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 Preface

  in recent years, the teaching curriculum of Physical Chemistry in many indian 

universities has been restructured with a greater emphasis on a theoretical and 

conceptual methodology and the applications of the underlying basic concepts and 

principles. This shift in the emphasis, as i have observed, has unduly frightened 

undergraduates whose performance in Physical Chemistry has been otherwise 

generally far from satisfactory. This poor performance is partly because of the 

non-availability of a comprehensive textbook which also lays adequate stress on 

the logical deduction and solution of numericals and related problems. Naturally, 

the students find themselves unduly constrained when they are forced to refer to 

various books to collect the necessary reading material.

    it is primarily to help these students that i have ventured to present a textbook 

which provides a systematic and comprehensive coverage of the theory as well as 

of the illustration of the applications thereof.

    The present volumes grew out of more than a decade of classroom teaching 

through lecture notes and assignments prepared for my students of BSc (General) 

and BSc (honours). The schematic structure of the book is assigned to cover 

the major topics of Physical Chemistry in six different volumes. Volume I 

discusses the states of matter and ions in solutions. It comprises five chapters 

on the gaseous state, physical properties of liquids, solid state, ionic equilibria 

and conductance. Volume II describes the basic principles of thermodynamics 

and chemical equilibrium in seven chapters, viz., introduction and mathematical 

background, zeroth and first laws of thermodynamics, thermochemistry, second 

law of thermodynamics, criteria for equilibrium and A and G functions, systems 

of variable composition, and thermodynamics of chemical reactions. Volume III 

seeks to present the applications of thermodynamics to the equilibria between 

phases, colligative properties, phase rule, solutions, phase diagrams of one-, 

two- and three-component systems, and electrochemical cells. Volume IV deals 

with quantum chemistry, molecular spectroscopy and applications of molecular 

symmetry. it focuses on atomic structure, chemical bonding, electrical and 

magnetic properties, molecular spectroscopy and applications of molecular 

symmetry.  Volume V covers dynamics of chemical reactions, statistical and 

irreversible thermodynamics, and macromolecules in six chapters, viz., adsorption, 

chemical kinetics, photochemistry, statistical thermodynamics, macromolecules 

and introduction to irreversible processes. Volume VI describes computational 

aspects in physical chemistry in three chapters, viz., synopsis of commonly used 

statements in BASiC language, list of programs, and projects.

    The study of Physical Chemistry is incomplete if students confine themselves 

to the ambit of theoretical discussions of the subject. They must grasp the practical 

significance of the basic theory in all its ramifications and develop a clear 

perspective to appreciate various problems and how they can be solved.
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    it is here that these volumes merit mention. Apart from having a lucid style 

and simplicity of expression, each has a wealth of carefully selected examples and 

solved illustrations. Further, three types of problems with different objectives in 

view are listed at the end of each chapter: (1) Revisionary Problems, (2) Try Yourself 

Problems, and (3) Numerical Problems. Under Revisionary Problems, only those 

problems pertaining to the text are included which should afford an opportunity to 

the students in self-evaluation. in Try Yourself Problems, the problems related to 

the text but not highlighted therein are provided. Such problems will help students 

extend their knowledge of the chapter to closely related problems. Finally, unsolved 

Numerical Problems are pieced together for students to practice.

    Though the volumes are written on the basis of the syllabi prescribed for 

undergraduate courses of the University of Delhi, they will also prove useful to 

students of other universities, since the content of physical chemistry remains the same 

everywhere. in general, the Si units (Systeme International d’ unite’s), along with some 

of the common non-Si units such as atm, mmhg, etc., have been used in the books.

 Salient Features

 ∑  Comprehensive coverage to basic principles of thermodynamics and chemical 

equilibrium in seven chapters, viz., introduction and mathematical background, 

zeroth and first laws of thermodynamics, thermochemistry, second law of 

thermodynamics, equilibrium criteria  A and G functions, systems of variable 

composition, and thermodynamics of chemical reactions

 ∑  emphasis given to applications and principles

 ∑  explanation of equations in the form of solved problems and numericals

 ∑  iUPAC recommendations and Si units have been adopted throughout

 ∑  Rich and illustrious pedagogy
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Introduction to

Thermodynamics1

1.1 SCOPE OF THERMODYNAMICS

The subject of thermodynamics deals basically with the interaction of one body 

with another in terms of the quantities of heat and work.† The entire formulation 

of thermodynamics is based on two fundamental laws which have been established 

on the basis of the experimental behaviour of macroscopic aggregates of matter, 

collected over a long period of time. There is no known example which contradicts 

the two fundamental laws of thermodynamics. With the help of mathematical tools, 

and engineering.

The science which deals with the macroscopic properties of matter is known as 

classical thermodynamics. Here, the entire formulation can be developed without the 

knowledge that matter consists of atoms and molecules. Statistical thermodynamics 

is another branch of science which is based on statistical mechanics and which 

deals with the calculation of thermodynamic properties of matter from the classical 

or quantum mechanical behaviour of a large congregation of atoms or molecules.

With the help of thermodynamic principles, the experimental criteria for 

equilibrium or for the spontaneity of processes are readily established. The 

† The concepts of heat and work are of fundamental importance in thermodynamics. Both 

these quantities change the internal energy of the system. Heat is best understood in terms 

of increase or decrease in temperature of a system when it is added to or removed from the 

system. The convenient unit of heat is calorie (non-SI unit) which is the heat required to 

raise the temperature of 1 g of water at 15 °C by 1 degree Celsius. The most common work 

involved in thermodynamics is the work of expansion or compression of a system. This work 

is best understood in terms of lifting up or lowering down a mass (say, m) through a distance 

(say, h) in the surroundings; the magnitude of work involved is mgh (see also sections 1.4 

and 1.5). Both heat and work have common characteristics of (i) appearing at the boundary 

of the system, (ii) causing a change in the state of system, and (iii) producing equivalent and 

fact (known as mechanical equivalent of heat) involving the work and heat. This fact states 

that the expenditure of a given amount of work, no matter whatever is its origin, always 

produces the same quantity of heat; 4.184 joules of work is equivalent to 1 calorie of heat. 

In SI units, both heat and work are expressed in joules. Since heat given to the system and 

work done on the system increase the internal energy of the system, these two operations 

are assigned positive values. The converse of these two operations, viz., heat given out and 

work done by the system are assigned negative values.
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equilibrium conditions for any system, in equilibrium state or otherwise, may be 

calculated. The result of such calculations will indicate the direction the system 

will take to achieve equilibrium. However, time is not a thermodynamic variable 

and so thermodynamics cannot give any information about the length of time which 

would be required for any process to be completed.

The following examples may be helpful.

(1) Liquid water at –10 °C and 0.1 MPa pressure is unstable with respect to ice 

at the same temperature and pressure. However, water can be supercooled 

to –10 °C and 0.1 MPa pressure and be maintained at that temperature and 

pressure for a long time.

(2) Acetylene gas is thermodynamically unstable with respect to graphite 

and hydrogen gas. However, no one has observed acetylene decompose 

spontaneously into graphite and hydrogen. Thus, acetylene may take very 

long time to decompose into graphite and hydrogen gas. The only thing that 

is predicted by thermodynamics is that had acetylene been in equilibrium with 

graphite and hydrogen, the concentration of acetylene would have been extremely 

small and thus essentially only graphite and hydrogen would be present.

(3) Combination of H2 and O2 to give water is thermodynamically possible. 

Nevertheless, both gases can co-exist without combining for a long time.

For chemical reactions, thermodynamics can be used to predict the extent of 

reaction at equilibrium, that is, the equilibrium concentrations of all the active 

species. In addition, we can predict whether changes in the experimental conditions 

will increase or decrease the quantity of a product at equilibrium.

1.2 BASIC DEFINITIONS

System The system is any region of space being investigated.

A system, in general, can be of three types:

(a) Closed system Matter can neither be added to nor removed from it.

(b) Open system To this system, matter can be added or removed.

(c) Isolated system This type of system has no interaction with its surroundings.

Neither energy nor matter can be transferred to or from it.

Surroundings The surroundings are considered to be all other matter that can interact with the 

system.

Boundary Anything which separates system and surroundings is called boundary (envelope or 

wall). The envelope may be imaginary or real; it may be rigid or non-rigid; it may 

be a conductor of heat (diathermic wall) or a non-conductor of heat (adiabatic wall).

State Variables

variables. Such variables are macroscopic properties such as pressure, volume, 

temperature, mass, composition, surface area, etc. Normally, specifying the values 
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system completely, we need to state the values of only three variables, namely, 

p, V and T. The values of other variables (say, for example, amount of the gas, 

Intensive and intensive or extensive

Extensive Variables

alternating the state of the entire system. Those variables whose values on division 

remain the same in any part of the system are called intensive variables. Those 

variables whose values in any part of the divided system are different from the 

values of the entire system are called extensive variables. The magnitudes of 

extensive variables are proportional to the mass of the system provided the values 

of all the intensive variables are kept constant.

Examples of Examples of intensive and extensive variables are given in the following. 

Intensive and Intensive variables Temperature, pressure, concentration, density, dipole moment,

Extensive Variables

dry cell.

Extensive variables Volume, energy, heat capacity, enthalpy, entropy, free energy, 

length and mass.

Process A process is the path along which a change of state takes place. The process can

may depend on the nature of the process.

Isothermal process This occurs under constant temperature condition.

Isobaric process This occurs under constant pressure condition.

Isochoric process This occurs under constant volume condition.

Adiabatic process  This occurs under the condition that heat can neither be 

added to nor removed from the system.

Cyclic process  It is a process in which a system undergoes a series of 

changes and ultimately comes back to the initial state.

Quasi-static (or reversible) process If a process is carried out in such a way that 

the process is called a quasi-static process. At every instant, the system remains 

virtually in a state of equilibrium.

1.3 MATHEMATICAL BACKGROUND

A great part of thermodynamics is concerned with the change of a thermodynamic 

property with a change of some independent variable. The mathematical operations 

used in such derivations are simple differentiations, partial differentiations and 

integration. In addition, the concepts of exact differentials, inexact differentials 

and line integrals are commonly used.

Partial Derivatives Such type of derivatives arise when a function having two or more independent 
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function with respect to one of the independent variables when all other independent 

variables are kept constant.

First Derivatives Consider a single-valued function Z of two independent variables x and y; this is

usually written as Z = f (x, y) or Z(x, y). If one of the independent variables is held 

constant, then Z becomes a function of the other variable alone. Partial derivatives 

∂
∂

Ê
ËÁ

ˆ
¯̃

Z

x y

 = lim
( , ) ( , )

D

D
Dx

Z x x y Z x y

xÆ

+ -
0
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∂
∂

Ê
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ˆ
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y x
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( , ) ( , )
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Z x y y Z x y

yÆ

+ -
0

Partial derivatives are evaluated by the rules for ordinary differentiation, treating 

the appropriate variables as constants. For example, the volume of one mole 

of an ideal gas, given by Vm = RT/p, is a function of temperature and pressure, i.e. 

Vm = f (T, p). Thus

∂
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Second Derivatives Since partial derivatives are themselves functions of the independent variables, they 

can be differentiated again to yield second (and higher) derivatives. If Z = f (x, y),

Z/dx)y and (dZ/dy)x and the second derivatives are
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Euler’s Reciprocity When a function and its derivative are single valued and continuous, the order of 

Relation differentiation in the mixed derivatives is immaterial. Thus

∂
∂ ∂

=
∂
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2 2Z
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Z

y x
(1.3.1)

Equation (1.3.1) is known as Euler’s reciprocity relation (or cross-derivative 

rule). It is applicable to the thermodynamic functions. For an ideal gas. We have
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Total Differentials We have considered so far changes in Z(x, y) brought about by changing one of 

the independent variables at a time. The more general case involves simultaneous 
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variations of x and y. Let DZ be the small change in Z brought by simultaneous 

increments x and y in the independent variables. Thus

DZ = Z(x + Dx, y + Dy) – Z(x, y)

Adding and subtracting the quantity Z(x, y + Dy), we get

 DZ = [Z(x + Dx, y + Dy) – Z(x, y + Dy)] + [Z(x, y + Dy) – Z(x, y)]

Dx and

that within the second bracket by Dy, we get

DZ =
Z x x y y Z x y y

x
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y
y
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Approaching the limit Dx Æ 0 and Dy Æ 0 the two bracketed quantities become 

partial derivatives, while the increments Dx, Dy, DZ can be replaced by the 

differentials dx, dy, dZ, respectively. Thus, the total differential of the function 
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Relations between To determine the change in the value of the thermodynamic function caused by a

Partial Derivatives change in one or more state variables, it is necessary to express the partial derivatives 

of the function in terms of experimentally observable quantities. Certain relation 

between partial derivatives which facilitate obtaining the required expressions are 

derived below.
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Substituting Eq. (1.3.2) in Eq. (1.3.3), we get

dx =
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
Ǫ̂

+
∂
∂

Ê
ËÁ

ˆ
¯̃

x

u

u

x
x

u

y
y

x

yy y x u

d d dyy

or 1-
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ =

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

∂u

x

x

u
x

x

y

x

u

u

y y u y

d
∂∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

y
y

x

d (1.3.4)
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The variables x and y are independent. If y is held constant, i.e. dy = 0, then 

Eq. (1.3.4) becomes

1 0-
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ =

u

x

x

u
x

y y

d

But dx may have any value and therefore the term within the bracket must be 

zero. Thus

1 0
1

-
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂ ∂
u

x

x

u

u

x x uy y y y

or
( / )

(1.3.5)

that is, the partial derivative is equal to the reciprocal of the partial derivative 

between the same two variables taken in opposite order, provided the same variables 

are held constant.

Cyclic Rule If x is held constant, i.e. dx = 0, then Eq. (1.3.4) yields

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

=
x

y

x

u

u

yu y x

0 (1.3.6)

This equation can be written in several different forms such as

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂ ∂( )
∂ ∂

x

y

u y

u xu

x

y

/

( / )
(1.3.7a)

or
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ + =

u

x

x

y

y

uy u x

1 0 (1.3.7b)

Equation (1.3.7b) is known as a cyclic rule and is applicable for any three variables 

of which only two are independent.

(ii) Consider again the function u = f (x, y). Let y = f (x, s). The differential of y in 

terms of x and s is

dy = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

y

x
x

y

s
s

s x

d d (1.3.8)

But if u = f (x, y) and y = f (x, s), then u = f (x, s). Writing the differential of u

in terms of x and s, we have

du = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

u

x
x

u

s
s

s x

d d (1.3.9)

The differential of u in terms of x and y is

du = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

u

x
x

u

y
y

y x

d d (1.3.10)

Substituting dy from Eq. (1.3.8) into this, we get

du = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
Ë

ˆ
¯

È

Î
Í

˘

˚
˙ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
Ë

ˆ
¯

u

x

u

y

y

x
x

u

y

y

sy x s x

d
xx

sd (1.3.11)

u

y x

x y

u
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x and 

ds in them must be the same, i.e.

∂
∂

Ê
ËÁ

ˆ
¯̃

u

x s

 = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
Ë

ˆ
¯

u

x

u

y

y

xy x s

(1.3.12a)

and
∂
∂

Ê
Ë

ˆ
¯

u

s x

 = 
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
Ë

ˆ
¯

u

y

y

sx x

(1.3.12b)

Equations (1.3.12a) and (1.3.12b) can be evaluated directly from Eq. (1.3.10). 

Dividing Eq. (1.3.10) by dx and introducing the condition of s being constant gives 

Eq. (1.3.12a). Similarly, dividing Eq. (1.3.10) by ds and introducing the condition 

of x being constant gives Eq. (1.3.12b).

(iii) If the two independent variables in a function u = f (x, y) are also functions of 

two other independent variables x = f (s, t), and y = f (s, t), then the function u also 

becomes a function of s and t. The differentials of these functions are

du = 
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

u

x
x

u

y
y

y x

d d (1.3.13)

dx = ∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

x

s
s

x

t
t

t s

d d (1.3.14)

dy = ∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

y

s
s

y

t
t

t s

d d (1.3.15)

du = ∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

u

s
s

u

t
t

t s

d d (1.3.16)

Substituting dx and dy from Eqs (1.3.14) and (1.3.15) in Eq. (1.3.13), we get

du =
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ +

∂
∂

u

x

x

s

u

y

y

s
s

u

xy t x t

d
ÊÊ
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

y s x s

x

t

u

y

y

t
td

(1.3.17)

Comparing Eqs (1.3.16) and (1.3.17), we get

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

u

s

u

x

x

s

u

y

y

st y t x t

(1.3.18)

and
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

u

t

u

x

x

t

u

y

y

ts y s x s

(1.3.19)

Equations (1.3.18) and (1.3.19) can also be obtained directly from Eq. (1.3.13). 

Dividing Eq. (1.3.13) by ds and introducing the conditions of constant t, we get 

Eq. (1.13.18). Similarly, Eq. (1.3.19) can be derived by dividing Eq. (1.3.13) by 

dt and introducing the condition of constant s.
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The following equations can also be derived from Eq. (1.3.13).

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ =

u

x

x

u

u

y

y

uy xu u

1 (1.3.20)

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ =

u

x

x u

y

y

y u x uu u
0 (1.3.21)

where u is a function of x and y.

Problem 1.3.1 Derive the cyclic rule

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

+ =
p

T

T

V

V

pV p T

1 0

Solution Since p = f (V, T), we have

dp = 
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

p

T
T

p

V
V

V T

d d

For a cyclic process, dp = 0, so that

∂
∂

Ê
ËÁ

ˆ
¯̃ ∂( ) +

∂
∂

Ê
ËÁ

ˆ
¯̃ ∂( ) =

p

T
T

p

V
V

V
p

T
p

0

Dividing by (∂V)p, we have

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯

p

T

T

V

p

V

p

T

T

VV p T V

0 or ˜̃ = -
∂
∂

Ê
ËÁ

ˆ
¯̃

p T

p

V

or
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

+ =
p

T

T

V

V

pV p T

1 0

Problem 1.3.2 Test the cyclic rule of Problem 1.3.1 for pVm = RT.

Solution Differentiating the given equation pVm = RT, we have

p dVm + Vm dp = R dT

Dividing this equation by dT and introducing the condition of constant molar volume, we get

V
p

T
R

p

T

R

VV V
m

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ =

m m m

i.e.

Similarly, we have

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
T

V

p

R

V

p

V

p
p Tm

m mand

Now substituting these in the cyclic rule of Problem 1.3.1, we get

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

+ =
Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ -

p

T

T

V

V

p

R

V

p

R

V

V p Tm m

m

m

1 mm

p

Ê
ËÁ

ˆ
¯̃

+ = - + =1 1 1 0

Problem 1.3.3 Test the cyclic rule for

p
a

V
V RT+

Ê
ËÁ

ˆ
¯̃

( ) =
m
2 m
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Solution Writing the given equation as

pV
a

V
RTm +

Ê
ËÁ

ˆ
¯̃

=
m

and then differentiating, we have

p V p
a

V
V R Td d d dm m

m

mV + - =
2

Dividing by dT and introducing the condition of constant volume, i.e. dVm = 0, we get

V
p

T
R

p

T

R

VV V
m

m m m

i.e.
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ =

Similarly, we have

∂
∂

Ê
ËÁ

ˆ
¯̃

=
- ∂

∂
Ê
ËÁ

ˆ
¯̃

= -
-

T

V

p a V

R

V

p

V

p a Vp Tm

m
2

m m

m

and
/

/ 2

Substituting these in the cyclic rule, we get

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

+ =
Ê
ËÁ

ˆ
¯̃

-Ê
Ë

p

T

T

V

V

p

R

V

p a V

RV p Tm m

m

m

m
2

1
/

ÁÁ
ˆ
¯̃

-
-

Ê
ËÁ

ˆ
¯̃

+ = - + =
V

p a V

m

m/ 2
1 1 1 0

Ordinary Integration

f x x f x x
n xa

b

i

i

n

i
i

( ) lim lim ( )d =
Æ• Æ =

Ú Â
D

D
0

1

(1.3.22)

where Dxi = xi+ 1 – xi with x1 = a and xn+1 = b.

The geometrical interpretation of the above integral as an area is illustrated in 

Fig. 1.3.1.

y = f x( )

bxi
a

y

The operation of integration is the inverse of that of differentiation. Thus

f x x F b F a
a

b
( ) ( ) ( )dÚ = - (1.3.23)

where
d

d

F x

x
f x

( )
( )= (1.3.24)

Fig. 1.3.1 Geometrical

interpretation of

the integral
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D Dx
i i

i
ii

F x F x

x
f xÆ

+ -
=0

1lim ( ) ( )
( ) (1.3.25)

Substituting this in Eq. (1.3.22), we get

[ ( ) ( )] ( ) ( )F x F x F b F ai

i

n

i+
=
Â - = -1

1

(1.3.26)

which establishes Eq. (1.3.23). Using Eq. (1.3.24) in Eq. (1.3.23), we have

dF x F b F a
a

b

Ú = -( ) ( ) ( ) (1.3.27)

boundary values of a function.

Indefinite Integral If the integration is done without the limit of integration, it is then called an 

integral. In this case, we have

F (x) = f x x( )dÚ (1.3.28)

If the function F(x) contains a constant term, the term does not affect the 

derivative f (x), because the derivative of a constant is zero. Consequently, on 

integrating the function f (x), the constant term must be added to the integral. Thus, 

Eq. (1.3.28) must be written as

F (x) = f x x I( )dÚ + (1.3.29)

The value of I (constant of integration) can be determined if the value of F (x) is

known at some value of x, say xi.

I = F x f x xi
xi

( ) ( )- ÈÎ ˘̊Ú d (1.3.30)

where the subscript on the last term is used to indicate that the integral is to be 

evaluated at xi.

Line Integrals Differential expressions of the form

df = P(x, y) dx+ Q(x, y) dy (1.3.31)

for two independent variables are often met in physical sciences and engineering. 

When dx and dy are small, the quantity df is a small increment of some quantity f,

which may or may not be a function of x and y. The integral of such expressions 

between two points (x1, y1) and (x2, y2) can be determined along some particular 

path connecting the two points, since df can be calculated from Eq. (1.3.31) for each 

f, obtained

as we move along the curve. Such integrals are called line or contour integrals.

The value of a line integral between two points depends, in general, upon the 

path followed in determining the integral. As an example, let us evaluate the line 

integral

L d d( )y x x y-Ú
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from A to B in Fig. 1.3.2 along two different paths

(i) A(0, 0) to B(2, 2)

(ii) A(0, 0) to D(2, 0) to B(2, 2)

Path (i)  Along the line AB, we have

y = x

Therefore,  y dx – x dy = 0

Hence, ( )y x x yd d

AB

- =Ú 0

Path (ii) Along AD, we have

y = 0 and dy = 0

Thus, y dx – x dy = 0

Along DB, we have

x = 2 and dx =0

Thus, y dx – x dy = – 2 dy

Hence, ( d d d d d d

ADB AD DB

y x x y y x x y y x x yÚ Ú Ú- = - + -) ( ) ( )

= - = - = -Ú Ú2 2 4
0

2
d d

DB

y y

The line integral can be reduced to an ordinary integral with one independent 

variable, if y is a function of x and

dy = (dy/dx) dx

With this Eq. (1.3.31) becomes

L
d

d
d

df
x

x

x

x

P x y x Q x y x
y

x
x

1

2

1

2

Ú = +È
ÎÍ

˘
˚̇Ú ( , ( )) ( , ( )) (1.3.32)

The value of such integral depends upon the particular function chosen for y(x).

Line Integral and A line integral of special interest occurs when the path of integration is a closed

Green’s Theorem

cyclic integrals and are denoted by the symbol �Ú . Thus, the cyclic integral of the

differential expression given by Eq. (1.3.31) is represented as

Fig. 1.3.2 Two different

paths employed in 

going from A to B
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d d df = +Ú Ú� � [ ( , ) ( , ) ]P x y x Q x y y (1.3.33)

The value of this integral is determined by traversing the closed curve, usually in 

a counter clockwise direction (Fig. 1.3.3).

Green’s theorem states that under certain conditions*

[ ( , ) ( , ) ]P x y x Q x y y
Q

x

P

y
x y

y x

d d d d

S

+ =
∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙Ú ÚÚ� (1.3.34)

The right hand side of Eq. (1.3.34) represents the double integral over the surface 

enclosed by the closed curve.

Exact and Inexact A special case occurs when the cyclic integral of a differential expression given by

Differentials Eq. (1.3.33) equals zero for every closed curve. According to Green’s theorem 

(Eq. 1.3.34), we have

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

Q

x

P

yy x

(1.3.35)

When the condition of Eq. (1.3.35) holds, the differential expression is said to be 

exact and df is said to be an exact differential; otherwise, the differential expression 

is said to be inexact.

If df of Eq. (1.3.31) is to be an exact differential, then

d d df = + =Ú Ú� � [ ( , ) ( , ) ]P x y x Q x y y 0 (1.3.36)

From Fig. 1.3.3 the cyclic integration can be replaced by two line integrals 

(i) from A to B in the counter clockwise direction and (ii) from B to A in the same 

direction, so that

d d dL

A

B

B

A

f f f�Ú Ú Ú= + L

Fig. 1.3.3 Cyclic 

integration

* If P(x, y), Q(x, y), (dP/dx)y and (dQ/dy)x are continuous functions of x and y along the 

curve L and over the surface S (Fig. 1.3.3).
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Since df =Ú 0,�  it follows that

L

A

B

L

B

A

d df fÚ Ú= - (1.3.37)

If this condition is true for any cyclic path, the line integral from A to B, L d

A

B

fÚ
Ê

Ë
Á

ˆ

¯
˜

must be independent of the path and its value depends only on two points. A and 

B (as in the case of ordinary integration).

It may be readily proved that the condition of Eq. (1.3.35) as derived from 

Green’s theorem is equivalent to Euler’s reciprocity relation. If f is a function of 

x and y, the total differential of f is given by

df =
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

f f

x
x

y
y

y x

d d

If df is given by the differential expression

df = P(x, y) dx + Q(x, y) dy

it follows that

P(x, y) =
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

f f

x
Q x y

yy x

and ( , )

The condition of exactness, as given by Eq. (1.3.35), is

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

P

y

Q

xx y

Therefore
∂
∂

∂
∂

Ê
Ë

ˆ
¯

È

Î
Í

˘

˚
˙ =

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

y x x yy x x y

f f

which is Euler’s reciprocity relation (Eq. 1.3.1).

The concept of line integral, exact differential and inexact differential may be 

summarized as follows:

We are concerned with the differential expression

df = P(x, y) dx + Q(x, y) dy

The integration of such an expression is carried out along a designated path 

between two points (x1, y1) and (x2, y2) or along a closed curve.

∑ If the line integral L df
x y

x y

1 1

2 2

,

,

Ú depends upon the path along which the integration 

is performed, or, if df�Ú is not equal to zero, then df is an inexact differential. 

There is no function f (x, y) which exists whose total differential is given by

P(x, y) dx + Q(x, y) dy.

Summary of 

Exact and Inexact 

Differentials
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∑ If the integral L df
x y

x y

1 1

2 2

,

,

Ú does not depend upon the path along which the integration is

performed, or it df�Ú  equals zero for every cyclic path, then df is an exact differential. 

A function f (x, y) does exist and its total differential is equal to P(x, y) dx + 

Q(x, y) dy with the condition that (∂P/∂y)x is equal to (∂Q/∂x)y .

∑ Symbolically, an inexact differential is distinguished from an exact differential by use 

(i.e. d cross) f denotes the inexact differential of f while df
is the exact differential of f.

Problem 1.3.4 (i) Given the differential

df =
RT

p
p R Td d-

(i) Carry out the line integration between the limits T0, p0 to T1, p1 along the following three paths 

(shown in Fig. 1.3.4).

(a) T0, p0 Æ T1, p0 Æ T1, p1

(b) T0, p0 Æ T0, p1 Æ T1, p1

(c) T0, p0 Æ T1, p1

(ii) Show that df is an inexact differential.

f) explicitly in terms of T and p?

Solution (i) Carrying out the line integration along the given paths, we have

Path (a) Dfa =
RT

p
p R T

RT

p
p R T

T p

T p

T p

d d d

A B

-È
ÎÍ

˘
˚̇

-È
ÎÍ

˘
˚̇Ú +

( , )

( , )

( , )

(

0 0

1 0

1 0

B C

d

TT p1 1, )

Ú
= - + = - - +Ú ÚR T RT

p

p
R T T RT

p

pT

T

p

p
d

d

0

1

0

1

1 1 0 1
1

0

( ) ln

Path (b) Dfb =
RT

p
p R T

RT

p
p R T

T p

T p

T p

d d d

A D

-È
ÎÍ

˘
˚̇

+ -È
ÎÍ

˘
˚̇Ú

( , )

( , )

( , )

(

0 0

0 1

0 1

D C

d

TT p1 1, )

Ú
= RT

p
p R T RT

p

p
R T T

p

p

T

T

0 0
1

0
1 0

0

1

0

11
d dÚ Ú- = - -ln ( )

Fig. 1.3.4 Three paths 

a, b, and c



Introduction to Thermodynamics 15

Path (c) Temperature and pressure along the path c are related by the expression

T = T
T T

p p
p p0

1 0

1 0
0+

-
-

Ê
ËÁ

ˆ
¯̃

-( )

Hence dT =
T T

p p
p1 0

1 0

-
-

Ê
ËÁ

ˆ
¯̃

d

Substituting T and dT in the given relation and carrying out the integration over p, we have

Dfc =
R

p
T

T T

p p
p p R

T T

p p
0

1 0

1 0
0

1 0

1 0

+
-
-

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙ -

-
-

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

( ) dpp
p

p

0

1

Ú

= RT
p

p
Rp

T T

p p

p

p

R T p T p

p p

p
0

1

0
0

1 0

1 0

1

0

0 1 1 0

1 0

ln ln
( )

( )
ln-

-
-

Ê
ËÁ

ˆ
¯̃

=
-

-
11

0p

(ii) We observe that

Dfa π Dfb π Dfc

that is, the line integral depends on the path of integration and, hence, df is not an exact 

differential. This also follows from the fact that Euler’s reciprocity relation does not hold 

good.

(iii) Since df is an inexact differential, the function f cannot be explicitly expressed in 

terms of T and p.

Problem 1.3.5 Given the differential

df = 
R

p
T

RT

p
pd d-

2

(i) Carry out the line integration between the limits T0, p0 and T1, p1 following the three 

different paths of the proceeding problem. (ii) Show that df is an exact differential.

Solution (i) Carrying out the line integration along the given paths, we have

Path (a) Dfa =
R

p
T

RT

p
p

R

p
T

RT

p
p

T p

T p

T p

d d d d

A B

-
È

Î
Í

˘

˚
˙ + -

È

Î
Í

˘

˚
˙Ú 2 2

0 0

1 0

1( , )

( , )

( ,

B

00

1 1

)

( , )C T p

Ú

=
R

p
T T RT

p p
R

T

p

T

p0
1 0 1

1 0

1

1

0

0

1 1
-( ) + -

Ê
ËÁ

ˆ
¯̃

= -
Ê
ËÁ

ˆ
¯̃

Path (b) Dfb =
R

p
T

RT

p
p

R

p
T

RT

p
p

T p

T p

T p

d d d d

A D

-
È

Î
Í

˘

˚
˙ + -

È

Î
Í

˘

˚
˙Ú 2 2

0 0

0 1

0( , )

( , )

( ,

D

11

1 1

)

( , )C T p

Ú

= RT
p p

R

p
T T R

T

p

T

p
0

1 0 1
1 0

1

1

0

0

1 1
-

Ê
ËÁ

ˆ
¯̃

+ - = -
Ê
ËÁ

ˆ
¯̃

( )
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Path (c) Since for this path,

T = T
T T

p p
p p0

1 0

1 0
0+

-
-

Ê
ËÁ

ˆ
¯̃

-( )

Therefore dT =
T T

p p
p1 0

1 0

-
-

Ê
ËÁ

ˆ
¯̃

d

Substituting T and dT in the given relation and carrying out the integration over p,

we get

Dfc =
R

p

T T

p p
p

R

p
T

T T

p p
p p p1 0

1 0
2 0

1 0

1 0
0

-
-

Ê
ËÁ

ˆ
¯̃

- +
-
-

Ê
ËÁ

ˆ
¯̃

-
Ï
Ì
Ó

¸
˝
˛

È
d d( )

ÎÎ
Í

˘

˚
˙Úp

p

0

1

=
R

p

T T

p p
p

RT

p
p

R

p

T T

p p
p Rp

T T1 0

1 0

0
2

1 0

1 0
0

1 0-
-

Ê
ËÁ

ˆ
¯̃

- -
-
-

Ê
ËÁ

ˆ
¯̃

+
-

d d d
pp p

p

pp

p

1 0
2

0

1

-
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙Ú d

= - +
-

-
= - +

-Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇Ú RT

p
p Rp

T T

p p

p

p
RT Rp

T T

pp

p
0

2 0
1 0

1 0

0 0
1 0

0

1

d
d

2
11 0

2
0

1

-
Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛ Úp

p

pp

p d

= R
T p T p

p p p p
R

T

p

T

p

1 0 0 1

1 0 1 0

1

1

0

0

1 1-
-

Ê
ËÁ

ˆ
¯̃

- +
Ê
ËÁ

ˆ
¯̃

= -
Ê
ËÁ

ˆ
¯̃

(ii) We see that

Dfa = Dfb= Dfc

and hence the given differential is an exact differential. This also follows from the Euler’s 

reciprocity relation.

Comparing the given differential with the expression

df = P(T, p) dT + Q(T, p) dp

P =
R

p
Q

RT

p
and = -

2

For df to be exact differential, we must have

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

P

p

Q

TT p

which is true since

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂

∂
Ï
Ì
Ó

¸
˝
˛

= -
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂ -
∂

P

p

R p

p

R

p

Q

T

RT p

TT T P

( / ) ( / )
2

2

and
ÏÏ
Ì
Ó

¸
˝
˛

= -
p

R

p2

Let us review some properties of the exact differential df (x, y) and the function f (x, y).

First, the integral of df (x, y) between any two points will be a function of the end points 

only and will be independent of the path. This may be represented as

df f f f f( , ) ( , ) |x y x y= = - =Ú
A

B

A

B

B A D (1.3.38)

Exact Differential 

and State Function
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The term Df is then just (fB – fA), that is, its values is dependent on the difference 

(fB – fA) and not on the path in between. Further, the cyclic integral becomes

df( , )x y�Ú  = d d

A

B

B

A

f f( , ) ( , )x y x yÚ Ú+ = 0

or d

A

B

f( , )x yÚ  = -Ú d

B

A

f( , )x y (1.3.39)

state function.

The essential criteria of a state function are as follows:

∑
states and not on the path of the process carried out in going from initial 

∑ The cyclic integration involving a state function is zero.

∑ The state function has an exact differential, i.e. if p = f (T, V) is a state function 

then

dp =
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

p

T
T

p

V
V

V T

d d

with the condition that

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛V

p

T T

p

VV T T V

∑ All thermodynamic properties satisfy the requirements of state function. 

A few of them are

DU  = q + w Change in thermodynamic energy

S =
q

T

rev Entropy

H = U + pV Enthalpy

G = H – TS Gibb’s free energy

A = U – TS Helmholtz free energy

mi =
∂
∂

Ê
ËÁ

ˆ
¯̃ π

G

ni
jT p n j i, , ,

Chemical potential

Problem 1.3.6

Solution For an ideal gas V = nRT/p, therefore

dV =
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
V

T

nR

p

V

p

nRT

pp T

and
2

Substituting these in the relation

dV =
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

V

p
p

V

T
T

T p

d d

we have dV = - +
nRT

p
p

nR

p
T

2
d d

Essential Criteria 

of a State Function
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If V is to be a state function, dV must be an exact differential, for which the Euler’s reciprocity 

condition states that

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂T

V

p p

V

TT p p T

Evaluating these, we get

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
-

Ê
ËÁ

ˆ
¯̃

= -
T

V

p T

nRT

p

nR

pT p p
2 2

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

=
∂

∂
Ê
ËÁ

ˆ
¯̃

= -
p

V

T p

nR

p

nR

pp T T
2

Since (∂2V/∂T ∂p) and (∂2V/∂p ∂T) are identical, the volume of an ideal gas is a state function.

Problem 1.3.7 Show that pressure is a state function for a gas obeying

p
a

V
V RT+

Ê
ËÁ

ˆ
¯̃

=
m
2 m( )

Solution Rewriting the given equation as

p =
RT

V

a

Vm m

-
2

Therefore
∂

∂
Ê
ËÁ

ˆ
¯̃

p

V
Tm

= - +
∂
∂

Ê
ËÁ

ˆ
¯̃ =

RT

V

a

V

p

T

R

VVm m
3

mm

2

2
;

      
∂

∂ ∂

2 p

T Vm

 = -
∂

∂ ∂
= -

R

V

p

V T

R

Vm m m
2

and
2

2

;

Hence
∂

∂ ∂
=

∂
∂ ∂

2 2p

T V

p

V Tm m

Therefore, dp is an exact differential and p is a state function.

Many application of thermodynamics involve more than two independent variables. A

differential expression involving more than two variables (say, for example, three variables 

x, y, z) will be of the type

df = M(x, y, z) dx + N(x, y, z) dy + P(x, y, z) dz (1.3.40)

As in the case of two variables, df can be either exact or inexact. If it is exact, 

then f is a state function and its total differential will also be given by

df =
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

f f f

x
x

y
y

z
z

y z x z x y, , ,

d d d (1.3.41)

Differential

Expression in 

Three or More 

Variables
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Comparing Eq. (1.3.40) with Eq. (1.3.41), we get

M(x, y, z) =
∂
∂

Ê
Ë

ˆ
¯ =

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
Ë

ˆ
¯

f f f

x
N x y z

y
P x y z

zy z x z x y, , ,

; ( , , ) ; ( , , )

Equation (1.3.40) can be tested for its exactness with the help of reciprocity relations 

(one between each pair of variables). These are

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
Ë

ˆ
¯ =

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
Ë

M

y

N

x

N

z

P

y

P

xx z y z x y x z, , , ,

; ;
ˆ̂
¯ =

∂
∂

Ê
Ë

ˆ
¯

y z x y

M

z, ,

(1.3.42)

Problem 1.3.8 For an ideal gas pV = nRT. Taking V = f (n, p, T), verify that dV is an exact differential.

Solution For V = f (n, p, T), the total differential of V is

dV =
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

V

n
n

V

p
p

V

T
T

p T n T n p, , ,

d d d

For dV to be an exact differential, we must have

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂p

V

n n

V

pp T n T n T p T, , , ,

(1.3.43)

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂T

V

n n

V

Tp T n p n p p, , , , TT

(1.3.44)

and
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
=

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂T

V

p p

V

Tn T n p n p n, , , , TT

(1.3.45)

Now for the given gas pV = nRT, we have

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃ =

V

n

RT

p

V

p

nRT

p

V

T

nR

pp T n T n p, , ,

; ;
2

and
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
Ï
Ì
Ó

¸
˝
˛

= -
p

V

n

RT p

p

RT

pp T n T n T, , ,

( / )
2

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
=

∂ -
∂

Ï
Ì
Ó

¸
˝
˛

= -
n

V

p

nRT p

n

RT

pn T p T p T, , ,

( / )2

2

  
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

=
∂

∂{ } =
T

V

n

RT p

T

R

pp T n p n p, , ,

( / )

  ∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

=
∂

∂{ } =
n

V

T

nR p

n

R

pn p p T p T, , ,

( / )
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∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
=

∂ -
∂

Ï
Ì
Ó

¸
˝
˛

= -
T

V

p

nRT p

T

nR

pn T n p n p, , ,

( / )2

2

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
Ï
Ì
Ó

¸
˝
˛

= -
p

V

T

nR p

p

nR

pn p n T n T, , ,

( / )
2

V is an exact differential for an ideal gas.

Integrating Factor An inexact differential expression Pdx + Q dy (with ∂P/∂y π ∂Q/∂x) can be 

converted into an exact one by means of an integrating factor G(x, y). In that case, 

G(P dx + Q dy) becomes exact, that is

∂
∂

=
∂

∂
( ) ( )GP

y

GQ

x

Take, for example, the differential expression

f  = y dx – x dy

It can be converted into an exact differential by choosing G(x, y) = 1/x2. Thus, we 

have

1
2x

f = d d df
y

x
x

x
y= -

2

1

It can be seen that

∂
∂ { } =

∂
∂

-Ê
ËÁ

ˆ
¯̃y

y

x x xx y
2

1

Thus, df f = –y/x. 

Alternatively, the integrating factors 1/y2, 1/xy and 1/(x2 + y2) convert the above 

relation to d(x/y), d[ln (x/y)] and d[arctan (x/y)], respectively. Evidently the choice 

of G(x, y) is not unique.

Another case of integrating factor is cited by the differentials given in Problems 

(1.3.4) and (1.3.5). Differential of Problem (1.3.5) can be obtained by multiplying 

the differential of Problem (1.3.4) by the factor (–1/p). Since differential of Problem 

(1.3.4) is inexact whereas that of Problem (1.3.5) is exact, it is obvious that (–1/p)

is an integrating factor.

is based on the construction of exact differentials from inexact ones. Thus the 

q, the heat exchanged by a system, and dw, 

the work involved in the system, are individually inexact differentials, but the 

sum of these two (i.e. dq + dw = dU) is an exact differential. This constitutes 

U. The second law postulates that 1/T is an 

integrating factor for dqrev. Thus dS = dqrev/T is 

function entropy S.
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The principle of Legendre transformation can be used to modify a differential 

expression so as to change its independent variables. For example, take the 

following exact differential expression:

dF(x, y) = M(x, y) dx + N(x, y) dy (1.3.46)

Let a function f

f = F – Mx (1.3.47)

Its differential is given by

df = dF – M dx – x dM

Substituting dF from Eq. (1.3.46), we get

df = N dy – x dM (1.3.48)

The differential is appropriate for a function f = f (y, M). In transforming a 

function of x and y into a function of M and y, the independent variable x and the 

M have thereby exchange roles with the change of sign. 

Pairs of variables which can be interchanged by a Legendre transformation such 

as M and x or N and y are said to be conjugate to one another. The prescription for 

one of these transformations is given by Eq. (1.3.47) in which a new function is 

variables.

The most important application of Legendre transformations in thermodynamics 

laws:

dU = T dS – p dV (1.3.49)

The three possible transformations of this relation are

dH = T dS + V dp

dA = – S dT – p dV

dG = – S dT + V dp

where H = U + pV; A = U – TS; and G = U + pV – TS = A + pV

Problem 1.3.9 From the following thermodynamic relation

G = H – TS ; H = U + pV ; dqrev = T dS ; dU = dqrev – p dV

Show that, (∂G/∂T)p = – S ; (∂G/∂p)T = V and
∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

V

T

S

pp T

Solution We start with

G = H – TS

Since H = U + pV , therefore

G = U + pV – TS

Differential of this expression is

dG = dU + p dV + V dp – T dS – S dT

Legendre

Transformation
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Now T dS = dqrev = dU + p dV, therefore

dG = V dp – S dT (1.3.50)

Thus, we establish that G is a function of T and p. Moreover since G is a state function, 

therefore, we have

dG =
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

G

p
p

G

T
T

T p

d d (1.3.51)

Comparing Eqs (1.3.50) and (1.3.51), we get

∂
∂

Ê
ËÁ

ˆ
¯̃

G

p T

 = V and
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
G

p
S

p

Applying Euler’s reciprocity relation to Eq. (1.3.50), we get

∂
∂

Ê
ËÁ

ˆ
¯̃

V

T p

 = –
∂
∂

Ê
ËÁ

ˆ
¯̃

S

p T

Problem 1.3.10 From the following thermodynamic relations

     A = U – TS; dqrev = T dS; dU = dqrev – p dV

show that

∂
∂

Ê
ËÁ

ˆ
¯̃

A

V T

 = –p;
∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

A

T
S

p

T

S

VV V T

and

Solution Since A = U – TS, we get

dA = dU – T dS – S dT

Now T dS = dqrev = dU + p dV, therefore

dA = –p dV – S dT (1.3.52)

Thus, we establish that A is a function of T and V. Moreover, since A is a state function. 

