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Preface

In recent years, the teaching curriculum of Physical Chemistry in many Indian
universities has been restructured with a greater emphasis on a theoretical and
conceptual methodology and the applications of the underlying basic concepts and
principles. This shift in the emphasis, as | have observed, has unduly frightened
undergraduates whose performance in Physical Chemistry has been otherwise
generally far from satisfactory. This poor performance is partly because of the
non-availability of a comprehensive textbook which also lays adequate stress on
the logical deduction and solution of numericals and related problems. Naturally,
the students find themselves unduly constrained when they are forced to refer to
various books to collect the necessary reading material.

It is primarily to help these students that [ have ventured to present a textbook
which provides a systematic and comprehensive coverage of the theory as well as
of the illustration of the applications thereof.

The present volumes grew out of more than a decade of classroom teaching
through lecture notes and assignments prepared for my students of BSc (General)
and BSc (Honours). The schematic structure of the book is assigned to cover
the major topics of Physical Chemistry in six different volumes. Volume I
discusses the states of matter and ions in solutions. It comprises five chapters
on the gaseous state, physical properties of liquids, solid state, ionic equilibria
and conductance. Volume II describes the basic principles of thermodynamics
and chemical equilibrium in seven chapters, viz., introduction and mathematical
background, zeroth and first laws of thermodynamics, thermochemistry, second
law of thermodynamics, criteria for equilibrium and 4 and G functions, systems
of variable composition, and thermodynamics of chemical reactions. Volume III
seeks to present the applications of thermodynamics to the equilibria between
phases, colligative properties, phase rule, solutions, phase diagrams of one-,
two- and three-component systems, and electrochemical cells. Volume IV deals
with quantum chemistry, molecular spectroscopy and applications of molecular
symmetry. It focuses on atomic structure, chemical bonding, electrical and
magnetic properties, molecular spectroscopy and applications of molecular
symmetry. Volume V covers dynamics of chemical reactions, statistical and
irreversible thermodynamics, and macromolecules in six chapters, viz., adsorption,
chemical kinetics, photochemistry, statistical thermodynamics, macromolecules
and introduction to irreversible processes. Volume VI describes computational
aspects in physical chemistry in three chapters, viz., synopsis of commonly used
statements in BASIC language, list of programs, and projects.

The study of Physical Chemistry is incomplete if students confine themselves
to the ambit of theoretical discussions of the subject. They must grasp the practical
significance of the basic theory in all its ramifications and develop a clear
perspective to appreciate various problems and how they can be solved.
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It is here that these volumes merit mention. Apart from having a lucid style
and simplicity of expression, each has a wealth of carefully selected examples and
solved illustrations. Further, three types of problems with different objectives in
view are listed at the end of each chapter: (1) Revisionary Problems, (2) Try Yourself
Problems, and (3) Numerical Problems. Under Revisionary Problems, only those
problems pertaining to the text are included which should afford an opportunity to
the students in self-evaluation. In 7y Yourself Problems, the problems related to
the text but not highlighted therein are provided. Such problems will help students
extend their knowledge of the chapter to closely related problems. Finally, unsolved
Numerical Problems are pieced together for students to practice.

Though the volumes are written on the basis of the syllabi prescribed for
undergraduate courses of the University of Delhi, they will also prove useful to
students of other universities, since the content of physical chemistry remains the same
everywhere. In general, the SI units (Systeme International d’unite s), along with some
of the common non-SI units such as atm, mmHg, etc., have been used in the books.

Salient Features

e Comprehensive coverage to basic principles of thermodynamics and chemical
equilibrium in seven chapters, viz., introduction and mathematical background,
zeroth and first laws of thermodynamics, thermochemistry, second law of
thermodynamics, equilibrium criteria 4 and G functions, systems of variable
composition, and thermodynamics of chemical reactions

e Emphasis given to applications and principles
e Explanation of equations in the form of solved problems and numericals
e [UPAC recommendations and SI units have been adopted throughout

e Rich and illustrious pedagogy
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1.1

Introduction to
Thermodynamics

SCOPE OF THERMODYNAMICS

The subject of thermodynamics deals basically with the interaction of one body
with another in terms of the quantities of heat and work.” The entire formulation
of thermodynamics is based on two fundamental laws which have been established
on the basis of the experimental behaviour of macroscopic aggregates of matter,
collected over a long period of time. There is no known example which contradicts
the two fundamental laws of thermodynamics. With the help of mathematical tools,
it is possible to apply thermodynamic principles in every possible field of science
and engineering.

The science which deals with the macroscopic properties of matter is known as
classical thermodynamics. Here, the entire formulation can be developed without the
knowledge that matter consists of atoms and molecules. Statistical thermodynamics
is another branch of science which is based on statistical mechanics and which
deals with the calculation of thermodynamic properties of matter from the classical
or quantum mechanical behaviour of a large congregation of atoms or molecules.

With the help of thermodynamic principles, the experimental criteria for
equilibrium or for the spontaneity of processes are readily established. The

T The concepts of heat and work are of fundamental importance in thermodynamics. Both
these quantities change the internal energy of the system. Heat is best understood in terms
of increase or decrease in temperature of a system when it is added to or removed from the
system. The convenient unit of heat is calorie (non-SI unit) which is the heat required to
raise the temperature of 1 g of water at 15 °C by 1 degree Celsius. The most common work
involved in thermodynamics is the work of expansion or compression of a system. This work
is best understood in terms of lifting up or lowering down a mass (say, m) through a distance
(say, h) in the surroundings; the magnitude of work involved is mgh (see also sections 1.4
and 1.5). Both heat and work have common characteristics of (i) appearing at the boundary
of the system, (ii) causing a change in the state of system, and (iii) producing equivalent and
opposite effects in the surroundings. The experiments of Joule have established a definite
fact (known as mechanical equivalent of heat) involving the work and heat. This fact states
that the expenditure of a given amount of work, no matter whatever is its origin, always
produces the same quantity of heat; 4.184 joules of work is equivalent to 1 calorie of heat.
In SI units, both heat and work are expressed in joules. Since heat given to the system and
work done on the system increase the internal energy of the system, these two operations
are assigned positive values. The converse of these two operations, viz., heat given out and
work done by the system are assigned negative values.
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equilibrium conditions for any system, in equilibrium state or otherwise, may be
calculated. The result of such calculations will indicate the direction the system
will take to achieve equilibrium. However, time is not a thermodynamic variable
and so thermodynamics cannot give any information about the length of time which
would be required for any process to be completed.

The following examples may be helpful.

(1) Liquid water at —10 °C and 0.1 MPa pressure is unstable with respect to ice
at the same temperature and pressure. However, water can be supercooled
to —10 °C and 0.1 MPa pressure and be maintained at that temperature and
pressure for a long time.

(2) Acetylene gas is thermodynamically unstable with respect to graphite
and hydrogen gas. However, no one has observed acetylene decompose
spontaneously into graphite and hydrogen. Thus, acetylene may take very
long time to decompose into graphite and hydrogen gas. The only thing that
is predicted by thermodynamics is that had acetylene been in equilibrium with
graphite and hydrogen, the concentration of acetylene would have been extremely
small and thus essentially only graphite and hydrogen would be present.

(3) Combination of H, and O, to give water is thermodynamically possible.
Nevertheless, both gases can co-exist without combining for a long time.

For chemical reactions, thermodynamics can be used to predict the extent of
reaction at equilibrium, that is, the equilibrium concentrations of all the active
species. In addition, we can predict whether changes in the experimental conditions
will increase or decrease the quantity of a product at equilibrium.

1.2 BASIC DEFINITIONS

System

Surroundings

Boundary

State Variables

In thermodynamics, a few terms with their specific definitions are involved. We
give below some of the terms along with their definitions.

The system is any region of space being investigated.

A system, in general, can be of three types:

(a) Closed system Matter can neither be added to nor removed from it.

(b) Open system To this system, matter can be added or removed.

(c) Isolated system This type of system has no interaction with its surroundings.
Neither energy nor matter can be transferred to or from it.

The surroundings are considered to be all other matter that can interact with the
system.

Anything which separates system and surroundings is called boundary (envelope or
wall). The envelope may be imaginary or real; it may be rigid or non-rigid; it may
be a conductor of heat (diathermic wall) or a non-conductor of heat (adiabatic wall).

The state of a system is defined by ascribing values to a sufficient number of state
variables. Such variables are macroscopic properties such as pressure, volume,
temperature, mass, composition, surface area, etc. Normally, specifying the values
of only a few state variables is necessary for fixing or defining the state of a system.
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Take, for example, a system consisting of an ideal gas. In order to define this
system completely, we need to state the values of only three variables, namely,
p, V and T. The values of other variables (say, for example, amount of the gas,
density, etc.) will be definite and thus need not be stated.

Variables are classified as intensive or extensive. The classification can be explained
by taking a system at a fixed state and dividing it into two or more parts without
alternating the state of the entire system. Those variables whose values on division
remain the same in any part of the system are called intensive variables. Those
variables whose values in any part of the divided system are different from the
values of the entire system are called extensive variables. The magnitudes of
extensive variables are proportional to the mass of the system provided the values
of all the intensive variables are kept constant.

Examples of intensive and extensive variables are given in the following.
Intensive variables Temperature, pressure, concentration, density, dipole moment,
refractive index, viscosity, surface tension, molar volume, gas constant, specific
heat capacity, vapour pressure, specific gravity, dielectric constant, and emf of a
dry cell.

Extensive variables Volume, energy, heat capacity, enthalpy, entropy, free energy,
length and mass.

A process is the path along which a change of state takes place. The process can
occur under a variety of conditions which must be defined because many things
may depend on the nature of the process.

Isothermal process This occurs under constant temperature condition.
Isobaric process This occurs under constant pressure condition.
Isochoric process This occurs under constant volume condition.
Adiabatic process This occurs under the condition that heat can neither be

added to nor removed from the system.

Cyclic process It is a process in which a system undergoes a series of
changes and ultimately comes back to the initial state.

Quasi-static (or reversible) process 1f a process is carried out in such a way that
at every moment the system departs only infinitesimally from an equilibrium state,
the process is called a quasi-static process. At every instant, the system remains
virtually in a state of equilibrium.

1.3 MATHEMATICAL BACKGROUND

Partial Derivatives

A great part of thermodynamics is concerned with the change of a thermodynamic
property with a change of some independent variable. The mathematical operations
used in such derivations are simple differentiations, partial differentiations and
integration. In addition, the concepts of exact differentials, inexact differentials
and line integrals are commonly used.

Such type of derivatives arise when a function having two or more independent
variables is differentiated. A partial derivative is defined as the derivative of a
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First Derivatives

Second Derivatives

Euler’s Reciprocity
Relation

Total Differentials

function with respect to one of the independent variables when all other independent
variables are kept constant.

Consider a single-valued function Z of two independent variables x and y; this is
usually written as Z = f'(x, y) or Z(x, y). If one of the independent variables is held
constant, then Z becomes a function of the other variable alone. Partial derivatives
can thereby be defined as

(a_Z) — lim Z(x+Ax,y)—Z(x,y)
ox )/,

Ax—0 Ax
and 9Z) _ iy 2yt A —Z(x,y)
ay . Ay—0 Ay

Partial derivatives are evaluated by the rules for ordinary differentiation, treating
the appropriate variables as constants. For example, the volume of one mole
of an ideal gas, given by V,, = RT/p, is a function of temperature and pressure, i.e.

Vo = AT p). Thus
(an) RT (an) R
= =-— and — | ==
ap Jr P or J, p

Since partial derivatives are themselves functions of the independent variables, they
can be differentiated again to yield second (and higher) derivatives. If Z = f(x, y),
then the first derivatives are (dZ/dx), and (dZ/dy), and the second derivatives are

7Z_9 (3_Zj . PZ_9 (B_Zj
ox’  ox axyy’ 9’ dy W),

vz _afon)), 2z o)

dyox ay |\ ox 3 x’ oxdy ox|\ay ), ’

When a function and its derivative are single valued and continuous, the order of
differentiation in the mixed derivatives is immaterial. Thus

0’Z  9°Z
oxdy Jyox

(1.3.1)

Equation (1.3.1) is known as Eulers reciprocity relation (or cross-derivative
rule). It is applicable to the thermodynamic functions. For an ideal gas. We have

oV, 2RT .,
2 | T3 > | =0
- ), p oT »

ond {a(an/ap)T} :{B(BVm/aT)p} R
p T

oT op T

We have considered so far changes in Z(x, y) brought about by changing one of
the independent variables at a time. The more general case involves simultaneous
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variations of x and y. Let AZ be the small change in Z brought by simultaneous
increments x and y in the independent variables. Thus

AZ=Z(x + Ax, y + Ay) — Z(x, y)
Adding and subtracting the quantity Z(x, y + Ay), we get
AZ = [Z(x + Ax, y + Ay) = Z(x, y + A)] + [Z(x, y + Ay) — Z(x, )]

Multiplying and dividing the expression within the first bracket by a factor Ax and
that within the second bracket by Ay, we get

Aze {Z(x+Ax,y+Ay)—Z(x,y+Ay):|Ax+|:Z(xy+Ay)—Z(x,y)}Ay
Ax Ay

Approaching the limit Ax — 0 and Ay — 0 the two bracketed quantities become
partial derivatives, while the increments Ax, Ay, AZ can be replaced by the
differentials dx, dy, dZ, respectively. Thus, the total differential of the function

Z(x, y) is
3z Y4
iz= 22| &+ £ d
(ax)y +(ayly

For a function Z of » independent variables Z = f(x,, x,, ..., X,,), there are n first
partial derivatives. The total differential is given by

0z 0z Z 2 (0Z
dZ=| — |dx;+| — |dx, ++--+| — |dx, = — |dx;
(axlj 1+(ax2j 2 +(8xj ! g(axij l

n

To determine the change in the value of the thermodynamic function caused by a
change in one or more state variables, it is necessary to express the partial derivatives
of the function in terms of experimentally observable quantities. Certain relation
between partial derivatives which facilitate obtaining the required expressions are
derived below.

(i) Let u be a function of x and y; its differential is

du = (a_uj dx+(a—uj dy (1.3.2)
ox /, /),
If u = f(x, y), then x = f(u, y) and its differential is
dx = (%j du+(%j dy (1.3.3)
ou), ),

Substituting Eq. (1.3.2) in Eq. (1.3.3), we get

e (2] ) w2 o (2)
R REEE ) o
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Cyclic Rule

The variables x and y are independent. If y is held constant, i.e. dy = 0, then
Eq. (1.3.4) becomes

(2] (2) Joees

But dx may have any value and therefore the term within the bracket must be

zero. Thus
1_(3_”) (a_x) -0 o (a_”) L sy
ox /), \odu), dx /), (dx/du),

that is, the partial derivative is equal to the reciprocal of the partial derivative
between the same two variables taken in opposite order, provided the same variables
are held constant.

If x is held constant, i.e. dx = 0, then Eq. (1.3.4) yields

ox ox\ (du
(g)u + (Ejy (gjx =0 (136)

This equation can be written in several different forms such as

(a_xj _ (ou/dy),
W),  (Quldx), (13.7a)

or (a_u) (%j (B_y) +1=0 (1.3.7b)
ox J,\ dy ), \du J,

Equation (1.3.7b) is known as a cyclic rule and is applicable for any three variables
of which only two are independent.

(ii) Consider again the function u = f(x, y). Let y = f(x, s). The differential of y in
terms of x and s is

dy = (B_y) dx+(a—y) ds (13.8)
ox J 0s /y

But if u = f(x, y) and y = f(x, ), then u = f(x, s). Writing the differential of u
in terms of x and s, we have

du Jdu
=|=— | dx+| — | ds 3.
au- (5] ax+(5) (139)
The differential of u in terms of x and y is
d d
du = (—”) dx+(—u) dy (13.10)
ox /, /.

Substituting dy from Eq. (1.3.8) into this, we get

e (2) +(2) (2) Joe(2) () s
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Equations (1.3.9) and (1.3.11) are identical. Therefore, the coefficients of dx and
ds in them must be the same, i.e.

5 -(5) 5.3 (13129

du Jdu ay)
and (asj (ay) (as x (1.3.12b)

Equations (1.3.12a) and (1.3.12b) can be evaluated directly from Eq. (1.3.10).
Dividing Eq. (1.3.10) by dx and introducing the condition of s being constant gives
Eq. (1.3.12a). Similarly, dividing Eq. (1.3.10) by ds and introducing the condition
of x being constant gives Eq. (1.3.12b).

(iii) If the two independent variables in a function » = f(x, y) are also functions of
two other independent variables x = f(s, #), and y = f(s, #), then the function u also
becomes a function of s and ¢. The differentials of these functions are

du—(a—u) dx+(a—uj dy (1.3.13)
ox /, ),

o (5] a3
()l
(as), @_) a (13.16)

Substituting dx and dy from Eqs (1.3.14) and (1.3.15) in Eq. (1.3.13), we get

o [5G (3 ) J- (3,3 (5.3

(1.3.17)

ar (1.3.14)

&”|><

dy ar (1.3.15)

)
)

T

N

Comparing Eqs (1.3.16) and (1.3.17), we get

D-EEEE e
ds /), \ox/),\ads/), \dy ) \0ds/,

) (%) (2] (%) ()
and (atl_(ax)y(atl+(ayl(az . (1:319)

Equations (1.3.18) and (1.3.19) can also be obtained directly from Eq. (1.3.13).
Dividing Eq. (1.3.13) by ds and introducing the conditions of constant 7, we get
Eq. (1.13.18). Similarly, Eq. (1.3.19) can be derived by dividing Eq. (1.3.13) by
df and introducing the condition of constant s.
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The following equations can also be derived from Eq. (1.3.13).

2)()(3)2)-

)33

where v is a function of x and y.

Problem 1.3.1 Derive the cyclic rule
(ipj (al) (?LVj 10
aT Vv aV P ap T
Solution Since p = f(V, T), we have
dp = (a—p) dT+(a—p) v
oT Jy oV J)r

For a cyclic process, dp = 0, so that

2] mo{22) o

Dividing by (97),, we have

Gl (57), o) =o o Gl (7, =60

or (ipj (LT) [LVJ 11=0
oT Jy\ oV J,\ op ),
Problem 1.3.2 Test the cyclic rule of Problem 1.3.1 for pV,, = RT.
Solution Differentiating the given equation pV,, = RT, we have

pdV,+V,dp=RdT

Dividing this equation by d7 and introducing the condition of constant molar volume, we get
. R

Va (a—pj =R Le. (a—p) =—

T Jym T Jyy Ve

Similarly, we have
(aT] P (BL] A
v, , R ap Jr p
Now substituting these in the cyclic rule of Problem 1.3.1, we get
(a—p) or (% S (3) = s41-0
T Jy\ OV ) ,\ P Jr V., J\R P
Problem 1.3.3 Test the cyclic rule for

a
P+F

m

)(Vm)zRT
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Solution Writing the given equation as

(me +Vaj =RT

m

and then differentiating, we have

pdv, +dep—%de =RdT

m

Dividing by dT and introducing the condition of constant volume, i.e. dV,, = 0, we get

8p) . (Bp) R
V - =R .C. —_— = —
“’(aT v s \er), T

m

Similarly, we have
T _ 2
(3] _p-alVu [%J T
W, R o Jr p-alV;
Substituting these in the cyclic rule, we get

2
(a—p) or (%) +1= R p=alVu | __ Va +1=-1+1=0
Ty \oVyy )\ 3p Jr V. R p—alV?

Ordinary Integration The definite integral of a continuous function is defined by the limit

b n
j f(x)de=1lim lim Y f(x,)Ax, (1.3.22)
a n—eo Ax,—0 il

where Ax; =x;, | —x; withx, =aand x, ., = b.

The geometrical interpretation of the above integral as an area is illustrated in

Fig. 1.3.1.
y =/
y
Fig. 1.3.1 Geometrical
interpretation of
the integral
a Xj———p b

The operation of integration is the inverse of that of differentiation. Thus

jb f(x)dx = F(b)- F(a) (1.3.23)

where

= f(x) (1.3.24)
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Indefinite Integral

Line Integrals

This follows easily from the definition of the derivative

im  F(x0) = F(x)

Ax;—0 Ax
i

= f(x) (1.3.25)

Substituting this in Eq. (1.3.22), we get

n

S [F(xi00)~ Fi)] = F(b)— F(a) (1.3.26)

i=1

which establishes Eq. (1.3.23). Using Eq. (1.3.24) in Eq. (1.3.23), we have
b
[ dF (x) = F(b)- F(a) (1.3.27)

showing that a definite integral can be expressed as a difference between two
boundary values of a function.

If the integration is done without the limit of integration, it is then called an
indefinite integral. In this case, we have

F) =] f(x)dx (1.3.28)

If the function F(x) contains a constant term, the term does not affect the
derivative f(x), because the derivative of a constant is zero. Consequently, on
integrating the function f(x), the constant term must be added to the integral. Thus,
Eq. (1.3.28) must be written as

Fx) =] f(x)dv+1 (1.3.29)

The value of / (constant of integration) can be determined if the value of F(x) is
known at some value of x, say x;.
I=F(x)-] [ /(x)dx] (1.3.30)
‘xl
where the subscript on the last term is used to indicate that the integral is to be
evaluated at x;.

Differential expressions of the form
d¢ = P(x, y) dx+ Q(x, y) dy (1.3.31)

for two independent variables are often met in physical sciences and engineering.
When dx and dy are small, the quantity d¢ is a small increment of some quantity ¢,
which may or may not be a function of x and y. The integral of such expressions
between two points (x;, ¥;) and (x,, y,) can be determined along some particular
path connecting the two points, since d¢ can be calculated from Eq. (1.3.31) for each
part of a specific path. The integral is the summation of the quantity d¢, obtained
as we move along the curve. Such integrals are called /ine or contour integrals.

The value of a line integral between two points depends, in general, upon the
path followed in determining the integral. As an example, let us evaluate the line
integral

Lf(dx—xdy)
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from A to B in Fig. 1.3.2 along two different paths
(i) A(0, 0) to B(2, 2)
(i) A(0, 0) to D(2, 0) to B(2, 2)

B
y
® B
4 (i)
Fig. 1.3.2 Two different
paths employed in A — )
going from A to B (“)x N D
Path (i) Along the line AB, we have
y=ux
Therefore, ydx—xdy=0
Hence, J (ydx—xdy)=0
AB
Path (i) Along AD, we have
y=0 and dy=0
Thus, ydx—xdy =20
Along DB, we have
x=2 and dx=0
Thus, ydx—xdy=-2dy
Hence, | Gdv—xdy)= [ (ydv—xdy)+ [ (ydv-xdy)
ADB AD DB

_ DJB—zdy= _[02—2dy=—4

The line integral can be reduced to an ordinary integral with one independent
variable, if y is a function of x and

dy = (dy/dx) dx
With this Eq. (1.3.31) becomes

LJ: dg= j [P(x,y(x)) + Q(x,y(X))%} dx (1.3.32)

The value of such integral depends upon the particular function chosen for y(x).

Line Integral and A line integral of special interest occurs when the path of integration is a closed
Green’s Theorem curve, that is, the initial and final points are identical. Such integrals are called

cyclic integrals and are denoted by the symbol (j) Thus, the cyclic integral of the

differential expression given by Eq. (1.3.31) is represented as
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Fig. 1.3.3 Cyclic
integration

Exact and Inexact
Differentials

$dg = PLP(x, y)dx+O(x, y) dy] (1.3.33)

The value of this integral is determined by traversing the closed curve, usually in
a counter clockwise direction (Fig. 1.3.3).

T B
L
A
x—>
Green’s theorem states that under certain conditions*
0 oP
PLP(x, y)dr+ O(x, y)dv] = [[ Ka_Q) _(—j }dx dy (1.3.34)
S x y ay X

The right hand side of Eq. (1.3.34) represents the double integral over the surface
enclosed by the closed curve.

A special case occurs when the cyclic integral of a differential expression given by
Eq. (1.3.33) equals zero for every closed curve. According to Green’s theorem
(Eq. 1.3.34), we have

(%_f)y _ (g_’y’jx (13.35)

When the condition of Eq. (1.3.35) holds, the differential expression is said to be
exact and d¢ is said to be an exact differential; otherwise, the differential expression
is said to be inexact.

If d¢ of Eq. (1.3.31) is to be an exact differential, then
$do = PLP(x, y)dr+0(x, ) dy]=0 (1.3.36)

From Fig. 1.3.3 the cyclic integration can be replaced by two line integrals
(i) from A to B in the counter clockwise direction and (ii) from B to A in the same
direction, so that

B A
CJ‘)d¢ = Ljd¢+ L_[d‘l’
A B

* If P(x, y), O(x, y), (dP/dx), and (dQ/dy), are continuous functions of x and y along the
curve L and over the surface S (Fig. 1.3.3).
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Since dg =0, it follows that

B A
LJdo=—[do (13.37)
A B B
If this condition is true for any cyclic path, the line integral from A to B, (Ljdqb]
A

must be independent of the path and its value depends only on two points. A and
B (as in the case of ordinary integration).

It may be readily proved that the condition of Eq. (1.3.35) as derived from
Green’s theorem is equivalent to Euler’s reciprocity relation. If ¢ is a function of
x and y, the total differential of ¢ is given by

)3
d¢ (ax ydx+ % xdy

If d¢ is given by the differential expression
dg = P(x, y) dx + O(x, y) dy
it follows that

P(x, y) = (g—f) and Q(x,y)=(g—(ypj
y X

The condition of exactness, as given by Eq. (1.3.35), is

(5),-(5%),

SEIRED
Therefore dy\ax /| Lox\dy /],

which is Euler’s reciprocity relation (Eq. 1.3.1).

The concept of line integral, exact differential and inexact differential may be
summarized as follows:

We are concerned with the differential expression
d¢ = P(x, y) dx + O(x, y) dy
The integration of such an expression is carried out along a designated path
between two points (x;, ;) and (x,, y,) or along a closed curve.

X2:¥2

o If the line integral LJ d¢ depends upon the path along which the integration

RERS|
is performed, or, if (J.Dd¢ is not equal to zero, then d¢ is an inexact differential.

There is no function ¢(x, y) which exists whose total differential is given by
P(x, y) dx + O(x, y) dy.
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Problem 1.3.4

Solution

Fig. 1.3.4 Three paths
a,b,and c

X2,)2
o [f the integral LJ d¢ does not depend upon the path along which the integration is
N

performed, or it CJ‘Dd(b equals zero for every cyclic path, then d¢ is an exact differential.
A function ¢(x, y) does exist and its total differential is equal to P(x, y) dx +
O(x, y) dy with the condition that (0P/dy), is equal to (dQ/0x),.

e Symbolically, an inexact differential is distinguished from an exact differential by use

of d (i.e. d cross) instead of d, i.e. d¢ denotes the inexact differential of ¢ while d¢
is the exact differential of ¢.

(1) Given the differential

RT
dp= —dp-RdT
p

(i) Carry out the line integration between the limits 7, p, to T}, p; along the following three paths
(shown in Fig. 1.3.4).

(@ Ty po— T, po— T, py
() To,po— Ty p1 = 11 py
(©) To po— Ty p,
(ii) Show that d¢ is an inexact differential.

(iii) Is it possible to define the function (@) explicitly in terms of 7 and p?

(i) Carrying out the line integration along the given paths, we have

B(Z;,p0) C(T,p)
Path (a) Ag, = I [Edp -R dT} + J |:Edp -R dT}
p p
A(Ty.po) B(7;.po)

T
= —R| ‘dTJrRTIJ"‘@:—R(T1 ~T,)+RT, In 2L
Ty Pp Do

P D————b———7c
| .
7
| Re
p | e
| <
s C
| 7
|7
L~
Do A 2 B
1 1
T, T —» T,
D(Ty.p1) or C(T.p) .
Path (b) Ag, = J' {—dp—RdT:|+ j |:—dp—RdT}
p p
A(Ty.po) D(Ty.p)
T
RTojp’ldp—Rj 'd7 = RTynLL - R(T, - )
Po p Ty Po
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Path (¢) Temperature and pressure along the path c are related by the expression

T, —T:
T= To*‘[ ! OJ(P—PO)
1~ Po
Hence dT = (dep
P1—Po

Substituting 7 and d7 in the given relation and carrying out the integration over p, we have

IR e Gl ey
py LD Pr—Po P1—Po

RTy In pl—Rpo( L1, j]npl: R(Typ =T po) n 2L
Pi=Po) Po (p1=po) Po

Ag.

Po

(ii) We observe that
AP, # Ag, # AQ,
that is, the line integral depends on the path of integration and, hence, d¢ is not an exact

differential. This also follows from the fact that Euler’s reciprocity relation does not hold
good.

(iii) Since d¢ is an inexact differential, the function ¢ cannot be explicitly expressed in
terms of 7 and p.

Given the differential
do- Far "y,
p P

(i) Carry out the line integration between the limits 7, p, and T}, p; following the three
different paths of the proceeding problem. (ii) Show that d¢ is an exact differential.

(i) Carrying out the line integration along the given paths, we have

B(73,p0) C(T,p)
Path @) A9, = J' {RdT—Rgdp}+ J' {RdT—Rde}
p p p p
ATo.po) B(T;,p0)
= i(]‘l _TO)_,_RTI(I_IJZR[TI_%]
Po bt Po b Po
D(To,p1) C(Th,p)
Path b)  Ag,= j {RdT—RSdp}+ J' [RdT-Rfdp]
p p p p
A(Ty.po) D(Ty.p1)

= RTO(I_IJJ,_R(]]_TO)ZR[Y]_TOJ
ph Po) P P Do
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Exact Differential
and State Function

Path (c¢) Since for this path,

T, T
r= To+[ : 0}(1?—!70)
b= Po

T, -T
dr = ( 10 Jdp
P1=Po
Substituting 7 and d7 in the given relation and carrying out the integration over p,
we get
R( T,- R T, - T,
NE e e e
po LP\P1~ Po p Pr—Po
R( T,-T, RT; T, - I, -T,
N e e R e ]
po LP\P1— Do p P\P1—Po pPr—pPy/)pP
n[ RT T-T, \dp T -T, ndp
e e SR R ey
Po P Pr=Py) P Pi— Py P
P1—Po P Do P Do
(ii) We see that
Ag, = Agy= Ag,

and hence the given differential is an exact differential. This also follows from the Euler’s
reciprocity relation.

Therefore

Ag,

Comparing the given differential with the expression
d¢ = P(T; p) dT + (T, p) dp
we find that

R RT

P= and O=——
P

For d¢ to be exact differential, we must have

( ap )T ( aj )U
WhiCh iS true Since

(ap) {B(R/p)} R (ag) {a(—RT/pz) R
— | == == ad |—=| ={——"} =
ap T dp T p2 oT Jp oT » p2

Let us review some properties of the exact differential d@(x, y) and the function @(x, y).
First, the integral of d@(x, y) between any two points will be a function of the end points
only and will be independent of the path. This may be represented as

B B
Jdox 1 =0(x0)| =05 =0, =8¢ (1.3.38)
A
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The term A¢ is then just (¢5 — ¢,), that is, its values is dependent on the difference
(¢5 — ¢,) and not on the path in between. Further, the cyclic integral becomes

$do(x,») = Tdc»(x, y>+Td¢(x, »)=0
A B

B A
or  [do(xy) = —[do(x,y) (13.39)
A B

A function which satisfies above requirements is called a state function.
The essential criteria of a state function are as follows:

e The change in the value of a state function depends only the initial and final
states and not on the path of the process carried out in going from initial
state to final state.

e The cyclic integration involving a state function is zero.
o The state function has an exact differential, i.e. if p = f(7, V) is a state function

then
), a7+(57)
== | dT+|=—| dV
dp (aT L),

with the condition that

siilsr) ], =rl(ar),

o All thermodynamic properties satisfy the requirements of state function.
A few of them are

AU =q+w Change in thermodynamic energy
qrev
S= - Entro
T Py
H=U+plV Enthalpy
G=H-TS Gibb’s free energy
A= U-TS Helmbholtz free energy
oG . .
u= = Chemical potential
ani T,p,nj,j;ti

Show that the volume of a fixed amount of an ideal gas is a state function.

For an ideal gas V' = nRT/p, therefore
(aV) nR (aV] nRT
dV=|zz| =— and |—| =——
or), p p Jr p
Substituting these in the relation
av 14
V= |—|dp + [—j dr
(ap jT Pr\ar),

RT R
we have a=-" dp + Rar
p p

2
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Problem 1.3.7

Solution

Differential
Expression in
Three or More
Variables

If Vis to be a state function, d/ must be an exact differential, for which the Euler’s reciprocity
condition states that

5] =55,

Evaluating these, we get

9 (LV) _O(_mRT) __nR
aT (\ dp J; » oT p? » p?

) 262
dp |(\oT J, r op\ p Jr P*

Since (9*V/0T dp) and (9*V/dp OT) are identical, the volume of an ideal gas is a state function.

Show that pressure is a state function for a gas obeying

(p+V”2]<Vm>=RT

m

Rewriting the given equation as

_RT_a
p A Vri
Therefore U _R75+27‘;; (al) _RrR
Wy )y Vi Vi or )y Wy
’p _ R4 _¥p __ R
=-—; an ==
aTan Vm an oT Vm
82p azp

H =
€ Srov, oV, ar

Therefore, dp is an exact differential and p is a state function.

Many application of thermodynamics involve more than two independent variables. A
differential expression involving more than two variables (say, for example, three variables
x, ¥, z) will be of the type

dg = M(x, y, z) dx + N(x, y, z) dy + P(x, y, z) dz (1.3.40)

As in the case of two variables, d¢ can be either exact or inexact. If it is exact,
then ¢ is a state function and its total differential will also be given by

(35
d¢ (ax y’zdx+ % x,zdy+ > X’ydz (1.3.41)
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Comparing Eq. (1.3.40) with Eq. (1.3.41), we get

Mx, v, ) = (g—fj : N(x,y,z>=(g—ﬁ) : P(x,y,z)=(3—f]
v,z X,y

X,z

Equation (1.3.40) can be tested for its exactness with the help of reciprocity relations
(one between each pair of variables). These are

2.2, (2,2 (5,0,
dy e ox /. 0z Jy, dy e ox /. 0z Jy,

For an ideal gas pV = nRT. Taking V = f(n, p, T), verify that dV is an exact differential.
For V' =f(n, p, T), the total differential of V' is

av av av
=|=| dn+|—| dp+|==| dT
ud (a}’l )[l,T ! (ap jn,T v (aT)n,p

For dV to be an exact differential, we must have

qGRE GRS
aaT{@:)qu}w = aan{(zl;)n,p}ﬂ (1.3.44)

and 9 (B—V) _9 (B—V) (1.3.45)
JaT |\ dp Ty op \\oT J,, T

Now for the given gas pV = nRT, we have

(alj _RT. (?LV) __"RT. (ELV) _mR
on p.T p ' ap n,T P2 ’ oT n,p p

and a{(aq } ={8<1L/p>} __RT
op (\onJpr],, o P
a{(arfj } :{a(—nRT/pz)} __RT
on P Jnr) 1 on T p2
oo, U577,
oT n)pr ), oT mp P

IR
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Integrating Factor

0 (al) _JanRT /P __nR
oT |\ dp J,r np ar np »’

a{(av) } :{a(nR/p)} __nR
dp (\T /), T ap nT P’

From the expressions of second differentials, we find that Eqs (1.3.43) to (1.3.45) are
satisfied. Hence, dV is an exact differential for an ideal gas.

An inexact differential expression Pdx + Qdy (with dP/dy # dQ/dx) can be
converted into an exact one by means of an integrating factor G(x, y). In that case,
G(P dx + Q dy) becomes exact, that is

8(GP)_8(GQ)
d  ox

Take, for example, the differential expression

dop =ydx—xdy

It can be converted into an exact differential by choosing G(x, y) = 1/x*. Thus, we
have

1 y 1
—2d¢: df=—2dx——dy
X X X

i{i} _i(_l)
oy lx*], ox\ x/,
Thus, df is an exact differential. It can be verified that the function /= —y/x.
Alternatively, the integrating factors 1/y%, 1/xy and 1/(x* + »%) convert the above

relation to d(x/y), d[In (x/y)] and d[arctan (x/y)], respectively. Evidently the choice
of G(x, y) is not unique.

It can be seen that

Another case of integrating factor is cited by the differentials given in Problems
(1.3.4) and (1.3.5). Differential of Problem (1.3.5) can be obtained by multiplying
the differential of Problem (1.3.4) by the factor (—1/p). Since differential of Problem
(1.3.4) is inexact whereas that of Problem (1.3.5) is exact, it is obvious that (-1/p)
is an integrating factor.

The mathematical formulation of the first and second laws of thermodynamics
is based on the construction of exact differentials from inexact ones. Thus the
first law postulates that even though dg, the heat exchanged by a system, and dw,
the work involved in the system, are individually inexact differentials, but the
sum of these two (i.e. dg + dw = dU) is an exact differential. This constitutes
a definition of the internal energy U. The second law postulates that 1/7 is an
integrating factor for dq,.,. Thus dS = dq,../T is exact, which defines the state
function entropy S.
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The principle of Legendre transformation can be used to modify a differential
expression so as to change its independent variables. For example, take the
following exact differential expression:

dF(x, y) = M(x, y) dx + N(x, ) dy (1.3.46)
Let a function ¢ be defined as
¢=F—-Mx (1.3.47)

Its differential is given by
d¢ =dF — Mdx —x dM
Substituting dF from Eq. (1.3.46), we get
dp=Ndy—-xdM (1.3.48)

The differential is appropriate for a function ¢ = f(y, M). In transforming a
function of x and y into a function of M and y, the independent variable x and the
corresponding coefficient M have thereby exchange roles with the change of sign.
Pairs of variables which can be interchanged by a Legendre transformation such
as M and x or N and y are said to be conjugate to one another. The prescription for
one of these transformations is given by Eq. (1.3.47) in which a new function is
defined by subtracting from the original one the appropriate product of conjugate
variables.

The most important application of Legendre transformations in thermodynamics
is based upon the differential relation obtained by union of the first and second
laws:

dU=TdS-pdV (1.3.49)
The three possible transformations of this relation are

dH=TdS+Vdp

d4=-SdT-pdV

dG =-8dT+ Vdp
where H=U+plV;, A=U-TS;andG=U+pV—-TS=A4+pV

From the following thermodynamic relation
G=H-TS,; H=U+pV; dq., =TdS; dU=dg,,—pdV
14 S
Show that, (dG/T), = —§; (0G/Op); =V and (a—) =- 98
aT J, p )y
We start with
G=H-TS
Since H = U + pV, therefore
G=U+pV-TS

Differential of this expression is
dG=dU+pdV+Vdp-TdS-SdT
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Now TdS =dg,, =dU + pdV, therefore

dG = Vdp - SdT (1.3.50)

Thus, we establish that G is a function of 7 and p. Moreover since G is a state function,
therefore, we have

oG oG
dG =| — | d, — | dT 1.3.51
(apl p+(aT)p ( )

Comparing Eqgs (1.3.50) and (1.3.51), we get

(aﬁ) =V and (aﬁj =-S5
p Jr ap ),

Applying Euler’s reciprocity relation to Eq. (1.3.50), we get

7). =15,

Problem 1.3.10 From the following thermodynamic relations
A=U-TS; dg,., = T dS; dU = dg,,, —p dV
show that
o) e el = (G2 65),
Solution Since 4 =U- TS, we get
d4=dU-TdS-SdT
Now TdS = dq,, =dU +p dV; therefore
d4 =-pdV-Sdr (1.3.52)

Thus, we establish that 4 is a function of 7 and V. Moreover, since 4 is a state function.
Therefore, we have

dd = (a—A) av + (a—A) ar (1.3.53)

Comparing Eqgs (1.3.52) and (1.3.53), we obtain

A oA
94y _ a [ s
(aV)T pooa (aTJV

Applying Euler’s reciprocity relation to Eq. (1.3.52), we get
(ELP] = (LS)
oT Jy oV )y

Problem 1.3.11 Using the definition H = U + pJV and, when necessary, obtaining conversion relationship
by considering H (or U) as a function of any two of the variables p, V and 7, derive the

Miscellaneous Problems
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following relationships:

o (57, G )
o (%)-(2) 1))
o (-2 @)

(i) Differentiating the given relation H = U + pV, we get
dH=dU +pdV+Vdp
Taking H = f(T, p) and U = f(T, V) and replacing dH and dU in the above equation by

oH oH
dr d
(ar) +(ap) P

oU oU
dU=|—| dT + ar
[E)T) (an

oH oH U U
h — | dT+ dp=|—| dT+| — | dV +pdV +Vd 1.3.54
we have (BT)p (ap) (BTJV +(8VJT +pdV +Vdp ( )

Q| U
wQ

)
T

(<5}

TS

Dividing by d7, keeping p constant, we have

(), (22), (20, (2) o).

e @) )

(ii) Dividing Eq. (1.3.54) by d7, keeping V constant, we have
(57),(5), G2),-G), (37)
an apTBTV aTV E)TV

or (LH) _ ((LU) Ay (BH) (ELP) (1.3.56)
aT P aT Vv ap BT Vv

(iii) The cyclic rule for H = f(T, p) is

() ),) -
p J,\oT Jy\oH ),

Rearranging this in the form

(5 )50, G,

and then substituting in Eq. (1.3.56), we have

@-EmEE e
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Problem 1.3.12

Solution

Problem 1.3.13

Considering U as a function of any two of the variables p, V" and 7, prove that

o (G55

o (5)-GE)

(i) Taking U = f(T, p) we get

dU = (B—Uj dT+(a—Uj dp
aT /, p )r

Dividing by dp and introducing the condition of constant ¥, we have
) - (2
ap )y or ) ,\ dp )y, o Jr

o () () o(2) () 135
ap )y \opJr \oT/),\dp ),

Taking now U = f( p, V), we get

U U
du=|=-—"71 d — | dV
(apl, p+(3Vjp

Dividing by dp and introducing the condition of constant 7, we have

5 GGG

U oU U 14
or (apl‘(apl ‘(av)p(apl (1339

Comparing Eq. (1.3.58) and Eq. (1.3.59), we have the required relation

G5 =G5

(ii) Since U =f(T, V), we get

av= (30 ar+(37) av
aT %4 av T

Dividing by dp and introducing the condition of constant temperature (d7" = 0), we have

&), - G5

Cubic expansion coefficient, ¢ (or expansivity in short, also formerly known as coefficient
of thermal expansion) and isothermal compressibility, & (formerly known as compressibility
factor) are defined as:
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Solution

Introduction to Thermodynamics 25

v\or ), vl ),
Show that

) 2o(2) 0 (22) (%) -
@) “ _(BT ) and  (ii) o T+ o7 p—O
(i) Taking V= f(p, T), we get

dvz(ﬁﬁ)(¢+(§5)dr
ap )y aT J,

Dividing this by d7 and introducing the constant volume condition, we have

o (5, G7),+(57),

that i (ap) OV/on), _ Vo _a (13.60a)
at 18 - = TS5 A N ., - .J.0Va
oT )y (V/dp), Vkr K

(ii) Since V is a state function, and dV is an exact differential, using Euler’s reciprocity
relation, we have

G R

0 d
or ﬁ(—VKT)ng(Va)T

Carrying out the differentiation, we get

e[V @&)._ 14 9o
“(aTL V(aT p_a(&JT+V(&JT

that is (a—“) +(aﬁ) =—ﬁ(a—V) —g(al) =Ky - E(—x,)=0
dp )r \oT J, y\or/, V\dp); vV 14

(1.3.60b)

Derive the expressions for ¢ and & for one mole of (i) an ideal gas and (ii) a van der Waals
gas.

(i) For one mole of an ideal gas

pV, = RT
On differentiating, we get

pdV,+V,dp=RdT (1.3.61)
Dividing by dT at constant p, we have

o,
Dm | —p
p(ar)p

that is = L(%) :i:l
Va\ oT p Vup T

Q
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Problem 1.3.15

Dividing Eq. (1.3.61) by dp at constant 7, we have

) e ()
) )

(ii) For one mole of a van der Waals gas

[p + V‘%](Vm—b)=RT

a ab
or Vi + —— pb— 2 =RT
PVt =P v
or pV2 + aV, — pVib — ab=VZ2RT

Differentiation gives
Vidp+3V2pdV, +adV, —V2bdp—2pV,bdV, =2V, RT dV, +V>RdAT (1.3.62)

Dividing by d7 and introducing the condition of constant p (i.e. dp = 0), we have

3y (aV ) +a(%) -2 Vb(aV ) =27, RT(aV ) +V2R
oT oT or J, oT J,

v, ) _ V2R

m

Therefore (

or ), 3V2p+a-2pV,b—2V,RT
1 (W, R R
and *= 9T - a - a 2ab
3pV, +——2pb—-2RT pV, ——+=2
Pty S

Dividing Eq. (1.3.62) by dp and introducing the condition of constant temperature, we have

V3 +3pV2(aV j +a(%) —V2b-2pV,, b(aaV ) =2V RT(aV j
T

dp dp p Jp
2 3
Therefore (%j — > Vb =Va AN
o )y 3pVi+a-2pV,b—2V,RT N 2a2b
Vo Vi
and Kp= — (aV j —M
op y _a  2ab
AT

Taking V as a state function, derive the equation of state for which
(1) V = k/p, keeping T constant and V' = k,T, keeping p constant
(i) o= (V—a)/ TV and k; = 3 (V — a)/4pV, where a is constant
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(i) Since V' = k;/p for constant temperature, from where we can get

(al) _h__pV_V
vl PP P

Also V = k,T for constant pressure, from where we can get

14 4
) =k ==
(aT)p T

Since V = f( p, T), therefore

ar - (alj dp+(al) ar
p )7 T J,
Substituting the values of (dV/dp); and (dV/9T),, we get
dr= - r dp + 14 dr
p T

Dividing by V and rearranging, we get
w4 _dr
V P T

Integrating the above expression, we get

In [sz +In (Pz] =In (sz or In (172[/2) =In (Tz)
" P . 24 I

1218} _ »h
T, I

or = constant or pV =RT (where R is a constant)

(i) Taking V' = f(p, T) we have

14 14
Y U L e
a [apl‘”(ar),,

Replacing (dV/dp)y and (9V/d7), in terms of k7 and ¢, respectively, we have
dV=-Vk;dp + Vo dT
Substituting the expressions of & and k;, we get

_V3(V—a)dp V—a

dr = +V dr
4pV v
which on rearrangement gives
& _ _3dp dr

V-a 4p T
Integrating both sides, we get
Vy—a) 3 p T p3/4(V —a) T
Inf 2—|+>In| “2|=In| 2| or m=Z~2 =2
Vi—a) 4 \p T, ri (i-a) T
3/4

P h-a) _ pt0h-a)
7 I

or

=constant or p>*(V —a)=AT;

(where 4 is constant)
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Homogeneous
Functions

Degree of Intensive
and Extensive
Variables

Euler’s Theorem

A function f(x, y, ...) is said to be a homogeneous function of degree » if the
following condition is satisfied:

FOx Ay )=y ) (1.3.63)

where A is an arbitrary parameter and » has a constant integer value. Take, for
example

(1) f(x, y) = ax + by
which as a homogeneous function is

fx, Ay) = a(Ax) + b(Ay) = Max + by) = Af(x, y)

(i) f(x, ) = ax’ + by + ¢y
which yields
fx, 2y) = aQ)® + b)) + (A’
= A (ax® + bxy + &) = A2 f(x, »)
If n = 0, we have a homogeneous function of zero degree; for » = 1, homogeneous
function is of the first degree, etc.

All functions of zero degree with respect to the amounts of substances are intensive
variables whereas those of the first degree are extensive variables.

Take, for example, an ideal binary liquid solution of benzene and toluene. The
total volume of the solution is given by
V=nV, + nV, (1.3.64)

where n,, and n, are the amounts of benzene and toluene, respectively, and V}, and
V, are their respective molar volumes. Suppose that the values of », and n, are
doubles, then the total volume will be given by

V' = @)V, + 2n)V, = 2"y Vy + n V) =2'V

Since the exponent of the parameter 2 is 1, therefore, volume of a solution is
a homogeneous function of the first degree with respect to the amounts of its
constituents. The relation as given in Eq. (1.3.64) is true not only for ideal solutions
but also for nonideal solutions. However, for the latter, partial molar volumes
should be used instead of the molar volumes of the pure components (see also
Eq. 1.3.66).

If a function is homogeneous of degree n, according to Euler’s theorem, it should
satisfy the following relation

Jof of -

The Euler’s theorem can be proved as follows.

Differentiating Eq. (1.3.63) with respect to A, we get

& (Ax, Ay,) _ 44" f@y)
da da
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(), (524 () mri

Simplifying this, we get

af 8f = n—1
"(aw)jy,z,“.”(a(mlg,w+ S

For the special case where A = 1, we get

al) (81) =
x(ax )/,Z,.4.+y ay x,z,.“+ nf

which is the Euler’s theorem.

Applying the Euler’s theorem to the volume function, which is of the first degree
in respect to the amounts of the constituents, we have

V=n, LSTVJ +n2(§7Vj + .. (1.3.66)
1/ n,, ny,.. 2/, nye.

Thus, the total volume of a solution of known composition (i.e. n;, n,, ... are
known) is the sum of the products of the amount of each component with the slope
of the plot of V' versus » at the given amount of the component in the solution,
when the amounts of all other components of the solution are kept constant.’

1.4 IUPAC CONVENTIONS OF WORK AND HEAT

According to IUPAC" convention, heat absorbed by the system is regarded as the
positive quantity whereas the heat released by the system is regarded as the negative
quantity. Conversely speaking, if the numerical value of the heat is positive, it is
absorbed by the system and if it is negative, the heat is released by the system. We
may spell g as the heat involved instead of specifically mentioning the phrase ‘heat
absorbed by the system’ or ‘heat released by the system’. The numerical value of
g will automatically imply either of these two phrases. To be more specific, the
following alternative statements bringing out the same sense may be noted down.

(i) Heat involved = 20kJ
Heat absorbed by the system = 20KkJ
Heat released by the system = 20KkJ

(i1)) Heat involved = 20KkJ
Heat absorbed by the system = -20kJ
Heat released by the system = 20KkJ

T The slope (0¥/dn) is known as the partial molar volume of the said component. See also
Section. 6.1.
* International Union of Pure and Applied Chemistry.
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For work, the IUPAC convention is to take the work done on the system as the
positive quantity whereas the work done by the system is taken as the negative
quantity. Conversely speaking, if the numerical value of work is positive, it implies
that the work is done on the system and if it carries a negative sign, it implies that
the work is done by the system. We may spell w as the work involved instead of
specifically mentioning the phrase ‘work done on the system’ or ‘work done by
the system’. The numerical value of w will automatically imply either of these two
phrases. To be more specific, the following alternative statements bringing out the
same sense may be noted down.

(1) Work involved = 20kJ
Work done on the system = 20KkJ
Work done by the system = -20KkJ

(i1) Work involved = -20KkJ
Work done on the system = —-20KkJ
Work done by the system = 20KkJ

Another convention (non-IUPAC) which was in use earlier assigns a negative
sign to the work done on the system and a positive sign to work done by the system.
The TUPAC convention puts energy and work on the same footing. The work done
on the system, like heat added to the system, increases the internal energy of the
system and thus is assigned a positive sign. The treatment followed in the text is
based on IUPAC convention and can be converted to the non-IUPAC convention
by replacing w by —w and the phrases like maximum, minimum, greater than
and lesser than by their opposite phrases, i.e. minimum, maximum, lesser than
and greater than, respectively. The above replacements do not affect the defining
equations of thermodynamic functions.

1.5 WORK INVOLVED IN EXPANSION AND COMPRESSION PROCESSES

Essential Criterion
of Expansion/
Compression

In most thermodynamic calculations we will be dealing with the evaluation of work
involved in the expansion or compression of gases. If the volume of the system is
increased against some pressure (constant or varying), then the work is done by
the system on the surroundings (or the work is produced) and is, by convention,
given a negative sign. On the other hand, if the volume of the system is decreased,
then the work is done by the surroundings on the system (or the work is destroyed)
and is given a positive sign.

The essential criterion of expansion/compression is that there should exist a
difference between the internal pressure of the system and the external pressure.
Suppose a gas is contained in a cylinder fitted with a piston. The latter is assumed
to be weightless and frictionless. The piston can be held anywhere against a set of
stops. Let the piston be initially held at stops S, (Fig. 1.5.1). If the stops are now
removed, then the position of the piston will be decided by the external pressure
which can be controlled by putting different masses on the piston. If m is the mass
that is put on the piston, then the force F acting downwards is

F=mg



Fig. 1.5.1 Process of
expansion of a gas

Mathematical
Expression of Work
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S, VT Pext V777 S »

L

and the pressure acting downwards

F  mg
Pext = —/ =

A A

where A is the area of cross-section of the piston.

