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 Preface

  in recent years, the teaching curriculum of Physical Chemistry in many indian 

universities has been restructured with a greater emphasis on a theoretical and 

conceptual methodology and the applications of the underlying basic concepts and 

principles. This shift in the emphasis, as i have observed, has unduly frightened 

undergraduates whose performance in Physical Chemistry has been otherwise 

generally far from satisfactory. This poor performance is partly because of the 

non-availability of a comprehensive textbook which also lays adequate stress on 

the logical deduction and solution of numericals and related problems. Naturally, 

the students find themselves unduly constrained when they are forced to refer to 

various books to collect the necessary reading material.

    it is primarily to help these students that i have ventured to present a textbook 

which provides a systematic and comprehensive coverage of the theory as well as 

of the illustration of the applications thereof.

    The present volumes grew out of more than a decade of classroom teaching 

through lecture notes and assignments prepared for my students of BSc (General) 

and BSc (honours). The schematic structure of the book is assigned to cover 

the major topics of Physical Chemistry in six different volumes. Volume I 

discusses the states of matter and ions in solutions. It comprises five chapters 

on the gaseous state, physical properties of liquids, solid state, ionic equilibria 

and conductance. Volume II describes the basic principles of thermodynamics 

and chemical equilibrium in seven chapters, viz., introduction and mathematical 

background, zeroth and first laws of thermodynamics, thermochemistry, second 

law of thermodynamics, criteria for equilibrium and A and G functions, systems 

of variable composition, and thermodynamics of chemical reactions. Volume III 

seeks to present the applications of thermodynamics to the equilibria between 

phases, colligative properties, phase rule, solutions, phase diagrams of one-, 

two- and three-component systems, and electrochemical cells. Volume IV deals 

with quantum chemistry, molecular spectroscopy and applications of molecular 

symmetry. it focuses on atomic structure, chemical bonding, electrical and 

magnetic properties, molecular spectroscopy and applications of molecular 

symmetry. Volume V covers dynamics of chemical reactions, statistical and 

irreversible thermodynamics, and macromolecules in six chapters, viz., adsorption, 

chemical kinetics, photochemistry, statistical thermodynamics, macromolecules 

and introduction to irreversible processes. Volume VI describes computational 

aspects in physical chemistry in three chapters, viz., synopsis of commonly used 

statements in BASiC language, list of programs, and projects.

    The study of Physical Chemistry is incomplete if students confine themselves 

to the ambit of theoretical discussions of the subject. They must grasp the practical 

significance of the basic theory in all its ramifications and develop a clear 

perspective to appreciate various problems and how they can be solved.



    it is here that these volumes merit mention. Apart from having a lucid style 

and simplicity of expression, each has a wealth of carefully selected examples and 

solved illustrations. Further, three types of problems with different objectives in 

view are listed at the end of each chapter: (1) Revisionary Problems, (2) Try Yourself 

Problems, and (3) Numerical Problems. Under Revisionary Problems, only those 

problems pertaining to the text are included which should afford an opportunity to 

the students in self-evaluation. in Try Yourself Problems, the problems related to 

the text but not highlighted therein are provided. Such problems will help students 

extend their knowledge of the chapter to closely related problems. Finally, unsolved 

Numerical Problems are pieced together for students to practice.

    Though the volumes are written on the basis of the syllabi prescribed for 

undergraduate courses of the University of Delhi, they will also prove useful to 

students of other universities, since the content of physical chemistry remains the 

same everywhere. in general, the Si units (Systeme International d’ unite’s), along 

with some of the common non-Si units such as atm, mmhg, etc., have been used 

in the books.

 Salient Features  ∑  Comprehensive coverage to adsorption, chemical kinetics, photochemistry, 

statistical thermodynamics,  macromolecules

  ∑  emphasis given to applications and principles

  ∑  explanation of equations in the form of solved problems and numericals

  ∑  iUPAC recommendations and Si units have been adopted throughout.

  ∑  Rich and illustrious pedagogy
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1 Adsorption

The term adsorption implies the presence of excess concentration of any particular 

component at the surface of liquid or solid phase as compared to that present in 

the bulk of the material. This phenomenon of adsorption is basically due to the 

presence of residual forces at the surface of the body. These residual forces, in 

case of liquids, arise from the nonuniform distribution of molecules around the 

molecules at the surface. In solids, these residual forces are due to the presence of 

It is because of these residual forces that the substances stick to the surface and 

is a spontaneous process and hence, like any other spontaneous process, is attained 

DG of the adsorption process has a 

DG = DH – TDS DS for adsorption 

|DH| > |TDS|

the substance.

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

(a) (b)

1.1 INTRODUCTION

Fig. 1.1.1 Residual

forces at (a) the liquid 

surface, and (b) the 

solid surface
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2. If this 
–3 cm, then the total 

¥ 3 cm2. More and more of residual forces are 

causes more of adsorption. It is because of this reason, most of the adsorbents are 

and other impurities.

A

A

T T T T1 < < <2 3 4

T1

T2

T3

T4

x
m/

p

1.2 ADSORPTION OF GASES BY SOLIDS

Preliminary

Discussions

Effect of 

Temperature

Effect of Pressure

Fig. 1.2.1 Variation in 

the extent of adsorption 

with pressure at 

different temperatures. 

These are known as 

adsorption isotherms
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surface increases in proportion to the increase in pressure and hence adsorption 

further increase in adsorption, i.e. the extent of adsorption becomes independent 

as fast as the increase in pressure.

adsorption

desorption
� ������
� ������

the increase in pressure.

x

m

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 = kp n

x m of adsorbent at the pressure p,

and k and n

n

the fact that the increase in adsorption is not as fast as the increase in pressure.

k and n

x

m

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

k¢ + 
1

n

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

p

p°

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

p x m p p

n k¢
k and n

n n = • at 

n >

Explanation of 

Fig. 1.2.1

Freundlich

Adsorption

Equation
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 ∑ 

 ∑
adsorption. The latter is identical for all adsorption sites.

∑
molecules is formed.

∑
other.

 ∑
represented as

���
���

kf

kb

Therefore, at equilibrium,

Rate of adsorption = Rate of desorption

i.e. kf kb

or K = 
k

k

f

b

 = 
[GS]

[G][S]

The constant K

the fraction q

Rate of desorption ∝ q
i.e. Rate of desorption = kdq

Langmuir

Adsorption

Equation

Equilibrium

Constant involving 

Adsorption

Derivation

of Langmuir

Equation
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q

Rate of adsorption ∝ p q)

i.e. Rate of adsorption = ka p q)

Rate of adsorption = rate of desorption, 

ka q )p = kdq

i.e. q = 
k p

k k p

a

d a+
 = 

( / )

( / )

k k

k k p

a d

a d1+
 = 

K p

K p+

Langmuir adsorption equation. The form of 

K

K

The constant K ka kd

constant K  is, in fact, an equilibrium constant for the distribution of adsorbate 

K  = 
k

k

a

d

 = 
q

q- p

The equilibrium constant K , like any other equilibrium constant, depends only 

p

K are obtained at different temperatures. The fraction q

K

decrease in temperature, i.e. the equilibrium constant K

Physical

Significance of the 

Constant K1

Fig. 1.2.2 The form of 

Langmuir isotherm at 

various values of K1
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The equilibrium constant K

DG° = – RT ln K

directly proportional to the factor q that is,

x

m

Ê
ËÁ

ˆ
¯̃ ∝ q i.e.

x

m

Ê
ËÁ

ˆ
¯̃  = k 2q

x

m

Ê
ËÁ

ˆ
¯̃  = 

K k p

K p

1 2

11+

K p

x

m

Ê
ËÁ

ˆ
¯̃ K k2p or

x

m

Ê
ËÁ

ˆ
¯̃ ∝ p

Here K p

comparison to K p

x

m

Ê
ËÁ

ˆ
¯̃  = 

K k p

K p

1 2

1

 = k2

that is, the extent of adsorption is independent of pressure.

the increase in pressure.

This is due to  the presence of p dependent term in the denominator of              

than that of the numerator.

K  and k2

1

( / )x m
 = 

1 1

1 2

+ K p

K k p
 = 

1

1 2K k p
 + 

1

2k

or
p

x m( / )
 = 

1

1 2K k
 + 

p

k2

Thus, a plot of p x m p

k2 K k2 K  and k2 can be 

determined.

Explanation

of Adsorption 

Isotherms of 

Fig. 1.2.1 

Determination of 

the Constants in 

Eq. (1.2.9)
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q

q = 
u

umono

u
temperature and umono

u

umono

 = 
K p

K p+

i.e.

u

u
mono =

+ K p

K p
or

u

u
mono  = 

K p

or
p

u
 = 

1

1K umono

 + 
p

umono

p u and p

umono K umono umono and K

can be determined. 

K

p

u 3

Alternative Form

of Langmuir

Equation

Conditions for the 

Applicability of 

Langmuir Equation

Example 1.2.1 
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(i) The constants K  and umax

p u and p

p

u 3

p /

/

mmHg

cm3u

p u and p

¥ –2

slope = 
D

D
{( / )/( / )}

( / )

p

p

mmHg cm

mmHg

u 3

¥ –2

intercept = D p u 3

slope = 
1

umono

 = 
D

D
{ / }p

p

u
¥ –2 cm–3

intercept = 
1

Kumono

p u)p
–3

Hence,  umono = 
1

slope
 = 

1

0 009 3. cm-
3

K =
slope

intercept
 = 

0.009 cm

mmHg cm

3

3

-

-9 0.
¥ –3 

Solution

Fig. 1.2.3 The graph 

between p/u and p

from the given data
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(ii)

p

u 3

q = u umono

(iii)

DadsG° = – RT K )

K

Dads G° mol

3, the number of 

molecules N umono is

N = 
umono

dm mol22 414 3 1. -
Ê
ËÁ

ˆ
¯̃

¥ 23 mol )

¥ 23 mol

the total surface area of the adsorbent.

The area of cross-section A of the molecule is usually determined from the 

r
u

r =
M

Vm

 = 
M

Nu A

or u =
M

NAr

If r

u =
4

3
pr3 = 

M

NAr

or r =
3

4

1 3

p
M

NAr

Ê
ËÁ

ˆ
¯̃

/

Hence, A = pr2 = p
3

4

2 3

p
M

NAr

Ê
ËÁ

ˆ
¯̃

/

r p r2) is only an approximate one since it lacks the 

Determination of 

Surface Area of 

the Adsorbent
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of area of cross-section A

cross-section of the adsorbed molecule is the same as that of the molecules in the 

A
M

N4 2

2 3

Ar

Ê
ËÁ

ˆ
¯̃

/

A for some of the molecules calculated from                 

Table 1.2.1

Substance Temperature Liquid Density Area of Cross-section
–3 nm2

N2 -
N2 -

2 -
Ar - 

-
2 -
4 -

NH3 -

3

–3.

3

N¢ =
( . )

( )

1 36

22 414

3

3 1

cm

cm mol- ¥ 23 mol ¥

NAu NA u is 

r

NAu) r = M 2) or u  = 
M

N

( )H

A

2

r

M 2), NA and r

u =
( )

( . )( . )

2

6 022 10 0 07

1

23 1 3

g mol

mol g cm

-

- -¥
¥ –23 cm3

u = pr3

Hence, r = 3

4

1 3u

p
Ê
ËÁ

ˆ
¯̃

/

 = 
3 4 742 10

4 3 14

23 1 3
¥ ¥

¥

-Ê
ËÁ

ˆ
¯̃

.

.

/
cm3

¥  cm

A = p r2 ¥ ¥  cm)2 ¥  cm2

N ¢A ¥ ¥  cm2 ¥ 4 cm2

Example 1.2.2 

Solution
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M

dm3

2

2.

u
2

( . )( )4 24

256

3

1

g dm

g mol

-

-
Ê
ËÁ

ˆ
¯̃

u
¥ 23 mol )

¥ ) ¥ u 3)

¥ u 3 2)

¥ u 3 ¥  cm2)

¥ u 3) cm2

2. Thus

¥ u 3) cm2 2 or u 3 ¥ –5

adsorbed molecule and nearby unadsorbed molecule. This results into the multilayer 

adsorption, i.e. more than one layer of molecules is adsorbed at the surface. The

isotherm.

G + S GS

G + GS G S

G + G S G S

G + G S G S

2

3

1

  
  

  
  

  
  

        

  
  

2

n n-

¸

˝

Ô
Ô
ÔÔ

˛

Ô
Ô
Ô

Multilayer

Adsorption

Derivation of BET

Equation

Example 1.2.3

Solution
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2  

I
III

II IV

V

x
m/

x
m/

p

po

p

po

p

x
m/

popo

p

x
m/

p

po

x
m/

2 2

 charcoal.

2 2

2 2

2 3
Fig. 1.2.4 Five

different  types of 

adsorption isotherms
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¢

¢

¢

K

K

K

1

2
2

3

2

=
[GS]

[G] [S]

=
[G S]

[G] [GS]

=
[G S]

[G] [G S]

, and s

3

      oo on.

¸

˝

Ô
Ô
Ô
Ô

˛

Ô
Ô
Ô
Ô

μ
    [G] μ p

μ the fraction of the free surface, that is,

μ q
μ

μ q

2 μ
[G2 μ q2

…………………, and so on.

become

K
p

K
p

K
p

1
1

0

2
2

1

3

2

=

=

=

, and so on.

3

q

q

q

q

q

q

      

¸

˝

Ô
Ô
Ô
Ô

˛

Ô
Ô
Ô
Ô

K

K2, K3, …

K  and K2. It is for this reason, it can assumed that

K2 K3 K4 … K

K

��
��

 liquid

K  = 
1

0p
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K
p

K K
p

K K
p

1
1

0

2
2

1

3
3

2

=

=

=

¸

˝

Ô
Ô
Ô
Ô

˛

Ô
Ô

q

q

q

q

q

q

 

 

          

L

L

, and so on.

ÔÔ
Ô

q = K pq

q2 = K pq  = 
1

0p

Ê
ËÁ

ˆ
¯̃

p K pq ) = K p
p

p

Ê
ËÁ

ˆ
¯̃

q

q3 = K pq2 = 
1

0p

Ê
ËÁ

ˆ
¯̃ p K p

p

p
1

0
0q

Ê
ËÁ

ˆ
¯̃  = K p

p

p0

2
Ê
ËÁ

ˆ
¯̃ q

……………………………, and so on.

qtotal = q  + q  + q2 +  

q , q2,  

 qtotal = q  + K pq  + K p
p

p

Ê
ËÁ

ˆ
¯̃

q  + K p
p

p0

2
Ê
ËÁ

ˆ
¯̃

q  +  

  = q 1 11
0 0

2

+ +
Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

+
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í
Í

˘

˚
˙
˙

K p
p

p

p

p
 

p p £

p

p

Ê
ËÁ

ˆ
¯̃

 + 
p

p0

2
Ê
ËÁ

ˆ
¯̃

 +   = 1
0

1

-
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

-
p

p
 = 

1

1 0- ( )p p

qtotal = q 1
1

1

0

+
-

È

Î
Í

˘

˚
˙

K p

p p( / )

or q =
1

1 11 0+ -K p p p/{ ( / )}
 = 

1

1

0

1 0

-
+ -

p p

K p p p

/

/

¸

˝

Ô
Ô
Ô
Ô

˛

Ô
Ô
Ô
Ô
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utotal = umono q  + 2q2 + 3q3 +  

umono

q , q2, q3, …

utotal = umono K pq 1 2 3
0 0

2

+
Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

+
È

Î
Í
Í

˘

˚
˙
˙

p

p

p

p
 

p

p

Ê
ËÁ

ˆ
¯̃

 + 3
p

p0

2
Ê
ËÁ

ˆ
¯̃

 +   = 
1

1 0
2( / )- p p

utotal = umono

K p

p p

1 0

0
21

q

( / )-

q

utotal = 
umonoK p

p p K p p p

1

0 1 01 1( / )( / )- + -

The pressure p

p p

p = p
p

p
 = 

1

KL

p

p

Ê
ËÁ

ˆ
¯̃

utotal = 
umono L

L

( / ) ( / )

( / ){ ( / ) ( / ) ( / )}

K K p p

p p K K p p p p

1 0

0 1 0 01 1- + -

The ratio K K C

utotal = 
umono C p p

p p C p p p p

( / )

( / ){ ( / ) ( / )}

0

0 0 01 1- + -

p

p putotal ( )0 -
 = 

1

umonoC
 + 

C

C

-1

umono

p

p
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Thus, a plot of p utotal p  – p p p

umono C C umono C

constants umono and C umono, the surface area of the 

The adsorption equilibrium constant K

DG° by the relation

DG° = D H° – TD S° = – RT ln K° K° = K p°)

Therefore

K° Dads S° R DadsH° RT )

= g DdesH° RT )

g  is the entropy factor and DdesH° is the standard enthalpy of desorption of 

K

K° = g D H° RT K°  = K p°)

D H°

C

C = 
K

K

∞
∞
1

L

 = 
g H RT

g H RT

1 1exp( / )

exp( / )

Ddes

L vap L

∞
∞D

exp
D Ddes vap LH H

RT

∞ - ∞Ê
ËÁ

ˆ
¯̃

1

p p

p p

0

0utotal ( )-
 = 

1

umono

p

C
 + 

1

umono

C

C

-
p

C =
K

K

1

L

and K  = 
1

0p

Thus C =
K

K

1

L

 = 
K

p

1

01( / )
 = p K

or K =
C

p

p p

p p

0

0utotal ( )-
 = 

1

1umono K
 + 

1

umono

C

C

-
p

C p

than p

p

utotal

 = 
1

umono K
 + 

p

umono

Physical

Significance of the 

Constant C in BET

Equation

Derivation

of Langmuir

Equation from 

BET Equation
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Type I p p C

and hence the adsorption in the present case is monolayer.

Type II C

DdesH
 D Hº

portion corresponds to the formation of monolayer.

Type III C is considerably smaller than 

DdesH
  is less than D H .  There is no intermediate 

Type IV

DdesH
 

D H p Æ p  differs 

Type V

DdesH
  is less than D H

In the adsorption of N2

pressures p p e p

p p

u 3

umono and C

u p p) – p p

C umono C umono C

from t

Explanation of 

Isotherms of 

Fig. 1.2.4

Example 1.2.4

Solution
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p/p0 u/cm3 p0 /p
cm3

0 1u{( / ) }p p -

0.05 51.3 20
1

51 3 19. ¥
= 0.001 03

0.10 58.8 10
1

58 8 9. ¥
= 0.001 90

0.15 64.0 6.67    
1

64 0 5 67. .¥
= 0.002 76

0.20 68.9 5.0
1

68 9 4. ¥
 = 0.003 63

0.25 74.2 4.0
1

74 2 3. ¥
= 0.004 49

The plot of 1/[u{(p0 /p) – 1}] versus p/p0 is shown in Fig. 1.2.5.

The slope and intercept of the BET equation are;

slope = 
1

umono

Ê
ËÁ

ˆ
¯̃

C

C

-1
= 0.017 3 cm–3

intercept  = 
1

umonoC
 = 0.000 15 cm–3

Thus
slope

intercept
= C – 1 = 

0.017 3 cm

cm

-

-

3

30 000 15.
 = 115.3

Hence, C = 116.3

From the intercept expression, we have

umono = 
1

C ¥ ( )intercept

Substituting the values of C and intercept, we get

    umono = 
1

116 3 000 15 3( . )( . )0 cm-
 = 57.32 cm3

Fig. 1.2.5
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Example 1.2.5

value of DdesHº1
 – DvapHºL. Given the area of nitrogen molecule equal to 0.162 nm2.

Number of molecules in the obtained value of umono in Example 1.2.4

=
umono

cm mol22 414 3 1-
Ê
ËÁ

ˆ
¯̃

 (6.022 ¥ 1023 mol–1)

=
( ).57 32

22 414

3

3 1

cm

cm mol-
Ê
ËÁ

ˆ
¯̃

 (6.022 ¥ 1023 mol–1) = 1.540 ¥ 1021

Thus Area/g of adsorbent = Area of nitrogen ¥  Number of molecules adsorbed

= (0.162 ¥ 10–18 m2) (1.540 ¥ 1021)

= 249.5 m2

Now, the constant C is related to DdesHº1
 – DvapHºL by the expression

C  exp{(DdesHº1
 – DvapHºL )/RT}

Hence, DdesHº1
 – DvapHºL = RT ln C

   = (8.314 J K–1 mol–1 ) (90.1 K) (2.303 ¥ log 116.3) 

   = 3 563.5 J mol–1

Jura and Harkins extended thermodynamically derived Gibbs equation (see Section 

of gases on solid surfaces are similar to those at liquid-vapour interfaces. The Gibbs

equation is given by

G = – 
1

RT

d

d ln

g

a
(1.2.39)

where G is the excess concentration of solute per unit area at the surface.

For the adsorption of gases, Eq. (1.2.39) takes the form

G = – 
1

RT

d

d ln

g

( / )p p∞
(1.2.40)

where p is the pressure of the gas and p° is the standard-state unit pressure. Now 

the excess concentration of solute per unit area at the surface will be equal to

concentration of adsorbed gas since the concentration of gas in the bulk of adsorbent 

is zero. If u is the volume of gas adsorbed per unit mass of solid and s is the 

surface area of the solid per unit of mass, then

Volume of gas adsorbed per unit surface area of adsorbent = 
u

s

Now, if Vm is the molar volume of the gas, we will have

Amount of gas adsorbed per unit surface area of adsorbent = 
1

Vm

u

s

Ê
ËÁ

ˆ
¯̃

and this will be equal to surface excess concentration at the surface. Thus

Solution

Thermodynamic

Treatment of 

Adsorption
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G = 
1

Vm

u

s

Ê
ËÁ

ˆ
¯̃ (1.2.41)

Substituting Eq. (1.2.41) in Eq. (1.2.40), we get

u

s Vm

 = –  
1

RT

d

d ln

g

( / )p p∞
(1.2.42)

or           dg = – 
u

s

RT

Vm

d ln (p/p°) (1.2.43)

The change in surface tension dg  of absorbent may be correlated with the area of
cross-section of the absorbed molecules. Lesser the area, larger the number of 
molecules absorbed per unit area of the adsorbent and hence larger the decrease in
the surface tension of the latter. The dependence of surface tension g  on the cross-
sectional area A of the molecule of adsorbate may be represented as

g0 – g  = b – aA (1.2.44)

where b and a are constants. From Eq. (1.2.44), we have

dg = a dA (1.2.45)

Now

Number of molecules of gas adsorbed per unit area of adsorbent

 = NAG  = 
N

V

A

m

u

s

Thus

Area of cross-section of a molecule of gas absorbed

A =
1

NAG
 = 

s

u

V

N

m

A

Hence, dA = – 
s

u

V

N

m

A
2

du

Substituting dA in Eq. (1.2.45), we get

dg = a dA = – 
a V

N

s

u

m

A
2

du (1.2.46)

Substituting Eq. (1.2.46) in Eq. (1.2.43), we get

–
a V

N

s

u

m

A
2

 du = – 
u

s

RT

Vm

 d ln (p/p°)

or
a V

N RT

s 2 2
m

A

du

u3 = d ln (p/p°)

Integrating the above expression, we have

–
a V

N RT

s 2 2

2

m

A

1
2u

 + I = ln (p/p°) (1.2.47)

where I is a constant of integration. Thus, if ln (p/p°) is plotted against 1/u 2, we 

get a straight line with slope equal to (– as2V 2
m /2NART ).
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According to Eq. (1.2.47), the slope of the graph of log (p/p°) versus 1/u2 is given 

by

slope = – 
a V

N RT

s 2 2

2

m

A

1

2 303.

Hence,  s2 =
2 2 303

2

¥ ¥Ê
ËÁ

ˆ
¯̃

. N RT

aV

A

m

 (– slope)

or  s =
2 2 303

2

1 2
¥ ¥Ê

ËÁ
ˆ
¯̃

.
/

N RT

aV

A

m

(– slope)1/2

= k1 (– slope)1/2 (1.2.48)

where k1 is a constant and is equal to (2 ¥ 2.303 ¥ NART /aV 2
m )1/2. For area in 

square metre per gram of adsorbent, k1 is equal to 4.06 ¥ 106 m–1 for nitrogen at

–195.8  ºC.

Using the data given in Example 1.2.4, determine the area per gram of the adsorbent.

Equation (1.2.47) is

–
a V

N RT

s 2 2

2
m

A

1
2u

+ I = ln 
p

p0

or       –
a V

N RT

s 2 2

2
m

A

1

2 303.

1
2u

 + 
I

2 303.
= log 

p

p0

Thus, we may plot log (p/p0) versus 1/u 2 to determine the surface area. The slope of the 

line will be equal to (– as2V2
m /4.606 NART). From the given data, we have

p/p0 u/cm3 log( p/p0) 104(1/u2) cm6

0.05 51.3 2 .699 0 3.80

0.10 58.3 1 .000 0 2.89

0.15 64.0 1 .176 1 2.44

0.20 68.9 1 .301 0 2.17

0.25 74.2 1 .397 9 1.87

The plot of log (p/p0) versus 1/u2 is shown in Fig. 1.2.6.

The slope of the given equation will be – 0.355 ¥ 104 cm6, i.e. – 35.5 ¥ 10–10 m6.

Since

s = k1 (– slope)1/2

we have

 s = (4.06 ¥ 106 m–1 ) (35.50 ¥ 10–10 m6 )1/2

  = (4.06 ¥ 106 m–1 ) (59.58 ¥ 10–6 m3 )

  = 241.8 m2/g of adsorbent

Surface Area of 

Adsorbent by 

Harkins and Jura 

Method

Example 1.2.6

Solution
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1.4

1.2

1.0

2.8

2.6

1.6 2.0 2.4 2.8 3.2 3.6 4.0

1.38 × 10–4

1.51

lo
g
(
/
0
)

p
p

(cm / ) × 106 2 4u

slope = – 0.49/ (1.38 × 10 )
= – 0.355 × 10

–4

4

The variation of surface tension of an adsorbent is related to the surface excess concentration 

of a gas by the relation

g – g0 = a – bG

where a and b are constants. Show that the Gibbs adsorption equation when applied to gas 

adsorption leads to the Freundlich adsorption equation.

The Gibbs equation when applied to gas adsorption has a form

G = –
1

RT

d

dln

g

( / )p p∞
  (Eq. 1.2.40)

where the surface excess concentration of the gas at the surface is given by

G = 
u

s Vm

(Eq. 1.2.41)

It is given that

 g – g 0 = a – bG

Substituting the expression of G, we get

 g – g 0 = a – b
u

s Vm

Hence, dg  = – 
b

Vs m

du

Substituting dg from the above relation and G from Eq. (1.2.41) in Eq. (1.2.40), we get

u

s Vm

= – 
1

RT
-

Ê
ËÁ

ˆ
¯̃

b

V

d

m

u

s

1

dln ( / )p p∞

or
du

u
 = RT

b

Ê
ËÁ

ˆ
¯̃

 d ln (p/p°)

Fig. 1.2.6

Problem 1.2.1

Solution
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or
du

u
=

1

n
d ln (p/p°) = d ln (p/p°)1/n

where 1/n = RT/b. Integrating the above relation, we get

  ln (u/uº) = ln (p/p°)1/n + ln k¢
where ln k ¢ is the constant of integration. The above expression may be written as 

   ln (u/uº) = ln (kp1/n )

or        u = kp1/n

which is the required Freundlich adsorption equation.

The variation of surface tension of an adsorbent is related to the surface excess concentration 

of a gas by the relation

g  – g0 = a + 
RT

V

u

s
mono

m

 ln 1-
Ê
ËÁ

ˆ
¯̃

u

umono

where a is a constant and umono is the volume corresponding to the monolayer formation. 

Show that the Gibbs adsorption equation when applied to the gas adsorption leads to the 

Langmuir adsorption equation.

It is given that

 g – g 0 = a + 
RT

V

u

s
mono

m

 ln 1-
Ê
ËÁ

ˆ
¯̃

u

umono

Hence,    dg  =
RT

V

u

s
mono

m

-
-

Ê
ËÁ

ˆ
¯̃

1

1

/

/

u

u u
umono

mono

d

Substituting dg  from the above relation and G from Eq. (1.2.41) in Eq. (1.2.40), we

get

u

s Vm

 = -Ê
ËÁ

ˆ
¯̃

1

RT
-

-
Ê
ËÁ

ˆ
¯̃

RT

Vs

u

u um mono

d

1 /

1

d ln ( / )p p∞
Ê
ËÁ

ˆ
¯̃

or u =
d

mono

u

u u( / )1-
1

d ln ( / )p p∞
Ê
ËÁ

ˆ
¯̃

or
d

mono

u

u u u( / )1-
 = d ln (p/p°)

or
du

u
 + 

d

mono mono

u

u u u( / )1-
 = d ln (p/p°)

or d ln (u/uº) – d ln{( / )( / )}u u u umono mono∞ -1 = d ln (p/p°)

Integrating the above relation, we get

ln (u/uº) – ln{( / )( / )}u u u umono mono∞ -1  = ln (p/p°) + ln K1

where ln K1 is the constant of integration. The above relation may be rearranged as follows.

ln
u

u u umono mono( / )1-
Ê
ËÁ

ˆ
¯̃

= ln (K¢1 p )

Problem 1.2.2

Solution
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or
u

u u umono mono( / )1-
 = K¢1 p

or
1

1¢K umono

 = p
1-Ê

ËÁ
ˆ
¯̃

u u

u

/ mono

or
1

1¢K umono

 = 
p

u
 – 

p

umono

or
p

u
 = 

1

1¢K umono

 + 
p

umono

which is the required Langmuir adsorption equation (1.2.12).

The enthalpy of adsorption can, in principle, be determined from the measurements 

of the pressures required to produce a given amount of adsorption at different 

temperatures. The equation used for this purpose has the same form as that of 

Clausius-Clapeyron equation and can be derived thermodynamically. Since there 

exists an equilibrium between the adsorbed gaseous molecules and unadsorbed 

gaseous molecules, the thermodynamic condition for the equilibrium requires that 

mg = ms (1.2.49)

where mg and ms are the chemical potentials of unadsorbed and adsorbed gaseous 

molecules, respectively. Now

mg = f (T, p) (1.2.50a)

and   ms = f (T, q )      (1.2.50b)

Now if the temperature and pressure are changed while keeping q constant (i.e. the 

extent of a adsorption constant), the changes in chemical potentials are

dmg = – Sg dT + Vg dp (1.2.51)

dms = – Ss dT (1.2.52)

When a new equilibrium state is reached, these two changes are identical. Thus

dmg = dms

Making use of Eqs (1.2.51) and (1.2.52), we get

– Sg dT + Vg dp = – Ss dT

or
d

d

p

T
 = 

- -( )S S

V

s g

g

 = – 
Dads

g

S

V
(1.2.53)

where DadsS is the change in the molar entropy on adsorption. Now

DadsS =
Dads H

T
(1.2.54)

Thus, Eq. (1.2.53) becomes

d

d

p

T
 = – 

Dads

g

H

V T
(1.2.55)

Change in 

Enthalpy, Entropy 

and Free Energy 

on Adsorption
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If the gas behaves ideally, then

d p

p
 = – 

DadsH

RT 2
dT (1.2.56)

which on integration gives

ln
p

p∞
Ê
ËÁ

ˆ
¯̃

 = 
D adsH

R

1

T
 + constant (1.2.57)

Thus, a plot ln ( p/pº) against 1/T q gives a straight line with 

slope equal to Dads H/R (Fig. 1.2.7).

From the slope, the value of Dads H can be determined. The curve showing the 

variation of the pressure with temperature is called isostere (constant volume) and 

the value of DadsH obtained from the slope is known as the isosteric enthalpy of 

adsorption. The slope of ln (p/pº) versus 1/T is negative indicating that DadsH is 

negative (exothermic process).

1 / T

ln
(
/
º)

p
p

slope =DadsH R/

If Eq. (1.2.56) is integrated within the limits, we have

d p

p
p

p

1

2

Ú = – 
DadsH

R

1
2

1

2

T
T

T

Ú dT

ln
p

p

2

1

=
DadsH

R

1 1

2 1T T
-

Ê
ËÁ

ˆ
¯̃ (1.2.58)

Thus, knowing p2, p1, T2 and T1, DadsH can be determined from Eq. (1.2.58).

Equation (1.2.57) or (1.2.58) can also be derived directly from the Langmuir 

equation (1.2.6), according to which, we have

K1 = 
q

q1-
Ê
Ë

ˆ
¯

1

p
(1.2.59)

The equilibrium constant K1 depends on temperature. Its temperature dependence 

will be given by the van’t Hoff equation. According to the latter, we will have

Fig. 1.2.7 Plot of          

ln (p/p°) versus 1/T

where p is the pressure 

required to produce 

of adsorption at 

T

Derivation of 

Eq. (1.2.57) 

from Langmuir 

Equation
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d ln

d

K

T

1
∞

 = 
DH

RT

∞
2

Substituting K1 from Eq. (1.2.59), we get

d ln

d

q

q1-
∞Ê

ËÁ
ˆ
¯̃

p

p

T
 = 

DH

RT

∞
2 (1.2.60)

where p° is the standard-state unit pressure. If the factor q is kept constant,

∂ ∞
∂

È
ÎÍ

˘
˚̇

ln ( / )p p

T q

 = – 
Dq H

RT

∞
2 (1.2.61)

where Dq Hº will known as isosteric enthalpy of adsorption. Equation (1.2.61) 

may be written as

d ln (p/p°) = – 
Dq H

RT

∞
2

 dT (q is constant)

Integrating the above expression, we get

ln (p/p°) = 
Dq H

RT

∞
 + constant (Eq. 1.2.57)

The integration within the limits gives 

ln
p

p

2

1

 = 
Dq H

R

∞ 1 1

2 1T T
-

Ê
ËÁ

ˆ
¯̃

(Eq. 1.2.58)

The change of free energy on adsorption can be calculated from the relation

DadsG° = - RT ln K°1 (1.2.62)

Finally, the entropy change on adsorption can be calculated from the relation

DadsS° = 
D Dads adsH G

T

∞ - ∞
(1.2.63)

The data below show the pressure of CO required for the volume of adsorption to be 10.0 

cm3 at each temperature (all volumes corrected to 1 atm and 273 K). Determine (i) the 

enthalpy of adsorption at this coverage, (ii) change of free energy on adsorption at 230 K, 

and (iii) entropy change on adsorption at 230 K.

T/K 200 210 220 230 240 250

p/mmHg 30.0 37.1 45.2 54.0 63.5 73.9

Given also that Vmono = 110 cm3.

(i) Isosteric enthalpy of adsorption can be determined from the slope of the graph 

between log (p/p°) and 1/T. The slope is equal to DadsH/2.303R. Thus from given 

data, we have

p/mmHg 30.0 37.1 45.2 54.0 63.5 73.9

log (p/mmHg) 1.4771 1.5694 1.6551 1.7324 1.8024 1.8680

T/K 200 210 220 230 240 250

K/T 5 ¥ 10-3 4.76 ¥ 10-3 4.55 ¥ 10-3 4.35 ¥ 10-3 4.17 ¥ 10-3 4.02 ¥ 10-2

Example 1.2.7

Solution
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The graph between log (p/p°) and 1/T is shown in Fig. 1.2.8. The slope of the graph is

- 395 and thus the slope of Eq. (1.2.58) will be - 395 K. Hence 

DadsH

R2 303.
= - 395 K

or DadsH = (2.303)(8.314 J K-1 mol-1) (- 395 K)

  = - 7 563 J mol-1

(ii) At 230 K, the fraction of area covered will be given by

 q =
V

Vmono

 = 
10 0

110 0

.

.

cm

cm

3

3
 = 0.090 9

Hence, K1 =
q

q1-
1

p
 = 

0 090 9

1 0 090 9

.

.-
Ê
ËÁ

ˆ
¯̃

1

54 0 760( . / ) atm

Ê
ËÁ

ˆ
¯̃

  = 1.4073 atm-1

 DadsG°= - RT ln K°1

= - (8.314 J K-1 mol-1) (230 K) (2.303 ¥ log 1.407 3)

= - 653.35 J mol-1

(iii) Now since 

      DG° = DH° - TDS°

we have DS° =
D DH G

T

∞ - ∞

Substituting the given data, we have

 DadsS° = 
- - -- -7563 653 35

230

1 1J mol J mol

K

( . )
 = - 30.04 J K-1 mol-1

1.85

1.75

1.65

1.55

1.45

4.0 4.2 4.4 4.6 4.8 5.0

0.59 × 10–3

– 0.233

slope = – 0.233 / (0.59 × 10 )–3

lo
g
(
/
m
m
H
g
)

p

(1/ ) × 103 KT

= – 395

Fig. 1.2.8
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The DH of adsorption at constant amount of vapour adsorbed is called the isosteric  

enthalpy of adsorption, Dq H. The adsorption of N2 on charcoal amounted to 0.894 cm3

(STP) g-1 at p = 4.6 atm and 194 K, and at 35.4 atm and 273 K. Calculate Dq H.

Employing the reaction

ln
p

p

2

1

 = 
Dq H

R

1 1

2 1T T
-

Ê
ËÁ

ˆ
¯̃

we have ln
4 6

35 4

.

.

atm

atm

Ê
ËÁ

ˆ
¯̃

 = 
Dq H

8 314 1 1. J K mol- -
1

194

1

273K K
-Ê

ËÁ
ˆ
¯̃

 Dq H = (8.314 J K–1 mol-1)
194 273

79
K

¥Ê
ËÁ

ˆ
¯̃ 2 303

4 6

35 4
. log

.

.

Ê
ËÁ

ˆ
¯̃

    = - 11376 J mol-1 = - 11.376 kJ mol-1

On the basis of forces of attraction between adsorbent and adsorbate, adsorption

amely, van der Waals adsorption (or 
physical adsorption) and chemisorption (or activated adsorption). The general 

characteristics of these adsorptions are described in Table 1.3.1.

Table 1.3.1 Characteristics of Physical Adsorption and Chemisorption

Physical Adsorption Chemisorption

1. The forces of attraction between adsorbent The forces of attraction between adsorbent 

  and adsorbate are of van der Waals type and absorbate are of chemical nature

  (weak forces). (strong forces).

2. This predominates at low temperatures. This usually occurs at high temperature.

  adsorption at low temperatures.

4. The enthalpy of adsorption is low and has The enthalpy of adsorption is high and has 

   a value of about 20 kJ mol–1 or less. a value of the order of 80 to 420 kJ mol–1.

5. This type of adsorption attains equilibrium This type of adsorption is relatively slower.

  very rapidly on changing the temperature 

  and pressure of the system.

6. This is reversible in nature. This is usually irreversible in nature. For 

example, O2 adsorbed on charcoal, when 

   desorbed also contains CO and CO2.

7. The activation energy involved in this The activation energy involved in this

  adsorption is small and is often less adsorption is high. It is for this reason

  than 5 kJ mol–1. It is for this reason, this this is attained only at high temperatures.

  is even attained at low temperatures.

8. Adsorption in this case is often multilayer. Adsorption in this case is monolayer and   

                    thus Langmuir adsorption isotherm is

applicable.

Example 1.2.8

Solution

1.3 PHYSICAL ADSORPTION AND CHEMISORPTION
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Sometimes physical adsoprtion can pass over to chemisorption on increasing the

temperature of system. For example, hydrogen shows physical adsorption on a nickel

surface at 73 K. On increasing temperature, the extent of adsorption decreases 

sharply as is to be expected. But very soon, the extent of adsorption starts increasing

and attains a maximum value at about 173 K. Beyond 173 K, the extent of adsorption 

again starts decreasing. Thus, the physical adsorption which predominates at 73 K 

is passed over to chemisorption at 173 K. This transformation can be explained on

the basis of intersections of potential energy curves of physical adsorption and 

chemisorption as shown in Fig. 1.3.1.

(a) (b)

The potential energy diagram of physical adsorption shows a shallow minimum 

at a relatively long distance from the surface as compared to the larger minimum 

observed in case of chemisorption. The depths of these minima are in agreement 

with the enthalpies of adsorption involved in these two cases. It may be seen that 

at a distance very large from the surface, the gaseous molecules have zero potential 

energy in case of physical adsorption while those in case of chemisorption have a 

positive value. These suggest that the molecules in physical adsorption are not very

much perturbed as a result of weak forces of attraction while those involved in 

cheimsorption are very much perturbed. The perturbation may be present even up 

to the extent of excited electronic state or a dissociated state and thus the molecule 

in chemisorption is altogether different from the ground state of the molecule. The 

two potential energy curves may intersect each other and at the point of intersection, 

both of them have the same energy. As in the interaction of two atomic orbitals to 

form bonding and antibonding orbitals, we have two different states, one with higher 

and one with a lower energy, as shown by the dashed curves in Fig. 1.3.1b. At round

about these intersection points, the physical adsorption can pass over to the 

chemisorption. Now this passing over may or may not require activation energy. 

In the latter, the intersection occurs on the negative side of the potential energy of 

physical adsorption while in the former, it takes place on the positive side of potential

energy. These two cases are also shown in Fig. 1.3.1.

Fig. 1.3.1 Potential

physical adsorption (P) 

(a) with no activation 

energy, and (b) with an 

activation energy
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The concentration of a solute at the surface of a solution may be different from 

that present in the bulk. While discussing the surface tension of a liquid, we 

have seen that the surface tends to decrease its surface area in order to obtain a 

minimum value of surface free energy. The latter arises because of the unbalanced

molecular forces experienced by the molecules at the surface. It was also seen 

that the surface tension is numerically equal to the surface energy per unit area of 

the surface. Now if the added solute has a surface tension lower than that of the 

liquid, then it has a tendency to accumulate more at the surface of the liquid since 

this way the surface tension of the liquid (or the surface free energy per unit area 

of the surface) is decreased. A quantitative expression which relates the excessive 

concentration of the solute at the surface (or the extent of adsorption) and the 

change in surface tension of the liquid (solvent) due to the addition of the solute 

was derived by J.W. Gibbs and is thus known as Gibbs adsorption equation. The 

latter can be derived as follows.

Following the additivity rule, the free energy of a system consisting of two 

components is given by

G = n1m1 + n2m2 (1.4.1)

where n1 and n2 are the amounts and m 1 and m2 are the chemical potentials of the 

two components, respectively.

Since in the present case we are dealing with the change in the surface free 

energy, we must also add a factor corresponding to surface energy in Eq. (1.4.1). 

If g  is the interfacial tension (or the interfacial energy per unit area) and s is the 

surface area, then the surface free energy is equal to g s. Thus, Eq. (1.4.1), in the 

G = n1m 1 + n2 m 2 + g s (1.4.2)

The complete differential of Eq. (1.4.2) is given by

dG = n1dm1 + m1dn1 + n2dm2 + m2dn2 + g  ds + sdg (1.4.3)

The function G T, p,

n1, n2 and s, i.e.

G = f (T, p, n1, n2, s) (1.4.4)

The total differential of G will be given by

dG =
∂
∂

Ê
Ë

ˆ
¯

G

T p n n s, , ,1 2

dT +
∂
∂

Ê
ËÁ

ˆ
¯̃

G

p T n n s, , ,1 2

 dp + 
∂
∂

Ê
ËÁ

ˆ
¯̃

G

n
T p n s1

2, , ,

 dn1   

   +
∂
∂

Ê
ËÁ

ˆ
¯̃

G

n
T p n s2

1, , ,

dn2 + 
∂
∂

Ê
Ë

ˆ
¯

G

s T p n n, , ,1 2

ds (1.4.5)

or dG = - SdT + Vdp + m1dn1 + m2dn2 + g ds (1.4.6)

At constant temperature and pressure, Eq. (1.4.6) reduces to

dGT, p = m1dn1 + m2dn2 + g ds (1.4.7)

1.4 ADSORPTION AT THE SURFACE OF A LIQUID

Gibbs Adsorption 

Equation
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From Eqs. (1.4.7) and (1.4.3), we get

n1dm1 + n2dm2 + sdg = 0 (1.4.8)

The corresponding expression for the bulk of the liquid is

n0
1 dm1 + n0

2 dm 2 = 0 (1.4.9)

where n0
1 and n0

2 are the respective amounts of the liquid and solute in the bulk phase.

Now since the system is at equilibrium, the chemical potential of each of the 

components in both phases (surface and bulk) must be identical. When the system is

slightly disturbed and it attains the new equilibrium, then the changes in chemical 

potentials must be identical in both the phases, i.e. the differentials dm1 and dm2 in 

Eqs (1.4.8) and (1.4.9) are identical. Eliminating dm1 from these two equations, we get

n1 -
Ê
ËÁ

ˆ
¯̃

n

n

2
0

1
0 2dm  + n2dm2 + sdg = 0

or n
n n

n
2

1 2
0

1
0

-
Ê
ËÁ

ˆ
¯̃

 dm2 + sdg = 0

or –
d

d

g

m2

 = 
n n n n

s

2 1 2
0

1
0- ( / )

(1.4.10)

The expression within the bracket of Eq. (1.4.10) gives the amount of solute 

that would be associated with the amount n1 of the liquid in the bulk phase. Since 

n2 is the amount of solute that is associated with the amount n1 of the liquid at the 

surface, the numerator on the right-hand side of Eq. (1.4.10) gives the excessive 

amount of solute that is present in the surface of the liquid. Dividing this quantity 

with s gives the excessive concentration of solute per unit area of surface. This 

quantity is represented by the symbol G2. Thus, we have

 G2 = -
d

d

g

m2

(1.4.11)

Equation (1.4.11) is the required Gibbs adsorption equation. If we eliminate dm 2
instead of dm 1 from Eqs (1.4.8) and (1.4.9), we would have got the Gibbs adsorption 

equation as applicable to the solvent. It has a form

 G1 = –
d

d

g

m1

(1.4.12)

where G1 is the surface excessive concentration of the solvent at the surface of 

liquid.

The chemical potential of the solute is given by

m 2 = m*2(1) + RT ln a2

where m2*(1) is the chemical potential of pure solute in liquid phase. Hence

dm2 = RT d ln a2 (1.4.13)
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Substituting Eq. (1.4.13) in Eq. (1.4.11), we get

G2 = – 
1

RT

d

d ln

g

a2

 = – 
a

RT

2 d

d

g

a2

(1.4.14)

For a dilute solution, we have

G2 = – 
1

RT

d

d ln

g

( / )c c2 ∞
 = – 

c

RT

2 d

d

g

c2

(1.4.15)

where c° is standard unit concentration.

According to Szyszkowski, the surface tension of an aqueous solution of butyric acid is 

related at 291 K to the bulk concentration c by the empirical relation

g * - g = (29.8 dyn cm-1) log {1 + (19.64 mol-1 dm3)c}

where g * is the surface tension of pure water. Apply the Gibbs adsorption equation to 

calculate the excess concentration G of solute per square centimetre of surface when 

c = 0.01 mol dm-3. What would be the value of G when c

The Gibbs adsorption equation is

G = – 
c

RT

d

d

g

c
(1)

The expression of dg /dc can be determined from the given empirical relation

 g * - g  = (29.8 dyn cm-1) log {1 + (19.64 mol-1 dm3)c}

  =
29 8

2 303

1.

.
dyn cm-Ê

ËÁ
ˆ
¯̃  ln {1 + (19.64 mol-1 dm3)c}

Thus, –
d

d

g

c
=

29 8

2 303

1.

.
dyn cm-Ê

ËÁ
ˆ
¯̃

19 64

1 19 64

3.

( . )

mol dm

mol dm

1

1 3

-

-+
Ê
ËÁ

ˆ
¯̃c

Hence, Eq. (1) becomes

 G =
c

RT

29 8

2 303

1.

.
dyn cm-Ê

ËÁ
ˆ
¯̃

19 64

1 19 64

3.

( . )

mol dm

mol dm

1

1 3

-

-+
Ê
ËÁ

ˆ
¯̃c

Substituting the given data, we get

 G =
0 01

8 314 10 291

3

7

.

( . )( )

moldm

ergs K mol K1 1

-

- -¥
29 8

2 303

1.

.
dyn cm-Ê

ËÁ
ˆ
¯̃      

    

      ¥ 
19 64

1 19 64 0 01

3.

( . )( . )

mol dm

mol dm mol dm

1

1 3 3

-

- -+
Ê
ËÁ

ˆ
¯̃

  = 8.78 ¥ 10-11 mol cm-2

The value of G when c

lim
cÆ•

G = lim
cÆ•

c

RT

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

-
-

-+
29 8

2 303

19 64

1 19 64

.

.

.

( .
dyn cm

mol dm

mol d

1
1 3

1 mm3)c

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

Example  1.4.1

Solution
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  = lim
cÆ•

1 29 8

2 303

19 64

1 19 64 3RT c

.

.

.

( / ) .
dyn cm

mol dm

mol dm

1
1 3

1
-

-

-
Ê
ËÁ

ˆ
¯̃

Ê

+ËËÁ
ˆ
¯̃

È

Î
Í

˘

˚
˙

  =
1

RT

29 8

2 303

.

.
 dyn cm-1

Thus, we have

lim
cÆ•

G =
29 8

8 314 10 291 2 303

1

7

.

( . ) ( )( . )

dyn cm

ergs K mol K1 1

-

- -¥

= 5.35 ¥ 10–10 mol cm–2

According to Szyszkowski, the surface tension of an aqueous solution of an acid is related 

at 291 K to the bulk concentration c  by the empirical relation 

g * - g  = (0.030 8 N m-1) log {1 + (0.018 64 mol-1 dm3)c}

where g * is the surface tension of pure water. Apply the Gibbs adsorption equation to 

calculate the excess concentration G of solute per square metre of surface when c = 0.01 

mol dm-3. What would be the value of G when c

The Gibbs adsorption equation is 

G = –
c

RT

d

d

g

c
(1)

Now dg /dc obtained from the given empirical expression is

–
d

d

g

c
 = 

0 030 8

2 303

.

.

N m 1-Ê
ËÁ

ˆ
¯̃

0 018 64

1 0 018 64

3.

( . )

mol dm

mol dm

1

1 3

-

-+
Ê
ËÁ

ˆ
¯̃c

Hence, Eq. (1) becomes

 G =
c

RT

0 030 8

2 303

.

.

N m 1-Ê
ËÁ

ˆ
¯̃

0 018 64

1 0 018 64

3.

( . )

mol dm

mol dm

1

1 3

-

-+
Ê
ËÁ

ˆ
¯̃c

At the given value of c, we have

 G =
10

8 314 291

3

1

mol m

J K mol K1

-

- -

Ï
Ì
Ó

¸
˝
˛( ). ( )

0 030 8

2 303

1.

.

N m-Ï
Ì
Ó

¸
˝
˛

¥ 
0 018 64 10

1 0 018 64 0 01

1 1 3

3

. ( )

( . ) ( .

mol m

mol dm mol dm )1 3

- -

- -+
Ï
Ì
Ó

¸
˝
˛

  = 1.030 ¥ 10-6 mol m-2

The value of G when c

lim
cÆ•

G = lim
cÆ•

1 0 030 8

2 303

0 018 64

1 0 018 64

1

RT c

Ê
ËÁ

ˆ
¯̃

Ê
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ˆ
¯̃ +

- -.

.

.

( / ) .

N m mol dm1 3

mmol dm1 3-

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

  =
1

RT

0 030 8

2 303

.

.

N m 1-Ê
ËÁ

ˆ
¯̃

Thus, we have G =
1

8 314 2911( . )( )J K mol K1- -
0 030 8

2 303

.

.

N m 1-Ê
ËÁ

ˆ
¯̃

= 5.53 ¥ 10-6 mol m-2

Example 1.4.2

Solution
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The surface tension of ethanol-water mixtures follows the equation 

     g /(10-3 N m-1) = 72.0 - 0.5 (c/mol dm-3) + 0.2 (c/mol dm-3)2

where c is the molar concentration of ethanol. The temperature is 298 K. Calculate the 

surface excess of ethanol for a 0.5 mol dm-3 solution.

From the equation

g /(10-3 N m-1) = 72.0 - 0.5 (c/mol dm-3) + 0.2 (c/mol dm-3)2

we get

d Nm

moldm

1

d( /

( / )

)

g 10 3

3

- -

-c
 = - 0.5 + 0.4 (c/mol dm-3)

Thus, at c = 0.5 mol dm-3, we have

d

d

g

c
= (- 0.5 + 0.4 ¥ 0.5) (10-3 N m-1 mol-1 dm3)

  = - 0.3 ¥ 10-3 N m-1 mol-1 dm3 ∫ – 0.3 ¥ 10–6 N m2 mol–1

Hence, G =
c

RT

d

d

g

c

  = – 
( . )

( . )( )

0 5

8 314 298

mol dm

J K mol K

3

1 1

-

- -  (- 0.3 ¥ 10-6 N m2 mol-1)

  = 6.05 ¥ 10-11 mol dm-3 ∫ 6.05 ¥ 10-12 mol cm-2

According to Eq. (1.4.15), G2 is positive if (dg /dc2) is negative. In other words, 

if the surface tension of a solvent is decreased as a result of adding a solute, 

then the latter has relatively more concentration at the surface than in the bulk 

of the solution. Substances which produce a marked reduction in surface tension 

are known as surface-active substances or surfactants. The limiting value of the 

decrease of surface tension with concentration, i.e. the quantity - (dg /dc2)c
2

Æ 0

is called the surface activity. Most of the organic compounds if added to water, 

decrease the surface tension of the latter, thus they are present in excess at 

surface of water. Soaps, detergents and dyestuffs also belong to the surface-active 

materials. The reason why the surface-active substances have a tendency to have 

more concentration at the surface of water can be easily understood in terms of 

solvent-solvent and solute-solvent interactions. In general, the interaction between 

surface-active solute and solvent are of weaker nature than those existing between 

solvent-solvent molecules. Because of the stronger interactions between the solvent 

and solvent molecules, the solute molecules are pushed up to the surface from the 

bulk of the solution and hence G2 is positive. The presence of these substances 

at the surface markedly decreases the molecular interaction in the surface layer. 

Consequently, a sharp decrease in the surface tension is observed as more and 

more of solute is added to the solvent.

In fact, any substance which exhibits positive deviations from Raoult’s law is 

expected to have a positive value of G.  Such a substance will be present in excess 

at the surface of the solution. The orientations of surface-active materials such as 

concentration of the solution is fairly large. The carboxylic group or —OH group 

points towards the surface of water and the hydrocarbon chain points vertically 

away from the solution. This conclusion has been derived from the following

Example  1.4.3 

Solution

Surface-Active

Substances

Orientations of 

Surfactants on 

the Surface of a 

Solution
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equation as proposed by B. Szyszkowski on the variation of the surface tension of 

relatively concentrated aqueous solutions of soluble fatty acids with concentration.

g

g *
 = 1- X

c

Y
ln (1.4.16)

where g and g * are the surface tensions of solution of concentration c and of 

pure water, respectively, and X and Y are constants. The value of X is found to 

be constant for a series of fatty acids containing two to six carbon atoms whereas 

that of Y decreases with increasing length of the hydrocarbon chain. Rearranging

Eq. (1.4.16), we have

g  = g * {1 - X ln (c/mol dm-3) + X ln (Y/mol dm-3)}

Differentiating this, we have 

dg  = g * {- X d ln (c/mol dm-3)}

or
d

d ln moldm

g

( / )c -3 = - Xg * (1.4.17)

Substituting Eq. (1.4.17) in Eq. (1.4.15), we get

G2 = –
1

RT
(–Xg  *) = X

g *

RT
(1.4.18)

Since the right side of Eq. (1.4.18) involves only constant terms, it may be 

concluded that the surface excessive concentration attains a constant value and is 

independent of the length of the hydrocarbon chain of the fatty acid. This can be 

explained on the basis of forming a single layer of fatty acid molecules with CO2H

groups pointing toward the surface and hydrocarbon tails pointing vertically away 

from the solution. The concentration of the surface-adsorbed fatty acid increases 

as the concentration of the latter is increased until a complete unimolecular layer 

is formed. If the value of G in the latter stage is known, it can be used to calculate 

the area occupied by each molecule at the surface as shown in the following.

The quantity G represents the excessive concentration of solute at the surface, 

thus the area A occupied by a single molecule will be equal to

A = 
1

NAG
 = 

1

NA

R

X

G

g *
 = 

k

X

BG

g *

where kB is Boltzmann constant. The reported value of X from the Szyszkowski 

work is equal to 0.179. With this, the value of A at 293 K is found to be

A =
{8.314 J K mol /(6.022 10 mol )}(293 K)

0.179 (0.072 75 N m

1 1 23 1

1

- - -

-

¥
¥ ))

  = 3.10 ¥ 10-19 m2

This value is slightly greater than the value obtained by other methods. This is 

probably due to the intrusion of water molecules into the surface layer.

For surface-inactive substances dg /dc is positive, i.e. an increase in the 

concentration of a surface-inactive substance in a solution causes an increase in 

the surface tension of the solution. From Gibbs equation, it follows that the value 

Surface-Inactive

Substances
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of G2 in such cases is negative indicating that the substance has larger concentration 

in the bulk in comparison to that present at the surface. This type of behaviour is 

known as negative adsorption. Examples include most of inorganic salts, sugar, 

etc. With surface-inactive substances, the concentration of solvent in the surface 

layer changes very slightly and, it is for this reason, the increase in surface tension 

is usually very small.

The fact that surface-inactive substances have more concentration in the bulk in 

comparison to that present at the surface can be explained on the basis of solvent-

solvent and solute-solvent interactions. In general, the interaction between solute 

and solvent are of stronger in nature than those existing between solvent-solvent 

molecules. In view of this, the concentration of the solute is larger in the bulk since 

it allows more interactions between solute and solvent and hence more stability. It 

may be pointed here that the above interaction conditions also lead to the negative 

deviations from Raoult’s law.

Certain insoluble substances such as long chain fatty acids and alcohols form thin 

by adding a small quantity of a solution of the substance in benzene on to the 

increases gradually up to a certain stage followed by a steep rise. Figure 1.4.1 

displays a typical variation of force against the available area per molecule of the 

F–A isotherm 

and is a two-dimensional analogue of a p versus V isotherm. At large areas the 

pressure is small and it increases slowly with decreasing area until an area of A m

rapidly. It is reasonable to assume that at the area Am

substance are closely packed.

It is found that for a series of long-chain compounds with polar end-groups, 

such as fatty acids, alcohols, amides and methyl ketone, the area Am has a constant 

value of about 0.205 nm2. Thus, the area Am is independent of their chain length. The

F

Am

Area/molecule

Surface Pressure

Fig. 1.4.1 F–A

isotherm
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constant value of A m can be explained on the basis that the molecules of these 

towards water and the insoluble hydrocarbon chain projecting vertically away from 

water. At Am, the molecules are closely packed forming a monolayer and thus 

represents the area of cross-section of the hydrocarbon chain. The value of Am can

be used to determine the length of the molecule. For example, the molecular 

volume of solid steric acid is 0.556 nm3. If l is the length of the molecule, then 

it is obvious that

Am ¥ l = 0.556 nm3

Therefore

l = 
( . )0 556 3nm

mA
 = 

( . )

( . )

0 556

0 205

3

2

nm

nm
 = 0.271 nm

Since the surface excess concentration G is expressed in mol per unit area, it is 

obvious that the area occupied by 1 mol of the substance is 

s = 
1

G
(1.4.19)

pressure p on the movable barrier is simply the difference between the surface 

p = g * - g (1.4.20)

For dilute solutions, it is observed that the surface tension decreases linearly 

with the concentration such that

g  = g * - bc (1.4.21)

where b is a constant. Combining Eqs (1.4.20) and (1.4.21), we get

p = bc (1.4.22)

Now the Gibbs adsorption equation may be represented in terms of surface 

pressure. We have

G = – 
c

RT

d

d

g

c

From Eq. (1.4.21), we have

dg  = - b dc (1.4.23)

Substituting Eq. (1.4.23) and c in terms of p from Eq. (1.4.22) in the Gibbs 

adsorption, we get

 G = – 
( / )p b

RT

( )-b c

c

d

d

 G =
p

RT
(1.4.24)

Substituting G  from Eq. (1.4.19) in Eq. (1.4.24), we have

1

s
 = 

p

RT
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or ps = R T (1.4.25)

Equation (1.4.25) is known as the two-dimensional ideal gas law and is 

employed to calculate either p (i.e. - dg, the change in surface tension on adsorption)

or s.

¥ 10-5 g of an alcohol X (molar mass 242 g mol–1) spread on water 

was compressed into a monomolecular layer occupying an area 15.0 ¥ 17.9 cm2. The density 

of alcohol is 0.818 g cm-3. Calculate: (a) the area of cross-section of the molecule, (b) its 

length, and (c) the decrease in surface tension of water at 298 K. Given g* = 0.072 N m-1.

(a)  Number of molecules in the given mass of X

=
( . )

( )

5 14 10

242

5

1

¥ -

-
g

g mol
 (6.022 ¥ 1023 mol-1) = 1.279 ¥ 1017

  Area occupied by these molecules = 15.0 ¥ 17.9 cm2 = 268.5 cm2

  Hence, area occupied by a single molecule,

A = 
( . )

( . )

268 5

1 279 10

2

17

cm

¥
 = 2.09 ¥ 10-15 cm2

(b)  Volume occupied by 1 g of X

=
1

r
 = 

1

0 818 3( . )g cm-  = 1.223 cm3 g-1

  Volume occupied by 5.14 ¥ 10-5 g of X

= (5.14 ¥ 10-5 g) (1.223 cm3 g-1) = 6.284 ¥ 10-5 cm3

  Volume occupied by 1 molecule of X

=
( . )

( . )

6 284 10

1 279 10

5 3

17

¥
¥

- cm
 = 4.914 ¥ 10-22 cm3

  Let l be the length of the given molecule. It is obvious that 

 A ¥ l = 4.914 ¥ 10-22 cm3

      or   l = 
4 914 10 22 3. ¥ - cm

A
 = 

( . )

( . )

4 914 10

2 09 10

22 3

15 2

¥
¥

-

-
cm

cm

= 2.35 ¥ 10-7 cm = 235 nm

(c) Amount of X, 

n  =
( . )

( )

5 14 10

242

5

1

¥ -

-
g

g mol
 = 2.124 ¥ 10-7 mol

  Area occupied by the amount n of X = 268.5 cm2

  Area occupied by 1 mol of X,

 s = 
( . )

( . )

268 5

2 124 10

2

7 1

cm

mol¥ - -  = 1.264 ¥ 109 cm2 mol-1

    = 1.264 ¥ 105 m2 mol-1

Example 1.4.4 

Solution
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  Using two-dimensional ideal gas law ps = RT,  we have

 p =
RT

s
 = 

( . )( )

( . )

8 314 298

1 264 10

1 1

5 2 1

N mK mol K

m mol

- -

-¥
  = 0.019 6 N m-1

Since  p = g * - g , therefore 

        g = g * - p  = 0.072 N m-1 - 0.019 6 N m-1

    = 0.052 4 N m-1.

When 10–7 g of X is added to 200 cm2 surface, the surface tension at 298 K is lowered by 

0.20 dyn cm-1. Calculate the molar mass of X.

Let M be the molar mass of X. Thus,

Amount of X = 
( )10 7- g

M

p = g * - g = 0.20 dyn cm-1

Using the two-dimensional ideal gas law, ps = RT, we have

s = 
RT

p
=

( . )( )

.

8 314 10 298

0 20

7 1 1

1

¥ - -

-
dyn cm K mol K

dyn cm

   = 1.239 ¥ 1011 cm2 mol–1

Now for 200 cm2 surface area, the amount of the compound X is

( )

( . )

200

1 239 10

2

11 2 1

cm

cm mol¥ -  = 1.614 ¥ 10- 9 mol

Hence, ( )10 7- g

M
= 1.614 ¥ 10- 9 mol

or M  = 
( )

( . )

10

1 614 10

7

9

-

-¥
g

mol
 = 61.94 g mol -1

A protein with a molar mass of 60 000 g mol–1

-1 at 298 K?

From the two-dimensional ideal gas law ps = RT, we have

s  = 
RT

p
 = 

( . ) ( )

( . )

8 314 298

0 005

1 1

1

N m K mol K

N m

- -

-

  = 4.955 ¥ 105 m2 mol-1

Amount of protein,

n = 
( . )

( )

0 001

60 000 1

g

g mol-

Area occupied by the amount n

=
0 001

60 000

.
mol

Ê
ËÁ

ˆ
¯̃

 (4.955 ¥ 10 5 m2 mol-1) = 82.6 ¥ 10- 4 m2

= 82.6 cm2

Example 1.4.5 

Solution

Example  1.4.6 

Solution
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REVISIONARY PROBLEMS

1.1 What do you understand by the terms (a) absorption, (b) adsorption,                            

(c) adsorbent, and (d) adsorbate? Assuming adsorption to be a spontaneous 

process, show that it is always an exothermic process.

1.2 (a)Discuss how the extent of adsorption varies on,

(i) increasing the surface area per unit mass of adsorbent

(ii) increasing the temperature of the system, and

(iii) increasing the pressure of the gas.

(b) Show that the effects produced on the extent of adsorption by changing 

temperature and pressure are consistent with the Le-Chatelier’s principle.

1.3 (a)What is an adsorption isotherm? Display qualitatively, how the extent of 

adsorption varies with pressure at a constant temperature and also display the 

which are observed at high pressures.

(b) The adsorption of gases on solids can be described by the Freundlich’s 

empirical relation

x

m

Ê
ËÁ

ˆ
¯̃ = kp1/n

Explain, the terms involved in the above expression and also explain why the 

value of n should be equal to or greater than one.

(c) Outline the assumptions made during the derivation of Langmuir adsorption 

equation and hence derive this equation. Explain, how the variation of 

adsorption is accounted for (i) at lower pressure, (ii) at higher pressure, and 

(iii) in the intermediate range of pressure.

(d) Explain, how the surface area of an adsorbent can be determined with the 

help of Langmuir adsorption equation.

1.4 Adsorption of gases on the surface of adsorbent is no more monolayer at high 

pressures and low temperatures. Explain, why it is so.

1.5 Describe Jura and Harkins thermodynamic treatment of adsorption of gases on 

solids.

1.6 If in an adsorption of a gas, surface tension of the adsorbent varies as

g  - g * = a  - bG

  where a and b are constants, show that the Gibbs adsorption equation is reduced 

to the Freundlich adsorption equation.

1.7 If in an adsorption of a gas, surface tension of the adsorbent varies as

 g - g * = a + 
RT

V

u

s

mono

m

ln (1 - u /umono)

  where Vm is the molar volume of the gas and a is a constant, show that the 

Gibbs adsorption equation is reduced to the Langmuir adsorption equation.

1.8   (a) Derive the BET equation

 utotal =
umono C p p

p p C p p p p

( / )

( / ) ( / ) ( / )

0

0 0 01 1-{ } + -{ }
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C in the BET equation?

(c) Show qualitatively how the BET equation accounts for the explanation of 

1.9 What do you understand by isosteric enthalpy of adsorption? Derive 

thermodynamically the following relation

ln (p/p°) =
DadsH

R

1

T
+ constant

  What type of graph is expected between log (p/p°) and 1/ T? What will be its 

slope?

1.10 (a) Classify the adsorption of gases on solids on the basis of forces of interaction 

between adsorbent and adsorbate. What are their main characteristics?

(b) Sometimes physical adsorption can pass over to chemisorption as the 

temperature of the system is elevated. Explain, how this can be explained on 

the basis of intercrossing of potential energy diagrams of physical adsorption 

and chemisorption.

1.11 (a)Derive the Gibbs adsorption equation

 G2 = – 
c

RT

2 d

d

g

c2

(b) What are surface-active substances? Explain, why the surface tension of a 

(c) Explain how on the basis of Szyszkowski work (on the variation of the 

surface tension of relatively concentrated aqueous solution of fatty acids with 

of water can be derived. How does this help in determining the area occupied 

by a single molecule of the fatty acid?

extent in the presence of surface-inactive substances.

(e) Justify the statement

“A Substance which exhibits positive deviation from Raoult’s law must also 

exhibit a positive value of surface excessive concentration and if it exhibits 

negative deviation then it must also exhibit a negative value of surface excessive 

concentration.”

1.12 Gibbs adsorption equation is given as

 G = –
c

RT

d

d

g

c

  The change in surface tension is usually expressed as the surface pressure by 

the relation

 p = g * - g

  For dilute solutions, p may be taken proportional to solute concentration, i.e.

 p = k c

  Show that for ideal solutions, the Gibbs adsorption equation may be written as

 G2 =
c

RT

d

d

p

c
=

p

RT

or       p
1

2G
= RT

or                 ps  = RT
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  where s denotes the surface area per mole of solute. [Note that the equation

ps = RT has the form of two-dimensional ideal gas law. Hence, it may be 

dimensional ideal gas law.]

TRY YOURSELF PROBLEMS

1.1 By considering the derivation of the Langmuir isotherm on the basis of a  

reaction between the gas and the surface sites show that if a diatomic gas is 

adsorbed as atoms on the surface (i.e. the reaction is A2 + 2S  2AS), then

 q =
K p

K p1+

  [Hint: ka p (1 - q)2 = kd q 2]

1.2 Two gases, A and B compete for the binding sites on the surface of an adsorbent. 

Show that the fraction of the surface covered by A molecules is

 qA =
b p

b p b p

A A

A A B B1+ +
1.3 In an adsorption experiment, surface tension of the adsorbent follows the relation

g

g 0

= 1 - B ln 1+Ê
Ë

ˆ
¯

c

a

  where B and a are constants. Show that

 G =
B

RT

g 0 c a

c a

/

/1+
Ê
ËÁ

ˆ
¯̃

  If G is assumed to be proportional to q, the fraction of area covered, show that 

the above expression may be written as

 q = K1

K c

K c

2

21+
[Note that the above relation is very similar to that of Langmuir adsorption 

equation q = K1p/(1 + K1p).]

1.4 For adsorption of gases, the concentration in Gibbs adsorption equation may 

be replaced by pressure, such that

 G = – 
p

RT

d

d

g

p
= –

1

RT

d

d ln

g

( / )p p∞
  If the surface pressure p is given by

 p = g * - g

p = RT GÚ d ln (p/p°)

1.5 The surface tension of solutions of a sulphonic acid in water is found to vary as

         g  = g * - b c2

  Derive the relation connecting p and s. [Ans. p s = RT /2]

1.6 Show that at low surface coverage the Langmuir isotherm corresponds to the 

Freundlich expression with n = 1. Show also that at high surface coverage the 

Langmuir equation corresponds to the Freundlich expression with n equal to 
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NUMERICAL PROBLEMS

1.1 (a) What is the surface area of a cube having an edge-length of 1 cm?

(b) What would be the total surface area of the same material if it were 

subdivided into colloidal-size cubes, each having an edge-length of 10–7 cm?  

   [Ans. (a) 6 cm2 (b) 6 ¥ 107 cm2 ]

1.2 The Freundlich isotherm can be written as Va = k p1/n, where k and n are 

constants. The following data were obtained for the adsorption of methane on 

10 g of carbon black at 0 °C. Show that the data follow Freundlich isotherm. 

Determine the values of constants k and n.

p/mmHg 100 200 300 400

Va/cm3 97.5 144 182 214

1.3 Predict whether following data on the adsorption of acetic acid on charcoal at 

25 °C follow the Freundlich isotherm. If yes, what are the constants k¢ and n?

  [acid]/mol dm-3 0.05 0.10 0.50 1.0 1.5

ma /g 0.04 0.06 0.12 0.16 0.19

  where ma is the mass adsorbed per unit mass of charcoal.

   [Ans. k¢ = 0.160 and n = 2.32]

1.4 (a) The following table gives the volume u of nitrogen (reduced to 0 °C and  

1 atm) adsorbed per gram of active charcoal at 0 °C at a series of pressures:

p/Torr 3.93 12.98 22.94 34.01 56.23

 u /(cm3 g-1) 0.987 3.04 5.08 7.04 10.31

  Plot the data according to the Langmuir isotherm and determine the constants.

   [Ans. k1 = 156 Torr, umono = 40 cm3/g]

(b) If the area of nitrogen molecule is 0.162 nm2, what will be the area of 1 g 

of charcoal in the above problem?

1.5 A study of adsorption of ethylene at –183 °C on a barium and stronium carbonate 

coated cathode yielded the results:

p p/p0 V/cm3

   mmHg gas at 1 mmHg 

    and 25 °C

0.030 60 1.00 22.50

   0.030 35 0.992 15.22

   0.022 30 0.729 10.34

   0.012 70 0.415 7.85

   0.007 30 0.239 6.42

   0.004 48 0.146 4 5.52

   0.002 74 0.089 6 4.98

   0.001 85 0.060 5 4.60

   0.001 32 0.043 1 4.33

Compare the values for the volume of gas adsorbed for monolayer coverage 

calculated from the Langmuir isotherm and the Brunauer-Emmett-Teller 

equation.

1.6 One gram of activated charcoal has a surface area of 1 000 m2. If complete 

coverage is assumed, how much ammonia (in cm3 at STP) could be adsorbed 

on the surface of 25 g of the charcoal? Given: diameter of NH3 molecule =      

0.3 nm.

Freundlich

Isotherm

Langmuir Isotherm

Surface Area

and Surface 

Concentration
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1.7 Calculate the surface area of a catalyst that adsorbs 103 cm3 of nitrogen reduced 

to STP per gram in order to form a monolayer. The effective area occupied by 

nitrogen molecule on the surface is 0.162 nm2, i.e. 0.162 ¥ 10-14 cm2.

[Ans. 449 m2]

1.8 The adsorption of water by a high polymer varies with the relative pressure of 

H2O as follows:

p /p0 0.05 0.10 0.20 0.30 0.40 0.50

n/mol of H2O on

  100 g polymer 0.040 0.070 0.125 0.180 0.2450 0.340

   0.60 0.70 0.8 0.9 0.95

   0.485 0.740 1.345 2.350 3.010

  From a BET plot of p/n (p0 - p) against p/p0, obtain the amount of water 

adsorbed when the surface is covered by a monolayer.

1.9 Show that the data given in Problem 1.3 follow the BET and Jura and Harkins 

equations. Calculate the area of the solid by each of the above two methods.

1.10 Nitrogen gas adsorbed on charcoal to the extent of 0.921 cm3 g-1 at a pressure 

4.8 atm and at temperature of 190 K, but at 250 K the same amount of adsorption 

was achieved only when the pressure was increased to 32 atm. What is the 

molar enthalpy of adsorption of nitrogen on charcoal?

[Ans. - 12.7 kJ mol-1]

1.11 (i) At 19 °C, the surface tensions, g, of solutions of butyric acid in water can 

be represented accurately by the equation

g = g * - a ln (1 + b c)

where g * is the surface tension of water, while a and b are constants. Set up 

the expression for the excess surface concentration G as a function of c.

(ii) For butyric acid, the constants a and b in the preceding problem are a = 

13.1 and b = 19.62 mol-1 dm3. Calculate G at a concentration of 0.20 mol 

dm-3. [Ans. 4.32 ¥ 10-10 mol cm-2]

(iii) Calculate the limiting value of G as c becomes large. 

(Hint: Assume bc  1)

(iv) Assuming that the only molecules present in the surface are those 

corresponding to the excess, calculate from the result of part (iii) the area 

occupied by a molecule of butyric acid in the solution surface.

   [Ans. 0.305 nm2 ]

1.12 The surface tensions of dilute solutions of phenol in water at 303 K were

  mass % phenol 0.024 0.047 0.118 0.471

g /10-3 N m-1 72.6 72.2 71.3 66.5

  Calculate G2 from the Gibbs adsorption isotherm for a 0.01 mass % solution.

1.13 The surface excess concentration of surface active reagent is found to 

be 3 ¥ 10-10 mol cm-2 at 25 ∞C. Using the two-dimensional ideal gas law                            

p s = RT, calculate the surface tension of the solution. The surface tension of 

pure solvent is 0.072 N m-1. [Ans. 0.064 5 N m-1]

1.14 The surface tension of an aqueous solution of a surfactant decreases linearly 

with increase in concentration of the surfactant. If the surface tension of 2% 

solution of the surfactant is 0.068 N m-1 at 25 ∞C and the surface excess 

BET Isotherm

Enthalpy of 

Adsorption

Excess Surface 

Concentration
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concentration at this concentration is 20 ¥ 10-9 g cm-2, calculate the molar 

mass of the surfactant. Given: g * = 0.072 N m-1.  [Ans. 129 g mol -1]

  (Hint: Use the relation p /G  = RT)

gas law. Calculate the excess surface concentration required to cause a surface 

tension lowering of 0.01 N m-1 at 25°C. [Ans. 4.04 ¥ 10- 6 mol m–2]

1.16 An organic acid of molar mass 242 g mol–1 forms a linearly ideal gaseous 

monolayer on water at 25°C. Calculate the mass of acid per 100 cm2 required 
-1.      [Ans. 9.77 ¥ 10- 7 g]



Chemical Kinetics2
2.1 INTRODUCTION

The feasibility of a given reaction can be predicted with the help of thermodynamic 

principles. Besides this, the relative amounts of reactants and products at 

equilibrium position of the reaction can also be predicted. In addition, we can predict 

whether changes in the experimental conditions will increase or decrease the amount 

of a product at equilibrium. However, thermodynamic principles do not provide any 

information regarding the speed of the given reaction, i.e. how much time a given 

feasible reaction will take for its completion. Moreover, it is not possible to predict 

how the speed of a given reaction gets affected by changing the concentrations of 

various participants of the reaction or by changing the experimental conditions. 

The study of rate of reactions including its dependence on the concentrations of 

reacting species and the experimental conditions constitutes one of the topics of 

physical chemistry and is known as chemical kinetics. The important application of 

the study of rate of reaction is to use the kinetic data in establishing the molecular 

pathway or mechanism by which the reaction takes place.

Reactions with wide difference in speeds are known. On one extreme, we have 

reactions which proceed at very fast speeds. In some cases, the speed is so fast 

that the reaction appears to be instantaneous, e.g. reaction between a strong acid 

and a strong base. On the other extreme, reactions are known which proceed at 

very slow speeds. In some cases, the speed is so slow that virtually no visible 

results are observed. Examples include the reactions

H2(g) + Cl2(g) Æ 2HCl(g); (in dark)

H2(g) + 1
2

O2(g) Æ H2O(l)

C(graphite) + O2(g) Æ CO2(g)

Between these two extremes, we have reactions which proceed with measurable 

speeds. Examples include the decomposition of dinitrogenpentoxide dissolved in 

carbon tetrachloride, the hydrolysis of an ester, the reaction between persulphate 

and iodide ions, and the hydrolysis of sugars.

By the term rate of change of amount of a reactant or a product, we mean the 

disappearance of the amount of a reactant or appearance of the amount of a product 

occurring in a unit interval of time. Its SI unit is mol s–1.

2.2 RATE OF REACTION AND RATE OF REACTION DIVIDED BY CONSTANT VOLUME

Average Rate

of Change of 

the Amount of 

a Reactant or a 

Product
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Consider, for example, the simplest reaction
A Æ B (2.2.1)

It is obvious that the amount of A will decrease whereas that of B will increase as 

the reaction proceeds. Figure 2.2.1 displays a typical behaviour of the changes in the 

amounts of reactant and product as the chemical reaction shown above progresses.

t1 t2 t3

t4 t5
( )nA 5

( )nA 4

A

B

( )nB 3t

( )nB
2
t

( )nA 1t

( )nB 1t

( )nA
2
t

( )nA 3t

A
m
o
u
n
t
o
f
A

t

Let ( )n tA 1
 and ( )n tA 2

 be the amounts of A at times t1 and t2, respectively 

(Fig. 2.2.1). The decrease in the amount of A (which we represent by –DnA, note 

the negative sign as the amount of A decreases with time) in the time interval 

t2 – t1 (which we represent by Dt ) is equal to ( )n tA 2
 – ( )n tA 1

. Hence, the decrease 

in the amount of reactant A in a unit time interval becomes

rav = 
- D

D
n

t

A  = – 
( ) ( )n n

t t

t tA A2 1

2 1

-

-
(2.2.2)

We will see shortly that the rate expressed by Eq. (2.2.2) changes during the 

course of a reaction. In general, the rate in the beginning is fast and it decreases 

as the reaction proceeds. Hence, the rate represented by Eq. (2.2.2) is an average 

rate over the time interval t2 – t1. It is for this reason, the subscript av has been 

added to the symbol r. Note that rav is a positive quantity.

If ( )n tB 1
and ( )n tB 2

 are the amounts of B at times t1 and t2, respectively, the 

increase in the amount of B (which we represent by DnB, note the positive sign as 

the amount of B increases with time) in the time interval t2 – t1 (∫ Dt ) is equal to 

( )n tB 2
– ( )n tB 1

. Hence, the average rate of increase in the amount of B over the 

time interval t1 to t2 is

r ¢av = 
D
D
n

t

B  = 
( ) ( )n n

t t

t tB B2 1

2 1

-

-
(2.2.3)

From Eq. (2.2.1), it follows that the decrease in the amount of A will be equal 

to the increase in the amount of B and thus, we have

rav = r ¢av (2.2.4)

Illustration

of A Æ B

Fig. 2.2.1 The

variations of amounts 

of A and B with time 

for the reaction A Æ B
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The average rate of appearance of a product or disappearance of a reactant 

decreases with time. For example, in the time interval t2 – t3 (Fig. 2.2.1), which 

is equal to time interval t1 – t2, the average rate is given by

rav = – 
D
D
n

t

A   = – 
( ) ( )n n

t t

t tA A3 2

3 2

-

-
(2.2.5)

which is about 0.53 of that of Eq. (2.2.2).

In chemical kinetics, the rate at any particular instant rather than the average rate 

over a time interval has much more practical application and importance. This rate 

is known as the instantaneous rate rins

rins = lim
D tÆ0

-
Ê
ËÁ

ˆ
¯̃

D
D
n

t

A  = – 
d

d

An

t
(2.2.6)

or rins = lim
D tÆ0

D
D
n

t

BÊ
ËÁ

ˆ
¯̃

 = 
d

d

Bn

t
(2.2.7)

the slope of either reactant or product curve at the given time. For example, at time 

t3, rins of disappearance of A as determined from Fig. 2.2.1 is given by

r tins, 3
= – 

d

d

An

t t

Ê
ËÁ

ˆ
¯̃

3

 = – 
( ) ( )n n

t t

A A4 5

4 5

-
-

(2.2.8)

Consider now the reaction

A Æ 2B

where 1 mol of A on disappearing produces 2 mol of B, i.e. the amount of B will 

increase twice as fast as the decrease in amount of A. Hence, the quantity dnB/dt

will be twice as large as – dnA/dt. Obviously, we cannot write

–
d

d

An

t
 = 

d

d

Bn

t
(2.2.9)

but write either as

–
d

d

An

t
 = 

1

2

d

d

Bn

t
(2.2.10)

or as – 2 
d

d

An

t
=

d

d

Bn

t
(2.2.11)

In Fig. 2.2.2 where the changes in amounts of A and B during the course of 

–1 and 

1.0 mol s–1, respectively, and hence

  – 
d

d

An

t
 = 

1

2

d

d

Bn

t
 = 0.5 mol s–1

and    – 2 
d

d

An

t
 = 

d

d

Bn

t
 = 1.0 mol s–1

Instantaneous

Rate of Change

of the Amount of 

a Reactant and a 

Product

Illustration

 of A Æ 2B



Chemical Kinetics 49

A
/m

o
l

t/s

A chemical reaction may, in general, be represented as

0 = ni ii
AÂ (2.2.12)

where ni has a positive value for a product and has a negative value for a reactant.

The change in the amount of a reactant or a product during the course of a 

reaction may be represented in terms of the extent of the reaction (x

nt(Ai) = n0(Ai) + ni x (2.2.13)

where n0(Ai) is the amount of Ai at t = 0. The unit of x is that of the amount of 

the substance, i.e. mol.

The rate of change of the amount of Ai during the course of a reaction is obtained 

by differentiating Eq. (2.2.13) with respect to time, such that

d A

d

n

t

t i( )
 = ni

d

d

x

t
(2.2.14)

Thus, the change in extent of reaction with time is given as

d

d

x

t
 = 

1

ni

d A

d

n

t

t i( )
(2.2.15)

Note that ni as well as dnt(Ai)/dt have positive values for a product and have 

negative values for a reactant and thus the product of these two is always positive, 

i.e. the rate of change in extent of reaction is always a positive quantity.

If we write a reaction in a conventional form, such as

n1A1 + n2A2 = n3A3 + n4A4 (2.2.16)

n s have positive values. If x is the extent of 

reaction at time t, we will have

Reaction: n1A1 + n2A2 = n3A3 + n4A4

Initial amount: n0(A1)   n0(A2)  n0(A3)  n0(A4)

Amount at

time t: n0(A1) – n1x n0(A2) – n2x n0(A3) + n3x n0(A4) + n4x

Fig. 2.2.2 The

variation in the 

amounts of A and 

B with time for the 

reaction A Æ 2B

A Generalized 

Expression of 

Rate of Reaction
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The disappearance of amounts of reactants and appearance of amounts of 

products will be given by

–
d A

d

n

t

( )1 = – 
d A

d

{ ( ) }n

t

0 1 1-n x
= n1

d

d

x

t

–
d A

d

n

t

( )2 = – 
d A

d

{ ( ) }n

t

0 2 2-n x
= n2

d

d

x

t

d A

d

n

t

( )3 =
d A

d

{ ( ) }n

t

0 3 3+ n x
  = n3

d

d

x

t

d A

d

n

t

( )4 =
d A

d

{ ( ) }n

t

0 4 4+ n x
  = n4

d

d

x

t

From the above expressions, it follows that

d

d

x

t
 = – 

1

1n

d A

d

n

t

( )1  = – 
1

2n

d A

d

n

t

( )2  = 
1

3n

d A

d

n

t

( )3  = 
1

4n

d A

d

n

t

( )4

   (2.2.17)

In view of the equality shown above, the rate of reaction the rate of 
change of extent of the reaction. It has the unit of mol s–1 and is represented by 

the symbol x
∑

. It may be emphasized here that the rate of a reaction and rate of 
change of amount of a reactant or a product are two different things except when 

the rate of change of amount of a reactant or a product is to be divided by the 

product and is valid regardless of the conditions under which a reaction is carried 
out, e.g. it is valid for a reaction in which the volume varies with time or for a 

reaction involving two or more phases.

In chemical kinetics, it is more useful to use the term rate of reaction divided by 

may or may not be that of a single phase in which the reaction is taking place. 

For this, Eq. (2.2.15) becomes

r = 
x

∑

V
 = 

1

V

d

d

x

t
 = 

1

V

1

ni

d

d

n

t

i (2.2.18)

V is independent of time, then

r = 
x

∑

V
 = 

d

d

( / )x V

t
 = 

1

ni

d

d

( / )n V

t

i (2.2.19)

V is such that
n

V

i  = ci

where ci is the concentration of ith species, then

r = 
x

∑

V
 = 

d

d

( / )x V

t
 = 

1

ni

d

d

c

t

i (2.2.20)

divided by constant volume as

Defining Rate of 

Reaction

Rate of Reaction

Divided by Volume
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r = 
1

V
-

Ï
Ì
Ó

¸
˝
˛
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d

n

t
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The extent of reaction divided by constant volume is commonly abbreviated as 

x. Thus

r = 
x

∑

V
 = 

1

V

d

d

x

t
 = 

d

d

( / )x V

t
 = 

d

d

x

t

The speed of a chemical reaction, in general, depends on the concentrations of 

reacting species of the reaction. An early generalization in this regard is due to 

Gulberg and Waage. This generalization is known as law of mass action and is 

stated as follows.

The rate of a reaction is proportional to the product of effective concentrations 

of the reacting species, each raised to a power which is equal to the corresponding 

stoichiometric number of the substance in the chemical equation.

Thus, for a general reaction

n1A1 + n2A2 n3A3 + n4A4 (2.3.1)

we have

r ∝ [ ]A1
1n [ ]A2

2n
…

or r = k [ ]A1
1n [ ]A2

2n
… (2.3.2)

where k is a constant of proportionality

If the rate of a reaction divided by volume is determined experimentally, it is found 

that Eq. (2.3.2) is not always applicable. However, the experimental results can 

may write the rate as

r = k[A1]
a [A2]

b
… (2.3.3)

where the dimensionless exponents a, b,… may or may not be equal to n1, n2,…,

 respectively. The constants a, b,… may have positive or negative integral values, 

fractional values or zero values. The constant a is known as the partial order of the 

reaction with respect to A, b as the partial order of the reaction with respect to B, 

and so on. The sum a + b +   is known as the overall order of the reaction. If a

+ b +  a + b +   = 2, the reaction 

of great use as it helps proposing the mechanism of a reaction.

2.3 ORDER OF A REACTION

Law of Mass

Action

Defining Order of 

a Reaction
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The constant k which appears in Eq. (2.3.3) is known as the rate constant, since 

it is numerically equal to the rate the reaction would have if all concentrations 

were set equal to unity. Each reaction is characterized by its own reaction rate 

k is (mol dm–3)n s–1 where n

= 1 – (a + b +  ).

The expression of Eq. (2.3.3) which relates the rate of reaction with the 

concentrations of reacting species is known as the differential rate law.

It may be emphasized once again here that the rate equation with its rate constant

predicted from the stoichiometry of the balanced-reaction equation.

Although a great many reactions obey Eq. (2.3.3), there are numerous other 

whose rate expressions are not of such simple form. A few such reactions are 

listed in Table 2.3.1.

Table  2.3.1 Examples of Reactions Obeying Complicated Rate Laws

Overall Reaction Experimentally Determined Rate Law

H2 + I2 = 2HI 1

2

d HI

d

[ ]

t
= k1 [H2] [I2] – k –1 [HI]2

H2 + Br2 = 2HBr
1

2

d HBr

d

[ ]

t
 = 

k

k

[ ][ ]

[ ] [ ]

]
/H Br

HBr Br

2

2

2
1 2

1+ ¢

OCl– + I–
   
   

OH-

 OI – + Cl – d Cl

d

[ ]-

t
 = 

k[ ][ ]

[ ]

OCl I

OH

- -

-

CH3COCH3 + I2
   
   

H+

CH3COCH2I + HI   – 
d I

d

[ ]2

t
 = k [CH3COCH3] [H

+]

Table 2.3.1 reveals the following facts.

 ∑ The rate law may not bear a simple relationship to the stoichiometric equation.

 ∑ The rate law may not depend on the concentrations of every reactant or product 

of the reaction.

 ∑ The rate law may depend on the concentrations of species (e.g. catalysts) which 

do not appear in the equation for the overall reaction.

These facts clearly indicate that the rate equation cannot be predicted from 

the form of the stoichiometric equation for the overall reaction. Hence, the rate 

equation must be determined experimentally. In some cases, the order of the 

to assign the order with respect to bromine and to hydrogen bromide. Thus, the 

concept of order of reaction has no meaning if a rate law does not have the form 

as given in Eq. (2.3.3).

In the reaction between hypochloride and iodide ions, though OH– does not 

appear in the overall reaction, yet it appears in the denominator of the rate law. 

This indicates that the OH– acts as an inhibitor. Similarly, the reaction between           

acetone and iodine does not involve H+ in the overall reaction, but it appears in the 

numerator of the rate law. This shows that H+ acts as an accelerator or a catalyst.

Comment about 

Rate Law
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Since the expression of rate r in terms of rate of change of concentration of a 

reactant or product depends on the way the chemical equation is formulated, it 

follows that the value of k in the differential rate law also depends on the way 

the chemical equation is formulated. For example, the decomposition of N2O5 is 

2O5. Hence, for two ways 

of writing the chemical equations, we will have

         2N2O5 Æ 4NO2 + O2 r = – 
1

2

d N O

d

2 5[ ]

t
 = k[N2O5]

  N2O5 Æ 2NO2 + 
1

2
 O2 r ¢ = – 

d N O

d

2 5[ ]

t
 = k¢[N2O5]

Since the rate at which a reactant consumed or product formed does not depend 

upon the way the chemical equation is formulated, it follows that

2r = r ¢ and  2k = k¢

Most chemical reactions proceed through a series of elementary reactions. An 

elementary reaction is one which is proposed to take place in a single step. These 

involve. A process in which only one molecule is involved is known as unimolecular 

process. One involving two molecules is called bimolecular and so on. It is well 

known that in elementary reactions the products are formed when the reactant 

molecules come close and collide together at one and the same time. Since the 

collisions in which more than three particles come together simultaneously are very 

rare, the elementary process with molecularity greater than three are not known.

If a reaction involves more than one step, the overall reaction is obtained by 

adding these elementary steps. In such a case, it is wrong to decide the molecularity 

of the overall reaction on the basis of its stoichiometric and rate equation.

It was stated earlier that the order of a reaction, in general, cannot be predicted 

from the stoichiometry of the overall reaction. However, the order of an elementary 

step can be predicted from its molecularity. In fact, the order of an elementary 

step is always equal to its molecularity. This follows from the following analysis.

In this process, a single activated molecule rearranges or decomposes independently
of the others. It is obvious that the number of activated molecules that decompose 
in a given time interval will depend upon its total number; larger the number or 
concentration of molecules, larger  the number of molecules that decompose to 

give product. Thus, for the unimolecular reaction.

A Æ B

the rate of reaction will be given by

r = – 
d A

d

[ ]

t
 = k [A]

2.4 ELEMENTARY REACTION AND ITS MOLECULARITY

Comment on Rate

Constant

Unimolecular

Elementary

Reaction
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Bimolecular

Elementary

Reaction

Let the elementary process be represented as

A + B Æ products

For a molecule of A to react with a molecule of B, the molecule A has to 

come close to B and collide with it. The rate at which collisions between A and B 

molecules occur is directly proportional to the concentrations of A and B. Thus, 

the rate of the reaction will be given as

r = k [A] [B]

The above arguments can be extended to a termolecular reaction. Hence a 

It may be emphasized here that if the order of a reaction is known, it is not possible 

to predict its molecularity. This follows immediately from the fact that the order of 

a reaction is referred to the overall reaction whereas the molecularity is referred to 

an elementary step. A given overall reaction may involve more than one elementary 

step of different molecularities. For example, the decomposition of N2O5

order reaction, but it proceeds through the following four elementary processes.

N2O5 + N2O5 Æ N2O*5 + N2O5

N2O*5 Æ NO2 + NO3

NO2 + NO3 Æ NO + NO2 + O2

NO + NO3 Æ 2NO2

Here N2O*5 stands for an energized molecule capable of dissociating.

Sometimes, a reaction follows a complicated rate expression. For example, the 

complex nature of the rate expression of H2(g) and Br2(g) shown in Table 2.3.1 

is due to the fact that the said reaction involves more than one elementary step 

and the rate of the overall reaction is obtained by combining the rates of all these 

individual elementary reactions, which of course, follow the simple expressions 

as given by Eq. (2.3.3).

The differential rate law shows how the rate of a reaction depends on the 

concentrations of reacting species. It is also worthwhile to know how the 

concentrations of these species change with time. This information can be obtained 

by integrating the differential rate law. In this section, we derive the integrated rate 

and also derive their main characteristics.

n1A Æ product (2.5.1)

will be given by

r = – 
1

1n

d A

d

[ ]

t
 = k0 [A]0 = k0 (2.5.2)

2.5 THE INTEGRATED RATE LAWS

ZERO-ORDER REACTIONS

Differential

Rate Law
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that is, the reaction proceeds at a constant rate and does not depend on the 

concentration of A.

Let [A]0 be the concentration of A at t = 0 and [A]t be the concentration at time t.

Equation (2.5.2) may be integrated within these limits. Thus, we have

d A

A

A

[ ]

[ ]

[ ]

0

t

Ú  = – n1k0 dt

t

t t

=

=

Ú
0

or [A]0 – [A]t = n1k0t (2.5.3a)

From Eq. (2.5.1), it is obvious that

[A]t = [A]0 – n1 x

where x is the extent of reaction divided by volume that occurs at time t

tution of the above relation in Eq. (2.5.3a) gives

[A]0 – ([A]0 – n1 x) = n1k0t

or x = k0t   (2.5.3b)

The unit of k0 is mol dm–3 s–1.

From Eq. (2.5.3), it is obvious that the concentration of the reactant decreases 

whereas that of the product increases linearly with time. If a plot is made between x

and t, one would get a straight line passing through the origin (Fig. 2.5.3). Equation 

(2.5.3) can be used to determine the time required for the reaction to be completed, 

i.e. time at which [A]t is zero. Substituting the latter in Eq. (2.5.3a), we have

tcompletion =
[ ]A 0

1 0n k

t

x

Although reactions which have an overall order of zero are rare, it is not unusual 

reactions, which we write as

substrate æÆ
enzyme

product

The rate expression follows the relation

r = k [enzyme]1 [substrate]0

Integrated

Rate Law

Characteristics

of Zero-Order

Reactions

Fig. 2.5.1 Variation 

of x versus t for a 

reaction exhibiting 

zero-order kinetics

Examples of Zero-

Order Reactions
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order with respect to the substrate concentration.

The decomposition of various gases on the surface of metallic catalysts, such 

species only. Thus, if the reaction

n1A + n2B Æ products

r = – 
1

1n

d A

d

[ ]

t
= k1 [A]

or
d A

A

[ ]
= – n1k1dt (2.5.4)

Integrating Eq. (2.5.4) within the limits, we have

d A

A
A

A
[ ]

[ ]
[ ]

[ ]

0

t

Ú = – n1k1 dt

t

0

Ú

or ln
[ ]

[ ]

A

A

0

t

Ê
ËÁ

ˆ
¯̃

= n1k1t (2.5.5a)

or ln
[ ]

[ ]

A

A

0

0 1-
Ê
ËÁ

ˆ
¯̃n x

= n1k1t (2.5.5b)

n1 = 1 and thus Eq. (2.5.5b) is given as

ln
[ ]

[ ]

A

A

0

0 -
Ê
ËÁ

ˆ
¯̃x

= k1 t (2.5.6)

From Eq. (2.5.6), it follows that

ln
[ ]

[ ]

A

A

0

0

1

2

-

-

Ê

Ë
Á

ˆ

¯
˜

x

x

t

t

= k1(t2 – t1 ) (2.5.7)

Since the left  side of Eq. (2.5.6) or (2.5.7) is a pure number, it follows that unit of

k1 is s–1.

Equation (2.5.6) may be written as

ln
[ ]A 0

c∞
Ê
Ë

ˆ
¯ – ln

[ ]A 0 -
∞

Ê
ËÁ

ˆ
¯̃

x

c
 = k1 t

or ln
[ ]A 0 -

∞
Ê
ËÁ

ˆ
¯̃

x

c
= log

[ ]A 0

c∞
Ê
Ë

ˆ
¯  – 

k1

2 303.
t (2.5.8)

where c° is the standard unit concentration.

FIRST-ORDER REACTIONS

Differential

Rate Law

Characteristics

of First-Order

Reactions

Integrated Rate

Law
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If a plot is made between log{([A]0 – x)/cº} and t, one would get a straight line 

of slope equal to – k1/2.303 (Fig. 2.5.2).

t

lo
g
{
([
A
]
–

)
/
m
o
l
d
m

}
0

–
3

x

slope = – / 2.303k1

Equation (2.5.6) may also be written as

[A]t = [A]0 exp(– k1 t) (2.5.9)

Equation (2.5.9), which is known as Wilhelmy’s equation, indicates that the 

concentration of A decreases exponentially with time. The decrease is such that 

A]t /[A]0 is constant) 

to occur is independent of the initial concentration of the reactant.

t1
2

 of a reaction is the time required for the concentration of reactant to 

decrease by half, i.e.

[A] t1
2

=
1

2
 [A]0

Substituting the above relation in Eq. (2.5.6), we get

ln
[ ]

[ ]

A

A

0

0 2

Ê
ËÁ

ˆ
¯̃

= k1 t1
2

or 2.303 log 2 = k1 t1
2

or t1
2

=
2 303 2

1

. log

k
 = 

2 303 0 301

1

. .¥
k

 = 
0 693

1

.

k
(2.5.10)

that is, t1
2

 is independent of initial concentration.

Figure 2.5.3 displays the typical variation of concentration of reactant exhibiting 

0 1 2 3

Number of half-life

C
o
n
ce
n
tr
at
io
n

4

Fig. 2.5.2 Variation 

of log {([A]0 – x)/c°}

with time for a 

reaction exhibiting 

Half-Life

Fig. 2.5.3 Variation 

of concentration of 

reactant exhibiting 
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examples are listed below.

Decomposition of di-tert-butyl peroxide:

(CH3)3COOC(CH3)3 Æ 2 CH3COCH3 + C2H6

Decomposition of dinitrogenpentoxide:

N2O5(g) Æ 2NO2(g) + 1
2

O2(g)

Decomposition of azoisopropane:

(CH3)2CHN==NCH(CH3)2 Æ N2 + C6H14

Decomposition of thionyl chloride:

SO2Cl2(g) Æ SO2(g) + Cl2(g)

Æ Trinitrobenzene + CO2(g)

Decomposition of hydrogen peroxide:

H2O2(aq) Æ H2O(l) + 1
2

O2(g)

All radioactive decays:

There are reactions in which more than one species is involved in the rate 

determining step, but the order of the reaction is one. Such reactions are known 

as pseudo-unimolecular reactions and they involve solvent molecule or a catalyst 

as one of the reacting species. Examples of this type of reactions are:

Acid hydrolysis of an ester:

CH3COOC2H5 + H2O      

H+

 CH3COOH + C2H5OH

Inversion of cane sugar:

C12H22O11 + H2O       

H+

 C6H12O6 + C6H12O6

Cane sugar Glucose Fructose

Decomposition of benzenediazonium chloride:

C6H5N==NCl + H2O Æ C6H5OH + N2 + HCl

Isomeric change of N-chloroacetanillide to p-chloroacetanilide:

C6H5N
Cl

COCH3

ClC6H4N

COCH3

H

It is evident from Eqs (2.5.6) and (2.5.7) that to determine the rate constant for a 

at two times. Quantities proportional to the concentration terms may be substituted 
in these equations, since the proportionality constants cancel. We describe below a 
few typical cases where concentration terms are replaced by other easily measurable 

quantities.

In a reaction, if there occurs a change in the number of gaseous molecules, then the 

concentration terms in Eq. (2.5.6) may be replaced in terms of pressures provided 

the volume of the system is held constant.