Therefore, we have

dA =
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

A

V
V

A

T
T

T V

d d (1.3.53)

Comparing Eqs (1.3.52) and (1.3.53), we obtain

∂
∂

Ê
ËÁ

ˆ
¯̃

A

V T

 = –p  and
∂
∂

Ê
ËÁ

ˆ
¯̃ = -

A

T
S

V

Applying Euler’s reciprocity relation to Eq. (1.3.52), we get

∂
∂

Ê
ËÁ

ˆ
¯̃

p

T V

 = ∂
∂

Ê
ËÁ

ˆ
¯̃

S

V T

Miscellaneous Problems

Problem 1.3.11 H = U + pV and, when necessary, obtaining conversion relationship 

by considering H (or U) as a function of any two of the variables p, V and T, derive the 
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following relationships:

(i)  
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ + +

∂
∂

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T

U

T
p

U

V

V

Tp V T p

(ii)  
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ + -

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T

U

T
V

H

p

p

Tp V T V

(iii)  
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ + +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

∂H

T

U

T
V

H

p

T

p

p

p V p H ∂∂
Ê
ËÁ

ˆ
¯̃T V

Solution (i) Differentiating the given relation H = U + pV, we get

dH = dU + p dV + V dp

Taking H = f (T, p) and U = f (T, V) and replacing dH and dU in the above equation by

dH =
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T
T

H

p
p

p T

d d

dU =
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T
T

U

V
V

V T

d d

 we have
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃ +

H

T
T

H

p
p

U

T
T

U

V
V p

p T V T

d d d d dVV V p+ d (1.3.54)

Dividing by dT, keeping p constant, we have

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T p

=
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T

U

V

V

T
p

V

TV T p p

or
∂
∂

Ê
ËÁ

ˆ
¯̃

H

T p

=
∂
∂

Ê
ËÁ

ˆ
¯̃ + +

∂
∂

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T
p

U

V

V

TV T p

(1.3.55)

(ii) Dividing Eq. (1.3.54) by dT, keeping V constant, we have

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T

H

p

p

T

U

T
V

p

Tp T V V VV

or
∂
∂

Ê
ËÁ

ˆ
¯̃

H

T p

 = 
∂
∂

Ê
ËÁ

ˆ
¯̃ + -

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T
V

H

p

p

TV T V

(1.3.56)

(iii) The cyclic rule for H = f (T, p) is

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ + =

H

p

p

T

T

HT H p

1 0

Rearranging this in the form

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

H

p

T

p

H

TT H p

and then substituting in Eq. (1.3.56), we have

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T p

 =
∂
∂

Ê
ËÁ

ˆ
¯̃ + +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T
V

H

T

T

p

p

TV p H V

(1.3.57)
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Problem 1.3.12 Considering U as a function of any two of the variables p, V and T, prove that

(i)   
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T

T

p

U

V

V

pp V p T

(ii)   
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

U

p

U

V

V

pT T T

Solution (i) Taking U = f (T, p) we get

dU = 
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T
T

U

p
p

p T

d d

Dividing by d p and introducing the condition of constant V, we have

∂
∂

Ê
ËÁ

ˆ
¯̃

U

p V

 =
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
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ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

U

T

T

p

U

pp V T
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∂
∂

Ê
ËÁ

ˆ
¯̃

-
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

U

p

U

p

U

T

T

pV T p V

(1.3.58)

Taking now U = f ( p, V ), we get

dU =
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

U

p
p

U

V
V

V p

d d

Dividing by dp and introducing the condition of constant T, we have

∂
∂

Ê
ËÁ

ˆ
¯̃

U

p T

 =
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂
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ˆ
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∂
∂

Ê
ËÁ

ˆ
¯̃

U

p

U

V

V

pV p T
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∂
∂

Ê
ËÁ

ˆ
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∂
∂
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ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

U

p

U

p

U

V

V

pT V p T

(1.3.59)

Comparing Eq. (1.3.58) and Eq. (1.3.59), we have the required relation

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T

T

p

U

V

V

pp V p T

(ii) Since U = f (T, V ), we get

dU =
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T
T

U

V
V

V T

d d

Dividing by dp and introducing the condition of constant temperature (dT = 0), we have

∂
∂

Ê
ËÁ

ˆ
¯̃

U

p T

 =
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
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ˆ
¯̃

U

V

V

pT T

Problem 1.3.13 a

of thermal expansion) and isothermal compressibility, kT (formerly known as compressibility 



Introduction to Thermodynamics 25

a =
1 1

V

V

T V

V

pp
T

T

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

; k

Show that

(i)   
a

k

a k

T V T

T

p

p

T p T
=

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃ =and (ii) 0

Solution (i) Taking V = f ( p, T), we get

 dV = 
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

V

p
p

V

T
T

T p

d d

Dividing this by dT and introducing the constant volume condition, we have

 0 = 
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

V

p

p

T

V

TT V p

that is
∂
∂

Ê
ËÁ

ˆ
¯̃

p

T V

 = -
∂ ∂( )
∂ ∂( )

= =
V T

V p

V

V

p

T T T

/

/

a

k

a

k
(1.3.60a)

(ii) Since V is a state function, and dV is an exact differential, using Euler’s reciprocity 

relation, we have
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∂
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or   
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∂
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VT p T( ) ( )k a

Carrying out the differentiation, we get

  –k
k

a
a

T
p

T

p T T

V

T
V

T

V

p
V

p

∂
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ËÁ
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∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂
∂

Ê
ËÁ

ˆ
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a k k a k

p T V

V

T V

V
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T

p

T

p T
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VV
V

V
VT( ) ( )a

a
k- - = 0

(1.3.60b)

Problem 1.3.14 Derive the expressions for a and kT for one mole of (i) an ideal gas and (ii) a van der Waals 

gas.

Solution (i) For one mole of an ideal gas

pVm = RT

On differentiating, we get

    p dVm + Vm dp = R dT (1.3.61)

Dividing by dT at constant p, we have

            p
V

T p

∂
∂

Ê
ËÁ

ˆ
¯̃

m  = R

that is a =
1 1

V

V R

V p Tpm

m

m

∂
∂

Ê
ËÁ

ˆ
¯̃ = =

T
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Dividing Eq. (1.3.61) by dp at constant T, we have

   p
V

p
V

V

p

V

pT T

∂
∂

Ê
ËÁ

ˆ
¯̃

+ =
∂
∂

Ê
ËÁ

ˆ
¯̃

= -m
m

m mor0

Hence kT = –
1 1 1

V

V

p V

V

p pT

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
Ê
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ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

=m

m

m

(ii) For one mole of a van der Waals gas

p
a

V
V b RT+

Ê
ËÁ

ˆ
¯̃

-( ) =
m

m2

or pV
a

V
pb

ab

V
RTm

m m

+ - - =
2

or pV aV pV b ab V RTm
3

m m m+ - - =2 2

Differentiation gives

V p V p V a V V b p pV b V V RT V V R Tm m m m m m m m m md d d d d d d3 2 2 23 2 2+ + - - = + (1.3.62)

Dividing by dT and introducing the condition of constant p (i.e. dp = 0), we have

    3 2 22V p
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m m
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ˆ
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∂
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- +

Dividing Eq. (1.3.62) by dp and introducing the condition of constant temperature, we have

  V pV
V

p
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pT T T

m m
m m

m m
m3 2 23 2+

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

- -
∂
∂

Ê
ËÁ

ˆ
¯̃

==
∂
∂

Ê
ËÁ

ˆ
¯̃

2V RT
V

p T

m
m

Therefore ∂
∂

Ê
ËÁ

ˆ
¯̃

=
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and kT = -
∂
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ˆ
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=
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( )

Problem 1.3.15 Taking V as a state function, derive the equation of state for which

(i) V = k1/p, keeping T constant and V = k2T, keeping p constant

(ii) a = (V – a)/ TV and kT = 3 (V – a)/4pV, where a is constant
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Solution (i) Since V = k1/p for constant temperature, from where we can get

∂
∂

Ê
ËÁ

ˆ
¯̃

= - = - = -
V

p

k

p

pV

p

V

pT

1
2 2

Also V = k2T for constant pressure, from where we can get

∂
∂

Ê
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ˆ
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T
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Since V = f ( p, T), therefore

dV =
∂
∂
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ËÁ

ˆ
¯̃
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∂
∂

Ê
ËÁ

ˆ
¯̃
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p
p

V

T
T

T p

d d

Substituting the values of (∂V/∂p)T and (∂V/∂T)p, we get

dV = - +
V

p
p

V

T
Td d

Dividing by V and rearranging, we get

d d dV

V

p

p

T

T
+ =

Integrating the above expression, we get
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p
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p V
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1 1

Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

=or nn
T

T

2

1

Ê
ËÁ

ˆ
¯̃

or
p V

T

p V

T
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1 1

1

= = =constant or (where R is a constant)

(ii) Taking V = f (p, T) we have
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∂
∂

Ê
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ˆ
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+
∂
∂

Ê
ËÁ

ˆ
¯̃
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p
p

V

T
T

T p

d d

Replacing (∂V/∂p)T and (∂V/∂T)p in terms of kT and a, respectively, we have

dV = –VkT dp + Va dT

Substituting the expressions of a and kT, we get
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-

+
-

V
V a
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p V

V a

TV
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3

4

( )
d d

which on rearrangement gives
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4
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p

T

T

Integrating both sides, we get
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(where A is constant)
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A function f (x, y, ...) is said to be a homogeneous function of degree n if the

f (lx, ly, . . .) = ln f (x, y, . . .) (1.3.63)

where l is an arbitrary parameter and n has a constant integer value. Take, for 

example

(i) f (x, y) = ax + by

which as a homogeneous function is

f (lx, ly) = a(lx) + b(ly) = l(ax + by) = l f (x, y)

(ii) f (x, y) = ax2 + bxy + cy2

which yields

f(lx, ly) = a(lx)2 + b(lx)(ly) + c(ly)2

= l2 (ax2 + bxy + cy2) = l2 f (x, y)

If n = 0, we have a homogeneous function of zero degree; for n = 1, homogeneous 

All functions of zero degree with respect to the amounts of substances are intensive 

Take, for example, an ideal binary liquid solution of benzene and toluene. The 

total volume of the solution is given by

 V = nbVb + ntVt (1.3.64)

where nb and nt are the amounts of benzene and toluene, respectively, and Vb and

Vt are their respective molar volumes. Suppose that the values of nb and nt are 

doubles, then the total volume will be given by

V ¢ = (2nb)Vb + (2nt)Vt = 21(nb Vb + ntVt) = 21V

Since the exponent of the parameter 2 is 1, therefore, volume of a solution is 

constituents. The relation as given in Eq. (1.3.64) is true not only for ideal solutions 

but also for nonideal solutions. However, for the latter, partial molar volumes 

should be used instead of the molar volumes of the pure components (see also 

Eq. 1.3.66).

Euler’s Theorem If a function is homogeneous of degree n, according to Euler’s theorem, it should 

satisfy the following relation

x
f

x
y

f

y
n f x y

y z x z

∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+ =
, ,... , ,...

( , , )� � (1.3.65)

The Euler’s theorem can be proved as follows.

Differentiating Eq. (1.3.63) with respect to l, we get

      
d

d

f x y( , , )l l

l

�

 = 
d

d

l

l

n f x y( , , )�{ }

Homogeneous

Functions

Degree of Intensive 

and Extensive 

Variables
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i.e.
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Simplifying this, we get
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For the special case where l = 1, we get
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which is the Euler’s theorem.

in respect to the amounts of the constituents, we have

V = n1
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

+
V

n
n

V

n
n n n n1

2
2

2 3 1 3, ,... , ,...

� (1.3.66)

Thus, the total volume of a solution of known composition (i.e. n1, n2, ... are

known) is the sum of the products of the amount of each component with the slope 

of the plot of V versus n at the given amount of the component in the solution, 

when the amounts of all other components of the solution are kept constant.†

1.4 IUPAC CONVENTIONS OF WORK AND HEAT

According to IUPAC* convention, heat absorbed by the system is regarded as the 

positive quantity whereas the heat released by the system is regarded as the negative 

quantity. Conversely speaking, if the numerical value of the heat is positive, it is 

absorbed by the system and if it is negative, the heat is released by the system. We 

may spell q

q

following alternative statements bringing out the same sense may be noted down.

(i) Heat involved = 20 kJ

Heat absorbed by the system = 20 kJ

Heat released by the system = –20 kJ

(ii) Heat involved = –20 kJ

Heat absorbed by the system = –20 kJ

Heat released by the system = 20 kJ

† The slope (∂V/∂n) is known as the partial molar volume of the said component. See also 

Section. 6.1.
* International Union of Pure and Applied Chemistry.
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For work, the IUPAC convention is to take the work done on the system as the 

positive quantity whereas the work done by the system is taken as the negative 

quantity. Conversely speaking, if the numerical value of work is positive, it implies 

that the work is done on the system and if it carries a negative sign, it implies that 

the work is done by the system. We may spell w as the work involved instead of 

the system’. The numerical value of w will automatically imply either of these two 

same sense may be noted down.

(i) Work involved = 20 kJ

Work done on the system = 20 kJ

Work done by the system = – 20 kJ

(ii) Work involved = – 20 kJ

Work done on the system = – 20 kJ

Work done by the system = 20 kJ

Another convention (non-IUPAC) which was in use earlier assigns a negative 

sign to the work done on the system and a positive sign to work done by the system. 

The IUPAC convention puts energy and work on the same footing. The work done 

on the system, like heat added to the system, increases the internal energy of the 

system and thus is assigned a positive sign. The treatment followed in the text is 

based on IUPAC convention and can be converted to the non-IUPAC convention 

by replacing w by –w and the phrases like maximum, minimum, greater than 

and lesser than by their opposite phrases, i.e. minimum, maximum, lesser than 

equations of thermodynamic functions.

1.5 WORK INVOLVED IN EXPANSION AND COMPRESSION PROCESSES

In most thermodynamic calculations we will be dealing with the evaluation of work 

involved in the expansion or compression of gases. If the volume of the system is 

increased against some pressure (constant or varying), then the work is done by 

the system on the surroundings (or the work is produced) and is, by convention, 

given a negative sign. On the other hand, if the volume of the system is decreased, 

then the work is done by the surroundings on the system (or the work is destroyed) 

and is given a positive sign.

The essential criterion of expansion/compression is that there should exist a

difference between the internal pressure of the system and the external pressure. 

to be weightless and frictionless. The piston can be held anywhere against a set of 

stops. Let the piston be initially held at stops S1 (Fig. 1.5.1). If the stops are now 

removed, then the position of the piston will be decided by the external pressure 

which can be controlled by putting different masses on the piston. If m is the mass 

that is put on the piston, then the force F acting downwards is

F = mg

Essential Criterion 

of Expansion/ 

Compression
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and the pressure acting downwards

pext =
F

A

mg

A
=

where A is the area of cross-section of the piston.

If the external pressure is greater than the internal pressure of the system, the 

piston moves downward. The volume of the system will decrease and it continues 

to decrease till the external pressure becomes equal to the internal pressure of the 

system. If the external pressure is smaller than the internal pressure, the piston 

moves upward resulting in expansion. Again, the volume will continue to increase 

till the external pressure becomes equal to the internal pressure. We can stop the 

expansion or compression in between by providing a set of stops at that stage. 

During the process of expansion or compression, we can change the external 

pressure. Thus, the process can be achieved either in one-stage or in multistage. 

In the latter, the external pressure may be different in each stage.

w = – (External force) (Distance through which piston moves)

or w =  –
Force

Area of cross-section of piston

Ê
ËÁ

ˆ
¯̃

(Area of cross-section of

piston) × (Distance through which piston moves)

or w =  – pext dV (1.5.1)†

where DV is the change in volume of the system. If the piston moves by an 

dw = –pext dV

Fig. 1.5.1 Process of 

expansion of a gas

Mathematical

Expression of Work

† The negative sign in Eq. (1.5.1) is due to the IUPAC convention. In expansion (work 

is done by the system), DV has a positive value and thus work carry a negative sign. In 

compression (work is done on the system), DV has a negative value and thus work carry a 

positive sign.
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The total work involved during the change of volume from V ¢ to V ¢¢can be obtained 

by integrating the above expression

w = -
¢

¢¢
Ú

V

V
p Vext d

If pext remains constant during the volume change, then

w =  –pext (V ¢¢ – V ¢ ) (1.5.2)

It can be seen that, if V ¢¢ > V ¢ then w is negative and if V ¢¢ < V ¢ then w is

positive, i.e. if w is negative it automatically implies that expansion has taken place 

and that work is done by the system on the surroundings, and if w is positive, 

compression has taken place and work is done by the surroundings on the system.

If the expansion or compression is done in many stages, the total work involved 

is equal to the sum of the work involved in each stage, i.e.

wtotal = w1 + w2 + �

= {– pext (V2 – V1)} + {– p¢ext (V3 – V2)} + � (1.5.3)

Graphical Representation of Isothermal Expansion of a gas

The work involved during the expansion or compression can be represented by 

the graphs drawn between p and V.

Let an isothermal expansion take place from V ¢ to V ¢¢ against a constant external

pressure pext , and let p¢ and p¢¢ be the respective pressures of the system at these 

two stages. The magnitude of the work involved is given by the shaded area in 

the p – V diagram (Fig. 1.5.2).

Note that the external pressure has to satisfy the following condition for 

expansion

pext £ p¢¢

It pext < p¢¢ the piston can be stopped by a set of stops and when pext = p¢¢, it

the work involved during the expansion can vary and the range of magnitude of 

the work involved will be

0 £ |wmin| £ p¢¢(V ¢¢ – V ¢) (1.5.4)

Fig. 1.5.2 Expansion 
of a gas against a 

constant pressure

Expansion in 

One Stage
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It will be zero when the external pressure is zero (free expansion) and will be 

maximum when the external pressure is equal to the pressure of the system at the 

Expansion in If the above expansion is done in many stages, the magnitude of the work involved

Two Stages will be more than that involved in the one-stage expansion. This is evident from 

the graph in Fig. 1.5.3 where the magnitude of the work involved in a two-stage 

expansion is shown by the shaded area.

Expansion in If the expansion is carried out involving larger number of stages and if each stage

Multistages involves a constant external pressure of

pext = pint – D p

then the magnitude of the work involved will be given by

|w| = ( )( )p p Vi

i

n

i i-
=
Â -1

1

D D

with p0 = p¢, pn = p¢¢ and pi = pi –1 – D pi

This work will be equal to the shaded area of Fig. 1.5.4. It is obvious that the 

magnitude of the work involved in this case is much larger than in the case of a 

one-stage or a two-stage expansion.

Fig. 1.5.3 Expansion
in two stages

Fig. 1.5.4 Expansion

in many stages
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Expansion in The magnitude of the work involved goes on increasing as D pi becomes smaller

Infinite Stages and smaller. In the limit when D pi Æ 0 the magnitude of the work involved will 

have a maximum value. In this case

pext = pint – dp

and the magnitude of the work involved is given by

|w | = p V p p V p V
V

V

V

V

V

V

extd d d d
¢

¢¢

¢

¢¢

¢

¢¢

Ú Ú Ú= -( )int int� (1.5.5)

The second integral of Eq. (1.5.5) has been ignored since it involves the product 

evaluated directly since

Pint = 
nRT

V

|w | =
nRT

V
V nRT

V

VV

V

d
¢

¢¢

Ú =
¢¢
¢

ln (1.5.6)

The magnitude of the work involved in this case will be the area under the isothermal 

curve shown in Fig. 1.5.5 and it will be the maximum work that can be obtained 

by the system during the expansion from volume V ¢ to V ¢¢.

Graphical Representation of Isothermal Compression of a Gas

Compression in

One Stage the external pressure must be larger than the internal pressure of the gas. If the 

compression is being done from p ¢¢, V ¢¢ to p¢, V ¢ in one stage, the minimum value 

of external pressure should be p ¢. If the external pressure is greater than this, the 

desired compression can be achieved by arresting the position of the piston by a 

set of stops. Thus, the work involved in compressing the gas from p¢¢, V ¢¢ to p¢, V ¢ 
against the external pressure p¢ is

w = – p V p V Vext d = - ¢ ¢ - ¢¢Ú ( )

Fig. 1.5.5 Expansion

number of stages
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Its value is equal to the area of the shaded rectangle in Fig. 1.5.6. If we use larger 

external pressure the surroundings do more work in bringing about the desired 

compression.

Compression in If the compression is done in many stages, lesser amount of work is done by the

Two Stages surroundings. For example, in a two-stage compression with external pressures 

p¢¢¢ and p¢. The work involved is given by

w = – p¢¢¢(V ¢¢¢ – V ¢¢) – p¢(V ¢ – V ¢¢¢)

Its value is shown by the shaded area of Fig. 1.5.7.

Compression in If the compression is done in multistages, still lesser and lesser work is involved.

Multistages If at any stage of compression

pext = pint + D p (1.5.7)

the expression for the work is

w = - = - +Ú Â -
=

p V p p Vi i i

i

n

ext d ( )( )1

1

D D

Fig. 1.5.6 Compression in

one stage

Fig. 1.5.7 Compression in 

two stages
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with p0 = p¢¢, pn = p¢ and pi = pi – 1 + D pi. The value of this work will be equal to the 

shaded area of Fig. 1.5.8.

D pi Æ 0 and the external pressure

at any stage of compression is given by

pext = pint + d p

The work involved will be given by

w = - = - +
¢¢

¢

¢¢

¢

¢¢

¢

Ú Ú Úp V p p V p p
V

V

V

V

V

V

ext intd d d( )int � d (1.5.8)

Here again the second integral of Eq. (1.5.8) is ignored because it involves the 

gas, for which pint = nRT/V, and therefore, we have

w = - = -
¢
¢¢¢¢

¢

Ú nRT

V
V nRT

V

VV

V

d ln

whose value is equal to the area under the isothermal curve shown in Fig. 1.5.9. 

This represents the limiting minimum value of the work done by the surrounding 

on the system.

Fig. 1.5.8 Compression in 

many stages

Compression in 

Infinite Stages

Fig. 1.5.9 Compression involving

 number of stages
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The above analysis very clearly indicates that work is not a state function, since 

its value depends on the path which has been followed in order to achieve the 

required expansion or compression.

1.6 REVERSIBLE AND IRREVERSIBLE PROCESSES

The changes of a system from one state to another may occur either in a reversible 

or in an irreversible way.

The reversible processes are characterized by the fact that when the system is 

restored to its original state by traversing the forward sequence of steps in the reverse order, 

then not only the system but also the surroundings are restored to their original states.

Take, for example, the limiting multistage isothermal expansion of an ideal gas

from volume V1 to V2

(actually the work is done by the system on surroundings) is given by

wexp = -nRT
V

V
ln 2

1

(1.6.1)

Let the system be now restored to its initial volume V1 by following again the 

the forward sequence of steps is being reversed), then the work involved (actually 

the work is done by the surroundings on the system) is given by

wcomp =  –nRT ln 
V

V

1

2

(1.6.2)

The net work involved in the above two processes (cyclic process) is

wcyc = wexp + wcomp = 0 (1.6.3)

that is, whatever work has been done by the system on the surroundings during 

compression and thus no net work effect is produced. Thus in the above example, 

besides the system, surroundings are also restored to their initial states and hence 

the above process is reversible in nature.

Hence, the criterion of reversibility is

wcyc�Ú  =  0 (1.6.4)

In an irreversible process, the cyclic integral of work is not zero, i.e.

wcyc�Ú π 0 (1.6.5)

One of the examples of irreversible process is a single-stage expansion (or multistage 

its original state by following a single-stage compression (or multistage compression 

we have

Characteristics of 

Reversible Process

Characteristics

of Irreversible 

Process

Work is not a 

State Function



38 A Textbook of Physical Chemistry

Work involved during expansion, wexp = – p2 (V2 – V1) (1.6.6)

Work involved during compression, wcomp = – p1 (V1 – V2) (1.6.7)

The net work involved is

      wexp + wcomp = – p2 (V2 – V1) + {– p1 (V1 – V2)}

= (p1 – p2) (V2 – V1) (1.6.8)

Since p1 > p2 and V2 > V1, therefore, the network involved is positive. This means 

that the surroundings have to do more work in bringing the system black to the 

original state than the work done by the system during expansion. Thus, we see 

that here wcyc π 0 and, therefore, the process is irreversible in nature.

In a reversible process, at any stage, the external condition responsible for the 

process

example, during expansion or compression pext = pint ± dp and the corresponding 

disturbed at all. Thus, virtually, the system always remains in the equilibrium state 

during the process. Another example of reversible process is the heat exchanges 

between the system and the surroundings when the temperature of the latter 

Tsurr = Tsys ± dT.

Obviously, a reversible process cannot be conducted in actual practice because 

be required to complete the process. Thus, reversible processes are not real but 

only ideal which can be carried out only theoretically. Nevertheless, they are very 

important as they give the limit of the effect, whether maximum or minimum, that 

can be produced. Although reversible processes cannot be carried out, the goal of 

reversibility can be approached by adjusting the conditions with patience and skill 

to those of reversible processes.

An irreversible process is one which occurs suddenly or spontaneously without 

system need not remain in equilibrium during the process. Examples are the 

above examples properties may not be uniform throughout the system, e.g., during 

heating, water near the bottom of the beaker will have a higher temperature and 

during dissolution of sugar, the concentration of the solution immediately in contact 

with the sugar will be higher. The fundamental characteristic of any irreversible 

process is that more work is done by the surroundings in bringing the system back 

to its original stage than by the system during the forward direction. Thus, if a 

system is kept at a constant temperature and subjected to a cyclic transformation 

by an irreversible process, a net amount of work is done by the surroundings. This 

is, in fact, a statement of second law of thermodynamics. The greatest work effect 

that can be produced is in the reversible process, and, as given by Eq. (1.6.8), it 

is wcyc = 0. Therefore, we cannot expect to get a positive amount of work in the 

surroundings for cyclic transformation of a system kept at a constant temperature.

Operation of a 

Reversible Process

Operation of an 

Irreversible Process
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actual practice. Therefore, irreversible processes are real processes. All spontaneous 

transformations which occur in nature are real processes and hence also irreversible 

processes.

Problem 1.6.1 Show mathematically that the magnitude of the work involved in a reversible expansion of 

an ideal gas from volume V1 and V2 is larger than the corresponding work involved in an 

irreversible expansion against a constant pressure of p2.

Solution We have the relation

|wrev| =  nRT ln
V

V

2

1

(1.6.9)

= nRT ln 1 12

1

+ -
Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

V

V

Expanding the logarithmic term, we have

|wrev| = nRT
V

V

nRT

V
V V2

1 1
11-

Ê
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ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

= - ++ higher terms  ( higher te2 ) rrms

= p1(V2 – V1) + higher terms

and |wirr | = p2(V2 – V1) (1.6.10)

Therefore |wrev| – |wirr| = {p1(V2 – V1) + higher terms} – p2(V2 – V1)

= (V2 – V1) (p1 – p2) + higher terms

Since, in expansion V2 > V1 and p1 > p2, therefore

        | wrev | – | wirr | = positive

that is, the magnitude of the work involved in a reversible expansion is larger than the 

corresponding work involved in an irreversible expansion.

REVISIONARY PROBLEMS

1.1 Explain, with examples, the following terms:

(i) System (closed, open and isolated); (ii) Surroundings; (iii) Boundary

(iv) State variables (intensive and extensive);

(v) Process (isothermal, adiabatic, isobaric, isochoric, cyclic and quasi-static);

(vi) Reversible and irreversible paths.

1.2 What are intensive and extensive variables? Classify the following into intensive and 

extensive variables:

(i) energy, (ii) dipole moment, (iii) refractive index, (iv) viscosity, (v) volume, (vi) 

density, (vii) surface tension, (viii) molar volume, (ix) kinetic energy, (x) heat capacity, 

(xv) vapour pressure, (xvi) internal energy, (xvii) enthalpy, (xviii) entropy, (xix) free 

energy, and (xx) chemical potential.

(b) State the Euler’s reciprocity relation for an exact differential.
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(c) What are state functions? Do the state functions have exact differentials?

(d) Test the following differential expressions for exactness:

(i) df = (x2 + y2) dx + 2xy dy (ii) df = 
p

T
p

p

T
T

2

2

3
d d-

(iii) df = 
RT

p
 dp – RdT

(e) What is an integrating factor? Determine the integrating factors for the following 

differentials.

df = y dx – x dy and df = 
RT

p
p R Td d-

(f) What is a cyclic rule? Derive this rule for a function Z = f (x, y).

(g) Show that the volume of the following equations is a state function:

(i) Ideal gas equation

(ii) Real gas at low pressure for which van der Waals equation reduces to

p
n a

V
V nRT+

Ê
ËÁ

ˆ
¯̃

=
2

2
( )

1.4. An arbitrary variable f is found to have the following relationship

df =
RT

p
p R Td d-

Are the following statements correct? Justify your answers.

(a) f is a state function

(b) df is an exact differential

(c) df πÚ 0�

(d) It is possible to write down f explicitly in terms of T and p as the independent 

variables, i.e. f = f (T, p).

1.5 What is the Legendre transformation? Given the relation

dU = T dS – p dV

transform this to

(i) dH = T dS + V dp (ii) dA = – S dT – p dV

(iii) dG = – S dT + V dp

What functional relations H, A and G will have with U?

1.6 (a) From the following thermodynamic relations

G = H – TS; H = U + pV; dq = T dS; dU = dq – p dV

Show that

( ) ; ( ) ( )i ii iii
∂
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ˆ
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ˆ
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V
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T

S

pp T p ËËÁ
ˆ
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T

(b) From the following thermodynamic relations

A = U – TS; dq = T dS; dU = dq – p dV
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Show that

( ) ; ( ) ; ( )i ii iii
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H = U + pV, and, wherever necessary, obtaining conversion 

relationships by considering H (or U ) as a function of any two variables amongst p,

V and T, derive the following relationships:

(i)
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ + +

∂
∂

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T

U

T
p

U

V

V

Tp V T p

(ii)
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ + -

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T

U

T
V

H

p

p

Tp V T V

(iii)
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ + -

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

∂
∂

U

T

H

T
V

H

T

T

p

p

TV p p H

ÊÊ
ËÁ

ˆ
¯̃

V

1.8 (a) For p = f (V, T) and V = f (p, T), derive the following cyclic rule:

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

+ =
p

T

T

V

V

pV p T

1 0

(b) Test the validity of the above equation using

(i) pV = nRT (ii) p
n a

V
V nRT+

Ê
ËÁ

ˆ
¯̃

=
2

2

a and isothermal compressibility factor kT?

Show that

(i)
a

kT V

p

T
=

∂
∂

Ê
ËÁ

ˆ
¯̃ (ii)

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃ =

a k

p TT

T

p

0

(b) Derive the expressions for kT and a for (i) an ideal gas and (ii) a van der Waals 

gas.

1.10 Starting from V as a state function derive the eqution of state for which

(i) V = k1p, keeping T constant, and V = k2T, keeping p constant.

(ii) a = 
V a

TV

V a

pV
T

-
=

-
and k

3

4

( )
, where a is constant.

nth degree’?

variable’.

(b) State Euler’s theorem as applicable to homogeneous function. Give its proof.

(c) If we write, for a system containing more than one component

V = f (n 1, n2, . . .)

then, using Euler’s theorem, show that

V = n
V

n
i

ii T p n j j i

∂
∂

Ê
ËÁ

ˆ
¯̃Â

π, , ( )
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1.12 What is the work of expansion or compression? Show that:

(a) The magnitude of the work involved during a multistage expansion is larger than 

that involved during a single-stage expansion.

(b) The magnitude of the work involved during expansion is maximum if the process 

is quasi-static.

(c) The work involved during a multistage compression is smaller than that involved 

in a single-stage compression.

(d) Work involved during compression is minimum if the process is quasi-static.

1.13 (a) Let the given system of an ideal gas be expanded isothermally from p1, V1 to p2,

V2 following a single-stage expansion. What should the external pressure be so that 

the work done by the system is maximum? What is the amount of work?

(b) Now, suppose that the system is to be restored isothermally to p1, V1 following

a single-stage compression. What should the external pressure be so that the work 

done by the surroundings is minimum? What is the amount of work?

(c) Will there by any difference in the work involved in steps (a) and (b)? if so, why?

1.14. Suppose the work of expansion and compression in Question 1.13 is carried out quasi-

cyclic process is zero, i.e. the maximum amount of the work that can be obtained by 

a system if its temperature is to be kept constant is zero. If the above cyclic process 

is not carried out quasi-statically, then the amount of work that can be obtained by 

system is negative, i.e. there is a net work that is destroyed’.

1.15. Comment on the following:

(a) All natural processes (i.e. spontaneous processes) are irreversible in nature.

(b) Reversible processes are an ideal conception and can be carried out only 

theoretically.

(c) In a reversible cyclic process, not only the system but also the surroundings are 

restored to their initial states.

TRY YOURSELF PROBLEMS

1.1 Given that

z = ax2y + by + cxy3

where a, b, c are constants. Show that

(i) dz is an exact differential and z is a state function.

(ii)
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

z

x

x

y

y

zy z x

1

(iii) dz =Ú 0�

1.2 Given that

dq = dU + p dV

(a) Assuming U = f (T, V), show that

dq =
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃ +Ï

Ì
Ó

¸
˝
˛

U

T
T

U

V
p V

V T

d d

Following Euler’s reciprocity condition, show that dq is an inexact differential.

(b) Assuming that for an ideal gas (∂U/∂V)T is zero, show that 1/T is an integrating 

factor of the equation dq = dU + p dV.

(Hint: See Sections 2.3 and 4.12.)
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1.3 Given that u = f (x, y) where x and y are themselves functions of s and t, i.e. 

x = f (s, t) and y = f (s, t). Show that

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

u

x

x

u

u

y

y

u

u

x

y x

y

u u

1

∂∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ =

x u

y

y

u x uu u
0

where u is also a function of x and y.

1.4 (a) Given A as a function of any two of the variable B, C and D, prove that

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

A

C

C

B

A

D

D

BB D B C

(b) Given the function S = f (T, p), show that

(∂p/∂T)S = – (∂S/∂T)p /(∂S/∂p)T

(c) Given the function of S = f (T, p) and p = f (T, V), show that

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

S

T

S

T

S

p

p

TV p T V

(d) If G is a function of p, V and T, prove that

(∂G/∂p)T = (∂G/∂V)p (∂V/∂p)T + (∂G/∂p)V

(e) Show that the function Z = pV is a state function.

1.5 A cylinder with a movable piston contains the amount n of an ideal gas. Consider the 

path indicated in the following diagram.

(a) Develop an expression in terms of p1, V1, p2 and V2 for the work that is carried out 

quasi-statically over the cyclic path, i.e. process going from a to b to c and back to a.

(b) What relation does the area of the triangle has to the magnitude of this work?

1.6 (a) An ideal gas undergoes a single-stage expansion against a constant opposing 

pressure from p1, V1, T to p2, V2, T. What is the largest mass m which can be lifted 

through a height h in this expansion?

(b) The system in (a) is restored to its initial state by a single-stage compression. What 

is the smallest mass m which must fall through the height h to restore the system?
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(c) What is the net mass lowered through height h in the cyclic transformation in (a) 

and (b)?

(d) If h = 10 cm, p1 = 1 MPa, p2 = 0.5 MPa, T = 300 K and one mole of the gas is 

involved, calculate the numerical values of the mass m required in (a) and (b).

(Ans. (a) m = (nRT/gh) (1 – p2/p1); (b) m¢ = (nRT/gh) (p1/p2 – 1);

(c) m¢ – m = (nRT/gh) (p1 – p2)
2/p1 p2; (d) 1.27 Mg and 2.54 Mg)

1.7 Explain which of the following processes are reversible/irreversible:

(a) One teaspoon of a salt is dissolved in water.

(b) A gas is expanded into an evacuated vessel.

(c) Diffusion of a gas into another gas at constant T and p.

(d) Two blocks of iron at different temperatures are brought into closer contact.

(e) One mole of liquid water in equilibrium with its vapour at 100 °C and 0.1 MPa.

(f) Vaporization of benzene into a vacuum at 60 °C.

1.8 (a) Starting from V

has an isothermal compressibility kT = K[1 + M (T – T0)] and a cubic expansion 

a = A[1 – Np], where K, M, A and N are all constants. Assume a and kT

to be independent of T and p.

AN = KM.

calculate how much must the temperature be raised in order to increase the pressure 

to 10.132 5 MPa. Given that

K = 2.487 × 10–4 MPa–1 M = 2 × 10–3 K–1

T0 = 273 K   A = 4.2 × 10–4 K–1

N = 1.184 × 10–3 MPa–1

(Ans. ln
V

V0

 = A (1 – Np) (T – T0) – {K – AN (T – T0)} (p – p0);

DT = T – T0 = 6.1 K)

(Hint: Write dV in terms of dT and dp. Substitute (∂V/∂T)p and (∂V/∂p)T and integrate 

p is independent of 

temperature and vice versa.)

1.9. (a) Show that

p = T
p

T

U

VV T

∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂
∂

Ê
ËÁ

ˆ
¯̃

can be written in the form

   
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

È
ÎÍ

˘
˚̇

= -
∂
∂

È
ÎÍ

˘
˚̇

U

V
T

p T

T

p T

TT V V

2

1

( / ) ( / )

( / )

(b) Show that

V = T
V

T

H

pp T

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

can be written as

        
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂

∂
Ê
Ë

ˆ
¯ =

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

H

p
T

V T

T

V T

TT p p

2

1

( / ) ( / )

( / )
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1.10 Test the following function for homogeneity and show by direct test the validity of 

Euler’s theorem on homogeneous function

f (x, y) =
ax

y

b x y

xy

2

2

3 2 3 2

1 2
+

+( )/ /

/

1.11 (a) Show that, if the molar volume of a substance is a homogeneous function of zeroth 

degree in pressure and temperature, the energy of the substance must be a function 

of temperature only.

(Hint: Using Euler’s theorem on homogeneous function, show that (∂p/∂T)V = 

p/T. Write dU in terms of dT and dV and show that (dU/dV)T is zero. Make use of 

thermodynamic equation of state (∂U/∂V)T = T (∂p/∂T)V – p.)

(b) Similarly, show that, if the pressure is a homogeneous function of zeroth degree 

with respect to volume and temperature, the enthalpy must be a function of temperature 

only. Make use of the equation

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p
V T

V

TT p

1.12 Taking U to be a function of T and V and l/T as an integrating factor of dq = dU + p dV,

derive the relation

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
T

p

T
p

T V

(Hint: Write the differential of U and substitute in the given relation dq = dU + p dV.

Divide the resultant expression by T and apply the Euler’s reciprocity relation. See

also Section 4.12.)

1.13 Taking H to be a function of T and p and l/T as an integrating factor of dq = dH – V dp,

derive the relation

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p
V T

V

TT p

1.14 For an ideal gas, show that 1/T is an integrating factor for the relation dw = – p dV. 

(Hint: Write dV in terms of dT and dp. Substitute (∂V/∂T )p and (∂V/∂p)T from pV = RT

and then substitute dV in the relation dw = – p dV. Divide by T and apply Euler’s 

reciprocity relation.)

1.15 Using Euler’s theorem on homogeneous function, show that the volume of an ideal 

gas is a homogeneous function of zeroth degree in pressure and temperature.

1.16. For the differential dz = y dx – x dy, show that xm yn is the integrating factor provided 

m + n = –2.



2 Zeroth and First Laws of

Thermodynamics

 The zeroth law of thermodynamics, also known as the law of thermal equilibrium,

basis for the concept of temperature of a system. The law states that

  Two systems in thermal equilibrium with a third system are also in internal 

equilibrium with each other.

thermometer is also based on this law. When a thermometer is placed in the system, 

 Ú dq +  Ú dw = 0 or  Ú (dq + dw) = 0 (2.2.1)†

q + dw

Let us represent

q =  Ú dq and w =  Ú dw

q + w = 0 or q = – w (2.2.2)

1.    If q w

done by the system.

2.1 ZEROTH LAW OF THERMODYNAMICS

2.2 FIRST LAW OF THERMODYNAMICS

Establishment

of First Law of 

Thermodynamics

Interpretation

of First Law of 

Therodynamics

†
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2.    If q w

done on the system.

processes indicates that dq + dw is an exact differential, and therefore, is a 

differential of a state function. We call this function the energy function (internal 

U to represent the function. The 

dU = dq + dw (2.2.3)

as U = f (T, V) or U = f (T, p) or U = f (p, V

U as the latter is an exact differential.

State A Æ

d d d

A

B

A

B

A

B

U q wÚ Ú Ú= +

U  – UA = q + w or DU = q + w (2.2.4)

q and w depend upon the path followed 

independent of the path. This follows immediately from the fact that U is a state 

function.

p-V

dw = – pext dV = 0

dU = dq
V

(2.2.5)

The heat absorbed (or released) by a system under constant volume condition 

increases (or decreases) its internal energy.

q and w are zero since no interaction 

DU must be zero for such a process. We, therefore, conclude that 

energy function of an isolated system is constant. This is another 

law of conservation of energy. No

Identification of 

Energy Function

Change in Energy 

Function for a Finite 

Process

Change in Energy 

Function Under a 

Constant Volume 

Condition

Law of 

Conservation of 

Energy
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For a cyclic process, DU = 0 since the system returns to its initial state. Thus, 

q = – w (2.2.6)

the possibility of such a machine.

dq = dU –  dw (2.3.1)

then dw = – p dV

dq = dU + p dV (2.3.2)

U

dU = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

V
V

U

T
T

T V

d d

dq = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

V
V

U

TT V

d  dT + p dV (2.3.3)

V T

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

q

V

U

VT T

 + p (2.3.4)

T V

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

q

T

U

TV V

(2.3.5)

  If q

∂
∂ ∂

Ê
ËÁ

ˆ
¯̃

=
∂

∂ ∂
Ê
ËÁ

ˆ
¯̃

2 2q

T V

q

V T
(2.3.6)

∂
∂ ∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
Ë

ˆ
¯ =

∂
∂ ∂

Ê
ËÁ

ˆ
¯̃

2 2U

T V

p

T

U

V TV

(2.3.7)

Denial of Perpetual 

Motion Machine of 

First Kind

2.3 MATHEMATICAL PROOF OF HEAT AND WORK BEING INEXACT FUNCTIONS

Proof of Heat Being 

an Inexact Function
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Since U

∂
∂ ∂

=
∂

∂ ∂

2 2U

T V

U

V T

∂
∂

Ê
ËÁ

ˆ
¯̃

p

T V

 = 0 (2.3.8)

to Charles law, which states that 

of a gas is directly proportional to its kelvin temperature, i.e.

p μ T

or p = KT

Thus (∂p/dT)V = K

assumption that q q is an inexact 

differential.

dw = – p dV (2.3.9)

V as a function of T and p, we write its differential as

dV = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

V

T
T

V

p
p

p T

d d

– dw = p
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

V

T
T

V

p
p

p T

d d

-
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

w

p
p

V

pT T

(2.3.10)

and -
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

w

T
p

V

Tp p

(2.3.11)

If w is to be a state function, dw

reciprocity relation states that

∂
∂ ∂

=
∂

∂ ∂

2 2w

T p

w

p T
(2.3.12)

p
V

T p
p

V

p T

V

T p

∂
∂ ∂

=
∂

∂ ∂
+

∂
∂

Ê
Ë

ˆ
¯

2 2

(2.3.13)

Proof of Work Being 

an Inexact Function
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Since V

∂
∂ ∂

=
∂

∂ ∂

2 2V

T p

V

p T

∂
∂

Ê
ËÁ

ˆ
¯̃

V

T p

 = 0 (2.3.14)

contrary to Charles law which states that

mass of a gas is directly proportional to its kelvin temperature, i.e.

p μ T

or p = KT

Thus (∂V/dT )p = K

assumption that w w is an inexact 

differential.

