Eq. (AIL.21) in Eq. (AIL.19) gives
9 = Kexp (— Y g, /2kBJ (AI1.23)
i,j=1

Equation (AII.23) is the Einstein probability expression.
For the fluctuation o = & — 50 of a single physical quantity, the expression of
probability  is

© = K exp(—g o/ 2kg) (Eq. AIL19)

The average value of the fluctuation is

o= T(x o do = KT exp(—ga’® / 2ky ) o dot (AIL.24)

—oco —oco

Since the integrand in Eq. (AIl.24) is an odd function, the value of integral will
be equal to zero, i.e.

a=0 (AI1.25)
The average value of a?is

y = Tocz @ do= KTexp (—goc2 /2kB)oa2 da

—oco —oco

+oo

_ _kBK J‘ ad(e—g(xz/ZkB)

g

Carrying out the integration by parts, we have

ey? o2 —ory?
jad(e—éa /ZkB):ae g0 /2kB_J'e g0’ 12ky 4o

—oo

oo oo
1_ kK —ea?i2k kg -go® 2k
Hence o =———qe "' ‘+—J.Kega » do

—oo
—oo
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:0+k_Bj pdo="eqy=te (AIL26)
g g g

+oo
(Note: The integral J @ da=1 due to the normalization condition of @.)

—oo

From Eq. (AIL.22), we have

s (22)
v eg),

which in view of Eq. (AIl.17) becomes

9’
= - | — AlL 27
g ( aafj ( )
Substituting this in Eq. (AIL.26), we get
) kg
ot =— AIL28
(9?s/007), i

For the fluctuation at constant 7 and p in a subsystem of volume v, the change in
free energy accompanying the fluctuation is given by

dG=du—-Tds+pdo (AIL29)
where u and s are the energy and entropy, respectively, of the subsystem of

volume v. The expression of dG in terms of U, S and V of the entire system may
be derived as follows.

If u and s are energy and entropy of the subsystem of volume v, then in the
remaining volume of the system, we will have

dU-u)y=Td(S —s)—p d(V - v) (AIL 30)

where U and S are the energy and entropy of the entire system of volume V.
Equation (AIl.30) may be written as

du—-Tds+pdo=dU-TdS+pdV
which in view of Eq. (AIl.29) becomes
dG=dU-TdS+pdV
Hence, at constant U and V, we can write

dG=-TdS
2 2
Hence 8_G2 =-T a—g (AIL31)
da” ), Jda” ),
With this, Eq. (AIL.28) becomes
o=l (AIL32)

(0°G/a9a?),
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Let o = n — v be the fluctuation in the number of particles in the volume v of a
system. We will have

dG _JdG
a0 on !
where u is the chemical potential per particle. The expression of u for an ideal
system Tis given by
M= U+ pog, + kgT In 2
v

At constant 7, p and v, we have

9K _ ksT
on n
With this, the expression of (9°G / da?), is given by
2 2
a_GZ = a_(z; :{i (a_G)} :(a_'uj :kB_T (AIL33)
da” ), \on” ), lon\on)ly \on)y n

At equilibrium o = 0. Hence n — v =0 i.e. n = v. thus

Q) v

Substituting this in Eq. (AIL.32), we get
2o ksl _

kT /v
which is identical to that obtained earlier from the Poisson distribution (Eq. AIL.13).
The root mean square of fluctuation is given by

(AlL34a)

Vo =y (AIL34b)
o? v 1
The relative fluctuation is given by fi= » = ~ = Ny (AllL.34c¢)

"Ina solution, we have

oL
s & = 0.
( dp jT,nj b pm

where v; ., is the partial molar volume of the ith constituent in the solution. Assuming it

to remain approximately constant, we will have

J‘d:ui = vi, pm J.dp ie. :ui = vi, pmp + :ui(C)
where ,u,-(c) is constant of proportionality. It depends on 7 and composition of the solution.
For a single particle in an ideal solution,
/,Ll.(”) = ,uio +kgTIn ¢
where uS is the standard chemical potential. It depends only on temperature. With this, the
previous expression becomes
1= 0; pmp + 4 ThgTInc
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Restoring Force ofa The restoring force on a fluctuated system due to the fluctuated parameter

Fluctuated System

o; (= &, — £°; where ; and £° are the parameters describing the given system and
the system at equilibrium, respectively) is given by the expression

X = 9AS AIL.35)"
i aai ( . )

where AS = § — §. The force X; restores the fluctuated system to equilibrium
position.