Examples of First-

Order Reactions

Alternative Forms of Rate Equation of First-Order Reaction

Concentrations

Replaced in Terms

of Pressure
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Let Dng be the change in the number of gaseous molecules in going from 

reactants to products and let p0 and pt be the pressure of the system at t = 0 and t

= t, respectively. If at time t, the concentration of A decreases by x, we will have

p0   ∝ [A]0 and pt∝ [A]0 + (Dng)x

Hence   [A]0∝ p0 and  x ∝ (pt – p0)/Dng

Thus [A]t = [A]0 – x ∝ p0 – 
p pt - 0

Dng

 = 
( )D

D

n

n

g

g

+ -1 0p pt

With these Eq. (2.5.6) becomes

ln
p

p pt

0

01[( ) ] /D Dn ng g+ -

Ê

ËÁ
ˆ

¯̃
= kt

or ln
D

D

n

n

g

g

p

p pt

0

01( )+ -

Ê

ËÁ
ˆ

¯̃
 = kt   (2.5.11)

If p•
to be completed), we will have

p• = (Dng + 1) p0

Hence, Eq. (2.5.11) may be written as

ln
p p

p pt

•

•

-
-

Ê
ËÁ

ˆ
¯̃

0  = kt (2.5.12)

Equation (2.5.6) if derived in terms of amounts of reactant will take the form

ln
( )

( )

n

n t

A

A

0  = kt (2.5.13)

For a constant pressure, we may write

V0 ∝ (nA)0 and Vt ∝ (nA)0 + (Dng) x

Hence    x ∝ (Vt – V0)/Dng

Now     (nA)0 ∝ V0

 (nA)t = (nA)0 – x ∝ V0 – 
V Vt - 0

Dng

 = 
( )D

D

n

n

g

g

+ -1 0V Vt

Hence, Eq. (2.5.13) becomes

ln
V

V Vt

0

01[( ) ] /D Dn ng g+ -

Ê

ËÁ
ˆ

¯̃
= kt

or ln
( )

( )

D

D

n

n

g

g

V

V Vt

0

01+ -

Ê

ËÁ
ˆ

¯̃
 = kt   (2.5.14)

If V• 
to be completed), we will have

V• = (Dng + 1) V0

Amounts

Replaced in Terms

of Volumes
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Hence, Eq. (2.5.14) may be written as

ln
V V

V Vt

•

•

-
-

Ê
ËÁ

ˆ
¯̃

0  = kt (2.5.15)

For a reaction in which reactant is present in the condensed form (i.e. liquid or 

solid) and products involve one or more gaseous species, we will have V0 << V•.

Hence, Eq. (2.5.15) will modify to

ln
V

V Vt

•

• -
Ê
ËÁ

ˆ
¯̃

 = kt

Reactions such as the acid hydrolysis of an ester (e.g. reaction vii) can be studied 

by replacing the concentration of ester in terms of volume of alkali solution required 

to neutralize the produced acid. Let Vt and V• be the respective volumes of alkali 

solution required to neutralize the acid produced at time t and at the end when the 

reaction has gone to completion. It is obvious that

[Ester]0 ∝ V•

[Ester]t ∝ V• – Vt

Hence, Eq. (2.5.6) in the present case becomes

ln
V

V Vt

•

• -
Ê
ËÁ

ˆ
¯̃

= kt

or log
V V

V

t• -Ê
ËÁ

ˆ
¯̃o

= log 
V

V

•Ê
ËÁ

ˆ
¯̃o

 – 
k

2 303.
t (2.5.16)

where V° is the standard unit volume. A plot of log {(V• – Vt ) /V°} versus t will 

produce a straight line of slope equal to – k/2.303.

It is worthwhile to mention here that the value of rate constant k

hydrolysis of an ester is found to be directly proportional to the concentration of  

H+ ion (i.e. catalyst) in the solution. Thus, the rate of hydrolysis besides depending 

on the ester concentration, also depends on the concentration of H+ ion. Truly 

the differential rate law given below.

d

d

x

t
 = k¢ [ester] [H+] [H2O] (2.5.17)

Since, the concentration of H+ ion in the solution remains constant and H2O is 

present in large amount, Eq. (2.5.17) is reduced to

d

d

x

t
 = k [ester] (2.5.18)

In fact, it is the constant k of Eq. (2.5.18) that is determined experimentally. 

Hence, the obtained value of reaction rate constant k is given by

k = k¢ [H+] [H2O] (2.5.19)

where k¢ is the actual reaction rate constant of the acid hydrolysis of an ester. 

Equation (2.5.19) has been utilized in comparing the acid strengths of two different 

acids of equal normalities (acids having the same amount of total hydrogen ions). 

Concentration

Replaced in Terms

of Volume of 

Titrant

Comment on Acid-

Catalyzed

Hydrolysis of an 

Ester
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For example, if the hydrolysis of the same concentration of ester is carried out 

separately with equal normalities of HCl and H2SO4, then it follows that

[ ]

[ ]

H

H

HCl

H SO2 4

+

+  = 
k

k

HCl

H SO2 4

(2.5.20)

Experimentally, k kHCI H SO2 4
/ is found to be greater than one indicating that the 

hydrochloric acid is a stronger acid than the sulphuric acid. This fact can be 

explained on the basis that in dilute solutions, hydrochloric acid is completely 

and the second one incomplete, i.e.

HCl æÆ  H+ + Cl–

H2SO4 æÆ  H + + HSO–
4

HSO–
4   H + + SO2–

4

Equation (2.5.19) has also been utilized in determining the concentration of  H+

ion in an acid solution, say that of hydrochloric acid. Acid hydrolysis of the same 

quantity of ester is repeated with different known concentrations of hydrochloric 

acid solutions. The experiment is repeated with the given solution of hydrochloric 

acid. A graph between k and the concentration of hydrochloric  acid is drawn and 

acid is determined.

Inversion of cane sugar can be followed by measuring the rotation of the angle 

of polarization of light during the experiment, since cane sugar is dextrorotatory, 

qt and q• be the 

respective angles of rotation at time t and at the end when the reaction has gone 

to completion. It is obvious that

[Cane sugar]0 ∝ q•

[Cane sugar]t ∝ q• – q t

Hence, Eq. (2.5.6) in this case becomes

ln
q

q q
•

• -
Ê
ËÁ

ˆ
¯̃t

= kt

or log
q q

q

• -Ê
ËÁ

ˆ
¯̃

t

o
= log 

q

q

•Ê
ËÁ

ˆ
¯̃o

 – 
k

2 303.
t (2.5.21)

where q° represent the unit of measuring angle . A graph between log {(q• – qt)/q∞}

 and t would yield a straight line of slope – k/2.303.

The gaseous reaction

n1A(g) Æ n2B(g)

a0 as the initial 

amount of A. Show that the volume of the system and the concentration of A at time t are 

given by the expressions

Concentration

Replaced in Terms

of Rotation of the 

Polarized Light

Problem 2.5.1
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V  = V0
n

n

n

n
n2

1

2

1
11

Ê
ËÁ

ˆ
¯̃

- -
Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙exp ( )kt

and [A]t = [A]0

exp ( )

( / ) {( / ) }exp ( )

-
- - -

È

Î
Í

˘

˚
˙

n

n n n n n
1

2 1 2 1 11

kt

kt

where V0 is the volume of the system at t = 0. Assume ideal behaviour for the gases. Derive 

the expressions for V and [A] for the systems where n1 = n2 = 1 and n1 = 1 and n2 = 2.

Let x be the extent of reaction at time t. We will have

 n1A Æ n2B

a0 – n1x   n2x

Total amount of the substances at time t = a0 + (n2 – n1) x

The kinetic expression of the reaction is

d

d

x

t
 = k(a0 – n1x ) (2.5.22)

Since the gases are assumed to be ideal, we will have

 pV0 = a0RT (2.5.23)

and pV = [a0 + (n2 – n1) x ] RT

  = pV0 + (n2 – n1) x RT (2.5.24)

Hence,  x = 
p V V

RT

( )

( )

-
-

0

2 1n n
(2.5.25)

and dx =
p

RT( )n n2 1-
 dV (2.5.26)

Substituting Eqs (2.5.23), (2.5.25) and (2.5.26) in Eq. (2.5.22), we get

p

RT( )n n2 1-
d

d

V

t
= k

pV

RT

p V V

RT

0
1

0

2 1

-
-

-
È

Î
Í

˘

˚
˙n

n n

( )

( )

or
d

d

V

t
 = k (n2V0 – n1V )

or
dV

V Vn n2 0 1-
 = k dt

Integrating within the limits, we get

dV

V V
V

V

n n2 0 1
0

-Ú = k dt

t

0

Ú

or  ln 
n n

n n
2 0 1

0 2 1

V V

V

-
-( )

 = – n1kt

i.e. V = V0

n

n

n

n
n2

1

2

1
11

Ê
ËÁ

ˆ
¯̃

- -
Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙exp ( )kt

The variation of amount A with time can be determined by integrating Eq. (2.5.22), 

such that

Solution
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dx

n x

x

a0 10
-Ú = k dt

t

0

Ú

or ln
a

a

0 1

0

- n x
= – n1kt

i.e.    a0 – n1x = a0 exp (–n1kt )

The variation of the concentration of A will be given by

a

V t

0 1-Ê
ËÁ

ˆ
¯̃

n x
=

a kt

V kt

0 1

0 2 1 2 1 11

exp ( )

[( / ) {( / ) }exp( ) ]

-
- - -

n

n n n n n

or [A]t = [A]0

exp ( )

( / ) {( / ) }exp( )

-
- - -

È

Î
Í

˘

˚
˙

n

n n n n n
1

2 1 2 1 11

kt

kt

For a case where n1 = n2 = 1, we get

V = V0

[A]t = [A]0 exp (– kt )

For n1 = 1 and n2 = 2, we get

V  = V0 [2 – exp(– kt )]

[A]t = [A]0

exp ( )

exp ( )

-
- -

È

ÎÍ
˘

˚̇

kt

kt2

The factor exp(– kt )/{2 – exp(– kt )} is smaller than exp(–kt) as the value of exp(–kt)

is always less than one. This means that at constant p condition, the concentration of A 

decreases more rapidly as compared to that in the constant volume condition. This is due 

to the fact that the decrease in the concentration of A in the former is due to two factors, 

viz. reaction in progress and increase in volume, whereas in the latter it is only due to the 

reaction in progress.

terms. These concentration terms may refer to either the same species or different 

species. Thus, two cases may be distinguished. These are:

(i)  Both the concentration terms referred to the same species The general 

expression for the reaction is

nA Æ products

n in most of cases may be made equal to 1.

(ii) The concentration terms referred to the different species The general 

expression for the reaction is

n1A + n2B Æ products

n1 and n2 are equal to unity.

The integrated rate equations for the above two cases can be derived as follows.

SECOND-ORDER REACTIONS



64 A Textbook of Physical Chemistry

Rate Equation for 

nA Æ products

The reaction is

nA Æ products

The differential rate law is

–
1

n

d A

d

[ ]

t
 = k2 [A]2 (2.5.27)

Let x be the extent of reaction divided by volume at time t. We will have

[A] = [A]0 – nx (2.5.28)

Substituting Eq. (2.5.28) in Eq. (2.5.27), we have

–
1

n

d A

d

([ ] )0 -n x

t
= k2 ([A]0 – nx)2 (2.5.29)

or
d

d

x

t
 = k2 ([A]0 – nx)2

or
d

A

x

x([ ] )0
2-n

 = k2 d t

Integrating the above expression, we have

d

A

x

x

x

([ ] )0
2

0
-Ú

n
 = k2 dt

t

0

Ú

i.e.       
1

n

1 1

0 0[ ] [ ]A A-
-

Ê
ËÁ

ˆ
¯̃n x

= k2t (2.5.30)

The unit of k2 is mol–1 dm3 s–1. Since n = 1 for most of reactions, Eq. (2.5.30) 

reduces to
1 1

0 0[ ] [ ]A A-
-

x
 = k2t (2.5.31)

The reaction is

n1A + n2B Æ products

The differential rate law is

–
1

1n

d A

d

[ ]

t
 = k2 [A] [B] (2.5.32)

Let x be the extent of reaction divided by volume at time t. We will have

[ ] [ ]

[ ] [ ]

A A

B B

= -
= -

¸
˝
˛

0 1

0 2

n

n

x

x
(2.5.33)

Substituting Eqs (2.5.33) in Eq. (2.5.32), we get

–
1

1n

d A

d

([ ] )0 1-n x

t
 = k2 ([A]0 – n1x) ([B]0 – n2x)

or
d

d

x

t
 = k2 ([A]0 – n1x) ([B]0 – n2x)

or      
d

A B

x

x x([ ] ) ([ ] )0 1 0 2- -n n
 = k2 dt

Rate Equation for

n1A +n2BÆproducts
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or
1

1 0 2 0n n[ ] [ ]B A-
n

n

n

n
1

0 1

2

0 2[ ] [ ]A B-
-

-
È

Î
Í

˘

˚
˙x x

dx = k2 dt

Integrating the above expression, we have

1

1 0 2 0n n[ ] [ ]B A-
n

n

n

n
1

0 1

2

0 200

d

A

d

B

x

x

x

x

xx

[ ] [ ]-
-

-

È

Î
Í
Í

˘

˚
˙
˙

ÚÚ = k2
dt

t

0

Ú

1

1 0 2 0n n[ ] [ ]B A-
ln

B

A
ln

A

B

[ ]

[ ]

[ ]

[ ]

0 2

0 1

0

0

-
-

Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

n

n

x

x
 = k2 t

or     log
[ ]

[ ]

B

A

0 2

0 1

-
-

Ê
ËÁ

ˆ
¯̃

n

n

x

x
 = log 

[ ]

[ ]

B

A

0

0

Ê
ËÁ

ˆ
¯̃

 + 
( [ ] [ ] )

.

n n1 0 2 0

2 303

B A-Ê
ËÁ

ˆ
¯̃

k2 t (2.5.34)

Since n1 = n2 = 1 for most of reactions, Eq. (2.5.34) reduces to

log
[ ]

[ ]

B

A

0

0

-
-

Ê
ËÁ

ˆ
¯̃

x

x
 = log 

[ ]

[ ]

B

A

0

0

Ê
ËÁ

ˆ
¯̃

 + 
[ ] [ ]

.

B A0 0

2 303

-Ê
ËÁ

ˆ
¯̃

k2 t (2.5.35)

Two special cases where Eq. (2.5.34) is not applicable may be mentioned here. 

These are:

Let n1 = n2 = n and [B]0 = [A]0. The differential rate law will be given by

–
1

n

d A

d

{[ ] }0 -n x

x
 = k2 ([A]0 – n x)2

which is identical to Eq. (2.5.29). The integrated rate expression for this case is 

given by Eq. (2.5.30).

Thus, we have

[ ]A 0

1n
 = 

[ ]B 0

2n

The differential rate law in this case is

–
1

1n

d A

d

{[ ] }0 1-n x

t
= k2 ([A]0 – n1x) ([B]0 – n2x)

= k2 ([A]0 – n1x)
n

n
n2

1
0 2[ ]A -

Ê
ËÁ

ˆ
¯̃

x

= k2

n

n
2

1

 ([A]0 – n1x)2

The integrated rate law is given by

1

0 1[ ]A -n x
 – 

1

0[ ]A
 = k2n2t (2.5.36)

Special Cases of 

Eq. (2.5.35)
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For reactions belonging to the case (i) discussed above, we have the following 

main characteristics.

(i) The plot of 1/([A]0 – x) versus t will be a straight line of slope equal to k2

(Eq. 2.5.31).

(ii) For half-life, we will have

[ ]A t1
2

 = [A]0 - x = 
[ ]A 0

2
Substitution of the above relation in Eq. (2.5.31) gives

1

20[ ] /A
 – 

1

0[ ]A
 = k2 t1

2

or t1
2

 = 
1

2 0k [ ]A
that is t1

2

∝ 
1

0[ ]A

Hence, for the second-order reactions involving either only one species with n = 1

or two species with [A]0 = [B]0 and n1 = n2 = 1, (or [A]0 ∝ n1 and [B]0 ∝ n2)

half-life is inversely proportional to the initial concentration of the reactant(s). 

For reactions belonging to case (ii) discussed above, the plot of log [([B]0 – x)/

([A]0 – x)] versus t will be a straight line of slope equal to ([B]0 - [A]0)k2/2.303

(Eq. 2.5.35).

Examples of reactions obeying second-order kinetics are numerous. A few of them 

are listed below.

Thermal dissociation of acetaldehyde

2CH3CHO Æ 2CH4 + 2CO

CH3COOC2H5 + OH – Æ CH3COO– + C2H5OH

Reaction between persulphate and iodide ions

S2O
2
8
– + 2I – Æ 2SO2

4
– + I2

The gaseous reaction

n1 A(g) Æ n2 B(g)

is second-order with respect to A. It is carried out at a constant pressure with a0 as the 

initial amount of A. Show that the volume of the system and the concentration of A at time 

t are given by the expressions

V = V0

1

1

2 0

1 0

+
+

Ê
ËÁ

ˆ
¯̃

n

n

k a t

k a t

1

[ ]A t

 = 
1

0
1 0

[ ]A
+

Ê
ËÁ

ˆ
¯̃

n V kt
1

1

2 0

1 0

+
+

Ê
ËÁ

ˆ
¯̃

n

n

k a t

k a t

where V0 is the volume of the system at t = 0. Assume ideal behaviour for the gases. 

Derive the expressions of V and [A] for the systems where n1 = n2 = 1 and n1 = 1 and 

n2 = 2.

Characteristics

of Second-Order 

Reactions

Examples of 

Second-Order

Reactions

Problem 2.5.2
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Let x be the extent of the reaction at time t. We will have

 n1A Æ n2B

a0 – n1x n2x

Total amount of the substance at time t = a0 + (n2 – n1)x

The kinetic expression of the reaction is

d

d

x

t
 = k (a0 – n1x )2 (2.5.37)

Since the gases are assumed to be ideal, we will have

pV0 = a0RT (2.5.38)

and pV = [a0 + (n2 – n1)x ] RT  = pV0 + (n2 – n1) x RT

Hence, x =
p V V

RT

( )

( )

-
-

0

2 1n n
(2.5.39)

and dx =
p

RT( )n n2 1-
dV (2.5.40)

Substituting Eqs (2.5.38), (2.5.39) and (2.5.40) in Eq. (2.5.37), we get

p

RT( )n n2 1-
d

d

V

t
 = k a

p V V

RT
0

1 0

2 1

2

-
-

-
È

Î
Í

˘

˚
˙

n

n n

( )

( )

Replacing a0 by pV0/RT and rearranging, we get

d

d

V

t
=

pk

RT( )n n2 1-
 (n2V0 – n1V )2

or
dV

V V( )n n2 0 1
2-

=
pk

RT( )n n2 1-
dt

Integrating within the limits, we get

1

1n
1 1

2 0 1 2 0 1 0n n n nV V V V-
-

-
È

Î
Í

˘

˚
˙  = 

pk

RT( )n n2 1-
t

Rearranging the above expression for V, we get

V = V0

1

1

2 0

1 0

+
+

Ê
ËÁ

ˆ
¯̃

n

n

kta

kta
(2.5.41)

Equation (2.5.37) on integrating gives

1

0 1a - n x
 – 

1

0a
 = n1kt

Multiplying throughout by V, we get

V

a0 1- n x
 – 

V

V0

V

a

0

0

 = V n1kt

1

[ ]A t

 – 
V

V0

1

0[ ]A
 = V n1kt

Solution
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Substituting V in term of V0 from Eq. (2.5.41), we get

1

[ ]A t

 = 
1

0
0 1

[ ]A
+

Ê
ËÁ

ˆ
¯̃

V ktn
1

1

2 0

1 0

+
+

Ê
ËÁ

ˆ
¯̃

n

n

kta

kta

For a case where n1 = n2 = 1, we get

1

[ ]A t

=
1

0[ ]A
 + V0kt

V = V0

For n1 = 1 and v2 = 2, we get

1

[ ]A t

 = 
1

0
0

[ ]A
+

Ê
ËÁ

ˆ
¯̃

V kt
1 2

1

0

0

+
+

Ê
ËÁ

ˆ
¯̃

kta

kta

V = V0

1 2

1

0

0

+
+

Ê
ËÁ

ˆ
¯̃

kta

kta

Third-order reactions known so far fall into the category

2A + B Æ products

The differential rate law is

–
1

2

d A

d

[ ]

t
 = k3[A]2[B] (2.5.42)

Let x be the extent of reaction divided by volume at time t. We will have

[A]t = [A]0 – 2x

[B]t = [B]0 – x

Hence, Eq. (2.5.42) becomes

–
1

2

d A

d

([ ] )0 2- x

t
 = k3([A]0 – 2x)2 ( [B]0 – x)

or
d

d

x

t
= k3([A]0 – 2x)2 ([B]0 – x)

On separating the variables and integrating, we get

 k3 = 
1

2 0 0
2t( [ ] [ ] )B A-

2 2

2

20 0

0 0

0 0

0 0

x

x

x

x

( [ ] [ ] )

[ ] ([ ] )
ln

[ ] ([ ] )

[ ] ([ ] )

B A

B A

B A

A B

-
-

+
-
-

È
ÎÍ

˘̆
˚̇

(2.5.43)

The simplest case is a reaction of the type

nA Æ products

for which, the differential rate law is

–
1

n

d A

d

[ ]

t
 = k3 [A]3 (2.5.44)

THIRD-ORDER REACTIONS

Expression of 

Rate Equation

Simplest

Example
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Let x be the extent of reaction divided by volume at time t. We will have

[A] = [A]0 – nx

With this, Eq. (2.5.43) becomes

–
1

n

d A]

d

0([ )-n x

t
= k3 ([A]0 – n x)3

or
d

d

x

t
= k3([A]0 – n x)3

or
d

A]0

x

x([ )-n 3
= k3 dt

Integrating the above expression, we get

1

2n

1 1

0
2

0
2([ ] ) [ ]A A-

-
È

Î
Í

˘

˚
˙

n x
 = k3 t (2.5.45)

For a special case, where n = 1, we will have

1

2

1 1

0
2

0
2([ ] ) [ ]A A-

-
È

Î
Í

˘

˚
˙

x
 = k3 t

The unit of the k3 is mol–2 dm6 s–1.

We will discuss here only the characteristics of the reaction

A Æ products

According to Eq. (2.5.45), if a plot is made between 1/([A]0 – x)2 and t, we would 

get a straight line of slope equal to 2k3.

Half-life as calculated from Eq. (2.5.45) will be

t1
2

=
1

2 3k

1

2

1

0
2

0
2([ ] / ) [ ]A A

-
È

Î
Í

˘

˚
˙

or t1
2

=
3

2 3 0
2k [ ]A

that is t0.5 ∝ 
1

0
2[ ]A

one of the reactants is nitric oxide. These are

2NO + Cl2 Æ 2NOCl

2NO + Br2 Æ 2NOBr

2NO + O2 Æ 2NO2

2NO + H2 Æ N2O + H2O

2NO + D2 Æ N2O + D2O

Reactions in aqueous solution which appear to be third-order are the oxidation of 

ferrous sulphate, the reaction between iodide and ferric ions and the reduction of 

FeCl3 with SnCl2.

Characteristics

of Third-Order 

Reactions

Examples of Third-

Order Reactions
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General

Expression of 

Integrated Rate 

Law of a Reaction 

Involving Only 

One Concentration 

Term

It is possible to derive a general expression of integrated rate law for a reaction 

whose rate depends either on the concentration of only one reactant or on different 

differential rate law as

d

d

x

t
 = kn([A]0 – x)n (2.5.46)

where n is the overall order of the reaction. On separating the variables and 

integrating, we get the general expression as

1

1( )n -
1 1

0
1

0
1([ ] ) [ ]A A-

-Ï
Ì
Ó

¸
˝
˛

- -x n n
 = knt (2.5.47)

Equation (2.5.47) is not applicable for n = 1. The units kn is mol1– n dm3(n – 1) s–1.

Half-life of the reaction can be determined by replacing [A]0 – x in Eq. (2.5.47) 

by [A]0/2. Thus, we have

1

1n -
1

2

1

0
1

0
1([ ] / ) [ ]A An n- --

È

Î
Í

˘

˚
˙  = kn t1

2

or
1

1n -
2 11

0
1

n

n

-

-
-

[ ]A
= kn t1

2

or t1
2

=
1

1k nn ( )-
2 11

0
1

n

n

-

-
-

[ ]A
(2.5.48)

The form of rate law as given by Eq. (2.5.46) is also obtained for a reaction 

aA + bB + cC Æ products (2.5.49)

if we have

[ ]A 0

a
 = 

[ ]B 0

b
 = 

[ ]C 0

c
(2.5.50)

then the differential rate law

–
1

a

d A

d

[ ]

t
 = k [A]a [B]b [C]g (2.5.51)

will becomes

d

d

x

t
 = k([A]0 – ax)a ([B]0 – bx)b ([C]0 – cx)g (2.5.52)

where x is the extent of reaction per unit volume, Making use of Eq. (2.5.50) in 

Eq. (2.5.52), we have

d

d

x

t
= k([A]0 – ax)a b

a
bx[ ]A 0 -Ê

ËÁ
ˆ
¯̃

b
c

a
cx[ ]A 0 -Ê

ËÁ
ˆ
¯̃

g
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i.e.
d

d

x

t
=

k b c

a

b g

b g+ ([A]0 – ax)a + b + g

  =
k b c

an

b g

a-  ([A]0 – ax)n

where n is the overall order of the reaction.

The integrated rate law is given by

1

1( )n -
1 1

0
1

0
1([ ] ) [ ]A A-

-
Ï
Ì
Ó

¸
˝
Ǫ̂- -ax n n

 = k
b c

an

b g

a- -1
t (2.5.53)

The half-life of the reaction will be given by

t1
2

 = 
1

1k n( )-
a

b c

n- -a

b g

1 2 11

0
1

n

n

-

-
-

[ ]A
(2.5.54)

In many reactions, the order of the reaction with respect to one of the reactants is 

found to be nonintegral. Examples include:

(i) The reaction between H2 and D2 follows the differential rate law

d

d

x

t
 = k pH2

 (pD2
)1/2

(ii) The conversion of para hydrogen to ortho hydrogen at high temperature 

follows the rate law

d

d

x

t
 = k ( pH2

)1.5

(iii) The reaction

CH3CHO Æ CH4 + CO

follows the expression

–
d[CH CHO]

d

3

t
 = k [CH3CHO]3/2

Noninteger orders are generally due to the complex nature of reactions which 

involve more than one elementary step. The overall rate law is obtained by 

combining the rates of individual elementary steps.

For reactions following the differential rate equation

d A

d

[ ]

t
 = kp +1/2 [A]p + 1/2; (p is an integer) (2.5.55)

the integrated rate law can be obtained from Eq. (2.5.47) by replacing n by p + 1/2. 

Thus, we have

1

1 2p - /

1 1

0
1 2

0
1 2([ ] ) [ ]

/ /A A-
-

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂- -x p p
 = kp + 1/2t (2.5.56)

FRACTIONAL-ORDER REACTIONS

Rate Law and its 

Characteristics

Examples
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Half-life of the reaction will be given by

t1
2

 = 
1

1 21 2k pp+ -/ ( )

2 11 2

0
1 2

p

p

-

-
-/

/
[ ]A

(2.5.57)

Sometimes, the rate of reaction decreases as the concentration of one of its 

constituents is increased. For example, the transformation of ozone into oxygen, i.e.

2O3 Æ 3O2

follows the rate law

–
1

2

d O

d

[ ]3

t
 = k

[ ]

[ ]

O

O

3
2

2
 = k [O3]

2 [O2]
–1

Thus, the order of the reaction with respect to O2 is – 1.

It may be pointed out here again that negative orders like zero and fractional 

orders are obtained whenever the desired reaction does not occur as written (i.e.  

in a single step conversion) but involves more complicated reaction mechanism 

consisting of more than one elementary step. We will see in Section 2.12 how 

these orders result from more complex mechanism.

As stated earlier, the order of a reaction is always determined experimentally on 

the basis of the dependence of the rate of reaction on the concentrations of reacting 

of reacting species or products vary during the course of the reaction.

To determine the concentration of a particular substance at different time 

intervals, a known volume of reacting mixture is extracted at different time 

intervals. It is cooled so as to decrease the speed of the reaction and the 

concentration of the substance in this volume is determined by titration or by 

employing any other analytical technique. For example, in the acid-catalyzed reaction

CH3COOC2H5 + H2O
H+

� ���
� ���  CH3COOH + C2H5OH

the concentration of acetic acid produced at different time intervals may be 

determined by the above method. A known volume of the reacting mixture is 

extracted, cooled and then titrated quickly against the standard sodium hydroxide 

solution. In the reaction

S2O
2–
8  + 2I – Æ 2SO2–

4  + I2

the concentration of iodine produced at different time intervals may be determined 

by titrating a known volume of reacting mixture against the standard solution of 

sodium thiosulphate.

In many reactions, the concentration of the substance can be determined without 

disturbing the reaction mixture. This is accomplished by measuring a suitable 

NEGATIVE-ORDER REACTIONS

2.6 DETERMINATION OF ORDER OF A REACTION
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property of the mixture which changes due to the change in concentration of a 

reactant or a product. We cite below a few typical examples.

1. If in a reaction there occurs a change in the amount of gaseous species, then 

the concentration of various species at various time intervals may be determined 

from the change in pressure of a constant-volume reaction vessel or the change 

in volume of a constant-pressure reaction vessel. The method of correlating the 

pressure or volume of the vessel with the concentration of the reactant of the 

reaction has been outlined in Section 2.5.

2. Reactions such as the inversion of cane sugar can be followed polarimetrically 

without disturbing the reaction mixture (Section 2.5).

3. If in a reaction, ions are consumed or produced, or one ion is replaced by 

the other, the concentration of reaction species at different time intervals may 

acetate, the fast conducting OH– ions are replaced by acetate anions. The change 

in conductivity will be directly proportional to the amount of OH – ions consumed 

or acetate ions produced. Let k0, kt and k• be the conductivities of the reaction 

mixture at the start of the reaction, at time t after the reaction has started and at 

the end of the reaction, respectively. We may write

     [OH –]0 ∝ k0 – k•

     [OH–]t ∝ kt – k•

and x ∝ k0 – kt

where x is the extent of reaction per unit volume at time t.

In order to relate conductivity directly to concentration, a graph or table of 

conductivity may be constructed using solutions with known concentrations of the 

[A]0 ∝ k0 – k•

[A]0 – x ∝ kt – k•

Thus ln
[ ]

[ ]

A

A

0

t

 = ln
k k

k k
0 -

-
Ê
ËÁ

ˆ
¯̃

•

•t

 = k1t

4. Other analytical techniques such as potentiometry, polarography and 

spectrophotometry may be employed to determine the concentration of a reactant 

or product at different time intervals. Out of these, spectrophotometry constitutes 

one of the common methods for determining concentration of a substance of the 

reacting mixture. The principle underlying the method is Beer’s law, according 

to which, we have

log
I

I

0  = ebc

where I0 is the intensity of incident radiation, I is the intensity of the radiation 

after passing through the solution of concentration c of a light absorbing substance,
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b is thickness of the cell in which the solution is placed and e is the molar

absorptivity. The latter is a function of the wavelength of the radiation and the 

absorbing material. Thus, if we choose a wavelength for which e is larger for 

the chemical species of interest, log (I0/I) will be directly proportional to the 

concentration of that material. If the substance is either a reactant or product, we 

can determine how its concentration varies from the plot of log (I0/I) versus time.

Once the data on concentration versus time is available, the order of the 

reaction and its reaction rate constant may be determined by following the methods 

described below.

In this method, the data is substituted into the integrated rate equations for different 

order reactions. The equation which gives almost a constant value of k decides the 
Integration

Method

In this method, the data are plotted according to the different integrated rate 

equations so as to yield a straight-line. The rate constant of the reaction can be 

calculated from the slope of the resultant straight-line plot. We may start plotting 

the data in the order given in Table 2.6.2.

Graphical Method

Table 2.6.1 Order of Fitting Integrated Rate Equations

Kinetics Equations to be Fitted

(i) First-order k1 = 
1

t
 ln 

[ ]

[ ]

A

A

0

t

Ê
ËÁ

ˆ
¯̃

(ii) Second-order with equal concentrations k2 = 
1

t

1 1

0[ ] [ ]A At

-
È

Î
Í

˘

˚
˙

 of reactants

(iii) Second-order with different concentrations k2 = 
1

t

1

0 0

0 0

0 0[ ] [ ]
ln

[ ] ([ ] )

[ ] ([ ] )B A

A B

B A-
-
-

Ê
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ˆ
¯̃

È

Î
Í

˘

˚
˙

x

x of reactants

(iv) Third-order with equal concentrations k3 = 
1

2t

1 1
2

0
2[ ] [ ]A At

-
È

Î
Í

˘

˚
˙

   of reactants

(v) Third-order with equal concentrations k3 = 
1

2 0 0
2t( [ ] [ ] )B A-

2 2

2

0 0

0 0

x

x

( [ ] [ ] )

[ ] ([ ] )

B A

A A

-
-

È

Î
Í

of two of the reactants  

  + ln
[ ] ([ ] )

[ ] ([ ] )

B A

A B

0 0

0 0

2-
-

Ê
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ˆ
¯̃

˘

˚
˙

x

x
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Table 2.6.2 Order of Plotting the Straight-Line Plot

   Kinetics Straight-line Plot Slope of  the Plot

  (i) First-order log [A]t versus t –
k1

2 303.

 (ii) Second-order with equal
1

[ ]A t

 versus t k2

concentrations of reactants

(iii) Second-order with different log
[ ]

[ ]

B

A

0

0

-
-

Ê
ËÁ

ˆ
¯̃

x

x
 versus t

([ ] [ ]

.

B A0 0

2 303

- k

concentrations of reactants

(iv) Third-order with equal
1

2[ ]A t

 versus t 2k3

concentrations of reactants

 (v) Third-order with equal 2 2

2

0 0

0 0

x

x

( [ ] [ ] )

[ ] ([ ] )

B A

A A

-
-

k3 (2 [B]0 – [A]0)
2

concentrations of two of

reactants
+ ln 

[ ] ([ ] )

[ ] ([ ] )

B A

A B

0 0

0 0

2-
-

x

x
 versus t

This method can be employed only when the rate law involves only one concentration 

term. According to Eq. (2.5.48), we have

t1
2

 = 
1

1k nn ( )-
2 11

0
1

n

n

-

-
-

[ ]A
(Eq. 2.5.48)

where n is the order of the reaction. If the measurements are done with two different 

initial concentrations, then, we will have

( )

( )

t

t

1
2

1
2

1

2

 = 
[ ]

[ ]

A

A

02

01

1
Ê
ËÁ

ˆ
¯̃

-n

or log
( )

( )

t

t

1
2

1
2

1

2

= (n – 1) log 
[ ]

[ ]

A

A

02

01

Ê
ËÁ

ˆ
¯̃

(2.6.1)

Hence n = 
log[( ) /( ) ]

log([ ] /[ ] )

t t1
2

1
2

1 2

02 01A A
 + 1

Knowing n, the value of k can be computed from Eq. (2.5.48).

The value of n can also be determined graphically. Taking logarithm of                       

Eq. (2.5.48), we get

log
t1

2

s

Ê
ËÁ

ˆ
¯̃ = log 

2 1

1

1n

nk n

- -
¢ -

Ê
ËÁ

ˆ
¯̃( )

 + (1 – n) log 
[A]

mol dm 3

0

-
Ê
ËÁ

ˆ
¯̃

Thus, a plot of log ( t1
2

/s) versus log ([A]0/mol dm–3) will have a slope of                  

(1 – n), from where the value of n can be determined.

Half-Life Method
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The above method can be equally applied by using a fraction other than one half. 

Thus, equations can be obtained for t1/y where 1/y represents the fraction of the 

initial concentration of reactant that has converted to products. It can be shown that

t1/y ∝
1

0
1[ ]A n-

Thus, a plot of log (t1/y /s) versus log ([A]0/mol dm–3) will have a slope of (1 – n)

irrespective of the value of the fraction.

initial concentrations. A single run where the time taken for successive fractions to 

may be regarded as the initial concentration for the next interval and so on.

In this method, the order of a reaction with respect to each of its reactants can be 

determined. Consider, for example, a general reaction

n1A + n2B Æ products

Let m and n be the orders of the reaction with respect to A and B, respectively. 

The differential rate law can be written as

d

d

x

t
= k [A]m [B]n (2.6.2)

Let a number of kinetic experiments be carried out with different initial 

concentrations of A but with a constant concentration of B. Equation (2.6.2) in 

such conditions may be written as

d

d

x

t
 = k¢ [A]m (2.6.3)

where k¢ is a constant and is equal to k [B]n. The concentration of A at various 

time intervals are determined and are plotted as shown in Fig. 2.6.1.

t

[A
]

Van’t Hoff’s 

Differential

Method

Fig. 2.6.1 Concentration

of A versus time 

for various initial 

concentrations of A
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The initial rates of the reaction are determined from the initial slopes of the curves 

of Fig. 2.6.1. Let (dx/dt)01 and (dx/dt)02 be the initial rates of the reaction when the 

initial concentrations of A are [A]01 and [A]02, respectively. From Eq. (2.6.3), we have

d

d

x

t

Ê
ËÁ

ˆ
¯̃

01

 = k¢ [A]m
01 (2.6.4a)

d

d

x

t

Ê
ËÁ

ˆ
¯̃

02

 = k¢ [A]m
02 (2.6.4b)

Dividing Eq. (2.6.4a) by Eq. (2.6.4b), we get

( / )

( / )

d d

d d

x t

x t

01

02

 = 
[ ]

[ ]

A

A

01

02

m

m
(2.6.5)

On taking logarithm of Eq. (2.6.5), we get

log
( / )

( / )

d d

d d

x t

x t

01

02

 = m log 
[ ]

[ ]

A

A

01

02

or m = 
log{( / ) /( / ) )}

log{[ ] /[ ] }

d d d d

A A

x t x t01 02

01 02

(2.6.6)

Hence, the order of the reaction with respect to A can be determined from                     

Eq. (2.6.6). Alternatively, the graphical method may be employed to determine 

the value of m. From Eq. (2.6.2), we get

log
( / )d d

mol dm s

x t
- -

Ï
Ì
Ó

¸
˝
˛3 1

0

 = log k≤ + m log ([A]0/mol dm–3) (2.6.7)

Hence, a plot of log {(dx/dt)0 / mol dm–3 s–1} versus log {[A]0/mol dm–3} will 

yield a straight line of slope equal to m (Fig. 2.6.2).

slope = m

lo
g

{
(d

/
d

)
/
m

o
l
d
m

s
}

x
t

0
–
3

–
1

log {[A] / mol dm }0
–3

Now the experiments are repeated keeping the concentration of A constant and 

varying the initial concentrations of B. Following the method described above, we 

can determine the order n of the reaction with respect to B.

Fig. 2.6.2 A plot of              

log {(dx/dt)0 / mol dm–3 s–1}

versus log ([A]0 /mol dm–3)
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In many cases, (dx/dt)0 may be replaced by (Dx/Dt)0 where Dt is the time required 

to change the initial concentration of the reactant by a small amount Dx. One of 

the reactions where such a replacement can be conveniently done is the reaction 

between persulphate and iodide ions. The experiment is known as iodine-clock 

experiment. The involved reaction is

S2O
2–
8 + 2I– Æ 2SO2–

4 + I2

The reacting mixture besides containing S2O
2–
8 and  I –, also contains the known 

volumes of very dilute solutions of sodium thiosulphate and starch. Initially, the 

generated iodine reacts with Na2S2O3 present in the solution. When the entire 

Na2S2O3 is consumed, the generated iodine gives blue colour with starch. The 

strength of hypo solution is so adjusted that the blue colour appears in a very 

small interval of time (say, within 30 to 40 s) when the experiment is done with 

the largest concentrations of S2O
2–
8   and I – ions. Now, the different sets of solutions 

may be prepared according to the scheme given in Table 2.6.3. 

Table 2.6.3 Different Sets of Solutions for Iodine-Clock Experiment*

Flask 1    Flask 2

Volume of Volume of Volume of Volume of Volume of Volume of

0.1 M S2O
2–
8 Water 0.1 M I – Water Na2S2O3 Starch

V/cm3 V/cm3 V/cm3 V/cm3 Solution Solution

     V/cm3 V/cm3

Set 1 10.0 0.0 10.0 0 5.0 2.0

8.0 2.0 10.0 0 5.0 2.0

6.0 4.0 10.0 0 5.0 2.0

4.0 6.0 10.0 0 5.0 2.0

Set 2 10.0 0.0 8.0 2.0 5.0 2.0

10.0 0.0 6.0 4.0 5.0 2.0

10.0 0.0 4.0 6.0 5.0 2.0

*For more accurate work, salt effect should also be taken into account (see Section 2.19).

In set 1, the volume of  S2O
2 –
8   is varied keeping the volume of I – constant and 

in set 2, the volume of I– is varied keeping the volume of S2O
2–
8  constant. This 

provides us different initial concentrations of S2O
2–
8  and I –

mixed and the times are recorded till the blue colour appears. The various times 

obtained may be analyzed as follows.

The rate expression of S2O
2–
8 – I – reaction may be written as

d

d

x

t
 = k [S2O

2–
8 ]

m [I –]n (2.6.8)

For set 1, Eq. (2.6.8) reduces to

d

d

x

t
 = k¢ [S2O

2–
8 ]

m
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Now (dx/dt)0 may be replaced by (Dx)0/(Dt)0, where (Dx)0 represents the small 

amount of iodine generated in the small interval of time (Dt)0. Thus, we have

D
D

x

t

Ê
ËÁ

ˆ
¯̃

0

 = k¢ [S2O
2–
8 ]

m
0

or
1

0( )Dt
 = 

¢k

x( )D 0

 [S2O
2–
8 ]

m
0

Now since [S2O
2–
8 ]

m
0 will be proportional to its volume, we may write the above 

expression as

1

0( )Dt
 = k≤ {V(S2O

2–
8 )}m

0

Taking logarithm, we get

log {(Dt)0/s}= – log k¢≤ – m log {V(S2O
2–
8 )/dm3}0 (2.6.9)

where k¢¢¢ = k¢¢ (s dm3m). Hence, a plot of log {(Dt)0/s}versus log {V(S2O
2–
8 )/dm3}0

will yield a straight line of slope equal to – m. For set 2, Eq. (2.6.9) will be given as

log {(Dt)0/s}= – log k≤¢ – n log {V(I –)/dm3}0 (2.6.10)

where k¢¢¢ = k¢¢ (s dm3n). Hence, the order n with respect to I – can be determined 

from the plot of log {(Dt)0/s} versus log {V(I–)/dm3}0.

The principle of this method is essentially the same as that of van’t Hoff’s 

differential method. The concentration of one of the reactants is varied by a 

known factor and its effect on the initial rate of the reaction is studied. Say, for 

example, the order of the reaction with respect to one of its constituents is one 

and if its concentration is doubled, it is obvious that the initial rate of the reaction 

will also be doubled. If the order is two, then the rate will increase four times 

and so on. This way, by changing the concentrations of all reactants one by one, 

Mathematically, for the reaction

n1A + n2B Æ products

we may write

d

d

x

t

Ê
ËÁ

ˆ
¯̃

01

 = k[A]m
0 [B]n

0 (2.6.11)

Now let the concentration of A be changed to j[A]0, where j is a constant, may 
be integral or nonintegral, and let the concentration of B remain unchanged. We 

will have
d

d

x

t

Ê
ËÁ

ˆ
¯̃

02

 = k( j[A]0)
m [B]n

0 (2.6.12)

Dividing Eq. (2.6.12) by Eq. (2.6.11), we get

( / )

( / )

d d

d d

x t

x t

02

01

 = jm

or m = 
1

(log )j
log

/
log

/d d

mol dm s

d d

mol dm s

x t x t
- - - -

Ê
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ˆ
¯̃

-
Ê
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ˆ
¯̃

È

Î
Í

˘

˚
3 1

02
3 1

01

˙̇ (2.6.13)

Similarly, the order n with respect to B can be determined.

Ratio Variation

Method
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This method is based on the fact that the concentration terms of reactants except 

one if present in excess remain virtually unchanged and thus can be merged with the 

rate constant. In this case, the rate of the reaction depends only on the concentration 

of that reactant which is not present in excess. Thus, in the rate expression

r = k [A]a [B]b [C]g

if B and C are present in large excess, we will have

r = k¢ [A]a

where k¢ = k [B]b [C]g.

The reaction is known to be pseudo a-order. Hence, we can study the kinetics 

of the reaction by taking all reacting species except one (say A) in large excess. 

The obtained order of the reaction will be equal to the order with respect to the 

species A. This way, we can proceed for different reacting species and the order 

with respect to each of them can be determined.

1. Æ B is 10 min. What per 

cent of A remains after 1 h?

Since t1
2

 = 0.693 /k, we have 

    k = 
0 693

1
2

.

t
 = 

0 693

10 60

.

¥ s
 = 0.001155 s–1

   ln
[ ]

[ ]

A

A

t

0

Ê
ËÁ

ˆ
¯̃  = – kt

Thus, after one hour we will have

    ln
[ ]

[ ]

A

A

t

0

Ê
ËÁ

ˆ
¯̃  = – (0.001 155 s–1) (60 ¥ 60 s) = – 4.158

or
[ ]

[ ]

A

A

t

0

 = e– 4.158 = 0.015 63

Hence, per cent of A remaining is 1.563.

2. In the decomposition of N2O5 at 318 K according to the equation

   N2O5(g) Æ 2NO2(g) + 1
2

O2(g)

the following concentration data were obtained.

t/s
[N O ]

mol dm

2 5

3- t/s
[N O ]

mol dm

2 5

3-

0 0.250  800 0.152

200 0.223 1 000 0.134

400 0.198 1 200 0.120

600 0.174

Ostwald Isolation
Method

2.7 SOLVED NUMERICALS

Solution
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Fig. 2.7.1

Answer the following:

(i) What is the order of the reaction?  (ii)  What is the rate constant of the reaction? 

(iii) What is the rate of reaction at t = 500 s? (iv) What will be the concentration 

of N2O5 at 2 000 s? (v) What is the average rate over the period 0 to 200 s?

(i) To determine the order of the reaction in the present case, we may 

([A]t /mol dm–3) and t should be a straight line. Thus, we have

t/s 0 200 400 600 800 1 000 1 200

[N2O5]/mol dm–3 0.250 0.223 0.198 0.174 0.152 0.134 0.120

log{[N2O5]/mol dm–3} 1 .398 1 .348 1 .297 1 .241 1 .182 1 .127 1 .079  

The graph between log (N2O5]/mol dm–3) and t is shown in Fig. 2.7.1. Since the 

graph shown in Fig. 2.7.1 is a straight-line, the order of the decomposition of N2O5

(ii) The rate constant of the reaction can be obtained from the slope of the 

straight-line plot shown in Fig. 2.7.1.

We have 
D

D
{log[N O ] moldm

s

2 5 / }

( / )

-3

t
 = 0.000 282 6

Hence,
D

D
{log[N O ] moldm2 5 / }-3

t
 = – 0.000 282 6 s–1

From the rate expression, we have

      slope = – 
k

2 303.
 = – 0.000 282 6 s–1

Hence, k = (– 2.303) (– 0.000 282 6 s–1) = 0.000 650 8 s–1

(iii)
concentration of A at 500 s and then multiply this concentration by the rate constant 

k. Thus, we have

   ln
[ ]

[ ]

A

A

t

0

Ê
ËÁ

ˆ
¯̃ = – kt

         = – (0.000 650 8 s–1)(500 s) = – 0.325 4

– 0.1696

600

0 200 400 600 800 1000 1200
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m

o
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d
m

}
2

5
–
3

t / s

1 05.

slope = – 0.169 6 /600
= – 0.0002826

Solution
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Hence, [A]t = [A]0 e
– 0.325 4

    = (0.250 mol dm–3)(0.722 3) = 0.180 6 mol dm–3

Hence, Rate at 500 s = k [A]t = (0.000 650 8 s–1) (0.180 6 mol dm–3)

                 = 0.000 117 5 mol dm–3 s–1

(iv) The concentration at 2 000 s will be

        [A]t = [A]0 e
–kt = (0.25 mol dm–3) exp(– 0.000 6508 ¥ 2 000)

         = (0.25 mol dm–3) (0.272 1) = 0.068 mol dm–3

(v) Average rate over the period of 0 to 200 s will be

   rav=
- -( [ ])D A

s

s0 200

200
 = 

(0.250mol dm 0.223 mol dm )

s

3 3- --
200

      = 0.000 135 mol dm–3 s–1

3. Calculate the value of rate constant and the time (minutes) required for the 

solution to become optically inactive from the following data.

t/min 0.0 7.2 36.8 46.0 68.0 •
Rotation of polarized

light/degree 24.1 21.4 12.4 10.0 5.5 – 10.7

First of all, the order of the reaction is to be determined. We may adopt graphical 

ln
[ ]

[ ]

A

A

t

0

 = – kt

Now [A] t ∝ q• – qt and [A]0 ∝ q• – q0

Hence, ln
q q

q q
•

•

-
-

Ê
ËÁ

ˆ
¯̃

t

0

= – kt

Thus, the graph of log {(q• – qt)/(q• – q0)} is made against t. From the given data, 

we have

t/min 0 7.2 36.8 45.0 66.8 •

q/degree 24.1 21.4 12.4 10.0 5.5 – 10.7

(q• – qt)/degree – 34.8 – 32.1 – 23.1 – 20.7 – 16.2

q q

q q
•

•

-
-

t

0

1 0.922 0.664 0.595 0.466

log
q q

q q
•

•

-
-

Ê
ËÁ

ˆ
¯̃

t

0

0 1 .965 1 .822 1 .774 1 .668

Solution
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The graph between log {(q• – qt)/(q• – q0)} and t is shown in Fig. 2.7.2.

0 20 40 60 80

1.65

1.75

1.85

1.95

36

–0.175

slope = – 0.175/(36)
= – 0.00486

lo
g

{
(

–
)

/
(

–
)}

q
•

t
0

q
q

•
q

t / min

constant can be obtained from the slope of the straight-line plot. For the rate 

expression, we will have

slope = – 
k

2 303.
 = – 0.004 86 min–1

k = (0.004 86 min–1) ¥ 2.303 = 0.011 19 min–1

For the solution to become optically inactive, we will have qt = 0.

Thus
q q

q q
•

•

-
-

t

0

 = 
-
-

10 7

34 8

.

.
 = 0.307 5

log
q q

q q
•

•

-
-

Ê
ËÁ

ˆ
¯̃

t

0

 = 1 .487 8

The time corresponding to the above value of log{(q• – qt)/(q• – q0)} can be 

obtained from the rate expression

log
q q

q q
•

•

-
-

Ê
ËÁ

ˆ
¯̃

t

0

 = – 
k

2 303.
t

Hence, t = – 
2 303 1 487 8

0 011 19 1

. .

. min

¥
-  = 105.4 min

4. The following data were obtained at a constant volume for the decomposition 

of di-tertiarybutyl peroxide in the gas phase at 427.7 K.

t/min 0 3 6 9 12 15 18 21

p/Torr 169.3 189.2 207.1 224.4 240.2 256.0 265.7 282.6

Fig. 2.7.2
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The reaction is

(CH3)3COOC(CH3)3 Æ 2CH3COCH3 + C2H6

For the decomposition reaction

(CH3)3COOC(CH3)3 Æ 2CH3COCH3 + C2H6

(A)

we will have

[A]0 ∝ p0

[A]t ∝ pt = 
( )D

D

n

n

g

g

+ -Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

1 0p p
 = 

3

2

0p p-{ }
Thus from the given data, we have

t/min 0 3 6 9 12 15 18 21

p/Torr 169.3 189.2 207.1 224.4 240.2 255.0 269.7 282.6

pt /Torr 169.3 159.35 150.4 141.75 133.85 126.45 119.1 112.65

log( pt/Torr) 2.229 2.202 2.177 2.152 2.126 2.102 2.076 2.052

p/Torr) versus t

9

– 0.0756

2.20

2.15

2.10

2.05

2.00
0 5 10 15 20

lo
g

(
/
T
o
rr

)
p
t

slope = – 0.075 6 / 9
= – 0.008 4

t/min

We have
D

D
{log( / )}

( /min)

p

t

t Torr
 = 0.008  4

Hence,
D

D
{log( / )}p

t

t Torr
 = – 0.008  4 min–1

For the rate expression, we will have

   slope = – 
k

2 303.
 = – 0.008  4 min–1

Hence,  k = (2.303) (0.008 4 min–1)

   = 0.019 3 min–1 = 3.217 ¥ 10– 4 s–1

Fig. 2.7.3

Solution
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5. The following data were obtained for the dimerization of butadiene according 

to the equation

C4H6 Æ 1
2

C8H12

t/min pt /Torr t/min pt /Torr

0 632.0 42.50 509.3

6.12 606.6 60.87 482.8

12.18 584.2 90.05 453.3

17.30 567.3 119.00 432.8

29.18 535.4 176.67 405.3

Calculate (i) the average rate over the period 0 to 12.18 minutes, and (ii) the order 

of the reaction and its rate constant.

(i) The average rate of the reaction over the time period 0 to 12.18 minutes is 

given by

    rav = 
-D
D

p

t
 = 

- -( . . )

. min

584 2 632 0

12 18

Torr Torr
 = 3.924 Torr/min

(ii) For the reaction

C4H6 Æ 1
2

C8H12

(A) (B)

we will have

[A]0 ∝ p0

Let x be the amount of C4H6 that dimerizes in time t. We will have

[A]t = [A]0 – x  and [B]t = x/2

[A]t + [B]t = [A]0 – x + 
x

2
 = [A]0 – 

x

2

Now pt ∝ ([A]t + [B]t)

i.e. pt ∝
[ ]A 0

2
-Ê

ËÁ
ˆ
¯̃

x

The change in pressure is due to the change in the amount of gaseous species 

which is – x/2. Hence

pt – p0 ∝ – 
x

2

or x ∝ 2 ( p0 – pt)

Hence, [A]t = {[A] – x} ∝ {p0 – 2( p0 – pt)} = (2pt – p0) ∫ yt

To determine the order of the reaction, we follow the graphical method. For the 

yt /Torr) and t. If 

a straight-line plot is not obtained, we try for the second-order kinetics and thus plot 

a graph between 1/yt and t and so on. We tabulate below the values of log (yt / Torr) 

and 1/yt.

Solution
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t/min pt /Torr [A]t ∝ yt log (yt /Torr) (1/yt) Torr

  = (2pt – p0)/Torr

0 632.0 632 2.801 0.001 58

6.12 606.6 581.2 2.764 0.001 72

12.18 584.2 536.4 2.730 0.001 86

17.30 567.3 502.6 2.701 0.001 99

29.18 535.4 438.8 2.642 0.002 28

42.50 509.3 386.6 2.587 0.002 59

60.87 482.8 333.6 2.523 0.003 00

90.05 453.3 274.6 2.439 0.004 64

119.00 432.8 233.6 2.369 0.004 28

176.67 405.3 178.6 2.252 0.005 60

The graph between log (yt/Torr) and t is not a straight line (Fig. 2.7.4a) and hence 

1/yt and t

¥ 10–5,

that is

D
D
( / )

( /min)

Torr y

t

t
 = 0.000 0178 or

D
D

( / )1 y

t

t  = 0.000 0178 Torr–1 min–1

k = 1.78 ¥ 10–5 Torr–1 min–1

6. For the reaction

2 Æ N2 2O

p/dt –1

NO and 0.25 Torr s–1
2 being constant. 

p/dt was 1.60 

Torr s–1 –1

147 Torr. Determine the order of the reaction.

Fig. 2.7.4
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–
d

d

p

t
 = k pm

NO pn

2

-Ê
ËÁ

ˆ
¯̃

d

d

p

t 0

 = k¢ pm
NO

1.50 Torr s–1 = k ¢ (359 Torr)m

0.25 Torr s–1 = k ¢ (152 Torr)m

1 50

0 25

.

.
 = 

359

152

Ê
ËÁ

ˆ
¯̃

m

or m =
log ( . / . )

log ( / )

1 50 0 25

359 152
 = 

0 7782

0 3773

.

.
�  2

n =
log ( . / . )

log ( / )

1 60 0 79

289 147
 = 

0 3065

0 2935

.

.
�  1

m + n = 3.

7. For the reaction

I– + OCl– Æ OI– + Cl–

(a) [OCl–]0
–]0 = 0.1 mol dm–3

     [I–]0/mol dm–3:  0.01 0.03 0.05 0.07 0.10

   Initial rate/mol dm–3 s–1:  0.6 1.8 3.0 4.2 6.0

(b) [I–]0
–]0 = 0.1 mol dm–3

    [OCl–]0/mol dm–3:  0.01 0.03 0.05 0.07 0.10

    Initial rate/mol dm–3 s–1:  0.6 1.8 3.0 4.2 6.0

(c) [I–]0 = [OCl–]0 = 0.1 mol dm–3

–]/mol dm–3;  0.01 0.03 0.05 0.07 0.10

    Initial rate/mol dm–3 s–1  60.0 20.0 12.0 8.6 6.0

Find (i) the orders of the reaction with respect to I–, OCl– –, and (ii) the 

reaction rate constant of the reaction.

(i)  The orders of the reaction with respect to I –, OCl– – in the present 

in concentration of I–. For example, if the concentration of I– is increased 

three times from 0.01 to 0.03 mol dm–3, the initial rate also increases three 

times, i.e. from 0.6 to 1.8 mol dm–3 s–1

reaction with respect to I–

the order of the reaction with respect to OCl–

–

Solution

Solution
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–

– is –1.

of the reaction. We write the differential rate law as

d

d

x

t

Ê
ËÁ

ˆ
¯̃

0

 = k [I–]a
0 [OCl–]b

0
–]g

0

For set (a), since [OCl– –

d

d

x

t

Ê
ËÁ

ˆ
¯̃

0

= k¢ [I–]a
0

or {log (dx/dt)/mol dm–3 s–1} = log k≤ + a log ([I–]0/mol dm–3 )

x/dt)0/mol dm–3 s–1} and log{[I–]0 / mol dm–3

a. Similarly, for other sets, we may write

Set (b): {log (dx/dt)0/mol dm–3 s–1} = log k≤ + b log {[OCl– ]0/mol dm–3}

Set (c): {log (dx/dt)0/mol dm–3 s–1} = log k ≤ + g –]0 /mol dm–3}

Set (a):

[I–]0/mol dm–3 0.01 0.03 0.05 0.07 0.10

log{[I–]0/mol dm–3 } 2 000. 2 .477 2 .699 2 .845 1 .000

(dx/dt)0/mol dm–3 s–1 0.6 1.8 3.0 4.2 6.0

log{(dx/dt)0 /mol dm–3 s–1} 1 .778 0.225 0.477 0.623 0.778

Set (b):

  [OCl–]0/mol dm–3 0.01 0.03 0.05 0.07 0.10

  log{[OCl –]0/mol dm–3} 2 .000 2 .477 2 .699 2 .845 1 .000

  (dx/dt)0/mol dm–3 s–1 0.6 1.8 3.0 4.2 6.0

  log{(dx/dt)0/mol dm–3 s–1} 1 .778 0.255 0.477 0.623 0.778

Set (c):

–]0/mol dm–3 0.01 0.03 0.05 0.07 0.10

–]0/mol dm–3} 2 .000 2 .477 2 .699 2 .845 1 .000

  (dx/dt)0/mol dm–3 s–1 60.0 20.0 12.0 8.6 6.0

  log{(d x/dt)0/mol dm–3 s–1} 1.778 1.301 1.079 0.935 0.778

–, OCl– – are +1, +1 and 
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(ii)

the rate law:

d

d

x

t

Ê
ËÁ

ˆ
¯̃

0

 = 
k [ ][ ]

[ ]

I OCl

OH

- -

-

k –1

k.

8. (a) Using the following data, obtain the differential rate expression and the 

CO + Cl2 Æ COCl2

Experiment number 1 2 3 4

[CO]0/mol dm–3 0.10 0.10 0.05 0.05

[Cl2]0/mol dm–3 0.10 0.05 0.10 0.05

r0/mol dm–3 s–1 1.2 ¥ 10–2 4.26 ¥ 10–3 6.0 ¥ 10–3 2.13 ¥ 10–3

of the rate constant for the following reaction

COCl2 Æ CO + Cl2

Experiment number 1 2 3 4

[COCl2]0/mol dm–3 0.16 0.16 0.04 0.04

[Cl2]0 /mol dm–3 0.16 0.04 0.16 0.04

r0/mol dm–3 s–1 1.9 ¥ 10–2 9.6 ¥ 10–3 4.8 ¥ 10–3 2.4 ¥ 10–3

(a) We write the rate expression as

d

d

x

t

Ê
ËÁ

ˆ
¯̃

0

 = k[CO]m
0 [Cl2]

n
0

For the constant initial concentration of Cl2

d

d

x

t

Ê
ËÁ

ˆ
¯̃

0

 = k ¢[CO]m
0

Solution

Fig. 2.7.5
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or log {(dx/dt)0/mol dm–3 s–1} = log k≤ + m log {[CO]0 /mol dm–3}

m = 
log{( / ) / } log{( / ) / }

log{[

d d mol dm s d d mol dm s

CO

x t x t01
3 1

02
3 1- - - --

]] / } log{[ ] / }01
3

02
3mol dm CO mol dm- --

m = 
log ( . ) log ( . )

log ( . ) log ( . )

1 2 10 6 0 10

0 1 0 05

2 3¥ - ¥
-

- -

 = 
2 0792 3 7782

10000 2 6090

. .

. .

-
-

=
0 3000

0 3000

.

.
 = 1

Similarly for the constant initial concentration of CO, we may write

n = 
log{( / ) / } log{( / ) / }

log{[Cl

d d mol dm s d d mol dm sx t x t01
3 1

02
3 1- - - --

22 01
3

2 02
3] / } log{[Cl ] / }mol dm mol dm- --

n = 
log ( . ) log ( . )

log ( . ) log ( . )

1 2 10 4 26 10

0 10 0 05

2 3¥ - ¥
-

- -

  = 
2 0792 3 6294

10000 2 6990

. .

. .

-
-

 = 
0 4498

0 3010

.

.

   = 1.494 = 3/2

d

d

x

t
 = k[CO][Cl2]

3/2

1.2 ¥ 10–2 mol dm–3 s–1 = k (0.1 mol dm–3 )(0.1 mol dm–3 )3/2

k = 
1 2 10

0 1 0 1

2

3 2

.

( . ( . /

¥ - - -

- -
mol dm s

mol dm ) mol dm )

3 1

3 3
 = 3.795 (mol/dm3 )–3/2 s–1

(b) We may write the rate expression as

d

d

x

t
 = k [COCl2]

m [Cl2]
n

Proceeding similarly as in part (a), we will get

m = 
log{( / ) / } log{( / ) / }

log{[CO

d d mol dm s d d mol dm sx t x t01
3 1

02
3 1- - - --

CCl ] / } log{[COCl ] / }2 201
3

02
3mol dm mol dm- --

n = 
log{( / ) / } log{( / ) / }

log{[Cl

d d mol dm s d d mol dm sx t x t01
3 1

02
3 1- - - --

22 2] / } log{[Cl ] / }01
3

02
3mol dm mol dm- --
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m =  
log ( . ) log ( . )

log ( . ) log ( . )

1 9 10 4 8 10

0 16 0 04

2 3¥ - ¥
-

- -

=
2 2788 3 6812

12041 2 6021

. .

. .

-
-

 = 
0 5976

0 6020

.

.

� 1

n = 
log ( . ) log ( . )

log ( . ) log ( . )

. .1 9 10 9 6 10

0 16 0 04

2 2788 3 982 3¥ - ¥
-

=
-- - 223

12041 2 6021

0 2965

0 6020. .

.

.-
=

 = 1/2

d

d

x

t
 = k[COCl2][Cl2]

1/2

k

1.9 ¥ 10–2 mol dm–3 s–1 = k (0.16 mol dm–3 )(0.16 mol dm–3 )1/2

k = 
1 9 10

0 16 0 16

2

1 2

.

( . ) ( . ) /

¥ - - -

- -
moldm s

moldm moldm

3 1

3 3
 = 0.297 (mol/dm3 )–1/2 s–1

9. For the bromination of acetone

3 3 + Br2

+

æ Ææ 3 2
+ + Br–

the following data were obtained.

Experiment 3 3 ] [Br2
+ ] – d [Br2]/dt

Number    mol dm–3 mol dm–3 mol dm–3 moldm–3  s–1

1 0.30 0.05 0.05 5.7 ¥ 10–5

2 0.30 0.10 0.05 5.7 ¥10–5

3 0.30 0.05 0.10 1.14 ¥ 10–4

4 0.40 0.05 0.20 3.04 ¥ 10–4

5 0.40 0.05 0.05 7.6 ¥ 10–5

We may write the rate expression as

     – 
d Br

d

2[ ]

t
 = k 3 3]

a [Br2]
b +]g

a = 
log{( [ ]/ ) / } log{( [ ]/ ) /- - -- - -d Br d mol dm s d Br d mol dm s2 01

3 1
2 05

3t t --

- --

1

3 01
3

3 05
3

}

log{[ ] / } log{[ ] / }CH COCH mol dm CH COCH mol dm3 3

b = 
log{( [ ]/ ) / } log{( [ ]/ ) /- - -- - -d Br d mol dm s d Br d mol dm s2 01

3 1
2 02

3t t --

- --

1

2 01
3

2 02
3

}

log{[ ] / } log{[ ] / }Br mol dm Br mol dm

g  = 
log{( [ ]/ ) / } log{( [ ]/ ) /- - -- - -d Br d mol dm s d Br d mol dm s2 01

3 1
2 03

3t t --

+ - + --

1

01
3

03
3

}

log{[ ] / } log{[ ] / }H mol dm H mol dm

Solution
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a =
log ( . ) log ( . )

log ( . ) log ( . )

5 7 10 7 6 10

0 30 0 40

5 5¥ - ¥
-

- -

 = 
5 7559 5 8808

14771 16021

. .

. .

-
-

 = 
1 8751

1 8750

.

.
= 1

b =
log ( . ) log ( . )

log ( . ) log ( . )

5 7 10 5 7 10

0 05 0 1

5 5¥ - ¥
-

- -

 = 0

g =
log ( . ) log ( . )

log ( . ) log ( . )

5 7 10 1 14 10

0 05 0 10

5 4¥ - ¥
-

- -

 = 
5 7559 4 0569

2 6990 10000

. .

. .

-
-

=
1 6990

1 6990

.

.
 = 1 

–
d Br

d

2[ ]

t
3 3

+ ]

5.7 ¥ 10–5 mol dm–3 s–1 = k (0.30 mol dm–3 ) (0.05 mol dm–3)

k = 
( .

( .

5 7 10

0 3

5¥ - - -

- -
mol dm s )

mol dm )(0.05 mol dm )

3 1

3 3
 = 3.80 ¥ 10–3 (mol/dm3)–1 s–1

10.

constant.

t/s 0 100 200 300 400

[A]/(mol dm–3 ) 0.050 0.035 5 0.027 5 0.022 5 0.018 5

500 600 700 800

  0.016 0 0.014 8 0.014 0 0.013 8

t and determine from the 

graph t1
2

[A]0 t1
2

0

is not obtained, we may plot t1
2

2
0 to determine whether the reaction 

The graph between [A] and t is shown in Fig. 2.7.6a. From the graph, we obtain 

the following data:

[A]0/mol dm–3 0.05 0.045 0.040 0.035 0.030

t1
2

/s 245 270 300 325 400

Since t1
2

 is not independent of [A]0, we plot a graph between t1
2

 and 1/[A]0

k2

dm–3 k = 
1

slope
=

1

11.57 mol dm s3-  = 0.086 4 (mol dm–3 )–1 s–1

Solution
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Fig.  2.7.6 

0 200 400 600 800

0.01

0.02

0.03

0.04

0.05

400

325

300

270

245

20 24 28 32 36

t / s

[A
]
/
m
o
l
d
m
–
3

400

350

300

250

200

5.4

62.5

t
/s slope =

62.5

5.4

= 11.57

mol dm /[A]–3
0

11. 2 = N2 2O follows the rate law

d N O

d

2p

t

( )
 = k( pNO)2 p H2

Run (pNO)0
( )pH2 0 Half-life Time Temperature

1 600 10 19.2 820

2 600 20 ? 820

3 10 600 830 820

4 20 600 ? 820

5 600 10 10 840

Answer the following.

k

pNO
p H2

Ea

ln
k

k

2

1

 = 
E

R T T

a 1 1

1 2

-
Ê
ËÁ

ˆ
¯̃

(a) pNO)0
( )pH2 0

these conditions, we may consider the rate of reaction to be independent of p(NO) 

and hence reaction will follow the rate law

d

d

N O2
p

t

Ê
ËÁ

ˆ
¯̃

0

 = k ( )pH2 0

t1
2

 = 
ln 2

k
 = 

2 303 0 310. .¥
k

 = 
0 693.

k

Solution

   

(b)          (a)
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Since t1
2

 is independent of initial concentration, it follows that t1
2

( )pH2 0

d

d

N O2
p

t

Ê
ËÁ

ˆ
¯̃

0

 = k( pNO)2
0

t1
2

∝ 
1

0( )pNO

Now since ( pNO)0 t0.5

(b)

kapp  =
0 693

1
2

.

t
 = 

0 693

19 2

.

( . )s
 = 0.036 s–1

kapp = k ( pNO)2
0

so k = 
k

p

app

NO( )0
2  = 

( . )

( )

0 036

600

1

2

s

mmHg

-

 = 1 ¥ 10–7 –2 s–1

(c) pNO)0
( )pH2 0

becomes a special case for which the rate expression is

    –
d H

d

{ ( )}p

t

2
= k { p(NO)}2 p 2 )

  = k {2p 2)}2 p 2) = 4k {p 2)}3

On integration, we get

1

2
2{ ( )}p H

 –
1

2 0
2{ ( )}p H

= 8kt

1

22 0
2{ (H )/ }p

 – 
1

0
2{ ( }p H )2

= 8k t1
2

or t1
2

 = 
3

8 0
2k p{ ( )}H2

   t1
2

 = 
3

8 1 10
7

( ¥ - - -
mmHg s )(10 mmHg)

2 1 2  = 3.8 ¥ 104 s

(d) t1
2

k

kapp =
0 693

1
2

.

t
 = 0.069 3 s–1

  k = 
k

p

app

NO( )2  = 
( . )

( )

0 069 3

600 2

s

mmHg

1-

 = 1.92 ¥ 10–7 –2 s–1

ln
1 92

1

.Ê
ËÁ

ˆ
¯̃ =

E

R

a 1

1 093

1

1 113K K
-

Ê
ËÁ

ˆ
¯̃
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or     Ea =
( . . ) ( . ) ( ) ( )2 303 0 2833 8 314 1 093 1 113

20

1 1¥ - -J K mol K K

K

   = 3.299 4 ¥ 105 J mol–1 –1

† When 

the reaction order does not correspond to the stoichiometry of the reaction, the 

In many reaction mechanisms, the following types of elementary reactions are 

Before considering the reaction mechanisms of important reactions, it is 

†

2.8 REACTION ORDER AND REACTION MECHANISM

2.9 OPPOSED OR REVERSIBLE ELEMENTARY REACTIONS
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where all the participants of a reaction are being formed as fast as they are being 

A � ��
� ��

k

k

b

f

 B (2.9.1)

where kf and kb

i.e.    –
d A

d

[ ]

t
 = 

d B

d

[ ]

t
 = k f [A] – kb[B]

Let the reaction be started with only reactant A. If x is the extent of reaction 

[A] = [A]0 – x

[B] = x

d

d

x

t
 = k f ([A]0 – x) – k b x (2.9.2)

x /dt

be written as

k f ([A]0 – xeq ) = kb x eq (2.9.3)

where xeq is the concentration of A that has been transformed into B at the 

kb = kf

[ ]A eq

eq

0 -Ê

ËÁ
ˆ

¯̃

x

x
(2.9.4)

d

d

x

t
 = k f ([A]0 – x) – k f

[ ]A eq

eq

0 -Ê

ËÁ
ˆ

¯̃

x

x
x

i.e.   
d

d

x

t
 = k f

[ ]A

eq

0

x
 (x eq – x) (2.9.5)

FIRST-ORDER OPPOSED BY FIRST-ORDER

Differential Rate 

Law
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d

eq

x

x x

x

-Ú
0

 = k f

[ ]A
d

eq

0

0
x

t

t

Ú
which yields

– ln (xeq – x) + ln xeq = k f

[ ]A

eq

0

x
t

or ln
x

x x

eq

eq -

Ê

ËÁ
ˆ

¯̃
 = k f

[ ]A

eq

0

x
 t (2.9.6)

k f

0, xeq and x at time t.  Knowing k f, kb can be determined from 

may write
k f [A]0 = (kf + k b) xeq

or
[ ]A

eq

0

x =
k k

k

f b+

f

(2.9.7)

ln
x

x x

eq

eq -

Ê

ËÁ
ˆ

¯̃
 = (k f + k b) t (2.9.8)

[A]0 has been replaced by xeq, and k by k f + k b.

x = xeq [1 – exp{– (k f + k b) t}] (2.9.9)

xeq

x = 
[ ]

( )

A f

f b

0 k

k k+
[1 – exp{– (k f + k b) t}] (2.9.10)

Now since [B] = x and [A] = [A]0 – x, we get

[B] =
[ ]

( )

A f

f b

0 k

k k+
 [1 – exp{– (k f + k b) t}] (2.9.11)

[A] = [A] 0 – 
[ ]

( )

A f

f b

0 k

k k+
 [1 – exp {– (k f + k b) t}]

= [A]0

k

k k

f

f b( )+
k

k

b

f

È

Î
Í  + exp{– (kf + k b) t}

˘
˚̇

(2.9.12)

Integrated Rate 

Law

Concentration of A

and B at Time t
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Keq

Keq = 
[ ]

[ ]

B

A

eq

eq

 = 
x

x

eq

0 eqA[ ] -
(2.9.13)

x

x

eq

0 eqA[ ] -
 = 

k

k

f

b

and hence

Keq = 
k

k

f

b

(2.9.14)

that is, the equilibrium constant is simply the ratio of the forward and backward 

rate constants

2.9.1) is started with only A and no B. If to start with both A and B are present 

with concentrations [A]0 and [B]0

d

d

x

t
 = k f ([A]0 – x) – k b([B]0 + x) (2.9.15)

k f ([A]0 – xeq) = kb ([B]0 + xeq )

or     k b = k f

[ ]

[ ]

A

B

eq

eq

0

0

-

+

Ê

ËÁ
ˆ

¯̃

x

x
(2.9.16)

d

d

x

t
 = k f ([A]0 – x ) – kf

[ ]

[ ]

A

B

eq

eq

0

0

-

+

Ê

ËÁ
ˆ

¯̃

x

x
([B]0 + x)

  = k f

[ ] [ ]

[ ]

A B

B eq

0 0

0

+
+

Ê

ËÁ
ˆ

¯̃x
 (xeq – x) (2.9.17)

d

eq

x

x x

x

-Ú
0

= k f

[ ] [ ]

[ ]

A B

B eq

0 0

0 0

+
+

Ê

ËÁ
ˆ

¯̃ Úx

t

dt

i.e. ln
x

x x

eq

eq - = k f

[ ] [ ]

[ ]

A B

B eq

0 0

0

+
+

Ê

ËÁ
ˆ

¯̃x
t (2.9.18)

xeq

0 = 0.

p
cyclopropane into propene.

Equilibrium

Constant of the 

Reaction

Rate Expression if 

[B]0 is not Equal to 

Zero

Examples
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For the reaction

A
k

k

1

1-

� ���
� ���  P

Time/h  0  1  2  3  4    •
% A 100 72.5 56.8 45.6 39.5 30

k1, k–1 and K1.

ln
x x

x

eq

eq

-Ê

ËÁ
ˆ

¯̃
 = – (k1 + k–1 ) t

where x and xeq are the concentrations of P at times t and teq

– (k1 + k–1 xeq – x)/xeq t

t/ h 0 1 2 3 4

(xeq – x)/xeq = 
70 100

70

- -( % )A
1 0.607 0.383 0.223 0.136

log {(xeq – x)/xeq} 0 1 .783 1 .583 1 .348 1 .133

From Fig. 2.9.1, we get

slope = – 0.217 5

i.e.    
D

D

{log( )/ }

( /h)

x x x

t

eq eq-
 = – 0.217 5

D

D

{log( )/ }x x x

t

eq eq-
 = – 0.217 5 h–1

Example 2.9.1

Solution

Fig. 2.9.1 Plot of 

log {xeq – x)/xeq} versus t
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k k1 1

2 303

+ -

.
= 0.217 5 h–1

or k1 + k–1 = 2.303 ¥ 0.217 5 h–1 (1)

K1 = 
k

k

1

1-
 = 

[ ]

[ ]

P

A

eq

eq

 = 
70

30
 = 2.333 (2)

k1 and k–1

k1 = 0.350 7 h–1 = (0.350 7/3 600) s–1 = 9.74 ¥ 10–5 s–1

k–1 = 0.150 4 h–1 = (0.150 4/3 600) s–1 = 4.18 ¥ 10–5 s–1

The general reaction may be written as

A
kf

bk
� ���
� ���  B + C (2.9.19)

d

d

x

t
 = k f ([A]0 – x) – k b x2 (2.9.20)

where x t. Since 

x/dt

k f ([A]0 – xeq) = kb x2
eq

or k b = kf

[ ]A eq

eq

0

2

- x

x
(2.9.21)

d

d

x

t
 = k f ([ ] )

[ ]
A

A eq

eq

0

0

2

2- -
-È

Î
Í
Í

˘

˚
˙
˙

x
x

x
x (2.9.22)

going into the details, we write only the integrated rate expression:

ln
[ ] ([ ] )

[ ] ( )

A A

A

eq eq

eq

0 0

0

x x x

x x

+ -

-
 = k f

2 0[ ]A eq

eq

- x

x
t (2.9.23)

The general reaction may be written as

A + B � ��
� ��  C (2.9.24)

FIRST-ORDER OPPOSED BY SECOND-ORDER

Differential Rate 

Law

Integrated Rate 

Law

SECOND-ORDER OPPOSED BY FIRST-ORDER

Differential Rate 

Law

Examples
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Integrated Rate 

Law

Examples

SECOND-ORDER OPPOSED BY SECOND-ORDER

Differential Rate 

Law

d

d

x

t
 = k f ([A] – x) ([B]0 – x) – k b x (2.9.25)

where x is the concentration of A or B reacted in time t

k f ([A]0 – xeq ) ([B] 0 – xeq) = kb xeq

or k b = k f

([ ] ) ([ ] )A Beq eq

eq

0 0- -x x

x
(2.9.26)

d

d

x

t
 = k f

È
ÎÍ

( [A]0 – x) ( [B]0 – x) – 
([ ] ) ([ ] )A Beq eq

eq

0 0- - ˘

˚
˙

x x

x
x

(2.9.27)

0 = [B]0 = a is

ln
x a x x

a x x

eq eq

eq

( )

( )

2

2

-

-
 = k f

a x

x

2 2- eq

eq

t (2.9.28)

3R
+ + CNO–

��
�� 2

The general reaction may be represented as

A + B  ����  C + D (2.9.29)

d

d

x

t
= k f ([A]0 – x) ([B]0 – x) – k b x2 (2.9.30)

where x is the concentration of A or B reacted at time t

k f ([A]0 – xeq)([B]0 – xeq ) = k b x2
eq

or k b = kf

([ ] ) ([ ] )A Beq eq

eq

0 0

2

- -x x

x
(2.9.31)

     
d

d

x

t
 = k f ([ )( )

([ ] )([ ] )
A] [B]

A B
0 0

eq eq

eq

- - -
- -È

Î
Í
Í

˘

˚
˙
˙

x x
x x

x
x

0 0

2

2 (2.9.32)

0 = [B]0 = a is

ln
x a x ax

a x x

( )

( )

- +

-

2 eq eq

eq

 = k f

2

2

a a x

x

( )- eq

eq

t (2.9.33)

Integrated Rate 

Law
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3CO2 2 5
��
�� 3CO2C2 5 2O

O3(g) + NO(g) ����  O2(g) + NO2(g)

CO(g) + NO2(g) � ��
� ��  CO2(g) + NO(g)

Keq of the reaction A � ��
� ��

Keq = 
k

k

f

b

A + B ����  C + D

kf [A]eq [B]eq = k b [C]eq [D]eq

Keq = 
[ ] [ ]

[ ] [ ]

C D

A B

eq eq

eq eq

 = 
k

k

f

b

principle 

of microscopic reversibility

than one elementary process, each elementary process follows the principle of 

2NO2 + F2
��
��  2NO2F (2.9.34)

NO2 + F2

kfæ Ææ  NO2F + F

F + NO2

¢æ Æææ
kf  NO2F

two elementary reactions are

F + NO2F
kbæ Æææ  NO2 + F2

NO2F
¢

æ Ææ
kb  NO2 + F

kf [NO2]eq [F2]eq = k b [F]eq [NO2F]eq

and    k ¢f [F]eq [NO2]eq = k ¢b [NO2F]eq

Examples

PRINCIPLE OF MICROSCOPIC REVERSIBILITY
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A Typical Example

eq

k f [NO2]eq [F2]eq = k b

¢

¢

k

k

b 2 eq

f 2 eq

NO F

NO

[ ]

[ ]
 [NO2F]eq

or
k k

k k

f f

b b

¢
¢

=
[ ]

[ ] [ ]

NO F

NO F

2 eq

2 eq 2 eq

2

2

Keq = 
k k

k k

f f

b b

¢
¢

(2.9.35)

more than one reaction. For example, a b 

HO C H

H C OH

HO C H

H C OH

O C H

CH OH2

k¢¢
1

H C OH

HO C H

H C OH

H C OH

CH OH2

CHO

k¢1

H C OH

H C OH

HO C H

H C OH

O C H

CH OH2

b-D-glucose aldehydic form
of D-glucose

a-D-glucose

k¢1

k¢¢
1

B

C

A

r¢1 = – 
d A

d

[ ]

t
 = k ¢1[A]

r≤1 = – 
d A

d

[ ]

t
 = k ≤1 [A]

r¢1 + r ≤1 = – 
d A

d

[ ]

t
 = (k ¢1 + k ≤1 )[A] = k1[A] (2.10.1)

k1 k ¢1 and k≤1 of 

the two side reactions.

2.10 SIDE OR CONCURRENT ELEMENTARY REACTIONS

Differential Rate 

Law
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–
d A

A
A

A
[ ]

[ ]
[ ]

[ ]

0

t

Ú = k1 dt

t

0

Ú

ln
[ ]

[ ]

A

A

0

t

= k1 t = (k ¢1 + k≤1 ) t (2.10.2)

d B

d

[ ]

t
 = k ¢1[A] t  and        

d C

d

[ ]

t
 = k≤1 [A] t

[ ]

[ ]

B

C
 = 

¢
¢¢

k

k

1

1

experiment) and k¢1 + k ≤1
k ¢1 and k≤1.

A æÆ
k1

 B

2A æÆ
k2

 C

3A æÆ
k3

 D

r1 = 
d B

d

[ ]

t
 = k1[A]

r2 = 
d C

d

[ ]

t
 = k2[A]2

r3 = 
d D

d

[ ]

t
 = k3[A]3

r1 = – 
d A

d

[ ]

t
 = k1[A]

r2 = – 
1

2

d A

d

[ ]

t
 = k 2[A]2

r3 = – 
1

3

d A

d

[ ]

t
 = k3[A]3

–
d A

d

[ ]

t
 = k1[A] + 2k2[A]2 + 3k3[A]3

Integrated Rate 

Law

A More Involved

Example
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Differential Rate 

Law

2.11 CONSECUTIVE OR SEQUENTIAL REACTIONS

A
k1æ Ææ  B

B
¢æ Ææk1  C

Let the initial concentration of A be [A]0 and let after time t, the concentrations 

[A] 0 = [A] + [B] + [C] (2.11.1)

The differential rate expressions are

–
d A

d

[ ]

t
= k1[A] (2.11.2)

d B

d

[ ]

t
= k1[A] – k ¢1[B] (2.11.3)

d C

d

[ ]

t
= k ¢1[B] (2.11.4)

[A] = [A]0 e-k t1 (2.11.5a)

d B

d

[ ]

t
 = k1[A]0 e-k t1  – k¢1[B]

d B

d

[ ]

t
 + k¢1[B] = k1[A]0 e-k t1

k¢1 t), we get

d B

d
B

[ ]
[ ]

t
k+ ¢

Ê
ËÁ

ˆ
¯̃1 e ¢k t1 = k1[A]0 e- - ¢( )k k t1 1

e ¢k t1 )/d t

d{[B] e ¢k t1 } = k1[A]0 e- - ¢( )k k t1 1  dt

t = 0, we get

[B] e ¢k t1  = k1[A]0

e- - ¢

- - ¢
+

- ¢
È

Î
Í

˘

˚
˙

( )

( )

k k t

k k k k

1 1

1 1 1 1

1

[B] = k1[A]0

e e- - ¢

¢ -
+

- ¢
È

Î
Í

˘

˚
˙

k t k t

k k k k

1 1

1 1 1 1

[B] = [A]0

k

k k

1

1 1¢ -
Ê
ËÁ

ˆ
¯̃

{ e-k t1  – e- ¢k t1 } (2.11.5b)

A Typical Example

Integrated Rate 

Law
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[A]0 = [A] 0 e-k t1  + [A]0

k

k k

1

1 1¢ -
Ê
ËÁ

ˆ
¯̃

 ( e-k t1  – e- ¢k t1 ) + [C]

or [C] = [A]0 1
1

1 1
1 1

1 1-
¢ -

¢ -
Ï
Ì
Ó

¸
˝
˛

- - ¢

k k
k kk t k t( e e (2.11.5c)

[B] [A]

[C]
C
o
n
ce
n
tr
at
io
n

Time

In general, the concentration of A decreases exponentially, the concentration 

0, when all 

A has changed into C.

[B] = [A]0

k

k k

1

1 1¢ -
Ê
ËÁ

ˆ
¯̃

{ e-k t1  – e- ¢k t1

d B

d

[ ]

t
 = 0

t, we get

d B

d

[ ]

t
 = [A]0

k

k k

1

1 1¢ -
Ê
ËÁ

ˆ
¯̃

{– k1 e-k t1  + k ¢1 e- ¢k t1 } (2.11.6)

– k1 e-k t1 max  + k ¢1 e- ¢k t1 max  = 0

or     
k

k

1

1¢
 = e( ) maxk k t1 1- ¢

Maximum

Concentration of B

Fig. 2.11.1 Typical 

variations of 

concentrations of A, B

and C during the 

progress of the reaction 

A Æ B Æ C. The actual 

variations depend on 

the values of k1 and k¢1
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or      ln
k

k

1

1¢
Ê
ËÁ

ˆ
¯̃

 = (k1 – k¢1) tmax

or      tmax = 
1

1 1k k- ¢
 ln 

k

k

1

1¢
Ê
ËÁ

ˆ
¯̃

(2.11.7)

[B]max = [A]0

¢Ê
ËÁ

ˆ
¯̃

¢ - ¢
k

k

k k k

1

1

1 1 1/( )

(2.11.8)

ethylene oxide. The reactions are

3 3 æÆ
k1

4

æÆ
k2

2 + CO

2)2O æÆ
k1

3 æÆ
k2

4 + CO

rate constant) is the rate-determining step of the reaction and (2) the steady-state

approximation 

A æÆ
k1

B æÆ
¢k1

C

the reaction rate constant k¢1 k1. In other words, the 

reaction A Æ Æ

[C] = [A]0 1
1

1 1
1 1

1 1-
¢ -

¢ -
Ï
Ì
Ó

¸
˝
˛

- - ¢

k k
k kk t k t( )e e

Since k¢1 � k1, the e- ¢k t1 e-k t1  and hence k1 e- ¢k t1  may 

be ignored in comparison to k¢1 e-k t1

[C] �  [A]0 1 1

1 1

1-
¢

¢ -
Ï
Ì
Ó

¸
˝
˛

-k

k k

k te

Two Important Conclusions from Eqs (2.11.5)

Rate-Determining

Step

Examples of First-

Order Consecutive

Reactions
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Since k1 is much smaller than k¢1, we may also ignore k1 in comparison to k¢1.

Thus, the above equation becomes

  [C] �  [A]0 (1 – e-k t1 )     (2.11.9)

Equation (2.11.9) can be obtained directly if we consider alone the reaction

A Æ C

Now
d C

d

[ ]

t
 = k1[A] = k1([A]0 – [C]) (2.11.10)

or
d C

A C

[ ]

[ ] [ ]0 -
 = k1dt

or
d C

A C

C [ ]

[ ] [ ]

[ ]

0
0 -Ú  = k1 dt

t

0

Ú

or ln
[ ] [ ]

[ ]

A C

A

0

0

-
 = – k1t

or
[ ] [ ]

[ ]

A C

A

0

0

-
 = e-k t1

Hence [C] = [A]0 (1 – e-k t1 )

which is identical to Eq. (2.11.9). Thus, we may conclude that the reaction with 

the smaller rate constant is the rate-determining step. The same conclusion would 

be obtained if we con

i.e. k1 � k¢1. In this case, we will ignore k¢1 in comparison to k1 and k¢1 e-k t1  in 

comparison to k1 e- ¢k t1 . Hence, Eq. (2.11.5c) in the present case will simplify to

[C] = [A]0 (1 – e- ¢k t1 ) (2.11.11)

The above equation can be obtained directly if we consider alone the reaction

B æ Ææ  C

with [B]0 = [A]0 as the transformation A to B is very fast.

Figures 2.11.2a and 2.11.2b illustrate the typical variations in the concentrations 
k1 � k¢1 and 

k1� k¢1, respectively. 

C
o
n
ce
n
tr
at
io
n

[A]

[B]

[C]

Time

[B]

[A]

[C]

C
o
n
ce
n
tr
at
io
n

Time

   (a)      (b)

Steady-State

Approximation

Fig. 2.11.2 A 

typical variation in 

concentrations in a 

reaction

A æÆ
k1

B æÆ
¢k1

C with

(a) k1 � k¢1

(b) k1� k¢1
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In Fig. 2.11.2a, the concentration of A disappears very rapidly as k1� k¢1 and 

since the rate at which B disappears is relatively slow, the concentration of B 

increases rapidly and after attaining the maximum in a small time interval, starts 

decreasing.

In Fig. 2.11.2b, the concentration of A decreases slowly as the reaction rate 

constant k1 has a small value. The concentration of B practically remains constant 

for a reasonable length of time during the reaction, except at the very beginning 

and at the end. This constancy results from the fact that the intermediate B is very 

reactive as its transformation to C occurs at a very fast rate. In fact, the concentration 

of B at any instant will be much smaller than that of A. This follows from 

Eq. (2.11.5b) where on ignoring k1 in comparisons to k¢1 and exp(–k¢1t) in 

comparison to exp(– k1t), we get

[B] �  [A]0

k

k

1

1¢
 e–k

1
t (2.11.12)

Since at any instant the concentration of A is given by Eq. (2.11.5a), we get

[B] �
k

k

1

1¢
[A] (2.11.13)

that is, the concentration of B is smaller than the concentration of A by a factor 

of about k1/k¢1.

The fact that the concentration of the reactive intermediate B has a small value 

and that it practically remains constant throughout the reaction is known as the 

steady-state approximation. Mathematically, the latter can be written as

d B

d

[ ]

t
 = 0 (2.11.14)

k ¢1� k1, Eq. (2.11.3) gives

d B

d

[ ]

t
= k1[A] – k¢1[B] = 0

or [B] = 
k

k

1

1¢
 [A] (2.11.15)

Substituting the above equation in Eq. (2.11.4), we get

d C

d

[ ]

t
 = k¢1[B] = k¢1

k

k

1

1¢
[A] = k1[A] (2.11.16)

Note the identity of Eqs (2.11.13) and (2.11.15) and Eqs (2.11.10) and (2.11.16).

In this section, we will see how the use of steady-state approximation helps in 
deriving the differential rate expression from the proposed reaction mechanism of 

a given reaction.

Many of reactions fall into the following four categories of simple reaction 

mechanisms.

Type I First step is the rate-determining slow step and  is followed by rapid 

subsequent reactions.

2.12 SIMPLE REACTION MECHANISMS
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Type II First step is a rapid equilibrium which produces an intermediate which 

reacts slowly in the rate determining step.

Type III Reactions involving more than two elementary steps with at least 

one slow step.

Type IV Reactions involving more than one step with comparable rate 

constants (or whether the steps are slow or fast are not known).

without the use of the steady-state approximation. Nevertheless, the steady-state 

approximation can be equally applied to derive the differential rate law of a reaction 

belong to these categories. We now describe a few typical reactions belonging to 

the types listed above.

Reactions exhibiting this type of mechanism may, in general, be represented as

A
k1æ Ææ  B (slow)

B
k2æ Ææ  products (fast)

products are formed will depend only on this reaction irrespective of the number 

and nature of subsequent fast reactions. Thus, we have

d

d

x

t
 = k1[A]

A few examples are given below.

The decomposition reaction

2O3 Æ 3O2 (2.12.1)

–
1

2

d O

d

[ ]3

t
 = k1[O3] (2.12.2)

Equation (2.12.2) suggests that the rate-determining step involves one molecule 

of ozone. The proposed mechanism is

O3
k1æ Ææ  O2 + O

O + O3
k2æ Ææ  2O2

It is expected that k1� k2 since the second reaction involves atomic oxygen 

which is very reactive. Thus, the rate law would be

–
1

2

d O

d

[ ]3

t
 = k1[O3] (Eq. 2.12.2)

(Note the division by 2 on the left-hand side. This is done as two molecules of O3

are removed in the over-all reaction mechanism.)

Decomposition of 
Ozone

TYPE I
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The use of steady-state approximation also yields the rate expression of               

Eq. (2.12.2). Applying the approximation to the reactive intermediate oxygen 

atom, we get

d O

d

[ ]

t
 = 0 = k1[O3] – k2[O] [O3]

Hence, [O] = 
k

k

1

2

(2.12.3)

The rates of decomposition of O3 will be given as

r1 = – 
d O

d

[ ]3

t
 = k1[O3]

r2 = – 
d O

d

[ ]3

t
 = k2[O3][O]

The total rate of disappearance of O3 will be given by

–
d O

d

[ ]3

t
 = k1[O3] + k2[O3][O] (2.12.4)

Substituting the concentration of O from Eq. (2.12.3), we get

–
d O

d

[ ]3

t
= k1[O3] + k2[O3]

k

k

1

2

 = 2k1[O3]

or –
1

2

d O

d

[ ]3

t
= k1[O3] (Eq. 2.12.2)

The reaction

2NO2 + F2 Æ 2NO2F

is found to obey the rate expression

–
1

2

d NO

d

[ ]2

t
 = k[NO2][F2] (2.12.5)

Equation (2.12.5) suggests that one molecule each of NO2 and F2 is involved 

in the rate-determining step. The proposed mechanism is

NO2 + F2
k1æ Ææ  NO2F + F (slow)

F + NO2
k2æ Ææ  NO2F (fast)

–
1

2

d NO

d

[ ]2

t
 = k1[NO2][F2] (Eq. 2.12.5)

The use of steady-state approximation would have given us

d F

d

[ ]

t
 = 0 = k1[NO2][F2] – k2[NO2][F]

or [F] = 
k

k

1

2

 [F2] (2.12.6)

The rate of disappearance of NO2 is given by

–
d NO

d

[ ]2

t
 = k1[NO2][F2] + k2[NO2][F]

Reaction between 
NO2 and F2
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Substituting the concentration of F from Eq. (2.12.6), we get

–
d NO

d

[ ]2

t
= k1[NO2][F2] + k2[NO2]

k

k

1

2
2[ ]F

Ê
ËÁ

ˆ
¯̃

= 2k1[NO2][F2]

or –
1

2

d NO

d

[ ]2

t
= k1[NO2][F2] (Eq. 2.12.5)

The reaction

NO2 + CO Æ NO + CO2

is found to obey

–
d NO

d

[ ]2

t
 = k[NO2]2 (2.12.7)

at low temperatures. From Eq. (2.12.7), we conclude that two molecules of NO2

are involved in the rate-determining step. The proposed mechanism is

NO2 + NO2
k1æ Ææ  NO3 + NO (slow)

NO3 + CO 
k2æ Ææ  NO2 + CO2 (fast)

–
d NO

d

[ ]2

t
 = k1[NO2]2 (Eq. 2.12.7)

(Note that the left-hand side is not divided by two as one molecule of NO2 reappears 

in the second fast step.)

The steady-state approximation would have given us

d NO

d

[ ]3

t
 = 0 = k1[NO2][NO2] – k2[NO3][CO]

or k2 [NO3] [CO] = k1 [NO2]2 (2.12.8)

The rates of reactions in terms of concentratio of NO2 are

r1 = – 
1

2

d NO

d

2[ ]

t
= k1[NO2]2

r2 = 
d NO

d

[ ]2

t
 = k2[NO3][CO]

The overall rate of disappearance of NO2 is given by

–
d NO

d

[ ]2

t
 = 2k1[NO2]2 – k2[NO3] [CO]

Making use of Eq. (2.12.18), we get

–
d NO

d

[ ]2

t
= 2k1[NO2]2 – k1[NO2]

2

  = k1[NO2]2 (Eq. 2.12.7)

At temperatures above approximately 500 K, the reaction between NO2 and 

CO follows the rate law

Reaction between 

NO2 and CO at 

Low Temperatures



Chemical Kinetics 113

–
d NO

d

[ ]2

t
 = k [NO2] [CO]

indicating that the reaction may involve only a single elementary process.

The reaction is

2Br– + H2O2 + 2H+ Æ Br2 + 2H2O

The rate law is found to be

d Br

d

[ ]2

t
 = k[Br–][H2O2][H

+] (2.12.9)

The proposed mechanism is

Br– + H2O2 + H+ k1æ Ææ  HOBr + H2O  (slow)

HOBr + H+ + Br– k2æ Ææ  Br2 + H2O (fast)

d Br

d

[ ]2

t
 = k1[Br–][H2O2][H

+] (Eq. 2.12.9)

The steady-state approximation would have given us

d HOBr

d

[ ]

t
 = 0 = k1[Br–][H2O2][H

+] – k2[HOBr][H+][Br–]

or [HOBr] = 
k

k

1

2

 [H2O2] (2.12.10)

The rate of formation of Br2 from the second step is

d Br

d

[ ]2

t
 = k2[HOBr][H+][Br–]

Substituting the concentration of HOBr from Eq. (2.12.10), we get

d Br

d

[ ]2

t
= k2

k

k

1

2
2[ ]H O2

Ê
ËÁ

ˆ
¯̃

 [H+][Br–]

  = k1[H2O2][H
+][Br–] (Eq. 2.12.9)

Reactions exhibiting this type of mechanism are, in general, represented as

A + B 
k

k

1

1-

� ���
� ���  AB (in rapid equilibrium)

AB
k2æ Ææ  product     (slow)

Since, the second step is slow and is the rate-determining step, we have

d[product

d

]

t
 = k2[AB] (2.12.11)

Keq = 
k

k

1

1-
 = 

[ ]

[ ][ ]

AB

A B

Reaction between 

Br – and H2O2 in 

Acidic Medium

TYPE II
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Hence, [AB] = 
k

k

1

1-
 [A][B]

Substitution of the above expression in Eq. (2.12.11) gives

d[product

d

]

t
= k2

k

k

1

1-
 [A] [B] = k2 Keq [A] [B]

= k [A][B] (2.12.12)

Hence, the reaction

A + B Æ products

follows the second-order kinetics. The reaction-rate constant k is equal to k2 k1/k–1.

The use of steady-state approximation also produces Eq. (2.12.12) as the 

differential rate expression. The rate of formation of AB is given by

d AB

d

[ ]

t
 = k1[A][B] – k–1[AB] – k2[AB]

Since the intermediate AB dissociates at a very slow rate in comparison with the 

rates at which it both forms from and decays back into A and B, the rate constant 

k2 may be neglected in the rate equation for the change in concentration of AB. 

Thus, we have

d AB

d

[ ]

t
= k1[A][B] – k–1[AB]

If we apply the steady-state approximation to AB, then we have

d AB

d

[ ]

t
 = 0 = k1[A][B] – k–1[AB]

or [AB] = 
k

k

1

1-
 [A][B] = Keq[A][B]

Now, the rate of formation of product is given by

d[product

d

]

t
= k2[AB]

  = k2

k

k

1

1-
 [A][B] = k2 Keq [AB] = k[A][B]

which is, in fact, Eq. (2.12.12).

A few examples are given below.

The reaction

2NO + O2 æ Ææ  2NO2

is experimentally found to obey the third-order kinetics with its differential rate 

law given as

1

2

d NO

d

[ ]2

t
 = k [NO]2 [O2] (2.12.13)

In order to account for the experimental fact that the rate constant decreases 

with increase in temperature, the following mechanism has been proposed:

Reaction between 

NO and O2
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NO + NO 
k

k

1

1-

� ���
� ���  N2O2  (in rapid equilibrium)

N2O2 + O2
k2æ Ææ  2NO2 (slow)

We have

1

2

d NO

d

[ ]2

t
 = k2 [N2O2] [O2] (2.12.14)

For the fast equilibrium reaction, we have

Keq = 
k

k

1

1-
 = 

[ ]

[

N O

NO]2

2 2

Hence, [N2O2] = Keq [NO]2

Substituting this in Eq. (2.12.14), we get

1

2

d NO

d

[ ]2

t
 = k2 Keq [NO]2 [O2] (2.12.15)

Comparing Eqs (2.12.13) and (2.12.15), we have

k = k2 Keq (2.12.16)

The experimental fact that the reaction rate decreases with increasing temperature 

can be explained from Eq. (2.12.16). The rate constant of the reaction consists of two 

constants k2 and Keq. The constant k2 behaves normally and increases with tempera-

ture. The equilibrium constant Keq decreases with increase in temperature as the 

dimerization reaction is exothermic in nature. The decrease of Keq

large to make the term k2 Keq to decrease with increase in temperature.

The reaction is 

NH+
4 + OCN– kæ Ææ OC(NH2)2

    urea

The reaction follows the rate law

d[urea

d

]

t
 = k [NH+

4][OCN–] (2.12.17)

The proposed mechanism is

NH+
4 + OCN – k

k

1

1-

� ���
� ���  NH4OCN (in rapid equilibrium)

  (complex)

NH4OCN
k2æ Ææ  OC(NH2)2   (slow)

We have

d[urea

d

]

t
 = k2[NH4OCN] (2.12.18)

From the fast equilibrium reaction, we have

Keq = 
k

k

1

1-
 = 

[NH OCN]

[NH ][OCN ]

4

4
+ -

Hence, [NH4OCN] = Keq[NH+
4][OCN–]

Reaction between 

Ammonium and 

Cynate Ions
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Substituting the above relation in Eq. (2.12.18), we get

d[urea]

dt
 = k2Keq [NH+

4] [OCN–]

which is the required rate law (Eq. 2.12.17).