I

p dV, where p

expansion is carried out and dV

dU = dq – p dV (2.3.15)

For an adiabatic process dq = 0 and thus dU = –p dV. Hence, for this condition, 

the differential of work is exact. Similarly, for an isochoric process (i.e. when V

is held constant), dw = – p dV = 0 and dU = dq, and thus; under this condition, 

the differential of heat becomes exact.

n is constant) 

U = f(T, V ) and, therefore

dU = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T
T

U

V
V

V T

d d (2.4.1)

Since for an isochoric process, dV = 0, therefore

dU =
∂
∂

Ê
Ë

ˆ
¯

U

T
T

V

d

Also, for an isochoric process

dU = dq
V

(2.4.3)

dU = dq
V
 = 

∂
∂

Ê
Ë

ˆ
¯

U

T
T

V

d (2.4.4)

Conditions for dq

and dw to be Exact 

Differentials

2.4 CHANGE IN ENERGY FUNCTION WITH TEMPERATURE
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or
d

d

q

T

U

T
V

V

=
∂
∂

Ê
Ë

ˆ
¯ (2.4.5)

q/DT ) as DT

written as (dq/dT ), such that

C = lim
D DT

q

T

q

TÆ

Ê
Ë

ˆ
¯ = Ê

Ë
ˆ
¯0

d

d
(2.4.6)

q

by DT

has the unit of J K–1 –1. The molar heat capacity is the heat capacity per unit 

Cm

and has the unit of J K–1 mol–1. Since dq is an inexact differential, therefore, heat 

capacity C

Isochoric Process)

CV  = 
d

d

q

T

V
(2.4.7)

(ii) Heat capacity at constant pressure (Isobaric Process)

 Cp = 
d

d

q

T

p
(2.4.8)

CV = 
∂
∂

Ê
ËÁ

ˆ
¯̃

U

T V

(2.4.9)

dU = dq
V
 = CV dT (2.4.10)

DU = q
V
  = C TVT

T
d

1

2Ú (2.4.11)

  If CV T1 to T2, then

DU = q
V
 = CV DT (2.4.12)

where DT T2 – T1). If CV

is temperature dependent, and its dependence on temperature is known in the form 

qV or DU.

∂U/∂V )T = 0, it follows that (∂U/∂p)T = 0.

Since U = f (T, V

dU = 
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T
T

U

V
V

V T

d d

Definition of Heat 

Capacities

Problem 2.4.1

Solution
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p

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

U

p

U

V

V

pT T T

Since (∂U/∂V)T = 0, therefore   (∂U/∂p)T = 0.

Most chemical processes which take place in a laboratory are carried out under 

enthalpy function. This can be done as follows.

dU = dq – p dV (2.5.1)

where p

pV ) = p dV + V dp

dU + d(pV ) = dq + V dp (2.5.2)

or d(U + pV ) = dq + V dp (2.5.3)

Since p and V are state functions, the product pV is also a state function. This 
† Thus, the sum (U + pV ),

known as enthalpy function, is also a state function. This is represented by the 

symbol H. Thus

H = U + pV (2.5.4)

dH = dq + V d p (2.5.5)

  If to a closed system, heat is supplied at constant pressure conditions, then 

dH = dqp (2.5.6)

Thus, the change in enthalpy function of the system is equal to the heat exchanged 

by the system at constant pressure.

  Since H is a state function and dH qp

under the condition of constant pressure becomes an exact differential. It may be 

H need not be determined precisely as 

U

2.5 ENTHALPY FUNCTION

Identification of 

Enthalpy Function

Physical Significance 

of Enthalpy Function

† See Q. 2.5 in Try Yourself Problems.
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If the enthalpy of a closed system is taken as a function of temperature and pressure, 

dH = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T
T

H

p
p

p T

d d (2.5.7)

dH = 
∂
∂

Ê
Ë

ˆ
¯

H

T
T

p

d (constant pressure) (2.5.8)

dH =  dqp = 
∂
∂

Ê
Ë

ˆ
¯

H

T
T

p

d (2.5.9)

Cp = 
d

d

q

T

H

T

p

p

=
∂
∂

Ê
Ë

ˆ
¯ (2.5.10)

which relates the temperature dependence of the enthalpy at constant pressure to 

the heat capacity at constant pressure.

dqp = dH = Cp dT (2.5.11)

qp = DH = C TpT

T
d

1

2Ú (2.5.12)

Cp independent of T   If Cp

T1 to T2, then

qp = DH = Cp (T2 – T1) (2.5.13)

Cp dependent on T   Heat capacity at constant pressure is usually temperature 

Cp and temperature 

as

Cp = a + bT + cT 2 +  (2.5.14)

where a, b, c, …

qp = DH = 
T

T

1

2Ú (a + bT + cT 2 +  )dT

qp = DH = aT
bT cT

T

T

+ + +
2 3

2 3
1

2

 

Defining Heat 

Capacity in terms 

of Enthalpy

Change in Enthalpy 

with Temperature
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= a(T2 –T1) + 
b

2
 (T 2

2 – T 2
1) + 

c

3
 (T 3

2 – T 3
1) +  (2.5.15)

10.0 dm3 of O2

calculate the heat absorbed, DH and DU of this process at (a) constant pressure, and

Cp, m = CV, m + R.

Cp, m/J K–1 mol–1 = 25.72 + 0.013 (T /K) – 3.86 ¥ 10–6 (T /K)2

n = 
pV

RT
= - -

( . ) ( . )

( . ) ( )

101 325 10 0

8 314 298

3

3 1

kPa dm

dm kPa K mol K1

 = 0.409 mol

(a) Constant pressure

qp = DH = n
T

T

1

2Ú Cp, m dT

 = n
˘

˚
(̇25.72 J K–1 mol–1 )(T2 – T1) + (0.013 J K–2 mol–1 )

T T2
2

1
2

2 2
-

Ê
ËÁ

ˆ
¯̃

  – (3.86 ¥ 10–6 J K–3 mol–1)
T T2

3
1
3

3 3
-

Ê
ËÁ

ˆ
¯̃

˘

˚
˙

qp = DH = (0.409) 
˘

˚
(̇25.72 J) (348 – 298) + (0.013 J)

348

2

298

2

2 2

-
Ê
ËÁ

ˆ
¯̃

  – (3.86 ¥ 10–6 J)
348

3

298

3

3 3

-
Ê
ËÁ

ˆ
¯̃

˘

˚
˙

 = (0.409) (1475.77 J) = 603.59 J

DU = DH – D(pV) = DH – nR (DT)

 = 603.59 J – (0.409 mol) (8.314 J K–1 mol–1) (50 K)

 = 603.59 J – 170.02 J = 433.57 J

(b) Constant volume

q
V
 = DU = nC T nC T nR TV

T

T

p
T

T

T

T

, ,m md d d
1

2

1

2

1

2Ú Ú Ú= -

   = 603.59 J – 170.02 J = 433.57 J

DH = DU + D(pV ) = DU + nR(DT ) = 603.59 J

(Note: DU and DH are the same in both the cases as these are state functions. 

q differs as it is a path function.)

∂U/∂V)T = 0 then (∂H/∂p)T = 0.

Since H = U + pV

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

+
H

p

U

p
p

V

p
V

T T T

Example 2.5.1

Solution

Problem 2.5.1

Solution
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or
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

+
H

p

U

V

V

p
p

V

p
V

T T T T

(2.5.16)

If (∂U/∂V )T = 0, then

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
H

p
p

V

p
V

T T

(2.5.17)

Hence if (∂U/∂V )T = 0, then (∂H/∂p)T need not be zero.

∂U/∂V)T = 0)

(i)
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p T

 = 0 (ii)
∂
∂

Ê
ËÁ

ˆ
¯̃ = =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
C

p

nR
C

T

V
p

p
V p

p

(iii)
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃

U

p
C

T

p
C

V

V

V

T
V

k

a

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂

∂
Ê
ËÁ

ˆ
¯̃

=
C

V

C

p

V

T

p

T

0 0and

∂
∂

Ê
ËÁ

ˆ
¯̃ =

H

V T

0
∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T
C p

V

Tp
p

p

(i)

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
H

p
p

V

p
V

T T

∂U/∂V )T = 0)

V = nRT/p, therefore
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
V

p

nRT

pT
2

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
Ê
ËÁ

ˆ
¯̃

+ = -
H

p
p

nRT

p
V

nRT

pT
2

 + V = –V + V = 0

(ii) Since U = f (T, V ), therefore

dU = 
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T
T

U

V
V

V T

d d

∂U/∂V)T = 0, therefore

dU = 
∂
∂

Ê
ËÁ

ˆ
¯̃

U

T
T

V

d  = CV dT (2.5.18)

V p

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

U

V

U

T

T

V
C

T

Vp V p
V

p
(2.5.19)

Now pV = nRT, therefore T = pV/nR V p

Problem 2.5.2

Solution
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∂
∂

Ê
ËÁ

ˆ
¯̃ =

T

V

p

nRp

∂
∂

Ê
ËÁ

ˆ
¯̃ = =

U

V
C

p

nR
C

p

Rp
V V, m

U = H – pV

V p

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ - =

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ - =

∂
∂

ÊU

V

H

V
p

H

T

T

V
p C

T

Vp p p p
p ËËÁ

ˆ
¯̃ -

p

p (2.5.20)

(iii) p V

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

U

p

U

T

T

p
C

T

pV V V

V

V

∂
∂

Ê
ËÁ

ˆ
¯̃ =

p

T V T

a

k

Thus
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃

U

p
C

T

p
C

V

V

V

V
Tk

a
(2.5.21)

(iv)

CV = 
∂
∂

Ê
ËÁ

ˆ
¯̃

U

T V

V T

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

C

V V

U

T

V

T V T

Since U is a state function, it follows that

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛V

U

T T

U

VV T T V

Hence
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

C

V T

U

V

V

T T V

∂U/∂V)T = 0. Therefore

∂
∂

Ê
ËÁ

ˆ
¯̃

C

V

V

T

= 0

In other words, at constant temperature, CV

depends only on temperature.

Now Cp = 
∂
∂

Ê
ËÁ

ˆ
¯̃

H

T p
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p T

∂

∂
Ê
ËÁ

ˆ
¯̃

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
ÓÔ

¸
˝
Ǫ̂

C

p p

H

T

p

T p T

Since H is a state function, it follows that

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
ÓÔ

¸
˝
Ǫ̂

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛p

H

T T

H

pp T T p

Hence
∂

∂
Ê
ËÁ

ˆ
¯̃

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

C

p T

H

p

p

T T p

∂H/∂p)T = 0. Therefore

∂

∂
Ê
ËÁ

ˆ
¯̃

C

p

p

T

 = 0

In other words, at constant temperature Cp

depends only on temperature.

(v) Differential of the relation   H = U + pV is

dH = dU + p dV + V dp

V

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ + +

∂
∂

Ê
ËÁ

ˆ
¯̃

H

V

U

V
p V

p

VT T T

(2.5.22)

∂
∂

Ê
ËÁ

ˆ
¯̃

U

V T
= 0 and p = 

nRT

V

Therefore
∂
∂

Ê
ËÁ

ˆ
¯̃ = - = - = -

p

V

nRT

V

pV

V

p

VT
2 2

∂
∂

Ê
ËÁ

ˆ
¯̃

H

V T

 = 0

(vi) Differential of the relation U = H – pV is

dU = dH – p dV – V dp

T p

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T

H

T
p

V

T
C p

V

Tp p p
p

p

Cp = 
∂
∂

Ê
ËÁ

ˆ
¯̃

H

T p

(2.6.1)

2.6 RELATION BETWEEN HEAT CAPACITIES
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CV = 
∂
∂

Ê
ËÁ

ˆ
¯̃

U

T V

(2.6.2)

(∂H/∂T )p and (∂U/∂T )V.

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ + +

∂
∂

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T

U

T
p

U

V

V

Tp V T p

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ + -

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T

U

T
V

H

p

p

Tp V T V

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ + +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

∂
∂

H

T

U

T
V

H

T

T

p

p

Tp V p H

ÊÊ
ËÁ

ˆ
¯̃

V

∂H/∂T )p and (∂U/∂T)V by Cp and CV

Cp = CV  + p
U

V

V

TT p

+
∂
∂

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

∂
∂

Ê
ËÁ

ˆ
¯̃ (2.6.3)

Cp = CV  + V
H

p

p

TT V

-
∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

∂
∂

Ê
ËÁ

ˆ
¯̃

(2.6.4)

Cp = CV + V
H

T

T

p

p

Tp H V

+
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

∂
∂

Ê
ËÁ

ˆ
¯̃ (2.6.5)

The difference between Cp and CV  may be expressed in terms of easily determinable 
†

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
T

p

T
p

T V

Cp – CV  = T
∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
Ë

ˆ
¯

p

T

V

TV p

(2.6.6)

a and kT and that (∂p/∂T)V = a /kT

Cp – CV = TV
a

k

2

T

(2.6.7)

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

V

T

T

p

p

Vp V T

 + 1 = 0

Difference of Heat 

Capacities in terms

of Easily 

Determinable 

Derivatives

† See Section 4.14.
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∂
∂

Ê
Ë

ˆ
¯ = -

∂ ∂ ∂ ∂
= -

∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
ËÁ

ˆ
¯̃

V

T T p p V

p

T

V

pp V T V T

1

( / ) ( / )

Cp – CV  = –T
∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
ËÁ

ˆ
¯̃

p

T

V

pV T

2

(2.6.8)

pVm = RT, therefore

∂
∂

Ê
Ë

ˆ
¯ =

p

T

R

VV m

and
∂
∂

Ê
ËÁ

ˆ
¯̃ =

V

T

R

pp

m

Cp, m – CV, m = T
R

V

R

p

R T

pV

R T

RTm m

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

= =
2 2

 = R (2.6.9)

Alternatively Cp – CV

The term (∂U/∂V)T

expansion (when the molecules are pulled apart) or compression (when the 

This amounts to (∂U/∂V)T

Cp, m – CV, m = p
∂
∂

Ê
ËÁ

ˆ
¯̃

V

T p

m

∂
∂

Ê
ËÁ

ˆ
¯̃ =

V

T

R

pp

m

Hence Cp, m – CV, m = p
R

p

Ê
ËÁ

ˆ
¯̃

= R

p
a

V
+

Ê
ËÁ

ˆ
¯̃m

2
(Vm – b) = RT

or pVm – pb + 
a

V

ab

Vm m

-
2

 = RT (2.6.10)

T at constant Vm

∂
∂

Ê
Ë

ˆ
¯ -

∂
∂

Ê
Ë

ˆ
¯

p

T
V

p

TV Vm m

m b = R

Evaluation of

Cp, m – CV, m for an 

Ideal Gas

Evaluation of

Cp, m – CV, m for a 

van der Waals Gas
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i.e.
∂
∂

Ê
Ë

ˆ
¯ =

-
p

T

R

V bVm m

(2.6.11)

T at constant p

p
V

T

a

V

V

T

ab

V

V

T
R

p p p

∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃ =m

m

m

m

m
2 3

2

i.e.
∂
∂

Ê
ËÁ

ˆ
¯̃ =

- +

V

T

R

p
a

V

ab

V
p

m

m m
2 3

2
(2.6.12)

Cp, m – CV, m = T
R

V b

R

p
a

V

ab

V
m

m m

-
Ê
ËÁ

ˆ
¯̃ - +

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

2 3

2

  = 
RT

V b

R

p
a

V

a

V
V bm

m m

m
-

Ê
ËÁ

ˆ
¯̃ + - -

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

2 3

2
( )

  = 
R

a

V RT
V b1

2
3

2- -
m

m( )

(2.6.13)

approximated as

Cp, m – CV, m    
R

a V RT
R

a

V RT
R

ap

R T1 2
1

2
1

2
2 2-

+
Ê
ËÁ

ˆ
¯̃

+Ê
Ë

ˆ
¯/ m m

(2.6.14)

Cp, m – CV, m

increases linearly with pressure. This difference also depends on the nature of 

a a

between Cp, m and CV, m.

Cp, m – CV, m = R 1
2 4

2 2

2

3 3
+ -

È

Î
Í

˘

˚
˙

ap

R T

abp

R T

∂
∂

Ê
ËÁ

ˆ
¯̃ =

- +

V

T

R

p
a

V

ab

V
p

m

m m
2 3

2

Problem 2.6.1

Solution
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=
R

p
a

V

a

V
V b

R

RT

V b

a

V
V b+

Ê
ËÁ

ˆ
¯̃

- -
=

-
- -

m m

m
m m

m2 3 3

2 2
( ) ( )

=
R V b

RT
a

V
V b

V b

T

a

V RT
V b

( )

( )

( )m

m

m

m

m

m

-

- -
=

-Ê
ËÁ

ˆ
¯̃ - -

È

Î
Í

˘

˚
˙

-

2
1

2

3

2
3

2

1

=
V b

T

a

V RT
V b

V b

T

a

V RT
Vm

m

m
m

m

m
2-Ê

ËÁ
ˆ
¯̃ + -

È

Î
Í

˘

˚
˙

-Ê
ËÁ

ˆ
¯̃ +1

2
1

2
3

2

3
( ) ( --

È

Î
Í

˘

˚
˙2V bm )

=
V b

T

ap

R T

abp

R T

m -Ê
ËÁ

ˆ
¯̃ + -

È

Î
Í

˘

˚
˙1

2 4
2 2

2

3 3
(2.6.15)

∂
∂

Ê
ËÁ

ˆ
¯̃ =

-
p

T

R

V bV m

Hence Cp, m – CV, m = T
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ =

-
Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃ + -

p

T

V

T
T

R

V b

V b

T

ap

R TV p

m

m

m 1
2 4

2 2

aabp

R T

2

3 3

Ï
Ì
Ó

¸
˝
˛

È

Î
Í

˘

˚
˙

= R 1
2 4

2 2

2

3 3
+ -

È

Î
Í

˘

˚
˙

ap

R T

abp

R T
(2.6.16)

a of a metal at 293 K is 21.3 ¥ 10–6 K–1 and the 

kT is 1.56 ¥ 10–11 Pa–1 –1

–3. Calculate Cp, m – CV, m of the metal at 293 K.

a = 21.3 ¥ 10–6 K–1

kT = 1.56 ¥ 10–11 Pa–1 = 1.56 ¥ 10–11 (N m–2)–1

r –3

Molar mass

Density

63.55 g mol

0.97 g cm

1

3
=

-

-  = 65.515 cm3 mol–1

Cp, m – CV, m = 
a

k

2
mTV

T

Cp, m – CV, m = 
( . ) ( ) ( . )

( . )

21 3 10 293 65 515 10

1 56 10

6 1 2 6 3 1

11 1 2

¥ ¥
¥

- - - -

- -
K K m mol

N m

= 0.558 N m K–1 mol–1 = 0.558 J K–1 mol–1

Calculate Cp, m – CV, m

a is 141 dm6 kPa mol–2.

Example 2.6.1

Solution

Example 2.6.2
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p = 100 bar = 104 kPa

a = 141 dm6 kPa mol–2

Cp, m – CV, m  R 1
2
2 2

+Ê
ËÁ

ˆ
¯̃

a

R T
p

Cp, m – CV, m   (8.314 J K–1 mol–1)

       ¥ 1
2 141

8 314 298

6 2

3 1 1 2 2

4+ ¥
Ê
ËÁ

-

- -
( )

( . ) ( )

dm kPa mol

dm kPa K mol K
10 kPa

ˆ̂
¯̃

  (8.314 J K–1 mol–1) (1 + 0.459)

= 12.13 J K–1 mol–1

∂U/∂V)T

temperature of the water is recorded. The result shows that the temperature of water 

after the experiment is the same as that before the expansion.

free expansion.

Since dw = –pext dV

U = dq + dw

dU = dq

heat dq

Solution

Experimentation

2.7 JOULE’S EXPERIMENT

Fig. 2.7.1 Joule expansion 

experiment

Interpretation of 

the Results
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dU = 0

U to be a function to T and V, we write its differential as

dU = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T
T

U

V
V

V T

d d

Since dT = 0 and dU

∂
∂

Ê
Ë

ˆ
¯

U

V
V

T

d  = 0

Now since dV π 0, if follows that

∂
∂

Ê
ËÁ

ˆ
¯̃

U

V T

 = 0 (2.7.2)

The change in energy of a gas with change in volume at a constant temperature 

is zero.

Mathematically, it is written as U = f (T

h

h = 
∂
∂

Ê
ËÁ

ˆ
¯̃

T

V U

(2.7.3)

∂U/∂V)T by 

U = f (T, V

dU = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T
T

U

V
V

V T

d d

0 = 
∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T

T

V

U

VV U T

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

U

V

U

T

T

VT V U

 = – CV h

or h = -
∂
∂

Ê
Ë

ˆ
¯

1

C

U

VV T

(2.7.4)

h

see

Joule Coefficient

Joule Coefficient in

terms of Easily 

Determinable

Derivatives
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∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
T

p

T
p

T V

(2.7.5)

Therefore  h = -
∂
∂

Ê
Ë

ˆ
¯ = -

∂
∂

Ê
Ë

ˆ
¯ -Ï

Ì
Ó

¸
˝
˛

1 1

C

U

V C
T

p

T
p

V T V V

(2.7.6)

If DT and DV

h = 
∂
∂

Ê
Ë

ˆ
¯

T

V

T

VU

U

U

 
( )

( )

D
D

(2.7.7)

(DT)U    
1

C
p T

p

T
V

V V

-
∂
∂

Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

D (2.7.8)

p = nRT/V, therefore

∂
∂

Ê
ËÁ

ˆ
¯̃ =

p

T

nR

VV

This implies that

 h = – 
1 1 1

C
T

p

T
p

C

nRT

V
p

CV V V V

∂
∂

Ê
Ë

ˆ
¯ -Ï

Ì
Ó

¸
˝
˛

= - -Ê
Ë

ˆ
¯ = -  (p – p) = 0 (2.7.9)

h p and (∂p/∂T)V

  (i) When p > T (∂p/∂T)V then h V

∂T)U

∂U/∂V)T

  (ii) When p < T (∂p/∂T)V then h ∂T)U is 

(∂U/∂V)T

  The fact that (∂U/∂V)T

U actually consists 

(∂U/∂V)T

(∂U/∂V)T

Joule Coefficient 

for an Ideal Gas

Joule Coefficient 

for a Real Gas
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p1

p2 (p1 > p2

p1 and p2 at 

V1

p1V1

V2

p2V2

p2V2 + p1V1

q

DU = w

or U2 – U1 = – p2V2 + p1V1

or U2 + p2V2 = U1 + p1V1

or H2 = H1 (2.8.1)

Joule-Thomson expansion is an isenthalpic process.

DT

–D p are combined in the ratio

-
-

Ê
ËÁ

ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃

D
D

D
D

T

p

T

pH H

2.8 JOULE-THOMSON EXPERIMENT

Experimentation

Fig. 2.8.1 Joule-Thomson 

Experiment

Nature of Joule-

Thomson Expansion

Joulr-Thomson

Coeffcient
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mJT

D p approaches zero

mJT = lim
D

D
Dp

H H

T

p

T

pÆ

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃0

(2.8.2)

2

represented as

mJT/K MPa–1 = 0.140 – 2.533 ¥ 10–2 (p/MPa)

2.0 MPa pressure.

Since  mJT = (∂T/∂p)H, therefore

dT = mJT dp

 = (0.140 K MPa–1) dp – (2.533 ¥ 10–2 K MPa–1) (p/MPa) dp

     DT = (0.140 K MPa–1)(p2 – p1) – (2.533 ¥ 10–2 K MPa–1)
p p2

2
1
2

2 2MPa MPa
-

Ê
ËÁ

ˆ
¯̃

p

DT = (0.140 K MPa–1) (2.0 MPa – 6.0 MPa) – (2.533 ¥ 10–2 K MPa–1)

                  ¥
( . ) ( . )2 0

2

6 0

2

2 2MPa

MPa

MPa

MPa
-

Ê
ËÁ

ˆ
¯̃

= – 0.560 K + 0.405 K

= – 0.155 K

Since H = f (T, p), its differential is 

dH = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T
T

H

p
p

p T

d d

p H

  0 = 
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

H

T

T

p

H

pp H T

or
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂ ∂
∂ ∂

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

T

p

H p

H T C

H

pH

T

p p T

( / )

( / )

1
(2.8.3)

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
Ë

ˆ
¯ +

H

p
T

V

T
V

T p

Example 2.8.1

Solution

Joule-Thomson

Coefficient in Terms 

of Easily

Determinable

Derivative
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mJT = 
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂ ∂ -T

p

T V T V

CH

p

p

( / )
(2.8.4)

or mJT = 
V

C

T

V

V

T

V

Cp p p

∂
∂

Ê
Ë

ˆ
¯ -

È

Î
Í

˘

˚
˙ =1  (T a – 1) (2.8.5)

Calculate the Joule-Thomson coefficient of carbon monoxide at 298 K and 40.53 MPa 

T/V) (∂V/∂T)p
3 mol–1 and

Cp, m = 37.28 J K–1 mol–1.

mJT = 
V

C

T

V

V

Tp p

m

m,

∂
∂

Ê
ËÁ

ˆ
¯̃ -

È

Î
Í

˘

˚
˙1

mJT = 
( )

( . )

76 10

37 28

6 3 1

1 1

¥ - -

- -
m mol

J K mol
 (0.984 – 1)

= – 0.032 6 ¥ 10–6 K J–1 m3 = – 0.032 6 ¥ 10–6 K (Pa m3)–1 m3

= – 0.032 6 ¥ 10–6 K (1 atm/101.325 ¥ 103)–1 = – 0.003 3 K atm–1

∂V/∂T)p = nR/p, therefore

mJT = 
T V T V

C

nRT p V

C

p

p p

( / ) /∂ ∂ -
=

-
= 0 (2.8.6)

that is,  and thus the temperature 

p, in Joule-Thomson experiment is always 

T mJT

Table 2.8.1 mJT and (∂H/∂p)T

Experimental

result
mJT

from Eq. (2.8.2)

(∂H/∂p)T

from Eq. (2.8.3)

Comments

dT (+) (–) 2 and He at

low temperatureT2 < T1

dT zero, i.e. Zero Zero

T2 = T1

dT (–) (+)

ture, H2 and He at ordinary

temperature
T2 > T1

Example 2.8.2

Solution

Joule-Thomson

Coefficient for an 

Idea Gas

Joule-Thomson

Coefficient for a 

Real Gas
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 mJT = 
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

T

p C

H

pH p T

1

Since H = U + pV, therefore

or
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂

∂
Ê
ËÁ

ˆ
¯̃

H

p

U

p

pV

pT T T

( )

or
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂

∂
Ê
ËÁ

ˆ
¯̃

H

p

U

V

V

p

pV

pT T T T

( )
(2.8.7)

mJT = 
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂

∂
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

T

p C

U

V

V

p

pV

pH p T T T

1 ( )
(2.8.8)

(∂U/∂V)T ∂U/∂V)T

and the fact that (∂V/∂p)T

  The second term (∂(pV)/∂p)T

(i) When {∂(pV)/∂p)}T is negative

mJT = – 
1

C

U

V

V

p

pV

pp T T T

∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂

∂
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

( )

= – 
1

( )+ve

Since dp

mJT = 
∂
∂

Ê
ËÁ

ˆ
¯̃

=
-

T

p H

?

( )ve

Therefore, (DT)H

(ii) When {∂(pV)/∂p}T is positive and is greater than the magnitude of

(∂U/∂V)T (∂V/∂p)T

mJT = – 
1

C

U

V

V

p

pV

pp T T T

∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂

∂
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

( )

= – 
1

( )+ve

Real Gas Undergoing 

Joule-Thomson

Expansion
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and mJT = 
∂
∂

Ê
ËÁ

ˆ
¯̃

=
-

T

p H

?

( )ve

Therefore, (DT)H

(iii) When {∂(pV)/∂p}T is positive and is equal to the magnitude of

(∂U/∂V)T (∂V/∂p)T

  In this case

mJT = 0 and thus (DT)H = 0

expansion.

T mJT = 0 is known as the inversion temperature.

mJT = 
V

C

T

V

V

Tp p

i ∂
∂

Ê
Ë

ˆ
¯ -

È

Î
Í

˘

˚
˙1  = 0

or Ti = 
1

1

1

V

V

T p

∂
∂

Ê
Ë

ˆ
¯

=
ai

(2.8.9)

where a i Ti.

∂H/∂p)T

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p
C

T

pT

p

H

 = – Cp mJT (2.8.10)

mJT = 0 and thus the differential (∂H/∂p)T is zero. This also 

∂U/∂V)T and (∂(pV)/∂p)T are both zero for an ideal 

∂H/∂p)T

∂H/∂p)T ∂U/∂V)T can 

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂

∂
Ê
ËÁ

ˆ
¯̃

H

p

U

V

V

p

pV

pT T T T

( )

  =
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

+
U

V

V

p
p

V

p
V

T T T

∂
∂

Ê
Ë

ˆ
¯ =

∂ ∂ -
∂ ∂

-
U

V

H p V

V p
p

T

T

T

( / )

( / )
(2.8.11)

  Hence, substitution of (∂H/∂p)T, (∂V/∂p)T, V and p ∂U/∂V)T.

Inversion

Temperature

Evaluation of

(∂H/∂p)T and

(∂U/∂V )T from mJT
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∂H/∂p)T =  V

Since H = U + pV

  dH = dU + p dV + V dp

p

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

+ =
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆH

p

U

p
p

V

p
V

U

V

V

pT T T T ¯̃̄
+

∂
∂

Ê
ËÁ

ˆ
¯̃

+
T T

p
V

p
V

(∂V/∂p)T   0, and therefore

∂
∂

Ê
ËÁ

ˆ
¯̃

H

p T

 V

mJT = 
1

C
T

V

T
V

p p

∂
∂

Ê
Ë

ˆ
¯ -

È

Î
Í

˘

˚
˙ (2.9.1)

The expression for (∂V/∂T)p

∂
∂

Ê
ËÁ

ˆ
¯̃ =

- +

V

T

R

p
a

V

ab

V
p

m

m m
2 3

2

mJT = 
1

2

1

2 3

2

C

RT

p
a

V

ab

V

V
C

p
a

V
V b

p p, ,

(

m

m m

m
m

m

m

- +
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=
+

Ê
ËÁ

ˆ
¯̃

- ))

p
a

V

ab

V

V

- +
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

m m

m

2 3

2

 = 
1

2 3

2

2

2 3

C

a

V

ab

V
pb

p
a

V

ab

V
p, m

m m

m m

- -

- +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

(2.9.2)

(i) - +
a

V

ab

Vm m
2 3

2
p

(ii) pVm  RT

mJT = 
1 2 3

2 2C

a

RT

abp

R T
b

p, m

- -È
ÎÍ

˘
˚̇

(2.9.3)

Problem 2.8.1

Solution

2.9 JOULE-THOMSON COEFFICIENT AND VAN DER WAALS EQUATION OF STATE

Expression of mJT
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abp/R2T2, so that

mJT = 
1 2

C

a

RT
b

p, m

-Ê
Ë

ˆ
¯ (2.9.4)

Values of mJT for H2, O2 and CO2

Table 2.9.1 Values of mJT

a b Cp, m mJT/K atm–1

Gas dm6 kPa mol–2 dm3 mol–1 J K–1 mol–1 Calculated   Observed

H2 25.74 2.67 ¥ 10–2 29.38 – 0.014 – 0.03

O2 133.75 3.12 ¥ 10–2 30.29   0.29 0.31

CO2 364.77 4.28 ¥ 10–2 38.50   0.73 1.30

a/RT b

b

within the system as the expansion takes place under adiabatic conditions and thus 

a/RT) decreases and 

inversion temperature

to b with the result that mJT

a/RT) becomes lesser 

than b b

Here mJT

mJT

2 3
2 2

a

RT

abp

R T
b

i i

- -  = 0 (2.9.5)

Ti = 
2a

Rb
(2.9.6)

Results of Joule-

Thomson Expansion

Explanation of 

Results

Inversion Temperature
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Fig. 2.9.1 The variation of μμμμμ
JT
and its two

components of N
2
(a van der Waals gas) with

temperature:

Fig. 2.9.2 A Typical Joule-Thomson inversion

curve

Calculate mJT Cp, m as 34.35 J K–1

mol–1, a = 0.141 dm6 MPa mol–2 and b = 3.92 ¥ 10–2 dm3 mol–1.

The expression of mJT is

mJT = 
1 2 3

2 2C

a

RT
b

abp

R Tp, m

- -Ê
ËÁ

ˆ
¯̃

Now    
2 2 0 141

8 314 10 293

6

3 6

a

RT
=

¥

-

- -
( . )

( . ) ( )

dm MPa mol

dm MPa mol K

2

1
 = 0.115 7 dm3 mol–1

3 3 0 141 3 92 10 10 133
2 2

6 2 3abp

R T
=

¥- - -( . )( . )( . )dm MPa mol dm mol MPa2 1

(( . ) ( )8 314 10 2933 6 1 2 2¥ - - -dm MPa K mol K1

  = 0.028 3 dm3 mol–1

Thus mJT = 
1

34 35 1( . )J K mol 1- -  [(0.115 7 – 0.039 2 – 0.028 3)dm3 mol–1

  = 1.403 ¥ 10–3 K J–1 dm3 = 1.403 ¥ 10–3 K (kPa dm3)–1 dm3

  = 1.403 ¥ 10–3 K kPa–1 = 1.403 ¥ 10–3 K (1 atm/101.325)–1 = 0.142 K atm–1

Example 2.9.1

Solution
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a = 1.408 dm6 bar mol–2 and

b = 0.039 13 dm3 mol–1.

Ti = 2a/Rb

Ti = 
2 1 408

0 083 14 0 039 13

6

3 1 3

( . )

( . )( .

dm bar mol

dm bar K mol dm mol

2

1 1

-

- - - ))

= 865.6 K

∂
∂

Ê
ËÁ

ˆ
¯̃

H

p T

 = – Cp mJT

mJT = 
1 2

C

a

RT
b

p, m

-Ê
Ë

ˆ
¯

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
H

p
b

a

RTT

m 2
(2.9.7)

DHm = b
a

RT
p-Ê

Ë
ˆ
¯

2
D (2.9.8)

DH

from 105 Pa to 500 ¥ 105 a = 135.78 (dm3)2 kPa mol–2 and b = 0.039 dm3 mol–1.

W

D p = 500 ¥ 105 Pa – 1 × 105 Pa = 499 ¥ 105 Pa = 499 ¥ 102 kPa

 a = 135.78 (dm3)2 kPa mol–2

 b = 0.039 dm3 mol–1

DHm = b
a

RT
-Ê

ËÁ
ˆ
¯̃

2
D p

    DHm = 0 039
2 135 78

8 314 300

3 1
6

3 1
.

.

( . ) (
dm mol

dm kPa mol

dm kPa K mol

2

1

-
-

- --
¥

KK)

È

Î
Í

˘

˚
˙ (499 ¥ 102 kPa)

= (0.039 dm3 mol–1 – 0.108 9 dm3 mol–1) (499 ¥ 102 kPa)

= – 3 488 dm3 kPa mol–1 = – 3.488 kJ mol–1

a = 135.78 dm6 kPa mol–2, Cp, m = 20.92 J K–1 mol–1 and

b = 0.039 dm3 mol–1.

Solution

Evaluation of

(∂H/∂p)T from mJT of 

a van der Waals

Gas

Example 2.9.3

Solution

Example 2.9.4

Example 2.9.2
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T1 = 25 °C = 298 K;       T2 = –196 °C = 77 K

p1 = ?;    p2 = 101.325 kPa

a = 135.78 dm6 kPa mol–2; b = 0.039 dm3 mol–1

We know that

mJT = 
∂
∂

Ê
ËÁ

ˆ
¯̃

= -Ê
ËÁ

ˆ
¯̃

T

p C

a

RT
b

H p

1 2

, m

Therefore dp = 
C

a RT b
T C

RT

a bRT
T

p
p

,

,
( / )

m

md d
2 2-

=
-

Ê
ËÁ

ˆ
¯̃

T to q a – bRT = q

–bR dT = dq

Thus dT = 
d

and
q q

( )-
=

-
bR

RT
a

b

2

With these, the expression for dp becomes

dp = Cp, m 
( ) /

( )

,2 2
1

2

a b

bR
p

C

b R

ap-Ê
ËÁ

ˆ
¯̃ ◊

-
= - -Ê

ËÁ
ˆ
¯̃

q

q

q

q
q

d
or d d

m

d d
m

p
C

b R

a

p

p
p

1

2

1

2

2

2
1Ú Ú= - -Ê

ËÁ
ˆ
¯̃

,

q
q

q

q

or p2 – p1 = – 
C

b R

p, m

2
{2a ln (q2 / q1) – (q2 – q1)}

q1 and q2

q1 = 2a – bRT1 = 2(135.78 dm6 kPa mol–2) – (0.039 dm3 mol–1)

        ¥ (8.314 dm3 kPa K–1 mol–1) (298 K)

= 174.93 dm6 kPa mol–2

q2 = 2a – bRT2 = 2(135.78 dm6 kPa mol–2) – (0.039 dm3 mol–1)

¥ (8.314 dm3 kPa K–1 mol–1) (77 K)

= 246.59 dm6 kPa mol–2

p2

101.325 kPa – p1 = -
- -

- - -
( . )

( . ) ( . )

20 92

0 039 8 314

1

3 2 1

J K mol

dm mol J K mol

1

1 1

            ¥ [2(135.78 dm6 kPa mol–2) {ln (246.59/174.93)}
6 kPa mol–2

=  – (1654.33 dm–6 mol2) (21.58 dm6 kPa mol–2)

= – 35 700 kPa

Thus p1 = 35 801 kPa = 353.3 atm

pVm = RT 1 +
Ê
ËÁ

ˆ
¯̃

B

Vm

; where B = b – a / RT

Solution

Problem 2.9.1
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mJT = 
1

1 2C

B T B T

B Vp

p

,

( / )

/m m

- + ∂ ∂

+
È

Î
Í

˘

˚
˙

mJT = 0. Hence, B – Ti (∂B / ∂T )p = 0. Show that it leads 

to the expression Ti = 2a/Rb

a = 141 kPa dm6 mol–2 and b = 0.039 2 dm3 mol–1.

B and T

B T

(a)

mJT = 
1

C
T

V

T
V

p p, m

m
m

∂
∂

Ê
ËÁ

ˆ
¯̃ -

È

Î
Í

˘

˚
˙

p
V

T
R

B

V
RT

V

B

T

B

V

V

Tp p

∂
∂

Ê
ËÁ

ˆ
¯̃ = +

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂
∂

Ê
ËÁ

ˆ
¯

m

m m m

m1
1

2 ˜̃
È

Î
Í

˘

˚
˙

p

∂
∂

Ê
ËÁ

ˆ
¯̃ =

+ + ∂ ∂

+
V

T

R B V RT V B T

p BRT Vp

pm m m( / ) ( / ) ( / )

( / )

1

2
m

p by (RT/Vm) (1 + B/Vm

Vm/RT

∂
∂

Ê
ËÁ

ˆ
¯̃ =

+ + ∂ ∂

+
V

T

V T B V B T

B Vp

pm m m

m

( / ) ( / ) ( / )

( / )

1

1 2

Hence, mJT = 
1

C
T

V

T
V

p p, m

m
m

∂
∂

Ê
ËÁ

ˆ
¯̃ -

È

Î
Í

˘

˚
˙

   = 
1 1

1 2C

V B V T B T

B V
V

p

p

,

( / ) ( / )

( / )m

m m

m
m

+ + ∂ ∂

+
-

È

Î
Í

˘

˚
˙

   = 
1

1 2C

B T B T

B Vp

p

,

( / )

( / )m m

- + ∂ ∂

+
È

Î
Í

˘

˚
˙

(b) Since B = b – a/RT

∂
∂

Ê
ËÁ

ˆ
¯̃ =

B

T

a

RTp
2

B – Ti

∂
∂

Ê
ËÁ

ˆ
¯̃ = - -

Ê
ËÁ

ˆ
¯̃

= -
B

T
b

a

RT
T

a

RT
b

a

RTp i
i

i i
2

2

Solution
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Ti = 
2a

Rb

For N2

Ti = 
2 141

8 314 0 039 2

6

3 1 3

( )

( . ) ( . )

kPa dm mol

kPa dm K mol dm mol

2

1 1

-

- - -  = 865.3 K

(c) a and b for N2 are a = 141 kPa dm6 mol–2 and b = 0.039 2 mol–1 dm3.

B (= b – a / RT) at different temperatures are as follows.

T/K B / dm3 mol–1 T/K B / dm3 mol–1

100 – 0.130 600 0.011

200 – 0.046 700 0.015

300 – 0.017 800 0.018

400 – 0.003 900 0.020

500 0.005 1000 0.022

B and T

B = 0, T

B T T = Ti B

line and from the expression B = b – a/RT

line is B = (Bi/Ti) T.

or compression.

  In an isothermal expansion or compression process, the temperature of the 

U ∂U/∂V)T = 0), it

Fig. 2.9.3 Graph between 

B and T for nitrogen

2.10 THERMODYNAMIC CHANGES IN ISOTHERMAL VARIATION IN VOLUME OF AN IDEAL GAS

Expressions for q,w,

DU and DH
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follows that

dU = 0 or DU = 0 (2.10.1)

dq = – dw or q = – w (2.10.2)

q

w

is done on the system (w

(q

H U + pV U pV)

U nRT U + nR T)

= 0 + 0 = 0 (2.10.3)

w (or q) depends on how the expansion or compression 

q, w U H in these two 

T

V1 to V2

Since     dw = – pext dV, therefore

w = – 
V

V

1

2Ú pext dV

pext =  pint ± dp

w = – 
V

V

1

2Ú (pint ± dp) dV = – 
V

V

1

2Ú pint dV ∓
V

V

1

2Ú  dp dV

pint

pint = 
nRT

V

w = –
nRT

V
V

V

V

d
1

2

Ú

w = – nRT
dV

V
nRT

V

VV

V

1

2
2

1
Ú = - ln (2.10.4)

Reversible Expansion 

or Compression 

Process
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w = – nRT ln 
p

p

1

2

(2.10.5)

q = – w = nRT ln 
V

V
nRT

p

p

2

1

1

2

= ln

U H = 0

1 mol of Cl2 from 1 dm3 to 50 dm3

 w = – RT ln 
V

V

2

1

 = – (8.314 J K–1 mol–1) (273 K) ¥ 2.303 ¥
50

1

3

3

dm

dm

Ê
ËÁ

ˆ
¯̃

 = – 8 880.8 J mol–1
  – 8.88 kJ mol–1

One dm3

3. How much of heat is absorbed and how much of work is done 

in expansion?

q = – w = nRT ln 
V

V

2

1

p1 and V1

q = (p1V1) ln 
V

V

2

1

p1, V1 and V2

q = (1.013 3 MPa) (1 dm3) ¥ 2.303 ¥
10

1

3

3

dm

dm

Ê
ËÁ

ˆ
¯̃

 = 2.333 6 MPa dm3 = 2.333 6 kJ

q, w,

U H

Here

pext = 0

Therefore   w = Ú dw = – Ú pext dV = 0  (2.10.6)

Example 2.10.1

Solution

Example 2.10.2

Solution

Irreversible Expansion 

or Compression 

Process

Free expansion
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Thus, q = – w = 0

U H = 0

Therefore w = – 
V

V

1

2Ú pext dV = – pext(V2 – V1) (2.10.7)

q = – w = pext (V2 – V1)

U H = 0

will be released in the case of intermediate compression.