Since 2 g0 (Eq. AIL21)
i,j=1
it follows that

aAS =
- g (AIL36)
j=1
. 1 <
Since o = Kexp{—— Y g0 oc]} (Eq. AIL.23)
2k i,j=1
it follows that
dlIn o _
— g o (AI1.37)
le? kg ]ZI v

With this, Eq. (AI.36) becomes

X =y 200 ks 90 (AIL38)
da; oo,
For examples
Electrical conduction in a wire Equation (6.6.17) gives
Y- d;S 2_8_(/):_ grad @
' dQo T T
Heat conduction in a bar Equation (6.6.20) gives
X = &S S 8T =grad (l)
! dq Ia T
¥ For example, for the two fluctuating parameters, we have
AS = _%[gn O + g,040, + 9,0,00) + gzzo‘%]
E)A_S:—l[zgn o +g120£2+g21062}=—(g11 o+ g1y 0); (since gy, =
doy 2 ’ 812 = &21)

With X; defined by Eq. (All.36), it can be shown that the entropy production expression is

d(AS) n aai n B n
o= "4 ﬂ(?)[‘?g”“f]:,z;""'

where the flux J; = (do; /01).
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Average of X; o

Principle of
Microscopic
Reversibility

The average of X;; (product of a fluctuating parameter ¢; with the restoring force
Xj) is given by

X a; :'[...I(Xiaj)godal doy ... da, (AIL39)

where # is the total number of fluctuating parameters. Substituting X; from
Eq. (AIL.38), we get

d
Xiaj=kBJ....J‘ (f) o; doy doy... day,

= kBj.._Ida]... do; | deyy ... doy, (ocj gﬁj doy (AIL40)
Q;

Carrying out the intergation j(x 80 do; by parts, we get

Ta gsgda =0, I—J.goa&da

Since the probability g of finding an infinite positive and negative fluctuations is
zero, the first term on the right side of the above expression will be equal to zero.
Moreover, ¢; and ¢ are independent parameters, the derivative 8051/806 6,j
(Kronecker delta, ;; = 0 for i # j and §;; = 1 for i # j). With these, the above
expression becomes

ja i"da =-3; jgoda (AIL41)

Substituting Eq. (AIL.41) in Eq. (AIL.40), we get

X0, =—ky 8;[...[0 doy dey, ... day,

= —kg 5,-]-(1) =—kp Sij (AI1.42)
Thus, we have

e The average of fluctuating parameter multiplied by its conjugate force is equal
to —kg.

e The average of fluctuating parameter multiplied by a nonconjugative force is
equal to zero.

The principle of microscopic reversibility states that under equilibrium conditions,

a molecular process occurring at the microscopic level and its reverse take place

on the average with the same probability.

The principle of microscopic reversibility has the following implications.

The equation of motion, F = m a, remains unaffected on replacing ¢ by —. In
physical language, this implies that if the velocity of a given body is reversed at
a given instant, say ¢ = ¢, then the body will trace the path backward along the
same sequence of configurations traversed by the body prior to that instant (i.e. at



Fig. All.1 The correlation
in time between ¢; and o
is independent of the
direction of the time scale

Introduction to Irreversible Processes 533

t = ty). Thus, to every direct solution of the equation of motion there corresponds
a reverse solution and hence the equation of motion is said to be reversible.