The reaction may be represented as

R C OR +¢ OH-
O

R C O +- R¢OH

O

The reaction follows the rate law

R C OR | [ ]¢ OH-
O

d [ester]

dt
= k |

The following mechanism has been suggested.

R C OR¢ + OH-

O
k1

k-1

R C OR¢

O-

(in rapid equilibrium)

OH
(A)

R C OR¢ + H O2

k2
R C O    R¢

O-

HO
(B)

O-

OH
(A)

HOH

k3
R C O    R¢

O-

HO
(B)

HOH

R C OH  +  R OH¢ + OH-

O

The rate of formation of alcohol is

d[R OH]

d

¢
t

 = k3[B] (2.12.19)

Applying steady-state approximation to B, we get

d[B

d

]

t
 = k2[A] – k3[B] = 0

or k3[B] = k2[A] (2.12.20)

From the fast equilibrium reaction, we have

Keq = 
k

k

1

1-
 = 

[A]

[ester][OH ]-

or [A] = 
k

k

1

1-
 [ester][OH–]

Saponification of 
an Ester
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Making use of the above expression and Eq. (2.12.20) in Eq. (2.12.19), we get

d[R OH]

d

¢
t

= k2

k

k

1

1-

Ê
ËÁ

ˆ
¯̃

[ester][OH–]

= k [ester][OH–]

which is the required rate law.

The reaction is

H2(g) + I2(g) = 2HI(g)

and the rate law is

1

2

d[HI]

dt
 = k [H2][I2] (2.12.21)

The proposed mechanism is

(i) I2

k

k

1

1

� ���
� ���  2I (in rapid equilibrium)

(ii) H2 + 2I 
k2æ Ææ  2HI (slow)

From step (ii), we have

1

2

d[HI

d

]

t
 = k2[H2][I]2 (2.12.22)

From the rapid step (i), we have

K = 
k

k

1

1-
 = 

[I]

[I ]

2

2

or [I]2 = 
k

k

1

1-
[I2]

Substituting the above relation in Eq. (2.12.22), we get

1

2

d[HI

d

]

t
 = k2

k

k

1

1-
 [H2][I2]

which is the required rate law (Eq. 2.12.21).

A few examples of reactions involving more than two elementary steps with only 

one slow step are described in the following.

The reaction is

OCl– + I– æÆ
-OH

 Ol– + Cl–

The rate law is found to be

–
d[I

d

- ]

t
 = k

[OCl ][I ]

[OH ]

- -

- (2.12.23)

Though the hydroxyl ion does not appear in the reaction, yet the rate of the 

reaction depends on the hydroxyl-ion concentration. The presence of [OH –] in 

the denominator of Eq. (2.12.23) implies that the rate of the reaction is retarded in 

Hydrogen-Iodine
Reaction

TYPE III

Reaction between 

Hypochlorite and 

Iodide Ions in 

Alkaline Medium
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the presence of [OH–] ions. From Eq. (2.12.23) it also follows that the mechanism 

of the reaction must also include elementary step (or steps) involving hydroxyl ion 

as the reactant or product. The proposed mechanism is

  (i)   OCl– + H2O
k

k

1

-1

� ���
� ���  HOCl + OH– (fast)

 (ii)  I– + HOCl 
k2æ Ææ  HOI + Cl–   (slow)

(iii)  OH– + HOI 
k

k

3

3-

� ���
� ��� H2O + OI– (fast)

Since step (ii) is slow, we may write

–
d[I

d

- ]

t
 = k2 [I

–][HOCl] (2.12.24)

From the fast step (i), we have

Keq = 
k

k

1

1-
 = 

[HOCl][OH ]

[H O]

-

-[OCl ] 2

Hence, [HOCl] = 
k

k

1

1-

[OCl ][H O]

[OH ]

-

-
2 (2.12.25)

Substituting Eq. (2.12.25) in Eq. (2.12.24), we get

–
d[I

d

- ]

t
= k2 [I

–]
k

k

1

1-

-

-

Ï
Ì
Ó

¸
˝
˛

[OCl ][H O]

[OH ]

2

  =
k k

k

2 1

1-

[I ][OCl ][H O]

[OH ]

2
- -

-

Since the reaction occurs in aqueous solution, the concentration of water does not 

change appreciably during the course of the reaction. The concentration of H2O

may thus be grouped with the other constants. Hence, we have

–
d[I

d

- ]

t
 = 

k k

k

2 1

1-

Ê
ËÁ

ˆ
¯̃

[ ]H O2

[I ][OCl ]

[OH ]

- -

-  = k
[I ][OCl ]

[OH ]

- -

-

which is the required rate law (Eq. 2.12.23).

Alternative Mechanism An  alternative mechanism which also gives the rate 

expression of Eq. (2.12.23) is the following:

  (i)   OCl– + H2O
k

k

1

1-

� ���
� ���  HOCl + OH– (fast)

 (ii)  I– + HOCl 
k2æ Ææ  ICl + OH–   (slow)

(iii)  ICI + 2OH– k3æ Ææ  OI – + Cl– + H2O  (fast)

Rate Expressed as – t The derivation of rate expression (Eq. 2.12.23) is 

the same as given above. However, if we want to express the rate as d[OI–]/dt or 

d[Cl–]/dt, then the derivations of rate expression differ, but both of them lead to 
–]/dt.
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d[OI

d

- ]

t
 = k3[OH–][HOI] – k–3[H2O][OI–] (2.12.26)

We can apply the steady-state approximation to HOI, which gives

d[HOI

d

]

t
 = 0 = k2[I

–][HOCl] – k3[OH–][HOI] + k–3[H2O][OI–]

or [HOI] = 
k k

k

2 3

3

[ [ ]

[

I ][HOCl] H O][OI

OH ]

2
-

-
-

-

+

Substituting the above relation in Eq. (2.12.26), we get

d[OI

d

- ]

t
= k3[OH–]

k k

k

2 3

3

[ [ ]

[

I ][HOCl] H O][OI

OH ]

2
-

-
-

-

+Ê

ËÁ
ˆ

¯̃
– k–3[H2O][OI–]

  = k2[I
–][HOCl]

Substituting [HOCl] from Eq. (2.12.25) in the above expression, we get

d[OI

d

- ]

t
= k2 [I

–]
k

k

1

1-

-

-

Ê

ËÁ
ˆ

¯̃
[OCl ][H O]

[OH ]

2  = 
k k

k

2 1

1-

Ê
ËÁ

ˆ
¯̃

[H O]2

[I ][OCl ]

[OH ]

- -

-

  = k
[I ][OCl ]

[OH ]

- -

- (2.12.27)

Equation (2.12.27) is the required expression of the rate law. 

For the second mechanism, we have

d[OI

d

- ]

t
 = k3[ICl][OH–]2 (2.12.28)

Applying the steady-state approximation to ICl, we get

d[ICl

d

]

t
 = 0 = k2[I

–][HOCl] – k3[ICl][OH–]2

or [ICl] = 
k

k

2

3

[I ][HOCl]

[OH ]2

-

-

Substituting this relation in Eq. (2.12.28), we have

d[OI

d

- ]

t
= k3

k

k

2

3

[I ][HOCl]

[OH ]2

-

-

Ê
ËÁ

ˆ
¯̃

[OH–]2

  = k2 [I
–][HOCl]

Substituting [HOCl] from Eq. (2.12.25), we get

d[OI ]

d

-

t
= k2 [I

–]
k

k

1

1-

-

-

Ê

ËÁ
ˆ

¯̃
[OCl ][H O]

[OH ]

2  = 
k k

k

2 1

1-

Ê
ËÁ

ˆ
¯̃

[H O]2

[I ][OCl ]

[OH ]

- -

-

  = k
[I ][OCl ]

[OH ]

- -

- (2.12.29)

Equation (2.12.29) is the required rate expression and has the same form as 

given by Eq. (2.12.27)
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Acid Hydrolysis of 
an Ester

Formation of 

Phosgene from 

CO and Cl2

The reaction is

O

CR OR + H2O
+

H

O

CR OH  + R¢OH

O

CR OHd

dt

[

[

 = k [

O

CR OR ] (2.12.30)

The proposed mechanism is

H

(fast)
R C OR¢

(A)

O

(i)

R C OR¢

(B)

OH+

+H O2

(slow)

(ii)

R C OR¢

OH

OH2
+

(C)

(fast)

(iii)

-H

(fast)
R C OH

O

(v)

R C

OH

+
R C OR¢

OH

OH
(D)

OH

- ¢R OH

(slow)

(iv)

+

H

+ +

+

Steps (ii) and (iv) are slower steps as these involve making and breaking of bond, 

respectively. The proton transfer steps are fast. Step (iv) is slower than step (ii),

The rate of reaction may be written as

r = k4[D] = k4(K3[C]) = k4K3(K2[B][H2O])

  = k4K3K2(K1[A][H+][H2O])

that is, r = k[ester] [H+] [H2O] (2.12.31)

In the above expressions K1, K2 and K3 are the equilibrium constants for the 

steps (i), (ii) and (iii), respectively. Since H2O is present in excess amount and 

[H+] remains constant throughout, we can write

r = k¢ [ester] (2.12.32)

which is the required rate expression (Eq. 2.12.30).

The reaction is

CO + Cl2 Æ COCl2
and the rate expression is

d[COCl ]

d

2

t
 = k [CO][Cl2]

3/2 (2.12.33)

The proposed mechanism is

 (i) Cl2
k

k

1

1-

� ���
� ���  2Cl  (fast equilibrium)

(ii) Cl + CO 
k

k

2

2-

� ���
� ���  COCl (fast equilibrium)

¢

¢
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(iii) COCl + Cl2
k3æ Ææ  COCl2 + Cl (slow)

The rate of formation of phosgene from step (iii) is

d[COCl ]

d

2

t
 = k3 [COCl] [Cl2] (2.12.34)

For steps (i) and (ii), we may write

k

k

1

1-
 = 

[Cl]

[Cl ]

2

2

(2.12.35)

k

k

2

2-
 = 

[COCl]

[Cl][CO]
(2.12.36)

From Eqs (2.12.35) and (2.12.36), we get

[COCl] = 
k

k

2

2-
 [Cl][CO] = 

k

k

2

2-

k

k

1

1

1 2

-

Ê
ËÁ

ˆ
¯̃

[ ]

/

Cl2 [CO] (2.12.37)

Substituting Eq. (2.12.37) in Eq. (2.12.34), we get

d[COCl ]

d

2

t
 = k3

k

k

k

k

2

2

1

1

1 2

- -

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
[ ]

/

Cl [CO]2  [Cl2]

   = k3

k

k

2

2-

k

k

1

1

1 2

-

Ê
ËÁ

ˆ
¯̃

/

[Cl2]3/2 [CO]

   = k [CO][Cl2]
3/2

which is the required rate expression (Eq. 2.12.33).

The reaction in aqueous medium is

H3C C CH3 + I2

O

H+

H3C C CH2I + HI

O

and the rate expression is

–
d [I ]

d

2

t
 = k [H

+
] CH3—C—CH3

O

(2.12.38)

+ and acetone and zero 

order with respect to iodine. The proposed mechanism is

CH3 C CH3 + H

O

k-1

+ H3C C CH3

OH+

(fast)(i)

CH3 C CH3

OH

H2C C CH3

OH

(slow)(ii)

H2C C CH3 + I2

OH

ICH2 C CH3 + HI

O

(fast)(iii)

+

k2
+  H+

k3

k1

Iodination of 

Acetone
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From step (iii), we have

–
d [I ]

d

2

t
 = k3[ H2C C CH3

OH

][I2]
(2.12.39)

Applying the steady-state approximation to H2C C CH3

OH

, we get

[H2C C CH3]

OH

d

dt
= 0 = k2

+

CH3 C CH3

OH

[

[

– k3 H2C C CH3

OH

[

[ [I2]

i.e. H2C C CH3

OH

[

[  = 
k

k

2

3

CH3 C CH3

OH

I2

+

[

[

[   ]

(2.12.40)

From the fast step (i), we have

k

k

1

–1

 = 

CH3 C CH3

OH

[CH3 C CH3]

O

[H
+
]

+

[

[

or

+

CH3 C CH3

OH

[

[

 = 
k

k

1

–1

CH3 C CH3

O

H
+[                          ][     ]

Substituting the above relation in Eq. (2.12.40), we get

which on substituting in Eq. (2.12.39) gives

–
d I

d

[ ]2

t
= k3

k

k

k

k

2

3

1

1 2-

+Ê

ËÁ
ˆ

¯̃
[

[ ]

CH CO CH ][H ]

I

3 3 [I2]

= k2

k

k

1

1-
[CH COCH ][H ]3 3

+

or  – 
d I

d

[ ]2

t
= k [CH COCH ][H ]3 3

+

which is the required rate expression (Eq. 2.12.38). Note that iodine does not appear 
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A few examples of reactions involving more than one elementary step with 

comparable rate constants (or whether the steps are slow or fast are not known) 

are described below.

The reaction is

2 N2O5 Æ 4NO2 + O2

and the rate law is

d O

d

[ ]2

t
= k [N2O5] (2.12.41)

The proposed mechanism is

  (i) N2O5

k

k

1

1-

� ���
� ���  NO2 + NO3

 (ii) NO3 + NO2
æÆ

k2

 NO + NO2 + O2

(iii) NO3 + NO  æÆ
k3

 2 NO2

From step (ii), the rate of formation of O2 is

d O

d

[ ]2

t
 = k2[NO3][NO2] (2.12.42)

Applying the steady-state approximation to NO and NO3, we get

    
d NO

d

[ ]

t
 = 0 = k2[NO3][NO2] – k3[NO3][NO] (2.12.43)

d NO

d

[ ]3

t
 = 0 = k1[N2O5] – k–1[NO2][NO3] – k2[NO3][NO2] – k3[NO3][NO]

(2.12.44)

Equation (2.12.43) gives

[NO] = 
k

k

2

3

 [NO2] (2.12.45)

From Eq. (2.12.44), we have

[NO3] = 
k

k k k

1 5

1 2 2 2 3

[ ]

[ ] [ ] [ ]

N O

NO NO NO

2

- + +

Substituting [NO] from Eq. (2.12.45), we get

[NO3] = 
k

k k

1 5

1 2 22

[ ]

( )[ ]

N O

NO

2

- +
(2.12.46)

Substituting Eq. (2.12.46) in Eq. (2.12.42), we get

d O

d

[ ]2

t
= k2

k

k k

1 5

1 2 22

[ ]

( )[ ]

N O

NO

2

- +
Ê
ËÁ

ˆ
¯̃

[NO2]

=
k k

k k

2 1

1 22- +
[N2O5] = k[N2O5]

which is the required rate law (Eq. 2.12.41).

TYPE IV

Decomposition of 

Gaseous N2O5
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Nitramide O2NNH2 decomposes slowly in aqueous solution according to the reaction

O2NNH2 Æ N2O + H2O

The experimental rate law is

d N O

d

[ ]2

t
 = k

[ ]

[ ]

O NNH

H

2 2
+

Which one of the following mechanisms seems most appropriate?

1. O2NNH2
k1æ Ææ  N2O + H2O   (slow)

2. O2NNH2 + H+ k

k

1

1-

� ���
� ���  O2NNH+

3 (fast equilibrium)

  O2NNH+
3

k2æ Ææ  N2O + H3O
+ (slow)

3. O2NNH2

k

k

1

1-

� ���
� ���  O2NNH– + H+ (fast equilibrium)

  O2NNH– k2æ Ææ  N2O + OH–   (slow)

  H+ + OH– k3æ Ææ  H2O (fast)

1. For mechanism 1, the rate law would be given as

d N O

d

[ ]2

t
 = k1[O2NNH2]

Obviously, this mechanism is not applicable.

2. For mechanism 2, we have

d N O

d

[ ]2

t
 = k2[O2NNH+

3]

From the fast equilibrium step, we have

K = 
k

k

1

1-
 = 

[O NNH ]

[O NNH ][H ]

2 3

2 2

+

+

Therefore

[O2NNH+
3] = 

k

k

1

1-
[O2NNH2][H

+]

With this, the rate law becomes

d N O

d

[ ]2

t
 = k2

k

k

1

1-
[O2NNH2][H

+]

The above rate law also does not match with the given one and hence this mechanism is 

also ruled out.

3. For mechanism 3, we have

d N O

d

[ ]2

t
 = k2[O2NNH–]

From the fast equilibrium step, we have

K = 
k

k

1

1-

 = 
[ ][ ]

[ ]

O NNH H

O NNH

2

2 2

- +

Solution

Problem 2.12.1 
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Therefore

[O2NNH–] = 
k

k

1

1-

[ ]

[ ]

O NNH

H

2 2
+

With this, the rate law becomes

d N O

d

[ ]2

t
 = k2

k

k

1

1

2 2

-
+

[ ]

[ ]

O NNH

H

The above rate law agrees with the given one and hence this mechanism seems most 

appropriate for the given reaction.

Many thermal decomposition and isomerization reactions follow the mechanism 

given below:

(i) A + M 
k

k

1

1-

� ���
� ���  A* + M (2.13.1)

(ii) A*
k2æ Ææ  products (2.13.2)

where A represents the molecule undergoing the thermal decomposition or 

isomerization reaction, and M represents any other molecule. Step (i) represents an 

equilibrium reaction. The forward reaction represents a collision of molecule A with 

a molecule of M and thereby the molecule A is activated. The backward reaction 

represents the deactivation of A molecule. Step (ii) represents the decomposition 

of the activated A molecule. Two simple cases may be distinguished.

Step (i) is Rate-Determining Step If step (i) is slow and rate-determining, then 

the reaction follows second-order kinetics with the rate law given by

d[product]

dt
 = k1[A][M] (2.13.3)

Step (ii) is Rate-Determining Step If step (i) represents a fast equilibrium process 

and step (ii) is slow, then we have

Keq = 
k

k

1

1-
=

[ *]

[ ]

A

A
(2.13.4)

and
d[product]

dt
= k2[A*] (2.13.5)

From Eq. (2.13.4), we have

[A*] = 
k

k

1

1-
 [A]

Substituting the above relation in Eq. (2.13.5), we get

d[product]

dt
= k2

k

k

1

1-
[A] (2.13.6)

2.13  A GENERAL MECHANISM FOR THE THERMAL DECOMPOSITION AND

ISOMERIZATION REACTIONS

Mechanism
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If, in advance, it is not known which step is slow or if all the rate constants 

have comparable values, we can derive the rate law by using the steady-state 

approximation. Since products are formed in step (ii), we may write

d[product]

dt
 = k2 [A*] (2.13.7)

Applying the steady-state approximation to A*, we get

d A

d

[ *]

t
 = 0 = k1[A][M] – k–1[A*][M] – k2[A*]

[A*] = 
k

k k

1

1 2

[ ][ ]

[ ]

A M

M- +

Substitution of the above relation in Eq. (2.13.7) gives the rate law as

d[product]

dt
 = 

k k

k k

2 1

1 2

[ ][ ]

[ ]

A M

M- +
(2.13.8)

derived from Eq. (2.13.8).

Equation (2.13.3) is obtained if we neglect k–1 [M] in comparison to k2 (i.e. 

k–1 [M] � k2) in Eq. (2.13.8). The factor k–1 [M] will be negligible in comparison 

to k2 under the following three conditions.

(i) The rate constant k2 has a large value, i.e. step (ii) represents a fast reaction.

(ii) The backward reaction rate constant k–1 has a small value, i.e. the step (ii) 

does not represent a rapid equilibrium reaction.

(iii) The concentration of M may be low. For gaseous reactions, this condition 

may be realized at low gaseous pressures.

Equation (2.13.6) is obtained if we neglect k2 in comparison to k–1 [M]  (i.e.                      

k2 � k–1 [M]) in Eq. (2.13.8). The factor k2 will be negligible in comparison to 

k–1 [M] under the following three conditions.

(i) The backward reaction rate constant k–1 has a large value, i.e. step (i) represents 

a rapid equilibrium reaction.

(ii) The concentration of M may be high. For gaseous reactions, this condition 

may be realized at high gaseous pressures.

(iii) The rate constant k2 has a low value, i.e. step (ii) is slow and rate-determining 

step.

It was stated in Section 2.4 that the products are formed only when reactant 

molecules come close and collide together at one and the same time. During the 

collision, molecular rearrangement takes place which leads to the formation of 

products. For example, a second-order reaction of the types

A + B Æ products

or A + A Æ products

may be traced to a bimolecular collision process involving A and B, and A and 

General Treatment

Lindemann

Mechanism for 

the First-Order

Reactions
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(i) A + A 
k

k

1

1-

� ���
� ���  A* + A (in rapid equilibrium)

(ii) A*
k2æ Ææ  products (slow)

Step (i) involves a rapid equilibrium reaction where in the forward reaction, a 

molecule A is activated by colliding with another A molecule and in the backward 

reaction, the excited molecule A is deactivated by colliding with another A molecule. 

Step (ii) represents another possibility of deactivation where the excited molecule is 

decomposed to give the products. Since the step (ii) is slow and rate determining, 

the rate at which products are formed will be determined by the unimolecular 

and (2.13.2) where a molecule of M is replaced by a molecule of A. The general 

rate law (Eq. 2.13.8), in the present case, will become

d product

d

[ ]

t
 = 

k k

k k

2 1
2

1 2

[ ]

[ ]

A

A- +
(2.13.9)

complicated rate law if the rate constants k2, k1 and k–1 have comparable values. 

However, the first-order kinetics will emerge only under the condition that 

k2 < k–1[A]. As stated earlier, this condition will be observed only when the reaction 

is carried out at high gaseous pressures.

At low pressures where k–1[A] < k2

the rate law

d product

d

[ ]

t
 = k1[A]2

that is, a second-order kinetics. The reason for the above rate law is that at low 

pressures the rate-determining step is the bimolecular formation of the excited 

molecules.

a wide range of pressure starting from a very low pressure to a high pressure.†

If the rate r of formation of products is determined by the initial slope of the 

curve of concentration of a product versus time and if log (r/r°) is plotted against                        

log {[A]/M} {or log (p/p°)}, the plot will show a slope of two at low concentrations 

(or pressures) and a slope one at high concentrations (or pressures).

At the end, a very important point may be mentioned. The steady-state 

approximation used above seems to be self-contradictory. From Eq. (2.13.7), the

†  One of the ways to increase the gaseous pressure is to introduce an inactive gas into 

the system.

Differential Rate 

Law
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rate of reaction is proportional to [A*], which is assumed to be constant, yet from 

Eq. (2.13.8) the rate of the reaction is a function of [A], which is steadily decreasing 

as the reaction proceeds. This contradiction is removed if the rate of formation 

of product is determined with the help of initial-slope method. The initial slope 

been reached.

Chain reactions proceed through a complex sequence of elementary steps. The 

Chain Initiation Step

such as atoms, free radicals are produced is known as the chain initiation step.

Chain Propagation Steps In these steps, the highly reactive intermediate from 

the chain initiation step reacts with one of the reactant molecules and thereby 

produce a product molecule and another reactive intermediate. The produced 

reactive intermediate, in turn, reacts with another reactant molecule and produce 

a product molecule and another reactive intermediate. The above process of 

generating a new reactive intermediate when an old reactive intermediate combines 

with a reactant molecule is continued till the reactive intermediate is somehow 

destroyed. Thus, one reactive intermediate produced in the initiation step may result 

in thousands of product molecules via the propagation steps.

Chain Inhibition Step In this step, the reactive intermediate combines with a 

product molecule producing a reactant molecule and another reactive intermediate. 

Though a reactive intermediate is generated, the net effect of chain inhibition step 

is to decrease the rate of overall reaction.

Chain Termination Step In this step, the reactive intermediate is destroyed by 

combining with another reactive intermediate. This combination may result at the 

wall of the vessel or by direct collision between the two reactive intermediates within 

the vessel. Certain substances when added also help in terminating the reactive 

intermediates. For example, nitric oxide molecule can react very rapidly with free 

radicals and thus may be introduced to remove radicals in a chain reaction. 

The number of chain propagation steps in between the chain initiation step and 

termination step is usually expressed as the chain length. The latter may be 

in the initiation reaction. The chain length depends on the relative rates of chain 

propagation and chain-terminating step. Mathematically, the chain length may 

initiation reaction, i.e.

Chain length = 
d[product] d

d(initiation step) d

/

/

t

t
(2.14.1)

2.14 CHAIN REACTIONS

Characteristics of 

Chain Reactions

Chain Length
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stationary (or 

nonstationary

Initiation     A
k1æ Ææ ∑R

Propagation R∑  + A 
k2æ Ææ  P + a R∑

Termination   R∑ k3æ Ææ

a = a

d R

d

[ ]∑

t
= 0 = k1[A] + k2(a

∑ ][A] – k3[R
∑ ]

or [R∑ ] =
k

k k

1

2 31

[ ]

( )[ ]

A

A- +a

k3 k  + k

[R∑ ]  = 
k

k k k

1

2 1

[ ]

( )[ ]

A

A w g- + +a

In stationary chain reactions a =

[R∑ ] = 
k

k k

1[ ]A

w g+
t

2

2

2 2 æÆ

Initiation 2
k1æ Ææ

Propagation 2
k2æ Ææ

2
k3æ Ææ

Inhibition
kæ Ææ 2

Termination
k5æ Ææ 2

Kinetics of Chain 

Reactions

Reaction between 

H2 and Br2

STATIONARY CHAIN REACTIONS
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d HBr

d

[ ]

t
 = k2 2] + k3 2] – k

d H

d

[ ]

t
 = 0 = k2 2] – k3 2] – k

d Br

d

[ ]

t
 = 0 = 2k1 2] – k2 2] + k3 2]

 + k k5
2

2k1 2] – 2k5
2 = 0

k

k

1

5
2

1 2

[ ]Br
Ê
ËÁ

ˆ
¯̃

k

k k

2 2

3 2 4

[ ] [ ]

[ ] [ ]

Br H

Br HBr+

k k k

k k

2 1 5
1 2

2
1 2

2

3 2 4

( / ) [ ] [ ]

[ ] [ ]

/ /Br H

Br HBr+

d HBr

d

[ ]

t
 = 2k3 2]

d HBr

d

[ ]

t
= 2k3

k k k

k k

2 1 5
1 2

2
1 2

2

3 2 4

( / ) [ ] [ ]

[ ] [ ]

/ /Br H

Br HBr+
Ê

ËÁ
ˆ

¯̃
2]

  =
2

1

2 1 5
1 2

2
1 2

2

4 3 2

k k k

k k

( / ) [ ] [ ]

( / ) [ ] / [ ]

/ /Br H

HBr Br+

  =
k

k

¢
+ ≤

[ ] [ ]

[ ] / [ ]

/Br H

HBr Br

2
1 2

2

21

k¢ = 2k2(k1/k5
1/2

k≤= k /k3
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1 + k≤ 2]0   1

d HBr

d

[ ]

t

Ê
ËÁ

ˆ
¯̃

0

 = k¢ 2]
1/2
0 2]0

3 3 Æ CH ==CH + H2 2 2

d CH CH

d

[ ]2 2==
t

 = k 3 3

Initiation 3 3
k1æ Ææ  2 ∑

3

Propagation ∑
3 3 3

k2æ Ææ  + ∑
2 3

∑
2 3

k3æ Ææ CH ==CH + H2 2
∑

∑
3 3

kæ Ææ 2 + ∑
2 3

Termination ∑ ∑
2 3

k5æ Ææ 3C 3

d CH CH

d

[ ]2 2==
t

 = k3[∑
2 3

∑
3

∑
2 3

∑

d CH

d

[ ]∑
3

t
= 0 = 2k1 3 3] – k2[

∑
3 3 3

d CH CH

d

[ ]∑
2 3

t
= 0 = k2[

∑
3 3 3] – k3[

∑
2 3]

          + k ∑
3 3] – k5

∑][∑
2 3

d H

d

[ ]∑

t
 = 0 = k3[

∑
2 3] – k ∑

3 3] – k5
∑][∑

2 3]

.

[∑
3] =

2 1

2

k

k

∑] =
k

k k

3 3

4 3 5 3

[ ]

[ ] [ ]

∑

∑+

CH CH

CH CH CH CH

2

3 2

Initial Rate of the 

Reaction

Dehydrogenation

of Ethane
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k2

2 1

2

k

k

Ê
ËÁ

ˆ
¯̃ 3 3] – k3[

∑
2 3] + (k 3 3] – k5[

∑
2 3

  ¥ 
k

k k

3 2 3

4 5 2 3

[ ]

[ ] [ ]

∑

∑+

Ê

ËÁ
ˆ

¯̃
CH CH

CH CH CH CH3 3

 = 0

or k3k5 [
∑

2 3]
2 – k1k5 3 3] [

∑
2 3] – k1k 3 3]

2 = 0

[∑
2 3] = 

k k k k k k k k

k k

1 5 1
2

5
2

3 5 1 4

3 5

4

2

+ +
3 3]

d CH CH

d

[ ]2 2==
t

 = 
k k k k k k k k

k

1 5 1
2

5
2

1 3 4 5

5

4

2

+ +
3 3]

  = k 3 3

k is 

k = 
k k k k k k k k

k

1 5 1
2

5
2

1 3 4 5
1 2

5

4

2

+ +( ) /

k1

k2
1 k2

5 in 

k1 k3k k5 k1k5 k1k3k k5
1/2

  k  
k k k

k

1 3 4

5

1 2
Ê
ËÁ

ˆ
¯̃

/

d product d

d initiation step d

[ ] /

( ) /

t

t
 = 

( / ) [ ]

[ ]

/k k k k

k

1 3 4 5
1 2

3

1 3

CH CH

CH CH

3

3

  =
k k

k k

3 4

1 5

1 2
Ê
ËÁ

ˆ
¯̃

/

Since k1

3 Æ  + CO

d CH

d

[ ]4

t
 = k 3

3/2

Thermal

Decomposition of 

Acetaldehyde
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Initiation 3
k1æ Ææ ∑

3 + ∑

Propagation ∑
3 3

k2æ Ææ  + ∑
2

∑
2

k3æ Ææ ∑
3 + CO

Termination ∑
3 + ∑

3
kæ Ææ 3 3

d CH

d

[ ]4

t
 = k2 [

∑
3 3

∑
3

∑
2

d CH

d

[ ]∑
3

t
 = 0 = k1 3 k2[

∑
3 3

          + k3[
∑

2 k [∑
3]

2

d CH CHO

d

[ ]∑
2

t
 = 0 = k2[

∑
3 3 k3[

∑
2

k1 3 k [∑
3]

2 = 0

or [∑
3] = 

k

k

1

4

1 2

2
[ ]

/

CH CHO3

Ê
ËÁ

ˆ
¯̃

d CH

d

4[ ]

t
= k2

k

k

1

4

1 2

2
[ ]

/

CH CHO3

Ê
ËÁ

ˆ
¯̃ 3 k2

k

k

1

4

1 2

2

Ê
ËÁ

ˆ
¯̃

/

3
3/2

  = k 3
3/2

d product d

d initiation step d

[ ] /

( ) /

t

t
 = 

k k k

k

2 1 4
1 2 3 2

1

2( / ) [ ]

[ ]

/ /CH CHO

CH CHO

3

3

 = 
k

k k

2

1 4
1 2

2( ) / 3
1/2

                      
a (CH2 C—COCH3)

C OH3
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2.15 KINETICS OF STEP-GROWTH POLYMERIZATION
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—
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2.16 EFFECT OF TEMPERATURE ON REACTION RATE
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Ea
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Reaction between 
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Fig. 2.17.2 Potential

energy of H2 and 
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structure, and (b) a 

bent structure

Fig. 2.17.1 (i) Three 

atoms lie on a straight 

line, and (ii) three atoms 

do not lie on a straight 

line
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The rate of formation of products not only depends on E0 but also on the 

orientation of molecules at the time of collision.

plays a very important role. For example, the reaction between CO and NO2, the 

geometry of the activated complex having lowest energy is zigzag.
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A + B ����  X‡Æ

where X‡ is the activated complex. The rate of the reaction depends on two factors, 
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or         n  = 
RT

N hA
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K°‡ is given by

K°‡ D‡G° /RT

D‡G°  = D‡H T D‡S° , we may write the above expression as

K°‡ D‡H° - TD‡S RT

D‡H° /RT D‡S° /R

The constants K°‡ and K‡

K°‡ = K‡c

where c .

k2 = 
RT

c N hº A

D‡H° /RT D‡ S° /R

ion is

k2 = A Ea/RT

and according to the activated complex theory, the rate constant is given by

k2 = 
RT

c N h∞ A

D‡ S° /R D‡H° /RT

Also D‡ H° = D‡ U D‡
n g RT

Arrhenius

Equation and the 

Activated Complex 

Theory

‡
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Therefore, we have

k2 =
RT

c N h∞ A

D‡ S° /R D‡ U°  + D‡
n g  RT RT

or             = 
RT

c N h∞ A

D‡ S°/R D‡
n g D‡ U° /RT

The relation between the activation energy Ea

change D‡ U°  in the formation of activated complex from reactants may be obtained 

k/k° T

k2/k A/k
E

RT

a

d

d

ln ( / )k k

T

2 ∞
 = 

E

RT

a

2

k2/k
R

N hA

1 1s K- -Ê
ËÁ

ˆ
¯̃

T
D S

R

∞ D‡
ng

D U

RT

∞

where k k, i.e. mol  dm3 s .

d

d

ln ( / )k k

T

2 ∞
 = 

1

T
 + 

D U

RT

∞
2

E

RT

a
2  = 

1

T
+

D U

RT

∞
2

or Ea = RT + D‡ U

k2 =
RT

c N h∞ A

D‡ S° /R D‡
ng Ea RT RT

  =
RT

c N h∞ A

D‡ S° /R D‡
ng Ea/RT

A =
RT

c N h∞ A

D‡ S° /R  D‡
ng

  = (nvib/c D‡S° /R D‡
ng

where nvib

Note that D‡
ng

D‡
ng ng

reactant

Â

‡‡

‡

‡
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The relation connecting Ea and D‡H°  is

D‡H °  = D‡U D‡
ng RT Ea RT D‡

ng RT

      = Ea D‡
ng RT

The expressions for the rate constant are as follows.

Collision theory

k2 = pNA p s
2
AB

8
1 2

k TB

pm

Ê
ËÁ

ˆ
¯̃

/

E0/RT

The activated complex theory

k2 = 
RT

c N h∞ A

D‡Sº/R D‡U º/RT D‡
ng

k/k° T are as follows.

Collision theory

d

d

ln ( / )k k

T

2 ∞
 = 

1

2T
 + 

E

RT

0

2

The activated complex theory

d

d

ln ( / )k k

T

2 ∞
 = 

1

T
 + 

D U °

RT 2

1

2T
 + 

E

RT

0

2
 = 

1

T
 + 

D U °

RT2

E0 = D‡U°  + 
1

2
RT

k2 = 
RT

c N h∞ A

D‡S° /R E0 RT RT D‡
ng  

  =
RT

c N h∞ A

D‡S° /R D‡
ng  – E0/RT

pNA ps
2
AB

8
1 2

k TB

pm

Ê
ËÁ

ˆ
¯̃

/

=
RT

c N h∞ A

D‡S°/R D‡
ng

or pNA

Z

N N

AB

A B
* *

=
nvib

c∞
D‡S° /R D‡

ng

RT/NAh is s

ZAB p may be interpreted in terms 

rearrangement

Collision Theory 

and the Activated 

Complex Theory

‡

‡
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Fig. 2.18.1 Free 

energy change versus 

reaction coordinate

D‡S

D‡ S°/R p

D‡S °/R

or p

For a process of the type

AB Æ AB‡ Æ A + B

the entropy of activation will generally be positive, since the activated complex 

A + B � ��
� ��  C + D

will be represented as

A + B � ��
� ��  X‡

��
��  C + D

where X‡ D‡G°  for the forward and 

DG°  = D‡G°f D‡G°b

kf =
RT

c N h∞ A

D‡G°f /RT

kb =
RT

c N h∞ A

D‡G°b/RT

The rate laws are given by

rf = kf

rb = kb

Activated Complex 

Theory applied 

to a Reaction at 

Equilibrium
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rf = rb

or kf kb

kf and kb

RT

c N h
G RT

∞
- ∞

Ê
ËÁ

ˆ
¯̃A

fexp( /D
RT

c N h
G RT

∞
- ∞

Ê
ËÁ

ˆ
¯̃A

bexp( /D

On rearranging, we get

[ ][ ]

[ ][ ]

C D

A B
= K° D‡G°f D‡G°b RT DG°/RT

or DG RT ln K º

an expression which can be derived thermodynamically.

DG° of the reaction is highly 

negative. This happens when D‡G°f

k2 = A Ea/RT

where A = 10  mol dm3 s  and Ea D‡
H ° , D‡

S° , 

D‡
U° and D‡

G° for the reaction.

k2 = A Ea/RT

we have  A = 
RT

c N h∞ A

 exp
D

D
S

R

∞
+ -

Ê
ËÁ

ˆ
¯̃

1 ng

and Ea = D‡
E° + RT

For the dimerization reaction D‡
ng

RT

c N h∞ A

 exp
D S

R

º
+

Ê
ËÁ

ˆ
¯̃

2  = A = 10  mol  dm3 s-1

ln
RT

N hA

s-Ê
ËÁ

ˆ
¯̃

1  + 
D S

R

∞
+

Ê
ËÁ

ˆ
¯̃

2

or 2.303 log 
RT

N hA

s-Ê
ËÁ

ˆ
¯̃

1  + 
D S

R

∞
+

Ê
ËÁ

ˆ
¯̃

2 = 2.303 ¥

Example 2.18.1

Solution

‡

‡
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‡
‡
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or log
RT

N hA

s-Ê
ËÁ

ˆ
¯̃

1 1

2 303
2

.

D S

R

∞
+

Ê
ËÁ

ˆ
¯̃

log
( . )( )

( . )( . )

8 314 300

6 023 10 6 6 10

1

23 34

1J K mol K

mol J s
s

1

1

- -

- -
-

¥ ¥
Ê
ËÁ

ˆ̂
¯̃

 + 
1

2 303.

D S

R

∞
+

Ê
ËÁ

ˆ
¯̃2

1

2 303.

D S

R

∞
+

Ê
ËÁ

ˆ
¯̃

2

or
1

2 303.

D S

R

∞
+

Ê
ËÁ

ˆ
¯̃

2

or
D S

R

∞
¥

or D‡
S° = R  mol

 mol

Now D‡
U° = Ea RT

 mol

D‡
H° = D‡

U D‡
n g RT = D‡

U RT

 mol

D‡
G°  = D‡

H T D‡
S °

 mol

-1

Alternatively, D‡
G° , D‡

H°  and D‡
U°

We have

k2 = 
RT

c N h∞ A

D‡
G° /RT

where k2

A Ea /RT
RT

c N h∞ A

D‡
G° /RT

cºA/s
E

RT

a  = ln 
RT

N hA

s-Ê
ËÁ

ˆ
¯̃

1 D G

RT

∞

‡

‡

‡

‡
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( )

. ( . ) ( )

65400

2 303 8 314 300

1

1 1

J mol

J K mol K

-

- -

= log 
( . ) ( )

( . ) ( . )

8 314 300

6 022 10 6 6 10

1

23 34

1J K mol K

mol J s
s

1

1

- -

- -
-

¥ ¥
Ê
ËÁ

ˆ̂
¯̃

D G∞
- -2 303 8 314 300. ( . ) ( )J K mol K1 1

D G∞
-2 303 8 314 300. ( . ) ( )J mol 1

or D‡
G

-1

Now D‡
H° = D‡

G°  + T D‡
S  mol

D‡
U° = D‡

H D‡
ng RT

mol

10

represented by

C10  + C10  = C10  + C10

T

k ¥ 10 /mol  dm3 s

D‡
H°, Ea, D‡

S°  and D‡
H

D‡
S° and D‡

H

k = 
RT

c N h∞ A

D‡
S° /R D‡

H° /RT

Dividing by T

log
k

T
mol dm s K1 3 1 1- - -Ê

Ë
ˆ
¯  = log

R

N hA

1s K- -Ê
ËÁ

ˆ
¯̃

1  + 
D S

R

∞
2 303.

D H

RT

∞
2 303.

k

T
mol dm s K1 3 1 1- - -Ê

Ë
ˆ
¯  and 1/T

straight line with

Example 2.18.2

Solution

‡ ‡
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D H

R

∞
2 303.

intercept = log 
R

N hA

1 1s K- -Ê
ËÁ

ˆ
¯̃

 + 
D S

R

∞
2 303.

We have

T

T 0.003 26 0.003 34 0.003 46 0.003 66

k/mol  dm3 s ¥ 109 2.40 ¥ 109 1.96 ¥ 109 1.43 ¥ 109

k

T
mol dm s K1 3 1 1- - - ¥ 106 ¥ 106 ¥ 106 ¥ 106

log
k

T
mol dm s K1 3 1 1- - -Ê

Ë
ˆ
¯

The plot of log ( / ) /k T mol dm s K1 3 1 1- - - -{ } T

D

D

log

( )

k

T

T

mol dm s K

K

1- - -{ }3 1 1

D

D

log

( )

k

T

T

mol dm s K

1

1- - -{ }3 1 1

0 0.0033 0.0034 0.0035 0.0036 0.0037

0.000 205

– 0.11.5

slope = – 0.115 /
= – 560.98

0.000 205

6.6

6.7

6.8

6.9

7.0

K/T

lo
g

/
k T

m
o
l

d
m

s
K

1
3

1
-

-
-

-
F HG

I KJ
1

 D‡
H  mol

Fig. 2.18.2
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¥ 106 ( . )

( . ) ( . )

8 314

6 022 10 6 6 1023 1 34

1 1J K mol

mol J s
K s

1 1- -

- -
- -

¥ ¥
Ï
Ì
Ó

¸
˝
˛

+
D S∞

- -( . )( . )2 303 8 314 J K mol1 1

10 741

2 303 8 314 307

1J

J K mol K1 1

mol

. ( . )( )

-

- -

6.946 = 10.320 + 
D S∞

- -19 147 1. J K mol 1

D‡
S  mol

mol

Now D‡
G° = D‡

H T D‡
S°

 D‡
G  mol

Now D‡
H° = D‡

U D‡
n g RT = D‡

U RT

and D‡
U° = Ea RT

Therefore

D‡
H° = Ea RT

or Ea= D‡
H°  + 2RT

Ea ¥  mol

Alternatively, we may plot a gr k/k T

Ea/2.303R Ea Ea A, the 

pre-exponential factor. From A D‡
S°  as indicated in the last problem. 

From Ea D‡
U° , D‡

H D‡
G° .

A certain reaction can proceed in the absence as well as in the presence of a catalyst. The  

rate constants for two mechanisms are ka and kc D‡
Sa mol

greater than D‡
Sc  and D‡

H a greater than D‡
 Hc , show which rate constant 

The rate constant in terms of D‡
S° and D‡

H ° is given by

k2 = 
RT

c N h∞ A

D‡
H ° /RT D‡

S ° /R

k

k

a

c

 = 
exp(

exp(

a

c

- ∞
- ∞

D
D

H RT

H RT

/ )

/ )

exp(

exp(

a

c

D
D

S R

S R

∞
∞

/ )

/ )

D‡
H°a D‡

H°c RT D‡
S°a D‡

S°c R

Example 2.18.3

Solution
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k

k

a

c

 mol

¥  mol  mol

The fre ¥ 1013 s .

entropy of activation.

We have

A = 
RT

N hA

D‡
S/R D‡

n g

D‡
n g

A = 
RT

N hA

D‡
S/R 1

D‡
S/R A

N h

RT

AÊ
ËÁ

ˆ
¯̃ e

or         D‡
S = 2.303 ¥ R ¥ log 

AN h

RT

AÊ
ËÁ

ˆ
¯̃ R

 D‡
S  mol

   ¥ log 
( . ) ( . ) ( . )

( .

2 5 10 6 022 10 6 626 10

8 314

13 1 23 1 34

1

¥ ¥ ¥- - -

-
s mol J s

J K mol--

Ï
Ì
Ó

¸
˝
˛

1 473)( )K

 mol

 mol  mol

 mol  mol

 mol

A + B 
k2æ Ææ

may conveniently be derived with the help of the activated complex theory. 

k2 = 
RT

N hA

 K ‡

where K ‡

the activated complex, i.e.

A + B � ��
� ��  AB‡

Example 2.18.4 

Solution

2.19 EFFECT OF PRESSURE ON REACTION RATE
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k2/k°2
RT

N hA

s 1-Ê
ËÁ

ˆ
¯̃

 + ln K°‡

∂ ∞
∂

Ê
ËÁ

ˆ
¯̃

ln ( / )k k

p T

2  = 
∂

∂
Ê
ËÁ

ˆ
¯̃

ln ºK

p
T

From thermodynamics, we have

ln K°‡ D G

RT

∞ D H

RT

∞
 + 

D S

R

∞

Now D‡H ° = D‡U°  + pD‡
V

Therefore

ln K°‡ D U

RT

∞ p

RT

D V
 + 

D S

R

∞

∂ ∞
∂

Ê
ËÁ

ˆ
¯̃

ln K

p
T

D V

RT

∂ ∞
∂

Ê
ËÁ

ˆ
¯̃

ln ( / )k k

p T

2 2 D V

RT
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 dp

ln
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( )

k

k

p

p

2

1

2

1

Ê
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ˆ

¯
˜

D V

RT
p2 p1
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D V

RT
p

D‡
V

k2/k p.

‡

‡
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‡‡
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Effect of Ionic

Strength (Primary

and Secondary Salt

Effects)

2.20 EFFECT OF IONIC STRENGTH AND DIELECTRIC CONSTANT ON IONIC REACTIONS

For an ionic reaction

AzA + BzB Æ

we may write it as

AzA + BzB � ��
� ��  [AB zA + zB Æ

where AB zA + zB ‡

reactants and the activated complex, we may write

K°‡ = 
a

a a

z z

z z

( )

( ) ( )

( )A B

A B

AB

A B

+

a

K‡ = 
[ ]

[ ][ ]

( )A B

A B

AB

A B

z z

z z

+
g

g g

( )

( ) ( )

( )A B

A B

AB

A B

z z

z z

+

or      [AB zA + zB ‡ K‡[AzA zB
g g

g

( ) ( )

( )

A B

A B( )

A B

AB

z z

z z+

Now according to the activated complex theory, we have

r = [AB zA + zB
RT

N hA

Ê
ËÁ

ˆ
¯̃

  = K
RT

N hA

Ê
ËÁ

ˆ
¯̃

g g

g

( ) ( )

( )

A B

A B( )

A B

AB

z z

z z+

Ê
ËÁ

ˆ
¯̃

 [AzA zB

r = k[AzA zB

k/k° K
RT

N h
k

A

º
Ê
ËÁ

ˆ
¯̃

g g

g

( ) ( )

( )

A B

A B( )

A B

AB

z z

z z+

Ê
ËÁ

ˆ
¯̃

k/k K
RT

N h
k

A

∞Ê
ËÁ

ˆ
¯̃

 + log {g
zA g

zB

g
zA + zB

m of the 

m = 
1

2
c zi ii

2Â
where ci is the molarity and zi ith ionic species. The 

relation connecting g with m

log g i A z2
i m

where A is a constant.

‡

‡ ‡

‡

‡

‡

‡

‡
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k/k° K
RT

N h
k

A

∞Ê
ËÁ

ˆ
¯̃

A z2
A m A z 2

B m  + A zA + zB
2

m

k/k° K
RT

N h
k

A

∞Ê
ËÁ

ˆ
¯̃

 + 2Az
A

zB m

A  dm3/2

k/k° k0/k zA zB m / c∞

where k0 = K‡ RT

N hA

Ê
ËÁ

ˆ
¯̃

strength on the rate constant of ionic reactions. According to this relation, if a plot 

k/k° m / c∞
zA zB

z zA B = + 4

z zA B = + 2

z zA B = 0

z zA B = – 1

z zA B = – 2

0 0.1 0.2 0.3

– 4.0

– 0.2

0

0.2

0.4

lo
g

(
/

º)
k

k

m cº

System Reactants Slope

   zA zB

3 Br2+ 2+ 4

2O 2

2NCO2C2 1

12 22O11 0

2O2
+ + Br

3 Br2+

Fig. 2.20.1 Primary

salt effect
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The change in k primary salt effect

principle, we can have

Product of zA zB k

secondary salt effect which 

kexp = k 3O
+

reaction

2O
� ��
� �� 3O

+ + A

K = 
[H O ][A ]

[HA]

3
+ -

g g

g

( ) ( )H O A

(HA)

3
+ -

Therefore

3O
+ K

[HA]

[A ]-
g

g g

( )

( ) ( )

HA

H O A3
+ -

3O
+ g

g g

( )

( ) ( )

HA

H O A3
+ -

kexp = k ¢
g

g g

( )

( ) ( )

HA

H O A3
+ -

kexp/k k ¢/k g g
3O+ gA

kexp/k m /c∞

kexp increases with the increase in 

+
4 3O

+ by the reaction

+
4 2O � ��

� �� 3O
+

3

Primary Salt Effect

Secondary Salt

Effect
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then, we will have

kexp/k g
NH4

+ g
H O3

+ g
3

kexp/k

that is, we will have zero salt effect.

3O
+

2 6
3+ according to the reaction

2 2 6
3+ � ��
� �� 3O

+
2

2+

Then,  we will have

kexp/k m / c∞

that is, we will have negative salt effect.

k = 
RT

c N h∞ A

D‡G°/RT

where D‡G°  is the change in standard free energy in going from reactants to the 

D‡G

D‡G° = D‡G°ne + D‡G°e

zAe and zBe

d to form the activated complex 

D

we = F

•
Ú
d

dx = 
( ) ( )

( )

z e z e

D x

A B

4

1

0
2pe

•
Ú
d

dx

( ) ( )

( )

z e z e

D

A B

4 0pe

1

d

For one mole of each ion, we get

we

( ) ( )

( )

z e z e

D

A B

4 0pe

N

d

A

DG =  w

D‡G° = D‡G°ne

z z e N

D d

A B A
2

04( )pe

Ê
ËÁ

ˆ
¯̃

k = 
RT

c N h∞ A

 exp -
∞Ê

ËÁ
ˆ
¯̃

D G

RT

ne   exp -
Ê
ËÁ

ˆ
¯̃

z z e N

D dRT

A B A
2

04

1

( )pe

Effect of Dielectric

Constant

‡
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k/k k0/k
z z e N

dRT

A B A
2

1

4 0( )pe D

where  k0 =
RT

c N h∞ A

 exp -
∞Ê

ËÁ
ˆ
¯̃

D G

RT

ne

k/k D with a slope of 

zAzBe2 NA p e0 dRT.

zA + zB e

k/k k0/k
e N

DRT

2

02 4

A

( )pe

( )z z z

r

z

r

A B A

A

B

B

+
- -

È

Î
Í

˘

˚
˙

±

2 2 2

r

where r±

of catalytic reactions depends on a reaction to reaction. Broadly, two types of 

 homogeneous catalyst and heterogeneous catalyst.

3 2O on 

kf =
RT

c N h∞ A

D‡G°f /RT

to k ¢f =
RT

c N h∞ A

D‡G°f ¢/RT

2.21 KINETICS OF CATALYTIC REACTIONS

Characteristic

Effects of a 

Catalyst

‡
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D‡G°f ¢ is less than D‡G°f k ¢f is greater than kf , i.e. the 

DG

kf = 
RT

c N h∞ A

D‡G°f ¢/RT

kb = 
RT

c N h∞ A

D‡G°b ¢/RT

K  = 
k

k

f

b

 = 
( / º )exp( / )

( / º )exp( / )

RT c N h G RT

RT c N h G RT

A f

A b

- ¢

- ¢

∞

∞
D
D

D‡G°f ¢ D‡G°b¢ RT DG°/RT

DG°, which is D‡G°f ¢ D‡G°b¢
K  remains the same in the presence or absence of a catalyst.

The mechanism of a catalytic reaction depends on the type of the catalyst, i.e. 

Fig. 2.21.1 Lowering

of free energy of 

activation in the 

presence of a catalyst. 

Path 1 is without 

catalyst; Path 2 with 

catalyst

HOMOGENEOUS CATALYSIS

‡

‡
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and the enzyme catalysis.

k

k

1

1

� ���
� ���

+ + A

+
2O

k2æ Ææ 3O
+

d P

d

[ ]

t
 = k2

+

Note 2

+ can be obtained by applying the steady-state 
+

d SH

d

[ ]+

t
= 0 = k1 k + k2

+

+ k

k k

1

1 2

[ ][ ]

[ ]

S HA

A-
- +

d P

d

[ ]

t
 = 

k k

k k

2 1

1 2

[ ][ ]

[ ]

S HA

A-
- +

k2 � k  [A

d P

d

[ ]

t
 = k1

general acid catalysis.

k2 � k  [A

d P

d

[ ]

t
 = k2

k

k

1

1-

[ ]

[ ]

HA

A-

Ka = 
[ ][ ]

[ ]

H A

HA

+ -

Acid Catalyzed 

Reactions

Two Specific

Cases
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d P

d

[ ]

t
 = k2

k

k

1

1-

1

Ka

+

.

+

d P

d

[ ]

t
= k ¢

where k ¢ = k2

k

k K

1

1

1

- a

+ k +
+

The constant k + . Writing 

k ¢/s k +/mol dm3 s

k ¢/s

general base catalysis. For a reaction 

, the rate constant is given by

k = k

that is, it varies linearly with the hydroxyl-ion concentration.

d S

d

[ ]

t
 = k

+

order rate constant k  may be written as

k = k0 + k +
+ k k kA [A

where the constants k +, k , k  and kA

k0 is the rate constant at low concentrations of all of the catalytic species.

k +

k = k0 + k +
+

catalyst reaction.

Base Catalyzed

Reactions

Generalization of 

Rate Constant
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One of the most important examples of homogeneous catalysis is the catalysis of 
reactions in biological systems by enzymes. Enzymes are complex protein molecules 

The mechanism of enzyme-catalyzed reactions was initially proposed by L. 
Michaelis and M.L. Menten and is known as Michaelis-Menten mechanism. The 

mechanism involves the following steps:

E + S 
k

k

1

1-

� ���
� ���  ES

ES
k2æ Ææ  P + E

The rate of appearance of product is given by

d P

d

[ ]

t
 = k2[ES] (2.21.15)

d ES

d

[ ]

t
 = 0 = k1[E][S] – k–1[ES] – k2[ES]

[ES] = 
k

k k

1

1 2

[ ][ ]E S

- +
(2.21.16)

The proposed mechanism is usually tested with the experimentally determined 
initial rate of reaction under the condition that [S]0 �  [E]0

we may replace [E] and [S] be the relations

[S] �  [S]0

[E] = [E]0 – [ES] (2.21.17)

[ES] = 
k

k k

1 0 0

1 2

([ ] [ ])[ ]E ES S-
+-

which on rearranging gives

[ES] =
k

k k k

1 0 0

1 0 1 2

[ ] [ ]

[ ]

E S

S + +-
 = 

[ ] [ ]

[ ] {( )/ }

E S

S

0 0

0 1 2 1+ +-k k k

  =
[ ] [ ]

[ ]

E S

S M

0 0

0 + K
(2.21.18)

where KM =
k k

k

- +1 2

1

(2.21.19)

and is known as the Michaelis-Menten constant. The constants KM and k2

are characteristic constants for a particular enzyme-catalyzed reaction. When 

k–1 � k2 KM k–1/k1 which represents the dissociation constant of the 

enzyme-substrate complex.

Enzyme Catalysis

Michaelis-Menten

Mechanism

Derivation of Rate 

Expression
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d P

d

[ ]

t

Ê
ËÁ

ˆ
¯̃

0

 = r0 = 
k

K

2 0 0

0

[ ] [ ]

[ ]

E S

S M+
(2.21.20)

under the two extreme conditions of high and low concentrations of S.

KM may be ignored in 

comparison to [S]0

   
d P

d

[ ]

t

Ê
ËÁ

ˆ
¯̃

0

 = k2 [E]0 (2.21.21)

possible rate for the enzyme reaction at a given initial concentration of the enzyme. 

  rmax = k2[E]0 (2.21.22)

d P

d

[ ]

t

Ê
ËÁ

ˆ
¯̃

0

 = 
k

K

2

M

 [E]0 [S]0 (2.21.23)

  r0 = 
r

K

max

M

 [S]0 (2.21.24)

Figure 2.21.2 represents the typical variation of initial rate with the initial substrate 

rmax/KM

rmax and rmax/KM

can be determined. Knowing rmax k2

Zero-order
regionFirst-order

region
rmax

2

Initial substrate concentration

rmax

In
it
ia
l
ra
te

KM

Fig. 2.21.2 A typical 

variation of initial rate 

versus initial substrate 

concentration

Initial Rate at High 

Concentration of S

Initial Rate at Low 

Concentration of S
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region to determine rmax rmax and KM

can be obtained following the procedure given by Lineweaver and Burk where 

1

0r
 = 

1

2 0k [ ]E
 + 

K

k

M

E S2 0 0[ ] [ ]

or
1

0r
 = 

1

rmax

 + 
K

r

M

Smax[ ]0

(2.21.25)

r0 versus 1/[S]0 will be a straight line with slope KM/rmax and 

with an intercept on the 1/r0 axis of 1/rmax (Fig. 2.21.3). The extrapolated intercept 

on the 1/[S]0 KM

rmax and KM can be 

determined.

1/rmax

–1/KM

slope = /K rM max

1 / [S]0

1
/r 0

The above method involves a considerable extrapolation to the intercept. Since a 

small absolute uncertainty in 1/rmax may produce a large relative uncertainty in 

the value of rmax

r0

0[ ]S
 = 

r

K

max

M

 – 
1

KM

r0 (2.21.26)

r0/[S]0 against r0 gives a straight line with an intercept on 

r0/[S]0 rmax/KM and that on r0 rmax (Fig. 2.21.4).

rmaxr0

r
0

0
/
[S
]

r Kmax M/

Determination of 

rmax by Lineweaver 

and Burk Method

Fig. 2.21.4 A typical 

Eadie plot

Fig. 2.21.3 A typical 

Lineweaver-Burk plot

Determination

of rmax by Eadie 

Method
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KM = 
r r

r

max -Ê
ËÁ

ˆ
¯̃

0

0

 [S]0 (2.21.27)

KM = [S]0

when r0 = rmax/2.

The potential energy diagram of enzyme catalyzed reaction will contain two 

the corresponding energy of activation has a small value (Fig. 2.21.5). The energy 

of activation for the dissociation step has a large value.

E + S
ES

Products

Reaction coordinate

P
o
te
n
ti
al
en
er
g
y

k2� k–1

E + S 
k

k

1

1-

� ���
� ���  ES

may be described by the constant

K  = 
k

k

1

1-
 = 

[ ]

[ ][ ]

ES

E S

KM = 1/K .

We have the relation

[E]0 = [E] + [ES]

[E]0 = 
[ ]

[ ]

ES

SeqK
 + [ES]

[ES] = 
[ ]

/ [ ]

E

Seq

0

1 1+ K
=

[ ][ ]

[ ] /

S E

S eq

0

1+ K

Potential Energy 

Diagram

Fig. 2.21.5 The

potential energy 

diagram of the 

Michaelis-Menten

mechanism

Problem 2.21.1

Solution
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Example 2.21.1

Fig. 2.21.6 The

required potential 

energy diagram

Problem 2.21.2

Solution

Substituting the above relation in the rate expression

r = k2 [ES]

we get r = 
k

K

2 0

1

[ ][ ]

[ ] /

S E

S eq+

[S] = [S]0

r0 = 
k

K

2 0 0

0 1

[ ] [ ]

[ ] /

S E

S eq+

KM = 
1

Keq

The above relation also follows directly since

KM = (k–1 + k2)/k1 and k–1� k2

therefore KM = 
k k

k

- +1 2

1

�
k

k

-1

1

 = 
1

Keq

The hydrolysis of p-nitrophenylacetate to p-nitrophenol is catalyzed by a-chymotrypsin 

enzyme. The proposed mechanism is

E + S 
fast
� ���
� ���  ES¢

k1æ Ææ  ES + P1
k2æ Ææ  E + P2

where ES¢ 1 and P2 k1 is 

much smaller than k2

for the above reaction.

value in comparison to other steps. The energy of activation for the second step will be 

much larger than the third step since k1� k2

will have an appearance as shown in Fig. 2.21.6.

E + S
ES

ES + P¢

1

E + P2

Reaction coordinate

P
o
te
n
ti
al
en
er
g
y

The following data are obtained in an enzyme catalyzed reaction

[S] ¥ 104/mol dm–3 2.5 5.0 10.0 15.0

r0 ¥ 106/mol dm–3 min–1 2.2 3.8 5.9 7.1
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rmax KM and k1 using the Lineweaver-Burk 

0 = 4.0 ¥ 10–6 mol dm–3.

[S]0 ¥ 104/mol dm–3 2.5 5.0 10.0 15.0

1

0[ ]S
¥ 10–4/mol–1 dm3 0.4000 0.2000 0.1000 0.066 7

r0 ¥ 106/mol dm–3 min–1 2.2 3.8 5.9 7.1

1

0r
¥ 10–6/mol–1 dm3 min 0.454 5 0.263 2 0.169 5 0.140 8

r0

0[ ]S
¥ 102/min–1 0.88 0.76 0.59 0.473

Lineweaver-Burk Plot A graph between 1/r0 and 1/[S]0 is drawn (Fig. 2.21.7) and its 

slope and intercept are determined.

0185 10

0195 10

6

4

.

.

¥

¥
slope =

= 94.88

0.185

0.195

0 0.1 0.2 0.3 0.4
0.05

0.15

0.25

0.35

0.45

(1
/
)
×
1
0

/
m
o
l

d
m

m
in

r
0

–
6

–
1

3

(1 / [S] ) × 10 / mol dm0
–4 –1 3

Intercept =
1

rmax

 = 0.08 ¥ 106 mol–1 dm3 min

Slope = 
K

r

M

max

 = 94.88 min

rmax =
1

Intercept
 = 

1

0 08 106 3 1. ( ) min¥ - -mol dm

  = 1.25 ¥ 10–5 mol dm–3 min–1

KM = Slope ¥ rmax = (94.88 min) (1.25 ¥ 10–5 mol dm–3 min–1)

  = 1.19 ¥ 10–3 mol dm–3

Now rmax = k1 [E]0

k1 = 
rmax

[ ]E 0

1 25 10

4 0 10

5 3 1

6 3

. min

.

¥
¥

- - -

- -
mol dm

mol dm
 = 3.125 min–1

Solution

Fig. 2.21.7
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Eadie plot A graph between r0/[S]0 and r0 is plotted (Fig. 2.21.8) and its intercepts on 

the two axes are determined.

13.463

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1.0

1.0532

(
/
[S
]
)
×
1
0
/
m
in

r
0

0
2

–
1

r0
6 –3 –1× 10 / mol dm min

Intercept on r0/[S]0 axis =
r

K

max

M

 = 1.053 2 ¥ 10–2 min–1

Intercept on r0 axis = rmax = 13.463 ¥ 10–6 mol dm–3 min–1

= 1.346 ¥ 10–5 mol dm–3 min–1

KM =
rmax

. min1 0532 10 2 1¥ - -  = 
1 346 10

1 0532 10

5 3 1

2 1

. min

. min

¥
¥

- - -

- -
mol dm

  = 1.278 ¥ 10–3 mol dm–3

k1 = 
rmax

[ ]E 0

 = 
1 346 10

4 0 10

5 3 1

6 3

. min

.

¥
¥

- - -

- -
mol dm

mol dm
 = 3.365 min–1

Inhibitors are compounds that decrease the rate of a catalyzed reaction. The 

will be derived in this section.

The conditions of fully competitive inhibiton are: (a) E will bind with both S and 

we may write it as

E + S 
k

k

1

1-

� ���
� ���  ES 

k2æ Ææ  E + P

E + I 
k

k

3

3-

� ���
� ���  EI

d ES

d

[ ]

t
 = 0 = k1 [E][S] – k–1[ES] – k2[ES]

or [ES] = 
k

k k

1

1 2

[ ][ ]E S

- + (2.21.28)

Fig. 2.21.8

ENZYME INHIBITIONS

Fully Competitive 

Inhibition
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If [S]0� [E]0

[S] �  [S]0 (2.21.29)

[E] = [E]0 – [ES] – [EI] (2.21.30)

Now
1

3K
 = KI = 

[ ][ ]

[ ]

E I

EI

Therefore

[EI] = 
[ ][ ]

I

E I

K

[E] = [E]0 – [ES] – [E][I]/KI

or [E] = 
[ ] [ ]

[ ]/

E ES

I I

0

1

-
+ K

(2.21.31)

[ES] =
k K

k k

1 0 0 1

1 2

1[ ] ([ ] [ ])/( [ ]/ )S E I- +
+-

ES

or [ES] =
k K

k K k k

1 0 0

1 0 1 2

1

1

[ ] [ ] /( [ ]/ )

{ [ ] /( [ ]/ )}

S E I

S I

I

I

+
+ + +-

=
[ ] [ ] /( [ ]/ )

{[ ] /( [ ]/ )}

E S I

S I

I

I M

0 0

0

1

1

+
+ +

K

K K
(2.21.32)

The rate of formation of product is given by

r0 = k2 [ES]

r0 = 
k K

K K

2 0 0

0

1

1

[ ] [ ] /( [ ]/ )

{[ ] /( [ ]/ )}

E S I

S I

I

I M

+
+ +

(2.21.33)

If the factor [S]0/(1 + [I]/KI)�KM

rmax = k2 [E]0 (2.21.34)

1

0r
 = 

1
1

1

r

K

rmax

[

[
+ +

Ê
ËÁ

ˆ
¯̃

M

max I 0

I]

S]K
(2.21.35)

same whereas the slope has increased from KM/rmax to KM (1 + [I]/KI)/rmax. In 

rmax is same but KM KM (1 + [I]/KI). Figure 2.21.9 

displays the two plots.
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Intercept
= –1/ (1+[I] / )K KM I

1/[S]0

[I]

[I] = 0

1
/r
0

1/rmax

also combine respectively with S and I to give the same EIS complex. Both ES 

and EIS break down to products at the same rate. Thus the mechanism involves 

E + S 
¢K1

� ���
� ���  ES 

k2æ Ææ  E + P

E + I 
¢K2

� ���
� ���  EI

EI + S 
¢K3

� ���
� ���  EIS

ES + I 
¢K4

� ���
� ���  EIS

EIS
k2æ Ææ  EI + P

We may follow the classical Michaelis-Menten treatment (where we assume 

k2� k¢–1 and thus KM � 1/K¢1

1

1K ¢
� KM = 

[ ][ ]

[ ]

E S

ES
(2.21.36a)

1

2K ¢
 = K2 = 

[ ][ ]

[ ]

E I

EI
(2.21.36b)

1

3K ¢
 = K3 = 

[ ][ ]

[ ]

EI S

EIS
(2.21.36c)

1

4K ¢
 = K4 = 

[ ][ ]

[ ]

ES I

EIS
(2.21.36d)

The enzyme conservation reaction is

[E]0 = [E] + [ES] + [EI] + [EIS]

[E]0 = [E] + 
[ ][ ]E S

MK
 + 

[ ][ ]E I

2K
 + 

[ ][ ][ ]E I S

2K K3

Fig. 2.21.9 Display of 

the two plots

Partially

Competitive

Inhibition
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or [E] =
[ ]

[ ] [ ] [ ][ ]

E 0

2 2 3

1+ + +
S I I S

MK K K K

=
K

K K K K K

M [ ]

( [ ]/ ) [ ]( [ ] / )

E

I S IM M

0

2 2 31 1+ + +
(2.21.37)

The rate of the reaction is given by

r = k2 ([ES] + [EIS])

  = k2

[ ][ ] [ ][ ][ ]E S E I S

MK K K
+

Ê
ËÁ

ˆ
¯̃2 3

  = k2[S]
1

2 3K K KM

I
+

Ê
ËÁ

ˆ
¯̃

[ ]
[E]

r =
k K K K K

K K K K K

2 2 3 0

2 2 3

1

1 1

[ ]{( / ) [ ]/ }[ ]

( [ ]/ ) [ ]( [ ] / )

S I E

I S I

M M

M M

+
+ + +

  =
k K K K

K K K K K

2 0 2 3

2 2 3

1

1 1

[ ] [ ]( [ ] / )

( [ ]/ ) [ ]( [ ] / )

E S I

I S I

M

M M

+
+ + +

  =
k

K K K K K

2 0

2 2 31 1

[ ] [ ]

{ ( [ ]/ )/( [ ] / )} [ ]

E S

I I SM M+ + +

1

r
 = 

K K K K K

k

M MI I

E

{( [ ]/ )/( [ ] / )}

[ ]

1 12 2 3

2 0

+ + 1

[ ]S
 + 

1

2 0k [ ]E

A plot between 1/r0 and 1/[S]0 will be linear with intercept 1/rmax (same for all 

[I]) and slope 
K

r

M

max

1

1

2

2 3

+
+

Ê
ËÁ

ˆ
¯̃

[ ]/

[ ] /

I

I M

K

K K K
.

The general nature of the graph is thus same as that of Fig. 2.21.9.

includes the following reactions:

E + S 
¢K1

� ���
� ���  ES 

k2æ Ææ  E + P

E + I 
¢K2

� ���
� ���  EI

Fully

Noncompetitive

Inhibition
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EI + S 
¢K1

� ���
� ���  EIS

ES + I 
¢K2

� ���
� ���  EIS

1

1¢K
 = KM = 

[ ][ ]

[ ]

E S

ES
 = 

[ ][ ]

[ ]

EI S

EIS
; (since k2� k¢–1) (2.21.38a)

1

2¢K
 = KI = 

[ ][ ]

[ ]

E I

EI
 = 

[ ][ ]

[ ]

ES I

EIS
(2.21.38b)

[E]0 = [E] + [ES] + [EI] + [EIS]

[E]0 = [E] + 
[ ][ ]E S

MK
 + 

[ ][ ]E I

IK
 + 

[ ][ ][ ]E S I

M IK K

or [E] =
[ ]

([ ]/ ) ([ ]/ ) ([ ][ ]/ )

E

S I S IM I M I

0

1+ + +K K K K

=
[ ]

( [ ]/ )( [ ]/ )

E

S IM I

0

1 1+ +K K
(2.21.39)

The rate of formation of product is given by

r = k2 [ES] = k2

[ ][ ]E S

MK

r =
k

K

2

M

 [S] 
[ ]

( [ ]/ )( [ ]/ )

E

S IM I

0

1 1+ +
Ï
Ì
Ó

¸
˝
˛K K

  =
k

K K

2 0

1

[ ] [ ]

( [ ]) ( [ ]/ )

E S

S IM I+ +

Since rmax = k2 [E]0

r =
r

K K

max[ ]

( [ ]) ( [ ]/ )

S

S IM I+ +1

  =
r

K K K

max[ ]

( [ ]/ ) [ ]( [ ]/ )

S

I S IM I I1 1+ + +
(2.21.40a)
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1

r
 = 

K

r

M

max

1+
Ê
ËÁ

ˆ
¯̃

[ ]I

IK

1

[ ]S
 + 

1

rmax

1+
Ê
ËÁ

ˆ
¯̃

[ ]I

IK
(2.21.40b)

KM is unaffected 

whereas rmax rmax/(1 + [I]/KI). This is just opposite from what 

occurs in a fully competitive inhibition.

Figure 2.21.10 displays the plots of normal enzyme and fully noncompetitive 

enzyme reactions.

with one more step.

EIS
¢æ Ææk EI + P

r = k2 [ES] + k¢ [EIS]

  = k2

[ ][ ]E S

MK
 + k¢

[ ][ ][ ]E S I

M IK K

  =
k

K

k

K K

2[ ] [ ][ ]S S I

M M I

+
¢Ê

ËÁ
ˆ
¯̃

[ ]

( [ ]/ ) ( [ ]/ )

E

S IM I

0

1 1+ +
Ê
ËÁ

ˆ
¯̃K K

  =
k K

K

2 0 1[ ] [ ]/( [ ]/ )

[ ]

E S I

S

I

M

+
+

 + 
¢ +

+
k K K

K

[ ] [ ]([ ]/ )/( [ ]/ )

[ ]

E S I I

S

I I

M

0 1

  =
( [ ] [ ] [ ] [ ][ ]/ )/( [ ]/ )

[ ]

k k K K

K

2 0 0 1E S E S I I

S

I I

M

+ ¢ +
+

Fig. 2.21.10

Partially

Noncompetitive

Inhibition
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1

r
 = 

K K

k k K

M I

I

I

E E I

( [ ]/ )

( [ ] [ ] [ ]/ )

1

2 0 0

+
+ ¢

1

[ ]S
 + 

1

2 0 0

+
+ ¢

[ ]/

[ ] [ ] [ ]/

I

E E I

I

I

K

k k K
(2.21.41)

E + S 
¢K1

� ���
� ���  ES 

k2æ Ææ  E + P

ES + I 
¢K2

� ���
� ���  EIS

We may write

1

1¢K
 = KM = 

[ ][ ]

[ ]

E S

ES
(2.21.42a)

1

2¢K
 = KI = 

[ ][ ]

[ ]

ES I

EIS
(2.21.42b)

[E]0 = [E] + [ES] + [EIS]

[E]0 = [E] + 
[ ][ ]E S

MK
 + 

[ ][ ][ ]E S I

M IK K

or [E] =
[ ]

([ ]/ ) ([ ][ ]/ )

E

S S IM M I

0

1+ +K K K

The rate expression is

r = k2 [ES] = 
k

K

2[ ][ ]E S

M

 = 
k

K K

2 0

1

[ ] [ ]

[ ]( [ ]/ )

E S

S IM I+ +

  =
r

K K

max[ ]

[ ]( [ ]/ )

S

S IM I+ +1
(2.21.43)

1

r
 = 

K

r

K

r

M I

S

I

max max[ ]

[ ]/1 1
+

+
(2.21.44)

r and 1/[S] is the same as that of a simple 

enzyme reaction but the intercept increases with the increase in concentration of 

I (Fig. 2.21.11).

Uncompetitive

Inhibition
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Fig. 2.21.11

Example 2.21.2

[I] = 0

[I]

1+ [ ] /I IK

rmax

1
/r

1 + [ ]I I

M

K

K
–

1/[S]

An enzyme-catalyzed reaction (KM = 2.7 ¥ 10–3 mol dm–3) is inhibited by a competitive 

inhibitor I (KI = 3.1 ¥ 10–5 mol dm–3). Suppose the substrate concentration is 3.6 ¥ 10–4 mol

dm–3. How much of the inhibitor is needed for a 65% inhibition? How much does the 

substrate concentration have to be increased in order to reduce the inhibition to 25%?

(r0)non = 
k

K

2 0 0

0

[ ] [ ]

[ ]

E S

S M+

(r0)inh = 
k K

K K

2 0 0

0

1

1

[ ] [ ] /( [ ]/ )

{[ ] /( [ ]/ )}

E S I

S I

I

I M

+
+ +

( )

( )

r

r

0

0

inh

non

 = 
([ ] )/( [ ]/ )

{[ ] /( [ ]/ )}

S I

S I

M I

I M

0

0

1

1

+ +
+ +

K K

K K

Rearranging for [I] and [S]0

[I] = 
( ) ( )

( )

r r

r

0 0

0

non inh

inh

-Ê
ËÁ

ˆ
¯̃

([ ] )S M I

M

0 +Ê
ËÁ

ˆ
¯̃

K K

K

[S]0 = 
( )

( ) ( )

r

r r

0

0 0

inh

non inh-
K

K

M

I

I[ ]Ê
ËÁ

ˆ
¯̃

– KM

     [I] = 1 0 35

0 35

-Ê
ËÁ

ˆ
¯̃

.

.

¥ 
( . . )( . )

.

3 6 10 2 7 10 3 1 10

2 7 10

4 3 3 3 5 3

3

¥ + ¥ ¥
¥

- - - - - -

-
moldm moldm moldm

mmoldm-

Ê
ËÁ

ˆ
¯̃3

   = 6.524 ¥ 10–5 mol dm–3

Solution
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Example 2.21.3

[S]0 = 
0 75

1 0 75

.

.-
Ê
ËÁ

ˆ
¯̃

( . ) ( . )

.

2 7 10 6 524 10

3 1 10

3 3 5 3

5 3

¥ ¥
¥

Ê
ËÁ

ˆ
¯̃

- - - -

- -
mol dm mol dm

mol dm
– 2.7 ¥ 10–3 mol dm–3

   = 14.346 ¥ 10–3 mol dm–3 = 0.014 3 mol dm–3

Calculate the concentration of a noncompetitive inhibitor (KI = 2.9 ¥ 10– 4 mol dm–3) needed 

to yield a 90% inhibition of an enzyme-catalyzed reaction.

r0 = 
r

K

max[ ]

[ ]

S

SM

0

0+

(r0)inh =
r

K K

max[ ]

( [ ] )( [ ]/ )

S

S IM I

0

0 1+ +

r

r

0

0( )inh

 = 1 + 
[ ]I

IK

Therefore [I] = KI

r r

r

0 0

0

-Ê
ËÁ

ˆ
¯̃

( )

( )

inh

inh

[I] = (2.9 ¥ 10–4 mol dm–3)
0 9

0 1

.

.

Ê
ËÁ

ˆ
¯̃  = 2.61 ¥ 10–3 mol dm–3

Most heterogeneous catalytic reactions involve the solid surface as the catalyst. The 

catalytic effect has been explained on the basis of adsorption of reactants on the 

chemisorption in nature where the adsorbed molecules are held to the surface by 

platinum catalyst which is used in many reactions involving hydrogen involves the 

adsorption of the hydrogen molecule on the surface of the metal which weakens 

the bond holding the two hydrogen atoms together. This facilitates the cleavage 

of that bond and thus accelerates the rate of reaction.

The adsorbed molecules are more near to the transition state and thus 

heterogeneous catalyst primarily function by lowering of activation energy. If a 

on the basis that the reacting molecules are adsorbed in the neighbouring active 

a gaseous reaction on the surface of a catalyst involves the following major steps.

1. Diffusion of reactant molecules to the surface.

2. Adsorption of reactant molecules onto the surface.

Solution

HETEROGENEOUS CATALYSIS

Characteristics of 

Heterogeneous

Catalysts
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3. Chemical reaction on the surface.

4. Desorption of product molecules from the surface.

5. Diffusion of product molecules away from the surface.

The rate of overall reaction may depend on any or all the the steps listed above.

adsorption. A solid catalyst present in the powder form is more effective as it has 

larger surface area. The catalyst may be activated by heating to a high temperature 

in vacuum.

The kinetics of gaseous reactions on solid surfaces may be accounted for by 

postulating the reactions of the following types.

the number of reacting molecules.

(ii) Chemical reaction between the adsorbed molecules to give product molecules.

r μ q

i.e. r = k1q (2.21.45)

where k1

r = kqAqB

where qA and qB

respectively.

We give below an account of unimolecular and bimolecular surface reactions.

A unimolecular surface reaction involves the following elementary processes.

A + S 
k

k

1

1-

� ���
� ���  AS

AS
k2æ Ææ  products

adsorbed molecule (or the occupied sites at the surface of the catalyst).

r = k2q

where q is the fraction of the surface covered. If cs is the total concentration of 

cs(1 – q ) (2.21.46)

csq (2.21.47)

Unimolecular

Surface Reaction
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d AS

d

[ ]

t
 = 0 = k1[A][S] – k–1[AS] – k2[AS]

Substituting the [S] and [AS] in terms of q

k1 [A] cs (1 – q) – k–1 csq – k2 csq = 0

or q = 
k

k k k

1

1 1 2

[ ]

[ ]

A

A + +-
(2.21.48)

r = 
k k

k k k

2 1

1 1 2

[ ]

[ ]

A

A + +-
(2.21.49)

1

r
 = 

1

2k
 + 

k k

k k

- +1 2

2 1

1

[ ]A
(2.21.50)

r versus 1/[A] would yield a straight line of slope and intercept 

k–1 + k2)/k2k1 and 1/k2

r =
k k p

k p k k

2 1

1 1 2

A

A + +-
(2.21.51)

or
1

r
=

1

2k
 + 

k k

k k

- +1 2

1 2

1

pA

(2.21.52)

r versus 1/pA would yield a straight line.

Two limiting cases of (2.21.51) are discussed below.

∑ k2� (k1 pA + k–1): Since k2 is very large in comparison to k1 pA + k–1

that the rate of formation of products is very fast as compared to the rate of adsorption 

r1 = k1pA (2.21.53)

The rate constant is k1 indicating that the adsorption is the rate determining step.

reactions: N2

vapours on platinum.

∑ k2 << k1 pA + k–1: Since k2 is very small in comparison to k1 pA + k–1

that the rate at which products is formed is a slow step and the adsorption and 

r = 
k k p

k p k

1 2

1 1

A

A + -
 = 

( / )

( / )

k k k p

k k p

1 1 2

1 1 1

-

- +
A

A

 = 
K k p

K p

eq A

eq A

2

1+
(2.21.54)

where K

Limiting Cases of 

Eq. (2.21.51)
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Two subcases may be distinguished. These are

(a) Low pressure region At low pressures K pA <<
reduces to

r = K k2 pA (2.21.55)

(b) High pressure region At high pressure K pA�

reduces to

r = k2 (2.21.56)

the fraction of area covered by the molecules (or the concentration of adsorbed 

molecules) increases linearly with pressure and so also the rate of the surface 

(i.e. q = 1) and thus the concentration of adsorbed molecules remains constant 

and hence the reaction becomes zero-order with respect to the adsorbed substance. 

The variation of rate of reaction with pressure is shown in Fig. 2.21.12. Example 

of reactions exhibiting above characteristics include decomposition of HI on gold 

and that of NH3 on molybdenum.

First-order
region

Zero
order
region

Pressure

R
at
e

Reactant slightly adsorbed K  is small and hence K pA may be 

r = K  k2 pA = k¢ pA (2.21.57)

written as

–
d

d

Ap

t
 = k¢ pA

Subcases of 

Eq. (2.21.54)

Classification of 

Gaseous Reactions

Fig. 2.21.12 Variation 

of rate of unimolecular 

surface reaction with 

pressure
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ln
( )

( )

p

p t

A

A

0  = kt (2.21.58)

Reactant strongly absorbed

K pA� 1

r = k2 (2.21.59)

time will be given as

(pA)0 – (pA)t = kt (2.21.60)

Reactant moderately adsorbed

and the rate may be approximated by the expression

r = k p1/n

which makes the rate proportional to the amount adsorbed as given by the 

Freundlich isotherm.

A bimolecular surface reaction involves the following elementary processes.

A + S 
k

k

1

1-

� ���
� ���  AS

B + S 
k

k

2

2

� ���
� ���  BS

AS + BS 
k3æ Ææ  products + 2S

The rate of formation of products is given by

r = k3qAqB (2.21.61)

where qA and qB

respectively. If cs

csqA

csqB

cs(1 – qA – qB)

We can apply steady-state approximation to AS and BS to determine qA and qB.

d AS

d

[ ]

t
 = 0 = k1[A][S] – k–1[AS] – k3[AS][BS]

d BS

d

[ ]

t
 = 0 = k2[B][S] – k–2[BS] – k3[AS][BS]

q

k1[A]cs(1 – qA – qB) – k–1csqA – k3c
2
sqAqB = 0 (2.21.62)

k2 [B]cs(1 – qA – qB) – k–2csqB – k3c
2
sqAqB = 0 (2.21.63)

Bimolecular

Surface Reaction
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qA and qB

can be solved for qA and qB

determine rate of the reaction.

k3

the rate determining step is the chemical reaction between the adsorbed molecules. 

k1[A](1 – qA – qB) – k–1 qA = 0

k2[B](1 – qA – qB) – k–2 qB = 0

or K [A](1 – qA – qB) – qA = 0

K [B](1 – qA – qB) – qB = 0

where K  = k1/k–1 and K  = k2/k–2

constants. Solving for qA and qB

qA = 
K

K K

eq

eq eq

A

A B

1

1 21

[ ]

[ ] [ ]+ +

qB = 
K

K K

eq

eq eq

B

A B

2

1 21

[ ]

[ ] [ ]+ +

r = k3

K

K K

eq

eq eq

A

A B

1

1 21

[ ]

[ ] [ ]+ +

Ê

ËÁ
ˆ

¯̃

K

K K

eq

eq eq

B

A B

2

1 21

[ ]

[ ] [ ]+ +

Ê

ËÁ
ˆ

¯̃

=
k K K

K K

3 1 2

1 2
21

eq eq

eq eq

A B

A B

[ ][ ]

( [ ] [ ])+ +
(2.21.64)

r = 
k K K p p

K p K p

3 1 2

1 2
21

eq eq A B

eq A eq B( )+ +
(2.21.65)

Three subcases may be distinguished. These are:

Both A and B are weakly adsorbed K pA and K pB

becomes

r = k3 K K pA pB (2.21.66)

Example includes the reaction between NO and O2 on glass.

One of the components (say, A) is more strongly adsorbed than other In the 

K pA�K pB

Subcases of

Eq. (2.21.65)



192 A Textbook of Physical Chemistry

r = 
k K K p p

K p

3 1 2

1
21

eq eq A B

eq A( )+
(2.21.67)

Examples include the reactions between NH3 and O2 on iron surface and between 

CO2 and H2 on platinum.

One of the components (Say, A) is very strongly adsorbed

we have

K pA�K pB

and K pA� 1

r = 
k K

K

3 2

1

eq

eq

Ê

ËÁ
ˆ

¯̃

p

p

B

A

(2.21.68)

d

d

ln k

T
 = 

¢E

RT

a

2
(2.21.69)†

where k is rate constant and E¢a is known as the apparent energy of activation.

We may describe below the effect of temperature on the rate constant for a few 

typical cases.

Reactant slightly adsorbed

r = (K k2) pA

Thus
d

d

eqln ( )K k

T

2
 = 

¢E

RT

a

2

or
d

d

eqln K

T
 + 

d

d

ln k

T

2  = 
¢E

RT

a

2 (2.21.70)

Now
d

d

eqln K

T
 = 

D
ads

H

RT 2
(2.21.71)

and
d

d

2ln k

T
 = 

E

RT

a

2
(2.21.72)

EFFECT OF TEMPERATURE ON HETEROGENEOUS REACTIONS

Unimolecular

Surface Reaction
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where Ea

E¢a = Ea + DadsH

Since DadsH

E¢a < Ea

that the decrease of energy of activation in the heterogeneous catalytic reactions 

is largely due to the lowering of activation energy.

Reactant strongly adsorbed

r = k2

activation.

Both reactants are weakly adsorbed

r = k3K K pA pB = k pA pB

Thus
d

d

ln k

T
 = 

d

d

ln k

T

3  + 
d

d

eqln K

T

1
 + 

d

d

eqln K

T

2

¢E

RT

a

2
 = 

E

RT

a

2
 + 

DadsH

RT

1

2
 + 

DadsH

RT

2

2

E¢a = Ea + DadsH1 + DadsH2

Since DadsH1 and DadsH2

E¢a < Ea

One of the components is very strongly adsorbed

r = k
K

K
3

2

1

eq

eq

Ê

ËÁ
ˆ

¯̃
p

p

B

A

 = k
p

p

B

A

where A is very strongly adsorbed. Thus

d

d

ln k

T
 = 

d

d

ln k

T

3  + 
d

d

eqln K

T

2
 – 

d

d

eqln K

T

1

¢E

RT

a

2  = 
E

RT

a

2  + 
DadsH

RT

2

2
 – 

DadsH

RT

1

2

E¢a = Ea + D adsH2 – DadsH1

DadsH1 will have a large 

positive value and hence the energy of activation instead of lowering may become 

more positive.

Bimolecular

Surface Reaction
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(a) The following mechanism has been proposed for the catalyzed dissociation of molecule 

AB at a metal surface.

AB(g) + S 
k

k

1

1

    
     ABS (fast)

ABS
k2æ Ææ  AS + BS (slow)

AS
k

k

3

3-

    
     A(g) + S (fast)

BS
k

k

4

4-

    
     B(g) + S (fast)

Show that the rate law is given by

–
d AB

d

p

t
 = 

k p

p

AB

A

provided if it be assumed that (i) the adsorption of B is negligible and (ii) A is strongly 

adsorbed and AB weakly.

(b) If the activation energy of the overall catalyzed reaction is 70 kJ mol–1 and the 

enthalpies of adsorption of A and AB are –80 kJ mol–1 and  –105 kJ mol–1, respectively, 

what is the activation energy for the postulated rate-determining step?

(a) The rate of reaction will be given by

–
d AB

d

p

t
 = k2qAB

For the fast adsorption equilibrium for A and AB, we have

KA = 
[AS]

[A][S]
 = 

q

q q q
A

A AB A Bp ( )1 - - -

KAB =
[ABS]

[AB][S]
=

q

q q q
AB

AB AB A Bp ( )1 - - -

Since B is negligibly adsorbed, we have

KA = 
q

q q
A

A AB Ap ( )1 - -

KAB =
q

q q
AB

AB AB Ap ( )1 - -

Thus
K

K

AB

A

=
q

q
AB

A

A

AB

p

p

or  qA = (qAB)
p

p

K

K

A

AB

A

AB

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Substituting qA in the expression of KAB and rearranging, we get

qAB = 
K p

K p K p

AB AB

AB AB A A1 + +

Problem 2.21.1

Solution
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Substituting qAB in the rate expression, we get

–
d

d

ABp

t
 = 

k K p

K p K p

2

1

AB AB

AB AB A A+ +
Since A is strongly adsorbed whereas AB is weakly adsorbed, we may assume

KA pA >> 1 + KAB pAB

Hence, the rate law reduces to

–
d

d

ABp

t
 = 

k K

K

2 AB

A

p

p

AB

A

 = k
p

p

AB

A

(b) Since

k =
k K

K

2 AB

A

we have 
d ln

d

k

t
=

dln

d

d ln

d

ABk

T

K

T

2 +  – 
d ln

d

AK

T

i.e.
¢E

RT

a
2

=
E

RT

a
2

 +
D AB

2
H

RT
 – 

D A
2

H

RT

or E ¢a = Ea + DHAB – DHA

Hence, Ea = E ¢a – DHAB + DHA

Substituting the given values, we get

Ea = (70 + 105 – 80) kJ mol–1 = 95 kJ mol–1

If one of the products of a reaction acts as a catalyst, it is said to be an autocatalyst 

and the phenomenon is known as autocatalysis. One of the well-known examples 

is the oxidation of Fe2+ ions by MnO4
–  ions in acidic medium:

5Fe2+ + MnO4
– + 8H+ æ Ææ  5Fe3+ + Mn2+ + 4H2O

In this reaction, Mn2+ ions act as an autocatalyst.

Let the mechanism of the reaction

A + C æ Ææ  2C

with an autocatalyst C involves the following steps.

A + C 
k

k

1

1-

    
     D (fast)

D
k2æ Ææ  2C (Slow)

The rate of the reaction is given by

d

d

[ ]C

t
 = 2 k2 [D] (2.22.1)

2.22 AUTOCATALYSIS AND OSCILLATORY CHEMICAL REACTIONS

Kinetics of Catalytic Reaction A + C Æ 2C

Differential Rate

Low

AUTOCATLYSIS
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From the fast equilibrium reaction, we have

K = 
k

k

1

1-
=

[ ]

[ ] [ ]

D

A C

With this, Eq. (2.22.1) becomes

d C

d

[ ]

t
 = 2 k2K [A] [C] = kapp [A] [C] (2.22.2)

The initial concentration of autocatalyst C must be nonzero for the reaction to 

proceed in the forward direction.

Let [A]0 and [C]0 be the initial concentrations of A and C, respectively. We will have

A C C

A C

+ æ Ææ
= - -

2

20 0t t x x x[ ] [ ]

The concentration of C at time t will be

[C] = [C]0 – x + 2x = [C]0 + x

The rate law (Eq. 2.22.2) becomes

d C

d

([ ] )0 + x

t
 = Kapp ([A]0 – x) ([C]0 + x) (2.22.3)

i.e.
dx

x x
k t

([ ] ) ([ ] )A C
dapp

0 0- +
=

Resolving the left side into partial fractions, we get

1

0 0 0([ ] [ ] ) [ ]A C

d

[A]

d

C0+ -
+

+
È

Î
Í

˘

˚
˙

x

x

x

x
 = Kapp dt

which on carrying out the integration gives

1

0 0 0 00 0
([ ] [ ] ) [ ] [ ]A C

d

A

d

C
dapp+ -

+
+

È

Î
Í

˘

˚
˙ =Ú Ú

x

x

x

x
k t

x t

i.e.
1

0 0

0

0

0

([ ] [ ] )

[ ]

[ ]
ln

[ ]

A C
ln

A

A

C

[C]0
app+ -

+
+È

Î
Í

˘

˚
˙ =

x

x
k t

The above expression may be rearranged as

x = 
[ ] ( )

([ ] /[ ] )

C e

C A e

0

0 0

1

1

b

b

t

t

-

+
(2.22.4)

where b = ([A]0 + [C]0) kapp. Equation (2.22.4) may be written as

x

B

t

[ ]C

e

1+ e t
0

1
=

-b

b
; where B = [C]0 ]/[A]0 (2.22.5)

Figure 2.22.1 displays the plot of x/[C]0 versus t for some values of b in which 

Integrated Rate

Expression
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B

it follows that the rate of reaction starts with a smaller value and it increases rapidly 

due to the formation of more and more of the catalyst. After some time, the rate 

starts decreasing after attaining a maximum value. This results from the decreasing 

concentration of the reactant A. Eventually, the rate becomes zero where all the 

reactant has been consumed.

0 40 80 120 160 200

0.10

0.
08

0.06 0.04

0.02

t/s

0

2

4

6

8

10

x
/[
C
] 0

0.1

R
at
e

3
0

¥

0

2

4

6

8

10

0 40 80 120 160 200

t/s

0.08

0.06

0.04

0.02

The rate expression (Eq. 2.22.3) is

d

d

x

t
 = kapp ([A]0 – x) ([C]0 + x)

To determine tmax, we set d2x/dt2 = 0. From Eq. (2.22.3), We get

Fig. 2.22.1 Plots of 

x/[C]0 versus t for 

B = 0.1 and b = 0.02, 

0.04, 0.06, 0.08 and 

0.10

Fig. 2.22.2 Plots of rate 

of reaction verses t

for B = 0.1 and

b = 0.02, 0.04, 0.06, 

0.08 and 0.10.

Time Correspond-

ing to Maximum

Rate of Reaction
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d

d
A

d

d
C

d

d
app

2

2 0 0

x

t
k x

x

t
x

x

t
= - - +È

ÎÍ
˘
˚̇

([ ] ) ([ ] )

= k x
x

t
app A C

d

d
([ ] [ ] )0 0 2- - Ê

ËÁ
ˆ
¯̃

Setting this equal to zero, we have

[A]0 – [C]0 – 2x = 0

or x = 
[ ] [ ]A C

2

0 0-

Substituting x from Eq. (2.22.4), we get

[ ]

([ ] / [ ] )

[ ] [ ]C e

C A e

A C0

0 0

0 0
1

1 2

b

b

t

t

-( )
+

=
-

tmax = 
1 10

0 0 0

0

0b
ln

[ ]

[ ] ([ ] [ ] )
ln

[ ]

[ ]

A

C
=

+kapp A C

A

C
(2.22.6)

OSCILLATORY CHEMICAL REACTIONS

Some of the reactions involving autocatalyst exhibit the periodic variation in 

concentration of intermediate with the progress of chemical reaction. In some 

reaction the periodic variation in concentration may be displayed by the change 

in colour of the reacting system. This oscillation in concentration is not about the 

equilibrium concentration as such a movement will be contrary to the second law 

of thermodynamics.

  All chemical oscillatory reactions have three common features in their reaction 

mechanism. These are as follows.

∑ The reacting system is far from thermodynamic equilibrium. The system 

still moves towards equilibrium position with the periodic variation in 

concentrations of some of the intermediates.

∑ The mechanism of reaction involves at least two different paths. The system 

periodically switches from one pathway to another.

    One of the pathway involves the production of a certain intermediate 

causing its concentration to increase with time and the other pathway involves 

the consumption of this intermediate causing its concentration to decrease. 

When the concentration of the intermediate is low, the reaction follows the 

producing pathway and its concentration rises. When this concentration is 

reached to some high value, the reaction switches to the consuming pathway 

and its concentration decreases. When this concentration is reduced to some 

low value, the entire cycle of switching the pathways is repeated.

The mechanisms of some the well-known oscillatory reactions are described in 

the following.
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The simplest mechanism of an oscillatory chemical reaction is the Lotka-Volterra 

mechanism which involves the following steps.

(i) A X X+ æ Ææk1 2

(ii) X Y Y+ æ Ææk2 2

(iii)  Y B
k3æ Ææ

In the above mechanism A is the reactant (whose concentration is kept constant), 

B is the product (whose concentration does not appear in the rate law, but it 

is normally removed from the reaction) and X and Y are intermediates whose 

concentrations show periodic variations.

The rate expressions for X and Y are

d X

d
A X X Y

[ ]
[ ] [ ] [ ] [ ]

t
k k= -1 2

(2.22.7)

d Y

d
X Y Y

[ ]
[ ] [ ] [ ]

t
k k= -2 3 (2.22.8)

Equations (2.22.7) and (2.22.8) may be solved by the fourth-order Runge Kutta 

method.

The results obtained from the data

k1 = 10 mol–1 L min–1 ; k2 = 5 mol–1 L min–1 ; k3 = 2 min–1

[A]0 = 0.1 mol L–1 ; [X]0 = 0.1 mol L–1 ; [Y]0 = 0.1 mol L–1

are shown in Fig. 2.22.3.

Figure 2.22.3a displays the periodic variations in the concentratinos of X and Y 

with time.

Figure 2.22.3b displays the corresponding rates of change in concentrations of X 

and Y which also display the periodic variations. For example,

from x to y, d [Y]/dt > d [X]/dt

and from y to z, d[X]/dt > d [Y]/dt.

To start with d[X]/dt is positive while d[Y]/dt is negative. This trend follows 

from Eqs (2.22.7) and (2.22.8) where the term k2[X][Y] has a smaller value in 

comparison to the second term. Initially, both d[X]/dt and d[Y]/dt increase, the 

former increases rapidly than the latter. The rapid increase in d[X]/dt may be 

attributed to the autocatalytic effect of X. As more and more of X is produced in 

reaction (i), the rate of reaction (ii) also increases along with. Beyond x, d[Y]/dt

becomes larger than d[X]/dt with the result that X is consumed rapidly and thus 

its concentration after attaining a maximum value starts decreasing. At y, d[X]/dt

again becomes larger than d[Y]/dt

in the concentration of X due to the reaction (ii), consequently, the rate of reaction 

(i) becomes larger causing the increase in production of X. Thus, there is competition 

between the reactions (i) and (ii). If the concentration of X is low, the reaction 

(i) takes over the reaction (ii) causing the increase in the concentration of X. When 

the concentratin of X becomes larger, the reaction (ii) takes over the reaction 

(i) causing its consumption faster than its formation.

The Lotka-Volterra 

Mechanism
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Beyond z, the above pattern is repeated and continues to repeat displaying the 

periodic variations in the concentrations of X and Y.

The timings at which [X] and [Y] exhibit maximum/minimum are as follows:

(a) t([X]min)/min Æ 1.7 7.0 12.3 17.6

(b) t([X]max)/min Æ 3.7 9.0 14.3 19.6

(c) t([X]max)/min Æ 3.1 8.4 13.7 18.9

(d) t([X]min)/min Æ 4.9 10.1     15.4 20.7

Fig. 2.22.3 (a) 

Schematic periodic 

variations in the [X] 

and [Y]. (b) periodic 

variations in the rates 

of change in [X] and 

[Y]. intersection points 

on the zero x-axis

represent maxima and 

minima. (c) Plot of 

[Y] virsus [X]
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The periodic variations in [X] and [Y] are also depicted by the plot between [Y] 

and [X]. This plot form a closed loop on which the concentraation of X and Y 

always lie with the progress of the reaction (Fig. 2.22.3c):

The change in concentrations of X and Y depicted in Fig. 2.22.3a may be correlated 

with those shown in Fig. 2.22.3b.

The oscillator reaction, named as Brusselator, involves the following steps.

(i) A X
k1æ Ææ

(ii) B X Y C+ æ Ææ +k2

(iii)  2 33X Y X+ æ Ææk

(iv)  X D
k4æ Ææ

where A and B are reactants (whose concentrations are kept constant) and C and 

D are products (which are removed as they are formed). The intermediates are X 

and Y and the step (iii) is an autocatalytic reaction.

The rate expressions for X and Y are

d X

d

[ ]

t
 = k1 [A] – k2 [B] [X] + k3 [X]2 [Y] – k4 [X]

d Y

d

[ ]

t
 = k2 [B] [X] – k3 [X]2 [Y]

The above differential equations may be solved by the fourth-order Runge-Kutta 

method. The results of the reaction with

k1 = 1 min–1 ; k2 = 1.0 mol–1 L min–1 ; k3 = 1.0 mol–2 L2 min–1

k4 = 1.0 min–1 ; [A]0 = 1.0 mol L–1 ; [B]0 = 3.0 mol L–1

[X]0 = 1.0 mol L–1; [Y]0 = 1.0 mol L–1

are shown in Fig. 2.22.4.

From Fig. 2.22.4b, it is obvious that whenever d[X]/dt is maximum, the value of 

d[Y]/dt is minimum and vice versa. Also, when the concentration of X is maximum, 

the concentration of Y is minimum, and vice versa. The periodic difference between 

two maximum and two minimum concentrations of X (or Y) is about 7.2 min.

The timings at which [X] and [Y] exhibit maximum/minimum are as follows.

(a) t ( [X])min)/min Æ 1.6 10.2 17.4 24.6

(b) t ( [X]max)/min Æ 6.8 14.0 21.2 28.3

(c) t ( [Y]max)/min Æ 5.7 12.9 20.0 27.2

(d) t ( [Y]min)/min Æ 7.0 14.1 21.3 28.5

The Belousove-Zhabotinsky oscillatory reaction involves a mixture of potassium 

bromate, cerium(IV) sulphate and propanedioic acid (HOOCCH2COOH) in dilute 

sulphuric acid. In this reaction, the ratio [Ce4+]/[Ce3+] oscillates causing the colour 

The Brusselator

The Belousov-

Zhabotinsky

Reaction
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of the solution to oscillate between a yellow solution and a colourless solution. 