If the external pressure is greater than the internal pressure of the system, the
piston moves downward. The volume of the system will decrease and it continues
to decrease till the external pressure becomes equal to the internal pressure of the
system. If the external pressure is smaller than the internal pressure, the piston
moves upward resulting in expansion. Again, the volume will continue to increase
till the external pressure becomes equal to the internal pressure. We can stop the
expansion or compression in between by providing a set of stops at that stage.
During the process of expansion or compression, we can change the external
pressure. Thus, the process can be achieved either in one-stage or in multistage.
In the latter, the external pressure may be different in each stage.

By definition, the work involved is given by:

w = — (External force) (Distance through which piston moves)
or w= - Force. y (Area of cross-section of
Area of cross-section of piston
piston) X (Distance through which piston moves)
or W= —po AV (1.5.0)f

where AV is the change in volume of the system. If the piston moves by an
infinitesimal amount, the work involved is given by

dw = o AV

T The negative sign in Eq. (1.5.1) is due to the [UPAC convention. In expansion (work
is done by the system), AV has a positive value and thus work carry a negative sign. In
compression (work is done on the system), A}J has a negative value and thus work carry a
positive sign.
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The total work involved during the change of volume from ¥’ to V”’can be obtained
by integrating the above expression

w= — : Dext 4V
If p.,, remains constant during the volume change, then
W= Do V' =V") (1.5.2)
It can be seen that, if V" > V"’ then w is negative and if V" < V” then w is
positive, i.e. if w is negative it automatically implies that expansion has taken place

and that work is done by the system on the surroundings, and if w is positive,
compression has taken place and work is done by the surroundings on the system.

If the expansion or compression is done in many stages, the total work involved
is equal to the sum of the work involved in each stage, i.e.
Wigtal = W1 T Wy + -

P 2=V} = Pea V3 = V) + - (1.5.3)

Graphical Representation of Isothermal Expansion of a gas

Expansion in
One Stage

Fig. 1.5.2 Expansion
of a gas against a

constant pressure

The work involved during the expansion or compression can be represented by
the graphs drawn between p and V.

Let an isothermal expansion take place from V'’ to V" against a constant external
pressure p.. and let p” and p” be the respective pressures of the system at these
two stages. The magnitude of the work involved is given by the shaded area in
the p — V diagram (Fig. 1.5.2).

T p., V' Initial state

p", V" final state
p ext

V! er
V—>

Note that the external pressure has to satisfy the following condition for
expansion

Pext <P
It p.,, < p” the piston can be stopped by a set of stops and when p,,, = p”, it
will stop automatically at the final state. Thus, we can see that the magnitude of

the work involved during the expansion can vary and the range of magnitude of
the work involved will be

0 < Wy PV = V) (1.5.4)



Expansion in
Two Stages

Fig. 1.5.3 Expansion
in two stages

Expansion in
Multistages

Fig. 1.5.4 Expansion
in many stages
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It will be zero when the external pressure is zero (free expansion) and will be
maximum when the external pressure is equal to the pressure of the system at the
final state.

If the above expansion is done in many stages, the magnitude of the work involved
will be more than that involved in the one-stage expansion. This is evident from
the graph in Fig. 1.5.3 where the magnitude of the work involved in a two-stage
expansion is shown by the shaded area.

T pr//

p ext

"
Pext

If the expansion is carried out involving larger number of stages and if each stage
involves a constant external pressure of

Pext = Pint — Ap
then the magnitude of the work involved will be given by

Wl = D(piy —AP)AY)
i=1
with po=r, p,=p" and  p;=p; - Ap
This work will be equal to the shaded area of Fig. 1.5.4. It is obvious that the
magnitude of the work involved in this case is much larger than in the case of a
one-stage or a two-stage expansion.

p '
Di=Py—Apyp----- :
Pr=Pi—Apy|----- %%4
P3=py—Apyf----- 7 ‘E’::;h
.
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Expansion in
Infinite Stages

Fig. 1.5.5 Expansion
involving infinite
number of stages

The magnitude of the work involved goes on increasing as Ap; becomes smaller
and smaller. In the limit when Ap;, — 0 the magnitude of the work involved will
have a maximum value. In this case

Pext = Pint — dp
and the magnitude of the work involved is given by

v v v
wi= [, PV =], (Pnc—=dp)dV =] pyy ¥ (1.5.5)

The second integral of Eq. (1.5.5) has been ignored since it involves the product
of two infinitesimally small values. For an ideal gas, the above integral can be
evaluated directly since

nRT

int %
V" uRT v

\w|:J 4V =nRT In— (1.5.6)
vV V

The magnitude of the work involved in this case will be the area under the isothermal
curve shown in Fig. 1.5.5 and it will be the maximum work that can be obtained
by the system during the expansion from volume ¥’ to V.

I\

V—>

Graphical Representation of Isothermal Compression of a Gas

Compression in
One Stage

In compression processes, the essential condition which should be fulfilled is that
the external pressure must be larger than the internal pressure of the gas. If the
compression is being done from p”, V" to p’, ¥’ in one stage, the minimum value
of external pressure should be p’. If the external pressure is greater than this, the
desired compression can be achieved by arresting the position of the piston by a
set of stops. Thus, the work involved in compressing the gas from p”, V" to p’, V’
against the external pressure p’ is

W= [P dV ==p' ("' =V")



Fig.1.5.6 Compression in

one stage

Compression in
Two Stages

Fig. 1.5.7 Compression in

two stages

Compression in
Multistages
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Its value is equal to the area of the shaded rectangle in Fig. 1.5.6. If we use larger
external pressure the surroundings do more work in bringing about the desired
compression.

\

If the compression is done in many stages, lesser amount of work is done by the
surroundings. For example, in a two-stage compression with external pressures

’77

p”” and p’. The work involved is given by

w = —p”’(V”, _ V/I) _ p’(Vl _ VI//)

Its value is shown by the shaded area of Fig. 1.5.7.

AR . pvl’ Vu

If the compression is done in multistages, still lesser and lesser work is involved.
If at any stage of compression

Pext = Pint + Ap (157)
the expression for the work is

W= =] P V' ==Y (piy +Ap)AV,)

i=1
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Fig. 1.5.8 Compression in

many stages

Compression in
Infinite Stages

Fig. 1.5.9 Compression involving

infinite number of stages

with py = p”, p, =p"and p; = p,_, + Ap,. The value of this work will be equal to the
shaded area of Fig. 1.5.8.

p
p=ptAp
p=p"tAp

If the number of stages of compression is infinite, then Ap; — 0 and the external pressure
at any stage of compression is given by

Pext = Pint + dp
The work involved will be given by

v’ v’ v
W= ] P &V == (P +dp)AV = | pydp (1.5.8)

Here again the second integral of Eq. (1.5.8) is ignored because it involves the
product of two infinitesimally small values. Equation (1.5.8) can be evaluated for an ideal
gas, for which p;,, = nRT/V, and therefore, we have

——dV =—nRT In

J‘V' nRT v’
W= —
vV | 2884

whose value is equal to the area under the isothermal curve shown in Fig. 1.5.9.
This represents the limiting minimum value of the work done by the surrounding
on the system.

bV

pu, |44

4 V"
—>



Work is not a
State Function

Introduction to Thermodynamics 37

The above analysis very clearly indicates that work is not a state function, since
its value depends on the path which has been followed in order to achieve the
required expansion or compression.

1.6 REVERSIBLE AND IRREVERSIBLE PROCESSES

Characteristics of
Reversible Process

Characteristics
of Irreversible
Process

The changes of a system from one state to another may occur either in a reversible
or in an irreversible way.

The reversible processes are characterized by the fact that when the system is
restored to its original state by traversing the forward sequence of steps in the reverse order,
then not only the system but also the surroundings are restored to their original states.

Take, for example, the limiting multistage isothermal expansion of an ideal gas
from volume ¥, to ¥, involving an infinite number of steps. As seen earlier, the work involved
(actually the work is done by the system on surroundings) is given by

W —nRTln% (1.6.1)

1

exp

Let the system be now restored to its initial volume V| by following again the
limiting multistage isothermal compression involving infinite number of steps (i.e.
the forward sequence of steps is being reversed), then the work involved (actually
the work is done by the surroundings on the system) is given by

Weomp =

_aRTIn A (1.6.2)
VZ

The net work involved in the above two processes (cyclic process) is

Weye = Wexp T Weomp = 0 (1.6.3)

that is, whatever work has been done by the system on the surroundings during
expansion is nullified by the work done by the surrounding on the system during
compression and thus no net work effect is produced. Thus in the above example,
besides the system, surroundings are also restored to their initial states and hence
the above process is reversible in nature.

Hence, the criterion of reversibility is

95chc =0 (1.6.4)

In an irreversible process, the cyclic integral of work is not zero, i.e.

Py # 0 (1.6.5)

One of the examples of irreversible process is a single-stage expansion (or multistage
expansion involving a finite number of steps) and then bringing the system beck to
its original state by following a single-stage compression (or multistage compression
involving a finite number of steps) in the reverse order. In a single-stage process,
we have
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Operation of a
Reversible Process

Operation of an
Irreversible Process

Work involved during expansion, Wexp == P2 (V2= V1) (1.6.6)
Work involved during compression, — Weo, =—py (V= V5) (1.6.7)

The net work involved is
Wexp T Weomp = — P2 W =V)+{=p (V= V)}
=@ -p) (=7 (1.6.8)
Since p, > p, and V, > V|, therefore, the network involved is positive. This means
that the surroundings have to do more work in bringing the system black to the

original state than the work done by the system during expansion. Thus, we see

that here w,,. # 0 and, therefore, the process is irreversible in nature.

In a reversible process, at any stage, the external condition responsible for the
process to occur differs from the internal condition by an infinitesimal amount. For
example, during expansion or compression p.,; = p;,; = dp and the corresponding
change in volume of the system is also infinitesimally small. During this stage,
the internal equilibrium is disturbed only infinitesimally and in the limit it is not
disturbed at all. Thus, virtually, the system always remains in the equilibrium state
during the process. Another example of reversible process is the heat exchanges
between the system and the surroundings when the temperature of the latter
differs from that of the former by an infinitesimal amount, i.e. Ty, = Ty, + dT.
Obviously, a reversible process cannot be conducted in actual practice because
the external condition has to differ from the internal condition by an infinitesimal
amount and moreover, even if it is possible to monitor this, an infinite time would
be required to complete the process. Thus, reversible processes are not real but
only ideal which can be carried out only theoretically. Nevertheless, they are very
important as they give the limit of the effect, whether maximum or minimum, that
can be produced. Although reversible processes cannot be carried out, the goal of
reversibility can be approached by adjusting the conditions with patience and skill
to those of reversible processes.

An irreversible process is one which occurs suddenly or spontaneously without
the restrictions of occurring in successive stages of infinitesimal quantities. The
system need not remain in equilibrium during the process. Examples are the
sudden expansion of gases, the heating of water in a beaker over a Bunsen flame,
the dissolution of sugar, the flow of water from a higher to lower level, etc. In the
above examples properties may not be uniform throughout the system, e.g., during
heating, water near the bottom of the beaker will have a higher temperature and
during dissolution of sugar, the concentration of the solution immediately in contact
with the sugar will be higher. The fundamental characteristic of any irreversible
process is that more work is done by the surroundings in bringing the system back
to its original stage than by the system during the forward direction. Thus, if a
system is kept at a constant temperature and subjected to a cyclic transformation
by an irreversible process, a net amount of work is done by the surroundings. This
is, in fact, a statement of second law of thermodynamics. The greatest work effect
that can be produced is in the reversible process, and, as given by Eq. (1.6.8), it
is wg,, = 0. Therefore, we cannot expect to get a positive amount of work in the
surroundings for cyclic transformation of a system kept at a constant temperature.
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Solution
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Irreversible processes can be completed in a finite time and can be carried out in
actual practice. Therefore, irreversible processes are real processes. All spontaneous
transformations which occur in nature are real processes and hence also irreversible
processes.

Show mathematically that the magnitude of the work involved in a reversible expansion of
an ideal gas from volume V; and V, is larger than the corresponding work involved in an
irreversible expansion against a constant pressure of p,.

We have the relation

| Wrey ‘

nRT In % (1.6.9)
1

- {1+ 1|
n

Expanding the logarithmic term, we have

Wee| = BRT ﬁ—l + higher terms _"RT (V, —V;) + higher terms
rev v 2 1
1 1
= p,(V, — V) + higher terms
and Wil = D2(V2 = V1) (1.6.10)

Therefore  |w, [Wi| = {p,(V5, — V) + higher terms} — p,(V, — V)

1

=V, - V) (p; — p,) + higher terms

rev| -

Since, in expansion V, > V| and p, > p,, therefore

| Wrev [ -1 Wit | = positive
that is, the magnitude of the work involved in a reversible expansion is larger than the

corresponding work involved in an irreversible expansion.

REVISIONARY PROBLEMS

1.1 Explain, with examples, the following terms:
(1) System (closed, open and isolated); (ii) Surroundings; (iii) Boundary
(iv) State variables (intensive and extensive);
(v) Process (isothermal, adiabatic, isobaric, isochoric, cyclic and quasi-static);
(vi) Reversible and irreversible paths.

1.2 What are intensive and extensive variables? Classify the following into intensive and
extensive variables:
(i) energy, (ii) dipole moment, (iii) refractive index, (iv) viscosity, (v) volume, (vi)
density, (vii) surface tension, (viii) molar volume, (ix) kinetic energy, (x) heat capacity,
(xi) temperature, (xii) gas constant, (xiii) critical density, (xiv) specific heat capacity,
(xv) vapour pressure, (xvi) internal energy, (xvii) enthalpy, (xviii) entropy, (xix) free
energy, and (xx) chemical potential.

1.3 (a) What do you understand by ‘exact and inexact differentials’?
(b) State the Euler’s reciprocity relation for an exact differential.
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(c) What are state functions? Do the state functions have exact differentials?
(d) Test the following differential expressions for exactness:

2
() dop=(2+y)de +2pdy (i) dp= %dp_%df

(i) do= XL dp— RAT
j2

(e) What is an integrating factor? Determine the integrating factors for the following
differentials.

dp=ydx—xdy and d¢=£dp—RdT
p

(f) What is a cyclic rule? Derive this rule for a function Z = f(x, y).
(g) Show that the volume of the following equations is a state function:
(1) Ideal gas equation
(ii)) Real gas at low pressure for which van der Waals equation reduces to

n-a

2
(p + 2 J(V) =nRT
1.4. An arbitrary variable ¢ is found to have the following relationship
d¢ = Edp - RAT
p

Are the following statements correct? Justify your answers.
(a) ¢ is a state function
(b) d¢ is an exact differential

© $dg=0

(d) It is possible to write down ¢ explicitly in terms of 7 and p as the independent
variables, i.e. ¢ = f(T, p).
1.5 What is the Legendre transformation? Given the relation
dU=TdS-pdr
transform this to
(i) dH=TdS +Vdp (i)d4=-SdT-pdV
(iii)) dG=-SdT+ Vdp
What functional relations H, 4 and G will have with U?
1.6 (a) From the following thermodynamic relations
G=H-TS; H=U+pV; dg=TdS; dU=dgq-pdV
Show that

© (gg)p SR [gjjr - (%)p ) _[gil

(b) From the following thermodynamic relations
A=U-TS, dg=TdS; dU=dg-pdV
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Show that
. (04 ... (04 ... (dp ) ( as )
2 —_,. ) =—s: 9F | 22
() (anT p; (i) (BT)V 5 (1) (BT o),

1.7 (a) Using the definition H = U + p¥, and, wherever necessary, obtaining conversion
relationships by considering A (or U ) as a function of any two variables amongst p,
V and T, derive the following relationships:

o ()2 [ 2)]2)
o (5,5 )
(i) (?#)V - (3’;]1, ¥ :V _(ggjp @DH}(;};)V

1.8 (a) For p = f(V, T) and V = f(p, T), derive the following cyclic rule:

315 (2] e
oT 14 14 P ap T

(b) Test the validity of the above equation using

2
(i) pV = nRT (ii) [p+”V2"jV=nRT

1.9 (a) What are cubic expansion coefficient ¢ and isothermal compressibility factor &;?
Show that

N oo ipj . (aﬁ) (aﬁ) -
o (ar . @5 ) ar),=°

(b) Derive the expressions for k; and « for (i) an ideal gas and (ii) a van der Waals
gas.

1.10 Starting from V as a state function derive the eqution of state for which

(1) V = k\p, keeping T constant, and V' = k,T, keeping p constant.

(i) o= % and x,= 3(;/ _Va) , where a is constant.

p
1.11 (a) What do you understand by the term ‘homogeneous function of the nth degree’?

Show that ‘a homogeneous function of zero degree with respect to the amounts
of substances is an intensive variable while that of the first degree is an extensive
variable’.

(b) State Euler’s theorem as applicable to homogeneous function. Give its proof.

(c) If we write, for a system containing more than one component
V=fn,ny,...)

then, using Euler’s theorem, show that

14
- (5

)T,p,nj(j¢i)
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1.12

1.13

1.14.

1.1

1.2

(@

What is the work of expansion or compression? Show that:

(a) The magnitude of the work involved during a multistage expansion is larger than
that involved during a single-stage expansion.

(b) The magnitude of the work involved during expansion is maximum if the process
is quasi-static.

(c) The work involved during a multistage compression is smaller than that involved
in a single-stage compression.

(d) Work involved during compression is minimum if the process is quasi-static.

(a) Let the given system of an ideal gas be expanded isothermally from p,, V; to p,,
V, following a single-stage expansion. What should the external pressure be so that
the work done by the system is maximum? What is the amount of work?

(b) Now, suppose that the system is to be restored isothermally to p,, V| following
a single-stage compression. What should the external pressure be so that the work
done by the surroundings is minimum? What is the amount of work?

(c) Will there by any difference in the work involved in steps (a) and (b)? if so, why?
Suppose the work of expansion and compression in Question 1.13 is carried out quasi-
statically. Show that ‘the net work that can be obtained by the system in the above
cyclic process is zero, i.e. the maximum amount of the work that can be obtained by
a system if its temperature is to be kept constant is zero. If the above cyclic process
is not carried out quasi-statically, then the amount of work that can be obtained by
system is negative, i.e. there is a net work that is destroyed’.

. Comment on the following:

(a) All natural processes (i.e. spontaneous processes) are irreversible in nature.

(b) Reversible processes are an ideal conception and can be carried out only
theoretically.

(c) In a reversible cyclic process, not only the system but also the surroundings are
restored to their initial states.

TRY YOURSELF PROBLEMS

Given that
z=ax’y + by + cx)?
where a, b, ¢ are constants. Show that
(1) dz is an exact differential and z is a state function.

@ (553 -
ox /), \ 9y ).\ 0z /,

(i) pdz=0

Given that

dg=dU+pdV
Assuming U = f(T, V), show that

U U
dg= [2Y) ar+[2Y v
1 (aT)V +{(8V)T+p}

Following Euler’s reciprocity condition, show that dg is an inexact differential.
(b) Assuming that for an ideal gas (QU/V); is zero, show that //T is an integrating
factor of the equation dg = dU + p dV.

(Hint: See Sections 2.3 and 4.12.)



1.3

1.4

1.5

1.6
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Given that u = f(x, y) where x and y are themselves functions of s and ¢, i.e.
x =f(s, f) and y = f(s, £). Show that

(3) (3) () (2 -
() ), (3) () -

where v is also a function of x and y.
(a) Given 4 as a function of any two of the variable B, C and D, prove that

(5, G ), =50 ), o)
aC B aB D aD B aB C
(b) Given the function S = f(7, p), show that

(9p/dT)g = — (9S/3T),, /(S/dp)r
(c) Given the function of S = f(7, p) and p = f(T, V), show that

=) -2)2) (%)
aT %4 aT P ap T aT Vv
(d) If G is a function of p, V and T, prove that

(0G/dp)r = (0G/dV), (dV1dp)r + (0G/dp)y

(e) Show that the function Z = pV is a state function.

A cylinder with a movable piston contains the amount » of an ideal gas. Consider the
path indicated in the following diagram.

pl____fi plaVl
p
V.
y2) — , P2
? b| C
| |
| |
1 1
S Tq—

(a) Develop an expression in terms of p;, ¥}, p, and V, for the work that is carried out
quasi-statically over the cyclic path, i.e. process going from a to b to ¢ and back to a.
(b) What relation does the area of the triangle has to the magnitude of this work?
(a) An ideal gas undergoes a single-stage expansion against a constant opposing
pressure from p,, V;, T to p,, V,, T. What is the largest mass m which can be lifted
through a height / in this expansion?

(b) The system in (a) is restored to its initial state by a single-stage compression. What
is the smallest mass m which must fall through the height % to restore the system?
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1.7

1.8

1.9.

(c) What is the net mass lowered through height /4 in the cyclic transformation in (a)

and (b)?

(d) If =10 cm, p; = 1 MPa, p, = 0.5 MPa, T = 300 K and one mole of the gas is

involved, calculate the numerical values of the mass m required in (a) and (b).
(Ans. () m = (nRT/gh) (1 = p,/p,); (b) m” = (nRT/gh) (p\/p, —1);
(c) m" —m = (nRT/gh) (p, — p»)*/p, pa; (d) 1.27 Mg and 2.54 Mg)

Explain which of the following processes are reversible/irreversible:

(a) One teaspoon of a salt is dissolved in water.

(b) A gas is expanded into an evacuated vessel.

(c) Diffusion of a gas into another gas at constant 7 and p.

(d) Two blocks of iron at different temperatures are brought into closer contact.

(e) One mole of liquid water in equilibrium with its vapour at 100 °C and 0.1 MPa.
(f) Vaporization of benzene into a vacuum at 60 °C.

(a) Starting from V" as a state function, derive the equation of state for a fluid which
has an isothermal compressibility x, = K[1 + M (T — T,)] and a cubic expansion
coefficient o« = A[1 — Np], where K, M, A and N are all constants. Assume « and xy
to be independent of 7" and p.

(b) Show that for the above fluid AN = KM.

(c) If the above fluid fills a container of constant volume at zero pressure at 273 K,
calculate how much must the temperature be raised in order to increase the pressure
to 10.132 5 MPa. Given that

K = 2.487 x 10" MPa M=2x10°K"

T,= 273K A=42x10*K"

N = 1.184 x 10 MPa™'

(dns. In VK =4 (1 =Np)(T-Ty) = {K—-AN (T =Ty} (p = po);

0
AT=T-T,=6.1 K)

(Hint: Write dVin terms of dT and dp. Substitute (7/07), and (97/dp) and integrate
the resultant expression under the assumption that for a fluid p is independent of
temperature and vice versa.)

(a) Show that

o3 3)
aT )y \dV )r
can be written in the form
(al) :Tz[a(P/T)] :_[a(p/T)]
oV )r T Iy al/T) |,
(b) Show that

y= T(alj +(ai’)
aT /J, op )r

can be written as

(aﬁ) __Tz(a(V/T)) B (a(V/T)j
p )y or J, |\aa/1) ),




1.10

1.12

1.13

1.14

1.15

1.16.
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Test the following function for homogeneity and show by direct test the validity of
Euler’s theorem on homogeneous function
2 3/2 302
. ax®  b(xT+y7"7)
() =S+
Jly e o'

(a) Show that, if the molar volume of a substance is a homogeneous function of zeroth
degree in pressure and temperature, the energy of the substance must be a function
of temperature only.
(Hint: Using Euler’s theorem on homogeneous function, show that (dp/d7T), =
p/T. Write dU in terms of dT and dV and show that (dU/dV); is zero. Make use of
thermodynamic equation of state (U/dV); = T (dp/dT),, — p.)
(b) Similarly, show that, if the pressure is a homogeneous function of zeroth degree
with respect to volume and temperature, the enthalpy must be a function of temperature
only. Make use of the equation

)t
p )r aT J,

Taking U to be a function of T"and ¥ and 1/T as an integrating factor of dg = dU + p dV,
derive the relation

(293,

(Hint: Write the differential of U and substitute in the given relation dg = dU + p dV.
Divide the resultant expression by 7 and apply the Euler’s reciprocity relation. See
also Section 4.12.)
Taking H to be a function of 7'and p and /T as an integrating factor of dg = dH — V' dp,
derive the relation

oH 14
) R VS A
(8}7)T (BT),,

For an ideal gas, show that 1/T is an integrating factor for the relation dw = —p dV.
(Hint: Write dV in terms of d7 and dp. Substitute (97/9T), and (9V/dp)r.from pV = RT
and then substitute dV in the relation dw = — p dV. Divide by T and apply Euler’s
reciprocity relation.)

Using Euler’s theorem on homogeneous function, show that the volume of an ideal
gas is a homogeneous function of zeroth degree in pressure and temperature.

For the differential dz =y dx — x dy, show that x™ y" is the integrating factor provided
m+n=-2.
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Zeroth and First Laws of
Thermodynamics

2.1 ZEROTH LAW OF THERMODYNAMICS

The zeroth law of thermodynamics, also known as the law of thermal equilibrium,
was put forward much after the establishment of the first and second laws of
thermodynamics. It is placed before the first and second laws as it provides a logical
basis for the concept of temperature of a system. The law states that

Two systems in thermal equilibrium with a third system are also in internal
equilibrium with each other.

According to this law, if systems A and B separately are in thermal equilibrium
with another system C, then systems A and B will also be in thermal equilibrium
with each other. In other words, if systems A and B are placed in contact with each
other, no exchange of heat will take place. Recording of temperature of a system by a
thermometer is also based on this law. When a thermometer is placed in the system,
it comes to thermal equilibrium with the latter and thus records a constant value.

2.2 FIRST LAW OF THERMODYNAMICS

Establishment
of First Law of
Thermodynamics

Interpretation
of First Law of
Therodynamics

All experiences have shown that if a system is subjected to any cyclic transformation,
the sum of heat and work involved is zero, that is

ngq+56dw=o or gﬁ(dq+dw)=o 2.0

Thus, the cyclic integral of the quantity (dg + dw) is zero. This equation is a
mathematical expression of the first law of thermodynamics.
Let us represent

q= Cﬁdq and w= Cj)dw
From Eq. (2.2.1), if follows that for a system undergoing cyclic transformation
qg+tw=0 or g=-w (2.2.2)
Two cases may be distinguished.

1. If g is positive then w is negative.
This implies that the net heat absorbed by the system is equal to the net work
done by the system.

"The work involved may be of any type. For instance, it may be work of expansion or
compresson of gases, work against a magnetic field or against a gravitational field or against
an electrical field, etc.



Identification of
Energy Function

Change in Energy
Function for a Finite
Process

Change in Energy
Function Under a
Constant Volume
Condition

Law of
Conservation of
Energy
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2. If g is negative then w is positive

This implies that the heat released form the system is equal to the net work
done on the system.

The fact that the cyclic integral expressed in Eq. (2.2.1) is zero for all cyclic
processes indicates that dg + dw is an exact differential, and therefore, is a
differential of a state function. We call this function the energy function (internal
energy or intrinsic energy) and use the symbol U to represent the function. The
differential of the energy is given by

dU = dg + dw (2.2.3)

The energy function is a function of the state variables which are used to define
the system. For example, the energy function for one mole of a gas may be written
as U= f(T, V) or U= f(T, p) or U= f(p, V). The value of the energy function
for a given state is determined by the values assigned to the state variables. The
function is determined only in terms of its differential, and the absolute value of
energy function for any given state of the system may not be precisely known.

For a finite process, the difference between the values of energy function in two
states can be determined by integrating dU as the latter is an exact differential.
This difference is independent of the path followed in going form the initial to the
final state. Thus, for a process

State A — State B

B B B
we have JdU:qu+jdw

A A A

Ug—Upy=g+w or AU=¢g+w 2.24)

It may be noted that the values of both ¢ and w depend upon the path followed
in going form state A to state B, but the algebraic sum of these two quantities is
independent of the path. This follows immediately from the fact that U is a state
function.

If a system can undergo only p-V work, then under the condition of constant volume
we will have

dw=-p, dV=0
Hence, Eq. (2.2.3) reduces to

dU=dq, (2.2.5)
that is, when a system undergoes a change at constant volume condition, the heat
involved merely changes it internal energy. To be specific,

The heat absorbed (or released) by a system under constant volume condition
increases (or decreases) its internal energy.

For an isolated system, the values of both ¢ and w are zero since no interaction
of the system with the surroundings can take place. From Eq. (2.2.4) it follows
that the value of AU must be zero for such a process. We, therefore, conclude that
the value of the energy function of an isolated system is constant. This is another
statement of the first law and is known as the law of conservation of energy. No
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Denial of Perpetual
Motion Machine of
First Kind

matter what changes of state may occur in an isolated system, the value of the
energy function is always a constant.

For a cyclic process, AU = 0 since the system returns to its initial state. Thus,
according to Eq. (2.2.4), we have

q=-w (2.2.6)

One of the implications of Eq. (2.2.6) is that the heat absorbed by the system

from the surroundings is equal to the work done by the system on the surroundings.

A perpetual motion machine of the first kind is one which would do work on the

surroundings without absorbing an equivalent amount of heat. The first law denies
the possibility of such a machine.

2.3 MATHEMATICAL PROOF OF HEAT AND WORK BEING INEXACT FUNCTIONS

Proof of Heat Being
an Inexact Function

According to the first law
dg=dU- dw (2.3.1)

If the work is restricted to pressure-volume work performed quasi-statically,
then dw = — p dV. With this Eq. (2.3.1) becomes

dg=dU+pdy (2.3.2)

Taking U as a function of temperature and volume, we write its differential as

w=(22) (%) ar
T 4

aV oT
On substituting this Eq. (2.3.2), we have
d _(8_U) dV+(a—Uj dT+p dV 233
7= v ), aT ), p (2.3.3)
Dividing this by d} and introducing the condition of constant 7, we get
(Qijz{ﬁg) ‘p (2.3.4)
oV )y \dV )¢
Similarly, on dividing by d7 and introducing the condition of constant V, we get
(3_‘1) - (a_U) 235)
oT )y, \dT )y

If g is to be a state function, then according to Euler’s reciprocity relation,
we must have

9%q B 9%q
(BTBVJ_(BVE)TJ 236)

Evaluating these second differentials form Eqs (2.3.4) and (2.3.5), we get

FU_ ), (o) _(2U
[aTaV]+(5?)V_(aVaTJ 2.3.7)




Proof of Work Being
an Inexact Function
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Since U is a state function, we have

U U
oT oV dV oT
With this, Eq. (2.3.7) reduces to
Bp)
— | =0 2.3.8
(57), @39

Equation (2.3.8) implies that the pressure of a system at constant volume is
independent of temperature. When applied to ideal gases, we find that it is contrary
to Charles law, which states that at constant volume, the pressure of a fixed mass
of a gas is directly proportional to its kelvin temperature, i.e.

pe=T
or p=KT

Thus (dp/dT),, = K and is not equal to zero as given by Eq. (2.3.8). Hence, the
assumption that ¢ is a state function must be wrong, and thus dg is an inexact
differential.

We have
dw=-pdV 2.3.9)

Taking V as a function of 7 and p, we write its differential as

v av
=|=—=| dT+|=—| d

Substituting this in Eq. (2.3.9), we get

o o
Cdw=p ) ar+[2X) 4
v p{(aTj,, +(8p)T p}

From this, we have

ow 14
_(ow) _ (2 (2.3.10)
(ap)r p(ap )T

) )
an or), "\ar), (2.3.10)

If w is to be a state function, dw must be an exact differential, and then Euler’s
reciprocity relation states that

2 2
9w _ 0w (2.3.12)
dT dp dpdT
Evaluating these second differentials form Eqs (2.3.10) and (2.3.11), we have

o o (an
— =p——+ (2.3.13)
P

Porop Popar \or
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Conditions for dg
and dw to be Exact
Differentials

Since V is a state function, we get

VW
0T dp JdpdT
With this Eq. (2.3.7) reduces to
(B_V) =0 (2.3.14)
aT J,

Equation (2.3.14) implies that the volume of a system at constant pressure is
independent of temperature. When applied to ideal gases, we again find that it is
contrary to Charles law which states that at constant pressure, the volume of a fixed
mass of a gas is directly proportional to its kelvin temperature, i.e.

pe<T
or p=KT
Thus (dV/dT'), = K and is not equal to zero as given by Eq. (2.3.14). Hence, the

assumption that w is a state function must be wrong and thus dw is an inexact
differential.

If the work in Eq. (2.2.3) is restricted to pressure-volume work, the differential of
the work will be given by —p dV, where p is the external pressure against which
expansion is carried out and dJ is the change in volume in an infinitesimal stage.
With this, Eq. (2.2.3) becomes

dU=dq —-p dV (2.3.15)
For an adiabatic process dg = 0 and thus dU = —p dV. Hence, for this condition,
the differential of work is exact. Similarly, for an isochoric process (i.e. when V'
is held constant), dw = — p dV' =0 and dU = dg, and thus; under this condition,
the differential of heat becomes exact.

2.4 CHANGE IN ENERGY FUNCTION WITH TEMPERATURE

Experiences have shown that the energy for a closed system (i.e. when # is constant)
can be written as a function of temperature and volume, i.e. U= f(T, V') and, therefore

U ) (aU )
dU=|—| dT+|—| dV 2.4.1
(aT ), @4
Since for an isochoric process, dV = 0, therefore
U
dU=|==| dT (constant volume) (2.4.2)
oT Jy
Also, for an isochoric process
dU = dg, (2.4.3)

Comparing Eqgs (2.4.2) and (2.4.3), we get

oU

ﬁ)V dr 2.4.4)

dU=dq, = (



Definition of Heat
Capacities

Problem 2.4.1

Solution
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dg, (BU)
v _ | 2= 245
o ar —\a7 ), (24.5)

The heat capacity of a system is defined as the limit of (g/AT") as AT goes to zero and is
written as (dg/dT ), such that

C= lim (i) = (d—q) (2.4.6)
AT—0\ AT dr

Heat capacity is an extensive quantity as the heat g required to raise the temperature
by AT depends upon the mass of the substance. The specific heat capatcity is the
heat capacity per unit mass of a substance and thus is an intensive quantity. It
has the unit of J K™' kg™'. The molar heat capacity is the heat capacity per unit
amount of the substance and hence is also an intensive quantity. It is written as C,,
and has the unit of J K™' mol™!. Since dg is an inexact differential, therefore, heat
capacity C is, in general, also path dependent. The following two heat capacities
are commonly used, especially for gases.

(i) Heat capacity at constant volume (Isochoric Process)

dgy
= 2.4.
(i) Heat capacity at constant pressure (Isobaric Process)
dg,
=2 2.4.
G, ar (2.4.8)

Comparing Eq. (2.4.7) with Eq. (2.4.5), we find that for an isochoric process

oU
C,= (B_Tj,/ (2.4.9)
With this, Eq. (2.4.4) becomes
dU=dq, = C,dT (2.4.10)

For a finite change, we have
T,
AU=gq, = jTZ C, dT 2.4.11)
1

If C}, is considered to be independent of temperature in the range 7 to 7,, then

AU=gq,=Cy AT (2.4.12)

where AT is the change in temperature of the system and is equal to (7, — 7}). If C},

is temperature dependent, and its dependence on temperature is known in the form

of an analytic expression, then this expression can be substituted in Eq. (2.4.11)
which on carrying out the integration gives the value of ¢, or AU.

Prove that if (U/dV ), = 0, it follows that (0U/dp); = 0.
Since U = f(T, V'), we have

w- (%) ars(2)
aT 14 aV T
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Dividing by dp and introducing the condition of constant temperature, we have

5 -GR5)

Since  (QU/9V); = 0, therefore (dU/dp); = 0.

2.5 ENTHALPY FUNCTION

Identification of
Enthalpy Function

Physical Significance
of Enthalpy Function

Most chemical processes which take place in a laboratory are carried out under
the condition of constant pressure and the evaluation of energy changes in these
processes are often required. The expressions relating the energy change at constant
pressure condition can be derived by defining a new state function, known as
enthalpy function. This can be done as follows.

For a closed system involving only the reversible work of expansion or
compression, we have
dU=dq -p dV (2.5.1)
where p is the pressure of the system and is a function of temperature and volume.
Adding the differential d(pV') = p dV + V dp to Eq. (2.5.1), we get

dU+dpV)=dq+ Vdp (2.5.2)
or dU+pV)=dg+Vdp (2.5.3)

Since p and V are state functions, the product pV is also a state function. This
may be verified by using Euler’s reciprocity relation.” Thus, the sum (U + pV),
known as enthalpy function, is also a state function. This is represented by the
symbol H. Thus

H=U+pV (2.5.4)
Substituting Eq. (2.5.4) in Eq. (2.5.3), we have
dH=dq+ Vdp (2.5.5)

Enthalpy is a thermodynamic function of the state variables. For a closed system,
these variables are usually the temperature and pressure. The change in enthalpy
for a given change of state is independent of the path and the change is zero over
any cyclic path. It is an extensive property.

If to a closed system, heat is supplied at constant pressure conditions, then
according to Eq. (2.5.5), we have

dH = dg, (2.5.6)
Thus, the change in enthalpy function of the system is equal to the heat exchanged
by the system at constant pressure.

Since H is a state function and dH is an exact differential, the quantity dg,
under the condition of constant pressure becomes an exact differential. It may be
pointed out here that the absolute value of H need not be determined precisely as
the absolute value of U may not be known. But as is usual in thermodynamics, we

TSee Q. 2.5 in Try Yourself Problems.
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will be interested only in knowing the change in the enthalpy function, which can
be evaluated by employing Eq. (2.5.6).

If the enthalpy of a closed system is taken as a function of temperature and pressure,
the differential of the enthalpy is given by

dH = (a—H) dT+(aﬂj dp 2.5.7
JaTr )/, op )y
At constant pressure, the above expression reduces to
oH
dH=|—| dT (constant pressure) (2.5.8)
Jar /),
Comparing Eq. (2.5.8) and Eq. (2.5.6), we have
oH
dH = dg,= | —| dT 259
qp (8T ),, 25.9)
Using Eq. (2.4.8), we have
dg, 8Hj
C, = F—(B—T , (2.5.10)

which relates the temperature dependence of the enthalpy at constant pressure to
the heat capacity at constant pressure.

Substituting Eq. (2.5.10) in Eq. (2.5.9), we get
dg,=dH=C,dT (2.5.11)

For a finite change, we have
L
q, = AH = jT C,dT (2.5.12)
1

C, independent of 7' If C, is considered independent of temperature in the range
T, to T,, then

q,=AH=C,(T, - T)) (2.5.13)
C, dependent on T Heat capacity at constant pressure is usually temperature
dependent. An analytical expression is available which relates C, and temperature

as

C,=a+bT+cT?+ - (2.5.14)

where a, b, ¢, ... are constants. Substituting this in Eq. (2.5.12), we have
_ _ (% 2
q,=AH = jT (a+bT+cT?+ -)dT
1

which on carrying out the integration gives

bT? T3 &

qp:AH: aT+T+T+
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b c
=a(ly-Ty) + 5 (T3-TH+ 3 (T3-T3) + - (2.5.15)

Example 2.5.1 10.0 dm* of O, at 101.325 kPa and 298 K is heated to 348 K. Assuming ideal behaviour,
calculate the heat absorbed, AH and AU of this process at (a) constant pressure, and
(b) constant volume. Given: C, ,, = Cy, ,, + R.
Given: C, ,,/JK ' mol ' =25.72 +0.013 (T /K) - 3.86 x 10 ° (7 /K). Assume ideal behaviour.

v (101.325 kPa) (10.0 dm?)
RT (8.314 dm® kPa K™! mol™) (298 K)

Solution Amount of the gas, »

= 0.409 mol

(@) Constant pressure

T,
q,=AH= n lecp,de

2 2
=n {(25.72 JK ™ mol™ )(T, - T}) + (0.013 J K mol' )[T; —le

2
3 3
~ (386 x 10°J K3 moll)[TS2 - T;H

Substituting the given data, we get

2 2
q, = AH = (0.409) [(25.72 T) (348 — 298) + (0.013 J) (348 _ 28 ]

2 2

3 3
—(3.86 x 107°]) [3438—298 J]

3

= (0.409) (1475.77 J) = 603.59 ]

AU = AH — A(pV) = AH — nR (AT)
= 603.59 J — (0.409 mol) (8.314 J K™' mol™") (50 K)
=603.59J-170.02 J=433.577J

(b) Constant volume
g,=AU= jTlech,m dej.T?nCp’m dT—JTTIZnR dr
=603.59J-170.02 J =433.57]
AH =AU+ A(pV') = AU + nR(AT ) = 603.59 J

(Note: The values of AU and AH are the same in both the cases as these are state functions.
However, the value of ¢ differs as it is a path function.)

Problem 2.5.1 Prove that it does not necessarily follow that if (U/V); = 0 then (dH/dp); = 0.
Solution Since H = U + pV, we have

(BHJ (au) (avj
— | =|=— | +p|=—| +V
P )r op )y op Jr
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aHj (au) (BVJ (ZW)
or — | === | =—| +p|=—| +V (2.5.16)
(ap T Vv Jr\ dp T dp T
If QUIAV ), = 0, then
(LH) =p(alj Ly (2.5.17)
o Jr ap )y

Hence if (QU/dV ), = 0, then (dH/dp); need not be zero.

Problem 2.5.2 Show that for a fixed amount of an ideal gas (for which (dU/dV); = 0)

Lo (oH) N L% P (QZ]<_
® (apl_o w (anp “ar=\or), 77
iy (V) -, [97) —(*z

(iii) (aij—CV(aij—(a)CV

aC
(iv) (—BCVJ =0 and (p) =0
aV T ap T

oH ) oU j (aV)
g7 - 2l =c - pl L
v (aV)T_O o (aT o P a7/,
Solution (i) From Eq. (2.5.17), we have
(B—H) = p(a—V) +V (since for an ideal gas (QU/AV ), = 0)
ap Jr ap )y
For an ideal gas V' = nRT/p, therefore (a—V] =- nRzT
p )y P

Substituting this in the previous equation, we get

(BH) =p(_nRTj+V=_n}W‘ [,
T

op P’ p

(ii) Since U = f(T, V'), therefore

oU oU
= |— | dT+|—| dV
v (ar)V +(anT

For an ideal gas, (QU/0V); = 0, therefore

U
= | — | dT =
du (BT)V C, dT (2.5.18)

Dividing by dV and introducing the condition of constant p, we get

(57),= Gr) (57, = 57)
av), \ar)y\ov), \ar), (2.5.19)

Now pV = nRT, therefore T = pV/nR. Differentiating this with respect to V, keeping p
constant, we have
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(al) _Pr
ov), nR
With this, Eq. (2.5.19) becomes

ou P p
| =c, £ =C £
(aV)p "nR VTR

We have the relation

U=H-pV
Differentiating this with respect to V, keeping p constant, we have
U oH 0H\ (T or
(al/)p - (al/)p P (aij (ay)p —r=C, (a,,jp -p (2.5.20)

(iii) Dividing Eq. (2.5.18) by dp and introducing the condition of constant V, we get

5 )Gl (5o (5

From Problem (1.3.13), we get

(ip) _o
BT V_KT

Thus (?;l =c, (?};)V =C, (%) (2.5.21)
(iv) We have
= (55)
ro\or )y

Differentiating with respect to V, keeping 7 constant, we have

(57,557,

Since U is a state function, it follows that

L33,

Hence (a&) :i{(al)}
oV Jr o \oVJ)r),

But for an ideal gas, (dU/dV); = 0. Therefore

(a&) =0

In other words, at constant temperature, C;, of an ideal gas is independent of volume and
depends only on temperature.

Now C = (a—H)
?\or),
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Differentiating this with respect to p, keeping T constant, we have

SR CoN]

Since H is a state function, it follows that

aC
op ) OoT [\ dp J; »

But, for an ideal gas (dH/dp); = 0. Therefore

[anJ o
o ),

In other words, at constant temperature C,, of an ideal gas is independent of pressure and
depends only on temperature.

(v) Differential of the relation H = U + pVis
dH=dU+pdV+Vdp

Dividing by dV and introducing the condition of constant temperature, we have

oH\ _(doU a_Pj 2522
(av)T (BV)T+p+V(8V B (2322

Now, for an ideal gas

U nRT
W T= 0 and p=

14
_nRT_ pV _ D

Therefore (a_p) =——= ==
v )y 1% v 1%

Substituting these in Eq. (2.6.22), we have

(5%), -0
v )y

(vi) Differential of the relation U = H — pV is
dU=dH-pdV-Vdp

Dividing by d7 and introducing the condition of constant p, we get
U oH av av
ar),"\ar ), P\Gr), = 7P Gr

rJ, rJ, Ty T,

2.6 RELATION BETWEEN HEAT CAPACITIES

Heat capacity at constant pressure is given by

C(a—HJ 2.6.1
r~\or), (2.6.1
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Difference of Heat
Capacities in terms
of Easily
Determinable
Derivatives

and that at constant volume by the relation

o= (5)
¥ \or ),

Earlier in Problem 1.3.11, we have derived the following three relations between

(0H/OT), and (QU/IT)y.
) )(5)
+ —_— [E—
oV Jp J\oT J,

(57), (57,
(57, -G -5
(57,57, (57), (5), 12,

Replacing (0H/dT), and (0U/IT), by

(2.6.2)

C, and Cy, respectively, we get

G+ [r4(2) (%) e
oo -2 )3)
C,=Cy+ {V + @;f ) (g—;j }(g—‘;jV (2.6.5)

The difference between C, and Cj, may be expressed in terms of easﬂy determinable
derivatives by making use of the thermodynamic equation of state’

29, r2) -
oV Jr oT Jy

Substituting this in Eq. (2.6.3), we get

apj (BV)
C,-Cy =T
o (aT or ),

Using definitions of & and «; and that (dp/dT), =

(2.6.6)

o/xp (Problem 1.3.13), we get

062

v —

G- Cy=TV
T

» 2.6.7)

Making use of the cyclic relation
(9_’/) (3_7) (3_17) 10
oT ), \ dp ), \oV Jr

 See Section 4.14.
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ok (E)V) B 1 B (ap) (BV)
W a9 —_[o) [2¥

& \or ), @riap), @pravy,  \or )y \op ),
Substituting this in Eq. (2.6.6), we get

cC -C, =-T|— — 2.6.8
rr (ar v\ op ), (2.6.8)

For one mole of an ideal gas pV,, = RT, therefore

ap) R (an) R
| = d —o | ==
(BT y Vv . ar J, p

m

Substituting these in Eq. (2.6.6), we get

RY(R\ R’T RT
a7 (2 (2)- L2 g 269)
: ; v.)\p) pV, RT

Alternatively, Eq. (2.6.3) can be used to determine C, — C), for an ideal gas.
The term (dU/dV); represents the change in internal energy when the volume of
the system is changed at constant temperature. Since there exist no forces of
attraction between the molecules of an ideal gas (i.e. the molecules move
independent of each other), there will not be any expense or gain of energy on
expansion (when the molecules are pulled apart) or compression (when the
molecules are brought near to each other) of such a gas at constant temperature.
This amounts to (U/9V); = 0 for an ideal gas (Joule’s law, see Section 2.7).

Thus, Eq. (2.6.3) reduces to

av.
C,.—Cy.=p|=n

p, m V, m p(aij
But (%j :B
T J, p
R

Hence C, ., —Cy,=p (;) =R

For one mole of a van der Waals gas, we have

(p+%](Vm—b)—RT

m

or  pV —pb+ 2 _ _pr (2.6.10)
Ve V2

Differentiating this with respect to 7T at constant V,, we get

), 7 (5F)
) I 7 =
(E)T , ' \ar), PR
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Problem 2.6.1

Solution

. Bp) R
e. L= 2.6.11
- (aT v Vo—b (2.6.11)

Differentiating Eq. (2.6.10) with respect to T at constant p, we get

av, a (v, 2ab (JV,
"Gor), velar ), vy Gar ), ="
p Vm oT p Vm oT p

. vy R
i.e. ( T ) = PR (2.6.12)
BN

Substituting Eqs (2.6.11) and (2.6.12) in Eq. (2.6.6), we get

R R
CP’mCV’m_T(V _b) a 2ab
P——5t—5

m
y2 ooyl

m m

_( RT ) R
Ay —p a 2a
m P+V—£—V—;(Vm—b)
= R (2.6.13)

2a 2
1-—=— . -b
V;RT(“‘ )

Under the conditions of high temperature and low pressure, Eq. (2.6.13) may be
approximated as

R 2a 2ap
Comn—Cpm=——"—"=R|1+ =R|1+ 2.6.14
pmo VM T _2a )V RT ( Vv, RT) ( R2T2) ( )

m

Equation (2.6.14) is not applicable under the conditions of low temperature and
high pressure. From Eq. (2.6.14), if follows that the difference C, ,, — Cy ,,
increases linearly with pressure. This difference also depends on the nature of
the gas through the constant a. Thus larger the value of a, larger the difference
between C, , and Cy, .

For a van der Waals gas, show that

_ 2ap  4abp®
Cp, m CV, m=R |:l + RIT? - RT3

From Eq. (2.6.12), we have

(Za)
aT V4 p_i+@
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Solution

Example 2.6.2
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B R ~ R
5 ="RT  2a
(p+VazJ—V§l(Vm—b) Vi—b_F(Vm_b)

—1
(L - (VmT‘ b ) {1 - Vf;T V- b)z}
RT =5V = by m

m

(Vm"b)n f" V., —b) :(Vm"bj 1+ 32“ (V2 =2V b)
T V3RT T V3RT

m m

V. - bj 2ap  4abp®
= 1+ - 2.6.15
( T R’T?  RT? ( )

From Eq. (2.6.11), we have
(37
oT )y V, —b
ap) (BV j R (V —b) 2ap  4abp®
_ = - —_—m =7 m 1+ —
Hence € m = Crim T(aT y\ar J, v, —b T RT? RS

2
-R {1+ 2ap__ 4abp } (2.6.16)

R’T* RT?

The coefficient of cubical expansion ¢ of a metal at 293 K is 21.3 x 10 K™! and the
compressibility coefficient xis 1.56 X 107! Pa~!. The molar mass of metal is 63.55 g mol !
and its density is 0.97 g cm™. Calculate C,, m— Cy, 1 of the metal at 293 K.

We are provided with
a=213x10°K"!
k=156 x 10" Pa' =156 x 107" (N m?)!
p=097 gcm™

Molar mass _ 63.55¢ mol™

. —— = 65.515 cm® mol ™!
Density 0.97 gcm

Now Molar volume =

Substituting the above data in the expression

TV,
Kr

Cpm—Crm= (Eq. 2.6.7)

(21.3x107 K™)? (293 K) (65.515 % 107° m* mol ™)
we get C,.—Cyn= T
pom- =V.m (1.56 x 107! N7 m?)

=0.558 Nm K" mol™' =0.558 J K™' mol™’

Calculate C, ,, — Cy, , for nitrogen at 298 K and 100 bar pressure, the van der Waals constant
a is 141 dm° kPa mol .
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Solution

We have
p = 100 bar = 10* kPa
a =141 dm® kPa mol™

For a gas obeying van der Waals equation, we have

2a
Com=Cym= R(1+ o pj (Eq. 2.6.14)

p, m
Substituting the given values, we get

Cpm—Cym=(8314TK " mol™)

( - 2(141 dm® kPa mol2)

4
3 = ) > %10 kPa
(8.314dm” kPa K™ mol™" )" (298 K)

= (8314 J K mol™) (1 + 0.459)
=12.13 J K mol™!

2.7 JOULE’S EXPERIMENT

Experimentation

Fig.2.7.1 Joule expansion
experiment

Interpretation of
the Results

The evaluation of the differential (dU/dV); for gases, in principle, can be done
with the help of Joule’s experiment (Fig. 2.7.1). Two vessels A and B are connected
via a stopcock. The vessel A is filled with a gas at a certain pressure and the vessel
B is completely evacuated. The entire assembly is immersed in a large vat of
water and is allowed to come to thermal equilibrium with the water. The stopcock
is opened and the gas is allowed to expand till both the vessels are uniformly
occupied. After some time, when the vessel has again come to thermal equilibrium,
temperature of the water is recorded. The result shows that the temperature of water
after the experiment is the same as that before the expansion.

A Thermometer Stirrer

Before expansion, the entire gas is present in the vessel A. On opening the stopcock,
the boundary of the gas which always encloses the entire mass of gas expands
against a zero opposing pressure. Such an expansion is called free expansion.
Since dw = —p,,, dV/, it is obvious that the work involved in the above expansion
is zero. Now, according to the first law of thermodynamics dU = dg + dw, we have

dU = dq
Further, since there occurs no change in temperature of the bath, it follows that the
heat dg involved must also be equal to zero, Thus, we conclude that



Joule Coefficient

Joule Coefficient in
terms of Easily
Determinable
Derivatives
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dU=0

that is, Joule expansion is an isenergetic expansion.
Taking U to be a function to 7 and V, we write its differential as

w-(22) ar o)
T ), v )y

Since d7' = 0 and dU = 0, we must have

U
— | dV =0
(&),

Now since dV # 0, if follows that
oU )
=1 =0 2.7.2
(BV , (&58
Equation (2.7.2) is known as Joule’s law and it implies the following.