Application to a Fluctuation in a System The principle of microscopic reversibility
is also applicable to the fluctuations of a system from its equilibrium position.
This implies that the values of fluctuating parameters are not affected on reversing
the time. In other words, if one observes fluctuations about equilibrium and
considers all the situations from which simultaneously the values of fluctuating
parameters are given, then on an average the value of ¢; computed in each case at
time T rafter the fluctuation ¢, o, ...,0, have occurred will agree with the value
of @; computed at a time 7 before the fluctuations have occurred. Mathematically,
it may be expressed as

[o;(t+7) ] = [a,(t-1)]

If the above expression is multiplied by ¢(7) and take average of the products
over all possible values of o(?), o, (?), ..., we will get

(AIL.43)

(0.0, (1) (1.0, (1)

oo (t+T)=0(t) a;(t—1) (AIlL44)

The averages in Eq. (All.44) does not depend on the value of 7. Thus, ¢ in the right
side of this equation may be replaced by 7 + 7 to give

a;(t)o; (t+1)=0(t+7) 0 (1) (AIL45)

Equation (AIL.45) implies that the correlation in time between ¢; and @, is
independent of the direction of the time scale as shown in Fig. All.1.

t t+7

L L Direct time scale
oi(?) ot + 1)
t+7 t

! !
oa(t+1)  o0)

Reverse time scale

If o;(r) o (7) is subtracted from both sides of Eq. (AIL45), we get

0, (1) 0, (1 7) = 0, (1) 0t (0) = o, + ) 0, () = 0, (1) 0, (1)

or o, (0 a; (t+ 1) =, (1) | =, (1) [, (1 + 7) — ()]

Dividing both sides by 7, we get
[aj(t+r)—aj(z) }
T

o,(0) [ai (t+ TT) - (t)}

=0; )
Let 7— 0, we get
0;(t) (da;(1)/ dt) = a;(r) (dey; (1) / dr) (AIL46)

In deriving Eq. (AI1.46), it is assumed that 7 — 0. This does not imply that 7 is
zero, but 7 should be sufficiently small satisfying the requirement
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Onsager Hypothesis

Derivation of
Onsager Symmetry
Rule

Ty << T<< 71,

where 7 is time for a single collision process and 7, is the relaxation time of the
fluctuation. In fact, the time interval 7, — 7, should be sufficiently wide so as to
unaffect the validity of Eq. (All.46).

In order to derive Onsager law of symmetry of phenomenological coefficients,
Onsager made the following hypothesis.

The rate of change of a fluctuating variable, or the average rate of decay of a
fluctuation, de;; /d¢, has the same linear dependence on the thermodynamic forces
as is observed in macroscopic flows.

According to this hypothesis, we must have

4% ) S 1.x, (AIL47)"
a )~

Substituting Eq. (AIl.47) in Eq. (All.46), we get

n n
O‘izL k =0¢,,-2Lika
k=1 k=1
or iL (0, X, )= ZL,k (a; X;)

k=1
which on using Eq. (All.42) becomes

n n
_szij By =_szLik 8jk
k=1

k=1

_kBle‘:_kBLij

or L;=L; (AIL48)

where kp in the above expression is Boltzmann constant. Equation (AIL.48)
represents Onsager symmetry rule.

Comment The Onsager symmetry rule is based on the application of hypothesis
made by Eq. (AIL.47), that is, the regression of fluctuation follows the same law
as macroscopic irreversible processes. The validity of the Onsager symmetry rule
has been verified by several types of irreversible processes and may be regarded
as the established law.

T The basis of Eq. (AIL.47) may be rationalized as follows.
The recovery of an equilibrium state, in most cases, follows a linear law in accordance to
the expression

o
(&)= e

where the terms ¢; on the right side, besides ¢, allows for the possibility of coupling

amongst different fluctuations. Since the fluctuating variables are related to the restoring
force (Eq. AIL.35), the above expression may be written as Eq. (All.47).
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ANNEXURE III Kinetic Considerations of Energy of Transfer

Collision Frequency Considering the side of a vessel as xy-plane, we imagine an oblique cylinder of slant
with the Side of the height # dr with an base area 4 as shown in Fig. AIIl.1. The cylinder will include

Vessel

Fig. AIIl.1 Computation
for the collisions with the

side of a vessel

all the molecules with velocity # coming from the direction (6, @) that strike the
base area 4 in the time interval dz. The volume of the cylinder is