This is due to the fact that Ce4+ is reduced by propanedioic acid to Ce3+ whereas 

the latter is oxidized back to Ce4+ by BrO3
– ion. The Belousov-Zhabotinsky reaction 

is a complex reaction involving a large number of reactions steps.

This complex reaction was, studied by Field, Körös and Noyes (FKN) and 

developed model, known as the FKN model (also known as Oregonator)† based 

on which the main features of the reaction can be explained. Identifying

A = BrO–
3 ; X = HBrO2 ; Y = Br–,

Z = Ce4+ ; P = HBrO ; B = organic molecule

†Oregonator comes from the place Oregon where Noyes and his group worked out the model.

Fig. 2.22.4 (a) Schematic periodic oscillation of [X] and [Y] with time. (b) Rates of change in [X] and and [Y]. 

Intersection on the zero point on x-axis represent maxima and minima.
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the main steps of FKN model are as follows.

(i) Generation of intermediate X The reaction is formulated as

   A Y X P+ æ Ææ +k1

  that is, BrO Br HBrO HBrO
H3 2

1- -+ æ Ææ ++
k

  (Note: the concentration of H+ is included in the rate constants.)

(ii) Autocatalytic generation of X The reaction is formulated as 

A X 2X 2Z+ æ Ææ +k2

  that is BrO HBrO 2HBrO Ce
Ce H 4+

3 2 2

3

2

2- + æ Ææææ +
+ +,

k

  This reaction involves two steps:

BrO HBrO 2BrO H

BrO HBrO Ce

H
2

Ce H+

3 2 2

2 2
4

3

-

+

+ æ Ææ +

æ Ææææ +

+

+

i

i

O

,

  This complete balanced reaction is

HBrO2 + 2Ce3+ + BrO3
– + 3H+ æ Ææ  2Ce4+ + 2HBrO2 + H2O

(iii) Consumption of X This occurs in two reactions.

X Y P

2X A P4

+ æ Ææ

æ Ææ +

k

k

3 2

  that is HBrO Br HBrO

2HBrO BrO HBrO

H

2 3

+

2 2+ æ Ææ

æ Ææ +

-

-

(iv) Oxidation of organic molecule The reactions are

CH2(COOH)2 + Br2 æ Ææ  BrCH(COOH)2 + H+ + Br–

Ce4++
f

2
 [CH2(COOH)2 + BrCH(COOH)2]

k5
1

2
æ Ææ Br– + Ce3+ + Products

The actual oxidation of the malonic acid is a complex reaction. The concentrations 

of A and B are kept constant during the reaction. The value of f lies in the range 

0.5 – 2.4 so as to observe oscillations in the concentrations of intermediates X, 

Y and Z. 

The Belousov–Zhabotinsky reaction consists of two main parts:

(i) The autocatalytic oxidation of Ce3+ by HBrO3

(ii) The reduction of Ce4+ by malonic acid and its bromoderivative.

The production of Br– in the oxidation of organic molecule is a strong inhibitor 

of the autocatalytic oxidation of Ce3+ because of its rapid reaction with the 

autocatalyst, HBrO2.

HBrO2 + H+ + Br– æ Ææ  2HBrO (Step iii)

Thus, Br– prevents accumulation of autocatalyst HBrO2.

(Z) (B) (Y)
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The rates of change in concentrations of X, Y and Z as given by the FKN model 

are as follows.

d X

d

[ ]

t
 = k1[A][Y] + k2[A][X] – k3[X][Y] – 2k4 [X]2

d Y

d

[ ]

t
 = –k1[A][Y] – k3[X][Y] + 

f

2
k5[B][Z]

d Z

d

[ ]

t
 = 2k2 [A][X] – k5 [B][Z]

The above differential equations may be solved by the fourth-order Runge-Kutta 

method. The results of the reaction with the data

k1 = 1.28 mol–1 L s–1 ; k2 = 8.0 mol–1 L s–1 ; k3 = 8.0 ¥ 104 mol–1 L s–1

k4 = 2.0 ¥ 103 mol–1 L s–1 ; k5 = 1.0 mol–1 L s–1

[A] = 0.6 M      ; [B] = 0.02M    ; Z = 0.0002M and f = 1.5

are shown in Fig. 2.25.5. The starting concentrations of X and Y are zero.

Fig. 2.22.5. Schematic periodic variations in the concentratinos of X, Y and Z
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The Belousove-Zhabotinsky reaction may be qualitatively explained as follows.

When [Ce4+] is high, Br– is produced rapidly and its concentration will also be 

high (Step iv). This will cause the complete inhibition of oxidation of Ce3+ (Step ii)

due to inhibiting reaction of Br– with HBrO2 (Step iii). Soon, the concentration 

of Ce4+ is decreased due ot its reduction by malonic acid and bromomalonic 

acid. This concentration of Br– also decreases along with that of Ce4+ ions. 

When the conentration of the latter drops to a minimum, the concentration of 

Br– also decreases abruptly due to the inhibitor reaction (Step iii). Here, the rapid 

autocatalytic oxidation of Ce3+ starts and thus raising the concentration of Ce4+
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ions. When the concentration of Ce4+ ions has reached to its maximum value, 

there is rapid production of Br– ions and again it inhibits the oxidation of Ce3+

ions. This cycle is repeated periodically. The timing between the two maximum 

or two minimum concentrations of X or Y as shown in Fig. 2.22.5 in about 194 s.

The timings at which Y and Z exhibit maximum/minimum are as follows.

t ([Y]max)/s Æ 94 288  482

t ([Y]min)/s Æ 56  249  442

t ([Z])max)/s Æ 77 270 464

t ([Z]min/s) Æ  34 228 422

The steps involved in this reactions are

(i) NaIO3
k1æ Ææ  Na+ + IO–

3

   (A)  (X)

(ii) IO3
–

AsO
I products3

2

-

æ Æææ +-

k
  (X) (Y)

(iii) IO I I
AsO

X Y Y
3 2 33

3

- - -+ æ Æææ
-

k
( ) ( ) ( )

(iv)
I

1

2
I

Y B

- æ Ææk4

2

( ) ( )

In the above scheme, X and Y are intermediates and their rates of change of 

concentrations are given by the expressions

d X

d

[ ]

t
 = k1 [A] – k2 [X] – k3 [X] [Y]2

d Y

d

[ ]

t
 = k2 [X] + k3 [X] [Y]2 – k4 [Y]

The concentration of [A] is kept constant.

These equations may be solved by the fourth-order Runge-Kutta method. From 

the data

k1 = 0.001 min–1; k2 = 0.01 min–1 ; k3 = 2.5 ¥ 109 L2 mol–2 min–1; k4 = 1.0 min–1

[A]0 = 0.01 mol L–1, [B]0 = 0, [X]0 = 0, [Y]0 = 0

the results obtained are shown in Fig. 2.22.6.

The lodate-lodide 

Reaction
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The timings at which [X] and [Y] exhibit maximum/minimum are as follows.

(a) t ([X]max)/min Æ 15.7 34.6 53.6

(b) t ([X]min)/min Æ 16.8 35.7 54.7

(c) t ([Y]max)/min Æ 16.6 35.5 54.5

(d) t ([Y]min)/min Æ 25.4

In the relaxation method, a system at equilibrium is perturbed by a sudden change 

in the experimental condition such as temperature, pressure or concentration and 

then observing the appropriate property of the system as it approaches to the 

new equilibrium state corresponding to the new condition. This approach is, in 

particular, useful for studying the fast reactions. For an aqueous system containing 

ionic species, the temperature can be raised by applying an electric discharge that 

last not more than 1 ms.

2.23 KINETICS OF THE RELAXATION METHOD

Fig. 2.22.6 (a) Schematic variations in [X] and [Y] with time. (b) The variations in rates d[X]/dt and

d[Y]/ dt. Intersection points on the zero x-axis represent maxima and minima
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Consider an exothermic reaction

A B C
f

b

+
k

k
    
    

At equilibrium, we have

Rate of forward reaction, rf = kf [A] [B]

Rate of backward reaction, rb = kb [C]

and also rf = rb (2.23.1)

Let the temperature of the system be raised suddenly. At any time, after the 

temperature jump, the concentrations of reactants and products are the same as in 

Eq. (2.23.1) but the rate constants is changed to kf¢ and kb¢. Thus, we have

- = -¢ ¢d A

d
A B Cf b

[ ]
[ ][ ] [ ]

t
k k (2.23.2)

At the new temperature, let [A]eq, [B]eq and [C]eq be the equilibrium concentrations 

of A, B and C, respectively. Let we represent

[A] = [A]eq + |nA|x = [A]eq + x (2.23.3a)

[B] = [B]eq + |nB|x = [B]eq + x (2.23.3b)

[C] = [C]eq – ncx = [C]eq – x (2.23.3c)†

These changes for an exothermic reaction are in accordance with the Le-Chatelier 

principle. With these, Eq. (2.23.2) becomes

–
d([ ] )

([ ] ) ([ ] ) ([ ] )
A

d
A B C

eq

f eq eq b eq

+
= + + - -¢ ¢

x

t
k x x k x

i.e. –
d

d
A [B] C A Bf eq eq b eq f eq eq b

x

t
k k k x x k x= - + + + +¢ ¢ ¢ ¢( [ ] [ ] ) ([ ] [ ] )

Since at equilibrium, Eq. (2.23.1) holds good, we will have 

d

d
A Bf eq eq b

x

t
k x x k x= - + + -¢ ¢([ ] [ ] ) (2.23.4)

Since the perturbation is small, x << ( [A]eq + [B]eq), thus Eq. (2.23.4) may be 

written as

d

d
A Bf eq eq b

x

t
k x k x= - + -¢ ¢([ ] [ ] )

= –
1

t
x (2.23.5)††

where
1

t
= + +¢ ¢k kf eq eq bA B([ ] [ ] ) (2.23.6)

† For an endothermic reaction, [A] = [A]eq – x ; [B] = [B]eq – x and [C] = [C]eq + x.

††  Ignoring x in comparison to [A]eq + [B]eq makes dx/dt a linear function of x. This 

procedure is known as the linearization of the rate constant.

A Typical Example

Differential Rate

Law



208 A Textbook of Physical Chemistry

Equation (2.23.5) indicates that the movement of the system towards new 

x (= [A] – [A]eq).

If x0 is the value of x at t = 0 (the instant time at which temperature jump takes 

place), then we will have

d
d

x

x
t

x

x t

0

1

0

Ú Ú= -
t

which gives

ln
x

x

t
x x t

0
0= - = -

t
ti.e. e / (2.23.7)

The term t in Eq. (2.23.7) is known as the relaxation time. It is the time taken to 

reduce the value of x to x0 /e value. From Eq. (2.23.6), it follows that 1/t is a linear 

function of [A]eq + [B]eq. The graph between 1/t and [A]eq + [B]eq is a straight line 

with slope equal to kf¢ and intercept equal to kb¢ (Fig.2.23.1). Equation (2.23.6) is 

valid whether the reaction is exothermic or endothermic.

[A] +cq [B]cq

Slope = k¢f

k¢b

1
/t

eq and [B]eq.

excess over the other reactant (i.e. B). In this case, the reaction A + B    
    C 

1
0

t
= +¢ ¢k kf bA[ ]

Thus the plot of 1/t versus [A]0 is a straight line with slope = kf¢ and intercept = kb¢.

For any type of reaction involving a single step, the chemical relaxation is always 

the higher term in x in the rate equation provided the perturbation is small.

  It may be noted that the process of linearization is not needed where the 

Integrated Rate

Expression

Fig. 2.23.1 Plot of 1/t
versus ([A]eq + [B]eq)

Comment
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restriction of small perturbation in this case is not the prerequisite requirement as 

the rate equation does not involve higher terms in x.

Table 2.23.1 records some of the most common single-step equilibria.

Table 2.23.1 Expressions of Relaxation time for some single-step equilibria

Equilibrium reaction Relaxation time†

  A    
    B 1/t = kf + kb

  A + B    
    C 1/t = kf + ([A]eq + [B]eq) + kb

nA    
    B 1/t = n2kf [ ]A eq b

n k- +1

  A + B    
    C + D 1/t = kf ([A]eq + [B]eq) + kb ([C]eq + [D]eq)

  A + B    
    2C 1/t = kf ([A]eq + [B]eq) + 4 kb[C]eq

† kf is the rate constant for the forward reaction and kb is that of backward reaction.

The relaxation time for the reaction H+(aq) + OH–(aq)    
    H2O(l) is found to be  36 ms

at 25 °C. Determine the values of kf and kb?

From the expression of relaxation time (Eq. 2.23.6), we get

kf ( [H+]aq + [OH–]aq) + kb = 1/36 ¥ 10–6s (1)

Also, we have

kf [H
+]aq [OH–]aq = kb [H2O] (2)

where  [H+]aq = [OH–]aq = 1 ¥ 10–7 mol dm–3

[H2O] = 1 000 g dm–3/18 g mol–1 = 55.56 mol dm–3

With these, Eqs (1) and (2), respectively, become

kf (2 ¥ 10–7 mol dm–3) + kb = 1/(36 ¥ 10–6s) (3)

and kf (1 ¥ 10–14 mol2 dm–6) = kb (55.56 mol dm–3)

i.e.   kf (1 ¥ 10–14 mol dm–3) – 55.56 ¥ kb = 0 (4)

Multiplying Eq. (3) by 55.56 and them adding it to Eq. (4), we get

kf (55.56 ¥ 2 ¥ 10–7 + 1 ¥ 10–14) mol dm–3 = 55.56/(36 ¥ 10–6 s)

or kf = 
55 56 36 10

55 56 2 10 1 10

6

7 14

3. /( )

.

¥
¥ ¥ + ¥

-

- -
- -mol s1 1dm

  = 1.39 ¥ 1011 mol–1 dm3 s–1

Finally, from Eq. (4) we get

kb = 
kf mol dm( )

.

( . )(1 10

55 56

1 39 10 1 1014 3 11 1 3 1 14¥
=

¥ ¥- - - - -mol dm s mol dmm 3- )

.55 56

= 2.51 ¥ 10–5 s–1

Example 2.23.1

Solution
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REVISIONARY PROBLEMS

2.1 Distinguish between:

(i) Reaction rate and reaction rate constant.

(ii) Average rate and instantaneous rate.

(iii) Order and molecularity.

(iv) Differential rate law and integrated rate law.

(v) Overall reaction and elementary reaction. 

2.2 For the reaction

  n1A1 + n2A2 æ Ææ n3A3 + n4A4

  show that the rate of the reaction is given by any one of the terms given below.

 r1 = 
d

d

x

t
 = – 

1 1 1 1

1

1

2

2

3

3

4

4

n n n n

d A

d

d A

d

d A

d

d A

d

[ ] [ ] [ ] [ ]

t t t t
= - = =

2.3 Comment upon the following:

(i)  Thermodynamic principles can help predicting the feasibility of a reaction not 

about the time the reaction will require for completion.

(ii)  Elementary processes with molecularity greater than three are not known.

(iii) Order of a reaction cannot be predicted from its equation.

(iv) Order of an elementary step is always equal to its molecularity.

(v)  Wall effects can also predict a useful criterion for chain reactions. If the reaction 

is unaffected by changing the wall or by raising the surface to volume ratio, the 

reaction is probably simple in nature.

(vi) On raising the pressure, the wall effects gradually becomes less important.

2.4 The reaction

   nA Æ products

  is zero-order with respect to A. Write down its differential rate law and deduce from 

it the integrated rate law. What is the unit of rate constant of the above reaction?

2.5 (a) The reaction

   n1A + n2B Æ products

differential rate law and deduce from it the integrated rate law. What is the unit of 

rate constant of the above reaction?

constant value.

acid? What is the order of the reaction with respect to H+ ions of the solution? Does 

the rate constant of such a reaction is independent of hydrogen-ion concentration?

(d) The acid hydrolysis of the same quantity of ester is done separately with equal 

normal solutions of HCl and H2SO4. Show that

[H ]

[H ]

HCl

H SO2 4

+

+  = 
k

k

HCl

H SO2 4

where k stands for the rate constant. State with adequate explanation, whether the 

value of kHCl/kH2SO4
 is less than, equal or greater than one.
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2.6 (a)  The reaction

n1A + n2B Æ products

and deduce from it the integrated rate law. What is the unit of rate constant of the 

above reaction?

(b) The reaction

nA Æ products

is second-order with respect to A. Write down its differential rate law and deduce 

from it the integrated rate law.

Show that the half-life of the above reaction is inversely proportional to the initial 

concentration A.

2.7 (a) The reaction

   2A + B Æ products

differential and integrated rate laws.

(b) The reaction

   nA Æ products

is third-order with respect to A. Write down its differential rate law and deduce 

from it the integrated rate law. What is the unit of rate constant of such a reaction? 

Show that the half-life of such a reaction is inversely proportional to the square of 

the initial concentration of A.

2.8 Derive the integrated rate law for a reaction which follows the differential rate law:

(i)
d A

d

[ ]

t
 = k [A]p + 1/2

(ii)
d

d

x

t
= kn ([A]0 – x)n ; show also that

t1
2

 = 
1

1

2 11

0
1k nn

n

n( ) [ ]-
--

-A

  What is the unit of kn?

2.9 Outline the methods which are employed to determine the order of a reaction. 

A
k

k

f

b

    
     B

derive the integrated rate expressions

ln
x

x x

eq

eq -
 = kf

[ ]A

eq

0

x
t

ln
x

x x

eq

eq -
 = (kf + kb) t

(b) Show that the variations in concentrations of A and B in the reversible reaction 

of part (a) is given by

[A]t = [A]0

k

k k

k

k
k k tf

f b

b

f
f b+

+ - +
Ê
ËÁ

ˆ
¯̃

exp{( ) }
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[B]t = [A]0 – [A] t

(c) Show that the equilibrium constant of the reversible reaction of part (a) is given 

by

Keq = 
k

k

f

b

2.11 Set up the differential rate law for each of the following types of reversible reactions.

(i) First-order opposed by second-order.

(iii) Second-order opposed by second-order.

constant of the reaction

2NO2 + F2
   
    2NO2F

  Given that the above reaction proceeds through the following two elementary 

reactions.

NO2 + F2
K1

    
    

NO2F + F

   F  +  NO2

K2
    
     NO2F

2.13 (a) What do you understand by concurrent elementary reactions?

(b) Show that the integrated rate expression for the concurrent elementary reactions

A
¢æ Ææk1  B

A
¢¢æ Ææk1  C

is given by

ln
[ ]

[ ]

A

A

0

t

 = (k ¢1 + k≤1 ) t

(c) Show that for the reaction given in part (b)

[B]

[C]
 = 

¢
¢¢

k

k

1

1

(d) How will you determine experimentally the values of rate constants k ¢1 and k≤1
of the reactions given in part (b).

(e) For the reaction

 A
k1æ Ææ B

2A 
k2æ Ææ  C

3A 
k3æ Ææ  D

set up the differential rate law in terms of the disappearance of A with time.

2.14  (a) What do you understand by consecutive or sequential reactions?

(b) For the reactions

A
k1æ Ææ  B

B
¢æ Ææk1  C

derive the expressions
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   [A] = [A]0 exp(– k1t)

[B] = [A]0

k

k k

1

1 1¢ -
Ê
ËÁ

ˆ
¯̃

 {exp(– k1t) – exp(–k ¢1t)}

   [C] = [A]0 1
1

1 1
1 1 1 1

-
¢ -

¢ - - - ¢È
ÎÍ

˘
˚̇k k

k k t k k t{ exp( ) exp( )}

  Draw a graph illustrating the typical variations of concentrations of A, B and 

C with time.

(c) Show that the time at which B attains a maximum concentration is given by

tmax = 
1

1 1k k- ¢
 ln 

k

k

1

1¢
Ê
ËÁ

ˆ
¯̃

and the maximum concentration B is given by

[B]max = [A]0

¢Ê
ËÁ

ˆ
¯̃

¢ - ¢
k

k

k k k

1

1

1 1 1/( )

(d) Suppose that the rate constant k ¢1 is very much larger than k1. Show that the 

concentration of C with time is given by

   [C] = [A]0 {1 – exp(– k1t)}

and hence justify the statement that the reaction with the smaller rate constant  is 

the rate-determining step.

(e) Now suppose k1 k ¢1. Show that it leads to the same statement given in 

part (d).

Justify the approximation by taking the consecutive reactions given in part (b) with 

a very small value of k1.

2.15 Given the following mechanisms. Set up the corresponding differential rate law:

(i)  A 
k1æ Ææ  B   (slow)

   B
k2æ Ææ  products    (fast)

(ii)  A + B 
k

k

1

1-

    
     AB (in rapid equilibrium)

   AB
k2æ Ææ  products  (slow)

2.16 Reaction between NO and O2 follows the following mechanism:

   NO + NO 
k

k

1

1-

    
     N2O2     (in rapid equilibrium)

N2O2 + O2
k2æ Ææ  2 NO2 (slow)

  Show that the rate of the reaction is given by

1

2

d NO

d

[ ]2

t
 = k[NO]2 [O2]

  How will you account for the decrease in rate constant with increase in temperature?

2.17 Derive the differential rate law for each of the following reaction mechanism.

(i) Decomposition of ozone
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O3
k1æ Ææ  O2 + O

   O + O3
k2æ Ææ  2O2

(ii) Reaction between NO2 and F2

NO2 + F2
k1æ Ææ  NO2F + F (slow)

   F + NO2
k2æ Ææ  NO2F (fast)

(iii) Reaction between NO2 and CO

NO2 + NO2
k1æ Ææ  NO3 + NO (slow)

NO3 + CO 
k2æ Ææ  NO2 + CO2 (fast)

(iv) Reaction between Br– and H2O2 in acidic medium

Br– + H2O2 + H+ k1æ Ææ  HOBr + H2O (slow)

   HOBr + H + + Br– k2æ Ææ  Br2 + H2O (fast)

(v) Reaction between NO and O2

   NO + NO– k

k

1

1-

    
     N2O2 (in rapid equilibrium)

N2O2 + O2
k2æ Ææ  2NO2 (slow)

(vi) Reaction between ammonium and cyanate ions

NH+
4 + OCN – k

k

1

1-

    
     NH4OCN (in rapid equilibrium)

NH4OCN
k2æ Ææ OC(NH2)2 (slow)

R C OR +¢ OH-

O
k1

k-1

R C OR¢ (in rapid equilibrium)

O-

OH

R C OR +¢ H O2

k2

R C O R¢

O-

HO

O-

OH HOH

k3

R C OH + R¢OH + OH-

O

(viii) Reaction between hydrogen and iodine

I2

k

k

1

1-

    
     2I (in rapid equilibrium)

H2 + 2I 
k2æ Ææ  2HI (slow)

(ix) Reaction between hypochlorite and iodide ions in alkaline medium

OCI– + H2O
k

k

1

1-

    
     HOCl + OH– (fast)
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I – + HOCl 
k2æ Ææ  HOI + Cl– (slow)

OH– + HOI 
k

k

3

3-

    
    H2O + OI– (fast)

  An alternative mechanism is

OCl– + H2O
k

k

1

1-

    
     HOCl + OH– (fast)

I– + HOCl 
k2æ Ææ  ICl + OH– (slow)

   ICl + 2OH– k3æ Ææ  OI– + Cl– + H2O (fast)

(x) Acid hydrolysis of an ester

R C OR¢

O
H

+

(fast)
R C OR¢

OH

OH2

(A)
R C OR¢

OH

(B)

+

H O2

(slow)

+

(C)

(fast)

R C OH

O
-H

+

(fast)
R C OR¢

OH

OH

R C+
- ¢R OH

(slow)

OH

OH

(E)

+

H

(D)

(xi) Reaction between CO and Cl2

Cl2
k

k

1

1-

    
     2Cl (fast equilibrium)

   Cl + CO 
k

k

2

2-

    
     COCl (fast equilibrium)

   COCl + Cl2
k3æ Ææ  COCl2 + Cl (slow)

(xii) Iodination of acetone

CH3 C

O
k1

CH3 + H
+

k-1

H3C C

OH

CH3 (fast)

CH3 C

OH

CH3 H2C C

OH

CH3 + H
+

(slow)

+

k2

H2C C

OH

CH3 + I2 ICH2 C

OH

CH3 + HI (fast)
k3

+

(xiii) Decomposition of gaseous N2O5

N2O5

k

k

1

1-

    
     NO2 + NO3

NO3 + NO2
k2æ Ææ  NO + NO2 + O2

NO3 + NO 
k3æ Ææ  2NO2

2.18 Many thermal decomposition and isomerization reactions follow the mechanism 

given below.



216 A Textbook of Physical Chemistry

   A + M 
k

k

1

1-

    
    A* + M

A*
k2æ Ææ  products

  where A represents the molecule undergoing the thermal decomposition or 

isomerization reaction and M represents any other molecule. Show that the above 

mechanism leads to the following differential rate law:

d product

d

( )

t
 = 

k k

k k

2 1

1 2

[ ] [ ]

[ ]

A M

M- +

  Determine the order of the reaction when (i) k–1>> k2 and (ii) k2 >> k–1. Does the 

order of the reaction change with the change in the pressure of the system?

A + A
k

k

1

1-

    
    A* + A (in rapid equilibrium)

A*
k 2æ Ææ  product (slow)

show that it leads to

d product

d

( )

t
 = 

k k

k k

2 1
2

1 2

[ ]

[ ]

A

A- +

Under what conditions will the order of the reaction be equal to one?

by changing the experimental conditions?

2.20 (a) What are chain reactions? The various elementary steps of chain reactions can be 

Chain initiation step.

Chain propagation step.

Chain inhibition step.

Chain termination step.

  Explain the above steps with appropriate examples.

(b) What do you understand by the following terms:

(i) Chain length

(ii) Stationary (or nonbranched) and nonstationary (or branched) chain reactions.

(c) In general, a chain reaction may be represented as follows:

A
k1æ Ææ  R∑

R∑ + A 
k2æ Ææ  P + a R∑

R∑ k3æ Ææ  destruction

where k3 = kw + kg. Show that the concentration of the radical is given by

[R∑] = 
k

k k k

1

2 1

[ ]

( )

A

w g- + +a
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(i) What is the value of a for stationary reactions?

(ii) For nonstationary reactions, a is greater than one. Under what conditions, 

does the concentration of radical R∑ ∑

what conditions are these explosions observed?

2.21 Derive the differential rate law shown along with each of the following chain 

reactions.

(i) Reaction between H2 and Br2

    Br2
k1æ Ææ  2Br

   Br + H2
k2æ Ææ  HBr + H

   H + Br2
k3æ Ææ  HBr + Br

   H + HBr 
k4æ Ææ H2 + Br

    Br + Br
k5æ Ææ  Br2

d HBr

d

[ ]

t
 = 

2

1

2 1 5
1 2

2
1 2

2

4 3 2

k k k

k k

( / ) [ ] [ ]

( / )[ ]/[ ]

/ /Br H

HBr Br+

(ii) Dehydrogenation of ethane

CH3CH3
k1æ Ææ  2∑CH3

∑CH3 + CH3CH3
k2æ Ææ  CH4 + ∑CH2CH3

∑CH2CH3
k3æ Ææ CH2 == CH2 + H∑

H∑ + CH3CH3
k4æ Ææ  H2 + ∑CH2CH3

H∑ + ∑CH2CH3
k5æ Ææ  CH3CH3

d[CH CH

d

2 2== ]

t
 = k [CH3CH3]

  where k is given by

k = 
k k k k k k k k

k

1 5 1
2

5
2

1 3 4 5
1 2

5

4

2

+ +( ) /

  where k1

to

k = 
k k k

k

1 3 4

5

1 2
Ê
ËÁ

ˆ
¯̃

/

  and further show that the chain length is given by

   Chain length = 
k k

k k

3 4

1 5

1 2
Ê
ËÁ

ˆ
¯̃

/

(iii) Thermal decomposition of acetaldehyde

       CH3CHO
k1æ Ææ ∑CH3 + ∑CHO

∑CH3 + CH3CHO
k2æ Ææ  CH4 + ∑CH2CHO
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    ∑CH2CHO
k3æ Ææ ∑CH3 + CO

∑CH3 + ∑CH3
k4æ Ææ  CH3CH3

d[CH

d

4]

t
 = k [CH3CHO]3/2

where k = k2 (k1/2k4)
1/2.

  Show that the chain length is given by

d[product

d[initiation step d

]

] t
 = 

k

k k

2

1 4

1 2

2

Ê
ËÁ

ˆ
¯̃

/

 [CH3CHO]1/2

(iv) Polymerization of vinyl derivatives

C
k1æ Ææ  R∑

CH2 == CHX + R∑ k2æ Ææ  RCH2CHX∑

RCH2CHX∑ + CH2 == CHX æ Ææ  R(CH2CHX)∑
2

R(CH2CHX)∑
n + ∑(XHCCH2)n R 

k3æ Ææ  R(CH2CHX)n– (XHCCH2)nR

  where C acts as a catalyst. Show that

–
d[CH CHX

d

2 == ]

t
 = k2

k

k

1

3

2
Ê
ËÁ

ˆ
¯̃

1/

 [C]1/2 [CH2 == CHX]

  Number-average degree of polymerization PN  is given as

PN  = 
k

k k

2

1 3
1 2 1 2( )

]

[ ]/ /

[CH CHX

C

2 ==

2.22 (a) What effect does temperature has on the rate of chemical reactions? 

(b) Arrhenius equation is

k = A exp(–Ea /RT)

Explain the term A and Ea involved in the above expression.

  (c) What type of graph do you expect between log (k/k°) and 1/T? What is its slope? 

  (d) Show that for a reversible reaction

DE = Ea(f) – Ea(b)

where the symbols have their usual meanings.

(e) DE of a reaction varies with temperature. What about Ea(f) and Ea(b)?

(f) For the reaction

   2 NO + O2 æ Ææ  2NO2

the rate constant k is observed to decrease with temperature. Is it violation of the 

Arrhenius equation? Support your answer.

(g) The rate constant of thermal decomposition of ethane given in Problem 2.21 is 

given as  

k = 
k k k

k

1 3 4

5

1 2
Ê
ËÁ

ˆ
¯̃

/
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Following Arrhenius equation, show that the activation energy of the reaction is

Ea = 
1

2
 [Ea1 + Ea3 + Ea4 – Ea5]

2.23  (a) Describe the collision theory of bimolecular gaseous reactions. Show that   

it leads to the rate expression

r = p p
p

s
m

AB A B
2

1 2
8k T

N NBÊ
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

/

* * exp(–E0/RT)

p in the above expression. The factor p is 

usually less than 1. Explain, why it is so.

(b) Compare the rate constants as given by Arrhenius equation and the collision 

theory and show that

Ea= E0 + 
RT

2

A = pNAp s 2
AB

8
1 2

k TB

p m

Ê
ËÁ

ˆ
¯̃

/

e1/2

     = pNA
Z

N N

AB

A B
* *

 e1/2

where the various symbols have their usual meanings.

2.24 (a) Describe the activated complex theory. Show that it leads to the rate expression

r = K
RT

N hA

Ê
ËÁ

ˆ
¯̃

[A][B]

where the various symbols have their usual meaning.

(b) Show that

k2 = 
RT

N hA

K‡ = 
RT

c N h∞ A

 exp(– D‡H°/RT ) exp(D‡S°/R)

(c) Compare the rate constants as given by Arrhenius equation and the activated 

complex theory and show that

Ea = D‡E∞ + RT

Ea = D‡H° + (1 – D‡ng) RT

A = 
RT

c N h∞ A

 exp(D‡S° /R) exp(1 – D‡ng)

      = nvib exp(D‡S°/R) exp(1 – D‡ng)

where n vib is the frequency of decomposition of the activated complex.

What is the value of  D‡ng for a reaction involving only condensed phases?

(d) Compare the rate constants as given by collision theory and the activated complex 

theory and show that

E0 = E°‡ + 
1

2
RT

pNA

Z

N N

AB

A
*

B
*

 = n vib exp(D‡S°/R) exp[– (D‡ng – 1/2)]

‡
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(e) Comment on the following:

(i) The steric factor p of collision theory may be interpreted in terms of 

entropy of activation.

(ii) For most of reactions, entropy of activation is negative except of the type

AB Æ AB‡ Æ A + B

where entropy of activation may be positive.

(f) Apply the activated complex theory for a reaction

   A + B    
    C + D

at equilibrium and show that it leads to the thermodynamic expression

DG° = – RT ln K°eq

How will you explain the fact that some reactions proceed with a very slow speed 

(or do not occur at all) even though DG° of the reaction is highly negative.

2.25 What is the effect of pressure on the rate constant?

2.26 What do you understand by the primary salt effect? Derive the relation

ln (k/k°) = ln (k0/k°) + zAzB m / c∞

2.27 (a) What is the effect of a catalyst on DH° and DG° of a reaction?

(b) What do you understand by homogeneous and heterogeneous catalysts?

(c) Show by drawing a potential energy diagram that the catalyst lowers the free 

energy of activation of forward and backward reactions without changing the overall 

free energy of the reaction.

(d) How do homogeneous and heterogeneous catalysts act?

2.28 Given below are the mechanisms of a few homogeneous catalyzed reactions. 

Derive the corresponding rate law shown along with.

  (i) Acid-base catalysis

   S + HA 
k

k

1

1-

    
    SH+ + A–

SH+ + H2O
k2æ Ææ  P + H3O

+

d[P

d

]

t
 = 

k k

k k

2 1

1 2

[ ] [ ]

[ ]

S HA

A-
- +

  (ii) Enzyme catalysis

   E + S 
k

k

1

1-

    
     ES

ES
k2æ Ææ  P + E

d[P

d

]

t

Ê
ËÁ

ˆ
¯̃

0

 = r0 = 
k

K

2 0 0

0

[ ] [ ]

[ ]

E S

S M+

  where KM = (k2 + k–1)/k1 and is known as Michaelis-Menten constant. Also, answer 

the following:

low and high concentrations of S, respectively.
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(b) What type of a graph is expected between the initial rate and the initial substrate 

concentration?

(c) If k2 << k–1, then KM represents the dissociation constant for the enzyme-substrate 

complex.

(d) The rate expression given above can be written as

1

0r
=

1

0r

K

rmax max[ ]
+ M

S

r0

0[ ]S
 = 

r

K

r

K

max

M M

- 0

What types of graphs are expected between 1/r0 and 1/[S]0, and r0/[S] and r0?

Show how these plots help in deriving the values of rmax and KM.

(e) What type of the potential energy diagram is expected for the mechanism of 

enzyme-catayzed reaction given above?

2.29 What are enzyme inhibitors? Derive the rate expressions for the following types of 

inhibitors:

(i) Fully competitive inhibition.

(ii) Partially competitive inhibition.

(iii) Fully noncompetitive inhibition.

(iv) Partially noncompetitive inhibition.

(v) Uncompetitive inhibition.

  Write the expressions in the Linearweaver-Burk form and draw the plots between 

1/r0 and 1/[S]0. What are their slopes and intercepts? Compare these with those of 

normal enzyme reaction.

2.30 Explain how Langmuir and Hinshelwood theory can account for the rate of the 

following types of surface catalyzed reactions. Derive the corresponding rate 

expression shown along with and discuss the limiting cases of the rate expression.

(i) Unimolecular surface reaction

   A + S 
k

k

1

1-

    
    AS

AS
k2æ Ææ products

1

r
 = 

1

2

1 2

2 1k

k k

k k
+

+- 1

pA

(ii) Bimolecular surface reaction

   A + S 
k

k

1

1-

    
     AS

B + S 
k

k

2

2-

    
    BS

   AS + BS 
k3æ Ææ products

 r = 
k K K p p

K p K p

3 1 2

1 2
21

A B

A B( )+ +
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2.31 (a) Show that for the unimolecular surface reaction: (i) order with respect to the 

strongly adsorbed, and (iii) fractional order if it is moderately adsorbed.

(b) Support the following statements:

(i) The lowering of free energy of activation in the unimolecular surface reactions is 

largely due to the lowering of activation energy if the reactant is slightly adsorbed.

(ii) The apparent energy of activation equals to the true energy of activation if the 

reactant is strongly adsorbed.

(iii) For a bimolecular surface reaction, there may be an increase instead of lowering 

of energy of activation if one of the components is very strongly adsorbed.

TRY YOURSELF PROBLEMS

2.1 (a) For the hypothetical reaction

   5A + 8B Æ 6C + 12D

set up the differential rate expression in terms of disappearance of A and B and 

of A and B.

(b) For the reaction given in part (a), the following equalities have been established. 

What are the relations between the various ks?

–
1

k t

d[A

d

]
 = – 

1 1 1

¢
=

¢¢
=

¢¢¢k t k t k t

d[B

d

d[C

d

d[D

d

] ] ]

(c) For each of the following rate laws, write the stoichiometric equation for the 

reaction

(i)
d

d

x

t
 = k (a – x)2 (b – x)

(ii)
d

d

x

t
 = k (a – 2x)2 (b – x)

(iii)
d

d

x

t
 = k (a – x) (b – x/2)

(iv)
d

d

x

t
 = kb (a – x)

(v)
d

d

x

t
 = k (a – x) (b + x)

(d) For each of the following reactions express the rate of change of concentration 

of the reactants and products given in terms of the rate of change of concentration 

of the other reactants or products in that reaction.

(i) N2 + 3H2 = 2NH3; –
d[H

d

2]

t
 = ?

(ii) H2 + 
1

2
O2 = H2O;

d[H O

d

2 ]

t
 = ?

(iii) H2O2 + 2H + + 3I– = I–
3 + 2H2O; –

d[I

d

- ]

t
 = ?
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n

half-life times is given by

[A]n = [A]0

1

2

Ê
ËÁ

ˆ
¯̃

n

(b) Show that Eq. (2.6.1), i.e.

n = 
log /

log([ ] /[A] )

t t1
2

1
21 2

02 01

( ) ( )ÈÎ ˘̊

A
 + 1

is, in fact, applicable for the time required to complete any fraction of reaction (say 

1/4, 10%, etc.); the only change to be made is to put corresponding t instead of t0.5.

·tÒ = t d[A] d[A]

[A]

[A]

[ ]

[ ]

0

••

ÚÚ
A

A

0

n = 1) if [A]• is taken to be 

zero, the mean life-time is given by

·tÒ = 
1

k

(b) Show also that the mean life-time ·t Ò is equal to the time taken for the 

concentration of A to drop from [A]0 to [A]0/e, where e is the natural number 2.718. 

Given the standard integral

0

•

Ú t exp (– kt) dt = 1/k2.

4A(g) Æ B(g) + 6C(g)

Derive the expression

ln
3

4

0

0

p

p p-
Ê
ËÁ

ˆ
¯̃

 = k t

where p0 and p are total pressure of the system at t = 0 and t = t.

is three times than that required for the completion of 50 per cent of the reaction. 

By what factor would the time change if the reaction were of the (i) second-order, 

(ii) zero-order, and (iii) –1-order.

A
k1æ Ææ B

  the concentration of B is given by

   [B] = [A]0 {1 – exp(– k1t)}

2.6 Using Eq. (2.5.30), show that for second-order reaction

2A 
k2æ Ææ  B

t = 0 [A]0     [B]0

t = t [A]      [B]
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  the concentration of B is given by

   [B] = [B]0 + [A]0 1
1

1 2 2 0

-
+

Ï
Ì
Ó

¸
˝
˛k t[ ]A

2.7 Show that for the second-order reaction

    A   +  B 
k2æ Ææ  C

t = 0 [A]0    [B]0         0

  the concentration of C is given by

[C] = 
[ ] [ ] { exp( ([ ] [ ] ) )}

[ ] [ ] {exp( ([ ] [ ]

A B B A

B A B A

0 0 2 0 0

0 0 2 0

1 - - -
- - -

k t

k 00) )}t

Ê
ËÁ

ˆ
¯̃

2.8 Using Eq. (2.5.43), show that for a third-order reaction

   2A + B Æ C

  the concentration of C is given by

[C] = 
[ ] [ ]

( [ ] [ ] )
( [ ] [ ] ) ln

[ ] [ ]

[ ] [ ]

A B

B A
B A

A B

B A

0

0 0
0 0

2 0

02 2
2

-
- +

Ê
ËÁ

ˆ
¯̃

kt
ÈÈ

Î
Í

˘

˚
˙

2.9 Using Eq. (2.5.45) show that for a third-order reaction 

A Æ product

  the concentration of A is given by

[A] = 
[ ]

( [ ] ) /

A

A

0

0
2 1 21 2+ k t

A
k

k

1

1

    
     B

t = 0    [A]0     [B]0

t = t     [A]      [B]

  If the relationship [B] – [B]0 = [A]0 – [A] holds good, show that

[A] = 
[ ] [ ]

( / )

B A0 0

11

+
+

Ê
ËÁ

ˆ
¯̃-k k

–
[ ] ( / )[ ]

( / )

B A0 1 1 0

11

-
+

Ê
ËÁ

ˆ
¯̃

-

-

k k

k k
exp{– (k1 + k–1) t}

[B] = 
[ ] [ ]

( / )

B A0 0

1 11

+
+

Ê
ËÁ

ˆ
¯̃-k k

–
[ ] ( / )[ ]

( / )

A B0 1 1 0

1 11

-
+

Ê
ËÁ

ˆ
¯̃

-

-

k k

k k
exp{– (k1 + k–1) t}

2.11 Using Eqs (2.11.5a) and (2.11.5c) show that

k1 = 
1

t
 ln 1 + +Ê

ËÁ
ˆ
¯̃

[ ]

[ ]

[ ]

[ ]

B

A

C

A

2.12 For the following parallel reactions

A
k1æ Ææ  C

B
k2æ Ææ  C
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  show that

   [A] = [A]0 exp (– k1t)

   [B] = [B]0 exp (– k2t)

   [C] = [A]0 {1 – exp (– k1t)} + [B]0 {1 – exp (– k2t)}

A
k1æ Ææ  B

A
k2æ Ææ  C

A
k3æ Ææ  D

  show that

   [A] = [A]0 exp{– (k1 + k2 + k3)t} = [A]0 exp (– k t)

   [B] = [B]0 + 
k

k

1 0[ ]A
 {1 – exp (– k t)}

   [C] = [C]0 + 
k

k

2 0[ ]A
{1 – exp (– kt)}

   [D] = [D]0 + 
k

k

3 0[ ]A
{1 – exp (– kt)}

A
k1æ Ææ  product

A + A 
k2æ Ææ  product

write down the differential rate expression and then derive from it the integrated 

rate expression.

È
ÎÍ

Ans.
d

d

x

t
 = k1([A0] – x) + 2k2([A]0 – x)2;

ln
[ ] [ ([ ] )]

([ ] ) ( [ ] )

A A

A A

0 1 2 0

0 1 2 0
1

2

2

k k x

x k k
k t

+ -
- +

=
˘

˚
˙

  (Hint: Write the differential rate law as

d

A A

x

x k k x([ ] ) [ ([ ] )]0 1 2 0- + -
 = d t

  resolve into partial fractions and integrate the resultant expression.)

A
k1æ Ææ  D + E

   A + B 
k2æ Ææ  C + D

  Write down the differential rate expression and then derive from it the integrated 

rate expression.

È
ÎÍ

Ans.
d

d

x

t
 = k1([A0] – x) + k2([A]0 – x)([B]0 – x)

1

0 0 1 2([ ] [ ] ) /B A- + k k
ln

[ ]

[ ]

A

A

0

0 -
Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó x

([ ] ) /

[ ] /

B

B

0 1 2

0 1 2
2

- +
+

Ê
ËÁ

ˆ
¯̃

=
¸
˝
˛

˘

˚
˙

x k k

k k
k t
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2.16 The value of D‡S for the unimolecular decomposition of isopropyl nitrite in the gas 

phase is small and positive. Can you explain this?

2.17 Show that the proposed mechanism of

2Br– + H2O2 + 2H+ æ Ææ  Br2 + 2H2O

  leads to the same rate law when written as

–
1

2
 d[Br–]/dt or – d[H2O2]/dt or –

1

2
d[H+]/dt.

  The mechanism is

Br– + H2O2 + H+ k1æ Ææ  HOBr + H2O

   HOBr + H+ + Br– k2æ Ææ  Br2 + H2O

2.18 For the reaction

   2NO + O2 æ Ææ  2NO2

  Two mechanisms have been proposed:

(i)  NO + NO 
K1

    
     N2O2 (fast, at equilibrium)

N2O2 + O2
k2æ Ææ  2NO2 (slow)

(ii)  NO + O2

K1
    
     NO3 (fast, at equilibrium)

   NO + NO3
k2æ Ææ  2NO2 (slow)

  Show that both the mechanisms lead to the same rate law

–
d O

d

[ ]2

t
 = k [NO]2 [O2]

2.19 An endothermic reaction has a positive internal energy change DU. In such a case, 

what is the minimum value that the activation energy can have?

2.20 Given an exothermic reaction, what effect will an increase in temperature have on (i) 

the amount of product formed, and (ii) the time required for the same amount of 

product as that at lower temperature.

2.21  (a) For the reaction

Hg2+
2 + Tl3+ = 2Hg2+ + Tl+

  the rate law is

-
Ê
ËÁ

=
ˆ
¯̃

+ +

+
d Tl

d

Hg Tl

Hg

3+[ ] [ ][ ]

[ ]t
k 2

2 3

2

  Devise a mechanism that gives such a law. A rate law with inverse dependence on 

a particular concentration occurs when the substance is the product of a reversible 

step prior to the rate determining reaction.

   (b) A proposed mechanism for the reaction

2Cr6+ + 3As3+ = 2Cr3+ + 3As5+

    is the following:

Cr6+ + As3+
Keq1

     
      Cr4+ + As5+

Cr4+ + Cr6+
Keq2

     
      2Cr5+

Cr5+ + As3+
Keq3

     
      Cr3+ + As5+
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   The observed rate law is 

r = kapp [Cr6+] [As3+]

   What are possible rate laws for the reverse reaction?

2.22 Predict the effect of increase in ionic strength on the rate constant for each of the 

following reactions:

(a) [Pr(NH3)3Cl]+ + NO–
2

(b) [PtCl]2–
4  + OH–

(c) Pt(NH3)2Cl2 + OH–

[Ans. (a) decrease, (b) increase, (c) no effect]

2.23 What conclusion can be reached about adsorption on the surface from each of the 

following facts:

(a) The rate of decomposition of HI on platinum is proportional to the concentration 

of HI.

(b) On gold, the rate of decomposition of HI is independent of the pressure of HI.

(c) On platinum, the rate of the reaction SO2 + (1/2)O2 Æ SO3 is inversely 

proportional to the pressure of SO3.

(d) On platinum the rate of the reaction CO2 + H2 Æ H2O + CO is proportional 

to the pressure of CO2 at low CO2 pressure and is inversely proportional to the 

pressure of CO2 at high CO2 pressures.

(e) The decomposition of NH3 on W is zero-order.

(f) The decomposition of N2

(g) The recombination of H atoms on Au is second-order.

(h) The decomposition rate of NH3 on Pt is proportional to pNH3
/pH2

.

(i) The decomposition rate of NH3 on Mo is strongly retarded by N2 but does not 

approach zero as the surface becomes saturated with N2.

(j) The rate of 2SO2 + O2 Æ 2SO3 on Pt is k1[SO2]/[SO3]
1/2 when O2 is in excess.

  [Ans. (a) HI is weakly adsorbed. (b) HI is strongly adsorbed. (c) SO3

is strongly adsorbed. (d) CO2 is weakly adsorbed at low p, strongly 

at high p. (e) NH3 is strongly adsorbed on W, surface completely 

covered. (f) N2O is weakly adsorbed on Au, linear region of Langmuir 

isotherm. (g) H atoms are weakly adsorbed and rate is proportional 

to collisions of two H atoms on the surface or of a gaseous H atom 

with surface H atom. (h) Product H2 is strongly, and reactant NH3 is 

weakly adsorbed. (i) Product N2 is strongly adsorbed but adsorption

2 and NH3 can 

compete for available surface when it is nearly covered with N2.

(j) The surface is covered to great extent by adsorbed oxygen so 

that the reaction is zero-order with respect to O2. The SO2 and SO3

compete for remaining surface, with the SO3 being adsorbed more 

strongly than SO2 but less than O2.]

2.24 Studies of the reaction C6H6 + 3H2
   
   C6H12 show that the forward reaction is 

6H6 and H2. What is the rate expression for the 

reverse reaction?

[Ans. rb = kb [C6H12]/[H2]
2]
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2.25 Given the following information:

   C2H4 + H2 Æ C2H6 DE° = – 125.52 kJ mol–1

   rf = kf [H2] holds everywhere

(a) Write the expression for the reverse rate at equilibrium.

(b) If the temperature is increased, does the forward rate constant kf or the reverse 

rate constant kb increase more percentagewise?

(c) If the activation energy is 117.16 kJ mol–1 for the forward reaction, what is the 

activation energy for the reverse reaction?

(d) If a catalyst is added, the activation energy for the forward direction drops to 

44.77 kJ mol–1. What is the activation energy for the reverse rate of the catalyzed 

reaction?

(e) The use of a catalyst speeds up forward rate by a factor of ten million. By what 

factor does the reverse rate increase?

(f) The equilibrium constant at 773 K is 105. What is it (approximately) at

 873 K? 

(g) What is the value of equilibrium constant at 773 K in the presence of the catalyst 

of part (c)?

[Ans. (b) kb, (c) 242.68 kJ mol–1, (d) 170.30 kJ mol–1]

2.26 Work out the following problems on reaction mechanisms.

1. The following mechanism has been suggested for the pyrolysis of diborane:

     B2H6

k

k

1

1-

    
     2BH3 (fast)

     BH3 + B2H6

k

k

2

3

    
     Intermediate hydride + H2

     Intermediate hydride  + B2H6
k4æ Ææ  Higher hydrides

(a) Show that the above mechanism leads to the following rate law:

–
d B H

d

[ ]2 6

t
 = 

2 2 4 3 1
1 2

2 6
5 2

4 3 2 6 2

k k k K

k k

( / ) [ ]

( / )[ ]

/ /B H

B H H+

(b) Initial rate law expression is

–
d B H

d

[ ]2 6

0t

Ê
ËÁ

ˆ
¯̃  = k2 K1

1 2/ [B2H6]
3/2 = k¢ [B2H6]

3/2

The value of k¢ were found to be 8.6 ¥ 10–5 and 5.8 ¥ 10–2 dm3/2 mol–1/2 s–1 at 358 K 

and 436.5 K, respectively. Calculate the apparent activation energy of the reaction.

(c) Show that the apparent activation energy is given by

Ea = E2 + 
1

2
DH1

where DH1 is the dissociation energy of B2H6. If the latter has a value of 35 kcal mol–1,

what is the value of E2?

[Ans. (b) 108.79 kJ mol–1, (c) 35.57 kJ mol–1]

2. The following mechanism has been suggested for the thermal decomposition of 

NO2.



Chemical Kinetics 229

Overall reaction: 2NO2 Æ 2NO + O2

Mechanism

   NO2 + NO2
k1æ Ææ  NO + NO + O2

   NO2 + NO2
k2æ Ææ  NO3 + NO

   NO3 +  NO 
k3æ Ææ  2NO2

   NO3 + NO2
k4æ Ææ  NO + O2 + NO2

Show that the above mechanism leads to the following rate law:

–
d NO

d

[ ]2

t
 = 2 kd [NO2]

2

where

kd = k1 + 
k k

k k

2 4 2

3 4 2

[ ]

[ ] [ ]

NO

NO NO+

3.  The thermal decomposition of H2O2 proceeds according to the reaction

H2O2 Æ H2O + 
1

2
O2

and follows the rate law

d H O

d

2[ ]2

t
 = – k homo [H2O2]

Show that the following mechanism accounts for the above rate law:

H2O2 + M 
k1æ Ææ 2OH + M

   OH + H2O2
fast

2k
æ Æææ  H2O + HO2

HO2 + HO2
k3æ Ææ  H2O2 + O2

HO2 + OH 
k4æ Ææ  H2O + O2

4.  The following mechanism has been suggested for the pyrolysis of 

monosilane.

SiH4
k1æ Ææ  SiH3 + H∑

H∑ + SiH4
k2æ Ææ SiH∑

3 + H2

    SiH∑
3 + SiH4

k3æ Ææ Si2H6 + H∑

2SiH∑
3

k4æ Ææ Si2H6

Show that

d H

d

2[ ]

t
 = 

d Si H

d

[ ]2 6

t
 = k

k

k
k3

1

4

1 2

4
1 2

1

Ê
ËÁ

ˆ
¯̃

+
È

Î
Í
Í

˘

˚
˙
˙

/

/[ ]SiH  [SiH4]

5.  The reaction for the thermal decomposition of HNO3 in the presence of

NO is 

2HNO3 + NO Æ 3NO2 + H2O
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and the proposed mechanism is

HNO3 + M
k

k

1

1-

    
     OH + NO2 + M

   OH  + HNO3
k2æ Ææ  H2O + NO3

NO3 + NO2
k3æ Ææ  NO2 + NO + O2

NO3 + NO
k4æ Ææ  2NO2

   OH + NO + HNO3
k5æ Ææ  H2O + 2NO2

Show that the reaction scheme leads to the rate expression

–
d[HNO ]

d

3

t
 = 

2 1 3
2

2 5

1 2 2 3 5 3

k k k

k k k

[ ] [ ] ( [ ])

[ ] [ ] [ ] [ ] [ ]

M HNO NO

NO M HNO NO HNO

+
+ +-

3

and zero-order in NO.

6.  (a) The following mechanism has been suggested for the reaction involving 

 F2, O2 and H2.

   F2 + M
k1æ Ææ  2F∑ + M

   F∑ + H2
k2æ Ææ  HF + H∑

   H∑ + F2
k3æ Ææ  HF + F∑

   H∑ + O2 + M
k4æ Ææ  HO∑

2 + M

   HO∑
2 + F2

k5æ Ææ  HF + O2 + F∑

   HO∑
2 + F∑ k6æ Ææ  HF + O2

 Assuming that k4 [O2]  k1 [F2], show that

–
d F

d

[ ]2

t
 = 

k k k

k

k k

k

1 2 5

6

1 2

3 2 4 2

4 2

1 2
Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

/ /
[ ] [ ] [ ]

[ ] [ ]

F O M

O M
[F2] [H2]

1/2 [M]1/2

 At large [O2], the above expression becomes

–
d F

d

[ ]2

t
 = 

k k k

k

1 2 5

6

1 2
Ê
ËÁ

ˆ
¯̃

/

[M]1/2 [H2]
1/2 [F2]

 (b) An alternate mechanism suggested for the reaction involving F2, O2, and

 H2 is

F2 + M 
k1æ Ææ  2F + M

   F + O2  + M 
k2æ Ææ  FO2 + M

H2 + FO2
k3æ Ææ  HF + O2 + H

   H + F2
k4æ Ææ  HF + F

   H + O2 + M 
k5æ Ææ  HO2 + M
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HO2 + F2  HF + O2 + F

FO2 + HO2  HF + 2O2

Assuming k7 [FO2] k6 [F2], show that it leads to

–
d[F ]

d

2

t
 = 

k k k

k

k k

k

1 3 6

7

1 2

4 2 5 2

5 2

1 2
Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

/ /
[ ] [ ] [ ]

[ ] [ ]

F O M

O M
[M]1/2 [H2]

1/2 [F2]

 which in the limit of large O2 becomes

–
d F

d

[ ]2

t
 = 

k k k

k

1 3 6

7

1 2
Ê
ËÁ

ˆ
¯̃

/

[M]1/2 [H2]
1/2 [F2]

7.  (a) The thermal decomposition of N2O5 follows the mechanism:

N2O5
k1æ Ææ  NO2 + NO3

    NO3 + NO2
k2æ Ææ  N2O5

    NO3 + NO2
k3æ Ææ  NO2 + O2 + NO

   NO + NO3
k4æ Ææ  2NO2

 Show that

–
d[N O ]

d

2 5

t
 = 

2

2

1 3

2 3

k k

k k+
 [N2O5]

  If k2 k3, then

–
d[N O ]

d

2 5

t
 = 2k3

k

k

1

2

 [N2O5]

 (b) In the presence of NO, the mechanism is

N2O5
k1æ Ææ NO3 + NO2

NO3 + NO2
k2æ Ææ  N2O5

NO3 + NO 
k3æ Ææ  2NO2

 Show that

–
d[N O ]

d

2 5

t
 = 

k

k k

1

2 2 31

[N O ]

NO NO

2 5

+ { [ ]/ [ ]}

 In the presence of excess of NO the above expression becomes

–
d[N O ]

d

2 5

t
 = k1 [N2O5]

8.  The conversion of O3 to O2 in the gas phase is catalyzed by N2O5. The 

     rate law is

–
d[O

d

3]

t
 = k[N2O5]

2/3[O3]
2/3

The proposed mechanism is

 N2O5
k1æ Ææ NO2 + NO3

    NO3 + NO2
k2æ Ææ  N2O5

NO2 + O3
k3æ Ææ  NO3 + O2

2NO3
k4æ Ææ  NO2 + O2 + NO2
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Applying steady-state approximation for NO2 and NO3, show that

–
d[O

d

3]

t
 = 2 1

2

2

3
2

4

1 3

k

k
k k

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

/

[N2O5]
2/3 [O3]

2/3

9. The following mechanisms were proposed for the reaction between Cl2 and 

O3 at 308 K and 323 K.

 (a) Cl2 + O3
k1æ Ææ  ClO + ClO2

ClO2 + O3
k2æ Ææ  ClO3 + O2

ClO3 + O3
k3æ Ææ  ClO2 + 2O2

2ClO3
k4æ Ææ  Cl2 + 3O2

2ClO
k5æ Ææ  Cl2 + O2

 Applying steady-state approximation to ClO2 and ClO3, show that

–
d[O

d

3]

t
 = 2k1 [Cl2][O3] + k3

2 1

4

1 2
k

k

Ê
ËÁ

ˆ
¯̃

/

[Cl2]
1/2 [O3]

3/2

(b)    Cl2 + O3
k1æ Ææ  ClO + ClO2

   ClO2 + O3
k2æ Ææ  ClO + 2O2

    ClO + O3
k3æ Ææ  ClO2 + O2

     2ClO
k4æ Ææ  Cl2 + O2

Applying steady-state approximation to ClO and ClO2, show that

–
d O

d

3[ ]

t
 = 2 [O3] k k

k

k
1 3

1

4

1 2

[ ] [ ][ ]

/

Cl Cl O2 2 3+
Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

For the long chains, the expression reduces to

    –
d O

d

3[ ]

t
 = 2k3

k

k

1

4

1 2
Ê
ËÁ

ˆ
¯̃

/

[Cl2 ]1/2 [O3]3/2

(c)  Cl2 + O3
k1æ Ææ  ClO + ClO2

   ClO2 + O3
k2æ Ææ  ClO3 + O2

   ClO3 + O3
k3æ Ææ  ClO2 + 2O2

   2ClO3
k4æ Ææ  2ClO2 + O2

   2ClO3
k5æ Ææ  ClO4 + ClO2

   2ClO3
k6æ Ææ  Cl2 + 3O2

   ClO4 + ClO3
k7æ Ææ  Cl2O7

   2ClO
k8æ Ææ  Cl2 + O2

Show that
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–
d O

d

3[ ]

t
 = k1[Cl2][O3] 2

2

2

4 5

5 6

+
+
+

Ê
ËÁ

ˆ
¯̃

k k

k k( )

+ 2k 3

k

k k

1

5 6

1 2

2( )

/

+
Ê
ËÁ

ˆ
¯̃

 [Cl2]
1/2 [O3]

3/2

For long chains, the expression reduces to

–
d O

d

3[ ]

t
 = k3

2 1

5

1 2
k

k

Ê
ËÁ

ˆ
¯̃

/

 [Cl2]
1/2 [O3]

3/2

10. The effect of adding N2O5 to the reaction

NOCl + O3 = NO2Cl + O2

was studied and the mechanism proposed is

N2O5 æÆ
k1

 NO2 + NO3

NO3 + NO2 æÆ
k2

 N2O5

NO2 + O3 æÆ
k3

 NO3 + O2

NOCl + NO3 æÆ
k4

 NO2Cl + NO2

  Show that it leads to

–
d NOCl

d

[ ]

t
 =

k k k

k

1 3 4

2

1 2
Ê
ËÁ

ˆ
¯̃

/

[NOCl ]1/2 [O3]
1/2 [N2O5]

1/2

11. For the reaction

H2 + NO2 æÆ  H2O + NO

the suggested mechanism is

H2 + NO2
k1æ Ææ  H + HNO2

H + NO2
k2æ Ææ  NO + OH

OH + H2
k3æ Ææ  H2O + H

OH + NO2 + M 
k4æ Ææ  HNO3 + M

OH + NO + M 
k5æ Ææ  HNO2 + M

State the approximations at which the rate law would be given by

–
d NO

d

2[ ]

t
 = 

k k

k k

1 3 2
2

4 5

[ ][ ]

[ ][ ] [ ][ ]

NO H

NO M NO M

2

2 +

12. The rate of attachment of gaseous electrons to NO2 has been found to follow 

the rate law

–  
d e

d

[ ]-

t
 = k[NO2][e–]

The proposed mechanism is

NO2 + e– k1æ Ææ  (NO2
–)*

(NO2
–)*

k2æ Ææ  NO2 + e–
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(NO2
–)* + M 

k3æ Ææ  NO2
– + M

(NO2
–)* + M 

k4æ Ææ  NO2 + M + e–

        Applying steady-state concentration to (NO–
2 )*, show that

–
d e

d

[ ]-

t
 = 

k k

k k k

1 3

2 3 4

[ ][ ][ ]

( )[ ]

NO M e

M

2
-

+ +

Under what condition does the above expression reduce to the experimentally found 

rate law?

13. The thermal decomposition of NO at higher temperature is catalyzed by oxygen. 

The proposed mechanism is

2NO
k1æ Ææ  N2 + O2

O + NO 
k2æ Ææ  O2 + N

N + O2
k3æ Ææ  O + NO

NO + N 
k4æ Ææ  N2 + O

O + O 
k5æ Ææ  O2

O2
k6æ Ææ  O + O

Show that it leads to

–
d NO

d

[ ]

t
= k1[NO]2 +

2

1

2 2
1 2

3 4

k K

k k

[ ][ ]

( [ ] [ ] )

/NO O

O NO2+

where K = k k6 5/

14. For the thermal decomposition of N2O, the proposed mechanism is

N2O
k1æ Ææ  N2 + O

O + O + M 
k2æ Ææ O2 + M

O + N2O
k3æ Ææ  N2 + O2

O + N2O
k4æ Ææ 2 NO

  Derive the rate law.

15.The reaction between H2O2 and nitrous acid in acidic medium follows the rate 

law

d HOONO

d

[ ]

t
 = 

K k

k k

1

1 2 2 2 2 1

[ ][ ]

{ [ ] / [ ]}

H HNO

H O H O

2
+

- +

  Show that the following mechanism is consistent with the above rate law.

H+ + HNO2

K
    
     H2NO2

+ (fast)

  H2NO+
2

k

k

1

1-

    
     NO+ + H2O

NO+ + H2O2
k2æ Ææ HOONO + H +

16. The oxidation of hypophosphorus acid (H3PO2) and of phosphorous acid (H3PO3)
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by S2O
2–
8  have been studied. The reactions are

     H3PO2 + S2O
2–
8  + H2O Æ H 3PO3 + 2H+ + 2SO 2–

4

H3PO3 + S2O
2–
8  + H 2O Æ H3PO4 + 2H+ + 2SO2–

4

The chain mechanism has been proposed:

Initiation

S2O
2–
8

k1æ Ææ  2SO–
4

S2O
2–
8 + H2PO –

2
k2æ Ææ SO2–

4 + SO–
4 + H 2PO2

Propagation

SO–
4 + H 2O

k3æ Ææ  HSO–
4 + OH

OH + H 2PO–
2

k4æ Ææ OH – + H 2PO2

H 2PO2 + S2O
2–
8  

k5æ Ææ  SO2–
4  + H2PO+

2 + SO–
4

Termination

2H2PO2
k6æ Ææ  H2PO +

2 + H2PO –
2

with the rapid reaction

H 2PO+
2 + H2O æ Ææ  H3PO3 + H +

An analogous mechanism is applicable for H3PO3. Derive the expression for the 

rate law.

17. For the oxidation reaction

(CH3)2CHOH + S2O
2–
8 æÆ  (CH 3)2 C==O + 2H + + 2SO2–

4

the proposed mechanism is

S2O
2–
8  k1æ Ææ  2SO–

4

SO–
4 + (CH3)2CHOH æÆ

k2

(CH 3)2 COH
i

 + HSO–
4

(CH 3)2 COH
i

 + S2O
2–
8 æÆ

k3  (CH 3 )2C==O + HSO–
4 + SO–

4

(CH 3) 2 COH
i

 + SO–
4 æÆ

k4  (CH 3)2 C==O + HSO–
4

If it is assumed that k1k4 is very much smaller than k k k k1 2 3 4 2[( )CH CHOH]3 ,

show that the above mechanism leads to

–
d S O

d

[ ]2 8
2-

t
 = (k1k2k3/k4 )1/2 [S 2O

2–
8 ] [(CH3)2CHOH]1/2

18. For the reaction between CH3OH and S2O
2–
8 , the following mechanism was 

proposed.

S2O
2–
8

k1æ Ææ  2SO–
4

SO–
4 + CH3OH

k2æ Ææ CH OH2

i

 + HSO–
4

CH OH2

i

 + S2O
2–
8  k3æ Ææ  HCHO + HSO –

4 + SO–
4

2CH OH2

i k4æ Ææ products

Derive the expression for the law.

19. For the oxidation of oxalic acid by S2O
2–
8 , the following mechanism was proposed.
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S2O
2–
8  

k1æ Ææ  2SO –
4

SO –
4 + H2O

k2æ Ææ HSO –
4 + OH

OH + C2O
2–
4  

k3æ Ææ  CO2 + CO–
2 + OH –

OH – + H + k4æ Ææ  H2O

CO 2
–  + S 2O8

2– k5æ Ææ  CO2 + SO4
– + SO4

2–

CO2
– + SO4

– k6æ Ææ  CO2 + SO4
2–

If  it be assumed that 4(k1k2/k5k6)   (k1/k5)2, show that the steady-state 

approximation applied to the concentration of the radical leads to the rate equation

–
d S O

d

[ ]2 8
2-

t
 = (k1k2k5/k6)1/2[S2O8

2– ]

20. The decomposition of CHCl3 at 450–525 ºC follows the rate law

–
d CHCl

d

3[ ]

t
 = 

k

b

[ ]

{ [ ]} /

CHCl

HCl

3

1 1 2+
where

k = (2k1k2k4/k3)
1/2

b = k–2/k4

Under what approximation will the following mechanism account for the above 

rate law?

CHCl3
k1æ Ææ  CHCl2 + Cl

Cl + CHCl3

k

k

2

2-

    
    HCl + CCl3

Cl + CCl3
k3æ Ææ  CCl4

CCl3
k4æ Ææ CCl2 + Cl

CCl2 + CHCl3
k5æ Ææ  C2Cl4 + HCl

21.  The decomposition of dimethylether may be explained by means of RICE- 

HERZFELD mechanism with the following steps.

Initiation: 1 CH3OCH3 æÆ  CH3 + CH3O

Chain I: 2 CH3 + CH3OCH3 æÆ  CH4 + CH2OCH3

3 CH2OCH3 æÆ  CH2O + CH3

Chain II: 4, 5 CH3O   
  

fast
 CH2O + H

  6 H + CH3OCH 3 æÆ  H2 + CH2OCH3

  7 H + CH2O æÆ  H2 + CHO

Chain III: 8 CH3 + CH2O æÆ  CH4 + CHO

  9 M + CHO æÆ  CO + H + M

Termination: 10  2CH3 æÆ  C2H6

Chain

transfer: 11 CH3 + H2 æÆ  CH4 + H
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Show that

–
d CH OCH

d

3 3[ ]

t
 = k2

k

k

1

10

1 2

2

Ê
ËÁ

ˆ
¯̃

/

[CH3OCH3 ] 3/2 1 8

2

+
Ê
ËÁ

k

k

[ ]

[ ]

CH O

CH OCH

2

3 3

+
k

k

11

2

[ ]

[ ]

H

CH OCH

2

3 3

ˆ
¯̃

 + k1 [CH3OCH3]

Show that the initial rate law is given by

–
d CH OCH

d

3 3[ ]

t

Ê
ËÁ

ˆ
¯̃

0

= k2

k

k

1

10

1 2
Ê
ËÁ

ˆ
¯̃

/

[CH3OCH3]0
3/2 + k1[CH3OCH3]0

22. The reaction between  F2 and ClO2 follows the rate law

d FClO

d

2[ ]

t
 = k1 [F2] [ClO2]

The proposed mechanism is

F2 + ClO2
k1æ Ææ FClO2 + F

F + ClO2
k2æ Ææ  FClO2

F + F + M 
k3æ Ææ  F2 + M

F
wall

k4
æ Æææ

1

2
 F2

What do you conclude about the relative speeds of elementary steps?

23.   The following mechanism has been proposed for the reaction between NO2
–

and O2.

NO2
– + O2

k1æ Ææ  NO3
– + O

O + NO2
– k2æ Ææ NO3

–

O + O
k3æ Ææ  O2

Show that

d NO ]

d

3[ -

t
 = k1 [NO –

2 ][O2 ] 1
2

2

3 2

+
+

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

-

-
k

k k

[ ]

[ ] [ ]

NO

O NO

2

2

24.   The following mechanism has been proposed for the thermal decomposition of 

acetone

CH3COCH3
k1æ Ææ CH CH CO3 3

∑

+ i E1 = 351.47 kJ mol–1

i iCH CO CH CO3 3
k2æ Ææ + E2 = 41.84 kJ mol–1

i iCH CH COCH CH CH COCH3 3 2 3
3

3 4+ æ Ææ +k
E3 = 62.76 kJ mol–1

i i iCH COCH CH CH CO4

22 3 3
kæ Ææ + E4 = 200.84 kJ mol–1

i iCH + CH COCH C H COCH2 2 5 3
5

3 3
kæ Ææ E5 = 20.92 kJ mol–1

 Express the overall rate in terms of the individual rate constants. Calculate the 

overall energy of activation.

25.   Nitramide, O2NNH2, decomposes slowly in aqueous solution according to the 

reaction

O2NNH2 æ Ææ  N2O + H2O
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The experimental rate law is

d N O

d

2[ ]

t
 = k

[O NNH ]

H ]

2 2

[ +

     (a) Which of the following mechanisms seems most appropriate?

(i) O2NNH2
k1æ Ææ  N2O + H2O (slow)

(ii) O2NNH2 + H + k

k

2

2-

    
     O2NNH3

+ (fast equilibrium)

  O2NNH3
+ k3æ Ææ N2O + H3O

+ (slow)

(iii) O2NNH2

k

k

4

4-

    
     O2NNH– + H + (fast equilibrium)

  O2NNH– k5æ Ææ  N2O + OH – (slow)

  H+ + OH– k6æ Ææ  H2O (fast)

26.   The proposed mechanism for the decomposition of acetaldehyde catalyzed by 

iodine is

          I2

k

k

1

1-

    
    2I∑

I∑ + CH3CHO
k2æ Ææ  HI + CH CO3

i

CH CO3

i
k3æ Ææ CH + CO3

i

CH
i

3  + I2
k4æ Ææ  CH3I + I∑

CH
i

3  + HI
k5æ Ææ CH4 + I∑

CH3I + HI
k6æ Ææ  CH4 + I2

Show that the rate equation for this reaction expressed as the formation of carbon
monoxide is given by

d CO

d

[ ]

t
 = k2

k

k

1

1

1 2

-

Ê
ËÁ

ˆ
¯̃

/

[ I 2]
1/2 [CH3CHO]

27.The aqueous oxidation of Cr3+ ions to CrO2
4
– can be accomplished in buffered 

H+ solution with ceric ion, Ce4+, as oxidizing agent. The rate of the reaction is 

found to depend upon concentrations as follows.

–
d Cr

d

3[ ]+

t
= k

[ ] [ ]

[ ]

Ce Cr

Ce

4 3

3

+ +

+

2

  (a) How is the rate of reaction expressed in terms of the production of Ce3+(aq)

related to the rate of consumption of Cr3+(aq)?

  (b) If all concentrations were diluted by a factor of ten, by what factor would the 

rate change?

  (c) Which of the following reaction mechanisms are consistent with the observed 

rate law?

    Mech. A Mech. B

Ce4+ + Cr 3+ k1æ Ææ  Ce2+ + Cr 5+ slow fast

Ce4+ + Ce2+ k2æ Ææ  2Ce3+ fast fast

Ce4+ + Cr5+ + 4H2O
k3æ Ææ  Ce3+ + CrO4

2– + 8H + fast slow
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    Mech. C Mech. D Mech. E

  Ce4+ + Cr 3+ k1æ Ææ  Ce3+ + Cr4+ slow fast fast

  Ce4+ + Cr4+ k2æ Ææ  Ce3+ + Cr5+  fast fast fast

Ce4+ + Cr 5+ + 4H2O
k3æ Ææ  Ce2+ + CrO4

2– + 8H + fast fast slow

[Ans. Mech. D]

28. For the reaction Cl2 + CO(g) æ Ææ  COCl2(g), the rate law is

   – d [CO]/dt = k [Cl2]3/2 [CO]

Which of the following mechanisms are consistent with the observed rate law?

    Mech. A Mech. B Mech. C

Cl2 + CO 
k1æ Ææ  ClCO + Cl slow fast fast

Cl + CO 
k2æ Ææ  ClCO fast slow fast

ClCO + Cl2
k3æ Ææ  Cl2CO + Cl slow fast slow

    Mech. D Mech. E Mech. F

   Cl2
k1æ Ææ 2Cl slow fast fast

CO + Cl
k2æ Ææ  ClCO fast slow fast

ClCO + Cl2
k3æ Ææ  Cl2CO + Cl fast fast slow

    Mech. G Mech. H Mech.I

   Cl2
k1æ Ææ  2Cl slow fast fast

Cl + Cl2
k2æ Ææ  Cl3 fast slow fast

Cl3 + CO
k3æ Ææ  Cl2CO + Cl fast fast slow

2.27 A substance decomposes according to a zero-order reaction with a rate constant 

k. (a) Derive the expression of half-life when the initial concentration is a.

(b) How long will it take the reaction to go to completion?

2.28 Decomposition of a substance X to produce Y and Z can result by any of the 

following mechanisms:

X
k1æ Ææ  Y + Z

  (ii) By parallel reaction

   Z
k3¨ ææ  X 

k2æ Ææ  Y

The decomposition reaction is followed by measuring the concentrations of Y and 

Z as a function of time. Prove that the above mechanisms can be distinguished 

from each other by measuring the ratio [Y]/[Z] as a function of time. Show that 

for these two mechanisms the ratio [Y]/[Z] will be independent of time.

2.29 The hypothetical reaction A Æ B is of the –1-order; that is

– d[A]/d t = k [A]–1
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  (a) Obtain an equation for [A] as a function of t, k and the initial concentration 

[A]0.

  (b) Find the time required for the concentration to fall to 10 per cent of its initial 

value in terms of k and [A] 0.

  (c) Does this reaction ever reach completion?

[Ans. [A] = ([A]2
0 – 2kt )1/2, t = 0.99 [A]2

0 /2k, tcompletion = [A]2
0 /2k]

2.30 The following mechanism has been proposed for the hydrogen-oxygen reaction:

    DH298 K/kJ mol–1

Initiation: H2 + O2
k1æ Ææ  2 ∑OH 72

Propagation: ∑OH + H2
k2æ Ææ  H2O + H∑ – 62

Chain branching: H∑ + O2
k3æ Ææ ∑OH + O∑ 70

   O∑ + H2
k4æ Ææ ∑OH + H∑ 8

Gas phase

   Termination: H∑ + O2 + M
k5æ Ææ  HO∑

2 + M –196

  Using the steady-state approximation of [H∑] and [∑OH], show that

d H O

d

2[ ]

t
= k 2[

∑OH][H2]

=
2

2

1 5 2

5 3

k k

k k

[H O M

M

2][ ][ ]

[ ] -

  Show that the second explosion limit occurs when k5[M] = 2k3.

2.31 Predict the effect of pressure on the rate constant of the following reactions:

Co(NH3)5Br2+ + OH– æ Ææ  Co(NH3)5OH2+ + Br– D‡V  = 8.5 cm3 mol–1

Sucrose + H2O
H+

æ Ææ  glucose + fructose D‡V = 2.5 cm3 mol–1

CH3COOCH3 + H2O
H+

æ Ææ CH3COOH + CH3OH  D‡V = – 8.7 cm3 mol–1

C6H5CCl3 æ Ææ  C6H5CCl +
2 + Cl– D‡V  =  –14.5 cm3 mol–1

2.32 The following mechanism has been proposed for the aldol condensation.

H C CH + B3

O
k1

k-1

C CH-
2 + BH+

O

H

(base
catalyst)

H C +

O

k2
C CH2

O

HCH-
2 C

H

CH3

O C O -

H

CH3



Chemical Kinetics 241

H C CH2

O
k3

C

H

CH3

O +  BH+

(rapid)
H C CH2

O

C

H

CH3

OH +  B

  Show that

    
d[aldol

d

]

t
 = 

k k

k k

1 2 3
2

2 1

[ ] [ ]

[ ] [ ]

CH CHO B

CH CHO BH3 + -
+

  Deduce also the following reduced equations:

(i) When k 2[CH3CHO] k–1 [BH+ ]

d[aldol

d

]

t
 = k1[CH3CHO] [B];  (General basis catalysis)

(ii) When k–1 k 2 [CH3CHO]

d[alchol

d

]

t
 = 

k k

k

1 2 3
2

1

[ ] [ ]

[ ]

CH CHO B

BH-
+

                = 
k k

k K

1 2

1- b

[CH3CHO]2[OH –]

NUMERICAL PROBLEMS

2.1 At 773 K dimethyl ether decomposes according to the equation 

(CH3)2O æ Ææ  CH4 + H2 + CO

  At this temperature the following data were obtained:

t /s 0 390 777 1 195 3 155

ptotal /Torr 312 408 488   562    779

  Determine the order of the reaction and calculate rate constant at 773 K. How much 

time will be required for the decomposition of half of the ether?

   [Ans. First-order, 4.3 ¥ 10–4 s–1]

2.2 (a)   The reaction SO2Cl2 æ Ææ  SO2 + Cl2 is a first-order gas reaction with

k1 = 2.2 ¥ 10–5 s–1 at 573 K. What per cent of SO2Cl2 is decomposed on heating 

at 573 K for 90 min? [Ans. 11.2%]

constant?

2.3 The half-life period and the initial concentration for a reaction are as follows. What 

is the order of the reaction? Calculate the rate constant.

t0.5/s 425 275 941

a /mmHg 354 540 158

[Ans. n = 2, k = 6.722 ¥ 10–6 mmHg–1 s–1]

in 1 590 years, what is the rate constant for the disintegration?

   [Ans. 4.36 ¥ 10–4 year–1 ]

2.5 The conversion of acetochloroacetanilide (A) into p-chloroacetanilide (B) was 

followed by adding KI solution and titrating the iodine liberated with standardized 

thiosulphate solution. The KI reacts with A only.

Order and Rate

Constant of a 

Reaction
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Time/h 0 1 2 3 4 6 8

V (0.1M S2O3
2– ) /cm3 49.3 35.6 25.74 18.5 14.0 7.3 4.6

  Determine the order of the reaction and its rate constant.

   [Ans. ¥ 10–5 s–1]

2.6 The table given below gives kinetic data for the following reaction at 298 K.

OCl– + I– Æ OI– + Cl–

[ ]OCI

mol dm 3

-

-
[ ]I

mol dm 3

-

-
[ ]OH

mol dm 3

-

-

d IO

d

mol dm s3 1

[ ]-
-

- -

¥
t

10 4

  0.001 7 0.001 7 1.00 1.75

  0.003 4 0.001 7 1.00 3.50

  0.001 7 0.003 4 1.00 3.50

  0.001 7 0.001 7 0.5 3.50

  What is the rate law and what is the value rate constant?

   Ans.
d IO

d

s ) I ] OCl

OH

1[ ] ( [ [ ]

[ ]

- - - -

-=
È

Î
Í

˘

˚
˙

t

60

2.7 The decomposition of NH3 on tungsten wire at 856 ºC gave the following results.

Total pressure/Torr 228 250 273 318

Time/s 200 400 600 1 000

Determine the order of the reaction and calculate its rate constant.

2.8 In a spectroscopic study for the first-order isomerization of cis-biethylene-

diaminedichlorocobalt(III) chloride in methanol, the rate of disappearance of the 

absorption peak at 540 nm was followed as a function of time.

Time/min 0 10 20 33 47 62

Absorbance 0.119 0.115 0.108 0.102 0.096 0.089

  80 93 107 121 140 •

  0.081 0.075 0.071 0.066 0.058 0.005

   [Ans. 8 050 s]

2.9 The solvolysis of cinnamyl chloride can be studied spectrophotometrically by 

observing the decrease in absorbance of the absorption maximum at 260 nm. The 

following observations were made in ethalonic sodium hydroxide at 298 K.

Time/min 0 10 31 74 133 •

Absorbance

at 260 nm 0.41 0.38 0.34 0.26 0.18 0

  What are the order and rate constant of this reaction?

   [Ans. First-order, k = 1.01 ¥ 10–4 s–1 ]

  (Hint: Absorbance is directly proportional to the concentration of cinnamyl chloride.)

2.10 The overall reaction

CH3CONH2 + HCl + H2O Æ CH3COOH + NH4Cl
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  can be followed conductometrically. If the resistance of an equimolar mixture of 

acetamide and hydrochloric acid varies with time as follows.

Time/min 0 5 15 25 35 •
Resistance/ohm 245 350 479 546 587 759

  determine the order of the reaction.

   [Ans. First-order with respect to both HCl and acetamide]

  (Hint: [HCl]0 ∝ k 0 – k• and [HCl]t ∝ kt – k•.)

2.11 A solution of A is mixed with an equal volume of a solution of B containing the 

same amount and the reaction A + B Æ C occurs. At the end of one hour A is 75 

per cent reacted. How much of A will be left unreacted at the end of two hours if 

A and B?

2.12 A solution at 25 ºC initially contains 0.063 mol dm–3 FeCl3 and 0.031 5 mol dm–3

SnCl2. After the elapsed time given, the concentration of the ferrous chloride 

produced is determined by a titration procedure:

t /min 1 3 7 17 40

[Fe2+]/mol dm–3 0.014 3 0.025 9 0.036 1 0.045 0 0.050 6

Determine the reaction order and the rate constant.

A
k1æ Ææ B

k2æ Ææ C

  the values of k1 and k2 are 45 h–1 and 15 h–1, respectively. If the reaction is carried 

out with pure A at a concentration of 1.0 mol dm–3: (a) How much time will be 

required for the concentration of B to reach a maximum? (b) What will be the 

maximum concentration of B? (c) What will be the composition of the reacting 

system after a time interval of 10 min?

   [Ans. (a) 132 s, (b) 0.58 mol dm–3, (c) [A] = 0,

   [B] = 0.12 mol dm–3, [C] = 0.88 mol dm–3 ]

2.14 The following mechanism  has been proposed for the reaction

          S2F10 = SF6 + SF4

S2F10
k1æ Ææ  2SF5

SF5 + S2F10
k2æ Ææ  SF6 + S2F9

S2F9
k3æ Ææ  SF4 +SF5

S2F9 + SF5
k4æ Ææ  SF6 + 2SF4

(i) If k1/k2 << (k1k3/k2k4 )1/2, show that its differential rate law is given by

–
d[S F ]

d

2 10

t
 = 

k k k

k

1 2 3

4

1 2
Ê
ËÁ

ˆ
¯̃

/

 [S2F10 ]

(ii) For the above reaction, the Arrhenius equation is

k /s–1 = (4.98 ¥ 1018 ) exp - -Ê
ËÁ

ˆ
¯̃

205 85.

RT
kJ mol 1

  What are the values of Ea and D‡S?

Consecutive

Reaction
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2.15 The bimolecular decomposition of hydrogen iodide is given by the equation

2HI æ Ææ  H2 + I2

  Assuming a collision diameter of 0.35 ¥ 10–8 cm and an activation energy of 183.90 

kJ mol–1 for the reaction, calculate (a) the collision rate, (b) the rate of reaction, and 

(c) the rate constant for the above reaction at 500 K and one atmosphere pressure.

[Ans. (a) 1.686 ¥ 1036 m–3 s–1, (b) 1.71 ¥ 10–7 mol m–3 s–1,

(c) 2.88 ¥ 10–10 mol–1 m3 s–1 ]

2.16 Using the expression from the collision theory, compute the rate constant for the 

reaction

H2 + I2 æ Ææ  2HI

  at 700 K. Use sA + sB = 2 ¥ 10–8 cm and energy of activation as 167.4 kJ mol–1 The 

experimental value is 6.42 ¥ 10–2 dm3 mol–1 s–1. Explain the discrepancy between 

the calculated and experimental values, if any.

2.17 At 300 K, a certain reaction is 50 per cent complete in 20 min. At 350 K, the same 

reaction is 50 per cent complete in 5.0 min. Calculate the activation energy for the 

reaction.

  (Hint: k350K/k300K = 4 )

its energy of activation is 217.58 kJ mol–1. (a) What fraction of the molecules at 

t? (b) Calculate the time required for the 

compound to be 75 per cent decomposed at 723 K. 

   [Ans. (a) 4.0 ¥ 10–18, (b) 12.5 min]

2.19 For the decomposition of N2O5

T/K 298 308 318 328 338

  105k1/s
–1 1.72 6.65 24.95 75 240

  Calculate A and E for the reaction, in the equation k1 = A exp(–E /RT). Calculate 

D‡G, D‡H and D‡S for the reaction at 323 K.

[Ans. E = 102.09 kJ mol–1, A = 1.51 ¥ 1013 s–1, D‡G = 101. 68 kJ mol–1,

D‡H = 99.17 kJ mol–1 D‡S = – 7.95 J K–1 mol–1]

k /s = 4.3 ¥ 1013 exp (–104.6 kJ mol–1/RT )

Calculate (i) the value of rate constant at 373 K, and (ii) the entropy of activation. 

  (b) The reaction considered in part (a) can be carried out in the presence of a 

catalyst that lowers the entropy of activation by 8.368 J K–1 mol–1 and lowers the 

activation energy by 20.92 kJ mol–1. Calculate the ratio of the rate constants of 

the catalyzed reaction to that of the uncatalyzed reaction at 373 K.

[Ans. 310]

and hydrogen chloride was found to vary with temperature as follows:

Rate constant ¥ 103/s–1 0.162 0.238 0.311 0.475 0.706

Temperature/K 640.6 646.7 651.2 657.5 665.1

  0.901 1.225 1.593

  669.0 674.9 679.7

Collision Theory 

of Bimolecular

Reaction

Energy of 

Activation

Thermodynamic

Parameters of a 

Reaction
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  Calculate the energy of activation and the frequency factor.

   [Ans. D‡E = 211 kJ mol–1, A = 2.5 ¥ 1013 s–1]

2.22 The following data were obtained for the reaction

Co(NH3)5NO2
2+ + OH– æ Ææ  Co(NH3)5OH2+ + NO2

–

m/M 2.34 5.61 8.10 11.73 16.90

k ¥ 104/mol–1 dm3 s–1 5.808 5.164 4.786 4.383 3.972

  Evaluate k0 , the rate constant at zero ionic strength.

2.23 The rate determining step for the reaction

S2O8
2– + 2I – æ Ææ  2SO4

2– + I2

is S2O8
2– + I– æ Ææ  [S2O8I

3– ]

  When the persulphate and iodide ion concentrations are 1 ¥ 10– 4 mol dm–3 and 

2 ¥ 10– 4 mol dm–3, respectively, the rate constant is 1.6 ¥ 10–5 mol–1 dm3 s–1.

What approximately is the rate constant if the reaction mixture is made 

10–2 mol dm–3 with respect to KCl? [Ans. 2.33 ¥ 10–5 mol–1 dm3 s–1 ]

2.24 For the reaction

NH2SO2OH + H2O Æ NH4HSO4

  in aqueous solution at 30.35 ºC, the following rate constants were observed at the 

indicated ionic strengths:

m ¥ 103 / M 5.06 11.21 15.85 22.94

k /mol–1 dm3 h–1 1.07 1.02 0.976 0.886

From these data ascertain (a) the valencies of reacting ions, and (b) the rate constant 

corrected for the primary salt effect. At this temperature the Debye-Hückel constant 

A = 0.574 mol–1/2 dm3/2.

2.25 The rate constant for the exchange reaction

Cr(H2O)6
3+ + H2

18O æ Ææ  [Cr(H2O)5(H2
18O)]3+ + H2O

  is 5.0 ¥ 10–5 mol–1 dm3 s–1 at 298 K and 101.325 kPa pressure, and D‡V  is                

– 9.3 cm3 mol–1. Calculate the rate constant for 2 kbar pressure.

in aqueous ethanol at 25 ºC.

(CH3)2CCl C CH∫  + H2O æ Ææ (CH3)2(OH) C CH∫  + HCl

Rate constant ¥ 106/s–1 0.23 0.38 0.74 1.27 2.04

Pressure/bar 0.0 10.7 21.3 31.7 42.1

  Calculate the volume of activation. [Ans. D‡V  = –13.1 cm3 mol–1]

2.27 The initial rate of oxidation of sodium succinate to form sodium fumarate in the 

presence of the enzyme succinate dehydrogenase at different sodium succinate 

concentrations is given below:

Sodium succinate

conc. ¥ 103/mol dm–3 10 2.0 1.0 0.5 0.33

Initial rate ¥ 106 mol dm–3 s–1 1.17  0.99 0.79 0.62 0.50

  Determine the Michaelis constant and the limiting rate of equation.

   [Ans. rmax = 1.22 ¥ 10–6 mol dm–3 s–1, KM = 4.8 ¥ 10–4 mol dm–3 ]

Effect of Ionic

Strength on Ionic

Reaction

Effect of Pressure 

on Rate Constant

Catalytic Reaction
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2.28 The rate for the reaction, H2O2 + 2H3O
+ + 2Br– æ Ææ 4H2O + Br2, is

– d[H2O2] /dt = k[H2O2 ][H3O
+][Br–]

  At 298 K, k varies with the hydrogen bromide concentration as follows:

[HBr]/millimole dm–3 13.5  22.0 28.8 43.2 67.7

k ¥ 103/mol–2 dm6 min–1 377 347 338 318 297

  Determine k0, the rate constant for the uncatalyzed reaction.

[Ans. 0.467]

2.29 The hydrolysis of ethyl acetate

CH3COOC2H5 + H2O Æ CH3COOH + C2H5OH

pH 3 2 1

k1/10–4 s–1 1.1 11 110

  What is the order of the reaction with respect to H+ and the value of the rate 

constant? [Ans. First order, 1.1 ¥ 10–1 dm3 mol–1 s–1 ]

2.30 The formation of phosgene COCl2 from CO and Cl2 is a reversible reaction. The 

Arrhenius parameters are

log (kform/dm3 mol–1s–1 ) = 8.023 – 
( )

.

26 300

4 58

1K

T

       log (kdecomp /s–1 ) = 13.48 – 
( )

.

52400

4 50

1K

T
  Answer the following

(i) What are the activation energies of forward and backward reactions at 

298 K?

(ii) What is the value of DE at 298 K

(iii) What is the equilibrium constant of the reaction?

(iv) What are the values of D‡Sf and D‡Sb?

Homogeneous

Catalyst

Reversible

Reaction



Photochemistry3

Many reactions can be initiated by the absorption of radiation lying in the visible 

and ultraviolet regions (roughly from 800 nm to 200 nm). These reactions are 

called photochemical reactions. The science of photochemistry deals with the 

study of the effect of radiant energy on chemical reactions and with rates and 

mechanisms by which photochemical reactions proceed. The energy carried by the 

in the molecule and thereby makes it more reactive which may result in a chemical 

reaction. Thus with the help of absorption of radiations, many reactions of different 

and reduction, can be carried out.

are in order.

To all photochemical reactions, two basic laws hold good. These are:

This law states that 

Only those radiations which are absorbed by the reacting system are effective 

in producing chemical change.

This law can be easily accounted for as the molecules acquire energy for reaction 

by absorbing photons.

It should be clearly understood that though the law states that a photochemical 

reaction must have resulted because of the absorption of light, the reverse of this 

is not always true, i.e. the system on absorbing light may or may not result into a 

chemical reaction. In many cases, the absorbed light is converted into the kinetic 

energy of the absorbing molecules and thereby only heat effects are produced. In 

The amount of light absorbed by a system is given by Lambert-Beer’s law, a 

The second law of photochemistry is the law of photochemical equivalence proposed

by Stark and Einstein. According to this law, we have

3.1 INTRODUCTION

3.2 TWO BASIC LAWS OF PHOTOCHEMISTRY

The Grothuss-

Draper Law

Law of 

Photochemical

Equivalence
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Each light absorbing molecule in a photochemical reaction absorbs only one 

quantum of light which causes the activation.

If n is the frequency of the absorbed light, its energy as given by the Planck’s 

relation is

DE = hn

Hence, energy absorbed per mol of the substance is

DE = NAhn

and is conventionally known as one Einstein of energy.

The amount of light absorbed by a pure substance follows Lambert’s law which 

states that:

Equal fractions of the incident radiation are absorbed by successive layers of 

equal thickness of the light absorbing substance.

Mathematically,

  –
d I

I
∝ (dl) i.e. –

d I

I
 = k(dl) (3.3.l)

where the constant k is known as and is characteristic of 

the given material and the wavelength of the radiation. It has the unit of length–1.

Alternatively, Lambert’s law may be written as:

-
d

d

I

l
 = kI

that is, the rate of decrease in intensity with thickness of the medium (i.e. – dI/dl)

is proportional to the intensity of the radiation.

Equation (3.3.1) on integration yields

-Ú
d

0

I

I
I

I

 = k dl

l

0

Ú

i.e. ln
I

I0

Ê
ËÁ

ˆ
¯̃

 = – kl (3.3.2)

or I = I0 e
–kl (3.3.3)

Equation (3.3.2) may be written as

log
I

I0

Ê
ËÁ

ˆ
¯̃

 = – 
k

2 303.
l = – al

or
I

I0

 = 10–al (3.3.4)

3.3 LAMBERT-BEER’S LAW

Statement of 

Lambert Law
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Definition

Integration Form

of Lambert Law
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The constant a which is equal to k
–1.

The absorption of light by solutions of known concentration c is given by Beer’s 

law, according to which, we have

–
d I

I
∝ c

Combining the above equation with Eq. (3.3.1), we get

–
d I

I
∝ (dl) (c)

or –  
d I

I
 = k(dl) (c) (3.3.5)

Equation (3.3.5) is known as Lambert-Beer’s law which on integration gives 

ln
I

I0

 = – klc (3.3.6a)

or I = I0(10)–elc (3.3.6b)

where e = k/2.303 and has the unit of (concentration)(length)–1. It is knows as 

or molar

absorptivity):

Beer’s law is applicable for dilute solutions, deviations are observed for 

absorbance A

optical density).

A = elc (3.3.7)

reserved for diffusion of radiation rather than absorption.

The ratio I/I0 is called the transmittance. The amount of light absorbed is given 

by

I0 – I = I0 – I0 10–elc = I0 (1 – 10–e lc) (3.3.8)

For a solution containing more than one light absorbing substance, Lambert-Beer’s 

law takes the form

–
d I

I
= (dl) ( )k c

i i iÂ (3.3.9)

I = I0 -( )Âl k c
i

( )i i
(3.3.10a)

or I = I0 10- Âl ci i i( )e (3.3.10b)
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Absorbance of a 

Solution

Absorption

of a Solution

Containing

more than one 

Absorbing

Substance



250 A Textbook of Physical Chemistry

The absorbance of the solution in this case is given by 

A = l ei ii
cÂ  = ei ii

cÂ l = AiiÂ (3.3.11)

where Ai is the absorbance of the ith constituent.

Equation (3.3.11) indicates that the absorbance is additive, i.e. the absorbance of 

a solution is equal to the sum of absorbances of its constituents.

We have

I0 I1

Blue Yellow

I2?

It is given that

I

I

1

0

= 0.727 and
I

I

2

1

 = 0.407

Hence,
I

I

2

0

 = 
I

I

2

1

¥
I

I

1

0

 = 0.727 ¥ 0.407 = 0.296

In a given absorption cell transmittance of 0.1 mol dm–3 of A is 0.75 and that of 

0.1 mol dm–3 of B is 0.55 at a given wavelength. Calculate the transmittance of a solution 

that is simultaneous 0.1 mol dm–3 in A and 0.1 mol dm–3 in B.

The absorbance of 0.1 mol dm–3 in A is

A
A

 = e lc = – log 
I

I0

 = – log (0.75) = 0.124 9

Similarly, for 0.1 mol dm–3 in B is

AB = e lc = – log 
I

I0

 = – log (0.55) = 0.259 6

Now, the absorbance of the solution which is simultaneously 0.1 mol dm–3 in A and 0.1 

mol dm–3 in B is

A = A
A

 + AB = 0.124 9 + 0.259 6 = 0.384 5

Since   A = – log 
I

I0

Ê
ËÁ

ˆ
¯̃

therefore

I

I0

 = antilog (–A) = antilog (– 0.384 5) = antilog ( 1 .6165) = 0.412 5

(Note: Since absorbance is additive, transmittance will be multiplicative. Hence,

I/I0 = 0.55 ¥ 0.75 = 0.412 5.)

Example 3.3.1

Solution

Example 3.3.2

Solution
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A certain substance in a cell of length l absorbs 10 per cent of the incident light. What 

We have

log
I

I0 1

Ê
ËÁ

ˆ
¯̃

 = – ec l, where
I

I0 1

Ê
ËÁ

ˆ
¯̃

 = 0.9

log
I

I0 2

Ê
ËÁ

ˆ
¯̃

 = ec(5l)

Hence,
log( / )

log ( / )

I I

I I

0 2

0 1

 = 5

or log (I/I0)2 = 5 ¥ log (I/I0)1 = 5 ¥ log (0.9) = 5 ¥ 1.954 2 = 1 .771

Thus I/I0 = 0.590 2

Hence, light absorbed is 40.98 per cent.

In a cell of a certain length and at a pressure of 100 mmHg, gaseous acetone transmits 25.1 

per cent of the incident radiation of wavelength 265 nm. Assuming Beer’s law to apply, 

calculate the pressure at which 98 per cent of the incident radiation will be absorbed by 

acetone in the same cell at the same temperature.

For gaseous system, c in the Lambert-Beer’s law may be replaced by p. Thus, we have 

log
I

I0

Ê
ËÁ

ˆ
¯̃

 = – e lp

Since at 100 mmHg transmittance is 0.251, we have

log (0.251) = – e l(100 mmHg)

or (e l) = – 
log( . )0 251

100mmHg
 = 0.006 003 mmHg–1

For 98 per cent absorption or 2 per cent transmittance, we have

log (0.02) = – (el )p = – (0.006 003 mmHg–1)p

or p = – 
log ( . )

.

0 02

0 006 003 1mmHg-  = 283.0 mmHg

solution spectrophotometrically, the following data were obtained.

Solution [A] [B] Per cent Per cent

mol dm–3 mol dm–3 Transmittance Transmittance

at 400 nm at 500 nm

1 0.001 0 10 60

2 0 0.005 80 20

3 unknown unknown 40 50

Determine the concentrations of A and B in solution 3.

Example 3.3.3

Solution

Example 3.3.4

Solution

Example  3.3.5
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The relation between absorbance and transmittance is

A = el c = – log 
I

I0

Ê
ËÁ

ˆ
¯̃

For solution 1, we have

AA at 400 nm = e
A

lc
A

 = – log (10/100) = 1

AA at 500 nm = e
A

lc
A

 = – log (60/100) = 0.22

Since c
A

 = 0.001 mol dm–3, we have

(e
A

l )400 nm =
1

0 001 3. mol dm-  = 1000 mol–1 dm3

(e
A

l )500 nm = 
0 22

0 001 3

.

. mol dm-  = 220 mol–1 dm3

For solution 2, we have

AB at 400 nm = eBlcB = – log (80/100) = 0.097

AB at 500 nm = eBlcB = – log (20/100) = 0.699

Since cB = 0.005 mol dm–3, we have

(eBl )400 nm =
0 097

0 005 3

.

. mol dm-  = 19.4 mol–1 dm3

(eBl )500 nm =
0 669

0 005 3

.

. mol dm-  = 139.8 mol–1 dm3

For solution 3, we have

At 400 nm: (eAl )400 nm cA + (eBl )400 nm cB = – log (40/100) = 0.398

At 500 nm: (eAl )500 nm cA + (eBl)500 nm cB = – log (50/100) = 0.301

Substituting the values, we have

(1000 mol–1 dm3) cA + (19.4 mol–1 dm3) cB = 0.398

(220 mol–1 dm3) cA + (139.8 mol–1 dm3) cB = 0.301

Solving for c
A

 and cB, we get

c
A

 = 0.000 368 mol dm–3 and cB = 0.001 57 mol dm–3

Lambert-Beer’s law has been used to determine the equilibrium constant of the 

reaction

ABn
� ��
� �� A + nB

n absorbs appreciably. 

The absorbance of the solution is entirely due to ABn and we may write it as

A = {l ◊ e (ABn)}[ABn]

Solution

Spectrophotometric

Determination of 

Equilibrium

Constant
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known concentration of A (say, c

that the equilibrium is shifted to left and thus

[ABn]  [A]

For the above solution, A

{l ◊ e (ABn)} = 
Amax

c

Now the absorbance of a solution containing, respectively, the concentrations 

c and nc of A and B, is determined. Let it be represented by As. At these 

concentrations, the concentrations of various species at equilibrium are

[A]  = a c

[B]  = na c

[ABn] = (1 – a) c

Thus As = {l ◊e (ABn)}(1 – a) c = 
Amax

c
 (1 – a) c = A (1 – a)

Hence, a =
A A

A

max

max

- s

Knowing a, Kc

Kc = 
[ ][ ]

[ ]

A B

AB

n

n

 = 
( ) ( )

( )

a a

a

c n c

c

n

1-

We may proceed as follows.