0.101 3 MPa. Calculate q, w U H q, w,

U H

(a)

w = – pext(V2 – V1) = – pext

nRT

p

nRT

p
nRT p

p p2 1 2 1

1 1
-

Ê
ËÁ

ˆ
¯̃

= - -
Ê
ËÁ

ˆ
¯̃ext

w = – (5.0 mol) (8.314 J K–1 mol–1) (293 K) (0.101 3 MPa)

            ¥ 1

0 1013

1

0 405 3. .MPa MPa
-Ê

ËÁ
ˆ
¯̃

 = – 9 135.77 J   – 9.136 kJ

Since temperature is constant

DU = 0, DH = 0 and q = – w

(b)

w = – nRT ln 
V

V
nRT

p

p

2

1

1

2

= - ln

w = – (5.0 mol) (8.314 J K–1 mol–1) (293 K) ¥ 2303 ¥ 0 405 3

0 1013

.

.

MPa

MPa

Ê
ËÁ

ˆ
¯̃

= – 16 889 J = – 16.889 kJ

Intermediate

Expansion or 

Compression

Example 2.10.3

Solution
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listed in the Table 2.10.1

Table 2.10.1 Comparison of q, w DU and DH for Different Types of Isothermal Processes†

Comparison
of Isothermal 
Expansion,
Compression and 
Cyclic Processes

†
Notes: V1 is less then V2

pext p2

V1 is less then V2

pext p1.

In adiabatic expansion or compression process heat is neither allowed to enter nor 

q = 0 (2.11.1)

DU = q + w

DU = w (2.11.2)

  If there is an expansion, w DU will also be 

  If there is a compression, w DU will also be 

2.11 THERMODYNAMIC CHANGES IN ADIABATIC VARIATION IN VOLUME OF AN IDEAL GAS
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q = 0 and w = DU

U

dU = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T
T

U

V
V

V T

d d

∂U/∂V)T = 0. Therefore

dU = 
∂
∂

Ê
ËÁ

ˆ
¯̃

U

T V

 dT

Hence dU = nCV, m dT

DU = U2 – U1 = nCV, m (T2 – T1) (2.11.3)

w = DU = nCV, m (T2 – T1) (2.11.4)

DH = D(U + pV)

  = DU + D(pV) = DU + nR DT

  = nCV, m (T2 – T1) + nR(T2 – T1) = n (CV, m + R) (T2 – T1)

or DH = nCp, m (T2 – T1) (2.11.5)

will be different in each case and hence, w, DU and DH will be different. We proceed 

w = Ú dw = – Ú pext dV = – Ú pint dV

pint is a function of both T and V

q, w, DU and DH

dU = dw

Since dU = nCV, m dT and dw = – pext dV, therefore

Expressions for q,

w, DU and DH

Reversible Expansion 

or Compression 

Process

Relationship

between T and V
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nCV, m dT = – pext dV

pext =  pint ± dp  pint

Thus nCV, m dT = – pint dV

p = (nRT/V), therefore

nCV, m dT = – 
nRT

V
 dV or CV, m dT = – 

RT

V
 dV

(Note that CV, m

C
T

T
R

V

V
V

T

T

V

V

, m

d d

1

2

1

2

Ú Ú= -

If CV, m is considered independent of temperature, then

CV, m ln 
T

T
R

V

V

2

1

2

1

Ê
ËÁ

ˆ
¯̃

= -
Ê
ËÁ

ˆ
¯̃

ln (2.11.6)

or ln
T

T

V

V

T

T

V

V

C R C RV V

2

1

2

1

1

2

1

1

2

Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
-, ,/ /

ln
m m

or
¯̃̄

Therefore (T2)
C

V, m
 /R (V2) = (T1)

C
V, m

 /R (V1)

T C
V, m

 /R V = constant (2.11.7)

or

, m/
constantVR C

T V =
–1

constantT V
γ =

(where γ = Cp,m /CV,m)
⎫
⎪
⎬
⎪
⎭

(2.11.8)

2
3 to 10 dm3.

q, w U H.

Amount of N2 = 
( )

( )

20

28 1

g

g mol-  0.714 mol

T1 = 300 K;     V1 = 20 dm3;    V2 = 10 dm3

T2V2
R /CV, m = T1V1

R /CV, m

Example 2.11.1

Solution
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Thus T2 = T1
V

V

R CV

1

2

3

3

2 5

300
20

10

Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

/ /
,

( )
m

K
dm

dm
 = (300 K) (1.32) = 396 K

Hence, DU = w = nCV, m (T2 –T1) = (0.714 mol) 
5

2
8 314 1¥Ê

ËÁ
ˆ
¯̃

- -. J K mol1
 (96 K)

= 1 424.69 J

 DH = nCp, m (T2 – T1) = (0.714 mol) 
7

2
8 314 1¥Ê

ËÁ
ˆ
¯̃

- -. J K mol1
 (96 K)

= 1 994.56 J

V nRT/p

T CV, m/R nRT

p

Ê
ËÁ

ˆ
¯̃

 = constant

or T –Cp, m/R p = constant        (since n is constant) (2.11.9)

, m– /

(1– ) /

/(1– )

constant

constant

constant

pR C
T p

T p

T p

γ γ

γ γ

⎫=
⎪

= ⎬
⎪=
⎭

(2.11.10)

T pV/nR

pV

nR

C RVÊ
ËÁ

ˆ
¯̃

, /m

V = constant

or pCV, m/R V Cp, m/R = constant     (since n is constant) (2.11.11)

pV g = constant       where       g = (Cp, m/ CV, m) (2.11.12)

q, w, DU and DH.

pi

and Vi to pf and Vf

(i) w = 
p V pVf f i i-

-g 1
(ii) w = – nCV, m Ti

1 -
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

p

p

R Cp
f

i

m/ ,

(

w = nCV, m(Tf – Ti) =  CV, m 

p V

R

pV

R

f f i i-Ê
ËÁ

ˆ
¯̃

Relationship

between T and p

Relationship

between p and V

Problem 2.11.1

Solution



84 A Textbook of Physical Chemistry

=
C

R
p V p V

C

C C
p V p V

p V p VV V

p V

, ,

, ,

( ) ( )
m

f f i

m

m m
f f i

f f i

i i

i- =
-

- =
-

-g 1

w = nCV, m (Tf – Ti) = – nCV, m (Ti – Tf)

Ti(pi)
–R/Cp, m = Tf ( pf )

–R /Cp, m

w = –nCV, m T T
p

p
nC T

p

p

R C

V

R Cp p

i i
i

f
m i

f

i

 -
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

= - -
Ê
ËÁ

ˆ
¯̃

- /

,

/, ,m m

1
ÈÈ

Î
Í
Í

˘

˚
˙
˙

3 container to a pressure of 1.013 3 MPa. It is 

Vf

piVi
g = pf Vf

g

pi, Vi, pf and g

(1.013 3 MPa) (1 dm3)5/3 = (0.101 33 MPa) Vf
5/3

or Vf = 103/5 dm3 = 3.98 dm3

Tf after the expansion is

Tf = 
p V

nR

f f kPa dm

mol dm kPa mol
=

¥
-

( . ) ( . )

( . ) ( .

0 10133 10 3 98

0 410 8 314

3 3

3 11 1K- )
 = 118.3 K

w = – 
pV p Vi i f f MPa) dm MPa) dm-

-
= -

-
g 1

1 013 3 1 0 10133 3 98

5 3

3 3( . ( ) ( . ( . )

( / ) -- 1

= – 0.915 dm3 MPa = – 915 J

expansion or compression processes.

pext = 0

Thus,     dw = – pext dV = 0

dU = 0

U = f (T

Now     dH = dU + d(pV) = dU + d(nRT) = dU + nR dT

= 0 + 0 = 0

Example 2.11.2

Solution

Irreversible

Expansion or 

Compression

Process

Free expansion
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w U T H = 0

identical with the isothermal free expansion.

w = – pext (V2 – V1) (2.11.13)

w U = – pext (V2 – V1) (2.11.14)

U

U = nCV, m T = nCV, m (T2 – T1) (2.11.15)

H is

H = nCp, m T = nCp, m (T2 – T1) (2.11.16)

T

H = nCp, m 
DU

nC

C

CV

p

V,

,

,m

m

m

= DU =  g DU (2.11.17)

w U

pext, V2 and V1 U H

pext, p1, p2 and T1 are 

the expansion or compression. This can be done as follows.

nCV, m (T2 – T1) = – pext (V2 – V1) = pext (V1 – V2)

V2 and V1 in terms of T and p

nCV, m (T2 – T1) = pext

nRT

p

nRT

p

1

1

2

2

-
Ê
ËÁ

ˆ
¯̃

or CV, m (T2 – T1) = pext

RT

p

RT

p

1

1

2

2

-
Ê
ËÁ

ˆ
¯̃

(2.11.18)

  For a special case, where pext = p2

CV, m (T2 – T1) = p2

RT

p

RT

p

1

1

2

2

-
Ê
ËÁ

ˆ
¯̃

(2.11.19)

T2 = T1

C R p p

C

V

p

,

,

/m

m

+Ê

ËÁ
ˆ

¯̃
2 1

(2.11.20)

Intermediate

Expansion or 

Compression

Calculation of 

Temperature
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T2 pext

to p2), we can calculate DU and DH

temperature, q, w, DU and DH.

For an adiabatic process, q = 0

w = – pext (V2 – V1) = – pext
nRT

p

nRT

p

2

2

1

1

-
Ê
ËÁ

ˆ
¯̃

DU = w

i.e. nCV, m (T2 – T1) = pext nR
T

p

T

p

1

1

2

2

-
Ê
ËÁ

ˆ
¯̃

CV, m for diamotic molecule = 3
2

2
2

5

2

R R
R

Ê
ËÁ

ˆ
¯̃ + Ê

ËÁ
ˆ
¯̃ = ;

CV, m

n
5

2
R

Ê
ËÁ

ˆ
¯̃  (T2 – T1) = pext nR

T

p

T

p

1

1

2

2

-
Ê
ËÁ

ˆ
¯̃

or
5

2
(T2 – T1) = pext

T

p

T

p

1

1

2

2

-
Ê
ËÁ

ˆ
¯̃

5

2
(T2 – 300 K) = (0.101 MPa) 

300

0 507 0 203

2K

MPa MPa. .
-Ê

ËÁ
ˆ
¯̃

T

T2

T2 = 270 K

Thus DU = nCV, m (T2 – T1) = (2.0 mol) 
5

2
8 314 1 1¥Ê

ËÁ
ˆ
¯̃

- -. J K mol  (270 K – 300 K)

= – 1 247.1 J

DH = DU + nR (DT) = –1 247.1 J + (2.0 mol) (8.314 J K–1 mol–1) (– 30 K)

= – 1 745.9 J

CV, m = 12.55 J K–1 mol–1

DU = nCV, m (T2 – T1) = (2.0 mol) (12.55 J K–1 mol–1) (275 K – 325 K)

= – 1 255 J

w = DU = – pext (V2 – V1) = – (0.101 3 MPa) (V2 – V1) = – 1 255 J

Example 2.11.3

Solution

Example 2.11.4

Solution
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Now V1 = 
nRT

p

1
1 12 0 8 314 325

1 013
=

- -( . ) ( . ) ( )

( . )

mol J K mol K

MPa
 = 5.334.75 cm3

Therefore V2 = 
1 255

0 1013

J

MPa.
 + V1 = 12 388.94 cm3 + 5 334.75 cm3

   = 17 723.69 cm3 = 17.72 dm3

CV, m = 1.5 R) initially at 298 K and 1.013 MPa pressure expands 

dU = – pext dV

nCV, m (T2 – T1) =  – pext(V2 – V1) = – pext
nRT

p

nRT

p

2

2

1

1

-
Ê
ËÁ

ˆ
¯̃

CV, m = 1.5 R

1.5(T2 – T1) = – pext
T

p

T

p

2

2

1

1

-
Ê
ËÁ

ˆ
¯̃

p2, p1 and T1

1.5 (T2 – 298 K) = – (0.101 3 MPa) 
T2

0 1013

298

1 013. .MPa

K

MPa
-Ê

ËÁ
ˆ
¯̃

2.5 T2 = 1.5 (298 K) + 
298

10

K

T2 = 
447 0 29 8

2 5

. .

.

K K+
 = 190.7 K

0.101 3 MPa pressure, be adiabatically compressed in order to raise its temperature to 673 K.

CV, m = (5/2)R.

DU = – Ú pext dV = –pext (V2 – V1)

or CV, m(T2 – T1) = –pext
RT

p

RT

p

2

2

1

1

-
Ê
ËÁ

ˆ
¯̃

Here        pext = p2

Thus CV, m (T2 – T1) = – p2
RT

p

RT

p

2

2

1

1

-
Ê
ËÁ

ˆ
¯̃

CV, m, T2, T1 and p1

5

2
R (673 K – 373 K) = – p2

R

p

R( (

.

673 373

0 10132

K) K)

MPa
-

Ê
ËÁ

ˆ
¯̃

Example 2.11.5

Solution

Example 2.11.6

Solution
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or
5

2
¥ 300 = – 673 + 

373

0 1013

2p

. MPa

Hence, p2 = 
750 673

373

+
¥ 0.1013 MPa = 0.386 5 MPa

are listed in Table 2.11.1.

Comparison of 

Adiabatic Expansion 

Processes

Table 2.11.1 Comparison of w, DU and DH for Different Types of Adiabatic Expansion Processes†

Expansion w T2 ΔU ΔH

Reversible w = nCV, m (T2 – T1) < 0 T2 < T1 ΔU = nCV, m (T2 – T1) < 0 ΔH = nCp, m (T2 – T1) < 0

Intermediate w′ = nCV, m 2( ′T – T1) < 0
2
′T < T1 ΔU′ = nCV, m 2( ′T – T1) < 0 ΔH′ = nCp, m 2( ′T – T1) < 0

Free w″ = nCV, m 2(T ′′ – T1) = 0 2T ′′ = T1 ΔU″ = nCV, m 2(T ′′ – T1) = 0 ΔH″ = nCp, m 2(T ′′ – T1) = 0

(i) T2 <
2
′T < 2T ′′ = T1

(ii) w < w′ < w″ = 0 and | w | > | w′ | > | w″ | = 0

(iii) ΔU < ΔU′ < ΔU″ = 0 and | ΔU | > | ΔU′ | > | ΔU″ | = 0

(iv) ΔH < ΔH′ < ΔH″ = 0 and | ΔH | > | ΔH′ | > | ΔH″ | = 0

†Note:

p1 and V1

same. Let it be represented by Vf. Let piso and padi

initial p1 and V1 piso and Vf by the relation 

p1V1 = piso Vf

or
V

V

p

p

f

iso1

1= (2.12.1)

p1V1
g = padi Vf

g

or
V

V

p

p

f

1

1Ê
ËÁ

ˆ
¯̃

=
g

adi

(2.12.2)

Final Volumes

are Same

2.12 COMPARISON BETWEEN REVERSIBLE ISOTHERMAL AND ADIABATIC

   EXPANSIONS OF AN IDEAL GAS
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Since for an expansion Vf  > V1 and the fact that g

V

V

V

V

p

p

p

p

f f

adi iso

so that
1 1

1 1Ê
ËÁ

ˆ
¯̃

>
Ê
ËÁ

ˆ
¯̃

>
g

Thus, padi < piso (2.12.3)

adiabatic expansion. This also follows from the fact that in the adiabatic expansion, 

temperature decreases whereas in the isothermal expansion, temperature remains 

p μ T,

V constant) padi will be smaller than piso

V1 to Vf (Vf > V1

pf is the same. 

Let Viso and Vadi

  For an isothermal expansion

p1V1 = pf Viso

or
p

p

V

V

1

1f

isoÊ
ËÁ

ˆ
¯̃

= (2.12.4)

  For an adiabatic expansion

p1V1
g = pf Va

g
di

or
p

p

V

V

1

1f

adiÊ
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

g

(2.12.5)

Fig.  2.12.1 Comparison 

of the magnitude of 

the work involved in 

isothermal

and adiabatic expansions

Final Pressures 

are Same
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V

V

V

V

V

V

V

V

iso adi iso adior ln
1 1 1 1

Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

g

g ln

Since g

V

V

V

V

iso adi

1 1

>

or Vadi < Viso

that in adiabatic expansion, temperature decreases whereas in isothermal expansion, 

to Charles law (V μ T, p constant), Vadi will be smaller than Viso.

adiabatic expansion.

q, w, DU and DH for an isothermal 

dw = – pext dV (2.13.1)

pext = pint ± dp  pint

where pint

pint = 
nRT

V nb

n a

V-
-

2

2

Fig. 2.12.2 Comparison of 

the magnitude of the work 

involved in isothermal and 

adiabatic expansions

Reversible Expansion 

or Compression 

Process

Expression for w

2.13  THERMODYNAMIC CHANGES IN ISOTHERMAL VARIATION IN VOLUME OF A

    VAN DER WALLS GAS



Zeroth and First Laws of Thermodynaimcs 91

dw = – 
nRT

V nb

n a

V-
-

Ê
ËÁ

ˆ
¯̃

2

2
 dV

Hence

w = – 
nRT

V nb

n a

V
V nRT

V nb

V nb
n a

V VV

V

-
-

Ê
ËÁ

ˆ
¯̃

= -
-
-

- -
Ê
ËÁ

ˆÚ
2

2
2

1

2

2 11

2 1 1
d ln

¯̃̄

(2.13.2)

The expression for DU

state

∂
∂

Ê
Ë

ˆ
¯ =

∂
∂

Ê
Ë

ˆ
¯ -

U

V
T

p

T
p

T V

∂
∂

Ê
Ë

ˆ
¯ =

-
p

T

nR

V nbV

Thus
∂
∂

Ê
Ë

ˆ
¯ =

-
- =

-
-

-
-

Ê
ËÁ

ˆ
¯̃

=
U

V

nRT

V nb
p

nRT

V nb

nRT

V nb

n a

V

n a

VT

2

2

2

2
(2.13.3)

Now dU =
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T
T

U

V
V

V T

d d

For an isothermal process, dT = 0, therefore

dU =
∂
∂

Ê
Ë

ˆ
¯ =

U

V
V

n a

V
V

T

d d
2

2

DU = 
n a

V
V n a

V VV

V 2

2

2

2 11

2 1 1Ú = - -
Ê
ËÁ

ˆ
¯̃

d (2.13.4)

q = DU – w

DU and w

q = – n2a
1 1 1 1

2 1

2

1

2

2 1V V
nRT

V nb

V nb
n a

V V
-

Ê
ËÁ

ˆ
¯̃

+
-
-

+ -
Ê
ËÁ

ˆ
¯̃

ln

= nRT ln 
V nb

V nb

2

1

-
-

(2.13.5)

Since DH = DU + D(pV

DH = – n2a
1 1

2 1

2

2V V

nRT

V nb

n a

V
V-

Ê
ËÁ

ˆ
¯̃

+
-

-
Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

D

Expression for DU

Expression for q

Expression for DH
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= – n2a
1 1 1 1

2 1

2

2

1

1

2

2 1V V
nRT

V

V nb

V

V nb
n a

V V
-

Ê
ËÁ

ˆ
¯̃

+
-

-
-

Ê
ËÁ

ˆ
¯̃

- -
Ê
ËÁ

ˆ
¯̃

= – 2n2a
1 1

2 1

2

2

1

1V V
nRT

V nb nb

V nb

V nb nb

V nb
-

Ê
ËÁ

ˆ
¯̃

+
- +

-
-

- +
-

Ï
Ì
Ó

¸
˝
˛

= – 2n2a
1 1 1 1

2 1

2

2 1V V
n RTb

V nb V nb
-

Ê
ËÁ

ˆ
¯̃

+
-

-
-

Ï
Ì
Ó

¸
˝
˛

(2.13.6)

1 mol of Cl2 from 1 dm3 to 50 dm3 a = 0.655 

dm6 MPa mol–2, b = 0.055 dm3 mol–1).

p = 
RT

V b

a

Vm m-
-

2

Thus w = – p V
RT

V b

a

V
V RT

V b

V b
a

V VV

V

V

V

d dm
m m

m
1

2

1

2

2
2

1 2

1 1Ú Ú= -
-

-
Ê
ËÁ

ˆ
¯̃

= -
-
-

- -ln
11

Ê
ËÁ

ˆ
¯̃

w = – (8.314 J K–1 mol–1) (273 K) ¥ 2.303 ¥
50 0 055

1 0 055

-
-

Ê
ËÁ

ˆ
¯̃

.

.

– (0.655 dm6 MPa mol–2)
1

50

1

13 1 3 1dm mol dm mol- --
Ê
ËÁ

ˆ
¯̃

w = – 9 006.73 J mol–1 + 0.642 dm3 MPa mol–1

= – 9.006 7 kJ mol–1 + 0.642 kJ mol–1

= – 8. 365 7 kJ mol–1

3 to 30 dm3. Calculate q, w, DU and DH a = 556 dm6 kPa mol–2

and b = 0.064 dm3 mol–1.

w = – RT ln
V b

V b
a

V V

2

1 2 1

1 1-
-

Ê
ËÁ

ˆ
¯̃

- -
Ê
ËÁ

ˆ
¯̃

w = – (8.314 J K–1 mol–1) (300 K) ¥ 2.303 ¥ 30 0 064

10 0 064

-
-

Ê
ËÁ

ˆ
¯̃

.

.

– (556 dm6 kPa mol–2)
1

30

1

103 1 3 1dm mol dm mol- --
Ê
ËÁ

ˆ
¯̃

Example 2.13.1

Solution

Example 2.13.2

Solution
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   = – (8.314 J mol–1) (300) (2.303) (0.4790) + (556 dm3 kPa mol–1)
20

30 10¥
Ê
ËÁ

ˆ
¯̃

   = – 2 751.4 J mol–1 + 37.07 J mol–1

   = – 2 714.33 J mol–1

U = – a
1 1

2 1V V
-

Ê
ËÁ

ˆ
¯̃

 = – (556 dm6 kPa mol–2)
1

30

1

103 1 3 1dm mol dm mol- --
Ê
ËÁ

ˆ
¯̃

   = 37.07 J mol–1

  q = RT ln 
V b

V b

2

1

-
-

Ê
ËÁ

ˆ
¯̃

 = 2 751.4 J mol–1 (= DU – w)

DH = RTb
1 1

2
1 1 1 1

2
2 1 2 1 2 1V b V b

a
V V

RTb
V b V b

U
-

-
-

Ê
ËÁ

ˆ
¯̃

- -
Ê
ËÁ

ˆ
¯̃

=
-

-
-

Ê
ËÁ

ˆ
¯̃

+ D

   = (8.314 J K–1 mol–1) (300 K) (0.064) 
1

30 0 060

1

10 0 064-
-

-
Ê
ËÁ

ˆ
¯̃. ( . )

+ 2 (37.07 J mol–1)

   = – 10.733 J mol–1 + 74.14 J mol–1

   = 63.407 J mol–1

Table 2.13.1 compares the expressions of q, w U

Table 2.31.1 Expressions of q, (–w U

Variables van der Waals gas Ideal gas

q nRT ln 
V b

V b

2

1

-
-

Ê
ËÁ

ˆ
¯̃

nRT ln 
V

V

2

1

(– w) nRT ln 
V b

V b
n a

V V

2

1

2

2 1

1 1-
-

Ê
ËÁ

ˆ
¯̃

+ -
Ê
ËÁ

ˆ
¯̃

nRT ln 
V

V

2

1

DU – n2a
1 1

2 1V V
-

Ê
ËÁ

ˆ
¯̃

0

∑ From the expressions of q, (– w U

(– w)real = qreal U

See, Example 2.13.2).

Comparison of a 

Reversible Isothermal 

Change in Volume of 

a van der Waals Gas 

with that of an Ideal 

Gas

Comments to 

Table 2.13.1
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∑ Since in expansion,

V1 < V2 fi V1nb < V2nb  fi  – V1nb > – V2nb

          fi V2V1 – V1nb > V2V1 – V2nb

          fi V1 (V2 – nb) > V2 (V1 – nb)

V nb

V nb

V

V

2

1

2

1

-
-

>

Hence qreal > qideal

∑

qreal U < qideal

(– w)real < (– w)ideal

Expression for w

dw = – pext dV

w = – pext (V2 – V1) (2.13.7)

Expression for U U

U = –n2a
1 1

2 1V V
-

Ê
ËÁ

ˆ
¯̃

(2.13.8)

Expression for q U = q + w

q U – w

  = –n2a
1 1

2 1V V
-

Ê
ËÁ

ˆ
¯̃

+ pext (V2 – V1) (2.13.9)

dw = 0 (2.13.10)

U = – n2a
1 1

2 1V V
-

Ê
ËÁ

ˆ
¯̃

(2.13.11)

q = – n2a
1 1

2 1V V
-

Ê
ËÁ

ˆ
¯̃

(2.13.12)

U and q

Intermediate

Expansion

Irreversible Expansion or Compression

Free Expansion



Zeroth and First Laws of Thermodynaimcs 95

q = 0 and DU = w (2.14.1)

U

dU =
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T
T

U

VV T

d  dV

dU = nCV, m dT + 
n a

V
V

2

2
d (2.14.2)

DU = nC T
n a

V
VVT

T

V

V

, m d d+Ú Ú
1

2

1

2
2

2

CV, m

DU = nCV, m(T2 – T1) – n2a
1 1

2 1V V
-

Ê
ËÁ

ˆ
¯̃

(2.14.3)

T1, T2, V1 and V2 DU

T2

process. This can be done as follows.

p = 
nRT

V nb

n a

V-
-

2

2
(2.14.4)

dU = dw = – p dV

nCV, m  dT + 
n a

V
V

nRT

V nb
V

n a

V
V

2

2

2

2
d d d= -

-
+

or CV, m dT = – 
RT

V nb
V

-
d

CV, m
d dT

T
R

V

V nb
= -

-

2.14 THERMODYNAMIC CHANGES IN ADIABATIC VARIATION IN VOLUME 

   OF A VAN DER WAALS GAS

Reversible Expansion or Compression Process

Expression for 

Change in Energy

Calculation of 

Temperature



96 A Textbook of Physical Chemistry

CV, m ln 
T

T
R

V nb

V nb

T

T

V nb

V

C RV

2

1

2

1

2

1

1

2

Ê
ËÁ

ˆ
¯̃

= -
-
-

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

=
-
-

ln
, /

or
m

nnb

Ê
ËÁ

ˆ
¯̃

or T2
CV, m/R (V2 – nb) = T1

CV, m/R (V1 – nb) or T CV, m/R (V – nb) = constant

or T (V – nb)R/CV, m = constant (2.14.5)

T2(V2 – nb)R/CV, m = T1(V1 – nb)R/CV, m

or T2 = T1

V nb

V nb

R CV

1

2

-
-

Ê
ËÁ

ˆ
¯̃

/ , m

(2.14.6)

T1, V1 and V2 T2 can be calculated from

T2 DU.

DH = DU + D(pV)

= DU + D 
nRT

V nb

n a

V
V

-
-

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

2

2

= DU + nR
V T

V nb

V T

V nb
n a

V V

2 2

2

1 1

1

2

2 1

1 1

-
-

-
Ê
ËÁ

ˆ
¯̃

- -
Ê
ËÁ

ˆ
¯̃

(2.14.7)

DU

DH = nCV, m (T2 – T1) –2n2a
1 1

2 1

2 2

1

1 1

1V V
nR

V T

V nb

V T

V nb
-

Ê
ËÁ

ˆ
¯̃

-
-

-
-

Ê
ËÁ

ˆ
¯̃

(2.14.8)

3 to 10 dm3 with 

initial temperature of 273 K. Calculate q, w, DU and DH

a = 655 dm6 kPa mol–2, b = 0.055 dm3 mol–1. CV, m = 33.91 J K–1 mol–1.

q = 0

w = DU = CV, m (T2 – T1) – a
1 1

2 1V V
-

Ê
ËÁ

ˆ
¯̃

DH = DU – a
1 1

2 1

2 2

2

1 1

1V V
R

V T

V b

V T

V b
-

Ê
ËÁ

ˆ
¯̃

+
-

-
-

Ê
ËÁ

ˆ
¯̃

To calculate DU and DH, we need to know T2, which can be determined from the expression

Expression of 

Change in Enthalpy

Example 2.14.1

Solution
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T2 = T1

V b

V b

R CV

1

2

8 314 33 9

273
1 0 055

10 0 055

-
-

Ê
ËÁ

ˆ
¯̃

=
-
-

Ê
ËÁ

ˆ
¯̃

/ . / .,

( )
.

.

m

K

11

 = (273 K) (0.562) = 153.3 K

Hence,    w = DU = 33 91 153 3 273 655
1

10

1

1
. ( . ) ( )- - -Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇

J mol–1

 = (– 4 059.0 + 589.5 ) J mol–1

 = – 3 469.5 J mol–1

DH = - - -Ê
ËÁ

ˆ
¯̃ +

-
-3 469 5 655

1

10

1

1
8 314

10 153 3

10 0 055

1 2
. ( ) ( . )

( )( . )

.

( )( 773

1 0 055

)

.-
Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

J mol–1

 = (– 3 469.5 + 589.5 – 1 120.2) J mol–1

 = – 4 000.2 J mol–1

  w = – pext (V2 – V1) (2.14.9)

 q = 0 (adiabatic process) (2.14.10)

  DU = q + w = – pext (V2 – V1) (2.14.11)

For an adiabatic process

dU = dw

U in terms of dT and dV

∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T
T

U

VV T

d dV = dw

or nCV, m dT + 
n a

V

2

2
 dV = – pext dV

or nCV, m dT = – 
n a

V

2

2
 dV – pext dV

or nCV, m (T ¢2 – T1) = n2a
1 1

2 1V V
-

Ê
ËÁ

ˆ
¯̃

 – pext (V2 – V1)

or T ¢2 = T1 + 
1 1 12

2 1
2 1

nC
n a

V V
p V V

V ,

( )
m

ext-
Ê
ËÁ

ˆ
¯̃

- -
È

ÎÍ
˘

˚̇
(2.14.12)

Since for expansion V2 > V1, it follows that

T ¢2 < T1

T ¢2, DH

Irreversible Expansion or Compression Process

Intermediate

Expansion or 

Compression
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3 to 10 dm3

q, w,

U H a = 655 dm6 kPa mol–2,

b = 0.055 dm3 mol–1, CV, m = 33.91 J K–1 mol–1.

 q = 0

U = w = – pext (V2 – V1)

H U – a
1 1

2 1

2 2

2

1 1

1V V
R

V T

V b

V T

V b
-

Ê
ËÁ

ˆ
¯̃

+
-

-
-

Ê
ËÁ

ˆ
¯̃

U = w = – (100 kPa) (10 dm3 – 1 dm3) mol–1 = – 900 J mol–1

To calculate DH, we need to know T2, which can be determined from the expression

T2 = T1 + 
1 1 1

2 1
2 1

C
a

V V
p V V

V ,

( )
m

ext-
Ê
ËÁ

ˆ
¯̃

- -
È

Î
Í

˘

˚
˙

 = (273 K) + 
1

33 91
655

1

10

1

1
100 10 1

.
( )-Ê

ËÁ
ˆ
¯̃ - -È

ÎÍ
˘
˚̇

K

 = (273 K) + 
1

33 91.

 = (273 – 43.93) K = 229.1 K

Hence DH = - - -Ê
ËÁ

ˆ
¯̃ +

¥
-

-
¥

-
Ê
ËÁ

900 655
1

10

1

1
8 314

10 229 1

10 0 055

1 273

1 0 055
.

.

. .

ˆ̂
¯̃

È
ÎÍ

˘
˚̇

-J mol 1

 = (– 900 + 589.5 – 486.6) J mol–1

 = – 797.1 J mol–1

w = 0 ;  q U = 0

pext = 0. Thus,

T2¢¢ = T1 + 
1 1 12

2 1nC
n a

V VV , m

-Ê
ËÁ

ˆ
¯̃

È

ÎÍ
˘

˚̇
(2.14.13)

  Since for expansion V2 > V1, it follows that T2¢¢ < T1. The decrease in 

temperature in the present case will be smaller than that for a non-free expansion,

i.e., T2¢¢ > T1¢ U for the free expansion process is zero 

the forces of attraction between the molecules. The work done in this process 

Example 2.14.2

Solution

Free Expansion



Zeroth and First Laws of Thermodynaimcs 99

3 to 10 dm3. If the 

T , q, w, DU and DH

a = 655 dm6 kPa mol–2, b = 0.055 dm3 mol–1,

CV, m = 33.91 J K–1 mol–1.

q = 0

DU = w = 0

T2 = T1 + 
1 1 1

2 1C
a

V VV , m

-
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

DH = – a
1 1

2 1

2 2

2

1 1

1V V
R

V T

V b

V T

V b
-

Ê
ËÁ

ˆ
¯̃

+
-

-
-

Ê
ËÁ

ˆ
¯̃

T2 = 273 K + 
1

33 91
655

1

10
1

.
-Ê

ËÁ
ˆ
¯̃

È
ÎÍ

˘
˚̇

K

 = 273
589 5

33 91
-Ê

ËÁ
ˆ
¯̃

.

.
 K = 255.6 K

DH = - -Ê
ËÁ

ˆ
¯̃ +

¥
-

-
¥

-
Ê
ËÁ

ˆ
¯̃

È
655

1

10

1

1
8 314

10 255 6

10 0 055

1 273

1 0 055
.

.

. .ÎÎÍ
˘
˚̇

-J mol 1

 = (589.5 – 256.0) J mol–1 = 324.5 J mol–1

p(V – b) = RT and has a constant molar 

heat capacity CV, m which is independent of temperature. The parameter b is a constant. For 

DU, w, q, and DH

T1, p1, p2, V1, V2, Cp, m and CV, m)

p1, p2, T1 p2.

(a) Isothermal reversible process, dT = 0

w w = – p dV

w = – p V
RT

V b
V RT

V b

V b
RT

p

pV

V

V

V

d d
1

2

1

2
2

1

1

2
Ú = -

-
= -

-
-

= -Ú ( )
ln ln

DU

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ - =

∂ -
∂{ } - =

-
- =

U

V
T

p

T
p T

RT V b

T
p

RT

V b
p

T V V

( /( ))
0

Thus DU = 0 (this is to be expected, since a = 0)

Example 2.14.3

Solution

Problem 2.14.1

Solution
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q

q = DU – w = 0 + RT ln 
V b

V b
RT

p

p

2

1

1

2

-
-

= ln

DH DH = DU + D(pV) = 0 + D(pV) = D(pV)

Since    p = 
RT

V b

RTV

V b-
=

-
, therefore pV

Hence DH = D(pV) = RT 
V

V b

V

V b
RT

V b b

V b

V b b

V b

2

2

1 2

2

1

1-
-

-
È

Î
Í

˘

˚
˙ =

- +
-

-
- +

-
È

Î
Í

˘

˚
˙

= RTb
1 1

2V b V b-
-

-
È

Î
Í

˘

˚
˙  = b (p2 – p1)

(b) Isobaric reversible process, dp = 0

w w = – p Ú dV = –p (V2 – V1)

DU DU = 
T

T

1

2Ú CV, m dT = CV, m (T2 – T1)

= CV, m
p V b

R

p V b

R

C p

R

V( ) ( ) ,2 1-
-

-È
ÎÍ

˘
˚̇

= m  (V2 – V1)

qp and DH qp = DH = DU + D(pV) = DU + p(DV)

=
C p

R

V , m
 (V2 – V1) + p(V2 – V1) = 

( ),C R

R

V m +
p(V2 – V1)

Cp, m – CV, m = p
U

V

V

TT p

+
∂
∂

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

∂
∂

Ê
ËÁ

ˆ
¯̃

Since (∂U/∂V)T

Cp, m – CV, m = p
∂
∂

Ê
ËÁ

ˆ
¯̃ = =

V

T
p

R

p
R

p

or CV, m + R = Cp, m

Thus qp = 
C

R

p, m
p(V2 – V1)

(c) Isochoric reversible process, dV = 0

w w = – Ú p dV = 0

q
V
 and DU q

V
 = DU = 

T

T

1

2Ú CV, m dT = CV, m (T2 – T1)

= CV, m
p V b

R

p V b

R

C

R

V2 1( ) ( ) ,-
-

-Ê
ËÁ

ˆ
¯̃ = m  (V – b) (p2 – p1)

DH DH = DU + D(pV) = DU + D(RT + pb) = DU + R(DT) + b(Dp)
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  =
C

R

V , m
 (V – b) (p2 – p1) + R(T2 –T1) + b (p2 – p1)

  =
C

R

p, m
 (V – b) (p2 – p1) + b (p2 – p1)

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p
V T

V

TT p

∂
∂

Ê
ËÁ

ˆ
¯̃

= - =
H

p
V T

R

p
b

T

Thus d H = 
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T
T

H

p
p

p T

d d

  = Cp, m dT + b dp = Cp, m (T2 – T1) + b (p2 – p1)

  =
C

R

p, m
 (V – b) (p2 – p1) + b (p2 – p1)

(Note that Cp, m is also independent of temperature.)

(d) Adiabatic reversible process, dq = 0

q q = 0

w and DU DU = w = CV, m (T2 – T1)

D H D H = Cp, m (T2 – T1) + b (p2 – p1)

  Since the results are to be expressed in T1, p1, p2, V1, V2, Cp, m and CV, m

to eliminate T2 V and T is 

dU = – p dV

i.e. CV, m dT = – 
RT

V b
V

-
d

CV, m ln 
T

T
R

V b

V b

2

1

2

1

= -
-
-

Ê
ËÁ

ˆ
¯̃

ln

or ln
T

T

V b

V b

R CV

2

1

2

1

=
-
-

Ê
ËÁ

ˆ
¯̃

-

ln

/ , m

or
T

T

V b

V b

V b

V b

R C C C CV p V V

2

1

2

1

2

1

=
-
-

Ê
ËÁ

ˆ
¯̃

=
-
-

Ê
ËÁ

ˆ
¯̃

- - -/ ( ) /, , , ,m m m m

==
-
-

Ê
ËÁ

ˆ
¯̃

-
V b

V b

2

1

1 g

or T2 = T1

V b

V b

1

2

1
-
-

Ê
ËÁ

ˆ
¯̃

-g
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Therefore, DU = w = CV , m (T2 – T1) = CV, m T1

V b

V b

1

2

1

1
-
-

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í
Í

˘

˚
˙
˙

-g

and DH = Cp, m T1

V b

V b

1

2

1

1
-
-

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í
Í

˘

˚
˙
˙

-g

 + b (p2 – p1)

(e) Adiabatic irreversible process, dq = 0

q q = 0

DU and w DU = w = Ú – pext dV = – pext (V2 – V1)

Now pext = p2

DU = w = – p2 [(V2 – b) – (V1 – b

= – p2

RT

p

RT

p

2

2

1

1

-
Ê
ËÁ

ˆ
¯̃

DH DH = Cp, m (T2 – T1) + b(p2 – p1)

  Since the results are to be expressed in T1 T2

expressions which can be done if a relation between p and T

Since DU = w

DU = – p2DV = – p2 (V2 – V1)

CV, m (T2 – T1) = – p2
RT

p

RT

p

2

2

1

1

-
Ê
ËÁ

ˆ
¯̃

or CV, m (T2 – T1) = – RT2 + p2

RT

p

1

1

or T2(CV, m + R) = CV, m T1 + p2

RT

p

1

1

or T2Cp, m = T1
C

Rp

p
T

T

C
C

Rp

p
V

p
V,

,
,m

m
mor+

Ê
ËÁ

ˆ
¯̃

= +
Ê
ËÁ

ˆ
¯̃

2

1
2

1 2

1

T2 from the expression of DU and DH

DU = w = 
RT p p

p

1 2 1

1g

-Ê
ËÁ

ˆ
¯̃

DH = RT1

p p

p

2 1

1

-Ê
ËÁ

ˆ
¯̃

b(p2 – p1)

1.  20.0 dm3 CV, m = 5R/2) at 673 K and 0.7 MPa expands until pressure

q, w, DU and DH

2.15 MISCELLANEOUS NUMERICALS
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Vi = 20.0 dm3, Ti = 673 K, and pi = 0.7 MPa, we can determine the 

n = 
pV

RT
=

¥
- -

( .

( . )( )

0 7 10

8 314 673

3

3 1

kPa) (20.0 dm )

dm kPa K mol K

3

1  = 2.502 mol

(i) Isothermal and reversible

w = – nRT ln 
V

V
nRT

p

p

f

i

i

f

= - ln

= – (2.502 mol) (8.314 J K–1 mol–1) (673 K) ¥ 2.303 ¥ 0 7

0 2

.

.

MPa

MPa

Ê
ËÁ

ˆ
¯̃

= – 17 541.2 J = – 17.54 kJ

Since T remains constant, DU = 0 and DH = 0.

q = – w = 17.54 kJ

(ii) Adiabatic and reversible For an adiabatic process q = 0 and DU = w, therefore

w = DU = nCV, m (Tf – Ti)

Tf

piTi
– Cp, m / R = pfTf

– Cp, m / R

pi/MPa) – 
C

R

p, m
Ti pf /MPa) – 

C

R

p, m
Tf / K)

Therefore

Tf / K) = 
R

C
p p

C

R
T

p

p

,m

log ( / ) log ( / ) log ( / )
,

f i

m

iMPa MPa K- +
Ï
Ì
Ó

¸
˝
˛

=
2

7
0 2 0 7

7

2
673log ( . ) log ( . ) log ( )- +{ }

= 2.672 5

Hence Tf = 470.4 K

Thus w = nCV, m (Tf – Ti)

  = (2.502 mol) (2.5 ¥ 8.314 J K–1 mol–1) (470.4 K – 673 K)

  = – 10 536 J = – 10.536 kJ

DU = w = – 10.536 kJ

DH = DU + D(pV) = DU + nR(DT )

  = –10 536 J + (2.502 mol) (8.314 J K–1 mol–1) (–202.6 K)

  = – 10 536 J – 4 214.4 J

  = – 14 750.4 J = – 14.75 kJ

(iii) Isothermal and adiabatic For a process which is isothermal as well as adiabatic, 

 q = 0,    DT = 0,    DU = 0    and    DH = 0

Solution
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(iv) Against 0.2 MPa and adiabatic

Tf

DU = w = – pext DV = – pext (Vf – Vi)

nCV, m (Tf – Ti) = – pext
nRT

p

nRT

p

f

f

i

i

-
Ê
ËÁ

ˆ
¯̃

or CV, m (Tf – Ti) = – pext
RT

p

RT

p

f

f

i

i

-
Ê
ËÁ

ˆ
¯̃

CV, m, pext, pf, pi and Ti

5

2
(Tf – 673 K) = – (0.2 MPa) 

Tf

MPa

K

MPa0 2

673

0 7. .
-Ê

ËÁ
ˆ
¯̃

or
5

2

5

2
Tf - ¥ 673 K = – Tf + 

0 2 673

0 7

.