V = (base area) (vertical height)
= A{(u cos 0) dt} (AIILD)
If N* is the number density of gaseous molecules (i.e. number of molecules per

unit volume of the vessel), then the number of molecules contained in the volume
of cylinder is

N = N*[A{u cos 6}df] (AIIL2)

“A

————————————————————————————

udt

,"’sidc of the

iL— vessel

The probability of a molecule having velocities between u and « + du in the
volume element dz situated in the direction (6, @) as given by Maxwell velocity
distribution function is

V2 i
P= exp| ——— |d7t
21 kgT 2kgT

Since d7 = du sin® d6 dg, we have

3/2 5
p=|-" exp| ——2 | 42 du sin 6 dO de (AIIL3)
2 kT 2y T

Hence, the number of molecules reaching the base area A4 of the cylinder is

muz

" 2kgT

3/2
dN = NP = N*[4{u cos 6} d1] {(#] exp ( ] u? du'sin @ d6 dq)}
B

(AIIL4)
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The number of molecules reaching per unit area in a unit time is given by

1 dN " m 32 mu’

——=N exp| —

A dt 21 kgT 2kgT
If the above expression is integrated over all possible velocities and directions,

we get the total number of molecules striking the base area 4 per unit time interval.
Thus,

J u? du sin @ cos® d6 dg  (AIILS)

*( m )3/2 ]f ( i’ ] ) nj_z 2fs
z=N exp| — u”du | sinBcosfdO | de (AIIL6)
21 kgT 0 2kgT 0 0

Note that the integration over 6 is carried over from 0 to /2 because the molecules
strike the side of the vessel from one side only. The result of the above integrations

1S
e[ 32 1(2}@)2 (1)(275)
kgl ) |2\ m 2
1/2 _1

* T
_ N [8kT == N*u, (AIIL7)
4 \ tm 4

Mean Kinetic Energy If the diameter of a hole in a vessel containing a gas is small as compared to the

of Kundsen Gas mean free path of gaseous molecules, the molecules on arriving at the hole are
effused freely through the hole. The gas involving such a effusion is known as
Knudsen gas. Let the base area shown in Fig. AIIL.1 represent such a hole in the
vessel.

The number of molecules reaching the hole within the considered hole as given
by Eq. (AIIL4) is

3/2 2
m mu 5 .
=N* — - d 60dod
dN = N*[A4 (u cos 60) df] K . kBT) eXp( ZkBT) u” du sin (p:l

The kinetic energy associated with the molecules is

1
dE, = (Emuz)dN

3/2 2
1 .
(L [ (s e)dz}}{[ ZR’ZBT) exp [_ -
Hence

32 2
Ly () Y
Ad \2)7 nkyr 2k, T

) u* du sin 6 d6 d(p:l

(AIIL8)

] u*dusin @ cos®dOdp (AIILY)
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If the above expression is integrated over all possible velocities and directions, we
get the total kinetic energy of gaseous molecules striking the hole per unit area in
a unit time interval. Thus

mN* m 32 mu’ 2 a
KE=|—— jusexp —— |du fsin@cosGd@Jd(p
2 21 kgT o 2kgT 0 0

N* kT (1
[ o) (B (3w @am.iof

The number of molecules reaching the hole per unit area in a unit time interval
as given by Eq. (AIIL.7) is

3/2 2
z= N*( n ) {l(ZkBT) }[1)(2@ (AIIL11)
ksl ) |20 m 2

The average kinetic energy of molecules that strike the hole and effuse freely
through the hole is obtained by dividing Eq. (AIIL.10) by Eq. (AIIL.11).
Hence

g - KE_(m/2) (kT I m)?
z  (1/2) QkgT /m)?

For the effusion of 1 mol of the gas, we have

=2 kT (AIIL12)

U* =N, KE =2(Nykg)T =2 RT (ATIL13)

oo

"The integral over u in Eqgs (AIIL6) and (AIIL10) is an e dx. Its value is 1/2 a* for

n=3andis 1/a® forn=5. 0



APPENDIX

Units and Conversion Factors

Sl Units

There are seven base quantities in SI units. These are described in Table Al 1.