Let two solutions containing different amounts of A and B be prepared in such a 

way that they have the same absorbance. Since absorbance is due to the absorption 

of ABn only, we have

{l × e(ABn)}[ABn]1 = {l ◊e(ABn)}[ABn]2 = A

or [ABn]1 = [ABn]2 = 
A

{ ( )}l n◊e AB
 = x

where x is an unknown parameter.

Now the concentrations of A and B in the two solutions at equilibrium will be

[A]1 = a1 – [ABn] = a1 – x

[B]1 = b1 – n[ABn] = b1 – nx

[A]2 = a2 – [ABn] = a2 – x

[B]2 = b2 – n[ABn] = b2 – nx

Kc = 
[ ][ ]

[ ]

A B

AB

n

n

Alternative

Procedure
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we get

Kc = 
( )( )a x b nx

x

n
1 1- -

Kc = 
( )( )a x b nx

x

n
2 2- -

which may be solved by eliminating x.

T

FeR3–
3  
� ��
� ��  Fe3+ + 3R2–

The absorbance of a solution in which the initial concentration of Fe3+ was 6 ¥ 10–5 mol 

dm–3 and that of R2– was 18 ¥ 10–5 mol dm–3

of R2–, the absorbance changes to 0.35. All measurements were made at the wavelength 

where only FeR3
3

– absorbs appreciably. Determine the values of a and Kc.

We have

a = 
A A

A

max

max

- s

Substituting the values, we get

a  = 
0 35 0 25

0 35

. .

.

-
 = 

0 10

0 35

.

.
 = 0.286

Now Kc = 
[ ][ ]

[ ]

Fe R

FeR

3 2 3

3
3

+ -

-  = 
( )( )

( )

a a

a

c n c

c

n

1-

where c = 6.0 ¥ 10–5 mol dm–3 and n = 3. Substituting the value of a, c and n, we get

Kc =
( . . ) ( . . )

( . )

0 286 6 0 10 3 0 286 6 0 10

1 0 286

5 3 5 3 3¥ ¥ ¥ ¥ ¥
-

- - - -mol dm mol dm

(( . )6 0 10 5 3¥ - -mol dm

  = 5.465 ¥ 10–14 (mol dm–3)3

(a) A solution containing 2.5 ¥ 10-5 mol dm–3 Bi3+ – was

to 360 nm light where only Bi(SCN)6
3– absorbs appreciably. The equilibrium reaction

setup is Bi(SCN)6
3–
� ��
� ��  Bi(SCN)4

– + 2SCN –

Bi(SCN)6
3–.

(b) If the initial concentrations of Bi3+ and SCN– were 2.5 ¥ 10–5 mol dm–3 and           

0.50 mol dm–3, respectively, the absorbance was found to be 0.280. Calculate K for 

the reaction

Bi(SCN)3
6
–
� ��
� ��  Bi(SCN) –

4 + 2SCN-

(a) Since  = ecl, we have

 e {Bi(SCN)6
3–} = 

A

cl
 = 

0 417

2 5 10 25 3

.

( . ) ( )¥ - -mol dm cm
 = 8 340 dm3 mol–1 cm-1

Example 3.3.6

Solution

Example 3.3.7

Solution
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(b) Let cs 6
3– when the initial concentrations 

of Bi3+ and SCN– are 2.5 ¥ 10–5 mol dm–3 and 0.50 mol dm–3, respectively. Since A

is proportional to c, we have

A ∝ c ; where c  = 2.5 ¥ 10-5 mol dm–3

As ∝ cs

Hence,
c

c

s

max

=
A

A

s

max

or cs = 
A

A

s

max

c  = 
0 280

0 417

.

.
¥ 2.5 ¥ 10–5 mol dm–3

    = 1.68 ¥ 10–5 mol dm–3

Thus, the concentrations of various species at equilibrium are

[Bi(SCN)–
4 ] = 2.5 ¥ 10–5 mol dm–3 – 1.68 ¥ 10–5 mol dm–3

         = 0.82 ¥ 10–5 mol dm–3

[SCN–] = 0.5 mol dm–3 – 6 (1.68 ¥ 10–5 mol dm–3)

    – 4 (0.82 ¥ 10–5 mol dm–3)

    0.50 mol dm-3

Hence, Kc = 
[Bi(SCN) ][SCN ]

[Bi(SCN) ]

4
2

6
3

- -

-

    = 
(0.82 10 mol dm )(0.5 mol dm )

(1.68 10 mol dm )

5 3 3

5 3

¥
¥

- - -

- -

2

    = 0.122 (mol dm–3)2

A solution of m-nitrophenol indicator of concentration 6.36 ¥ 10–4 mol dm–3 was

prepared and the following spectrophotometric measurements were made.

Condition Form of indicator Absorbance

strongly acidic HIn 0.142

strongly alkaline In– 0.943

pH = 8.321 HIn + In– 0.527

Determine the equilibrium constant of the reaction

HIn � ��� ��  H+ + In–

The absorbance is given by

 = e lc

Hence, {le(HIn)} = 
( )A acidic

c
 = 

0 142

6 36 10 4 3

.

. ¥ - -mol dm
 = 223 mol–1 dm3

{le(In–)} = 
( )A alkaline

c
 = 

0 943

6 36 10 4 3

.

. ¥ - -mol dm
 = 1 483 mol–1 dm3

Example  3.3.8

Solution
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At any other H+, we will have

A = {le(HIn)} cHin + {le(In–)} cIn–

Since cHIN + cIn– = 6.36 ¥ 10–4 mol dm–3

we have   A  = {l e (HIn)} (6.36 ¥ 10–4 mol dm–3 – cIn–) + {le(In–)} cIn–

or          A = {l e(HIn)} (6.36 ¥ 10-4 mol dm–3) + cIn– [{le(In–)} – {l e (HIn)}]

cIn– = 
A - ¥

-

- -

-
{ ( )}( . )

{ ( )} { ( )}

l

l l

e

e e

HIn mol dm

In HIn

6 36 10 4 3

Substituting the given value of A and those of {le(HIn)} and {le(In–)}, we get

cIn– = 
0 527 223 6 36 10

1 483

4

3

. .- ¥ ¥
-

-

- -mol dm 223 mol dm1 3 1  = 3.057 ¥ 10–4 mol dm–3

Hence, cHin = 6.36 ¥ 10–4 mol dm–3 – 3.057 ¥ 10–4 mol dm–3

   = 3.303 ¥ 10–4 mol dm–3

Since pH = 8.321, we have

[H+] = 4.775 ¥ 10–9 mol dm–3

Now K = 
[H ][In ]

[HIn]

+ -

 = 
( . ) ( . )

( . )

4 775 10 3 057 10

3 303 10

9 3 4 3

4 3

¥ ¥
¥

- - - -

- -
mol dm mol dm

mol dm

= 4.419 ¥ 10–9 mol dm–3

The per cent transmittance of a solution of bromophenol blue were determined at 590 nm

under the following conditions.

At the given wavelength, only the base form In– absorbs appreciably. Determine KHIn.

Since A = – log (I/I0)

we get A  = – log 
I

I0

Ê
ËÁ

ˆ
¯̃

stronglyalkaline

 = – log 
5 4

100

.Ê
ËÁ

ˆ
¯̃  = 1.267 6

As = – log 
I

I0

Ê
ËÁ

ˆ
¯̃

given pH

 = – log 
20

100

Ê
ËÁ

ˆ
¯̃  = 0.699

If a is the degree of dissociation of the indicator, we have

HIn � ��� ��  H+ + In–

c(1 – a)              ca

Now A  = le(In–)◊c

As = le(In–)(ca)

Hence, a =
A

A

s

max

 = 
0 699

1 267 6

.

.
 = 0.551

Example 3.3.9

Solution
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Now KHIn =
[H ][In ]

[HIn]

+ -

 = 
[ ]( )

( )

H+

-
c

c

a

a1
=

[ ]H+

-
a

a1

Since pH = 4.39, we will have 

[H+] = 4.074 ¥ 10–5 mol dm–3

Hence, KHIn =
(4.074 10 mol dm )(0.551)

(0.449)

5 3¥ - -

= 5.0 ¥ 10–5 mol dm–3

2+ and sulphosalicylate ions, i.e.

CuR � ��� ��  Cu2+ + R2–

it was found that a solution in which the initial concentrations of Cu2+ and R2– were 

0.016 mol dm–3 and 0.026 3 mol dm–3, respectively, has the same absorbance as 

a solution in which initial concentrations were Cu2+ = 0.019 mol dm–3 and R2– = 

0.019 mol dm–3. The wavelength used is such that only CuR absorbs appreciably. Determine 

Kc of the reaction.

We will have

Kc=
[Cu ][R ]

[CuR]

2 2+ -

 = 
( . ) ( . )0 016 0 02633 3mol dm mol dm- -- -x x

x

  =
( . )( . )0 019 0 0193 3mol dm mol dm- -- -x x

x

where x is the amount per dm3

Hence, (0.016 mol dm–3 – x)(0.026 3 mol dm–3 – x) = (0.019 mol dm–3 – x)2

or x =
( . )( . ) ( . )

( .

0 016 0 026 3 0 019

0 042 3

3 3 3 2mol dm mol dm mol dm

mol dm

- - -

-
-

33 30 038- -. )mol dm

  = 0.013 9 mol dm–3

Now Kc = 
[Cu ][R ]

[CuR]

2 2+ -

 = 
( . ) ( . )0 019 0 0193 3mol dm mol dm- -- -x x

x

  =
(0.019 mol dm 0.013 9 mol dm )

(0.013 9 mol dm )

3 3 2

3

- -

-
-

 = 0.001 870 mol dm–3

The value of n n can be determined spectrophotometrically. 

ABn
� ��
� ��  A + nB

we have

Kc = 
[ ][ ]

[ ]

A B

AB

n

n

Taking logarithm, we have

log K°c = log {[A]/c°} + n log {[B]/c°} – log {[ABn]/c°}

Example 3.3.10

Solution

Determination of 

Composition of 

the Complex AB
n



258 A Textbook of Physical Chemistry

A wavelength is chosen where only ABn absorbs appreciably. We will have

A = le(ABn)[ABn]

or [ABn] =
A

l ne( )AB

log K°c = log {[A]/c°} + n log {[B]/c°} – log A + log {le(ABn)/c°}

or log A = [log {le(ABn)/c°} + log {[A]/c°} – log K°c] + n log {[B]/c°}

Hence when [A] is kept constant, a plot of log A versus log {[B]/c°} gives a 
straight line whose slope is equal to n.

Alternatively, from the two readings, n

n = 
log log

log{[ ] / } log{[ ] / }

A A1 2

1 2

-
∞ - ∞B Bc c

For the determination of the value of n in Fe(SCN)n
3 – n

data are recorded below.

  Initial concentrations of

Experiment Fe3+ SCN – Absorbance

No. mol dm–3 mol dm–3

1 3.582 ¥ 10–3 8.28 ¥ 10–3 3.0

2 3.582 ¥ 10–3 3.05 ¥ 10– 4 0.127

What is the value of n

n =
log log

log{[ ] / } log{[ ] / }

A A1 2

1 2

-
∞ - ∞B Bc c

we get n =
log( . ) log( . )

log( . ) log( . )

3 0 0 127

0 008 28 0 000 305

-
-

 = 
0 477 1 1 103 8

3 918 0 4 484 3

. .

. .

-
-

 = 
1 376 3

1 433 7

.

.

  = 0.96  1

Photoc

The primary process of the reaction is the light absorbing process which follows 
the law of photochemical equivalence. As stated earlier, the photon absorbed by 

Franck-Condon rule, according to which, the time required for the electronic 

Based on the relationship between the lower and the upper electronic levels, 
four types of primary processes are possible. A brief discussion on these four 

processes is in order.†

Example 3.3.11

Solution

Primary Process

3.4 PRIMARY AND SECONDARY PROCESSES

† For detail, see chapter 4 of volume 4 of the book.
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Type I In this case, the vibrational energy of the molecule in the upper electronic 

vibration-rotation bands converging to a limit and followed by a region of continu-

ous absorption.

Type II

The electronic spectrum consists of a series of bands with no continuous region.

Type III The molecule is again dissociated as the upper level represents an 

unstable state. The electronic spectrum is continuous throughout. 

Type IV In this case, stable and unstable upper levels overlap each other. 

Transition occurs from the lower level to the stable upper level. During the course 

of vibration, the molecule is switched over to the unstable one at the point where 

two levels cross each other; and the molecule then dissociates. This behaviour is 

referred to as predissociation. The electronic spectrum consists of a banded region. 

In the predissociation region, the rotational lines are absent and the vibrational 

bands have diffuse appearance.

The products of primary process may involve in subsequent thermal  reactions. 

These processes are known as secondary processes. The secondary process may 

involve only one step or more than one step. Sometimes, the secondary processes 

represent the chain reaction.

processes:

Primary process HI
hvæ Ææ  H + I

Secondary Processes H + HI ⎯→⎯ H2 + I

   I + I ⎯→⎯  I2

F = 
Rate of conversion

Rate of photon absorption
=

d d

d /d

x

g

/ t

n t

F = 
Amount of the substance reacted

Amount of photons absorbed

In terms of number of substance reacted, we have

F = 
Number of molecules reacted

Number of photons absorbed

A

always be equal to one. But reactions of low and high quantum yields (as low as 

0.04 and as high as 105) are known.

Secondary

Processes

3.5 QUANTUM EFFICIENCY

Definition
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For a primary process, the quantum yield is always one, it is the secondary  

processes which alter the overall quantum yield of the reaction. Therefore, the 

determination of quantum yield helps understanding the nature of secondary 

processes.

The amount of photons absorbed are counted either with a thermopile or a chemical 

actinometer.

The thermopile is made up of a large number of junctions of two dissimilar 

metals. The radiation falling on it is converted into thermal energy. The increase in 

temperature is a measure of the intensity of radiation. The instrument is calibrated 

with standard lamps.

A chemical actinometer depends on the use of a photochemical reaction of 

known quantum yield. A common reaction used in actinometers is the decomposition 

2
2+ absorbs light in 

2
2+ transfers the 

s decomposed. The reactions are

UO2
2+ + hn ⎯→⎯  (UO2

2+)*

(UO2
2+)* + (COOH)2

⎯→⎯  UO2
2+ + CO2 + CO + H2O

The

4

the amount of photons absorbed can be determined.

The radiation used for the photochemical reaction must be monochromatic. These 

are usually obtained by using discharge tubes which give atomic line spectra; the 

prism in a spectrograph. A device of this kind is called a monochromator.

A schematic diagram of the apparatus used for the study of a photochemical reaction 

is shown in Fig. 3.5.1, where A represents a light source emitting radiation of 

suitable intensity in the desired spectral range, B is the lens, C is the monochromator 

recorder where its intensity is measured.

A

B C D E

reading is recorded. This gives the total energy incident upon the system in a given 

to the radiation over the same interval of time and the reading is recorded. This 

gives the total energy transmitted. The difference between the two readings gives 

Determination

of Number of 

Photons Absorbed

Experimental

set up of 

Photochemical

Reactions

Fig. 3.5.1 Experimental

set up to study 

photochemical reactions
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processes and hence the mechanism of chemical reactions. If the absorption of 

by any one of the following steps.

 ∑
absorbed. The emitted radiation is called resonance radiation.

 ∑ 

 ∑ The molecule may collide with other molecules and pass on them some or all 

molecule or can gradually be degraded into heat.

 ∑
 ∑ 

On the other side, if the absorption lies in the continuous region, the molecule 

dissociates to produce active species which react with the reactant molecules or 

other molecules in the secondary processes.

With the above facts, it is easy to understand the reasons for obtaining the low 

A few reasons are:

energy of other molecules (heating effects are produced).

3. The secondary process may involve a step which produces the reactant molecule 

as one of the products.

the molecule.

The high quantum yield is attributed to the chain reactions caused by the generation 

of atoms or free radicals in the primary process. The quantum yield depends on 

the length of the chain propagating steps.

In the photochemical decomposition of ethylene iodide

C2H4I2 + hv ⎯→⎯  C2H4 + I2

with radiation of 424 nm, the iodine formed after 20 minutes required 41.14 cm3 of

0.002 5 mol dm–3 solution of Na2S2O3. The intensity of the light source was 9.15 ¥ 10
–4 J 

s–1. Calculate the quantum yield assuming absorption of the energy was complete.

The quantity of energy consumed in 20 minutes

= (9.15 ¥ 10–4 J s–1) (20 ¥ 60 s) = 1.098 J
Energy associated with 1 mol of photons of wavelength 424 nm

Reasons of Low 

and High Quantum 

Efficiency

Low Quantum 

Yield

High Quantum 

Yield

Example  3.5.1

Solution
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=
N hcA

l
 = 
( . )( . )( )

( )

6 022 10 6 626 10 3 10

424 10

23 1 34 8 1

9

¥ ¥ ¥
¥

- - -

-
mol J s m s

m

= 2.823 ¥ 105 J mol–1

Amount of radiation consumed

=
1 098

2 823 105
.

( . )

J

J mol 1¥ -  = 3.890 ¥ 10–6 mol

Amount of S2O
2 –
3  consumed

= (0.002 5 mol dm–3) (0.041 14 dm3) = 1.028 ¥ 10–4 mol

From the reaction 2S2O
2 –
3  + I2 Æ S4O

2–
6   + 2I

–, we get

Amount of ethylene iodide reacted = amount of iodine formed

=
1 028 10

2

4.  ¥ mol
 = 0.514 ¥ 10–4 mol

Hence, Quantum yield = 
Amount of ethylene iodide reacted

Amount of radiation absorbed

          = 
(0.514 5 mol

mol

¥
¥

-

-
10

3 890 10

4

6

)

( . )
 = 13.225

The photochemical dissociation of gaseous HI to form hydrogen and iodine atoms requires 

radiation of 404 nm or less. (a) Determine the molar energy of dissociation of HI. (b) If 

(a) On absorbing one photon of wavelength 404 nm, one molecule of HI is dissociated. For 

the decomposition of one mole of HI, we will require NA photons. Hence, energy carried 

by these photons is

E = 
N hcA

l
 = 
( . ) ( . ) ( )

( )

6 022 10 6 626 10 3 10

404 10

23 1 34 8 1

9

¥ ¥ ¥
¥

- - -

-
mol J s m s

m

= 2.963 ¥ 105 J mol–1

which is molar energy of dissociation of HI.

(b) If the wavelength of the incident light is less than 404 nm, the atoms after dissociating 

radiation of wavelength 253.7 nm will carry an energy

N hcA

l
 = 
( . )( . ) ( )

( . )

6 022 10 6 626 10 3 10

253 7 10

23 1 34 8 1

9

¥ ¥ ¥
¥

- - -

-
mol J s m s

m

= 4.719 ¥ 105 J mol–1

= (4.719 ¥ 105 – 2.963 ¥ 105) J mol–1 = 1.756 ¥ 105 J mol–1

When acetone vapour is irradiated with light of wavelength 313 nm it decomposes to form 

(CH3)2CO + hv ⎯→⎯   C2H6 + CO

Example  3.5.2

Solution

Example 3.5.3
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Using a reaction cell of 60.3 cm3 capacity and a temperature of 329 K irradiation for 23 000 s

at the rate of 8.52 ¥ 10–3 J s–1 produced a change in pressure from 760.0 to 790.4 mmHg. 
Calculate (a) the number of molecules of acetone decomposed, and  (b) the quantum yield.

(a) Change in pressure = 790.4 mmHg – 760.0 mmHg = 30.4 mmHg. This increase in 

pressure is due to the increase in the number of gaseous molecules. There is an increase of 

one molecule per molecule of acetone dissociated. Hence, number of molecules of acetone 

dissociated as given by ideal gas law is

( )D p V

RT
NA = 

1 013 10

760
30 4

60 3

10

8 314

5
2

6

3

1

.
.

.

( . ) (

¥
¥

Ê
ËÁ

ˆ
¯̃

Ê
Ë

ˆ
¯

-

- -

N m m

N m K mol1 3329 K)
¥ (6.022 ¥ 1023 mol–1)

   = 5.38 ¥ 1019

(b) Quantity of energy absorbed

  = (8.52 ¥ 10–3 J s–1) (23 000 s) = 195.96 J

Number of photons absorbed

  =
( . )

/

195 96 J

hc l
  = 

( . )( )

( . )(

195 96 313 10

6 626 10 3 10

9

34 8 1

J m

J s m s )

¥
¥ ¥

-

- -

  = 3.086 ¥ 1020

Hence, F = 
5 38 10

3 086 10

19

20

.

.

¥
¥  = 0.174

In the photochemical combination of H2(g), and Cl2
1 ¥ 106 is obtained with a wavelength of 480 nm. What amount of HCl(g) would be produced 

Energy associated with 1 mol of photons of wavelength 480 nm 

  = 
N hcA

l
 = 
( . ) ( . ) ( )

( )

6 022 10 6 626 10 3 10

480 10

23 1 34 8 1

9

¥ ¥ ¥
¥

- - -

-
mol J s m s

m

      = 2.494 ¥ 105 J mol–1

Amount of photons in 1 cal (i.e. 4.184 J)

      = 
( . )

.

4 184

2 494 105 1

J

Jmol¥ -  = 1.677 ¥ 10–5 mol

Since   F  = 
Amount of substance reacted

Amount of photons absorbed
,  we have 

  1 ¥ 106 = 
Amount of Cl reacted

1.677 10 mol

2
 5¥

Hence,

Amount of Cl2 reacted = (1 ¥ 10
6)(1.677 ¥ 10–5 mol) = 16.77 mol

1 mol of Cl2 on reacting produces 2 mol of HCl. Hence, amount of HCl produced is

33.54 mol.

Solution

Example 3.5.4

Solution
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In 10 cm3 of a solution of 0.049 5 mol dm–3 –3 uranyl sulphate 

–3. What is the quantum yield at this 

1 mol of photons of wavelength 254 nm carries energy

=
N hcA

l
 = 
( . )( . ) ( )

( )

6 022 10 6 626 10 3 10

254 10

23 1 34 8 1

9

¥ ¥ ¥
¥

- - -

-
mol J s m s

m

= 4.714 ¥ 105 J mol–1

Amount of photons absorbed

=
( . )

( . )

88 1

4 714 105 1

J

J mol¥ -  = 1.869 ¥ 10–4 mol

3 of the solution

=
0 049 5 0 038 3

1000 3

. .mol mol

cm

-Ê
ËÁ

ˆ
¯̃
(10 cm3)   

= 1.12 ¥ 10–4 mol

Hence, F = 
Amount of oxalic acid reacted

Amount of photons absorbed
 = 

1 12 10

1 869 10

4

4

.

.

¥
¥

-

-
mol

mol
 = 0.599   

Absorption of UV radiation decomposes acetone according to the reaction

(CH3)2CO
hnæ Ææ C2H6 + CO

The quantum yield of the reaction at 280 nm is 0.2. A sample of acetone absorbs 

monochromatic radiation at 280 nm at the rate of 7.50 ¥ 10–3 J s–1. Calculate the rate of 
formation of CO.

Energy carried by 1 mol of photons

=
N hcA

l
 = 
( . ) ( . ) ( )

( )

6 022 10 6 626 10 3 10

280 10

23 34 8

9

¥ ¥ ¥
¥

- - -

-
mol J s m s

m

1 1

= 4.275 ¥ 105 J mol–1

Amount of photons absorbed per second

=
7 50 10

4 275 10

3

5

.

.

¥
¥

- -

-
J s

J mol

1

1 = 1.754 ¥ 10
– 8 mol s–1

Since 1 mol of acetone of decomposing produces 1 mol of CO, therefore

Amount of CO produced in one second 

              = (Amount of photon absorbed) (Quantum yield)

= (1.754 ¥ 10–8 mol s–1 ) (0.2)

= 3.508 ¥ 10–9 mol s–1

Example 3.5.5

Solution

Example 3.5.6

Solution
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As indicated earlier, a photochemical reaction includes two types of processes, 

namely primary and secondary processes. In the primary process, the radiation is 

is always equal to one (law of photochemical equivalence). Hence, the number 

of molecules of light absorbing substance removed per unit time (i.e. the rate at 

which light absorbing substance is removed) in the primary process is equal to 

the intensity of the light.

process;

Br2

hvæ Ææ 2Br

Now  F =
Amount of Br decomposed per unit time

Amount of radiation absorbed p

2

eer unit time

  =
-d Br ] d2

abs

[ t

I

Now since F = 1, we will have

-d Br ]

d

2[

t
 = Iabs

If the amount of Br formed in primary step is required, we will have 

d Br]

d

[

t
 = 2 Iabs

The nature of products formed in the primary process depends on the obtained 

absorption spectrum. If the spectrum includes only a series of lines (i.e. banded), 

then the molecule on absorption dissociates and thus active atoms of radicals are 

produced.

The secondary processes represent the thermal reactions which also include 

the reaction (or reactions) between the products of primary process and other 

substances. The rate at which these reactions proceed can be represented as usual 

by the differential rate law.

for any other thermal reaction. The only difference that appears is while writing 

the differential rate law of the primary process.

In general, the rate of photochemical reactions depends on the intensity of 

absorbed light.

To illustrate the procedure, we describe below a few photochemical reactions.

3.6 KINETICS OF PHOTOCHEMICAL REACTIONS
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The decomposition of HI has been studied with wavelengths of 207, 253 and           

282 nm. The electronic spectrum of hydrogen iodide is continuous in the region 

from about 332 nm to below 200 nm wavelength, hence the dissociation of HI is 

involved in the primary process. Thus the mechanism of the reaction is:

Primary process HI
hvæ Ææ H + I

Secondary processes H + HI
k2æ Ææ H2 + I

I + I
k3æ Ææ I2

The rate of disappearance of HI

–
d HI]

d

[

t
 = Iabs + k2 [H] [HI] (3.6.1)

d H]

d

[

t
 = 0 = Iabs – k 2 [H] [HI]   (3.6.2)

Hence,    k 2 [H] [HI] = Iabs (3.6.3)

Substituting Eq. (3.6.3) in Eq. (3.6.2), we get

–
d HI]

d

[

t
 = 2Iabs (3.6.4)

F  = 
Rate of disappearance of HI

Rateat which photon is absorbed
 = 

d HI d

abs

[ ] / t

I

 = 
2 abs

abs

I

I
 = 2 (3.6.5)

this is that as iodine accumulates, the thermal reaction

H + I 2
k4æ Ææ  HI + I

becomes appreciable. With the inclusion of this reaction, the steady-state 

d H

d

[ ]

t
 = 0 = Iabs – k 2 [H][HI] – k4 [H][I 2]

Hence, [H] =
I

k k

abs

2HI I2 4[ ] [ ]+

–
d HI

d

[ ]

t
= Iabs + k2[H][HI] – k4[H] [I2]

we get  – 
d HI

d

[ ]

t
= Iabs + (k2[HI] – k4[I2] ) 

I

k k

abs

2HI I ]2 4[ ] [+

or –
d HI

d

[ ]

t
= Iabs

2

1 4 2+
Ê
ËÁ

ˆ
¯̃k k[ ] / [ ]I HI2

Decomposition

of HI
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Hence,  F =
2

1 4 2+ k k[ ] / [ ]I HI2

(3.6.6)

With time, the concentration of I2 increases and that of HI decreases, with the 

result the F decreases from its original value of 2.

The mechanism of thermal decomposition of HI is quite different, where we have

2 HI Æ
H H

I I

Æ H2 + I2

and the rate law is

–
1

2

d HI

d

[ ]

t
 = k [HI]2

The mechanism of photochemical reaction between H2 and Br2 is similar to that 

established for the thermal reaction. The mechanism is

(i) Br2
hvæ Ææ 2Br

(ii) Br + H2
k2æ Ææ HBr + H

(iii) H + Br2
k3æ Ææ HBr + Br

(iv) H + HBr
k4æ Ææ H2 + Br

(v) Br + Br
k5æ Ææ Br2

The rate of formation of HBr is given by

d HBr

d

[ ]

t
 = k 2[H2][Br] + k 3[H][Br2] – k4[H][HBr] (3.6.7)

d H

d

[ ]

t
 = 0 = k2[H2][Br] – k 3[H][Br2] – k4[HBr][H] (3.6.8)

d Br

d

[ ]

t
 = 2Iabs – k2[H2][Br] + k3[H][Br2] + k4[HBr][H] – 2k5[Br]2 (3.6.9)

(Note

the fact that 2 atoms of Br are produced per bromine molecule decomposed; in the 

– (1/2)d[Br]/dt = k5 [Br]2, hence – d[Br]/dt = 2k5 [Br]2 .)

On adding Eqs (3.6.8) and (3.6.9), we get

2Iabs – 2k5 [Br]2 = 0

or [Br] = 
I

k

abs

5

1 2
Ê
ËÁ

ˆ
¯̃

/

(3.6.10)

Substituting Eq. (3.6.10) in Eq. (3.6.8), we get

[H] = 
k I k

k k

2 5
1 2

2

3 4

( / ) [ ]

[ ] [ ]

/
abs

2

H

Br HBr+
(3.6.11)

Reaction between 

Hydrogen and 

Bromine
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Now substituting Eqs (3.6.10) and (3.6.11) in Eq. (3.6.7), we get

d HBr

d

[ ]

t
= k2 [H2]

I

k

abs

5

1 2
Ê
ËÁ

ˆ
¯̃

/

 + 
k I k

k k

2 5
1 2

2

3 4

( / ) [ ]

[ ] [ ]

/
abs

2

H

Br HBr+
 (k3[Br2] – k4[HBr] )

  = k2[H2]
I

k

abs

5

1 2
Ê
ËÁ

ˆ
¯̃

/

1 3 4

3 4

+
-
+

È

Î
Í

˘

˚
˙

k k

k k

[ ] [ ]

[ ] [ ]

Br HBr

Br HBr

2

2

  =
2

1

2 5
1 2

2

4 3 2

k I k

k k

( / ) [ ]

( [ ] / [ ])

/
abs H

HBr Br+
(3.6.12)

2]/dt, which is given

as

–
d Br

d

2[ ]

t
 = Iabs + k3[H][Br2] – k5[Br]2

Substituting [Br] and [H] from Eqs (3.6.10) and (3.6.11), we get

–
d Br

d

2[ ]

t
= Iabs + k3[Br2]

k I k

k k

2 5
1 2

2

3 4

( / ) [ ]

[ ] [ ]

/
abs

2

H

Br HBr+
Ê
ËÁ

ˆ
¯̃

 – k5

I

k

abs

5

Ê
ËÁ

ˆ
¯̃

or  – 
d Br

d

2[ ]

t
 = 

k I k

k k

2 5
1 2

2

4 3 21

( / ) [ ]

( [ ] / [ ])

/
abs H

HBr Br+
(3.6.13)

(Note that d [HBr]/d t = 2 (– d [Br2]/d t). This follows immediately from the fact 

that 1 mol of Br2 on reacting with 1 mol of H2 will produce 2 mol of HBr.)

Hence,

F = 
- d Br d2

abs

[ ] / t

I
 = 

1
1 2Iabs

/

k k

k k

2 5
1 2

2

4 3 2

1

1

( / ) [ ]

( [ ] / [ ])

/ H

HBr Br+
(3.6.14)

The activation energy for the reaction (ii), i.e. between Br and H2 is about          
–1. Consequently, the reaction (ii) is slow at room temperature and thus 

k2

have a small value in spite of the fact that the HBr is formed in a chain reaction. 

On increasing the temperature, k2 increases (k5 is nearly independent of temperature 

as it involves the reaction between two atoms) and thus F is also increased.

The proposed mechanism of photochemical reaction between CO and Cl2 is

(i) Cl2
hvæ Ææ 2 Cl

(ii) Cl + CO
k2æ Ææ COCl

(iii) COCl
k3æ Ææ CO + Cl

(iv) COCl + Cl2
k4æ Ææ COCl2+ Cl

(v) COCl + Cl
k5æ Ææ CO + Cl2

Reaction between 

CO and Cl2
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The rate of formation of phosgene is given by

d COCl

d

2[ ]

t
 = k4[COCl][Cl2] (3.6.15)

d Cl

d

[ ]

t
= 0 = 2 Iabs – k2[Cl][CO] + k3[COCl] + k4[COCl][Cl2]

– k5[COCl][Cl] (3.6.16)
d COCl

d

[ ]

t
= 0 = k2[Cl][CO] – k3[COCl] – k4[COCl][Cl2 ]

– k5[COCl][Cl] (3.6.17)

Adding Eqs (3.6.16) and (3.6.17), we get

2Iabs – 2k5 [COCl][Cl] = 0

or      [COCl] = 
I

k

abs

Cl]5 [
   (3.6.18)

Reactions (ii) and (iii) together constitute a reversible reaction system. Hence 

applying the principle of microscopic reversibility (the rates of forward and 

 k2[Cl][CO] = k3[COCl]

Hence,     [Cl] = 
k

k

3

2[CO]
[COCl]

[Cl] =
k

k

3

2[CO]
◊

I

k

abs

Cl]5[

or [Cl] =
k I

k k

3

2 5

1 2

abs

CO][

/
Ê
ËÁ

ˆ
¯̃

(3.6.19)

Substituting Eq. (3.6.19) in Eq. (3.6.18), we get

[COCl] = 
I

k

abs

5

k k

k I

2 5

3

1 2
[CO

abs

]
/

Ê
ËÁ

ˆ
¯̃

=
k I

k k

2

3 5

1 2
[CO abs]

/
Ê
ËÁ

ˆ
¯̃

which on substituting in Eq. (3.6.15) gives

d COCl

d

2[ ]

t
= k4

k I

k k

2

3 5

1 2
[CO abs]

/
Ê
ËÁ

ˆ
¯̃

 [Cl2] (3.6.20)

  = k Iabs
1/2 [CO]1/2 [Cl2]

where k = k4(k2/k3k5)
1/2.

The rate of disappearance of Cl2 is given by

–
d Cl

d

2[ ]

t
 = Iabs + k4[COCl][Cl2] – k5[COCl][Cl]
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–
d Cl

d

2[ ]

t
= Iabs + k4

k I

k k

2

3 5

1 2
[ ]

/
CO absÊ

ËÁ
ˆ
¯̃

[Cl2] – Iabs

  = k4

k I

k k

2

3 5

1 2
[ ]

/
CO absÊ

ËÁ
ˆ
¯̃

[Cl2] (3.6.21)

which is the same as given by Eq. (3.6.20). Hence

F = 
-d Cl d

abs

[ ] /2 t

I
 = k4

k

k k I

2

3 5

1 2
[ ]

/
CO

abs

Ê
ËÁ

ˆ
¯̃

 [Cl2] (3.6.22)

The proposed mechanism is

CH3CHO
hvæ Ææ  CH3 + CHO

CH3 + CH3CHO
k2æ Ææ  CH4 + CH3CO

CH3CO
k3æ Ææ  CO + CH3

CH3 + CH3
k4æ Ææ  C2H6

The rate of formation of CO is

d CO

d

[ ]

t
 = k3[CH3CO] (3.6.23)

3CO and CH3, we get

d CH CO]

d

3[

t
 = 0 = k2[CH3][CH3CHO] – k3[CH3CO] (3.6.24)

d CH ]

d

3[

t
 = 0 = Iabs – k2[CH3][CH3CHO] + k3[CH3CO] – 2k4[CH3]2

   
   (3.6.25)

Adding Eqs (3.6.24) and (3.6.25), we get

[CH3] = 
I

k

abs

2 4

1 2
Ê
ËÁ

ˆ
¯̃

/

(3.6.26)

Substituting Eq. (3.6.26) in Eq. (3.6.24), we have

k2

I

k

abs

2 4

1 2
Ê
ËÁ

ˆ
¯̃

/

 [CH3CHO] – k3[CH3CO] = 0

or [CH3CO] =
k

k

2

3

I

k

abs

2 4

1 2
Ê
ËÁ

ˆ
¯̃

/

[CH3CHO] (3.6.27)

Substituting Eq. (3.6.27) in Eq. (3.6.23), we get

d CO

d

[ ]

t
 = k2

I

k

abs

2 4

1 2
Ê
ËÁ

ˆ
¯̃

/

 [CH3CHO] (3.6.28)

Photolysis of 

Acetaldehyde
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The proposed mechanism is

H2O2
hvæ Ææ  2OH

OH + CO
k2æ Ææ  COOH

COOH + H2O2
k3æ Ææ  CO2 + H2O + OH

H2O2 + OH
k4æ Ææ  H2O + HO2

2HO2
k5æ Ææ  O2 + H2O2

The rate of formation of O2 is given by

d O

d

[ ]2

t
 = k5[HO2]2 (3.6.29)

2, OH and COOH, we get

d HO

d

[ ]2

t
= 0 = k4[H2O2][OH] – 2k5[HO2]

2 (3.6.30)

d OH

d

[ ]

t
= 0 = 2Iabs – k2[OH][CO] + k 3[COOH][H2O2 ]

– k4[H2O2][OH] (3.6.31)
d COOH

d

[ ]

t
 = 0 = k 2[OH][CO] – k3[COOH][H2O2 ] (3.6.32)

Adding Eqs (3.6.31) in (3.6.32), we get

2Iabs – k4[H2O2][OH] = 0

or    [OH] = 
2

4

I

k

abs

2 2H O[ ]
(3.6.33)

Substituting Eqs (3.6.33) in (3.6.30), we get

k4[H2O2]
2

4

I

k

abs

2 2H O[ ]

Ê
ËÁ

ˆ
¯̃

 – 2k5[HO2]2 = 0

or         [HO2] = 
I

k

abs

5

1 2
Ê
ËÁ

ˆ
¯̃

/

(3.6.34)

which on substituting in Eq. (3.6.29) gives

d[O

d

2 ]

t
 = Iabs

For calculating F , we have to evaluate – d [H2O2]/dt. From the given mechanism, 

we have

–
d[H O ]

d

2 2

t
  = Iabs + k3[COOH][H2O2] + k4[H2O2][OH] – k5[HO2]2  

(3.6.35)

From Eq. (3.6.32), we get

[COOH] = 
k

k

2

3

[ ][ ]

[

OH CO

H O ]2 2

[COOH] = 
2 2

3 4
2

k I

k k

abs

2 2

CO

H O ]

[ ]

[
(3.6.36)

Decomposition

of H2O2 in the 

Presence of CO
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Substituting for [OH], [HO2] and [COOH] from Eqs (3.6.33), (3.6.34) and 

(3.6.36) in Eq. (3.6.35), we get

–
d H O

d

2 2[ ]

t
= Iabs + k3

2 2

3 4
2

k I

k k

abs

2 2

CO

H O ]

[ ]

[

Ê
ËÁ

ˆ
¯̃

 [H2O2]

+ k4[H2O2]
2

4

I

k

abs

2 2H O[ ]

Ê
ËÁ

ˆ
¯̃

 – k5

I

k

abs

5

Ê
ËÁ

ˆ
¯̃

= 2Iabs 1 2

4

+
Ê
ËÁ

ˆ
¯̃

k

k

[ ]

[ ]

CO

H O2 2

(3.6.37)

Hence, F  =
-d H O d2 2

abs

[ ] / t

I
 = 2 1 2

4

+
Ê
ËÁ

ˆ
¯̃

k

k

[ ]

[ ]

CO

H O2 2

(3.6.38)

For the gaseous reaction

Cl2 + CHCl3
hvæ Ææ  CCl4 + HCl

the proposed mechanism is

Cl2
hvæ Ææ  2Cl

Cl + CHCl3

k2æ Ææ  CCl3 + HCl

CCl3 + Cl2
k3æ Ææ  CCl4 + Cl

2CCl3 + Cl2
k4æ Ææ  2CCl4

The rate of formation of CCl4 is

d CCl

d

4[ ]

t
 = k3[CCl3 ][Cl2] + 2k4[CCl3]

2[Cl2] (3.6.39)

3 and Cl, we get

d CCl

d

3[ ]

t
= 0 = k 2[Cl][CHCl3] – k3[CCl3][Cl2]

– 2k4[CCl3]2[Cl2] (3.6.40)

d Cl

d

[ ]

t
= 0 = 2Iabs – k2[Cl][CHCl3] + k3[CCl3][Cl2] (3.6.41)

Adding Eqs (3.6.40) and (3.6.41), we get

2Iabs – 2k4[CCl3]
2[Cl2] = 0

or [CCl3] = 
I

k

abs

2Cl4

1 2

[ ]

/
Ê
ËÁ

ˆ
¯̃

(3.6.42)

Substituting Eq. (3.6.42) in Eq. (3.6.39), we get

d CCl

d

4[ ]

t
= k3

I

k

abs

2Cl4

1 2

[ ]

/
Ê
ËÁ

ˆ
¯̃

 [Cl2] + 2k4

I

k

abs

2Cl4[ ]
 [Cl2]

  = 2 Iabs + k3

I

k

abs 2Cl[ ]
/

4

1 2
Ê
ËÁ

ˆ
¯̃

(3.6.43)

Chlorination of 

Chloroform
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For the quantum yield, we determine – d[Cl2]/dt. From the given mechanism, we 

have

–
d Cl

d

2[ ]

t
 = Iabs + k3[CCl3 ][Cl2] + k4[CCl3]

2[Cl2]

Substituting for [CCl3] from Eq. (3.6.42), we get

–
d Cl

d

2[ ]

t
= Iabs + k 3

I

k

abs

2Cl4

1 2

[ ]

/
Ê
ËÁ

ˆ
¯̃

[Cl2] + k4

I

k

abs

2Cl4[ ]

Ê
ËÁ

ˆ
¯̃

 [Cl2]

  = 2Iabs + k 3

I

k

abs 2Cl[ ]
/

4

1 2
Ê
ËÁ

ˆ
¯̃

(3.6.44)

Equation (3.6.44) follows from Eq. (3.6.43), since – d[Cl2]/dt = d[CCl4]/dt.

Hence, F =
-d Cl ] d2

abs

[ / t

I
 = 2 + k3

[ ]
/

Cl2

absI k4

1 2
Ê
ËÁ

ˆ
¯̃

(3.6.45)

The effect of temperature on photochemical reactions is primarily due to the type 

and nature of secondary processes. The primary process of light absorption is 

practically independent of temperature.

If the secondary process involves the active atom or radical produced in the 

primary process, its activation energy is usually very small and thus very small 

secondary processes possess a large activation energy, then the photochemical 

involve a reversible reaction of appreciable energy of reaction and if its equilibrium 

between CO and Cl2 may be described here. The rate of formation of COCl2 as 

given by Eq. (3.6.20) is

d COCl

d

2[ ]

t
= k I1/2

abs [CO]1/2 [Cl2]

where   k = k4

k

k

2

3

1 2
Ê
ËÁ

ˆ
¯̃

/
1

5

1 2

k

Ê
ËÁ

ˆ
¯̃

/

= k4 K1/2 1

5

1 2

k

Ê
ËÁ

ˆ
¯̃

/

    
k

mol dm s1 3 1/2- -  = 
k4

mol dm s1 3 1/2- -
Ê
ËÁ

ˆ
¯̃

k k2 3/

mol dm1 3-
Ê
ËÁ

ˆ
¯̃

mol dm s1 3 1

5

- -Ê

ËÁ
ˆ

¯̃k

1 2/

that is 

k

k∞
 = 

k

k

4

4∞
Ê
ËÁ

ˆ
¯̃ (Kc°)

k

k

∞Ê
ËÁ

ˆ
¯̃

5

5

1 2/

3.7 EFFECT OF TEMPERATURE ON PHOTOCHEMICAL REACTIONS
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d

d

ln ( / )k k

T

∞
=

d ln

d

( / )k k

T

4 4
∞

 + 
1

2

d ln

d

( )Kc

T

∞
 – 

1

2

d ln

d

( / )k k

T

5 5∞

  =
1

2RT
E H E4 5

1

2

1

2
+ -Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇

D

where E4 and E5 are the activation energies of reactions

COCl + Cl2 æ Ææ  COCl2 + Cl

COCl + Cl æ Ææ  CO + Cl2
and DH is the  enthalpy change of the reaction

Cl + CO � ��� ��  COCl

Hence, the variation of the overall rate constant of the reaction depends on E4,

E5 and DH values.

a reversible reaction in secondary processes with a large negative value of DH.

process, i.e. the reaction proceeds in one step with the absorption of radiation. 

helps establishing the mechanism of a reaction.

Absorption of radiation by reactants of a reaction at equilibrium increases the rate 

of forward reaction without directly affecting the rate of the reverse reaction. The 

latter is, however, increased due to the increase in the concentration of products. 

Thus, a new state called the photostationary state (or photochemical equilibrium) is 

established when the increase in the rate of forward reaction (due to the absorption 

of light) becomes equal to the increase in the  rate of reverse reaction (due to the 

enhanced concentration of the products).

photochemical reactions, namely, the 

by collisions is about 10–8

a large number of collisions in 10–8

3.8 THE PHOTOSTATIONARY STATE

Explanation of the 

Photostationary

State

Dimerization of 

Anthracene
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Fluorescence

F

[A]/mol dm-3

F
o
r 

F
lu

o
re

sc
en

ce

resce (there are about 100 collisions in 10–8 second at a pressure of 1 atm). The 

the following scheme.

Absorption M + hv
Iabsæ Æææ  M*

Fluorescence M*
kfæ Ææ M + hv ¢

Quenching M* + Q
kqæ Ææ

d M

d

[ *]

t
= Iabs – k f[M*] – kq[M*][Q] = 0

or Iabs = k f[M*] + kq[M*][Q]

If will be given by

I f = kf[M*]

given by

I

I

f

abs

 = 
k

k k

f

f q

[M*

M* M* Q

]

[ ] [ ][ ]+
 = 

1

1+ ( / )[ ]k kq f Q

or
1

If

 = 
1

Iabs

 + 
( / )k k

I

q f

abs

 [Q]

Stern-Volmer relation. According to this, a plot 

between 1/If and [Q] will be linear of slope (kq /k f )/Iabs and intercept 1/Iabs. Hence, 

(kq/k f ) can be determined. If k f

the life-time t kq can 

be evaluated.

Fig. 3.8.1 Quenching

exhibited by 

Kinetics of 

Quenching of 

Fluorescence
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the following mechanism has been proposed.

Primary Process (i) A 
hvæ Ææ A*; rate = Iabs

Secondary Processes (ii) A* + A 
k2æ Ææ  A2; rate = k2 [A*][A]

(iii) A 2
k3æ Ææ  2A; rate = k3 [A2]

(iv) A*
k4æ Ææ  A + hv ¢;    rate = k4 [A*]

The rate of formation of A2 is

d A

d

2[ ]

t
 = k2[A*][A] – k3[A2] (3.8.1)

d A

d

[ *]

t
 = 0 = Iabs – k2[A*][A] – k4[A*]

Hence, [A*] = 
I

k k

abs

A2 4[ ] +
(3.8.2)

Substituting Eq. (3.8.2) in Eq. (3.8.1), we get

d A

d

[ ]2

t
 = k2

I

k k

abs

A2 4[ ] +  [A] – k3 [A2] (3.8.3)

In the photostationary state, the reactions (ii) and (iii) represent an equilibrium 

reaction for which d[A2]/dt = 0. Thus, from Eq. (3.8.3), we get

[A2] = 
k I

k k k

2

3 2 4

[ ]

( [ ] )

A

A

abs

+
 = 

I

k k k

abs

A3 4 21( / [ ])+
(3.8.4)

If the concentration of monomer is very large, Eq. (3.8.4) reduces to

[A2] = 
I

k

abs

3

(3.8.5)

that is, when the reaction is at photostationary state the concentration of dimer is 
independent of the concentration of monomer. This is in contrast to the reaction 
at the thermal equilibrium state where the concentration of dimer depends on the 

2] = K [A]2.

unaffected by the change in temperature of the system.

of radiation is removed.

In many photochemical reactions, the reacting substance does not absorb radiation 

directly, but acquires the energy from some other light absorbing foreign substance. 

sensitizer

Mechanism of 

Dimerization of 

Anthracene

3.9 PHOTOSENSITIZED REACTIONS
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Hg + hv æ Ææ  Hg*

Hg* + H2 æ Ææ  Hg + 2H

H + CO æ Ææ  HCO

HCO + H2 æ Ææ  HCHO + H

2HCO æ Ææ  HCHO + CO

2HCO æ Ææ

Many reactions are accompanied by the emission of visible radiation. This 

is very easy to understand; one of the products formed is in the electronically 

of the spectrum.

s of chemiluminescence.

3.10 CHEMILUMINESCENCE
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REVISIONARY PROBLEMS

3.1 What are photochemical reactions? How do they differ from thermal reactions?

(ii) Law of photochemical equivalence.

light absorbing substance?

(iv) Transmittance.

(v) Absorption.

(vi) One einstein of energy.

(vii) Primary and secondary processes.

m, and 

(iii) the concentrations of A and B in a solution.

  A
hv
⎯ →⎯  A*

  A* + A ⎯→⎯  A2

  A2 ⎯→⎯  2A

  A* ⎯→⎯  A + hv ¢

photochemical equilibrium.

(c) How does this concentration depend upon the intensity of absorbed light?

Consider the following mechanism:

M + hvi

kaæ Ææ  M*

M* + Q 
kqæ Ææ M + Q; second-order reaction

M*
k

fæ Ææ  M + hvf
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  If If

1

If

 = 
1

Ia

1 +
Ï
Ì
Ó

¸
˝
˛

k

k

q

f

Q[ ]

kf.

(i) Decomposition of HI

HI hv
⎯ →⎯  H + I

H + HI 
k2æ Ææ  H2 + I

I + I 
k3æ Ææ I2

–
d HI

d

[ ]

t
 = 2Iabs

 F = 2

 (ii) Reaction between hydrogen and bromine

    Br2
hvæ Ææ  2Br

    Br + H2

k2æ Ææ  HBr + H

    H + Br2

k3æ Ææ  HBr + Br

    H + HBr 
k4æ Ææ  H2 + Br

    Br + Br 
k5æ Ææ  Br2

    
d HBr

d

[ ]

t
 = 

2

1

2 5
1 2

2

4 3 2

k I k

k k

( / ) [ ]

( [ ]/ [ ])

/
abs H

HBr Br+

    F  = 
1

2Iabs

d HBr

d

[ ]

t

(iii) Reaction between CO and Cl2

Cl2
hvæ Ææ  2Cl

Cl + CO 
k2æ Ææ  COCl

COCl
k3æ Ææ  CO + Cl

COCl + Cl2
k4æ Ææ  COCl2 + Cl

COCl + Cl 
k5æ Ææ  CO + Cl2

d COCl

d

[ ]2

t
= k4

k

k k

2

3 5

1 2
Ê
ËÁ

ˆ
¯̃

/

Iabs
1 2/

[CO]1/2 [Cl2]

 F  = 
1
1 2Iabs

/

d COCl

d

2[ ]

t
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(iv) Photolysis of acetaldehyde

    CH3CHO
hvæ Ææ  CH3 + CHO

    CH3 + CH3CHO
k2æ Ææ  CH4 + CH3CO

    CH3CO
k3æ Ææ  CO + CH3

    CH3 + CH3

k4æ Ææ  C2H6

    
d CO

d

[ ]

t
 = k3

I

k

abs

2 4

1 2
Ê
ËÁ

ˆ
¯̃

/

 [CH3CHO]

(v) Decomposition of H2O2 in the presence of CO

    H2O2
hvæ Ææ  2OH

    OH + CO 
k2æ Ææ  COOH

    COOH + H2O2

k3æ Ææ  CO2 + H2O + OH

    H2O2 + OH 
k4æ Ææ  H2O + HO2

    2HO2

k5æ Ææ  O2 + H2O2

    –
d H O ]

d

2 2[

t
 = 2 Iabs

1 2

4

+
Ê
ËÁ

ˆ
¯̃

k

k

[ ]

[ ]

CO

H O2 2

    F = 
-d H O ] d2 2

abs

[ / t

I
 = 2 1 2

4

+
Ê
ËÁ

ˆ
¯̃

k

k

[ ]

[ ]

CO

H O2 2

(vi) Chlorination of chloroform

    Cl2
hvæ Ææ  2Cl

    Cl + CHCl3
k2æ Ææ  CCl3 + HCl

    CCl3 + Cl2
k3æ Ææ  CCl4 + Cl

    2CCl3 + Cl2
k4æ Ææ  2CCl4

d[CCl ]

d

4

t
 = Iabs + k3

I

k

abs Cl[ ]
/

2

4

1 2
Ê
ËÁ

ˆ
¯̃

 F = 2 + k3

[ ]
/

Cl2

absI k4

1 2
Ê
ËÁ

ˆ
¯̃

TRY YOURSELF PROBLEMS

3.1 For the photochemical decomposition of ammonia

2NH3(g)
hvæ Ææ  N2(g) + 3H2(g)

   The following mechanism has been proposed:

NH3
hvæ Ææ  NH2 + H

NH2 + H 
k2æ Ææ  NH3

H + H 
k3æ Ææ  H2
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NH2 + NH2
k4æ Ææ  N2H4

N2H4 + H 
k5æ Ææ  NH3 + NH2

NH2 + NH2

k6æ Ææ  N2 + 2H2

    show that

d N

d

[ ]2

t
 = 

k I

k k k k k

6

6 4 2 6 3
1 22

abs

+ + ( / ) /

 F  = 1 – 
1

1 2 6 2 6 3
1 2

4+ +k k k k k/{ ( / ) }/

3.2 For the photochemical reaction

A2
hvæ Ææ 2A

  the following mechanism has been proposed:

A2
hvæ Ææ  A2

*

A*
2

k2æ Ææ  2A

A*
2 + A2

k3æ Ææ  2A2

  show that

d A

d

[ ]

t
 = 

2 2

2 3 2

k I

k k

abs

A+ [ ]

chloroacetic acid which follows the mechanism

ClCH2COOH + hv ⎯→⎯  ClCH2COOH*

ClCH2COOH* + H2O ⎯→⎯  HOCH2COOH + HCl

3.4 (a)Using the mechanism for the formation of dianthracene in Section 3.8, write 

[A2] = 0. (b) The observed value of F is one. What conclusion can be reached 

   [  (a) F = k2 [A]/(k2 [A] + k3

3.5 The following mechanism has been proposed for the photochlorination of 

trichloroethylene:

Cl2 + hv ⎯→⎯  2Cl

Cl + C2HCl3 ⎯→⎯ C2HCl4

C2HCl4 + Cl2 ⎯→⎯  C2HCl5 + Cl

2 C2HCl4⎯→⎯  inert products

Derive the rate law. [  d [C2HCl5]/dt = k Iabs
1 2/  [Cl2]]

3.6 The photolysis of COBr2

2

containing a trace of Hg with light of wavelength 253.7 nm. Show that the 

reaction mechanism

Hg
Iabsæ Æææ  Hg*

Hg* + H2

k2æ Ææ  2H + Hg
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H + CO 
k3æ Ææ  HCO

HCO + H2

k4æ Ææ  HCHO + H

2 HCO 
k5æ Ææ  HCHO + CO

2 HCO 
k6æ Ææ

CHO

CHO
  leads to the rate equation

d HCHO

d

[ ]

t
 = 

k I

k k

5

5 6

abs

+
 + k4 [H2]

I

k k

abs

5 6

1 2

+
Ê
ËÁ

ˆ
¯̃

/

3.8 The mechanism for the photochemical reaction between H2 and Cl2 is

(i) Cl2
hvæ Ææ  2Cl

(ii) Cl + H2

k2æ Ææ  HCl + H

(iii) H + Cl2
k3æ Ææ  HCl + Cl

(iva) Cl
k4æ Ææ  (1/2) Cl2  (on wall)

  or

(ivb) Cl + Cl ⎯→⎯  Cl2 (in gas)

     Show that

d HCl

d

[ ]

t
= k [H2]Iabs for (iva) termination reaction

      or

d HCl

d

[ ]

t
= k¢ [H2] Iabs

1 2/ for (ivb) termination reaction

3.9 (a)  The mechanisms of thermal and photochemical reactions of H2 + Cl2 and

H2 + Br2 are of similar nature but those of H2 + I2 are altogether different. 

Cl + H2 ⎯→⎯  HCl + H Ea
–1

Br + H2 ⎯→⎯  HBr + H Ea
–1

I + H2 ⎯→⎯  HI + H Ea mol–1

2 + Cl2 reaction is very large (104–106) whereas 

that of H2 + Br2

   [  (a) because of high Ea, (b) comparatively larger Ea.]

3.10 The photolysis of O3 in liquid Ar solution at 87 K by wavelength 353.7 nm 

and 313 nm follows the mechanism given below:

O3 + hv⎯→⎯  O2 + O*

O* + O3
k2æ Ææ  2O2

O*
k3æ Ææ  O

O + O2 + M 
k4æ Ææ  O3 + M

(a) If f F is the overall quantum yield, 

show that

 F–1 = f–1 1

2 2

3

2 3

+
È

Î
Í

˘

˚
˙

k

k [ ]O
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F

 F–1 = 0.538 + 0.81 [O3]
–1

  Show that 

 f = 0.93 and k3/k2 = 1.51 mol dm–3

  (Hint: 3]/dt = f Ia and for the overall – d[O3]/dt = F Ia)

NUMERICAL PROBLEMS

3.1

of a radiation. What is the transmittance at the same wavelength of the two 

 0.07]

3.2 In a certain cell 10-3 mol dm-3 solution of a substance absorbs 10% of incident 

radiation. What concentration of the same solute in the same cell will absorb 

90% of incident radiation? [  0.022 mol dm–3]

3.3 An 0.03 mol dm–3 solution of a substance has an absorbance of 2.0 at 660 

value of I/I0, and (c) the per cent absorption for an 0.015 mol dm–3 solution in 

the same cell. [  66.7 mol–1 dm3 cm–1 0.01, 90%]

3.4 A cell of 5.5 cm length and 125 cm3 capacity contains a gas of molar absorptivity 

2.5 dm3 mol–1 cm–1 at a pressure of 10 cmHg and a temperature 300 K. If the 

radiation of wavelength 400 nm and intensity 9.05 ¥ 10–3 –1 is passed through 

the gas, what per cent of it will be absorbed? [  15.75]

3.5 In a given cell, solution I transmits 42.0 per cent and solution II 85.0 per cent 

of radiation having a certain wavelength. What is the transmittance at the same 
3 solution I and 55.0 cm3

solution II, if no reaction occurs? [  0.646]

3.6 The concentrations of two solutes were estimated in the same solution of 

absorption spectroscopy at the two wavelengths. At l1, the molar absorptivities 

were 300 and 30 dm3 mol–1 cm–1; at l2, 10 and 200 dm3 mol–1 cm–1

(respectively). When measured in a cell 2.0 cm in length, the percentage 

transmitted was 1.77% at l1 and 20.3% at l2, calculate the concentrations of 

the two solutes. [  0.002 76 mol dm–3, 0.001 59 mol dm–3]

3.7 The absorbance of a solution in which Bi3+ was very large and SCN– was 

5.0 ¥  10–5 mol dm–3

reaction which occurs is

Bi(SCN)2+
� ��
� ��  Bi3+ + SCN–

2+

absorbance was found to be 0.24 when the initial [Bi3+] was 0.50 mol dm–3.

What is the value of Kc of the above equilibrium?

   [  5 720 dm3 mol–1 cm–1, 9.5 ¥ 10–2 mol dm–3]

3.8 When propanal is irradiated at 200 Torr and 30 °C with radiation of wavelength 

302 nm the quantum yield for CO production is found to be 0.54. If the incident 

radiation intensity is 15 ¥ 10–4 –1, calculate the rate of CO formation. What 

is the radiation intensity in einstein per second?

   [  2.04 ¥ 10–9 mol s–1; 3.78 ¥ 10–9]

Lambert-Beer’s 

Law

Quantum Yield
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3.9 [Cr(NH3]5(NCS)]2+ reacts photochemically in the following manner. 

 [Cr(NH3]5(NCS)]2+ + H2O
hvæ Ææ  [Cr(NH3)4 (H2O) (NCS)]2+ + NH3

¥ 10–9

einstein/second is incident on a cell containing 20 cm3 of 0.01 mol dm–3 solution 

of [Cr(NH3)5(NCS)]2+. It is estimated that 80% of incident light is absorbed 

undergone the change. Calculate the quantum yield and the molar absorption 

   [  4.16, 69.9 dm3 mol–1 cm–1]

3.10 An actinometer using the following reaction

HN3 + H2O + hv ⎯→⎯   N2 + NH2OH

concentrations of nitrogen in the actinometer after 30.0 min of light absorption 

were 43.1 ¥ 10–5 mol dm–3 and 51.2 ¥ 10–5 mol dm–3, respectively, for the 

sample if the actinometer had a volume of 1 dm3. (ii) If 0.158 ¥ 10–3 mol of 

the reaction. [  4.5 ¥ 10–8 mol s–1, 1.94]

12 cm3 of 0.001 molar KMnO4 has been decomposed by the radiation. At this 

radiation used. [ –1]



4 Statistical Thermodynamics

A thermodynamic system is a macrosystem consisting of a large number of 

molecules. In establishing the various thermodynamic functions, the structural 

model of the system is no where required. In fact, all thermodynamic properties 

of a system can be derived without knowing whether the system is composed of 

atoms or molecules and how these are moving or interacting with each other. By 

treating the molecules on a statistical formalism, it is possible to develop the subject 

of statistical thermodynamics where the thermodynamic properties of a system can 

be expressed in terms of molecular properties. In establishing the expressions for 

the computation, one is not concerned with the motion of individual molecules 

but only with the number of ways the molecules are distributed over the available 

quantum mechanical energy states subject to the constancy of the energy of the 

system. The various distributions are known as the various complexions or the 

microstates of the system.

Throughout the chapter, we restrict to a system containing noninteracting particles. 

Example of such a system is an ideal gas.

In Boltzmann statistics, we deal with the distribution of distinguishable particles 

amongst energy levels with no restriction on the number of particles in any energy level.

energies 0, e, 2e, 3e and 4e, respectively. Let the total energy of the system in 

any one distribution be 4e. Assuming equal accessibility of all energy levels to all 

particles, the possible microstates are shown in Table 4.2.1, which also includes the 

number of ways of achieving the microstates and the corresponding mathematical 

probabilities of their occurrence in the system.

The following comments regarding the microstates of a system may be made.

∑ The number of microstates in a distribution is given by

W = 
N

Ni i

!

P
(4.2.1)

where N is the total number of particles and Nis are the number of particles in 

  various energy levels.

4.1 INTRODUCTION TO STATISTICAL THERMODYNAMICS

4.2 BOLTZMANN STATISTICS

A Typical Example

of Distribution

Analysis of 

Distribution
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Table 4.21 Number of Ways of Distributing Five Distinguishable Particles

Distribution Number of Particles Procedure of Distribution Number Mathematical

  in the Energy Levels  of Microstates Probability

0 e 2e 3e 4e  of Occurrence

I  4 0 0 0 1 Any one of the 5 molecules can be 5
5

70
 = 0.071

       
placed in the 4e level

II 3 1 0 1 0 5 ways of placing 1st molecule 5 ¥ 4 = 20
20

70
 = 0.286

       
4 ways of placing 2nd molecule

III 3 0 2 0 0 5 ways of placing 1st molecule
5 4

2

¥
 = 10

10

70
 = 0.143

       
4 ways of placing 2nd molecule 

       Since the molecules are placed 

       in the same energy level, the 

       distribution containing the same 

       molecules is counted twice, hence

       division by two.

IV 2 2 1 0 0 5 ways of placing 1st molecule

       
4 ways of placing 2nd molecule 

5 4 3

2

¥ ¥
 = 30

30

70
 = 0.429

       3 ways of placing 3rd molecule

       In the energy level e, each

       distribution is counted twice, 

       hence divison by two.

V 1 4 0 0 0 5 ways of placing 1st molecule

       4 ways of placing 2nd molecule
5 4 3 2

4 2

¥ ¥ ¥
¥ 3 ¥

5

70
 = 0.071

       3 ways of placing 3rd molecule

       2 ways of placing 4th molecule     = 5

       In the energy level e, each distri-

       bution is counted 4 ¥ 3 ¥ 2 ways,       
hence division by 4!

       Total Number of Distributions    70

∑  The total number of microstates in all distributions may be computed by using 

the expression

Wtotal =
( )!

( )! !

N E

N E

+ -
-

1

1
(4.2.2)

where E is the number of quanta of energy in the maximum energy level.

∑ The mathematical probability of occurrence of a distribution is given by

p = 
W

Wtotal

 = 
W

WiiÂ
(4.2.3)

∑ The most probable distribution corresponds to the maximum probability of 

occurrence.
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∑ With the increase in the number of particles, the probability of the most probable 

distribution increases towards the maximum value of unity (e.g. for N = 10, 

P = 0.503; N = 20, P = 0.547; N = 50, P = 0.786 and N = 100, P = 0.887). In 

a real system where very large number of particles (e.g. 1023) is involved, the 

probability of the most probable distribution will be almost equal to one.

∑ The macroscopic properties of a system depend upon the various microscopic 

states of the system. The fact that the probability of the most probable distribution 

is nearly unity, the macroscopic properties of a system at equilibrium is largely 

governed by the most probable distribution.

∑ In a real system, energy levels may involve degeneracy (i.e. more than one 

energy state is involved in an energy level). In such a case, the number of ways 

of distributing the particles is enhanced. For example, the number of ways of 

distributing two distinguishable particles is increased from one in a nondegenerate 

energy level to four in a doubly degenerate energy levels, as shown in the 

following.

Nondegenerate
energy level

Doubly degenerate energy levels

The general expression for computing the number of microstates for distinguishable 

particles occupying degenerate energy levels with no restriction on the number of 

particles in any energy level is given by

W = (N !) Pi
i
N

i

g

N

i

!

Ê

ËÁ
ˆ

¯̃
(4.2.4)†

where gi is the degeneracy of ith energy level.

∑ The quantity W is frequently called the thermodynamic probability, which is not 

as W Wi ii
/ Â .

As stated earlier, out of many distributions of a large number of particles over the 

available energy levels in a system at equilibrium, the probability of occurrence 

of the most probable distribution is nearly unity, the contributions from other 

distributions are vanishingly small. In this section, we derive the expression to 

compute the number of particles in various energy levels corresponding to the 

most probable distribution.

In deriving the expression, the principle of equal a priori probabilities is assumed 

to be applicable. This implies that the system at any instant may be present in 

any one of the possible microstates but the contribution from the most probable 

distribution has a maximum value. So, we maximize the number of microstates W,

or more conveniently ln W, associated with the most probable distribution subject 

to the following two conditions.

The Equilibrium

Distribution

† For indistinguishable particles, W = P i i
N

ig i N( / !)
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1. The total number of particles in a system has a constant value, i.e.

N = NiiÂ  = constant (4.2.5)

or equivalently,

dN = dNiiÂ = 0 (4.2.6)

2. The total energy of the system has a constant value, i.e.

U = Ni ii
eÂ = constant (4.2.7)

Comment All energies ei are measured with respect to the lowest available energy 

at T = 0 K. For translational and rotational motions, e0= 0, but for vibrational motion,

e0 = (1/2)hn0. Correctly speaking, the internal energy of a system is given by

U ¢ = U0 + Ni ii
eÂ

Throughout this chapter, we represent U ¢ – U0 as U.

The condition of constant U implies that

dU = eiiÂ dNi = 0 (4.2.8)

The expression of ln W is

ln W = ln ( )!
!

N
g

N
i

i

Ni

i

P
Ê

Ë
Á

ˆ

¯
˜

È

Î
Í
Í

˘

˚
˙
˙

  = ln N ! + iÂ  (Ni ln gi – ln Ni!)

For a large value of x, one can simplify ln x! by using Stirling approximation

ln x ! = x ln x – x

Hence, ln W = (N ln N – N) + 
iÂ [Ni ln gi – (Ni ln Ni – Ni)]

The condition of maximizing ln W is

d ln W = 
∂
∂

Ê
ËÁ

ˆ
¯̃

Â
lnW

Ni
i  dNi = 0 (4.2.9)

Now
∂
∂
lnW

Ni

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+ ◊
∂
∂

-
∂
∂

È

Î
Í

˘

˚
˙

N

N
N N

N

N

N

N

Ni i i

ln
1

  + ln lng N N
N

i i i
i

- - +
È

Î
Í

˘

˚
˙

1
1

Since
∂
∂

N

Ni

=
∂

∂

Â N

N

ii

i

 = 1, we have 

∂
∂
lnW

Ni

= ln N + ln gi – ln Ni = – ln 
Ni

iNg

Ê
ËÁ

ˆ
¯̃



Statistical Thermodynamics 289

With this, Eq. (4.2.9) becomes

iÂ – ln 
Ni

iNg

Ê
ËÁ

ˆ
¯̃

 dNi = 0 (4.2.10)

The constancy of number of particles (Eq. 4.2.6) and energy of the system             

(Eq. 4.2.8) are introduced in Eq. (4.2.10) by the method of Lagrange multipliers. 

In this method, Eqs (4.2.6) and (4.2.8) are multiplied by undetermined multipliers 

and added in Eq. (4.2.10). Hence, we can write 

iÂ -
Ê
ËÁ

ˆ
¯̃

+ -
È

Î
Í

˘

˚
˙ln

N

N g

i

i
ia b e d Ni = 0 (4.2.11)

where a and – b are the undetermined multipliers.

Ni is set equal to zero. Hence, 

we write

  – ln 
N

N g

i

i

Ê
ËÁ

ˆ
¯̃

+ a – b ei = 0 (4.2.12)

or Ni = Ngie
ae–b ei (4.2.13)

Equation (4.2.13) is known as Boltzmann distribution law

probable distribution of particles among the energy levels.

The constant a may be eliminated by using the relation

N = 
iÂ Ni

Substituting Ni from Eq. (4.2.13), we get

N = iÂ Ngie
ae–b ei

This gives

ea = 
1

gii
ie-Â be

With this, Eq. (4.2.13) becomes

Ni = N
g

g

i

ii

i

i

e

e

-

-Â

be

be =
N

q
gi e-b ei (4.2.14)

where q, known as molecular partition function, is given by

q = 
iÂ gi e

-b ei (4.2.15)

The degeneracy of the energy levels is taken care of by the term gi. However, if 

we take summation over quantum states, Eq. (4.2.15) may be written as

q = 
iÂ e-b ei

(states)

It is for this reason, the molecular partition function is sometimes referred to as 

a ‘sum over states’.

Identification of 

the Constant a

Boltzmann

Distribution Law

Molecular Partition 

Function
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Equation (4.2.14) indicates that the fraction of particles in any energy state 

is equal to the term exp(– b ei) divided by the sum of all such terms for all the 

energy states. Since the physical quantity q governs the partition of molecules in 

the energy states, it is called the molecular partition function.

The importance of molecular partition function is that it contains all the 

information needed to calculate the thermodynamic properties of a system of 

independent particles.

The constant b

gas with that obtained from the kinetic theory of gases.

Since the atoms of a monatomic gas have only translational energy, the expression 

of internal energy is given by

U = iÂ Niei (4.2.16)

Using the Boltzmann distribution expression, we get

U = 
N

q iÂ gi ei exp(–b ei) = 
N

q iÂ ei exp(–b ei) (4.2.17)

(level)  (state)

The expression of ei in terms of velocity components of a molecule is

ei = 
1

2
m(u2

xi + u2
yi + u 2

z i ) (4.2.18)

Substituting this expression along with the expression of molecular partition 

function in Eq. (4.2.17), we get

U = 

N m
m

m

xi yii z i xi yi z i

xi

1

2 2

2

2 2 2 2 2 2

2

( ) exp (

exp (

u u u
b

u u u

b
u

+ + - + +{ }
-

Â

++ +{ }Â u uyi z ii
2 2 )

(4.2.19)

The summation i in the above expression may be considered as the summation 

over all possible values of velocity components. Since the translational energies 

are very closely spaced, the velocity components may be considered continuous 

variables, with the summations replaced by integrals.

U =

1

2 2

2 2 2 2 2 2mN
m

dx y z x y z x y z( ) exp ( )

exp

u u u
b

u u u u u u+ + - + +{ }ÚÚÚ
-•

+•

d d

-- + +{ }ÚÚÚ
-•

+•
b

u u u u u u
m

x y z x y z
2

2 2 2( d d d

   (4.2.20)

Identification of 

the Constant b
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i.e.          U = 
1

2
mN

u b u u

b u u

x x x

x x

m

m

2 2

2

2

2

exp( / )

exp( / )

-

-

È

Î

Í
Í
Í
Í
Í

-•

+•

-•

+•

Ú

Ú

d

d

 + 

u b u u

b u u

y y y

y y

m

m

2 2

2

2

2

exp( / )

exp( / )

-

-

-•

+•

-•

+•

Ú

Ú

d

d

             + 

u b u u

b u u

z z z

z z

m

m

2 2

2

2

2

exp( / )

exp( / )

-

-

˘

˚

˙
˙
˙
˙
˙

-•

+•

-•

+•

Ú

Ú

d

d

Since ux , uy and uz are independent, and each of the three terms has the same 

form, we can write

U =
3

2
mN  

u b u u

b u u

2 2

2

2

2

exp( / )

exp( / )

-

-

-•

+•

-•

+•

Ú

Ú

m

m

d

d

=
3

2
mN

( / )1 2 8

2

3p/
p/

3b

b

m

m

È

Î
Í
Í

˘

˚
˙
˙

=
3

2

N

b

The expression of average kinetic energy becomes 

U =
U

N
 = 

3

2b
(4.2.21)

From the kinetic theory of gases, we have

U =
3

2
kT

Hence,
3

2b
=

3

2
kT

This gives

  b = 
1

kT
(4.2.22)

Although, the above expression has been derived for a monatomic gas, it is valid 

for all types of system.

The expression of molecular partition function is

q = g kTi ii
exp( / )-Â e

At temperature T close to zero, the value of each of the term exp(– ei /kT) will 

be close to zero. If e0 e0/kT) will 

have a value of one, the partition function will have a value close to g0, i.e.

lim
T Æ 0

q = g0

Comment on the 

Molecular Partition 

Function
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At very high temperature, the value of each of the term exp(– ei /kT ) will be 

close to one, and the value of partition function will be close to the number of 

available energy states.

Thus, the molecular partition function gives an idea about the average number 

of states that are thermally accessible to a particle at the temperature of the system. 

At T = 0 K, only the lowest energy state will be accessible while at very high 

temperature, a large number of higher energy states are accessible.

In Bose-Einstein statistics, we deal with the distribution of indistinguishable 

particles among the energy levels with no limit on the number of particles in any 

of the energy state.

Let N indistinguishable identical particles (p1, p2, ..., pN) be distributed over g

distinguishable degenerate energy states (E1, E2, ..., Eg) with no limit on the number 

of particles in any of the energy states.

Let we represent a particular distribution in the following way.

E1 p1 p5 p7 E2 p2 p9 E3 E4 p4 p8 …

This implies that the energy state

E1 is occupied by the particles p1, p5 and p7,

E2 is occupied by the particles p2 and p9,

E3 is unoccupied, and,

E4 is occupied by the particles p4 and p8, … and so on.

Leaving the energy state E1, the number of ways of arranging the remaining 

N + g – 1 energy states and particles is equal to (N + g – 1)!.

In the above arrangement, the interchange of two energy states along with their 

occupied particles leads to the same distribution. There will be (g – 1)! arrangements 

which correspond to the same numbered particles in the same order placed in the 

same numbered energy states. Thus, the total arrangements (N + g – 1)! are reduced 

by the factor (g – 1)!.

Since all the particles are identical and indistinguishable, and we are concerned 

reduced by a factor N !. Hence, the number of ways of placing N indistinguishable 

particles in g distinguishable energy states with no restriction on the number per 

energy state is given by

W =
( )!

( )! !

g N

g N

+ -
-

1

1
(4.3.1)

The thermodynamic probability of a given distribution of particles over the energy 

levels is the product of number of arrangements of all energy levels, i.e.

W = P i
i i

i i

g N

g N

( )!

( )! !

+ -
-

1

1
(4.3.2)

4.3 BOSE-EINSTEIN STATISTICS

Expression to 

Compute the 

Arrangements
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Table 4.3.1 Distributions of Five Bosons Amongst Energy Levels

Distribution Number of Particles Thermodynamic Probability

in Energy Levels
W = P i

i i

i i

N g

g N

( )!

( )! !

+ -
-

1

1
0 e 2e 3e 4e

I 4 0 0 0 1
8

4 4

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

5

4 1

!

! !

Ê
ËÁ

ˆ
¯̃

= 350

II 3 1 0 1 0
7

4 3

!

! !

Ê
ËÁ

ˆ
¯̃

5

4 1

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

5

4 1

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

  = 875

III 3 0 2 0 0
7

4 3

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

6

4 2

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

  = 525

IV 2 2 1 0 0
6

4 2

!

! !

Ê
ËÁ

ˆ
¯̃

6

4 2

!

! !

Ê
ËÁ

ˆ
¯̃

5

4 1

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

= 1 125

V 1 4 0 0 0
5

4 1

!

! !

Ê
ËÁ

ˆ
¯̃

8

4 4

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

4

4 0

!

! !

Ê
ËÁ

ˆ
¯̃

= 350

energies 0, e, 2e, 3e and 4e
of the system be 4e. The possible distribution along with their thermodynamic 

probabilities are shown in Table 4.3.1.

A Typical Example

The system to which Bose-Einstein statistics is applicable is found to have the 

characteristics of gi   1. In such a situation, the number 1 appearing in the 

numerator and denominator of thermodynamic probability (Eq. 4.3.2) can be 

neglected. The expression is reduced to 

W = P i
i i

i i

N g

g N

( )!

! !

+
(4.3.3)

The expression of ln W becomes

ln W = iÂ [ln (Ni + gi) ! – ln gi ! – ln Ni !] (4.3.4)

For a system containing very large values of gi and Ni, one can use Stirling 

approximation to eliminate factorials. Hence, we get

ln W = iÂ [{(Ni + gi) ln (Ni + gi) – (Ni + gi)} – {gi ln gi – gi}

        – {Ni ln Ni – Ni}]

  = iÂ (Ni + gi) ln(Ni + gi) – gi ln gi – Ni ln Ni

The condition of maximizing ln W is

d ln W = iÂ
∂
∂

Ê
ËÁ

ˆ
¯̃

lnW

Ni

dNi = 0 (4.3.5)

The Equilibrium

Distribution
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Now   
∂
∂
lnW

Ni

 = ln (Ni + gi) + 1 – ln Ni – 1 = – ln 
N

N g

i

i i+

With this, Eq. (4.3.5) becomes

d ln W = -
+

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙Â ln

N

N g
Ni

i i
ii

d  = 0 (4.3.6)

The constancy of number of particles (Eq. 4.2.6) and energy of the system             

(Eq. 4.2.8) are introduced in Eq. (4.3.6) to give

-
+

Ê
ËÁ

ˆ
¯̃

+
È

Î
Í

˘

˚
˙Â ln

N

N g

i

i i
ii

a be- d Ni = 0

Ni is set equal to zero. Hence, 

we write

– ln 
N

N g

i

i i+
Ê
ËÁ

ˆ
¯̃  + a – bei = 0 (4.3.7)

or
N

N g

i

i i+  = ea e–b ei

Inverting this equation, we get

1 + 
g

N

i

i

= e–a ebei (4.3.8)

or Ni =
gi

ie e- -a b e 1
(4.3.9)

For a system in which gi /Ni  1, Eq. (4.3.8) may be approximated as

g

N

i

i

= e–a eb e i

or Ni = gi e
a e– b e i

We can eliminate ea by using the fact that

N =
iÂ Ni = 

iÂ gi e
a e– b ei

or ea =
N

gii
ie-Â be

Hence, Ni = N
g

g

i

ii

i

i

e

e

-

-Â

be

be  = 
N

q
gi e

–bei (4.3.10)

which is identical to Boltzmann distribution law (Eq. 4.2.14), i.e. the Bose-Einstein 

statistics predicts the same distribution of particles among energy level as does 

Boltzmann statistics.

Reduction to 

the Boltzmann 

Distribution Law
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4.4 FERMI-DIRAC STATISTICS

Under the approximation gi Ni, the thermodynamic probability also reduces 

to a form identical to that of Boltzmann statistics, since one can write

( )!

( )!

g N

g

i i

i

+ -
-

1

1
 = gi(gi + 1) (gi + 2) … (gi + Ni – 1) gi

Ni (4.3.11)

In an atom or molecule, the number of translational energy states alone is 

much greater than the number of atoms/molecules in the system.

In Fermi-Dirac statistics, we deal with the distribution of indistinguishable particles 

among the energy levels with only one particle in any of the energy state.

Let N indistinguishable identical particles be distributed over g distinguishable 

degenerate energy states with the restriction of only one particle in any of energy 

state. The latter condition requires that N £ g.

For distinguishable particles, we will have

g choices for the 1st particle

g – 1 choices for the 2nd particle

............................................................

g – N + 1 choices for the Nth particle

The total choices or arrangements will be

(g) (g – 1) … (g – N + 1) = 
g

g N

!

( )!-

Since the particles are indistinguishable, the above arrangement has to be divided 

by N ! permutations of the N particles. Hence, the number of ways of placing N

indistinguishable particles in g distinguishable degenerate energy states with a limit 

of no more than one particle per energy state is

W = 
g

g N N

!

( )! !-
(4.4.1)

The thermodynamic probability of a given distribution of particles over energy 

levels is the product of number of arrangements of all energy levels, i.e.

W = Pi
i

i i i

g

g N N

!

( )! !-
(4.4.2)

with energies 0, e, 2e, 3e and 4e

of the system be 4e. The possible distributions along with their thermodynamic 

probabilities are shown in Table 4.4.1.

Expression to 

Compute the 

Arrangements

A Typical Example
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Table 4.4.1 Distributions of Five Fermions Amongst Energy Levels

Distribution Number of Particles Thermodynamic Probability

in Energy Levels W = Pi
i

i i i

g

g N N

!

( )! !-
0 e 2e 3e 4e

I 4 0 0 0 1
5

1 4

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃

5

4 1

!

! !

Ê
ËÁ

ˆ
¯̃

 = 25

II 3 1 0 1 0
5

2 3

!

! !

Ê
ËÁ

ˆ
¯̃

5

4 1

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃

5

4 1

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃

 = 250

III 3 0 2 0 0
5

2 3

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃

5

3 2

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃  = 100

IV 2 2 1 0 0
5

3 2

!

! !

Ê
ËÁ

ˆ
¯̃

5

3 2

!

! !

Ê
ËÁ

ˆ
¯̃

5

4 1

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃

= 500

V 1 4 0 0 0
5

4 1

!

! !

Ê
ËÁ

ˆ
¯̃

5

1 4

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃

5

5 0

!

! !

Ê
ËÁ

ˆ
¯̃

= 25

The expression of ln W is

ln W = ln Pi
i

i i i

g

g N N

!

( )! !-
È

Î
Í

˘

˚
˙

  =
iÂ [ln gi ! – ln (gi – Ni) ! – ln Ni !] (4.4.3)

Using Stirling approximation, we get

ln W = iÂ [(gi ln gi – gi)  – {(gi – Ni) ln (gi – Ni) – (gi – Ni)} – (Ni ln Ni – Ni)]

  = iÂ [gi ln gi – (gi – Ni) ln (gi – Ni) – Ni ln Ni]

The condition of maximizing ln W is

d ln W =
∂
∂

Ê
ËÁ

ˆ
¯̃

Â
lnW

Ni
i d Ni = 0 (4.4.4)

Now
∂
∂
lnW

Ni

= 0 – {– ln (gi – Ni) – 1} – {ln Ni + 1}

= – ln
N

g N

i

i i-
Ê
ËÁ

ˆ
¯̃

(4.4.5)

With this, Eq. (4.4.4) becomes

d ln W = -
-

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙Â ln

N

g N
Ni

i i
ii

d  = 0 (4.4.6)

The constancy of number of particles (Eq. 4.2.6) and energy of the system                   

(Eq. 4.2.8) are introduced in Eq. (4.4.6) to give

The Equilibrium

Distribution
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-
-

Ê
ËÁ

ˆ
¯̃

+
È

Î
Í

˘

˚
˙Â ln

N

g N

i

i i
ii

a be-  dNi = 0 (4.4.7)

Ni is set equal to zero. Hence, 

we write

– ln 
N

g N

i

i i-
Ê
ËÁ

ˆ
¯̃

 + a – b ei = 0 (4.4.8)

or   
N

g N

i

i i-  = ea e–bei (4.4.9)

Inverting this equation, we get

g

N

i

i

 – 1 = e–a ebei

or Ni = 
gi

ie e- +a be 1
(4.4.10)

For a system in which gi / Ni  1, Eq. (4.4.10) may be approximated as

g

N

i

i

= e–a ebe i

or Ni = gi e
a e–be i

We can eliminate ea by using the fact that

N =
iÂ Ni = 

iÂ gi e
a e–bei

or ea =
N

gii
ie-Â be

Hence, Ni = N
g

g

i

ii

i

i

e

e

-

-Â

b

b

e

e  = 
N

q
gi e

– bei (4.4.11)

which is identical to Boltzmann distribution law (Eq. 4.2.14), i.e. the Fermi-Dirac 

statistics predicts the same distribution of particles among energy levels as does 

Boltzmann statistics.

Under the approximation gi Ni, the thermodynamic probability also reduces 

to a form identical to that of Boltzmann statistics, since we can write

g

g N

i

i i

!

( )!-
 = gi (gi – 1) … (gi – Ni + 1) gi

Ni (4.4.12)

In an atom or molecule, the number of translational energy states alone is 

much greater than the number of atoms/molecules in the system.

In this section, we express some of the properties of a system in terms of molecular 

partition function.

Reduction to 

the Boltzmann 

Distribution Law

4.5 THERMODYNAMIC PROPERTIES IN TERMS OF MOLECULAR PARTITION FUNCTION
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The expression of internal energy is

U = 
iÂ Ni ei

From the Boltzmann expression, we have

Ni =
N

q
gi e

–b ei ; (where b = 1/kT)

Hence, U =
N
q

gii
ie-ÂÊ

ËÁ
ˆ
¯̃

b e e i

From the fact that

∂
∂

Ê
ËÁ

ˆ
¯̃

-e b

b

ei

V

= – e i e–b ei

we can write the above expression as

U = – 
N

q iÂ gi

∂
∂

Ê
ËÁ

ˆ
¯̃

-e b

b

ei

V

 = – 
N

q

∂
∂b

gii V

ie-Â( )be
= – 

N

q

∂
∂

Ê
ËÁ

ˆ
¯̃

q

Vb

= – N
∂

∂
Ê
ËÁ

ˆ
¯̃

ln q

Vb
(4.5.1)

In terms of T, we have

U = – N
∂

∂
Ê
ËÁ

ˆ
¯̃

ln q

T V

d

d

T

b

Ê
ËÁ

ˆ
¯̃

Since T = 1/kb, we have

d

d

T

b
= – 

1

kb2  = – 
1

1 2k kT( / )
 = – k T 2

Thus   U = NkT 2 ∂
∂

Ê
ËÁ

ˆ
¯̃

ln q

T V

(4.5.2)

dU = dq¢ + dw (4.5.3)

where q ¢ and w stand for heat and work, respectively.

Since U = 
iÂ Ni ei, we also have

dU = 
iÂ ei d Ni + 

iÂ Ni dei (4.5.4)

change in population of particles in the energy levels. This fact may be attributed 

to the term dq¢ of Eq. (4.5.3). Hence, we write

dq¢ = 
iÂ e i dNi (4.5.5)

The second term of Eq. (4.5.4) expresses the change in internal energy due to 

the change in the magnitude of energy levels. This fact may be attributed to the 

Internal Energy

Identification of 

the Terms Heat

and Work in 

the First Law of 

Thermodynamics
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term dw of Eq. (4.5.3) as the magnitude of energy level is affected by the change 

in the boundary parameters (say, volume) of the system. Hence, we write

dw = 
iÂ Ni de i (4.5.6)

The expression of mechanical work is

dw = – pdV

Using Eq. (4.5.6), this becomes

– pdV = 
iÂ Ni dei

Using the Boltzmann expression, we get

– pdV = 
N

q iÂ (gi e–bei de i) ; (where b = 1/kT) (4.5.7)

The differential change in the molecular partition function q

dq = 
iÂ  gi e

– b ei (– b ) dei

With this, Eq. (4.5.7) becomes

pdV =
N

q

1

b
 dq =

N

b
 d ln q

Hence, p =
N

b

∂
∂

Ê
ËÁ

ˆ
¯̃

ln q

V T

(4.5.8)

Since b = 1/kT, we have

p = NkT 
∂
∂

Ê
ËÁ

ˆ
¯̃

ln q

V T

(4.5.9)

dS = 
d rev¢q

T
(4.5.10)

Using Eq. (4.5.5), this becomes

dS = 
1

T iÂ e i dNi (4.5.11)

Since b = 1/kT, we get

dS = b k
iÂ  ei dNi = k

iÂ (be i) dNi (4.5.12)

From the Boltzmann expression

∂
∂
lnW

Ni

 + a – be i = 0 (Eq. 4.2.12)

we get be i = 
∂
∂
lnW

Ni

 + a

Expression of 

Pressure

Expression of 

Entropy
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With this, Eq. (4.5.12) becomes

dS = k
iÂ

∂
∂

Ê
ËÁ

ˆ
¯̃

lnW

Ni

 dNi + ka
iÂ dNi (4.5.13)

But
iÂ dNi = 0. Hence

dS = k
iÂ

∂
∂

Ê
ËÁ

ˆ
¯̃

lnW

Ni

dNi = k (d ln W)

or S = k ln W (4.5.14)

Equation (4.5.14) is known as Botlzmann-Planck equation.

Since W = N ! Pi
i
N

i

g

N

i

!
, we get

ln W = ln N ! + 
iÂ Ni ln gi – 

iÂ ln Ni !

Using Stirling approximation, we get

ln W = (N ln N – N) + 
iÂ Ni ln gi – 

iÂ (Ni ln Ni – Ni)

  = N ln N + 
iÂ Ni ln gi – 

iÂ Ni ln Ni

  = – 
iÂ Ni ln 

N

Ng

i

i

Ê
ËÁ

ˆ
¯̃ (4.5.15)

From the Boltzmann expression Ni = (N/q) gi exp(– be i), we get

N

Ng

i

i

 = 
e-bei

q

or         ln 
N

Ng

i

i

Ê
ËÁ

ˆ
¯̃

 = – bei – ln q

With this, Eq. (4.5.15) becomes

ln W =
iÂ Ni (be i + ln q) = b Ni ii

eÂ( )  + NiiÂ( ) ln q

  = bU + N ln q (4.5.16)

Hence, the expression of entropy is

S = k ln W = k b U + k N ln q

=
U

T
 + k N ln q (4.5.17a)

Substituting the expression of U from Eq. (4.5.2), we get

S = NkT
∂

∂
Ê
Ë

ˆ
¯

ln q

T V

+ Nk ln q

= Nk T
q

T
q

V

∂
∂

Ê
Ë

ˆ
¯ +È

ÎÍ
˘
˚̇

ln
ln (4.5.18a)

Entropy of 

Distinguishable

Particles



Statistical Thermodynamics 301

For indistinguishable particles

W = Pi
i
N

i

g

N

i

!

Hence, ln W =
iÂ (Ni ln gi – ln Ni !)

Using Stirling approximation, we get

ln W =
iÂ (Ni ln gi – Ni ln Ni + Ni)

  =
iÂ Ni ln 

g

N

i

i

 + N

From Boltzmann expression Ni = (N/q) gi exp(–be i), we get

g

N

i

i

 = 
q

N
 e bei

or ln
g

N

i

i

Ê
ËÁ

ˆ
¯̃

= ln 
q

N

Ê
ËÁ

ˆ
¯̃ + be i

Hence, ln W = 
iÂ Ni ln

q

N
i

Ê
ËÁ

ˆ
¯̃ +È

ÎÍ
˘
˚̇

be + N

= N ln 
q

N

Ê
ËÁ

ˆ
¯̃  + b Ni ii

eÂ( )  + N

= N ln 
q

N

Ê
ËÁ

ˆ
¯̃

 + b U + N

The expression of entropy is

S = k ln W

  = k È
ÎÍ

N ln 
q

N

Ê
ËÁ

ˆ
¯̃ + bU + N

˘
˚̇

  = Nk ln
lnq

N
T

q

T V

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃ +È

ÎÍ
˘
˚̇

1 (4.5.17b)

Since H = U + pV,  the expression of H is

H = NkT 2 ∂
∂

Ê
ËÁ

ˆ
¯̃

ln q

T V

 +  pV (4.5.18b)

Since CV = (∂U /∂T)V,  the expression of CV is

CV =
∂

∂
∂

∂
Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇T

N kT
q

T V V

2 ln
= Nk 

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇T

T
q

T V V

2 ln
(4.5.19)

Since Cp = (∂H/∂T)p,  the expression of Cp is

Cp =
∂

∂
∂

∂
Ê
ËÁ

ˆ
¯̃ +Ï

Ì
Ó

¸
˝
˛

È
ÎÍ

˘
˚̇T

N kT
q

T
pV

V p

2 ln
(4.5.20)

Entropy of 

Indistinguishable

Particles

Enthalpy

Heat Capacities
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Since A = U – T S, the expression of A for distinguishable particles is

A = U – T
U

T
k N q+Ê

ËÁ
ˆ
¯̃ln

  = – N kT ln q (4.5.21a)

For indistinguishable particles, the expression is

A¢ = – N kT ln
q

N
+Ê

ËÁ
ˆ
¯̃1 (4.5.21b)

Since G = H – T S, the expression of G for distinguishable particles is

G = (U + pV) – T S = (U – TS) + pV = A + pV

= – N kT ln q + pV (4.5.22a)

For indistinguishable particles, the expression is

G ¢ = – NkT ln
q

N
+Ê

ËÁ
ˆ
¯̃1  + pV

Since pV = NkT,  we get

G ¢ = – NkT ln 
q

N

Ê
ËÁ

ˆ
¯̃

(4.5.22b)

A diatomic molecule has various kinds of energy, viz., translational, rotational, 

vibrational, electronic and nuclear energies. All these energies are quantized. 

Since the nuclear energy levels are not involved in chemical reactions, these are 

simply ignored.

If the molecules of a system are considered independent molecules (say, molecules 

in an ideal gas), the energy of a diatomic molecule, under the assumption that  

there exists no interactions amongst different modes of energies, can be written as 

the sum of its translational, rotational, vibrational and electronic energies (Born-

Oppenheimer approximation), i.e.

e = e t + er + ev + ee (4.6.1)

The degeneracy of energy e is equal to the product of degeneracies of e t, e r, ev

and ee energy levels.

The molecular partition function is given by

q =
t, r,v,e
Â gt gr gv ge exp(– be)

=
t, r,v,e
Â gt gr gv ge exp{– b (et +e r +ev + ee)} (4.6.2)

Since a sum of independent products can be written as a product of sums, the 

above expression can be written as

q =
È
ÎÍ t

Â gt exp(– be t )̆
˚̇

È
ÎÍ r

Â gr exp(– be r)̆
˚̇

È
ÎÍ v

Â gv exp(– bev)̆
˚̇

È
ÎÍ e

Âge exp(– bee)̆
˚̇

  = qt qr qv qe (4.6.3)

that is, molecular partition function is equal to the product of translational, 

rotational, vibrational, and electronic molecular partition functions.

Helmholtz Free 

Energy

Gibbs Free Energy

Factorization of 

Partition Function

4.6 MOLECULAR PARTITION FUNCTION OF A DIATOMIC MOLECULE
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Taking logarithm of Eq. (4.6.3), we get

ln q = ln qt + ln qr + ln qv + ln qe

Since the thermodynamic functions of distinguishable independent molecules 

involve ln q or the differentials (∂ ln q/ ∂V)T and (∂ ln q/∂T)V, the expression 

of overall thermodynamic function will be equal to the sum of thermodynamic 

functions of different modes of motion. For example, the internal energy is given by

U = NkT2 ∂
∂

Ê
ËÁ

ˆ
¯̃

ln q

T V

= NkT 2 ∂
∂{ }ln(q q q q

T V

t r v e )

= NkT 2 ∂ + + +
∂{ }(ln ln ln ln )q q q q

T V

t r v e

= NkT 2
∂

∂
Ê
ËÁ

ˆ
¯̃

ln q

T V

t
+ NkT 2 d

d

rln q

T
 + NkT 2 d

d

vln q

T
 + NkT 2 d

d

eln q

T

= Ut + Ur + Uv + Ue (4.6.4)

Note: For rotational, vibrational and electronic modes, the notation of partial 

derivative is not used, because the corresponding molecular partition functions 

are independent of volume.

The expression of entropy (also those of Helmholtz and Gibbs functions) for 

indistinguishable particles is different from that of distinguishable particles.

Sdis = Nk ln q + 
U

T
(Eq. 4.5.17a)

Sindis = Nk ln
q

N
 + 

U

T
 + Nk (Eq. 4.5.17b)

Since the translational motion makes the particles indistinguishable, all extra 
terms in entropy of indistinguishable particles are attributed to translational entropy. 

The expression of entropy of indistinguishable diatomic molecules is given by

S = N k ln
q

N
 + 

U

T
 + Nk

= N k ln
q q q q

N

t r v e  + 
U U U U

T

t r v e+ + +
 + Nk

Hence, we have

St = Nk ln
q

N

tÊ
ËÁ

ˆ
¯̃

+
U

T

t  + Nk (4.6.5)

Sr = Nk ln qr + 
U

T

r (4.6.6)

Sv = Nk ln qv + 
U

T

v (4.6.7)

Se = Nk ln qe + 
U

T

e (4.6.8)

Additive Nature of 

Thermodynamic

Functions
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In a similar manner, the expressions of Helmholtz and Gibbs functions for 

indistinguishable particles are given by

At = – N kT ln
q

N

t +Ê
ËÁ

ˆ
¯̃
1 (4.6.9)

Ar = – N kT ln qr (4.6.10)

Av = – N kT ln qv (4.6.11)

Ae = – N kT ln qe (4.6.12)

Gt = – N kT ln 
q

N

tÊ
ËÁ

ˆ
¯̃ (4.6.13)

Gr = – N kT ln qr (4.6.14)

Gv = – N kT ln qv (4.6.15)

and Ge = – N kT ln qe (4.6.16)

An atom has two kinds of energy, viz., translational and electronic energies. The 

partition function can be written as

q = qt qe (4.7.1)

In this section, we derive the expressions of qt and qe and then proceed to compute 

the thermodynamic properties of monatomic ideal gases.

The translational energy of an atom in a volume V is given by

e = 
h

mV

2

2 38 /
 (n2

1 + n2
2 + n2

3) (4.7.2)

where n1, n2 and n3 are quantum numbers, each having values of 1, 2, 3, ….

The partition function written as a sum over quantum states is

qt =
n1 1=

•

Â
n2 1=

•

Â
n3 1=

•

Â exp(– be) (where b = 1/kT)

=
n1 1=

•

Â
n2 1=

•

Â
n3 1=

•

Â exp ( )
/

- + +
Ï
Ì
Ó

¸
˝
˛

h

mV
n n n

2

2 3 1
2

2
2

3
2b

8

= exp
/

-
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

=

•

Â
h

mV
n

n

2

2 3 1
2

11

b

8
exp

/
-

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

=

•

Â
h

mV
n

n

2

2 3 2
2

12

b

8

¥  exp
/

-
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

=

•

Â
h

mV
n

n

2

2 3 3
2

13

b

8

4.7 THERMODYNAMIC PROPERTIES OF A MONATOMIC IDEAL GAS

Translational 

Partition Function
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Since the three exponential functions and summation over n1, n2 and n3 are identical, 

we can write the above expression as

qt = exp
/

-
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

=

•

Â
h

mV
n

n

2

2 3

2

1

3
b

8
(4.7.3)

Equation (4.7.3) may be written as

qt = exp
/

-
Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙

=

•

Â
h

mV
n

n

2

2 3

2

0

3

1
b

8
(4.7.4)

Neglecting one in comparison to the summation term, we get

qt = exp
/

-
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

=

•

Â
h

mV
n

n

2

2 3

2

0

3
b

8
(4.7.5)

Since the translational energy levels are very close to each other, the summation 

in the above expression may be replaced by integration. Hence

qt = exp
/

-
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

•

Ú
h

mV
n n

2

2 3

2

0

3

b

8
d (4.7.6)

which on integrating gives

qt = 
1

2

8 2 3

2

1 2 3

p
mV

h

/ /

b

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

 = V
2

2

3 2
pm

h b

Ê
ËÁ

ˆ
¯̃

/

= V
2

2

3 2p m kT

h

Ê
ËÁ

ˆ
¯̃

/

(4.7.7)†

Equation (4.7.7) may be written as

qt =
V

L3
(4.7.8)

where L = (h2/2pmkT )1/2 and is called the thermal de Broglie wavelength.

Evaluate translational partition function for oxygen atoms at 300 K contained in a volume 

of 22.414 dm3.

The expression of thermal de Broglie wavelength is

 L =
h

mkT

2 1 2

2p
Ê
ËÁ

ˆ
¯̃

/

Substituting the data, we get

L =
( . )

( . ) ( . ) ( . ) (

6 626 10

2 3 14 16 1 66 10 1 38 10 3

34 2

27 23 1

¥
¥ ¥ ¥

-

- - -
J s

kg J K 000

1 2

K)

/
È

Î
Í

˘

˚
˙

  = 2.52 ¥ 10–11 m

Example 4.7.1

Solution

† See Annexure I at the end of the chapter for the alternative method of computing 
translational partition function.
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The value of translational partition function is

qt =
V

L3
 = 

22 414 10

2 52 10

3 3

11 3

.