.

¥ K

or Tf = 
2

7

5

2
673

0 2 673

0 7
¥

¥Ê
ËÁ

ˆ
¯̃K +

K.

.

 = 535.7 K

Thus        DU = nCV, m (Tf – Ti)

   = (2.502 mol) (2.5 ¥ 8.314 J K–1 mol–1) (535.7 K – 673 K)

   = – 7 140.16 = –7.14 kJ

w = – 7.14 kJ

DH = DU + nR(DT) = – 7.14 kJ + (2.502 mol) (8.314 K–1 mol–1)

¥ (535.7 K – 673 K)

   = – 7.14 kJ – 2 856.1 J = – 9.996 kJ

(v) Against 0.2 MPa and isothermal

w = – pext DV = – pext (Vf – Vi)

Vf = 
pV

p

i i

f

3MPa) (20 dm )

MPa
=

( .

( . )

0 7

0 2
 = 70 dm3

Thus w = – (0.2 MPa) (70 dm3 – 20 dm3) = – (200 kPa) (50 dm3)

= – 10 000 J = – 10.0 kJ

}0
since 0

0

U
T

H

Δ = Δ =Δ =

q = – w = 10.0 kJ

2. 4

Cp, m/J K–1 mol–1 = 12.552 + 8.368 ¥ 10–2 (T 4

w, q, DU and DH

process.

32

16 1

g

g mol-  = 2 molSolution



Zeroth and First Laws of Thermodynaimcs 105

(a) Isobaric reversible process (dp = 0):

qp = DH = 
T

T

1

2Ú nCp, m dT

  = n
T

T

1

2Ú {(12.552 J K–1 mol–1) dT + (8.368 ¥ 10–2 J K–2 mol–1) T dT}

  = n ( . ) ( ) ( . )12 552 8 368 10
2 2

1 1
2 1

2 2 1 2
2

1
2

J K mol J K mol- - - - -- + ¥ -
Ê
ËÁ

T T
T T ˆ̂

¯̃
Ï
Ì
Ó

¸
˝
˛

qp = DH = (2 mol) 
Ï
Ì
Ó

(12.552 J K–1 mol–1)(550 K – 300 K)

+ (8.368 ¥ 10 –2 J K–2 mol–1)
( ) ( )550

2

300

2

2 2K K
-

Ê
ËÁ

ˆ
¯̃

¸
˝
˛

  = 2 (3 138 J + 8 891 J) = 24 058 J

w = – Ú p dV = – nR
T

T

1

2Ú  dT = – (2 mol) (8.314 J K–1 mol–1) (550 K – 300 K)

  = – 4 157 J = – 4.157 kJ

DU = DH – D(pV) = DH – nR(DT)

  = (24 058 J) – (2 mol) ( 8.314 J K–1 mol–1) (250 K)

  = 24 058 J – 4 157 J = 19 901 J

(b) Isochoric reversible process (dV = 0):

CV, m = Cp, m – R = (4.238 J K–1 mol–1) + (8.368 ¥ 10–2 J K–2 mol–1) T

qV = DU = 
T

T

1

2Ú nCV, m dT = n
¸
˝
˛
(4.238 J K–1 mol–1)(T2 – T1)

+ (8.368 ¥ 10–2 J K–2 mol–1)
T T2

2
1
2

2 2
-

Ê
ËÁ

ˆ
¯̃

¸
˝
˛

 = (2 mol) 
¸
˝
˛
(4.238 J K–1 mol–1) (550 K – 300 K)

+ (8.368 ¥ 10–2 J K–2 mol–1)
( ) ( )500

2

300

2

2 2K K
-

Ê
ËÁ

ˆ
¯̃

¸
˝
˛

 = (2 mol) (1 059.5 J mol–1 + 8 891 J mol–1)

 = 19 901 J

DH = DU + D(pV) = DU + nR(DT)

 = 19 901 J + 4 157 J = 24 058 J

  w = 0 since dV = 0

3. CV, m = 1.5 R

q, w,

DU and DH
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Step (a): Isobaric reversible process

qp H = C Tp, m

K

K

K

K

d = ÚÚ
298

373

298

373

 (CV, m + R) dT

 = (2.5 ¥ 8.314 J K–1 mol–1) (373 K – 298 K)

 = 1 558.88 J mol–1

U = CV, m T = (1.5 ¥ 8.314 J K–1 mol–1 ) (373 K – 298 K)

 = 935.33 J mol–1

w  = – p V U H = (935.33 – 1 558.88) J mol–1 = – 623.55 J mol–1

Step (b): Isothermal reversible expansion

V1 = V   and   V2 = 2V

w  = –RT ln 
V

V

2

1

= – (8.314 J K–1 mol–1) (373 K) ¥ 2.303 ¥

 = – 2 149.71 J mol–1

U H = 0

q = – w = 2 149.71 J mol–1

Step (c): Adiabatic reversible cooling

q = 0

w U = CV, m (T2 – T1) = (1.5 ¥ 8.314 J K–1 mol–1) (308 K – 373 K)

= – 810.62 J mol–1

H = Cp, m (T2 – T1) = (2.5 ¥ 8.314 J K–1 mol–1) (308 K – 373 K)

   = – 1 351.03 J mol–1

q, w U H are

q/J mol–1 = 1 558.88 + 2 149.71 = 3 708.59

w/J mol–1 = – 623.55 – 2 149.71 – 810.62 = – 3 583. 88

U/J mol–1 = 935.33 – 810.62 = 124.71

H/J mol–1 = 1 558.88 – 1 351.03 = 207.85

4.

Calculate q, w U H

Step (a): Isochoric process

q
V

U = 

298

373

K

K

Ú CV, m dT = CV, m (373 K – 298 K) = CV, m (75 K)

 w = 0

Solution

Solution
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H U pV U RT)

   = CV, m (75 K) + (75 K) R = (75 K) Cp, m

Step (b): Free expansion

q = 0,    w U H = 0

Step (c): Isobaric process

qp H = 

373

298

K

K

Ú Cp, m dT = (– 75 K) Cp, m

w = – Ú p dV = –R DT = (75 K) R

DU = Ú CV, m dT = (–75 K) CV, m

q = (75 K) CV, m – (75 K) Cp, m = – (75 K) (Cp, m – CV, m)

 = – (75 K) R = – (75 K) (8.314 J K–1 mol–1)

 = – 623.55 J mol–1

w = (75 K) R = (75 K) (8.314 J K–1 mol–1)

 = 623.55 J mol–1

DU = (75 K) CV, m – (75 K) CV, m = 0

DH = (75 K) Cp, m – (75 K) Cp, m = 0

5. ¥ 10–4 K–1.

a = 
1

V

V

T p

∂
∂

Ê
ËÁ

ˆ
¯̃

V = aV dT (p constant)

Thus  dw = – p dV = – p (aV dT) or w = – paV DT

Now   p = 101.325 kPa ;        a = 2.1 ¥ 10–4 K–1

V ¥ 10–3 dm3

DT = 298 K – 288 K = 10 K

w = – (101.325 kPa) (2.1 ¥ 10–4 K–1) (18 ¥ 10–3 dm3) (10 K)

 = – 3.83 ¥ 10–3 kPa dm3 = – 3.83 ¥ 10–3 J

w p dV = – R dT = – (8.314 J K–1 mol–1) (10 K) = – 83.14 J mol–1

6.  The isothermal compressibility of water at 293 K is 4.9 ¥ 10–6 atm–1

Solution
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From the isothermal compressibility

kT = – 
1

V

V

p T

∂
∂

Ê
ËÁ

ˆ
¯̃

V = – kTV dp (T constant)

Thus        dw = – p dV = + kTVp dp

p1 and p2

w = kTV
p p2

2
1
2

2 2
-

Ê
ËÁ

ˆ
¯̃

kT, V, p1 and p2

w = 
( . )( )4 9 10 18 10

2

6 1 3 3¥ ¥- - -atm dm
{(25 atm)2 – (1 atm)2}

= 2.752 ¥ 10–5 dm3 atm = 2.752 ¥ 10–5 dm3 (101.325 kPa)

= 0.002 79 J

w = – p V RT
V

V
RT

p

p
dÚ = - = -ln ln2

1

1

2

= – (8.314 J K–1 mol–1) (298 K) ¥ 2.303 ¥ 1

25

atm

atm

Ê
ËÁ

ˆ
¯̃

= 7.976 ¥ 103 J mol–1 = 7.976 kJ mol–1

REVISIONARY PROBLEMS

2.1 State the zeroth law of thermodynamics and discuss its necessity in the laws of 

thermodynamics.

is written as

    dU = dq + dw

   q and w are not state functions.

the increase in the enthalpy of the system.

   C = lim
D DT

q

T

q

TÆ

Ê
ËÁ

ˆ
¯̃ =

0

d

d

   CV = 
∂
∂

Ê
ËÁ

ˆ
¯̃

U

T V

and Cp = 
∂
∂

Ê
ËÁ

ˆ
¯̃

H

T p

   Cp – CV = p
U

V

V

TT p

+
∂
∂

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

∂
∂

Ê
ËÁ

ˆ
¯̃ ; Cp – CV = V

H

p

p

TT V

-
∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

∂
∂

Ê
ËÁ

ˆ
¯̃

Solution
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Cp – CV = V
H

T

T

p

p

Tp H V

+
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

∂
∂

Ê
ËÁ

ˆ
¯̃

Cp – CV = T 
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ = = -

∂ ∂
∂ ∂

p

T

V

T
TV T

p T

p VV p
T

V

T

a k2
2

/
( / )

( / )

Cp, m – CV, m

  (d) Show that Cp, m – CV, m

R 1
2

2

1

-
-

+
Ï
Ì
Ó

¸
˝
˛

-
a

V

V b

pV a

( )

( )

∂U/∂V)T = 0, it follows that (∂U/∂p)T = 0.

∂U/∂V)T = 0 then (∂H/∂p)T = 0.

(i)
∂
∂

Ê
ËÁ

ˆ
¯̃ = =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
C

p

nR
C

T

V
p

p
V p

p

(ii)
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃

U

p
C

T

p
C

V

V

V

T
V

k

a

(iii)
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂

∂
Ê
ËÁ

ˆ
¯̃

=
C

V

C

p

V

T

p

T

0 0and

∂
∂

Ê
ËÁ

ˆ
¯̃ =

H

V T

0
∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T
C p

V

Tp
p

p

∂U/∂V)T?

h = – 
1 1

C

U

V C
p T

p

TV T V V

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

p > T (∂p/∂T)V

p < T (∂p/∂T)V

2.9 (a) Describe the Joule-Thomson experiment. Show that the expansion in this 

experiment is an isenthalpic process.

mJT = – 
1 1

C

H

p C
T

V

T
V

p T p p

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃ -

È

Î
Í

˘

˚
˙

 = – 
1

C

U

V

V

p

pV

pV T T T

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂

∂
Ê
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ˆ
¯̃

È

Î
Í

˘

˚
˙

( )
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V > T (∂V/∂T)p

V < T (∂V/∂T)p

  (c) Show that mJT

mJT

    mJT = 
1 2 3

2 2C

a

RT

abp

R T
b

p, m

- -È
ÎÍ

˘
˚̇

    mJT = 
1 2

C

a

RT
b

p, m

-È
ÎÍ

˘
˚̇

  and hence show that Ti = 2a/Rb.

2.10 Show that (∂H/∂p)T = V

2.11 For the amount n q, w, DU and DH for the 

p.

  (iii)   Free expansion.

  (i)     TV g –1 = constant

  (ii)    Tp –R/Cp, m = constant

  (iii)    pV g = constant,        where    g = Cp, m/CV, m

pi and Vi to pf and Vf

  (i) w = (pf Vf – pi Vi)/ (g – 1) (ii) w = – CVTi 1 -
È

Î
Í

˘

˚
˙

p

p

R Cp

f

i

m/ ,

V1 to V2

(V2 > V1

process.

p1 to p2

(p2 < p1

V2 to V1

p(V – nb) = nRT 

heat capacity CV which is independent of temperature. The parameter b is constant. 

For one mole, determine w, q U H
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  (iii)

T1, V1, V2, p1, p2 and CV).

p1, p2, T1

pressure p2.

w = – nRT ln 
V nb

V nb
an

V V

2

1

2

2 1

1 1-
-

Ê
ËÁ

ˆ
¯̃

- -
Ê
ËÁ

ˆ
¯̃

q = nRT ln 
V nb

V nb
U an

V V

2

1

2

2 1

1 1-
-

Ê
ËÁ

ˆ
¯̃

= - -
Ê
ËÁ

ˆ
¯̃

; D

DH = – 2an2 1 1 1 1

2 1

2

2 1V V
n b RT

V nb V nb
-

Ê
ËÁ

ˆ
¯̃

+
-

-
-

Ê
ËÁ

ˆ
¯̃

U = CV, mT – 
a

V

  Show that T CV, m/ R (V – b

pext.

w =  – pext (V2 – V1)

DU = – n2a
1 1

2 1V V
-

Ê
ËÁ

ˆ
¯̃

; q = – n2a
1 1

2 1V V
-

Ê
ËÁ

ˆ
¯̃

 + pext (V2 – V1)

pext.

w = – pext (V2 – V1) ;        q = 0 ;        DU = – pext (V2 – V1)

T2 = T1 +
1 1 1

2 1
2

2 1nC
p V V n a

V VV ,

( )
m

ext- - + -
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

free expansion from V1 to V2

T ¢2 = T1 + 
1 1 12

2 1nC
n a

V VV , m

-
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

  Interpret the fact that T ¢2 π T1 in spite of the fact that DU = 0.

TRY YOURSELF PROBLEMS

2.1 Since CV = (∂U/∂T)V DU = 

CV DT

  (Hint: dU = (∂U/∂T)V dT + (∂U/∂V)T dV

     = CV dT + (∂U/∂V)T dV;
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  (Hint: because (∂H/∂p)T = 0.)

mJT = 
1 2 3

2 2C

a

RT
b

abp

R Tp, m

- -È
ÎÍ

˘
˚̇

Ti = 
a a ab p

bR

± -2 23

  (Hint: dU = CV dT + (∂U/∂V)T dV; isotherm means dT

dU = 0. Hence (∂U/∂V)T = 0, i.e. U = f (T).)

2.5 Show mathematically that H is a state function

  [Hint: dH = d(U + pV) = dU + p dV + V dp

    Take U = f (T, V) and p = f (T, V), then

  d(U + pV) = 
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

+ +
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

ÊU

V
V

U

T
T p V V

p

T
T

p

VT V V

d d d d ËËÁ
ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛T

Vd

=
∂
∂

Ê
ËÁ

ˆ
¯̃ + +

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

+
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

U

V
p V

p

V
V

U

T
V

p

TT T V

d
VV

T
Ï
Ì
Ó

¸
˝
˛

d

=
∂ +

∂
Ê
ËÁ

ˆ
¯̃ +

∂ +
∂

Ê
ËÁ

ˆ
¯̃

˘
˚̇

( ) ( )U pV

V
V

U pV

T
T

T V

d d

2.6 Show that (∂U/∂p)V = kT CV /a.

2.7 Show that both (∂H/∂p)T and (∂H/∂V)T

condition that (∂U/∂V)T is zero.

2.8 Show that

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

∂

∂
Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

C

V
T

p

T

C

p
T

V

T

V

T V

p

T p

2

2

2

2
and

  Use these results to show that Cp and CV

(Hint:

∂

∂
Ê
ËÁ

ˆ
¯̃

= -
∂

∂
Ê
ËÁ

ˆ
¯̃

-
∂
∂

Ê
ËÁ

ˆ
¯̃

C

p

C

T
C

T

p

T

p

p

p
p

m
m

JT
JT

   (i)     T2 > T     or    T2 = T      or    T2 < T

      p2 > p1    or    p2 = p1     or    p2 < p1
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   (ii)    T1 > T     or    T1 = T      or    T1 < T

V2 > V1    or    V2 = V1    or    V2 < V1

h = –
1 1

C

U

V C
p T

p

TV T V V

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

  (b) Form the relation of h

  (i)  h

  (ii) h ∂U/∂V)T

pV

RT

B

V
= +1

  where B

that temperature for which B is a maximum. If B

B = b1 –
b

T

b

T

2
2

3
3

-

  where b1, b2 and b3

h = –
1 1

2C

RT

V b
p

C

a

VV V, ,m m m m-
-

Ê
ËÁ

ˆ
¯̃

= -

a a

a

a?

2.14 (a) Show that

mJT = – 
1 1

C

H

p C

U

p

pV

pp T p T T

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂

∂
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

( )

mJT = – 
V

C
T

V

Tp

1 -
∂

∂
Ê
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ˆ
¯̃

ln

2.15 (a) Show that an adiabatic process in which no work is performed is an example 

and obeys the relation (∂U/∂V)T = a/V 2, where a CV for this 

  (a) CV = f (T) only and (b) Cp = f (T, V)

2 2

2 2
: Use the formulae and –

pV

T TV p

CC p V
Hint T T

V pT T

⎡ ⎤∂⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂⎛ ⎞⎢ ⎥= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
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adiabatic must be a free-expansion process.

T = 0 

T π 0.

pV = RT + a p,     where a = f (T)

  then Cp – CV = R 1 2

2

+Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

p

R T
R p

T

d da a

d d
 

a = 0.014 2 dm3 at 0 °C and 0.014 8 dm3 at 20 °C. What is

Cp – CV

(Ans. 8.320 J K–1 mol–1)

pVm = RT(1 – Bp)  where B = 
1

RT

a

RT
b-Ê

ËÁ
ˆ
¯̃

  (Hint: ab/Vm
2 and replace 

Vm in a/Vm by RT/p.)

pVm = RT + Ap, where A

∂

∂
Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

C

p
T

A

T

p

T p

2

2

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
T

p

T
p

T V

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂

∂
Ê
ËÁ

ˆ
¯̃

= -
U

p

a

RT

pV

p
b

a

RTT T

and m( )

  Further show that

∂
∂

Ê
ËÁ

ˆ
¯̃

= - = -Ê
ËÁ

ˆ
¯̃

H

p
b

a

RT C

a

RT
b

T p

2
1 2

and JT
m

m
,

2.21 Show that the expression of Cp, m – CV , m

Vm – b)2 is replaced by Vm
2 – 2Vmb

Cp, m – CV, m = R + 
2 4

2

2

2 3

ap

RT

abp

R T
-

ap/RT2 plays a predominant role with the 

result that Cp, m – CV, m

– 4abp2/R2T 3

Cp, m – CV, m

pressure at which Cp, m – CV, m
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∂(Cp, m – CV, m)/∂p)T

Cp, m – CV, m Cp, m – CV,  m

a = 141 dm6 kPa mol–2 and b = 39.1 cm3 mol–1.

(Ans. 15.84 MPa)

T2 from V1 to V2.

V2 to V3. Temperature drops from T2 to T1.

T1 from V3 to V4.

V4 to V1. Temperature rises from T1 to T2.

q, w, DU and DH

2.24 Show that

∂
∂

Ê
ËÁ

ˆ
¯̃

=
-

-
T

p

T V p V

C p VU

T

p

a k

a

∂
∂

Ê
ËÁ

ˆ
¯̃

- = -
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p
V T

V

TT p
; H = U + pV

NUMERICAL PROBLEMS

2.1 Calculate the heat absorbed, DH and DU

Cp, m = 29.13 J K–1

mol–1 and (b) Cp, m/J K–1 mol–1 = 28.45 + 2.26 ¥ 10–3 (T /K).

(Ans. (a) 1 040.8 J, 1 456.5 J, 1 040.8 J (b) 1 043.3 J, 1 459.0 J, 1 043.3 J)

2.2 Calculate the heat absorbed, DH and DU

Cp, m = 29.13 J K–1 mol–1, and 

(b) Cp, m/J K–1 mol–1 = 28.45 + 2.26 ¥ 10–3 (T /K).

(Ans. (a) 1 456.5 J, 1 456.5 J, 1 040.8 J (b) 1 459.0 J, 1 459.0 J, 1 043.3 J)

a of sodium at 25 °C is 21.3 ¥ 106 K–1 and 

the isothermal compressibility kT is 1.56 ¥ 10–11 Pa–1 –3.

Calculate Cp – CV per mole of solid sodium at 25 °C.  (Ans. 0.206 J K–1 mol–1)

a and the isothernal compressibility kT for metallic 

¥ 10–6 K–1 and 7.747 ¥ 10–6 MPa–1

–3. Calculate Cp – CV per mole for Cu.

(Ans. 0.665 J K–1 mol–1)

2.5 Calculate the difference between Cp, m and CV, m for CO2 at 298 K and 10 bar pressure;

a = 3.64 dm6 bar mol–2. (Ans. 9.30 J K–1 mol–1)

2.6 For N2 a = 141 dm6 kPa mol–2 and b = 39.1 cm3

mol–1; Cp, m = 28.91 J K–1 mol–1 and can be assumed to be independent of the 

temperature. Calculate

    (i)    mJT at 298 K and 0.101 3 MPa

    (ii)   (∂H/∂p)T at 298 K and 0.101 3 MPa

[Ans. (i) 2.58 K MPa–1 (ii) –74.7 J MPa–1

a and Cp are 1.3 ¥ 10–2 K–1 and 3.72 J K–1 –1.  (Ans. 6.32 K MPa–1)

Change in Energy 

with Temperature

Change in Enthalpy 

with Temperature

Difference of Heat 

Capacities

Joule-Thomson

Coefficient
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2.8 (a) For CO2 ∂H/∂p)T = 421.19 J MPa–1 mol–1

and Cp = 37.32 J K–1 mol–1, calculate mJT 

pressure conditions.      (Ans. 11.25 K MPa–1)

  (b) At 300 K and at pressures 0-6.06 MPa, the mJT of N2

mJT/K MPa–1 = 0.140 – 2.556 ¥ 10–3 (p/MPa)

from 6.06 MPa to 1.01 MPa.     (Ans. – 0.255 K)

2 a = 3.64 dm6 bar mol–2

and b = 0.042 67 dm3 mol–1.      (Ans. 2 052 K)

DH for the isothermal expansion at 300 K of 1 mol of carbon 

a = 3.64 dm6 bar mol–2 and b = 0.042 67 dm3

mol–1.      (Ans. –1.221 kJ mol–1)

2 at 25 °C is expanded isothermally from an initial pressure of 0.505 

MPa. Calculate q, w, DU and DH.

  (b) The same amount of N2 is expanded isothermally between the same initial and 

q, w,

DU and DH.

(Ans. (a) DU = DH = 0; q = –w = 186.2 J, (b) DU = DH = 0; q = –w = 569.0 J)

in (i) an open beaker and (ii) a closed beaker at 300 K. (Ans. –2 271.1 J, zero)

  (Hint:
3 at 

3. The

heat capacity Cp
–1 mol–1.

expansion.

  (b) Calculate q, w DU and DH

  (Ans. (a) 0.115 MPa, 226 K; (b) q = 0; w = –259.4 J; DU = –259.4 J; DH = –364.4 J)
3

3

(Ans. 353.84 K, – 335.8 J)

a = 677.86 dm6 kPa mol–2        and        b = 0.057 dm–3 mol–1

4 to 40 dm3 at 300 K?     (Ans. wmax = –11.05 kJ)

  (b) If CV
–1, mol–1, what will be DU and DH for a process 

3 at 
3 at 400 K?   (Ans. DU = 13.138 kJ)

Isothermal Volume 

Change of an Ideal Gas

Adiabatic Reversible  

Volume Change of 

an Ideal Gas

Isothermal Volume 

Change of a van der 

Waals Gas
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3 to 30 dm3 at 0 °C. Calculate q, w U H a = 658.6 

dm6 kPa mol–2 and b = 0.056 dm3 mol–1.

(Ans. w U = 636.647 J; q H = 1 142.9 J)
3

to 10 dm3 CV, m = 20.8 J K–1

mol–1 and a = 0.138 N m4 mol–2.       (Ans. –5.97 K)
3 to 10 dm3

with initial temperature of 273 K. Calculate q, w U H

a = 140.8 dm6 kPa mol–2, b = 0.039 dm3 mol–1, CV, m

= 20.81 J K–1 mol–1.       (Ans. 0, –3 321.5 J mol–1, –3 321.5 J mol–1, –4 661.0 J mol–1)
3 to 10 dm3

q, w,

U H a = 140.8 dm6 kPa mol–2,

b = 0.039 dm3 mol–1 and CV, m = 20.81 J K–1 mol–1.

(Ans. 0. – 900 J mol–1, – 900 J mol–1, – 1 268.3 J K–1 mol–1)

–3 K–1. Calculate the work done 

when the temperature is raised from 300 K to 500 K. The pressure is kept constant 
3 mol–1.

(Ans. 2.026 J)
3 is compressed adiabatically until 

3

  (c) The system is now compressed at this constant temperature of 160 °C to a 
3

[Ans. U U U = 30 J, w

pV = RT + Bp where B is a constant 

  (a) an adiabatic expansion to 20 dm3

  (b) an isobaric expansion to 20 dm3

  (c) an isothermal expansion to 20 dm3

  (d) an isochoric decrease in pressure to 0.101 3 MPa

B is 1.5 dm3, Cp = 29.29 J K–1 mol–1 and CV = 20.92 J K–1 mol–1 for this

q, w U H

q, w U H

[Ans. (a) q U = w H = – 6.274 kJ

(b) w = –16.25 kJ; q U H = 57.095 kJ

(c) q = 5.032 kJ; w U H = –1.32 kJ

(d) q = –5.638 kJ; w U H

Adiabatic Volume 

Change of a van der 

Waals Gas

Miscellaneous

Problems



Thermochemistry3

3.1 SCOPE OF THERMOCHEMISTRY

Thermochemistry primarily deals with the transfer of heat between a chemical 

system and its surroundings when a change of phase or a chemical reaction takes 

place within the system. Depending upon the conditions under which the reaction 

is carried out, the quantity of heat transferred is related to energy or enthalpy change 

due to changes of states which occur in the system. However, in the laboratory, the 

majority of chemical reactions are carried out under the condition of constant 

pressure, therefore, the heat transferred is equal to the change in enthalpy of the 

system.

3.2 ENTHALPY OF A SUBSTANCE

xed quantity of enthalpy. For one mole of a substance B, the 

enthalpy is represented as Hm(B). The main characteristics of a substance, if need to 

example, the molar enthalpy of water vapours at 398 K and 1 atm pressure may 

be stated as Hm(H2O, g, 398 K, 1 atm).

Standard State of a The molar enthalpy of a substance is a function of temperature and pressure, i.e.

Substance Hm = Hm(T, p

the standard state of a substance listed in the following.

1. For a pure gaseous substance, the standard state at a given temperature is the 

(hypothetical) ideal gas at one bar pressure.

2. For a pure liquid substance, the standard state at a given temperature is the 

pure liquid at one bar pressure.

3. For a pure crystalline substance, the standard state at a given temperature is 

the pure crystalline substance at one bar pressure.

4. For a substance or ion in solution, the standard state at a given temperature is 

the unit molality of the species in ideal solution at a one bar pressure.

The standard molar enthalpy of a substance is represented by placing the 

superscript degree to the symbol H. For example, the standard molar enthalpy of 

liquid water at 273 K is represented as H°
m  (H2O, 1, 273 K).

3.3 CHANGE IN ENTHALPY DURING THE PROGRESS OF A REACTION

Since the enthalpy of a substance can change with the variation of temperature and 

pressure, it is essential that the reactants and products of a reaction are present at



Thermochemistry 119

the same temperature and pressure while computing the enthalpy change during 

the progress of a chemical reaction.

Extent of Reaction Let the reaction

2 N2O5(g) Æ  4 NO2(g) + O2(g)

be started with the amount n0 of N2O5. The progress of the reaction is stated by 

xtent of reaction (Symbol: x, Greek word 

 x =
Amount of a reactant consumed or product formed

Stoichiometrric number of the reactant or product

Enthalpy of the system to start with, where x = 0, is given by

Hinitial = n0 Hm (N2O5)

When the reaction has proceeded to the extent x, the amounts of reactants and 

products will be

2 42 5 2 2

0 2 4

N O NO g O g( ) ( ) ( )g Æ +
-n x x x

(Note: The unit of x is that of amount of species, i.e. mol. The stoichiometric 

numbers are dimensionless quantities and thus carry no units.)

Enthalpy of the system at this stage is

H  = (n0 – 2x) Hm(N2O5) + 4x Hm(NO2) + x Hm(O2)

Enthalpy change of the system is

DH = H  – Hinitial

= [(n0 – 2x) Hm(N2O5) + 4x Hm(NO2) + x Hm(O2)] – n0 Hm(N2O5)

= –2x Hm(N2O5) + 4 x Hm(NO2) + x Hm(O2) (3.3.1)

The value of DH of a given chemical equation depends on its extent of reaction. It will 

vary as the reaction progresses.

From Eq. (3.3.1), it follows that

unit of DH = (unit of x ) (unit of Hm)

= (mol) (kJ mol–1) = kJ

3.4 ENTHALPY OF REACTION

reaction. It is represented by the symbol DrH. Thus

D rH = 
DH

x
(3.4.1)

For the reaction

2N2O5(g) Æ 4 NO2(g) + O2(g)

DH = 4 x Hm(NO2) + x Hm(O2) – 2x Hm(N2O5)

 DrH=
DH

x
= 4Hm(NO2) + Hm(O2) – 2Hm(N2O5) (3.4.2)

Enthalpy Change of

the Reaction

Definition of 

Enthalpy of 

Reaction
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The unit of enthalpy of reaction is

     unit of D rH = 
unit of

Unit of
=

kJ

mol
= kJ mol 1DH

x
-

Comment on

Enthalpy of reaction, the amounts of reactants consumed and products formed will be equal to

Reaction the corresponding stoichiometric numbers expressed in mol. For example, for the 

reaction

2N2O5(g) Æ 4NO2(g) + O2(g)

the enthalpy of reaction is the enthalpy change when 2 mol of N2O5 dissociates to 

give 4 mol of NO2 and 1 mol of O2. It may be noted that

Enthalpy of reaction refers to the entire chemical equation and not to any particular 

reactant or product.

The enthalpy of a reaction may be computed by using the expression

D r H = Â - Â
products

B m
reactants

B mB Bn nH H( ) | | ( ) (3.4.3)

where the symbol Â represent summation over the indicated substances (product 

or reactant) and nB is the stoichiometric number of the substance B in the balanced 

chemical equation. For example, for the reaction

Fe2O3(s) + 3H2(g) Æ 2 Fe(s) + 3 H2O(l)

we have

 D r H = Â - Â
products

B m
reactants

B mB Bn nH H( ) | | ( )

= [2Hm(Fe, s) + 3Hm(H2O, l)] – [Hm(Fe2O3, s) + 3Hm(H2, g)]

3.5 EXOTHERMIC AND ENDOTHERMIC NATURE OF A REACTION

Since,

 D r H = Â - Â
products

B m
reactants

B mB Bn nH H( ) | | ( )

two cases may be distinguished.

Exothermic Reaction In a case where the enthalpy of products is less than that of reactants, we have

D rH = Â - Â
products

B m
reactants

B mB Bn nH H( ) | | ( )

= negative

that is, there occurs a decrease in enthalpy when reactants are converted into 

products. This decrease is brought about by the release of heat from the system 

and the reaction is said to be an exothermic reaction.

For example, for the reaction

CH4(g) + 2 O2(g) Æ CO2(g) + 2H2O(l) DrH° = – 890.4 kJ mol–1

Unit of Enthalpy of 

Reaction

Expression of 

Enthalpy of 

Reaction
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The above data may be represented in the form of an enthalpy level diagram, as 

shown in Fig. 3.5.1

In the case where the enthalpy of products is greater than that of reactants, we have

 D r H = Â - Â
products

B m
reactants

B mB Bn nH H( ) | | ( )

= positive

that is, there occurs an increase in enthalpy when reactants are converted into 

products. This increase is brought about by the absorption of heat by the system 

from the surroundings and the reaction is said to be an endothermic reaction. For 

example, for the reaction

H2(g) + I2(g) Æ 2HI(g) DrH° = 52.5 kJ mol–1

The enthalpy level diagram of this reaction is shown in Fig. 3.5.2

3.6  IUPAC RECOMMENDATION OF WRITING CHEMICAL EQUATION AND DEFINITION OF 

ENTHALPY OF REACTION

A chemical equation may be conveniently represented as

0 = Â
B

nBB (3.6.1)

where the summation is carried over all the species (reactants and products) in 

chemical equation and nB is the stoichiometric number of the species B (assumed 

to be positive for products and negative for reactants).

For example, the chemical equation

2N2O5(g) Æ 4NO2(g) + O2(g)

may be represented as

0 = 4NO2(g) + O2(g) – 2N2O5(g)

Fig. 3.5.1 Enthalpy-level

diagram for an exothermic

reaction

Endothermic

Reaction

Fig. 3.5.1 Enthalpy-level

diagram for an

endothermic reaction

Representation

of a Chemical 

Equation
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The amount of species with the progress of reaction is given by the expression

nB = (nB)0 + nB x (3.6.2)

where (nB)0 is the amount of species B in the beginning of the reaction and nB is

the corresponding amount when the reaction has proceeded to the extent x.

species B is

dnB = nB dx (3.6.3)

The corresponding enthalpy change of the reaction is

dH = Â
B

Hm(B)dnB = Â
B

Hm(B)(nB dx) (3.6.4)

D rH = (∂H /∂x)T,p = Â
B

nB Hm(B) (3.6.5)

that is, the enthalpy of reaction is the rate of change of enthalpy of system with 

the extent of reaction at constant T and p.

When all the chemical species in a chemical equation are present in the respective 

standard states, the enthalpy of reaction is spelled as standard enthalpy of reaction.

D rH° = (∂H °/∂x )T, p = Â
B

nB H°
m(B) (3.6.6)

3.7 ENTHALPY OF FORMATION

It is not possible to determine the absolute value of the molar enthalpy of a substance. 

However, based on the following convention, the relative values of standard molar 

enthalpies of formation of various substances can be built.

The standard enthalpy of formation of every element in its stable state of 

A few example are

D f H°(O2, g) = 0

D f H°(C, graphite) = 0 Df H°(C, diamond) π 0

D f H°(Br2, 1) = 0

D f H°(S, rhombic) = 0 Df H°(S, monoclinic) π 0

D f H°(P, white) = 0 Df H°(P, black) π 0

The standard enthalpy of formation of a compound is the change in the standard 

enthalpy when one mole of the compound is formed starting from the requisite 

amounts of elements in their stable states of aggregation.

The formation of one mole of the compound implies that the compound appears 

as product with stoichiometric number equal to one.

Definition of 

Enthalpy of 

Reaction

Standard Enthalpy 

of Reaction

Accepted

Convention

Definition of 

Enthalpy of 

Formation

Change in Amount 

of Substance
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The chemical equations corresponding to enthalpy of formation of a few 

substances are given below.

Enthalpy of formation of HBr(g) The chemical equation to be referred is

1
2

H2(g) + 1
2

Br2(l) Æ HBr(g)

D fH°(HBr, g) = ÂnBHm° (B)

= Hm°(HBr, g) – 1
2

Hm° (H2, g) – 1
2

Hm° (Br2,1) (3.7.1)

Enthalpy of formation of SO2(g) The chemical equation to be referred is 

S(rhombic) + O2(g) Æ SO2(g)

D f H°(SO2, g) = Hm
o (SO2, g) – Hm° (S, rhombic) – Hm° (O2, g) (3.7.2)

Enthalpy of formation of SO3(g) The chemical equation to be referred is

S (rhombic) + 3
2

O2 (g) Æ SO3 (g)

D f H°(SO3, g) = Hm
o(SO3, g) – Hm

o (S, rhombic) – 3
2

Hm° (O2, g)  (3.7.3)

Consider the reaction

SO2(g) + 1
2

O2 3(g)

Its enthalpy of reaction is

D r H° = H°m(SO3, g) – H°m(SO2, g) – 1
2

H°m(O2, g)

Expressing the molar enthalpies of SO2 and SO3 in terms of the corresponding 

enthalpies of formation by using Eqs. (3.7.2) to (3.7.3), respectively, we get

D rH° = Df 3 2°(SO , g) + (S, rhombic) + (O , g)H H Hm m
∞ ∞ÈÎ ˘̊3

2

– [D f H°(SO2, g) + Hm°(S, rhombic) + Hm° (O2, g)] – 1
2

Hm° (O2, g)

= D f H°(SO3, g) – D f H°(SO2, g) (3.7.4)

From Eq. (3.7.4), if follows that the enthalpy of reaction can be computed from 

the data on enthalpies of formation of SO2 and SO3. This way of computing enthalpy 

of reaction can be extended to any reaction. Equation to be used is

D rH° = ÂnB D f H°(B) (3.7.5)

Equation (3.7.5) holds good for any reaction as the same reference state is used 

for reactants and products (Fig. 3.7.1)

Enthalpy of Reaction 

from Enthalpies of 

Formation
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The standard enthalpy of formation of a few substances have been tabulated in 

Appendix I.†

Example 3.7.1 Calculate the standard enthalpy of reaction

ZnO(s) + CO(g) Æ Zn(s) + CO2(g)

Given D fH°(ZnO, s) = – 348.28 kJ mol–1; D fH°(CO2, g) = – 393.51 kJ mol–1

D fH°(CO, g) = – 110.53 kJ mol–1

Solution We have D rH° = ÂnB Df H°(B)

 D r H° = Df H°(Zn, s) + Df H°(CO2, g) – Df H°(ZnO, s) – Df H°(CO, g)

= {0 + (–393.51) – (–348.28) – (–110.53)} kJ mol–1 = 65.3 kJ mol–1

3.8 HESS’S LAW OF CONSTANT HEAT SUMMATION

Since the molar enthalpies of reactants and products involved in a chemical equation 

by more than one sequence of chemical equations, the total enthalpy change must 

thermodynamics, is known as Hess’s law of constant heat summation, which can 

be stated as follows:

The heat absorbed or evolved in a given chemical equation is the same whether 

the process occurs in one step or several steps.

Fig. 3.7.1 Enthalpy of 

Reaction

† Prior to the standard-state pressure of 1 bar, the values of standard enthalpies of formation 

were tabulated for the standard-state pressure of 1 atm. The enthalpies of solids and liquids 

standard enthalpies of formation of gases are also the same as the standard state is the ideal 

gas for which enthalpy is independent of pressure.
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In support of Hess’s law we cite below two different methods of synthesising 

sodium chloride from sodium and chlorine.

Method I Na(s) + H2

1

2
H2 r H° = –140.87 kJ mol–1

1

2
H2(g) + 

1

2
Cl2 r H° = –92.30 kJ mol–1

2 r H° = –177.83 kJ mol–1

Net Change: Na(s)+
1

2
 Cl2 rH° = – 411.00 kJ mol–1

Method II
1

2
H2(g)+

1

2
Cl2 rH° = –92.30 kJ mol–1

1

2
H2 rH° = –318.70 kJ mol–1

Net Change: Na(s) + 
1

2
 Cl2 rH° = – 411.00 kJ mol–1

Consequences of The chemical equation can be treated as ordinary algebraic expressions and can be

Hess’s Law added or subtracted to yield the required equation. The corresponding enthalpies 

of reactions are also manipulated in the same way so as to give the enthalpy of 

reaction for the desired chemical equation.

r H stands for the change in enthalpy when reactants (substances on the 

left hand side of the arrow) are converted into products (substances on the right 

hand side of the arrow) at the same temperature and pressure, it follows that if the 

reaction is reversed (i.e. products are written on the left hand side and reactants 

 rH remains the same, but 

its sign changes.†

Utility of Hess’s Law The utility of Hess’s law is considerable. In almost all the thermochemical 

numericals, some way or the other, Hess’s law is used. One of the important 

r H for the reaction

C(graphite) + 
1

2
 O2

r H can be determined experimentally.

C(graphite) + O2 2  r H1

CO(g) + 
1

2
 O2 2  r H2

† This statement is known as Lavoisier and Laplace law.

Add

Add
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Subtracting the latter from the former, we get

C(graphite) + 1
2

 O2 (g) Æ CO(g)

Consequently, D rH = D rH1 – D rH2.

mole of a solid ionic compound into gaseous ions.

The larger the lattice energy, the more stable the ionic compound and the more

tightly the ions held.

Lattice energy cannot be measured directly. However, this can be determined 

from the Born-Haber cycle. Consider the following sequence of steps for the 

formation of NaCl crystals from Na(s) and Cl2(g)

(i) Vaporization of Na(s) Na(s) Æ Na(g) D r H1

(ii) Ionization of Na(g) Na(g) Æ Na+(g) + e– D r H2

(iii) Dissociation of chlorine 1
2

Cl2(g) Æ Cl(g) D r H3

(iv) Formation of Cl–(g) Cl(g) + e– Æ Cl–(g) D r H4

(v) Condensation of Na+(g)

and Cl–(g) Na+(g) + Cl–(g) Æ NaCl(s) D r H5

Net change: Na(s) + 1
2

Cl2(g) Æ NaCl(s) D r H6

According to Hess’s law, we can write

D r H6 = D r H1 + D r H2 + D r H3 + D r H4 + D r H5

Except D r H5 all of these changes of enthalpy can be determined experimentally. 

Hence, D r H5 can be determined from the above relation. The lattice energy is the 

negative of D r H5 value.

Example 3.8.1 DfH°(NaCl)

= – 410.87 kJ mol–1. Ionization enthalpy of Na = 495.80 kJ mol–1

chlorine = 365.26 kJ mol–1, sublimation enthalpy of Na = 317.57 kJ mol–1 and dissociation 

enthalpy of Cl2(g) = 241.84 kJ mol–1.

Solution The following is the Born-Haber cycle for sodium chloride:

(i) Sublimation of Na Na(s) Æ Na(g) ; D r H1 = 317.57 kJ mol–1

(ii) Ionization of Na(g) Na(g) Æ Na+(g) + e– ; D r H2 = 495.80 kJ mol–1

(iii) Dissociation of
1

2
Cl2(g) Æ Cl(g) ; D rH3 = 

1

2
¥ 241.84 kJ mol–1

half of chlorine

(iv) Formation of Cl–(g) Cl(g) + e Æ Cl–(g) ; D r H4 = – 365.26 kJ mol–1

(v) Formation of NaCl(s) Na+(g) + Cl–(g) Æ NaCl(s) ; D r H5 = ?

Net reaction Na(s) + 
1

2
Cl2(g) Æ NaCl(s) ; D r H6 = – 410.87 kJ mol–1

Now according to Hess’s law

D r H6 = D r H1 + D r H2 + D r H3 + D r H4 + D r H5

Lattice Energy of a 

Crystal (Born-Haber 

Cycle)



Thermochemistry 127

rH5 = [– 410.87 – 317.57 – 495.80 – 120.92 + 365.26] kJ mol–1

= – 979.9 kJ mol–1

r H5, i.e. 979.9 kJ mol–1.