Table AL.1  Seven Basic Quantities in SI Units

Physical Name of unit Symbol of Definition

quantity unit

Length meter m 1650 763.73 wavelengths in vacuum of
the radiation corresponding to the transi-
tion 2p,—5d; of the krypton—86

Mass kilogram kg A cylinder of platinum-irridium alloy
kept by the International Bureau of
weights and Measures in Paris

Time second ] The duration of 9 192 631 770 cycles of
the radiation associated with the transi-
tion between the two hyperfine levels of
the ground caseium—133 atom

Electric current ~ ampere A The magnitude of the current that, when
flowing through each of two long paral-
lel wires separated by one 1 m in free
space, results in a force between the two
wires of 2 x 107 N for each meter of
length

Thermodynamic  kelvin K Origin is at absolute zero and the triple

temperature point of water is 273.16 K
Amount of mole mol Amount of substance that contains as
substance many elementary entities (atoms, mole-

cules, ions, etc.) as there are carbon
atoms in 0.012 kg of carbon—12

Luminous candela cd The luminous intensity, in the perpen-

dicular direction, of a surface of
1/600 000 sq m of a black body at the
temperature of freezing platinum under
a pressure of 101.325 kPa
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Physical quantity

Name of unit

Symbol and definition

Force

Energy

Electric charge
Potential difference
Resistance
Frequency

Area

Volume

Density

Velocity
Angular velocity
Acceleration

Pressure

Conductivity

Magnetic fluid density

Electric capacitance
Magnetic flux

Inductance

newton

joule

coulomb

volt

ohm

hertz = cycle per second

square metre

metre per second
radian per second
metre per square second

newton per square metre

or pascal
siemen
tesla
farad
weber

henry

N=kgms2orJm
J:kgmzs’zoer

C=As

V=kgm?s AlorJA!s!
Q=kgm’s*A2orVA™'

Hz=s"

m

cubic metre m>

kilogram per cubic metre kg m>

ms”

rads™!
ms>

Nm>2orPa

s=Q"

T=Wbm?=Vsm?

F=CV!
Wb=Vs
H=WbA™'

CGS Units vis-a-vis SI Units

Physical quantity CGS units SI units
Name Symbol Name Symbol

Length centimetre cm metre m
Angstron (108 cm) A

Mass gram g kilogram kg

Time second sec second s

celsius °C .

Temperature Kelvin {°K kelvin K

Energy calorie cal joule J
kilocalorie kcal kilojoule kJ
litre-atmosphere lit-atm
ergs erg

Electric current ampere A ampere A
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Conversion of CGS Units to SI Units

Quantity Units EquivalentT
Length Angstron, A 10" m=10"nm = 10> pm
micron, [ 10%m
Volume litre 107 m?® = dm?
Force dyne 10°N
Energy erg 107)
cal 4.184 ]
eV 1.602 1x 10777
eV/mole 98.484 kJ mol !
Pressure atmosphere 101.325 kN m™>
mmHg (or Torr) 133322 N m
bar (10° dyn/cm?) 10°Nm>
Viscosity poise 107" kg m's!
Magnetic flux density gauss 10°4T

(magnetic induction)

T Symbols used for fractions and multiples are given in the next Table.

SI Prefixes
Fraction Prefix Symbol Multiples Prefix Symbol
10" deci d 10 deca da
1072 centi c 10° hecto h
107 milli m 10° kilo k
10°¢ micro 0 10° mega M
107 nano n 10° giga G
10712 pico P 10'2 tera T
1071 femto f 10% peta P
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Values of Some Physico-Chemical Constants

Constant CGS units SI units
Acceleration of gravity, g 980.66 cm sec > 9.806 65 m s 2
Avogadro’s constant, N, 6.022 05 x 10* molecules mole ' 6.022 05 x 10 mol '
Bohr magneton, Ly 9.2741 x 107! erg gauss™ 9.27408 x 102* A m?
Bohr radius, 0.529 177 A 529177x10 "' m
Boltzmann constant, k 1.380 66 x 10 %erg (degree Ky 1.380 60 x 1072 J K ™!