The change in energy of a gas with change in volume at a constant temperature
is zero.

In other words, the energy of the gas is a function of temperature only.
Mathematically, it is written as U = f(T). Joule’s law is strictly applicable only for
ideal gases and not for real gases.

The results of Joule’s experiment involving any gas (either ideal or real) can be
expressed in terms of Joule coefficient 1, defined as

_(ar
n= (E)V)U (2.7.3)

The Joule coefficient can be expressed in terms of the derivative (dU/0V); by
employing the first law of thermodynamics. Taking U = f(T, V), we have

dU = (a_Uj dr+(a_U) ar
Y v )y

Since, the Joule experiment is a process of constant energy, we have

o= (57), (57, + (57,

Rearranging this, we get

(aU) (GU) (BT)
—| ==|5=| |55] =-Cvn
v )y ar ), \av ),

__L(a_U) 2.7.4
or n= o, \av )y (2.7.4)

The Joule coefficient 1 can be expressed in terms of quantities obtainable from the
equation of state of the gas by employing the thermodynamic equation of state,
according to which (see Section 4.14), we have
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Joule Coefficient
for an Ideal Gas

Joule Coefficient
for a Real Gas

oU dp )
— | =T|=| - 2.7.5
(aV)T (BT , P (27.5)
Therefore = _L(&_U) = —L{T(a—pj - p} (2.7.6)
Cy\ oV Jr Cy oT Jy
If AT and AV are small, Joule coefficient can be written as
(9T _(AT),
n= (BV)U = @), 2.7.7)
Substituting this in the previous expression, we get
o-r(3)]
A = —|p-T|=| |AV 2.7.8
@an, cV[" (&) @78)

For an ideal gas p = nRT/V, therefore

() o2
ar), vV

This implies that

() e (T ) o
! Cy {T(STV P ¢, v p C p-p)=0 (2.7.9)

that is, Joule coefficient for an ideal gas is zero.

For a real gas, the sign of 17 depends on the relative magnitudes of p and (dp/d7),
as can be seen from Eq. (2.7.6). Thus we have

(i) When p > T (dp/dT), then 7 is positive. Since dV is always positive in
Joule’s experiment, it follows from Eq. (2.7.3) that (97),, is positive, that is, there
occurs an increase in temperature of the gas. In this case, as can be seen from
Eq. (2.7.4), (QU/AV); will have a negative sign.

(it) When p < T (dp/dT), then 7 is negative. Hence, it follows that (97),, is
negative, that is, there occurs a decrease in temperature of the gas. In this case,
(QU/AV) will have a positive sign.

The fact that (QU/dV); is negative at very high pressures and is positive at
ordinary pressures may be explained on the basis that the energy U actually consists
of two types of energies, namely, kinetic energy and potential energy. When the
volume is increased at constant temperatures, the kinetic energy remains constant
but potential energy varies. At ordinary pressures where the attractive molecular
forces predominate, the potential energy increases on expansion and hence
(QUIAV) is positive. At very high pressures, where the excluded volume plays the
dominating role, the potential energy decreases on expansion with the result that
(QU/9dV); is negative.
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2.8 JOULE-THOMSON EXPERIMENT

Experimentation

Fig. 2.8.1 Joule-Thomson
Experiment

Nature of Joule-
Thomson Expansion

Joulr-Thomson
Coeffcient

The Joule-Thomson experiment involves the expansion of a gas form one fixed
pressure to another fixed pressure under adiabatic conditions. The apparatus for
the Joule-Thomson experiment is shown in Fig 2.8.1. It consists of a cylinder
divided into two parts by a porous plug, a needle valve or any other throttling
device. A fixed quantity of gas is contained in the cylinder by frictionless pistons
placed on either sides of the porous plug. The entire apparatus is surrounded by
an adiabatic wall. The gas to the left of the porous plug is at a high pressure p,
and that to the right is at a low pressure p, (p; > p,). The gas is allowed to pass
through the porous plug from left to right, maintaining the pressures p, and p, at
constant values. This can be achieved by removing the left-hand and right-hand
pistons to the right quasi-statically.

Thermometer

N

[LL111))4)111]

Adiabatic wall

TUVEY \\\\\\(\2{\\\\\\\\\\\\\
Throttling device Weightless frictionless piston

Suppose a certain amount of gas is passed through the porous plug. We then have

Change in volume on the left hand side = — V|
Work involved on the left hand side = p,V;
Change in volume on right hand side = V,

Work involved on the right hand side = —p,V,
Net work involved in the system = —p,V, + p,V;

Because the process is adiabatic, dg = 0, and thus from the first law, we have

AU =w
or U= U =-p,Vy, + piV)
or Uy tpVa=U + piV)
or H,=H, (2.8.1)

that is, the enthalpy of the gas which has moved across the porous plug remains
unchanged and thus the Joule-Thomson expansion is an isenthalpic process.

The measured change in temperature —A7 and the measured change in pressure
—Ap are combined in the ratio

= 5),
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Example 2.8.1

Solution

Joule-Thomson
Coefficient in Terms
of Easily
Determinable
Derivative

The Joule-thomson coefficient t;r is defined as the limiting value of this ratio as
Ap approaches zero

AT oT
= lim | —| =|=— 2.8.2
Hor APHBO(APJH (apjg (2:82)

At 573 K and pressures of 0 — 6.0 MPa, the Joule-Thomson coefficient of N,(g) can be
represented as

/K MPa™' = 0.140 — 2.533 x 107 (p/MPa)
Assuming this equation to be temperature-independent near 573 K, find the temperature

drop which may be expected in the Joule-Thomson expansion of the gas from 6.0 MPa to
2.0 MPa pressure.

Since Uy = (07/dp), therefore
dT = pyy dp
= (0.140 K MPa™) dp — (2.533 x 102 K MPa™!) (»/MPa) dp
Intergrating within the limits of pressure, we get

2 2
AT = (0.140 K MPa )(p, — p;) — (2.533 x 102K MPa' )y | P2 __ P
( )p2—pp) —( ) TMPe 2 MPa

Substituting the given values of p, we get

AT = (0.140 K MPa ') (2.0 MPa — 6.0 MPa) — (2.533 x 102 K MPa™})

L [@o MPa)” (6.0 MPa)’
2 MPa 2 MPa

=-0.560 K + 0.405 K
=-0.155K

Since H = f(T, p), its differential is

dH = (%)p dT + (aa—[;l dp

Dividing by dp and introducing the condition of constant H, we get

o= (52,5, (5,

(G_T) __ (0H/9p)y :_L(B_H) 583
o o), @H/T), C,\p); 2:8.3)

According to the thermodynamic equation of state (see Section 4.15), we have

(B_Hj :—T(a—V) +V
op )y aT J,

Substituting this in Eq. (2.8.3), we get



Example 2.8.2

Solution

Joule-Thomson
Coefficient for an
Idea Gas

Joule-Thomson
Coefficient for a
Real Gas

Zeroth and First Laws of Thermodynaimcs 67

aTy  T@V/aT), -V
Hyr = ( jH = (2.8.4)

p C,

,LZ(B_V) —1 —L T 1
or M= cdyler), T T, e

(2.8.5)

Calculate the Joule-Thomson coefficient of carbon monoxide at 298 K and 40.53 MPa
pressure, given that (7/V) (aV/aT)p is 0.984, the molar volume is 76 ¢cm® mol™! and
Cpm=3728 1K " mol™.

Substituting the given values in the expression

_ 1(3_’/) o
Hfe=c 1v\ar),

p,m

(76 x107° m® mol™")
(37.28 JK ™' mol™)
=-00326x10°K ' m*=-0.0326x10°K (Pam’)' m®

=-0.0326x 10°K (1 atm/101.325 x 10%) " = - 0.003 3 K atm™'

we get Uy = (0.984 - 1)

For an ideal gas (0V/dT), = nR/p, therefore

_ T (@V/aD), —V_nRT/p_V_O

‘uJ T Cp Cp

(2.8.6)

that is, Joule-Thomson coefficient for an ideal gas is zero and thus the temperature
of such a gas will not suffer any change in the Joule-Thomson experiment.

For real gases, the numerator in Eq. (2.8.4) (and thus Joule-Thomson coefficient)
may be positive, negative or zero depending upon the temperature and pressure of
the gas. Since the change in pressure, dp, in Joule-Thomson experiment is always
negative, it follows from Eq. (2.8.2) that dT is negative when iy is positive, and
vice versa, These effects are summarized in Table 2.8.1.

Table 2.8.1 Relative Signs of u;; and (0H/dp),

Experimental Wt (0H/dp); Comments
result from Eq. (2.8.2)  from Eq. (2.8.3)
dT negative, i.e. ) &) Most gases, H, and He at
T,<T, low temperature
Cooling
dT zero, i.e. Zero Zero Idea gas, real gas at
T,=T, inversion temperature
Neither heating
nor cooling
dT positive, i.e. ) (@) Most gases at high tempera-
T7,>T, ture, H, and He at ordinary

Heating temperature
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Real Gas Undergoing The effects produced in the Joule-Thomson experiment involving a real gas can

Joule-Thomson
Expansion

be discussed very neatly with the help of Eq. (2.8.3). We have

_ (3_Tj __L(aﬂ)
Hyr = ap H_ Cp ap ;

Since H = U + pV, therefore

(BH) (aU) (B(pV))
or = | S| =—| *|—=—
op )y p )y o Jr

v ([
op J; \JV/)r\dp)r o Jr
Substituting this in the previous expression, we get
we (5), L5 L5 e
op )y C,[\dV Jr\dp ); o Jr

The first term on the right hand side of the above equation is negative since
(QU/9dV); is positive (unless the pressure is very high where (dU/dV); is negative)
and the fact that (dV/dp); is always negative.

The second term (d(p¥)/dp); which, however, represents the deviation from
the ideal gas, can have either sign.

Three cases may be distinguished.
(i) When {0(pV)/dp)} is negative

This condition is usually valid at low temperatures. In this case,

1 fauy (), (3wh)
Hor ci[avl(apjf( op M

__ 1 [(—ve) + (—ve)] = positive
(+ve)

Since dp in Joule-Thomson expansion is always negative, we will have
aT ? .
Wy = (gl{ = —vo) = positive
Therefore, (A7), = —ve
that is, the gas undergoes cooling in Joule-Thomson expansion.

(ii) When {d(pV)/dp} is positive and is greater than the magnitude of
(QUIAV) 7 (VIdp)y

This condition is usually valid at high temperatures. In this case

A fauy (o), (3wh)
Hor cpKaV)T(apjﬁ( o ”

=_ L [(—=ve) + (more +ve)] = negative

(+ve)
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(), e
an Wy = 7)., v = negative

Therefore, (AT)y; = +ve
that is, the gas undergoes heating in Joule-Thomson expansion.

(iii) When {d(pV)/dp}, is positive and is equal to the magnitude of
UV (dVIdp)y

In this case
Wr=0 and thus ATy =0

that is, the gas does not exhibit any cooling or heating during the Joule-Thomson
expansion.

The temperature of the gas at which i, = 0 is known as the inversion temperature.
From Eq. (2.8.5), it follows that

VIT (oV
= —|2|—| -1]=0
Hyt C{V[BT),, :|

P
3 1 1
or T, = W—a (2.8.9)
y\oT )/,

where ¢;; is the isobaric expansivity of the gas at the temperature T;.

The evaluation of the differential (0H/dp); for gases can be done by utilizing
Eq. (2.8.3). Thus

oH oT
— | ==C | — =-C, 2.8.10
(ap jT p(aP)H p Hor ( )

For an ideal gas, t;; = 0 and thus the differential (0H/dp); is zero. This also
follows from Eq. (2.8.7) since (dU/dV); and (d(pV)/dp) are both zero for an ideal
gas. For real gases, (dH/dp)y can be positive, negative or zero depending upon the
temperature of the gas. Once (0H/dp); is evaluated, the differential (dU/dV); can
be calculated from Eq. (2.8.7). Thus

[5G0 (5, (%5
ap T aV T ap T ap T

)] o)
oV J)r\ dp )y o Jr

Rearranging this, we get

(9_U) _(OH/op)y =V _ 2.8.11)
W )e . @Viep),

Hence, substitution of (dH/dp), (dV/dp)s, V and p gives the value of (dU/IV).
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Problem 2.8.1 Show that the value of (dH/dp); = = V for solids and liquids.

Solution Since H= U+ pV, we get on differentiation
dH=dU+pdV+Vdp

Dividing by dp and introducing the condition of constant temperature, we get

(555, -G (5 (5)
e e - IR ) ) B [ iy iy e T 4
ap ) \op); op Jr oV )r\op )y op Jr
For solids and liquids, the variation of volume with pressure is negligibly small, i.e.
(0V/dp); = 0, and therefore

(B_H) -y
ap Jr

2.9 JOULE-THOMSON COEFFICIENT AND VAN DER WAALS EQUATION OF STATE

Expression of u,; The expression for Joule-Thomson coefficient as given by Eq. (2.8.4) is

1 av
:uJT = C—|:T(a—ij - V i| (291)

P

The expression for (dV/dT), for one mole of a van der Waals gas as given by
Eq. (2.6.12) is

(an) _ R
oT b op- a +Zab

vt
Substituting this in Eq. (2.9.1), we get
+— |V, = b
= RT s (p Vrﬁ](‘“ )_V
T C a 2ab m| T o a 2ab m
S D e o e Pl p—
2a 3ab
S —pb
1 |\ Ve Vg
=7 = b (2.9.2)
Equation (2.9.2) may be simplified under the following approximations.
@) —% + @ may be ignored in comparison to p
m m
(ii) pV, =RT
With these, Eq. (2.9.2) becomes
1 [2a 3abp }
= ——-——-b
LR [RT RT? (29.3)
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If temperature of the gas is not too low and its pressure is not too high, Eq. (2.9.3)
can be reduced to a more simple form by neglecting the term 3abp/R*T?, so that

L (2—“—17) 2.9.4
Hyr = Cpm \RT (2.9.4)

Values of u;; for H,, O, and CO, at 0 °C as calculated from Eq. (2.9.4) are given
in Table 2.9.1. The agreement between observed and calculated values seems
reasonable keeping in mind the assumptions made in deriving Eq. (2.9.4) and the
applicability of the van der Waals equation.

Table 2.9.1 Values of u;p at 0 °C for some Gases

a b Cym /K atm™!
Gas dm® kPa mol?>  dm® mol™ J K mol™ Calculated Observed
H, 25.74 2.67%x1072 29.38 -0.014 —-0.03
0, 133.75 3.12% 1072 30.29 0.29 0.31
Co, 364.77 428 %1072 38.50 0.73 1.30

The Joule-Thomson coefficient has a positive value when (2a/RT) is greater than b
and the gas exhibits cooling on expansion. The cooling of the gas can be explained
on the basis that the forces of attraction between molecules of the gas predominate
over the excluded volume 5. Consequently, on expansion the gas has to do some
work against these forces of attraction. The energy required for this comes from
within the system as the expansion takes place under adiabatic conditions and thus
cooling is observed. On increasing the temperature, the term (2a/RT) decreases and
eventually at the temperature known as the inversion temperature, it becomes equal
to b with the result that (i, becomes equal to zero. At this temperature, neither heating
nor cooling is observed. At still higher temperature, the factor (2a/RT) becomes lesser
than b and thus now the excluded volume b predominates over forces of attraction.
Here 1 is negative and there occurs a rise in temperature of the gas after it has
passed through the porous plug. These effects are also shown in Fig. 2.9.1.

The inversion temperature of a gas as defined above is the temperature at which
Uyr = 0. Thus equating Eq. (2.9.3) to zero, we get
20, Jabp,
RT; RZTiZ

b=0 2.9.5)

Equation (2.9.5) implies that a gas has two inversion temperatures at each pressure.
Experimental results are in agreement with this fact as illustrated in Fig. 2.9.2.

Under the conditions of low pressure and high temperature inversion temperature
may be determined from Eq. (2.9.4). Thus, we have
2a

T= o (2.9.6)
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r a = 141 kPa dm’ mol N 5001~ van der Waal’s
3 -1
b =0.0392 dm 1301 L O 4001
T . C, ., =3435JK mol E ook T expt
<
b
- N b/C,, 2 200 N <0
i Ir ’\;\:\ 2 Ur>0 '..‘heatmg
M | = 1001 :
© S
= : 2a/C, . RT £ oF
= OF ] 5
I Hyr -100—
1 ! L b ! ! T T R T N R
400 600 80(7)71( 1000 1200 100 200 300 400
-

p/101.325 kPa —

Fig. 2.9.1 The variation of /1;, and its two Fig. 2.9.2 A Typical Joule-Thomson inversion

components of N, (a van der Waals gas) with

curve
temperature:
Example 2.9.1 Calculate u;y for nitrogen gas at 293 K and 10.133 MPa pressure, taking C, ,, as 34.35 ] K™
mol ™!, @ = 0.141 dm® MPa mol 2 and b = 3.92 x 10 dm® mol .
Solution The expression of i is
1 ( 2a b 3abp)
Hyr = 7 U7 p2p2
= C, o \RT R’T
6 -2
Now 2—a= 2(0'1;“ dr? MPa mo_ll ) =0.115 7 dm> mol™
RT (8.314x107> dm® MPa mol™) (293 K)
3abp _ 3(0.141dm°® MPa mol 2)(3.92 x 10~ dm® mol™")(10.133 MPa)
R*T? (8.314 %107 dm® MPa K 'mol™")? (293 K)?
=0.028 3 dm® mol !
1
Thus  gyp = [(0.115 7 — 0.039 2 — 0.028 3)dm’ mol ']

(34.35J K™ mol™)

1.403 x 10° K J! dm® = 1.403 x 107 K (kPa dm®)! dm®
=1.403 x 102 K kPa' = 1.403 x 10 K (1 atm/101.325) ' = 0.142 K atm™!
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Solution

Example 2.9.4
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Calculate the inversion temperature of nitrogen. Given : a = 1.408 dm® bar mol? and
b=0.039 13 dm’ mol .
Substituting the given data in the expression T; = 2a/Rb, we get

2(1.408 dm® bar mol2)
U (0.083 14 dm® bar K™! mol™)(0.039 13 dm® mol™")

=865.6 K
From Eq. (2.8.10), we have

oH
g . :_CpuJT

Also from Eq. (2.9.4), we have

;(Z_a_b)
Hyr = Cp,m RT

From these two expressions, we get

(—aHmj =p-22 2.9.7
o )y RT 29.7)

For a gas undergoing isothermal expansion or compression, we will have

2a
=|b——|A
AH,, ( RT) P (2.9.8)

Calculate the value of AH for the isothermal compression at 300 K of 1 mol of nitrogen
from 10° Pa to 500 x 10° Pa. Given: a = 135.78 (dm>)? kPa mol 2 and b = 0.039 dm® mol ..

We have
Ap =500 x 10° Pa— 1 x 10° Pa = 499 x 10° Pa = 499 x 10° kPa
a = 135.78 (dm®)* kPa mol™>
b =0.039 dm® mol !

Substituting these values in the expression
2a
AH, = |b-=Z A
w=(6-22)ap
we get

2%135.78 dm® kPa mol™>
(8.314 dm’> kPa K™' mol™) (300 K)

AH = {0.039 dm® mol™ - } (499 x 10 kPa)

=(0.039 dm> mol™ — 0.108 9 dm® mol™) (499 x 10* kPa)
=_ 3 488 dm> kPa mol™! = — 3.488 kJ mol™

In a single-stage Joule-Thomson expansion, one mole of nitrogen gas suffers a change
in temperature from 25 °C to —196 °C. If the final pressure of the gas is 101.325 kPa,
calculate its initial pressure. Given: a = 135.78 dm® kPamol %, C, ,,=20.92 JK™' mol ™' and
b =0.039 dm’ mol .
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Solution

Problem 2.9.1

We have
T, =25°C =298 K; T,=-196 °C =77 K
= p, =101.325 kPa
a=135.78 dm® kPa mol ?; b =0.039 dm> mol™!

We know that
oT 1 2a
Hyr = N =——|5-—b
P )y Cp,m RT

Cp,m dT = RT d
Therefore dp = m Tr=C, 50— bRT T

Changing the variable T to 6 with the help of equation 2a — bRT = 6, we have
—bR dT = d6

die and RT = 2a-6
(=bR)

Thus d7T =

With these, the expression for dp becomes

dpchm((za—e)/b) o dpz_cp,m(zj_l)de
' 0 (=bR) R\ O

Integrating, we have
23 C] 0, 2
j dp=——L J [i-l)de
Py b R 6, 9

C;m
or Pr—P1=— bLR {2a1In (6,7 6)) — (6, — 6}

2

Now the values of 6, and 6, corresponding to temperatures 25 °C (298 K) and —196 °C (77 K) are
6, = 2a — bRT, = 2(135.78 dm® kPa mol ) — (0.039 dm® mol™)
X (8.314 dm® kPa K™ mol™) (298 K)
= 174.93 dm® kPa mol >
6, = 2a — bRT, = 2(135.78 dm® kPa mol ) — (0.039 dm> mol™)
x (8.314 dm® kPa K™! mol™) (77 K)
= 246.59 dm® kPa mol ™
Substituting these values along with p, = 101.325 kPa in the previous expression, we get

(20.92 J K™ mol™)
©(0.039 dm’ mol™)? (8314 K" mol ™)
x [2(135.78 dm® kPa mol™2) {In (246.59/174.93)}
— (246.59 — 174.93)] dm® kPa mol 2
= — (1654.33 dm™ mol?) (21.58 dm® kPa mol?)

=—35700 kPa
Thus  p, =35 801 kPa = 353.3 atm

101.325 kPa — p, =

(a) The virial equation for a van der Waals gas retained upto second virial coefficient is

B
pV. =RT(1+V); where B=b-a/RT

m
m
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Show that the expression of Joule-Thomson coefficient for this gas is given by

1 -B+ T(aB/aT)p
1+2B/V,,

=
Chm

(b) At the inversion temperature, t;r = 0. Hence, B — T (dB / aT)p = 0. Show that it leads
to the expression 7; = 2a/Rb. Calculate the inversion temperature of nitrogen for which
a =141 kPa dm® mol % and b = 0.039 2 dm’ mol .

(c) Draw a graph between B and T for the nitrogen and show that the inversion temperature
is equal to the temperature of contact of the tangent to B versus 7 curve drawn from the
origin of the graph.

(a) The expression of Joule-Thomson coefficient is

1 av.
- |7 Zm) _p
it C [(aTl, m}

p.m

From the given equation of the gas, we get

”, B 1 (aBY B[V,
D) _pl1+ 2|+ rT| (2] -2 (D
p( FYa )p (+Vm]+ [Vm(BT)p Vlﬁ(aT ),,]

Form this expression, we get

(an) _ R(I+B/V,))+(RT/V,,)(dB/9T),
o ), (p+BRT/V?)

Replacing p by (RT/V,) (1 + B/V,) and multiplying numerator and denominator by
V/RT, we get

(an) _ (V/T)(1+ B/V,)+(9B/dT),
o J, (1+2B/V,)

1 av.
- |7[%m | _y
Hence,  tyr cp,m{ (BT jp “‘}

1 {Vm(1+B/Vm)+T(aB/E)T)p V}

Cpom (1+2B/V,)
1 -B+T (0B/dT),
S Coml (+2B/V)

(b) Since B = b — a/RT, we get

(3_3) =l
oT ), RT?

Hence, at inversion temperature, we have
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Fig. 2.9.3 Graph between
B and T for nitrogen

Equating this to zero, we get
_2a

I Rb

For N,, we have

- 2(141kPa dm® mol™)
1" (8314 kPa dm’® K" mol™) (0.039 2 dm® mol™")

=8653K

(¢) Given values of g and b for N, are a = 141 kPa dm® mol? and b = 0.039 2 mol™! dm>.
The values of B (= b — a / RT) at different temperatures are as follows.

T/K B/ dm> mol™ T/IK B/ dm?> mol™
100 —-0.130 600 0.011
200 —0.046 700 0.015
300 -0.017 800 0.018
400 —-0.003 900 0.020
500 0.005 1000 0.022

The graph between B and 7 is shown in Fig. 2.9.3. A slope line passing through the
origin (B =0, T = 0) is also shown in Fig. 2.9.3. It is obvious that this slope line meets
B verses T graph at T = T;, because only at this point the values of B calculated via slope
line and from the expression B = b — a/RT have the same value. The equation of the slope
line is B = (By/T)) T.

0.03F _
I
2 0.02- o : T, can be determined
T 0¢~~ ! by the temperature of
g : : contact of the tangent
oo T 0.01 1 | to B(T) versus T curve
5 ! I drawn from the origin.
B3 1 !
I I
-0.03F | I
I
| T,=432K | T,=865K
~0.005 11 1 11 1
200 400 600 800 1000
T/K >

210 THERMODYNAMIC CHANGES IN ISOTHERMAL VARIATION IN VOLUME OF AN IDEAL GAS

Expressions for q, w,
AU and AH

We shall use the first law of thermodynamics to calculate the changes in
thermodynamic properties when an ideal gas undergoes the process of expansion
or compression.

In an isothermal expansion or compression process, the temperature of the
system remains constant throughout the expansion or compression process. Since
for an ideal gas, U depends only on temperature (Joule’s law, (dU/dV), = 0), it
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or Compression
Process

Zeroth and First Laws of Thermodynaimcs 77

follows that

dU=0 or AU=0 (2.10.1)
Substituting the above expression in the first law of thermodynamics, we get
dg=—-dw or g=-w (2.10.2)

Hence in an isothermal expansion or compression process, heat is converted
into work and vice versa. Thus, if heat is supplied to the system (g positive), the
equivalent amount of work is done by the system (w negative), and if some work
is done on the system (w positive), the equivalent amount of heat is given out
(¢ negative).

The enthalpy change of the system is also zero as

AH = AU + pV) = AU + A(p))
= AU + A(mRT) = AU + nR(AT)
=0+0=0 (2.10.3)

The magnitude of w (or g) depends on how the expansion or compression

process is carried out. Two different types of processes may be distinguished,

namely, reversible and irreversible. The changes in ¢, w, AU and AH in these two
types of processes are given below.

The expression for the work involved in an isothermal expansion or compression
from volume V| to V, can be worked out as follows:

Since  dw = — p,,, dV, therefore

£
w=- le Pext dv

In the reversible change of volume, the external pressure differs from the pressure
of the gas by an infinitesimal amount, i.e.
Pext = Pint T dp

where +ve and —ve signs are meant for compression and expansion processes,
respectively.

Substituting this is the previous expression, we get

e [t dp) dV = [ v [ dp v
The second integration can be neglected, since it is the product of two
infinitesimal small differentials. For an ideal gas, p;, is given by
nRT
V
With this the previous expression becomes

2 nRT
=_ drv
W .[V1 V

Pint =

Since temperature remains constant in an isothermal process, we have

,
w=—nrT [ =T 2 (2.10.4)
nv 4
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Example 2.10.1

Solution

Example 2.10.2

Solution

Irreversible Expansion
or Compression
Process

Free expansion

In terms of pressure, we have

w=—nRTIn £L (2.10.5)
P>

Hence, for an isothermal reversible expansion or compression, we have
V-
qg=—w=nRT In 22 _pRTIn 2L
4 P>
AU=AH=0

Calculate the work which could be obtained from an isothermal reversible expansion of
1 mol of Cl, from 1 dm? to 50 dm> at 273 K using ideal gas behaviour.

For an ideal gas

w=—RT In &

"

50 dm3j

=— (8314 JK ' mol™) (273 K) x 2303 x log | ——-
1dm

=_8880.8 J mol! = — 8.88 kJ mol™

One dm? of an ideal gas at a pressure of 1.013 3 MPa expands reversibly and isothermally
from its volume to 10 dm®. How much of heat is absorbed and how much of work is done
in expansion?

For an ideal gas undergoing reversible volume change, we have
V.

g=-w=nRTIn -2

4

The temperature in the above expression can be replaced in terms of p; and V; by using
the ideal gas equation. Thus

V.
= V) In =
q9=@") 7

Substituting the value of p,, V; and V,, we have

3
¢ = (1.013 3 MPa) (1 dm’) x 2.303 x log [lloddri ]
m

=2.333 6 MPa dm> = 2.333 6 kJ

Two types of irreversible change in volume may be distinguished, namely, expansion
against a zero pressure (free expansion) and expansion or compression against a
constant pressure (intermediate expansion or compression). The change in ¢, w,
AU and AH for these processes are given below.

Here

pext =0
Therefore w=[dw=—[p, dV=0 (2.10.6)
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Thus, g=-w=0
AU=AH=0

Here, the work is done against a constant external pressure.
v,

Therefore w =— _[Vzpext dV==pV,—-1) (2.10.7)
1

Hence, in the present case, we have

q == W= Pext (VZ - Vl)

AU=AH=0
It may be mentioned here that the magnitude of work involved in an intermediate
expansion process will be less than that involved in the reversible expansion.
Consequently, less heat will be absorbed in the case of intermediate expansion.
On the other hand, the work involved in the intermediate compression process is
larger than that involved in the reversible compression. Consequently, more heat
will be released in the case of intermediate compression.

(a) Five moles of an ideal gas at 293 K are expanded isothermally from an initial pressure
of 0.405 3 MPa to a final pressure of 0.101 3 MPa against a constant external pressure of
0.101 3 MPa. Calculate ¢, w, AU and AH. (b) Calculate the corresponding values of ¢, w,
AU and AH if the above process is carried out reversibly.

(a) For an isothermal expansion against a constant pressure, we have

77 (nRT nRT) WRT p [1 1)
W = —p —_ = 7p —_—— — % — i —
ext\” 2 1 ext P, n ext P, P
Substituting the values, we get

w=— (5.0 mol) (8.314 J K~! mol™") (293 K) (0.101 3 MPa)

1 1
. (0.101 3MPa  0.4053 MPa)
=-913577J=-9.136 kJ

Since temperature is constant

AU=0, AH=0 and g=-w
(b) For an isothermal reversible expansion, we have

w=—nRTIn 2= urrm 20

" P

Substituting the values, we get

w=— (5.0 mol) (8.314 J K" mol™") (293 K) x 2303 x lo
( ) ) ) o 0.1013 MPa

0.4053 MPa)

=—-16 889 J=-16.889 k]
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Comparison The changes in the thermodynamic properties in the expansion processes and those
of Isoth_ermal involved in compressing back to the original state and in the cyclic processes are
Expansion, listed in the Table 2.10.1

Compression and
Cyclic Processes

Table 2.10.1 Comparison of ¢, w AU and AH for Different Types of Isothermal Processes'

Process Expansion Compression Cyclic

Reversible

g, (-w) nRT In Y nRT In i 0
1 V;

AU, AH 0 0 0
Free v
q, (=w) 0 pcxt(vl _VZ) <nRT In V_7 pm(V, - VQ) <0
AU, AH 0 0 0
Intermediate V. v,
q, (—w) 0< /’;x:(Vz‘ V]) <nRT 1[172 pcxt(vl —V2)<11RT lnv_" (p;xl—pcxt)(VQ— V1)<0
AU, AH 0 : 0 : 0

(1) pex[ 2 P| (11) 0 < p;xl S Pz (111) p;xl < pexl

"Notes: The work involved during expansion is negative as ¥ is less then V. This negative work means that the work
is done by the system on the surroundings. It may be noted that the magnitude of work involved in the irreversible
expansion will be smaller than the corresponding magnitude of work involved in the reversible expansion. The pressure
Pext €an have any value ranging from zero to p,. On the other hand, the work involved during the compression is
positive since V| is less then V,. The positive work means that the work is done on the system. The work done during
irreversible compression will be larger than the corresponding work done in the reversible compression. The pressure
Pext €an have a value either equal to or greater than p,.
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In adiabatic expansion or compression process heat is neither allowed to enter nor
leave the system. Therefore

q=0 (2.11.1)
So, according to the first law of thermodynamics, AU = g + w, we have
AU=w (2.11.2)

If there is an expansion, w will be negative and, therefore, AU will also be
negative, i.e. there will occur a decrease in the internal energy of the system and
hence a decrease in temperature will be observed. This amounts to the fact that
the work is done by the system at the expense of internal energy.

If there is a compression, w will be positive and, therefore, AU will also be
positive, i.e. there will occur an increase in the internal energy, and hence an
increase in temperature will be observed. Here, the work is done by the surroundings
on the system, which is stored as the internal energy.



Expressions for q,
w, AU and AH

Reversible Expansion
or Compression
Process

Relationship
between Tand V
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We have seen that
qg=0 and w=AU
The change in the energy can be calculated as follows.
Writing the differential of U, we get

du= (a—Uj dT+(a—U) ar
Vv T

oT 14
But for an ideal gas (U/dV); = 0. Therefore
w- () a
oT Jy

Hence dU=nCy , dT

For a finite change, we have

AU=U, - U, =nCy , (T, - T)) (2.11.3)
Thus, we have

w=AU=nCy (T, -T)) (2.11.4)
The change in enthalpy is given by

AH = AU + p))

= AU+ A(pV) = AU + nR AT
=nCy (I, -T) +nR(T, - T) =n(Cy ,, + B) (T, - T))
or  AH=nC, . (T~ T) (2.11.5)

Expressions as given by Eqs (2.11.1) to (2.11.5) are applicable to any type of
adiabatic processes (reversible, irreversible, free). However, the final temperature
will be different in each case and hence, w, AU and AH will be different. We proceed
now to calculate these quantities for the two types of expansion or compression
processes, namely, reversible and irreversible.

We have
WZ-I.dW:_Jpext dV:_J.pint dav

The integration in the above expression cannot be performed directly, because
Pine 15 a function of both 7" and V" and both variables are changing in an adiabatic
expansion or compression process. However, if the final temperature is available,
the values of g, w, AU and AH can be determined using Eqgs (2.11.1) to (2.11.5).
However, if the final temperature is not available, but the final pressure or volume
is available, the first step is to calculate the final temperature from the expression
which relates the initial and final temperatures to the respective volumes or
pressures. Such expressions can be derived as follows.

From Eq. (2.11.2), we have
dU = dw
Since dU = nCy, ,, dT and dw = — p,,, dV, therefore



82 A Textbook of Physical Chemistry

Example 2.11.1

Solution

nCy oy AT = = pey AV
For a reversible process
Pext = Pint T AP = Dy
Thus nCy ., dT = —p;, dV
For an ideal gas p = (nRT/V), therefore

RT
ncy,de:—ng or Gy dT== 5 v

(Note that C), , is molar heat capacity. The above equation will also be true for
more than 1 mole of an ideal gas.)
Thus for a finite change, we have

T, v,
[P i [
n T wo oV

If Cy, , is considered independent of temperature, then

T. 1%
Cy .. In (—2]=—Rln(—2j (2.11.6)
g T 4

Cy m/R -1 Cym/R
or In Q =In & or E = ﬁ
I " I v,

Therefore (7,).n® (V,) = (T))v:n R (1))
The above expression implies that
T%.n® = constant (2.11.7)

The alternative forms of this expression are

RIC
TV ™™ =constant

(where y=C, , /Cy, ) (2.11.8)
or TV’  =constant

20 g of N, at 300 K is compressed reversibly and adiabatically from 20 dm® to 10 dm’.
Calculate the final temperature, ¢, w, AU and AH.

(20g)

——————— 0.714 mol
(28 gmol™) o

Amount of N, =

T,=300K; ¥, =20dm’ V,=10dm’
For an adiabatic reversible process

RICy m_ RIC
Ly "m=Tyrm



Relationship
between T and p

Relationship
between p and V

Problem 2.11.1

Solution
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y & m 20 dm’ )"
Thus  T,=T, (_1] —3o0K)| 229}~ (300 K) (1.32) =396 K
v, 10 dm

5 -
Hence, AU=w =nCy, , (T, ~T}) = (0.714 mol) (5x8.314JK " mol ‘j (96 K)

= 1424697
7 o
AH =nC, , (T, — T}) = (0.714 mol) (5x8.314JK ! mol 1) (96 K)

=1994.561]

Replacing ¥ in Eq. (2.11.7) by nRT/p, we get

7€V, m'R (ﬂ) = constant
p
or T ~Cp. m/R p = constant (since n is constant) (2.11.9)

The alternative forms of this expression are

-R/C

Tp P-M = constant
T p'="" = constant (2.11.10)
T71=7 b = constant

Replacing T in Eq. (2.11.7) by pV/nR, we get

Cyom/R
(p_}l:) V = constant
n

or pCV R o, m/R = constant (since n is constant)  (2.11.11)
The alternative form of this expression is

pV V= constant where Y=(Cp w/ Cy ) (2.11.12)

After calculating the final temperature from either Eq. (2.11.7) or Eq. (2.11.9) we
can use Eqgs (2.11.1) to (2.11.5) to calculate g, w, AU and AH.

Show that the work involved in a reversible adiabatic expansion of an ideal gas from p;
and V; to pyand V; is given by

RIC
. PV — piVi .. (Pf) P
i = il =—nCy,  T.|1-|—
() w ')/—1 () w n V, m 1[ P

(i) For an adiabatic reversible process

PeVs _P;_V;)

w=nCy (Ty—T) = CV,m( R R
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Example 2.11.2

Solution

Irreversible
Expansion or
Compression
Process

Free expansion

piVy—p Vi

CV’“‘(V V)= .m (pVe—p V)=
—RPff pri)= PeVe —PVi)= y-1

Cpm—Crm
(i) For an adiabatic reversible process
w= nCV, m (Tf_ Tl) == nCV,m (T1 - Tf)

Using the expression Ti(pi)’R/Cp’ M=T¢(ps YR /Cp.m | the above equation becomes

N R/Cpm RICp m
w = nCy Ti—z[ﬁJ =—nCy o, 1—(ﬂ]
Pr P

0.410 mol of a monatomic gas fills a 1 dm® container to a pressure of 1.013 3 MPa. It is
expanded reversibly and adiabatically until a pressure of 0.101 33 MPa is reached. What
are the final volume and temperature? What is the work done in the expansion?

The final volume 7} of gas after adiabatic and reversible expansion can be obtained by
using the expression

pVi=pe VY
Substituting the values of p;, Vi, p; and y we get

(1.013 3 MPa) (1 dm®)*” = (0.101 33 MPa) V>
or Ve= 10" dm® = 3.98 dm®

The final temperature 7} after the expansion is

Vs (0.10133 x10° kPa) (3.98 dm®)
T;= = S ——— =1183K
nR  (0.410 mol) (8.314 dm” kPamol™ K™)

The work done during the expansion is

~ pVi—p¥; _ (10133 MPa) (1dm’) - (0.10133 MPa) (3.98 dm’)
y-1 (5/3)-1

=-0.915 dm® MPa=-915J

w=

Here again, we consider two cases, namely, free expansion and intermediate
expansion or compression processes.

In a free expansion, we have

Pext = 0
Thus, dw=-p., dV=0

Now according to Eq. (2.11.2), we have
dU=0
Since, for an ideal gas, U = f(7), it follows that the temperature of the gas after
expansion remains unchanged.
Now dH=dU+ d(pV)=dU + dxnRT) =dU + nR dT
=0+0=0



Intermediate
Expansion or
Compression

Calculation of
Temperature
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For a finite change, we will have
w=0, AU =0, AT =0, AH=0

Comparing these changes of properties with those of the isothermal free
expansion, we find that the adiabatic irreversible free expansion of an ideal gas is
identical with the isothermal free expansion.

Here the work is involved against a constant external pressure and is given by

wW=—po Va—1) (2.11.13)
Substituting this in Eq. (2.11.2), we get

w=AU=—-p..V,—=T1) (2.11.14)
For an ideal gas, AU is given by

AU = nCy , AT=nCy (T, - T)) (2.11.15)
The expression for AH is

AH =nC, ., AT =nC, . (T, - T)) (2.11.16)
Eliminating AT from Egs (2.10.15) and (2.10.16), we get

AH =nC, , AU _Sm AU= yaU 2.11.17)

nCV,m CV,m

Equation (2.11.14) can be employed to calculate w and AU from the given
values of p., V5, and V;. Knowing AU, we can calculate AH by using Eq. (2.11.17).

In some expansion or compression processes, the values of p.,, p, p, and T, are
provided. In such a case, first of all we calculate the temperature of the gas after
the expansion or compression. This can be done as follows.

Equating Eqs (2.11.14) and (2.11.15), we get

nCV,m (TZ - Tl) = = Pext (VZ - Vl) = Pext (Vl - V2)
Replacing ¥, and V; in terms of 7 and p, we get

nRT, nRT.
nCV,m(T27T1):pext ( 1 _—2)
P P>
RT, RT
or CV,m(TZ_Tl):pext (_1_—2j (21118)
P P

For a special case, where p.,, = p, (the pressure of the gas after expansion),
we get
RT, RT
Cym (-T)=p, (—1——2j (2.11.19)
P P>
Rearranging this, we get

C, .+Rp,/
T, =T, (V’“‘—MJ (2.11.20)

CP,m
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Example 2.11.3

Solution

Example 2.11.4

Solution

After knowing T, from Eq. (2.11.20) (or from Eq. 2.11.18 if p,,, is not equal
to p,), we can calculate AU and AH from Eqs (2.11.15) and (2.11.16), respectively.

2.0 mol of an ideal diatomic gas at 300 K and 0.507 MPa are expanded adiabatically to a
final pressure of 0.203 MPa against a constant pressure of 0.101 MPa. Calculate the final
temperature, ¢, w, AU and AH.

For an adiabatic process, ¢ = 0

W = —Pext (VZ - Vl) = 7 Dext (ﬂ—ﬂ]

P> P
AU=w
. T, T
ie. nCy, o (Ty = T)) = pey nR (—1 - —2)
P P
. . R RY 5 : G
Cy, , for diamotic molecule = 3 £y +2 £y = ER ; (assuming no contribution

from vibration)
Substituting the expression of C, , in the previous expression, we get

5 T, T
}’l(—R) (TZ - Tl) = Pext nR [—1__2j
2 P P

5
or 5 (TZ - Tl) = Pext (E - ij
P P2

Substituting the values, we get

%(T2—300K):(0.101 MPa)( 300K ! j

0.507 MPa  0.203 MPa

Solving for 7,, we get
T,=270 K
5
Thus AU =nCy , (T, - T}) = (2.0 mol) (5 x8314JK™! mol_l) (270 K — 300 K)

=_1247.11]
AH = AU + nR (AT) = -1 247.1 J + (2.0 mol) (8.314 J K~' mol™) (- 30 K)
=_174591]

Two moles of an ideal monatomic gas (Cy, ,, = 12.55 ] K™' mol™) expands irreversibly and
adiabatically from an initial pressure of 1.013 MPa against a constant external pressure of
0.101 3 MPa, until the temperature drops from the initial value of 325 K to a final value
of 275 K. How much work is done and what is the final volume?

We have
AU =nCy, , (T, - T)) = (2.0 mol) (12.55 J K™ mol ") (275 K - 325 K)
=-1255]
w=AU=—p (V- V) == (0.101 3 MPa) (V, — V) =—1255]



Example 2.11.5

Solution

Example 2.11.6

Solution
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nRT, _(2.0mol) (8.314J K™ mol™) (325K)
P (1.013 MPa)

=5334.75 cm’

Now vV, =

1255]
0.1013 MPa

Therefore V), + ¥, =12 388.94 cm® + 5 334.75 cm®

=17 723.69 cm’ = 17.72 dm®

An ideal monatomic gas (Cy, ,, = 1.5 R) initially at 298 K and 1.013 MPa pressure expands
adiabatically and irreversibly until it is equilibrium with a constant external pressure of
0.101 3 MPa. What is the final temperature of the gas?

For an adiabatic irreversible process

du = ~ Pext v
RT, RT,
nCV,m(TZ_Tl): _pext(V2_ V]):_pext (” Z - u)
) P
Substituting Cy, , = 1.5 R and simplifying, we get
15(Ty = 7)) = — Pexe (ﬁ _ ﬁj
Py P
Substituting the values of p,, p; and T;, we get
7 298 K
1.5 (T, — 298 K) = —(0.1013 MPa) 2 =28
0.1013MPa 1.013MPa

2
25T,=1.5 (298 K) +

 447.0K+29.8K

T, 35 =190.7K

With what minimum pressure must a given volume of nitrogen, originally at 373 K and
0.101 3 MPa pressure, be adiabatically compressed in order to raise its temperature to 673 K.
Given: Cy, , = (5/2)R.

For an adiabatic irreversible compression, we have

AU =— JpexldV: “Pext (V2_ Vl)

or CV,m(TZ_ Tl) = “Pext (ﬂ—ﬂj
)2 P

Here Pext = P2

Thus  Cy o (Ty— T)) = p, (ﬂ _ﬂ]
P h

Substituting the values of Cy, , T), T} and p,, we get

% R(673K -373K) = p, (R(673 K) __RGB73K) j

P, 0.1013 MPa
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or 3 300=-673+ —213P2
2 0.1013 MPa
Hence, Py = 150+ 673 x 0.1013 MPa = 0.386 5 MPa
373
Comparison of The Changes in thermodynamic properties in the adiabatic expansion processes

Adiabatic Expansion are listed in Table 2.11.1.

Processes

Table 2.11.1 Comparison of w, AU and AH for Different Types of Adiabatic Expansion Processes

+

Expansion w T, AU AH

Reversible w = nCy (T~ T)) <0 T,<T, AU = nCy (T, T)<0 AH = nC, , (T,~ T)) <0

Intermediate w = nCy .y (I -T)<0 T, <T AU” = nCy , I, -T)<0  AH’ = nC, , (I, -T))<0
Free W’ = nCy (I =T =0 /=T, AU”=nCy, (Iy-T)=0 AH”=nC,, (I3 -T)=0

i) T<T<Ty =T,

0 and lwl>IwI>Iw"l =0
(i) AU<AU <AU” = 0 and |1AUI>IAUI>1AU"1 = 0
(iv) AH<AH <AH” = 0 and |AH|>|AH |>|AH"| = 0

i) w<w <w”

"Note: Since the magnitude of work involved in an irreversible expansion is less than the corresponding magnitude of

the work involved

in a reversible expansion, it, therefore, follows from Eq. (2.11.15) that the temperature decrease in

an irreversible expansion will be less than the corresponding temperature decrease in the reversible expansion. On the

other side, since the work involved in an irreversible compression is larger than the corresponding work involved in

the reversible compression, the increase in temperature in the former will be larger than in the latter.

212 COMPARISON BETWEEN REVERSIBLE ISOTHERMAL AND ADIABATIC
EXPANSIONS OF AN IDEAL GAS

Final Volumes
are Same

Let us consider that a gas from initial stage p; and V| undergoes isothermal
reversible and adiabatic reversible expansions such that the final volumes are the
same. Let it be represented by V. Let p,, and p,q be the final pressures in the
isothermal and adiabatic expansions, respectively. For an isothermal expansion,
initial p; and V| will be related to the final p,, and V; by the relation

prl = Piso Vf
or o (2.12.1)
Vl Piso

And for an adiabatic expansion, these variables will be related by

P Vly = Padi ny

7Y
or (—fj = (2.12.2)
" Pagi
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Since for an expansion V; > V; and the fact that y > 1, we have

Y
(&j (K] sothat P> 2L
Vl Vl Padi Piso
Thus,  pagi < Piso (2.12.3)

The two expansions are shown in Fig. 2.12.1. Since the magnitude of work involved
is equal to the area under the curve, it can be seen from this figure that the magnitude
of the work involved in the isothermal expansion is larger than that involved in the
adiabatic expansion. This also follows from the fact that in the adiabatic expansion,
temperature decreases whereas in the isothermal expansion, temperature remains
the same. Since the final volumes are the same, according to Charles law (p o< T,
V constant) p,4; will be smaller than p; ., and thus the magnitude of the reversible
work involved in going from volume V| to V; (V> V) for and ideal gas is greater
in the isothermal process than that involved in the adiabatic process.

Py

'\,/ P Isothermal

Adiabatic

Let us consider now the expansions in which the final pressure p; is the same.
Let Vi, and V4 be the final volumes in isothermal and adiabatic expansions,
respectively.

For an isothermal expansion

P Vl =Pr Viso
V.
or (ﬂ) = Jiso (2.12.4)
Pr 4

For an adiabatic expansion

P Vly = Pr Vazi/i

Y
or (ﬂjz[@j (2.12.5)
Dy 4

Comparing Eqs (2.12.4) and (2.12.5), we have
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4
()] o i ey )
" " " "
Since yis greater than one, it follows that
@ > @
n n
or V<V

adi iso
that is, the final volume in the case of an adiabatic expansion is lesser than the

corresponding volume in an isothermal expansion. This also follows from the fact

that in adiabatic expansion, temperature decreases whereas in isothermal expansion,

to Charles law (V e T, p constant), V,

Fig.2.12.2 Comparison of
the magnitude of the work
involved in isothermal and
adiabatic expansions

it remains the same and since the final pressures are the same, therefore, according
i Will be smaller than V.

The two expansions are shown in Flg. 2.12.2. Since the magnitude of work
involved is equal to the area under the curve, it follows that the magnitude of
the work involved in an isothermal expansion is greater than that involved in an

adiabatic expansion.

Py

Isothermal

Adiabatic

“”///

(//
_U

Pt

\\ o

2.13 THERMODYNAMIC CHANGES IN ISOTHERMAL VARIATION IN VOLUME OF A
VAN DER WALLS GAS

Reversible Expansion
or Compression
Process

Expression for w

In this section, we derive expressions for ¢, w, AU and AH for an isothermal
expansion or compression process involving a van der Waals gas.

The various expressions can be derived as fallows:

We have

dw =—p. dV (2.13.1)
For the reversible change in volume, we have

Dext = Pimt © dp = Pint

where p;, is the pressure of the gas and is given by

}’lz(l

Iz

nRT

Pint = V_nb



Expression for AU

Expression for q

Expression for AH
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Substituting this in Eq. (2.13.1), we get

2
dw = — ﬂ_"_j %
V—nb V

Hence

V. 2 —
w=—j2 nRT _n_za dV =—nRT In £ nb—nza L
w\V-nb V Vi—n v, W

(2.13.2)

The expression for AU can be derived by using the thermodynamic equation of

state
(57).=7(35), -7
a )y "\ar),

For a van der Waals gas

(), 75
T ),  V —nb

2 2
Thus (B—UJ - RT R [ RT el _ma (2.13.3)
oV )y V-—nb V—nb \V-nb V Vv
BU) (BU)
N dU =| — | dT+| — | dV
oW (8T , v )y
For an isothermal process, d7 = 0, therefore
BU) n’a
dU=|—| dV =—-dV
(8V - y?
For a finite process, we have
“2na > (1 1
AU = —dV=-n‘a| ——— 2.134
nov? (Vz Vlj ( )
From the first law of thermodynamics, we have
q=AU-w
Substituting the expressions for AU and w, we have
q=-n’a L + nRT In Vo —nb +n*a L1
V) 1 Vi —nb h n
— nRTIn 22" (2.13.5)

1 —hn

Since AH = AU + A(pV), we get

At = ra (Lo L) Al nRT _ra),
v, v V-nb V?
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Example 2.13.1

Solution

Example 2.13.2

Solution

=—n*a L o LC T T e 1.1

o 1 1 + WRT Vo —nb+nb V, —nb+nb
N V, —nb Vi —nb

I
\
[\
S
[3S)

IS
N\
|
I
|

1 1 1 1
)+n2RTb{ - } (2.13.6)
Vv, N Vy,—nb V;—nb

Calculate the work which could be obtained from an isothermal reversible expansion of
1 mol of Cl, from 1 dm® to 50 dm” at 273 K using van der Waals gas behaviour (a = 0.655
dm® MPa mol, b = 0.055 dm® mol™).

For one mole of a van der Waals gas

s — e
Py —b 12

7 n( RT - 11
Thus w=—J. Pde=_J. _iz de=—RT1nV2 b—a(———
h n\Vm=b 1, -5 o

m m

Substituting the values, we get

=_(8314TK ' mol™) (273 K) x 2.303 x | (w)
v ' moe ' %2 {120,055
6 2 1 1
— (0.655 dm” MPa mol ) 3 - 3 -
50 dm” mol 1dm” mol

w=-9006.73 J mol™! + 0.642 dm> MPa mol™!
=-9.006 7 kJ mol™! + 0.642 kJ mol ™"
=-8.365 7 kJ mol™

One mole of a van der Waals gas at 300 K expands isothermally and reversibly from a
volume of 10 dm® to 30 dm®. Calculate q, w, AU and AH. Given; a = 556 dm® kPa mol™
and b = 0.064 dm® mol .