( . )

¥
¥

-

-
m

m
 = 1.40 ¥ 1030

Taking logarithm of Eq. (4.7.7), we get

ln qt = ln (V/m3) + 
3

2
 ln 

2
2

2 1pmk

h
m K- -Ê

Ë
ˆ
¯  + 

3

2
 ln (T/K) (4.7.9)

Hence,
∂

∂
Ê
ËÁ

ˆ
¯̃

ln q

V T

t
=

1

V
and

∂
∂

Ê
ËÁ

ˆ
¯̃

ln q

T V

t
=

3

2T
(4.7.10)

From Eq. (4.5.2), we have

U = NkT 2
∂

∂
Ê
ËÁ

ˆ
¯̃

ln q

T V

t

Hence, U = NkT2 3

2T

Ê
ËÁ

ˆ
¯̃  = 

3

2
N kT (4.7.11)

In terms of amount of gas, we have

U =
3

2
(nNA)kT = 

3

2
n (NAk)T = 

3

2
nRT (4.7.12)

From Eq. (4.5.9), we get

p = NkT
∂

∂
Ê
ËÁ

ˆ
¯̃

ln q

V

t

T

Hence, p = NkT
1

V

Ê
ËÁ

ˆ
¯̃  = 

NkT

V
(4.7.13)

In terms of amount of gas, we have

p =
( )nN kT

V

A
 = 

n N k T

V

( )A
 = 

nRT

V
(4.7.14)

Since     CV = (∂U/∂T)V, we get

  CV = 
d

dT

3

2
nRT

Ê
ËÁ

ˆ
¯̃  = 

3

2
nR

and     CV , m = 
C

n

V  = 
3

2
R (4.7.15)

Since H = U + pV, we get

H =
3

2
nRT + nRT = 

5

2
nRT (4.7.16)

Since Cp = (∂H/∂T )p, we get

Cp =
d

dT

5

2
nRT

Ê
ËÁ

ˆ
¯̃  = 

5

2
nR

and      Cp, m = 
5

2
 R (4.7.17)

Variation of qt with 

T and V

Internal Energy

Heat Capacity at 

Constant Volume

Enthalpy

Heat Capacity at 

Constant Pressure

Pressure
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Since the molecules in a gaseous phase are indistinguishable, the entropy of 

monatomic gas is given by

S = Nk ln
lnq

N
T

q

T V

t t+
∂

∂
Ê
ËÁ

ˆ
¯̃

+
È

ÎÍ
˘

˚̇
1 (Eq. 4.5.17b)

= N k ln
/

V

N

mkT

h
T

T

2 3

2
1

2

3 2pÊ
ËÁ

ˆ
¯̃

Ï
Ì
ÓÔ

¸
˝
Ǫ̂

+ Ê
ËÁ

ˆ
¯̃ +

È

Î
Í

˘

˚
˙

= Nk ln
/

V

N

mkT

h

2 5

22

3 2pÊ
ËÁ

ˆ
¯̃

Ï
Ì
ÓÔ

¸
˝
Ǫ̂

+
È

Î
Í

˘

˚
˙ (4.7.18)

In terms of pressure of the gas, we have

St = N k ln
/

kT

p

mkT

h

2 5

22

3 2pÊ
ËÁ

ˆ
¯̃

Ï
Ì
ÓÔ

¸
˝
Ǫ̂

+
È

Î
Í

˘

˚
˙ (4.7.19)

The atomic mass is given by

m = Ar mu (4.7.20)

where Ar is the relative atomic mass and mu is the atomic mass unit (= 1.66 ¥ 10–27 kg).

Substituting Eq. (4.7.20) in Eq. (4.7.19) and expressing T and p as dimensionless 

quantities, we get

St = Nk ln
{ ( / )}

( / )

/ /

o o

/
k T

p p p

m

h

5 2 5 2

2

3 2
2 5

2

K K r upAÊ
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ˆ
¯̃

Ï
Ì
Ô
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¸
˝
Ô
Ǫ̂

+
È

Î
Í

˘̆

˚
˙
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St = N k ln
( )

( )
ln ln

/ /

o

/
k

p

m

h
A

T5 2 5 2

2

3 2
1

1

2 3

2
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2

K

K

u
r

pÊ
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

+ + Ê
ËËÁ

ˆ
¯̃

È

Î
Í -

∞
Ê
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ˆ
¯̃

+ ˘
˚̇

ln
p

p

5

2

(4.7.21)

The numerical value of the constant terms within the brackets is

ln
( . ) ( )

( )

( . ) ( . )

( .

/ /1 38 10 1

10

2 3 14 1 66 10

6 6

23 1 5 2 5 2 27¥ ¥- -

5

-J K K

Pa

kg

226 10 34 2

3 2

¥

Ï
Ì
Ó

¸
˝
˛

È

Î
Í
Í

˘

˚
˙
˙- J s)

/

 + 
5

2

     = ln (0.02588) + 
5

2
 = – 3.654 1 + 2.5 = – 1.154 1

With this, Eq. (4.7.21) can be written as

S°m = 
S

n

∞t
 = R - + + Ê

ËÁ
ˆ
¯̃ -

∞
Ê
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ˆ
¯̃

È
ÎÍ

˘
˚̇

1 1541
3

2

5

2
. ln ln lnA

T p

p
r

K
(4.7.22)

Equation (4.7.22) is known as Sackur-Tetrode equation.

Entropy

Sackur-Tetrode 

Equation
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Since A = U – TS, we get

A =
3

2
NkT – NkT ln

/
kT

p

mkT

h

2 5

22

3 2pÊ
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ˆ
¯̃
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˝
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+
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Î
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˚
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i.e. A = – NkT ln
/

kT

p
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2

3 2pÊ
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¯̃

Ï
Ì
ÓÔ

¸
˝
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+
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Î
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˘

˚
˙ (4.7.23)

Since G = H – TS, we get

G =
5

2
NkT – NkT ln

/
kT

p
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3 2pÊ
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ˆ
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˝
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  = – NkT ln 
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3 2pÊ
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ˆ
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Ï
Ì
ÓÔ

¸
˝
Ǫ̂

/

(4.7.24)

Calculate the translational contributions to U°m, H°m , S°m , A°m and G°m for helium at 25 °C. 

We have

U°m = (3/2) RT = (3/2)(8.314 J K–1 mol–1)(298 K) = 3 716.4 J mol–1

H°m = (5/2) RT = (5/2)(8.314 J K–1 mol–1)(298 K) = 6 193.9 J mol–1

S°m = R - + + Ê
ËÁ

ˆ
¯̃ -

∞
Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

1 1541
3

2

5

2
. ln ln lnA

T p

p
r

K

  = (8.314 J K–1 mol–1) - + + -È
ÎÍ

˘
˚̇

1 1541
3

2
4

5

2
298 1. ln ln ln

  = 126.1 J K–1 mol–1

A°m = U°m – T S°m = (3 716.4 J mol–1) – (298 K) (126.1 J K–1 mol–1)

  = – 33 861.4 J mol–1

G°m = H°m – T S°m = (6 193.9 J mol–1) – (298 K) (126.1 J K–1 mol–1)

  = – 31 382.9 J mol–1

By convention, the energy of the ground electronic level is taken as the reference 

state and assign its value equal to zero. The electronic partition function is given by

qe = g0 + g1 e
–e1/ kT + g2 e

–e2/kT +   (4.7.25)

The summation is carried out by direct addition of different terms.

Using the following definitions

q¢e = T
d

d

eq

T

Ê
ËÁ

ˆ
¯̃  = T g

kT
i

i kT
i

i
e e

2

Ê
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ˆ
¯̃

È

Î
Í

˘

˚
˙

-Â e /

  =
iÂ  gi

ei

kT

Ê
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ˆ
¯̃ e-ei kT/ (4.7.26)

Helmholtz Free

Energy

Gibbs Free Energy

Example 4.7.2 

Solution

Electronic Partition 

Function
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and q≤e = T
d

d

e¢q

T
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d

d

d

d
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  = – q ¢ +
iÂ gi

ei
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Ê
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¯̃

2

e– e i/kT (4.7.27)

we can write the expressions of thermodynamic molar quantities as

Ue = He = RT 2
d

d

ln eq

T
 = 

RT

q

2

e

d

d

q

T

e
 = RT 

¢q

q
e

e
(4.7.28)

Se = R ln qe + 
U

T

e  = R ln q
q

qe
e

e
+

¢È

Î
Í

˘

˚
˙ (4.7.29)

Ae = Ge = – RT ln qe (4.7.30)

(Cp)e = (CV)e = 
d

dT
RT

q

q
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e

e

 = R
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q
e

e
 + R
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q
e

e
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q q
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q
e e
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e
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(4.7.31)

Comment For an atom where only the ground electronic state is of significance, the 
partition function qe reduces to the degeneracy of the ground level, and both q¢e and q≤e
are zero. Consequently, the electronic contributions to U, H, Cp and CV are all zero, 
while those of S, G and A are zero only if the degeneracy of ground level is unity.

Equations (4.7.26) – (4.7.31) are also applicable to rotational and vibrational motions.

The following first three electronic energy levels of atomic fluorine are available.

(1s)2(2s)2(2p)5 2P3/2 0; 2P1/2 404 cm–1

(1s)2(2s)2(2p)4(3s) 4P5/2 102 406 cm–1

Calculate:

(a) The fraction of atoms in each of the first three electronic levels at 1000 K.

(b) The internal energy, heat capacity at constant volume, enthalpy, heat capacity at 

constant pressure, entropy and Gibbs free energy at 1 000 K and 1 bar pressure.

We have

e1

kT
=

hcv

kT

1

∼

 = 
( . ) ( )( )

( . ) (

6 626 10 3 10 404 10

1 38 10 100

34 8 1 2 1

23 1

¥ ¥ ¥
¥

- - -

- -
J s m s m

J K 00 K)

    = 0.582

e2

kT
 = 

hcv

kT

2
 = 

( . ) ( )( )

( . ) (

6 626 10 3 10 102406 10

1 38 10

34 8 1 2 1

23 1

¥ ¥ ¥
¥

- - -

- -
J s m s m

J K 11 000 K)

    = 147.51

Example 4.7.3

Solution
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The value of electronic partition function is

qe = g0 + g1 e-e1/kT + g2 e-e2/kT

  = 2
3

2
1¥ +Ê

ËÁ
ˆ
¯̃  + 2

1

2
1¥ +Ê

ËÁ
ˆ
¯̃  e– 0.582 + 2

5

2
1¥ +Ê

ËÁ
ˆ
¯̃  e–147.51

  = 4 + 2 (0.559) + 0 = 5.118

(a) The fractions of fluorine atoms in the first three electronic levels are

N

N

0  = 
g

q
0

e
 = 

4

5 118.
 = 0.782

N

N

1  = 
g

q

kT
1

1e

e

-e /

   = 
2 0 559

5 118

¥ .

.
 = 0.218

N

N

2  = 
g

q

kT
2

2e

e

-e /

  = 
6 0

5 118

¥
.

 = 0

(b) The translational contributions to thermodynamic properties of fluorine atoms are 

as follows.

(U°m )t =
3

2
RT = 

3

2
 (8.314 J K–1 mol–1) (1 000 K) = 12 471 J mol–1

(CV,m )t = 
3

2
R = 

3

2
 (8.314 J K–1 mol–1) = 12.471 J K–1 mol–1

(H°m) t  = 
5

2
RT = 

5

2
 (8.314 J K–1 mol–1) (1 000 K) = 20 785 J mol–1

(Cp,m)t = 
5

2
R = 

5

2
 (8.314 J K–1 mol–1) = 20.785 J K–1 mol–1

(S°m)t = R - + + Ê
ËÁ

ˆ
¯̃ -

∞
Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

1 1541
3

2

5

2
. ln ln lnA

T p

p
r

K

  = (8.314 J K–1 mol–1) - + + -È
ÎÍ

˘
˚̇

1 1541
3

2
19

5

2
1000 1. ln ln ln

  = (8.314 J K–1 mol–1) (– 1.154 1 + 4.4167 + 17.2694 – 0)

  = (8.314 J K–1 mol–1) (20.532 0) = 170.70 J K–1 mol–1

(G°m)t = (H°m)t – T (S°m)t = (20 785 J mol–1) – (1 000 K) (170.70 J K–1 mol–1)

  = – 149 915 J mol–1

The electronic contributions to thermodynamic properties of fluorine atoms can 
be computed by considering the first two electronic levels as the population in the 

third and higher electronic energy levels are negligible.

q¢e = iÂ  gi

ei

kT

Ê
ËÁ

ˆ
¯̃

e–e i /kT

  = 4(0) (1) + 2 (0.582) (0.559) = 0.651

q≤e =
iÂ  gi

ei

kT

Ê
ËÁ

ˆ
¯̃

2

e–e i /kT – q¢e

  = 4(0) (1) + 2 (0.582)2 (0.559) – 0.651 =  – 0.272
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Hence, (Um)e = (Hm)e = R T 
¢q

q

e

e

 = (8.314 J K–1 mol–1) (1 000 K) 
0 651

5 118

.

.

Ê
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ˆ
¯̃

= 1 057.5 J mol–1

(Cp,m)e = (CV,m)e =  R
¢ + ¢¢
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q q

q
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q

e e

e

e

e
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2
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.
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-
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ˆ
¯̃
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Î
Í

˘

˚
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= (8.314 J K–1 mol–1) (0.074 1 – 0.0162) 

= 0.481 J K–1 mol–1

(S°m)e = R ln q
q

q
e

e

e

+
¢È

Î
Í

˘

˚
˙

= (8.314 J K–1 mol–1) ln .
.

.
5 118

0 651

5 118
+È

ÎÍ
˘
˚̇

= (8.314 J K–1 mol–1) (1.633 + 0.127)

= 14.63 J K–1 mol–1

(G°m)e = (H°m)e –T (S°m)e =1 057.5 J mol–1–(1 000 K)(14.63 J K–1 mol–1)

= – 13 572.5 J mol–1

The values of thermodynamic properties of fluorine at 1 000 K and 1 bar pressure 

are as follows:

Um = (Um)t + (Um)e = (12 471 + 1 057.5) J mol–1 = 13 528.5 J mol–1

Hm = (Hm)t + (Hm)e = (20 785 + 1 057.5) J mol–1 = 21 842.5 J mol–1

Cp,m = (Cp,m)t + (Cp, m)e = (20.79 + 0.48) J K–1 mol–1 = 21.27 J K–1 mol–1

CV,m = (CV,m)t + (CV,m)e = (12.47 + 0.48) J K–1 mol–1 = 12.95 J K–1 mol–1

Sm = (Sm)t + (Sm)e = (170.70 + 14.63) J K–1 mol–1 = 185.33 J K–1 mol–1

Gm = (Gm)t + (Gm)e = (– 149 915 – 13 572.5) J mol–1 = – 163 487.5 J mol–1

A diatomic molecule has all the four kinds of energy, i.e. translation, rotational, 

vibrational and electronic. Assuming no interactions amongst different modes of 

energies, we can write

 e = et + er + ev + ee (4.8.1)

The expression of its partition function is

q = qt qr qv qe (4.8.2)

4.8 THERMODYNAMIC PROPERTIES OF A DIATOMIC IDEAL GAS

Expression of 

Molecular Partition 

Function
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The translational contributions towards the various thermodynamic properties of a 

molecule are the same as those of atoms. Hence, the expressions derived in Section 

4.7 are also applicable to diatomic gases.

The rotational energy of a diatomic molecule assuming it to be rigid rotator is 

given by

er = Bhc J (J + 1) ; J = 0, 1, 2, … (4.8.3)

where B, rotational constant, is given by

B =
h

Ic8p2 (4.8.4)

In the above expression, I is moment of inertia (I = mr2, m = m1m2/(m1 + m2)) and 

c is the speed of light.

The degeneracy of energy levels is given by

gr = 2J + 1 (4.8.5)

The rotational partition function is given by

qr = 
J =

•

Â
0

(2J + 1) exp{– BhcJ(J + 1)/kT} (4.8.6)

If it is assumed that the rotational energy levels are spaced sufficiently close 

together, then the summation in Eq. (4.8.6) may be replaced by integration to give

qr = 

0

•

Ú (2J + 1) exp{– BhcJ(J + 1)/kT} dJ (4.8.7)

Let J (J + 1) = y2 such that (2J + 1) dJ = 2y dy. With this, the above integration 

becomes

qr = 2 

0

•

Ú y e-( / )Bhc kT y2
dy = 2 

1

2 Bhc kT/

Ê
ËÁ

ˆ
¯̃

 = 
kT

Bhc
 = 

kT

h Ic hc( / )8p2

=
8

2

p2 I k

h

Ê
ËÁ

ˆ
¯̃

T (4.8.8)

The above expression is usually written as

qr =
T

qr

(4.8.9)

where qr, known as characteristic rotational temperature, is given by

 qr =
h

I k

2

8p2 (4.8.10)

Contribution from Translational Motion

Contribution from Rotational Motion

Expression of 

Rotational Energy

Expression of 

Partition Function
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Calculate the characteristic rotational temperature for N2 molecule. Given: The internuclear 

distance of N2 is 109.76 pm.

The reduced mass of N2 is

 m =
m m

m m

N N

N N+
 = 

mN

2
 = 

14 1 66 10

2

27¥ ¥ -. kg
 = 1.162 ¥ 10–26 kg

The moment of inertia of N2 is

I = m r2 = (1.162 ¥ 10–26 kg) (109.76 ¥ 10–12 m)2

  = 1.40 ¥ 10–46 kg m2

The characteristic rotational temperature is

qr =
h

I k

2

8p2  = 
( . )

( . ) ( . ) ( . )

6 626 10

8 3 14 1 40 10 1 38 10

34 2

2 46 2 23 1

¥
¥ ¥

-

- - -
J s

kg m J K

   = 2.88 K

Symmetry number (symbol: s) of a molecule is the number of indistinguishable 

configurations the molecule assumes when it is rotated once by an angle 360°.†

For a homonuclear molecule (e.g. H2, O2, N2,…), s = 2 as the rotation by 180° 

produces indistinguishable configuration from its original configuration.

For a heteronuclear molecule (e.g. HCl, HBr, …), s = 1.

To avoid more than one counting of indistinguishable  configurations of a 

molecule during the rotation by 360°, the partition function is divided by its 

symmetry number to give

qr = 
T

sqr

(4.8.11)

The expression of ln qr is

  ln qr = ln (T/ K) – ln s – ln (qr / K) (4.8.12)

Hence,   
d

d

rln q

T
 = 

1

T
(4.8.13)

The thermodynamic properties of diatomic gases are given by the following 

expressions.

Um r
( ) = Hm r

( )  = RT2 d

d

rln q

T
 = RT 2 1

T

Ê
ËÁ

ˆ
¯̃  = RT (4.8.14)

(Cp,m)r = (CV,m)r = R (4.8.15)

Sm r
( ) = R ln qr + 

U

T

r  = R ln
T

sqr

Ê
ËÁ

ˆ
¯̃
+

È

Î
Í

˘

˚
˙1 (4.8.16)

Am r
( )  = Gm r

( )  = – RT ln qr = – RT ln 
T

sqr

Ê
ËÁ

ˆ
¯̃

(4.8.17)

Calculate the rotational contributions to internal energy, entropy and Gibbs free energy for 

diatomic oxygen at 500 K. Given: Internuclear distance of O2 = 121 pm.

Example 4.8.1 

Solution

Symmetry Number

Expressions of 

Thermodynamic

Functions

Example 4.8.2

† See Annexure II at the end of the chapter for the quantum mechanical explanation of 
symmetry number.
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We have

Reduced mass 

m =
m m

m m

O O

O O+
 = 

mO

2
 = 

M

N

O

A2

  =
16 10

2 6 022 10

3 1

23 1

¥
¥

- -

-
kg mol

mol( . )
 = 1.33 ¥ 10–26 kg

Moment of inertia

I = m r2 = (1.33 ¥ 10–26 kg) (121 ¥ 10–12 m)2

  = 1.95 ¥ 10–46 kg m2

Characteristic rotational temperature

qr = 
h

I k

2

8p2  =
( . )

( . ) ( . ) ( . )

6 626 10

8 3 14 1 95 10 1 38 10

34 2

2 46 2 23 1

¥
¥ ¥

-

- - -
J s

kg m J K
 = 2.07 K

Rotational partition function

qr = 
T

sqr

 = 
( )

( . )

500

2 2 07

K

K
 = 120.77

The values of thermodynamic properties are as follows. 

U
rm( ) = Hm r

( )  = RT = (8.314 J K–1 mol–1) (500 K) = 4 157 J mol–1

S
rm( ) = R (ln qr + 1) = (8.314 J K–1 mol–1) {ln (120.77) + 1}

= (8.314 J K–1 mol–1) (4.79 + 1) = 48.17 J K–1 mol–1

G
rm( ) = – RT ln qr = – (8.314 J K–1 mol–1) (500 K) (ln 120.77)

= – 19 928.2 J mol–1

The replacement of summation in Eq. (4.8.6) by integration is found to be valid 

provided T/qr ≥ 100. For a low T or high qr (i.e. low I ), the value of T/qr may be 

less than 100. In such a situation, the value of rotational partition function should 

be evaluated by term-by-term summation. Using the Euler-Maclaurin summation 

theorem, it can be shown that the rotational partition function is given by 

qr = 
T

sqr

1
1

3

1

15

4

315

2 3

+ Ê
ËÁ

ˆ
¯̃
+ Ê

ËÁ
ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

+
È

Î
Í

˘

˚
˙

q q qr r r

T T T
 (4.8.18)

The various thermodynamic molar properties may be evaluated by using Eqs 

(4.7.28) to (4.7.31), where

q¢r = T
d

d

rq

T

Ê
ËÁ

ˆ
¯̃ =

T

sqr

1
1

15

8

315

2 3

- Ê
ËÁ

ˆ
¯̃

- Ê
ËÁ

ˆ
¯̃

+
È

Î
Í

˘

˚
˙

q qr r

T T
 (4.8.19)

and q≤r =
d

d

r¢Ê
ËÁ

ˆ
¯̃

q

T
 = 

T

sqr

1
1

15

16

315

2 3

+ Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

+
È

Î
Í

˘

˚
˙

q qr r

T T
 (4.8.20)

Assuming diatomic molecule as a harmonic oscillator, its vibrational energy is 

given by

Solution

Comment on the 

Replacement of 

Summation by 

Integration in 

the Expression 

of Rotational 

Partition Function

Contribution from Vibrational Motion

Expression of 

Vibrational Energy



Statistical Thermodynamics 315

eu = u +Ê
ËÁ

ˆ
¯̃

1

2
hn0 ;      u = 0, 1, 2, … (4.8.21)

where n0, the classical frequency of oscillation, is given by

 n0 =
1

2p
kf

m
(4.8.22)

In Eq. (4.8.22), kf represents force constant and m represents reduced mass of the 

molecule.

The molecule has a ground state energy of (1/2)hn0 where vibrational quantum 

number u = 0. The vibrational energy with reference to the ground-state energy 

is given by

eu – e0 = hn0 u ;      u = 0, 1, 2, … (4.8.23)

For convenience (though it is not necessary, see Example 4.8.4) the vibrational 

contribution to the partition function is considered by using Eq. (4.8.23).

Since the vibrational energy levels are nondegenerate, the expression of vibrational 

partition function is given by

qv = 
u =

•

Â
0

exp{– (eu – e0) /kT} (4.8.24)

Using Eq. (4.8.23), this becomes

qv =
u =

•

Â
0

exp(– hn0u/kT) (4.8.25)

For exp(– hn0/kT ) < 1, the above summation is given by

qv =
1

1 0- -exp( / )h kTn
(4.8.26)

Equation (4.8.26) is usually written as

qv = 
1

1- -exp( / )qv T
(4.8.27)

where qv, known as the characteristic vibrational temperature, is given by

qv = 
h

k

n0 (4.8.28)

Calculate the characteristic vibrational temperature of N2 molecule. Given: n0
∼

= 2 357.6 cm–1

for N2 molecule.

The characteristic vibrational temperature is given by

qv = 
hv

k
=

hcv

k

 

Substituting the values, we get

Expression of 

Partition Function

Example 4.8.3 

Solution
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 qv =
hcv

k

 
 = 

( . ) ( )( . )

( . )

6 626 10 3 10 2357 6 10

1 38 10

34 8 1 2 1

23 1

¥ ¥ ¥
¥

- - -

- -
J s m s m

J K

  = 3 396 K

Since the partition function (Eq. 4.8.27) is evaluated with respect to the ground 

vibrational state energy e0, the expression of internal energy due to the vibrational 

mode will be given by

U = U ¢ – U0 = NkT 2
d

d

vln q

T

Ê
ËÁ

ˆ
¯̃ (4.8.29)

Taking logarithm of Eq. (4.8.27), we get

ln qv = – ln (1 – e–qv/T)

Hence,
d

d

ln vq

T
= – 

1

1-
Ê
ËÁ

ˆ
¯̃-e vq /T

-( )-e vq /T
qv

T 2

Ê
ËÁ

ˆ
¯̃  = 

1

T 2

q
q

v

e v /T -1
(4.8.30)

Substituting Eq. (4.8.30) in Eq. (4.8.29), we get

Uv = U ¢v – 
1

2
Nhn0 = 

Nk
T

q
q

v

e v / -1
(4.8.31)

Since Hint = Uint for the internal motions, we also have

Hv = H ¢v – 
1

2
Nhn0 = 

Nk
T

q
q

v

e v / -1
(4.8.32)

The expression of heat capacities is

Cp = CV = 
d

d

U

T
 = 

Nk T T

T

( / )

( )

/

/

q q

q
v e

e

v

v

2

21-
(4.8.33)

The entropy contribution is given by

Sv = N k ln qv + 
U

T

v
(Eq. 4.6.7)

= Nk - - +
-

È

Î
Í

˘

˚
˙

-ln ( )
//

v /
1

1
e

e

v vq

q

qT

T

T
(4.8.34)

The expressions of Helmholtz and Gibbs free energies are

Av – U0 = Gv – U0 = NkT ln 1-( )-e vq /T (4.8.35)

It is important to point out here that the zero-point vibrational energy is involved 

in the expressions of U, H, A and G and not in S, Cp and CV of the molecule.

Taking the zero reference as the bottom of potential energy diagram to express vibrational 

energies of a diatomic molecule (executing harmonic oscillations), derive the expressions 

of molecular partition function and various thermodynamic properties.

The expression of vibrational energies is

Expressions of 

Thermodynamic

Properties

Example 4.8.4 
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Solution
eu = u +Ê

ËÁ
ˆ
¯̃

1

2
hn0 ;     u = 0, 1, 2, …

The expression of molecular partition function is 

qv =
uÂ exp[– (u + 1/2)hn0/kT]

  = exp(–hn0/2kT) u u nÂ -[ ]exp( / )h kT0

  =
exp( / )

exp( / )

-
- -

h kT

h kT

n

n
0

0

2

1
 = 

exp( / )

exp( / )

-
- -

q

q
v

v

2

1

T

T

The expression of ln qv is

ln qv = –
qv

2T
 – ln [1 – exp(– qv /T)]

Hence,  
d

d

vln q

T
 = 

qv

2 2T
 + 

qv

T 2

1

1exp( / )qv T -
È
ÎÍ

˘
˚̇

The expression of internal energy is 

Uv = NkT 2 d

d

ln q

T
 = Nk

q q

q
v v

v2 1
+

-
È

Î
Í

˘

˚
˙

exp( )T

For internal motion, Hv = Uv.

The expression of entropy is

Sv = Nk ln qv + 
U

T

v

  = Nk
È
ÎÍ

– ln {1 – exp(– qv/T)} + 
q

q

/

exp( / )

T

Tv -
˘

˚
˙

1
  (Eq. 4.8.34)

Gv = Hv – TSv = 
N kqv

2
 + NkT ln [1 – exp(– qv/T )] (Eq. 4.8.35)

Calculate the vibrational contributions to internal energy, enthalpy, entropy and Gibbs free 

energy for 1 mol of diatomic oxygen at 298 K. Given: The vibrational frequency of O2

corresponds to 1 580 cm–1.

We have

Characteristic vibrational temperature

qv = 
h

k

n
 = 

hcv

k
 = 

( . ) ( )( )

( . )

6 626 10 3 10 1580 10

1 38 10

34 8 1 2 1

23 1

¥ ¥ ¥
¥

È - - -

- -
J s m s m

J molÎÎ
Í

˘

˚
˙

  = 2 275.9 K

Value of exp(qv / T )

eqv/T = e(2 275.9/298) = e7.637 2 = 2 074.0

Values of thermodynamic properties

Um = 
N k

T
A v

e v

q
q / -1

 = 
R

T

q
q

v

e v / -1
 = 

( . ) ( . )

( . )

8 314 2 275 9

2074 0 1

1 1J K mol K- -

-
  = 9.123 J mol–1

Hm = Um = 9.123 J mol–1

Example 4.8.5

Solution
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Sm = R - - +
-

È
ÎÍ

˘
˚̇

-ln ( )
//

/
1

1
e

e
v

v

vq
q

qT

T

T

  = (8.314 J K–1 mol–1) - - +
-

È

ÎÍ
˘

˚̇
ln{ ( / . )}

. /

.
1 1 2 074 0

2 275 9 298

2 074 0 1

  = (8.314 J K–1 mol–1) (4.823 ¥ 10–4 + 3.684 ¥ 10–3)

  = 0.034 6 J K–1 mol–1

Gm = R T ln (1 – e–qv /T)

  = (8.314 J K–1 mol–1) (298 K) ln {1 – 1/2 074.0}

  = – 1.195 J mol–1

The zero-point vibrational energy is

U0 = NA

1

2
hn

Ê
ËÁ

ˆ
¯̃  = (6.023 ¥ 1023 mol–1)

1

2

Ê
ËÁ

ˆ
¯̃  (6.626 ¥ 10–34 J s)

¥ {(3 ¥ 108 m s–1) (1 580 ¥ 102 m–1)}

  = 9.46 ¥ 103 J mol–1

This value is to be added in the values of Um, Hm and Gm. Hence,

U ¢m = (9.123 + 9.46 ¥ 103) J mol–1 = 9.47 ¥ 103 J mol–1

H ¢m = U ¢m = 9.47 ¥ 103 J mol–1

G ¢m = (–1.195 + 9.46 ¥ 103) J mol–1 = 9.46 ¥ 103 J mol–1

In most cases, the molecules are present in the ground electronic state unless 

temperature is very high. Since the electronic energy in the ground electronic level 

is, by convention, assigned a value of zero, only the ground level degeneracy is 

involved in the determination of electronic contributions to various thermodynamic 

properties. Exception to this statement are nitric oxide and the monatomic halogens, 

where the energy of the first excited state is not far away from that of the ground 

state.

Since the degeneracy of the ground electronic level is independent of temperature 

(i.e. d ln qe/d T = 0), the electronic contributions to U, H, CV and Cp are all 

zero. However, entropy, helmholtz free energy and Gibbs free energy do include 

contributions as they involve ln qe. Hence

(Sm)e = R ln g0 (4.8.36)

(Am)e = (Gm)e = – RT ln g0 (4.8.37)

The chemical energy of a molecule is the energy released when the molecule is 

formed from the gaseous atoms. This is equal to the minus of the dissociation 

energy (symbol: D0) of the molecule (Fig. 4.8.1). 

Contribution from Electronic Energy Levels

Contribution from the Chemical Energy of a Molecule
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The thermodynamic contributions of the molecule relative to those of gaseous 

atoms are obtained by taking the ground state electronic energy of the molecule 

equal to –D0. Hence, we have

qe = g0 e
D0/kT (4.8.38)

(Um° )e= (Hm° )e = – D0 (4.8.39)

(C°p)e = 0 (4.8.40)

(S°m)e = R ln g0 (4.8.41)

(G°m)e = – D0 – RT  ln g0 (4.8.42)

Since the nuclear excited levels are energetically very far away from the ground 

level (assumed to have zero energy), only the degeneracy of ground nuclear 

energy contributes towards the nuclear partition function unless the temperature 

is exceedingly high.

The degeneracy of the ground level in atom is determined by the nuclear 

spin quantum number I, which is equal to 2 I + 1. The nuclear degeneracy of the 

molecule is given by

gn = Pi  (2 Ii + 1)

where the multiplication is carried over the number of atoms in the molecule. Since 

the ground nuclear level is considered to have zero energy, the nuclear partition 

function is given by

qn = gn

The nuclear partition function does not contribute towards the thermodynamic 

properties in a given chemical reaction, since nuclear energy levels of reactants 

and products are not affected.

At the end, we summarize the expressions of partition function and thermodynamic 

properties for an ideal diatomic gas under the harmonic oscillator-rigid rotator 

approximation.

q =
2 1 2

2

3 2p(m m kT

h
V

+{ }È

Î
Í

˘

˚
˙

)
/ 8

2

p
s

2 IkT

h

È

Î
Í

˘

˚
˙

1

1- -
È

ÎÍ
˘

˚̇exp( / )h kTn
[ exp( / )]g D kTe 0

U

N kT
 = 

3

2
 + 1 + 

h

kT

h kT

h kT

n n

n2 1
+

-
È

ÎÍ
˘

˚̇

/

exp( / )
 – 

D

kT

0

Fig. 4.8.1 Electronic 

energy of a molecule 

relative to its 

dissociated gaseous 

atoms

Contribution from Nuclear Energy Levels

Summary of 

Expressions
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C

N k

V
 = 

3

2
 + 1 + 

h

kT

nÊ
ËÁ

ˆ
¯̃

2
exp( / )

[exp( / ) ]

h kT

h kT

n

n -1 2

S

N k
 = ln 

2 5 21 2

2

3 2p(m m kT

h

V

N

+Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

) exp( / )
/

 + ln 
8

2

p
s

2 IkT

h

e

+
h kT

h kT
h kT

n

n
n

/

exp( / )
ln[ exp( / )]

-
- - -È

ÎÍ
˘
˚̇1

1  + ln ge

pV  = NkT

G

N kT

∞m
 = – ln 

2 1 2

2

3 2p(m m kT

h

kT

p

+Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

)
/

 – ln 
8

2

p
s

2 I kT

h

+
h

kT
h kT

n
n

2
1+ - -{ }È

ÎÍ
˘

˚̇
ln exp( / )  – 

D

kT

0  – ln ge

Comment The values of thermodynamic properties calculated by using the 

above expressions agree more or less with the values determined experimentally. 

The agreement can be made more perfect by invoking nonrigid rotation and 

anharmonic oscillation. The necessary data are determined spectroscopically. 

It may be pointed here that the above expressions are strictly valid only when

T q r. At this condition, the molecules are in states with large enough rotational 

quantum numbers. Consequently, the coupling between the angular momenta due 

to the rotation of molecules and electronic state does not take place. This results 

into the separation of rotational-electronic partition function into the product of 

partition functions of the individual components.

Assuming the different modes of energy independent of each other, the energy of 

a polyatomic molecule can be written as

e = et + er + ev + ee (4.9.1)

The molecular partition function is given by

q = qt qr qv qe (4.9.2)

The translational contributions towards the various thermodynamic properties 

of a molecule are given by the expressions derived earlier for a monatomic gas                       

(see Section 4.7).

For a linear molecule, the expression of the rotational partition function and those 

of various thermodynamic properties are the same as those of a diatomic molecule. 

The moment of inertia of the molecule is given by

I = m ri ii
2Â (4.9.3)

where the summation is over the atoms of the molecule. The distances ri s are 

4.9 THERMODYNAMIC PROPERTIES OF A POLYATOMIC IDEAL GAS

Introduction

Translational 

Contribution

LINEAR MOLECULE

Rotational

Contribution
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measured from the centre of mass of the molecule which can be located by using 

the expression

iÂ mi ri = 0 (4.9.4)

The value of symmetric number s depends upon the structure of the molecule. For 

symmetrical molecules, s = 2 while for asymmetric molecules, s = 1.

A linear molecule has 3N – 5 independent modes of vibration. Assuming no 

interactions amongst these modes of vibration, we will have 3N – 5 characteristic 

vibrational temperatures qv (= hn0/k). For each vibrational mode, the contributions 

to thermodynamic properties can be computed by using Eqs (4.8.31) to (4.8.35).

The electronic contributions to thermodynamic properties can be computed by 

using Eqs (4.8.38) to (4.8.42).

Calculate the values of translational, rotational and vibrational molecular partition functions for 

carbon dioxide at 1 200 K and 1 atm pressure. Also calculate the contributions made by these 

motions toward the molar internal energy and molar entropy. Given: Vibrational frequencies 

of CO2 are 4.03 ¥ 1013 Hz, 2.00 ¥ 1013 Hz (doubly degenerate) and 7.05 ¥ 1013 Hz. The 

distance between C and O in CO2 is 116.2 pm.

Translational molecular partition function

The mass of CO2 molecule is

m = mC + 2mO = (12.0 + 2 ¥ 16.0) (1.66 ¥ 10–27 kg)

  = 7.30 ¥ 10–26 kg

The molar volume of CO2 at 1 200 K and 1 atm pressure is

Vm =
RT

p
 = 

( . ) ( )

( )

8 314 1 200

101325

1 1J K mol K

Pa

- -
 = 9.85 ¥ 10–2 m3 mol–1

Hence, qt = V
2

2

3 2p mkT

h

Ê
ËÁ

ˆ
¯̃

/

  = (9.85 ¥ 10–2 m3 mol–1)

¥
2 3 14 7 30 10 1 38 10 1 200

6 626 10

26 23 1

34

( . ) ( . ) ( . ) ( )

( .

¥ ¥
¥

- - -

-
kg J K K

J s))

/

2

3 2
È

Î
Í

˘

˚
˙

  = 2.34 ¥ 1032 mol–1

Rotational molecular partition function

Taking the centre of C atom as a centre of mass, we have

I =
iÂ mi r 2

i  = 2 (16.0 ¥ 1.66 ¥ 10–27 kg) (116.2 ¥ 10–12 m)2

  = 7.17 ¥ 10– 46 kg m2

Hence, qr =
h

I k

2

28p
=

( . )

( . ) ( . ) ( . )

6 626 10

8 3 14 7 17 10 1 38 10

34 2

2 46 2 23 1

¥
¥ ¥

-

- - -
J s

kg m J K
= 0.563 K

qr =
T

sqr

 = 
1200

2 0 563

K

K( . )
 = 1 066

Vibrational 

Contribution

Electronic

Contribution

Example 4.9.1

Solution
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Vibrational molecular partition function

qv1 =
h

k

n1  = 
( . ) ( . )

( . )

6 626 10 4 03 10

1 38 10

34 13 1

23 1

¥ ¥
¥

- -

- -
J s s

J K
 = 1 935 K

qv2 =
h

k

n2  = 
( . ) ( . )

( . )

6 626 10 2 00 10

1 38 10

34 13 1

23 1

¥ ¥
¥

- -

- -
J s s

J K
 = 960.3 K

(doubly degenerate)

qv3 =
h

k

n3
 = 

( . ) ( . )

( . )

6 626 10 7 05 10

1 38 10

34 13 1

23 1

¥ ¥
¥

- -

- -
J s s

J K
 = 3 385 K

Hence, qv1 =
1

1 1- -exp( / )qv T
 = 

1

1 1935 1 200- -exp( / )K K
=

1

1 1 613- -exp( . )

= 1.249

qv2 =
1

1 2- -exp( / )qv T
 = 

1

1 960 3 1 200- -exp( . / )K K
 = 

1

1 0 800- -exp( . )

= 1.816

qv3 =
1

1 3- -exp( / )qv T
 = 

1

1 3 385 1 200- -exp( / )K K
 = 

1

1 2 821- -exp( . )

= 1.063

Contribution towards molar internal energy

Since Ut = NkT2
∂

∂
Ê
ËÁ

ˆ
¯̃

ln q

T
V

t
= NkT2 3

2T

Ê
ËÁ

ˆ
¯̃  = 

3

2
NkT

we have Um, t =
3

2
RT = 

3

2
 (8.314 J K–1 mol–1) (1 200 K)

= 1.497 ¥ 104 J mol–1

Since Ur = NkT 2 d

d

rln q

T
 = NkT 2 1

T

Ê
ËÁ

ˆ
¯̃

 = NkT

we have Um,  r = RT = (8.314 J K–1 mol–1) (1 200 K)

= 9.98 ¥ 103 J mol–1

Since Uv = NkT2 d

d

vln q

T
 = NkT2 1

12T T

q
q

v

e v / -
Ê
ËÁ

ˆ
¯̃

we have Um, v1 =
R

T

q
q

v

e v

1

1 1/ -
 = 

( . ) ( )

( ).

8 314 1 935

1

1 1

1 613

J K mol K

e

- -

-

= 4.00 ¥ 103 J mol–1

Um, v2 =
( . )( . )

( ).

8 314 960 3

1

1 1

0 80

J K mol K

e

- -

-
 = 6.52 ¥ 103 J mol–1

  (doubly degenerate)
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Um, v3 =
( . )( )

( ).

8 314 3385

1

1 1

2 821

J K mol K

e

- -

-
 = 1.78 ¥ 103 J mol–1

The sum of internal energies is

Um = (14.97 + 9.98 + 4.00 + 2 ¥ 6.52 + 1.78) ¥ 103 J mol–1

= 43.77 ¥ 103 J mol–1

The above internal energy is with reference to zero energy of the ground vibrational state. 

The actual internal energy is obtained by adding ground vibrational energies, which, 

respectively, are 

U01 = NA
1

2
1hn

Ê
ËÁ

ˆ
¯̃

  = (6.023 ¥ 1023 mol–1) (1/2) (6.626 ¥ 10–34 J s) (4.03 ¥ 1013 s–1)

  = 8 041.5 J mol–1

U02 = (6.023 ¥ 1023 mol–1) (1/2) (6.626 ¥ 10–34 J s) (2.00 ¥ 1013 s–1)

(doubly degenerate)

  = 3 990.8 J mol–1

U03 = (6.023 ¥ 1023 mol–1) (1/2) (6.626 ¥ 10–34 J s) (7.05 ¥ 1013 s–1)

  = 14 067.7 J mol–1

Hence, the molar internal energy including zero-point vibrational energies is

U = (43.77 + 8.04 + 3.99 ¥ 2 + 14.07) ¥ 103 J mol–1

  = 73.86 ¥ 103 J mol–1

Contribution towards molar entropy

Since St = Nk ln 
q

N

tÊ
ËÁ

ˆ
¯̃  + 

U

T

m,t
 + N k, we have

Sm, t = R ln 
q

N

t

A

Ê
ËÁ

ˆ
¯̃

 + 
3

2
R + R

= (8.314 J K–1 mol–1) ln
.

.

2 34 10

6 023 10

5

2

32 1

23 1

¥
¥

Ê
ËÁ

ˆ
¯̃

+
È

Î
Í

˘

˚
˙

-

-
mol

mol

= (164.43 + 20.79) J K–1 mol–1

= 185.22 J K–1 mol–1

Sm, r = R ln qr + 
U

T

m,r

= (8.314 J K–1 mol–1) ln (1 066) +
9 977

1 200

1J mol

K

-

= (57.96 + 8.31) J K–1 mol–1

= 66.27 J K–1 mol–1

Since Sm, v = R ln qv + 
U

T

m,v , we have

Sm, v1 = (8.314 J K–1 mol–1) ln (1.249) + 
4 000

1 200

1J mol

K

-

= (1.85 + 3.33) J K –1 mol–1 = 5.18 J K–1 mol–1
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Sm, v2 = (8.314 J K–1 mol–1) ln (1.816) + 
6 520

1 200

1J mol

K

-

= (4.96 + 5.43) J K–1 mol–1 = 10.39 J K–1 mol–1

Sm, v3 = (8.314 J K–1 mol–1) ln (1.063) + 
1780

1 200

1J mol

K

-

= (0.51 + 1.48) J K–1 mol–1 = 1.99 J K–1 mol–1

The sum of entropies is

Sm = Sm, t + Sm, r + Sm, v1 + 2 Sm, v2 + Sm, v3

  = (185.22 + 66.27 + 5.18 + 2 ¥ 10.39 + 1.99) J K–1 mol–1

  = 279.44 J K–1 mol–1

For a nonlinear molecule, the rotational partition function is given by

qr =
p

s
8p2 I kT

h

x

2

1 2
Ê

ËÁ
ˆ

¯̃

/ 8p2 I kT

h

y

2

1 2
Ê

Ë
Á

ˆ

¯
˜

/
8 2

2

1 2
p I kT

h

zÊ

ËÁ
ˆ

¯̃

/

=
8 2

3

p
sh

 (Ix Iy Iz) (2p kT)3/2 (4.9.5)

where Ix, Iy and Iz are the three principal moments of inertia of the molecule along 

the three principal Cartesian-coordinate axes with the centre of mass of molecule 

iÂ mixi = 
iÂ mi yi = 

iÂ mizi = 0 (4.9.6)

In the principal set of axes, we have

Ix =
iÂ mi(y2

i + z2
i ) (4.9.7)

Iy =
iÂ mi(z

2
i + x2

i ) (4.9.8)

Iz =
iÂ mi(x

2
i  + y 2

i ) (4.9.9)

and the products of inertia are zero, i.e.

Ixy = Iyx = 
iÂ mi xi yi = 0 (4.9.10)

Iyz = Izy = 
iÂ mi yi zi = 0 (4.9.11)

Izx = Ixz = 
iÂ mi zi xi = 0 (4.9.12)

The principal set of axes can be conveniently selected by letting any one of the 

coordinate directions x, y and z to coincide with a line of symmetry in the molecule.

NONLINEAR MOLECULE

Rotational

Contribution
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In general, the expressions given by Eqs (4.9.7) to (4.9.9) are represented as Ixx, Iyy

and Izz, respectively. It is found that the values of Ixx, Iyy, Izz, Ixy, Iyz and Izx depend 

upon the orientations of the three Cartesian axes keeping the origin at the centre of 

mass of the molecule. However, in one particular orientation, the value of each of 

Ixy, Iyz and Iz x is zero. This particular orientation is called the principal set of axes.

For any orientation, the product Ix Iy Iz is given by

Ix Iy Iz = 

I I I

I I I

I I I

x x x y x z

y x y y y z

z x z y z z

- -

- -

- -

(4.9.13)

and for the principal set of axes,

Ix Iy Iz = 

I

I

I

x x

y y

z z

0 0

0 0

0 0

 = Ixx Iyy Izz (4.9.14)

of inertia as described in Table 4.9.1.

Table 4.9.1

Characteristics Name Example

Ix = Iy = Iz Spherical top CCl4

Ix = Iy π Iz Symmetric top NH3

Ix π Iy π Iz Asymmetric top CH2Cl2

Ix = 0, Iy = Iz = I Linear HC CH

Ix + Iy = Iz Planar C6H6

It is not necessary to locate the centre of mass of the molecule to determine 

the moment of inertia I of a linear molecule or the product IxIy Iz of a nonlinear 

molecule. The following procedure may be adopted.

Linear Molecule Take any point on the molecular axis (labelled as x axis) as the 

origin and determine the xi coordinate of each atom. The expression of moment 

of inertia is then given by

I =
iÂ mi x2

i – 
1

M

Ê
ËÁ

ˆ
¯̃ m xi iiÂ( )2 (4.9.15)

where M is the molar mass of the molecule. Alternatively, the following expression 

may be used

I =
1

2M

Ê
ËÁ

ˆ
¯̃ iÂ jÂ mi mj r i j

2 =
1

M

Ê
ËÁ

ˆ
¯̃

j i

N

i

N

= +=

-

ÂÂ
11

1

mi mj ri j
2 (4.9.16)

where ri j is the distance between ith and jth atoms.

Comment on the 

Moment of Inertia

Classification of a 

Molecule

Comment on the 

Evaluation of 

Moment of Inertia
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Nonlinear Molecule Take any one point as the origin (preferably on the symmetry 

axis or symmetry plane if existed). Determine the coordinates xi, yi and zi of every 

atom with reference to a convenient rectangular coordinate system. Evaluate the 

terms given below.

A =
iÂ mi (y2

i + z2
i ) – 

1

M

Ê
ËÁ

ˆ
¯̃ m yi iiÂ( )2  – 

1

M

Ê
ËÁ

ˆ
¯̃ m zi iiÂ( )2

B =
iÂ mi (x

2
i + z2

i ) – 
1

M

Ê
ËÁ

ˆ
¯̃ m xi iiÂ( )2  – 

1

M

Ê
ËÁ

ˆ
¯̃ m zi iiÂ( )2

C =
iÂ mi (x

2
i + y2

i ) – 
1

M

Ê
ËÁ

ˆ
¯̃ m xi iiÂ( )2  – 

1

M

Ê
ËÁ

ˆ
¯̃ m yi iiÂ( )2

D =
iÂ mi xi yi – 

1

M

Ê
ËÁ

ˆ
¯̃ m xi iiÂ( ) m yi iiÂ( )

E =
iÂ mi xi zi –

1

M

Ê
ËÁ

ˆ
¯̃ m xi iiÂ( ) m zi iiÂ( )

F = iÂ mi yi zi – 
1

M

Ê
ËÁ

ˆ
¯̃ m yi iiÂ( ) m zi iiÂ( )

and evaluate Ix Iy Iz by using the following determinant.

Ix Iy Iz = 

A D E

D B F

E F C

- -
- -
- -

A nonlinear molecule has 3N –  6 independent modes of vibration. Assuming no 

interactions amongst these modes of vibration, we will have 3N – 6 characteristic 

vibrational temperatures qv (= hn/k). For each vibrational mode, the contributions 

to thermodynamic properties can be computed by using Eqs (4.8.31) to (4.8.35).

Calculate the values of translational, rotational and vibrational molecular partition functions 

for gaseous H2O molecules at 1 200 K and 1 bar pressure. Also, calculate the contributions 

made by these motions toward the molar internal energy and molar entropy. Given: 

Vibrational frequencies of H2O are 1.10 ¥ 1014 Hz, 4.78 ¥ 1013 Hz and 1.13 ¥ 1014 Hz. 

The distance O—H is 95.8 pm and the angle HOH is 104.5°.

Translational molecular partition function

The mass of H2O molecule is

m = mO + 2mH = (16.0 + 2 ¥ 1.0) (1.66 ¥ 10–27 kg) = 2.99 ¥ 10–26 kg

The molar volume of H2O(g) at 1 200 K and 1 bar pressure is

Vm =
RT

p
 = 

( . ) ( )

( )

8 314 1200

10

1 1

5

J K mol K

Pa

- -

 = 9.98 ¥ 10–2 m3 mol–1

Vibrational 

Contribution

Example 4.9.2

Solution
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qt = V
2

2

3 2p mkT

h

Ê
ËÁ

ˆ
¯̃

/

  = (9.98 ¥ 10–2 m3 mol–1)

¥
2 3 14 2 99 10 1 38 10 1 200

6 626 10

26 23 1 3 2

3

( . ) ( . ) ( . ) ( )

( .

/¥ ¥
¥

- - -

-
kg J K K

44 2

3 2

J s)

/
È

Î
Í

˘

˚
˙

  = 5.95 ¥ 1031 mol–1

Rotational molecular partition function

To calculate the rotational partition function, we need the moment of inertia of water.

Let the water molecule may be represented as shown in Fig. 4.9.1.

Let (xc, yc) be the coordinates of the centre of mass of the molecule. To calculate (xc, yc),

we set

mO (xc – 0) + mH (xc – 75.75 pm) + mH (xc + 75.75 pm) = 0

mO (yc – 0) + mH (yc – 58.65 pm) + mH (yc – 58.65 pm) = 0

where mO = 16 ¥ 1.66 ¥ 10–27 kg = 2.66 ¥ 10–26 kg

mH = 1 ¥ 1.66 ¥ 10–27 kg = 1.66 ¥ 10–27 kg

This gives

xc = 0

yc =
( ) ( . )

( )

2 58 68

2

m

m m

H

O H

pm

+
 = 

2 58 65

16 2

( . )

( )

pm

+
 = 6.52 pm

Taking (xc, yc) as the origin and the y-axis along the line of symmetry, the coordinates of 

atoms are 

xO = 0 yO = – 6.52 pm

xHa
= –75.75 pm yHa

= (58.65 – 6.52) pm = 52.13 pm

xHb
= + 75.75 pm yHb

= (58.65 – 6.52) pm = 52.13 pm

Ixx =
iÂ mi(y

2
i + z 2

i ) = 
iÂ mi y 2

i (as zis are zero)

  = [(2.66 ¥ 10–26) (– 6.52)2 + (1.66 ¥ 10–27) (52.13)2 + (1.66 ¥ 10–27)

¥ (52.13)2] kg pm2

  = 1.02 ¥ 10–23 kg pm2

Fig. 4.9.1 Orientation 

of H2O molecule
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Iyy =
iÂ mi(z

2
i + x 2

i ) = 
iÂ mi x 2

i (as zis are zero)

  = [(2.66 ¥ 10–26) (0)2 + (1.66 ¥ 10–27) (– 75.75)2 + (1.66 ¥ 10–27)   

   ¥ (75.75)2] kg pm2

  = 1.91 ¥ 10–23 kg pm2

Iz z =
iÂ mi(x

2
i  + y2

i )

  = [(2.66 ¥ 10–26) [02 + (– 6.52)2] + (1.66 ¥ 10–27) [(– 75.75)2 + (52.13)2]   

   + (1.66 ¥ 10–27) [(75.75)2 + (52.13)2]] kg pm2

  = 2.92 ¥ 10–23 kg pm2

Ixy =
iÂ mi xi yi

  = [(2.66 ¥ 10–26) (0) (– 6.52) + (1.66 ¥ 10–27) (– 75.75) (52.13)

   + (1.66 ¥ 10–27 ) (75.75) (52.13)] kg pm2

  = 0

Ixz = Iyz = 0 (as zi s are zero)

Hence, the principal moments of inertia are

Ix = 1.02 ¥ 10–23 kg pm2 = 1.02 ¥ 10–47 kg m2

Iy = 1.91 ¥ 10–23 kg pm2 = 1.91 ¥ 10– 47 kg m2

Iz = 2.92 ¥ 10–23 kg pm2 = 2.92 ¥ 10–47 kg m2

The value of rotational partition function is

qr =
8 2

3

p
s h

 (Ix Iy Iz)
1/2 (2p kT)3/2 (where s = 2 for H2O)

  =
8 3 14

2 6 626 10

2

34 3

( . )

( . )¥ - J s
 [(1.02 ¥ 10–47 kg m2) (1.91 ¥ 10–47 kg m2)

     ¥ (2.92 ¥ 10–47 kg m2)]1/2 [2(3.14) (1.38 ¥ 10–23 J K–1) (1200 K)]3/2

  = 343

Vibrational molecular partition function

 qv1 =
h

k

n1
 = 

( . ) ( . )

( . )

6 626 10 1 10 10

1 38 10

34 14 1

23 1

¥ ¥
¥

- -

- -
J s s

J K
 = 5 281.6 K

 qv2 =
h

k

n2
 = 

( . ) ( . )

( . )

6 626 10 4 78 10

1 38 10

34 13 1

23 1

¥ ¥
¥

- -

- -
J s s

J K
 = 2 295.1 K

qv3 =
h

k

n3
 = 

( . ) ( . )

( . )

6 626 10 1 13 10

1 38 10

34 14 1

23 1

¥ ¥
¥

- -

- -
J s s

J K
 = 5 425.6 K

 qv1 =
1

1 1- -exp( )qv T
 = 

1

1 5 281 6 1 200- -exp( . )
 = 

1

1 4 401- -exp( . )

  = 1.012

 qv2 =
1

1 2- -exp( )qv T
 = 

1

1 2 295 1 1 200- -exp( . )
 = 

1

1 1 913- -exp( . )

  = 1.173
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 qv3 =
1

1 3- -exp( / )qv T
 = 

1

1 5 425 6 1 200- -exp( . / )
 = 

1

1 4 521- -exp( . )

  = 1.011

Contribution towards molar internal energy

Since       Ut = N kT2 ∂
∂

Ê
ËÁ

ˆ
¯̃

ln q

T

t

V

= N kT 2 3

2T

Ê
ËÁ

ˆ
¯̃

 = 
3

2
N kT

we have    Um, t =
3

2
RT = 

3

2
 (8.314 J K–1 mol–1) (1 200 K) = 1.50 ¥ 104 J mol–1

Since   Ur = N kT2 d

d

rln q

T
 = N kT2 3

2T

Ê
ËÁ

ˆ
¯̃

 = 
3

2
N kT

we have     Um, r =
3

2
RT = 

3

2
 (8.314 J K–1 mol–1) (1200 K) = 1.50 ¥ 104 J mol–1

Since Uv = N kT2 d

d

vln q

T
 = N kT 2 1

12T T

q
q

v

e v / -
Ê
ËÁ

ˆ
¯̃

we have Um, v1 =
R

T

q
q

v

e v

1

1 1/ -
 = 

( . ) ( . )

( ).

8 314 5 281 6

1

1 1

4 401

J K mol K

e

- -

-
 = 545.3 J mol–1

Um, v2 =
R

T

q
q

v

e v

2

2 1/ -
 = 

( . ) ( . )

( ).

8 314 2 295 1

1

1 1

1 913

J K mol K

e

- -

-
  = 3 305.1 J mol–1

Um, v3 =
R

T

q
q

v

e v

3

3 1/ -
 = 

( . ) ( . )

( ).

8 314 5 425 6

1

1 1

4 521

J K mol K

e

- -

-
 = 496.1 J mol–1

The sum of internal energies is

                Um = Um, t + Um, r + Um, v1 + Um, v2 + Um, v3

=  (15.0 + 15.0 + 0.543 + 3.305 + 0.496) ¥ 103 J mol–1

= 34.34 ¥ 103 J mol–1

The above internal energy refers to zero energy of the ground vibrational state. The actual 

internal energy is obtained by adding ground-state vibrational energies, which, respectively, 

are

U01 = NA

1

2
1hn

Ê
ËÁ

ˆ
¯̃  = (6.022 ¥ 1023 mol–1)

1

2

Ê
ËÁ

ˆ
¯̃ (6.626 ¥ 10–34 J s)   

¥ (1.10 ¥ 1014 s–1)

= 21.95 ¥ 103 J mol–1

U02 = (6.022 ¥ 1023 mol–1)
1

2

Ê
ËÁ

ˆ
¯̃

 (6.626 ¥ 10–34 J s) (4.78 ¥ 1013 s–1)

= 9.54 ¥ 103 J mol–1

U03 = (6.022 ¥ 1023 mol–1)
1

2

Ê
ËÁ

ˆ
¯̃

 (6.626 ¥ 10–34 J s) (1.13 ¥ 1014 s–1)

= 22.55 ¥ 103 J mol–1



330 A Textbook of Physical Chemistry

Hence, the molar internal energy including zero-point vibrational energies is

U = (34.34 + 21.95 + 9.54 + 22.55) ¥ 103 J mol–1

= 88.38 ¥ 103 J mol–1

Contribution towards molar entropy

Since St = N k ln 
q

N

tÊ
ËÁ

ˆ
¯̃  + 

U

T

m,t  + Nk, we have

Sm, t = R ln 
q

N

t

A

Ê
ËÁ

ˆ
¯̃

 + 
3

2
R + R

  = (8.314 J K–1 mol–1) ln
.

.

5 95 10

6 023 10

5

2

31 1

23 1

¥
¥

Ê
ËÁ

ˆ
¯̃

+
È

Î
Í

˘

˚
˙

-

-
mol

mol

  = 173.83 J K–1 mol–1

          Sm, r = R ln qr + 
U

T

m,r

= (8.314 J K–1 mol–1) ln (343) + 
1 50 10

1 200

4 1. ¥ -J mol

K

= (48.53 + 12.5) J K–1 mol–1

= 61.03 J K–1 mol–1

Since Sm, v = R ln qv + 
U

T

m,v , we have

Sm, v1 = (8.314 J K–1 mol–1) ln (1.012) + 
545 3

1 200

1. J mol

K

-

= (0.099 + 0.453) J K–1 mol–1 = 0.552 J K–1 mol–1

Sm, v2 = (8.314 J K–1 mol–1) ln (1.173) + 
3 305 1

1 200

1. J mol

K

-

= (1.327 + 2.754) J K–1 mol–1 = 4.081 J K–1 mol–1

Sm, v3 = (8.314 J K–1 mol–1) ln (1.011) + 
496 1

1 200

1. J mol

K

-

= (0.091 + 0.413) J K–1 mol–1 = 0.504 J K–1 mol–1

The sum of entropies is

  Sm = Sm, t + Sm, r + Sm, v1 + Sm, v2 + Sm, v3

  = (173.83 + 61.03 + 0.552 + 4.081 + 0.504) J K–1 mol–1

  = 239.95 J K–1 mol–1

Note: The total entropy of the system can be evaluated by using the  expression

St = R ln 
q q q q q

N

t r v v v

A

1 2 3Ê
ËÁ

ˆ
¯̃

 + 
U U U U U

T

m,t m,r m,v m,v m,v+ + + +1 2 3
 + R
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  =  8 314
5 95 10

6 022 10
343 1 012 1 173 1 011

31

23
. ln

.

.
( ) ( . ) ( . ) ( . )

¥
¥

Ê
ËÁ

ˆ
¯̃

ÏÏ
Ì
Ó

¸
˝
˛

È

Î
Í

   +
1 50 10 1 50 10 545 3 3 305 1 496 1

1 200
8 314

4 4. . . . .
.

¥ + ¥ + + +Ê
ËÁ

ˆ
¯̃

+
˘

˚
˙  J K–1 mol–1

  = (203.10 + 28.62 + 8.314) J K–1 mol–1

  = 240.0 J K–1 mol–1

The thermodynamic relation for a reaction at equilibrium is

0 = n mi iiÂ
n

n

i

i

is ve for products

is ve for reactants

+
-

È

Î
Í (4.10.1)

The expression of chemical potential, mi, in terms of molecular partition function 

is given by

mi =
G

n

i

i

 = 
-N kT q N

n

i i i

i

ln ( / )
(4.10.2)

Since Ni = ni NA, we get

 mi = – (NAk) T ln 
q

N

i

i

Ê
ËÁ

ˆ
¯̃

= – RT ln 
q

N

i

i

Ê
ËÁ

ˆ
¯̃

Using ideal gas equation

piV = niRT = 
N

N

i

A

Ê
ËÁ

ˆ
¯̃

R T = NikT

the above expression becomes

 mi = – RT ln 
q kT

p V

i

i

Ê
ËÁ

ˆ
¯̃

  = – RT ln 
q kT

p V

i

∞
Ê
ËÁ

ˆ
¯̃  – RT ln 

p

pi

∞Ê
ËÁ

ˆ
¯̃

(4.10.3)

where p° = 1 bar.

Substituting Eq. (4.10.3) in Eq. (4.10.1), we get 

0 = -
∞

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

Â RT
q kT

p V
i

i
i

n ln + RT ni ln 
p

p

i

∞
Ê
ËÁ

ˆ
¯̃

˘
˚̇

or RT ln Pi
ip

p

i

∞
Ê
ËÁ

ˆ
¯̃

n

= RT ln Pi
iq kT

p V

i

∞
Ê
ËÁ

ˆ
¯̃

n

(4.10.4)

K°p = Pi
ip

p

i

∞
Ê
ËÁ

ˆ
¯̃

n

(4.10.5)

4.10 STANDARD EQUILIBRIUM CONSTANT OF A REACTION INVOLVING IDEAL GASES
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With this, Eq. (4.10.4) gives

K°p = Pi
iq kT

p V

i

∞
Ê
ËÁ

ˆ
¯̃

n

=
kT

p

ii

∞
Ê
ËÁ

ˆ
¯̃

Â n

Pi
iq

V

iÊ
ËÁ

ˆ
¯̃

n

(4.10.6)

While computing the various molecular partition functions, it is essential to use 

the same reference of zero energy for all species. For this purpose, the zero of 

energy is assigned to the dissociated atoms of each species. This reference affects 

the expressions of electronic partition function. The expression of the latter with 

respect to the ground electronic state of the molecule is 

qi = g0 + g1 e
–e1/kT + g2 e

–e2/kT + �

This is changed to 

q¢i = eD0/kT qi (4.10.7)

when the reference of zero energy is shifted to ground-state dissociated atoms 

(Fig 4.10.1).

–

–

0

–D0(p)

E

D0(reactants)

Gaseous atoms

Products

––D0(r)

Reactants

D0(products)

DU°
D ° = – +r 0(p) 0(r)U D D

The expression of the standard equilibrium constant with this shift of reference 

of energy is

Kºp =
kT

p

ii

∞
Ê
ËÁ

ˆ
¯̃

Â n

 exp
ni ii

D

RT

0ÂÊ

ËÁ
ˆ

¯̃
Pi

q

V

i
iÊ

ËÁ
ˆ
¯̃

n

=
kT

p

ii

∞
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

Â n

e r-ÈÎ ˘̊D U RT0 / Pi
iq

V

iÊ
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

n

(4.10.8)

Determine the standard equilibrium constant for the reaction

N2(g)  2N(g)

at 5000 K. Given: req = 110 pm for N2, classical frequency of vibration of 

N2(g) = 7.07 ¥ 1013 s–1, dissociation energy of N2(g) = 940.3 kJ mol–1 and degeneracy of 

ground electronic level of N2 is 1 while that of N(g) is 4.

Fig. 4.10.1 Energy

change in a reaction in 

terms of dissociation 

energies of reactants 

and products

Example 4.10.1 

0
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Partition function of N(g)

For monatomic species

q = qt qe

The expression of translational partition function is

qt = V
2

2

3 2pmkT

h

Ê
ËÁ

ˆ
¯̃

/

(Eq. 4.7.7)

Thus
q

V

t = 2
2

3 2pmkT

h

Ê
ËÁ

ˆ
¯̃

/

  =
2 3 14 14 1 66 10 1 38 10 5 000

6 626 10

27 23

3

( . ) ( . ) ( . ) ( )

( .

¥ ¥ ¥
¥

- - -

-
kg J K K1

44 2

3 2

J s)

/
È

Î
Í

˘

˚
˙

  = 3.474 ¥ 1033 m–3

The electronic partition function is 

qe = g0 = 4

Hence, qN = qt qe = {(3.474 ¥ 1033 m–3) V} (4) = (1.390 ¥ 1034 m–3) V

Partition function of N2(g)

For diatomic species, we have 

q = qt qr qv qe

For N2 the value of translational partition function is

q

V

t =
( ) /2 3 2

2

p mkT

h

  =
2 3 14 28 1 66 10 1 38 10 5 000

6 626 10

27 23

3

( . ) ( . ) ( . ) ( )

( .

¥ ¥ ¥
¥

- - -

-
kg J K K1

44 2

3 2

J s)

/
È

Î
Í

˘

˚
˙

  = 9.826 ¥ 1033 m–3

The value of rotational partition function is calculated as follows.

 m =
m m

m m

1 2

1 2+
 = 

m

m

2

2
 = 

m

2
 = 

14 1 66 10

2

27¥ ¥ -. kg
 = 1.16 ¥ 10–26 kg

I = m r2 = (1.16 ¥ 10–26 kg) (110 ¥ 10–12 m)2

  = 1.40 ¥ 10–46 kg m2

qr =
8

2

p
s

2I k

h

TÊ
ËÁ

ˆ
¯̃

(Eq. 4.8.8)

  =
8 3 14 1 40 10 1 38 10 5 000

6 626 10

2 46 2 23 1

3

( . ) ( . ) ( . ) ( )

( .

¥ ¥
¥

- - -

-
kg m J K K

44 2 2J s) ( )
 = 867.7

The value of vibrational partition function is calculated as follows.

qv =
h

k

n
 = 

( . ) ( . )

( . )

6 626 10 7 07 10

1 38 10

34 3 1

23 1

¥ ¥
¥

- 1 -

- -
J s s

J K
 = 3 395 K

qv =
1

1- -e vq /T
=

1

1 3395 5000- -e /
 = 

1

1 0 507- .
 = 2.029

Solution
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The value of electronic partition function is

qe = ge = 1

The partition function of N2 is

qN2
= qt qr qv qe

  = {(9.826 ¥ 1033 m–3) V} (867.7) (2.029) (1)

  = (1.73 ¥ 10–37 m–3) V

Equilibrium constant of the reaction

The value of equilibrium constant is

K°p =
kT

p

ii

∞
Ê
ËÁ

ˆ
¯̃

Â n

e r- D U RT/ Pi

q

V

i
iÊ

ËÁ
ˆ
¯̃

n

  =
( . )( )1 38 10 5 000

10

23 1

5

2 1
¥È

Î
Í

˘

˚
˙

- - -
J K K

Pa
exp -

È

Î
Í

˘

˚
˙

-

- -
( )

( . ) ( )

940 300

8 314 5 000

1

1

J mol

J K mol K1

 ¥ 
( . )

( . )

1 39 10

1 73 10

34 3 2

37 3

¥
¥

È

Î
Í

˘

˚
˙

-

-
m

m

  = (6.9 ¥ 10–25 m3) (1.50 ¥ 10–10) (1.12 ¥ 1031 m–3)

  = 0.001 16 

Alternatively, we may compute molar values of G°N and G°N2
 by using partition functions 

and determine

DrG° = 2G°N – G°N2

and use  DrG° = – RT ln K°p to determine the equilibrium constant.

For N(g), we have

qt =
2

2

3 2pmkT

h

Ê
ËÁ

ˆ
¯̃

/

V = 
2

2

3 2pmkT

h

Ê
ËÁ

ˆ
¯̃

/
N kT

p∞
Ê
ËÁ

ˆ
¯̃

Hence,

q

N

t
=

( ) /kT

p

5 2

∞
2

2

3 2pm

h

Ê
ËÁ

ˆ
¯̃

/

  =
[( . ) ( )]

( )

/1 38 10 5 000

10

23 1 5 2

5

¥ - -J K K

Pa

2 3 14 14 1 66 10

6 626 10

27

34 2

3 2
( . ) ( . )

( . )

/
¥ ¥
¥

È

Î
Í

˘

˚
˙

-

-
kg

J s

  = (1.25 ¥ 10–53) (1.92 ¥ 1062) = 2.40 ¥ 109

G°t = – RT ln 
q

N

tÊ
ËÁ

ˆ
¯̃  = – (8.314 J K–1 mol–1) (5 000 K) ln (2.40 ¥ 109)

  = – 8.98 ¥ 105 J mol–1

qe = 4

G°e = – RT ln qe = – (8.314 J K–1 mol–1) (5 000 K) ln 4

  = –5.76 ¥ 104 J mol–1

Alternative Solution
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Hence, G°N = G°t + G°e

= (– 8.98 ¥ 105 – 5.76 ¥ 104) J mol–1

= – 9.556 ¥ 105 J mol–1

For N2(g), we have

q

N

t =
( ) /kT

p

5 2

∞
2

2

3 2pm

h

Ê
ËÁ

ˆ
¯̃

/

  =
[( . )( )] /1 38 10 5 000

10

23 1 5 2

5

¥ - -J K K

Pa

2 3 14 28 1 66 10

6 626 10

27

34 2

3 2
( . ) ( . )

( . )

/
¥ ¥
¥

È

Î
Í

˘

˚
˙

-

-
kg

Js

  = (1.25 ¥ 10–53) (5.42 ¥ 1062)

  = 6.78 ¥ 109

G°t = – RT ln 
q

N

tÊ
ËÁ

ˆ
¯̃

 = – (8.314 J K–1 mol–1) (5 000 K) ln (6.78 ¥ 109)

  = – 9.41 ¥ 105 J mol–1

qr = 867.7

G°r = – RT ln qr = – (8.314 J K–1 mol–1) (5 000 K) ln (867.7)

  = – 2.81 ¥ 105 J mol–1

qv = 2.029

G°v – U0 = – RT ln qv = – (8.314 J K–1 mol–1) (5 000 K) ln (2.029)

= – 2.94 ¥ 104 J mol–1

qe = 1

G°e = – RT ln qe = 0

G°chem = – D0 = – 940 300 J mol–1

Thus, for N2 we have

G°N2
= G°t + G°r + (G°v – U0) + G°e + G°chem

= (– 9.41 ¥ 105 – 2.81 ¥ 105 – 2.94 ¥ 104 + 0 – 940 300) J mol–1

= – 2.192 ¥ 106 J mol–1

The standard free energy change of the given reaction is

D rG° = 2G°N – G°N2
 = 2(– 9.556 ¥ 105 J mol–1) – (– 2.192 ¥ 106 J mol–1)

= 2.81 ¥ 105 J mol–1

Finally, the standard equilibrium constant of the reaction is

ln K°p = – 
DrG

RT

∞
 = – 

( . )

( . ) ( )

2 81 10

8 314 5 000

5 1

1

¥ -

- -
J mol

J K mol K1

= – 6.76

Hence, K°p = e– 6.76 = 0.001 16

Show that the standard equilibrium constant at 400 K for the reaction 

H2 + D2  2HD

is equal to 3.54. Given:

Example 4.10.2
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I ¥ 1046/kg m2 qv/K D0 /kJ mol–1

H2 4.60 5 986 431.8

D2 9.20 4 308 439.2

HD 6.13 5 226 435.2

The standard equilibrium constant is given by

K°p = 
kT

p

ii

∞
Ê
ËÁ

ˆ
¯̃

Â n

Pi

q

V

i
iÊ

ËÁ
ˆ
¯̃

n

e r- ∞D U RT/

For the given reaction, niiÂ  = nHD + nH2
 + nD2

 = 2 – 1 – 1 = 0.

Hence,

K°p = 
q

V
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ˆ
¯̃

2
q

V
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-
q

V
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-

e r- ∞D U RT/
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q q q

q q q q q q
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2 2
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q q
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2 2
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˙
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v H v D

2

2 2

È

Î
Í
Í

˘

˚
˙
˙
e r- ∞D U RT/

=
m

m m
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H D

3

3 2

2 2

3 2( ) ( )/ /

È

Î
Í
Í

˘

˚
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˙

I

I I

HD

H D

H D

HD

2

2

2 2

2 2

( ) ( )

Ï
Ì
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ÓÔ

¸
˝
Ô
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È

Î
Í
Í

˘

˚
˙
˙

s s

s

1

1 1

2

1 1

2 2

-( )
-( ) -( )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

- -

- - - -

e

e e

v

v v

HD

H D

q

q q

/

/ /

T

T T

¥ exp(– DrU°/RT)

DrU° = – 2D°HD + DH2
 + DD2

 = (– 2 ¥ 435.2 + 431.8 + 439.2) kJ mol–1

  = 0.60 kJ mol–1

Substituting the given values, we get

K°p =
3

2 4

3

3 2 3 2/ /

Ê
ËÁ

ˆ
¯̃

6 13

4 60 9 20

2 2

1

2

2

.

. .¥
Ê
ËÁ

ˆ
¯̃

¥Ê
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ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

( )

( ) ( )

/

/ /

1

1 1

5226 400 2

5986 400 1 4308 400 1

-
- -

È

Î
Í

˘

˚
˙

- -

- - - -
e

e e

¥ [e–600/(8.314¥ 400)]

    = (1.193) (0.888 ¥ 4) 
1 1

12
¥Ê

ËÁ
ˆ
¯̃  (0.835) = 3.54

In the transition-state theory, the reaction between the reactants A and B is visualized 

as follows.

A + B  X‡Æ Products (4.11.1)

where X‡ is the activated complex (Fig. 4.11.1).

Solution

4.11 TRANSITION-STATE THEORY
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X
‡

d

Reactants

Products

Reaction coordinates

E
n
er

g
y

The rate of reaction A + B Æ products depends on two factors, namely, the 

concentration of activated complex and the frequency of decomposition of the 

complex, i.e.

r =
concentration of
activated complex

Ê
ËÁ

ˆ
¯̃

frequencyof decomposition

of activated complex

Ê
ËÁ

ˆ
¯̃ (4.11.2)†

Since the reactants are in equilibrium with the activated complex, we can write

K‡
c = 

[ ]

[ ][ ]

X

A B
(4.11.3)

The equilibrium constant Kc in terms of molecular partition function is given by

K‡
c = 

1

N

ii

A

Ê
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ˆ
¯̃

Â n

e–DrUº/RT Pi
i

iq

V

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

n

(4.11.4)‡

Since niiÂ = – 1 for the reaction A + B  X‡, we will have

K‡
c = (NA) e–DrUº/RT

( / )

( / )( / )

q V

q V q VA B

(4.11.5)

Since the activated complex is in a process of decomposing, one of its vibrational 

degree of freedom is in a process of becoming a translation degree of freedom. 

This fact in terms of vibrational partition function is expressed as

lim
nÆ0

qv = lim
nÆ0

1

1- -exp( / )h kTn

Fig.  4.11.1 A schematic 

of converting reactants 

into products via the 

transition-state complex

† For a reaction reactants X
‡

 products, Eq. (4.11.2) is given by r = ([X
‡
]/2) (2n),

and the second term is doubled as the activated complex takes only half of time period for 

the conversion into products.

‡ The conversion expressions involving equilibrium constant are  Kp = K°p( p°)Dng;

Kc = K°c (c°)Dng; Kp = Kc (RT)Dng; K°p = K°c (c°RT/p°)Dng.

‡

‡
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lim
nÆ0

qv = 
1

1 1- -( / )h kTn
 = 

kT

hn
(4.11.6)

The complete partition function of the activated complex is written as

q

V
 = lim

nÆ( )
0
qv

q

V

Ê
ËÁ

ˆ
¯̃

 = 
kT

hn

q

V

Ê
ËÁ

ˆ
¯̃

(4.11.7)

where (q‡/V) is the remaining portion of partition function which includes the 

contribution from 3(NA + NB) – 7 (for a nonlinear molecule) or 3(NA + NB) – 6 

(for a linear molecule) modes of vibration of the activated complex.

Substituting Eq. (4.11.7) in Eq. (4.11.5), we get

K‡
c = (NA) e–DrU/kT

( / )( / )

( / )( / )

kT h q V

q V q V

n

A B
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Î
Í

˘

˚
˙ (4.11.8)

The concentration of activated complex as given by Eq. (4.11.3) is

[X‡] = K‡
c [A] [B] = (NA) e–DrU/kT

( / )( / )

( / )( / )

kT h q V

q V q V

n

A B

È

Î
Í

˘

˚
˙ [A] [B]

Substituting the above expression in Eq. (4.11.2), we get

r = ( )
( / )

( / )( / )
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q V q V

U RT
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 [A] [B] (4.11.9)

The expression of rate constant is given by

k = 
RT

h

Ê
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ˆ
¯̃ e r-( )D U RT/

q V

q V q V

/

( / )( / )A B

Ï
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(4.11.10)

The expression of pre-exponential is

A = 
RT

h

Ê
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ˆ
¯̃

( / )

( / )( / )

q V

q V q VA B

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
(4.11.11)

On the basis of transition-state theory, calculate the rate constant at 300 K for the reaction

H + HBr Æ H2 + Br

Given are the following data.

Barrier height from zero-point level = 5.0 kJ mol–1

H—Br internuclear distance = 141.4 pm

Example 4.11.1

‡

‡

‡

‡

‡

‡

‡
‡ ‡
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H—Br vibrational frequency = 7.95 ¥ 1013 Hz

The activated complex is linear with H—H distance = 150 pm, H—Br distance = 142 pm, 

vibrational frequency for the symmetrical stretch = 7.02 ¥ 1013 Hz and that of bending 

modes is 1.38 ¥ 1013 Hz. The antisymmetrical stretching mode is converted into translational 

degree of freedom of the products. Assume electronic contribution to molecular partition 

functions to be negligible.

The expression of rate constant is

k = 
RT

h
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ˆ
¯̃ e r-( )D U RT/

q V

q V q V

/

( / )( / )A B
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¸
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˛

Evaluation of qA/V Let A represent H atom. We will have

q
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  = 9.83 ¥ 1029 m–3

Evaluation of qB/V Let B represent HBr molecule. We will have

mHBr =
M

N
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 = 
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kg mol

mol
 = 1.34 ¥ 10–25 kg

q

V

t =
2

2

3 2pmkT

h

Ê
ËÁ

ˆ
¯̃

/

  =
2 3 14 1 34 10 1 38 10 300

6 626 10

25 23 1

34

( . )( . )( . )( )

( . )

¥ ¥
¥

- - -

-
kg J K K

J s 22

3 2
È

Î
Í

˘

˚
˙

/

  = 7.07 ¥ 1032 m–3

The reduced mass of HBr is

 m =
m m

m m

H Br

H Br+
=

M M

M M

H Br

H Br+
Ê
ËÁ

ˆ
¯̃

1

NA

  =
( . )( . )

( . . )

1 0 10 79 9

1 0 10 79 9 10

3 1 1

3 3 1

¥
¥ + ¥

È - - -

- - -
kg mol kg mol

kg molÎÎ
Í

˘

˚
˙

1

6 022 1023 1( . )¥
È

Î
Í

˘

˚
˙-mol

  = 1.64 ¥ 10–27 kg

I = m r2 = (1.64 ¥ 10–27 kg) (141.4 ¥ 10–12 m)2

  = 3.28 ¥ 10–47 kg m2

qr =
8 2

2

p I kT

h
 = 

8 3 14 3 28 10 1 38 10 300

6 626 10

2 47 2 23 1

34

( . ) ( . m )( . )( )

( .

¥ ¥
¥

- - -

-
kg J K K

JJ s)2

  = 24.40

Finally,  
h

kT

n
=

( . )( . )

( . )( )

6 626 10 7 95 10

1 38 10 300

34 13 1

23 1

¥ ¥
¥

- -

- -
J s s

J K K
 = 12.72

Solution

‡
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qv =
1

1- -exp( / )h kTn
 = 

1

1 12 72- -exp( . )
 1.0

The complete partition function of HBr is

q

V

B
=

q

V

tÊ
ËÁ

ˆ
¯̃ qr qv = (6.99 ¥ 1032 m–3) (24.40) (1)

  = 1.71 ¥ 1034 m–3

Evaluation of q‡ /V The mass of activated complex is

m‡ = 2 mH + mBr =
2M M

N

H Br

A

+

  =
2 10 79 9 10

6 022 10

3 1 3 1

23 1

¥ + ¥
¥

- - - -

-
kg mol kg mol

mol

.

.

  = 1.35 ¥ 10–25 kg

q

V

t
=

2
2

3 2p mkT

h

Ê
ËÁ

ˆ
¯̃

/

  =
2 3 14 1 35 10 1 38 10 300

6 626 10

25 23 1

34

( . )( . )( . )( )

( . )

¥ ¥
¥

- - -

-
kg J K K

J s 22

3 2
È

Î
Í

˘

˚
˙

/

  = 7.15 ¥ 1032 m–3

To calculate qr

We have

150 pm 142 pm

x

H BrH

Centre of mass

For the location of centre of mass, we write

mH x + mH (x – 150 pm) = mBr (292 pm – x)

This gives

x =
m m

m m

H Br

H Br

pm pm( ) ( )

( )

150 292

2

+
+

 = 
M M

M M

H Br

H Br

pm pm( ) ( )

( )

150 292

2

+
+

  =
( ) ( . )( )

.

150 79 9 292

81 9

pm pm+
 = 286.7 pm

The expression of moment of inertia is

  I =
iÂ miri

2 ; (ri is measured from the centre of mass)

= (1.67 ¥ 10–27 kg) (286.7 pm)2 + (1.67 ¥ 10–27 kg) (136.7 pm)2           

   + (1.33 ¥ 10–25 kg) (5.3 pm)2
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= (1.37 ¥ 10–22 + 3.12 ¥ 10–23 + 3.74 ¥ 10–24) kg pm2

= 1.69 ¥ 10–22 kg pm2 = 1.69 ¥ 10–46 kg m2

qr =
8 2

2

p I kT

h
 = 

8 3 14 1 69 10 1 38 10 300

6 626 10

2 46 2 23 1

34

( . ) ( . ) ( . )( )

( .

¥ ¥
¥

- - -

-
kg m J K K

JJ s)2

= 125.7

h

kT

n1
=

( . )( . )

( . ) ( )

6 626 10 7 02 10

1 38 10 300

34 13 1

23 1

¥ ¥
¥

- -

- -
J s s

J K K
 = 11.2

h

kT

n2
=

( . )( . )

( . )( )

6 626 10 1 38 10

1 38 10 300

34 13 1

23 1

¥ ¥
¥

- -

- -
J s s

J K K
 = 2.21

qv1 =
1

1 1- -exp( / )h kTn
 = 

1

1 11 2- -exp( . )
 = 1.000

qv2 =
1

1 2- -exp( / )h kTn
 = 

1

1 2 21- -exp( . )
 = 1.123

(doubly degenerate)

Hence,
q

V

=|
=

q

V

tÊ
ËÁ

ˆ
¯̃ qr qv1 qv2 qv2

  = (7.15 ¥ 1032 m–3) (125.7) (1.000) (1.123) (1.123)

  = 1.13 ¥ 1035 m–3

Rate constant of the reaction Finally, the rate constant is

k =
RT

h

Ê
ËÁ

ˆ
¯̃ e r-( )D U RT/

( / )

( / )( / )

q V

q V q VA B

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

=
( . )( )

.

8 314 300

6 626 10

1 1

34

J K mol K

J s

- -

-¥
È

Î
Í

˘

˚
˙ e- ¥ ¥È

Î
˘
˚

5 10 8 314 3003 /( . )

¥
1 13 10

9 83 10 1 70 10

35 3

29 3 34 3

.

( . )( . m )

¥
¥ ¥

È

Î
Í

˘

˚
˙

-

- -
m

m

= (3.76 ¥ 1036 mol–1 s–1) (0.135) (6.68 ¥ 10–30 m3)

= 3.39 ¥ 106 mol–1 m3 s–1

= 3.39 ¥ 109 mol–1 dm3 s–1

The atoms in a crystalline solid vibrate about their mean positions. They may be 

in the solid.

4.12 MONATOMIC SOLIDS

‡
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The vibrational energy of a harmonic oscillator is given by

eu = hn0 u +Ê
ËÁ

ˆ
¯̃

1

2
 ; u = 0, 1, 2, … (4.12.1)

where n0 is the classical frequency of oscillator and is given by

n0 = 
1

2p
k

m

f (4.12.2)

The term kf in Eq. (4.12.2) is known as force constant.

The vibrational energy relative to that of the ground state is given by

eu – e0 = hn0u ;      u = 0, 1, 2, … (4.12.3)

The vibrational partition function with energies given by Eq. (4.12.3) is

qv = 
u =

•

Â
0

exp{– (hn0/kT )u} (4.12.4)

The above summation has to be carried out term-by-term as the energy levels are 

not close to each other to permit the replacement of summation by integration.

Equation (4.12.4) is

qv = 1 + e–hn0/kT + e–2hn0/kT +  

  = 1 + x + x2 +  ; {where x = exp(– hn0 /kT)}

=
1

1- x
 = 

1

1 0- -e h kTn /
(4.12.5)

Equation (4.12.5) is usually written as

qv = 
1

1- -e vq /T (4.12.6)

where qv = h n0/k, and is known as characteristic vibrational temperature.

The contributions towards the thermodynamic properties are as follows.

Uv – U0 = NkT 2 d

d

vln q

T

= NkT 2 d

dT
ln

/

1

1-
Ê
ËÁ

ˆ
¯̃-e vq T

= – NkT 2 d

dT
ln /1-( )[ ]-e vq T

= – NkT2 -
-

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

-

-
e

e

v

v

v
q

q

q/

/

T

T T1 2

= Nk
q

q
v

e v /T -
È
ÎÍ

˘
˚̇1

(4.12.7)

Hv – U0 = Uv – U0 = 
Nk

T

q
q

v

e v / -1
(4.12.8)
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The expressions of heat capacity is

Cp = CV = 
d

dT

N k
T

q
q

v

e v / -
È
ÎÍ

˘
˚̇1

 = 
N k T T

T

( / )

( )

/

/

q q

q
v e

e

v

v

2

21-
(4.12.9)

The expression of entropy is

Sv = N k ln qv + 
U U

T

v 0-

= – Nk ln (1– e–qv /T) + 
q
q

v

e v

/
/

T
T -1

(4.12.10)

The expression of Helmholtz and Gibbs free energies is

Av – U0  = Gv – U0 = – NkT ln qv

  = NkT ln (1– e–qv/T) (4.12.11)

In Einstein model of a solid, it is assumed that the atoms vibrate about their mean 

positions without being affected by their neighbours in spite of the fact that there 

exist forces of attraction between them and a continued exchange of energy. The 

overall vibration of an atom is considered to be three dimensional. It may be 

considered as the superposition of three one-dimensional oscillators, each vibrating 

with the same frequency. The properties of such a solid are 3N times those of 

a single oscillator. The expression of heat capacity will be three times the heat 

capacity as given by Eq. (4.12.9), that is

CV = 
3

1

2

2

Nk T T

T

( / ) /

/

q q

q

E e

e

E

E -( )
(4.12.12)

where qE (= hn0/k) is called the Einstein temperature. The expression of molar 

heat capacity is

CV, m = 
3

1

2

2

R T T

T

( / ) /

/

q q

q

E e

e

E

E -( )
(4.12.13)

The plot of CV,  m versus T/qE is shown in Fig. 4.12.1

0.5 1 1.5 2.52

1

(0.2, 0.51)

(0.3, 1.28)

(0.5, 2.17)

(1, 2.76)

T /q E

C
R

V
,
m

/

(2, 2.9)

2

3

The Einstein Solids

Fig. 4.12.1 The

variation of CV, m/R

versus T/qE for an 

Einstein solid
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Limiting Value of 

CV,m as T Æ •
When T assumes a large value, one can write Eq. (4.12.13) as

CV, m =
3

1
1 2

1

2

2 2

R T

T T

T( / )

/

!

( / )

!

/q

q q

q
E

E E

e E

+ + + -
È

Î
Í

˘

˚
˙ 

Cancelling one in the denominator and taking (qE/T )2 of the numerator in the 

denominator, we get

CV, m = 
3

1
2

2

R

T

Te E

E

q

q

/

/

!
+ +È

ÎÍ
˘
˚̇

 

Now as T Æ •, exp(qE/T) Æ 1 and qE/T Æ 0. With this, the above expression 

reduces to 

CV, m = 3R (4.12.14)

The above expression is in agreement with the experimental data on molar heat 

capacity of most solids. The limiting value of 3R was observed by Dulong and 

Petit and is known as Dulong and Petit rule.

As T Æ 0, the value qE/T Æ •. In such a situation, one in the denominator of     

Eq. (4.12.13) may be ignored in comparison to exp(qE/T). With this, Eq. (4.12.13) 

reduces to 

CV, m = 3R (qE/T)2 e E-q /T (4.12.15)

and approaches zero as the temperature approaches zero kelvin. This fact is found 

to be correct experimentally. However, the quantitative agreement with experimental 

values is poor. The calculated values are considerably smaller than the experimental 

values which are very closely proportional to T 3. This disagreement is attributed 

to the assumption that all the atoms in solid oscillate with the same frequency.

Comment According to Eq. (4.12.13), two monatomic solids have the same 

value of molar heat capacity if they have the same value of qE/T. For example, 

lead and diamond solids will have the same value of molar heat capacity, provided

qE

PbT

Ê
ËÁ

ˆ
¯̃ =

qE

diamondT

Ê
ËÁ

ˆ
¯̃

But (qE)Pb < (qE)diamond, it follows that

TPb < Tdiamond

for the two solids to have the same molar heat capacity.

In general, the increase in the value of molar heat capacity with increase in 

temperature is more gradual for the elements having lower atomic masses.

Debye explained the disagreement between molar heat capacity at lower 

temperatures and the experimental values by the atoms with a continuous varying 

frequencies instead of a single frequency. His theory being more involved is not 

Limiting Value of 

CV, m as T Æ 0

Debye

Contribution
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described here. The Debye equation of molar heat capacity is

CV,m = 3R 4
3

1
D

x
x

-
-

È
ÎÍ

˘
˚̇

D

e D
(4.12.16)

where xD =
h

kT

nD
 = 

qD

T
 ;  (qD is called the Debye temperature) (4.12.17)

and D =
3
3xD

x
x

x 3

0
1e

D

-Ú  dx ;     (D is called the Debye function) (4.12.18)

The value of D has to be evaluated numerically. At high temperature, the Debye 

function approaches unity and the molar heat capacity approaches a limiting value 

of 3R.

At very low temperature, the Debye function reduces to the form

D =
p4

5

1
3xD

so that, at low temperature

CV, m = 
12

5

p4

R
T

qD

Ê
ËÁ

ˆ
¯̃

3

(4.12.19)

Thus, the value of CV, m is proportional to T 3. Its value approaches zero as T

approaches zero.

The radiation emitted by a black body may be regarded as an ideal gas consisting 

of photons, known as photon gas. The behaviour of a body can be analysed in 

statistics with only one constraint of constant radiant energy, i.e.

U = 
iÂ Ni ei = constant (4.13.1)

where Ni is the number of photons carrying energy e i. The constraint of constant 

number of photons is not necessary since the body can absorb or emit photons of 

different energies without changing its energy. For example, two photons of energy 

e may be absorbed and at the same time one photon of energy 2e may be emitted.

The most probable distribution of number of photons Ni having energy e i in the 

photon gas emitted by a black body may be obtained by setting the Lagrange 

multiplier a in Eq. (4.3.9) equal to zero. This gives

Ni = 
g

kT

i

iexp( / )e -1
 = 

g

h kT

i

iexp( / )n -1
(4.13.2)

where gi represents the number of degenerate quantum states in the frequency 

range ni to ni + dn.

4.13 STATISTICAL TREATMENT OF THE BLACK-BODY RADIATIONS

The Photon Gas

Most Probable 

Distribution in the 

Photon Gas
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Considering the black body to be a cube of edge-length l and the emitted photons 

as the de Broglie particles, we may write

e =
p

m

2

2
 = 

( / )h

m

l 2

2

Also e =
h

ml

2

28
(n2

x + n2
y + n2

z )

Equating the two expressions, we get

h

m

2

22 l
=

h

ml

2

28
 (n2

x + n2
y + n2

z )

or
1
2l

=
1

4 2l
 (n2

x + n2
y + n2

z )

or n =
c

l2
 (n2

x + n2
y + n2

z )1/2 (4.13.3)

Representing quantum states of photons by points in a three-dimensional space 

of coordinates nx, ny, nz as described in Annexure I, we can write

 n =
c r

l2
(4.13.4)

where r = + +( )n n nx y z
2 2 2  is the distance of the point, representing quantum state 

nx, ny, nz, from the origin.

The number of quantum states in the portion of spherical shell from r to r + dr

given by

gi = 
1

8
 (4p r2 dr) (4.13.5)

From Eq. (4.13.4), we get

r =
2l

c

Ê
ËÁ

ˆ
¯̃ n

Hence,    dr = 
2l

c

Ê
ËÁ

ˆ
¯̃ dn

With these two expressions, Eq. (4.13.5) becomes

gn = 
1

8
 (4p)

2
2

l

c

nÊ
ËÁ

ˆ
¯̃

2l

c
dnÊ

ËÁ
ˆ
¯̃

=
4 3

3

p l

c
n 2 dn = 

4
3

pV

c
n 2 dn (4.13.6)

Equation (4.13.6) gives the number of quantum states in the frequency range n
and n + dn. However, this equation needs to be multiplied by 2 since the radiation 

has two planes of polarization normal to the direction of propagation of photons. 

Degeneracy of 

Energy Levels
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Thus

gn = 
8

3

pV

c
n 2 dn (4.13.7)

When the above equation is made use in Eq. (4.13.2), we get

dNn = 
8

3

pV

c

n

n

2

1exp( / )h kT -
dn (4.13.8)

where dNn is the number of photons having frequency in the range n and n + dn.

The radiant energy emitted per unit volume of the black body in the frequency 

range n and n + dn is given by

en ndN

V
 = 

8
3

p h

c

n

n

3

1exp( / )h kT -
 dn

  = En dn (4.13.9)

Equation (4.13.9) is known as Planck’s distribution expression. Figure 4.13.1 

displays the variation of En versus n at two temperatures. The area under the curve 

gives the energy density emitted by a black body at the indicated temperature.

3 6 9 12 15
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12

9

6

3

n ¥ 10 /Hz–13

1000 K

1200 K

E
n

¥
-

1
0

1
8

3
/ J

s
m

The frequency at which En has a maximum value is obtained by setting

dEn /dn equal to zero. Starting with the simpler expression obtained by ignoring 1 

in comparison to the exponential term, we get

d

dn

8
3

3p h

c

h kTn ne-Ê
ËÁ

ˆ
¯̃

/ = 0

Radiant Energy

Emitted by the 

Black Body

Fig. 4.13.1 Variation of 

En versus n

Frequency

Corresponding to 

Maximum En
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i.e.        
8

3

p h

c
[3n 2 – n 3(h/kT)]e–hn/kT = 0

This gives

      nmax = 
3kT

h
(4.13.10)

From Eq. (4.13.10), it follows that

nmax/T = constant (4.13.11)

This implies that nmax increases with increase in temperature.

The approximate value of En, max is

En, max = 
8

3

ph

c

3
3

kT

h

Ê
ËÁ

ˆ
¯̃ e–3 (4.13.12)

En, max μ T 3.

In terms of wavelength, Eq. (4.13.9) becomes

el ldN

V
 = 

8
3

ph

c

( / )

exp( / )

c

hc kT

l

l

3

1-
-Ê

ËÁ
ˆ
¯̃

c

l
l

2
d

= – 
8

5

phc

l

1

1exp( / )hc kTl -
dl

= El dl (4.13.13)

Figure 4.13.2 displays the variation of El versus l at two temperatures. The area under 

the curve gives the energy density emitted by a black body at the indicated temperature.
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Fig. 4.13.2 Variation of 

El versus l
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The wavelength at which El has a maximum value is obtained by setting dEl/dl
equal to zero. Starting with the simpler expression obtained by ignoring 1 in 

comparison to the exponential term, we get

d

dl

8p
5
hc hc kT

l

le-Ê
ËÁ

ˆ
¯̃

/ = 0

i.e.  8phc [(– 5)l–6 + (1/l5) (hc/l2 kT)] e–hc/l kT = 0

This gives

lmax = hc/5kT (4.13.14)

From Eq. (4.13.14), it follows that

lmax T = constant (4.13.15)

This is, in fact, Wien’s displacement law. This implies that l max decreases with 

increasing temperature.

The approximate value of El, max is

El, max = 
8 5 5

4

p( )

( )

kT

hc
 e–5 (4.13.16)

From Eq. (4.13.16), it follows that El, max μ T 5.

Note: From Eqs (4.13.10) and (4.13.14) and also from Eqs (4.13.12) and (4.13.16), it seems 

that the behaviour of a black body depends whether it is treated in terms of wavelength 

l or frequency n (= c /l). In fact, it is not so. The black body has the same value of 

En dNn /V and El dNl /V when evaluated by using Eqs (4.13.9) and (4.13.13), respectively, 

for known values of l (or n = c/l) and dl (or dn = – cdl /l2).

In the low frequency range, we may write

h

kT

n
 1

Hence, exp
h

kT

nÊ
ËÁ

ˆ
¯̃

 – 1 = 1 + +Ê
ËÁ

ˆ
¯̃

h

kT

n
 – 1

h

kT

n

With this, Eq. (4.13.9) reduces to

en ndN

V
 = 

8 2

3

p kT

c

n
dn (4.13.17)

Equation (4.13.17) is known as Rayleigh-Jean distribution expression. In terms of 

wavelength, Eq. (4.13.17) is given by

el ldN

V
 = 

8 2

3

p kT c

c

( / )l -Ê
ËÁ

ˆ
¯̃

c

l
l

2
d = – 

8
4

p kT

l
dl (4.13.18)

In the high frequency range, we may write

h

kT

n
 1

Wavelength 

Corresponding to 

Maximum El

Maximum Value 

of El

Limiting Case in 

the Low Frequency

Range

Limiting Case in 

the High Frequency

Range
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Hence,  ehn/kT – 1  ehn/kT

With this, Eq. (4.13.9) reduces to

en ndN

V
=

8
3

p h

c
n 3 e–hn/kTdn (4.13.19)

Equation (4.13.19) is known as Wien’s relation. In terms of wavelength,

Eq. (4.13.19) is given by

E N

V

l ld
=

8
3

ph

c

c

l

Ê
ËÁ

ˆ
¯̃

3

exp(– hc/l kT ) -{ }c

l
l

2
d

  = –
8p

5
hc

l
 exp(– hc/l kT ) (4.13.20)

The total energy emitted per unit volume of black body is given by

U

V
=

en ndN

V

Ê
ËÁ

ˆ
¯̃

•

Ú
0

dn

Making use of Eq. (4.13.9), this becomes

U

V
 = 

8

13

3

0

p h

c h kT

n
ne / -

Ê
ËÁ

ˆ
¯̃

•

Ú dn = 
8

3

p h

c

n
n

3

0
1eh kT/ -

•

Ú dn

Let x = hn/kT, such that dx = (h/kT ) dn. With these, the above expression becomes

U

V
=

8 4

3

p( )

( )

kT

hc

x
x

3

0
1e -

•

Ú dx

 = 
8 4

3

p( )

( )

kT

hc

p
15

4Ê
ËÁ

ˆ
¯̃

=
8p
15

5 ( )

( )

kT

hc

4

3
(4.13.21)

Hence, the energy density is found to be proportional to T 4

and hence to the fourth power of the temperature. This fact is known as Stefan-

Boltzmann radiation law.

For a gas involving noninteracting molecules, the fraction Ni/N of molecules in 

the energy state i with energy ei is given by

N

N

i
 = 

e-ei kT

q

/

(4.14.1)

where q, the molecular partition function, is given by

q =
iÂ e–ei/kT (4.14.2)

(state)

Total Energy

Emitted per Unit 

Volume

4.14 MAXWELL-BOLTZMANN PROBABILITY DISTRIBUTION OF

    MOLECULAR VELOCITIES AND SPEEDS
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Restricting only to the translational motion, we know that the energy of a molecule 

moving in a three-dimensional box with sides lx, ly and lz is given by

 ei =
h

m

2

8

n

l

n

l

n

l

x

x

y

y

z

z

2

2

2

2

2

2
+ +

È

Î
Í
Í

˘

˚
˙
˙

(4.14.3)

where nx , ny and nz are the quantum numbers, each having values of 1, 2, 3, …. We 

also know that the translational energy levels are closely spaced for a macroscopic 

box. This permit us to replace the summation in Eq. (4.14.2) by integration. In other 

words, the numbers nx, ny and nz may be considered to vary in a continuous manner.