molecule !
Debye 107" esu-cm 3.3356x10°°Cm
Electronic charge, e 4.802 98 x 10 %esu 1.602 16 x 10°°C
Electronic rest mass, m, 9.109 53 x 10 %8g 9.109 53 x 10! kg
Faraday, F 96 487 coulomb equiv 9.648 46 x 10* C mol™
8.31441 x 107 ergs (degree K)' | 8.31441 J K™ mol™
mole! 831441 NmK ' mol
8.31441 Joules (degree K) ! 831441 Pam® K
Gas constant R mole™ mol ™!
0.082 054 litre-atm (degree K)™' | 8.314 41 kPa dm® K ™!
mole™ mol ™!
1.987 cal (degree K)’1 mole™ 8.314 41 MPa cm’ K
mol ™!
Molar volume of ideal gas

at 0°C can 1 atm, ¥}, 22.414 litres 2.241 4 x 102 m> mol™!
Permittivity of

vacuum, & = fly' ¢ 8.854 188 x 102 C?§*
Permeability of kg ' m™

vacuum, 4, 4nx 107 Hm™
Planck’s constant, 4 6.626 18 x 107" erg sec 6.626 18 x 107*J s
Proton rest mass, m, 1.67265 x 1072 g 1.672 65 x 10°% kg
Vacuum speed of light, ¢ 2.997 925 x 10" cm sec™ 2.997925x 105 m s

76 cm Hg
Standard atmospheric 760 mm Hg (or torr) 101.325 kPa

pressure 1.1032 x 10° dynes/cm? 1.0132 5 bar
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Greek Alphabets
Symbol Symbol
Name Roman [Italic Roman Italic Name Roman Italic Roman Italic
Alpha A A o o Nu N N v Y
Beeta B B B Xi B E I3
Gamma r r Y Y Omicron O (o] 0 o]
Delta A A 6 1 Pi I n n T
Epsilon E E € £ Rho P p p P
Zeta Z Z 4 ¢ Sigma z p) c c
Eta H H n n Tau T T T T
Theta (C) ©] 0 0 Upsilon Y Y ) v
Iota I 1 ! l Phi D D [0} 0]
Kappa K K K K Chi X X X V4
Lambda A A A A Psi ¥ b4 Y v
Mu M M u u Omega Q Q 0] (0]
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Absorbance, 249
Acid-base catalysis, 170
Actinometer, 260
Activated Complex Theory, 151
Activation energy, 139
Addition polymer, 381
Adsorbate, 1
Adsorbent, 1
Adsorption,

at surface of liquids, 30

chemical, 28

effect of pressure, 2

effect of temperature, 2

of gases on solids, 2

physical, 28

thermodynamic treatment, 19
Affinity of chemical reaction, 438, 443
Arrhenius equation, 139
Average degree of polymerization, 387
Average speed of gaseous molecules, 357

Beer’s law, 248

Bernoulli’s equation, 393
Bimolecular surface reaction, 190
Black-body radiation, 345
Boltzmann distribution law, 289
Boltzmann statistics, 285
Bose-Einstein statistics, 292
Bosons, 367
Brunauer-Emmett-Teller equation, 11

Canonical ensemble, 372
Catalysis,

acid and base, 170
enzyme, 172
heterogeneous, 186
homogeneous, 169
Chain,

inhibition, 128
initiation, 128
length, 128
propagation, 128
reactions, 128
termination, 128
Chemical kinetics, 46
Chemisorption, 28
Classification of rotating molecules, 325
Collision theory, 144

Complexions, 285
Concept of ensemble, 372
Concurrent reactions, 103
Condensation polymers, 381
Consecutive reactions, 105
Coupling
equation, 458
phenomenon, 457
Curie-Prigogine principle, 460

Determination of molar mass via,
diffusion process, 407
osmotic pressure, 396
scattering of light, 410
sedimentation equilibrium, 409
size-exclusion chromatography, 419
ultracentrifuge sedimentation, 406
viscosity, 400
Determination of order of a reaction,
integration method, 74
graphical method, 74
half-life method, 75
Ostwald isolation method, 80
ratio variation method, 79
Van’t Hoff differential method, 76
Differential rate law, 52
Diffusion coefficient, 429
Disspation function, 454
Divergence
of a vector field, 518
theorem, 518
Dufour effect, 500