Example 3.8.2 From the following thermochemical equations, calculate the enthalpy of formation of cane 

sugar (C12H22O11):

(i) C12H22O11(s) + 12O2(g) Æ 12CO2(g) + 11H2 r H = –5 644 kJ mol–1

(ii) C(s) + O2(g) Æ CO2 r H = –393 kJ mol–1

(iii) H2(g) + 
1

2
 O2(g) Æ H2 r H = –286 kJ mol–1

Solution Multiplying Eq. (ii) by 12 and Eq. (iii) by 11 and adding them, we get

12 ¥ [C(s) + O2(g) Æ CO2 r H = –12 ¥ 393 kJ mol–1

11 ¥ [H2(g) + 
1

2
 O2(g) Æ H2 r H = –11 ¥ 286 kJ mol–1

12C(s) +11H2(g) + 
35

2
 O2 (g) Æ 12CO2 (g) +11H2 r H = –7 862 kJ mol–1

Subtracting Eq. (i) from the above resulting equation, we get

12C(s) +11H2(g) + 
35

2
 O2 (g) Æ 12CO2 (g) +11H2 r H = –7 862 kJ mol–1

–[C12H22O11(s) + 12O2(g) Æ 12CO2(g) + 11H2 r H = 5 644 kJ mol–1

12C(s) +11H2 (g) + 
11

2
 O2 (g) Æ C12H22O11 r H = –2 218 kJ mol–1

Example 3.8.3 From the data at 25 °C

(i) Fe2O3(s) + 3C(graphite) Æ r H = 490.78 kJ mol–1

(ii) FeO(s) + C(graphite) Æ r H = 156.06 kJ mol–1

(iii) C(graphite) + O2(g) Æ CO2 r H = –393.51 kJ mol–1

(iv) CO(g) + 
1

2
O2(g) Æ CO2 r H = –282.96 kJ mol–1

Compute the enthalpy of formation of FeO(s) and of Fe2O3 r Hs

corresponding to the following reactions.

(a) Fe(s) + 
1

2
 O2(g) Æ FeO(s) and (b) 2Fe(s) + 

3

2
 O2(g) Æ Fe2O3(s)

Solution (a) Multiplying each of Eq. (ii) and Eq. (iv) by –1 and adding the resultant equations in 

Eq. (iii), we get

rH = –156.06 kJ mol–1

C(graphite) + O2(g) Æ CO2 rH = –393.51 kJ mol–1

CO2
1
2  O2 rH = 282.96 kJ mol–1

Fe(s) + 1
2

O2(g) Æ rH = –266.61 kJ mol–1
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(b) Multiplying Eq. (i) by –1, Eq. (iii) by 3 and Eq. (iv) by –3, and adding the resultant

equations, we get

2Fe(s) + 3CO(g) Æ Fe2O3 r H = – 490.78 kJ mol–1

3C(graphite) + 3O2(g) Æ 3CO2 r H = 3(–393.51 kJ mol–1)

3CO2(g) Æ 3CO(g) + 
3

2
O2 r H = –3(–282.96 kJ mol–1)

2Fe(s) + 
3

2
O2(g) Æ Fe2O3 r H = – 822.43 kJ mol–1

3.9 VARIOUS TYPES OF ENTHALPIES OF REACTIONS

It is the enthalpy change when one mole of this compound combines with the 

requisite amount of oxygen to give products in their stable forms.

The combustion of one mole of the compound implies that the substance appears 

as a reactant with stoichiometric number equal to one.

For example, the standard enthalpy of combustion of methane at 298.15 K is 

– 890.36 kJ mol–1. This implies the following reaction:

CH4(g) + 2O2(g) Æ CO2(g) + 2H2 cH° = – 890.36 kJ mol–1

The standard enthalpy of combustion of methane at 298.15 K may be written as

cH°(CH4, g, 298.15 K) = – 890.36 kJ mol–1

Utility of Data on The data on the enthalpy of combustion can be determined experimentally. With

Enthalpy of the help of such data, we can determine the enthalpy of formation of a compound,

Combustion

for example, the enthalpy of formation of CH4(g):

C(graphite) + 2H2 4(g)

First of all, the combination of carbon and hydrogen does not occur readily. 

Secondly, if the reaction is even completed, the end product would not be pure 

methane. Therefore, the enthalpy of formation of methane can be determined 

indirectly through the enthalpy of combustion of methane:

CH4(g) + 2O2 2(g) + 2H2O(l)

cH°(CH4 f H°(CO2 f H°(H2 f H°(CH4, g)

therefore

f H°(CH4 f H°(CO2 f H°(H2 c H°(CH4, g)

The enthalpies of formation of CO2 and H2O can be determined experimentally by 

the combustion of carbon (graphite) and hydrogen. Thus knowing the measured value 

c H°(CH4,g), the enthalpy of formation of CH4 can be calculated. The value is

f H°(CH4 f H°(CO2 f H°(H2 c H°(CH4, g)

= [ – 393.51 + 2 ( – 285.83) – ( – 890.36)] kJ mol–1

= – 74.81 kJ mol–1

Enthalpy of 

Combustion
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Or, equivalently, we may add the following three chemical equations.

C(graphite) + O2 2 c H° = – 393.51 kJ mol–1

2[H2(g) + 
1

2
 O2 2 r H° = 2 ( – 285.83) kJ mol–1

– [CH4(g) + 2O2 2(g) + 2H2 r H° = – ( – 890.36) kJ mol–1

C(graphite) + 2H2 4 f H° = – 74.81 kJ mol–1

Example 3.9.1 Calculate the enthalpy change of the following reaction

3C2H2(g) Æ C6H6(g)

Given: Enthalpy of combustion of C2H2(g) = –1.30 MJ mol–1 and that of C6H6(g) = –3.302 

MJ mol–1.

Solution The reactions corresponding to the combustion of C2H2 and C6H6 are

(i) C2H2(g) + 
5

2
 O2(g) Æ 2CO2(g) + H2O(l)

(ii) C6H6(g) + 
15

2
 O2(g) Æ 6CO2(g) + 3H2O(l)

Multiplying Eq. (i) by 3 and Eq. (ii) by –1, adding the resulting expressions, we get

3 ¥ [C2H2(g) + 
5

2
 O2(g) Æ 2CO2(g) + H2 f H = – 3 × 1.30 MJ mol–1

–1 ¥ [C6H6(g) + 
15

2
O2(g) Æ 6CO2 + 3H2 f H = – (– 3.302 MJ mol–1)

3C2H2 6H6 r H = – 0.598 MJ mol–1

Example 3.9.2 Using the combustion data given below, compute the enthalpy of formation of isoprene(g) 

f H (from bond enthalpies) = 103.31 kJ mol–1.

cH = –3 120 kJ mol–1

Enthalpy of formation of CO2 f H = –393.71 kJ mol–1

Enthalpy of formation of H2 f H = –285.77 kJ mol–1

Solution Given that

C5H8(g) + 7O2(g) Æ 5CO2(g) + 4H2 cH = –3 120 kJ mol–1

C(graphite) + O2(g) Æ CO2 f H = –393.71 kJ mol–1

H2(g) + 1
2

O2(g) Æ H2 f H = –285.77 kJ mol–1

The reaction corresponding to the enthalpy of formation of C5H8(g) can be obtained by the 

following manipulations:

–1 ¥ [C5H8(g) + 7O2(g) Æ 5CO2(g) + 4H2 rH = (–1) ¥ (–3 120.43 kJ mol–1)

5 ¥ [C(graphite) + O2(g) Æ CO2 rH = – 5 ¥ 393.71 kJ mol–1

4 ¥ [H2(g) + 1
2

 O2 (g) Æ H2 r H = – 4 ¥ 285.77 kJ mol

Adding these, we get

5C(graphite) + 4H2 5H8 r H = 8.8 kJ mol–1
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f H f H(from bond enthalpies)

= 8.8 kJ mol–1 – 103.31 kJ mol–1

= – 94.51 kJ mol–1

Enthalpies of combustion are usually measured by placing a known mass of the 

compound in a closed steel container (known as bomb calorimetre

with oxygen at about 30 bar pressure. The calorimetre is surrounded by a known 

mass of water. The entire apparatus is kept in an insulated jacket to prevent heat 

entering into or leaving from the container, as shown in Fig. 3.9.1. The sample 

is ignited electrically to bring about the combustion reaction. The heat evolved is 

used in raising the temperature of water and the calorimetre.

Since the heat released in combustion reaction is equal to the heat absorbed by 

water and bomb calorimetre, we will have

qcomb = – (qwater + qbomb)

The heat absorbed by water and bomb calorimeter are determined through their 

the heat requried to raise the temperature of a unit mass of the substance by unit 

temperature. If q is heat required to raise the temperature of mass m of a substance 

T, then

c =
q

m TD
or q = mc T = C T

where C(= mc) is known as heat capacity of the substance. With these, qcomb 

becomes

qcomb = – (mwater cwater + mbomb cbomb T

= – (mwater cwater + Cbomb T

Measurement

of Enthalpy of 

Combustion

Fig. 3.9.1 Bomb

calorimeter to determine

enthalpy of combustion

Calculation of 

Enthalpy of 

Combustion
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Thus, knowing mwater , cwater , Cbomb and DT the value of qcomb can be determined. 

Since the experiment is carried out at a constant volume condition, the heat released 

per unit amount of substance will be equal to energy of combustion.

Hence D cU =
q

n

q

m M

comb

subs

comb

subs subs

=
/

where msubs and Msubs are the mass taken and the molar mass of the substance, 

respectively. Finally, the enthalpy of combustion will be given as

D c H = D cU + (Dvg) RT

where Dng is the change in stoichiometric number of gaseous species in the balanced 

chemical equation representing the combustion process.†

Example 3.9.3 A 0.138 g sample of solid magnesium (molar mass = 24.30 g mol–1) is burned in a constant

volume bomb calorimetre that has a heat capacity of 1.77 kJ °C–1. The calorimetre contains 

300 mL of water (density = 1 g mL–1) and its temperature is raised by 1.126 °C. Calculate 

the enthalpy of combustion of magnesium at 298 K.

Solution We have

qwater = mwater cwater DT

= {(300 mL) (1 g mL–1)} (4.184 J g–1 °C–1) (1.126 °C)

= 1 413 J = 1.413 kJ

qbomb =  (mbomb cbomb)

= Cbomb DT = (1.77 kJ °C–1) (1.126 °C)

= 1.992 kJ

qcomb = – (qwater + qbomb)

= – (1.413 + 1.992) kJ = –3.405 kJ

 DcU =
q

m M

comb

subs subs

kJ

g mol
kJ m

/

.

( . ) /( . )
.=

-
= --

3 405

0 138 24 30
599 60

1g
ool-1

The combustion reaction is

Mg(s) +
1

2
O2(g) Æ MgO(s) Dng = –

1

2

 D cH = Dc U + (Dng) RT

= –599.60 kJ mol–1 + ( -
1

2
 ) (8.314 × 10–3 kJ K–1 mol–1) (298 K)

= (–599.60 – 1.24) kJ mol–1 = – 600.89 kJ mol–1

When a solute is dissolved in a solvent there is frequently an evolution or absorption

of heat. The enthalpy change per unit amount of solute dissolved is not constant; it 

usually varies with concentration of the solution. Let D H be the enthalpy change 

when the amount n2

1 kg. We assume that the process of dissolution is an endothermic process. Now 

if D H is plotted against n2, the resultant curve is as shown in Fig. 3.9.2.

Initially, D H increases almost linearly with n2 but later the increase is not as 

fast as n2. Finally, it reaches a constant value when the solution becomes saturated

Integral Enthalpy 

of Solution

† See Section 3.12
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X

 H) is divided 

by the amount of solute (n2) that is dissolved to form a solution of a particular 

 H/n2, which is known as integral enthalpy of 

solution at the given concentration, Hence

The integral enthalpy of solution at the given concentration is the enthalpy change 

a solution of a desired concentration.

While recording integral enthalpies of solution it is a general practice to state 

the amount of the solvent in which 1 mole of solute is dissolved. Thus

HCl(g) + 10 H2O(l) Æ HCl(10 H2  r Hl = –69.488 kJ mol–1

indicates that when 1 mol of hydrogen chloride gas is dissolved in 10 mol of water, 

there is an evolution of 69.488 kJ of heat. Other values are

(i) HCl(g) + 25 H2O(l) Æ HCl(25 H2  r H2 = –72.266 kJ mol–1

(ii) HCl(g) + 40 H2O(l) Æ HCl(40 H2  r H3 = –73.023 kJ mol–1

(iii) HCl(g) + 200 H2O(l) Æ HCl(200 H2  r H4 = –74.203 kJ mol–1

 r H5 = –75.145 kJ mol–1

 r H5 represents the limit of enthalpy change when 1 mol of hydrogen 

chloride gas is dissolved in a very large quantity of water. The resultant solution 

is known as an 

The fact that the enthalpy of solution of a solute varies with its concentration implies 

that there must be a change in enthalpy when a solution is diluted by adding more 

solvent.

The integral enthalpy of dilution is the change in enthalpy when a solution 

containing 1 mole of solute is diluted from one concentration to another.

According to Hess’s law, it is equal to the difference between the integral 

enthalpies of solution at the two concentrations. For example, if to a solution of

1 mol of hydrogen chloride gas in 40 mol of water, enough water is added such that

HCl(40 H2O) + aq Æ HCl(aq)

the associated enthalpy change can be obtained as follows:

Fig. 3.9.2 Variation of 

enthalpy change when 

the amount n2 of solute is 

dissolved in 1 kg solvent

Integral Enthalpy 

of Dilution
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HCl(g) + aq Æ  r H5 = –75.145 kJ mol–1

HCl(g) + 40 H2O Æ HCl(40 H2  r H6 = –73.023 kJ mol–1

Subtracting, we have

HCl(40 HCl) + aq Æ  r H = –2.122 kJ mol–1

It is the enthalpy change when 1 mole of solute is dissolved in a very large volume 

of a solution of known concentration so that there occurs no appreciable change 

in concentration of the solution.

The value of differential enthalpy of solution for a given concentration of solution is 

 H and n2 drawn at the point corresponding 

to the given concentration of solution. Mathematically, it may be expressed as 

H)/dn2.

 H  H n2 of 

dn2 of solute, we mean that its addition does not cause any appreciable change in 

 H) by dn2, we get the differential enthalpy 

 H)/dn2

It is the change in  

It may be seen from the shape of the curve of Fig. 3.9.1 that the value of the slope 

will depend upon the concentration of the solution. Thus, the differential enthalpy 

of a solution, besides depending on T and p, will also depend on the amount of 

solvent n1 and solute n2  H) /dn2 = f (T, p, n1, n2).

 It is for this reason that the concentration of the solution is mentioned while 

 H and n2 as shown in Fig. 3.9.1.

1. For smaller values of n2, the curve is almost linear; thus its slope will have a 

 H/n2. Since the latter represents the integral 

enthalpy of solution, if follows that the differential and integral enthalpies of 

solution are essentially equal for very dilute solutions.

2. For higher values of n2,  H does not 

increase as fast as n2; thus the slope of the curve decreases as the value of n2

increases. In other words, the differential enthalpy of solution decreases as the 

concentration of the solution increases, and becomes zero when the solution is 

saturated.

It is the enthalpy change when 1 mole of solvent is added to a large volume of the 

solution of known concentration so that there occurs no appreciable change in the 

concentration of the solution.

Differential

Enthalpy of 

Solution

Differential Enthalpy 

of Dilution
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H of

the solution at various concentrations against the amount of the solvent associated 

corresponding to any particular concentration.

The differential enthalpies of solution and dilution are essentially the partial molar 

enthalpies of solution of solute and solvent, respectively, which are commonly 

used while dealing with solutions.† Consider a solution containing the amount n1

of solvent and the amount n2 of solute. In general,

 H = f (T, p, n1, n2)

 H is given by

d(  H) =
∂

∂
Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

( ) ( )

, , , ,

D DH

T
T

H

p
p

p n n T n n1 2 1 2

d d

+
∂

∂
Ê
ËÁ

ˆ
¯̃

+
∂

∂
Ê
ËÁ

ˆ
¯̃

( ) ( )

, , , ,

D DH

n
n

H

n
n

T p n T p n1
1

2
2

2 1

d d

At constant temperature and pressure, this reduces to

d(D H) =
∂

∂
Ê
ËÁ

ˆ
¯̃

+
∂

∂
Ê
ËÁ

ˆ
¯̃

( ) ( )

, , , ,

D DH

n
n

H

n
n

T p n T p n1
1

2
2

2 1

d d

or d(D H) = (D H1, pm) dn1 + (D H2, pm) dn2

where D H1, pm and D H2, pm are known as partial molar enthalpies of solvent and 

solute in the solution, respectively. It can be seen that D H2, pm is equal to the slope 

d(DH)/dn2 of the plot of DH versus n2 for a series of solutions in which n1 is kept 

the differential enthalpy of solution is really the partial molar enthalpy of solute 

in the solution, i.e. D H2, pm. Similarly, the differential enthalpy of dilution is the 

corresponding partial molar enthalpy of the solvent, i.e. D H1, pm.

Enthalpy of hydration of a given anhydrous or partially hydrated salt is the enthalpy 

change when one mole of it combines with the requisite amount of water to form a 

new hydrated stable salt. For example, the hydration of anhydrous cupric sulphate 

is represented by

CuSO4(s) + 5H2O(l) Æ CuSO4 · 5H2O(s)

There is almost invariably a liberation of heat in such reactions, i.e. the value of 

DH is negative. The value of enthalpy of hydration can be readily calculated from 

the integral enthalpies of solution of the hydrated and anhydrous salts. For example

CuSO4(s) + 800 H2O(l) Æ CuSO4(800 H2O) D r H° = –68.743 kJ mol–1

CuSO4.5H2O(s) + 795 H2O(l) Æ CuSO4(800 H2O)

D r H° = 10.125 kJ mol–1

Comment on 

Differential

Enthalpies

Enthalpy of 

Hydration

† See Section 6.1.
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Hence by subtraction, we get

CuSO4(s) + 5H2O(1) Æ CuSO4
.5H2O(s) D r H° = –78.868 kJ mol–1

Example 3.9.4 At 25 °C, 1 mole of MgSO4 was dissolved in water. The heat evolved was found to be 91.211 

kJ. One mol of MgSO4 · 7H2O on dissolution gives a solution of the same composition 

accompanied by an absorption of 13.807 kJ. Find the enthalpy of hydration, i.e. DH for the 

reaction.

MgSO4(s) + 7H2O(l) Æ MgSO4.7H2O(s)

Solution Given that

(i) MgSO4(s) + aq Æ MgSO4(aq) D r H1 = – 91.211 kJ mol–1

(ii) MgSO4 · 7H2O(s) + aq Æ MgSO4(aq) D r H2 = +13.807 kJ mol–1

Equation (i) can be considered to proceed through the following two steps:

MgSO4(s) + 7H2O(l) Æ MgSO4·7H2O(s) DhydH = ?

MgSO4
.7H2O(s) + aq Æ MgSO4(aq) D r H2 = +13.807 kJ mol–1

According to Hess’s law, we get

DhydH + DrH2 = DrH1

DhydH = DrHl – Dr H2

= – 91.211 kJ mol–1 – 13.807 kJ mol–1 = –105.018 kJ mol–1

enthalpy change when one mole of H+

in dilute solution combines with one mole of OH– to give undissociated water, i.e.

H+(aq) + OH–(aq) Æ H2O(l) D neut H = – 55.84 kJ mol–1

In this reaction, there is always a release of heat because of the bond formation 

H—OH. Whenever one mole of a strong monoprotic acid (HCl, HNO3) is mixed 

with the one mole of a strong base (NaOH, KOH), the above neutralization reaction 

takes place, since these acids and bases are present in the completely dissociated 

from in dilute solutions. The corresponding enthalpy change is of the order of 

–55.8 kJ mol–1.

In general, the enthalpy change of the reaction

H+(nH2O) + OH – (nH2O) Æ H2O(l)

depends on the value of n and may be visualized by mixing HCl(nH2O) and 

NaOH(nH2O). The reaction† is

HCl(nH2O) + NaOH(nH2O) Æ NaCl(nH2O) + H2O(l)

The enthalpy change in the above reaction is

D r H = D f H(NaCl . nH2O) + D f H(H2O, l)

–D f H(HCl . nH2O) – D f H(NaOH.nH2O)

Enthalpy of 

Neutralization

† Actually, we will get NaCl((2n + 1) H2O) instead of NaCl(nH2O) + H2O(l). However, 

we may consider this hypothetical reaction just to show that D H of neutralization depends 

on the value of n.
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For different values of n, the values are

n = 100; D r H = [– 407.07 – 285.83 – (–165.93) – (– 469.65)] kJ mol–1

= – 57.32 kJ mol–1

n = 200; D r H = [– 406.92 – 285.83 – (–166.27) – (– 469.61)] kJ mol–1

= – 56.87 kJ mol–1

n = •; D r H = [– 407.27 – 285.83 – (– 167.16) – (– 470.10)] kJ mol–1

= – 55.84 kJ mol–1

When n = •, the neutralization reaction may be written as

H+(aq) + OH– (aq) Æ H2O(l) D rH = –55.84 kJ mol–1

Whenever a weak acid (or base) reacts with a strong base (or acid), the release of 

heat is less than 55.84 kJ mol–1. It is because of the fact that these acids or bases 

are not completely ionized in solution. Some of the heat is consumed in ionizing 

these acids and bases. This heat is known as Examples are

HCN + Na+OH – Æ Na+ + CN– + H2O DrH° = –12.13 kJ mol–1

CH3COOH + Na+ OH– Æ Na+ + CH3COO – + H2O

D r H° = – 49.86 kJ mol–1

The enthalpy of ionization can be calculated as follows. The neutralization of a 

weak acid, say HCN, may be represented in two steps, namely,

(i) Ionization HCN Æ H+ + CN– Dioniz H° = ?

(ii) Neutralization H+ + OH– Æ H2O DneutH° = –55.84 kJ mol–1

The complete reaction is obtained by adding the above two steps. Thus

   HCN + OH– Æ H2O + CN– D r H° = –12.13 kJ mol–1

Obviously,

D r H° = D ioniz H° + D neut H°

or D ioniz H° = D rH° – D neut H°

= [–12.13 – (– 55.84)] kJ mol–1

= 43.71 kJ mol–1

Example 3.9.5 Enthalpy of neutralization of HCl by NaOH is –57.32 kJ mol–1 and by NH4OH is –51.34 

kJ mol-1. Calculate the enthalpy of dissociation of NH4OH.

Solution Given that

   H+(aq) + NH4OH(aq) Æ NH+
4(aq) + H2O(l) D r H = –51.34 kJ mol–1

We may consider neutralization in two steps:

(i) Ionization  NH4OH(aq) Æ NH4(aq) + OH–(aq) D r H1 = ?

(ii) Neutralization H+(aq) + OH–(aq) Æ H2O(l) D rH2 = –57.32 kJ mol–1

Thus, D r H = D r H1 + D r H2

Therefore

rH1 rH rH2 = –51.34 kJ mol–1 + 57.32 kJ mol–1 = 5.98 kJ mol–1

Enthalpy of 

Ionization
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Enthalpy of transition is the enthalpy change when one mole of one allotropic form 

changes to another. For example,

C(graphite) Æ trs H° = 1.90 kJ mol–1

The enthalpy of transition in the above example can be obtained from the 

enthalpies of combustion of C(graphite) and C(diamond).

C(graphite) + O2(g) Æ CO2 c H° = –393.51 kJ mol–1

C(diamond) + O2(g) Æ CO2 c H° = –395.41 kJ mol–1

Subtracting, we have

C(graphite) Æ trs H° = 1.90 kJ mol–1

Enthalpy of precipitation is the enthalpy change when one mole of precipitate is

formed. For example,

BaCl2(aq) + Na2SO4(aq) Æ BaSO4(s) + 2NaCl(aq)

r H° = –24.27 kJ mol–1

Enthalpy of atomization refers to a process in which a substance is separated into 

its constituent atoms in the gas phase. The corresponding reaction equation carries 

stoichiometric number of the substance equal to –1. Example is

H2O(l) Æ 2H(g) + O(g)  Dat H° = 69.94 kJ mol–1

We have seen that

H+(aq) + OH –(aq) Æ H2 r H° = –55.84 kJ mol–1

For this reaction, we write

r H° f H°(H2 f H°(H+
f H°(OH–, aq)}

Hence at 25 °C, we get

f H°(H+
f H°(OH–

f H°(H2 r H°

= [–285.83 – (–55.84)] kJ mol–1 = –229.99 kJ mol–1

By convention, the standard enthalpy of formation of H+(aq)

Thus  f H°(OH–, aq) = – 229.99 kJ mol–1

Illustration With the enthalpies of formation of these two ions, the enthalpy of formation of 

any other ion can be found from the enthalpy of formation and enthalpy of solution 

of its pure compound with H+ or OH–. For example, the enthalpy of formation 

of Na+

dilute solution of NaOH. The two values are

 f H°(NaOH, s) = – 425.61 kJ mol–1  aq H°(NaOH, s) = – 44.50 kJ mol–1

NaOH(s) + nH2
+(aq) + OH–(aq)

 aq H°(NaOH, s) = – 44.50 kJ mol–1

Enthalpy of 

Transition

Enthalpy of 

Precipitation

Enthalpy of 

Formation of Ions

Enthalpy of 

Atomization
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Since there are equal amounts of water on both sides of the above equation, the 

two enthalpies give no net effect and thus

aq H° f H°(Na+
f H°(OH–

f H°(NaOH, s)

f H°(Na+
aq H° f H°(OH–

f H°(NaOH, s)

= [– 44.50 – (–229.99) + (– 425.61)] kJ mol–1

= – 240.12 kJ mol–1

Similarly, from NaCl(aq) or HCl(aq), the enthalpy of formation of Cl–(aq) can be 

determined, and so on. These are recorded in Appendix I. The changes in enthalpy 

of any ionic reaction can then be found from these ionic enthalpies of formation 

and the usual enthalpies of formation of compounds.

Example 3.9.6 The enthalpy of formation of H2O(l) is –285.83 kJ mol–1 and enthalpy of neutralization of 

a strong acid and a strong base is –55.84 kJ mol–1. What is the enthalpy of formation of 

OH– ions?

Solution Given that

H

kJ

+ -

-
+ Æ

-
(aq) OH (aq) H O(l)

molf
1

2

0 285 83D H .

neut H f H(H2 f H(OH–, aq)

fH(OH–
f H(H2 neutH

= [– 285.83 – ( – 55.84)] kJ mol–1

= – 229.99 kJ mol–1

Example 3.9.7  rH
o for the reaction

   Ag+(aq) + Cl–(aq) Æ AgCl(s)

fH
o(Ag+, aq) = 105.58 kJ mol–1

f H°(Cl–, aq) = – 167.16 kJ mol–1 and 

f H°(AgCl, s) = – 127.07 kJ mol–1.

Solution For the reaction

  Ag+(aq) + Cl–(aq) Æ AgCl(s)

we have

rH° f H° f H° (Ag+
f H° (Cl–, aq)

= [ – 127.07 – 105.58 – ( – 167.16)] kJ mol–1 = – 65.49 kJ mol–1

Example 3.9.8 Calculate the enthalpy change when one mole of HCl(g) is dissolved in a very large amount 
of water at 25 °C. The change in state is

HCl(g) + aq Æ H+(aq) + Cl–(aq)

 fH°(HCl, g) = – 92.31 kJ mol–1  f H°(Cl–, aq) = – 167.16 kJ mol–1

Solution For the reaction
+(aq) + Cl–(aq)

we have

 r H°  f H°(Cl–  f H°(HCl, g)

= [ – 167.16 – ( – 92.31)] kJ mol–1

= – 74.85 kJ mol–1
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3.10 BOND ENTHALPIES

Definition

The bond enthalpy is the average of enthalpies required to dissociate the said bond 

present in different gaseous compounds into free atoms or radicals in the gaseous 

state.

The term bond enthalpy may be distinguished form the term bond dissociation 

The bond dissociation enthalpy is the enthalpy required to dissociate a given 

The distinction between these two terms may be more evident if described in 

terms of a simple example, say of the O—H bond. The enthalpy of dissociation 

of the O—H bond depends on the nature of molecular species from which the H 

atom is being separated. For example, in the water molecule

H2O(g) Æ H(g) + OH(g) r H° = 501.87 kJ mol–1

However, to break the O—H bond in the hydroxyl required a different quantity of 

heat

OH(g) Æ O(g) + H(g)  r H° = 423.38 kJ mol–1

The bond enthalpy, eOH

 eOH =
501 87 423 38

2

1 1. .kJ mol kJ mol- -+
= 462.625 kJ mol–1

In the case of diatomic molecules, such as H2, the bond enthalpy and bond 

dissociation enthalpy are identical because each refers to the reaction

H2(g) Æ 2H(g) eH–H =  rH° = 435.93 kJ mol–1

Thus, the bond enthalpy given for any particular pair of atoms is the average 

value of the dissociation enthalpies of the bond for a number of molecules in which 

the pair of atoms appears. Appendix I records the recommended bond enthalpies 

of the various bonds.

Bond enthalpies can be obtained from data on enthalpies of combustion and 

enthalpies of dissociation. Taking an example of the bond enthalpy of C—H, we 

have

CH4(g) Æ C(g) + 4H(g) eC–H = rH/4

The value of Dr H and hence eC–H for this reaction can be obtained from the 

summation of following equations:

CH4(g) + 2O2(g) Æ CO2(g) + 2H2O(l) r H° = –890.36 kJ mol–1

CO2(g) Æ C(graphite) + O2(g) r H° = 393.51 kJ mol–1

2H2O(l) Æ 2H2(g) + O2(g) r H° = 571.70 kJ mol–1

2H2(g) Æ 4H(g) r H° = 871.86 kJ mol–1

C(graphite) Æ C(g) r H° = 716.68 kJ mol–1

CH4(g) Æ C(g) + 4H(g) r H° = 1 663.39 kJ mol-1

Calculation of 

Bond Enthalpy
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Thus at 298.15 K, eC–H =
1663 39

4

. kJ mol 1-

= 415.85 kJ mol–1

Thus value of the C—H bond enthalpy does not correspond to the dissociation 

enthalpy of the carbon-hydrogen bond in methane, which is 426.77 kJ mol–1 and 

refers to the equation

CH4(g) Æ CH3(g) + H(g)

Example 3.10.1 Find the bond enthalpy of S—S bond from the following data:

C2H5—S—C2H5(g) D fH° = –147.23 kJ mol–1

C2H5—S—S—C2H5(g) D fH° = –201.92 kJ mol–1

S(g) D fH° = 222.80 kJ mol–1

Solution Given that

(i) 4C(s) + 5H2(g) + S(s) Æ C2H5— S — C2H5(g) D f H° = –147.23 kJ mol–1

(ii) 4C(s) + 5H2(g) + 2S(s) Æ C2H5 — S — S — C2H5(g) D f H° = –201.92 kJ mol–1

Subtracting Eq. (i) from Eq. (ii), we get

C2H5 — S — C2H5(g) + S(s) Æ C2H5 — S — S — C2H5(g);D r H° = –54.69 kJ mol–1

Adding to this, the following equation

S(g) Æ S(s) D r H° = –222.80 kJmol–1

we get

C2H5 — S — C2H5(g) + S(g) Æ C2H5 — S — S — C2H5(g); D r H° = –277.49 kJ mol–1

In the last equation 277.49 kJ of heat is evolved because of the S—S bond formation. Hence, 

the bond enthalpy of S—S is 277.49 kJ mol–1



Thermochemistry 141

Example 3.10.2 Using the bond enthalpy data given below, calculate the enthalpy change for the reaction

C2H4(g) + H2(g) Æ C2H6(g)

Data:

Bond Bond enthalpy

C—C 336.81 kJ mol–1

C==C 606.68 kJ mol–1

C—H 410.87 kJ mol–1

H—H 431.79 kJ mol–1

Solution Diagrammatically, we may represent the given reaction as follows:

The heat required to dissociate C2H4(g) and H2(g) into the gaseous atoms is

For breaking 1 C==C 606.68 kJ mol–1

For breaking 4 C — H 4 × 410.87 kJ mol–1

For breaking 1 H — H 431.79 kJ mol–1

  Total 2 681.95 kJ mol–1

If the same atoms now combine to give C2H6(g), energy released will be

For making 1 C — C – 336.81 kJ mol–1

For making 6 C — H – 6 × 410.87 kJ mol–1

  Total – 2 802.03 kJ mol–1

Thus D r H = – 2 802.03 kJ mol–1 + 2 681.95 kJ mol–1 = –120.08 kJ mol–1

Example 3.10.3 From the following data:

   Enthalpy of formation of CH3CN = 87.86 kJ mol–1

   Enthalpy of formation of C2H6 = – 83.68 kJ mol–1

   Enthalpy of sublimation of graphite = 719.65 kJ mol–1

   Enthalpy of dissociation of nitrogen = 945.58 kJ mol–1

   Enthalpy of dissociation of H2 = 435.14 kJ mol-1

   C—H bond enthalpy = 414.22 kJ mol–1

Calculate (i) eC–C and (ii) e .
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Solution (i) eC–C : We have

C2H6(g) Æ 2C(graphite) + 3H2(g) D r H1 = 83.68 kJ mol–1

2C(graphite) Æ 2C(g) D rH2 = 2 ¥ 719.65 kJ mol–1

3H2(g) Æ 6H(g) D rH3 = 3 ¥ 435.14 kJ mol–1

Adding, we get

C2H6(g) Æ 2C(g) + 6H(g) D rH4 = 2 828.4 kJ mol–1

Now D r H4 = eC –C + 6 eC–H

Therefore

eC–C = [2 828.4 – 6 ¥ 414.22] kJ mol–1 = 343.08 kJ mol–1

Diagrammatically, the above calculations may be represented as follows:

Applying Hess’s law, we get

ΔfH = ΔH2 + ΔH3 – 6 εC–H – εC–C

–83.68 kJ mol–1 = (2 × 719.65 + 3 × 435.14 – 6 × 414.22) kJ mol–1 – εC–C

εC–C = (1 439.3 + 1 305.42 – 2 485.32 + 83.68) kJ mol–1

= 343.08 kJ mol–1

(ii) e  : We have

CH3
3
2

H2(g) + 1
2

N2(g) D r H1 = – 87.86 kJ mol–1

2C(g) D rH2 = 2 ¥ 719.65 kJ mol–1

3
2

H2 D rH3 = 3

2
¥ 435.14 kJ mol–1

1
2

N2 D rH4 = 
1

2
¥ 945.58 kJ mol–1

Adding, we get

     CH3 2C(g) + 3H(g) + N(g) D rH5 = 2 476.94 kJ mol–1

Now D r H5 = eC–C + 3eC–H + e

Therefore

e  = [2 476.94 – 3 ¥ 414.22 – 343.08] kJ mol–1 = 891.2 kJ mol–1
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Example 3.10.4 Calculate the bond enthalpy C—H from the following data at 298 K:

Enthalpy of combustion of methane D c H = –890.36 kJ mol–1

Enthalpy of combustion of C(graphite) D c H = –393.51 kJ mol–1

H2(g) + 1
2

O2 H2O(1) D r H = –285.85 kJ mol–1

Enthalpy of dissociation of H2(g) D at H = 435.93 kJ mol–1

Enthalpy of sublimation of C(graphite) D sub H = 716.68 kJ mol–1

Solution We have

(i) CH4(g) + 2O2 CO2(g) + 2H2O(1) D cH298K = –890.36 kJ mol–1

(ii) C(graphite) + O2 CO2(g) D c H298K = –393.51 kJ mol–1

(iii) H2(g) + O2 2O(1) D rH298K = –285.85 kJ mol–1

(iv) H2 2H(g) D at H298K = 435.93 kJ mol–1

C(g) D sub H298K = 716.68 kJ mol–1

If we do the following manipulations

Eq. (i) – Eq. (ii) – 2 Eq. (iii) + 2 Eq. (iv) + Eq. (v)

we get CH4 C(g) + 4H(g)

The corresponding Dr H298K is given by

 Dr H298K= [–890.36 + 393.51 + 2 × 285.85 + 2 ¥ 435.93 + 716.68] kJ mol–1

= 1 663.39 kJ mol–1

that is, 1 663.39 kJ is requried to dissociate one mole of CH4(g) into gaseous atoms in 

which 4 mol of C—H bonds are broken. Therefore

eC–H =
1663 39

4

1. kJ mol-

 = 415.85 kJ mol–1
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The date on the bond enthalpies can be employed to calculate the approximate

enthalpy of formation of a compound of known structure by adding the appropriate

bond enthalpies. Wherever direct experimental data is not available, approximate

estimate of enthalpy of a reaction can also be obtained through the bond enthalpy 

data.

Let us calculate the enthalpy of formation of Se2Cl2(g). This can be carried out 

using the data on bond enthalpies as described in the following:

Since the bond enthalpy refers to the dissociation of gaseous Cl—Se—Se—Cl 

molecule into the gaseous atoms, the enthalpy change for the formation of this 

gaseous molecule from gaseous atoms is given by

Se2Cl2(g)

DH = – (eSe–Se + 2eSe–Cl) = – 695.54 kJ mol–1

However, to estimate the enthalpy of formation it is necessary to add two 

to the elements in their standard states. Therefore, we introduce the following 

enthalpy changes to convert the element from their standard states to the gaseous 

atoms at 298 K.

Cl2(g) 2Cl(g) D r H1 = 243.30 kJ mol–1

2Se(hexagonal) 2Se(g) D rH2 = 2 ¥ 202.51 kJ mol–1

Thus adding these in the preceding expression, we get

2Se(hexagonal) + Cl2 SeCl2(g) D r H = –47.22 kJ mol–1

Example 3.10.5 Using the bond enthalpy date given below, estimate the enthalpy of formation of gaseous 

isoprene

Data  Bond enthalpy of C—H bond = 413.38 kJ mol–1

Bond enthalpy of C—C bond = 347.69 kJ mol–1

Estimation of 

Enthalpy of 

Formation form 

Bond Enthalpies
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Bond enthalpy of C==C bond = 615.05 kJ mol–1

Enthalpy of sublimation of carbon(graphite) = 718.39 kJ mol–1

Enthalpy of dissociation of H2(g) = 435.97 kJ mol–1

Solution For isoprene, we have to form

2C—C bonds; 2C==C bonds and 8C—H bonds

For which energy released is

[2 (– 347.69) + 2 (– 615.05) + 8 (– 413.38)] kJ mol–1 = – 5 232.52 kJ mol–1

that is, DH (from gaseous atoms) = – 5 232.52 kJ mol–1

The reaction corresponding to this is

C5H8(g) D r H1 = – 5 232.52 kJ mol–1

But we want Df H corresponding to the following equation

5C(graphite) + 4H2 C5H8(g) DfH = ?

This can be obtained by the following manipulations:

C5H6(g) D rH2 = –5 232.52 kJ mol–1

5C(g) D rH3 = 5 ¥ 718.39 kJ mol–1

4H2 8H(g) D r H4 = 4 ¥ 435.97 kJ mol–1

Adding, we get

5C(graphite) + 4H2 C5H8(g) DfH = 103.31 kJ mol–1

Let the enthalpy change for the reaction

C2H4 C2H5Cl(g)

be required from the bond enthalpy data. This may be calculated as follows:

D rH =

Enthalpy required to

 break reactant into

 gaseous atoms

Ê

Ë

Á
Á

ˆ̂

¯

˜
˜

+
Enthalpy released to from 

products from the 

gaseous aatoms

Ê

Ë

Á
Á

ˆ

¯

˜
˜

= [4eC–H + eC=C + eH–Cl] + [–5eC–H – eC–C – eC–Cl]

= (eC=C + eH–Cl) – (eC–H + eC–C + eC–Cl )

Substituting the bond enthalpy values, we have

DrH = [(615.05 + 431.79) – (413.38 + 347.69 + 328.44)] kJ mol–1

= – 42.67 kJ mol–1

Estimation of 

Enthalpy of a 

Reaction from 

Bond Enthalpies
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Agreement between the calculated values of enthalpy of formation obtained by using 

the bond-enthalpy concept and any other method is usually good. For compounds 

involving alternate single and double bonds, however, large deviations are observed. 

For example, the reaction

C6H6 6C(g) + 6H(g)

Benzene

will require enthalpy of 5 368.5 kJ mol–1 on the basis of bond enthalpies (3 eC–C +

3 eC=C + 6 eC–H) = (3 ¥ 347.69 + 3 ¥ 615.05 + 6 × 413.38) kJ mol–1 = 5 368.5 kJ 

mol–1, whereas the experimental value is 5 535.1 kJ mol–1. This amounts to the 

fact that benzene is more stable by 166.6 kJ mol–1. This is due to resonance, i.e. 

there is no localization of single and double bonds in benzene, but the molecule 

is resonating hybrid.

Example 3.10.6 Calculate the resonance energy of benzene compared with one Kekule structure. Given the 

following data:

D fH°(methane, g) = –74.85 kJ mol–1

D fH°(ethane, g) = – 84.68 kJ mol–1

D fH°(ethylene, g) = 52.3 kJ mol–1

D f H°(benzene, g) = 82.93 kJ mol–1

Enthalpy of sublimation of carbon(graphite) = 718.39 kJ mol–1

Dissociation enthalpy of H2 = 435.89 kJ mol–1

Solution In order to calculate the resonance energy of benzene, we need to a compute D f H° from

the bond enthalpy data. For this, we need C—C, C ==C and C—H bond enthalpies. These 

can be calculated as follows:

(i) Bond enthalpy of C—H from DfH° (methane): We have

CH4 C(graphite) + 2H2(g); D r H° = + 74.85 kJ mol–1

C(g); D rH° = + 718.39 kJ mol–1

2H2 4H(g); D rH° = 2 ¥ 435.89 kJ mol–1

Adding, we get

CH4(g) C(g) + 4H(g); D rH1
o = 1 665.02 kJ mol–1

Now D rH1
° =4eC–H, therefore

eC–H =
1665 02

4
416 255

1
1.

.
kJ mol

mol
-

-= kJ

(ii) Bond enthalpy of C—C from Df H°(ethane): We have

C2H6(g) 2C(graphite) + 3H2(g); Dr H° = 84.68 kJ mol–1

2C(graphite) 2C(g); D r H° = 2 ¥ 718.39 kJ mol–1

3H2(g) 6H(g); D r H° = 3 ¥ 435.89 kJ mol–1

Adding, we get

C2H6(g) 2C(g) + 6H(g); D r H2° = 2 829.13 kJ mol–1

Bond Enthalpies 

and Resonance
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Now D rH2
° = eC–C + 6eC–H

Thus eC–C = [2 829.13 – 6 ¥ 416.225] kJ mol–1 = 331.60 kJ mol-1

(iii) Bond enthalpy of C = C from Df H°(ethylene): We have

C2H4 2C(graphite) + 2H2(g); D r H° = – 52.3 kJ mol–1

2C(g); D r H° = 2 ¥ 718.39 kJ mol–1

2H2 4H(g); D r H° = 2 ¥ 435.89 kJ mol–1

Adding, we get

C2H4 2C(g) + 4H(g); D rH2
° = 2 256.26 kJ mol–1

Now DrH3
° = eC=C + 4eC–H

Therefore

eC =C = (2 256.26 – 4 ¥ 416.255) kJ mol–1 = 591.24 kJ mol–1

(iv) DfH° ( ) from the bond enthalpy data: We have

C6H6(g); D r H° = – (3eC–C + 3eC=C + 6eC–H)

= –5 266.05 kJ mol–1

6C(g); D rH° = 6 ¥ 718.39 kJ mol–1

3H2 6H(g); D rH° = 3 ¥ 435.89 kJ mol–1

Adding, we get

6C(graphite) + 3H2 C6H6(g); D rH° = + 315.96 kJ mol–1

(v) (g):

Actual value of D fH° = 82.93 kJ mol–1

Calculated value of D fH° = 351.66 kJ mol–1

Thus, benzene becomes more stable by +269.03 kJ mol–1. Therefore, its resonance energy 

is 269.03 kJ mol–1.