Equation (4.14.3) may be written in terms of components of momentum as

 ei =
1

2m
p p px y z
2 2 2+ +( ) (4.14.4)

where p2
x = n2

xh2/4 l2
x , and so on. Substituting Eq. (4.14.4) in Eq. (4.14.1), we get

N

N

i  = 
1

q
 exp -Ê

ËÁ
ˆ
¯̃ + +È

ÎÍ
˘
˚̇

1

2

2 2 2

m
p p p kTx y z( )/ (4.14.5)

Let fp(px , py, pz

px, py

and pz. Obviously, the function will be proportional to the fraction Ni/N given by 

Eq. (4.14.5). Hence, we can write

  fp(px, py, pz)  μ N

N

i  

i.e. fp(px, py, pz) = 
c

q
 exp -Ê

ËÁ
ˆ
¯̃ + +È

ÎÍ
˘
˚̇

1

2

2 2 2

m
p p p kTx y z( )/ (4.14.6)

The constant of proportionality c can be determined from the fact that the probability 

of a molecule having all possible momentum will be equal to unity. Hence, we 

can write

ÚÚÚ
-•

+•

fp(px, py, pz) dpx dpy dpz = 1

i.e.
c
q

e d-

-•

-•

Ú
È

Î
Í
Í

˘

˚
˙
˙

( / )1 2 2mkT p
x

x p e d
-

-•

+•

Ú
È

Î
Í
Í

˘

˚
˙
˙

( / )1 2 2mkT p

y
y p e d-

-•

+•

Ú
È

Î
Í
Í

˘

˚
˙
˙

( / )1 2 2mkT p
z

z p  = 1

or
c
q  [(2p mkT)1/2] [(2p mkT)1/2] [(2p mkT)1/2] = 1

or
c
q  = 

1

2 3 2( ) /pm kT
(4.14.7)
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Substituting Eq. (4.14.7) in Eq. (4.14.6), we get

fp(px, py, pz) = 
1

2 3 2( ) /pmkT
  exp -

Ê
ËÁ

ˆ
¯̃

+ +
È

ÎÍ
˘

˚̇

1

2

2 2 2

m
p p p kTx y z( )/ (4.14.8)

px to px + dpx , py to py + dpy and pz to pz + dpz is given by

fp(px, py, pz) dpxdpydpz =
1

2 3 2( ) /pmkT
exp -

Ê
ËÁ

ˆ
¯̃

+ +
È

ÎÍ
˘

˚̇

1

2

2 2 2

mkT
p p px y z( ) dpxdpydpz

(4.14.9)

Since px = mux

a molecule with velocity components in the range ux to ux + dux, uy to uy + duy

and uz to uz + duz can be written as

fu(ux, uy, uz) dux duy duz

=
1

2 3 2( ) /pmkT
 exp -

Ê
ËÁ

ˆ
¯̃

+ +( )È

ÎÍ
˘

˚̇

m

kT
x y z

2

2 2 2u u u (mdux) (mduy) (mduz)

=
m

kT2

3 2

p
Ê
ËÁ

ˆ
¯̃

/

 exp -Ê
ËÁ

ˆ
¯̃ + +( )È

ÎÍ
˘
˚̇

m

kT
x y z

2

2 2 2u u u  dux duy duz (4.14.10)

The function fu is called the velocity probability density function.

Equation (4.14.10) can be written as

fu (ux, uy, uz) duxduyduz =
m

kT

m kT
x

x

2

1 2

22

p
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

-
/

/e du u
m

kT

m kT

y
y

2

1 2
22

p
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

-
/

/
e d

u
u

m

kT

m kT
z

z

2

1 2

22

p
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

-
/

/e du u

= [ f (ux) dux] [ f (uy) duy] [f (uz) duz]

= f (ux) f (uy) f (uz) dux duy duz (4.14.11)

that is, the probability of a molecule having velocities in the range ux to ux + dux,

uy to uy + duy and uz to uz + duz is equal to the product of individual probabilities 

of a molecule having component velocities in the range ux to ux + dux, uy to                   
uy + duy and uz to uz + duz, respectively.

The fact that

f (ux) = 
m

kT2

1 2

p
Ê
ËÁ

ˆ
¯̃

/

e-m kTxu2 2/ (4.14.12)

velocity range from ux to ux + dux with all possible velocity components uy and uz.
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This  probability is given by

fu (ux) dux  = dux

-•

+•

ÚÚ f (ux, uy, uz) duy duz

  = dux

m

kT2

3 2

p
Ê
ËÁ

ˆ
¯̃

/

e-m kTxu2 2/

-•

+•

Ú e
-m kTyu2 2/

duy

-•

+•

Ú e-m kTzu2 2/ duz

  = d eu u
x

m kTm

kT
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3 2
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ˆ
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È

Î
Í
Í

˘

˚
˙
˙

-
/

/ 2
1 2pkT

m

Ê
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ˆ
¯̃

/
2

1 2pkT

m

Ê
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ˆ
¯̃

/

  =
m

kT2

1 2

p
Ê
ËÁ

ˆ
¯̃

/

e-m kTxu2 2/  dux (4.14.13)

Equation (4.14.13) gives

f (ux) =
m

kT2

1 2

p
Ê
ËÁ

ˆ
¯̃

/

e-m kTxu2 2/ (Eq. 4.14.12)

In terms of molar mass, we have

f (ux) =
M

RT2

1 2

p
Ê
ËÁ

ˆ
¯̃

/

e-M RTxu2 2/ (4.14.14)

The plot of f (ux) versus ux for oxygen gas is shown in Fig. 4.13.1. The distribution 

is symmetrical. 

–1000 – 800 – 600 – 400 – 200 0 200 400 600 800 1000

4

8

12

16

500 K

300 K

υx /m s–1

f(
)

1
0

/m
s

υ
x
×

4
–
1

The average velocity in the x direction will be zero for a gas at rest. This follows 

from the fact that

·uxÒ = 

-•

+•

Ú ux e-m kTxu2 2/  dux = 0 (4.14.15)

Fig. 4.14.1

Plot of f (ux) versus ux

Average Value of 

ux for a Gas at Rest
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The average kinetic energy in the x-direction is given by

KE( )x =
1

2
m ·u 2

x Ò

The expression for ·ux
2Ò is

·u 2
x Ò =

-•

+•

Ú u x
2 f(u x) dux = 

m

kT2

1 2

p
Ê
ËÁ

ˆ
¯̃

/

-•

+•

Ú u 2
x e-m kTxu2 2  dux

  =
m

kT2

1 2

p
Ê
ËÁ

ˆ
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/ 1

2 2 3

1 2
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( / )

/

m kT

Ï
Ì
Ó

¸
˝
˛

È

Î
Í
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˘

˚
˙
˙

  =
m

kT2

1 2

p
Ê
ËÁ

ˆ
¯̃

/
1

2

2
3 2

p
pkT

m{ }È

Î
Í

˘

˚
˙

/

  =
kT

m
(4.14.16)

Hence, KE( )x  = 
1

2
m ·u 2

x Ò = 
1

2
m

kT

m

Ê
ËÁ

ˆ
¯̃  = 

1

2
kT  (4.14.17)

Similar expressions can be written for y- and z- components of kinetic energies. 

Equation (4.14.17) is, in fact, the proof of the classical principle of equipartition 

of energy which states that each quadratic term in component velocity or position 

coordinate contributes (1/2)kT towards the average energy of a molecule.

The speed of a molecule is related to its component velocities by

u2 = u2
x + u2

y + u2
z (4.14.18)

The velocity components of a molecule can be represented by a point in velocity 

space as shown in Fig. 4.14.2.

q

υ

υz

υx

υy

j

υx

υy

z u

The velocity of a molecule is represented by an arrow starting from the origin to 

the point representing the components ux, uy and uz.

Since the speed of a molecule is represented by the magnitude of velocity vector 

without reference to its orientation, the probability of a molecule having speed in 

the range u to u + du is represented by the number of points included in a spherical 

Fig. 4.14.2 Velocity 

space

Probability

Distribution

Function of Speed

Principle of 

Equipartition of 

Energy
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shell at a distance u from the origin and having thickness of du. This probability 

function can be obtained by integrating Eq. (4.14.10), i.e.

F (u) du = Ú f (ux, uy, uz) dux duy duz (4.14.19)

The above integration is conveniently carried out by converting the differential 

volume element duxduyduz in terms of spherical polar coordinates by using the 

expressions

uz = u cosq

ux = u sinq cos j

uy = u sinq sin j

and carrying out the integration over q from 0 to p and over j from 0 to 2p.

The differential volume element dux duy duz in the spherical polar coordinates is

duxduyduz = u2 du sinq dq dj (4.14.20)

Substitution of Eq. (4.14.20) in Eq. (4.14.19) gives

F(u) du = 

jq = 0

p

=

p 2

0

ÚÚ f (ux, uy, uz) u2 du sin q dq dj

Substituting the expression of f (ux, uy, uz) from Eq. (4.14.10), we get 

F(u) du = 

jq = 0

p

=

p 2

0

ÚÚ
m

kT2

3 2

p
Ê
ËÁ

ˆ
¯̃

/

exp -Ê
ËÁ

ˆ
¯̃ + +È

ÎÍ
˘
˚̇

m

kT
x y z

2

2 2 2( )u u u u2du sinq dq dj

which on using Eq. (4.14.18) becomes

F (u) du =
m

kT2

3 2

p
Ê
ËÁ

ˆ
¯̃

/

exp -
Ê
ËÁ

ˆ
¯̃

m

kT

u2

2
u2 du

0

p

Ú sin q dq 
0

2p

Ú dj

  = 4pu2 m

kT2

3 2

p
Ê
ËÁ

ˆ
¯̃

/

 exp -
Ê
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ˆ
¯̃

m

kT

u2

2
 du (4.14.21)

Hence, the function F (u) which gives the probability of a molecule having the 

speed u is given by

F (u) = 4pu2 m

kT2

3 2

p
Ê
ËÁ

ˆ
¯̃

/

exp -
Ê
ËÁ

ˆ
¯̃

m

kT

u2

2
(4.14.22)

In terms of molar mass, the expression is

F (u) = 4pu2 M

RT2

3 2

p
Ê
ËÁ

ˆ
¯̃

/

exp -
Ê
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ˆ
¯̃

M

RT

u2

2
(4.14.23)
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The plot of F(u ) versus u for oxygen is shown in Fig. 4.14.3. 
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The various characteristics of the plot shown in Fig. 4.14.3 are as follows.

∑ The function F(u) is a product of two terms of opposite characteristics. The 
term u2 increases quadratically while the term exp(– Mu2/2RT ) decreases 
exponentially with increase in the value of speed u.

∑ In the lower range of speeds the change in the term u2 predominates over that 
of exponential term with the result that the function F(u) increases with increase 
in the value of u.

∑ In the high range of speeds, the change in the exponential term predominates 
over that of u2 with the result that the function F(u) decreases with increase in 
the value of u.

∑ As a consequence of the above two characteristics, the function F(u) initially 
increases and after passing through a maximum, it starts decreasing with increase 
in the value of speed.

∑ The speed corresponding to the maximum value of F(u) can be obtained 

mathematically by setting dF/du equal to zero. Hence, we have

d

d

F

u
 = 4p

M

RT2

3 2

p
Ê
ËÁ

ˆ
¯̃

/

2
2

2

2 22 2 2u u
uu ue e- -+ -Ê

ËÁ
ˆ
¯̃

È
ÎÍ

˘
˚̇

M RT M RTM

RT

/ /

Hence at ump (most probable speed), we have

4pump 

M

RT2

3 2

p
Ê
ËÁ

ˆ
¯̃

/

e mp-M RTu2 2/ 2

2

-
È

Î
Í
Í

˘

˚
˙
˙

M

RT

ump
 = 0

  The expression ump is obtained from the expression

  2 – 
M

RT

ump
2

 = 0  i.e.  ump = 
2RT

M
(4.14.24)
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∑ Since

0

•

Ú F (u) du = 1, the area under the plot is equal to one. In Fig. 4.11.3, 

  two plots of F (u) versus u at two temperatures (300 K and 500 K) are shown. 

The area under each of the two curves will be equal to one.

∑ The probability that a molecule has a speed between any two values is equal 

to the area under the plot between the two values of the speed.

∑ The function F(u) decreases in the lower speed range with increase in temperature.

∑ The function F(u) increases in the higher speed range with increase in temperature.

∑ The maximum of F(u) moves to higher u with increase in temperature.

∑ The width of F (u) at its maximum point becomes larger with increase in 

temperature. Also, its value decreases with increase in temperature.

∑ The probability distribution also depends on the mass of the molecule. At the 

same temperature, a heavy gas has a narrower distribution of speeds than a light 

gas. In general, the probability distribution depends upon the value of  M/T. Thus, 

the distribution will be the same for a gas of molar mass 2M at temperature 2T

since the ratio remains the same. For example, the distribution of O2 molecules 

at temperature T will be the same as those of SO2 molecules at temperature 2T.

The average speed of molecules is given by

·u Ò =

0

•

Ú uFu dt = 
0

•

Ú u Fu (u2du) = 
0

•

Ú u3Fu du

  = 4p
M

RT2
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Ê
ËÁ

ˆ
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/

0

•

Ú u3 e-M RTu2 2/  du
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2 2 2( / )pM RT
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˘

˚
˙
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1 2
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Ê
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ˆ
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(4.14.25)

The mean square speed of molecules is given by

·u2Ò =
0

•

Ú u2 Fu dt = 

0

•

Ú u2Fu (u2 du) = 
0

•

Ú u4Fu du

  = 4p M

RT2
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ˆ
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/

0
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Ú u4 e-M RTu2 2/ du
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 = 
3RT

M
(4.14.26)

The expression of root mean square speed is

·u2 Ò1/2 = 
3RT

M
(4.14.27)
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The pressure of a gas is due to the molecular collisions with the sides of the vessel. 

We known that

p = 
F

A
 = 

ma

A
 = 

m

A

d

d

u

t
 = 

1

A

d

d

( )m

t

u
(4.14.28)

that is, the pressure is equal to the rate of change of momentum per unit area of the

wall.

Consider the wall of area A perpendicular to the x-direction (Fig. 4.14.3). If 

ux is the velocity with which a molecule moves towards the wall, the change in 

magnitude of momentum of the molecule after it has undergone elastic collision 

with the wall is | – mux – (mux) | = 2mux.

A

x

y

ux

The number of collisions per unit time made by the molecules with the side of 

area A will be equal to the number of molecules  N ¢ contained within the volume 

uxA immediately in the vicinity of the wall. If  N is the number of molecules in 

the volume V of the gas, then

N ¢ = 
N

V
(uxA) (4.14.29)

The rate of change in momentum (i.e. force exterted) due to these collisions will be

F = 
d

d

( )m

t

xu
 = N ¢(2mux) = 

N

V
 (2mA) u2

x (4.14.30)

The probability of molecules moving with the velocity ux is 

f (ux) = 
m

kT2

1 2

p
Ê
ËÁ

ˆ
¯̃

/

exp(– mu2
x / 2kT )

Hence, the net rate of change of momentum will be given by

N

V
 (2mA) u2

x f (ux) = 
N

V
 (2mA)

m

kT2

1 2

p
Ê
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ˆ
¯̃

/

ux
2 e-m kTxu2 2/ (4.14.31)

The pressure of the gas is obtained by integrating Eq. (4.14.31) over all possible 

positive u x and dividing the resultant expression by the area of the wall, i.e.

P =
F

A
 = 

N

V
 (2m)

m

kT2
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/
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 = 
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V
(4.14.32)
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The number of molecules striking a wall of a container in a unit time is given by 

the expression

N ¢ = N f x x( )v vd
0

•

Ú
where N is the number of  molecules contained within the volume u

x
A immediately 

in the vicinity of the wall of area A and f (u
x
) is the probability of the molecules 

moving with the velocity u
x
. If N* is the number of molecules per unit volume of 

the gas in the container then

N ¢ = N* (uxA)

f (ux ) = 
m

kT

m kTx

2

1 2
22

p
Ê
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ˆ
¯

-
/

/e v

Hence N ¢ = N* A
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2
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Thus
N

N
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m
N u

¢
pA

= Ê
Ë

ˆ
¯ =

1

4

8 1

4

1 2

* *
/

that is, the number of molecules per unit area of the wall is equal to (1/4) N* u .

REVISIONARY PROBLEMS

4.1 Show that the equilibrium distribution of particles following Boltzmann statistics 

is given by

Ni = N
g

g

i

ii

ie

e

-

-Â

b e

b e
 where b = 1/kT

4.2 Show that the equilibrium distribution of particles following Bose-Einstein statistic 

is given by

Ni  = 
gi

ie e- -a b e 1

  where a and b are constants. Also show that for a system in which  gi /Ni   1, 

the equilibrium distribution can be computed by using Boltzmann distribution law.

4.3 Show that the equilibrium distribution of particles following Fermi-Dirac statistics 

is given by

Ni = 
gi

ie e- +a b e 1

  where a  and b  are constants. Also show that for a system in which 

gi /Ni  1, the equilibrium distribution can be computed by using Boltzmann 

distribution law.

4.5 Show that the expression relating internal energy of a system to the molecular 

partition functions is given by

U = N kT 2 ∂
∂

Ê
ËÁ

ˆ
¯̃

ln q

T V

Number of 

Molecules

Striking a Wall
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4.6 Show that the differentials of heat (q¢) and work (w) are giving by

dq¢ = 
iÂ e i dNi and dw =

iÂ Ni dei

4.7 Show that the pressure of a system is given by

p = NkT
∂
∂

Ê
ËÁ

ˆ
¯̃

ln q

V
T

4.8 Show that the entropy of a system is given by

S = k ln W

4.9 Show that the entropy of a system involving distinguishable particles in terms of 

molecular partition function is given by

S =
U

T
 + k N ln q = Nk T

q

T
q

V

∂
∂

Ê
ËÁ

ˆ
¯̃

+
È

Î
Í

˘

˚
˙

ln
ln

4.10 Show that the entropy of a system involving indistinguishable particles is given by

S = Nk ln
lnq

N
T

q

T V

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃ +È

ÎÍ
˘
˚̇

1

4.11 Derive the following thermodynamic relations in terms of molecular partition function.

H = NkT2 ∂
∂

Ê
ËÁ

ˆ
¯̃

ln q

T V

 + pV

CV = Nk
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇T

T
q

T V V

2 ln
; Cp = 

∂
∂

∂
∂

Ê
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ˆ
¯̃ +Ï

Ì
Ó

¸
˝
˛

È
ÎÍ

˘
˚̇T

NkT
q

T
pV

V p

2 ln

A = – NkT ln q for distinguishable particles

A = – NkT ln
q

N
+Ê

ËÁ
ˆ
¯̃1

for indistinguishable particles

G = – NkT ln q + pV for distinguishable particles

G = – NkT ln q

N

Ê
ËÁ

ˆ
¯̃

 for indistinguishable particles

4.12 Show that the molecular partition function of a diatomic molecule is given by

q = qtqrqvqe, where the various subscripts have their usual meanings.

4.13 Show that for monatomic gases, the translational partition function is given by

qt = V
2

2

3 2pmkT

h

Ê
ËÁ

ˆ
¯̃

/

4.15 Show that the internal energy of a monatomic gas is given by U = (3/2) NkT.

4.16 Show that the pressure of a monatomic gas is given by p = NkT/V.

4.17 Show that the entropy of a monatomic gas is given by

St = Nk ln
/

kT

p

mkT

h

2 5

22

3 2pÊ
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

+
È

Î
Í

˘

˚
˙



Statistical Thermodynamics 361

  Show that the above expression can be written as

S°m = R - + + Ê
ËÁ

ˆ
¯̃ -

∞
Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

1 1541
3

2

5

2
. ln ln lnAr

K

T p

p

4.18 Show that for a monatomic gas,

A = – NkT ln
/

kT

p

mkT

h

2
1

2

3 2pÊ
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ˆ
¯̃
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4.19 Show that the electronic contributions towards the thermodynamic properties of a 

monatomic gas can be expressed as

Ue = RT
¢Ê

ËÁ
ˆ
¯̃

q

q
e

e
; Se = R ln q

q

qe
e

e

+
¢È

Î
Í

˘

˚
˙

Ae = Ge = – RT ln qe ; (Cp)e = (CV)e = R
¢ + ¢¢

-
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ˆ
¯̃

È
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Í

˘
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q q

q

q

q
e e

e

e

e

2

where q ¢e = T (dqe/dT) and q≤e = T (dq¢e /dT).

4.20 Show that for an ideal diatomic gas,

qr =
8 2

2

p I k

hs

Ê
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ˆ
¯̃

T = 
T

sqr

Ur = RT

Sr = R ln
T

sqr

Ê
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+
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˘
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˙1 ;

Ar = Gr = – RT ln 
T

sqr

Ê
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ˆ
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qv =
1

1- -e q /T
 where q = hn/k

Uv =
Nk

T

q
q

v

e v / -1

Sv = Nk - - +
-
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˘
˚̇

-ln ( )
//

/
1

1
e

e
v

v

vq
q

qT

T

T

Av – U0 = Gv – U0 = NkT ln (1 – e– qv/T)

Se = R ln g0

Ae = Ge = – RT ln g0

qn = Pi (2Ii + 1)
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4.21 Show that the standard equilibrium constant of a reaction involving ideal diatomic 

gases can be expressed as

K° =
kT

p

ii

∞
Ê
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ˆ
¯̃
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˙

n

e r- ∞[ ]D U RT/ Pi
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˘
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˙

n

4.22 Derive the expression of rate constant in terms of partition function for the reaction 

  A + B  X‡ Æ Products

4.23 Show that for a monatomic solid, the heat capacity is given by

Cp = CV = 
Nk T kT

T

( / )

( )

/

/

q q

q
v e

e

v

v

2

21-

  What are the limiting values of Cp when (a) T Æ 0 and (b) T Æ •
4.24 Show that the temperature at which lead has the same heat capacity as that of 

diamond is smaller than the temperature of diamond.

4.25 Give a brief description of statistical treatment of the black-body radiation. 

Derive the Planck’s distribution expression 

en ndN

V
 = 

8
3

ph

c

n

n

3

1exp( / )h kT -
dn

  Derive the limiting cases of the above expression for (a) low frequency and 

(b) high frequency ranges. 

4.26 Show that the probability function of gaseous molecules having the components 

px, py and pz of momentum is given by

fp( px, py, pz) = 
1

2 3 2( ) /pmkT
 exp[– (p2

x + p2
y + p2

z )/2mkT]

4.27 Show that the probability function of gaseous molecules having the components 

ux, uy and uz of velocity is given by

fu(ux, uy, uz) = 
m

kT2

3 2

p
Ê
ËÁ

ˆ
¯̃

/

 exp[–m(u2
x + u2

y + u2
z )/2kT ]

4.28 Show that

fu (ux, uy, uz) = f (ux) f (uy) f (uz)

4.29 Show that for an ideal gas

·u2
xÒ = kT/m

( )KE x = (1/2)kT

4.30 Show that the probability distribution function of speeds in an ideal gas is

given by

F(u) = 4pu2 m

kT2

3 2

p
Ê
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ˆ
¯̃

/

exp(– mu2/2kT)
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4.31 Show that for an ideal gas

ump = 2RT M/   ;   ·u Ò = 8RT M/p    ;   ·u2Ò = 3 RT/M

p = NkT/V

NUMERICAL PROBLEMS

4.1 Using Boltzmann probability distribution expression, calculate the possible 

ways of distributing 7 distinguishable particles among 4 energy levels with 

energies 0, e, 2e and 3e, respectively. The total energy of the system remains 

constant at 3e.

   [Ans. W(n0 = 6, n3e = 1) = 7, W(n0 = 5, ne = 1, n2e = 1) = 42 and 

W(n0 = 4, ne = 3) = 35]

4.2 (a) Using Stirling approximation, calculate the value of ln 10!. If the correct 

Ans. 13.0259, 13.76%]

  (b) Repeat the calculations for ln 50!. If the correct value is 148.478, what is the 

Ans. 145.601, 1.94%]

energies 0, e, 2e, 3e and 4e, where e = 1.106 ¥ 10–20 J at T = 300 K and

T = 500 K.

   [Ans. At 300 K, p0 = 0.930 7, p1 = 0.064 5, p2 = 0.004 5,

   p3 = 0.000 3 and p4 = 0.

   At 500 K, p0 = 0.798 8, p1 = 0.161 0, p2 = 0.032 4

   p3 = 0.006 6 and p4 = 0.001 3]

4.4 Using Bose-Einstein probability distribution expression, calculate the possible ways 

of distributing 5 bosons among 5 energy levels (each one is sixfold degenerate) with 

energies 0, e, 2e, 3e and 4e, respectively. The total energy of the system remains 

at 4e.

[Ans. W(n0 = 4, n4 = 1) = 756 W(n0 = 3, n1 = 1, n3 = 1) = 2 016

W(n0 = 3, n2 = 2) = 1 176 W(n0 = 2, n1 = 2, n2 = 1) = 2 646

W(n0 = 1, n1 = 4) = 756]

4.5 Using Fermi-Dirac probability distribution expression, calculate the possible ways 

of distributing 5 fermions among 5 energy levels (each one is sixfold degenerate) 

with energies 0, e, 2e, 3e and 4e such that the total energy of the system remains 

at 4e.

[Ans. W(n0 = 4, n4 = 1) = 90  W(n0 = 5, n1 = 1, n3 = 1) = 720

W(n0 = 3, n2 = 2) = 300 W(n0 = 2, n1 = 2, n2 = 1)  = 1 350

      W(n0 = 1, n1 = 4) = 15]

4.6 Evaluate the translational partition function for hydrogen atom at 300 K contained 

in a volume of 22.414 dm3. [Ans. 2.18 ¥ 1028]

4.7 Calculate the translational contributions to U°m, H °m, S°m, A°m and G°m for hydrogen 

atom at 300 K.

[Ans. 3 741.3 J mol–1, 6 235.5 J mol–1, 108.96 J K–1 mol–1, – 28 946.7 J mol–1,

 – 26 452.5 J mol–1]

4.8 Calculate the characteristic rotational constant for H2 molecule. Given: The 

internuclear distance of H2 is 74.17 pm.  [Ans. 88.34]

Boltzmann

Distribution

Stirling

Approximation

Bose-Einstein

Distribution

Fermi-Dirac

Distribution

Translational 

Contribution

Rotational

Contribution
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4.9 Calculate the rotational contributions to internal energy, entropy and Gibbs free 

energy for diatomic chlorine at 500 K. Given: Internuclear distance of N2 = 198.8 

pm.     [Ans. 4 157 J mol–1, 63.04 J K–1 mol–1, 27.36 kJ mol–1]

4.10 Calculate the characteristic vibrational temperature of Cl2 molecule. Given:

ne = 561.1 cm–1 for Cl2 molecule.  [Ans. 808.2 K]

4.11 Calculate the vibrational contributions to internal energy, enthalpy, entropy and 

frequency of F2 corresponds to 923.1 cm–1.

[Ans. 129.1 J mol–1, 129.1 J mol–1, 1.30 J K–1 mol–1, – 28.76 J mol–1]

4.12 Calculate the equilibrium constant of the reaction (1/2 )O2  O at 1000 K. Given: 

D0 (O2) = 491.888 kJ mol–1, qr of O2 = 2.079 and qn of O2 = 2273.64 K. g0 for the 

ground electronic level of O2 = 3 and that of O is 5.

[Ans. 1.75 ¥ 10–10]

4.13 Calculate the standard equilibrium constant K°c for the reaction H2  2H at 3 000 K.

Given: Ground state of H atom is 2S1/2, H—H dissociation energy is 431.8 kJ mol–1,

H—H internuclear distance is 74 pm and qv(H2) = 6 210 K.

[Ans. 1.14 ¥ 10–4]

4.14 Calculate the values of x-component of velocity probability density, f (ux), for oxygen 

molecules at 300 K for the speeds from 0 to 1 000 m/s at the regular interval of 

100 m/s. Plot the obtain data of f (ux) versus ux.

  [Ans. The values of f (ux) ¥ 104/m–1s are 14.29, 13.4, 11.06, 8.02, 5.12, 2.88, 

1.42, 0.236 and 0.023 4]

4.15 Calculate the values of speed probability density, F, for oxygen molecules at

300 K for the speeds from 100 m/s to 1 200 m/s at the regular interval of 100 m/s. 

Plot the obtain data of F versus ux.

  [Ans. The values of F ¥ 104/m–1s are 3.54, 11.35, 18.53, 21.0, 18.4, 13.1, 7.75, 

3.87, 1.65, 0.6, 0.19 and 0.05]

4.16 Calculate the ump, uav and urms for oxygen molecules at 300 K.

4.17 Calculate the per cent composition of para and ortho dihydrogen at 20 K, 60 K, 

100 K, 150 K, 200 K, 250 K, 300 K and 400 K. Draw a graph between per cent 

of ortho dihydrogen and temperature. Use qv = 86.5 K.

4.18 The Euler-Maclaurin theorem is

f n f n n f
f

n

f

nn
n

( ) ( ) ( )= = -
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
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ˆ
¯̃

•

=

•

=ÚÂ d

00
0

3

3

1

2
0

1

12

1

720 nn =
-

0

…

  Show that this theorem when applied to the rotational partition function leads to 

Eq. (4.8.18).

4.19 Comment on the following statement.

  The vibrational contribution towards molar heat capacity of a diatomic gas varies 

with temperature. It attains a maximum value of R at high temperature dependent 

on the  characteristic temperature (qv) of the gas and approaches a zero value as 

temperature is lowered towards T Æ 0.

4.20 For a homonuclear diatomic molecule having even number of protons and equal 

number of neutrons in the nuclei (e.g. 12C2,
4He2 and 16O2), the contribution to the 

combined rotational-nuclear partition function from the odd rotational quantum 

numbers is zero. Explain. [Hint.  I = 0 in Eq. (All.2).]

4.21 Show that the limiting value of Northo/Npara for dideuterium is 2/3 at high temperature.

Equilibrium

Constant

Velocity 

Distribution



The translational energy of a particle in a cubical box of edge-length l is given by

 e =
h

ml

2

28
n n nx y z
2 2 2+ +( )  = 

h

mV

2

2 38 /
n n nx y z
2 2 2+ +( ) (AI.1)

where nx, ny and nz are the quantum numbers, each having integral values of                      

1, 2, 3, …

A translational state may be represented by a point in a three-dimensional space 

of coordinates nx, ny and nz, a two-dimensional cross-section of which is shown 

in Fig. AI.1.

dr

r

nx

n
y

The distance of a point in this space coordinates from the origin is given by

r2 = n2
x + n2

y + n2
z (AI.2)

With this, the expression of translational energy is given by

e = 
h

m

2

2 38 V
/ r2 (AI.3)

We consider the quantum states for which r 1, so that r as well as e may be 

considered to vary in a continuous manner.

The number of quantum states within the energy range e to e + de will be equal 

to the volume of the spherical shell from r to r + dr

Alternative Method of Computing Translational 
Partition Function

ANNEXURE I

Fig.  AI.1 Two-

dimensional cross- 

section of three-

dimensional space 

coordinates of n
x
, n

y

and n
z
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of the space coordinates. The latter condition is due to the fact that the quantum 

numbers nx, ny and nz have only positive values.

The volume of spherical shell from r to r + dr

be 1/8 of the total volume of the shell which is 4p r2 dr. Hence, the number of 

quantum states having energies in the range e to e + de is given by

gt = 
1

8
 (4pr2dr) (AI.4)

The differential of energy as given by Eq. (AI.3) is

de = 
h

mV

2

2 38 /
 (2rdr) i.e. dr = 

4 2 3

2

mV

h r

/

de

Hence, r2dr = 
4 2 3

2

mV r

h

/

de (AI.5)

Making use of Eq. (AI.3), we get

r2 dr =
4 2 3

2

mV

h

/ 8 2 3

2

1 2
pV

h

/ /
eÊ

ËÁ
ˆ
¯̃ de = 

8
3

mV

h
 (2me)1/2 de (AI.6)

Substituting Eq. (AI.6) in Eq. (AI.4), we get

gt =
1

2
p

8
2

3

1 2mV

h
m( ) /

e ed
È
ÎÍ

˘
˚̇

 = 
4

3

pmV

h
(2 me)1/2 de (AI.7)

With the above expression of degeneracy of translational levels, the expression of 

translational partition function

qt = 
iÂ gi e

–ei /kT

becomes

qt =
iÂ

4
2
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1 2pmV

h
m i i( ) /

e ed
È
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e–ei/kT

i.e. qt =
4 2 1 2
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Let x2 = e, such that 2x dx = de. With these, the above expression becomes
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The total wave function of a molecule is given by

 ytotal = yt yr yv ye yn (A.II.1)

where the subscripts t, r, v, e and n stand for translational, rotational, vibrational, 

electronic and nuclear, respectively.

Two types of atoms may be distinguished based on the nuclear spin quantum 

number. These are 

Bosons The nuclei of these atoms have integral spin quantum number. Examples 

include 2H (I = 1), 14N (I = 1) and 10B (I = 3).

Fermions The nuclei of these atoms have half-integral spin quantum number. Examples 

include 1H (I = 1/2), 15N (I = 1/2), 17O (I = 5/2) and 35Cl (I = 3/2).

We have the following requirements about the total wave function of bosons and 

fermions under the exchange of the two identical nuclei in a molecule.

For bosons the total wave function is symmetric.

For fermions, the total wave function is antisymmetric.

The above symmetry requirement has profound consequences on the thermodynamic 

properties of homonuclear diatomic molecules at low temperatures.

We have the following facts about the symmetry characteristics of the wave 

functions involved in the total wave function.

∑ Translational wave function depends only upon the coordinates of the centre of 

mass of the molecule, and thus this wave function is not affected by the exchange 

of two identical nuclei, i.e. the translational wave function is symmetric under 

the exchange of two identical nuclei.

∑ Vibrational wave function depends upon the magnitude of r – req and thus this 

wave function is also unaffected under the exchange of two identical nuclei, i.e. 

the vibration wave function is symmetric under the exchange of two identical 

nuclei.

∑ Most of molecules in the ground electronic state have the symmetric electronic 

wave function.

∑ The rotational wave functions have the same symmetry characteristics as those 

of the angular functions of the hydrogen atom.

yr  are symmetric for even values of rotational quantum number J

yr are antisymmetric for odd values of rotational quantum number J.

Quantum Mechanical Explantion of Symmetry Number 
and Heat Capacity of Hydrogen Gas

ANNEXURE II
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∑ A nucleus with spin quantum number I has a total of 2 I + 1 spin states. These 

states are represented by the magnetic spin quantum number which can have 

values of
+I, + (I – 1), …, – (I – 1), – I

  For example, for a proton (I = 1/2) the two states are 

mI = +1/2, known as a spin. Its wave function is represented by the   
symbol a.

mI = – 1/2, known as b spin. Its wave function is represented by the   
symbol b.

A diatomic molecule involving identical nuclei with spin quantum number I,

has a total of (2I + 1)2 nuclear wave functions. Of these wave functions, we have

(2I + 1) (2I)/2, i.e. I (2I + 1) wave functions are antisymmetric

and (2I + 1)2 – I (2I + 1), i.e. (I + 1) (2I + 1) wave functions are symmetric.

From example, in hydrogen molecule we have 

Three symmetric nuclear spin wave functions. These are a a, bb and 

(1/ 2 ) ab  ba+( ) .

One antisymmetric nuclear spin wave function. This is  (1/ 2 ) ab - ba( ) .

The above characteristics about the various wave functions may be depicted as 

follows.

The symmetric/antisymmetric characteristic of the total wave function is decided 

by the proper coupling of rotational and nuclear wave function. We can have the 

following combinations. 

1. For bosons, the total wave function has to be symmetric. This is possible when

I(2I + 1) antisymmetric nuclear spin functions couple with antisymmetric 

rotational wave functions for which rotational quantum number J has odd values.

(I + 1) (2I + 1) symmetric nuclear spin functions couple with symmetric rotational 

wave functions for which rotational quantum number J has even values.

2. For fermions, the total wave function has to be antisymmetric. This is possible 

only when I (2I + 1) antisymmetric nuclear spin functions couple with symmetric 

rotational wave functions for which rotational quantum number J has even values. 

(I + 1)(2I + 1) symmetric nuclear spin functions couple with antisymmetric 

rotational wave functions for which rotational quantum number J has odd values.

Diagrammatic

Display of 

Symmetries of 

Wave Functions

Factor Deciding 

Symmetry of Total 

Wave Function
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The above combinations are also applicable to linear polyatomic molecules 

such as CO2 and C2H2.

For bosons, we have

qr, n = (I + 1)(2I + 1) 
J

Â (2J + 1) e r- +q J J T( ) /1

(even)

     + I (2I + 1) 
J

Â  (2J + 1) e r- +q J J T( ) /1 (AII.2)

(odd)

For fermions, we have

qr, n = (I + 1) (2I + 1) 
J

Â (2J + 1) e r- +q J J T( ) /1

(odd)

         + I (2I + 1) 
J

Â  (2J + 1) e r- +q J J T( ) /1 (AII.3)

(even)

From the above expressions, it is obvious that the combined rotational and 

nuclear partition function cannot be factored into qr and qn. However, if qr /T £
0.20 for homonuclear diatomic molecules, this factorization is possible since

J

Â (2J + 1) e r- +q J J T( ) /1
 = 

J

Â (2J + 1) e r- +q J J T( ) /1

(even) (odd)

=
1

2 J

Â (2J + 1) e r- +q J J T( ) /1  = 
1

2
0

•

Ú (2J + 1) e r- +q J J T( ) /1  = 
T

2qr

(all)

With this, Eqs (AII.2) and (AII.3) can be written as

qr, n = (2 I + 1)2 T

2qr

(AII.4)

in which  qn  =  (2 I + 1)2 and qr = T/2qr.

For heteronuclear diatomic molecules, qr = T/qr.

The factor 2 in the denominator of Eq. (AII.4) is known as symmetry number.
This factor is due to the fact that for homonuclear diatomic molecules, the rotational 
partition function is given by Eq. (AII.2) or (AII.3). This is applicable only to the 
high-temperature limit such that qr /T £ 0.20. For most of homonuclear diatomic 
molecules, the condition qr/T £ 0.20 holds goods since their characteristic rotational 
temperatures have low values. Hydrogen is somewhat unusual in that its rotational 
constant is much greater than its boiling point.

For hydrogen atom, I = 1/2. Hence, from Eq. (AII.3) we can write

qr, n = (1) 
J

Â (2J + 1) e r- +q J J T( ) /1  + (3) 
J

Â (2J + 1) e r- +q J J T( ) /1  (AII.5)

(even) (odd)
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COMMENT ON THE HEAT CAPACITY OF HYDROGEN GAS



370 A Textbook of Physical Chemistry

The hydrogen molecule with opposite nuclear spins (i.e. antisymmetric nuclear spin 

function) is called para-hydrogen. It is associated with rotational wave functions 

having only even values of rotational quantum numbers.

The hydrogen molecule with parallel (or same) nuclear spins (i.e. symmetric 

nuclear spin function) is called ortho-hydrogen. It is associated with rotational 

wave functions having only odd values of rotational quantum numbers.

The ratio of molecules of ortho and para dihydrogen is given by

N

N

ortho

para

 = 

( ) ( )

( ) ( )

( ) /

( ) /

3 2 1

1 2 1

1

1

odd

even

e

e

r

r

J

J J T

J

J J T

J

J

Â

Â

+

+

- +

- +

q

q (AII.6)

This ratio depends on the temperature of the system. The percentage of para 

dihydrogen is 100 at 0 K. It decreases with increase in temperature and attains a 

value of 25 per cent at high temperatures. 

Calculate the per cent equilibrium composition of para and ortho dihydrogens at its 

normal boiling point (20.4 K). Given: At low temperature condition, the value of

qr = 85.4 K.

We have

qr /T = 85.4/20.4 = 4.186

Since

N

N

para

ortho

=

( ) ( )

( ) ( )

( ) /

( ) /

1 2 1

3 2 1

1

1

even

odd

e

e

r

r

J

J J T

J

J J T

J

J

Â

Â

+

+

- +

- +

q

q

we have

N

N

para

ortho

=
( )

( )

. .

. .

1 1 5 9

3 3 7

6 4 186 20 4 186

2 4 186 12 4 186

+ + +ÈÎ ˘̊

+

- ¥ - ¥

- ¥ - ¥

e e

e e

 

++ÈÎ ˘̊ 

 = 
( ) ( . ) ( . )

( ) ( . )

1 1 5 1 237 10 9 4 374 10

3 3 2 313 10 7

11 37

4

+ ¥ + ¥ +ÈÎ ˘̊

¥ +

- -

-

 

(( . )1 529 10 22¥ +ÈÎ ˘̊-
 

 = 
1

2 082 10 3. ¥ -  = 480.4

Per cent of para H2 = (480.4/481.4) ¥ 100 = 99.79

Per cent of ortho H2 = 0.21

Calculate the per cent equilibrium composition of para and ortho dihydrogens at 

300 K. Given: At high temperature condition, the value of qr = 87.5 K.

We have

qr /T = 87.5/300 = 0.292

Ortho- and Para- 

Hydrogens

Example AII.1

Solution

Example AII.2 

Solution
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Since

N

N

para

ortho

=

( ) ( )

( ) ( )

( ) /

( ) /

1 2 1

3 2 1

1

1

even

odd

e

e

r

r

J

J J T

J

J J T

J

J

Â

Â

+

+

- +

- +

q

q

we have

N

N

para

ortho

=
( )

( )

. . .

.

1 1 5 9 13

3 3

6 0 292 20 0 292 42 0 292

2 0 29

+ + + +ÈÎ ˘̊- ¥ - ¥ - ¥

- ¥

e e e

e

 

22 12 0 292 30 0 2927 11+ + +ÈÎ ˘̊- ¥ - ¥e e. .
 

  =
( ) ( . ) ( . ) ( . )

( ) ( .

1 1 5 0 173 9 2 909 10 13 4 718 10

3 3 0 558

3 6+ + ¥ + ¥ +ÈÎ ˘̊- -
 

)) ( . ) ( . )+ + ¥ +ÈÎ ˘̊-7 0 030 11 1 569 10 4
 

  =
1 891

5 657

.

.
 = 0.334

Per cent of para  H2 = 
0 334

1 334

.

.
¥ 100 = 25.0

Per cent of ortho H2 = 75.0

The conversion of para into ortho as the temperature is increased (or the vice versa 

as the temperature is decreased) is extremely slow unless a catalyst (such as activated 

charcoal) is used. Without a catalyst, the experimental values of heat capacity of 

H2 as its temperature is lowered from room temperature (where the  ratio of ortho 

to para is 3 : 1) do not agree with those calculated by using the partition function 

given by Eq. (AII.5). This is due to the fact that the experimental values involve 

more or less 3 : 1 ratio of ortho : para dihydrogen while it changes in the calculated 

values. However, if experiments are carried out in the presence of activated charcoal, 

the disagreement between experimental and calculated values disappears. The use 

of activated charcoal ensures an equilibrium mixture of ortho and para dihydrogen

at all temperatures.

Comment on the 

Experimental and 

Calculated Values 

of Heat Capacities



For a system involving noninteracting particles, the partition function is called the 

molecular partition function because the energy levels in its expression refer to those 

of individual molecules. This is, however, not true for a system involving interacting 

particles and hence the expressions derived earlier for the thermodynamic properties 

in terms of molecular partition function are not applicable for such a system. To 

extend the statistical evaluation of thermodynamic properties of a system involving 

interacting particles as well, Gibbs invented the concept of ensemble which is a 

hypothetical collection of a large number of systems, each constructed to be a replica 

of the system under study. Each system of an ensemble has the same values of 

some of the macroscopic properties of the system under study. The various types 

of ensemble have been visualized. The commonly used ensembles are as follows.

Microcanonical Ensemble Each members of this ensemble has the same values 

of N, V and U. The expressions derived earlier for a system of noninteracting 

particles can be derived by using this ensemble.

Canonical Ensemble Each members of this ensemble has the same values of 

N, V and T
thermodynamics.

Grand Canonical Ensemble Each members of this ensemble has the same 

values of V, T and m.

Isothermal-Isobaric Ensemble Each members of this ensemble has the same 

values of N, T and p.

In this section, we deal with only canonical ensemble.

Some of the guidelines of computing thermodynamic properties of a system by 

using the concept of canonical ensemble are as follows.

 ∑ The diagrammatic representation of canonical ensemble is shown in Fig. AIII.1. 

Each system has the same values of N, V and T. The walls of each system is 

heat conducting. The entire ensemble is surrounded by thermal insulation, it is 

an isolated system with volume AV, number of molecules AN and some total 

energy E; where A is the number of systems in the ensemble.

The Concept of EnsembleANNEXURE III

Introduction

Treatment 

of Canonical 

Ensemble
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Fig. AIII.1 A

diagrammatic

representation of 

canonical ensemble

 ∑ The available energy states for a N-body system can, in principle, be obtained 

from the solution of Schrödinger equation

opyi = Ei yi where i = 1, 2, 3, … (AIII.1)

 ∑ The principle of equal a priori probabilities is applicable, according to which, 

any particular system of the ensemble might be found in any of the available 

energy state.

 ∑ 
each and every quantum states, say, for example,

Energyof the state

Occupation number

E E E E

a a a a
i

i

1 2 3

1 2 3

…

…

¸
˝
˛

(AIII.2)

  The above distribution is subject to the following restrictions;

  Fixed number of systems in the ensemble:  A = aiiÂ (AIII.3)

  Fixed energy of isolated ensemble:    E  = a Ei iiÂ (AIII.4)

 ∑ The number of ways of realizing a particular distribution of A distinguishable 

systems over the available energy states is given by 

W =
A!

!P i ia
(AIII.5)

  One can obtain many distributions varying in the values of ai in different energy 

states Ui subject to the two constraints as given by Eqs (AIII.3) and (AIII.4).

 ∑ For an ensemble involving a very large number of systems, the average value 

of any mechanical property (e.g. pressure, energy) is largely governed by the 
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most probable distribution which has a maximum value of W for a particular 

set of ais (denoted by a*i s). The average of value of mechanical property (say, 

energy) is given by

U = iÂ Pi Ui (AIII.6)

where Pi =
ai
*

A
(AIII.7)

  This average value of energy corresponds to the thermodynamic energy of the 

system.

 ∑ The mathematical procedure to determine the most probable distribution 

is exactly the same as described earlier. We maximize ln W subject to the 

constraints of Eqs (AIII.3) and (AIII.4), i.e.

d ln W = iÂ
∂

∂
lnW

ai

dai = 0 (AIII.8)

dA = iÂ dai = 0 (AIII.9)

dE = iÂ Ui dai = 0 (AIII.10)

Using the method of Lagrange multipliers, we get

iÂ
∂

∂
+ -

Ê
ËÁ

ˆ
¯̃

lnW

a
U

i
ia b dai = 0 (AIII.11)

ai is equated to zero, i.e.

∂
∂
lnW

ai

 + a – b Ui = 0 (AIII.12)

Now  ln W = ln A ! – iÂ ln ai !

Using Stirling’s approximation, we get

ln W = A  ln A – A – iÂ  (ai ln ai – ai)

= A  ln A – iÂ ai ln ai

Hence,   
∂

∂
lnW

ai

 = – ln ai – 1

With this, Eq. (AIII.12) becomes

  – ln a*i  – 1 + a – b Ui = 0

or a*i  = ea ¢ e–bUi (where a ¢ = a – 1) (AIII.13)

Equation (AIII.13) gives the most probable distribution in terms of a and b.
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Carrying out the summation over i on both sides of Eq. (AIII.13) gives

  iÂ a*i  = ea ¢
iÂ e–bUi

or ea ¢ =
aii

U
i

i

*Â
Â -e b  = 

A

e-Â bU
i

i
(AIII.14)

Hence, a*i  = 
Ae

e

-

-Â

b

b

U

U
i

i

i
 = 

Ae-bUi

Q
(AIII.15)

where Q is known as canonical (ensemble) partition function.

U = iÂ Pi Ui = 
1

A iÂ a*i Ui

Using Eq. (AIII.15), this becomes

U =
1

Q iÂ Ui e
–bUi

Since
∂
∂

Ê
ËÁ

ˆ
¯̃

Q

N Vb
,

=
∂

∂b
e-Â( )bU

i N V
i

,
 = – iÂ Ui e

–bUi, the above expression may 

be written as

U  = – 
∂ ∂Ê

ËÁ
ˆ
¯̃

Q

Q N V

/

,

b
= – 

∂
∂

Ê
ËÁ

ˆ
¯̃

ln

,

Q

N Vb

Since b = 1/kT, this expression may be written as

U  = kT 2 ∂
∂

Ê
Ë

ˆ
¯

ln

,

Q

T N V
(AIII.16)

From thermodynamics, the expression of pressure pi is

pi = – 
∂
∂

Ê
ËÁ

ˆ
¯̃

U

V
i

N T,

Hence, the canonical average of pressure is

p = iÂ pi Pi = – iÂ
∂
∂

Ê
ËÁ

ˆ
¯̃

U

V
i

N T,

ai*

A

  = – iÂ
∂
∂

Ê
ËÁ

ˆ
¯̃

U

V
i

N T,

e-bUi

Q
 = 

- ∂ ∂Â -b

b

b
i

U
N T

i U V

Q

( )( / ) ,e

=

∂
∂ ( )-Â
V

Q

U
i N T

ie b

b

,
 = 

( / ) ,∂ ∂Q V

Q

N T

b
= kT

∂
∂

Ê
ËÁ

ˆ
¯̃

ln

,

Q

V N T
(AIII.17)

Expression of a in 

Terms of b

Expression of U

Expression of 

Pressure
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We will have

S  = 
S

A
 = 

1

A
 (k ln W)

Substituting the expression of W from Eq. (AIII.5), we get

S  = 
1

A
k ln

A!

* !ii a’

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

 = 
k

A
[ ! !]*ln lnA - Âi ia

Invoking Stirling’s approximation, we get

S  = 
k

A
A A Aln ( ln )* * *-( ) - -ÈÎ ˘̊Â a a ai i ii

=
k

A
-

È

Î
Í

˘

˚
˙Â a

a
i

i
i

*
*

ln
Å

Making use of Eq. (AII.15), this becomes

S  = 
k

A
-

È

Î
Í

˘

˚
˙

-

Â a
Qi

U

i

i

* ln
e b

 = 
k

A
a U a Qi ii i

* * lnbÂ Â+ÈÎ ˘̊

= k b
a

U Qi
ii

A
ÂÊ

ËÁ
ˆ
¯̃ +È

ÎÍ
˘
˚̇

ln  = k [b U  + ln Q]

Substituting Eq. (AIII.16) in the above expression, we get

S  = k b k T
Q

T
Q

N V

2 ∂
∂

Ê
Ë

ˆ
¯ +

È

Î
Í

˘

˚
˙

ln
ln

,

 = kT
∂

∂
Ê
Ë

ˆ
¯

ln

,

Q

T N V
+ k ln Q (AIII.18)

From thermodynamics, we have

A  = U – T S

Substituting the expressions of U  and S , we get

A  = – kT ln Q (AIII.19)

It may be mentioned here that both A and Q have the same natural independent 

variables, i.e. N, V and T.

Since H = U  + p V, we get

H = kT 2 ∂
∂

Ê
Ë

ˆ
¯

ln

,

Q

T N V
+ VkT

∂
∂

Ê
Ë

ˆ
¯

ln

,

Q

V N T
(AIII.20)

Since G = A  + p V, we get

G = – kT ln Q + V kT
∂

∂
Ê
Ë

ˆ
¯

ln

,

Q

V N T

(AIII.21)

Expression of 

Entropy

Expression of 

Helmholtz Free 

Energy

Expression of 

Enthalpy

Expression of 

Gibbs Free Energy
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For distinguishable noninteracting particles, N-body Hamiltonian operator can be 

written as a sum of N individual terms, one for each particle. The number of quantum 

states available to N-body system will be equal to the product of number of quantum 

states available to individual particles. The expression of canonical partition function

can be written as

QN,V,T = iÂ e–Ui/kT= iÂ jÂ k ¢Â   e–(Ui1 + Uj2 + Uk ¢3 +  ) /kT (A.III.22)

where numbers 1, 2, 3, … refer to the particles. The above expression can be written

as

QN,V,T = e
-Â( )Ui kT

i
1 /

e
-Â( )U kT

j
j2 /

e
-

¢
¢Â( )U kT

k
k 3 /

 

= q1 q2 q3 … (A.III.23)

that is, the canonical partition function of a N-body system involving distinguishable 

noninteracting particles is equal to the product of individual molecular partition 

function.

If the energy states of all the particles are the same, then Eq. (AIII.22) becomes

QN, V, T = (qV, T)N (Distinguishable particles) (AIII.24)

If the particles are indistinguishable (i.e. the particles cannot be labelled as 1, 2, 

3, …), many of summation terms in Eq. (AIII.22) will represent one and the same 

case. It can be shown that the summation of Eq. (AIII.22) includes N ! identical 

terms. Hence, the canonical partition function in this case as given by Eq. (AIII.24) 

is divided by N !, i.e.

QN, V, T = 
( )

!

,q

N
N V

N

(Indistinguishable particles) (AIII.25)

Derive the expression of entropy of a system involving N indistinguishable noninteracting 

particles in terms of molecular partition function starting from the corresponding expression 

involving canonical partition function.

The expression of entropy in terms of canonical partition function is

S  = kT
∂

∂
Ê
ËÁ

ˆ
¯̃

ln

,

Q

T N V
+ k ln Q

For indistinguishable noninteracting particles, we have

Q. =
q

N

N

!

Hence   ln Q = N ln q – ln N!

Invoking Stirling’s approximation, we get

ln Q = N ln q – N ln N + N

Canonical Partition 

Function for 

Distinguishable

Noninteracting

Particles

Canonical Partition 

Function for 

Indistinguishable

Noninteracting

Particles

Problem

Solution
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Hence,
∂

∂
Ê
ËÁ

ˆ
¯̃

ln

,

Q

T N V

=  N
∂
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Ê
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¯̃

ln
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q

T N V

The expression of entropy becomes

S = kT N
q

T N V

∂
∂
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¯̃

È
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ln
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+ k [N ln q – N ln N + N]
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q

T N V

+ Nk ln
q

N
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q

NN V
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ˆ
¯̃ + Ê
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¯̃ +

È

Î
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˘

˚
˙

ln
ln

,

1 (AIII.26)



1. Data for a few Diatomic Molecules

Molecule Ground
req

pm

n

Hz

D0

1kJmol-

H2
1Â 74.17 1.32 ¥ 1014 431.44

F2
1Â 140.9 2.77 ¥ 1013 153.42

Cl2 1Â 198.8 1.68 ¥ 1013 238.32

Br2
1Â 228.4 9.70 ¥ 1012 189.94

I2
1Â 266.7 6.44 ¥ 1012 148.79

N2
1Â 109.76 7.07 ¥ 1013 940.26

O2
3Â 120.74 4.74 ¥ 1013 492.92

HF 1Â 91.68 1.24 ¥ 1013 563.18

HCl 1Â 127.46 8.97 ¥ 1013 426.53

HBr 1Â 141.4 7.95 ¥ 1013 361.76

HI 1Â 160.4 6.93 ¥ 1013 294.31

CO 1Â 112.81 6.51 ¥ 1013 1 068.63

2. Data for a few Triatomic Molecules

Molecule Bond Distance Bond Angle
 n

cm-1r/pm

CO2 C—O; 192.6 180º 1 342.9, 667.3 (2), 2 349.3

CS2 C—S; 155.3  180º 658, 396.8 (2), 1 532.5

N2O N—N; 112.82 180º 1 276.5, 589.2 (2), 2 223.7

  N—O; 118.42

H2O O—H; 95.84 104.45º 3 657.1, 1 594.6 3 755.8

H2S S—H; 134.55 93.3º 2 614.6, 1 182.7, 2 627.5

NH2 N—H; 102.5 103º 3 400, 1 550, 3 650

NO2 N—O; 119.7 134.25º 1 357.8, 756.8, 1 665.5

Some Useful DataANNEXURE IV
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3. Values of Some Standard Integrals

(i)
0

•

Ú xn e– ax2
 dx

For n = 0
1

2

p
a

Ê
ËÁ

ˆ
¯̃

1 2/

n = 3   
1

2 2a

n = 1
1

2a
n = 4   

3

8

p
a5

1 2
Ê
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ˆ
¯̃

/

n = 2
1

4

p
a3

1 2
Ê
ËÁ

ˆ
¯̃

/

n = 5   
1
3a

(ii)  

-•

+•

Ú xn e–ax2
dx = 0 when n = 1, 3, 5, …

       = 2

0

•

Ú x n e–ax2
 dx when n = 0, 2, 4, …



Macromolecules, also known as polymers, are formed by the covalent linkages 

between many repeating small molecules called monomers. The polymers may be 

Synthetic polymers are man-made polymers. The starting materials are small 

number of identical repeating units, usually one or two. These polymers may be 

Condensation (or Step Growth) Polymers The condensation polymers are formed 

by the reaction between two difunctional monomers with the elimination of a small 

molecule such as water. Examples include

Polyester O—CO(CH2)4COOCH2CH2 n

Polyurethane O(CH2)6OCONH(CH2)6NHCO n

Addition (or Chain Reaction) Polymers The addition polymers are formed in a 

chain reaction of monomers containing double bonds. Examples include

Polyethylene CH2—CH2 n

Polyvinyl chloride CH2—CHCl
n

Polystyrene CH2—CH(C6H5)
n

Poly(methylmethacrylate)
n

homopolymers and 

copolymers. In homopolymers, there is only one monomer as repeating unit while 

in copolymer, there are two or more different monomers as repeating units.

Biological polymers include proteins and polysaccharides.

In the preparation of a polymer from monomer molecules, the polymerization 

reactions proceed through different extent of reaction. This results into polydispersity 

Macromolecules5

5.1 INTRODUCTION

5.2 MOLAR MASS AVERAGES
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with respect to molecular masses. To describe the distribution of molecular masses, 

the following averages are commonly used.

The number average molar mass is obtained by carrying out the summation over 

the fraction of molecules multiplied by their corresponding molar mass, i.e.

Mn = fiiÂ Mi (5.2.1)

(The subscript ‘n’ stands for number and bar over the symbol Mn represents 

average.)

The fraction fi is given by

fi =
N

N

i

total

(5.2.2)

where Ni is the number of molecules each having molar mass Mi and Ntotal is the 

total number of molecules which is given by

Ntotal = NiiÂ (5.2.3)

Substituting Eq. (5.2.2) in Eq. (5.2.1), we get

Mn =
N

N

i
i

total

Ê
ËÁ

ˆ
¯̃

Â Mi =
N M

N

i iiÂ
total

which in view of Eq. (5.2.3) becomes

Mn =
N M

N

i ii

ii

Â
Â

(5.2.4)

The mass average molar mass is obtained by carrying out the summation over the 

mass fraction multiplied by their corresponding molar mass, i.e.

Mm = w Mi iiÂ (5.2.5)

(The subscript m stands for mass and bar over the symbol Mm stands for average.)

The mass fraction wi is given by

wi = 
m

m

i

total

(5.2.6)

where mi is the mass of the polymer molecules, each having molar mass Mi and 

mtotal is the total mass of the sample of the polymer which is given by

mtotal = miiÂ (5.2.7)

Substituting Eq. (5.2.6) in Eq. (5.2.5), we get

M m = 
iÂ

m

m

i

total

Ê
ËÁ

ˆ
¯̃

Mi = 
m M

m

i iiÂ
total

Number Average

Molar Mass

Mass Average

Molar Mass
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which in view of Eq. (5.2.7) becomes

M m = 
m M

m

i ii

ii

Â
Â

(5.2.8)

Since mi = Ni (Mi /NA), we get

M m = 
[ ( / )]

( / )

N M N M

N M N

i i ii

i ii

A

A

Â
Â

 = 
N M

N M

i ii

i ii

2Â
Â

(5.2.9)

In terms of fraction of molecules, we have

M m = 
f M

f M

i ii

i ii

2Â
Â

(5.2.10)

For all polydisperse system, Mm > M n. This follows from the fact that the number 

average molar mass of a distribution counts the contribution of molecules in each 

class while the mass average molar mass is based on the mass contribution of each 

class. The molecules with higher molar mass contribute relatively more to the average 

when mass fraction rather than number fraction is used as the weighing factor.

The ratio Mm / M n is a measure of the polydispersity of a sample of a polymer.

The z

M z = 
N M

N M

i ii

i ii

3

2

Â
Â

(5.2.11)

Since the weighing factors in the z-average molar mass is Ni M2
i , the molecules 

having higher molecular mass are weighed even more heavily resulting into 

M z > M m > M n (5.2.12)

M v = 
N M

N M

i i
a

i

i ii

a+Â
Â

Ê

Ë
Á

ˆ

¯
˜

1 1/

(5.2.13)

where the variable a is characterized by the system under investigation and generally 

lies in the range 0.5 < a < 1.0. Note that M v = M m when a = 1. The constant a

is known as Mark-Houwink exponent.

The viscosity average molar mass is not an absolute value, but a relative 

molar mass based on prior calibration with known molar mass for the same 

polymer-solvent-temperature conditions. The variable a depends on all these three

conditions.

z-Average Molar 

Mass

Viscosity Average

Molar Mass
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Table 5.2.1 lists the different molar masses described above along with the 

experimental methods to determine these averages.

Table 5.2.1 Description of Average Molar Masses

M n

N M

N

i ii

ii

Â
Â

Osmotic pressure and other colligative properties

   
End group analysis

M m

N M

N M

i ii

i ii

2Â
Â

Light scattering

   
Sedimentation velocity

M z

N M

N M

i ii

i ii

3

2

Â
Â

Sedimentation equilibrium

M v

N M

N M

i i
a

i

i ii

a1 1+Â
Â

Ê

Ë
ÁÁ

ˆ

¯
˜̃

/

Intrinsic viscosity

A solution contains equal number of particles with molar masses 10 000 g mol–1 and

20 000 g mol–1, respectively. Calculate M n and Mm.

M n =
N M N M

N N

1 1 +
+

2 2

1 2

Since N1 = N2, we have

M n =
M M1 2+

2
 = 

( )10 000 20 000

2

1+ -g mol

= 15 000 g mol–1

M m =
N M N M

N M N M

1 1
2

2 2
2

1 1 2 2

+
+

Since N1 = N2, we have

M m =
M M

M M

1
2

2
2

1 2

+
+

 = 
[( ) ( ) ]

( )

10 000 20 000

10 000 20 000

2 2 2 2

1

+
+

-

-
g mol

g mol

= 16 666.6 g mol–1

A suspension contains equal masses of particles with molar masses 10 000 g mol–1 and

20 000 g mol–1, respectively. Calculate M n and Mm.

Since m = nM = (N/NA)M, we have

N = (m/M)NA

Example 5.2.1

Solution

Example 5.2.2

Solution
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Hence, M n =
N M N M

N N

1 1 2 2

1 2

+
+

 = 
{( / ) } {( / ) }

( / ) ( / )

m M N M m M N M

m M N m M N

1 1 1 2 2 2

1 1 2 2

A A

A A

+
+

  =
m m

m M m M

1 2

1 1 2 2

+
+( / ) ( / )

Since m1 = m2, we have

M n =
1 1

1 11 2

+
+( / ) ( / )M M

 = 
2 1 2

2 1

M M

M M+

   = 
2 10 000 20 000

20 000 10 000

1

1

( )( )

( )

g mol g mol

g mol

1- -

-+

   = 13 333.3 g mol–1

M m =
m M m M

m m

1 1 2 2

1 2

+
+

Since m1 = m2, we get

M m =
M M1 2

2

+
 = 

( )10 000 20 000

2

1+ -g mol

  = 15 000 g mol–1

Show that for a equimolar mixture of two substances

M1 = M M M Mn n m n+ -( )2 1 2/

M2 = M M M Mn n m n- -( )2 1 2/

We have

M n =
N M N M

N N

1 1 2 2

1 2

+
+

  = 
M M1 2

2

+
 ; (since N1 = N2)

M m =
N M N M

N M N M

1 1
2

2 2
2

1 1 2 2

+
+

=
M M

M M

1
2

2
2

1 2

+
+

 ;     (since N1 = N2)

From these two expressions, we get

M1 + M2 = 2 M n (1)

M1
2 + M2

2  = M m (M1 + M2) = 2 M Mn m

Since (M1 + M2)2 = M1
2  + M2

2  + 2M1M2, we have

2M1M2  = (M1 + M2)2 – ( M1
2  + M2

2 )

    = 4 M n

2
 – 2 M Mn m

Also (M1 – M2)2 = (M1 + M2)2 – 4M1M2

      = 4 M n

2

 – 8 M n

2

 + 4 M Mn m

     = 4 M Mn m  – 4 M n

2

Problem 5.2.1

Solution
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This gives

M1 – M2 = 2 M M Mn m n-( )2 1 2/

(2)

Solving M1 and M2 from Eqs (1) and (2), we get

M1 = M n  + M M Mn m n-( )2 1 2/

M2 = M n  – M M Mn m n-( )2 1 2/

The Mark-Houwink exponent for poly(methylmethacrylate) has the value of 0.69 in acetone. 

Calculate the value of M v  that would be obtained with the following molar mass distribution 

if the sample was studied by the viscosity measurement.

n1 ¥ 103/mol 1.2 2.7 4.9 3.1 0.9

M1 ¥ 10–5/g mol–1 2.0 4.0 6.0 8.0 20.0

Since

M v  = 
N M

N M

i i
a

i

i ii

a1 1+Â
Â

Ê

Ë
ÁÁ

ˆ

¯
˜̃

/

=
n M

n M

i i
a

i

i ii

a1 1+Â
Â

Ê

Ë
ÁÁ

ˆ

¯
˜̃

/

we have

n Mi i
a

i

1+Â = [(1.2 ¥ 10–3) (2.0 ¥ 105)1.69 + (2.7 ¥ 10–3) (4.0 ¥ 105)1.69

    + (4.9 ¥ 10–3) (6.0 ¥ 105)1.69 + (3.1 ¥ 10–3) (8.0 ¥ 105)1.69

        + (0.9 ¥ 10–3) (20.0 ¥ 105)1.69] g1.69 mol–0.69

    = [1.091 2 ¥ 106 + 7.922 2 ¥ 106 + 2.852 8 ¥ 107 + 2.934 8 ¥ 107

      + 4.008 5 ¥ 107] g1.69 mol–0.69

    = 1.069 7 ¥ 108 g1.69 mol–0.69

 n Mi iiÂ  = [(1.2 ¥ 10–3) (2.0 ¥ 105) + (2.7 ¥ 10–3) (4.0 ¥ 105)

    + (4.9 ¥ 10–3) (6.0 ¥ 105) + (3.1 ¥ 10–3) (8.0 ¥ 105)

     + (0.9 ¥ 10–3) (20.0 ¥ 105)] g

  = [2.400 0 ¥ 102 + 1.080 0 ¥ 103 + 2.940 0 ¥ 103 + 2.480 0 ¥ 103

     + 1.800 0 ¥ 103] g

  = 8.540 0 ¥ 103g

M v =
1 069 7 10

8 5400 10

8 1 69 0 69

3

1 0 69
.

.

. . / .
¥

¥
Ê
ËÁ

ˆ
¯̃

-g mol

g
= (1.252 5 ¥ 104)1.4493 g mol–1

   = 8.68 ¥ 105 g mol–1

Consider the polymerization of molecules, each containing two active groups A 

and B (e.g. HO—(CH2)n—COOH) such that the end group A of a monomer gets 

attached to the end group B of another monomer in succession to form a polymer 

chain, represented as Ababab ... abaB. In this notations, the units a and b represent,

respectively, the groups A and B which have undergone reactions to form ab 

Example 5.2.3

Solution

5.3 DISTRIBUTION OF MOLECULAR SIZES IN STEP-GROWTH POLYMERIZATION
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linkages. For a chain containing k monomer molecules (known as kmer), there are 

k – 1 number of units of a and one A group.

Let N0 be the initial number of active groups A (which is also equal to the initial 

number of monomer molecules). At any extent of reaction, let N be the number of 

active groups A.  It follows that 

   Number of A groups undergone reactions = N0 – N

The fraction of groups A undergone reactions (known as extent of polymerization)

is

p = 
N N

N

0

0

-
 = 1 – 

N

N0

(5.3.1)

The fraction of groups A which remain unreacted is

1 – p = 
N

N0

(5.3.2)

The probability of each of the group A reacted to give a linkage ab in a polymer 

chain is taken to be equal to the fraction of groups A reacted, i.e.  p. The probability 

of groups A remain unreacted will be equal to 1– p.

Since in a kmer, there are k – 1 numbers of groups A reacted (to give k – 1 

number of ab linkages) and one group A unreacted, the probability of forming 

kmer is given by

Pk = pk – 1 (1 – p) (5.3.3)

Since the sum of probabilities (Pks) and the number fractions (fks) of all possible 

kmer in solution are individually equal to one, i.e.

PkkÂ = 1 and fkkÂ = 1 (5.3.4)

we identify Pk equal to fk. If Nk is the number of species that are k units long and 

N is the total number of species in the solution, then

Pk = fk = 
N

N

k (5.3.5)

Equating Eqs (5.3.3) and (5.3.5), we get

Nk = N pk – 1 (1 – p) (5.3.6)

The average value of k, known as , is 

given by

kav = k Pk
k

N

=
Â

1

0

(5.3.7)

where N0 is the initial number of monomers. In Eq. (5.3.7), N0 may be replaced 

Pk drops off rapidly with increasing value of k. Hence, 

we write Eq. (5.3.7) as

kav = k Pk
k =

•

Â
1

(5.3.8)

Probability of 

Forming kmer

Identification of 

Probability with 

Number Fraction

Average Value of k
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† We know that pk

k =

•

Â
0

= 1 + p + p2 + � = 
1

1- p

Differentiating both sides with respect to p, we get 

k
k =

•

Â
1

pk – 1 =
1

1 2( )- p

Making use of Eq. (5.3.5), the above expression becomes

kav = k
N

N

k

k

Ê
ËÁ

ˆ
¯̃=

•

Â
1

 = 
1

N
kNkkÂ (5.3.9)

In terms of fraction p of molecules reacted (Eq. 5.3.3), the expression of kav is

kav= k pk

k

-

=

•

Â 1

1
(1 – p) (5.3.10)

  = (1 – p) k pk

k

-

=

•

Â
Ê

ËÁ
ˆ

¯̃
1

1

 = (1 – p)
1

1 2( )-

È

Î
Í

˘

˚
˙

p
(5.3.11)†

=
1

1- p
(5.3.12)

Since kmer contains k monomer molecules, the total number of monomer molecules 

to start with is given by

N0  = 
k =

•

Â
1

k Nk (5.3.13)

Using Eq. (5.3.5), this becomes

N0  = 
k =

•

Â
1

k(N Pk) = N
k =

•

Â
1

kPk (5.3.14)

which in view of Eq. (5.3.8) becomes

N0 = Nkav (5.3.15)

Substituting kav from Eq. (5.3.12), we get

N0 =
N

p1-
(5.3.16)

The number of kmer in terms of number N of species in the solution as given by 

Eq. (5.3.6) is

Nk = Npk – 1 (1 – p) (5.3.17)

The number N in terms of N0 is given by Eq. (5.3.16). Hence 

  Nk = N0 pk – 1 (1 – p)2 (5.3.18)

If M1 is the molar mass of repeating unit then the molar mass of kmer is given by

Mk = k M1 + Mexcess (5.3.19)

where Mexcess is the excess molar mass due to the presence of end groups.

Total Number

of Monomer 

Molecules

Number of kmer

in Terms of 

Initial Number

of Monomer 

Molecules

Number Average

Molar Mass
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The number average molar mass of the polymer is given by

Mn = 
N M

N

k kk

kk

Â
Â

Substituting Mk from Eq. (5.3.19), we get

M n = 
N kM M

N

kk

kk

( )1 +Â
Â

excess

    = 
M N k M N

N

k kkk

kk

1 + ÂÂ
Â

excess

Since NkkÂ = N and NkkÂ k = N kav, we get

M n = M1 kav + Mexcess (5.3.20)

Substituting kav from Eq. (5.3.12), we get

M n = 
M

p

1

1-
 + Mexcess (5.3.21)

Neglecting Mexcess in comparison to M1/(1 – p), we get

M n = 
M

p

1

1-
(5.3.22)

The total mass of the system is given by

mtotal = N
M

N
k

k

k A

Ê
ËÁ

ˆ
¯̃=

•

Â
1

 ;  (NA is Avogadro constant)

In terms of number average molar mass ( M n  = N M Nk kk
/ )Â , the above 

expression becomes

mtotal = 
1

N
N M

A

( )n

Replacing N in terms of N0 (Eq. 5.3.16), we get

mtotal = 
1

NA

 [N0 (1 – p)] M n (5.3.23)

(Alternatively, mtotal = N0 (M1/NA), which in view of Eq. (5.3.22) becomes              

mtotal = N0 (1 – p) M n/NA.)

wk = 
Mass of mer

Total mass of the system

k

=
N M N

N M N

k k

k kk

( / )

( / )

A

AÂ

Total Mass of the 

System

Mass Fraction of 

kmer
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Using Eq. (5.3.18) for Nk, Eq. (5.3.19) for Mk and Eq. (5.3.23) for mtotal, we get

wk = 
[ ( ) ][( )/ )

( ) /

N p p kM M N

N p M N

k
0

1 2
1

0

1

1

- - +
-

excess A

An

=
p p k M M

M

k- - +1
11( )( )excess

n

(5.3.24)

Substituting M n  from Eq. (5.3.21), we get

wk = 
p p k M M

M p M

k - - +
- +

1
1

1

1

1

( )( )

/( )

excess

excess

(5.3.25)

Neglecting Mexcess, we get

wk = k pk – 1 (1 – p)2 (5.3.26)

Figure 5.3.1 displays the plot of wk versus k for the three larger values of p.

The main characteristics of Fig. 5.3.1 are as follows.

 ∑ The contributions from smaller and larger values of k are smaller than those of 

the intermediate values of k.

 ∑ The maximum in the plots is shifted to larger value of k with increasing value of

p.

0 50 100 150 200

0

0.5

1.0

1.5

2.0

p = 0.95

p = 0.97

p = 0.99

k

w
k

1
0

¥
2

Graphical display 

of wk versus k

Fig. 5.3.1 Plot of wk

versus k
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  The value of k corresponding to wmax can be obtained by setting dw/dk equal 

to zero. Taking natural logarithm of Eq. (5.3.26), we get

ln wk = ln k + (k – 1) ln p + 2 ln (1 – p)

  Differentiating this with respect to k keeping p constant, we get

1

w

w

kk

k

p

∂
∂

Ê
ËÁ

ˆ
¯̃  = 

1

k
 + ln p

This gives

∂
∂

Ê
ËÁ

ˆ
¯̃

w

k

k

p

 = wk
1

k
p+Ê

Ë
ˆ
¯ln  = [k pk–1 (1 – p)2]

1

k
p+È

ÎÍ
˘
˚̇

ln

Setting ∂wk/∂k equal to zero, we get

kmax = – 
1

ln p
(5.3.27)

Hence for p = 0.95, 0.97 and 0.99, the values of kmax are 19.5, 32.8 and 99.5, 

respectively.

 ∑ The distribution becomes more broad with increasing value of p.

Mm = w Mk kkÂ

Using Eq. (5.3.26) for wk and Eq. (5.3.19) for Mk, we get

Mm = 
kÂ [kpk – 1 (1 – p)2] [kM1 + Mexcess] (5.3.28)

Ignoring Mexcess, we get

Mm = k pk
k

2 1-Â( )  (1 – p)2 M1 (5.3.29)†

     = 
1

1 3

+
-

È

Î
Í

˘

˚
˙

p

p( )
 (1 – p)2 M1 = 

1

1

+
-

p

p
M1 (5.3.30)

Mass Average

Molar Mass

†  We have k pk
k

-Â 1
 = 1/(1 – p)2. Multiplying by p, we get

      k pk
kÂ  = 

p

p( )1 2-
Differentiating both sides with respect to p, we get

k pk
k

2 1-Â  = 
1

1 2( )- p
 + 

2

1 3

p

p( )-
 = 

1

1 3

+
-

p

p( )
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From Eqs (5.3.22) and (5.3.30), we get

M

M

m

n

 = 
[( )/( )]

/( )

1 1

1

1

1

+ -
-

p p M

M p
 = 1 + p (5.3.31)

For p  1, the value of M m is twice that of M n.

A hydroxyacid HO—(CH2)5 — COOH is polymerized and it is found that the product 

has a number average molar mass of 20 000 g mol–1. (a) What is the extent of reaction 

p? (b) What is the degree of polymerization? (c) What is the mass average molar

mass?

(a) From the expression M n = M1/(1 – p), we get

p = 1 – M1/ M n = 1 – 132/20 000 = 1 – 0.006 6

  = 0.993 4

(b) kav = 1/(1 – p) = 1/(1 – 0.993 4) = 151.5

(c) M m = M n (1 + p)

  = (20 000 g mol–1) (1 + 0.993 4)

  = 39 868 g mol–1

macromolecule with negligible excluded volume of its repeat units (so that more 

than one repeat unit can be placed on the same site), the method adopted is known 

as .

Let a chain involve n repeat linkages. It is built with the random placement of the 

successive repeat linkage in the increasing and decreasing directions of the chain. 

Let their respective numbers be n1 and n2, such that

n = n1 + n2 (5.4.1)

The probability of occurrence of such a chain as given by Binomial distribution 

is given by

P = 
n

n n

!

! !1 2

Ê
ËÁ

ˆ
¯̃

1

2

1

2

1 2Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

n n

(5.4.2)

n1 and n2

out of the total of n repeat units and the factor 1/2 in the second and third terms is 

due to the fact that the placement of the successive repeat linkage in the increasing 

and decreasing directions of the chain is equally likely.

If l is the length of the repeat linkage, the displacement of the chain from the 

starting point (taken to be origin) is given by

Comparison

between Mm  and 

Mn

Example 5.3.1

Solution

5.4 END-TO-END DISTANCE IN A MACROMOLECULAR CHAIN

Description of

One-Dimensional

Random Walk
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x = (n1 – n2) l (5.4.3)

From Eqs (5.4.1) and (5.4.3), we get

n1 = 
n x l+ /

2
and n2 = 

n x l- /

2

Substituting these in Eq. (5.4.2), we get

P = 
n

n x l n x l

!

{( / )/ }!{( / )/ }!+ -2 2

1

2

Ê
ËÁ

ˆ
¯̃

n

(5.4.4)

Equation (5.4.4) is known as Bernoulli’s equation.

For a polymer chain, n

by invoking Stirling approximation.

ln y! = y ln y – y (5.4.5)

Taking logarithm of Eq. (5.4.4) and using Stirling approximation, we get

ln P = (n ln n – n)–
n x

nl

n x

nl

n x

nl2
1

2
1

2
1+Ê

Ë
ˆ
¯ +Ê

Ë
ˆ
¯{ } - +Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇

ln

                      – 
n x

nl

n x

nl

n x

nl2
1

2
1

2
1-Ê

Ë
ˆ
¯ -Ê

Ë
ˆ
¯{ } - -Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇

ln  – n ln 2

= – 
n

2
1 +Ê

Ë
ˆ
¯

x

nl
 ln 1 +Ê

Ë
ˆ
¯

x

nl
 – 

n

2
1 -Ê

Ë
ˆ
¯

x

nl
 ln 1 -Ê

Ë
ˆ
¯

x

nl
(5.4.6)

Since x nl, we can approximate logarithm terms as

ln 1±Ê
ËÁ

ˆ
¯̃

x

nl
 ± 

x

nl
 – 

1

2

x

nl

Ê
ËÁ

ˆ
¯̃

2

With this, Eq. (5.4.6) is reduced to

ln P = – 
n x

nl2
1 +Ê

Ë
ˆ
¯

x

nl

x

nl
- Ê

Ë
ˆ
¯

Ï
Ì
ÓÔ

¸
˝
Ǫ̂

1

2

2

 – 
n x

nl

x

nl

x

nl2
1

1

2

2

-Ê
Ë

ˆ
¯ - - Ê

Ë
ˆ
¯

Ï
Ì
ÓÔ

¸
˝
Ǫ̂

ln P = – 
x

nl

n x

nl

2

2

3

2 2
- Ê

ËÁ
ˆ
¯̃ (5.4.7)

            ln P = – 
x

nl

2

22
 + constant (5.4.8)

The expression of probability function may be written as

  P = k exp(– x2/2nl2) (5.4.9)

where k is a constant known as a normalization factor. Since x can have any value, 

the normalization factor is obtained from the expression

k

-•

+•

Ú exp(– x2/2nl2) dx = 1
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This gives

k (2pnl2)1/2 = 1 i.e. k = 1/(2pnl2)1/2

Hence, the probability function of locating the growing end of the chain at the 

distance x from the origin (i.e. the starting point) is given by

P = 
1

2 2 1 2( ) /pnl
 exp -

Ê
ËÁ

ˆ
¯̃

x

nl

2

22
(5.4.10)

The probability that the growing end lies in between x and x + dx is

P dx = 
1

2 2 1 2( ) /pnl
 exp -

Ê
ËÁ

ˆ
¯̃

x

nl

2

22
 dx (5.4.11)

by

x2  = 

-•

+•

Ú P x2 dx = 
1

2 2 1 2( ) /pnl
-•

+•

Ú x2 exp(– x2/2nl2) dx

=
1

2 2 1 2( ) /pnl

1

2 1 2 1 22 2

1 2

( / ) /

/

nl nl

pÊ
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

= nl2 (5.4.12)

Since x, y, z-directions in a three-dimensional space are equally probable, a three-

n repeat linkages with zero 

excluded volume may be considered to contain n/3 repeat linkages growing in each 

of the three directions. If the chain is considered to start from the origin (0, 0, 0), 

dxdydz situated at the point (x, y, z) will be equal to the product of probabilities of 

(i) the growing end of the n/3 repeat linkages in the x-direction has the coordinates 

between x and x + dx,

(ii) the growing end of the n/3 repeat linkages in the y-direction has the coordinates 

between y and y + dy, and

(iii) the growing end of the n/3 repeat linkages in the z-direction has the coordinates 

between z and z + dz.

Since Eq. (5.4.8) is applicable to each of the three directions, we have

P(x, y, z, n) dxdydz = {P(x, n/3) dx} {P(y, n/3) dy} {P(z, n/3) dz}

 = 
1

2 3 2 32 1 2

2

2{ ( / ) }
exp

( / )/p n l

x

n l
x-

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙d

1

2 3 2 1 2{ ( / ) } /p n l

È

Î
Í

   ¥ exp -
Ê
ËÁ

ˆ
¯̃

˘

˚
˙ -

Ê
ËÁ

ˆ
¯̃

y

n l
y

n l

z

n l

2

2 2 1 2

2

22 3

1

2 3 2 3( / ) { ( / ) }
exp

( / )/
d d

p
zz

È

Î
Í

˘

˚
˙

Computation of 

Mean Square End-

to-End Distance

Extension to 

Three-Dimensional

Chains
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i.e. P dxdydz = 
3

2 2

3 2

pnl

Ê
ËÁ

ˆ
¯̃

/

exp
( )

-
+ +Ê

ËÁ
ˆ
¯̃

3

2

2 2 2

2

x y z

nl
 dxdydz

In spherical polar coordinates, we have

P dt = 
3

2 2

3 2

pnl

Ê
ËÁ

ˆ
¯̃

/

 exp -
Ê
ËÁ

ˆ
¯̃

3

2

2

2

r

nl
r2 dr sin q dq dj

Since the growing end can lie anywhere all around the origin, we will have

P dr = 
3

2 2

3 2

pnl

Ê
ËÁ

ˆ
¯̃

/

 exp -
Ê
ËÁ

ˆ
¯̃

3

2

2

2

r

nl
r2 dr sinq q jd d

0

2

0

pp

ÚÚ

      = 
3

2 2

3 2

pnl

Ê
ËÁ

ˆ
¯̃

/

 4pr2 exp -
Ê
ËÁ

ˆ
¯̃

3

2

2

2

r

nl
 dr (5.4.13)

The probability function for the end-to-end distance r is the product of two 

r–dependent terms, namely, r2 and exp(– 3r2/2nl2). For the lower values of r, the 

term r2 predominates over the exponential term while for the larger value of r,

the reverse is true. Consequently, the probability function initially increases and 

after passing through maximum, it starts decreasing with increasing value of r.

The mean square end-to-end distance is given by

r2
 = 

0

•

Ú r2 (P dr) = 4p
3

2 2

3 2

pnl

Ê
ËÁ

ˆ
¯̃

/

0

•

Ú r4 exp -
Ê
ËÁ

ˆ
¯̃

3

2

2

2

r

nl
 dr

= 4p
3

2 2

3 2

nl

Ê
ËÁ

ˆ
¯̃

/
n l nl2 4 2 1 2

6

2

3

pÊ
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

/

= nl2 (5.4.14)

The expression of end-to-end distance for a polymethylene chain with free rotation 

about the C—C bond is given by

r2  = Nl2
1

1

+
-

Ê
ËÁ

ˆ
¯̃

cos

cos

q

q
(5.4.15)†

where l is the length of C—C bond, N is the number of linkages and q is the 

angle between the positive directions of successive bonds. It has a value of

180° – 109°28° = 70°32¢.
Substituting cos 70°32¢ = 0.333 in Eq. (5.4.15), we get

r2  = 2 Nl2 (5.4.16)

which is twice that for an unrestricted polymer chain.

Average End-to-End Distance for Polymethylene Chain with Free Rotation about the Bond

† See Annexure I at the end of the chapter for the derivation of Eq. (5.4.15).
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If the rotation about C—C bond is also restricted within the angle j, then                    

Eq. (5.4.15) takes the form of

r2  = N l2
1

1

+
-

Ê
ËÁ

ˆ
¯̃

cos

cos

q

q

1

1

+
-

Ê
ËÁ

ˆ
¯̃

cos

cos

j

j
(5.4.17)

where cosj  is the average value of cos j.

Calculate the most probable end-to-end distance of a polymer chain C20H42, given that the 

C—C bond length is 154 pm and the bond angle is 109°28¢. What would be the distance 

In C20H42 molecule, there will be 19 repeat linkages. Hence

r2 = N l2
1

1

+
-

cos

cos

q

q

  = (19) (154 pm)2 1 180 109 28

1 180 109 28

+ ∞- ∞ ¢
- ∞- ∞ ¢

È

ÎÍ
˘

˚̇

cos ( )

cos ( )

  = (19) (154 pm)2 1 0 333

1 0 333

+
-

Ê
ËÁ

ˆ
¯̃

.

.

  = (19) (154 pm)2 (2) = 901208 pm2

Hence,  r2 = 949.3 pm

For a completely 

r2 = N l2 = 19 (154 pm)2 = 450604 pm2

Hence,  r2 = 671.3 pm 

Osmotic pressure is one of the four colligative properties which is used to determine 

the number average molar mass of a sample of polymer. The other three properties 

(namely, the relative lowering of vapour pressure, elevation of the boiling point and 

depression of the freezing point of a solvent) are not as sensitive as the osmotic 

pressure and hence are not used for this purpose.

The thermodynamic derivation of osmotic pressure of a solution results into 

the expression

P V1,
*
m = – RT ln a1 (5.5.1)

where V1,
*
m  is the molar volume of the solvent and a1 is its activity in the solution.

1. The activity a1 of the solvent is equal to its amount fraction, i.e. a1 x1, such 

that
ln a1  ln x1 (5.5.2)†

Example 5.4.1

Solution

5.5 OSMOTIC PRESSURE FOR THE MEASUREMENT OF MOLAR MASS

Expression of 

Osmotic Pressure

for a Dilute Solution

† Throughout, the solvent is represented by the subscript 1 and solute by the subscript 2.
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2. Since in a solution x1 + x2 = 1, we can write

ln x1 = ln (1 – x2)

      = – x
x x

2
2
2

2
3

2 3
+ + +

Ê

ËÁ
ˆ

¯̃
� (5.5.3)

ln x1  – x2 (5.5.4)

3. Since the solution is dilute, we will have n2 n1. Hence, we write

x2 = 
n

n n

2

1 2+
n

n

2

1

(5.5.5)

4. For the dilute solution, we also have

V = n1V1, pm + n2V2, pm n1V1, pm n1V1,
*
m

(5.5.6)

where the subscript pm stands for partial molar and V1,
*
m  is the molar volume of 

pure solvent.

P
V

n1

Ê
ËÁ

ˆ
¯̃

 = – RT -
Ê
ËÁ

ˆ
¯̃

n

n

2

1

i.e. P =
n

V

2Ê
ËÁ

ˆ
¯̃ RT = c2 RT (5.5.7)

A polymer solution does not behave as an ideal solution, probably due to the large 

difference in molecular volumes between polymeric solute and low molecular-mass 

term, and thus Eq. (5.5.1) is expressed as

P V1,
*
m  = RT x B x C x2 2

2
2
31

2

1

3
+ ¢ + ¢ +Ê

ËÁ
ˆ
¯̃� (5.5.8)

where B ¢ and C¢

If the solution concentration is expressed as mass of solute per unit volume of 

solution, we will have

x2

n

n

2

1

(Eq. 5.5.5)

which on using the expressions n2 = m2/M2 and n1 = V V/ ,
*

1 m (Eq. 5.5.6), becomes

x2 = 
m M

V V

2 2

1

/

/ ,
*
m

 = 
( / ) ,

*m V V

M

2 1

2

m
 = 

c V

M

2 1

2

,
*
m

(5.5.9)

Substituting Eq. (5.5.9) in Eq. (5.5.8), we get

P V1,
*
m  = RT

c V

M
B

c V

M

2 1

2

2 1

2

2

1

2

,
*

,
*

m m+ ¢
Ê

Ë
Á

ˆ

¯
˜ +

È

Î

Í
Í

˘

˚

˙
˙
�

Expression of 

Osmotic Pressure

for a Polymer

Solution
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or   
P

c RT2

 = 
1 1

22

1

2
2M

B V

M
+

¢Ê

Ë
Á

ˆ

¯
˜

,
*
m

c2 + �

   = 
1

2M
 + B c2 + � (5.5.10)

P

c RT2

 = 
1

2M
 + Bc2 (5.5.11)

Equation (5.5.11) predicts that for a dilute nonideal solution, the graph between 

P/c2RT and c2 B and 

intercept equal to the inverse of molar mass M2 of the solute.

Alternatively, one can plot P /c2 (known as reduced osmotic pressure) versus 

c2. The slope and intercept of this plot is BRT and RT/M2, respectively.

For a polydisperse solute such as polymer, we will have

x2 ª
n

n

ii 2

1

,Â
 = 

n

V V

ii 2

1

,

,
*/

Â

m

(5.5.12)

The mass of polymer per unit volume of the solution is given by

c2 = c ii 2,Â  = 
m

V

ii 2,Â
 = 

n M

V

i ii 2 2, ,Â
∫

n M

n

n

V

i ii

ii

ii2 2

2

2, ,

,

,Â
Â

ÂÊ

Ë
Á

ˆ

¯
˜

Ê

ËÁ
ˆ

¯̃

 = Mn

n

V

ii 2,ÂÊ

ËÁ
ˆ

¯̃

or    n ii 2,Â  = 
c V

M

2

n

(5.5.13)

Substituting Eq. (5.5.13) in Eq. (5.5.12), we get

x2 = 
c

M

2

n

V1 m,
* (5.5.14)

Substituting Eq. (5.5.14) in Eq. (5.5.8), we get

      P V *
,1 m = RT

c V

M
B

c V

M

2 2

2

1

2

1,m 1,m
* *

n n

+ ¢
Ê

Ë
Á

ˆ

¯
˜ +

È

Î

Í
Í

˘

˚

˙
˙
�

i.e.      
P

c RT2

 = 
1

M n

 + 
1

2

B V

M

¢Ê

Ë
Á

ˆ

¯
˜

1 m,
*

n
2 c2 + �

     = 
1

M n

 + B c2 + � (5.5.15)

P

c RT2

 = 
1

M n

 + Bc2 (5.5.16)

Nature of Molar 

Mass
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Hence, the graph between P /c2RT and c2 provides the number average molar 

mass of the polysystem from the intercept which is equal to 1/ Mn. The slope of 

u) of the solute 

through the expression

B = 
1

2

N u

M

A

2
2

(5.5.17)

The following data were obtained for the osmotic pressure of nitrocellulose in acetone at 20 °C.

c/g L–1 1.16 3.66 8.38 19.0

P /cmH2O 0.69 2.56 7.52 25.4

Calculate the limiting value of P/c and M n. Also calculate the value of second virial 

From the given data, we have

103 c/g cm–3 1.16 3.66 8.38 19.0

P ¢ (= P rH2Og)/dyn cm–2 676.6 2 510      7 374 24 907

10–3 (P ¢/c)/erg g–1 583 686 879 1311

The plot of P ¢/c versus c is shown in Fig. 5.5.1. Its slope = 40.54 and intercept = 520. 

Thus, we have 

D
D

( / )/

( )/

10

10

3 1

3 3

- -

-
¢P c

c

erg g

g cm
 = 40.54 fi

D
D

( / )P ¢ c

c
= 40.56 ¥ 106 erg cm3 g–2

Intercept = 520 ¥ 103 erg g–1

Hence, Mn = 
RT

Intercept
 = 

( . ) ( )8 314 10 293

520 10

7 1 1

3 1

¥
¥

- -

-
erg K mol K

erg g

   = 46 846 g mol–1  47 000 g mol–1

B = slope = 40.54 ¥ 106 erg cm3 g–2

Example 5.5.1

Solution

Fig. 5.5.1
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S

A Fs
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F
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s ∫ 3 2 s s

Definition of 

Viscosity

5.6 VISCOSITY FOR THE MEASUREMENT OF MOLAR MASS

Fig. 5.6.1 Shear force 

Fs

Unit of Viscosity
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Viscosity in 

Terms of Energy

Dissipation

Viscosity of a 

Dilute Solution

Involving

Spherical Solute
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h
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Viscosity of a 

Polymer Solution
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Relative Viscosity

h
h

h0
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h viscosity ratio.
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Inherent Viscosity
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Example 5.6.1

Solution

Fig. 5.6.2
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5.7 ULTRACENTRIFUGE SEDIMENTATION FOR THE MEASUREMENT OF MOLAR MASS

Stationary-State

Velocity of a 

Macromolecule
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5.8 SEDIMENTATION EQUILIBRIUM FOR THE MEASUREMENT OF MOLAR MASS
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Solution

5.9 LIGHT SCATTERING FOR THE MEASUREMENT OF MOLAR MASS

Definition of 

Turbidity

Fig. 5.9.1 Scattering of 

light by a sample
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G( / )∂ ∂2 2
0r

Turbidity of a 

Liquid System
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Substituting Eq. (6.1.17) in Eq. (6.1.16), we get

di S = 
1

1T T
i i

i

n

( )-
Ê

Ë
Á

ˆ

¯
˜ =

=
Â m x xn d d

A
(6.1.18)

where A

is given by

d

d

i S

t
 = 

A

T t

d

d

x
(6.1.19)

The criteria dUS, V < 0, dHS, p < 0, d AA, V < 0 and dGT, p < 0 for the spontaneous 

processes can be conveniently derived in terms of di S as shown in the following.

dU = dq + dw

  = T de S – p dV = T (dS – di S) – p dV

  = T dS – T diS – p dV

Hence dUS, V = –T di S

Since di S > 0 for the irreversible processes, it follows that

dUS, V < 0

Since H = U + pV, we have

dH = dU + p dV + V dp

  = (T dS – T di S – p dV) + p dV + V dp

  = T dS – T di S + V dp

Hence dHS, p = –T di S < 0  (as di S > 0)

Since A = U – TS, we have

dA = dU – T dS – S dT

  = (T dS – T di S – p dV) – T d S – S dT

  = – T di S – p dV – S dT

Hence dAT, V = –T di S < 0  (as di S > 0)

Since G = H – TS, we have

dG = dH – T dS – S dT

  = (T dS – T di S + V dp) – T dS – S dT

  = – T di S + V dp – S dT

Hence dGT, p = –T di S < 0  (as di S > 0)

three variables, namely, T, p and x 
of the system may be written as

H = f (T, p, x)

Various Criteria of Irreversible Processes

Criterion of 

dUS, V < 0

Criterion of 

dHS, P < 0

Criterion of 

dAT, V < 0

Criterion of 

dGT, P < 0

6.2 THERMODYNAMIC PROOF OF D i S ASSOCIATED WITH A CHEMICAL REACTION
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Hence dH = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

H

T
T

H

p
p

H

p T T p, , ,x x x
xd d d (6.2.1)

Since  H = U + pV, we will have

dH = dU + p dV + V dp

  = (dq + dw) + p dV + V dp (First law of thermodynamics)

  = (dq – p dV) + p dV + V dp

  = dq + V dp (6.2.2)

Comparing Eqs (6.2.1) and (6.2.2), we get

dq = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í
Í

˘

˚
˙
˙

+
∂
∂

Ê
ËÁ

ˆ
¯̃

H

T
T

H

p
V p

H

p T T p, , ,x x x
xd d d

Dividing throughout by T, we get

dq

T
 = 

1 1 1

T

H

T
T

T

H

p
V p

T

H

p T T

∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í
Í

˘

˚
˙
˙

+
∂
∂

Ê
ËÁ

ˆ
¯̃, , ,x x x

d d
pp

dx (6.2.3)

Let us assume that dq/T (= d S
Euler's reciprocity relations must hold good.

∂
∂

∂
∂

Ê
Ë

ˆ
¯

È

Î
Í

˘

˚
˙ =

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

-
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Îp T

H

T T T

H

p
V

p T T

1 1

, , ,x x x

ÍÍ
Í

˘

˚
˙
˙

p, x

(6.2.4)

∂
∂

∂
∂

Ê
Ë

ˆ
¯

È

Î
Í

˘

˚
˙ =

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙x xx x

1 1

T

H

T T T

H

p T p T p p
, , , ,

(6.2.5)

and
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

-
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í
Í

˘

˚
˙
˙

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃x xx

1 1

T

H

p
V

p T

H

T T p T, , ,, ,p T

È

Î
Í
Í

˘

˚
˙
˙ x

(6.2.6)

Carrying out the differentiation in Eq. (6.2.4), we get

1 1 12

2

2

T

H

p T T

H

p
V

T

H

T p

V

TT

∂
∂ ∂

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

-
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
+

∂
∂ ∂

-
∂
∂

Ê
ËÁ

ˆ

, x
¯̃̄

È

Î
Í

˘

˚
˙

p, x

Since ∂2H/∂T ∂p = ∂2H/∂p ∂T, we get

1 1
2T

H

p
V

T

V

TT p

∂
∂

Ê
ËÁ

ˆ
¯̃

-
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
= -

∂
∂

Ê
Ë

ˆ
¯

, ,x x

or
∂
∂

Ê
ËÁ

ˆ
¯̃

- = -
∂
∂

Ê
Ë

ˆ
¯

H

p
V T

V

TT p, ,x x

(6.2.7)

Result of Eq. (6.2.4)
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know holds good for all substances.

Carrying out the differentiation in Eq. (6.2.5), we get

1 1 12

2

2

T

H

T T

H

T

H

TT p

∂
∂ ∂

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂

∂ ∂x x x,

Since ∂2H/∂x ∂T = ∂2H/∂T ∂x, we get

D r H = 
∂
∂

Ê
ËÁ

ˆ
¯̃

H

T px ,

 = 0 (6.2.8)

that is, the enthalpy of reaction must be equal to zero.

Carrying out the differentiation in Eq. (6.2.6), we get

1 12 2

T

H

p

V

T

H

pT p

∂
∂ ∂

-
∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

=
∂
∂ ∂x x x,

Since ∂2H/∂x ∂p = ∂2H/∂p ∂x, we get

D r V = 
∂
∂

Ê
ËÁ

ˆ
¯̃

V

T px ,

 = 0 (6.2.9)

that is, the change in volume involved in a chemical reaction must be equal to zero.

I

This is due to the fact that the term dq/T in Eq. (6.2.3), which is assumed to be 

There is a need of introducting the term di S

of dq/T (= dS). Thus, we must have

dS = 
dq

T
 + di S (6.2.10)

dS = 
1 1 1
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T
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p
V p
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¯ +
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˘

˚
˙
˙

+
∂
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Ê
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¯̃, , ,x x x

d d
pp

i Sd dx +

which in view of Eq. (6.2.7) and the fact that (∂H/∂T)p, x = Cp, x and (∂H/∂x )T, p

= D r H, we get

dS = 
C

T
T

V

T
p

H

T
S

p

p

,

,

x

x

x
Ê
ËÁ

ˆ
¯̃

-
∂
∂

Ê
Ë

ˆ
¯ + +d d d dr

i

D
(6.2.11)

∂S/∂T)p = Cp /T and (∂S/∂p)T = –(∂V/∂T)p remain 

unaffected and the application of Euler's reciprocity relations do not lead to 

Result of Eq. (6.2.5)

Result of Eq. (6.2.6)

Comment on Eqs 

(6.2.8) and (6.2.9)

Introducing Entropy 

Production in

Eq. (6.2.3)
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Eqs (6.2.8) and (6.2.9), it is required that the term di S should depend only 

on dx

di S = 
A

T
dx (6.2.12)

where A

A = – D r G = – Si vi mi (6.2.13)

where vi is the stoichimetric number (negative for reactants and positive for 

products) and mi is the chemical potential of ith species involved in the balanced 

chemical equation of the reaction.

Introducing Eq. (6.2.12) in Eq. (6.2.11), we get

dS = 
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T
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T
p
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Tp p
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ˆ
¯ -
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¯ +
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xd d drD A
(6.2.14)

For dS

following cross derivatives.
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(6.2.16)

The left side of Eq. (6.2.15) gives

∂
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∂
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ˆ
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The right side of Eq. (6.2.15) gives
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Since (∂mi/∂T )p, x  = – Si, we get
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Verification of dS as 

Exact Differential
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= –
D

D Dr
r r

H

T T
G T S
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T2 2
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D Dr rH
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∂
∂ ∂x

Since ∂2H/∂x ∂T = ∂2H/∂T ∂x , both sides of Eq. (6.2.15) are identical. Hence, 

The left side of Eq. (6.2.16) gives
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(Eq. 6.2.7)
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The right side of Eq. (6.2.16) gives
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Since (∂mi / ∂p)T, x = Vi , we get
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Since ∂2H/∂x ∂p = ∂2H/∂p ∂x, both sides of Eq. (6.2.16) are identical. Hence,

For an irreversible process, the second law of thermodynamics gives

dS = deS + di S = 
dq

T
 + di S (6.3.1)

6.3 ALTERNATIVE EXPRESSIONS OF AFFINITY OF A CHEMICAL REACTION
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dq = dU – dw  = dU + p dV

Hence dS = 
d dU p V

T

+
 + di S  (6.3.2)

For a chemical reaction

di S = 
A

T
 dx

Hence dS = 
d dU p V

T

+
 + 

A

T
 dx

or dU = T dS – p dV – A dx  (6.3.3)

From this, it follows that

A = -
∂
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Ê
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ˆ
¯̃

U

S Vx ,

(6.3.4)

Since H = U + pV, we get

dH = dU + p dV + V dp

Substituting dU

dH = (T dS – p dV – A dx) + p dV + V dp

  = T dS + V dp – A dx (6.3.5)

From Eq. (6.3.5), it follows that

A = -
∂
∂

Ê
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ˆ
¯̃

H

S px ,

(6.3.6)

We use the symbol F for the Helmholtz function in order to distinguish it from 
the symbel A

Since F = U – TS, we get

dF = dU – T dS – S dT
Substituting dU

dF = (T dS – p dV – A dx) – T dS – S dT

  = – S dT – p dV – A dx (6.3.7)

From Eq. (6.3.7), it follows that

A = -
∂
∂

Ê
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ˆ
¯̃

F

T Vx ,

(6.3.8)

Since G = H – TS, we have

dG = dH – T dS – S dT

Substituting dH from Eq. (6.3.5), we get

dG = (T dS + V dp – A dx ) – T dS – S dT

  = – S dT + V dp – A dx (6.3.9)

From Eq. (6.3.9), it follows that

A = -
∂
∂

Ê
ËÁ

ˆ
¯̃

G

T px ,

(6.3.10)

Expression Involving 

Internal Energy

Expression Involving 

Enthalpy

Expression Involving 

Helmholtz Function

Expression Involving 

Free Energy
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This, we have
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S V S p T V Tx x x x, , , , pp

(Note: The variables kept constant in each derivative are the corresponding natural 

independent variables.)