For one mole of a van der Waals gas, we have

w=—RT In Vb —a(L—i
n-v) “nn

Substituting the given data, we have

w=- (8314 J K" mol™) (300 K) x 2.303 x log (w)

10-0.064

1 1
—~ (556 dm° kPa mol -
( m” kPa mol ) (30 dm® mol™  10dm® mollj
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Reversible Isothermal
Change in Volume of
a van der Waals Gas
with that of an Ideal
Gas

Comments to
Table 2.13.1
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— (8314 1 mol ™) (300) (2.303) (0.4790) + (556 dm® kPa mol ') [302010)
X

=-2751.4 T mol™ +37.07 J mol™!
=-2714.33 I mol™

1 1 6 > 1 1
AU=—-a | -7 | =— (556 dm’ kPa mol )

v, % 30dm’ mol”" 10 dm° mol™
=37.07 ] mol™!
g=RTIn (I;Z—_b] =2751.4 ] mol™ (=AU -w)
=
AH = RTh | — —;]—Za(L—i —rrp|——— 1 Ji2au
Vo—b V,—b v, V, Vo—b V,—b
a4t 1 1
=(8.314 T K" mol™) (300 K) (0.064) —
30-0.060 (10 —0.064)

+2(37.07 I mol™)
=-10.733 J mol™ + 74.14 J mol™!
= 63.407 J mol ™

Table 2.13.1 compares the expressions of g, w, and AU for a reversible isothermal
change in volume of a van der Waals gas with those of an ideal gas.

Table 2.31.1 Expressions of g, (—w) and AU for Isothermal Reversible
Change in Volume of van der Waals and Ideal Gases

Variables van der Waals gas Ideal gas
RTIn [ 2=2 RTIn 22

q n n Vl b n n Vl
V,—b 1 1 Vv,

_ RTIn | -2— |+ n’a| — - — -2

(—w) n (Vl— ) na(V2 V]] nRT In v

AU S -1 0

hon

¢ From the expressions of ¢, (— w) and AU for a real gas, we find that

(_ W)real = Greal — AU
Thus, in expansion, whole of heat absorbed is not available for the work. A part of the
absorbed heat (usually a small fraction) is utilized increasing the internal energy of
the system. This energy is stored in the system as the potential energy as it is utilized
in overcoming the forces of attraction between the molecules. (See, Example 2.13.2).
In compression, the effects are just reversed of the effects described above.
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e Since in expansion,
Vi<V,=Vinb<Vynb = —Vnb>—V,nb

= V,V, = Vinb > V,V, — Vonb

=V, (V,—nb)>V, (V, - nb)
we will have

V,—nb V.

Hence g™ Gideal
Thus, to carry out the same increase in volume, heat absorbed in case of a real gas is greater
than the corresponding heat absorbed in case of an ideal gas.

o In most real gases at ordinary temperature and pressure, increase in potential energy
during the expansion process is such that

real — AU < Gideal
indicating that

(7 W)real < (7 W)ideal
that is, the net work of expansion in case of a real gas is smaller than the corresponding
work involved in the expansion of an ideal gas.

Irreversible Expansion or Compression

Intermediate
Expansion

Free Expansion

The various expressions are as follows:
Expression for w We have
dw=—p. dV
W==pu: (V2= 1)) (2.13.7)

Expression for AU The expression for AU will be the same as that given by
Eq. (2.13.4), i.e.

AU = —nr*a (L—ij (2.13.8)
hon
Expression for ¢ From the first law of thermodynamics, AU = g + w, we have
qg=AU-w
=_n’a [i—ijw V=) (2.13.9)
V2 V1 ext 2 1
For an isothermal free expansion, we will have
dw=10 (2.13.10)
AU = -n’a [i—i) (2.13.11)
N
=_n’a [i—i) (2.13.12)
hon

Note that during the isothermal free expansion, AU and ¢ are not equal to zero.
There will be an absorption of heat which is utilized in overcoming the forces of
attraction of the molecules and is stored as the potential energy.
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214 THERMODYNAMIC CHANGES IN ADIABATIC VARIATION IN VOLUME
OF A VAN DER WAALS GAS
Reversible Expansion or Compression Process

Expression for In the adiabatic process, we have
Change in Energy g=0 and AU=w 2.14.1)

The change in energy can be calculated as follows.
Writing the differential of U, we get

- (22 ar+(2) o
aT Jy v Jr
Making use of Eq. (2.13.3), we get

2

dU = nCy, , dT + ’Z/—de (2.14.2)
For a finite process, we have

2
7 V,n“a
AU= [ W2
jz nCy o dT + le v
Assuming Cy, , to be independent of temperature, we get
, (11
AU =nCy (T, - T)) —n"a 72—?1 (2.14.3)

Thus knowing T, T, V; and V, for a given process, we can calculate AU
from Eq. (2.14.3).

Calculation of In some expansion processes, the value of 7, is not provided. In such a case, first
Temperature of all, we calculate the temperature of the gas after the expansion (or compression)
process. This can be done as follows.
For a van der Waals gas

_ nRT _n’a
Py Ty
Substituting Eqs (2.14.2) and (2.14.4) in the expression
dU=dw=—-pdV

(2.14.4)

2 2
n-a nRT n‘a
we get nC d7+ —dV =- dV+—dr
2 pm V2 V —nb V2
RT
or C, dI'=- dv
m V —nb

Separating the variables, we get

CV,m d—T:_R 7

T V —nb
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Integrating the above expression, we have

_ Cyom/R _
’ T Vi —nb T V, —nb

or TZC“ /R (V, — nb) = Tlc“ w/R (Vy —nb) or TR (Y — nb) = constant
or T (V- nb)*.m= constant (2.14.5)
Thus for a given adiabatic reversible expansion, we will have

Ty(Vy — nb)R/vim = T\(V, = nb)R/vim

RICy
I/l_nbj v,

(2.14.6)

Hence knowing T, V, and V,, the value of T, can be calculated from
Eq. (2.14.6). Finally, the substitution of 7, in Eq. (2.14.3) gives the value of AU.

Expression of The enthalpy change in the present case can be calculated as given below.
Change in Enthalpy AH = AU + AQP)

_pva |[2RE _ra)y,
a V-nb V2

NI G S £ D O S 5147
AV, —nb V- nb v, ¥, 2.14.7)

Substituting AU from Eq. (2.14.3), we get

1 1 V,T 28
AH = nCy (T, - T)) 2n*a | — —— | -nR| 22— - —1—
"Crm =) e (Vz Vlj (Vl—nb Vi b
(2.14.8)
Example 2.14.1 One mole of chlorine undergoes adiabatic reversible expansion from 1 dm® to 10 dm® with

initial temperature of 273 K. Calculate ¢, w, AU and AH if the gas is considered a van der
Waals gas. Given: a = 655 dm® kPa mol %, b = 0.055 dm® mol . C), ,, =33.91 JK ' mol".
Solution Since the gas undergoes adiabatic reversible expansion,
q=0
1

1
w=AU=Cy . (I,-T)—-a|—-—
V,m(2 1) (Vz V]j

AH=AU—-a (L_i)ﬂg &_ﬂj
o) T \h-b K-b

To calculate AU and AH, we need to know 7,, which can be determined from the expression
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)8.314/33.91

R/Cy,
Vi—»b m 1-0.055
L=T (Vl bj =(273K>(m
2_ - .

= (273 K) (0.562) = 1533 K
Hence, w=AU = [33.91 (153.3-273) - (655)(% - 3} J mol™!

=(—4059.0 + 589.5 ) J mol™
=_3469.5 J mol™

AH = [— 3469.5— (655)(% - 3 +(8.314) (

(10)(1533)  (1)273) )]J .
10-0.055 1-0.055

= (-3 469.5 + 589.5 — 1 120.2) J mol™’
=—4000.2 J mol™

Irreversible Expansion or Compression Process

Intermediate The various expressions are as follows.
Expansion or _
=_ V.-V, 2.14.9
Compression W= Pex (V2= 1) ( )
qg=0 (adiabatic process) (2.14.10)
AU=g+w==pe (V- 1) (2.14.11)

The temperature of the gas after expansion may be determined as follows.
For an adiabatic process

dU = dw
Writing dU in terms of d7" and dV, we have

(B_U) dr+(a_Uj dv = dw
T ), v )y

2
or nCy  dT + ’;—2" dV=—p,. dV

2
n-a

or nCV’ m d7 = - 7 dV—pext dv

1 1
or nCy o (T5-T)) = na (72 - 71) —Pext V2= 11)
Ty=T, + il — - L) p =1 2.14.12
or 2 1 " v V2 Vl Pext 2 1 ( 15 )

Since for expansion V, > ¥, it follows that
T5<T,
Knowing T, AH can be determined using Eq. (2.14.7).
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Example 2.14.2

Solution

Free Expansion

One mole of chlorine undergoes adiabatic expansion from 1 dm® to 10 dm® against an
external pressure of 1 bar. The initial temperature of the gas was 273 K. Calculate g, w,
AU and AH if the gas is considered a van der Waals gas. Given: a = 655 dm® kPa mol %,
b=10.055 dm’ mol ™', C), , =33.91 TK™' mol™".

Since the gas undergoes adiabatic irreversible expansion,
q=0
AU=w==pe (V- 1)

AH=AU-—a | L1y 2 _ W
v, W Vo—b Vi—b

Thus  AU=w =— (100 kPa) (10 dm® — 1 dm®) mol™' = — 900 J mol!

To calculate AH, we need to know T,, which can be determined from the expression

1 1 1
— |- Vv, -V,
CV’m |:a(V2 Vlj pext ( 2 1):|

T,=T, +

1 11
- + 655 ——=|-100(10-1) |K
@73 K) 33.91[ (10 1) ( )]
= + = S
(@73 K) + 3357 [-589.5 - 9001 K
= (273 -43.93) K =229.1 K

Hence AH= [—900—655(%—%)+8.314(

10-0.055 1-0.055
= (- 900 + 589.5 — 486.6) J mol ™!
=-797.1 J mol™

10x229.1 1x273 .
- J mol

For a free expansion, we will have

w=0; q=0; AU=0
The temperature of the gas after expansion may be derived from Eq. (2.14.12) by
substituting p.; = 0. Thus,

Tr=T 4 ——|naf L 2.14.13
20 nCV,m V2 Vl ( . )

Since for expansion V, > V|, it follows that T,” < T,. The decrease in
temperature in the present case will be smaller than that for a non-free expansion,
ie., T,” > T/. It is worth noticing that AU for the free expansion process is zero
in spite of the fact that there occurs a decrease in temperature of the gas. This
decrease in temperature is due to the fact that some heat is required to overcome
the forces of attraction between the molecules. The work done in this process
is stored as the potential energy. Thus, during expansion, kinetic energy of the
molecules is converted into potential energy without changing the overall energy
of the system. In other words, the decrease in energy due to the temperature fall
is exactly equal to the increase in energy due to the increase in volume of the gas
and hence sum of these two is equal to zero.
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Example 2.14.3 One mole of chlorine undergoes adiabatic free expansion from 1 dm? to 10 dm’. If the
initial temperature of the gas was 273 K, calculate T%,,;, ¢, w, AU and AH if the gas is
considered a van der Waals gas. Given: a = 655 dm® kPa mol’z, b = 0.055 dm’ mol’l,
Cpm=3391TK " mol .

Solution Since the gas undergoes adiabatic free expansion
q=0
AU=w=0

N U NN O
o) T\n-b K-b

Thus, we have
! [sss(L _ 1)] K
33.91 10

589.5
= [273-222 ) k=
( 33.91) K=2556K

T,=273K +

AH - —655(i—1)+8.314 102556 _ IX373 1y o
01 10-0.055 1-0.055

= (589.5 — 256.0) J mol™! = 324.5 J mol’

Problem 2.14.1 One mole of a certain gas obeys the equation of state p(¥ — b) = RT and has a constant molar
heat capacity Cy, ,, which is independent of temperature. The parameter b is a constant. For
one mole, find AU, w, ¢, and AH for the following processes:

(a) Isothermal reversible process
(b) Isobaric reversible process
(c) Isochoric reversible process

(d) Adiabatic reversible process (in terms of Ty, py, p,, Vi, V5, €, and Cp )

(e) Adiabatic irreversible process (in terms of p,, p,, T}) against a constant pressure p,.

Solution (a) Isothermal reversible process, d7' =0
w: dw=—-pdV
V. "> RT -
w=— Zpde—jz =T 20 _prm 2
4 v, (V=b) Vi-b )2
AU: Change in the energy can be evaluated by employing the thermodynamic equation
of state:
(a_u) :T(a_pj _p:T{a(RT/(V—b))} _p= RT _p=0
aV Jr oT Jy oT v V-b

Thus AU=0 (this is to be expected, since a = 0)
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q: According to first law:

g=AU-w=0+RTIn 22 _grm 2o
Vi=b P>

AH:  AH=AU+ AQpV) =0+ A@pV) = ApV)

RT RTV
i = ——, therefore pV/ = ——
Since P= P 7

v, 14 ]:RT{VZ—b+b_Vl—b+b}

H H=A@pV)=RT |2~
ence  AH=ApY) {Vz—b V—b V,-b  V,—b

1
Vy—b V—b

=RTb[ :|b(p2_p1)

(b) Isobaric reversible process, dp = 0

w: w:—deV:—p(Vz—V])

T,
AU: AU= jTZ CymdT=Cy o (T,—T))
1

= CV,m |:p(V2 _b) _ p(Vl _b):lz CV,mp (VZ _ Vl)
R R R

q, and AH: g, = AH = AU + A(pV) = AU + p(AV)

Cy mp Cym+R)
= Rm =) +p,=1) = I};

CIANIEA
For this gas C, ,, —Cy ,, = | P T IR o
T P

Since @QUIOV) =0, we get

p(V, =1

14 R
C,mch,m:p (7) :p*ZR
P aT /, P
or CV’m+R=Cp,m
C
p,m
Thus g, = —p= p(, = 7))
(c) Isochoric reversible process, dV =0
w: w=—[pdV=0

g, and AU: ¢, = AU = jTTZ CpmdT=Cy o (T, - T))
1

. V=8 p V=0 Crm 0
CV,m(zR ot j— e (V=5) (=)

AH:  AH =AU+ A(pV) = AU + ART + pb) = AU + R(AT) + b(Ap)
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CV,m

R

(V'=>5) (p,—p) + R(T, -T)) + b (p, - py)

C
= me V=50 (p—p)+b(r—p)

Alternatively, we may proceed as follows. Employing the thermodynamic equation

PR
ap )y T/,

we find that

(aﬂ) Ry
ap J)r P

Thus dH = (a—H) dT+(a—Hj dp
aT /, o Jr

=Cmdl+bdp=C, (T, =T+ b (py-p1)

;ém V=b) (pa—p) +b (- p))

(Note that C, ,, is also independent of temperature.)

(d) Adiabatic reversible process, dg =0

q: q9=0
wand AU: AU=w=Cy (T, -T))
AH: AH=C, o (T,=T) +b(py—py)

Since the results are to be expressed in Ty, py, py, Vi, Vs, C, 1y and €y, we will have
to eliminate T, in the above expressions. This can be done if a relation between V and T is
known for this gas. This relation can be derived as follows:
we have

ie. Cy,

Integrating this expression, we get

CymIn ?=—Rln(V2_bj

1 Vi—b

1 Q_ln v, b ~RICy
or n 7 V. —b

T, (Vb ~R/Cy (V-b ~(Cpmn=Cr)/Cr o (V-b 1-y
o L \%-b Vi —b Vi—b

vi-b)"
or T,=T, v, ~b
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215

. _ n-b)"
Therefore, AU=w=Cy (I,-T)=Cy T — -1
) -

y-1
Vi—b
and AH=C, , T, [(Vz—bj —I:I +b(p,—p))

(e) Adiabatic irreversible process, dg = 0
q: q=0
AUand w: AU=w=[-p, dV=—p. (V,- V)
Now p; = P, the final pressure, and so
AU=w=—p, [(Vy~b)  (V, - )]
RT, RT,
(851
P> Py
AH: AH:Cp,m(T27T1)+b(p27pl)
Since the results are to be expressed in 7; we have to eliminate T, in the above

expressions which can be done if a relation between p and 7 is known. The required relation
can be worked out as follows:

Since AU = w, we have
AU=—p,AV=—p, (V, - 1)

Cypm(T-T)==p, (RTz_Rle

P2 P
or CV,m(T27T1)=7RT2+p2ﬂ
P
RT,
or Tz(CV,m-FR)=CV’mTl+p271
P
Rp, n Rp,
T. =T, |Cpm+—=| or T,= Cym+—=
o 2Cpom : ( yom P ) ? Cp,m yom P

Eliminating 7, from the expression of AU and AH, we get

RT, -
AU = w = 1(172 Plj
Y P

AH = RT, [Pz _plj b(p, - py)
P

MISCELLANEOUS NUMERICALS

1. 20.0 dm® of an ideal gas (diatomic, Cy,n=5R/2) at 673 K and 0.7 MPa expands until pressure
of the gas is 0.2 MPa. Calculate ¢, w, AU and AH for the process if the expansion is:

(1) Isothermal and reversible (i) Adiabatic and reversible
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(iii) Isothermal and adiabatic (iv) Against 0.2 MPa and adiabatic
(v) Against 0.2 MPa and isothermal
Solution From the given data of V; = 20.0 dm’, T;=673 K, and p; = 0.7 MPa, we can determine the
amount of the ideal gas as given below:
14 0.7 x 10° kPa) (20.0 dm’
S L— D@00dM) ___ 5 565 mol

"~ RT (8314 dm’ kPa K mol™")(673K)

(i) Isothermal and reversible For an isothermal reversible expansion, we have
w=—nRTIn 2= uRTIn 2
Vi Pr

=—(2.502 mol) (8.314 T K' mol™!) (673 K) x 2.303 x log (

=-175412J=-1754kJ
Since T remains constant, AU = 0 and AH = 0.
According to the first law of thermodynamics,
g=—-w=17.54Kk]
(ii) Adiabatic and reversible For an adiabatic process ¢ = 0 and AU = w, therefore
w=AU=nCy ,, (Ty—T)
T; can be calculated using the formula

0.7MPa
0.2 MPa

~Cy /R —  m—Cp /R
pTy 't =pT pm

C C
or log(p;/MPa) — ;m log (7;/ K) = log (p; /MPa) — ;m log (T /K)

Therefore

R C
log(T; / K) = C—{IOg (p¢/MPa)—log (p;/MPa) + ;’m log (T;/ K)}

p,m

= %{log (0.2)—1og (0.7) + % log (673)}

=2.6725
Hence 7;=470.4K
Thus w=nCy , (T;—T)
= (2.502 mol) (2.5 x 8.314 J K™' mol™") (470.4 K - 673 K)
=—-10536J=-10.536kJ
AU =w=-10.536 kJ
AH = AU + A(pV) = AU + nR(AT)
=10 536 J + (2.502 mol) (8.314 J K™' mol™") (-202.6 K)
=-10536J-421441]
=-147504J=-14.75Kk]

(iii) Isothermal and adiabatic For a process which is isothermal as well as adiabatic,
we have

q=0, AT=0, AU=0 and AH=0

All these values can be zero only if the expansion is a free expansion.
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(iv) Against 0.2 MPa and adiabatic For an adiabatic irreversible process, the temperature
T; after the expansion of the gas can be calculated as follows.
AU=w= ~ Pext AV = ~ Pext (Vf7 Vl)

nCV,m (Tf_ Tl) =~ Pext (nRTf —ﬂj

DPr pi
or CV,m(Tf_Ti):_pext (ﬂ—ﬂ)
Pr pi
Substituting the values of Cy, ., pex» P> p; @and T;, we have
2 (T—673K)=— (02 MPa) [Tt 673K
2 0.2MPa 0.7 MPa
0.2x673K

5.5
or ST =5 x673K=—T;+

2 2 0.7

o .= %(%X673K+0.2x673K)
=5357K
Thus AU =nCy  (T;-T)
=(2.502 mol) (2.5 x 8.314 J K™' mol™") (535.7 K — 673 K)
=—7140.16 = -7.14 kJ
w=-"7.14KkJ
AH = AU + nR(AT) = — 7.14 kJ + (2.502 mol) (8.314 K™' mol™)
x (535.7 K — 673 K)
=—7.14 k) —2856.1 ] =—9.996 kJ

(v) Against 0.2 MPa and isothermal For an irreversible isothermal expansion, we have
W=~ Pext AV = ~ Pext (Vf7 V1)
The final volume of the gas can be determined using the ideal gas equation,

V. (0.7 MPa) (20 dm®
Ve= 2l (QTMPD) BN _ 74 g3
P (0.2 MPa)

Thus  w =— (0.2 MPa) (70 dm® — 20 dm®) = — (200 kPa) (50 dm?)

=—-10000J=-10.0kJ
AU =0
AH =0

qg=-w=100KkJ

} since AT =0

2. A 32 g sample of CH, gas initially at 101.325 kPa and 300 K is heated to 550 K.
C, ! K mol ™! =12.552 + 8.368 x 102 (T/K). Assuming CH, behaves ideally, compute
w, g, AU and AH for (a) an isobaric reversible process, and (b) an isochoric reversible
process.

3
Solution Amount of the gas= ———— =
16 g mol
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(a) Isobaric reversible process (dp = 0):

_ _ (b
q, = AH = jTl nC, , dT

_ (- -1 -1 R |
=n [ (12552 7K mol ) dT + (8.368 x 102 1 K * mol ) 7 dT}

2 2
=n {(12.552 JK " mol™) (T, - 7))+ (8.368 x 102 JK moll)(Té - T;) }

Substituting the values, we get

q, = AH = (2 mol) {(12.552 J K mol™)(550 K — 300 K)
(550K)*  (300K)? J}

+(8.368 x 10 2 J K2 mol™
( X J mol™) ( > 2
=23 138J+88911J)=240581]

w=- Jp dV=-nR jTT dT=— (2 mol) (8.314 J K™' mol™") (550 K — 300 K)
1

=—41571=-4157KJ
AU = AH — A(pV) = AH — nR(AT)
= (24 058 J) — (2 mol) ( 8.314 T K~ mol™") (250 K)
=240587-4157J=199017J
(b) Isochoric reversible process (dV = 0):

Cym=Cpm—R=(4238TK " mol™)+(8.368 x 10> J K> mol") T

gy=AU = j;z nCy o dT=n {(4.238 JK™ mol YT, - Ty)

> T?
+(8.368 x 102 J K2 mol™) [; - é)}

= (2 mol) {(4.238 JK ' mol™) (550 K — 300 K)

(500K)*  (300K)
2 2

+(8.368 x 107 J K2 mol ™) [
= (2 mol) (1 059.5 J mol™! + 8 891 J mol ™)
=199017
AH = AU + A(pV) = AU + nR(AT)
=19901J+4157J=240587
w=0since dV=10

3. One mole of an ideal monatomic gas (Cy, , = 1.5 R) is subjected to the following sequence
of steps: (a) The gas is heated reversibly at constant pressure of 101.325 kPa from 298 K
to 373 K. (b) Next, the gas is expanded reversibly and isothermally to double its volume.
(c) Finally, the gas is cooled reversibly and adiabatically to 308 K. Calculate ¢, w,
AU and AH for the overall process.
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Solution Step (a): Isobaric reversible process

373K 373K
g,=AH= [ C,,dT= [ (C,,+R)dT
298K 298K

=(2.5x8.314 J K mol™) (373 K - 298 K)
=1558.88 J mol™

AU=Cy , AT=(1.5x8314 TK" mol" ) (373 K - 298 K)
=935.33 J mol™
w =—p(AV) =AU - AH = (935.33 — 1 558.88) J mol ' = — 623.55 J mol ™!
Step (b): Isothermal reversible expansion

Vi=V and V,=2V

V.
w =—RTIn 72 =_(8314 T K mol™) (373 K) x 2.303 x log (2)
1

=-2149.71 J mol™
Since temperature does not change
AU=0 and AH =0
and according to the first law
g=-w=2149.71 J mol™
Step (c): Adiabatic reversible cooling
q=0
w=AU=Cy (T,-T)=(1.5x8314] K™ mol!) (308 K — 373 K)
=-810.62 J mol '
AH=C, . (T,— T))=(2.5x8.314 T K" mol) (308 K - 373 K)
=~ 1351.03 J mol'
For the overall process, the values of ¢, w, AU and AH are
q/T mol ™' =1 558.88 + 2 149.71 = 3 708.59
w/J mol™! = — 623.55 -2 149.71 — 810.62 = — 3 583. 88
AU/J mol™ = 93533 — 810.62 = 124.71
AH/J mol™' =1 558.88 — 1 351.03 = 207.85

4. One mole of an ideal gas (not necessarily monatomic) is subjected to the following
sequence of steps.
(a) It is heated at constant volume from 298 K to 373 K.
(b) It is expanded freely into vacuum to double volume.
(c) It is cooled reversibly at constant pressure to 298 K.
Calculate ¢, w, AU and AH for the overall process.

Solution Step (a): Isochoric process
373K
q,=AU= _[ Cymdl=Cy (373K -298K)=Cy, ,, (75 K)
298K

w=0
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AH = AU + A(pV) = AU + A(RT)
=Cym 15K+ (T5K)R=(75K) C, ,
Step (b): Free expansion
g=0, w=0, AU=0 and AH=0
Step (c): Isobaric process
298K
q,= AH = j ComdT=(75K)C,
373K
w=-[pdV=-RAT=(75K)R
AU=[Cy ,dT=(-75K) C) ,
For the overall process
q=05K) Cy n—(75K) C, ,=—(75K) (C, 1, — Cy. )
=—(75K)R=—-(75K) (8314 JK ' mol'!)
=—623.55 J mol !
w=(75K) R =(75K) (8.314 T K™ mol™)
=623.55 J mol ™!
AU=(75K) Cy , — (15K) Cp , =0
AH=(75K)C, ,—(15K) C, , =0

5. The cubic expansion coefficient of water at 293 K and 101.325 kPa is 2.1 x 107# K%,
Calculate approximately, the work attending the heating at 101.325 kPa pressure of
1 mol of water from 288 K to 298 K. Compare this with work involved in heating
1 mol of an ideal gas from 288 K to 298 K.

From the cubic expansion coefficient
_ 1(3_V)
“=y\or),
we get dV=alVdT (p constant)
Thus dw=—-pdV=—p(aVdl) or w=-paV AT
Now p=101.325 kPa ; a=21x10"*K"!

¥ = volume occupied by 1 mole of water = 18 x 10~ dm’
AT=298 K-288K=10K
Substituting these values in the previous expression, we get

w=—(101.325 kPa) (2.1 x 10°* K™") (18 x 107 dm®) (10 K)
=_-383x10° kPadm’>=-3.83x107 ]

Work involved in case of an ideal gas

w=-JpdV=—[RdT=- (8314 JK ' mol ™) (10 K) = — 83.14 J mol !

6. The isothermal compressibility of water at 293 K is 4.9 x 107 atm™ over the range
1 to 25 atm. Calculate the work attending the compression of 1 mol of liquid water from
a pressure of 1 atm to 25 atm at 293 K. Compare this with work involved when 1 mole
of an ideal gas is compressed from 1 atm to 25 atm at 298 K.
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From the isothermal compressibility

< :_l(a_V)
T Viop )y

weget dV=-xVdp (T constant)

Thus dw=—-pdV=+x,Vpdp

Integrating this expression within the limits of p; and p,, we get
2 2

w =KV P _ P

2 2

Substituting the values of xz, V, p; and p,, we get

~ (4.9%107° atm™)(18 x107° dm’)

- 2

=2.752 x 10~ dm?> atm = 2.752 x 107> dm® (101.325 kPa)

=0.00279J
For an ideal gas, the work involved is

w {(25 atm)® — (1 atm)?}

w=— fpde—RTln%z—RTlnﬂ
1 P

= (8314 K mol) (298 K) x 2.303 x log | L2
25 atm
=7.976 x 10°> J mol™ = 7.976 kJ mol™

REVISIONARY PROBLEMS

2.1 State the zeroth law of thermodynamics and discuss its necessity in the laws of
thermodynamics.

2.2 The first law of thermodynamics is essentially a law of conservation of energy and
is written as
dU=dg + dw
(i) Explain the symbols involved in this expression.
(ii) Prove mathematically that ¢ and w are not state functions.

2..3 Show that the heat absorbed at constant volume condition is equal to the increase
in the internal energy of the system whereas that at constant pressure is equal to
the increase in the enthalpy of the system.

2.4 (a) Heat capacity of a system is defined as

C= lim (i)—d—q

AT> O\AT ) dT
Using the first law of thermodynamics, show that
Co— (3_Uj d c - (3_Hj
v=\ar ), o »~\ar ),

(b) Derive the following relations:

el (@ &) ama[HFIH)
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AHY (3T ap)
o=+ 2] [ 9P
GGy { +(ar)p(aplj(ar .
ap) (aV) 2 (9p/9T);
_ = vl — | =TV o’/ =-T
G -Cy T(&T Nar), = =T G,

(c) Derive the value of C, ,, — Cy, , for an ideal gas.
(d) Show that C,, ,, — Cy, ,,, for a van der Waals gas is equal to

-1
R J1-24_'=b)
V (pV?+a)
Prove that if (9U/dV); = 0, it follows that (dU/dp); = 0.

2.6 Prove that it does not necessarily follow that if (U/0V); = 0 then (0H/dp); = 0.

2.7

2.8

2.9

Show that for an ideal gas

o (57), =0 m=alir) -
o (2)-o(2) 2
(iii) (BSLVV)T:O and (aa%)fo

. oH j (aU ) (BV)
— = 0 B — = C — S
) (aV r ™ \ar), =%~ 7\ar),
(a) Describe the Joule’s expansion experiment. What conclusion do you draw from

this experiment? What is the physical significance of the derivative (dU/0V);?
Will it have a zero value for a real gas?

(b) Starting from the definition of Joule coefficient, derive the relation

29l (3)
c,\av), ¢ oT )y

and hence show that a real gas exhibits:
(i) heating if p > T (dp/dT),
and (ii) cooling if p < T (dp/dT),
(a) Describe the Joule-Thomson experiment. Show that the expansion in this
experiment is an isenthalpic process.

(b) Starting from the definition of Joule-Thomson coefficient, derive the relations

1 (o0H 1 k14
=_ |27 72 -
Hr Cp[ap)T Ci (arjp V}

55,457

and hence show that a real gas exhibits:
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2.10
2.11

2:12

2.13

2.14

2.15

(i) heating if V> T (9V/97),
and  (ii) cooling if V' < T (9V/d7),
(c) Show that u;; = 0 for an ideal gas. What do you comment about the liquefaction
of such a gas on the basis of its u;; value?
(d) What is an inversion temperature? Show that for a van der Waals gas

1 [2

[ 2a  3abp b}
(e) Justify the statement that at moderately low pressure and high temperature the
expression given in part (d) reduces to

- ;[2_0_ b}
Hyr C RT

pym
and hence show that 7; = 2a/Rb.

Show that (dH/dp); = V for solids and liquids.

For the amount # of an ideal gas, derive the expressions for g, w, AU and AH for the
following processes (involving expansion, compression and the cyclic processes):
(i)  Isothermal reversible process.

(i)  Isothermal irreversible process against a constant p.

(iii) Free expansion.

(iv) Adiabatic reversible process.

(v) Adiabatic irreversible process.

(vi) Adiabatic free expansion.

Derive the following relations for an ideal gas undergoing adiabatic reversible
process:

(i) TV "' = constant

@) Tp “RCp,m = constant

(iii) pV 7= constant, where  y=C, ./Cy

Do these relations hold good for an adiabatic irreversible process?

Show that the work done by an ideal gas in a reversible adiabatic expansion from
p; and V; to pyand V; is given by

R/C,
O w=@ V- V) (r-1 i) w=-GT; [1—3}
bi

Justify the following statement:

(a) The magnitude of the reversible work involved in going from volume V| to V,
(V, > 1) for an ideal gas is greater in isothermal process than in adiabatic
process.

(b) The magnitude of the reversible work involved in going from pressure p, to p,
(p, < p)) is greater in isothermal process than in adiabatic process.

(c) The reversible work of compression from volume ¥, to V; for an ideal gas is
less than the corresponding work involved in the irreversible compression.

(d) Final pressure in an adiabatic expansion of an ideal gas is less than that of the
isothermal expansion to the same final volume.

A certain gas obeys the equation of state p(¥ — nb) = nRT and has a constant volume

heat capacity C;, which is independent of temperature. The parameter b is constant.

For one mole, determine w, g, AU and AH for the following processes:
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(i) Isothermal reversible expansion.

(i1) Isobaric reversible process.

(iii) Isochoric reversible process.

(iv) Adiabatic reversible expansion (in terms of 7}, V, Vs, p;, p, and Cy).

(v) Adiabatic irreversible expansion (in terms of p,, p,, 7)) against a constant
pressure p,.

Show that for a van der Waals gas involved in an isothermal reversible expansion

w=—nRT In Vo —nb —an® L—i
Yy~ nb A7

g =nRT In Vz—nb; AU=—an?| -1
V, —nb Vv, "
AH = - 2an® LI +n’b RT b1
W V,—nb V,—nb
For a van der Waals gas
a
U=CV’mT71—/‘

Show that T 7. m' R (V' — b) = constant in a reversible adiabatic expansion.
Derive the following expressions for the isothermal irreversible expansion of a van
der Waals gas against a constant pressure of p.,,.

W= = Pext (VZ B Vl)
11 1
__ 2 . 2
AU—”“[Z_?I)J q_na(V—z_;l] F P V3= 1)
(a) Derive the following expressions for the adiabatic irreversible expansion of a
van der Waals gas against a constant pressure of p,,.

W=—Po V2= V1) qg=0; AU =—pe V= 1)

(b) Show that the temperature of the gas after carrying out the expansion process
of part (a) is given by

1 > (1 1
- V,-V)+na|l —-—
nCV,m|: Pext V2 ) (Vz V1I|

(c) Show that the temperature of a van der Waals gas after carrying out the adiabatic
free expansion from V; to V, is given by

T5=T,+ ! n’a 1.1
S nCy N

Interpret the fact that 75 # 7| in spite of the fact that AU = 0.

T,=T+

TRY YOURSELF PROBLEMS

Since Cj, = (0U/9T), by definition, one often writes without any restriction, AU =
Cy, AT. This is not generally true. Explain why?

(Hint: dU = QUT), dT + QUV), dV
= Cy, dT + (QU/dV); dV; true only for ideal gases.)
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2.2

2.3

24

2.5

2.6
2.7

2.8

29

2.10

Show that the enthalpy of an ideal gas is a function of temperature only.
(Hint: because (dH/dp); = 0.)
For a van der Waals gas the Joule-Thomson coefficient is given by
_ ;[ﬁ—b— 3abp}
Hyr CpmLRT R2T?
Show that the temperature of inversion as a function of pressure is given by the relation
at+a*-3ab® p
bR

Show that for a system of constant heat capacity whose energy along a given
isotherm is constant, the energy depends only on temperature.

(Hint: dU = C), dT + (dU/0V) dV; isotherm means dT = 0, constant energy means
dU = 0. Hence (dU/dV);= 0, i.e. U= f(T).)
Show mathematically that H is a state function
[Hint: dH=d(U +pV)=dU+p dV+Vdp
Take U = f(T, V) and p = f (T, V), then

awen- (2] or+(22) oo or{[2) o (3) ]

AGE, oo ) oG] oo G

aU + pV) aU + pV)
(R gy (20220) ]

Show that (U/dp), = &, C) /.

Show that both (dH/dp); and (0H/dV); are zero for an ideal gas, starting with the
condition that (QU/dV); is zero.

Show that
2 aC 2
(acV) 7 a;; and ( pj _r ar;
14 T oT v ap T oT P

Use these results to show that C, and Cy, for an ideal gas depend only on temperature.
(Hint: Make use of the thermodynamic equations of state.)

Ti=

Derive the relationship
b J; "or ), “rlor),

Given the following information:
Isothermal reversible expansion

pV.T > P Ve T
l Adfabalfc reversible expansion > D1, Vz, T|
Adiabatic reversible expansion S Py V|v Tz
predict qualitatively, whether:
O T,>T o T,=T or T,<T
P2>Py OF py=pp O py<p
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Gg) T,>T o T,=T o T,<T
V,>V, or V,=V, or V,<V
(a) What is Joule coefficient? Show that it is given by the relation

1 (oU 1 apj}
= || =), &
g CV(BV)T C, {p (8T ,

(b) Form the relation of 1 given above derive the following facts:
(i) n is zero for an ideal gas.
(ii) n is positive if (U/dV); is negative and vice versa for real gases.
The temperature at which the Joule coefficient is zero is called the Joule inversion
temperature. For a gas obeying the equation of state
Vv B
p_ — 1 + —
RT V
where B is function of temperature alone, show that the Joule inversion temperature is
that temperature for which B is a maximum. If B of a certain gas is given by the equation
_ by _ by
Bohgry
where b, b, and by are positive constants, show that such a gas has no Joule
inversion temperature.

(a) Show that for a van der Waals gas, the Joule coefficient is given by

_ L (R N_ 1 a
LTGHIN (AN RGP 7

m

(b) Show that a van der Waals gas in Joule expansion exhibits:

(i) Heating if a is negative and (ii) cooling if a is positive What is the physical
significance of a being a negative quantity? Under what conditions is the gas
expected to have negative value of a?

(a) Show that

EET) N CANETT0)
uJT_iCp op T_ C, op )y o Jr

- L(I_Ta In V)

c, or

(b) Discuss under what conditions heating and cooling effects are produced in the
Joule-Thomson experiment involving real gases.

(a) Show that an adiabatic process in which no work is performed is an example
of constant energy process.

(b) Show that the change in enthalpy attending an isothermal change in state of an
ideal gas must be equal to the change in energy.

The internal energy of a certain gas depends on volume as well as on temperature,
and obeys the relation (QU/dV), = a/V?, where a is constant. Prove that C,, for this
gas depends only on temperature.

Show that for a gas obeying van der Waals equation of state
(a) Cyy = f(7) only and (b) C, = (T, V)

2 oC 2
Hint : Use the formulae 8& =T a_p and | —L2 | =-T 8_V
av ) |or? ), w ), ar* ),
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2.18

2.19

2.20

2.21

222

Show that a process of expansion of an ideal gas which is isothermal as well as
adiabatic must be a free-expansion process.

(b) Show that a reversible isothermal process can also be adiabatic only at 7= 0
and that an irreversible isothermal process can also be adiabatic at 7 # 0.
(a) Show that, if a gas obeys the equation of state

pV=RT+ oap, whereoa=f(T)
2
then C,-Cy,=R 1+p_da :R+2p(d_a)
RdAT dr

(b) For hydrogen, o = 0.014 2 dm® at 0 °C and 0.014 8 dm® at 20 °C. What is
C,— Cy per mole of hydrogen at 0.101 3 MPa pressure in the neighborhood of 10 °C?

(Ans. 8320 T K mol™)
(a) Show that at moderate and low pressures the van der Waals equation for one
mole of a gas may be written in the form

1 ( a
= - = —|—=-b
pV,, = RI(1 — Bp) where B RT(RT )
(Hint: Multiply out the van der Waals equation, neglect the term ab/ Vnzj and replace
Vi inalVy, by RT/p.)
(b) Show that Eq. (2.6.14) can be derived directly from the equation of state given in (a).

(c) The equation of state given in (a) may be written as pV,, = RT + Ap, where 4
is a function of temperature. Show that for this equation of state

A
p )r or? »

(d) Making use of the thermodynamic equation of state

), -12).-

Show that for one mole of a van der Waals gas at moderate and low pressures

(3_U) A [Mj NS
o )y RT » )y RT

Further show that

oH a 1 2a
=h-2— d =——|=—-b
( )T RT and ( j

9 Cpm \RT

Show that the expression of C, ,, — Cy,_,, derived in Problem 2.6.1 can be reduced
to a form as given by Eq. (2.6.14).
If in Eq. (2.6.13), (V,, — b)* is replaced by V2 — 2V, b, one gets
2ap 4 abp?

Coom = Crom = RY 2 ™ a3
In the lower pressure range, the term 2ap/RT? plays a predominant role with the
result that C, , — Cy, ,,, increases linearly with pressure. At higher pressure, the term
- 4abp2/R2T§ also becomes of increasing importance with the result that at a sufficiently
high pressure C, ,, — Cy, ,, attains a maximum and subsequently starts decreasing. The
pressure at which C, ,, — C, ,, has a maximum value can be obtained by setting the
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derivative (d(C,, ,, — Cy, ,)/dp)r equal to zero. Determine the pressure at which
C,, m— Cy, m 1s maximum for nitrogen at 25 °C. Also determine the value of C, ,,— Cy, 1,
at this pressure. Given: @ = 141 dm® kPa mol and b = 39.1 cm® mol ..

(Ans. 15.84 MPa)
One mole of an ideal gas undergoes the following transformations one after the other:
(a) Isothermal reversible expansion at T, from V; to V.
(b) Adiabatic reversible expansion from ¥, to V5. Temperature drops from 75, to T;.
(c) Isothermal reversible compression at 7', from V5 to V.
(d) Adiabatic reversible compression from ¥, to ;. Temperature rises from 7 to T5.
Derive the expressions for g, w, AU and AH for each process and for the overall process.
Show that

[E)_Tj _TaV-pk;V
p )y - C ,—paV

Given that

oH 14
2l y= 7|2 -
R ) R R

NUMERICAL PROBLEMS

Calculate the heat absorbed, AH and AU when one mole of nitrogen is heated from
298 K to 348 K at constant volume condition. Considering (a) C, ,,=29.13 J K!
mol " and (b) C,, ,,/J K™ mol™" =28.45 +2.26 x 10~ (T/K).

(Ans. (a) 1 040.8 J, 1 456.57J,1040.8J (b) 1 043.3J,1459.07J,1043.37J)
Calculate the heat absorbed, AH and AU when one mole of nitrogen is heated from
298 K to 348 K at 1 bar pressure considering (a) Cp’ m=29.1317J K mol’l, and
(b) C, /T K" mol™ = 28.45 +2.26 x 107 (T/K).

(Ans. (a) 1 456.57,1456.57J,1040.87J (b) 1459.0J, 1459.07J,1043.37)

The coefficient of cubic expansion ¢ of sodium at 25 °C is 21.3 x 10® K™! and
the isothermal compressibility & is 1.56 x 107! Pa !, The density is 0.97 g cm™.
Calculate C, — C, per mole of solid sodium at 25 °C.  (4ns. 0.206 J K! mol™)
The coefficient of cubic expansion ¢ and the isothernal compressibility i for metallic
copper at 25 °C have values 49.2 x 10 K! and 7.747 x 107® MPa ', respectively.

Density of Cu at 25 °C is 8.93 g cm ™. Calculate C, — Cy per mole for Cu.
(Ans. 0.665 J K~! mol™)
Calculate the difference between C, ,, and Cy, ,,, for CO, at 298 K and 10 bar pressure;
the van der Waals constant, @ = 3.64 dm® bar mol™=. (4ns. 930 T K mol ™)
For N,, the van der Waals constants are a = 141 dm® kPa mol? and » = 39.1 cm®
mol™!; Cp, m= 28911 K" mol™" and can be assumed to be independent of the
temperature. Calculate
(i) pyrat 298 K and 0.101 3 MPa
(ii) (9H/dp)r at 298 K and 0.101 3 MPa
[Ans. (i) 2.58 K MPa™' (ii) —74.7 ] MPa™']
Compute the Joule-Thomson coefficient for carbon dioxide at 6.08 MPa pressure and
10 °C. Assume the gas to be ideal for the purpose of calculation of molar volume. The
values of orand C, are 1.3x 102K 'and 3.72 JK ' g, (4ns. 6.32 K MPa™)
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(a) For CO4(g) at 300 K and 0.101 MPa pressure (dH/dp); = 421.19] MPa ! mol™
and C,=37.32] K™ mol™, calculate Uy of the gas for the given temperature and
pressure conditions. (4ns. 1125 K MPa™)

(b) At 300 K and at pressures 0-6.06 MPa, the 1, of N,(g) can be represented by
the equation

U;/K MPa™' = 0.140 — 2.556 x 107 (p/MPa)

Assuming this equation to be independent of temperature near 300 K, find the
temperature drop which may be expected in Joule-Thomson expansion of the gas

from 6.06 MPa to 1.01 MPa. (Ans. — 0.255 K)
Calculate the inversion temperature for CO, gas. Given: a = 3.64 dm® bar mol
and b = 0.042 67 dm® mol™". (4ns. 2 052 K)

Calculate the value of AH for the isothermal expansion at 300 K of 1 mol of carbon
dioxide from 1 bar to 50 bar. Given: a = 3.64 dm® bar mol and b = 0.042 67 dm®
mol . (Ans. —1.221 kJ mol ™)

(a) 7.0 g of N, at 25 °C is expanded isothermally from an initial pressure of 0.505
MPa to a final pressure of 0.202 MPa against a constant external pressure of 0.101
MPa. Calculate g, w, AU and AH.

(b) The same amount of N, is expanded isothermally between the same initial and
final volumes, but this time the expansion is carried out reversibly. Calculate ¢, w,
AU and AH.

(Ans. Q) AU=AH=0;q=-w=18621,(b) AU=AH=0;q=-w=569.01J)
Calculate the work done when 1 mol of zinc dissolves in hydrochloric acid at 273.15 K
in (i) an open beaker and (ii) a closed beaker at 300 K. (Ans. -2 271.1 ], zero)
(Hint: Evolved gas is driven against a constant atmospheric pressure.)

Hydrogen gas is expanded reversibly and adiabatically from a volume of 1.43 dm® at
a pressure of 0.303 MPa and temperature of 25 °C, until the volume is 2.86 dm>. The
heat capacity C, of hydrogen can be taken to be 28.87 J K mol .

(a) Calculate the pressure and temperature of the gas, assumed to be ideal, after the
expansion.

(b) Calculate g, w AU and AH for the gas.

(Ans. (a) 0.115 MPa, 226 K; (b) ¢ = 0; w =-259.4 J; AU =-259.4 J; AH = -364.4 J)
0.35 mol of an ideal monatomic gas is expanded adiabatically from a volume of 1 dm®
at 400 K to a volume of 5 dm?® against a constant external pressure of 50.65 kPa. What
is the final temperature of the gas, and what is its enthalpy change in the process?

(Ans. 353.84 K, — 335.8 J)
(a) For a certain gas the van der Waals constants are
a=677.86 dm® kPa mol * and b =0.057 dm > mol '
What will be the maximum work performed in the expansion of 2 mol of the gas from
4 to 40 dm> at 300 K? (Ans. wmax =—11.05 kJ)

(b) If Cy, of the gas is 29.29 ] K™!, mol™!, what will be AU and AH for a process
involving the compression of 5 mol of the above gas from a volume of 100 dm® at
300 K to a volume of 10 dm® at 400 K? (4ns. AU=13.138 kJ)

One mole of a van der Waals gas expands isothermally and reversibly from a
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volume of 1 dm® to 30 dm® at 0 °C. Calculate ¢, w AU and AH. Given: a = 658.6
dm® kPa mol and b = 0.056 dm® mol .
(Ans. w=-7209.68 J; AU = 636.647 J; g = 7 846.33 J; AH=1 142.9J)
One mole of a van der Waals gas undergoes an adiabatic free expansion from 1 dm®
to 10 dm’>. Calculate the change in temperature of the gas. Given: Cym=20817 K!
mol™ and a = 0.138 N m* mol 2. (Ans. =5.97 K)
One mole of nitrogen undergoes adiabatic reversible expansion from 1 dm’ to 10 dm®
with initial temperature of 273 K. Calculate g, w, AU and AH if the gas is considered
a van der Waals gas. Given: a = 140.8 dm® kPa mol 2, b = 0.039 dm® mol ™, Cym
=2081TK 'mol.  (4ns. 0,-3321.5Jmol!, 3 321.5 T mol ™, 4 661.0 J mol ')
One mole of nitrogen undergoes adiabatic expansion from 1 dm® to 10 dm> against an
external pressure of 1 bar. The initial temperature of the gas was 273 K. Calculate g, w,
AUand AH if the gas behaves like a van der Waals gas. Given: a=140.8 dm® kPa mol 2,
b =0.039 dm’ mol " and C), , = 20.81 J K" mol".
(Ans. 0. =900 J mol™, = 900 J mol™', — 1 268.3 T K™' mol™)
One mole of a liquid is confined in a piston and cylinder at 101.33 kPa pressure. The
coefficient of cubic expansion of the liquid is 10~ K~!. Calculate the work done
when the temperature is raised from 300 K to 500 K. The pressure is kept constant
and no liquid evaporates. The molar volume of the liquid at 0 °C is 100 cm® mol ™.
(4ns. 2.026 J)
(a) A system with an initial volume of 22.4 dm® is compressed adiabatically until
its volume is 11.2 dm®. During this process 1 350 joules of work is performed on
the system, and the temperature rises from 0 °C to 160 °C. What is the change in
the internal energy during this process?
(b) The same initial system is heated as constant volume to 160 °C whereby
1 320 joules of heat must be added. What is the change in the internal energy of
the system during this process?
(c) The system is now compressed at this constant temperature of 160 °C to a
volume of 11.2 dm®, whereby 2 550 J of heat flow out of the system. What is the
change in internal energy? How much work is done on the system?
[Ans. (a) AU=13501, (b) AU=13201J, (c) AU=301J, w=25801]
The equation of state for one mole of gas is p/ = RT + Bp where B is a constant
and is independent of temperature. Starting with one mole of gas at 300 K and a
pressure of 1.013 MPa, consider the following quasi-static processes:
(a) an adiabatic expansion to 20 dm>
(b) an isobaric expansion to 20 dm’
(c) an isothermal expansion to 20 dm?
(d) an isochoric decrease in pressure to 0.101 3 MPa
If the value of Bis 1.5 dm’, C,=29.29 JK' mol ' and C;,=20.92 J K™ mol™ for this
gas, find:
(i) Relations for calculating g, w, AU and AH for each of the above processes.
(ii) The numerical values of g, w, AU and AH for each of the above processes.
[Ans. (a) ¢ =0; AU=w=—3.46 kJ; AH=- 6274 kJ
(b) w=-16.25 kJ; g = 57.094 kJ; AU = 40.846 kJ; AH = 57.095 kJ
(¢) g =5.032 kJ; w=-5.032 kJ; AU=0; AH=-1.32kJ
(d) g =-5.638 kJ; w=0; AU = -5.638 kJ; AH = — 9.248 kJ]
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Thermochemistry

3.1 SCOPE OF THERMOCHEMISTRY

Thermochemistry primarily deals with the transfer of heat between a chemical
system and its surroundings when a change of phase or a chemical reaction takes
place within the system. Depending upon the conditions under which the reaction
is carried out, the quantity of heat transferred is related to energy or enthalpy change
due to changes of states which occur in the system. However, in the laboratory, the
majority of chemical reactions are carried out under the condition of constant
pressure, therefore, the heat transferred is equal to the change in enthalpy of the
system.

3.2 ENTHALPY OF A SUBSTANCE

Standard State of a
Substance

Each substance has a fived quantity of enthalpy. For one mole of a substance B, the
enthalpy is represented as H,(B). The main characteristics of a substance, if need to
be specified, is usually stated along with the symbol B within the parenthesis. For
example, the molar enthalpy of water vapours at 398 K and 1 atm pressure may
be stated as H,,(H,0, g, 398 K, 1 atm).

The molar enthalpy of a substance is a function of temperature and pressure, i.e.
H_ = H_(T, p). In thermodynamics, the pressure dependence is removed by defining
the standard state of a substance listed in the following.

1. For a pure gaseous substance, the standard state at a given temperature is the
(hypothetical) ideal gas at one bar pressure.

2. For a pure liquid substance, the standard state at a given temperature is the
pure liquid at one bar pressure.

3. For a pure crystalline substance, the standard state at a given temperature is
the pure crystalline substance at one bar pressure.

4. For a substance or ion in solution, the standard state at a given temperature is
the unit molality of the species in ideal solution at a one bar pressure.

The standard molar enthalpy of a substance is represented by placing the

superscript degree to the symbol H. For example, the standard molar enthalpy of
liquid water at 273 K is represented as Hy, (H,0, 1, 273 K).

3.3 CHANGE IN ENTHALPY DURING THE PROGRESS OF A REACTION

Since the enthalpy of a substance can change with the variation of temperature and
pressure, it is essential that the reactants and products of a reaction are present at
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the same temperature and pressure while computing the enthalpy change during
the progress of a chemical reaction.
Extent of Reaction Let the reaction
2N,05(8) — 4 NOy(g) + Oy(g)

be started with the amount r, of N,Os. The progress of the reaction is stated by
defining physical quantity known as extent of reaction (Symbol: &, Greek word
pronounced as xi). By definition,

_Amount of a reactant consumed or product formed

Stoichiometric number of the reactant or product
Enthalpy Change of Enthalpy of the system to start with, where & = 0, is given by
the Reaction Hiyiia = 1o Hyy (N, O5)

When the reaction has proceeded to the extent &, the amounts of reactants and
products will be

2N,05(g) » 4 NO,(2)+0,(2)
ny —2& 4¢ 4

(Note: The unit of £ is that of amount of species, i.e. mol. The stoichiometric
numbers are dimensionless quantities and thus carry no units.)