Example 3.10.7 The enthalpy of formation of ethane, ethylene and benzene from the gaseous atom are 

– 2 839.2, – 2 275.2 and – 5 536 kJ mol–1, respectively. Calculate the resonance energy of 

benzene, compared with one Kekule structure. The bond enthalpy of C—H bond is given 

as equal to 410.87 kJ mol–1.

Solution Bond enthalpy of C—C bond = Enthalpy required to break C2H6 into gaseous

atoms – 6 ¥ Bond enthalpy of C—H bond

= 2 839.2 kJ mol–1 – 6 ¥ 410.87 kJ mol–1

  = 373.98 kJ mol–1

Bond enthalpy of C==C bond = Enthalpy required to break C2H4 into gaseous

atoms – 4 ¥ Bond enthalpy of C—H bond

= 2 275.2 kJ mol–1 – 4 ¥ 410.87 kJ mol–1

  = 631.72 kJ mol–1

For the formation of benzene having Kekule structure, we have to from 3 C—C bond, 

3 C==C bonds and 6 C—H bonds for which enthalpy released is

[3 ( – 373.98 + 3 ( – 631.72) + 6 ( – 410.87) kJ mol–1 = – 5 482.32 kJ mol–1

But the given value of Df H is

Df H(actual) = – 5 536 kJ mol–1
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Hence the resonance energy of benzene compared with one Kekule structure

= D fH(actual) – D fH(Kekule structure)

= (– 5 536 + 5 482.32) kJ mol–1

= – 53.68 kJ mol–1

3.11  VARIATION IN ENTHALPY OF A REACTION WITH TEMPERATURE 

(KIRCHHOFF’S RELATION)

Sometimes it is necessary to know the enthalpy of a reaction at a temperature 

different from that at which the value is available. Therefore, we consider below 

the procedure that can be used for this purpose.

Consider a general reaction

a A+ b B + � l L + m M + �

we have  Dr H = (l Hm, L + m Hm, M + �) – (a Hm, A + b Hm, B + �)

Its variation with temperature at constant pressure is given as

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂

∂
Ê
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ˆ
¯̃

+
∂

∂
Ê
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ˆ
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+
Ï
Ì
Ô
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¸
˝
Ô

Ǫ̂
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ˆ
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+
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Ì
Ô
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˝
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Now the variation of enthalpy of a substance with temperature at a given 

pressure is given by

∂
∂

Ê
ËÁ

ˆ
¯̃ =

H

T
C

p
p

With this, the previous equation becomes

∂
∂

Ê
ËÁ

ˆ
¯̃

(Dr )H

T p

={(lCp,m(L) + mCp,m(M) + �)} – {(a Cp,m(A)

+ b Cp,m(B) + �)} = DrCp (3.11.1)†

Rearranging this equation, we have

d(Dr H) = DrCp dT (constant pressure) (3.11.2)

which on integration at constant pressure gives

d dr r( ) ( )D DH C Tp= ÚÚ

†For a general reaction 0 = Â
B

BBn , we have DrCp = Â
B

B (B)n Cp,m

Thus
∂

∂
Ê
ËÁ

ˆ
¯̃ = Â

∂
∂

Ê
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ˆ
¯̃ = Â

( ) ( )
,

D
Dr

B m

H
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H

T
C C

p p
p p

B
B

m

B
r

B
(B) =n n
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or D rH = ( )Dr dC T Ip +Ú (3.11.3)

where I is the constant of integration. Equation (3.11.3) is known as Kirchhoff’s 

relation. In order to carry out the above integration, it is necessary to know the 

temperature dependence of molar heat capacities of the reactants and products.

We may consider two possibilities as given below.

DrCp independent of temperature In this case, we have

D rH = (D r Cp )DT + I (3.11.4)

The value of integration constant I can be obtained if the value of D r H at some 

temperature (say, 298 K) is available. Alternatively, integrating Eq. (3.11.2) within 

the limits gives

D rHT2
– D rHT1

 = D r Cp(T2 – T1)

Example 3.11.1 Calculate DrH°
373K for the reaction

1
2

N2(g) + O2 2(g) D r H
o

298K = –33.18 kJ mol–1

Given: Cp, m(NO2, g) = 37.20 J K–1 mol–1; Cp, m(O2, g) = 29.36 J K–1 mol–1

Cp, m(N2, g) = 29.13 J K–1 mol–1

Solution We have D r Cp = nB

B

Â Cp, m (B) = Cp, m (NO2, g) – 
1

2
Cp, m(N2, g) – Cp,m(O2, g)

= (37.20 – 
1

2
¥ 29.13 – 29.36) J K–1 mol–1

= – 6.73 J K–1 mol–1 = – 6.73 ¥ 10–3 kJ mol–1

Now D r H °
373 K = D rH°298 K + (D r Cp ) (DT)

= [–33.18 + (– 6.73 ¥ 10–3) (373 – 298) ] kJ mol–1

= –33.68 kJ mol–1

DrCp dependent on temperature The variation of Cp, m with temperature is usually 

given by the relation

Cp,m = a¢ + b¢T + c¢T 2 + � (3.11.5)

where a¢, b¢, c¢, are constants. Thus, the variation of DrCp of a chemical equation 

with temperature is given by

D r Cp = (D r a¢) + (D r b¢) T + (D r c¢) T 2 + � (3.11.6)

where Dra¢ = (l a¢L + m a¢M ...) – (a a¢A + b a¢B ...) are so on. Substituting Eq. (3.11.6) 

in Eq. (3.11.3), we get

D r H = I + Ú {(D r a¢) + (D r b¢)T + (D r c¢)T 2 + �}dT

which on integration yields
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D rH = I + (D r a¢)T + (D r b ¢ )
T 2

2
+ (D r c¢)

T 3

3
+� (3.11.7)

The constant of integration I in Eq. (3.11.7) can be evaluated if the value of D r H

at some temperature (say, 298 K) is available.

Contribution of When a change of phase occurs in the course of change in temperature, the change

Phase Change in enthalpy for the change of state of aggregation must be included. For example,

in the following reaction

CH g, K O g, K CO g, K H O K

CH g,

4 2 2 2

4

298 2 298 298 2 1 298

500

( ) ( ) ( ) ( , )

(

+ Æ +
Ø

KK O g, K CO g, K H O g K) ( ) ( ) ( , )+ Æ +2 500 500 2 5002 2 2

a change in aggregation of water from liquid to gas occurs. Therefore, we must 

also add DH° corresponding to the following change

2H2 2H2O(g, 500 K)

This change may be considered as the sum of three of changes of state, that is

2H2 2H2O(1, 373 K)

2H2 2H2O(g, 373 K)

2H2 2H2O(g, 500 K)

The required DH° is thus the sum of the changes of enthalpy for all the three steps.

One of the most important things to remember while employing Kirchhoff’s relation 

is that the units of D r H° and D r Cp should be the same. If D r H° is expressed in kJ 

mol–1 (which is mostly the case), then D r Cp should also be expressed in kJ K–1mol–1.

The values of Cp are usually tabulated in J K–1 mol–1. Therefore, these should be 

converted into kJ K–1 mol–1 while using the Kirchhoff’s relation. Alternatively, 

D r H° may be converted into joules if Cp are to be employed as such.

Example 3.11.2 Calculate D f H°
373K for the reaction

1

2
N2(g) + O2 2(g) D fH°298K = –33.18 kJ mol–1

Solution Given: Cp, m(NO2, g)/J K–1 mol–1 = 27.78 + 30.85 ¥ 10–3 (T/K)

Cp,m(N2, g)/J K–1 mol–1 = 28.46 + 2.26 ¥ 10–3 (T/K)

Cp, m(O2, g)/J K–1 mol–1 = 26.85 + 8.49 ¥ 10–3 (T/K)

For the given reaction

D r Cp = nB

B

BÂ Cp, ( )m

= 27 78
1

2
28 46 26 85 30 85

1

2
2 26 8 49 10 3. . . . . . ( /- ¥ -Ê

ËÁ
ˆ
¯̃ + - ¥ -Ê

ËÁ
ˆ
¯̃

- T KK J K mol)
È
ÎÍ

˘
˚̇

- -1 1

= [–13.30 + 21.23 ¥ 10–3 (T/K)] J K–1 mol–1
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D f H°
373K = D f H°

298K + ( )Dr dC Tp
T

T

1

2Ú

= - + - + ¥{ }ÈÎ ˘̊- - - -33180 13 30 21 23 101 3 1 1

298

373

J mol K J K mol

K

K

. . ( / )TÚÚ dT

= - + - - + ¥
È

Î
Í

- -33180 13 30 373 298 21 23 101 3J mol K K. ( ) .

¥ -
Ï
Ì
Ó

¸
˝
˛

˘

˚
˙

- -( ) ( )373 298

2

2 2
1 1K

2 K K
J K mol

K

= (–33 180 – 13.30 ¥ 75 + 21.23 ¥ 10–3 ¥ 25 163) J mol–1

= (– 33 180 – 997.5 + 534.21) J mol–1 = –33 643 J mol–1 = – 33.64 kJ mol–1

3.12 RELATION BETWEEN ENERGY AND ENTHALPY OF A REACTION

For a chemical equation, the expression of DrH is

D rH = Â
B

Bn Hm(B)

where nB is the stoichiometric number of B in the chemical equation (it is positive 

for products and negative for reactants).

The molar enthalpy of B is given as

Hm = Um + pVm

Substituting this in the previous expression, we get

 D rH = Â
B

Bn [Um(B) + (pVm)B]

= Â
B

Bn Um(B) + Â
B

Bn (pVm)B

Using the fact that

pVm � 0 for one mole of solid or liquid

pVm = RT for one mole of gaseous species

we get D rH = Â
B

Bn Um(B) + ( Â
B(g)

Bn ) RT

= D rU + (D ng) RT (3.12.1)

where Dng is the change in the stoichiometric number of gaseous species in going 

from reactants to products.

It should be noted that while computing Dng of a reaction, only the stoichiometric 

numbers of gaseous species is counted and those of liquids and solids are completely 

ignored.

Example 3.12.1 For the reaction

1

2
H2(g) + 

1

2
 Br2

Dr H = – 51.823 kJ mol–1 at 373 K. Calculate the value of DrU for this reaction at 373 K.



152 A Textbook of Physical Chemistry

Solution In order to calculate Dr U373 K, we employ the equation

D r U = D r H – (Dng) RT

Since Dng = 0 for this reaction, therefore

D r U = D r H = – 51.823 kJ mol–1

Example 3.12.2 For the reaction

2A2(s) + 5B2 2A2B5(g) D r U298K = 62.76 kJ mol–1

Calculate D r H298K for this reaction.

Solution We have

D r H = D r U + (Dng) RT

Dng for this reaction = 2 – 5 = –3

Thus D r H = 62.76 kJ mol–1 + (–3) (8.314 ¥ 10–3 kJ K–1 mol–1) (298 K)

= 62.76 kJ mol–1 – 7.43 kJ mol–1

= 55.33 kJ mol–1

3.13 ADIABATIC FLAME TEMPERATURE

changes in the system are carried out under adiabatic conditions. For example, if 

we are carrying out an exothermic reaction under adiabatic conditions, the heat 

involved would raise the temperature of the system. The rise in temperature can 

be calculated by considering the reaction to take place in the following two steps, 

both at constant pressure.

Step I: Reactants(T0, p) Products(T0, p) D r HT0

Step II: Products(T0, p Tf, p) D r H2

The heat involved in the second step is given by

D r H2 = C Tp
T

T
( )products d

f

0
Ú

Since the overall reaction is the sum of the above two steps, i.e.

Reactants(T0, p) Products(Tf , p)

the net heat change is given by

D rH = D r HT0
+ D rH2

Since the reaction is carried out under adiabatic conditions, it is obvious that

D r H = 0.

Thus D r HT0
+ D r H2 = 0

or D r H2 = –D r HT0

or C T Hp
T

T

T
0

f

products d rÚ = -( ) D
0

If Cps are considered independent of temperature, then

At Constant 

Pressure
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Cp(products) (Tf – T0) = –D r HT0

or Tf =
-

+
Dr

(products)

H

C
T

T

p

0

0 (3.7.1)

However, the approximation that Cps are independent of temperature is not correct 

since Tf is a very large quantity (D r HT0
� kJ and Cp � J) of the order of thousands 

of kelvin.

Illustration Taking the example of

CH4(g) + 2O2 CO2(g) + 2H2O(g)

we have

 D r H°
298K = D f H°(CO2, g) + 2D f H°(H2O, g) – D f H°(CH4, g)

= [–393.51 + 2 (– 241.82) – (–74.81)] kJ mol–1

= –802.34 kJ mol–1

Cp(CO2 + 2H2O)298K = [37.11 + 2(33.58)] J K–1 mol–1

= 104.27 J K–1 mol–1

Thus Tf =
802 34 10

104 27

3 1

1 1

.

.

¥ -

- -
J mol

J K mol
+ 298 K = 7 694.83 K + 298 K

= 7 992.83 K � 8 000 K

If the compound is burnt in air, each mole of oxygen is associated with four moles

of methane which requires two moles of oxygen, eight moles of nitrogen must be 

Cp(CO2 + 2H2O + 8N2)298K = [37.11 + 2(33.58) + 8(29.13)] J K–1 mol–1

= 337.31 J K–1 mol–1

 Tf = 
802 34 10

337 3

3 1

1 1

.

.

¥ -

- -
J mol

J K mol
 + 298 K = 2 378.71 K + 298 K

  = 2 676.71 K = 2 700 K

At Constant Volume If the reaction takes place in a closed vessel, i.e. under the condition of constant 

volume, then D rU and CV replace D r H and Cp, respectively, i.e.

    Tf =

( )

( )

-
+

Dr

products

U

C
T

T

V

0

0

Example 3.13.1

constant volume condition:

CH4(g) + 2O2 CO2(g) + 2H2O(g) DrH298K = –803.33 kJ mol–1

to be taken as 80% N2 and 20% O2).

Burning the 

Compound in Air
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Given: Cp,m(CO2, g) = 36.29 J K–1 mol–1

Cp,m(H2O, g) = 33.58 J K–1 mol–1

Cp,m(N2, g) = 29.29 J K–1 mol–1

Solution (a) For the reaction under constant volume condition, we have

f = Tf – Ti = 
-Dr 298K

(products)

U

CV

Using CV, m = Cp,m – R, we have

CV{CO2 + 2H2O} = [27.976 + 2 ¥ 25.266] J K–1 mol–1

  = 78.508 J K–1 mol–1

ng r U = r H

Thus Tf =
803 303

78 508

1

1 1

J mol

J K mol

-

- -.
+ 298 K

= 10 232 K + 298 K = 10 530 K

(b) If the reaction is carried out using air, then we have

CV = [27.976 + 2 ¥ 25.266 + 8 ¥ 20.976] J K–1 mol–1

= 246.32 J K–1 mol–1

Tf =
803 303

246 32

1

1 1

J mol

J K mol

-

- -.
 + 298 K = 3 559 K

REVISIONARY PROBLEMS

3.1 Explain with examples the following terms:

(a) Standard molar enthalpy

(b) Standard enthalpy of an element

(c) Standard molar enthalpy of formation

(d) Hess’s Law of constant heat summation

(e) Enthalpy of formation

(f) Enthalpy of combustion

(g) Integral enthalpies of solution and dilution

(h) Differential enthalpies of solution and dilution

(i) Enthalpy of hydration

(j) Enthalpy of neutralization

(k) Enthalpy of ionization

(l) Enthalpy of transition

(m) Enthalpy of precipitation

(n) Enthalpy of formation of ions

(o) Bond enthalpy and bond dissociation enthalpy

3.2 Derive the following relations:

(i) Kirchhoff’s relation

r H r U + g) RT
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TRY YOURSELF PROBLEMS

3.1 A student made the following erroneous statement in a laboratory record on bomb 

calorimeter: DrH = Dr U + pDV. Since the bomb calorimeter process is a constant 

volume one, DV = 0 and hence Dr H = Dr U. Why is this argument incorrect?

3.2 For a reaction involving only condensed phase, Dr H = Dr U. Explain why.

3.3 It is often stated that the integral enthalpy of solution is identical to the differential 

enthalpy of solution for a very dilute solution. Explain why.

3.4 While stating the DrH value of a chemical reaction, it is understood that the temperature 

and pressure of the products are identical with those of reactants? Explain why.

3.5 Show mathematically that the differential enthalpies of solution and dilution are 

essentially the partial molar enthalpies of solute and solvent, in solution respectively.

3.6 It is stated that the bond enthalpy and bond dissociation enthalpy of a diatomic 

molecule are identical. Explain why it should be so.

T = T
H

Cp
0 +

- ∞( )
Â

Dr

products( )

State what assumptions were used in deriving the above expression.

under constant volume condition.

3.9 Suppose the dissolution of a solute in water is an exothermic process. Draw a typical 

diagram illustrating the variation of integral enthalpy of solution with the amount of 

3.10. Comment upon the statement:

The differential enthalpy of solution (or dilution) at a given concentration may be 

regarded as the instantaneous rate of change of the integral enthalpy of solution 

(or dilution) with the solute (or solvent) concentration, i.e.

DH2 = lim
( )

; lim
( )

d d

d
d

d
dm m

H

m
H

H

m2 10
2

1
0

1
Æ Æ

=
D

D
D

NUMERICAL PROBLEMS

3.1 From the following data at 25 °C

Reaction Dr H°/kJ mol–1

1
2

H2(g) + 1
2

O2

H2(g) + 1
2

O2 2O(g) –241.84

H2 2H(g) 435.88

O2 2O(g) 495.04

calculate Dr H° for the following reactions.

H(g) + O(g)

(b) H2

Enthalpy of 

Reaction
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(c) H2

(Ans. 423.37, 925.24, 501.87 kJ mol–1)

r H° = – 41.84 kJ mol–1 for the neutralization reaction

HCO–
3 (aq) + OH–

2O(1) + CO3
2– (aq)

r H° for the reaction

HCO–
3

+(aq) + CO3
2– (aq) (Ans. 14.0 kJ mol–1)

3.3 Calculate the enthalpy of formation of I2O5 from the following data:

(i) I2O5(s) + H2 3 r H = 3.598 kJ mol–1

3(aq) + 2HCl(aq) + KCl(aq)

r H = – 322.42 kJ mol–1

2O(1)

r H = – 44.35 kJ mol–1

2O(1)

r H = – 57.32 kJ mol–1

(v) 2NaOH(aq) + Cl2 2O(1)

r H = – 99.79 kJ mol–1

(vi) 2KI(aq) + Cl2 2 r H = – 223.85 kJ mol–1

(vii) H2(g) + 1
2

O2 2 r H = – 285.00 kJ mol–1

(viii) 1
2

H2(g) + 1
2

Cl2 r H = – 92.30 kJ mol–1

(ix) HCl(g) + nH2 r H = – 75.15 kJ mol–1

(Ans. – 98.90 kJ mol–1)

3.4 From the enthalpy of formation at 25 °C

Solution  H2SO4.600 aq   KOH.200 aq  KHSO4 .800 aq  K2SO4·1000 aq

f H/kJ mol–1 – 888.47 – 480.41 – 1 147.67 – 1 408.96

r H for the reactions:

(i) H2SO4
. 600 aq + KOH . 4 · 800 aq + H2O(1)

(ii) KHSO4
. 800 aq + KOH . 2SO4 · 1000 aq + H2O(1)

Given that

H2(g) + 1
2

O2 2 r H = – 285.85 kJ mol–1

(Ans. – 64.64 kJ mol–1, – 66.73 kJ mol–1)

3.5 On the basis of the following data, evaluate the standard enthalpy of formation of

tungsten carbide WC(s).

(i) W(s) + 3
2

O2 3 rH°298K = –837.47 kJ mol–1

(ii) WC(s) + 5
2

O2 3(s) + CO2 rH°298K =–1 195.79 kJ mol–1

(iii) C(graphite) + O2 CO2 rH°298K = –393.51 kJ mol–1

(Ans. –35.19 kJ mol–1)
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3.6 If the enthalpy of formation of HCl(g) and Cl–(aq) are –92.30 kJ mol–1 and –167.44 

kJ mol–1

(Ans. –75.14 kJ mol–1)

3.7 At 25 °C, the enthalpy change for the reaction

H2SO4 + 5H2O Æ H2SO4
. 5H2O (all liquids)

is –58.032 kJ mol–1. Calculate the temperature change if 1 mol of H2SO4 is dropped 

into 5 mol of H2O at 25 °C. Assume no heat loss to the surroundings and that the 
–1 g–1. (Ans. 73.7 °C)

3.8 Given the following information:

1 H2SO4 + 1 H2O Æ 1 H2SO4
. 1 H2O r H = –28.075 kJ mol–1 at 25 °C

1 H2SO4 + 25 H2O Æ 1 H2SO4
. 25 H2O r H = –72.300 kJ mol–1 at 25 °C

Calculate the enthalpy change at 25 °C for the following dilution

1 H2SO4
. 1 H2O + 24 H2O Æ 1 H2SO4

. 25 H2O

Calculate the increase in temperature for this dilution if there is no heat loss to the 

4.184 J K–1 g–1. (Ans. 44.225 kJ mol–1, 19.3 K rise)

3.9 Using the bond enthalpy data given below, estimate the enthalpy of formation of 

acetic acid.

C—H 413.38 kJ mol–1 C  718.39 kJ mol–1

C—C 347.69 kJ mol–1 H  217.94 kJ mol–1

C==C 728.02 kJ mol–1 O  247.52 kJ mol–1

C—O 351.46 kJ mol–1

C—H 462.75 kJ mol–1

f H° for acetic acid is – 438.15 kJ mol–1. Compute the resonance 

energy of acetic acid. (Ans. –326.40 kJ mol–1, –111.75 kJ mol–1)

3.10 The bond dissociation enthalpies of H2(g) and N2(g) are +435.95 kJ mol–1 and +941.8 

kJ mol–1 and the enthalpy of formation of NH3(g) is – 46.024 kJ mol–1.

(i) What is the enthalpy of atomization of NH3(g)?

(ii) What is the average bond enthalpy of N—H bond?

(Ans. (i) 1.171 MJ mol–1, (ii) 390.367 kJ mol–1)

r H°
298K for the reaction

N2H4 N2H2(g) + H2(g)

is found to be 108.76 kJ mol–1. Assuming that the structure of N2H2 is HN = NH,

calculate eN=N. Given the following bond enthalpies: eN–N = 163.18 kJ mol–1, eN–H = 

390.79 kJ mol–1 and eH–H = 435.89 kJ mol–1.

fH(298 K) of hydrazine N2H4 is 94.98 kJ mol–1
fH (298 K)

of N2H2(g).

rH°(298 K) of N2H4 and N2H2 from the bond enthalpy data and compare 

with those of part (b). Given: e  = 942.24 kJ mol–1.

rU298K for the reaction of part (a). Compute the required heat capacities 

by using principle of equipartition of energy.

Enthalpy of Solution
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(Ans. (a) 400.1 kJ mol–1 (b) 203.76 kJ mol–1

(c) 87.864 kJ mol–1 and 196.65 kJ mol–1

(d) 108.38 kJ mol–1)

(b) The enthalpy of atomization of PH3 is +953.95 kJ mol–1 and that of P2H4 is +1.485 

MJ mol–1. What is the bond enthalpy of the P—P bond?

(Ans. 213.38 kJ mol–1)

r H for each of the following change of state:

(a) H2 H2O(1, 1 bar, 350 K)

(b) 3H2 3H2O(g, 1 bar, 500 K)

(c) H2 H2O(1, 1 bar, 263 K)

Data for water, all at 1 bar pressure, are

DfusH = 6.025 kJ mol–1 at 273 K

DvapH = 40.585 kJ mol–1 at 373 K

Cp(s) = 39.748 J K–1 mol–1

Cp(1) = 75.312 J K–1 mol–1

Cp(g) = 31.129 J K–1 mol–1 + (0.008 37 J K–2 mol–1) T

(Ans. (a) 3.77 kJ mol–1, (b) 176.87 kJ mol–1, (c) 5.67 kJ mol–1)

r H of vaporization of water at 0 °C, i.e.

H2 H2O(g, 4.58 mmHg, 273 K)

is given by +44.877 kJ mol–1 H

for compression of a liquid (or solid) is approximately zero and that H2O(g) is an 

ideal gas. Also assume that the heat capacity for liquid water Cp = 75.31 J K–1 mol–1

and that for gaseous water Cp = 33.30 J K–1 mol–1
r H° of

vaporization at 1 bar and 100 °C. (Ans. r H° = 40.68 kJ mol–1)

3.14 For the reaction

CaO(s) + CO2 CaCO3(s)

Dr H°/J mol–1 = – 177 820 – 2.761 (T/K) + 9.016 ¥ 10–3 (T/K)2 +
17 154 103.

( / )

¥
T K

determine, r Cp r CV as functions of T.

3.15 From the value of Cp,m as a function of temperature given as

Cp, m(H2, g)/J K–1 mol–1 = 29.066 – 0.836 ¥ 10–3 (T/K)

Cp, m(Br2, g)/J K–1 mol–1 = 35.241 + 4.075 ¥ 10–3(T /K)

Cp, m(HBr, g)/J K–1 mol–1 = 27.521 + 3.995 ¥ 10–3 (T/K)

f H(HBr, g) = –36.23 kJ mol–1
vap H(Br2, 1) = 30.71 kJ

mol–1
r H373K for the reaction 1

2
H2(g) + 1

2
Br2 HBr(g)

(Ans. –51.823 kJ mol–1)

3.16 The enthalpy changes of the following reactions at 25°C are

Na(s) + 1
2

Cl2 r H = – 411.0 kJ mol–1

Kirchhoff ’s Relation

Relation between 

D rH and D rU
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H2(g) + S(s) + 2O2 H2SO4(1); D r H = – 811.3 kJ mol–1

2Na(s) + S(s) + 2O2 Na2SO4(s); D r H = – 1 382.3 kJ mol–1

1
2

H2(g) + 1
2

Cl2 HCl(g); D r H = – 92.3 kJ mol–1

°C for the 

process

2NaCl(s) + H2SO4 Na2SO4(s) + 2HCl(g) (Ans. D rU = 60.92 kJ mol–1)

3.17 The combustion of 1 g of benzene in a bomb calorimeter evolves 41.746 kJ of heat 

at 25 °C,

(i) What is DU° for combustion of benzene?

(ii) Calculate DfH° (benzene) if

D fH°(CO2, g) = –393.129 kJ mol–1 and D f H° (H2O, 1) = –285.577 kJ mol–1.

(Ans. (i) –3 256.2 kJ mol–1; (ii) –44.4 kJ mol–1)

combustion. Given that

CH4(g) + 2O2 2H2O(1) + CO2(g) D r H298K = – 890.36 kJ mol–1

H2 H2O(g) D r H298K = 44.02 kJ mol–1

Calculate Cp, m of H2O(g), CO2(g) and N2(g) from the equipartition principle 

(including vibrational contributions). (Ans. T = 2000 K)

requisite amount of oxygen? (Ans. T = 4800 K)

3.19 Suppose 2.0 mol of CH4(g) is mixed with 5.0 mol of O2(g) in an adiabatic enclosure 

at 298 K. A spark is produced in the mixture and the CH4 is completely burnt in 

the oxygen to CO2 and H2

temperature of the gas mixture. Given heat capacities data are

O2(g) Cp/J K–1 mol–1 = 29.96 + 4.184 ¥ 10–3 (T/K)

CO2(g) Cp/J K–1 mol–1 = 44.23 + 8.786 ¥ 10–3 (T/K)

H2O(g) Cp/J K–1 mol–1 = 30.54 + 10.293 ¥ 10–3 (T/K)

CH4(g) Cp /J K–1 mol–1 = 23.64 + 47.865 ¥ 10–3 (T/K)

3.20 Given the following data:

(i) Standard molar enthalpy of formation at 298 K and 1 bar pressure, are

C2H5OH(1) –277.65 kJ mol–1 CO(g) –110.54 kJ mol–1

CO2(g) –393.51 kJ mol–1 ZnO(s) –347.98 kJ mol–1

H2O(1) –285.85 kJ mol–1

(ii) Molar changes of enthalpy on changes of state of aggregation:

  Evaporation of H2O at 373 K and 1 bar = 40.58 kJ mol–1

Melting of Zn at 692 K and 1 bar = 6.569 kJ mol–1

Evaporation of Zn at 1 180 K and 1 bar = 127.61 kJ mol-1.

(iii) Molar heat capacity at constant pressure in J K–1 mol–1.

   H2O(1) 75.312

   H2O(g) 30.070 + 0.009 92 (T /K) – 0.870 ¥ 10–6 (T/K)2

   Zn(s) 25.104

   Zn(1) 33.472

   Zn(g) 20.92

Adiabatic Flame 

Temperature

Miscellaneous

Numericals
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   ZnO(s) 41.84

   CO(g) 27.196 + 0.004 18 (T/K)

   CO2(g) 33.472 + 0.016 7 (T/K)

(a) Calculate Dr H° for the reaction at 298 K and 1 bar

  C2H5OH(1) + 3O2 2CO2(g) + 3H2O(1) (Ans. –1.366 9 MJ mol–1)

(b) Dr H° for the reaction

   C6H6(1) + 
15

2
 O2 6CO2(g) + 3H2O(1)

is –3.268 MJ mol–1. Calculate D f H° for liquid benzene. (Ans. 49.09 kJ mol–1)

(c) Calculate Dr H° of the reaction at 298 K and 1 bar

C12H22O11(s) + H2 4C2H5OH(1) + 4CO2(g)

Given Dr H° of the following reaction

C12H22O11(s) + 12O2 12CO2(g) + 11H2O(1); DH° = –5.646 7 MJ mol–1

(Ans. –179.04 kJ mol–1)

(d) Calculate Df H° for water in the hypothetical state of H2O(g) at 298 K and 1 bar.

(Ans. –245.11 kJ mol–1)

(e) Calculate Df H for each of the following changes at 298 K and 1 bar.

Zn(s) + CO2(g) (Ans. 65.02 kJ mol–1)

Zn(1) + CO2(g) (Ans. 68.30 kJ mol–1)

Zn(g) + CO2(g) (Ans. 206.94 kJ mol–1)

(f) Calculate Dr H for the following reaction at 1 300 K and 1 bar

Zn(g) + CO2(g) (Ans. 346.1 kJ mol–1)

3.21 The enthalpies of formation at 298 K of gaseous CO2, water vapour and liquid 

CH3COOH are – 393.3 kJ mol–1, – 241.84 kJ mol–1 and – 487.02 kJ mol–1, respectively.

The enthalpy of combustion of methane gas to CO2 and water vapour is – 806.26 kJ

mol–1. The enthalpy of vaporization of water at 100 °C is 39.33 kJ mol–1. Heat capacity 

values (Cp ) in J K–1 mol–1 are

CH4(g) 37.656 H2O(g) 30.54

CH3CHO(g) 52.3 H2O(1) 75.31

CO(g) 31.38

(a) Calculate the enthalpy of formation of liquid water at 298 K.

(b) Calculate the enthalpy change at 298 K for the reaction

   CH3 CH4(g) + CO2(g)

(c) Calculate the temperature at which Dr H for the reaction

   CH3 CH4(g) + CO(g)

will be zero. Dr H298K is –16.735 kJ mol–1

(Ans. (a) –284.51 kJ mol–1; (b) 165.76 kJ mol–1; (c) 299 K)

3.22 Calculate the enthalpy change for the following reaction.

Hg(1) + I2 HgI2(1); Dr H = ? at 600 K, 1 bar

Given the enthalpy change for the reaction

  Hg(1) + I2 HgI2(a); Dr H = –105.44 kJ mol–1 at 298 K and 1 bar

and following thermal data
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Hg(1) : Cp, m = 27.656 J K–1 mol–1

I2(s) : Cp, m= 40.125 J K–1 mol–1 + (49.79 ¥ 10–3 J K–2 mol–1)T

: Dfus H = 15.774 kJ mol–1 at 386.8 K

I2(1) : Cp, m = 80.33 J K–1 mol–1; Dvap H = 41.714 kJ mol–1 at 456 K

I2(g) : Cp, m = 37.196 J K–1 mol–1

HgI2(a) : Cp, m = 77.404 J K–1 mol–1

a – b transition; D trs H = 2.720 kJ mol–1 at 403 K

Hgl2(b) : Cp, m = 84.517 J K–1 mol–1; Dfus H = 18.828 kJ mol–1 at 523 K

HgI2(l) : Cp, m = 104.6 J K–1 mol–1

(Ans. – 138.07 kJ mol–1)



Our primary interest in thermodynamics is to use it to establish a criterion for 

2 and F2 2 and O2

nature of the process (natural or unnatural) if the system possessed one or more 

change.

U

2 2 rU
–1

 Second Law of

Thermodynamics4
4.1 NECESSITY OF THE SECOND LAW

Limitation of 

First Law

Criterion of 

Equilibrium for a 

Mechanical System

Extension of Criterion 

to a Chemical System
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rU rH cannot be 

rH

SiO2 Æ SiO2 r H –1

U and H

cannot predict the spontaneity of a chemical reaction.

the entropy

constant for reversible processes.

S

nonspontaneous.

phase substance. The system is contained in a frictionless piston and cylinder 

q2 and 

q1. The symbols q2 and q1 are used to indicate 

Step 1 The isothermal reversible expansion from volume V1 to volume V2 at the 

higher temperature q2

Entropy Function

Description of the 

Carnot Cycle

Fig. 4.2.1 Carnot cycle

Four Steps of a 

Carnot Cycle

4.2 CARNOT CYCLE
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Let w2

w2

a quantity of heat q2
†

Step 2 The adiabatic reversible expansion from volume V2 to volume V3

q1. Let w

w

Step 3 The isothermal reversible compression from volume V3 to volume V4 at

the temperature q1

w1

quantity of heat q1

negative sign means that heat q1

reservoir at the temperature q1.

Step 4 Adiabatic reversible compression from volume V4 to volume V1

q2

system is w¢
by the system in this step as the compression process is adiabatic.

wtotal = w2 + w + w1 + w¢

DU

(– wtotal) = qtotal (4.2.1)

qtotal = q2 + q1

and       wtotal = w2 + w + w1 + w¢

ratio of the work done by the system 

to the amount of heat transferred to the system at the higher temperature.

h = 
( )-

=
+

= +
w

q

q q

q

q

q

total

2

2 1

2

1

2

1 (4.2.2)

†Note: q and w carry the same subscript as that of temperature. The subscript 2 and 1 

Efficiency of a 

Carnot Cycle



Second Law of Thermodynamics

T2 and T1 T2 > T1

Step 1 Isothermal expansion at temperature T2 from volume V1 to V2

Since D T

DU1

q2 = –w2 = RT2 ln 
V

V

2

1

(4.3.1)

Step 2 Adiabatic expansion from volume V2 to V3

T1. Since for adiabatic process q

w = DU2 = 
T

T

2

1Ú CV  dT = CV (T1 – T2) (4.3.2)

Step 3 T1 from volume V3 to V4

DU3

and      q1 = –w1 = RT1 ln 
V

V

4

3

(4.3.3)

(Note that q1 w1 has positive sign since V4 < V3.)

Step 4 Adiabatic compression form volume V4 to V1. Temperature of the system 

returns to T2. Therefore

w¢ = DU4 = 
T

T

1

2Ú CV  dT = CV (T2 – T1) (4.3.4)

wtotal = w2 + w + w1 + w¢

  The quantities w and w¢

wtotal = w2 + w1

wtotal = – RT2 ln 
V

V
RT

V

V

2

1
1

4

3

- ln

The ratios V2/V1 and V4 / V3 are not independent of each other. The relationship 

4.3  EXPRESSION FOR THE EFFICIENCY OF A CARNOT CYCLE INVOLVING IDEAL GAS 

AS A WORKING SUBSTANCE
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For step 2

C

T
T R

V

V

V

T

T
,

ln
m

d
2

1
3

2
Ú = - (Eq. 2.11.6)

and for the Step 4

C

T
T R

V

V

V

T

T
,

ln
m

d
1

2
1

4
Ú = -

opposite in sign. Therefore

R ln
V

V
R

V

V

3

2

1

4

= - ln

or
V

V

V

V

V

V

V

V

3

2

4

1

2

1

3

4

= =i.e.

becomes

wtotal = – R
V

V
ln 2

1

Ê
ËÁ

ˆ
¯̃

 (T2 – T1)

h = 
( ) { ln ( / )} ( )

ln ( )

-
=

-
-

=
-w

q

R V V T T

RT V V

T T

T

total

2

2 1 2 1

2 2 1

2 1

2

(4.3.6)

T1 equals T2

T is 

  (ii) T1 T2

4.4 TWO STATEMENTS OF SECOND LAW OF THERMODYNAMICS

Kelvin-Planck

Statement
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It is impossible for a system operating in a cycle and connected to a single 

heat reservoir to produce a positive amount of work in the surroundings.

The Kelvin-Planck statement

to operate a heat engine solely by the removal of heat from a thermal reservoir 

only by absorbing heat from a reservoir at a higher temperature and by rejecting 

Clausius.

It is impossible for a cyclic process to convert heat into work without the 

simultaneous transfer of heat from a body at a higher temperature to one at a 

lower temperature or vice versa, i.e. it is impossible for a cyclic process to transfer 

heat from a body at a lower temperature to one at higher temperature without the 

simultaneous conversion of work into heat.

it is impossible for an engine operating in a cycle to have as its 

only effect the transfer of a quantity of heat from a reservoir at a lower temperature 

to a reservoir at a higher temperature.

T2 – T1)/T2

T1 and T2

Step 1 V1 to V4. Temperature of the system 

T2 to T1.

Step 2 T1 from volume V4 to V3.

Step 3 Adiabatic compression from volume V3 to V2. Temperature rises to T2.

Step 4 T2 from volume V2 to V1.

q ¢1
T1 in Step 2 and an amount q ¢2

Denial of Perpetual 

Motion of Second 

Kind

Clausius Statement

4.5 EFFICIENCY OF THE CARNOT CYCLE IS INDEPENDENT OF THE WORKING 

   SUBSTANCE

Working of a Carnot 

Cycle in the Reverse 

Direction
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transferred to the reservoir at higher temperature T2 in Step 4. At the same time a 

w¢1 + w ¢2 w ¢2
positive value in Step 4 and w ¢1

†

is supplied by the surroundings since w ¢2 w ¢1

w w

temperatures T2 and T1

†

h¢ = 
| |q

w

c

performance. Since wirr > wrev

less than that of the reversible machine. Since the heat transferred to hot reservoir is sum of

qc w

h¢ = 
| |

| | | |

q

q q

T

T T

c

h c-
=

-
1

2 1

Note as T1 Æ h¢ Æ h¢ qc w

Construction of a 

Composite Cycle

Fig. 4.5.1 Coupled system

Proof of Efficiency is

Independent of 

Working Substance
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h h
| ( ) |

( )

( )

| ( ) |

w

q

w

q

I

I

II

II2 2

>
¢

w w

q2 q¢2

temperature T2

i.e. the reservoir at the higher temperature gains heat energy.

w w

w q2 q1

w q ¢1 q¢2

w w

q2 q1 q¢1 q ¢2
But q2 q¢2
have

q1 q¢1

T1 is 

substance.

T2 – T1)/T2

involving any substance.

h = 
T T

T

q q

q

2 1

2

2 1

2

-
=

+

Thus - = = -
Ê
ËÁ

ˆ
¯̃

T

T

q

q
q

T

T
q1

2

1

2
1

1

2
2and hence

Example 4.5.1

Solution
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q1 = – 
373 15

673 15

.

.