Starting from U = f (T, V, x) and H = f (T, p, x), prove that
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(i) Taking U = f (T, V, x), we write
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Also  dU = dq – p dV = T (dS – di S) – p dV

  = T dS – p dV – T di S = TdS – p dV – A dx

U, we get
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With this, Eq. (1) becomes
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∂
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1
A or A = T

∂
∂

Ê
ËÁ

ˆ
¯̃

-
∂
∂

Ê
ËÁ

ˆ
¯̃

S U

T V T Vx x, ,

(ii) Taking H = f (T, p, x), we write

dH = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

H

T
T

H

p
p

H

p T T p, , ,x x x
xd d d

Also dH = d (U + pV) = dU + p dV + V dp

 = (dq –  p dV) + p dV + V dp = dq + V dq

= T (dS –  di S) + V dp = T dS + V dp – T di S

= T dS +  V dS – A dx

H, we get

T dS + V dp – A dx = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

H

T
T

H

p
p

H

p T T p, , ,x x x
xd d d

or dS = 
1 1 1

T
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V p
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T T T p

∂
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Ê
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-Ï
Ì
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¸
˝
˛

+
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Ê
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ˆ
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+
È

, , ,x x x
d d A

ÎÎ
Í
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˘

˚
˙
˙

T p,

dx  (2)

∂
∂
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ˆ
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È
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˘

˚
˙ =

∂
∂
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˝
Ô
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H

T T T
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p T T

1 1

, , ,x x x
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Í

˘

˚
˙
˙

p, x

i.e.
1 1 12

2

2

T

H

p T T

H
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T

H
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V

TT

∂
∂ ∂
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∂

Ê
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ˆ
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Ì
Ó

¸
˝
˛

+
∂

∂ ∂
Ê
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ˆ
¯̃

-
∂
∂

Ê
Ë

, x

ˆ̂
¯

È
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Í

˘

˚
˙

p,x

Since ∂2H/∂p ∂T = ∂2H/∂T ∂p, we get

∂
∂

Ê
ËÁ

ˆ
¯̃

- = -
∂
∂

Ê
Ë

ˆ
¯

H

p
V T

V

TT p, ,x x

With this, Eq. (2) becomes

dS = 
1 1

T

H

p
T

V

T
p

T

H

T p T p

∂
∂

Ê
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ˆ
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-
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+
È

Î
Í
Í

˘

˚
˙
˙, , ,x x x

d d dA xx
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∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
È

Î
Í
Í

˘

˚
˙
˙

S

T

H

T p T px x, ,

1
A

or A = T
∂
∂

Ê
ËÁ

ˆ
¯̃

-
∂
∂

Ê
ËÁ

ˆ
¯̃

S H

T p T px x, ,

( A as shown in the 

following.)

A = – DrG = – 
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂ -

∂
È
ÎÍ

˘
˚̇

G H TS

T p T px x, ,

( )
 = –

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

H
T

S

T p T px x, ,

A system involving an irreversible process does not have uniform value 

of any of the intensive variable within the system. The total value of its 

thermodynamic function, such as U, H, S, A and G, cannot be defined in 

terms of its independent variables (e.g., U = f (S, V), H = f (S, p), A = f (T, V)

and G = f (T, p)). However, such a system can be treated thermodynamically 

by considering it to be in local equilibrium†  which involves the following 

characteristics. 

∑ The system is treated as a large number of elemental cells of small volume, 

cells.

∑ Though the volume of elemental cell is small, yet it is large enough to 

ignore the influence of fluctuations on the physical properties of the 

subsystem.‡

∑
from cell to cell. These are considered as the point functions which depend on 

position x and time t, i.e.

     T = f (x, t ); p = f (x, t); m = f (x, t);  (6.4.1)

∑

letters, we will have h = u + pv; g = h – Ts and so on.

†

‡

inverseley upon the square root of average number of particles.

6.4 THERMODYNAMIC TREATMENT OF IRREVERSIBLE PROCESSES

System at Local

Equilibrium
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U = TS – pV + Âi i in m (6.4.2)

which is applicable to a system and can be derived by using Euler's theorem for 

homogeneous function, will take the following form for an elemental cell of the 

system

u = Ts – pv + Âi i in m (6.4.3)†

∑

represented as uv, sv, ci,... such that

     uv = 
u

s
s

c
n

i
i

v v v
v; ; ,= =  

  In terms of local quantities, Eq. (6.4.3) becomes

      uv v = T(sv v) – pv + Âi (ci v) mi

Canelling v, we get

        uv = T sv – p + Âi ci mi (6.4.4)

∑
s, u and ni are 

the entropy, intrinsic energy and amount of ith component, respectively, in 

an elemental cell of volume v, then the change in intrinsic energy at constant 

T and p is given by

†Derivation of  Eq. (6.4.3) by using Euler's theorem For a homogeneous function

F (x, y, z, ...) of order n, Euler's theorem is 

     n F = x
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃ +

F F F

x
y

y
z

zy z x z x y, , ,

 

Hence, the property u (s, v, ni) is given by

  u = s
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃Âu

s

u
n

u

nn s n
ii

i si iv v

v
v, , ,

Also from thermodynamics,

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

=
u

s

u
p

u

nn s n i s

i

i iv v

T;
v, , ,

and m

Hence u = Ts – pv + Âi i in m
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du = T ds – p dv + Â + Âi i i i i in z F nm fd d( ) (6.4.5)

where

T ds

–p dv corresponds to mechanical work

mi dni corresponds to change in the amount dni of ith species

and   (zi Ff) dni is the electrical work (dwel) associated with the amount dni of 

ith species carrying the charge zi

of potential difference f at the point under study. For an uncharged species,

zi = 0 and thus dwel = 0.

Equation (6.4.5) may be written as

du = T ds – p dv + Âi i in m d (6.4.6)

where  mi  = mi + zi Ff, and is known as electrochemical potential. For an uncharged 

species  mi  = mi .

Substituting u = uv v,

s = svv and ni = ci v in Eq. (6.4.6), we get

d(uvv) = T d(svv) – p dv + Âi i
 m  d(ci v)

This gives

uv dv + v duv = T (sv dv + v dsv) – p dv + Âi i
 m (ci dv + vdci)

i.e. v vv v v vd d d du - - Â( ) + - + - Â( ) =T s c u Ts p ci i i i i i
  m m 0

which is view of Eq. (6.4.4) becomes

v v vd d du - - Â( )T s ci i i
 m = 0

Since v is not zero, we get

duv – T dsv – Âi i
 m dci = 0 (6.4.7)

∑ The system is not far away from the equilibrium so as to have very small 

gradients in the intensive quantities within the system. This ensures constant 

values of intensive variables within the small volume of the elemental cell of 

the system. A system far away from equilibrium leads to large gradients in the 

intensive variables and the assumption of constant values of intensive variables 

within the small volume v may not be applicable.

q¢ and that due to  

Si hi, pm dni, (where hi,pm is the partial molar enthalpy 

of i u = dq – p dv) may 

be written as

6.5 FIRST LAW OF THERMODYNAMICS FOR AN OPEN SYSTEM
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du = dq + dw

   = d d dpmq h n pi i i¢ + Â( ) -, v  (6.5.1)†

(  For an open system dq = dq¢ + Âi i ih n, pmd  while for a closed system 

dq = dq¢ as dni = 0.)

We write

u = uv v ;  ni = ci v and dq¢ = dq¢v v

where dq¢v

d(uv v) = v dq¢v + Âi ih , pm d(ci v) – p dv

This gives

uv dv + v duv = v dq¢v + Âi ih , pm (ci dv + v dci) – p dv

i.e.  v d d d dpm pmu q h c u h c pi i i i i iv vv- - Â( ) + - Â +( ) =¢ , , 0  (6.5.2)

Since  h = u + pv, we get

hvv = uvv + p v i.e. hv = uv + p

Also Â = Ê
ËÁ

ˆ
¯̃ =

Â
= =Âi i i ii

i i i i
h c h

n h n h
h, ,

,

pm pm

pm

v v v
v

With these, Eq. (6.5.2) becomes

v d v vu q h ci i i- - Â( ) =d dpm
¢

, 0

Since v is not zero, we must have

d d dpmu q h ci i iv - Â¢ - ,  = 0

i.e.   duv – dqv = 0  or duv = dqv  (6.5.3)

(  For a closed system dci = 0 and hence duv = dq¢v and also dq¢v = dqv).

†

the other. Let Um and Vm

If the amount dn

energy associated with this are as follows.

Um dn associated with the amount dn

p (Vm dn) is  

  involved where p

Hence, the total energy involved with the transfer of the amount dn

     Um dn + p (Vm dn) = (Um + pVm) dn = Hm dn

where Hm

heat also, then the total energy involved is given by

     dU = dq¢ + Hm dn

Eq. (6.5.1) in Local 

Quantities

v



450 A Textbook of Physical Chemistry

Equation (6.4.7) is

duv – T dsv – Âi i
 m  dci = 0

Since duv = dqv (Eq. 6.5.3), we get

T dsv = dqv – Âi i
 m  dci (6.6.1)

Dividing Eq. (6.6.1) by dt and keeping in mind that the space coordinates are 

constant, we get

T
∂
∂

=
∂
∂

-
∂
∂Âs

t

q

t

c

ti i
iv v  m (6.6.2)

Equation (6.6.2) is used to determine the local rate of entropy production in a 

continuous system.

According to the laws of conservation and continuity, we have

∂
∂

=
s

t

i  – div Js + s (Eq. AI. 20)

∂
∂

=
c

t

i  – div (ciV ) + vi Jr = – div Ji + vi Jr (Eq. AI. 19)

∂qv / ∂t may be written as

∂
∂

=
q

t

v  – div Jq

where Jq v of the elemental 

T (– div Js + s) = – div Jq – Âi i
 m (– div Ji + vi Jr)

i.e. – div Js + s = - + +
Â -( )Â1

T T

v

T
Jq

i

i i
i i idiv div rJ J

  m m

 = - + +Â1

T T T
Jq

i

i idiv div rJ J
  m A

(6.6.3)

where   A = - Â( )i i in m

 A  = - Â = - Â +i i i i i i iz Fn m n m j ( )

 = A - Â( )i i izn Fj (6.6.4)

6.6 EXPRESSION OF ENTROPY PRODUCTION AND DISSIPATION FUNCTION

Rate of Change of 

Local Quantities

Equation (6.6.2) 

Expressed in 

Divergence
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Since

div a  = a div  + i grad a (6.6.5)†

we can write

a div  = div a  – i grad a

1 1

T T T
q

q
qdiv div gradJ

J
J=

Ê
ËÁ

ˆ
¯̃

- Ê
Ë

ˆ
¯i

  
i

 m m mi i i i

T T T
i idiv div gradJ

J
J= Ê

ËÁ
ˆ
¯̃ - Ê

ËÁ
ˆ
¯̃

With these, Eq. (6.3.3) becomes

– div Js + s = – div grad
J

J
q

q
T T

Ê
ËÁ

ˆ
¯̃

- Ê
Ë

ˆ
¯

È

Î
Í

˘

˚
˙i

1

+ Ê
ËÁ

ˆ
¯̃ - Ê

ËÁ
ˆ
¯̃

È
ÎÍ

˘
˚̇

+Â div grad r

 
i

  m mi i J
J

Ji
ii T T

A

T
(6.6.6)

= - -
Ê
ËÁ

ˆ
¯̃

+ Ê
Ë

ˆ
¯ + -Ê

ËÁ
ˆ
¯̃Â Âdiv grad grad

J J
J J

q i

i q iT T T T

 
i i

 m mi
i

i1
++

 A

T
J r

J
J J

s
q i i i

T
=

- Â  m
(6.6.7)

and s = J Jq iT T

A

T
i i

  
grad grad r

1Ê
Ë

ˆ
¯ + -Ê

ËÁ
ˆ
¯̃ +Â i

i J
m

(6.6.8)

elemental cell and Eq. (6.6.8) gives the production of local entropy within the 

flow with the corresponding conjugate force. There is one term for each process 

(i.e. energy transfer, material transfer or diffusion and chemical reaction). Each 

of these terms vanishes when the corresponding process is no more operative. 

† div (a ) = — i a

=
∂
∂

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

=
∂
∂

∂Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ

x y z
ab ab ab

x
abx y z xi j k i j k+ + + + +i ( )

∂∂
∂
∂y

ab
z

aby z( ) ( )+

= a
b

x

b

y

b

z
b

a

x
b

a

y

a

z

x y z
x y

∂
∂

∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

+ + + + bz

= a div  + i grad a

Expression of Local

Entropy Production
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s = J Xi ii
iÂ (6.6.9)†

where Xi is the force conjugate to the flow Ji. In Eq. (6.6.8), we have

∑ Flow of heat Jq and the conjugate force Xq is grad (1/T)

∑ Flow of matter Ji and the conjugate force Xi is grad -( ) mi T/

  ∑ Occurring of a chemical reaction Jr and the conjugate force is  A / .T

The product of each of the flow and the corresponding conjugate force has the 

dimension of entropy production.

Since grad grad
1 1

2T T
T

Ê
Ë

ˆ
¯ = -

and grad grad grad
 

 
 m

m
mi

i
i

T T T
T

Ê
ËÁ

ˆ
¯̃ = -

1
2

we can write Eq. (6.6.8) as

s = Jq i i  
  

-Ê
Ë

ˆ
¯ + Â - +Ê

ËÁ
ˆ
¯̃ +

1 1
2 2T T T

T J
T

i i i
igrad grad grad rT J m

m A

=
1

2 2T T T
J

A

T
q

i

i i

i i i
J

J J
i i  

 
i

 
grad ( ) + grad grad ( ) r- - -

Â
- +ÂT T( )m

m

=
J J Jq i i i i

i i
T T

J
A

T

- Â
- + - +Â

 
i i  

 m
m

2
grad ( ) grad rT ( )

† The form of Eq. (6.6.9) can be derived on the basis of fluctuation theory of Einstein (see, 

DS = -
=

Â1

2
gij i j

i j i

n

a a
,

(Eq. AII.21)

where a represents fluctuation of a parameter from its equilibrium value and gi j is given by

gi j = – 
∂

∂ ∂

Ê

ËÁ
ˆ

¯̃

2S

i jx x
(Eq. AII.22)

The thermodynamic force is defined by

Xi = 
∂

∂
= -

=
Â( )DS

g
i

ij j

j

n

a
a

1

(Eq. AII.52)

∂
∂

=
∂
∂

Ê
ËÁ

ˆ
¯̃ -( ) =

== =
ÂÂ Â( )DS

t t
g J Xi

ij j

j

n

i

n

i i

i

na
a

11 1

Ji is ∂a i /∂t and the force is Xi

Alternative

Expression of Local

Entropy Production
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which in view of Eq. (6.6.7) becomes

s = 
J Js i

i
T T T

i i  
 

grad ( ) + grad ( ) + r- -ÂT J
i

m
A

(6.6.10)

and the corresponding force and thus it is in the same form as given by Eq. (6.6.9), 

that is, s = Âi Ji i Xi (6.6.11)

∑ Js) is grad(–T) /T

∑ Ji) is grad -( ) mi /T

 ∑ Conjugate force for the chemical reaction (flow is Jr) is  A / .T

Each of the term in Eq. (6.6.10) has a dimension of entropy production. Equation 

on effect on the production of entropy in a system.

Lord Rayleigh defined a function which has a dimension of free energy instead of 

F = T s (6.6.12)

Equation (6.6.12) gives the rate of local dissipation of free energy per unit time as 

a result of irreversible process occurring in the elemental cell of a system. From 

Eq. (6.6.10), we find that

F = Js i grad (–T) + Â -i iJ i   grad ( ) + rmi J A (6.6.13)

Equation (6.6.13), like Eq. (6.6.11), is the sum of different terms involving the 

product of a flow and its conjugate force, i.e.

F = Â = Â ¢i i i i i iTJ X J X∑ ∑( ) (6.6.14)†

Consider a wire of uniform cross-sectional area A at a constant uniform temperature. 

Let a steady current (due to the movement of electrons) flow in the wire under the 

influence of a potential gradient (from less potential to the more potential) along the 

wire. Consider an infinitesimal section of the wire of lenght dx as shown in Fig. 6.6.1

x x + xd

j j j+ d

The system shown in Fig. 6.6.1 is in a steady state with the characteristics of

dU = 0 and dS = 0

Since   dS = de S + diS = dq/T + di S,  we will have

0 = dq/T + di S i.e. di S = – dq/T (6.6.15)

† For scalar quantities, only product is involved. Also for one-dimensional system, the 

vectors Ji and Xi may be treated as scalar quantities.

Dissipation Function

Examples of Entropy Production as a Product of Flow and Force

Electrical 

Conduction in a Wire

Fig. 6.6.1 Flow of 

charge in a wire
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From the first law of thermodynamics, we have

dU = dq + dw i.e. 0 = dq + dw

Hence  dq = – dw

Work done by the electrostatic force in moving the charge dQ (which has a negative 

value) from x to x + dx is

dw = – dQ [(j + dj) – j] = – dQ dj

q becomes

dq = – (– dQ dj) = dQ dj

Hence, Eq. (6.6.15) gives

di S = – 
d dQ

T

j
(6.6.16)

Since dQ = –ve, it follows that di S = +ve, i.e. the production of entropy is positive. 

The rate of production of entropy per unit volume (= A dx) of the wire is

 s = 
1 1 1

V

S

t x

Q T

t

Q

t

T

x

d

d d

d d

d

d

d

d

d

i =
-

= Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

-Ê
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ˆ
¯A A

( / ) /f j
(6.6.17)

 = I grad (– j/T)

Thus, s
force (which is grad (– j/T)).

T s = 
1

A

d

d

d

d

Q

t x T

Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

-Ê
Ë

ˆ
¯

j

   =  Ji Xi (6.6.18)

where Ji = 
1

A

d

d

Q

t

Ê
Ë

ˆ
¯

and Xi = – (dj/ ∂x)T

Consider a bar of uniform cross section A whose ends are maintained at different 

the bar. Consider a small section of the bar of thickness dx as shown in Fig. 6.7.2.

x x + xd

T + Td

dq

T

d ( )q q- d d (d has a negative value)T

Let the heat dq enters at x where temperature is T and the heat dq – d(dq) leaves 

at x + dx where temperature is T + dT in the time interval dt. Thus,

Heat retained by the small section of the bar = d(dq)

Assuming the above heat is absorbed by the small section of the bar at temperature 

T (as dT may be considered to have a small value in comparison to T), the change 

Heat Condution

in a Bar

Fig. 6.6.2 Heat

Conduction in a bar 

with dT < 0
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in entropy of this section of bar is

dS = 
d( )dq

T
(6.6.19)

eS is

deS = 
d d d

d

q

T

q q

T T
-

-
+

( )d

 = 
T q Td d  d d d

d

q T q T q

T T T

+ - +
+

( )

( )

d

Assuming dT to be negligible in comparison to T, we get

deS = 
d d dq T

T

q

T2
+

( )d

which in view of Eq. (6.6.19) becomes

deS = 
d d

d
q T

T
S

2
+

or dS = deS – 
d d

d de i

q T

T
S S

2
= +

where  diS = (dq) -Ê
Ë

ˆ
¯

dT

T 2
(6.6.20)

Since dq > 0 and dT < 0, it follow that diS > 0. The rate of production of entropy 

per unit volume is

s = 
1 1

2V

S

t A x

q

t

T

T

d

d d

d

d

di = Ê
Ë

ˆ
¯ -Ê

Ë
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¯

 = 
1 1

2A

q

t T

T

x

d

d

d

d

Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

-Ê
Ë

ˆ
¯

 = Jq Xq (6.6.21)†

where Jq Xq is the corresponding force 

(= grad (1 / T))

The dissipation function is

T s = 
1 1

A

q

t T

T

x

d

d

d

d

Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

-Ê
Ë

ˆ
¯

. = Jq

T

T
i

grad ( )-
(6.6.22)

† Both Jq and Xq may be treated as scalar quantities as these act in x-direction

6.7 DEPENDENCE OF FLOW ON ITS CONJUGATE FORCE
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Jq = – l grad T (6.7.1)

where l is known as thermal conductivity of the system.

The flow of electricity is linearly dependent on the electromotive force, i.e.

Je = – g grad f (6.7.2)

where g is known as electrical conductivity.

gradient of concentration, i.e.

Ji = – D grad ci (6.7.3)

where D is known as diffusion coefficient.

The constants l, g  and D are all positive quantities. These are not function of space 

and time. Fourier’s law is applicable to an isotropic material and Ohm’s law is 

applicable to a metallic conductor. The validity of the above mentioned laws is 

limited to a single flow and their applications require small gradients of forces.

s = Jq . grad (1/T). Using 

the fact that s > 0. show that the thermal conductivity has a positive value.

We have  s = Jq i grad (1/T) = -
Jq

T 2
i grad T

Introducing Jq = – l grad T (Fourier law), we get

s = 
( ) ( )l

l
grad

grad
gradT

T
T

T

T2

2

2
i =

Since (grad T )2 and T2 are always positive, and the fact that s > 0 for an irreversible 

process, it follows that l has a positive value.

J) on its, 
conjugate force (X

J = L (6.7.4)†

where L
parameters of the volume element. It does not depend on the gradients of these 

conjugate force, is also linearly dependent on a nonconjugative force. Similarly, a 

A gradient in temperature in a bimetallic system causes the

generation of a gradient in electric potential.

Fourier Law

Ohm’s Law

Fick’s Law

Comments on the 

Laws

Phenomenological

Equation

6.8 COUPLING PHENOMENON

Example of Coupling 

Phenomenon

† J) on the 

conjugate force (X ¢ J = L X ¢ = L (XT ) = (LT ) X = L¢ X
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Passage of electric current through a bimetallic circuit due to a potential 

difference causes absorption of heat at one junction and liberation of heat at the 

other junction.

upon the gradient of electrtic potential as well as upon the gradient of temperature. 

also on the temperature gradient.

Xe = – grad (f / T) (6.8.1)

Xq = grad (l / T) (6.8.2)

Je and Jq depend both 

on the forces Xe and Xq Je and Jq

about the points Xq = 0 and Xe = 0. The zero order terms Je(0, 0) and Jq(0, 0) are 

J X X X
J

X
X

J

X
q

X X X Xq q

e e e
e

e

e

e e

( , )
, ,

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê

ËÁ
ˆ

¯̃= = = =0 0 0 0

q
q

(6.8.3)

J X X X
J

X
X

J

X
q

q

X X

q

X Xq q

q q
q

( , )
, ,

e e
e

e e

=
∂

∂
Ê
ËÁ

ˆ
¯̃

+
∂

∂

Ê

ËÁ
ˆ

¯̃= = = =0 0 0 0 (6.8.4)

If the gradients Xe and Xq are very small in comparison to unity, the higher 

Je = Lee Xe + Leq Xq (6.8.5)†

Jq = Lqe Xe + Lqq Xq (6.8.6)

where Lee = 
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê

ËÁ
ˆ

¯̃= = = =

J

X
L

J

X
X X X Xq q

e

e
e

e

e e
0 0 0 0, ,

; q
q

Lqe = 
∂

∂
Ê
ËÁ

ˆ
¯̃

=
∂

∂

Ê

ËÁ
ˆ

¯̃= = = =

J

X
L

J

X

q

X X X Xq q
e

e e
0 0 0 0, ,

; qq
q

q

Equations (6.8.5) and (6.8.6) are known as the phenomenological equations and 

the terms Lee, Leq, Lqe and Lqq

the weighing factors to the forces in the phenomenological equations. The terms

Leq and Lqe are indicative of coupling effects between electrical and thermal effects 

in the thermoelectric phenomenon.

Coupling Equations

†

need not be vector quantities

+ higher differential 

terms

+ higher differential 

terms
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For an isothemal condition,

Xq = grad (1/T ) = – 
1

2T
 grad T = 0

With this, Eq. (6.8.5) gives

Je = Lee Xe

= Lee {–grad (f /T)} = – 
L

T

ee  grad f (6.8.7)

Comparing Eq. (6.8.7) with Ohm’s law (Eq. 6.8.2), we get

g = 
L

T

ee (6.8.8)

Under the condition of Je = 0, Eq. (6.8.5) becomes

0 = LeeXe + LeqXq

i.e. Xe = – 
L

L

e

ee

q
Xq (6.8.9)

Substituting Eq. (6.8.9) in Eq. (6.8.6), we get

Jq = Lqe -
Ê
ËÁ

ˆ
¯̃

+ = -
Ê
ËÁ

ˆ
¯̃

L

L
L L

L L

L
q qq q qq

q
q

e

ee

e e

ee

q q
X X X

Substituting Xq from Eq. (6.8.2); we get

Jq = L
L L

L
qq

q-
Ê
ËÁ

ˆ
¯̃

qe e

ee

 grad (1/T)

  = 
L L L L

L T

qq q qee e e

ee

-Ê
ËÁ

ˆ
¯̃

-Ê
Ë

ˆ
¯

1
2 grad T (6.8.10)

Comparing Eq. (6.8.10) with Fourier Law (Eq. 6.7.1), we get

l = 
L L L L

L T

qq q qee e e

ee

-Ê
ËÁ

ˆ
¯̃2

(6.8.11)

The linear dependence of various flows in a system on the conjugate and 

nonconjugate forces as suggested by Onsager in 1931 are as follows.

J1 = L11X1 + L12 X2 +   + L1n Xn

J2 = L21X1 + L22 X2 +   + L2n Xn

 

 Jn = Ln1X1 + Ln2 X2 +   + Lnn Xn (6.9.1)*

where J1, J2,…, Jn X1, X2,…, Xn are the corresponding conjugate forces.

on the correspsonding J ) and the second subscript refers to the component whose gradient 

is being taken into account.

Comparison with 

Ohm's Law

Comparison with 

Fourier’s Law

6.9 GENERAL TREATMENT OF THE PHENOMENOLOGICAL EQUATIONS

Generalized

Equations
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i = Lij

j

n

j

=
Â

1

X (i = 1, 2, … n) (6.9.2)

where Li j = 
∂
∂

Ê

ËÁ
ˆ

¯̃ π

J

X

i

j k k j( )

(6.9.3)

The partial derivatives in Eq. (6.9.3) are evaluated at the points Xk

Xj

Ji as a function of Xj (see, Eq. 6.8.4). Thus, these equations 

order differentials. This holds good only when the forces are small and the system 

is close to equilibrium conditions.

Ji Xi has 

the dimension of entropy production.

L11, L22, …, Lnn are known as  indicating 

L12, L13,

..., etc. are known as coupling or  indicating 

In the vector notations Eq. (6.9.1) is written as

J

J

J

L L L

L L L

L Ln
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11 12 1

21 22 2
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flows

nn nnL
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È
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Matrix of phenomeno-
logical coefficients
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˙

Vectors of
flows

(6.9.4)

the following manipulation.

X

X
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L L L

L L L

L L Ln
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n n nn
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21 22 2

1 2
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˚

˙
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Î

Í
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˙
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˙
˙
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Î

Í
Í
Í
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˘

˚

˙
˙
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˙

-1
1

2

J

J

Jn

 
(6.9.5)

vector quantities.

Applicability of 

Eq. (6.9.3)

Equation (6.9.1) 

Expressed in Vector

Form

The Curie-Prigogine

Principle
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system (a system in which the properties are identical in all directions). For such a 

system, the phenomenological equations split into two sets of equations representing 

the coupling between the same types of flows and forces. These may be expressed as

Jn =  Lsn Xn  ; where n goes over scalar quantities

¢n = Lvn X ¢n; where n goes over vector quantities

Let a system involve simultaneous occurrence of a chemical reaction 

Jq = Lqq Xq + Lqr Xr

u = LrqXq + Lrr Xr

where Xq = grad (1/T) and Xr = A/T.

In an isothermal condition, Xq = 0. Hence, we would have

Jq = Lqr Xr

Unless Lqr Xr produces a 

Lqr must be equal to zero.

s = Âi Ji Xi

Li j = Lji ; (i π j) (6.9.6)

of the force j i

effect of the force i j.

Equation (6.9.6) is known as Onsager symmetry rule. It holds good for 

irreversible processes close to equilibrium. This law may be considered as an 

Equation (6.9.6) implies that

∂
∂

Ê

ËÁ
ˆ

¯̃
=

∂

∂
Ê
ËÁ

ˆ
¯̃

π π

J

X

J

X

i

j X

j

i X
k k j k k i; ( ) ; ( )

(6.9.7)

Ji caused by unit change in the force Xj keeping all 

Jj caused by unit change 

in the force Xi keeping all other forces constant.

Onsager Symmetry

Rule

Restriction on 

Phenomenological

Coefficients
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s = J1 X1 + J2 X2 (6.9.8)

where J1 = L11X1 + L12 X2 (6.9.9)

and J2 = L21 X1 + L22 X2 (6.9.10)

Substituting Eqs (6.9.9) and (6.9.10) in Eq. (6.9.8), we get

s = (L11 X1 + L12 X2)X1 + (L21 X1 + L22 X2)X2

 = L11 X2
1 + (L12 + L21)X1 X2 + L22 X2

2 (6.9.11)

Since L12 = L21 (Onsager law) and s > 0, we must have

L11 X2
1 + 2 L12 X1 X2 + L22 X2

2 > 0 (6.9.12)

Since either X1 or X2 may be made to vanish, we must have the requirements of

L11 X2
1 ≥ 0 and L22 X2

2 ≥ 0 (6.9.13)

L11 and L22 must be positive.

Equation (6.9.13) may be written as

L X L X L L X X L X X11 1 22 2

2

11 22 1 2 12 1 22 2 0+( ) - + ≥

or   L X L X L L L X X11 1 22 2

2

11 22 12 1 22+( ) ≥ -( ) (6.9.14)

L L L L L L L L L11 22 12 11 22 12 11 22 12
20- ≥ ≥ ≥or or (6.9.15)†

Lii > 0 (6.9.16)

and   

L L L

L L L

L L L

n

n

n n nn

11 12 1

21 22 2

1 2

0

 

 

 

 

≥ (6.9.17)

s = J Xi i

i

n

=
Â

1

(6.10.1)

†

We have

X X
L L

L L

X

X
1 2

11 12

21 22

1

2

0[ ] È
ÎÍ

˘
˚̇

È
ÎÍ

˘
˚̇

≥

L L

L L

11 12

21 22

0≥ i.e. L11L22 – L12L21 ≥ 0

which, in view of Onsager law, leads to L11L22 ≥ L2
12

Generalization of 

Eq. (6.9.15)

6.10 COMMENT ON THE CHOICE OF FLUXES AND FORCES
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The phenomenological relations are

Ji = L Xij j

j

n

=
Â

1

(i = 1, 2, …, n) (6.10.2)

with Lij = Lji (Onsager reciprocal relation)  (6.10.3)

Though the entropy production in an irreversible process is unique, yet the choices 

of Ji and Xi

It can be shown that the Onsager reciprocal relation holds good even when a set 

J ¢i = bij j

j

n

J
=

Â
1

(i = 1, 2, …, n) (6.10.4)

Xj in terms of transformed forces may be worked 

s = J X
i

n

i i
¢ ¢

=
Â

1

(6.10.5)

Replacing J ¢i  by using Eq. (6.10.4), we get

s = b bij j

j

n

j

j

n

i

n

ij

i

n

J X J X
= == =

Â ÂÂ Â
Ê

Ë
Á

ˆ

¯
˜ =

Ê

Ë
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ˆ

¯
˜

1 11 1

i i
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From this, it follows that

Xj = bij

i

n

Xi
¢

=
Â

1

(6.10.6)

J ¢i  = L X j

j

n

ij
¢ ¢

=
Â

1

(with L¢ij = L¢ji) (6.10.7)

L¢ij = L¢ji may be generated as follows. Equation (6.10.4) is

J ¢i  = bij j

j

n

J
=

Â
1

Replacing Jj by using Eq. (6.10.2), we get

J ¢i  = bij

j

n

jk k

k

n

L X
= =

Â Â
È

Î
Í
Í

˘

˚
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˙1 1

Now replacing Xk by using Eq. (6.10.6), we get

J ¢i  = b bij

j

n

jk mk m

m

n
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n

L X
= ==

Â ÂÂ ¢
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ˆ
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˙1 11

Expression of 

Transformed

Fluxes

Expression of 

Original Forces

in Terms of 

Transformed

Forces

Transformed

Phenomenological

Equations
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This may be written as

J ¢i   =

m

n

ij

k

n

jk mk

j

n

ij

k

n

jk km

j

n

L X L
= == ==
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Comparing this, with Eq. (6.10.7), we get

L ¢im = b bij jk km

k

n

j

n

L  ( )
==

ÂÂ
11

Now since

bij = b †ji ; Ljk = Lkj ;  b†
km = bmk

L ¢im = b b b bji k j mk
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n

j

n

mk k j ji

k

n

j

n

L L ( ) ∫ ( )
== ==

ÂÂ ÂÂ
11 11

 

= L ¢mi (6.10.8)

near to its equilibrium position.

In general, a chemical reaction may be depicted as

0 = ÂB BBv (6.11.1)

where vB is the stoichiometric numbers of the species B in the chemical equation 

of the reaction. It has a negative value for a reactant and a positive value for a 

product.

The progress of a chemical reaction is depicted by the physical quantity known 

x, then the 

concentration of the species B in the reaction is given by

[B] = [B]0 + vB x (6.11.2)

where [B]0 is the inital concentration of B in the reaction where x = 0.

If xeq

[B]eq = [B]0 + vB xeq (6.11.3)

x = xeq (1 + x) (6.11.4)

†

†

Validity of Onsager 

Reciprocal

Relations

†

6.11 AN EXAMPLE ILLUSTRATING PHENOMENOLOGICAL EQUATION

General Expression 

of a Chemical

Reaction

Progress of a 

Chemical Reaction

†
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where | x | << 1. It has a negative value just before the equilibrium and has a 

positive value just after the equilibrium position of the reaction. In terms of x,

Eq. (6.11.2) becomes

[B] = [B]0 + nB[xeq (1 + x)]

= ([B]0 + nB xeq) + nB xeq x

= [B]eq + nB xeq x (6.11.5)

A = – ÂB vB mB (6.11.6)

where the chemical potential, mB, is given by

 mB = m°B + RT ln 
[ ]B

c∞
Ê
Ë

ˆ
¯ (6.11.7)

where m°B is the standard chemical potential of B where [B] = c° (=1 mol dm–3).

Substitution of Eq. (6.11.7) in Eq. (6.11.6) gives

A = - +
∞

Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇Â ∞v RT

c
BB B ln

B
m

[ ]

= A° -
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Ê
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ˆ
¯

È
ÎÍ

˘
˚̇Â nBB

ln
B

RT
c

[ ]
(6.11.8a)

Substitution of Eq. (6.11.2) in Eq. (6.11.7) gives

A = A° -
+
∞

Ê
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ˆ
¯̃

È
ÎÍ

˘
˚̇Â v RT

v

c
BB

Bln
B[ ]0 x

which in view of Eq. (6.11.4) becomes

A = A° -
+ +

∞
Ê
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ˆ
¯̃

È

Î
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˘

˚
˙Â v RT

v x
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B[ ] ( )0 1x
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È

Î
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˚
˙Â v RT

v x

c
BB

eq B eq
ln

B[ ] x
(6.11.8b)

where Eq. (6.11.3) has been used to replace [B]0 by [B]eq. Equation (6.11.8) may 

be written as

A = A° -
∞

- +Â ÂÊ
ËÁ

ˆ
¯̃

Ê
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ˆ
¯̃

v RT
c

v RT
v x

BB
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[ ]

[ ]
1

x
(6.11.9)

At the equillibrium position A = 0 and x = 0. With these, Eq. (6.11.9) reduces to 

A° -
∞

Ê
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ˆ
¯̃Â v RT

c
BB

eq
ln

B[ ]
 = 0

With this, Eq. (6.11.9) reduces to

Affinity of a Reaction

Affinity of a Reaction 

Near to Equilibrium 

Position
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A = - +
Ê

ËÁ
ˆ
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Since vBxeq x / [B]eq
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(6.11.10)

The rate of forward reaction is

rf = kf
[ ] | |R R
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eqR

x
(6.11.11)

The Rate of backward reaction is

rb = kb
[ ]P P

P

v( )’

where P stands for products. Proceeding similarly as in the case of forward reaction, 

we have

rb = kb
[ ] [ ]P PP P

P

b P

P

v v
k v( ) ( )’ ’= +

0
x

= kb
[ ] ( ) [ ]P PP eq
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Rate of Forward

Reaction Near the 

Equilibrium

Rate of Backward

Reaction Near the 

Equilibrium
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= k
v x

v

b
P eq

p P eq

eqP

P
P

P

P [ ]
[ ]

v( ) +
Ê

ËÁ
ˆ

¯̃

È

Î
Í

˘

˚
˙’ 1

x

= rb, eq 1 +
Ê

ËÁ
ˆ

¯̃

È

Î
Í

˘

˚
˙’

v x
v

P eq

eqP P

Px

[ ]

Since vP xeq x / [P]eq
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(6.11.12)

The net rate of reaction is given by

 r = rf – rb

= rf, eq 1 1+
È
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Since at equilibrium, rf, eq = rb, eq
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Since |vR| = –vR, we get
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(6.11.13)

which in view of Eq. (6.11.10) becomes

r = rf, eq 
A

RT

Ê
Ë

ˆ
¯

(6.11.14)

Jr = r and Xr = 
A

T
(6.11.15)

and substituting these in Eq. (6.11.14), we get

Jr = 
r

R

f, eq
 Xr = LXr (6.11.16)

where L

L = rf, eq / R (6.11.17)

characteristic parameters, rf, eq, of the reaction. It may be emphasised here that

Net Rate of Reaction

Form of 

Phenomenological

Equation
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Eq. (6.11.16) holds good only when the reaction is close to its equilibrium position 

s = (Flow) (Force)

= (r)
A A A

T
r

RT T

Ê
Ë

ˆ
¯ = Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇
Ê
Ë

ˆ
¯f, eq

=
r

R T
L

T L
L

T

f, eq A A AÊ
Ë

ˆ
¯ = Ê

Ë
ˆ
¯ = Ê

Ë
ˆ
¯

2 2 2
1

 = 
1 2

L
r (6.11.18)

k2

k-2

B C

k1
k-1

k3
k-3

A

A1 = mA – mB; J1 = k1 [A] – k–1[B] (6.12.1a)

A2 = mB – mC; J2 = k2 [B] – k–2 [C] (6.12.1b)

A3 = mC – mA; J3 = k3 [C] – k–3 [A] (6.12.1c)

A3 may be considered as dependent on A1 and A2, since

A3 = – (A1 + A2) (6.12.2)

The thermodynamic criterion of equilibrium for the reactions are

(mA)eq = (mB)eq = (mC)eq

With this, we have

(A1)eq = (A2)eq = (A3)eq = 0

Also, the principle of microscopic reversibility requires that a molecular process 

and its reverse process on an average with the same speed at equilibrium.

Hence, we will have

k1[A]eq = k–1[B]eq ; (J1)eq = 0 (6.12.3a)

k2[B]eq = k–2[C]eq ; (J2)eq = 0 (6.12.3b)

k3[C]eq = k–3[A]eq ; (J3)eq = 0 (6.12.3c)

Consider each of the three reactions near to equilibrium, We may write

[A] = [A]eq + ŒA (6.12.4a)

[B] = [B]eq + ŒB (6.12.4b)

[C] = [C]eq + ŒC (6.12.4c)

Expression of 

Entropy Production

6.12 AN EXAMPLE ILLUSTRATING ONSAGER PRINCIPLE

Rates and Affinities

of Reactions

Expressions of Rates 

and Affinities Near 

the Equilibrium
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With these, Eq. (6.12.1a) becomes

J1 = k1([A]eq + ŒA) – k–1 ([B]eq + ŒB)

= (k1[A]eq – k–1 [B]eq) + (k1 ŒA – k–1 ŒB)

 = k1 ŒA – k–1 ŒB ; (using Eq. 6.12.3a) (6.12.5a)

Similarly,

J2 = k2 ŒB – k–2 ŒC (6.12.5b)

J3 = k3 ŒC – k–3 ŒA (6.12.5c)

A1, is

A1 = mA – mB

= m mA Bln
A

ln
B∞ ∞+Ê

Ë
ˆ
¯ - +Ê

Ë
ˆ
¯∞ ∞

RT
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RT
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[ ] [ ]
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eq
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eq
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A
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B
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∞
+

Ê
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ˆ

¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í

˘

˚
˙ - +RT

c
RT

[ ]

[ ]

[ ]
1

ŒA eeq

eqBc∞
+

Ê

ËÁ
ˆ

¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í

˘

˚
˙1

ŒB

[ ]

= A RT RT RT1

eq

eq eq

ln
B

A
ln

A
ln∞ -

Ê
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ˆ

¯̃

È

Î
Í

˘

˚
˙ + +

Ê
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ˆ

¯̃
- +

[ ]

[ ] [ ]
1 1

Œ ŒA BB

[ ]B eq

Ê

ËÁ
ˆ

¯̃
(6.12.6)

where A1
∞ ∞ ∞= -m mA B

For the reaction A B at equilibrium, we substitute A1 = 0, ŒA = 0 and ŒB = 0 in

Eq. (6.12.6) and get

A1
∞  – RT ln 

[ ]

[ ]

B

A

eq

eq

Ê

ËÁ
ˆ

¯̃
= 0

With this, Eq. (6.12.6) becomes

A1 = RT ln 1 1+
Ê

ËÁ
ˆ

¯̃
- +

Ê

ËÁ
ˆ

¯̃
Œ ŒA B

[ ] [ ]A
ln

Beq eq

RT

Since ŒA/[A]eq << 1 and ŒB/[B]eq

as

A1 = RT
Œ ŒA B

[ ] [ ]A Beq eq

-
Ê

ËÁ
ˆ

¯̃

which in view of Eq. (6.12.3a), becomes

A1 = 
RT

k
k k

1
1 1

[ ]
( )

A eq
A BŒ Œ- -
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Using Eq. (6.12.5a), this becomes

A1 = 
RT

k1[ ]A eq

J1 or J1 = 
k

A
1

1

[ ]A eq

RT
(6.12.6a)

Similarly,

A2 = 
RT

k2[ ]B eq

J2 or J2 = 
k

A
2

2

[ ]B eq

RT
(6.12.6b)

and A3 = 
RT

k3[ ]C eq

J3 or J3 = 
k

A
3

3

[ ]C eq

RT
(6.12.6c)

In view of Eq. (6.12.2), we can write Eq. (6.12.6c) as

J3 = – 
k

A A
3

1 2

[ ]
( )

C eq

RT
+ (6.12.6d)

The entropy production is given by

s = J1 (A1 /T) + J2 (A2 / T) + J3 (A3 /T)

 = J1 (A1 /T) + J2 (A2 / T) – J3 (A1 + A2) / T

 = (J1 – J3)(A1/T) + (J2 – J3) (A2 /T) (6.12.7)

J1 – J3 and J2 – J3 as given by Eqs. (6.12.6a) – (6.12.6d) are as follows.

J1 – J3 = 
k

A
k

A A
1

1

3

1 2

[ ] [ ]
( )

A Ceq eq

RT RT

Ê
ËÁ

ˆ
¯̃

+
Ê
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ˆ
¯̃

+

=
k k
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A
1 3
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3

2

[ ] [ ] [ ]A C Ceq eq eq+Ê
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ˆ
¯̃

+
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ˆ
¯̃RT RT

(6.12.8a)

J2 – J3 = 
k

A
k

A A
2

2

3

1 2

[ ] [ ]
( )

B Ceq eq

RT RT

Ê
ËÁ

ˆ
¯̃

+
Ê
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ˆ
¯̃

+

=
k

A
k k

A
3

1

2 3

2

[ ] [ ] [ ]C B Ceq eq eq

RT RT

Ê
ËÁ

ˆ
¯̃

+
+Ê
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ˆ
¯̃

(6.12.8b)

The phenomenological equations correponding to Eq. (6.12.7) are

J1 – J3 = L11 (A1 / T) + L12 (A2 / T) (6.12.9a)

J2 – J3 = L21 (A1 / T) + L22 (A2 / T) (6.12.9b)

Comparing Eqs. (6.12.8) and (6.12.9), we get

L11 = 
k k1 3[ ] [ ]A Ceq eq+

R
(6.12.10a)

L12 = L21 = 
k3[ ]C eq

R
(6.12.10b)

L22 = 
k k2 3[ ] [ ]B Ceq eq+

R
(6.12.10c)

Expression of 

Entropy Production

Expression of 

Phenomenological

Coefficients
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Equation (6.12.10b) establishes the Onsager principle of symmetry of 

Consider a system of two compartments separated by a porous diaphragm. The 

ionic species at a constant temperature. A potential difference across the diaphragm 

(Fig. 6.13.1).

a b

Because of the applied potential, a current I

through the diaphragm. Eventually, a stage is reached where the pressure difference, 

D p, developed across the diaphragm just balances the effect of applied potential. 

D p is found 

potential is known as electro-osmosis.

a to the phase b is

di S = 
1

T
n ni i i ii

  m m( ) ( )b ad d-( )ÈÎ ˘̊Â (6.13.1)

where  mi , the electrochemical potential of the ith species, is related to its chemical 

 mi = mi + ziFj (6.13.2)

where zi is the charge number of the ith species and j is the potential of the 

electrode dipped in the solution.

Substituting Eq. (6.13.2) in Eq. (6.13.1), we get

diS = –
1

T
z F z F ni i i i ii

m j m ja( ) ( )b b a+( ) - +( ){ }ÈÎ ˘̊Â d

 = – 
1

T
z F ni i i ii

m m j ja( ) ( )b b a-( ) + -( ){ }ÈÎ ˘̊Â d

 = – 
1

T
z F ni i ii

D Dm j+( )ÈÎ ˘̊Â d (6.13.3)

Dmi as a result of pressure difference at constant temperature is

D mi = 
∂
∂

Ê
ËÁ

ˆ
¯̃

mi

Tp
D p = Vi, pm D p

Phenomenon of 

Electro-Osmosis

Fig. 6.13.1 Illustration of 

electrokinetic effect

Expression of 

Entropy Production

6.13 ELECTROKINETIC EFFECTS
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With this, Eq. (6.13.3) becomes

T diS = ( ) ( ) ( ) ( ),V p z F nii i iipm d dniÂ Â- + -D Dj (6.13.4)

d

d

i S

t
= V

n

t

p

T
z F

n

t T
i

i

i i
i

i, pm

d

d

d

d

Ê
ËÁ

ˆ
¯̃ -Ê

Ë
ˆ
¯ + Ê

ËÁ
ˆ
¯̃ -Ê

Ë
ˆ
¯Â ÂD Dj

   = Jm Xm + I XI (6.13.5)

The phenomenological equations corresponding to entropy production as given 

by Eq. (6.13.5) are

Jm = L11 -Ê
Ë

ˆ
¯ + -Ê

Ë
ˆ
¯

D Dp

T
L

T
12

j (6.13.6a)

JI = L21 -Ê
Ë

ˆ
¯ + -Ê

Ë
ˆ
¯

D Dp

T
L

T
22

j ; (JI = I) (6.13.6b)

The value of Dj for a given value of Dp at which I = 0 is 

known as streaming potential. From Eq. (6.13.6b), we can write

0 = L21 -Ê
Ë

ˆ
¯ + -Ê

Ë
ˆ
¯= =

D Dp

T
L

TI I0
22

0

j

or (Dj)I = 0 = –
L

L
p I

21

22
0D( ) =   (6.13.7)

Isc = 
I

Jm

Ê
ËÁ

ˆ
¯̃ =Dj 0

(6.13.8a)

Suppose the electrodes are short-circuited in order to have Dj

D p
as streaming current. This may be measured with the help of ammeter. From

(Jm)Dj = 0 = L11 -Ê
Ë

ˆ
¯ =

D

D

p

T j 0

and (I)Dj = 0 = L21
-Ê

Ë
ˆ
¯ =

D

D

p

T j 0

Hence, Isc = 
I

J

L

Lm

Ê
ËÁ

ˆ
¯̃

=
=Dj 0

21

11

   (6.13.8b)

The value of D p at which Jm = 0 for the given value 

of Dj is known as electro-osmotic pressure. From Eq. (6.13.6a), we get

0 = L11 -Ê
Ë

ˆ
¯ + -Ê

Ë
ˆ
¯= =

D Dp

T
L

TJ Jm m0
12

0

j

Phenomenological

Equations

Applications of 

Eqs. (6.13.6a) and 

(6.13.6b)
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Hence (D p)Jm = 0 = – 
L

L

12

11

(Dj)Jm = 0 (6.13.9)

Dj keeping D p = 0. From Eqs. (6.13.6a) and (6.13.6b), we get

(Jm)Dp = 0 = L12 -Ê
Ë

ˆ
¯ =

D

D

j

T p 0

and (I)D p = 0 = L22 -Ê
Ë

ˆ
¯ =

D

D

j

T p 0

Hence
J

I

L

Lp

mÊ
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ˆ
¯̃ =

=D 0

12

22

(6.13.10)

∑ From Eqs. (6.13.7) and (6.13.10), we have

D
D

j

p

L

LI

Ê
ËÁ

ˆ
¯̃

= -
= 0

21

22

and
J

I

L

Lp

mÊ
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ˆ
¯̃ =

=D 0

12

22

Since L12 = L21 (Onsager principle), we have

D
D D

j

p

J

II p

Ê
ËÁ

ˆ
¯̃

= - Ê
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ˆ
¯̃

= =0 0

m (6.13.11)

∑ From Eqs. (6.13.8b) and (6.13.9), we have

I

J

L

Lm

Ê
ËÁ

ˆ
¯̃

=
=Dj 0

21

11

and
D
D

p L

LJj

Ê
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ˆ
¯̃

= -
=m 0

12

11

Since L12 = L21, we have

I

J

p

Jm m

Ê
ËÁ

ˆ
¯̃

= - Ê
ËÁ

ˆ
¯̃= =D

D
Dj j

0 0

(6.13.12)

Equations (6.13.11) and (6.13.12) are known as reciprocity relations.

study has been carried out.

Consider a thermocouple consisting of two metals A and B whose junctions in 

electrical contact are at temperatures T and T + DT as shown in Fig. 6.14.1.

P

M
etal B Metal B

T0

c d

B
s

A
s

a b

Metal AHeat

reservoir

Heat

reservoir

T
T +

TD

Saxen’s Relations

6.14 THERMOELECTRICITY

Fig. 6.14.1 Schematic

set up of thermocouple
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As a result of the temperature difference, thermal and potential gradients will be 

in a thermocouple.

Three observations with reference to the thermocouple shown in Fig. 6.14.1 

are described here.

In Seebeck effect, the points c and d in the metal B are held at the same temperature 

across which emf generated in the circuit is determined with a potentiometer 

e r = 
d

d

cd( )Df I

T

= 0
(6.14.1)

where Dfcd is the potential devolved across cd in Fig. 6.14.1.

In the Peltier effect, the two junctions are kept at the same temperature, but a current 

is passed through the wires. A quantity of heat Jq is absorbed at one junction and 

equal quantity of heat is released at the other junction. On reversing the direction 

of current, heat liberated and absorbed at the two junctions are also reversed.

The rate at which heat must be supplied to or removed from the junctions to 

P).

P = 
d dq t

I T

/Ê
Ë

ˆ
¯ =D 0

(6.14.2)

The unit of Peltier heat is J A–1 s–1 ( ∫ J C–1)

Consider a homogeneous metallic conductor as shown in Fig. 6.14.2.

B C A C B

0 C° 100 C° 0 C°

Let the metallic conductor be maintained at 100 °C at some point (say, A) as shown 
in Fig. 6.14.2. At the two neighbouring points (say, B) on either sides of the point 
A, let the temperature of 0 °C be maintained. It is found that at the two points 
equidistant from hot and cold points (shown by the points C) the temperatures were 
found to be identical. However, when a current is passed through the conductor, 
the temperature at the points C were found to be different. The passage of current 
disturbs the temperature gradient, and thus the original gradient can be maintained 
only be addition or removal of heat from the appropriate region of the metallic 
conductor.

unit current to maintain a unit temperature gradient in the metallic conductor. 

s = 
( / )

( )

d d

d

q t

I T
(6.14.3)

Seebeck Effect

Peltier Effect

Thomson Effect

Fig. 6.14.2 Illsutration

of Thomson effect
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The unit of Thomson heat is J K–1 A–1 s–1 ( ∫ J K–1 C–1) Thomson heat is a function 

of the nature of the metallic conductor and its temperature.

The above three effects, namely, Seebeck, Peltier and Thomson, indicate the 

Theoretical Treatment of Thermoelectricity

in the themocouple as given by Eq. (6.6.8) is

s = J
T

J
T

q grad grade
e1Ê

Ë
ˆ
¯ + -Ê

ËÁ
ˆ
¯̃

 m
(6.14.4)

Now  me  = me – Fj = – Fj ; (since me = 0) 

Moreover, the potential is measured across the points at the same temperature, 

we can write

J
T

FJ
T T

e
e

egrad
grad

=
grad

-Ê
ËÁ

ˆ
¯̃ = -

- - m j j
( )

( ) ( )
I

With this, Eq. (6.14.4) becomes

s = J
T

I
T

q grad
grad1Ê

Ë
ˆ
¯ +

-( )j
 (6.14.5)

The phenomenological equations may be written

J L
T

L
T

q = Ê
Ë

ˆ
¯ +

-Ê
Ë

ˆ
¯11 12

1
grad

grad( )j
(6.14.6)

I L
T

L
T

= Ê
Ë

ˆ
¯ +

-Ê
Ë

ˆ
¯21 22

1
grad

grad( )j
(6.14.7)

shown in Fig. 6.14.1 are held at different temperatures, but the points c and d 

across which potential is determined with the help of a potentiometer (ensuring 

I = 0 in  Eq. (6.14.7).

Hence

0 = L
T

L
T

21 22

1
grad

gradÊ
Ë

ˆ
¯ +

-Ê
Ë

ˆ
¯

( )j

 = – 
L

T

L

T

21
2

22grad gradT - j

Thus -Ê
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ˆ
¯̃

=
=

grad

grad

j

T T

L

LI 0

21

22

1

i.e. -Ê
Ë

ˆ
¯ =

=

d

d

j

T T

L

LI 0

21

22

1
(6.14.8)

Entropy Production

Phenomenological

Equations

Explanation of 

Seebeck Effect
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Since the emf e is negative of j, we have

d

d

e

T T

L

LI

Ê
Ë

ˆ
¯ =

= 0

21

22

1
(6.14.9)

Equation (6.14.8) implies that in the absence of electric current but in the presence 

of temperature gradient, a potential difference appears in the circuit. This is, in 

fact, Seebeck effect.

In the Peltier effect, the two junctions are kept at the same temperature and a 

current is passed through the circuit. In this case, we set DT = 0, i.e. grad (1/T) = 0

in Eqs (6.14.6) and (6.14.7) and thus get

(Jq)DT = 0 = L12

grad
and ( )

grad
= 0

( ) ( )-
=

-j j

T
L

T
Ii TD 22

Hence
J

I

L

L

qÊ
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ˆ
¯̃

=
DT = 0

12

22

(6.14.10)

P = 
d d d

d

q t

I

J

I
T

TT

q

T I

/Ê
Ë

ˆ
¯ =

Ê
ËÁ

ˆ
¯̃

= Ê
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ˆ
¯= = =D D0 0 0

e
(6.14.11)

where L12 = L21 has been used. Equation (6.14.11) is known as Kelvin's relation. 

indicating the validity of Onsager symmetry principle.

q* = 
J

J

q

Te

Ê
ËÁ

ˆ
¯̃ =D 0

(6.14.12)

From Eq. (6.14.10), it follows that
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J
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Te

Ê
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=D 0

21
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(6.14.13)

Also, from Eq. (6.14.8), we have

d

d

d

d
e

j j

T T T
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LI J

Ê
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ˆ
¯ = Ê

Ë
ˆ
¯ = -

= =0 0

21
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1
(6.14.14)

From Eqs (6.14.l3) and (6.14.14), it follows that

d

d
e

j

T

q

F TJ

Ê
Ë

ˆ
¯ =

= 0

*
(since L12 = L21) (6.14.15)

Explanationn of 

Peltier Effect

Heat of Transfer of 

Electrons
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er = 
d

d

cd( )Df I

T

= 0
(Eq. 6.14.1)

where Dfcd is the potential across cd in Fig. 6.14.1.

From Fig. 6.14.1, we will have

(Dfcd)Je = 0 = (fa – fc)Je = 0 + (fb – fa)Je = 0 + (fd – fb)Je = 0
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Making use of Eq. (6.14.15), we get
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  = 
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T
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* *-Ê

Ë
Á
Á

ˆ

¯
˜
˜

Ê
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ˆ
¯

D

Hence
D
D
fcd A B

e
T

q q

FTJ

Ê
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ˆ
¯̃ =

-

= 0

* *
(6.14.16)

Thus, the relative thermoelectric power of the metal B against A depends on the 

heats of transfer of electrons of metals B and A. Since the heat of transfer depends 

energy balance for the circuit shown in Fig. 6.14.1. The involved energies in the 

circuit are as follows,

(i) Let the amount dne of electrons enter at the point c and leave from the point d

of the circuit due to the potential difference Df (fd – fc). The electrical energy 

received by the circuit is 

E1 = F (Dj) dne

Expression of

Relative 

Thermoelectric

Power

First Equation of 

Thomson
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(ii) The electrons move from c to a with the change in temperature from T0 to T.

The energy received by the circuit from the surroundings is

E2 = F sB dne (T – T0) (Eq. 6.14.3)

(iii) At the junction a, the electrons enters from the metal B to the metal A at 

temperature T. The circuit absorbs Petlier heat from the surroundings. This energy is

E3 = FP dne (Eq. 6.14.2)

(iv) The electrons move from the point a to the point b with the change in temperature 

from T to T + DT. The energy received from the surroundings is 

E4 = F sA dne {(T – DT) – T}

 = F sA dne DT

(v) At the junction b, the electrons enters from the metal A to the metal B at 

temperature T + DT. The circuit leaves Petlier heat to the surroundings. This 

energy is

E5 = – F P +
Pd

dT
TDÊ

Ë
ˆ
¯

 dne

(vi) The electrons move from b to d with the change in temperature from

T + DT to T0. The energy received from the surroundings is

E6 = F sB dne {(T0 – (T + DT)}

Since the .energy of the entire circuit remains unchanged, we must have 

E1 + (E2 + E6) + E3 + E4 + E5 = 0

i.e.

[Dj + sB {(T – T0) + (T0 – T – DT)} + P + sA DT – {P +
d

d

P

T
( ) DT}]F dne = 0

or
D
D

j
s s

T T
- + - =B A

d

d

P
0

or sB – sA = 
D
D

j

T T
-

d

d

P
(6.14.17)

It will shown that

P = T
D
D

j

T J

Ê
Ë

ˆ
¯ =e 0

(Eq. 6.14.22)

Hence
d

d

d

d

P

T T
T

T T
= Ê

Ë
ˆ
¯ + Ê

Ë
ˆ
¯

D
D

D
D

j j

With this, Eq. (6.14.17) becomes

sA – sB = T
d

dT T
T

T

D
D

j jÊ
Ë

ˆ
¯ =

∂
∂

2

2
(6.14.17b)
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The second equation of Thomson for thermoelectricity can be derived by 

considering the processes occurring at the junction of two metals A and B during 

Under the condition of constant temperature, the phenomenological equations

(Eqs. 6.14.6 and 6.14.7) give

I = – L
T

L
T

22 22
( ) ( )A A B Bgrad gradj j

= - (6.14.18)

J (A)
q  = - = -L

T
J L

T
q12

A A B B Bgrad grad( ) ( ) ( )
;

j j
12 (6.14.19)

The quantities Jq
(A) and Jq

(B) will not be equal since Peltier heat P (Eq. 6.14.2) is 

either absorbed or released at the junction to maintain its temperature constant. If 

Jq
(B) > Jq

(A)) then it leads to cooling at the

junction a and heating at the junction b. For this situation, we write

Jq
(A) = Jq

(B) – I P

or P = 
J J

I

q q
( ) ( )B A-

Substituting Jq
(A) and Jq

(B) from Eq. (6.14.19), we get

P = 
1

12
I

L
T

L
T

- +Ê
ËÁ

ˆ
¯̃12

B B A Agrad grad( ) ( )j j

which in view of Eq. (6.14.18) becomes

P = 
L

L

L

L

12
B

22
B

12
A

22
A

( )

( )

( )

( )
-

Ê

ËÁ
ˆ

¯̃
(6.14.20)

Since q*/ F = –L12 / L22

P = 
q q

F

A B
* *-

(6.14.21)

which on making use of Eq. (6.14.16) can be written as

P = T
D
D
fcd

e
T J

Ê
ËÁ

ˆ
¯̃ = 0

(6.14.22)

Equation (6.14.22) is known as second equation of Thomson.

The chemical potential of ith constituent in a solution depends on temperature, 

pressure and amounts of other constituents present in the solution. We can write

Second Equation 

of Thomson

Thermodynamic

Background

6.15 ISOTHERMAL DIFFUSION IN A CONTINUOUS SYSTEM
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dmi = 
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê

ËÁ
ˆ

¯̃=
Âm m mi

p n

i

T n

i

j T pj

n

T
T

p
p

n
n

i i
, , ,

d d d
1

jj

k jn π

   = –Si, pm dT + Vi, pm dp + mij

j

n

jn
=

Â
1

d (6.15.1)

where mij = (∂mi / ∂nj)T, p nk π j
 For a case in which mi does not depend upon the 

amounts of other components, we will have

mi j = 0 for i π j (6.15.2)

In this case, Eq. (6.15.1) becomes

dmi = –Si, pm dT + Vi, pm dp + mii dni (6.15.3)

Since mi depends on the concentration of i

solution, mi = m°i + RT ln (c/c°), we can write mii as

mii = 
∂
∂

=
∂

∂
m mi

i

i
c

in n

( )

where mi
(c) is the concentration-dependent term of the chemical potential mi. With 

this, Eq. (6.15.3) becomes

dmi = –Si, pm dT + Vi, pm dp + dmi
(c) (6.15.4)

In terms of gradients, Eq. (6.15.4) is given by

grad (–mi) = Si, pm grad (T) + Vi, pm grad (–p) + grad (–mi
(c)) (6.15.5)

grad (–mi) = grad (–mi
(c)) (6.15.6)

Assuming isothermal diffusion to take place in one direction, the entropy production 

in this process is given by

T s = 
i

n

=
Â

1

Ji grad (–mi)

which in view of Eq. (6.15.6) becomes

T s = 
i

n

=
Â

1

Ji grad (–mi
(c)) (6.15.7)

solvent by the subscript 1 and solutes by 2, 3,..., etc., we may write Eq. (6.15.7) as

T s = J1 grad -( ) + -( )
=
Âm m1

2

( ) ( )c
i

i

n

i
cJ grad (6.15.8)

related to each other as mentioned in the following.

∑ The various forces are related through Gibbs-Duhem equation

ci

i

n

i
cgrad

=
Â -( ) =

1

0m ( ) (6.15.9)

Entropy Production

Diffusion of Solutes

Relative to Solvent
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∑  

V = ni

i

n

Vi, pm

=
Â

1

where Vi, pm is the partial molar volume of the ith constituent in the solution. 

d

d

V

t
 = 

d

d
, pm , pm

n

t

i

i

n

i

nÊ
ËÁ

ˆ
¯̃ =

= =
Â ÂV J Vi i i

1 1

Since dV/dt

J Vi i, pm

i

n

=
Â =

1

0 (6.15.10)

Using Eqs. (6.15.9) and (6.15.10), one can eliminate the dependent solvent term in

Eq. (6.15.8). We will have

grad -( ) = -
Ê
ËÁ

ˆ
¯̃

-( )
=
Âm m1

12

( ) ( )c i
i
c

i

n c

c
grad (6.15.11)

J1 = -
Ê

ËÁ
ˆ

¯̃=
Â J

V

V
j

j

j

n
,

,

pm

pm12

(6.15.12)

Substituting these in Eq. (6.15.8), we get

T s = J
V

V

c

c
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j

j

n
i
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n
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c

i
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-( )Ï

Ì
Ô
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¸
˝
Ô

Ǫ̂2 1 12

d ,

,

pm

pm

( )grad mi
c (6.15.13)

where di j is Kronecker delta (it is equal to 1 for i = j and is zero for i π j). Equation 

(6.15.13) can be written as

T s = J Yj
j

n

j

=
Â

2

(6.15.14)

where Yj = dij
i j

i

n c

c

V

V
+

Ê

ËÁ
ˆ

¯̃
-( )

=
Â

1 12

,

,

pm

pm

( )grad mi
c (6.15.15)

Isothermal Diffusion in a Binary Solution

A binary solution involves a solute dissolved in a solvent. In this solution, the 

velocity of diffusion may be assumed to depend linearly on the driving force of 

diffusion (which is –grad m). Hence, we may write

Fick's Law of 

Diffusion
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V = – w grad m (6.15.16)

where w, the proportionality constant, is the velocity per unit force. For dilute solution,

grad m = 
RT

c
 grad c (6.15.17)

and J = cV = – w RT grad c
  = D¢ grad c (6.15.18)

where D¢ is known as diffusion constant. Equation (6.15.18) is known as Fick’s 

D¢ = w RT (6.15.19)

is known as Planck-Einstein relation.

J2 = L2 Y2

= L2 1
2 2

1 1

+
Ê

ËÁ
ˆ

¯̃
-( )c V

c V

c,

,

( )pm

pm
2grad m

 = L2

c V c V

c V
L

c V

c1 1 2 2

1 1
2

1 1

1, ,

,

( )

,

pm pm

pm
2

pm

grad g
+Ê
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ˆ

¯̃
-( ) =

Ê
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ˆ

¯̃
m rrad 2-( )m ( )c

 = 
L c2

1f
m

Ê
ËÁ

ˆ
¯̃

-( )grad 2
( ) where f1 = c1V1, pm (6.15.20)†

Since the concentration of solute is a function of its position in the solution, we 

write the concentration-dependent portion of chemical potential as

grad m2
(c) = 

∂
∂
m2

2

( )c

c
 grad c2

For a dilute solution, m2
(c) = RT ln c2. Hence

∂
∂
m2

2

( )c

c
 = 

RT

c2

Also f1 = c1V1, pm = (n1/V) V1, pm = n1V1,pm/V ª 1

With these, Eq. (6.15.20) becomes

J2 = L2
RT

c2

 grad c2 (6.15.21)

Comparing Eqs. (6.15.18) and (6.15.21), we get

D¢ = 
L RT

c

2

2

(6.15.22)

Isothermal Diffusion in a Ternary Solution

A ternary solution involves two solutes and one solvent. Representing the two solutes 

Phenomenological

Equation

†c1V1, pm + c2V2, pm = (n1 / V) V1, pm + (n2 / V) V2, pm = (n1V1, pm + n2V2, pm) /V = V / V = 1.
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T s = J2 Y2 + J3 Y3 (Eq. 6.15.14)

where Yj = dij

i j

i

c V

c V
+

Ê
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ˆ

¯̃
-( )

=
Â ,

,

pm

pm

( )grad
1 12

3

mi
c (j = 2, 3)

The phenomenological equations are

J2 = L22 Y2 + L23 Y3 (6.15.23)

J3 = L32 Y2 + L33 Y3 (6.15.24)

where Y2 = – 1
2 2

1 1
2

3 2
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(6.15.25)
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m m (( )c

(6.15.26)

The dependence of chemical potential on position is due to the local changes in 

the solute concentrations c2 and c3

grad m2
(c) = 

∂
∂

+
∂
∂

m m2

2
2

2

3
3

( ) ( )c c

c
c

c
cgrad grad (6.15.27)

grad m3
(c) = 

∂
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+
∂
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m m3

2
2

3

3
3

( ) ( )c c

c
c

c
cgrad grad (6.15.28)

Writing ∂mi
(c)/ ∂cj as mij

grad m2
(c) = m22 grad c2 + m23 grad c3 (6.15.29)

grad m3
(c) = m32 grad c2 + m33 grad c3 (6.15.30)

Y2 becomes
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2 2
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gram m dd c3 (6.15.31)

= –a¢ grad c2 – b¢ grad c3
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Working similarly of Y3, we get

Y3 = –
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,

,

,
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gram m dd c3

= – c¢ grad c2 – d ¢ grad c3 (6.15.32)

J2 and J3 become

J2 = –L22 (a¢ grad c2 + b¢ grad c3) –L23 (c¢ grad c2 + d ¢ grad c3)

= – (a¢ L22 + c¢ L23) grad c2 – (b¢ L22 + d ¢ L23) grad c3 (6.15.33)

J3 = –L32 (a¢ grad c2 + b¢ grad c3) –L33 (c¢ grad c2 + d ¢ grad c3)

= – (a¢ L32 + c¢ L33) grad c2 – (b¢ L32 + d ¢ L33) grad c3 (6.15.34)

J2 = –D22 grad c2 –D23 grad c3 (6.15.35)

J3 = –D32 grad c2 – D33 grad c3 (6.15.36)

where D22 and D33 D23 and D32 are the 

Fick's law, we get

D22 = a¢ L22 + c¢ L23 (6.15.37a)

D23 = b¢ L22 + d ¢ L23 (6.15.37b)

D32 = a¢ L32 + c¢ L33 (6.15.37c)

D33 = b¢ L32 + d y¢ L33 (6.15.37d)

D D

D D

L L

L L

a b

c d

22 23
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= È
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(6.15.38)
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È
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Ï
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¸
˝
˛Det

¢ ¢
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(6.15.39)

Comparison with 

Fick's Law
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where Det = a¢d ¢ – b¢c¢. Thus

L22 = 
d b

a d b c
L

a c

a d b c

¢ ¢
¢ ¢ - ¢ ¢

¢ ¢
¢ ¢ - ¢ ¢

D D D D22 23 23 22-
=

-
; 23

L32 = 
d b

a d b c
L

a c

a d b c

¢ ¢
¢ ¢ - ¢ ¢

¢ ¢
¢ ¢ - ¢ ¢

D D D D32 33 33 32-
=

-
; 33

must have

a¢ D23 – c¢ D22 = d ¢ D32 – b¢ D33 (6.15.40a)

and a¢d ¢ – b¢c¢ π 0 (6.15.40b)

reciprocal relation holds good.

From Eqs. (6.15.37b) and (6.15.37c), it follows that D23 π D32 in a case where 

L23 = L32 (Onsager reciprocal relation). Moreover, the requirement L23 = L32 = 0

does not lead to D23 = D32 = 0 unless L22 = L33 = 0.

In the ultracentrifuge sedimentation, the solute particles migrate from the bulk of 

which is about 105 times greater than the gravitational force. The solution is taken 
in a transparent cell and is placed in the cavity of a rotor operating at very high 
speed in an apparatus which allows vibration-free operation at constant temperature.

If the sedimentation is carried over a longer time, eventually a state of equilibrium 
is reached where the forces acting in the opposite directions balance each other. 
Based on this, the equations applicable to solute particles at sedimentation 
equilibrium can be derived. However, the same equations are deriveable by treating 
the sedimentation on the basis of theory of irreversible processes.

T s = Ji

i

n

=
Â

1

 grad (–mi) (6.16.1)†

The chemical potential mi in Eq. (6.16.1) besides containing the concentration-

dependent term includes a term which accounts for the kinetic energy acquired 

by the particles in the solution.

If w is the angular velocity of the rotor, then the linear velocity of particles at a 

distane r from the centre of rotation is

v = w r (6.16.2)

The kinetic energy acquired by the ith particles is

Ek = 
1

2

1

2

2 2m m ri iv = ( )w (6.16.3)

6.16 ISOTHERMAL ULTRACENTRIFUGE SEDIMENTATION

Introduction

Entropy Production

Kinetic Energy 

Acquired by the 

Particles

†Equation 6.16.1 is considered to be applicable to solute particles only.
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For one mole of the ith particles, the mass mi is given by

mi = Mi – r Vi, pm (6.16.4)

where Mi and Vi, pm are the molar mass and partial molar volume of ith particles, 

respectively, and r is the density of the solution. The term rVi, pm in Eq. (6.16.4) 

accounts for the buoyance correction of mass of solvent displaced by the solute 

particles.

Substituting Eq. (6.16.4) in Eq. (6.16.3), we get

Ek = 
1

2

2 2M V ri i-( )r w, pm

 = 
1

2
1 2 2M ri i-( )r u w, pm (6.15.5)

where vi, pm (= Vi, pm / Mi ith particles.

The chemical potential of ith particles is lowered by the amount given by the

kinetic energy acquired by one mole of particles and is thus given by

mi = m°i + mi
(c) –

1

2
Mi (1 – rvi, pm) w 2 r2 (6.16.6)

where mi° is the standard chemical potential (dependent on temperature only) and

mi
(c) is the concentration-dependent term.

Since the chemical potential varies with the distance r

the term grad (–mi mi/dr. With this,

Eq. (6.16.6) gives

- = -
d

d

d

d

m mi i
c

r r

( )

+ Mi (1 – rvi, pm) w2 r (6.16.7)

For a solution containing one solute particles, the phenomenological equation is 

given by

J2 = L2 -Ê
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The dm2
(c)/dr may be written as

d

d

d

d

d

d

m m2 2

2

2
( ) ( )c c

r c

c

r
=

Assuming solution to be dilute, we have

d

d

d

d

m2

2

2
( )c

r

RT

c

c

r
=

Ê
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ˆ
¯̃ (6.16.9)

Chemical Potential of 

i th Particles

Expression of 

grad (–mi)

Phenomenological

Equation

†The solute is represented by the subscript 2.
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Substitution of Eq. (6.16.9) in Eq. (6.16.8), we get

J2 = –
L RT

c

c

r

2

2

2Ê
ËÁ

ˆ
¯̃

d

d
 + L2M2 (1 – r v2, pm) w 2r

= –D
d

d

c

r

2 + L2M2 (1 – r v2, pm) w 2r (6.16.10)

where D(= L2RT/c2

The term M2(l – r v2, pm) in Eq. (6.16.10) may be replaced in terms of sedimentation 

s

s = 
L M

c

2 2 2

2

1( ),- r v pm
(6.16.11)

With this, Eq. (6.16.10) becomes

J2 = – D
d

d

c

r

2
 + sc2w2r (6.16.12)

The term sc2w2r

and –D dc2/ dr

sedimentation is carried over a long period, a state of equilibrium is reached where 

J2 becomes zero. At this stage, we have

D
d

d

c

r

2  = sc2w2r (6.16.13)

Equation (6.16.13) forms the basis of determining the molar mass of solute. 

d
d

c

c

s

D
r r2

2

2

= ÚÚ
w

i.e. ln
c

c

s

D

2
2

2∞
=

w
r2 + constant.  (6.16.14)

Thus, a plot of ln (c2 / c°) versus r2 is linear with slope equal to sw2/2D. From the 

slope, s is evaluated which is used in Eq. (6.16.11) to determine the molar mass 

of the solute as described in the following. 

Equation (6.16.11) is

s = 
L M

c

2 2 2

2

1( ),- r v pm

Since L2RT/c2 = D (Eq. 6.16.10), we get

s

D

M

RT
=

-2 21( ),r v pm

Sedimentation

Equilibrium

Determination of 

Molar Mass of the 

Solute
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or M2 = 
( / )

,

s D RT

1 2- r v pm

(6.16.15)

Equation (6.16.15) is known as Svedberg equation.

The value of s/D in Eq. (6.16.15) may be determined by using Archibald 

suggestion which states that at the bottom end of the centrifugal cell (whose 

rb

Eq. (6.16.12) we will have

s

D
 = 

( / )

( )

d d
b

b b

c r

c r

r r

r r

2

2
2

=

= w
(6.16.16)

Knowing (c2)r = r
b
, (dc2 /dr)r = r

b
 and w, the value of s/D may be determined by 

using Eq. (6.16.16). This value can be substituted in Eq. (6.16.15) to determine 

the value of M2.

Let the two compartments a and b of constant volumes (Fig. 6.17.1) contain the 

T and T + DT and pressures p

and p + D p, respectively. Let the two compartments be connected through a small 

a to the compartment b.

T

p

T + TD
p + pD

dq

dn

a b

From the Gibbs relation (dU = T dS – pdV + m dn

change in entropy at constant volume as

dS = 
dU

T T
-

m
dn (6.17.1)

Since the compartments a and b taken together represents a closed system, the 

diS
(a) = - +

d
d

U

T T
n

m a( )

diS
(b) = +

+
-

+
d

d
U

T T T T
n

D D
m ( )b

The total entropy production is

diS = diS
(a) + diS

(b)

  = dU - +
+

Ê
ËÁ

ˆ
¯̃

+ -
+

+
Ê
ËÁ

ˆ
¯̃

1 1

T T T
n

T T TD D
d

m m( ) ( )b a

(6.17.2)

Evaluation of

s/D.

6.17 TRANSPORT PROCESS BETWEEN TWO HOMOGENEOUS PHASES

Fig. 6.17.1 Demonstration 

of transport process 

between two homogeneous 

phases

Expression of 

Entropy Production
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If DT is small in comparison to T, we may write

- +
+

=
- + +

+
-

1 1
2T T T

T T T

T T T

T

TD
D

D
D( )

( )
 (6.17.3)

Also, we have

–
m m m m m m

m
( ) ( ) ( ) ( ) ( ) ( )

( )( )

( )

b a b a b a
a

T T T

T T T

T T T T

T

+
+ =

- + +
+

-
-

+
D

D
D

D
 

TT 2

Ê
Ë

ˆ
¯

= –
V p S T

T
H T S

T

T

m m
m m

D D D-
+ -( ) Ê

Ë
ˆ
¯2

(Supersript a is dropped)

= –
V p

T
H

T

T

m
m

D D
+ Ê

Ë
ˆ
¯2

(6.17.4)

Substituting Eqs (6.17.3) and (6.17.4) in Eq. (6.17.2), we get

diS = dU -Ê
Ë

ˆ
¯ + - +Ê

ËÁ
ˆ
¯̃

D D DT

T
n

V p

T
H

T

T2 2
d m

m (6.17.5)

The rate of entropy production is

s = 
d

d

d

d

d

d

i m
m

S

t

U

t

T

T

n

t

V p

T
H

T

T
= Ê

Ë
ˆ
¯ -Ê

Ë
ˆ
¯ + Ê

Ë
ˆ
¯ - +Ê

ËÁ
ˆ
¯̃

D D D
2 2

= JU XU + Jm Xm (6.17.6)

where XU (–DT/T 2 JU (= dU/dt)

and Xm (= – VmD p/T + HmDT/T 2

Jm (= dn/dt).

The phenomenological equations corresponding to Eq. (6.17.6) are

JU = L11 XU + L12 Xm

 = L11 -Ê
Ë

ˆ
¯ + - +Ê

ËÁ
ˆ
¯̃

D D DT

T
L

V p

T
H

T

T2 12 2
m

m

 = ( )L L H
T

T
L

V p

T
11 12 2 12- -Ê

Ë
ˆ
¯ + -Ê

ËÁ
ˆ
¯̃m

mD D
(6.17.7)

Jm = L21 XU + L22 Xm

 = L21 -Ê
Ë

ˆ
¯ + - +Ê

ËÁ
ˆ
¯̃

D D DT

T
L

V p

T
H

T

T2 22 2
m

m

 = ( )L L H
T

T
L

V p

T
21 22 2 22- -Ê

Ë
ˆ
¯ + -Ê

ËÁ
ˆ
¯̃m

mD D
(6.17.8)

When D 0 From Eq. (6.17.7), it is obvious that JU π 0 even when DT = 0. 

J

J

L

L

U

Tm

Ê
ËÁ

ˆ
¯̃

=
=D 0

12

22

(6.17.9)

Phenomenological

Equations

A Few Derivations
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is represented by the symbol U*. Hence

U* = 
J

J

L

L

U

Tm

Ê
ËÁ

ˆ
¯̃

=
=D 0

12

22

(6.17.10)

∑ When m 0 The corresponds to the stationary state of the system which 

0 = ( )L L H
T

T
L

V p

T
21 22 2 22- -Ê

Ë
ˆ
¯ + -Ê

ËÁ
ˆ
¯̃m

mD D

This gives

  
D
D

p

T

L L H

L V T

L L H

V TJ

Ê
Ë

ˆ
¯ = -

-
= -

-

=m

m

m

m

m0

21 22

22

21 22( / )

which in view of Eq. (6.17.10) gives

    
D
D

p

T

U H

V T

q

V TJ

Ê
Ë

ˆ
¯ = -

-
= -

=m

m

m m0

* *
(since L12 = L21) (6.17.11)†

where q* is known as heat of transfer.

The pressure difference D p for a given temperature differene to observe stationary 

state is known as thermomolecular pressure difference.

Alternatively, Eq. (6.17.6) may be written as

s = 
d

d

d

d

d

d

d

d

i
m

mS

t
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t
H
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t
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T
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ˆ
¯ -Ê

Ë
ˆ
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D D
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=
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d
m
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t
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n

t
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T
( )- -Ê

Ë
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Ë
ˆ
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ˆ
¯̃

D D
2

=
d

d

d

d

mq

t

T

T

n

t

V p

T

Ê
Ë

ˆ
¯ -Ê

Ë
ˆ
¯ + Ê

Ë
ˆ
¯ -Ê
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ˆ
¯̃

D D
2

= Jq Xq + Jm Xm¢ (6.17.12)

where Xq (= –DT/T 
2 Jq(= dq/dt) and X ¢m

(= – VmD p/T Jm (= dn/dt). The 

phenomenological equations corresponding to Eq. (6.17.12) are

Jq = L¢11 Xq + L¢12 X ¢m

 = L¢11 
-Ê

Ë
ˆ
¯

DT

T 2 + L¢12 -Ê
ËÁ

ˆ
¯̃

V p

T

mD
(6.17.13)

Jm = L¢21 Xq + L¢22 X ¢m

 = L¢21 -Ê
Ë

ˆ
¯ + -Ê

ËÁ
ˆ
¯̃

D DT

T
L

V p

T2 22¢
m (6.17.14)

Alternative Choice

of Flux and Force

†
 It may be mentioned here that to the  terms U* and Hm an arbitary constant can be 

added. In both cases the zero value has been assugned at T = 0. However, the quantity q*

is uniquely determined.
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When D 0 From Eq. (6.17.13), it is obvious that Jq π 0 even when DT = 0. 

J

J

L

L

q

Tm

Ê
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ˆ
¯̃

=
=D 0

12

22

¢
¢

(6.17.15a)

is known as heat of transfer and represented by the symbol q*. Hence

q* = 
J

J

L

L

q

Tm

Ê
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ˆ
¯̃

=
=D 0

12

22

¢
¢

(6.17.15b)

∑ When Jm = 0 from Eq. (6.17.14), we get

0 = L¢21 -Ê
Ë

ˆ
¯ + -Ê
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ˆ
¯̃

D DT

T
L

V p

T2 22¢
m

This gives

D
D

p

T

L

L V TJ

Ê
Ë

ˆ
¯ = -

=m m0

21

22

1¢
¢

(6.17.16a)

which in view of Eq. (6.17.15b) gives

D
D

p

T

q

V TJ

Ê
Ë

ˆ
¯ = -

=m m0

*
(6.17.16b)

Making use of Eqs (6.17.15b) and (6.17.16b) in Eq. (6.17.15a), we get

J

J
V T

T

q

T Jm
m

m

Ê
ËÁ

ˆ
¯̃

= - Ê
Ë

ˆ
¯

= =D

D
D

0 0

p
(6.17.17)

Equation (6.17.17) is known as reciprocity relation. A second such relation is 

obtained with the conditions of (i) D p = 0 in Eqs (6.17.13) and (6.17.14) and (ii) 

Jq = 0 in Eq. (6.17.13). We get

J

J

L

L

p

T V T

L

L

q

p Jqm m

and
Ê
ËÁ

ˆ
¯̃

= Ê
Ë

ˆ
¯ = -

= =D

D
D

0

11

21 0

11

12

1¢
¢

¢
¢

(6.17.18)

Hence
J

J

p

T

q

p Jqm
m

Ê
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ˆ
¯̃

= - Ê
Ë

ˆ
¯

= =D

D
D

0 0

V T (6.17.19)

When the two compartments are separated with the help of a rigid membrane, 

the transfer of matter due to temperature difference is known as thermo-osmosis.

For transport process between two homogeneous phases, show that

(i) (Jq)Jm = 0 = L
L

L

T

T
L

L L

L

V
¢

¢
¢

¢ ¢
¢

12
2¢

11

22
2 12

11 22
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Ë
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ËÁ
ˆ
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Ê
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ˆ
¯̃

-
D mDDp

T

Ê
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ˆ
¯̃

A Few Derivations

Reciprocity Relation

Thermo-Osmosis
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(ii) (Jm)Jq = 0 = L
L L

L

T

T
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L

L

V
¢

¢
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¢
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(Eq. 6.17.13)
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(Eq. 6.17.16a)

Eliminating D p in Eq. (6.17.13) with the help of Eq. (6.17.16a), we get

(Jq)Jm = 0 = L¢11 -Ê
ËÁ

ˆ
¯̃ +

Ê
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ˆ
¯̃
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Eliminating DT in Eq. (6.17.13) with the help of Eq. (6.17.16a), we get
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(Eq. 6.17.14)
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(Eq. 6.17.18)

Eliminating D p in Eq. (6.17.14) with the help of Eq. (6.17.18), we get

(Jm)Jq = 0 = L¢21 -Ê
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ˆ
¯̃ +

Ê
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Eliminating DT in Eq. (6.17.14) with the help of Eq. (6.17.18), we get
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Stationary State and Minimum Entropy Production

Jm = L X L Xq¢ ¢ ¢21 22+ m

Xq = –DT/T 2 Xm¢ = –Vm Dp/T

DT Dp

Dp = –q* DT/VmT Jm
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m m m
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X X2 Xn

X X2 Xk
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Knudsen Gas
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Entropy Production

6.18 THERMAL DIFFUSION IN A CONTINUOUS SYSTEM

Generalized

Statement
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Smoluchowski Method
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Einstein's Probability Treatment
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t = t0
a reverse solution and hence the equation of motion is said to be reversible. 

Application to a Fluctuation in a System
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SI Units

There are seven base quantities in SI units. These are described in Table AI.1.

Table AI.1 Seven Basic Quantities in SI Units

quantity  unit

Length meter m 1650 763.73 wavelengths in vacuum of 
the radiation corresponding to the transi-
tion 2p10–5d5 of the krypton–86

Mass kilogram kg A cylinder of platinum-irridium alloy 
kept by the International Bureau of 
weights and Measures in Paris

Time second s The duration of 9 192 631 770 cycles of  
the radiation associated with the transi-
tion between the two hyperfine levels of  
the ground caseium–133 atom

Electric current ampere A The magnitude of the current that, when  
flowing through each of two long paral-
lel wires separated by one 1 m in free  
space, results in a force between the two  
wires of 2 ¥ 10–7 N for each meter of 
length

Thermodynamic kelvin K Origin is at absolute zero and the triple
temperature  point of water is 273.16 K 

Amount of mole mol Amount of substance that contains as
substance  many elementary entities (atoms, mole-

cules, ions, etc.)  as there are carbon         
atoms in 0.012 kg of carbon–12

Luminous candela cd The luminous intensity, in the perpen-
dicular direction, of a surface of                          
1/600 000 sq m of a black body at the 
temperature of freezing platinum under 
a pressure of   101.325 kPa

Units and Conversion FactorsAPPENDIX
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Units Derived from the Base SI Units

Force  newton N = kg m s–2 or J m–1

Energy  joule J = kg m2 s–2 or N m

Electric charge coulomb C = A s

Potential difference volt V = kg m2 s–3 A–1 or J A–1 s–1

Resistance ohm W = kg m2 s–3 A–2 or V A–1

Frequency hertz = cycle per second Hz = s–1

Area  square metre m2

Volume cubic metre m3

Density kilogram per cubic metre kg m–3

Velocity metre per second m s–1

Angular velocity radian per second rad s–1

Acceleration metre per square second m s–2

Pressure newton per square metre N m–2 or Pa

  or pascal

Conductivity siemen S = W–1

Magnetic fluid density tesla T = Wb m–2 = V s m–2

Electric capacitance farad F = C V –1

Magnetic flux weber Wb = V s

Inductance henry H = Wb A–1

CGS Units vis-á-vis SI Units

Physical quantity   CGS units  SI units

Name Symbol Name  Symbol

Length centimetre cm metre m
Angstron (10–8 cm) Å

Mass gram g kilogram kg
Time second sec second s

Temperature kelvin K

Energy  calorie cal joule J
kilocalorie kcal kilojoule kJ
litre-atmosphere lit-atm
ergs erg

Electric current  ampere A ampere A
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Conversion of CGS Units to SI Units

Quantity Units Equivalent†

Length Angstron, Å 10–10 m = 10–1 nm = 102 pm

micron, m 10–6 m

Volume litre 10–3 m3 = dm3

Force dyne 10–5 N

Energy erg 10–7J
cal 4.184 J
eV 1.602 1 ¥ 10–19 J

eV/mole 98.484 kJ mol–1

Pressure atmosphere 101.325 kN m–2

mmHg (or Torr) 133.322 N m–2

bar (106 dyn/cm2) 105 N m–2

Viscosity poise 10–1 kg m–1 s–1

Magnetic flux density gauss 10–4 T

(magnetic induction)

10–1 deci d 10 deca da

10–2 centi c 102 hecto h

10–3 milli m 103 kilo k

10–6 micro m 106 mega M

10–9 nano n 109 giga G

10–12 pico p 1012 tera T

10–15 femto f 1015 peta P

† Symbols used for fractions and multiples are given in the next Table.
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Values of Some Physico-Chemical Constants

Constant CGS units SI units

Acceleration of gravity, g 980.66 cm sec–2 9.806 65 m s–2

Avogadro’s constant, NA 6.022 05 ¥ 1023 molecules mole–1 6.022 05 ¥ 1023 mol–1

Bohr magneton, mB 9.2741 ¥ 10–21 erg gauss–1 9.27408 ¥ 10–24 A m2

Bohr radius, a0 0.529 177 Å 5.291 77 ¥ 10–11 m

Boltzmann constant, k 1.380 66 ¥ 10–16erg (degree K)–1 1.380 60 ¥ 10–22 J K –1

molecule–1

Debye 10–18 esu ◊cm 3.335 6 ¥ 10–30 C m

Electronic charge, e 4.802 98 ¥ 10–10esu 1.602 16 ¥ 10–19C

Electronic rest mass, me 9.109 53 ¥ 10–28g 9.109 53 ¥ 10–31 kg

Faraday, F 96 487 coulomb equiv–1 9.648 46 ¥ 104 C mol–1

8.31441 ¥ 107 ergs (degree K)–1 8.314 41 J K–1 mol–1

      mole–1 8.314 41 N m K–1 mol–1

8.31441 Joules (degree K)–1 8.314 41 Pa m3 K–1

Gas constant R       mole–1 mol–1

0.082 054 litre-atm (degree K)–1 8.314 41 kPa dm3 K –1

mole–1 mol–1

1.987 cal (degree K)–1 mole–1 8.314 41 MPa cm3 K–1

mol–1

Molar volume of ideal gas

at 0 °C can 1 atm, Vm 22.414 litres 2.241 4 ¥ 10–2 m3 mol–1

Permittivity of 
vacuum, e0 = m0

–1 c–2  8.854 188 ¥ 10–12 C2 s2

Permeability of       kg–1 m–3

vacuum, m0 4p ¥ 10–7 H m–1

Planck’s constant, h 6.626 18 ¥ 10–27 erg sec 6.626 18 ¥ 10–34 J s

Proton rest mass, mp 1.67265 ¥ 10–24 g 1.672 65 ¥ 10–27 kg

Vacuum speed of light, c 2.997 925 ¥ 1010 cm sec–1 2.997 925 ¥ 108 m s–1

76 cm Hg

Standard atmospheric 760 mm Hg (or torr) 101.325 kPa

pressure 1.1032 ¥ 106 dynes/cm2 1.0132 5 bar
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Greek Alphabets

  Symbol   Symbol

Name Roman  Italic Roman  Italic Name Roman Italic Roman Italic

Alpha A A a a Nu N N n n

Beeta B B b b Xi X X x x

Gamma G G g g Omicron O o o o

Delta D D d d Pi P P p p

Epsilon E E e e Rho R R r r

Zeta Z Z z z Sigma S S s s

Eta H H h h Tau T T t t

Theta Q Q q q Upsilon U U u u

Iota I I i i Phi F F f f

Kappa K K k k Chi C C c c

Lambda L L l l Psi Y Y y y

Mu M M m m Omega W W w w



Complexions, 285

Concept of ensemble, 372

Concurrent reactions, 103

Condensation polymers, 381

Consecutive reactions, 105

Coupling

equation, 458

phenomenon, 457

Curie-Prigogine principle, 460

Determination of molar mass via,

diffusion process, 407

osmotic pressure, 396

scattering of light, 410

sedimentation equilibrium, 409

size-exclusion chromatography, 419

ultracentrifuge sedimentation, 406

viscosity, 400

Determination of order of a reaction,

integration method, 74

graphical method, 74

half-life method, 75

Ostwald isolation method, 80

ratio variation method, 79

Van’t Hoff differential method, 76

Differential rate law, 52

Disspation function, 454

Divergence

theorem, 518

Dufour effect, 500

Effect of temperature on,

photochemical reactions, 273

reaction rate, 138

Einstein solids, 343

Electrokinetic effect, 471

Electro-osmosis, 472

Elementary reactions, 53

End-to-end distance in a macromolecular

chain, 392

Entropy production, 435, 451

in chemical reaction, 438

in heat transfer, 436

in mixing of ideal gases, 437

Enzyme catalysis, 172

Absorbance, 249

Acid-base catalysis, 170

Actinometer, 260

Activated Complex Theory, 151

Activation energy, 139

Addition polymer, 381

Adsorbate, 1

Adsorbent, 1

Adsorption,

at surface of liquids, 30

chemical, 28

effect of pressure, 2

effect of temperature, 2

of gases on solids, 2

physical, 28

thermodynamic treatment, 19

Arrhenius equation, 139

Average degree of polymerization, 387

Average speed of gaseous molecules, 357

Beer’s law, 248

Bernoulli’s equation, 393

Bimolecular surface reaction, 190

Black-body radiation, 345

Boltzmann distribution law, 289

Boltzmann statistics, 285

Bose-Einstein statistics, 292

Bosons, 367

Brunauer-Emmett-Teller equation, 11

Canonical ensemble, 372

Catalysis,

acid and base, 170

enzyme, 172

heterogeneous, 186

homogeneous, 169

Chain,

inhibition, 128

initiation, 128

length, 128

propagation, 128

reactions, 128

termination, 128

Chemical kinetics, 46

Chemisorption, 28

Collision theory, 144

Index
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Heat capacities,

Debye contribution, 344

Einstein solid, 343

hydrogen gas, 369

monatomic solids, 341

Heterogeneous catalysis, 186

Homogeneous catalysis, 169

Inherent viscosity, 404

Intrinsic viscosity, 403

Ionic mobility, 508

Ionic reactions,

effect of dielectric constant, 167

effect of ionic strength, 164

Ionic strength, 164

Isosteric enthalpy of adsorption, 25

Isothermal diffusion, 479

Isothermal-isobaric ensemble, 372

Isothermal sedimentation, 485

Kinetics of catalytic reactions, 168

Kundsen effect,

kinetic energy, 537

Lambert-Beer’s law, 248

Langmuir adsorption, 4

Laws of photochemistry, 247

Lindemann mechanism, 126

Local equilibrium, 447, 520

Macromolecules, 381

Mark-Houwink equation, 404

Mass average molar mass, 382

Maxwell distribution of speeds, 354

Mean square speed of gaseous molecules, 357

Mechanism of reactions,

acid hydrolysis of an ester, 120

aldol condensation, 240

attachment of gaseous electrons to NO2, 233

between Br– and H2O2, 113

between CH3OH and S2O8
2–, 235

between (CH3)2 CHOH and S2O8
2–, 235

between Cl2 and O3, 231

between CO and Cl2, 120, 238

between F2 and ClO2, 236

between H2 and Br2, 129

between H2 and I2, 117

between H2 and NO2, 233

between H2 and O2, 239

between H2O2 and HNO2, 234

between H3PO2 and S2O8
2–, 234

between I2 and acetone, 121

between NH4
+ and OCN–, 115

between NO and O2, 114

between NO2 and CO, 112

Enzyme inhibition,

fully competitive, 178

fully noncompetitive, 181

partially competitive, 180

partially noncompetitive, 183

uncompetitive, 184

Equation of continuity in

concentration, 522

energy, 522

entropy, 523

mass, 520

Explosive limits, 135

Expressions involving partition function of,

enthalpy, 301

entropy, 299

Gibbs free energy, 302

heat, 298

heat capacity, 301

Helmholtz free energy, 302

internal energy, 289

pressure, 299

work, 298

Expression of partition function,

nuclear, 319

rotational, 312

translational, 304

vibrational, 315

Extent of polymerization, 387

Extent of reaction, 50

Factorization of partition function, 302

Fermi-Dirac statistics, 295

Fermions, 367

Fick’s second law of diffusion, 419

First-order reaction, 56

characteristics of, 56

differential rate law of, 56

examples of, 58

integrated rate law of, 56

half-life, 57

Fourier law, 457

Fractional-order reactions, 71

Freundlich isotherm, 3

Gas collision theory, 144

Gel permeation chromatography, 419

General acid catalysis, 170

General base catalysis, 171

Gibbs adsorption equation, 30

Gradient of a scalar quantity, 518

Grand canonical ensemble, 372

Grotthus-Draper law, 247
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between NO2 and F2, 111

between NO2
– and O2, 237

between OCl– and I–, 117

between oxalic acid and S2O8
2–, 235

conversion of O3 to O2 catalysed by N2O2, 231

decomposition of acetaldehyde, 132

decomposition of acetone, 237

decomposition of CHCl3, 234

decomposition of CH3CHO catalyzed by I2, 237

decomposition of dimethyl ether, 236

decomposition of HNO2 in the presence of 

NO, 229

decomposition of H2O2, 229

decomposition of NO catalyzed by O2, 233

decomposition of NO2, 228

decomposition of N2O5, 123, 230

decomposition of O2NNH2, 237

decomposition of ozone, 110

dehydrogenation of ethane, 131

involving F2, O2 and H2, 230

oxidation of H3PO2 and H3PO3 by S2O8
2–, 234

polymerization of vinyl derivative, 234

pyrolysis of diborane, 228

pyrolysis of monosilane, 229

step-growth polymerization, 137

thermal decomposition of N2O, 234

Michaelis-Menten constant, 172

Microcanonical ensemble, 372

Microstates, 285

Molar conductivity, 509

Molar mass averages, 382

Molecular partition function, 289

enthalpy, 301

entropy, 299

heat capacities, 301

Helmholtz free energy, 302

Gibbs free energy, 302

internal energy, 298

pressure, 299

Moment of inertia, 320

Multilayer adsorption, 11

Negative-order reactions, 72

Nonstationary chain reactions, 135

Number average molar mass, 382

Ohm’s law, 457

One-dimensional random walk, 391

Onsager symmetry rule, 461, 468, 535

Open system, 449

Optical density, 247

Order of a reaction, 51

Osmotic pressure, 396

Partition function,

electronic, 318

nuclear, 319

rate of reaction, 46

reduced viscosity, 403

relative viscosity, 403

rotational, 312

vibrational, 315

Peltier effect, 474

Phenomenological equations, 459, 464

Photochemistry, 247

Photon gas, 345

Photosensitized reactions, 276

Photostationary state, 274

Physical adsorption, 28

Pressure of an ideal gas, 358

Primary salt effect, 166

Principal moment of inertia, 324

Principle of equipartition of energy, 354

Principle of microscopic reversibility, 102

Probability,

Einstein, 528

Smoluchowrki, 526

Probability distribution of,

momentum, 351

speeds, 354

velocity, 352

Process,

primary, 258

secondary, 259

Rate constant of ionic reactions,

effect of dielectric constant on, 167

effect of ionic strength  on, 164

effect of pressure on, 162

Rate of reaction, 46

Rate of reaction divided by volume, 46

Reaction,

fractional order, 71

negative order, 72

second order, 63

third order, 68

zero order, 54

Reaction mechanism, 109

Reciprocity relation, 491

Reduced mobility, 511

Reversible elementary reactions, 95

Sackur-Tetrode equation, 307

Saxen’s relation, 473

Second-order reaction, 63
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Secondary salt effect, 166

Seeback effect, 474

Sequential reactions, 105

Size-exclusion chromatography, 419

Standard equilibrium constant, 331

Stationary chain reactions, 129

Stationary state, 493

Statistical thermodynamics, 285

Statistical treatment of,

equilibrium constant, 331

heat capacities, 343

speeds, 350

transition-state theory, 336

velocities, 347

Steady-state approximation, 108

Streaming current, 472

Streaming potential, 472

Step-growth polymers, 381

Stirling approximation, 288

Surface active substances, 34

Surface area of adsorbent, 21

Surface inactive substances, 35

Surface pressure, 36

Symmetry number, 243

Thermal diffusion, 495

Thermodynamic

proof of entropy production in a

chemical reaction, 439

force 524

treatment of adsorption, 19

Thermoelectricity, 473

Thermoelectric power, 477

Thermo-osmosis, 491

Thomson

effect, 474

second equation, 479

Thermopile, 260

Third-order reactions, 68

Transport number, 510

Transport process,

between two phases, 488

in an electrolytic solution, 501

Transition-state theory, 336

Translational partition function, 304

Ultracentrifuge sedimentation, 406

Uncompensated heat, 435

Unimolecular surface reaction, 187

Viscosity,

inherent, 404

intrinsic, 403

reduced, 403

relative, 403

Viscosity average molar mass, 384

Viscosity of polymer solution, 401

z-average molar mass, 384

Zero-order reaction, 54

Zimm Plot, 417
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