Effect of temperature on,
photochemical reactions, 273
reaction rate, 138

Einstein solids, 343

Electrokinetic effect, 471

Electro-osmosis, 472

Elementary reactions, 53

End-to-end distance in a macromolecular
chain, 392

Entropy production, 435, 451
in chemical reaction, 438
in heat transfer, 436
in mixing of ideal gases, 437

Enzyme catalysis, 172



Enzyme inhibition,
fully competitive, 178
fully noncompetitive, 181
partially competitive, 180
partially noncompetitive, 183
uncompetitive, 184
Equation of continuity in
concentration, 522
energy, 522
entropy, 523
mass, 520
Explosive limits, 135
Expressions involving partition function of,
enthalpy, 301
entropy, 299
Gibbs free energy, 302
heat, 298
heat capacity, 301
Helmholtz free energy, 302
internal energy, 289
pressure, 299
work, 298
Expression of partition function,
nuclear, 319
rotational, 312
translational, 304
vibrational, 315
Extent of polymerization, 387
Extent of reaction, 50

Factorization of partition function, 302
Fermi-Dirac statistics, 295
Fermions, 367
Fick’s first law of diffusion, 419, 457
Fick’s second law of diffusion, 419
First-order reaction, 56
characteristics of, 56
differential rate law of, 56
examples of, 58
integrated rate law of, 56
half-life, 57
Fourier law, 457
Fractional-order reactions, 71
Freundlich isotherm, 3

Gas collision theory, 144

Gel filtration chromatography, 419
Gel permeation chromatography, 419
General acid catalysis, 170

General base catalysis, 171

Gibbs adsorption equation, 30
Gradient of a scalar quantity, 518
Grand canonical ensemble, 372
Grotthus-Draper law, 247
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Heat capacities,
Debye contribution, 344
Einstein solid, 343
hydrogen gas, 369
monatomic solids, 341
Heterogeneous catalysis, 186
Homogeneous catalysis, 169

Inherent viscosity, 404
Intrinsic viscosity, 403
Ionic mobility, 508
Tonic reactions,
effect of dielectric constant, 167
effect of ionic strength, 164
Ionic strength, 164
Isosteric enthalpy of adsorption, 25
Isothermal diffusion, 479
Isothermal-isobaric ensemble, 372
Isothermal sedimentation, 485

Kinetics of catalytic reactions, 168
Kundsen effect,
kinetic energy, 537

Lambert-Beer’s law, 248
Langmuir adsorption, 4
Laws of photochemistry, 247
Lindemann mechanism, 126
Local equilibrium, 447, 520

Macromolecules, 381
Mark-Houwink equation, 404
Mass average molar mass, 382
Maxwell distribution of speeds, 354
Mean square speed of gaseous molecules, 357
Mechanism of reactions,
acid hydrolysis of an ester, 120
aldol condensation, 240
attachment of gaseous electrons to NO,, 233
between Br and H,0,, 113
between CH,OH and S,05, 235
between (CH,), CHOH and S,0;7, 235
between Cl, and O;, 231
between CO and Cl,, 120, 238
between F, and ClO,, 236
between H, and Br,, 129
between H, and I,, 117
between H, and NO,, 233
between H, and O,, 239
between H,0, and HNO,, 234
between H;PO, and S,0,>, 234
between I, and acetone, 121
between NH," and OCN", 115
between NO and O,, 114
between NO, and CO, 112
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between NO, and F,, 111 Partition function,
between NO, and O,, 237 electronic, 318
between OCI” and I, 117 nuclear, 319
between oxalic acid and S,037, 235 rate of reaction, 46
conversion of Oj; to O, catalysed by N,O,, 231 reduced viscosity, 403
decomposition of acetaldehyde, 132 relative viscosity, 403
decomposition of acetone, 237 rotational, 312
decomposition of CHCl;, 234 vibrational, 315
decomposition of CH;CHO catalyzed by I, 237  Ppeltier effect, 474
decomposition of dimethyl ether, 236 Phenomenological equations, 459, 464
decomposition of HNO, in the presence of Photochemistry, 247