Enthalpy of the system at this stage is
Hﬁnal = (nO - 26) Hm(NZOS) + 45 Hm(NOZ) + 6 Hm(OZ)
Enthalpy change of the system is

AH = Hgp — Higitial
= [(ny — 28) H,(N,O5) + 4& H (NO,) + & H,(0,)] — ny H,;(N,O5)
= & H(NO5) +4 € Hy(NO,) + € H,,(0) (33.1)

The value of AH of a given chemical equation depends on its extent of reaction. It will
vary as the reaction progresses.

From Eq. (3.3.1), it follows that

unit of AH = (unit of &) (unit of H,,)
= (mol) (kJ mol ") = kJ

3.4 ENTHALPY OF REACTION

Definition of By definition, enthalpy of reaction is the enthalpy change for the unit extent of
Enthalpy of reaction. It is represented by the symbol A.H. Thus
Reaction

AH= % 3.4.1)

For the reaction
2N,05(g) — 4 NO,(g) + O4(g)

AH =4 & Ho(NOy)+ & HyO) - 26 Hy(N,0y)
AH= % = 4H,(NO,) + Hy((0,) ~ 2H,(N;05) (3:4.2)
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Unit of Enthalpy of
Reaction

Comment on
Enthalpy of
Reaction

Expression of
Enthalpy of
Reaction

The unit of enthalpy of reaction is

. unit of AH  kJ -
unit of A, H= ————=——=kJ mol™
Unitof &  mol
Since the enthalpy of reaction is defined as the enthalpy change for unit extent of
reaction, the amounts of reactants consumed and products formed will be equal to
the corresponding stoichiometric numbers expressed in mol. For example, for the
reaction

2N,05(g) — 4NOy(g) + O4(g)

the enthalpy of reaction is the enthalpy change when 2 mol of N,O;s dissociates to
give 4 mol of NO, and 1 mol of O,. It may be noted that

Enthalpy of reaction refers to the entire chemical equation and not to any particular
reactant or product.

The enthalpy of a reaction may be computed by using the expression

AH= X VgH,(B)~ X |vy|H,(B) (3.4.3)

products reactants

where the symbol Y, represent summation over the indicated substances (product
or reactant) and vy is the stoichiometric number of the substance B in the balanced
chemical equation. For example, for the reaction

Fe,04(s) + 3H,(g) — 2 Fe(s) + 3 H,0(1)

we have

AH= z vB]_Im(B)_ z |VB |Hm(B)

r products reactants

= [2H,(Fe, s) + 3H,,(H,0, 1)] — [H,(Fe 03, 5) + 3H,(Hy, 2)]

3.5 EXOTHERMIC AND ENDOTHERMIC NATURE OF A REACTION

Since,
AH= 2 VgH,(B)- X [|vg|H,(B)

T products reactants

two cases may be distinguished.

Exothermic Reaction In a case where the enthalpy of products is less than that of reactants, we have

ArH: z vBHm(B)_ 2 |VB |Hm(B)

products reactants
= negative

that is, there occurs a decrease in enthalpy when reactants are converted into
products. This decrease is brought about by the release of heat from the system
and the reaction is said to be an exothermic reaction.

For example, for the reaction
CH,(g) + 2 0,(g) — CO,(g) + 2H,0() A H° = - 890.4 kJ mol™!
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The above data may be represented in the form of an enthalpy level diagram, as
shown in Fig. 3.5.1

CH,(g) +2042)

Heat released
AH° =—890.4 kI mol '

T —>

Fig. 3.5.1 Enthalpy-level

diagram for an exothermic — CO4g)+2H,O()
reaction
Endothermic In the case where the enthalpy of products is greater than that of reactants, we have
Reaction
AH= Y vgH (B)- X |vg|H,(B)
products reactants
= positive

that is, there occurs an increase in enthalpy when reactants are converted into
products. This increase is brought about by the absorption of heat by the system
from the surroundings and the reaction is said to be an endothermic reaction. For
example, for the reaction

Hy(g) + I(g) — 2HI(g)  AH° = 52.5 kJ mol '

The enthalpy level diagram of this reaction is shown in Fig. 3.5.2

2HI(g)
’[‘ Heat absorbed
H A H°=52.5kI mol”'
Fig. 3.5.1 Enthalpy-level
diagram for an
_— +
endothermic reaction H, (g) + L (g)

3.6 IUPAC RECOMMENDATION OF WRITING CHEMICAL EQUATION AND DEFINITION OF
ENTHALPY OF REACTION

Representation A chemical equation may be conveniently represented as
of a Chemical
Equation 0= %VBB (3.6.1)

where the summation is carried over all the species (reactants and products) in
chemical equation and vy is the stoichiometric number of the species B (assumed
to be positive for products and negative for reactants).

For example, the chemical equation
2N,05(g) — 4NO,(g) + Oy(g)

may be represented as
0 = 4NO,(g) + O5(g) — 2N,05(g)
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Change in Amount
of Substance

Definition of
Enthalpy of
Reaction

Standard Enthalpy
of Reaction

The amount of species with the progress of reaction is given by the expression
ng =(ng)y + Vg & (3.6.2)

where (n), is the amount of species B in the beginning of the reaction and ny is
the corresponding amount when the reaction has proceeded to the extent &.

For the infinitesimal change in extent of reaction, the change in the amount of
species B is

dng = vy dE (3.6.3)
The corresponding enthalpy change of the reaction is
dH = Y H,(B)dng = X H,(B)(vg d<) (3.6.4)
B B

By definition, enthalpy of reaction is given as

AH = (OH 1987, = T v5 H,(B) (3.6.5)
B

that is, the enthalpy of reaction is the rate of change of enthalpy of system with
the extent of reaction at constant T and p.

When all the chemical species in a chemical equation are present in the respective
standard states, the enthalpy of reaction is spelled as standard enthalpy of reaction.

It is defined as
AH° =(0H®/98)r, , = X v H,(B) (3.6.6)
B

3.7 ENTHALPY OF FORMATION

Accepted
Convention

Definition of
Enthalpy of
Formation

It is not possible to determine the absolute value of the molar enthalpy of a substance.
However, based on the following convention, the relative values of standard molar
enthalpies of formation of various substances can be built.

The standard enthalpy of formation of every element in its stable state of
aggregation at one bar pressure and at specified temperature is assigned a zero value.

The specified temperature is usually taken as 25 °C.
A few example are
A¢H(0,, g) =0

A H °(C, graphite) = 0 A¢H°(C, diamond) # 0
AHBr,, 1) = 0

A¢H*(S, rhombic) = 0 A¢H °(S, monoclinic) # 0
A H °(P, white) = 0 A¢H °(P, black) # 0

The standard enthalpy of formation is defined as follows:

The standard enthalpy of formation of a compound is the change in the standard
enthalpy when one mole of the compound is formed starting from the requisite
amounts of elements in their stable states of aggregation.

The formation of one mole of the compound implies that the compound appears
as product with stoichiometric number equal to one.
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from Enthalpies of
Formation
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The chemical equations corresponding to enthalpy of formation of a few
substances are given below.

Enthalpy of formation of HBr(g) The chemical equation to be referred is
1 Hy(g) + 1 Bry(1) - HBr(g)

AH*(HBr, g) = S (B)
= Hg(HBr, g) — 1 Hy (H,, @) — L HR(Br,,1) (3.7.1)

Enthalpy of formation of SO,(g) The chemical equation to be referred is

S(rhombic) + O,(g) — SO,(g)

A(H°(SO,, g) = Hy(SO,, g) — Ha(S, thombic) — H2(0,, g) (3.7.2)
Enthalpy of formation of SO5(g) The chemical equation to be referred is

S (rhombic) + %02 (g) = SOs(g)

A(H°(SO,, g) = Hp(SO5, g) — Hy (S, thombic) — 3 H3(0,, 8) (3.7.3)
Consider the reaction

SO,(g) + 5 0y(g) — SO4(g)
Its enthalpy of reaction is

A H® = H3(SO;, g) — H3(SO,, g) — $ Hp(0y, 2)

Expressing the molar enthalpies of SO, and SO; in terms of the corresponding
enthalpies of formation by using Egs. (3.7.2) to (3.7.3), respectively, we get

AH° = [ A;H?(SO5, g) + Hy, (S, thombic) +3 H, (0, )|
~[A¢H(SOy, g) + HY(S, thombic) + H3(0y, @)] — L HZ(0,, )

— A(HY(SO5, 8) ~ AH(SO,, &) (3.7.4)

From Eq. (3.7.4), if follows that the enthalpy of reaction can be computed from
the data on enthalpies of formation of SO, and SO;. This way of computing enthalpy
of reaction can be extended to any reaction. Equation to be used is

A.H° = Yvy A H(B) (3.7.5)

Equation (3.7.5) holds good for any reaction as the same reference state is used
for reactants and products (Fig. 3.7.1)
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Fig. 3.7.1 Enthalpy of
Reaction

Example 3.7.1

Solution

Elements in Standard States

or A

T —

Reactants |

Products

The standard enthalpy of formation of a few substances have been tabulated in
Appendix 1.7

Calculate the standard enthalpy of reaction
ZnO(s) + CO(g) — Zn(s) + CO,(g)

Given AH(ZnO, s) = — 348.28 kI mol™'; A H°(CO,, g) = —393.51 kJ mol
AH*(CO, g) = — 110.53 kJ mol ™

We have A H° = Y vy A;H°(B)
A H® = AcH(Zn, s) + A;HO(CO,, g) — A(H(ZnO, s) — A;H(CO, g)
= {0 + (=393.51) — (-348.28) — (~110.53)} kJ mol™! = 65.3 kJ mol™

3.8 HESS’S LAW OF CONSTANT HEAT SUMMATION

Since the molar enthalpies of reactants and products involved in a chemical equation
have definite values, it is obvious that the enthalpy change of a chemical equation
would also have a definite value, irrespective of the way the reaction is carried
out. Thus, if we transform a specified set of reactants to a specified set of products
by more than one sequence of chemical equations, the total enthalpy change must
be same for every sequence. This rule, which is a consequence of the first law of
thermodynamics, is known as Hess’s law of constant heat summation, which can
be stated as follows:

The heat absorbed or evolved in a given chemical equation is the same whether
the process occurs in one step or several steps.

T Prior to the standard-state pressure of 1 bar, the values of standard enthalpies of formation
were tabulated for the standard-state pressure of 1 atm. The enthalpies of solids and liquids
are not affected significantly by the small decrease in pressure from 1 atm to 1 bar. The
standard enthalpies of formation of gases are also the same as the standard state is the ideal
gas for which enthalpy is independent of pressure.
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Consequences of
Hess’s Law

Utility of Hess’s Law

Thermochemistry 125

In support of Hess’s law we cite below two different methods of synthesising
sodium chloride from sodium and chlorine.

Na(s) + H,O(1) — NaOH(s) + %Hz(g) AL H°=-140.87 kJ mol ™!
1 1
EHz(g) to Cly(g) — HCI(g) A, H°=-92.30 kJ mol ™
HCI(g) + NaOH(s) — NaCl(s) + H,0(1) A, H°=-177.83 kJ mol '
Add
Net Change: Na(s)+ % Cl,(g) — NaCl(s) A H°=—411.00 kJ mol ™
1 1
3 Hy(g)+ 2 Cl,(g) — HCl(g) A H°=-92.30 kJ mol '
Na(s) + HCI(g) — NaCl(s) + %Hz(g) A, H° =-318.70 kJ mol ™
Add
Net Change: Na(s) + % Cly(g) — NaCl(s) A H°=-411.00 kJ mol™!

The chemical equation can be treated as ordinary algebraic expressions and can be
added or subtracted to yield the required equation. The corresponding enthalpies
of reactions are also manipulated in the same way so as to give the enthalpy of
reaction for the desired chemical equation.

Since A, H stands for the change in enthalpy when reactants (substances on the
left hand side of the arrow) are converted into products (substances on the right
hand side of the arrow) at the same temperature and pressure, it follows that if the
reaction is reversed (i.e. products are written on the left hand side and reactants
on the right hand side), then the numerical value of A .H remains the same, but
its sign changes.Jr

The utility of Hess’s law is considerable. In almost all the thermochemical
numericals, some way or the other, Hess’s law is used. One of the important
applications of Hess’s law is to determine enthalpy of reaction which is difficult
to determine experimentally. For example, the value A H for the reaction

. 1
C(graphite) + 5 0,(g) — CO(g)

which is difficult to determine experimentally, can be estimated from the following
two reactions for which A H can be determined experimentally.

C(graphite) + O,(g) — CO,(g) A H,

1
CO(g) + 5 0:8) = COs(e) A H,

T This statement is known as Lavoisier and Laplace law.
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Lattice Energy of a
Crystal (Born-Haber
Cycle)

Example 3.8.1

Solution

Subtracting the latter from the former, we get
C(graphite) + 3 O, (g) = CO(g)

Consequently, A \H = A H, — A H,.

The lattice energy is defined as the energy required to completely separate one
mole of a solid ionic compound into gaseous ions.

The larger the lattice energy, the more stable the ionic compound and the more
tightly the ions held.

Lattice energy cannot be measured directly. However, this can be determined
from the Born-Haber cycle. Consider the following sequence of steps for the
formation of NaCl crystals from Na(s) and Cl,(g)

(i) Vaporization of Na(s) Na(s) — Na(g) ALH,
(ii) Tonization of Na(g) Na(g) = Na'(g) + ¢ A H,
(iii) Dissociation of chlorine %Clz(g) — Cl(g) AL H,
(iv) Formation of Cl(g) Cl(g) +e — CI(g) A H,
(v) Condensation of Na'(g)

and Cl (g) Na'(g) + CI'(g) — NaCl(s) AL Hj
Net change: Na(s) + § Cly(g) » NaCl(s) A Hj

According to Hess’s law, we can write
AHo=AH +AH,+AHy+AH, + A H;
Except A, Hj all of these changes of enthalpy can be determined experimentally.

Hence, A H; can be determined from the above relation. The lattice energy is the
negative of A H; value.

Set up a Born-Haber cycle to find the lattice energy of NaCl crystal. Given: A;H°(NaCl)
= — 410.87 kJ mol . Tonization enthalpy of Na = 495.80 kJ mol', electron affinity of
chlorine = 365.26 kJ mol ™', sublimation enthalpy of Na = 317.57 kJ mol™! and dissociation
enthalpy of Cl,(g) = 241.84 kJ mol ™.

The following is the Born-Haber cycle for sodium chloride:

(1) Sublimation of Na Na(s) — Na(g) ;0 AH, =31757K] mol™!
(ii) Ionization of Na(g) Na(g) — Na'(g) + ¢~ ;0 ALH,=49580k] mol !
(iii) Dissociation of % Cl,(g) — Cl(g) 3 AH3= % x241.84 kJ mol ™!
half of chlorine
(iv) Formation of CI'(g) Cl(g) + e > CI'(g) ;0 ALH,=-36526Kk] mol™

(v) Formation of NaCl(s) Na'(g) + CI'(g) — NaCl(s) ; A, Hs=?

Net reaction Na(s) + %Clz(g) — NaCl(s); A,H; =-410.87kJ mol !

Now according to Hess’s law
AHs=AH +AH,+AH,+AH,+ A.H;
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Solution

Example 3.8.3

Solution
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Thus A Hs = [-410.87 — 317.57 — 495.80 — 120.92 + 365.26] kJ mol '
~979.9 kJ mol™!

The lattice energy of NaCl(s) is negative of A Hs, i.e. 979.9 kJ mol ™.

From the following thermochemical equations, calculate the enthalpy of formation of cane
sugar (C;,H,,0,,):

(i) CpHy04,(8) + 1204(g) — 12C0O,(g) + 11H,0(1) A H = -5 644 kJ mol ™
(ii) C(s) + Oy(g) — CO4(g) A, H =-393 kJ mol ™!
(iii) H,(g) + % 0,(g) = H,0() A, H = -286 kJ mol™!

Multiplying Eq. (ii) by 12 and Eq. (iii) by 11 and adding them, we get
12 x [C(s) + O(g) = CO,(g)] A H=-12x393 kI mol'
1
11 x [Hy(g) + 3 0,(g) = H,0()] A H=-11 %286 kJ mol™

12C(s) +11H,(g) + 375 0, (2) = 12C0O, (g) +11H,0(l); A, H =7 862 kI mol™'

Subtracting Eq. (i) from the above resulting equation, we get
12C(s) +11H,(g) + % 0, (g) = 12C0, (g) +11H,0(); A H =-7 862 kJ mol™

—[C},H,,0,,(s) + 1204(g) — 12CO,(g) + 11H,0(1)] AH =5 644 kJ mol”!

12C(s) +11H, (g) + Lzl 0, (g) » C;,H,,0,(s)  AH=-2218 kI mol”

From the data at 25 °C

(1) Fe,04(s) + 3C(graphite) — 2Fe(s) + 3CO(g) ALH=490.78 k] mol ™!
(ii)) FeO(s) + C(graphite) — Fe(s) + CO(g) A H=156.06kJ mol™
(iif) C(graphite) + O,(g) — COx(g) A H =-393.51 kJ mol™
(iv) CO(g) + % 0,(g) = CO,(g) A, H =-282.96 kJ mol '

Compute the enthalpy of formation of FeO(s) and of Fe,05(s), i.e. calculate A Hs
corresponding to the following reactions.

(a) Fe(s) + % 0,(g) — FeO(s) and (b) 2Fe(s) + % 0,(g) — Fe,054(s)

(a) Multiplying each of Eq. (ii) and Eq. (iv) by —1 and adding the resultant equations in
Eq. (iii), we get

Fe(s) + CO(g) — FeO(s) + C(graphite) AH=-156.06 kJ mol ™!
C(graphite) + O,(g) — CO,(g) AH=-393.51kJ mol ™!
CO,(g) — CO(g) + 3 0,(2) A H =282.96 kI mol™!

Fe(s) + % 0,(g) — FeO(s) AH=-266.61 kJ mol ™!
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(b) Multiplying Eq. (i) by —1, Eq. (iii) by 3 and Eq. (iv) by -3, and adding the resultant

equations, we get

2Fe(s) + 3CO(g) — Fe,05(s) + 3C(graphite); A H=-490.78 k] mol™!
3C(graphite) + 30,(g) — 3CO,(g) A H=73(-393.51 kI mol™")
3CO,(g) = 3CO(g) + % 0,(2) A H = -3(-282.96 kJ mol ")
2Fe(s) + % 0,(g) — Fe,04(s) AH=—-82243 k] mol ™

3.9 VARIOUS TYPES OF ENTHALPIES OF REACTIONS

Enthalpy of
Combustion

Utility of Data on
Enthalpy of
Combustion

Enthalpy of combustion of a given compound is defined as follows:

1t is the enthalpy change when one mole of this compound combines with the
requisite amount of oxygen to give products in their stable forms.

The combustion of one mole of the compound implies that the substance appears
as a reactant with stoichiometric number equal to one.

For example, the standard enthalpy of combustion of methane at 298.15 K is
—890.36 kJ mol™". This implies the following reaction:

CH,(g) + 20,(g) — CO,4(g) + 2H,0(1) A H° = —890.36 kJ mol ™
The standard enthalpy of combustion of methane at 298.15 K may be written as
A H°(CH,, g, 298.15 K) = — 890.36 kJ mol '
The data on the enthalpy of combustion can be determined experimentally. With
the help of such data, we can determine the enthalpy of formation of a compound,

which otherwise is difficult or impossible to determine experimentally. Consider,
for example, the enthalpy of formation of CH,(g):
C(graphite) + 2H,(g) — CHy(g)
First of all, the combination of carbon and hydrogen does not occur readily.
Secondly, if the reaction is even completed, the end product would not be pure

methane. Therefore, the enthalpy of formation of methane can be determined
indirectly through the enthalpy of combustion of methane:

CH,y(g) + 20,(g) — CO,(g) + 2H,0(])

A.H°(CHy, g) = A;H®(CO,, g) + 2 A;H°(H,0, 1) — A;H°(CH,, g)
therefore

A¢H°(CH,, g) = AfH(CO,, g) + 2 A;H°(H,0, 1) — A_H°(CH,, g)

The enthalpies of formation of CO, and H,O can be determined experimentally by
the combustion of carbon (graphite) and hydrogen. Thus knowing the measured value
of A,H°(CH,,g), the enthalpy of formation of CH, can be calculated. The value is

A¢H®(CHy, g) = AHY(CO,, g) + 2 A¢H°(H,0, 1) — A H%(CH,, g)
= [-393.51 +2 (—285.83) — ( — 890.36)] kJ mol !
= — 74.81 kJ mol™
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Or, equivalently, we may add the following three chemical equations.
C(graphite) + O,(g) — CO4(g) A H°=—-393.51 kJ mol '
2[H,(g) + % 0,(g) — H,0(1)] A H°=2 (—285.83) kJ mol™

— [CH,(g) + 20,(g) — COy(g) + 2H,0()] A, H°=— (- 890.36) kJ mol !
C(graphite) + 2H,(g) — CH,(g) AH® =~ 74.81 kJ mol ™

Calculate the enthalpy change of the following reaction
3C,H,(g) — CeHqy(g)

Given: Enthalpy of combustion of C,H,(g) =—1.30 MJ mol " and that of C,H,(g) = —3.302
MJ mol .

The reactions corresponding to the combustion of C,H, and C;H are

(i) CHy(g) + % 0,(g) — 2C0O,(g) + H,0(D)

(i) Cfiy@) + > Ou() > 6CO(@) + 3H,0()

Multiplying Eq. (i) by 3 and Eq. (ii) by —1, adding the resulting expressions, we get

3 x [CHy(g) + % 0,(2) = 2CO4(g) + H,0(1)] A¢H=—-3 %130 MJ mol™
—1 x [C4Hg(2) + 175 0,(g) = 6CO, + 3H,0(1)] A¢H=—(~3.302 MJ mol ")
3C,H,(g) — CHy(g) A, H=—-0.598 MJ mol™

Using the combustion data given below, compute the enthalpy of formation of isoprene(g)
and its resonance energy. Given: A H (from bond enthalpies) = 103.31 kJ mol ™.

Data: Enthalpy of combustion of isoprene(g) AH=-3120KkJ mol™
Enthalpy of formation of CO,(g) A+H =-393.71 kI mol™*
Enthalpy of formation of H,O(1) A H = -285.77 kJ mol ™
Given that
CsHg(g) + 70,(g) — 5CO4(g) + 4H,0(1) A H=-3120 kJ mol™'
C(graphite) + O,(g) — CO,(g) A¢H =-393.71 k] mol™!
H,(g) + % O,(g) — H,0(1) A¢H = -285.77 kJ mol ™

The reaction corresponding to the enthalpy of formation of CsHg(g) can be obtained by the
following manipulations:

—1 x [CsHg(g) + 70,(g) — 5CO,(g) + 4H,0(1)] A H=(-1)x (-3 12043 kJ mol ™)
5 X [C(graphite) + O,(g) — CO,(g)] A H=-5x%x393.71kJ mol™!

4 x [Hy(g) + % 0, (g) » H,0(1)] A H=-4x285.77 kI mol
Adding these, we get

5C(graphite) + 4H,(g) — CsHi(g) A H=88Kk] mol™!
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Measurement
of Enthalpy of
Combustion

Fig.3.9.1 Bomb
calorimeter to determine
enthalpy of combustion

Calculation of
Enthalpy of
Combustion

Resonance energy = A;H(actual) — A H(from bond enthalpies)
8.8 kJ mol ' — 103.31 kJ mol '
= —94.51 kJ mol!

Enthalpies of combustion are usually measured by placing a known mass of the
compound in a closed steel container (known as bomb calorimetre) which is filled
with oxygen at about 30 bar pressure. The calorimetre is surrounded by a known
mass of water. The entire apparatus is kept in an insulated jacket to prevent heat
entering into or leaving from the container, as shown in Fig. 3.9.1. The sample
is ignited electrically to bring about the combustion reaction. The heat evolved is
used in raising the temperature of water and the calorimetre.

Stirrer Thermometer

Ignition wire

_/

Insulated jacket —|

Calorimeter bucket

Water

Sample cup —_|

Bomb

Since the heat released in combustion reaction is equal to the heat absorbed by
water and bomb calorimetre, we will have

Qeomb ~ — (qwater + Qbomb)

The heat absorbed by water and bomb calorimeter are determined through their
specific heat capacities. By definition, the specific heat capacity of a substance is
the heat requried to raise the temperature of a unit mass of the substance by unit
temperature. If ¢ is heat required to raise the temperature of mass m of a substance
by temperature AT, then

q

c=—— or q=mc AT = C AT
mAT

where C(= mc) is known as heat capacity of the substance. With these, g o

becomes

9eomb ~— — (mwater Cywater + Myomb Cbomb) AT

== (mwater Cwater + Cbomb) AT
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Thus, knowing m,,.;» Cyaters Coomp a0d AT the value of g, can be determined.

Since the experiment is carried out at a constant volume condition, the heat released
per unit amount of substance will be equal to energy of combustion.

Hence AU-= 9comb — 9comb
c

Agybs Mgybs /M, subs

where mg,, and M, are the mass taken and the molar mass of the substance,
respectively. Finally, the enthalpy of combustion will be given as

AH= AU + (Av,) RT

where Av, is the change in stoichiometric number of gaseous species in the balanced
chemical equation representing the combustion process.

Example 3.9.3 A 0.138 g sample of solid magnesium (molar mass = 24.30 g mol™) is burned in a constant
volume bomb calorimetre that has a heat capacity of 1.77 kJ °C™\. The calorimetre contains
300 mL of water (density = 1 g mL™") and its temperature is raised by 1.126 °C. Calculate
the enthalpy of combustion of magnesium at 298 K.

Solution We have

mwater cwater A T

{300 mL) (1 g mL™)} (4.184 T g™' °«C!) (1.126 °C)
=14131=1413k]

(Jwater =

Toomb (mbomb cbomb)
Coomp AT = (1.77 kJ °C™") (1.126 °C)

= 1.992 kJ
Geomb = — (qwater + qbomb)
= —(1.413 +1.992) kJ =-3.405 kJ
AU = —Jeomb —3405K] =-599.60 kJ mol™’

g/ My, (0.1382)/(24.30 gmol ™)

The combustion reaction is

Mes) + 2 Oxe) > MO Avg=—
AH = AU+ (Av,) RT

-599.60 kJ mol™ + (-% ) (8.314 x 107 kJ K™ mol™) (298 K)

(-599.60 — 1.24) kJ mol™! = — 600.89 kJ mol™*

Integral Enthalpy When a solute is dissolved in a solvent there is frequently an evolution or absorption

of Solution of heat. The enthalpy change per unit amount of solute dissolved is not constant; it
usually varies with concentration of the solution. Let AH be the enthalpy change
when the amount #, of a solute is dissolved in a definite quantity of solvent, say
1 kg. We assume that the process of dissolution is an endothermic process. Now
if AH is plotted against #,, the resultant curve is as shown in Fig. 3.9.2.

Initially, A H increases almost linearly with », but later the increase is not as
fast as n,. Finally, it reaches a constant value when the solution becomes saturated

T See Section 3.12
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Fig. 3.9.2 Variation of
enthalpy change when
the amount n, of solute is
dissolved in 1 kg solvent

Integral Enthalpy
of Dilution

S

Enthalpy change —

1Ny ng

Amount of solute in 1 kg of solvent —»

with respect to solute. If the observed value of enthalpy change (AH) is divided
by the amount of solute (n,) that is dissolved to form a solution of a particular
concentration, we get the quantity A H/n,, which is known as integral enthalpy of
solution at the given concentration, Hence

The integral enthalpy of solution at the given concentration is the enthalpy change
when one mole of the solute is dissolved in a definite quantity of solvent to produce
a solution of a desired concentration.

While recording integral enthalpies of solution it is a general practice to state
the amount of the solvent in which 1 mole of solute is dissolved. Thus

HCl(g) + 10 H,0(l) - HCI(10 H,0)  A.H, = —69.488 kJ mol !

indicates that when 1 mol of hydrogen chloride gas is dissolved in 10 mol of water,
there is an evolution of 69.488 kJ of heat. Other values are

(i) HCI(g) + 25 H,0(l) — HCI(25 H,0) A, H, = —72.266 kJ mol ™
(ii) HCI(g) + 40 H,0(1) — HCI(40 H,0) A H; = —73.023 kJ mol™
(iii) HCI(g) + 200 H,0(l) — HCI(200 H,0) A, H, =-74.203 kJ mol™!
(iv) HCI(g) + aq — HCl(aq) A Hy = —75.145 kJ mol ™

where A Hy represents the limit of enthalpy change when 1 mol of hydrogen
chloride gas is dissolved in a very large quantity of water. The resultant solution
is known as an infinite diluted solution.

The fact that the enthalpy of solution of a solute varies with its concentration implies
that there must be a change in enthalpy when a solution is diluted by adding more
solvent.

The integral enthalpy of dilution is the change in enthalpy when a solution
containing 1 mole of solute is diluted from one concentration to another.

According to Hess’s law, it is equal to the difference between the integral
enthalpies of solution at the two concentrations. For example, if to a solution of
1 mol of hydrogen chloride gas in 40 mol of water, enough water is added such that

HCI1(40 H,0) + aq — HCl(aq)

the associated enthalpy change can be obtained as follows:



Differential
Enthalpy of
Solution

Differential Enthalpy
of Dilution
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HCl(g) + aq — HCl(aq) A Hs = —75.145 kJ mol ™
HCl(g) + 40 H,0 — HCI(40 H,0) A Hg = —73.023 kJ mol ™!

Subtracting, we have

HCI1(40 HCI) + aq — HCl(aq) A H =-2.122 kJ mol ™
The differential enthalpy of solution is defined as follows:

1t is the enthalpy change when 1 mole of solute is dissolved in a very large volume
of a solution of known concentration so that there occurs no appreciable change
in concentration of the solution.

The value of differential enthalpy of solution for a given concentration of solution is
given by the slope of the curve between A H and », drawn at the point corresponding
to the given concentration of solution. Mathematically, it may be expressed as

d(AH)/dn,.
Alternatively, the differential enthalpy of solution may be defined as follows.

Let d(AH) be the change in value of AH when an infinitesimal amount dn, of
solute is added to a solution of definite composition. By an infinitesimal amount
dn, of solute, we mean that its addition does not cause any appreciable change in
composition of solution. If we divide d(AH) by dn,, we get the differential enthalpy
of solution d(A H)/dn,. Thus, the differential enthalpy of solution may be defined as

1t is the change in AH per unit amount of solute when an infinitesimal amount of
the solute is added to a solution of definite concentration.

It may be seen from the shape of the curve of Fig. 3.9.1 that the value of the slope
will depend upon the concentration of the solution. Thus, the differential enthalpy
of a solution, besides depending on 7 and p, will also depend on the amount of
solvent 7, and solute 7, present in the given solution, i.e. d(AH) /dn, = (T, p, n,, n,).

It is for this reason that the concentration of the solution is mentioned while
defining the differential enthalpy of solution. The following conclusions may be
drawn from the shape of the curve between AH and n, as shown in Fig. 3.9.1.

1. For smaller values of #,, the curve is almost linear; thus its slope will have a
constant value and will be equal to A H/n,. Since the latter represents the integral
enthalpy of solution, if follows that the differential and integral enthalpies of
solution are essentially equal for very dilute solutions.

2. For higher values of #n,, the curve is no more linear. In fact, AH does not
increase as fast as n,; thus the slope of the curve decreases as the value of n,
increases. In other words, the differential enthalpy of solution decreases as the
concentration of the solution increases, and becomes zero when the solution is
saturated.

The differential enthalpy of dilution may be defined as follows:

1t is the enthalpy change when 1 mole of solvent is added to a large volume of the
solution of known concentration so that there occurs no appreciable change in the
concentration of the solution.
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Comment on
Differential
Enthalpies

Enthalpy of
Hydration

The value of differential enthalpy of dilution can be obtained by plotting AH of
the solution at various concentrations against the amount of the solvent associated
with a definite amount of solute, and finding the slope of the curve at a point
corresponding to any particular concentration.

The differential enthalpies of solution and dilution are essentially the partial molar
enthalpies of solution of solute and solvent, respectively, which are commonly
used while dealing with solutions.” Consider a solution containing the amount 7,
of solvent and the amount », of solute. In general,

AH = f(T, p, ny, ny)
The differential of AH is given by

d(AH) = (M) dT+(a(AH )j dp
psny,n T,ny,n,

oT op

+(—8(AH)] dn, +(8(AH)} dn,
T,p,n, T,p,n

on, ",

At constant temperature and pressure, this reduces to

d(AH) = (Mj dnl+(a(AH)) dn,
T,p,n T,p,m

ny ny

or d(AH) = (AHme) d'nl + (AHZ, pm) dn2

where AH, ., and AH, ,, are known as partial molar enthalpies of solvent and
solute in the solution, respectively. It can be seen that AH, ., is equal to the slope
d(AH)/dn, of the plot of AH versus n, for a series of solutions in which 7, is kept
constant. Comparison of this with the definition given at the beginning shows that
the differential enthalpy of solution is really the partial molar enthalpy of solute
in the solution, i.e. AH, ... Similarly, the differential enthalpy of dilution is the
corresponding partial molar enthalpy of the solvent, i.e. AH; ..

Enthalpy of hydration of a given anhydrous or partially hydrated salt is the enthalpy
change when one mole of it combines with the requisite amount of water to form a
new hydrated stable salt. For example, the hydration of anhydrous cupric sulphate
is represented by

CuSO,(s) + 5SH,0(l) — CuSO, - SH,0(s)

There is almost invariably a liberation of heat in such reactions, i.e. the value of
AH is negative. The value of enthalpy of hydration can be readily calculated from
the integral enthalpies of solution of the hydrated and anhydrous salts. For example

CuSO,(s) + 800 H,O(I) — CuS0,(800 H,0) A,H° = —68.743 kJ mol '
CuS0,.5H,0(s) + 795 H,0(I) — CuS0,(800 H,0)
A, H°=10.125 kJ mol ™"

 See Section 6.1.
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Solution
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Hence by subtraction, we get
CuSO,(s) + 5H,0(1) — CuSO,-5H,0(s) A, H° =—78.868 kJ mol™

At 25 °C, 1 mole of MgSO, was dissolved in water. The heat evolved was found to be 91.211
kJ. One mol of MgSO, - 7H,O on dissolution gives a solution of the same composition
accompanied by an absorption of 13.807 kJ. Find the enthalpy of hydration, i.e. AH for the
reaction.

MgS0,(s) + 7TH,0(l) — MgS0,.7H,0(s)

Given that
(1) MgSO,(s) + ag = MgSO,(aq) A H, =-91211 kI mol™!
(i) MgSO, - TH,0(s) + aqg — MgSO,(aq) A,H, = +13.807 kJ mol™
Equation (i) can be considered to proceed through the following two steps:
MgSO,(s) + 7TH,0(1) = MgSO,-7H,0(s) Apyafl =7
MgSO,-7TH,0(s) + aq — MgSO,(aq) A H, =+13.807 kJ mol ™!

According to Hess’s law, we get
Ahydl_] + ArI—IZ = Ar]_ll
Ahydl_] = Ar[—[l - ArHZ
=—-91.211 kJ mol™" — 13.807 kJ mol™' = —-105.018 kJ mol

Enthalpy of neutralization is defined as the enthalpy change when one mole of H
in dilute solution combines with one mole of OH" to give undissociated water, i.e.

H'(aq) + OH (aq) — H,0(l) Aoy H =~ 55.84 kI mol™!

neut
In this reaction, there is always a release of heat because of the bond formation

H—OH. Whenever one mole of a strong monoprotic acid (HCI, HNO;) is mixed
with the one mole of a strong base (NaOH, KOH), the above neutralization reaction
takes place, since these acids and bases are present in the completely dissociated
from in dilute solutions. The corresponding enthalpy change is of the order of
~55.8 kJ mol .
In general, the enthalpy change of the reaction

H'(nH,0) + OH " (nH,0) — H,0(1)
depends on the value of » and may be visualized by mixing HCI(zH,0) and
NaOH(nH,0). The reaction’ is

HCI(nH,0) + NaOH(»H,0) — NaCl(nH,0) + H,0(1)
The enthalpy change in the above reaction is

A H = A HNaCl - nH,0) + A H(H,O0, 1)

~A;H(HCI - nH,0) — A;H(NaOH . nH,0)

t Actually, we will get NaCl((2n + 1) H,O) instead of NaCl(nH,O) + H,O(1). However,
we may consider this hypothetical reaction just to show that A H of neutralization depends
on the value of n.
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For different values of #, the values are
n=100; AH= [-407.07 —285.83 — (—165.93) — (— 469.65)] kJ mol !

= —57.32 kJ mol™!
n=200; A H= [-406.92 —28583 — (-166.27) — (- 469.61)] kJ mol ™!

= —56.87 kJ mol ™!
AH = [-407.27 — 285.83 — (- 167.16) — (— 470.10)] kJ mol ™!

= —55.84 kJ mol '
When n = oo, the neutralization reaction may be written as
H'(aq) + OH (aq) — H,0(1) A.H = —55.84 kJ mol™

Enthalpy of Whenever a weak acid (or base) reacts with a strong base (or acid), the release of
lonization heat is less than 55.84 kJ mol . It is because of the fact that these acids or bases
are not completely ionized in solution. Some of the heat is consumed in ionizing
these acids and bases. This heat is known as enthalpy of ionization. Examples are

HCN + Na'OH™ — Na’ + CN™ + H,0 AH® = —-12.13 kJ mol ™
CH,COOH + Na"OH — Na' + CH,COO ™ + H,0
A H®° = —49.86 kJ mol ™

T

The enthalpy of ionization can be calculated as follows. The neutralization of a
weak acid, say HCN, may be represented in two steps, namely,

(i) Tonization HCN — H' + CN” Aoy H° = ?
(i1) Neutralization H'+ OH — H,0 Ao =-55.84 k] mol ™!
The complete reaction is obtained by adding the above two steps. Thus
HCN + OH™ — H,0 + CN~ AH° = —12.13 kJ mol !
Obviously,
ALH® = Aoy H + A H®
or AjonizH° = AH® — A ( H°

= [-12.13 — (- 55.84)] kJ mol ™
= 43.71 kJ mol ™!

Example 3.9.5 Enthalpy of neutralization of HCl by NaOH is —57.32 kJ mol ' and by NH,OH is —-51.34
kJ mol™'. Calculate the enthalpy of dissociation of NH,OH.
Solution Given that
H'(aq) + NH,OH(aq) — NH} (aq) + H,0(]) A,H =—51.34 kJ mol!
We may consider neutralization in two steps:

(1) Ionization NH,OH(aq) — NH,(aq) + OH (aq) AH =7

(ii) Neutralization H(aq) + OH (aq) — H,0(l) AH, =-57.32Kk] mol™
Thus, AH=AH +AH,
Therefore

AH, =AH— A H,=-5134kJ mol”" +57.32 kJ mol”" = 5.98 kJ mol ™’




Enthalpy of
Transition

Enthalpy of
Precipitation

Enthalpy of
Atomization

Enthalpy of
Formation of lons

lllustration

Thermochemistry 137

Enthalpy of transition is the enthalpy change when one mole of one allotropic form
changes to another. For example,

C(graphite) — C(diamond) Ay H°=190Kk] mol ™!

The enthalpy of transition in the above example can be obtained from the
enthalpies of combustion of C(graphite) and C(diamond).

C(graphite) + O,(g) — CO,(g) A H°=-393.51 kJ mol ™!

C(diamond) + O,(g) — CO,(g) A H®=-395.41 kJ mol !
Subtracting, we have

C(graphite) — C(diamond) Ay H®=1.90Kk] mol ™!
Enthalpy of precipitation is the enthalpy change when one mole of precipitate is
formed. For example,

BaCl,(aq) + Na,SO4(aq) — BaSO,(s) + 2NaCl(aq)

A H°=-24.27 kJ mol™!

Enthalpy of atomization refers to a process in which a substance is separated into

its constituent atoms in the gas phase. The corresponding reaction equation carries
stoichiometric number of the substance equal to —1. Example is

H,0(l) — 2H(g) + O(g) A, H°=69.94 kJ mol™!
We have seen that
H'(aq) + OH (aq) — H,0(1) A H°=-5584k] mol™!

For this reaction, we write
A H° = A H°(H,0, 1) — {A;H°(H", aq) + A H°(OH , aq)}
Hence at 25 °C, we get
AH(H', aq) + A H°(OH", aq) = A H°(H,0, 1) — A H®
= [-285.83 — (-55.84)] kJ mol ' = —229.99 kJ mol !

By convention, the standard enthalpy of formation of H'(aq) is taken to be zero.
Thus A H°(OH, aq) = — 229.99 kJ mol™’

With the enthalpies of formation of these two ions, the enthalpy of formation of
any other ion can be found from the enthalpy of formation and enthalpy of solution
of its pure compound with H or OH". For example, the enthalpy of formation
of Na' can be calculated from the enthalpy of formation and enthalpy of infinite
dilute solution of NaOH. The two values are

A:H°(NaOH, s) = — 425.61 kJ mol ! and A,qH°(NaOH, s) = — 44.50 kJ mol !
The chemical equation for the formation of infinite dilute solution of NaOH(s) is
NaOH(s) + nH,0(1) — Na'(aq) + OH (aq)
A, H°(NaOH, s) = — 44.50 kJ mol '



138 A Textbook of Physical Chemistry

Example 3.9.6

Solution

Example 3.9.7

Solution

Example 3.9.8

Solution

Since there are equal amounts of water on both sides of the above equation, the
two enthalpies give no net effect and thus

A,qH°(NaOH, s) = AtH °(Na', aq) + A H°(OH", aq) — A H°(NaOH, s)
or AH°(Na',aq) = A,qH°(NaOH, s) - AH°(OH, aq) + A¢H°(NaOH, s)
= [~ 44.50 — (-229.99) + (— 425.61)] kJ mol
=—240.12 kJ mol '

Similarly, from NaCl(aq) or HCl(aq), the enthalpy of formation of Cl (aq) can be
determined, and so on. These are recorded in Appendix 1. The changes in enthalpy
of any ionic reaction can then be found from these ionic enthalpies of formation
and the usual enthalpies of formation of compounds.

The enthalpy of formation of H,0O(1) is —285.83 kJ mol ! and enthalpy of neutralization of
a strong acid and a strong base is —55.84 kJ mol . What is the enthalpy of formation of
OH ions?

Given that
H*(aq) + OH (aq) — H,0(])
AH 0 —285.83 kJ mol™
A e H = AtHH,0, 1) — A;H(OH', aq)
Hence A¢H(OH, aq) = A(HH,0, 1) — A . H
= [ 285.83 — (— 55.84)] kJ mol !

=—229.99 kJ mol ™

Calculate A H° for the reaction
Ag'(aq) + Cl'(aq) — AgCI(s)

at 25 °C. Given: A H°(Ag’, aq) = 105.58 kI mol™', A (H*(CI', aq) = — 167.16 kI mol™' and
AH°(AgCl, s) = — 127.07 kJ mol .
For the reaction

Ag'(aq) + Cl'(aq) — AgCI(s)
we have

A H®= A:H°(AgCl, s) — AfHO(Ag+, aq) — AyH°(CI, aq)

= [ = 127.07 = 105.58 — ( — 167.16)] kJ mol™! = — 65.49 kJ mol™!

Calculate the enthalpy change when one mole of HCI(g) is dissolved in a very large amount
of water at 25 °C. The change in state is

HCl(g) + aqg — H'(aq) + CI'(aq)
Given: A:H°(HCI, g) =—-92.31kJ mol ! and Ay HO(CI', aq) = - 167.16 kJ mol ™!
For the reaction

HCI(g) + aq — H'(aq) + Cl(aq)
we have

A H° = A:HCI, aq) — A H°(HCI, g)
=[-167.16 — (- 92.31)] kJ mol™
— 74.85 kJ mol™
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3.10 BOND ENTHALPIES

Definition

Calculation of
Bond Enthalpy

Bond enthalpy of a given bond is defined as follows:

The bond enthalpy is the average of enthalpies required to dissociate the said bond
present in different gaseous compounds into free atoms or radicals in the gaseous
state.

The term bond enthalpy may be distinguished form the term bond dissociation
enthalpy which is defined as follows:

The bond dissociation enthalpy is the enthalpy required to dissociate a given
bond of some specific compound.

The distinction between these two terms may be more evident if described in
terms of a simple example, say of the O—H bond. The enthalpy of dissociation
of the O—H bond depends on the nature of molecular species from which the H
atom is being separated. For example, in the water molecule

H,0(g) — H(g) + OH(g) AH®° = 501.87 kJ mol ™!

However, to break the O—H bond in the hydroxyl required a different quantity of
heat

OH(g) — O(g) + H(g) A H® = 423.38 kJ mol'

The bond enthalpy, &,y;, is defined as the average of these two values; that is

-1 -1
ey — S0187 I mol ;423.38 Kol o oy

In the case of diatomic molecules, such as H,, the bond enthalpy and bond
dissociation enthalpy are identical because each refers to the reaction

H,(g) — 2H(g) gy = A H° = 435.93 kJ mol ™'

Thus, the bond enthalpy given for any particular pair of atoms is the average
value of the dissociation enthalpies of the bond for a number of molecules in which
the pair of atoms appears. Appendix I records the recommended bond enthalpies
of the various bonds.

Bond enthalpies can be obtained from data on enthalpies of combustion and
enthalpies of dissociation. Taking an example of the bond enthalpy of C—H, we
have

CH,(g) — C(g) + 4H(g) gcn = AHMA

The value of A.H and hence & y; for this reaction can be obtained from the
summation of following equations:

CH,(g) + 20,(g) = CO,(g) + 2H,0(1) A H° = -890.36 kJ mol ™!
CO,(g) — C(graphite) + O,(g) A H® =393.51 kI mol
2H,0(I) — 2H,(g) + O4(g) A,H® = 571.70 kJ mol™
2H,(g) — 4H(g) A H° = 871.86 kJ mol '
C(graphite) — C(g) A H® =716.68 kI mol !

CH,(g) — C(g) + 4H(g) AH® =1 663.39 kJ mol’!
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Example 3.10.1

Solution

1663.39 kJ mol ™'
4
Thus value of the C—H bond enthalpy does not correspond to the dissociation
enthalpy of the carbon-hydrogen bond in methane, which is 426.77 kJ mol ' and
refers to the equation

CHy(g) — CHs(g) + H(g)

Thus at 298.15 K, Eon= = 415.85 kJ mol !

Find the bond enthalpy of S—S bond from the following data:

C,Hy—S—C,Hy(g) AH® = —147.23 kJ mol ™
C,H—S—S—C,Hy(g) AH® = -201.92 kJ mol™!
S(g) AH® = 222.80 kJ mol™
Given that
(i) 4C(s) + 5Hy(g) + S(s) = C,Hs— S — C,Hy(g2) AH® = ~147.23 kJ mol !

(i) 4C(s) + SH,(g) +28(s) - C,H; — S — S — C,Hy(g) A;H°=-201.92 k] mol”'
Subtracting Eq. (i) from Eq. (ii), we get

C,H; — S — C,Hy(g) + S(s) = C,Hy — S — S — C,Hy(g); A, H° = —54.69 kJ mol ™
Adding to this, the following equation

S(g) = S(s) A, H® =-222.80 kImol ™!
we get
C,H; — S — C,Hy(g) + S(g) = C,Hy — S — S — C,Hy(g); A, H® = —277.49 kJ mol™

In the last equation 277.49 kJ of heat is evolved because of the S—S bond formation. Hence,
the bond enthalpy of S—S is 277.49 kJ mol !

Diagrammatically, we may represent the above calculations as follows:

H H H H H H H H
H—C—C—S—C—C—H(g) +S(s) —> H—C—C—S—S—C—C—H(g)
H I—II H H H H H
l 2ec + 10 ey J/ A HS) T — 26— 10e
+2ec —2e..g—Es.g

H H H

H
4C(g) + 10H(g) + S(g) +S(g)¢—> H-~C-~ c S--§CCH
H oH H H
According to Hass’s law
A,H°= Enthalpy involved in bond breaking — Enthalpy involved in bond making

= [26c_c+ 10&c_ g+ 26c_g+ Ay pHS)] + [-2€6c_¢— 106y —2€c_g—&5 gl

= AVap HO(S) - 8S—S
or 5= Ay H(S) A H"

= AvapH°(S) —[A:H(C,Hs — S — S — C,Hs) — A;H°(C,H - S — C,Hy)]

= [222.80 — {-201.92 — (—147.23)}] kJ mol™!

= 277.49 kJ mol™!
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Example 3.10.2 Using the bond enthalpy data given below, calculate the enthalpy change for the reaction
C,Hy(g) + Hy(g) — CHy(g)
Data:
Bond Bond enthalpy
c—C 336.81 kJ mol '
c=cC 606.68 kJ mol !
C—H 410.87 kJ mol™!
H—H 431.79 kJ mol”!
Solution Diagrammatically, we may represent the given reaction as follows:
H H H H
N C/()H H(g) i H‘C‘CH
C= g + J— g _— —(C—C—
H
H H
Break Break bond Make
bonds bonds
H H
20(g) + 4H) + 2HE  <«—> H-C-C-H
H H

The heat required to dissociate C,H,(g) and H,(g) into the gaseous atoms is

For breaking 1 C=C 606.68 kJ mol™
For breaking 4C—H 4 x 410.87 kJ mol™
For breaking I1H—H 431.79 kJ mol™
Total 2 681.95 kJ mol !
If the same atoms now combine to give C,H(g), energy released will be
For making 1c—cC —336.81 kJ mol™
For making 6C—H — 6 % 410.87 kJ mol™!
Total — 2 802.03 kJ mol™
Thus A H=—2802.03 kJ mol™" +2 681.95 kJ mol™' = -120.08 kJ mol*
Example 3.10.3 From the following data:

Enthalpy of formation of CH;CN = 87.86 kJ mol ™!
Enthalpy of formation of C,H, = — 83.68 kJ mol ™!
Enthalpy of sublimation of graphite = 719.65 kJ mol !
Enthalpy of dissociation of nitrogen = 945.58 kJ mol ™!
Enthalpy of dissociation of H, = 435.14 kJ mol!
C—H bond enthalpy = 414.22 kJ mol™!

Calculate (i) £ and (ii) &cy-
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Solution (1) €& :Wehave
C,H¢(g) — 2C(graphite) + 3H,(g) A H, =83.68k] mol™
2C(graphite) — 2C(g) A H,=2x719.65k] mol ™
3H,(g) — 6H(g) A, H; =3 x 435.14 kJ mol™
Adding, we get
C,Hy(g) — 2C(g) + 6H(g) A, H, =2 828.4 k] mol
Now AH,=¢€_c+6¢&_y

Therefore

£c o =[2828.4—6x414.22] kJ mol ™! = 343.08 kJ mol '

Diagrammatically, the above calculations may be represented as follows:

H H
. AH |
2C(graphite) + 3H,(g) E— H—|C—(|?—H
H H
AH A, T— 6&cu—¢écc
H H
2Cg +  6H( <—> H - CCH
H H

Applying Hess’s law, we get
AH=AH, + AH;— 6 &y — €c_¢
-83.68 kI mol™' = (2 x 719.65 + 3 x 435.14 — 6 x 414.22) kJ mol™! — & ¢
& =(1439.3 +1305.42 - 2 485.32 + 83.68) kJ mol™!
=343.08 kJ mol™!

(i) &-—y : We have
CH;CN(g) — 2C(graphite) + % H,(g) + %Nz(g) A.H =-87.86kJ mol !

2C(graphite) — 2C(g) A H, =2 x719.65 k] mol™
3 Hy(g) — 3H() AHy = % x 435.14 kJ mol™!
3 Ny(2) — N(g) AH, = % x 945.58 kJ mol!

Adding, we get
CH;CN(g) — 2C(g) + 3H(g) + N(g) A Hg =2 476.94 kJ mol !
Now AH;= e+ 3ec_yt+ €c=n
Therefore
Econ =[2476.94 — 3 x 414.22 — 343.08] kJ mol ' = 891.2 kJ mol !
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Diagrammatically, the above calculations may be represented as follows:
H

AcH
2C(graphite) +% Hy(g) + %Nz(g) —{— H-C<C =N(g)

— €N

H
AH, AH; AH, T —ecy Ecc
2C(g) + 3H(®) + N <—> H--C--CiN

Applying Hess’s law, we get
AH=AH,+AH;+AH,— (3€_yg + Ec_c+ Ec=n)

1
87.86=2x719.65 + %X 435.14 + 5 X945.58 —3x414.22 - 343.08 — e /kJ mol ™
Econ = (1439.30 + 652.71 +472.79 — 1 242.66 — 343.08 — 87.86) kJ mol™!