NO, 229 Photon gas, 345
decomposition of HyO,, 229 Photosensitized reactions, 276

decomposition of NO catalyzed by O,, 233
decomposition of NO,, 228

decomposition of N,O5, 123, 230
decomposition of O,NNH,, 237
decomposition of ozone, 110
dehydrogenation of ethane, 131

involving F,, O, and H,, 230

oxidation of HyPO, and H;PO; by S,0%, 234
polymerization of vinyl derivative, 234
pyrolysis of diborane, 228

pyrolysis of monosilane, 229
saponification of ester, 116

step-growth polymerization, 137

Photostationary state, 274
Physical adsorption, 28
Pressure of an ideal gas, 358
Primary salt effect, 166
Principal moment of inertia, 324
Principle of equipartition of energy, 354
Principle of microscopic reversibility, 102
Probability,

Einstein, 528

Smoluchowrki, 526
Probability distribution of,

momentum, 351

thermal decomposition of N,O, 234 sp eed§ » 354
Michaelis-Menten constant, 172 velocity, 352
Microcanonical ensemble, 372 Procf:ss,
Microstates, 285 primary, 258
Molar conductivity, 509 secondary, 259

Molar mass averages, 382
Molecular partition function, 289
enthalpy, 301

Quantum efficiency, 259
Quenching of fluorescence, 275

entropy, 299 Rate constant of ionic reactions,
heat capacities, 301 effect of dielectric constant on, 167
Helmholtz free energy, 302 effect of ionic strength on, 164
Gibbs free energy, 302 effect of pressure on, 162
internal energy, 298 Rate of reaction, 46
pressure, 299 Rate of reaction divided by volume, 46
Moment of inertia, 320 Reaction,
Multilayer adsorption, 11 first order, 56

) ) fractional order, 71
Negative-order reactions, 72 negative order, 72

Nonstationary chain reactions, 135 second order. 63
Number average molar mass, 382 third order. 68

zero order, 54
Reaction mechanism, 109
Reciprocity relation, 491
Reduced mobility, 511
Reversible elementary reactions, 95

Ohm’s law, 457

One-dimensional random walk, 391

Onsager symmetry rule, 461, 468, 535

Open system, 449

Optical density, 247

Order of a reaction, 51 Sackur-Tetrode equation, 307

Osmotic pressure, 396 Saxen’s relation, 473
Second-order reaction, 63
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Seeback effect, 474
Sedimentation coefficient, 406
Sequential reactions, 105
Size-exclusion chromatography, 419
Specific viscosity, 403
Soret coefficient, 500
Standard equilibrium constant, 331
Stationary chain reactions, 129
Stationary state, 493
Statistical thermodynamics, 285
Statistical treatment of,
equilibrium constant, 331
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speeds, 350
transition-state theory, 336
velocities, 347
Steady-state approximation, 108
Streaming current, 472
Streaming potential, 472
Step-growth polymers, 381
Stirling approximation, 288
Surface active substances, 34
Surface area of adsorbent, 21
Surface inactive substances, 35
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Symmetry number, 243

Thermal diffusion, 495
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proof of entropy production in a
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Thermoelectricity, 473
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Thermo-osmosis, 491
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effect, 474

first equation, 477

second equation, 479
Thermopile, 260
Third-order reactions, 68
Transport number, 510
Transport process,

between two phases, 488

in an electrolytic solution, 501
Transition-state theory, 336
Translational partition function, 304

Ultracentrifuge sedimentation, 406
Uncompensated heat, 435
Unimolecular surface reaction, 187

Viscosity,

inherent, 404

intrinsic, 403

reduced, 403

relative, 403

specific, 403
Viscosity average molar mass, 384
Viscosity of polymer solution, 401

z-average molar mass, 384
Zero-order reaction, 54
Zimm Plot, 417
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