=891.2 kJ mol™!
Example 3.10.4 Calculate the bond enthalpy C—H from the following data at 298 K:
Enthalpy of combustion of methane A H=-890.36 k] mol ™!
Enthalpy of combustion of C(graphite) A H =-39351KkJ mol™
Hy(g) + 1 0,(g) — H,0(1) A, H =-285.85 kJ mol ™
Enthalpy of dissociation of H,(g) A H=43593k] mol !
Enthalpy of sublimation of C(graphite) Ay H =716.68 kJ mol™!
Solution We have
(i) CH,(g) + 20,(g) — CO4(g) + 2H,0(1) A Hiog = —890.36 kJ mol™
(i) C(graphite) + O,(g) — CO,(g) A Hyggx =—393.51 kI mol™!
(iii) Hy(g) + 0,(g) — H,0(1) A, Hyggx = —285.85 kI mol ™!
(iv) H,(g) — 2H(g) A g Haggr = 435.93 kJ mol™!
(v) C(graphite) — C(g) A gy Haosx = 716.68 kJ mol ™!

If we do the following manipulations
Eq. (i) — Eq. (i) — 2 Eq. (iii) + 2 Eq. (iv) + Eq. (v)
weget  CH,(g) — C(g) + 4H(g)
The corresponding A, H,ggx is given by
A, Hyog=[-890.36 + 393.51 + 2 x 285.85 + 2 x 435.93 + 716.68] kJ mol ™!
=1 663.39 kJ mol '

that is, 1 663.39 kJ is requried to dissociate one mole of CH,(g) into gaseous atoms in
which 4 mol of C—H bonds are broken. Therefore

1663.39kJ mol™!

e —4IS85K mol™!
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Estimation of
Enthalpy of
Formation form
Bond Enthalpies

Example 3.10.5

The date on the bond enthalpies can be employed to calculate the approximate
enthalpy of formation of a compound of known structure by adding the appropriate
bond enthalpies. Wherever direct experimental data is not available, approximate
estimate of enthalpy of a reaction can also be obtained through the bond enthalpy
data.

Let us calculate the enthalpy of formation of Se,Cl,(g). This can be carried out
using the data on bond enthalpies as described in the following:

Since the bond enthalpy refers to the dissociation of gaseous Cl—Se—Se—Cl
molecule into the gaseous atoms, the enthalpy change for the formation of this
gaseous molecule from gaseous atoms is given by

2Se(g) + 2CI(g) — Se,Cly(g)
AH = — (&g, 5o + 285, 1) = — 695.54 kJ mol ™!

However, to estimate the enthalpy of formation it is necessary to add two
reactions in the above equation since by definition the enthalpy of formation refers
to the elements in their standard states. Therefore, we introduce the following
enthalpy changes to convert the element from their standard states to the gaseous
atoms at 298 K.

Cly(g) — 2Cl(g) AH, = 243.30 kJ mol ™’
2Se(hexagonal) — 2Se(g) A H,=2x20251KkJ mol !

Thus adding these in the preceding expression, we get

2Se(hexagonal) + Cl,(g) — SeCl,(g) AH=-4722K] mol ™!

Diagrammatically the above calculations may be represented as follows:

AH
2Se(hexagonal) + Cl,(g) — Cl—Se—Se—Cl(g)

—€ge-5e ™ 2EgeCl

28e(g) +2CLE <—> Cl---Se---Se---Cl
According to Hess’s law,
AfH = ArI_Il + ArH2_ (ESefse + 288643])
(243.30 + 2 x 202.51 — 695.54) kJ mol!
—47.22 kJ mol!

Using the bond enthalpy date given below, estimate the enthalpy of formation of gaseous
isoprene
CH2=|C—CH:CH2

CH,

Data  Bond enthalpy of C—H bond = 413.38 kJ mol™
Bond enthalpy of C—C bond = 347.69 kJ mol™
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Bond enthalpy of C=C bond = 615.05 kJ mol’
Enthalpy of sublimation of carbon(graphite) = 718.39 kJ mol™!
Enthalpy of dissociation of H,(g) = 435.97 kJ mol !
For isoprene, we have to form
2C—C bonds; 2C=C bonds and 8C-—H bonds
For which energy released is
[2 (- 347.69) + 2 (- 615.05) + 8 (- 413.38)] kJ mol ! = — 5 232.52 kJ mol™!

that is, AH (from gaseous atoms) = — 5 232.52 kJ mol ™!

The reaction corresponding to this is

5C(g) + 8H(g) — CHg(g) A.H, =—5232.52 k] mol !
But we want A;H corresponding to the following equation

5C(graphite) + 4H,(g) — CsHg(g) AH =7
This can be obtained by the following manipulations:

5C(g) + 8H(g) — CsH(g) A.H, = -5 232.52 kJ mol !

5C(graphite) — 5C(g) AHy;=5x%x71839kJ mol !

4H,(g) — 8H(g) A H, =4 x 435.97 kJ mol ™'
Adding, we get

5C(graphite) + 4H,(g) — CsHg(g) AeH =103.31 kJ mol !

Diagrammatically, the above calculations may be represented as follows:
AcH
5C(graphite) + 4H,(g) — s CH,—C—CH=—CHy(g)

CH,

A H, AH,
—2ecc2c 8y
> 5C(g) + 8H(g)

Applying Hess’s law, we get

AMH = AHy+ AH,—26c.c—2€c_c— 8¢y
(5 x718.39 + 4 x 435.97 - 2 x 615.05 — 2 x 347.69 — 8 x 413.38) kJ mol!
103.31 kJ mol™!

Let the enthalpy change for the reaction
C,Hy(g) + HCl(g) — C,H;Cl(g)
be required from the bond enthalpy data. This may be calculated as follows:

Enthalpy required to Enthalpy released to from
A H = | break reactant into |+| products from the

gaseous atoms gaseous atoms

=[4ecy t &cc T &nal T [-5€cu — &c.c — & cll
=(&c=c &) — (Ecu t &cct &c1)
Substituting the bond enthalpy values, we have
AH = [(615.05 + 431.79) — (413.38 + 347.69 + 328.44)] kJ mol '
= — 42.67 kJ mol™'
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Bond Enthalpies
and Resonance

Example 3.10.6

Solution

Agreement between the calculated values of enthalpy of formation obtained by using
the bond-enthalpy concept and any other method is usually good. For compounds
involving alternate single and double bonds, however, large deviations are observed.
For example, the reaction

CeHy(2) — 6C(g) + 6H(g)

Benzene

will require enthalpy of 5 368.5 kJ mol™' on the basis of bond enthalpies (3 EccTt
3ecct 66 =(3x347.69 + 3 x 615.05 + 6 x 413.38) kJ mol' = 5 368.5 kJ
mol !, whereas the experimental value is 5 535.1 kJ mol™'. This amounts to the
fact that benzene is more stable by 166.6 kJ mol™". This is due to resonance, i.e.
there is no localization of single and double bonds in benzene, but the molecule
is resonating hybrid.

Calculate the resonance energy of benzene compared with one Kekule structure. Given the
following data:

A¢H°methane, g) = -74.85 kJ mol !

A¢H°(ethane, g) = — 84.68 kJ mol ™!

A H(ethylene, g) = 52.3 kJ mol™

A;H°(benzene, g) = 82.93 kJ mol!

Enthalpy of sublimation of carbon(graphite) = 718.39 kJ mol™!

Dissociation enthalpy of H, = 435.89 kJ mol ™!

In order to calculate the resonance energy of benzene, we need to a compute A H° from
the bond enthalpy data. For this, we need C—C, C=C and C—H bond enthalpies. These
can be calculated as follows:

(1) Bond enthalpy of C—H from A:H®(methane): We have

CH,(g) — C(graphite) + 2H,(g); A, H° =+ 74.85 kI mol™!

C(graphite) — C(g); A H° =+ 718.39 k] mol ™!

2H,(g) — 4H(g); A,H° =2 x 435.89 kJ mol ™
Adding, we get

CH,(g) — C(g) + 4H(g); A HY =1 665.02 kJ mol !
Now A H; =4ec y, therefore

-1
oy = 1083021 mol _ ) 65515 mol
4

(i1) Bond enthalpy of C—C from A; H°(ethane): We have

C,Hg(g) — 2C(graphite) + 3H,(g); A, H° = 84.68 kJ mol™
2C(graphite) — 2C(g); A, H° =2 x718.39 kJ mol™’
3H,(g) — 6H(g); A, H° =3 x 435.89 kJ mol '

Adding, we get
C,H(g) — 2C(g) + 6H(g); A, Hy =2 829.13 kJ mol ™!
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Now A HY = ecc+ 66y
Thus gcc = [2829.13 — 6 x 416.225] kJ mol ™' = 331.60 kJ mol’!
(iil) Bond enthalpy of C = C from A;H° (ethylene): We have
C,H,(g) — 2C(graphite) + 2H,(g); A, H°=—52.3kJ mol
2C(graphite) — 2C(g); A H°=2xT71839 K] mol ™!
2H,(g) — 4H(g); A, H° =2 x 435.89 kI mol™
Adding, we get
C,H,(g) — 2C(g) + 4H(g); A HS =2 256.26 kJ mol!
Now AH; = e +4ec g

Therefore
£c_c = (2 256.26 — 4 x 416.255) kJ mol ' = 591.24 kJ mol

(iv) AiH® (benzene) from the bond enthalpy data: We have

6C(g) + 6H(g) — CsHy(2); A H®=— (3¢ +3&c T 6E_p)
=-5266.05 kJ mol™

6C(graphite) — 6C(g); A H°=6x71839 k] mol™

3H,(g) — 6H(); A H° =3 x 435.89 kJ mol !

Adding, we get

6C(graphite) + 3H,(g) — CcH(g); A H° =+ 31596kl mol ™!
(V) Resonance energy of benzene(g):

Actual value of A H° = 82.93 kJ mol™'

Calculated value of A H° = 351.66 kJ mol ™'

Thus, benzene becomes more stable by +269.03 kJ mol ™. Therefore, its resonance energy
is 269.03 kJ mol .

The enthalpy of formation of ethane, ethylene and benzene from the gaseous atom are
—~218392,-22752 and — 5 536 kJ mol !, respectively. Calculate the resonance energy of
benzene, compared with one Kekule structure. The bond enthalpy of C—H bond is given
as equal to 410.87 kJ mol .

Bond enthalpy of C—C bond = Enthalpy required to break C,H into gaseous

atoms — 6 X Bond enthalpy of C—H bond

2839.2 kJ mol ' — 6 x 410.87 kJ mol '

373.98 kJ mol !

Enthalpy required to break C,H, into gaseous

atoms — 4 X Bond enthalpy of C—H bond

= 22752 kI mol"' — 4 x 410.87 kJ mol™!

631.72 kJ mol”!

Bond enthalpy of C=C bond

For the formation of benzene having Kekule structure, we have to from 3 C—C bond,
3 C==C bonds and 6 C—H bonds for which enthalpy released is

[3(-373.98 +3 (-631.72) + 6 (- 410.87) kJ mol ™! = — 5 482.32 kJ mol "

But the given value of A;H is
A;H(actual) = — 5 536 kJ mol !
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Hence the resonance energy of benzene compared with one Kekule structure
= A;H(actual) — A H(Kekule structure)
= (= 5536+ 5 482.32) kJ mol™!
=~ 53.68 kJ mol'

3.11 VARIATION IN ENTHALPY OF A REACTION WITH TEMPERATURE
(KIRCHHOFF’S RELATION)

Sometimes it is necessary to know the enthalpy of a reaction at a temperature
different from that at which the value is available. Therefore, we consider below
the procedure that can be used for this purpose.

Consider a general reaction
aA+bB+ - > IL+mM+ .-

we have AH = (ZHm‘L +mH, T ) —(a Hm’A-l- me’B + .-)

Its variation with temperature at constant pressure is given as

H, H,
(8(ArH) _ z(a m,Lj +m(a m,M] o
ar ), T T
p P
OH A OH,, 5
45 %)
P P

Now the variation of enthalpy of a substance with temperature at a given
pressure is given by

OH
) =c
(57,

With this, the previous equation becomes

AAH) _
(X j (G,

(L) + me,m(M) + )} - {(a Cp,m(A)

+bC,n(B) + )} =AC, (3.11.1)}
Rearranging this equation, we have
d(AH) = AC, dT (constant pressure) (3.11.2)

which on integration at constant pressure gives

J.d(ArH) = J.(AGC)dT

For a general reaction 0 = X VB, we have AC, = 2vpC, 1 (B)
B B

B(Arﬂ)j _ (aHm(B)) _ _
Thus ( o7 p—%vB o7 p—%vBCp’m(B) AC,
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or AH= [(AC,)dT+] (3.11.3)

where [ is the constant of integration. Equation (3.11.3) is known as Kirchhoff's
relation. In order to carry out the above integration, it is necessary to know the
temperature dependence of molar heat capacities of the reactants and products.

We may consider two possibilities as given below.
A,C, independent of temperature In this case, we have
AH = (AC AT+ 1 (3.11.4)

The value of integration constant / can be obtained if the value of A H at some
temperature (say, 298 K) is available. Alternatively, integrating Eq. (3.11.2) within
the limits gives

ArHTZ_ ArI-ITl =AGC(T2_ Tl)

Calculate A H3,5 for the reaction

1 Ny(g) + 0,(2) = NO(g) A, H 9 = —33.18 kJ mol !
Given:  C, ,(NO,, g =3720 JK ' mol™"; C, (0,,g)=2936 K" mol

C, m(Ny, 2)=29.13 J K™ mol™

1
Wehave  A,C,= 3vg G, (B)= €, n (N0 ) = = C,n(Ny, ©) = G, (02, ®)
B

= (37.20 - % X 29.13 —29.36) J K~ mol !

=-6.73JK ! 'mol =-6.73 x 10~ kJ mol™
Now A HSg3x = AH3sx + (A,.C,) (AT)

= [-33.18 + (- 6.73 x 107) (373 — 298) ] kJ mol ™!

= —33.68 kJ mol™!

A,C, dependent on temperature The variation of C, ,, with temperature is usually
given by the relation

Cp’m:aler'TJrc’Ter (3.1L.5)

where &, ', ¢’, are constants. Thus, the variation of A,C, of a chemical equation
with temperature is given by

AGC = (Ara') + (Arb,) T+ (Arc') T2 + ... (3116)

where A,a’ = (l af + may, ...)— (a dy + b ag ...) are so on. Substituting Eq. (3.11.6)
in Eq. (3.11.3), we get

AH =1+ [{(A@) + (AT + (A, )T + -+ 3dT

which on integration yields
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Contribution of
Phase Change

Example 3.11.2

Solution

2
AH = [+(Aa)T+(Ab)T—+(A c)—+ (3.11.7)

The constant of integration / in Eq. (3.11.7) can be evaluated if the value of A . H
at some temperature (say, 298 K) is available.

When a change of phase occurs in the course of change in temperature, the change
in enthalpy for the change of state of aggregation must be included. For example,
in the following reaction

CH,(g, 298 K)+20,(g, 298 K) — CO,(g, 298 K) +2H,0(1, 298 K)
)

CH,(g, 500 K) +20,(g, 500 K) — CO,(g, 500 K)+2H,0(g, 500 K)

a change in aggregation of water from liquid to gas occurs. Therefore, we must
also add AH® corresponding to the following change

2H,0(1, 298 K) — 2H,0(g, 500 K)
This change may be considered as the sum of three of changes of state, that is
2H,0(1, 298 K) — 2H,0(1, 373 K)
2H,0(1, 373 K) — 2H,0(g, 373 K)
2H,0(g, 373 K) — 2H,0(g, 500 K)
The required AH® is thus the sum of the changes of enthalpy for all the three steps.

One of the most important things to remember while employing Kirchhoff’s relation
is that the units of A H° and A C, should be the same. If A H® is expressed in kJ
mol ™! (which is mostly the case) then A Cp should also be expressed inkJ K 'mol ™.
The values of C, are usually tabulated in J K~ "' mol!. Therefore, these should be
converted into kJ K™' mol™" while using the Kirchhoff’s relation. Alternatively,
AH° may be converted into joules if C, are to be employed as such.

Calculate A H3,5 for the reaction
1
5 Ny(g) + 0,(g) — NO,(g) A H3osx = —33.18 kJ mol '

Given: C, m(NO,, g/ K™ mol ™! =27.78 + 30.85 x 107 (T/K)
C, Ny, @7 K™ mol ™! = 28.46 +2.26 x 10 (T/K)
C, (O, /T K mol ™" =26.85 +8.49 x 10 (T/K)

For the given reaction

Ar Cp = ZVBCp,m (B)
B

= [(27.78 - % X 28.46 — 26.85) + (30.85 - % X 2.26— 8.49)10‘3 (T/K)]J K™ mol™

=[-13.30 + 21.23 x 107 (7/K)] J K™ mol™
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o T,
A¢HSy5 = ApHoogg + J.Tz (A,C,)dT
1

373K
~33180Jmol ™" + j [{-13.30+21.23x107(T/K)}J K™ mol ™" |dT
298K

= 33180 J mol™ {—13.30(373 K-298K)+21.23x1073

2 2
JOBR?@BR? ]
2K 2K

= (=33 180 — 13.30 x 75 + 21.23 x 107> x 25 163) J mol !
= (=33 180 — 997.5 + 534.21) I mol"! =33 643 J mol™ = — 33.64 kJ mol!

3.12 RELATION BETWEEN ENERGY AND ENTHALPY OF A REACTION

Example 3.12.1

For a chemical equation, the expression of A H is
AH= %VBHm(B)
where vy is the stoichiometric number of B in the chemical equation (it is positive
for products and negative for reactants).
The molar enthalpy of B is given as
H,=U,+pV,
Substituting this in the previous expression, we get

AH = ZVB[UL(B) + (0¥l
= 2VaU,(B) + V5 (pVy)s

Using the fact that
pV,, = 0 for one mole of solid or liquid
pV, = RT for one mole of gaseous species

we get A.H= XVgU (B)+( X VB) RT
B B(g)

=AU+ (Avy RT (3.12.1)
where Av, is the change in the stoichiometric number of gaseous species in going
from reactants to products.

It should be noted that while computing Av, of a reaction, only the stoichiometric
numbers of gaseous species is counted and those of liquids and solids are completely
ignored.

For the reaction

%m®+§BmgaH&@

AH=—51.823 kJ mol ™" at 373 K. Calculate the value of A U for this reaction at 373 K.
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Solution

Example 3.12.2

Solution

In order to calculate A, U;,;x, we employ the equation
A U= AH-(Avy) RT
Since Av, = 0 for this reaction, therefore

A, U= AH=-51823 k] mol”'

For the reaction

2A4(s) + 5B,(g) — 2A,Bs(2) A, Usgg = 62.76 kJ mol ™!
Calculate A H,ggx for this reaction.
We have

AH= AU+ (Av) RT

Avg for this reaction =2 -5 =-3

Thus A H= 62.76 kJ mol™' + (-3) (8.314 x 10 kJ K™' mol™") (298 K)
= 62.76 kJ mol™' — 7.43 kJ mol ™!
= 55.33 kJ mol ™

3.13 ADIABATIC FLAME TEMPERATURE

At Constant
Pressure

Adiabatic flame temperature is a temperature which the system attains if the
changes in the system are carried out under adiabatic conditions. For example, if
we are carrying out an exothermic reaction under adiabatic conditions, the heat
involved would raise the temperature of the system. The rise in temperature can
be calculated by considering the reaction to take place in the following two steps,

both at constant pressure.
Step I: Reactants(7, p) — Products(7,, p) ArHTO
Step II:  Products(7,, p) — Products(7%, p) AH,

The heat involved in the second step is given by
T;
AH, = ij C,(products) dT
0

Since the overall reaction is the sum of the above two steps, i.c.
Reactants(7,, p) — Products(7%, p)

the net heat change is given by
AH = AHp+ AH,

Since the reaction is carried out under adiabatic conditions, it is obvious that

AH=0.
Thus AHp+AH, =0
or A H, =—-AHy,
Tf
or jTo C,(products) dT' = —AHy,

If C,s are considered independent of temperature, then
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C,(products) (T;— T) = A Hy,
—AHy,

or Tr= ————+T, 3.7.1
f C,(products) 0 ( )

However, the approximation that C,s are independent of temperature is not correct
since T} 1s a very large quantity (ArHTO = kJand C, = J) of the order of thousands
of kelvin.

Taking the example of
CHy(g) + 20,(g) — CO,(g) + 2H,0(g)
we have
A Hogx = ApH(CO,, g) + 2AHP(H,0, g) — A¢H(CH,, g)
= [-393.51 + 2 (- 241.82) — (~74.81)] kJ mol !
= —802.34 kJ mol™
C,(CO, + 2H,0),95 = [37.11 +2(33.58)] J K" mol™!
= 10427 J K" mol™!

~802.34x10° J mol™

Thus  7;= S +298 K=7694.83 K + 298 K
104.27 J K™ mol~

=7992.83 K = 8000 K

If the compound is burnt in air, each mole of oxygen is associated with four moles
of nitrogen and hence these will also be raised to the final temperature. In the case
of methane which requires two moles of oxygen, eight moles of nitrogen must be
raised to the final temperature. In this case, the heat capacity of the products will be

C,(CO, + 2H,0 + 8Ny = [37.11 +2(33.58) + 8(29.13)] J K~ mol '
=33731 JK ! mol!

3 -1
r,= 80234x10° Tmol 50 _ 537871 K + 208 K

33731 K mol™

=2676.71 K=2700 K
If the reaction takes place in a closed vessel, i.e. under the condition of constant
volume, then A,U and C), replace A H and C,, respectively, i.e.

AU

= Cy(products)

(a) Calculate the adiabatic flame temperature for the following reaction carried out under
constant volume condition:

CH,(g) + 20,(g) — CO,(g) + 2H,0(g) A Hyogc = —803.33 kJ mol ™!

(b) If the above reaction is carried out using air, what would be the flame temperature (air
to be taken as 80% N, and 20% O,).
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Given:  C,,(CO,, g) =36.29 JK ™' mol!
Cp,m(H2O, g) =3358] K71 m0171
Cp,m(N2’ g) =29.291] I<71 mol"

Solution (a) For the reaction under constant volume condition, we have
ATy = T;—-T, = _AUssk
Cy (products)
Using Cym=Cym— R we have

C,{CO, + 2H,0} =[27.976 + 2 x 25.266] J K~' mol
=78.508 J K" mol™
Since Av, = 0, therefore A, U = A H
-1
Thus T - 803 303]111101 208K
78.508 J K" mol™

= 10232 K+298K=10530K
(b) If the reaction is carried out using air, then we have

Cy = [27.976 + 2 x 25.266 + 8 x 20.976] I K™' mol™
246.32 J K™! mol™

1—1
1= SB3BTml - g0k~ 3559k
246.32 T K 'mol”

REVISIONARY PROBLEMS

3.1 Explain with examples the following terms:

(a) Standard molar enthalpy

(b) Standard enthalpy of an element

(c) Standard molar enthalpy of formation

(d) Hess’s Law of constant heat summation

(e) Enthalpy of formation

(f) Enthalpy of combustion

(g) Integral enthalpies of solution and dilution

(h) Differential enthalpies of solution and dilution
(i) Enthalpy of hydration

() Enthalpy of neutralization

(k) Enthalpy of ionization

(1) Enthalpy of transition
(m) Enthalpy of precipitation

(n) Enthalpy of formation of ions

(o) Bond enthalpy and bond dissociation enthalpy
(p) Adiabatic flame temperature

3.2 Derive the following relations:
(1) Kirchhoff’s relation
(i) AH=AU+ (Av,) RT
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TRY YOURSELF PROBLEMS

A student made the following erroneous statement in a laboratory record on bomb
calorimeter: A\H = A .U + pAV. Since the bomb calorimeter process is a constant
volume one, AV =0 and hence A H = A U. Why is this argument incorrect?

For a reaction involving only condensed phase, A.H = A, U. Explain why.

It is often stated that the integral enthalpy of solution is identical to the differential
enthalpy of solution for a very dilute solution. Explain why.

While stating the A_H value of a chemical reaction, it is understood that the temperature
and pressure of the products are identical with those of reactants? Explain why.

Show mathematically that the differential enthalpies of solution and dilution are
essentially the partial molar enthalpies of solute and solvent, in solution respectively.

It is stated that the bond enthalpy and bond dissociation enthalpy of a diatomic
molecule are identical. Explain why it should be so.

The expression of the adiabatic flame temperature is an approximate one:

(_ArHO)

T= Ty+—— )
2.C, (products)

State what assumptions were used in deriving the above expression.

Derive the expression of the adiabatic flame temperature if the reaction is carried out
under constant volume condition.

Suppose the dissolution of a solute in water is an exothermic process. Draw a typical
diagram illustrating the variation of integral enthalpy of solution with the amount of
the solute dissolved in a fixed quantity (say, 1 kg) of water.

. Comment upon the statement:

The differential enthalpy of solution (or dilution) at a given concentration may be
regarded as the instantaneous rate of change of the integral enthalpy of solution
(or dilution) with the solute (or solvent) concentration, i.e.

AH, = lim M; AH, = hmM
dmy—0 dmy, dm—0  Om,
NUMERICAL PROBLEMS
3.1 From the following data at 25 °C
Reaction A, H°/kJ mol ™!
7 Hy(g) + 5 Ox(2) — OH(g) 42.09
Hz(g)+% 0,(g) — H,0(g) —241.84
Hy(g) — 2H(g) 435.88
0,(g) — 20(g) 495.04

calculate A, H° for the following reactions.
(a) OH(g) — H(g) + O(g)
(b) H,O(g) — 2H(g) + O(g)



156 A Textbook of Physical Chemistry

(¢) H,0(g) — H(g) + OH(g)
(4ns. 423.37, 925.24, 501.87 kJ mol ")
3.2 The A, H°=—41.84 kI mol™ for the neutralization reaction
HCOj5(aq) + OH (aq) — H,O(1) + CO3™ (aq)
Compute A, H° for the reaction
HCO; (aq) »H'(aq) + CO3 (aq)
3.3 Calculate the enthalpy of formation of 1,05 from the following data:
(i) LOs(s) + HyO(1) — 2HIO;4(aq) A H = 3.598 kJ mol ™
(i) Kl(aq) + 3HCIO(aq) — HIO;(aq) + 2HCl(aq) + KCl(aq)
A H =—322.42 kJ mol™"

(Ans. 14.0 kJ mol™)

—

(iii) NaOH(aq) + HCIO(aq) — NaOCl(aq) + H,O(1)
A, H=— 4435 kJ mol™
(iv) NaOH(aq) + HCl(aq) — NaCl(aq) + H,O(1)
A,H=—57.32kJ mol™
(v) 2NaOH(aq) + Cly(g) — NaOCl(aq) + NaCl(aq) + H,0(1)
A H=—-99.79 kJ mol !

(vi) 2KI(aq) + Cl,(g) — 2KCl(aq) + L,(s) A.H=—223.85kJ mol !
(Vi) Hy(g) + 1 05(g) —H,0(]) A,H=—285.00 kJ mol ™!
(viii) 1 Hy(g)+ 1 Cl(g) ~HCl(g) A.H=—-92.30 k] mol "’

(ix) HCl(g) + nH,0 — HCl(aq) AH=-75.15kJ mol™’

(Ans. — 98.90 kJ mol™)
3.4 From the enthalpy of formation at 25 °C
Solution  H,S0O,.600 aq KOH.200 aq KHSO,.800aq K,SO,1000 aq
A:H/KJ mol ™' — 888.47 —480.41 — 1 147.67 —1408.96
calculate A, H for the reactions:
(i) H,SO, - 600 aq + KOH - 200 ag — KHSO, - 800 aq + H,O(1)
(i) KHSO, - 800 aq + KOH - 200 aq — K,SO, - 1000 aq + H,0(1)
Given that

Hy(g) + 1 04(g) - H,0(1) A H = —285.85 kJ mol™!

(Ans. — 64.64 kJ mol ™!, — 66.73 kJ mol ™)

3.5 On the basis of the following data, evaluate the standard enthalpy of formation of
tungsten carbide WC(s).

(i) W(s)+ 2 Oy(g) — WOs(s) A HSog = —837.47 kJ mol”!

(i) WC(s) + 2 0,(g) — WO4(s) + COy(g) A HSgg =1 195.79 kJ mol ™

A HSgg =—393.51 kJ mol ™
(Ans. —35.19 kJ mol’l)

(i) C(graphite) + O,(g) — CO,(g)
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If the enthalpy of formation of HCI(g) and Cl™(aq) are —92.30 kJ mol™" and —167.44
kJ mol™!, find the enthalpy of solution of hydrogen chloride gas.

(Ans. —75.14 kJ mol ™)
At 25 °C, the enthalpy change for the reaction
H,SO, + 5H,0 — H,S0, - 5H,0 (all liquids)

is —58.032 kJ mol ! Calculate the temperature change if 1 mol of H,SO, is dropped
into 5 mol of H,0O at 25 °C. Assume no heat loss to the surroundings and that the

specific heat capacity of the solution is 4.184 J K! g!. (4ns. 73.7 °C)
Given the following information:
1 H,S0, + 1 H,0 —» 1 H,SO, - 1 H,0 A H =-28.075 kJ mol " at 25 °C

1 H,SO, + 25 H,0 — 1 H,SO, - 25 H,0 A H =-72.300 kJ mol ™" at 25 °C
Calculate the enthalpy change at 25 °C for the following dilution

1 H,SO, - 1 H,0 + 24 H,0 — 1 H,SO, - 25 H,0
Calculate the increase in temperature for this dilution if there is no heat loss to the

surroundings. Assuming the specific heat capacity of the more dilute solution to be
4184 T K ' g, (Ans. 44.225 kJ mol™!, 19.3 K rise)

Using the bond enthalpy data given below, estimate the enthalpy of formation of
acetic acid.

Bond Bond enthalpies Enthalpy of atomization
C—H 413.38 kJ mol™! C 71839 kJ mol!
c—C 347.69 kJ mol ™! H  217.94 kJ mol™
C=C 728.02 kJ mol ™! O  247.52kJ mol!
c—O0 351.46 kJ mol™!

C—H 462.75 kJ mol™!

The observed A H® for acetic acid is — 438.15 kJ mol™!. Compute the resonance
energy of acetic acid. (Ans. =326.40 kJ mol™*, —111.75 kJ mol’l)

The bond dissociation enthalpies of H,(g) and N,(g) are +435.95 kJ mol™ and +941.8
kJ mol™! and the enthalpy of formation of NH;(g) is — 46.024 kJ mol ™.

(1) What is the enthalpy of atomization of NH;(g)?
(ii) What is the average bond enthalpy of N—H bond?
(Ans. (i) 1.171 MI mol™!, (i) 390.367 kJ mol ™)
(a) Value of A Hjggy for the reaction

N>H,(g) — NyHy(g) + Hy(g)
is found to be 108.76 kJ mol™'. Assuming that the structure of N,H, is HN = NH,
calculate £,_y. Given the following bond enthalpies: &y 5 = 163.18 kJ mol™', &y ; =
390.79 kJ mol™ and &, ;; = 435.89 kJ mol .
(b) Given that A ;H(298 K) of hydrazine N,H, is 94.98 kJ mol !, calculate AH(298 K)
of N,H,(g).
(c) Calculate A .H°(298 K) of N,H, and N,H, from the bond enthalpy data and compare
with those of part (b). Given: gy=y = 942.24 kJ mol ™.
(d) Calculate A U,qg for the reaction of part (a). Compute the required heat capacities
by using principle of equipartition of energy.
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(Ans. (a) 400.1 kJ mol™" (b) 203.76 kJ mol™
(c) 87.864 kJ mol™" and 196.65 kJ mol™
(d) 108.38 kJ mol™")

(b) The enthalpy of atomization of PH; is +953.95 kJ mol ' and that of P,H, is +1.485
MJ mol !, What is the bond enthalpy of the P—P bond?

(Ans. 213.38 kJ mol ™)
Kirchhoff ’s Relation 3.12 Calculate A H for each of the following change of state:

(a) H,0(l1, 1 bar, 300 K) — H,0(1, 1 bar, 350 K)
(b) 3H,0(s, 1 bar, 263 K) — 3H,0(g, 1 bar, 500 K)
(¢) H,O(s, 1 bar, 263 K) — H,0(1, 1 bar, 263 K)
Data for water, all at 1 bar pressure, are

Ag H = 6.025 kJ mol ™" at 273 K

AyopH = 40.585 kJ mol " at 373 K

C,(s) = 39.748 J K™ mol'

C,(1) = 75312 JK ' mol!

C,(g) = 31.129 JK ' mol™" +(0.008 37 TK* mol ') T

(Ans. (a) 3.77 kJ mol ™!, (b) 176.87 kJ mol ™!, (¢) 5.67 kJ mol ™)

3.13 The A.H of vaporization of water at 0 °C, i.e.
H,0(1, 4.58 mmHg, 273 K) — H,0(g, 4.58 mmHg, 273 K)
is given by +44.877 kJ mol™'. Make the generally acceptable assumptions that the AH
for compression of a liquid (or solid) is approximately zero and that H,O(g) is an
ideal gas. Also assume that the heat capacity for liquid water C,, = 75.31 J K~! mol™
and that for gaseous water C, = 33.30 J K™ mol™" are constant. Estimate A_H° of
vaporization at 1 bar and 100 °C. (Ans. ALH® = 40.68 kJ mol™)

3.14 For the reaction
CaO(s) + CO,(g) — CaCOs(s)
3
AHO/ mol™ = — 177 820 — 2.761 (T/K) +9.016 x 10 (T/K)? + L1-104x107
(T/K)
determine, A, C, and A, C}, as functions of T.
3.15 From the value of C, , as a function of temperature given as
C,. m(Hy, /T K™ mol™ = 29.066 — 0.836 < 10~ (7/K)
C, m(Bry, @)/1 K™ mol ™' =35.241 + 4.075 X 10°(T'/K)
C, m(HBr, g)/J K™ mol™" =27.521 +3.995 X 10 (7/K)
and from the date A;H(HBr, g) = —36.23 kJ mol™' and AyopH(Bry, 1) = 30.71 kJ

mol ™!, calculate A, H;73x for the reaction % H,(g) + % Br,(g) — HBr(g)

(Ans. —51.823 kJ mol™)

Relation between 3.16 The enthalpy changes of the following reactions at 25°C are

AHand A U Na(s) + % Cly(g) — NaCl(s); AH=—411.0 kJ mol™
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Hy(g) + S(s) + 20,(g) — H,S04(1); A, H=—811.3 kI mol™
2Na(s) + S(s) + 20,(g) — Na,SO,(s); A H=—13823 kJ mol!
1 Hy(g) + 1 Cly(g) — HCl(g); AH=-923kJ mol”!

Form these data, find the heat change of reaction at constant volume at 25 °C for the
process

2NaCl(s) + H,SO,(1) — Na,SO,(s) + 2HCI(g)  (Ans. A U = 60.92 kJ mol ")
The combustion of 1 g of benzene in a bomb calorimeter evolves 41.746 kJ of heat
at 25 °C,
(1) What is AU° for combustion of benzene?
(i) Calculate A;H°(benzene) if

AH(CO,, g) = -393.129 kJ mol™! and A H° (H,0, 1) = -285.577 kJ mol .

(dns. (1) -3 256.2 kI mol ™5 (ii) —44.4 kJ mol ')

Estimate the maximum possible temperature of a bunsen burner flame. Assume that

the gas is pure methane and that it is premixed with sufficient air to permit complete
combustion. Given that

CH,(g) + 20,(g) — 2H,0(1) + CO,(g) A Hyggx =— 890.36 kJ mol™
H,0O(1) — H,0(g) A Hyggx = 44.02 k] mol™
Calculate C, ,, of HO(g), CO,(g) and Ny(g) from the equipartition principle
(including vibrational contributions). (Ans. T=2000 K)
What would be the final temperature if the methane is allowed to burn with the
requisite amount of oxygen? (dAns. T=4800 K)

Suppose 2.0 mol of CH,(g) is mixed with 5.0 mol of O,(g) in an adiabatic enclosure
at 298 K. A spark is produced in the mixture and the CH, is completely burnt in
the oxygen to CO, and H,0. Assume ideal gas behaviour and compute the final
temperature of the gas mixture. Given heat capacities data are

O,(g) C,/T K™ mol™ =29.96 +4.184 x 107 (T/K)
CO)g)  C/TK'mol" =44.23 +8.786 x 107 (T/K)
H)0(g)  C/TK ' mol" =30.54 +10.293 x 107 (T/K)
CH,g)  C,/TK ' mol" =23.64+47.865x 10~ (T/K)
Given the following data:
(i) Standard molar enthalpy of formation at 298 K and 1 bar pressure, are

C,H,OH(1)  —277.65kImol"  CO(g) -110.54 kJ mol™
CO,(g) -393.51 kI mol'  ZnO(s) ~347.98 kJ mol™
H,0(1) ~285.85 kJ mol™!

(ii) Molar changes of enthalpy on changes of state of aggregation:
Evaporation of H,0 at 373 K and 1 bar = 40.58 kJ mol'
Melting of Zn at 692 K and 1 bar = 6.569 kJ mol!
Evaporation of Zn at 1180 K and 1 bar = 127.61 kJ mol ™.

(iii) Molar heat capacity at constant pressure in J K™' mol ™.

H,0(1) 75312
H,0(g) 30.070 + 0.009 92 (T /K) — 0.870 x 107® (7/K)?
Zn(s) 25.104
Zn(1) 33.472

Zn(g) 20.92
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3.21

ZnO(s) 41.84
CO(g) 27.196 + 0.004 18 (7/K)
CO,(g) 33.472 + 0.016 7 (T/K)
(a) Calculate A, H° for the reaction at 298 K and 1 bar
C,H;50H(1) + 30,(g) — 2CO,(g) + 3H,0(1) (Ans. 1366 9 MJ mol ™)
(b) A.H° for the reaction

15
CeHo(1) + = 0x(g) — 6CO,(g) + 3H,0(1)

is —3.268 MJ mol™.. Calculate A¢H° for liquid benzene. (Ans. 49.09 kI mol ™)

(c) Calculate A H° of the reaction at 298 K and 1 bar
C1aH,04,(s) + HyO(1) — 4C,H;OH(1) + 4CO4(g)

Given A, H° of the following reaction
C1oHy,0,,(s) + 120,(g) — 12C0,(g) + 11H,0(1); AH® = —5.646 7 MJ mol”!

(Ans. —179.04 kJ mol ™)

(d) Calculate A;H° for water in the hypothetical state of H,O(g) at 298 K and 1 bar.
(Ans. —245.11 kI mol™)

(e) Calculate A;H for each of the following changes at 298 K and 1 bar.

ZnO(s) + CO(g) — Zn(s) + CO4(g) (Ans. 65.02 kJ mol™)

ZnO(s) + CO(g) — Zn(1) + CO4(g) (Ans. 68.30 kJ mol™)

ZnO(s) + CO(g) — Zn(g) + CO4(g) (4ns. 206.94 kJ mol ")
(f) Calculate A.H for the following reaction at 1 300 K and 1 bar

Zn0(s) + CO(g) — Zn(g) + CO,(g) (Ans. 346.1 kJ mol™)

The enthalpies of formation at 298 K of gaseous CO,, water vapour and liquid
CH;COOH are —393.3 kJ mol ', — 241.84 kJ mol ' and —487.02 kJ mol ', respectively.
The enthalpy of combustion of methane gas to CO, and water vapour is — 806.26 kJ
mol ™. The enthalpy of vaporization of water at 100 °C is 39.33 kJ mol™'. Heat capacity
values (C, ) in J K! mol™! are

CHy(g) 37.656 H,0(g) 30.54
CH,CHO(g) 52.3 H,0(1) 75.31
CO(g) 31.38

(a) Calculate the enthalpy of formation of liquid water at 298 K.
(b) Calculate the enthalpy change at 298 K for the reaction
CH,;COOH(1) — CH,(g) + CO4(g)
(c) Calculate the temperature at which A.H for the reaction
CH;CHO(g) — CH,(g) + CO(g)
will be zero. A, Hyggi is —16.735 kJ mol™
(4ns. (a) —284.51 kJ mol™'; (b) 165.76 kJ mol™; (c) 299 K)

3.22 Calculate the enthalpy change for the following reaction.

Hg(1) + I,(g) — Hgl,(1); A.H=7?at 600 K, 1 bar

Given the enthalpy change for the reaction
Hg(1) + I(s) — Hgly(o); AH =-105.44 kJ mol ™! at 298 K and 1 bar

and following thermal data
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Hg(1) : Cpp =27.656 J K" mol
I,(s) : C,p=40.125 TK ™ mol™ +(49.79 x 107 TK* mol )T
© Ag H=15.774 kJ mol™" at 386.8 K
Ly(1) : Cppm=8033TK " mol; A, H=41714k] mol" at 456 K
L(g) : Cppn=37.196 TK ' mol!
Hgly(@) : C,,= 77404 1K " mol
o — B transition; A H = 2.720 kJ mol " at 403 K
Hgl,(B) : G, p=84517TK " mol™; Ay H = 18828 kI mol " at 523 K
Hgl,(I) : Cppn=10461K " mol

(Ans. — 138.07 kI mol ™)
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4.1 NECESSITY OF THE SECOND LAW

Limitation of
First Law

Criterion of
Equilibrium for a
Mechanical System

Extension of Criterion
to a Chemical System

Our primary interest in thermodynamics is to use it to establish a criterion for
the feasibility of a given chemical or physical transformation under specified
conditions. The first law of thermodynamics does not supply this information as
it deals with only conservation of energy. This law has to be satisfied whether a
reaction is spontaneous or otherwise. It cannot, however explain naturally occurring
processes, for example, flow of heat from a warmer to a cooler body, expansion
of gases into vacuum, interdiffusion of two gases, freezing of supercooled water,
reaction of a mixture of H, and F,, reaction between H, and O,, etc.

The reverse of any one of the above processes, which will also be in accordance
with the first law, does not however, occur. It would be possible to predict the
nature of the process (natural or unnatural) if the system possessed one or more
properties which always change in one direction when the system undergoes a
spontaneous change, in the opposite direction if it undergoes a nonspontaneous
change.

Everyday experience is that whenever there exists a difference in certain properties
such as pressure, temperature, electric potential or concentration, the spontaneous
change is always that which eliminates the difference. If such a type of difference
exists in two systems, and they are put together, the system as a whole is in the
nonequilibrium state and it will move towards the equilibrium state by removing the
difference in the property, e.g., heat flows if temperature is not uniform, gas flows
if pressure is not uniform, etc. When the property has attained a uniform value, it
reaches the equilibrium state. The system will continue to be in this equilibrium
state unless it disturbed by an external agent.

Analogous to the mechanical system, in which the system tries to have the minimum
potential energy, it was suggested that for a chemical reaction, we should have the
minimization of heat content of the system. This means that a reaction in which
heat is evolved must be spontaneous whereas a reaction in which heat is absorbed
must be nonspontaneous, i.e. all exothermic reactions must be spontaneous while
all endothermic reactions must be nonspontaneous. But there exist a few exceptions
in which AU is positive but nevertheless the reaction proceeds spontaneously, such
as the vaporization of water at low pressure.

H,O(1, 1.0 kPa, 25 °C) — H,O(g, 1.0 kPa, 25 °C); AU = 41.42 kJ mol ™’
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Hence AU cannot be used as the criterion of spontaneity. Similarly, A/ cannot be
used because there are many reactions that proceeds spontaneously with a positive
A H. One example is the polymorphic transformation of low temperature quartz
to high temperature quartz at 848 K.

SiO,(low quartz) — SiO,(high quartz) A.H=0.88kJ mol™!

Thus, it is seen that functions U and H derived from the first law of thermodynamics
cannot predict the spontaneity of a chemical reaction.

It is the second law of thermodynamics which identifies a new state function called
the entropy (and the related functions) which provides a criterion for identifying
this equilibrium state of a system. We will see later that the entropy of the universe
(system + surroundings) increases for irreversible processes whereas it remains
constant for reversible processes.

The function entropy was established from the work of Carnot, who was
interested in the factors which limit the efficiency of a steam engine (a device
which converts heat into work). We will, for convenience, first discuss Carnot
cycle and then introduce the second law of thermodynamics. Then it will be shown
how the work of Carnot introduces a new state function, entropy S, which can
be used to predict the nature of a chemical reaction, whether it is spontaneous or
nonspontaneous.

4.2 CARNOT CYCLE

Description of the
Carnot Cycle

Fig. 4.2.1 Carnot cycle

Four Steps of a
Carnot Cycle

The Carnot cycle was named after Sadi Carnot, who was the first to describe this
type of idealized reversible cycle. We consider the system to be any fluid, single-
phase substance. The system is contained in a frictionless piston and cylinder
arrangement. We also use two thermal reservoirs, one at higher temperature 6, and
the other one at a lower temperature 6;. The symbols 6, and 0, are used to indicate
temperatures without reference to any specific temperature scale. The system is
subjected consecutively to the following reversible changes in state (Fig. 4.2.1).

Step 1  The isothermal reversible expansion from volume V| to volume V, at the
higher temperature 6,
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Efficiency of a
Carnot Cycle

Let w, be the work involved in this step. The numerical value of this work will be
negative and the magnitude of this work will be represented by the area under the
curve ab. (Actually here the work, equal to | w;, |, is done by the system.) Moreover,
a quantity of heat g, will be absorbed by the system from the thermal reservoir. |

Step 2 The adiabatic reversible expansion from volume V, to volume V;

In this step the temperature of the system decreases to 6;. Let w be the work
involved in this step. The numerical value of this work will be negative and the
magnitude of this work will be represented by the area under the curve bc. (Actually
speaking, the work equal | w | is done by the system.) The heat absorbed by the
system is zero as the expansion takes place under adiabatic conditions.

Step 3 The isothermal reversible compression from volume V5 to volume V, at
the temperature 0,

In this step, an amount of work w/, represented by the area under the curve cd, will
be done on the system; the numerical value of this work will be positive. Also a
quantity of heat ¢;, which is negative numerically, is involved in this process. The
negative sign means that heat ¢; will be released by the system to the thermal
reservoir at the temperature 6.

Step 4 Adiabatic reversible compression from volume V, to volume V;

In this step, the temperature changes back to 6,. The amount of work done on the
system is w’, represented by the area under the curve da. There is no heat absorbed
by the system in this step as the compression process is adiabatic.

In the cyclic process described above, the total work involved is

j— ’
Wtotal_w2+W+W1+W

The magnitude of the total work is represented by the area within the closed
cycle shown in Fig. 4.2.1.

Since the system has come back to its original state, therefore, AU = 0.
According to the first law of thermodynamics

(= Wiotal) = Frotal (4.2.1)
where i1 = 42 + ¢
and Wiotal = W2 + W+ w; +

The efficiency of the cycle is defined as the ratio of the work done by the system
to the amount of heat transferred to the system at the higher temperature. Thus,
efficiency

_ (Woota) _Dta _ 1+ 90 4.2.2)
q 9 9>

n

"Note: q and w carry the same subscript as that of temperature. The subscript 2 and 1
represent higher and lower temperatures, respectively.
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4.3 EXPRESSION FOR THE EFFICIENCY OF A CARNOT CYCLE INVOLVING IDEAL GAS
AS A WORKING SUBSTANCE

Let the system have one mole of an ideal gas and let the temperatures of the two
reservoirs expressed in kelvin be 7, and T, respectively, such that 7, > 7. We
proceed as follows to determine the efficiency of the Carnot cycle.

Step 1 Isothermal expansion at temperature T, from volume V; to V,
Since AT = 0, therefore

According to the first law of thermodynamics, we have

1

Step 2 Adiabatic expansion from volume V, to V3

Temperature of the system after expansion is 7. Since for adiabatic process ¢ = 0,
therefore, it follows that

T
w=AU, = jT Cy AT = Cy (T = T») (43.2)

Step 3 Isothermal compression at temperature 77 from volume V5 to V,
Here, we will have

AU3:0

V4
3

(Note that g, has negative sign whereas w; has positive sign since V, < V3.)
Step 4 Adiabatic compression form volume V, to V|. Temperature of the system
returns to 7,. Therefore

T,
w'=AU, = jle Cy mdT=Cy o (T, = T)) (4.3.4)

Net work involved in the cyclic process is
Wiotal = W2 T W+ wy +w/

The quantities w and w” cancel each other, being equal but opposite in sign for
the ideal gas. Thus, the above expression reduces to

Wiotal = W2 Wy

which according to Eqs (4.3.1) and (4.3.3) becomes

Wiotal = — RT, In % ~RT In % (4.3.5)
1 3

The ratios V,/V| and V,/ V5 are not independent of each other. The relationship
between them can be found through Steps 2 and 4.
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For step 2

nC
j‘ m Gr = RIn 2 (Eq. 2.11.6)
, T v,

and for the Step 4

Xe
jz Ym 4T = RIn
n T 4

The integrals on the left hand side of these expressions are equal in magnitude but
opposite in sign. Therefore

R1In 5:—Rlnﬁ
v, 4

B oV ie h_ bl
nonwoo T

or

With this relation, the expression for the total work involved in the cyclic process
becomes

143

Wiotal = — (Rln V) (T27T1)
1

and the efficiency is given by
0= (W) _ RIn WL/ VI (L -T) _T-T
9, RT, n(V, -1) T,

(4.3.6)

Thus, the efficiency of a heat engine operating in a Carnot cycle depends only on the
two temperatures and primarily, on the difference of the two temperatures between
which the engine operates. The greater the difference, the greater the efficiency.

Two special cases of interest are:

(1) If T; equals T,, then no work is done in the cycle. It is because of the fact
that the work done by the system during reversible expansion at temperature 7T is
equal to the work done on the system during reversible compression, and thus,
the net work done by the cycle is zero. In other words, there cannot be any net
conversion of heat into work in an isothermal cycle alone.

(i) T, must be zero or 7, must be infinity in order to obtain efficiency equal
to one. However, this is not possible since neither of these two situations are
physically realizable. Thus the efficiency is always less than one. Only a fraction
of heat absorbed at a higher temperature can be converted into work.

4.4 TWO STATEMENTS OF SECOND LAW OF THERMODYNAMICS

Kelvin-Planck
Statement

Having investigated the cyclic operation of a heat engine, we can now state two
forms of the second law which can be easily understood from the efficiency of
the Carnot cycle.

We have seen that the work done by a heat engine, operating in a cycle is zero
when the two temperatures are the same. We can then state:
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Clausius Statement
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It is impossible for a system operating in a cycle and connected to a single
heat reservoir to produce a positive amount of work in the surroundings.

The Kelvin-Planck statement of the second law is the denial of what is known as
a perpetual motion machine of the second kind. As an example, it is impossible
to operate a heat engine solely by the removal of heat from a thermal reservoir
such as an ocean or a river. The first law may be thought of as the denial of a
perpetual motion machine of the first kind, which is a heat engine that performs
work without absorption of an equivalent quantity of heat.

The second law states that a heat engine, operating in cycles can perform work
only by absorbing heat from a reservoir at a higher temperature and by rejecting
the difference between the heat absorbed and the work done by the engine to
another thermal reservoir at a lower temperature. This is the second statement of
the second law of thermodynamics as given by Clausius. It can be stated as follows.

1t is impossible for a cyclic process to convert heat into work without the
simultaneous transfer of heat from a body at a higher temperature to one at a
lower temperature or vice versa, i.e. it is impossible for a cyclic process to transfer
heat from a body at a lower temperature to one at higher temperature without the
simultaneous conversion of work into heat.

Alternatively, it is impossible for an engine operating in a cycle to have as its
only effect the transfer of a quantity of heat from a reservoir at a lower temperature
to a reservoir at a higher temperature.

4.5 EFFICIENCY OF THE CARNOT CYCLE IS INDEPENDENT OF THE WORKING

SUBSTANCE

Working of a Carnot
Cycle in the Reverse
Direction

One might suppose that the expression (7, — 77)/T, for the efficiency of a Carnot
cycle is applicable only when the working substance is an ideal gas. This is however
not so, and the expression is applicable for any type of reversible cyclic process
carried out between two temperatures 77 and 7,. In other words, the efficiency of
a Carnot cycle is independent of the make-up of the engine and also that of the
working substance of the engine. This can be proved as follows.

First, let us note that the Carnot cycle can be operated equally will in the reverse
direction, with the following steps:

Step 1 Adiabatic expansion from volume V| to V,. Temperature of the system
will change from 7, to T7.

Step 2 Isothermal expansion at temperature 7', from volume V, to V3.
Step 3 Adiabatic compression from volume V5 to V,. Temperature rises to 7.
Step 4 Isothermal compression at 7, from volume ¥, to V7.

As a result of this reversed cycle, the amount ¢ of heat will be absorbed by
the system at the lower temperature 7 in Step 2 and an amount ¢, of heat will be
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Construction of a
Composite Cycle

Fig. 4.5.1 Coupled system

transferred to the reservoir at higher temperature 7, in Step 4. At the same time a
net amount of work equal to w{ + w; will be done on the system (w, will have a
positive value in Step 4 and w{ will have a negative value in Step 2). In carrying
out this cycle, the system acts as a refrigerator.T By the expenditure of work which
is supplied by the surroundings since w; > | wy |, a certain amount of heat is pumped
out from a lower temperature to a higher one.

Let us have two systems, containing two different substances. We imagine that
these systems are coupled together in such a way that the work produced in system I
is done on system II. In other words, system I acts as an engine and system II
acts as a refrigerator. The net work w(I) + w(Il) involved in the coupled system is
zero. We assume that both systems carry out Carnot cycles between the same two
temperatures 7, and 7. This coupled system is shown in Fig. 4.5.1.

T, /

- g5(11)

w(D) w(ID)

/ EE

Proof of Efficiency is Let us assume that the cyclic process for system I has a higher efficiency than

Independent of
Working Substance

that of system II, i.e.

T The coefficient of performance of a refrigerator is defined as the ratio of heat transferred
from a lower temperature to a higher temperature to the work done on the machine to cause
this removal, i.e.

lgd
w

n=

The less the work done, the more efficient the operation, and greater the coefficient of
performance. Since w;,. > w,, , the coefficient of performance of an irreversible machine is
less than that of the reversible machine. Since the heat transferred to hot reservoir is sum of
| g. | and w, we will have

R 7 R
lanI=19.| =T
Note as T} — 0 K, 7" — 0. Since 1" = | ¢,J/w, the work done to bring about the transfer of
heat from cold reservoir to hot reservoir approaches infinity. It follows that as the temperature
of a system is lowered the amount of work required to lower the temperature further increases
rapidly, and approaches infinity as the zero kelvin is attained. This fact illustrates that zero
kelvin is unattainable.
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WD w()

(1) g5 D]
Since  |w(I)| = w(Il), therefore,

g>(D) <[ g5(11) | 4.5.1)

that is, the heat absorbed by the system (I) from the reservoir at the higher
temperature 7, is smaller than the heat released by the system (II) to this reservoir.
Therefore, there is a net transfer of heat by the coupled system to this reservoir,
i.e. the reservoir at the higher temperature gains heat energy.

Now w(I) and w(II) are given by

w (D] = go(I) + q,(D)
w(II) = |g1(IT) + g5(ID)|

Since | w(l) | = w(Il), we have

9(D) + (D) = g1 (1D + g (1D) | (452
But g,(I) < |g5(1I)|, therefore, in order to satisfy the above equality, we must
have

n() > n(I)

| ¢:(D| < g1 (D) (4.5.3)

that is, the heat released by the system (I) to the reservoir at temperature 7 is
smaller than the heat absorbed by the system (II) and, therefore, there is a net
absorption of heat by the coupled system from this reservoir, i.e. the reservoir at
the lower temperature loses heat energy.

Thus, the overall effect of the coupled system would be to transfer some heat
from a lower to a higher temperature without any work being converted into heat.
Such a process will not be permitted according to the second law. Therefore, our
assumption that system (I) has a higher efficiency than system (II) must be invalid.
On a similar line, it can be demonstrated that the assumption that system (I) having
a lower efficiency than system (II) contradicts the second law. Thus, we may
conclude that the efficiency of a Carnot cycle must be independent of the working
substance.

Hence the efficiency, (T, — T7)/T,, which was derived earlier by taking an
ideal gas as the working substance, is applicable to a reversible cyclic process
involving any substance.

A certain engine which operates in a Carnot cycle absorbs 3.347 kJ at 400 °C how much
work is done on the engine per cycle and how much heat is evolved at 100 °C in each cycle?

The efficiency of the Carnot cycle is given by

n= L-T _ta
T, 9>
T; T;
Thus ~L=9 and hence ‘]1=_(_1 j‘]z
I, o T,

Thus, the heat evolved in the present case is
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Example 4.5.2

Solution

Problem 4.5.1

Solution

g = [3T3ISK
! 673.15K

and the work done on the engine is

w=—(qy+q;)=-3.347 kJ + 1.855 kJ =-1.492 kJ
(Note: The negative sign indicates that the work is actually done by the engine.)

j (3.347 kJ) =-1.855kJ

What percentage 7 is of T, for a 10 per cent efficiency of a heat engine?
Equating the efficiency equal to 0.1, we have
L-T T

=1--1 =01

T T,

T
Therefore Fl x 100 = (1 - 0.1) x 100 = 0.9 x 100 = 90
2

or T =90 per cent of 7,

Show that the expression for the efficiency of a Carnot cycle involving a van der Waals gas
as the working substance is the same as that involving an ideal gas.

The expressions of w and ¢ involving in each of the four reversible steps of a Carnot cycle
are described below.

(i) Isothermal expansion form Vi to V, at T,

Wwy=— nRT,In 2210 (1L (Eq. 2.13.2)
N VAT
— aRT, In S22 Eq. 2.13.5
gr=n 2nVl—nb (Eq. 2.13.5)
(ii) Adiabatic expansion from V, to Vs Temperature changes from T, to T).
1 1
w=nCy  (T) = Ty) —n*a | ——— (Eq. 2.13.2)
' EN S

q=0

(iii) Isothermal compression from V3 to V, at T,

w=—nRT| In V4_nZ—n2a(L—ij

Vi-n A2
— ART 1 Vy—nb
q=n an3—nb

(iv) Adiabatic compression from V4 to V| Temperature changes from T} to T,.

1 1
w’=nC T,—T) —n’a | ———
V.m( 2 1) (Vl V4j

’

q’=0



Second Law of Thermodynamics 171

The total work involved is given by
Wiotal = Wp W + wy +w’

Vy —nb V, —nb
=—nRT, In Vz—nb —nRT, In 4_

1 3

(4.5.4)

The expression connecting various volumes is provided by Eq. (2.14.5), i.e.
7CV, m/R (V — nb) = constant
This relation is applicable for an adiabatic reversible expansion or compression. Hence
For step (i) (T)SV-m' B (¥, — nb) = (T)V-m' B (V3 — nb)
For step (iv)  (T)Vem/ & (v, = nb) = (1) V.m ' B (¥, — nb)
Dividing the two, we get
Vy—nb _Vy—nb
Vi—nb V,—nb

In view of the above expression, Eq. (4.5.4) becomes

V, —nb
Wiotal = — {nR In V,—nb

} (T, - T)) (4.5.5)

The efficiency of the Carnot cycle is given by

_ (_Wtotal)
9
Substituting the expressions of w,,; and ¢,, we get
T,-T,
n= ==
2

which is the same as that of an ideal gas.

4.6 COMPARISON OF EFFICIENCIES OF REVERSIBLE AND IRREVERSIBLE
CYCLIC PROCESSES

The efficiency of a reversible Carnot cycle is the theoretically possible maximum
value which an engine can have. Since the various processes of this type of engine
are to be carried out reversibly, therefore, such type of an engine does not have
any realistic basis because reversible processes are idealized concepts which can
never be realized. A real heat engine, which is irreversible in nature, will have
efficiency smaller than the reversible heat engine. This can be proved as follows.

Let us have two cycles, one operating reversibly and the other irreversibly. Let
both of them operate between the same two temperatures 7', and 7, and involve
ideal gas as the working substance. These two cycles along with g values, are
shown in Fig. 4.6.1.

Step 1 Isothermal expansion form volume V, to V, The expressions for the work
involved are

V.
— wy(rev) = g,(rev) = RT, In 72
1

and  — wy(irr) = gy(irr) = peg (V2 = V1)
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Fig. 4.6.1 Reversible and
irreversible cycles

w(rev)

q,(rev)
a

Since we known that | wy(rev) | > | wy(irr) |, therefore

qa(rev) > gy(irr) (4.6.1)

Step 3 Isothermal compression from volume V3 to V, The expressions for the
work involved are

Va
—wy(rev) = g;(rev) = RT| In 7
3

= w(irr) = q,(irr) = pé (V4 = V3)
Now since in the irreversible process, more work is done as compared to that in
the reversible process, we have

wy(irr) > wy(rev)
It follows that
1) | > gy (rev)] e lgy(rev) | < gy ()| (4.6.2)

Now the efficiencies of the two cycles are

ga(1eV) + g (1eV) _ gy (rev) = | (rev) | _ | |gy(rev)|
ga(rev) ga(rev) ga(rev)

n(rev) =

g, (irr) + ¢, (itr) _ g, (i) — | gy ()| _ | 1y (irn) |

nlm) = = ) 4(ir) i)

Now since g,(rev) > g,(irr) and |g(rev)| < |g,(irr)|, therefore, it follows that

\ql(reV)\<|ql(iI‘r)| or {1_ql(reV)}>{1_|ql(iI’r)|}
g,(rev) g,(irr) g,(rev) g,(irr)

ie. n(rev) > n(irr) (4.6.3)
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4.7 THE THERMODYNAMIC OR KELVIN TEMPERATURE SCALE

Fig. 4.7.1 Carnot cycles
working between two
temperatures

The efficiency of a reversible Carnot cycle is given by

n= q2+ql :1+ﬁ
q 9>

and is independent of the working substance in the cycle. With this fact, Kelvin
showed that it is possible to introduce a thermodynamics temperature scale which
will be independent of the material used for the thermometric substance.

4.7.1)

Consider the three Carnot cycles ab c d, ae fd and e b ¢ f, each working
between the same two temperatures (6; and 6, such as shown in Fig. 4.7.1. The
efficiencies of all these cycles will be equal. Thus

B
4 ) \a

l”/ rr

where (q1/q3), (q1/q%) and (q1"/q53") are the ratios of heats involved in the isothermal
processes of the Carnot cyclesab c d, ae fdandeb c f, respectively. These ratios
will be equal to one another provided the ratio g,/q; is, in general, a function of
the two temperatures 0, and 0;, i.e.

Ll _ xa,, 6,) (4.7.3)
4

(Note that only the magnitude of ¢, is taken since we desire to make all temperatures
positive.)

Now consider three cycles gicd,abigandab c d working between different
temperatures 6, and 6, 6; and 6,, and 05 and ), respectively. We find that

T g carries the same subscript as that of 7.
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l_ 6.0, )
9>
92 _ 1(6,,65) (i) (4.7.4)
q3
and lan] = f(6,,6;) (iii)
q3

Dividing (iii) by (ii), we get

1/ 4 :m:f(elaes):f(el’ez) 4.7.5)
l92l/a3  laa|  £16,.65)

In other words, on dividing the ratio of two functions f(6;, 65) and f(6,, 65), we get
a function f(6;, 6,) which is independent of temperature 6. This can be possible
if the function f(6;, 6)) may be written as the ratio of two functions, each of which
is dependent on only one temperature. Thus we may write

9(6,)
6,, 0,) = —12
161, 69 = 468
9(6,)
6,, 0y) = 22
(65, 65) 06,)
_ 9(6)
and  £(0,, 65) Fhl (4.7.6)

With these relations, Eq. (4.7.5) may be verified as follows.

lal _lal/qs _ f(61.65) _ 9(6)/9(65) _ ¢(6)
92| lgal/qs  f(65,65) 6(8,)/0(8;) 9(6,)

The relation

(0| _ 9(6)

(0| 9(6,)

can be used to define a new temperature scale known as thermodynamic or Kelvin
temperature scale.

=f(91’92)

4.7.7)

The quantities ¢; and g, can be measured experimentally. The definition of the
function ¢(6) and of the required number of fixed points suffice to determine
the scale. The simplest definition, and the one actually used, is to make ¢(0)
proportional to 0 so that Eq. (4.7.7) becomes

lal_ 6 (4.7.8)
lay| 6,
Equation (4.7.8) relates the two unknown quantities 6; and 6,. If ¢, is determined
at the triple point of water and assign 0, to be 273.16 K, then the thermodynamic
scale is completely defined, such that
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6, = (273.16 K) (q—zj (4.7.9)
427316 K

Thus, the temperature 6, can be determined from the heat that is exchanged at
this temperature.

4.8 IDENTITY OF THERMODYNAMIC SCALE WITH IDEAL GAS TEMPERATURE SCALE

We have seen that the efficiency of a Carnot cycle involving an ideal gas is given by

L-T,_. T,
= == l _— &
n 5 7 (4.8.1)
and, in general, efficiency of a cycle is given by
p=fta_y lal (4.8.2)%*

q, 9

Since efficiency of the cycle is independent of the wording substance, we must have

lal_4

483
9 T ( )

Comparing this with Eq. (4.7.8), we get
6 _1

6, T,
that is, the ratio of the two temperatures is the same on either scale. If 6, and T, are

given a common value of 273.16 K at the triple point of water, the two temperature
scales become identical.

4.9 DEFINITION OF THE ENTROPY FUNCTION

Basic Conclusion For a reversible Carnot cycle operating between two temperatures 7, and 77, the
from Efficiency of  efficiency is given as

a Carnot Cycle
y an2+QI:T2_Yi

p) T,

where g, and ¢, are the heats exchanged with the thermal reservoirs at temperatures
T, and T}, respectively. Rewriting the above expression, we have

or 1+ﬂ:l—£ or ﬁ:—ﬂ
9 T, 9 T,
or PR - 0 (4.9.1)

LI

*The subscripts 1 and 2 represent lower and higher temperatures, respectively.
** g carries the subscript of T at which it is being exchanged.
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Replacement of a
Bigger Carnot Cycle
by Smaller Carnot
Cycles

Fig. 4.9.1 Replacement
of a Carnot cycle with
four smaller cycles

that is, the sum of the ratios of the heat involved and the corresponding temperature
is zero for a Carnot cycle.

Now let us see what happens when a Carnot cycle operating between two
temperatures 7, and T is replaced by a series of smaller Carnot cycles involving
heat exchanges with a number of the heat reservoirs with temperatures between
T, and T). Figure 4.9.1 shows a case where a large Carnot cycle is replaced by
four smaller Carnot cycles.

Since the magnitude of the work involved in a reversible cyclic process is equal
to the area enclosed by its graph in the p-V plane, it is follows from Fig. 4.9.1 that
the sum of the areas of four smaller Carnot cycles is equal to the area of the single
large Carnot cycle. In addition, it may be seen that when all the four small Carnot
cycles are completed, each interior line is traversed twice, once in each direction.
This means that the thermal reservoir at intermediate temperature absorbs and
gives up the same amount of heat. Moreover, the total amount of heat absorbed
from the reservoir at 7, and given up to the reservoir at 7 are the same as for the
large Carnot cycle. Thus, we have

93(1) = — 934 (4.9.2)
932 =~ 933) (4.9.3)
92 = 1y T 922 (4.9.4)
91 =913 T Q14 (4.9.5)

For each of the four cycles, we can write expressions similar to that given by
Eq. (4.9.1), ie.,

qr1) + 31 —0- 922) + q3(2) _

; 0
L, T T, I
q3(3) + q13) =0: q3(4) + q1(4) -0
L T I T

"The number within the brackets represents the cycle number.



Replacement of a
Carnot Cycle by
Infinite Smaller
Carnot Cycles

Fig. 4.9.2 Replacement
of a reversible cycle with
a number a smaller
Carnot cycles
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Adding these, we get

91 + 431 + q2(2) + q3(2) + E1E)) + q13) + q34) + he _ 0
L L L, . L L T T

which, in view of Egs (4.9.2) and (4.9.3), becomes

qr1) + q22) + q913) + 9 _ 0
L T T T

Making use of Eqs (4.9.4) and (4.9.5), the above expression becomes

L4 (4.9.6)

Lo
which is an expression identical with Eq. (4.9.1). This means that the sum of
efficiencies of the four Carnot cycles is equal to the efficiency of the large Carnot
cycle. Thus, it may be concluded that a large Carnot cycle operating between
temperatures 7, and 7; can be replaced by four small Carnot cycles (or in general,
with any number of small Carnot cycles) involving heat exchanges with a number
of reservoirs with temperatures between 7, and 7T'|. The general form of Eq. (4.9.6),
which is applicable to the heat transfers with any number of heat reservoirs, is

g _
; T 0 (4.9.7)

where ¢; is the heat transferred with the reservoir 7 at temperature 7;. The summation
over i is to be carried over all thermal reservoirs.

In a similar way, it may be proved that any reversible cycle (need not be
Carnot cycle) can be approximated by a sum of Carnot cycles, the smaller the
Carnot cycles and larger the number of intermediate temperatures, the better the
approximation (Fig. 4.9.2).

In the limit when #, the number of cycles, approaches a very large value, the
heat transferred at each step in each cycle becomes infinitesimally small, and
can be written as dg,(rev); the symbol ‘rev’ represents that the heat is transferred
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reversibly. When n becomes very large, the summation in Eq. (4.9.7) can be replaced
by the cyclic integration, i.e.

dg; (rev
$olt _ (4.9.8)
Ti
The above expression can be written as
¢ d(m) =0 (4.9.9)
T
Identification of Since we know that if 95 dZ = 0, then dZ is an exact differential and Z is a state

Entropy Function function. Similarly, we can conclude that g(rev)/T represents a state function because

the value of its differential d(q(rev)/T) over a cyclic process is zero. This state function
is given the name entropy of the system and is represented by the symbol S. Thus

ds = d(M) (4.9.10)
T
and S= @ 4.9.11)

The entropy function is a function of the independent variables which are used to
define the state of a system. It is an extensive function. The change in the value of
the entropy function in going from one state to another, is independent of the path,
and the cyclic integral of dS for a cyclic change of state is always zero. This function
is defined, like the energy function, in terms of a differential, and consequently the
absolute value of the entropy function for a system in any state may not be exactly
known (see Section 4.21 for the third law entropy). It is well to emphasize that
whatever might be the path employed in going form one state to another, the
determination of the corresponding entropy change is always calculated using a
reversible path connecting the two states.

The unit of entropy function is energy unit divided by temperature unit, e.g.,
JK!, cal K™\ A unit of 1 cal K (non-SI) is known as an entropy unit and is
represented by the symbol eu.

410 THE VALUE OF dq (irr)/ T FOR AN IRREVERSIBLE CYCLIC PROCESS

If there is any irreversibility at any stage of a cycle, the net work obtained |w,| in
the cycle is less then the maximum work obtainable from the reversible cycle
operating between the same two temperatures. Consequently, the efficiency of an
irreversible cycle is always less than the efficiency of the corresponding reversible
cycle. It follows that

‘Wnet|<T2_Ti
9> T,
or q2+ql<T2_Tl

q, T,



A General Proof for
95 dq(rev)/T=0 and

¢ dq(irr)/T<0
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T
or LR
9> T,
oo L, 4 (4.10.1)
L T
In the limiting case of infinitesimal heat transfer, this inequality becomes
gﬁ@ <0 (4.102)

The fact that the sum of ¢,/T, and ¢,/T; is zero for a reversible Carnot cycle
and is negative for a cycle involving irreversible isothermal expansion or/and
irreversible isothermal compression may be rationalized as follows.

Since, in the isothermal reversible process of a Carnot cycle, the heat transferred
is directly proportional to the temperature of the reservoir (Eq. 4.8.3), we have
q,/T, = constant and ¢,/T| = — constant (since ¢, is negative). It follows that the
sum of ¢,/T, and q,/T| is zero.

In an irreversible cycle operating between the same two temperatures 77 and
T,, we have

(1) g,(irr) < g,(rev) and hence g,(irr)/T, will be less positive as compared to
the value of g,(rev)/T.

(ii) g,(irr) < g4(rev) or |g;,| > | ;e | and hence g (irr)/T| will be more negative
as compared to the value of g (rev)/T}.

Thus, in a cycle involving either of these two irreversible steps or involving
both of these steps, the sum

g, (irr) n gy (irr)
) T
will always be negative, because ¢;(irr)/T) is negative and its magnitude is greater
than g,(irr)/75.
We have seen that for a Carnot cycle

—w=¢dg  and gﬁ@ =0 (4.10.3)

Now consider any other cycle, howsoever complicated (containing any number
of temperature reservoirs and any working substance). For this engine, according
to the first law, we have

—w' = ¢dg’ (4.10.4)
and let for this engine

dq,
¢_ >0 4.10.5
T ( )

The two engines are coupled together to make a composite cyclic engine, represented
by the symbol ‘cyc’. The work involved in the composite cyclic engine is

_ 7
Weye =W T W
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which, by Eqs (4.10.3) and (4.10.4), are equal to
~Weye = $dg + §dg" = $dg(cyc) (4.10.6)
If Eqs (4.10.3) and (4.10.5) are added, we get

Cﬁ(dq(rev) +d—q’j -
T T

or gﬁ@ >0 (4.10.7)

If it is adjusted that the composite cyclic engine does not produce any work, then
Weye = 0. With this condition, Eq. (4.10.6) becomes

$dg(cyc) =0 (4.10.8)

Since each of the cyclic integral can be considered as a sum of terms, we may
write Eqs (4.10.8) and (4.10.7) as

G+t qit =0 (4.10.9)
Q. B ... (4.10.10)
L 1, T

The expression on the left hand side of Eq. (4.10.9) includes a number of terms,
some positive and some negative. The positive ones just balance the negative ones
and the sum is zero.

In Eq. (4.10.10) the net sum can be positive only if the positive terms are divided
by small numbers and negative terms are divided by large numbers. This amounts
to the fact that we are associating positive values of ¢ with low temperature and
negative values with high temperatures, i.e. we are extracting heat from reservoirs
at low temperatures and rejecting heat to reservoirs at higher temperatures
without spending any thing. This is against the second law of thermodynamics.
Thus, our approximation that

@d_q, >0
T
must be wrong. It follows that for any engine, we must have
c_ﬁdq <0
T

Now we will show that for a reversible cycle jdq’ /T = 0 whereas J.dq' /T<0

for an irreversible cycle.

Case I Reversible cycle Let us assume for this cycle
§ <o
T

We can reverse this engine, which changes all the signs but not the magnitudes
of the gs. Thus, we have
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o

which obviously is wrong as deduced earlier. This leads to the conclusion that for
any system

quq(rev) =
T

for all reversible cycles.

Case Il [rreversible cycle Since the heat and work associated with an
irreversible cycle are different from those associated with the reversible cycles,
therefore, the only possibility left is

4 <o

for all irreversible cycles.

411 THE CLAUSIUS INEQUALITY

A Characteristic of
Entropy Function

Entropy Changes in
a Reversible Process

Expression of
Clausius Inequality

Since S is a state function, it follows that JdS = 0. If the cyclic process involves

going from A to B and then coming back to A, then

ngS:TdS+TdS=0
A B

B A
or de:—jds @.11.1)
A B

that is, the entropy change in going B to A is equal but of opposite sign to that in
going from A to B, for only then the addition of these two will be zero.

If we assume that the surroundings always transfer heat reversibly, then the entropy
change in any process carried out reversibly will be the negative of the entropy
change of the surroundings, i.e.

AS(system) = — AS(surroundings)
or AS(total) = AS(system) + AS(surroundings) = 0 (4.11.2)

Thus, the sum of entropy changes for the system and of the surroundings will
always be zero. Hence, it may be concluded that in reversible processes entropy is
merely transferred between the system and surroundings and that the total entropy
change is zero.

Now let us consider what happens when the process A — B is irreversible. No
matter what the nature of this process might be, we can assume that the reverse
process B — A is carried out reversibly. Then we have the following cycle.
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A >B

T irreversible

reversible

N 95 dg(irr) T dg(irr) T dg(rev)
o T + T LT

Making use of Eq. (4.11.1), we have

dg(irr) _fdg(irr) f dg(rev)
9 T _[{ T 1{ T

Now, according to Eq. (4.10.2), we have
Cﬁdq(n‘r) £
T

Thus, it follows that

? dg(irr) _ T dg(rev)
A T A T
Using Eq. (4.9.11), this becomes
B . B
[448m) _ [ gs
A T A
2 dg(irr)
or [ <Ay, (4.113)
T

where AS,p is the change of entropy of the system in going from A to B.

The expression of Eq. (4.11.3) is known as Clausius inequality which is a
fundamental requirement for a real transformation. The inequality of Eq. (4.11.3)
enables us to decide whether or not, some proposed transformation will occur in
nature. We will not use this expression as such, but will manipulate it to express
the inequality in terms of properties of the state of a system rather than in terms
of path property such as dg(irr).

Clausius Inequality For any change in an isolated system

Applied to an Isolated dg(irr) = 0
System and the inequality of Eq. (4.11.3) becomes

0< ASAB or ASAB >0 (4114)

Thus, the requirement for a real transformation in an isolated system is that
A S be positive, i.e. the entropy of the system increases whenever a natural change
is occurring within an isolated system. The entropy continues to increase so long
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as changes occur in it. When the changes cease, the system is in equilibrium, and
the entropy has reached a maximum value.

Thus the condition of equilibrium in an isolated system is that the entropy has
a maximum value.

We can always imagine that system [ and its surroundings form a larger system
called system II, which is isolated from its surroundings. Consequently, no matter
what the interaction between system I and its surroundings in the irreversible process
might be, the entropy of system II always increases. We, therefore, have

ASgys(IT) = ASgyg(D) + ASg(1) > 0 (4.11.5)

Clausius assumed that the entire universe could be considered as an isolated system,
in which all naturally occurring processes are irreversible. This is the basis for his
often quoted statement:

The energy of the universe is constant, the entropy of the universe always tends
toward a maximum.

412 STATE FUNCTION ENTROPY FROM FIRST LAW OF THERMODYNAMICS

According to the first law of thermodynamics, we have

dg =dU — dw (4.12.1)
If the work is of p-V type, we have

dg =dU + p dV (4.12.2)
Since U = f(T, V), therefore, we have

dU = (3—;{)!/ dT + (g—ng dv (4.12.3)

Substituting this in Eq. (4.12.2), we get

oU oU
dg=|—| dT+| — | dV+ drv 4.12.4
q (8TJV +(8V)T Pext ( )

Dividing this by 7, we have

dg 1 an 1 (an }
Ao AT+ = dav 4.12.5
T T(aT v +T{ FY4 T+p°"‘ ( :

If the work is performed reversibly, then
Pex =ptdp=p
and dg = dqe,

Now if dg,.,/T is to be a state function, then the Euler’s condition of reciprocity
has to be satisfied. According to this condition, we must have
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) oU o [1(oUY p
=—i—|—=| +£ 4.12.6
av{ (ar) }T aT{T(anTJFT}V (412.6)
2 2
or LU Z_L(B_Uj LLoUu  p 1 (31’) (4.12.7)
ToVvor  T*\ov); ToToV T? or
2 2
Since oIU = IU , therefore, we must have
oV oT dT IV
oU p (apj
-— — =0
(E)V) "2 rlar
U ap)
oY =7 4.12.8
o (aV)T”’ (E)T . (412.8)

This is the thermodynamic equation of state’ which holds good for all types
substances. Hence, dq,.,/T is a state function. Note that dg,,, alone is not a state
function, but it becomes one after being divided by 7. The factor 1/7 is known
as an integrating factor, since dgq..,/T can be directly integrated between the two
state variables. Combining Eqs (4.12.5) and (4.12.8) and then integrating, we have

=[5, o (5
T ar ),
= nCV‘ m JdTT+J(§_§)VdV

For an ideal gas (pV = nRT), we have
() o8
oT)y vV
T v
Hence AS= I v —pC, 0 In 72+nR In -2 (4.12.9)

1 1

4.13 CHARACTERISTICS OF THE ENTROPY FUNCTION

The change in entropy of a system when the heat dg,, is exchanged reversibly at
temperature 7 is given by

dg
ds = v 4.13.1
T ( )

"This equation can be verified by applying it to an ideal gas. For such a gas
QU/OV)r = 0 and (dp/dT), = nR/V

Substituting these in Eq. (4.12.8), we have p = nRT/V which obviously is true since for an
ideal gas pV = nRT.
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If the system undergoes only p-V work, then according to the first law of
thermodynamics, dg,,, is given by

dg,ey =dU +p dV (4.13.2)
Dividing both sides by T, we get

Yo _ g5 L g4 Lay (4.13.3)
T T T

Equation (4.13.3) represents the variation in entropy when the internal energy
and volume of the system are changed. Since both 1/T and p/T are positive, we can
conclude that dS increases when (i) dU increases at constant volume, and (ii) dV'
increases at constant U, i.e. this equation represents the characteristics of state
function entropy.

The above characteristics can be expressed mathematically. From Eq. (4.13.3)
we conclude that the S = f(U, V). Its differential is given by

oS A}
dS=|=—| dU+| —| dV 4.13.4
(aujy +(anU 139
Comparing Eqs (4.13.3) and (4.13.4), we get
as 1 oS p
= | =—and | =] =£ 4.13.5
(BU)V T (BV)U T (HIEe)

Equation (4.13.3) can be rewritten (only for a reversible process) as
dU=TdS-pdV

Since dU is an exact differential, we can apply Euler’s condition of reciprocity to

this equation. This yields

(g_gjs __ (g_gjy (4.13.6)

This constitutes one of the important relations in thermodynamics, named as
Maxwell relations. The other such equations will be derived later (see Section 5.9).

4.14 ENTROPY AS A FUNCTION OF TEMPERATURE AND VOLUME

Expression for We can write entropy as a function of temperature and volume of the system, such

(0S/9T)y and (0S/9V)y that

S=AT, ) (4.14.1)
Its differential is given by
ds = (B_S) dT+(a—S) dv (4.14.2)
oT )y Vv )y

For a system involving p-V work, dS as given by Eq. (4.13.3) is

as=Lau+Lay (4.14.3)
T T
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Entropy change
in an Isochoric
Change in
Temperature

Derivation of
Thermodynamic
Equation of State

The differential dU can be replaced in terms of d7 and dV. This can be done by
taking U as a function of temperature and volume, i.e.

U=AT7)
Writing its differential, we have
U oU
=|—| dT+| — | dV
dUu (aT)V (aV)T (4.14.4)
Substituting this in Eq. (4.14.3), we get
1(oU 1 oU
=—|— | dT+—=|p+|=—| |dV
as T(BT )V T[p (BVM e
Comparing Eq. (4.14.5) with Eq. (4.14.2), we get
C
(3_5) :l(a_U) _m (4.14.6)
or), T\9T ), T
oS 1 U
d —_— = — +| — 4.14.7
o (BV)T T[p (8T jy/il (4.14.7)

Equation (4.14.6) gives variation in entropy of the system with temperature when
its volume is held constant. Since Cy, , has positive value, it follows that (9S/97),,
has a positive value. This implies that the entropy of a system increases on
increasing its temperature at constant volume. For a finite change of temperature
at constant volume, we have

J.TMCV"“ dr
as= )~ (4.14.8)

Equation (4.14.7) gives the variation in entropy with volume of the system when
its temperature is held constant, i.e. isothermal volume dependence of entropy.
This expression can be simplified using the following procedure.

Differentiating Eq. (4.14.6) with respect to volume at constant temperature,

we get
23} 1212,

Differentiation of Eq. (4.14.7) with temperature at constant volume gives

HE)), -],

), )] e
~r|\oT ), oT oV ik v )y e

Since S is a state function, we must have
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in an Isothermal
Change in Volume

Complete Expression
of dSin terms of dT
and dV
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9’s _ 9°S
oV OT oT oV

Thus, from Eqs (4.14.9) and (4.14.10), we get

1 U (ap) 1 U 1 [ (BUJ }
ToVar T\aT ToToV T2 v )y

Since U is also a state function, we will have

oU Bp)
— =T| — 4.14.11
(anT TP (BT , ( )

This is an important expression, known as the thermodynamic equation of
state, as it relates various variables of the states.

Comparing Eq. (4.14.11) with Eq. (4.14.7), we get

(g_ijT _ (s_l;)V (4.14.12)

For a finite change of volume at constant temperature, we have

v, ap
= — | dV
AS h (E)TjV

We have seen in Problem 1.3.13 that

(a_p) _o

oT )y  Kp

where o and k7 are cubic expansion coefficient and isothermal compressibility,
respectively. Therefore, Eq. (4.14.12) becomes

(a_sj =2 (4.14.13)
aV T KT

Thus, the variation in entropy with volume at constant temperature depends on
how the pressure of the system changes with temperature at constant volume or on
the sign of ¢, since Ky is always positive. For most cases, ¢ is positive and hence
entropy increases with increase in volume at constant temperature. Water between
temperatures 0 °C and 4 °C has a negative value of o and thus has a negative value

of (3S/9V)y.
Substituting Eqs (4.14.6) and (4.14.12) in Eq. (4.14.2), we get

C
as = rem dT+(ap) ar

T oT
nCy
or dS= —— dT+—dV (4.14.14)
T Kr
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Equation (4.14.14) describes the variation in S with temperature and volume
of the system. It may be mentioned that for the condensed system, the value of
(o/xp) 1s negligible. Therefore, the dependency of S on volume of the substance,
except in the case of gases, can be ignored.

Example 4.14.1 For CgHg(1), 0=1.24 x 10> K™}, and x;=9.228 x 10 MPa ! at 298 K and 101.325 kPa
pressure. Find the change in molar volume which will be required to produce an entropy
change of 2.092 J K™' mol™ at 293 K. Assume o and K to be constants.

Solution We know that
(ay) (Eq. 4.14.13)
a T KT

4 -1
Therefore, AV = (K—Tj AS = [—9‘228 x10_ MPa

-1
o 1.24x10° K™ ] s

=1.56 cm® mol !

Problem 4.14.1 Show that
(i) For an ideal gas (QU/dV)y is zero.

Pp

av
j ( ) and is equal to R for one mole of an ideal gas. Also
oT Jy »

(ii) Cp—CV:T( 3
show that C,, = C), for water at 4 °C. Given that the density of water is maximum at 4 °C.

TOV/IT), Tav
@Vidp), Ky

(i) C,-Cp=-
(iv) (3CV)p = T(@*p/AT?),
(v) Cypis independent of volume for ideal and van der Waals gases.

Solution (i) The expression of (QU/dV)r in terms of easily evaluable derivative is given by the
thermodynamic equation of state

(29) ),

Since for an ideal gas pV = nRT, therefore
(B_P) _mR_»p
aT)y V T

s0 that (B_Uj 72 _p=0 (4.14.15)
whoT

(ii) The expression for C, — Cy, is given b,
P P V g y

U v
C,~Cyp= (W)T +p (a_T)p (Eq. 2.6.3)

Substituting (dU/dV) from the thermodynamic equation of state (Eq. 4.14.11), we get
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_ a_p) (9_VJ
Cp—CV—T(aT o), (4.14.16)

For one mole of an ideal gas pV,, = RT, which gives

(3_17) R (%) _R
T )y v, aT ), p

m

Substituting these expressions in Eq. (4.14.16), we get

R\(R
Com=Cym=T [—)(—j =R (4.14.17)
Vi J\P
Since the density of water is maximum at 4 °C, we must have
dp
ar

(We write complete differential assuming that the density of a liquid is independent of
pressure.)
Now since p = m/V, we have

dp _dm/v)__m ¥

a7 dT y*dr
In order that dp/dT = 0, we must have d}/dT = 0 as both m and V" are positive quantities.
Now, according to Eq. (4.14.16), we get

CP7CV=O or szcV
(iii) The cyclic rule for the relation p = f(T, V) is

(), (57),(5), -0
or)y\ov),\op ),

This of (a_p) _ 1 :_(aV/aT)p
SEYES \9T), T @T/ov), @V idp); @V /dp)y

Thus, Eq. (4.14.16) becomes

TV /9T)> 2
C, - Cp=— ( Jp _ToV (4.14.18)
9V /9p)y Kr

(iv) By definition, we have

U
c,=2Y
g (aT)V

Thus (aa%l = %{(g—;{l/}r = %{(Z—ZJT}V (as U is a state function)

Making use of the thermodynamic equation of state, we get

(5], =53 -+, =32, (52, )
v )y or'\ar), 7, \or), "\or?), \or),
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Problem 4.14.2

Solution

=7 op 4.14.19
- \er?), (4.14.19)

(v) For an ideal gas, p = nRT/V, therefore

ap) nR ’p
o9 =t d |=£| =
(BT o (aﬂ y 0

BCV) *p
_ =T — =
Thus ( ), [E)Tz ) 0

For a van der Waals gas, we have

() o
v )y V2

2
Thus (a&) = i{(a—U) = 9 n_za =
oV Jr oV \\OT Jy); OT\ V
Since (0C}/dV)ris zero for ideal and van der Waals gases, it follows that C}, is independent
of volume for these gases.

(Eq. 2.13.3)

(a) Evaluate the expression (dU/0V) for the amount #» of a van der Waals gas (use van der
Waals equation together with the thermodynamic equation of state) and compare it with
that of an ideal gas.

(b) By integrating the total differential dU for a van der Waals gas, show that if Cj is a
constant, then

nza

U= VICV. mT* 7 + U,

where U’ is a constant of integration.

(a) Thermodynamic equation of state is

39 -
v )y \ar),

For the amount » of a van der Waals gas, we have

_ T
V—nb V?
Therefore (a_p) = nR
aT v V—nb
2 2
Thus (a—U) MR, oRT | nRT _ma) ma (4.14.20)
v )y V —nb V—nb \V-nb V 14

The internal energy of a van der Waals gas increases with increase in volume at constant
temperature. This is attributed to the van der Waals constant a, i.e. molecular interactions.
In case of an ideal gas, (QU/dV);= 0 indicating the absence of any molecular interactions.
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b dU = (a_u) dT+(a—U) av
(b) “\oT )y v );

2
n-a
:VICV.m dT+7 dr

On carrying out open inegration, we have

2
U=nCy o T— %+ U’

(4.14.21)

4.15 ENTROPY AS A FUNCTION OF TEMPERATURE AND PRESSURE

Expression for
(3S/aT), and (9S/9p)r

We can write the dependence of entropy on temperature and pressure as

S=AT, p)
Its differential is given by

aS aS
=|=—=| dT+|—| d
a5 (arjp (apjT i
In order to write the equation
ds= Lqu+Lay
T T

in the form of Eq. (4.15.2), let us consider the following relation:
U=H-pV

Therefore dU=dH —pdV -V dp

Taking H = f(T, p), we may write

oH oH
== | dT+|—| dp; — -
dU {( Y jp +( P jT p} pdV—Vdp

Substituting Eq. (4.15.4) in Eq. (4.15.3), we get

1 |(oH oH p vV p
- 20} ar+| 5 dpp-Lar-Zdp+Lay
a8 T{(E)T)p +(apjT p} r T

1(oH 1|(oH
= —|— | dT+=9| =— | -V 4
or ds T(BTJP +T{(8pl }p

Comparing this with Eq. (4.15.2), we get
(5) -1(%) _ 2o
or), T\or), T

()2

(4.15.1)

(4.15.2)

(4.15.3)

(4.15.4)

(4.15.5)

(4.15.6)

(4.15.7)
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Entropy Change in
an Isobaric Variation
in Temperature

Example 4.15.1

Solution

Equation (4.15.6) gives the dependence of entropy on temperature at constant
pressure. Since both Cp_ m and T are positive, therefore, S increases with increase
in temperature of the system when the pressure is held constant. For a finite change
of temperature at constant pressure, we have

L nC
p,m
= dr
AS T (4.15.8)
C,, m independent of temperature If C, ,, is considered independent of
temperature in the range 7 to 75, then
AS=nC, o ln 2 4.15.9
=n b, m n F ( 15 )
1
C,, ;m dependent on temperature If temperature dependence of C,, , is available

in the form of the analytic expression

Cpm=a+bT+cl*+ -

p, m

then we have

T, 2,
AS— J’zn(a+bT+cT + )dT
T T

—n [aln%+b(T2—Tl)+§(T22—T12)+--1 (4.15.10)
1

Calculate AS for 2 mol of nitrogen heated at constant pressure from 298 K to 373 K. Given
the temperature variation of C,, ,, of nitrogen as

Cp /I K mol™! =27.296 +5.23 x 107 (T/K) — 0.042 x 10”7 (T/K)?

We start with the relation for one mole of a gas

(57,
or), T

Substituting the given expression of C,, ,,, we get

(a_s) TR mol™ = 27228 4 593 % 103K - 0.042 x 1077 (T /K3
ar ), T
or ds/J K mol! = (27?96 +523%107%/K-0.042x107 (T/Kz)) dr

Integrating this, we have

373K
AS/T K mol ™! = j (
298 K

27.296

+523%107%/K-0.042 %1077 (T/Kz)) dr

373K 373K

=27.296 In (T/ K)

+523x107° (Z)

298 K 298 K
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373K

0,042 % 107 ( T’ )
2

2
K 298 K

= 27.296 x 2.303 X log (ﬂ) +5.23 x 107 x (373 — 298)
298

~0.021 x 1077 (3732 - 298?)
ASI K ' mol™ =6.129 + 0.392 - 1.057 x 10* = 6.52

Thus  AS for 2 mol = (2 mol) (6.52 J K™ mol™") = 13.04 J K !

Equation Eq. (4.15.7) gives the variation in entropy with pressure of the system,

when temperature is held constant, i.e. the isothermal pressure dependence of

entropy. This expression can be simplified by using the following procedure:
Differentiating Eq. (4.15.6) with respect to pressure at constant temparature,

we have
9 (a_S) 1 i(a_Hj _1oH 41511
op \\or ), [ “T\9p\or ), |, " Topor el Selh)

Differentiating Eq. (4.15.7) with respect to temperature at constant pressure,
we get
8 -2kl
oT \dp )z}, OT T\ dp); »

_ —(a—V) —i(aﬂ) V| @1512
“Tlorop \or),| 72|\ op ), (15.12)

Since S is a state function, we must have

%S 9§
dpoT dT dp
Thus, from Eqs (4.15.11) and (4.15.12), we get

10°H _laz_H_l(a_V) 1 (a_H) _y
Topar ToTop T\or), T*|\op);

Since H is also a state function, the above expression reduces to

oH 14
(ng _V__T(B_T)p (4.15.13)

This is another expression of the thermodynamic equation of state as it
gives variation of enthalpy with pressure at constant temperature in terms of the
measurable derivative (0V/d7),, of the system.
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Entropy Change in an Comparing Eq. (4.15.13) with Eq. (4.15.7), we get
Isothermal Variation ( P) Sj Py
T

in Pressure — | === =_
P (BT)p Vo (4.15.14)

For a finite change of pressure at constant temperature, AS is given by

oV )2
AS=— — | dp=- Voad
J (aT)p v *w

P D

The variation in entropy with pressure at constant temperature depends on how
the volume of the system changes with temperature. For most substances this is
positive. Because of negative sign, we can conclude that entropy decreases with
increase in pressure at constant temperature.

Complete Expression Substituting Eqs (4.15.6) and (4.15.14) in Eq. (4.15.2), we get
of dSin terms of dT C

n 14
andd = P’de_(_) d
i 8= or), "
nC,
or ds = —>= dT -V adp (4.15.15)

Equation (4.15.15) describes the variation in S with temperature and pressure of
the system. For liquids and solids, « is negligibly small. Hence the variation in
entropy with pressure at constant temperature for such substances is small, and
can, therefore, be ignored.

Problem 4.15.1 Show that

@) (B_H) is zero for an ideal gas.
ap )y

T@V/3T), -V (ol -1)

c, C,

R A N P
(iii) [EJT— T[aszp— TV|:0¢ +(8T)J

(iv) C, n is independent of pressure for ideal gases whereas it depends both on
temperature and pressure for van der Waals gases.

(i) Myr= and is zero for an ideal gas.

(v) Show that C,, ,, has a maximum value at p = R7/4b for a van der Waals gas.

(vi) Show that the effects of pressure on C

», m Of @ van der Waals gas is the same as
that of C, ,, — Cy, .

Solution (i) The expression of (dH/dp)y in terms of easily determinable derivative is given by the
thermodynamic equation of state

(B_Hj :_T(B_V) i
o Jr oT J,

For an ideal gas pV = nRT, thus
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() @
oT p_p

Therefore (B—HJ =—Tﬁ +V=-V+V=0 (4.15.16)
T

P p

(ii) Joule-Thomson coefficient, by definition, is

(2) - L) e
Hyr = apH Cp apT (CI)

Making use of the thermodynamic equation of state, we have

1 aV
S i iy 4
IJVJT C { (aij+ }

P

Since o = (1/¥) (9V/dT), , we have

TV, -V _v@T-1)

Wt = c, c, (4.15.17)
For an ideal gas (0H/dp)r = 0, therefore = 0.
(iii) By definition, we have
c - [LH)
P aT /,
- (BCPJ ) {(BH) } J {(8H) } i et
- | T3 3~ =373 50 tat t
us » ), " op|\or o, or \Uop -, (as H is a state function)
Making use of the thermodynamic equation of state (Eq. 4.15.13), we get
aC 2
9| -9 _T(alj v =_(LV) [ +(alj
o )p T or J, » aT J, oT » or J,
(o
-7 |55 p (4.15.18)

Now since o = (1/) (9V/97), , therefore
aC 2
(p) =T L’; :_Ti (al)
op ), oT B or (\dT J, ,
B(Voc)) (aoc) (EW)
-T =-T|V| = <
( or ), [ or ), " *\or ),
-T V(a—“) +Vol |==TV (a—“) +o?
aT /), T/,
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(iv) For one mole of an ideal gas, V,, = RT/p, therefore

2
() e (32)
or J, p aoT »

aC 2
Thus ( p’mj =72 =0
P )y oT

For one mole of a van der Waals gas, we have from Eq. (2.6.15)

(8 V. ) (Vm - bj 2ap  dabp*| V,-b 2a 4abp
_— = 1 — = =+ -
oT J, T R’T* RT’ T  RT* RT’

(Note: In the second and third terms, the approximation p (¥, — b) = RT has been used.)

N oV, _l(an) _Vm=b_4a  12abp
Thus or* ) ~r\or ), r* R RT
=l(Vm—b+ 2a _4abpj_Vm—b_ 4a 12 abp
T\ T RT?> RT? 7>  RT® RT
__ 2a + 8abp
RT®  RT*
aC o 2a  8ab
p,m =T m =+ _ /4
Hence ( ap JT ( oT2 i RT?2 RT?

Hence (dC,, /dp)r depends both on 7 and p for van der Waals gases.
(v) For C, , to have a maximum value, we set (0C, ,/dp)y = 0.
Thus, we get

2a_8abp_0 or _RT
RT?> RT? P="4

(vi) We have

(a(cp,m_CV,m)J =(acp,m] _(aCV,mj
Jap . o )y o Jr

Now since Cj, is independent of pressure for a van der Waals gas, we have

aC,
) -
o Jr

aC,  —C, aC
Hence ( ( p,m V,m)j :( p,m)
dap - o )

. C, C, o
Problem 4.15.2 Using dS = - dT-Vadp or dS= 7dT+* dV, show that

Kr
(i) (?TSJ _Srkr
p), T «
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0 (),
W\ ), " 1va

and (iii) —%@—ZJ =K7T where y=C, / Cy.
S

(i) We have

C, o
= —dIl'+—
das T P dr (4.15.19)

Since T = f(p, V), therefore

oT oT
=|—1 d — | dV
a7 (BPJV p+(aV)p

Substituting this in Eq. (4.15.19), we have

Cy(oT C,,(BT) o
= —|—| dp+|—|=—=| +—|dV
ds T (Bp),/ lp [T v ), e (4.15.20)
Dividing by dp and introducing the condition of constant V, we get
aS Cy, (0T C av/9 Cy x
(—j =—V(—j ~Cy(_OVIdp) ) _ Cy Ky (4.15.21)
o)y T \op), T\ (V/IT), T o
(ii) We have
G
ds= 7dT7 Vo dp (4.15.22)
C
or ds= 2% ar dp + or dvV}i - Vo dp
T |\op }, v ),
C. (oT C,(or
=Ll = | dV + L= | - Va d .15.
or ds T (av)v {T (apl/ } p (4.15.23)
Dividing by dV and introducing the condition of constant p, we get
M C,(orT C
L I i (4.15.24)
v ) T \dvV) TVa

(iii) Dividing Eq. (4.15.20) by dp and introducing the condition of constant S, we get

C, (T C, (oT o[V
0= —| +{YX]|—| + =} =—
T \op ), T \oV ), xrflop )

_ G (or Gy Ky
vy _ T \op ), T o _ GV
of o) Gy, G o c. o, Te?v
T ovV), & TVa & Y K,
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Now according to Eq. (4.14.18), we have

TV
Cp — CV =

Kr
With this the above expression modifies to

(B_V) GV K
ap s CV+CP—CV Y

1(dV) xp
or V(ap )S— v (4.15.25)

Problem 4.15.3 (a) Show that, if (QU/dV)r = 0, the equation of state of the substance must be of the form
p=Tri.
(b) Show that, if (dH/dp); = 0, the equation of state of the substance must be of the form
V=T f(p).
(c) If for a substance both (dU/dV); = 0 and (dH/dp); = 0, the equation of state is
pVIT = constant.

Solution (a) In the thermodynamic equation of state

293,
aV T aT Vv

if we substitute (QU/IV); = 0, we get

G?)zﬂ (4.15.26)
orT)y T
dp dT
or L ; (V constant) (4.15.27)
p T
Integrating this, we have
In &zlnﬁ or &:E or P _P
P T n T I, T
or p=TA4 (4.15.28)

where A is constant. Since V' is held constant in Eq. (4.15.27), we conclude that the
value of 4 will depend on V, i.e. 4 = f(V). Hence, Eq. (4.15.28) may be written as

p=TsV)

(b) In the thermodynamic equation of state

I o
NALI VY
(apjr (ar)p

if we substitute (dH/dp); = 0, we get

av 14
(ﬁ)p =T (4.15.29)
v _ar

or v T

; (p constant) (4.15.30)
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Integrating this, we have

In ﬁ:lnﬁ or ﬁ=§ or ﬁ=ﬂ
Vi T o L T
or V=TA4 (4.15.31)

where A4 is constant. Since p is held constant in Eq. (4.15.30), we conclude that the value
of 4 will depend on p, i.e., 4 = f(p). Hence, Eq. (4.15.31) may be written as

V="T/fp)
(¢) Making use of the cyclic rule

()G9, (5), =0
ov)e\ar ), \op),

()~ wrmtar ().
oV )y (V/oT),@T/dp),  \av),\aT ),

Substituting the expressions of (97/0V), and (dp/dT); from Eqs (4.15.29) and (4.15.26),
respectively, we get

(ap) __Ip__»r (4.15.32)
T

we have

v
Form the given expression of equation of state, we conclude that p = f(7, V). Writing the
complete differential of p, we get

), o (57)
2 ar+ 22 ar
dp (aTVd o Td

Substituting the expressions of (dp/dT), and (dp/dV); form Eqs (4.15.26) and (4.15.32),
respectively, we get

dp= Lar_Lqy
7

dp dT dV
or —=——-—
p T V

Integrating the above expression, we get

In &:lnﬁ—lnﬁ or ln—szzzan or P D

P I " 24 I oh T

Z 7 4
P _pPh . P

— = tant 4.15.
or I I T constan (4.15.33)

416 ENTROPY CHANGES FOR AN IDEAL GAS

Entropy changes for an ideal gas due to variations in temperature and volume or
temperature and pressure can be determined by using Eqgs (4.14.14) and (4.15.15).
But, for the sake of simplicity, we drive the necessary relations directly from the
definition of entropy function and the first law of thermodynamics.
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Temperature and
Volume Variations

According to the first law of thermodynamics, we have

dg,e, =dU+p dV
Dividing this by 7, we have
49y _ dU

= ——= — +._
ds T T {14

Taking U to be a function of 7 and V and writing its differential, we have

dU = (a_U) dr+(a_Uj ar
T ), v )y

Substituting this in the previous expression, we get

ds = l{(a—U) dT+(a—U) dV}+£ av
r\\ar ), v )y T
Now for an ideal gas

(g—g)r =0 (Joule’s law)

p nR
d =
an T

With these, alongwith the fact that (U/dT);,= Cy, the previous expression becomes
R
as= Srare "R gy (4.16.1)
T Vv
For a finite change, we have
LC
AS = - dT J ’ ﬁ dr
4
Considering CV to be independent of temperature, we have

AS=Cpln T—+nR1n V2
4 1

(4.16.2)

T, V.
or AS=n [CV mIn=2+RIn —2} (4.16.3)
4 4

This is the expression when both the volume and temperature of an ideal gas
are changed. For an isothermal change in volume, the entropy change is given by
the relation

AS=nRIn 2 (4.16.4)
4

For the change of temperature at constant volume, the expression is

L nCV m
ds = j 2 4T (4.16.5)
. T
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Cy. m independent of temperature From Eq. (4.16.5), we get

T.
AS=nCy ,In 72 (4.16.6a)

1
Cy, m dependent on temperature If Cj, , depends upon temperature, we have
to express Cy, ,, in terms of T before carrying out the integration in Eq. (4.16.5).

For one mole of an ideal gas, we can write
CV, m_ Cp. m R

Dependency of C,, ,, on temperature is given by the analytic expression

Cpm=a+bT+cT?+ -

Thus, the expression of Cy, , for an ideal gas is given by

Cym=a+bT+cT?+- —R
Substituting this in Eq. (4.16.5), we get

dr

Lg+bT +cT?+---—R
AS=n
T T

T, _ T,
—nU a- R dT+J' 2(b+cT+---)dT}
T T

T
Thus AS=n |:(a— R)In % +b (T, —T) +%(T22 —-T?) +} (4.16.6b)
1
For an ideal gas, we have
V _ nT
o pT

Substituting this in Eq. (4.16.3), we get

AS=n{Clen£+Rlnp1—T2}
’ L T

or AS=n{(CVm+R)1n§+Rlnﬂ}
’ I )

or  AS=n|C, hZ2irmP (4.16.7)
P I P>

This is the expression for the change in entropy of an ideal gas when both its
pressure and temperature are changed. However, if the temperature is varied at
constant pressure, then

_ T
AS=nC, ,In A (4.16.8)
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Example 4.16.1

Solution

Example 4.16.2

Solution

In deriving the above expression, it has been assumed that C,, ,, is independent of
temperature. If C, , varies with temperature as

Cym=a+bT+cT*+ -

2
T.
thenor AS= n|:a In F2+b (T, - T) +%(T22 -7?) +} (Eq. 4.15.10)
1
For the isothermal change in pressure, we have
AS=nRIn 2L (4.16.9)
P

For an ideal gas C, ,, = (5/2)R. Calculate the change in entropy suffered by 3 mol of the
gas on being heated from 300 K to 600 K at (a) constant pressure, and (b) constant volume.
(a) The change in entropy as a result of variation in temperature at constant pressure is
given by

AS,=nC, In A

Substituting the given values, we get

AS, = (3 mol) (E x8.314J K™ morlj % 2.303 log S0F
4 2 300K
=43.22 K"
(b) The corresponding expression at constant volume is
T
ASy=nCy ,In -2

1
which on substituting the given values gives

ASy = (3 mol) (§x8.314JK‘1 mol_l)x2.303 log [ S0
2 300K

=2593 JK!

Calculate AS for 3 mol of a diatomic ideal gas which is heated and compressed from 298 K

and 1 bar to 398 K and 5 bar. Given: C, ,, = (7/2)R.

The entropy change as a result of variation in both temperature and pressure is given by
T.
AS=n {cp,m ln—2+Rlnﬂ:|
L b
Substituting the given values, we get

AS = (3 mol) (Zx8.314JK'1 mol_1)><2.303log 28K
2 298 K

+(8.314 T K™ mol™') x 2.303 log(lbar ﬂ
5 bar

=3(8422 JK' - 13383 JK™)
=-14.883 JK!
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Example 4.16.3 By how much does the entropy of 3 mol of an ideal gas change in going from a pressure of
2 bar to a pressure of 1 bar, without any change in temperature. If the surroundings too are
at | bar pressure and 300 K, and the expansion is against the constant external pressure of
the surroundings, show that the process of expansion is irreversible.

Solution Entropy change of the gas
ASgs =nR In 2L = (3 mol) (8314 J K™ mol™) x 2.303 log [ 224
)% 1 bar
=1729JK!

Entropy change of the surroundings
Since AT = 0, therefore AU = 0 and according to the first law of thermodynamics

q == W= Pext (AV) = Pext (V27 Vl)

nRT nRT 1 1
[T ) (1 1)
P> 121 Py D

=nRT (1 - %) (since pey = o)
1

Substituting the values, we get

g = (3 mol) 8314 ] K~ mol™) () (1_ ”l’)ar

)= (1247 1K NHT
ar

AS.. = =_12477K!

_4
surr T

AStotal = ASsys + ASsurr
=(17.29-12.47)] K~!, which is positive.

Since A S, i positive, the process is irreversible.

417 A FEW DERIVATIONS INVOLVING A VAN DER WAALS GAS

. (3_5) __mR
O )TV —m

We know that

95 _ a_Pj
(aV]T_(aT , (Eq. 4.14.12)

For the amount # of a van der Waals gas, we have

}’1261
(P + 7) (V — nb) = nRT

Differentiating this with respect to temperature keeping volume constant, we get

a_P) _
(BT , (V' —nb) =nR
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(a_p) __"R 417.1
or BTV_V—nb (4.17.1a)
Th (a_sj __"R 4.17.1b

N P Y70 R (4.17.10)

. (BSJ —nb
(ii) > =3
&P Jr W%(V—nb)z 7

We know that

55,
).~ ar (Eq. 4.15.14)

For the amount » of a van der Waals gas, we have

n’a
p+V— (V —nb) = nRT

Differentiating this with respect to temperature keeping pressure constant, we get

{ 2;&1@1;) }(V nb)+[ +—j(g—;j =nR
or (g—;) { 2;a(V nb)+(p+%j} = nR

Multiplying by (V — nb), we get

2
(3—;) { 2;"(V nb)>* +(p+V—j(V nb)} = nR (V — nb)

(3—9 { 2;“(1/ nb)? +nRT} = nR (V - nb)

Dividing by #R and rearranging, we get

(3_;) = V—nb (4.17.2a)
P TR(V —nb)>-T

Hence, it follows that

(3_5) - V—nb (4.17.2b)
I Jr %(V—nb)z—T
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(i) (aﬂ) =V+— V —nb
I Jr "y by -1

V3RT

The differential (0H/dp)y as given by thermodynamic equation of state is

)+
op Jr aT /J,

av V —nb
Bt 3r) T 2ma
2
p E(V—l’lb) -T

Therefore (a—Hj V+ (V —nb)T
T

Ip %(V b T
s (V = nb)
Vi’;"T (V —nb)* -1
) oU (V — nb)*
i) ) 2 V2RT
T ZW—nb? ——~
V na

We can write
(a_Uj _ (a_U) (B_V)
op )r \oV)r\op ),
From the thermodynamic equation of state, we have
)3,
vV Jr oT Jr
Substituting (dp/dT); from Eq. (4.17.1a), we get
(B_U)_T R, e _ra
oV )y  V-—nb PE\PT |7 P=
Now making use of the cyclic

(55, GG, 1o
op Jp\ar ), \ov ),

(ay) _@vian),
weet (o). = @plan),

(Eq. 4.17.2a)

(4.17.3)

(4.17.4)

(4.17.5)
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Substituting (dp/dT); and (9V/97T),, from Eqgs (4.17.1a) and (4.17.2a), we get

{BVJ B V —nb {V—nb)_ (V — nb)? (4.17.6)
=13 = — 17.
P )r VTn;(V—nb)z— T L nR 7233G(V—nb)2—nRT

Substituting (4.17.5) and (4.17.6) in Eq. (4.17.4), we get

2 2 2
) (5 o | ey @
P e AV LAy Rt | Z(v -y - Y RE

\% \%4 na

-
TS AN
Taking U to be a function of T and V, and writing its differential, we get

dU = (B_U) dr+(a_Uj ar
T )y v Jy

Dividing by dV and introducing the condition of constant U, we get

o= (5), 7, (57,

(arj __@u/ary,
U

or

v QU /9T),
Making use of Egs (2.4.9) and (4.17.5), we get
2 2
(a_T) S (4.17.8)
Wy  nCy, Gy VP

o (aV) _ Gy —nb)
N

oT RT

Taking S to be a function of T and V, and writing its differential, we get

o5~ () ar+(25) ar
T )y v )y

Dividing by d7 an introducing the condition of constant S, we get

_(3SY) (3S) (av Y (0S/aT),
o= (57 +G), G57), o (57), = Gosramy

T 9S/9V),
Making use of Eqs (4.14.6) and (4.17.1b), we get

(an B nCy /T B Cy (V' —nb)
oT )g  nRIV —nb) RT

(4.17.9)
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Solution

Example 4.17.1

Solution

Problem 4.17.2

Solution

Second Law of Thermodynamics 207

A van der Waals gas changes its state from 7}, V; to T,, V5. Derive the expression for its
entropy change.

From Eq. (4.14.14), we have

= —dT +| ==
ds T (aT , dr

For a van der Waals gas, we have

_ nRT__ria
V—nb V?

Therefore

(57, =72
BT V_V—nb

Hence, Eq. (4.14.14) becomes

nC
ds= rm gr MR
V —nb

av (4.17.10)

Integrating the above expression within the limits 7', V| and 75, V, we get

AS=nCy . In 2 4R 2210
. T | —nb

which is the required expression AS.

One mole of a van der Waals gas undergoes a change from 298 K and 1 dm? t0 373 K and 10 dm”.
What is the change in its entropy? Given b = 0.06 dm® mol Cym=2901 K mol ™.
Substituting the given data in the expression

AS=Cy nln Loypmlazt

‘ T Vi -
o 373 R 10-0.06
weget AS=(29.0JK ' mol)In == +(8314JK ' mol ") In | =22
g I 508 ) 1-0.06

=(6.51 +19.61) J K™ mol”' =26.12 ] K" mol™

For an adiabatic reversible expansion of a van der Waals gas, Eq. (4.17.10) will also be
applicable. Show that AS,
From Eq. (2.14.4) which is applicable to an adiabatic reversible process, we have

for such a process will be zero.

RT
V —nb

Cy o dT=— av

In the light of this expression, Eq. (4.17.10) will be zero. Hence for an adiabatic reversible
expansion of a van der Waals gas, ASy = 0.
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4.18 STANDARD STATE FOR ENTROPY OF AN IDEAL GAS

2303 R —»

o
m

S-S,

o
=

o
>N

Fig 4.18.1 Plot

The molar entropy change due to the isothermal change in pressure of an ideal
gas is given by

AS=RIn 2= RmZ2 (Eq. 4.17.7)
2 P
The above equation may be written as
S5, m =S, m =~ [R1In (py/p°) = R In (p1/p°)] (4.18.1)

where S, , and S ,, are the molar entropies of an ideal gas at pressures p, and
P, respectively, and p° is the standard-state unit pressure.

The standard molar entropy of an ideal gas at given temperature is defined as
the entropy of one mole of the gas at pressure equal to 1 bar." It is represented as
§°. Substituting p; = 1 bar and replacing p, by the general term p in Eq. (4.18.1),
we get

S, -5 =-RIn (p/l bar) (4.18.2)

Equation (4.18.2) gives molar entropy of an ideal gas at pressure p relative to that
at 1 bar pressure. A plot of S, — S5, for an ideal gas as a function of pressure is
shown in Fig. 4.18.1 and as a function of In (p/ bar) in Fig. 4.18.2. It is evident
from Fig. 4.18.1 that the rate of decrease in entropy with pressure is rapid at low
pressure and becomes less rapid at higher pressure.

Sm - Sﬁ]
— 2R
— R
In (p/ bar) —»
1 1 1 1
-2 -1 1 2
— —R
— —2R
of S, - S, versus (p/bar) Fig. 4182 S, - S. versus In (p/bar)

T Prior to the recommendation of standard-state pressure of 1 bar, the value used was 1 atm
(= 101.325 kPa). The change from 1 atm to 1 bar causes an increases of 0.109 J K ! mol™!
(=R In (101.325 kPa/100 kPa)} in the standard-state entropy of gaseous substances only.



Second Law of Thermodynamics 209

419 ENTROPY AND DISORDERLINESS

Equations (4.16.1) to (4.16.9) describe the characteristics of entropy change for
an ideal gas. These characteristics, in turn, reflect the basic nature of the entropy
function. According to Eq. (4.16.6), we see that on increasing temperature of the
gas at constant volume, there occurs an increase in the entropy of the system. The
increase in temperature of the gas causes increase in the average kinetic energy
of the molecules and thus the latter possess more energy and hence their motions
become more random or disordered. Consequently, the increase in entropy of
the system may be correlated with the increase in its disorderliness. The same
conclusion will be drawn from other equations. For example, according to
Eq. (4.16.4), the entropy of gas increases on increasing the volume of the system
at a constant temperature. This increase in volume allows the molecules to move
in a large space and consequently their motion become more random or disordered.
Hence, the entropy may be considered to represent the disorderliness of the system—
larger the disorderliness, larger the entropy of the system.

Take, for example, the three states of a substance, namely, the solid, liquid and
gaseous states. In general, the molecules in the gaseous state are more disordered
than those in the liquid state, while the molecules in the latter are more disordered
than those in the solid state. Thus, the entropy of the substance in these three states
of mater follows the order

S(gaseous state) >> S(liquid state) > S(solid state)

The following reactions
Fe,05(s) + 3Hy(g) — 2Fe(s) + 3H,0(1)
1N, (g) + 2 Hy(g) — NH;(g)

will be attended to by a decrease in entropy since in converting reactants into
products, the number of gaseous species decreases and thus the products are more
ordered than the reactants. In the reaction

Hy(g) + Bry(l) — 2HBr(g)

entropy of the system increases as products contain larger number of gaseous
molecules than the reactants and thus are more disordered than the latter.

420 ENTROPY CHANGE IN ISOTHERMAL EXPANSION OR COMPRESSION OF AN IDEAL GAS

Entropy Change
of the System

In this section, we derive expressions for the change in total entropy (system +
surroundings) when an ideal gas undergoes isothermal expansion or compression
processes.

The change in entropy of one mole of an ideal gas as given by Eq. (4.16.4) is

VZ
ASsys =R In 71

where ¥, is the final volume and V] is the initial volume.
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Reversible Change

Irreversible Change

Next we proceed to calculate the change in total entropy for the following
categories.

If the expansion or compression is carried out reversibly, then

VZ qrev V2
Grey=—W=RT In 71 and AS, = T=Rln71
If it is assumed that the heat ¢,., is exchanged reversibly between the system and
the surroundings at temperature 7, it is obvious that

rev
ASsurr == %
Thus Ay = ASyys + ASgyy = 0 (4.20.1)

Two cases of expansion process may be considered:
Free expansion The gas expands into vacuum for this process, we have
w=0 and q=0
Since entropy is a state function, the entropy change of a system in going

from volume V; to V, by any path will be same as that of a reversible change;
therefore,

"
ASSyS =R 71
Since no heat is supplied by the surroundings the entropy change of the latter
would be zero, i.e.

ASgyx =0

surr

V. V.
=RIn 72 +0=RIn 72 = positive  (4.20.2)
1 1

AStotal = ASsys + ASsurr
Intermediate expansion Since AS . is the same as that of reversible change,
therefore,

V2 Grev
A =RIln ==—"-
SSyS I/] T
where ¢,., is the amount of heat that the system would have absorbed had the
process been carried out reversibly. In the present case the expansion is done
against a constant pressure, thus

Gir == W = Pexs (V2 = 1)
The change in entropy of the surroundings will be given by
Qi __ Pext (V2 =)
ASsurrz_%__ = T

Since the magnitude of work involved in the intermediate expansion is smaller
than that involved in reversible expansion, it is obvious that g;, < g,.,. With this,
A Sy, becomes

ASigrat = ASugs + Ay = q7 - qT ~ positive (4.20.3)
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Example 4.20.1 One mole of an ideal gas is expanded isothermally at 298 K until its volume is tripled. Find
the values of ASy,; and A Sy, under the following conditions.
(i) Expansion is carried out reversibly.

(i1) Expansion is carried out irreversibly where 836.8 J of heat is less absorbed than in (i).

(iii) Expansion is free.
Solution The entropy change of the system AS;y
state function. The expression of the change in entropy due to volume change at constant
temperature is

will be same in all the three processes as it is a

_ , _ g
ASys=nR In 71—%

Substituting the given values, we get

ASgy. = (1 mol) (8314 T K™' mol ") x 2.303 log G) =9.134 JK!

The change in entropy of the surroundings ASj,,,, however, will depend upon the process.
We calculate below this change as well as the total change of entropy (A Sy, + ASq,,) for
each of the three given processes.

(i) Reversible expansion

ASgas =—ASgur and ASia =0

(ii) Irreversible expansion For the irreversible expansion, the quantity of heat absorbed by
the system from surroundings would be

Qirr = Grev — 836.8
The quantity g;,, of heat will be supplied reversible by the surroundings at 298 K and

hence
AS,. = - R 836.6J —_[as, - 836.6J
298 K 208K 298K 4 298 K
836.6J
and ASipal = ASsys T ASgyr = ASsys - ASsys + ( 208 K )

=2.808 JK!

(iii) Free expansion For this expansion, the system does not absorb any heat, thus ¢ = 0.
Hence

ASqn=0  and  ASgu =ASy=9.134 K

sys

421 ENTROPY CHANGE IN ADIABATIC EXPANSION OR COMPRESSION OF AN IDEAL GAS

Entropy Change of Since in adiabatic processes g = 0, therefore
the System AS. =0
surr

Since in an adiabatic process, both temperature and volume (or pressure)
change, the expressions for the molar entropy change as given by Eq. (4.16.2)
and (4,16.7) are

h £
= CV,m ln 71+R11’171

ASgys
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Reversible Change

Irreversible Change

T
ASsys = Cp. m ln Ff—i_Rln :;;

Now, we proceed to evaluate the change in total entropy for the following
categories.

In this case

ASgys =0
since for the adiabatic reversible process,
. V)
—=—-—Rln—=
Cymn 7 7 (Eq. 2.11.6)

T P
and Cp mIn E:_Rlnp—z

Thus  ASy = ASys + AS,;=0+0=0 (4.21.1)

sys surr

In the present case of expansion (or compression), the increase (or decrease) in
entropy due to the volume change just compensates the decrease (or increase) in
entropy due to the decrease (or increase) in temperature.

In the case,

’

AS

s (4.21.2)

v,
=RIln —=+C, In
! " yom 1

where T3 is the temperature of the system in the final state. Making use of
Eq. (2.11.6), we have

T, T
ASgys=—Cy yy In 7+ Crm In - (4.21.3)
1 1

where T, is the temperature, if the process was reversible.
Since we know that

Wi > Wrey (including the sign of w)

and moreover for adiabatic changes
AU=w

it follows that
AUy, > AU,

or Cym (T5-T)>Cy 1y (T, - Ty)

Remembering that 75 < 7) in the expansion process and 75 > 7| in the compression
process, we have

T3> T, (4.21.4)
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Solution
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that is, the decrease in temperature during the irreversible expansion will be lesser
and the increase in temperature during the irreversible compression will be larger
than the corresponding change in the reversible process. Thus, we have
T’ T.
Cynln =2>C, In=2
V, m 71 V,m Tl
Substituting this relation in Eq. (4.21.3), we get

AS .= tve

sys

and thus ASi = ASgy + ASgy = Tve

otal
In the present case of expansion (or compression), the increase (or decrease) in

entropy due to the volume change is larger (or smaller) than the decrease (or
increase) in entropy due to the temperature change and hence AS is positive.

10 g of neon initially at a pressure of 506.625 kPa and temperature of 473 K expand
adiabatically to a pressure of 202.65 kPa. Calculate entropy change of the system and total
entropy change for the following ways of carrying out this expansion.
(i) Expansion is carried out reversibly.

(i) Expansion occurs against a constant external pressure of 202.65 kPa.

(iii) Expansion is a free expansion.
(i) For an adiabatic reversible process

ASs =03 AS; 0 and ASio@ =0

ys = urr
(ii) First of all, we will have to calculate the temperature of the gas after it has undergone
the said adiabatic irreversible expansion. This can be calculated as follows:

For an adiabatic process

dg=0

Therefore, according to the first law, we have
dU = dw

or nCy o dT'=—pe dV

For an irreversible process against a constant pressure
nCy i AT == pey (V3 = V1)

or nCy o (Ty = T1) = pexe V1 = V2)

From the ideal gas equation, we have

_ nRT,  (0.5mol) (8.314kPadm’ K™' mol™") (473K)
n (506.625 kPa)

y. _ nRT; _ (0.5mol) (8.314kPa dm® K™ mol™)7,
2 p, (202.65 kPa)

Therefore, we have

(0.5 mol) (%x8.314J K™ mol_lj (T, — 473 K) = (202.65 kPa)

x4(0.5 mol)(8.314 T K~! mol™) ARk b
506.625kPa  202.65kPa
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Cancelling the common terms, we have
322
K 5 2

1892
or 5(T,/K) = 5 + 1419

T, = 359.48 K

Now employing the relation

T P
AS...=n|C, In=2+RIn‘-
e { L P2:|

for the entropy change of the system, we get

AS4ys = (0.5 mol) (E 83147 K- mol_lj 2303 x log[ 23248K
2 473K
(8314 T K mol™!) x 2.303 x log | 206:625 kPa
202.65 kPa

= (0.5 mol) (— 5.704 J K mol™' +7.169 J K™! mol™")
=0957J K.

Since no heat is absorbed or given out to the surroundings

AS,

surr

Thus  ASi = ASy, = 0957 JK

0

(iii) In a free expansion, we have
w=0

Since the expansion is adiabatic, it follows that
q=0

Thus, from the first law of thermodynamics, we have
AU=0

This implies that the temperature of the gas remains unchanged during the expansion. Thus,
the entropy change will be there only because of pressure change. Employing the relation

AS=nRIn 2L
P>

we get ASsys = ASiotal

= (0.5 mol) (8.314 J K™ mol™") x 2.303 log (w)

202.65 kPa
=381 JK".
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4.22 ENTROPY CHANGES IN A FEW TYPICAL CASES

Entropy Changes in
a Reversible Phase
Transformation

Trouton’s Rule

Entropy Change in

an Irreversible Phase
Transition

In this section, we derive expressions for entropy change involved in a few typical
cases given below.

Since the reversible phase transformation takes place at a constant equilibrium
temperature, it is obvious that

AS = Frex
T

where ¢, is the heat involved in the phase transformation. For the transformation
of one mole of a substance at constant pressure, ¢,., is equal to the molar enthalpy
changes of the said transformation, i.e.

qrev = A}IITI
Thus the entropy change per mole of phase transformation is given by

AH,
AS, = _Tm
According to Trouton’s rule, the molar entropy of vaporization of most liquids
which do not involve hydrogen bonding and also do not possess boiling point less

then 150 K is about 10.5 R. Benzene is one of the examples for which we have
AyapH® (benzene) = 31.171 kJ mol™'
T, =353 K
(31171 T mol™")
(353K)
For water which involves hydrogen bondings, the value of A, S° is

vap
(44012 J mol™)

(373K)
which is much larger than 10.5 R, i.e. 87.3 ] K™ mol ™.

Thus  A,,,S° (benzene) = =883 J K mol™

A oS °(water) = =118.0 J K ' mol™!

No such rule exists for entropies of fusion at the melting point. For most
substances

AfusS °< Avaps ¢
as the former involves only condensed phases whereas in the latter a condensed

phase transforms into the chaotic gaseous phase.

As stated earlier, entropy change in an irreversible process can be calculated by
transforming initial state to final state through the reversible paths. For example,
the irreversible phase transformation of one mole of liquid water at —10 °C (77) to
solid water at —10 °C can be calculated following the reversible paths given below.

(i) Heat the supercooled water reversibly (slowly) so that its temperature rises
to 0 °C (7).
(i) Convert the water at 0 °C reversibly to ice at 0 °C.

(iii) Cool the resulting ice reversibly (slowly) till it acquires a temperature of
—-10 °C.
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The corresponding changes in entropies can be calculated as follows:
(1) H,0(1, 263.15 K) — H,0(1, 273.15 K)

T, nC, (OdT
AS = zd_q: 2 p,m() =C, (1) hli
n T Jg T P T

The heat capacity of liquid water is 75.312 J K mol™". Substituting this value
along with 7, = 273.15 K and T = 263.15 K, we get

AS, = (75312 T K~ mol™) x 2.303 x log (M)

263.15 K
=2.809J K ! mol™!
(ii) H,0(1, 273.15 K) — H,0(s, 273.15 K)

ASZ — Jd_q — AfreezH
T T

m

Now A e = — 6 008.2 J mol™". Thus, we get

_ —6088.2 T mol™

, = =-21.996 J K~' mol!
(273.15K)

(i)  H,O(s, 273.15 K) — H,0(s, 263.15 K)

B Tld_q_ LC, m(s)

T
- dT=C, (s)ln=t
AS3 Tz T T2 T p,m( ) T

2

The heat capacity of water in the solid state is 36.401 J K™' mol™!. Thus, we get

263.15 K)

AS; = (36.401 J K ' mol™") x 2.303 x log | 222>
273.15K

=-1.358 J K™' mol™!
Thus, the change in entropy of the process
H,0(1, 263.15 K) — H,0(s, 263.15 K)
is given by

AS,

sys = ASl + ASz + AS3

= (2.809 — 21.996 — 1.358) J K" mol™
=-20.545 J K mol™!

Thus, the transformation of liquid water at —10 °C to solid water is attended
to by a decrease in entropy. Note that from this value alone, it is not possible to
predict whether the said transformation is reversible or irreversible (or spontaneous).
In order to predict this, we have to calculate the change in entropy of the
surroundings and then determine the total change in entropy by adding entropy
changes of the system and surroundings. White evaluating AS,, we assume that
the surroundings receive heat equal to the heat of crystallization at 263.15 K in a
reversible manner at temperature equal to 263.15 K. The value of A, H (263.15 K)
can be obtained from that of Ag,.., H (273.15 K) by using the expression
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Solution

Example 4.22.2

Solution
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Atreez H(263.15 K) — Agyee, H(273.15 K) = (AC,) (AT) (Eq. 3.5.1)
=(36.401 J K mol'! =75.312 J K™! mol™) (10 K)
=389.1 J mol ™!
Thus  Agee,H(263.15 K) = 389.1 J mol ™! + Ay, H(273.15 K)
=389.1 J mol™' — 6 008.2 J mol!
=-5619.1 ] mol!
A, H(263.15K)  5619.17 mol™
T 263.15K
=21.353 J K ! mol™!
and AS a1 = ASgys TAS,

Sys surr
= 20545 TK " mol™ +21.353 J K ! mol
=0.808 J K ! mol™!

Since AS;, = +Ve, the said transformation will be irreversible (or spontaneous)
in nature.

Hence AS=

Calculate the entropy change at 373 K for the transformation
H,0O(1, 1.013 25 bar) = H,O(g, 0.101 325 bar)

Given: A, H =40.668 kJ mol ",

We can calculate the change in entropy from the following steps.

Step I  H,O(1, 1.013 25 bar) — H,0(g, 1.013 25 bar)

_ 40.668 x 10° J mol™!
373K

Step I H,0(g, 1.013 25 bar) — H,0(g, 0.101 325 bar)

=109.03 J K! mol™!

AS;=RIn P _ (8314 T K" mol™") x 2.303 x log [
)2
=19.15 J K" mol™
Total change in entropy is given by
AS = AS; + AS, = 109.03 J K" mol ™! +19.15 J K™ mol !

=128.18 J K mol!

1.013 25 bar
0.101 325 bar

Calculate A U, A H and A_S for the process
1 mole H,O(1, 293 K, 101.325 kPa) — 1 mol H,0O(g, 523 K, 101.325 kPa)

Given the following data:
Cp (1) =75312TK " 'mol™"; C, () =35.982 J K" mol'
Ao at 373 K, 101.325 kPa = 40.668 kJ mol !
The changes in A U, A,H and A_S can be calculated following the reversible paths given
below.
StepI 1 mole H,O(1, 293 K, 101.325 kPa) — 1 mole H,O(1, 373 K, 101.325 kPa)

q,=AH=C, (1) AT= (753121 K" mol™") (80 K ) = 6 024.96 J mol '
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T. o 373K
AS=C, In =2 =(75312J K" mol™") x 2.303 x log | 22
R S ) 203k

=18.184 J K™! mol™!
AU=AH-pAV=AH
Step II 1 mole H,0(1, 373 K, 101.325 kPa) — 1 mole H,0(g, 373 K, 101.325 kPa)
Gy = Ayap H = 40.668 kJ mol!
_ 40668 Jmol ™
373K
AU=AMH-p AV

A.S =109.03 J K mol™!

T

= 40 668 J mol™' — (101.325 kPa) ((22,414 dm’® mol™) X%)

=40 668 J mol”' —3 103 J mol™!
=37 565 ] mol ™!
Step IIT 1 mole H,O (g, 373 K, 101.325 kPa) —1 mole H,O(g, 523 K, 101.325 kPa)
AH=C, (g) AT=(35.982 1K' mol™") (150 K) = 5 397.3 J mol"'
T2

AS =Cp (@ n 7 = (35982 J K mol™) x 2.303 x log 223K
i 373K

= (35982 1K' mol™!) x 2.303 x 0.146 8
=12.164 J K mol™
AU=AH-R(AT)
=5397.3 Jmol! - (8.314 J K™ mol™) (150 K)
=5397.3 Jmol ! —1247.1 Jmol™! =4 150.2 J mol™
Thus AU, = (6 024.96 + 37 565 + 4 150.2) J mol™! = 47 740.16 J mol™!

AH gy = (6 024.96 + 40 668 + 5 397.3 ] mol ™! = 52 090.26 J mol !

otal —

AS, = (18.184 +109.03 + 12.164) J K~ mol™ = 139.378 J K™! mol™!

Example 4.22.3 10 g of ice is heated to become vapour at 373 K and 101.325 kPa. Calculate AS for the
system. Given that
AgysH of ice at 273 K = 33472 J ¢!
A, H of water 373 K =2259.36 ] ¢!

vap
Average specific heat capacity of liquid water = 4.184 J K g’l

Solution The given transformation can be carried out by following the reversible paths given below.

10 g water(s, 273 K, 101.325 kPa) — 10 g water (1, 273 K, 101.325 kPa)

10 g water(1, 273 K, 101.325 kPa) — 10 g water (1, 373 K, 101.325 kPa)

10 g water(1, 373 K, 101.325 kPa) — 10 g water (g, 373 K, 101.325 kPa)
The entropy changes per gram of water in these processes are

_33472)¢"!

273K

=1226) g ' K!
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c,D T. 373K
AS,= | 2Z=2dT=C,(DIn=2=(4.184JK gy In| ===
zJ.T p()Tl( g)mK
=13058JK ' g
-1
AS,= 2293008 _ 6057541k
373K

Thus  AS,i/g of water = AS; + AS, + AS; = 8.588 JK ' ¢!

AS for 10 g =10 % 8.588 8 JK ! = 85.888 J K !

Entropy Change when (Consider two solid bodies of the same material each containing one mole of a

Two Solids at substance. Let one be at higher temperature 7}, and the other at lower temperature
Different T,. Let both of them be brought together. Heat will flow from the hotter body to
Temperatures are the colder till the temperatures of both of them are the same. Let the equilibrium
Brought Together temperature be 7, the value of which can be calculated as follows:

Heat lost by hot body = Heat gained by cold body

Cp,m (Th_ 7= Cp,m (T- Tc)

_ L+ T
)
Consequently, entropy changes of two bodies are

or

T T
88, = [, CpmdT=Cp I -

h
rC T

— p.m —
ASC—JTC T =Cpmin g

The total change in entropy is
AStotal = ASh + ASC

2 2 2
i [P (T2 20T
P 4T, T,

2 2
n Th +7:: _2Th7:: +1
4T, T,

2
:Cp.mln (Th_Tc) +1
41T,

The quantity within brackets will always be greater than one. Hence, the
logarithm of this quantity will always be greater than zero. Thus AS, of this
process is positive, indicating that it is an irreversible process.
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Example 4.22.4 A 50 g mass of Cu at a temperature of 393 K is placed in contact with a 100 g mass of
copper at a temperature of 303 K in a thermally insulated container. Calculate g and A S,
for the reversible process. Use a value 0f 0.418 4 J gfl K™! for the specific heat capacity of
Cu.

Solution We have 50 g copper at 393 K and 100 g copper at 303 K. The temperature of the two
bodies when they have come to thermal equilibrium can be calculated as follows.

Heat gain = Heat loss

mC,(AT)) = myC(AT,) ie. mAT; =mAT,
Therefore

(100 2) (T—-303 K)=(50g) 393 K -1

2T-606 K=393K-T

T'=333K
T
Thus ASy=nC, In —
; T,

- so_g_l (04184 T g ' K (63 g mol ™)} x 2.303 log [ 333K
63 g mol 393 K

=-3.466J K
T
AS,=nC, i In =

100
- (7g]) (0418 47 g K™)(63 g mol ')} x 2303 log [ 333K
63 g mol 303K
=3.951JK!
and  ASy = AS, + AS, = (3.951 —3.466) J K' = 0.485 J K!

Example 4.22.5 5 gice at 273 K is added to 30 g water at 323 K in a thermally insulated container. (a) What is
the final temperature? (b) What is the total entropy change? Use the same physical constants
of water as given in Example 4.22.3.
Solution Heat required to convert 5 g of ice at 273 K to 5 g water at 273 K
=52 (334.721gH=167361
Final temperature after mixing
Heat gained by ice = Heat lost by hot water
(52 (334727 g )+ (5g) (4184 g ' K™ (T - 273 K)
=(30g) (4184 JK ' g (323K -1
1 673.6 J+(20.92 J) (T/K —273) = (125.52 J) (323 — T/K)
Solving for 7, we get
T=30443 K
Entropy changes
Cpm()=(4184T g K (18 gmol ") =75312 T K" mol
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As,, - S o (1) In L
ice T p, m Tl

m

1673.6J+[ 5g

3K ]_1) (75312 T K" mol ') x 2.303 x log (304'43 K)

18 g mo 323K

=6.130J K ' +2280 JK!'=8410JK!

T2
ASyater = nCp. m (D) In ==

T
30g R 304.43K
| 18emol " (75312 J K7 mol ) x 2.303 log
g mol 323K
=_7434K!
ASyial = ASice + ASyier = (8410 — 7.434) J K
=0.976 JK!

4.23 THE THIRD LAW OF THERMODYNAMICS
Planck’s Statement Letone mole of a solid at a constant pressure be heated from 0 K to some temperature
T below its melting point, i.e.
Solid (0 K, p) — Solid (T, p)
According to Eq. (4.16.8), the entropy change in the above process is given by

T C m
AS=ST—SOK=J. L2 dr
ok T
T C m
or ST:SOK+j 2w g7 4.23.1)
ok T

Now since the entropy function increases with increase in temperature, it may be
expected that it has a minimum value at 0 K. In 1913, Max Planck suggested that
this minimum entropy may be assigned a zero value for a pure perfectly crystalline
substance. This suggestion is known as the third law of thermodynamics.

Third Law Entropy  With this, Eq. (4.23.1) reduces to

TCpm
Sr= I —dT 4232
= )T ( )
where Sy is called the third law entropy or simply the entropy at temperature 7" and
pressure p. If the latter has a value of 1 bar then S becomes the standard entropy S7.

Entropy of a Solid  To evaluate the value of Sy for a solid, the heat capacity of the solid should be
known over the range of temperature from absolute zero to the temperature of
interest. Ordinarily, measurements of heat capacity of solid have been made up to
a lower temperature that lies in the range of 10 to 15 K. Below this temperature,
the heat capacity of the solid is determined from the Debye 7-cubed law given as

Cpm=aTl’ (4.23.3)
where a is constant whose value is determined from the value of C,, ,, (or Cy, ;, since

C,, m and Cy , are indistinguishable at these temperatures) at some low temperature.
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Fig. 4.23.1 Schematic plot
of Cp, /T versus T

Fig. 4.23.2 Schematic plot
of Cp,m versus log (7/K)

Entropy of a Liquid

Entropy of a Gas

Tmin C T C Tmin C T
S, = J' e 1L dT+J. —LR 4T = J. PRAT + J. Cpm dT/K)
0K T, 0K T, 1 (T/K)

min min

Tmin C T
- J' P AT 42303 J. C,.m dlog (T/K) (4.23.4)
ok T T ’

where T,,;, is the minimum temperature up to which the value of heat capacity of
the solid is available. The first integral is evaluated using the Debye 7T-cubed law
while the second one is usually evaluated following the graphical method where
either C, /T versus T or C,, ., versus log (7/K) is plotted (Figs. 4.23.1 and 4.23.2).

p,m
The area under either of these curves gives the value of the integral.

By

[\
I

Cp_ m —»
(U8)
I

Cl’- m/ )

10 20 30 0 L L

1 2 3
/K —»
log (T/K) —»

The third law entropy for a liquid at temperature 7 can be determined by following
the steps given below.
(1) Heat the solid substance from 0 K to its melting point T,
(2) Transfrom the substance from solid to liquid at its melting point T,
(3) Heat the liquid from 7, to the required temperature 7.
The addition of entropy changes in the above three processes gives the third
law entropy of the liquid at temperature 7. Thus

'm C S A. H rc 1
Sy :J' 7"’“‘()dr+ e +J. "’m()dT (4.23.5)
ok T T, T, T

m

Similarly, for a gas above its boiling point, the third law entropy is given as

S, = J‘T'“ Cp.m(s) dT + AfusHm 5 ITb Cp,m(l)dT AvapH $ JT Cp. m(g) dT
Ty

+
0K T T T T T, T

m

(4.23.6)
Figure 4.23 depicts the entropy variation as governed by Eq. (4.23.6)
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A,,S

vap
s 1

Fig. 4.23.3 Variation of

entropy of a substance 0 1 1

with temperature T; T,
T —

If the solid under study undergoes any transition from one crystalline from to
another, the entropy of transition
Aps= el 4.23.7
trs® T T ( e )

should also be added in the above entropy expressions.

Example 4.23.1 Calculate the third law entropy of a substance at 350 K using the following data.
(i) Heat capacity of solid from 0 K to normal melting point 200 K
Cp. m(s) = [0.035 (T/K) + 0.001 2 (7/K)*] J K" mol !
(i) Enthalpy of fusion = 7.5 kJ mol™!
(iii) Heat capacity of liquid from 200 K to normal boiling point 300 K
Cp, m(1) = [60 +0.016 (T/K)] J K™ mol™!
(iv) Enthalpy of vaporization = 30 kJ mol™!
(v) Heat capacity of gas from 300 K to 350 K at 1 atm
C, m(@ =500 JK™" mol ™!

Solution Entropy changes for the given five steps are as follows.
InC, n(5)
(i) AS, = J —L2—dT
ok T

200K 2
0.035(T /K) +0.0012 (T /K
AS/J K mol ™! = J’ T/K)+ TRY 4r

0K T
00012 .,
= 0,035 (200 - 0) + ~—— (200% - 0%)

=7.0+24=310

_ Ay H _715%10°
T, 200

m

(i) AS, JK ' mol™ =37.5 T K! mol™

HCym®
(iif) AS; = J B—dT
T T

m
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300K 60 +0.016 (T /K
AS;/TK! mor1=J. 60+ 0.016(T/K) 4
200K

_601n -2 0,016 (300 - 200
—60n S0 2016 (300—-200)
= 2433 + 1.60 = 25.93

. A 30x10°
(@iv) AS, = =—

= TK ' mol™ =100 J K mol™
T, 300 mo mo

e
V) ASs = j Con® p
r, T

350K

50.0 350
ASs/JK " mol ™! = J—dT (500)1nm,771

300K

Thus, the third law entropy of the substance at 350 K is
Sp=AS; +AS, + AS; + AS, + ASs
=(31.0 +37.5 + 25.93 + 100 + 7.71) J K" mol”!
=202.14 JK ' mol’
4.24 ENTROPY OF REACTION AND ITS TEMPERATURE AND PRESSURE DEPENDENCE

Expression of Entropy Consider a general reaction
of Reaction 0=3 B

The amount of species with the progress of reaction is given by expression
ng = (ng)y + Va8

where (np), is the amount of species B in the beginning of the reaction and ng is
the corresponding amount when the reaction has proceeded to the extent &.

For an infinitesimal change in extent of reaction, the change in the amount of
species B is

dnB = VB dé

The corresponding entropy change of the reaction is

dS = X S,(B) dng = X S,(B) (v dS)
B B
By definition, entropy of reaction is given as

oS

AS= ( 5 éj =25 Vg S.(B) (4.24.1)
T,p

that is, entropy change of a reaction is the rate of change of entropy with extent

of reaction. It is equal to the entropy change per unit extent of reaction. The unit

of A, Sis J K mol,
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From Eq. (4.24.1), it follows that the standard entropy of reaction is computed
from the tabulated data in much the same ways as the standard change in enthalpy.
However, there is one important difference—the standard entropy of element in
its stable state of aggregation at 1 bar at 25 °C is not assigned a conventional
value of zero, but is determined through the third law of thermodynamics. As an
example, in the reaction

Fe,05(s) + 3Hy(g) — 2 Fe(s) + 3H,0(1)
the standard entropy change is given by
A.S° =3 vgSe(B)
B

Le. ArSO = ;roducts -
Since  SSroducts = 25 % (Fe, s) + 355, (H,0, 1)
and S(r)eactants = S?n(FeZO% S) + 3S?n(H2’ g)

therefore A.S° = [25° (Fe, s) + 35°,(H,0, )] — [S2,(Fe,05, s) + 352 (H,, g)]

o
reactants

The table of standard entropies (Appendix I) gives
A S°={2(27.28) + 3 (69.91) — 87.40 — 3 (130.68)} J K™ mol™!
=-215.15J K" mol™!

The entropy of reaction is more if there is a change in the value of Av, (the
change in the stoichiometric number of gaseous species), since entropy of gases
is much larger than the entropy of condensed phases.

The change in the value of A S° for a reaction with temperature can be computed
as follows:

Since  A.8°= 2% vgSn(B)
B

B(ArS°)) _ BS;’1 (B)
therefore (—aT ; = ;VB (—BT ]p

Cpm(® _AC,

= >V 4.24.2
% T - (4.24.2)
AC,
Thus  d(A,S°) = TdT (p constant)

Integrating this within the limits 7, and 7, we obtain

r TAC
J' da.s9y = [ Zzar
T, T

T
AC

T
or AST—AST = JT er dr (4.24.3)
0
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Example 4.24.1

Solution

In order to carry out the above integration we need the temperature dependence
of A,C,. Two cases may be considered as given below.

A,C, independent of temperature In this case, we have

o [ J— T
ASF-AST,=AC,In (Foj (4.24.4)
A,C, dependent on temperature As usual, the variation of C,, with temperature

may be expressed as
C,=a+bT+cT?+ -
where a, b, c, ... are constants. Thus, the variation of AGC with temperature is

given by
AC,=(Aa) + (AD) T+ (Ape) TP+ -
Substituting this in Eq. (4.24.3), we get

(A
AS§—ASG = JT( Tf“+Arb+(Arc)T+---)dT
0

which on integration gives

T Ac
A5G- AST,=Aaln (;j+ Ab(T =T+ =5 (T2 =T + -
0
(4.24.5)
Calculate A S§45 for the reaction
1
5 Nx(g) + Ox(g) = NO(g)
Given: At 298 K, the standard entropies are
S9Ny, ) =191.61 JK ' mol™";  §9,(0,, g) =161.06 J K™ mol*

52 (NO,, g) =240.06 J K~ mol!

and heat capacities are
C,(Np, 2)=29.13JK "mol™";  C,(0,,2)=29.36 JK ' mol'
C,(NO,, g) = 37.20 J K" mol ™’

We have

1
AS%,=5°(NOp g) ~ — S°(N;, ©) = §°(02, ©)
= (240.06 - % x191.61 - 161.06) JK ' mol!'=-16.805J K! mol!

1
Arcp = Cp. m(NOZ* g) - 5 Cp. m(NZ’ g) - Cp. m(OZ’ g)

= (37.20 - % x29.13 - 29.36) JK ' 'mol'=-6.725 T K" mol!



Example 4.24.2

Solution
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Substituting the above data in the expression
‘0 -_— o T
ASy =A% +A,C,In T
348 IR
we get AS%4gk = | —16.805 + (—6.725) In 508 J K™ mol
= 17.85JK " mol™
Calculate A, SS43x = for the reaction
1
5 Ny(g) + Oy(g) = NOy(g)
Given: At 298 K, the standard entropies are
52 (Ny, ) = 191.61 J K ! mol™; 5°(0,, ) =161.06 J K~! mol™!

52 (NO,, g) = 240.06 J K~ mol!

and heat capacities are
C,(Ny, @)/J K™ mol™! = 28.46 +2.26 x 107 (T/K)
C,(Oy, 2)J K mol™! = 26.85 +8.49 x 107 (T/K)
C,(NO,, g)/T K" mol™' =27.78 + 30.85 x 107 (T/K)

For the given reaction

1
ArS30sk = % VBSm(B) = S1n(NO) == SN2 = 57(02)

227

= (240.06—%x 191.61— 161.06) JK ' mol' = 16.81 J K™' mol™

Representing C,, = a + bT, we have
AC,=Aa+ (A DT

= [(27.78 - % X 28.46 — 26.85) + (30.85 - % x2.26 - 8.49)

x1073 (T/K)} JK ™ mol™

=[-13.30 +21.23 x 10~ (7/K)] I K™' mol™

Substituting this expression in the equation

T TAC
|- daso)= j —Trgr
7, T

Ty

T 13.30 21.23%x1073
eget ASS—A.S% = - dr +
we g ™ T o Ty (JTO T K

dTJ JK ' mol™!

-3
= |-1330m L4 212X107
I K

T - To)} JK ! mol™!
0
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Substituting 7 = 348 K and T, = 298 K along with A S35 x = —16.81 J K™! mol™!, we get

A, SSige = [716.81 ~13.30 In ;igz +21.23x1073(348 — 298)] JK ! mol™

= (~16.81 —2.06 + 1.06) J K™! mol™!
=-17.81 J K mol™!

Effect of Pressureon Since A S= % Vg Sp(B)

Entropy of Reaction

Example 4.24.3

Solution

oS
therefore M =YV, m, B
ap T B ap T

From Eq. (4.15.14), we get
A I
p |, aT ),

Substituting this in the previous expression, we get

IAS)) _ Wns | _  (9AYV)
( 5 l_ %VB( - l_ (—BT l (4.24.6)

Since the variation in volume with temperature for condensed systems is
usually very small, we include only gaseous constituents in the differential
(0A ,V/9T). Assuming deal behaviour for gaseous constituents, we have

AV=2vV o= 2v(RT/p)=( X vy \(RT/p)=(Av,) RT/
r B(@) B"m,B B(@) B( P) (B(g) B)( P) ( é) P

IAS) ) _ (9 __,, R
Hence ( » l— ( T l,_ Avgp (4.24.7)

where Av, = B;)VB(B) = Y V,(product) — 3| v,(reactant) |
g

The integrated form of Eq. (4.24.7) is

_ p
AS, ~AS, == AV, Rn ;? (4.24.8)

From Eq. (4.24.7) or (4.24.8), it follows that A_.S of a reaction increases with
increase in pressure if Av, is negative and it decreases if Av, is positive.

Calculate A, S for the reaction
1
> Ny(g) + Ox(g) = NOy(g) A S3ogx =~ 16.81 J K™ mol™!

at 5 bar pressure and 298 K.
Substituting the given date in the expression

Ay, — 885 == (Av) Rln %
1
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we get

AS, = [—16.81—(—%)(8.314) In Gﬂ J K" mol™

= (-16.81 + 6.69) J K" mol!
=-10.12 J K ! mol™!

4.25 ENTROPY AND PROBABILITY

Introduction
to Statistical
Thermodynamics

Statistical Model of
Tossing a Coin

Microstates
Associated with the
Coin Tossed Twice

A thermodynamic system is a macro system consisting of a large number of
molecules. In establishing the various thermodynamic functions, the structural
model of the system is nowhere required. In fact, all thermodynamic properties
of a system can be derived without knowing whether the system is composed of
atoms or molecules and how these are moving or interacting with one another. It
is possible to develop a subject known as statistical thermodynamics where the
properties of a system can be studied by treating the molecules on a statistical
formalism. Such a study has shown that there exists a relationship between the
entropy of the system and its probability. In establishing this relationship, we are
not concerned with the motion of the particles but only with the number of ways
of distributing the particles in the given energy levels or in a given volume. The
various distributions are known as the various complexions or the microscopic
states of the system.

The essential results of the statistical analysis can be easily obtained by considering
simple, convenient mathematical models. For example, the number of ways of
distributing the molecules in a given volume can be replaced by a model of
distributing the given number of balls (equal to the number of molecules) in a
given number of boxes. The latter may be assumed to be proportional to the given
volume. Before considering this, we take another example of tossing a well-balanced
coin repeatedly. We build the model step by step as given below.

Since the coin is well-balanced and is being played by an unbiased person, it is
obvious that the outcome of the second toss is in no way related to the outcome
of the first toss, i.e. the first toss can have no effect on the outcome of the second
toss. If the first toss is head, the outcome of the second toss can be either head or
tail and if the first toss is tail, the outcome of the second toss can again be either
head or tail. This is predicted as follows:

First Second Nature of Nature and
toss toss combination number of microstates
....................... Heeeeooveereeene HH (i) 2H and OT; HH; one
1 ..
....................... Phewamavmesand LT (ii) 1Hand IT; HT}. e
THI’
........................ | R N - |

¢
........................ Tissmwanaoman T (ii1) OH and 2T; TT; one
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We may regard all four results as equally probable. Each of these results is
considered to be a distinct microstate. There are only three configurations which
reflect the total number of heads and tails, irrespective of the order in which they
are obtained. These are

2H,1Hand 1 T,and 2 T

It can be seen that the number of microstates associated with each of these
configurations are one, two and one, respectively. Thus, it follows that the 1H and
IT possibility is twice as likely to materialize as either of the other two
configurations, that is 2H and 0T and OH and 2T.

Microstates Asso-  The results of the analysis are:
ciated with the Coin

Tossed Four Times First Second  Third  Fourth Nature of Nature and
toss toss toss toss combination number of microstates
H H H< .......... H ............ HHHH ()4H dOT HHHH
......................... 1 an : ;one
........... T............H H H T
< .......... Heoeveeeeens HHTH (ii)}Hand]T; HHHT
H ............ H ............. T H H T H
........... Teeeeees HHT T HTHH four
THHH
< .......... Heeeeeereeees HTHH(111)2Hand2T, HHTT
H ............ T ............. H H T H T
........... T HTHT THHT! .
.......... HHTTH HTTH SIX
H ............ T ............. T < T H T H
........... T............HTTT TTHH
.......... H............T H H H
T ............ H ............. H
< ........... R THHT
< .......... b T THTH (iv) IHand3T; HTTT
T ............ H ............. T
........... T THTT ¥¥I’§¥ four
Tasssssvssssd Tesssssmnsis H < .......... i pyl TTTH
........... T TTHT
.......... H............T T T H
Dpmcnsmene s encromasee T s T TTTT (V)OHand4T; TTTT; one

It can be seen from this analysis that the uniform distribution of 2H and 2T is
larger than any of the nonuniform distribution of 4H and 0T, 3H and 1T, 1H and
3T, and OH and 4T. Thus out of all these configurations, the 1 : 1 mixture of heads
and tails is the predominant configuration.

Definition of A-ratios We can measure all other configurations relative to the predominant configuration,
by defining the ratio-term (4) as given below.

y Number of microstates associated with configuration X
X =

Number of microstates associated with 1:1 mixture
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The A-ratios in the above case are

AI AH AHI AIV AV
0.166 0.666 1.000 0.666 0.166

In a similar way, we can analyse the results of playing the coin many times.
The number of microstates () associated with each of the (N + 1) possible
configurations can be calculated using the formula

S (4.25.1)
H!T!

where N is the number of times the coin is played and H and T are the respective
number of heads and tails in a particular configuration. Knowing 7, we can
easily calculate the A-ratio, relative to the predominant (1 : 1) configuration. If
smooth curves are drawn through the A-ratios plotted against the corresponding
configuration index number H/N for increasing value of N, we get graphs as shown
in Fig. 4.25.1.

1.0
0.8 |-
®
T 0.6 [~ %3
=] ' ;:
g 04l § 7 i
= " ... .: . ‘.‘ .i‘
0.2 P ST rel A8 T
Fig. 4.25.1 Plots of A-ratio ,."' S LA L Bagn a2
Y . © e SRR e ‘. ®
versus configuration index 0 ] || L® |
number for increasing 0.2 0.4 0.6 0.8 1.0
value of N

Configuration index number, H/N —

It can be seen from the graph that as  increases the larger proportion of microstates
are associated with the small set of configurations having H/N values falling in the
range of 0.45 to 0.55. If N is extremely large, then it becomes highly probable that
no actual set of N tosses will yield configurations having H/N appreciably different
from 0.5. In other words, the probability of getting a uniform distribution if the
coin is played unbiased becomes maximum whereas the probability of getting a
nonuniform distribution becomes vanishingly lower. The same kind of analysis is
applicable to other statistical analysis. Thus we conclude:

Out of the very large number of microstates that can be assumed by any large
assembly, majority of them arise from one comparatively small set of configurations
centred around, and very similar to the predominant configuration.
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