K

K

Ê
ËÁ

ˆ
¯̃

w = – (q2 + q1

(Note:

T1 is of T2

h = 
T T

T

T

T

2 1

2

1

2

1
-

= -

Therefore
T

T

1

2

¥ ¥ ¥

or T1 T2

w and q

(i) Isothermal expansion form V1 to V2 at T2

w2 = – nRT2 ln 
V nb

V nb
n a

V V

2

1

2

2 1

1 1-
-

- -
Ê
ËÁ

ˆ
¯̃

(Eq. 2.13.2)

q2 = nRT2 ln 
V nb

V nb

2

1

-
-

(ii) Adiabatic expansion from V2 to V3 Temperature changes from T2 to T1.

w = nCV  (T1 – T2) – n2a
1 1

3 2V V
-

Ê
ËÁ

ˆ
¯̃

(Eq. 2.13.2)

q

(iii) Isothermal compression from V3 to V4 at T1

w = – nRT1 ln
V nb

V nb
n a

V V

4

3

2

4 3

1 1-
-

- -
Ê
ËÁ

ˆ
¯̃

q1 = nRT1 ln 
V nb

V nb

4

3

-
-

(iv) Adiabatic compression from V4 to V1 Temperature changes from T1 to T2.

w¢ = nCV  (T2 – T1) – n2a
1 1

1 4V V
-

Ê
ËÁ

ˆ
¯̃

q¢

Example 4.5.2

Solution

Problem 4.5.1

Solution
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wtotal = w2 + w + w1 + w¢

   = – nRT2 ln 
V nb

V nb
nRT

V nb

V nb

2

1
1

4

3

-
-

-
-
-

ln

TCV  / R (V – nb) = constant

For step (ii)  (T2)CV  / R (V2 – nb) = (T1)CV  / R (V3 – nb)

For step (iv)  (T2)CV  / R (V1 – nb) = (T1)CV  / R (V4 – nb)

V nb

V nb

V nb

V nb

2

1

3

4

-
-

=
-
-

wtotal = – nR
V nb

V nb
ln 2

1

-
-

Ï
Ì
Ó

¸
˝
˛

 (T2 – T1

h = 
( )-w

q

total

2

wtotal and q2

h = 
T T

T

2 1

2

-

T1 and T2 and involve 

q

Step 1 Isothermal expansion form volume V1 to V2

involved are

– w2(rev) = q2(rev) = RT2 ln 
V

V

2

1

and – w2(irr) = q2(irr) = p (V2 – V1)

4.6 COMPARISON OF EFFICIENCIES OF REVERSIBLE AND IRREVERSIBLE

  CYCLIC PROCESSES
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w2 w2

q2(rev) > q2(irr) (4.6.1)

Step 3 Isothermal compression from volume V3 to V4

– w1 (rev) = q1 (rev) = RT1 ln 
V

V

4

3

– w1(irr) = q1(irr) = p¢  (V4 – V3)

 w1(irr) > w1(rev)

q1 q1 q1 q1

h(rev) = 
q q

q

q q

q

q2 1

2

2 1

2

11
( ) ( )

( )

( ) | ( ) |

( )

| ( )rev rev

rev

rev rev

rev

rev+
=

-
= -

||

( )q2 rev

 h(irr) = 
q q

q

q q

q

q2 1

2

2 1

2

11
( ) ( )

( )

( ) | ( ) |

( )

| ( )irr irr

irr

irr irr

irr

irr+
=

-
= -

||

( )q2 irr

q2(rev) > q2 q1 q1

| ( ) |

( )

| ( ) |

( )

| ( ) |

( )

q

q

q

q

q

q

1

2

1

2

1

2

1
rev

rev

irr

irr
or

rev

rev
< -

Ï
Ì
Ó

¸
˝
˛̨

> -
Ï
Ì
Ó

¸
˝
˛

1 1

2

| ( ) |

( )

q

q

irr

irr

i.e. h(rev) > h(irr) (4.6.3)

Fig. 4.6.1 Reversible and 

irreversible cycles
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h = 
q q

q

q

q

2 1

2

1

2

1
+

= + (4.7.1)

q3 and q1

¢
¢

Ê
ËÁ

ˆ
¯̃

=
¢¢
¢¢

Ê
ËÁ

ˆ
¯̃

=
¢¢¢
¢¢¢

Ê
ËÁ

ˆ
¯̃

q

q

q

q

q

q

1

3

1

3

1

3

(4.7.2)†

q ¢1/q ¢3 q1¢¢/q3¢¢) and (q1¢¢¢/q3¢¢¢) are the ratios of heats involved in the isothermal 

q1/q3

q1 and q3

| |q

q

1

3

 = f (q1 q3) (4.7.3)

(Note that only the magnitude of q1

positive.)

temperatures q2 and q1 q3 and q2 q3 and q1

4.7 THE THERMODYNAMIC OR KELVIN TEMPERATURE SCALE

Fig. 4.7.1 Carnot cycles 

working between two 

temperatures

† q carries the same subscript as that of T.
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and

q

q
f

q

q
f

q

q
f

1

2
1 2

2

3
2 3

1

3
1 3

=

=

=

¸

˝

Ô
Ô
Ô

˛

Ô

( , ) ( )

( , ) ( )

( , ) ( )

q q

q q

q q

i

ii

iii
ÔÔ
Ô

(4.7.4)

q q

q q

q

q

f

f
f1 3

2 3

1

2

1 3

2 3
1 2

/

/

,

,
( , )= =

( )
( )

=
q q

q q
q q

f (q1 q3) and f (q2 q3

a function f (q1 q2 q3. This can be possible 

if the function f (qi qj

f (q1 q2) = 
f q

f q

( )

( )

1

2

f (q2 q3) = 
f q

f q

( )

( )

2

3

and f (q1 q3) = 
f q

f q

( )

( )

1

3

(4.7.6)

q

q

q q

q q

f

f

1

2

1 3

2 3

1 3

2 3

1 3

2 3

= = ( )
( )

= =
/

/

,

,

( ) / ( )

( ) / ( )

(q q

q q

f q f q

f q f q

f qq

f q
q q1

2
1 2

)

( )
( , )= f

The relation

| |

| |

( )

( )

q

q

1

2

1

2

=
f q

f q
(4.7.7)

temperature scale.

The quantities q1 and q2

function f (q
f (q)

proportional to q so that Eq. (4.7.7) becomes

| |

| |

q

q

1

2

1

2

=
q

q

q1 and q2 q1 is determined 

q1



Second Law of Thermodynamics

q2

q

q

2

273 16. K

Ê

ËÁ
ˆ

¯̃
(4.7.9)

q2

this temperature.

h = 
T T

T

T

T

2 1

2

1

2

1
-

= -

h = 
q q

q

q

q

2 1

2

1

2

1
+

= -
| |

| |q

q

T

T

1

2

1

2

=

q

q
1

2

1

2

=
T

T

q1 and T1 are

scales become identical.

T2 and T1

h = 
q q

q

T T

T

2 1

2

2 1

2

+
=

-

q2 and q1

T2 and T1

or 1 11

2

1

2

1

2

1

2

+ = - = -
q

q

T

T

q

q

T

T
or

or
q

T

q

T

2

2

1

1

+

4.8 IDENTITY OF THERMODYNAMIC SCALE WITH IDEAL GAS TEMPERATURE SCALE

4.9 DEFINITION OF THE ENTROPY FUNCTION

Basic Conclusion 

from Efficiency of 

a Carnot Cycle

q carries the subscript of T



176 A Textbook of Physical Chemistry

temperatures T2 and T1

T2 and T1

to the area enclosed by its graph in the p V

This means that the thermal reservoir at intermediate temperature absorbs and 

from the reservoir at T2 and given up to the reservoir at T1 are the same as for the 

q3(1) = – q3(4) (4.9.2)†

q3(2) = – q3(3) (4.9.3)

q2 = q2(1) + q2(2) (4.9.4)

q1 = q1(3) + q1(4)

q

T

q

T

q

T

q

T

2 1

2

3 1

3

2 2

2

3 2

3

0 0
( ) ( ) ( ) ( )

;+ = + =

q

T

q

T

q

T

q

T

3 3

3

1 3

1

3 4

3

1 4

1

0 0
( ) ( ) ( ) ( )

;+ = + =

Replacement of a 

Bigger Carnot Cycle 

by Smaller Carnot 

Cycles

Fig. 4.9.1 Replacement

of a Carnot cycle with 

four smaller cycles

†
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q

T

q

T

q

T

q

T

q

T

q

T

q

T

q2 1

2

3 1

3

2 2

2

3 2

3

3 3

3

1 3

1

3 4

3

1( ) ( ) ( ) ( ) ( ) ( ) ( )+ + + + + + + (( )4

1T

q

T

q

T

q

T

q

T

2 1

2

2 2

2

1 3

1

1 4

1

( ) ( ) ( ) ( )+ + +

q

T

q

T

2

2

1

1

+

temperatures T2 and T1

T2 and T1

q

T

i

ii

Â
qi i at temperature Ti. The summation 

over i is to be carried over all thermal reservoirs.

n

qi

Replacement of a 

Carnot Cycle by 

Infinite Smaller 

Carnot Cycles

Fig. 4.9.2 Replacement 

of a reversible cycle with

a number a smaller 

Carnot cycles
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n

d revq

T

i

i

( )
 Ú

d
revq

T

( )Ê
Ë

ˆ
¯Ú 

 Ú
q(rev)/T represents a state function because 

the value of its differential d(q(rev)/T

is given the name entropy of the system and is represented by the symbol S. Thus

dS = d
q

T

( )revÊ
Ë

ˆ
¯

and S = 
q

T

( )rev
(4.9.11)

The entropy function is a function of the independent variables which are used to 

 The change in the value of 

and the cyclic integral of dS

see

whatever might be the path employed in going form one state to another, the 

determination of the corresponding entropy change is always calculated using a 

reversible path connecting the two states.

–1 –1 –1

represented by the symbol eu.

wnet

| |w

q

T T

T

net

2

2 1

2

<
-

or
q q

q

T T

T

2 1

2

2 1

2

+
<

-

Identification of 

Entropy Function

4.10 THE VALUE OF dq (irr)/T FOR AN IRREVERSIBLE CYCLIC PROCESS
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or
q

q

T

T

1

2

1

2

< -

or
q

T

q

T

2

2

1

1

+

d irrq

T

( )
 Ú

  The fact that the sum of q2/T2 and q1/T1

q2/T2 = constant and q1/T1 = – constant (since q1

sum of q2/T2 and q1/T1

T1 and 

T2

  (i) q2(irr) < q2(rev) and hence q2(irr)/T2

the value of q2(rev)/T2.

  (ii) q1(irr) < q1 qirr qrev q1(irr)/T1

as compared to the value of q1(rev)/T1.

q

T

q

T

2

2

1

1

( ) ( )irr irr
+

q1(irr)/T1 is negative and its magnitude is greater 

than q2(irr)/T2.

–w =  Ú dq and
d revq

T

( )
 Ú

–w¢ =  Ú dq¢
and let for this engine

dq

T

¢
 Ú

wcyc = w + w¢

A General Proof for

 Ú dq(rev)/T = 0 and

 Ú dq(irr)/T < 0
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– wcyc =  Ú dq +  Ú dq¢ =  Ú dq

d rev dq

T

q

T

( )
+Ê

Ë
ˆ
¯Ú

¢
 

or
d cycq

T

( )
 Ú

wcyc

 Ú dq

q1 + q2 + q3 +  

q

T

q

T

q

T

1

1

2

2

3

3

+ +  +  

some positive and some negative. The positive ones just balance the negative ones 

by small numbers and negative terms are divided by large numbers. This amounts 

q

dq

T

¢
 Ú

dq

T

¢
 Ú £ 

Ú dq¢ /T Ú dq¢ /T

for an irreversible cycle.

Case I Reversible cycle Let us assume for this cycle

dq

T Ú

of the q
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dq

T Ú

any system

d revq

T

( )
 Ú

for all reversible cycles.

Case II Irreversible cycle

dq

T

¢
 Ú

for all irreversible cycles.

Since S Ú dS

d d d

A

B

B

A

S S S Ú Ú Ú= + = 0

or d d

A

B

B

A

S SÚ Ú= -   (4.11.1)

S S(surroundings)

S S S

A Characteristic of 

Entropy Function

4.11 THE CLAUSIUS INEQUALITY

Entropy Changes in 

a Reversible Process

Expression of 

Clausius Inequality
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d irr d irr d rev

A

B

B

A
q

T

q

T

q

T

( ) ( ) ( )
= +Ú ÚÚ 

d irr d irr d rev

A

B

A

B
q

T

q

T

q

T

( ) ( ) ( )
= -Ú ÚÚ 

d irrq

T

( )
 Ú

d irr d rev

A

B

A

B
q

T

q

T

( ) ( )
<Ú Ú

d irr

A

B

A

B
q

T

( )
<Ú Ú dS

or
d irr

A

B
q

T

( )
Ú < D SAB (4.11.3)

D SAB is the change of entropy of the system in going from A to B.

Clausius inequality

fundamental requirement for a real transformation. The inequality of Eq. (4.11.3) 

the inequality in terms of properties of the state of a system rather than in terms 

of path property such as dq(irr).

For any change in an isolated system

dq

and the inequality of Eq. (4.11.3) becomes

SAB SAB

D S

Clausius Inequality 

Applied to an Isolated 

System
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Thus the condition of equilibrium in an isolated system is that the entropy has 

a maximum value.

D Ssys D Ssys D Ssurr

often quoted statement:

The energy of the universe is constant, the entropy of the universe always tends 

toward a maximum.

dq = dU – dw (4.12.1)

p V

dq = dU + p  dV (4.12.2)

Since U = f (T V

dU = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T
T

U

V
V

V T

d d (4.12.3)

dq = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T
T

U

VV T

d  dV + p  dV (4.12.4)

Dividing this by T

d
d dext

q

T T

U

T
T

T

U

V
p V

V T

=
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯ +Ï

Ì
Ó

¸
˝
˛

1 1

p  = p ± dp  p

and dq = dqrev

qrev/T

Clausius Inequality 

Applied to System 

and Surroundings

4.12 STATE FUNCTION ENTROPY FROM FIRST LAW OF THERMODYNAMICS
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∂
∂

∂
∂

Ê
Ë

ˆ
¯

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
∂
∂

Ê
Ë

ˆ
¯ +Ï

Ì
Ó

¸
˝
˛V T

U

T T T

U

V

p

TV T T V

1 1
(4.12.6)

or
1 1 1 12

2

2

2T

U

V T T

U

V T

U

T V

p

T T

p

TT V

∂
∂ ∂

= -
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂ ∂

- +
∂
∂

Ê
Ë

ˆ
¯

(4.12.7)

Since
∂

∂ ∂
=

∂
∂ ∂

2 2U

V T

U

T V
,

-
∂
∂

Ê
Ë

ˆ
¯ - +

∂
∂

Ê
Ë

ˆ
¯

1 1
2 2T

U

V

p

T T

p

TT V
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∂
∂

Ê
ËÁ

ˆ
¯̃ + =

∂
∂

Ê
ËÁ

ˆ
¯̃

U

V
p T

p

TT V

This is the thermodynamic equation of state†

qrev/T is a state function. Note that dqrev alone is not a state 

T. The factor 1/T

as an integrating factor qrev/T

d
d drevq

T T

U

T
T

p

T
V

V V
Ú Ú Ú=

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

1

= nCV

d
d

T

T

p

T
V

V
Ú Ú+

∂
∂

Ê
Ë

ˆ
¯

For an ideal gas (pV = nRT

∂
∂

Ê
ËÁ

ˆ
¯̃ =

p

T

nR

VV

D S = 
d rev

m

q

T
nC

T

T
nR

V

V
VÚ = +, ln ln2

1

2

1

(4.12.9)

qrev

temperature T is given by

dS = 
d revq

T
(4.13.1)

4.13 CHARACTERISTICS OF THE ENTROPY FUNCTION

†

(∂U/∂V)T ∂p/∂T)V = nR/V

p = nRT/V

ideal gas pV = nRT.
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p V

qrev is given by

dqrev = dU + p dV (4.13.2)

Dividing both sides by T

d
d d drevq

T
S

T
U

p

T
V= = +

1
(4.13.3)

and volume of the system are changed. Since both 1/T and p/T

conclude that dS U V

increases at constant U

function entropy.

S = f (U V

dS = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

S

U
U

S

V
V

V U

d d (4.13.4)

∂
∂

Ê
Ë

ˆ
¯ =

∂
∂

Ê
Ë

ˆ
¯ =

S

U T

S

V

p

TV U

1
and

dU = T dS – p dV

Since dU

this equation. This yields

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

T

V

p

SS V

(4.13.6)

Maxwell relations. see

that

S = f (T V) (4.14.1)

dS = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

S

T
T

S

V
V

V T

d d (4.14.2)

For a system involving p V S as given by Eq. (4.13.3) is

dS = 
1

T
U

p

T
Vd d+ (4.14.3)

4.14 ENTROPY AS A FUNCTION OF TEMPERATURE AND VOLUME

Expression for

(∂S/∂T)V and (∂S/∂V)T
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The differential dU can be replaced in terms of dT and dV. This can be done by 

U

U = f (T V)

dU = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T
T

U

V
V

V T

d d (4.14.4)

dS = 
1 1

T

U

T
T

T
p

U

V
V

V T

∂
∂

Ê
Ë

ˆ
¯ + +

∂
∂

Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

d d

∂
∂

Ê
Ë

ˆ
¯ =

∂
∂

Ê
Ë

ˆ
¯ =

S

T T

U

T

nC

TV V

V1 , m
(4.14.6)

and
∂
∂

Ê
Ë

ˆ
¯ = +

∂
∂

Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

S

V T
p

U

TT V

1
(4.14.7)

its volume is held constant. Since CV ∂S/∂T)V

has a positive value. This implies that the entropy of a system increases on 

D S = 
nC

T
T

V

T

T
, m

d
1

2

Ú

∂
∂

∂
∂

Ê
Ë

ˆ
¯

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
∂
∂

Ê
Ë

ˆ
¯

Ï
Ì
Ó

¸
˝
˛V

S

T T V

U

TV T V T

1
(4.14.9)

∂
∂

∂
∂

Ê
Ë

ˆ
¯

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
+

∂
∂

Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

Ï
Ì
Ó

¸
˝
˛T

S

V T T
p

U

VT V T V

1

 = 
1 12

2T

p

T

U

T V T
p

U

VV T

∂
∂

Ê
Ë

ˆ
¯ +

∂
∂ ∂

È

Î
Í

˘

˚
˙ - +

∂
∂

Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

Since S

Entropy change 

in an Isochoric 

Change in 

Temperature

Derivation of 

Thermodynamic

Equation of State
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∂
∂ ∂

=
∂

∂ ∂

2 2S

V T

S

T V

1 1 1 12 2

2T

U

V T T

p

T T

U

T V T
p

U

VV T

∂
∂ ∂

=
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂ ∂

- +
∂
∂

Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

Since U

∂
∂

Ê
ËÁ

ˆ
¯̃ + =

∂
∂

Ê
ËÁ

ˆ
¯̃

U

V
p T

p

TT V

(4.14.11)

thermodynamic equation of

state, as it relates various variables of the states.

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

S

V

p

TT V

(4.14.12)

D S = 
∂
∂

Ê
Ë

ˆ
¯Ú

p

T
V

V
V

V
d

1

2

∂
∂

Ê
ËÁ

ˆ
¯̃ =

p

T V T

a

k

a and kT

∂
∂

Ê
ËÁ

ˆ
¯̃ =

S

V T T

a

k
(4.14.13)

the sign of a kT a is positive and hence 

a and thus has a negative value

of (∂S/∂V)T.

dS = 
nC

T
T

p

T
V

V

V

, m
d d+

∂
∂

Ê
Ë

ˆ
¯

or  dS = 
nC

T
T V

V

T

, m
d d+

a

k
(4.14.14)

Entropy Change 

in an Isothermal 

Change in Volume

Complete Expression 

of dS in terms of dT

and dV
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  Equation (4.14.14) describes the variation in S

(a/kT S

6 6 a = 1.24 ¥ –3 –1 kT ¥ –4 –1

–1 mol–1 a and kT to be constants.

∂
∂

Ê
ËÁ

ˆ
¯̃ =

S

V T T

a

k
(Eq. 4.14.13)

D V =  
k

a
T S

Ê
ËÁ

ˆ
¯̃ =

¥
¥

Ê
ËÁ

ˆ
¯̃

- -

- -D
9 228 10

1 24 10

4 1

3 1

.

.

MPa

K

–1)

3 mol–1

 (i)    For an ideal gas (∂U/∂V)T

 (ii)   Cp – CV = T
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

p

T

V

TV p

 and is equal to R for one mole of an ideal gas. Also

Cp = CV

(iii) Cp – CV = – 
T V T

V p

T Vp

T T

( / )

( / )

∂ ∂

∂ ∂
=

2 2a

k

(iv) (∂CV/∂V)T = T(∂2p/∂T2)V

(v) CV

(i) ∂U/∂V)T in terms of easily evaluable derivative is given by the 

thermodynamic equation of state

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
T

p

T
p

T V

Since for an ideal gas pV = nRT

∂
∂

Ê
ËÁ

ˆ
¯̃ = =

p

T

nR

V

p

TV

so that  
∂
∂

Ê
ËÁ

ˆ
¯̃ =

U

V
T

p

TT

– p

(ii) Cp – CV is given by

Cp – CV = 
∂
∂

Ê
ËÁ

ˆ
¯̃ +Ï

Ì
Ó

¸
˝
˛

∂
∂

Ê
ËÁ

ˆ
¯̃

U

V
p

V

TT p

(Eq. 2.6.3) 

Substituting (∂U/∂V)T

Example 4.14.1

Solution

Problem 4.14.1

Solution
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Cp – CV = T
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

p

T

V

TV p

(4.14.16)

For one mole of an ideal gas pVm = RT

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ =

p

T

R

V

V

T

R

pV pm m

mand

Cp, m – CV, m = T
R

V

R

pm

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

 = R (4.14.17)

d

d

r

T

pressure.)

r = m/V

d

d

d

d

d

d

r

T

m V

T

m

V

V

T
= = -

( / )
2

r/dT V/dT m and V are positive quantities. 

Cp – CV Cp = CV

(iii) The cyclic rule for the relation p = f (T V) is

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

p

T

T

V

V

pV p T

This gives
∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂ ∂ ∂ ∂
= -

∂ ∂

∂ ∂
p

T T V V p

V T

V pV p T

p

T

1

( / ) ( / )

( / )

( / )

Cp – CV = – 
T V T

V p

T Vp

T T

( / )

( / )

∂ ∂

∂ ∂
=

2 2a

k

(iv)

CV = 
∂
∂

Ê
ËÁ

ˆ
¯̃

U

T V

Thus
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

C

V V

U

T T

U

V

V

T V T T V

(as U is a state function)

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃ -Ï

Ì
Ó

¸
˝
˛

=
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

ÊC

V T
T

p

T
p

p

T
T

p

T

V

T V V V

2

2ËËÁ
ˆ
¯̃

-
∂
∂

Ê
ËÁ

ˆ
¯̃

V V

p

T
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= T
∂
∂

Ê
ËÁ

ˆ
¯̃

2

2

p

T
V

(4.14.19)

(v) p = nRT/V

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

p

T

nR

V

p

TV V

and
2

2

Thus
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

C

V
T

p

T

V

T V

2

2

∂
∂

Ê
ËÁ

ˆ
¯̃ =

U

V

n a

VT

2

2 (Eq. 2.13.3)

Thus
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
Ê
ËÁ

ˆ
¯̃

C

V V

U

T T

n a

V

V

T V T

2

2

Since (∂CV/∂V)T CV is independent 

of volume for these gases.

∂U/∂V)T for the amount n

that of an ideal gas.

(b) By integrating the total differential dU CV is a 

U = nCV T – 
n a

V

2

 + U¢

U¢ is a constant of integration.

(a) Thermodynamic equation of state is

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
T

p

T
p

T V

For the amount n

p = 
nRT

V nb

n a

V-
-

2

2

Therefore
∂
∂

Ê
ËÁ

ˆ
¯̃ =

-
p

T

nR

V nbV

Thus
∂
∂

Ê
ËÁ

ˆ
¯̃ =

-
- =

-
-

-
-

Ê
ËÁ

ˆ
¯̃

=
U

V
T

nR

V nb
p

nRT

V nb

nRT

V nb

n a

V

n a

VT

2

2

2

2

a

∂U/∂V)T

Problem 4.14.2

Solution



Second Law of Thermodynamics 191

(b) dU = 
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T
T

U

VV T

d  dV

= nCV  dT +
n a

V

2

2
 dV

U = nCV T –
n a

V

2

+ U¢ (4.14.21)

S = f (T p)

dS = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

S

T
T

S

p
p

p T

d d

dS = 
1

T
U

p

T
Vd d+

U = H – pV

Therefore dU = dH – pdV – V dp

H = f (T p

dU = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

H

T
T

H

p
p

p T

d d – p dV – V dp

dS = 
1

T

H

T
T

H

p
p

p

T
V

V

T
p

p

T
V

p T

∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

- - +d d d d d

or  dS = 
1 1

T

H

T
T

T

H

p
V p

p T

∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

-
Ï
Ì
Ó

¸
˝
˛

d d

∂
∂

Ê
Ë

ˆ
¯ =

∂
∂

Ê
Ë

ˆ
¯ =

S

T T

H

T

nC

Tp p

p1 , m

and
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙

S

p T

H

p
V

T T

1

Expression for 

(∂S/∂T)p and (∂S/∂p)T

4.15 ENTROPY AS A FUNCTION OF TEMPERATURE AND PRESSURE
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pressure. Since both Cp  and T S

D S = 
nC

T
T

p

T

T
, m

d
1

2

Ú
Cp independent of temperature Cp  is considered independent of 

temperature in the range T1 to T2

D S = nCp  ln 
T

T

2

1

Cp dependent on temperature Cp  is available 

Cp  = a + bT + cT2 +  

D S = n
a bT cT

T
T

T

T ( )+ + +Ú
2

1

2  
d

  = n a
T

T
b T T

c
T Tln ( ) ( )2

1
2 1 2

2
1
2

2
+ - + - +

È

Î
Í

˘

˚
˙ 

D S
the temperature variation of Cp  of nitrogen as

Cp
–1 mol–1 ¥ –3 (T ¥ –7 (T 2

∂
∂

Ê
ËÁ

ˆ
¯̃ =

S

T

C

Tp

p, m

Cp

∂
∂

Ê
Ë

ˆ
¯ =- -S

T Tp

J K mol 11 27 296.
¥ –3 ¥ –7 (T 2)

or dS –1 mol–1 = 
27 296

5 23 10 3.
. / ( / )

T
T+ ¥ - ¥Ê

ËÁ
ˆ
¯̃

- -K 0.042 10 K7 2  dT

  D S –1 mol–1 =

298

373

327 296
5 23 10

K

K

7 2K 0.042 10 KÚ + ¥ - ¥Ê
ËÁ

ˆ
¯̃

- -.
. / ( / )

T
T  dT

= 27.296 ln (T /

373 K 373 K
–3

298 K 298 K

5.23 10
K

T⎛ ⎞+ × ⎜ ⎟
⎝ ⎠

Entropy Change in 

an Isobaric Variation 

in Temperature

Example 4.15.1

Solution
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373 K–7 2

2
298 K

0.042 10
–

2 K

T⎛ ⎞×
⎜ ⎟⎜ ⎟
⎝ ⎠

= 27.296 ¥ ¥ log 373

298

Ê
ËÁ

ˆ
¯̃

¥ –3 ¥

¥ –7 (3732 2)

D S –1 mol–1 ¥ –4

Thus D S –1 mol–1 –1

∂
∂

∂
∂

Ê
Ë

ˆ
¯

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
∂
∂

Ê
Ë

ˆ
¯

Ï
Ì
Ó

¸
˝
˛

=
∂

∂ ∂p

S

T T p

H

T T

H

p Tp T p T

1 1 2

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙

Ï
Ì
Ó

¸
˝
˛T

S

p T T

H

p
V

T p T p

1

 = 
1 12

2T

H

T p

V

T T

H

p
V

p T

∂
∂ ∂

-
∂
∂

Ê
Ë

ˆ
¯

È

Î
Í

˘

˚
˙ -

∂
∂

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙

Since S

∂
∂ ∂

=
∂

∂ ∂

2 2S

p T

S

T p

1 1 1 12 2

2T

H

p T T

H

T p T

V

T T

H

p
V

p T

∂
∂ ∂

=
∂

∂ ∂
-

∂
∂

Ê
Ë

ˆ
¯ -

∂
∂

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙

Since H

∂
∂

Ê
ËÁ

ˆ
¯̃

- = -
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p
V T

V

TT p

measurable derivative (∂V/∂T)p of the system.

Derivation of 

Thermodynamic

Equation of State
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∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

S

p

V

TT p
 = – Va

D S is given by

D S = – 
∂
∂

Ê
Ë

ˆ
¯ = -Ú ÚV

T
p V p

pp

p

p

p

d d
1

2

1

2

a

increase in pressure at constant temperature.

dS = 
nC

T
T

V

T
p

p

p

, m
d d-

∂
∂

Ê
Ë

ˆ
¯

or dS = 
nC

T

p, m
 dT – V a dp

S

a

(i)
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p T

(ii) m  = 
T V T V

C

V T

C

p

p p

( / ) ( )∂ ∂ -
=

-a 1

(iii)  
∂

∂
Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

= - +
∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

C

p
T

V

T
TV

T

p

T p p

2

2

2a
a

(iv) Cp

Cp p = RT/4b

Cp

that of Cp  – CV .

(i) ∂H/∂p)T in terms of easily determinable derivative is given by the 

thermodynamic equation of state

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃ +

H

p
T

V

T
V

T p

For an ideal gas pV = nRT

Entropy Change in an

Isothermal Variation

in Pressure

Complete Expression 

of dS in terms of dT

and dp

Problem 4.15.1

Solution
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∂
∂

Ê
ËÁ

ˆ
¯̃ =

V

T

nR

pp

Therefore
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
H

p
T

nR

pT

 + V = – V + V

(ii)

m  = 
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

T

p C

H

pH p T

1

m  = - -
∂
∂

Ê
ËÁ

ˆ
¯̃ +

Ï
Ì
Ó

¸
˝
˛

1

C
T

V

T
V

p p

Since a = (1/V) (∂V/∂T)p

m  = 
T V T V

C

V T

C

p

p p

( / ) ( )∂ ∂ -
=

-a 1

For an ideal gas (∂H/∂p)T m

(iii)

Cp = 
∂
∂

Ê
ËÁ

ˆ
¯̃

H

T p

Thus
∂

∂
Ê
ËÁ

ˆ
¯̃

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
ÓÔ

¸
˝
Ǫ̂

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

C

p p

H

T T

H

p

p

T p T T p

(as H is a state function)

∂

∂
Ê
ËÁ

ˆ
¯̃

=
∂

∂
-

∂
∂

Ê
ËÁ

ˆ
¯̃ +

Ï
Ì
Ó

¸
˝
˛

= -
∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂
∂

C

p T
T

V

T
V

V

T
T

V

T

p

T p p p

2

22

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

p p

V

T

       = – T
∂
∂

Ê
ËÁ

ˆ
¯̃

2

2

V

T
p

a = (1/V) (∂V/∂T)p

∂

∂
Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

C

p
T

V

T
T

T

V

T

p

T p p p

2

2

  = -
∂

∂
Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙T

V

T
T V

T

V

Tp p p

( )a a
a

  = -
∂
∂

Ê
ËÁ

ˆ
¯̃ +

È

Î
Í

˘

˚
˙ = -

∂
∂

Ê
ËÁ

ˆ
¯̃ +

È

Î
Í

˘

˚
˙T V

T
V TV

Tp p

a
a

a
a2 2



196 A Textbook of Physical Chemistry

(iv) Vm = RT/p

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

=
V

T

R

p

V

Tp p

m mand
2

2
0

Thus     
∂

∂
Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

=
C

p
T

V

T

p

T

, m m
2

2
0

∂
∂

Ê
ËÁ

ˆ
¯̃ =

-Ê
ËÁ

ˆ
¯̃ + -

È

Î
Í

˘

˚
˙

-
+

V

T

V b

T

ap

R T

abp

R T

V b

T

a

p

m m m1
2 4 2

2 2

2

3 3
 

RRT

abp

R T2 2 3

4
-

(Note: p (Vm – b) = RT has been used.)

Thus
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃ -

-
- +

2

2 2 3 2 4

1 4 12V

T T

V

T

V b

T

a

RT

abp

R T
p p

m m m

 = 
1 2 4 4 12

2 2 3 2 3 2 4T

V b

T

a

RT

abp

R T

V b

T

a

RT

abp

R T

m m-
+ -Ê

ËÁ
ˆ
¯̃ -

-
- +

= - +
2 8

3 2 4

a

RT

abp

R T

∂

∂
Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

= + -
C

p
T

V

T

a

RT

abp

R T

p

T p

, m m
2

2 2 2 3

2 8

∂Cp /∂p)T depends both on T and p

(v) For Cp ∂Cp /∂p)T

2 8
0

42 2 3

a

RT

abp

R T
p

RT

b
- = =or

(vi)

∂ -

∂
Ê
ËÁ

ˆ
¯̃

=
∂

∂
Ê
ËÁ

ˆ
¯̃

-
∂

∂
Ê
ËÁ

ˆ
¯̃

( ), , , ,C C

p

C

p

C

p

p V

T

p

T

V

T

m m m m

CV

∂

∂
Ê
ËÁ

ˆ
¯̃

C

p

V

T

, m

∂ -

∂
Ê
ËÁ

ˆ
¯̃

=
∂

∂
Ê
ËÁ

ˆ
¯̃

( ), , ,C C

p

C

p

p V

T

p

T

m m m

Using dS = 
C

T

p
 dT – V a dp or dS = 

C

T
TV

T

d +
a

k
 dV

(i)
∂
∂

Ê
ËÁ

ˆ
¯̃

=
S

p

C

TV

V Tk

a

Problem 4.15.2
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(ii)
∂
∂

Ê
ËÁ

ˆ
¯̃ =

S

V

C

TVp

p

a

and (iii) -
∂
∂

Ê
ËÁ

ˆ
¯̃

=
1

V

V

p S

Tk

g
g = Cp / CV.

(i)

dS = 
C

T
TV

T

d +
a

k
 dV

Since T = f (p V

dT = 
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

T

p
p

T

V
V

V p

d d

dS = 
C

T

T

p
p

C

T

T

V
VV

V

V

p T

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃ +

È

Î
Í

˘

˚
˙d d

a

k

Dividing by dp and introducing the condition of constant V

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

-
∂ ∂
∂ ∂

Ê
ËÁ

ˆ
¯̃

=
S

p

C

T

T

p

C

T

V p

V T

C

TV

V

V

V T

p

V=
( / )

( / )

kTT

a

(ii)

dS = 
C

T

p
dT – Va dp

or  dS = d d – d
p

pV

C T T
p V V p

T p V

⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪⎛ ⎞+⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭
α

or  dS = d – d
p p

V V

C CT T
V V p

T V T p

⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪⎛ ⎞ + ⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
α

Dividing by dV and introducing the condition of constant p

p p

p p

C CS T

V T V TV

∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ α

(iii) p and introducing the condition of constant S

V V

TpV S

C CT T V

T p T V p

⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪⎛ ⎞+ +⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

α
κ

or 2

– –

–

V V T

V TV

VVS
V

TTp T

C T C
C VT pV T

CC Tp T V
C

TVT V

κ
κα

αα α
α κκ κ

⎛ ⎞∂
⎜ ⎟∂⎛ ⎞∂ ⎝ ⎠= = =⎜ ⎟ ∂∂ ⎛ ⎞⎝ ⎠ ++ +⎜ ⎟∂⎝ ⎠

Solution
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Cp – CV = 
T V

T

a

k

2

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
+ -

= -
V

p

C V

C C C
V

S

V T

V p V

Tk k

g

or -
∂
∂

Ê
ËÁ

ˆ
¯̃

=
1

V

V

p S

Tk

g

( ∂U/∂V)T

p = T f (V).

(b) ∂H/∂p)T

V = T f (p).

∂U/∂V)T ∂H/∂p)T

pV/T = constant.

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
T

p

T
p

T V

∂U/∂V)T

∂
∂

Ê
ËÁ

ˆ
¯̃ =

p

T

p

TV

or
d dp

p

T

T
= V

ln
p

p

T

T

p

p

T

T

p

T

p

T

2

1

2

1

2

1

2

1

2

2

1

1

= = =ln or or

or p = TA

A is constant. Since V

value of A V A = f (V

p = T f (V)

(b)

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p
V T

V

T
p

T

∂H/∂p)T

∂
∂

Ê
ËÁ

ˆ
¯̃ =

V

T

V

Tp

or
d dV

V

T

T
= p

Problem 4.15.3

Solution



Second Law of Thermodynamics 199

ln
V

V

T

T

V

V

T

T

V

T

V

T

2

1

2

1

2

1

2

1

2

2

1

1

= = =ln or or

or V = TA

A is constant. Since p

of A p A = f (p

V = T f (p)

(c)

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

p

V

V

T

T

pT p V

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂ ∂ ∂ ∂
= -

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

p

V V T T p

T

V

p

TT p V p V

1

( / ) ( / )

∂T/∂V)p and (∂p/∂T)V

∂
∂

Ê
ËÁ

ˆ
¯̃ = - ◊ = -

p

V

T

V

p

T

p

VT

p = f (T V

complete differential of p

dp = 
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

p

T
T

p

V
V

V T

d d

∂p/∂T)V and (∂p/∂V)T

dp = 
p

T
T

p

V
Vd d-

or
d d dp

p

T

T

V

V
= -

ln
p

p

T

T

V

V

p V

p V

T

T

p V

p V

T

T

2

1

2

1

2

1

2 2

1 1

2

1

2 2

1 1

2

1

= - = =ln ln ln lnor or

or
p V

T

p V

T

pV

T

2 2

2

1 1

1

= i.e.

Entropy changes for an ideal gas due to variations in temperature and volume or 

4.16 ENTROPY CHANGES FOR AN IDEAL GAS
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dqrev = dU + p dV

Dividing this by T

dS = 
d drevq

T

U

T

p

T
= +  dV

U to be a function of T and V

dU = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T
T

U

V
V

V T

d d

dS = 
1

T

U

T
T

U

V
V

p

TV T

∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

Ï
Ì
Ó

¸
˝
˛

+d d  dV

∂
∂

Ê
ËÁ

ˆ
¯̃

U

V T

and
p

T

nR

V
=

∂U/∂T)V = CV

dS = 
C

T
T

nR

V

V d +  dV (4.16.1)

DS = 
C

T
T

nR

V
VV

T

T

V

V

1

2

1

2

Ú Ú+d d

CV

DS = CV ln 
T

T
nR

V

V

2

1

2

1

+ ln (4.16.2)

or DS = n C
T

T
R

V

V
V , ln lnm

2

1

2

1

+
È

Î
Í

˘

˚
˙ (4.16.3)

the relation

D S = nR ln 
V

V

2

1

(4.16.4)

dS = 
nC

T
T

V

T

T
, m

d
1

2

Ú

Temperature and 

Volume Variations



Second Law of Thermodynamics

CV m independent of temperature

DS = nCV  ln 
T

T

2

1

(4.16.6a)

CV, m dependent on temperature CV

CV  in terms of T

CV  = Cp  – R

Dependency of Cp

Cp  = a + bT + cT2 +  

CV  for an ideal gas is given by

CV  = a + bT + cT2 +  – R

DS = n
a bT cT R

T
T

T

T + + + -Ú
2

1

2  
d

 = n
a R

T
T b cT T

T

T

T

T-
+ + +È

ÎÍ
˘
˚̇Ú Ú

1

2

1

2

d d( ) 

Thus DS = n ( ) ln ( ) ( )a R
T

T
b T T

c
T T- - + - +

È

Î
Í

˘

˚
˙

2

1
2 1 2

2
1
2

2
+  (4.16.6b)

V

V

p T

p T

2

1

1 2

2 1

=

DS = n C
T

T
R

p T

p T
V , ln lnm

2

1

1 2

2 1

+
È

Î
Í

˘

˚
˙

or DS = n ( ) ln ln,C R
T

T
R

p

p
V m + +

È

Î
Í

˘

˚
˙

2

1

1

2

or DS = n C
T

T
R

p

p
p, ln lnm

2

1

1

2

+
È

Î
Í

˘

˚
˙ (4.16.7)

DS = nCp  ln 
T

T

2

1

Temperature and 

Pressure Variations
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Cp  is independent of 

Cp

Cp  = a + bT + cT2 +  

then or  D S = n a
T

T
b T T

c
T Tln ( ) ( )2

1
2 1 2

2
1
2

2
+ - + - +

È

Î
Í

˘

˚
˙ 

D S = nR ln 
p

p

1

2

(4.16.9)

For an ideal gas Cp R

(a) The change in entropy as a result of variation in temperature at constant pressure is 

given by

D Sp = nCp  ln 
T

T

2

1

D Sp = (3 mol) 
5

2
8 314 2 303

600

300

1 1¥Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃

- -. . logJ K mol
K

K
–1

(b)

D SV = nCV  ln 
T

T

2

1

D SV = (3 mol) 
3

2
8 314 2 303

600

300

1 1¥Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃

- -. . logJ K mol
K

K

–1

D S
Cp  = (7/2)R.

The entropy change as a result of variation in both temperature and pressure is given by

D S = n C
T

T
R

p

p
p, ln lnm

2

1

1

2

+
È

Î
Í

˘

˚
˙

D S = (3 mol) 
7

2
8 314 2 303

398

298

1 1¥Ê
ËÁ

ˆ
¯̃ ¥ Ê

ËÁ
ˆ
¯̃

È

ÎÍ
- -. . logJ K mol

K

K

+ ( ) ¥ Ê
ËÁ

ˆ
¯̃

˘
˚̇

- -8 314 2 303
1

5

1 1. . logJ K mol
bar

bar
–1 –1)

–1

Example 4.16.1

Solution

Example 4.16.2

Solution
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Entropy change of the gas

DSgas = nR ln 
p

p

1

2

–1 mol–1) ¥ 2

1

bar

bar

Ê
ËÁ

ˆ
¯̃

–1

Entropy change of the surroundings

Since DT DU

q = – w = p  (DV ) = p  (V2 – V1)

= p
nRT

p

nRT

p
p nRT

p p2 1 2 1

1 1
-

Ê
ËÁ

ˆ
¯̃

= -
Ê
ËÁ

ˆ
¯̃ext

= nRT 1
1

-
Ê
ËÁ

ˆ
¯̃

p

p

ext (since p  = p2)

q –1 mol–1) (T) 1
1

2
-Ê

ËÁ
ˆ
¯̃

bar

bar
= –1)T

DSsurr  = – 
q

T
–1

D Stotal = D Ssys +  D Ssurr

–1

Since D Stotal

(i)
∂
∂

Ê
Ë

ˆ
¯ =

-
S

V

nR

V nbT

∂
∂

Ê
Ë

ˆ
¯ =

∂
∂

Ê
Ë

ˆ
¯

S

V

p

TT V

(Eq. 4.14.12)

For the amount n

p
n a

V
+

Ê
ËÁ

ˆ
¯̃

2

2  (V – nb) = nRT

∂
∂

Ê
Ë

ˆ
¯

p

T V

 (V – nb) = nR

Example 4.16.3

Solution

4.17 A FEW DERIVATIONS INVOLVING A VAN DER WAALS GAS
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or
∂
∂

Ê
ËÁ

ˆ
¯̃ =

-
p

T

nR

V nbV

(4.17.1a)

Thus
∂
∂

Ê
ËÁ

ˆ
¯̃ =

-
S

V

nR

V nbT

(4.17.1b)

(ii)
∂
∂

Ê
ËÁ

ˆ
¯̃

=
-

- -

S

p

V nb

na

V R
V nb TT

2
3

2( )

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
Ë

ˆ
¯

S

p

V

TT p

For the amount n

p
n a

V
+

Ê
ËÁ

ˆ
¯̃

2

2 (V – nb) = nRT

-
∂
∂

Ê
Ë

ˆ
¯

Ï
Ì
Ó

¸
˝
˛

- + +
Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
Ë

ˆ
¯

2 2

3

2

2

n a

V

V

T
V nb p

n a

V

V

Tp p

( )  = nR

or
∂
∂

Ê
Ë

ˆ
¯ - - + +

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

V

T

n a

V
V nb p

n a

Vp

2 2

3

2

2
( )  = nR

V – nb

∂
∂

Ê
Ë

ˆ
¯ - - + +

Ê
ËÁ

ˆ
¯̃

-
Ï
Ì
Ó

¸
˝
˛

V

T

n a

V
V nb p

n a

V
V nb

p

2 2

3

2
2

2
( ) ( )  = nR (V – nb)

∂
∂

Ê
Ë

ˆ
¯ - - +

Ï
Ì
Ó

¸
˝
˛

V

T

n a

V
V nb nRT

p

2 2

3

2( )  = nR (V – nb)

Dividing by nR

∂
∂

Ê
Ë

ˆ
¯ = -

-

- -

V

T

V nb

na

V R
V nb Tp

2
3

2( )

(4.17.2a)

∂
∂

Ê
ËÁ

ˆ
¯̃

=
-

- -

S

p

V nb

na

V R
V nb TT

2
3

2( )

(4.17.2b)
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(iii)
∂
∂

Ê
ËÁ

ˆ
¯̃

= +
-

- -

H

p
V

V nb

na

V RT
V nbT

2
1

3

2( )

The differential (∂H/∂p)T as given by thermodynamic equation of state is

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p
V T

V

TT p

But
∂
∂

Ê
Ë

ˆ
¯ = -

-

- -

V

T

V nb

na

V R
V nb Tp

2
3

2( )

(Eq. 4.17.2a)

Therefore
∂
∂

Ê
ËÁ

ˆ
¯̃

= +
-

- -

H

p
V

V nb T

na

V R
V nb TT

( )

( )
2

3

2

= +
-

- -
V

V nb

na

V RT
V nb

( )

( )
2

1
3

2

(4.17.3)

(iv)
∂
∂

Ê
ËÁ

ˆ
¯̃

=
-

- -

U

p

V nb

V
V nb

V RT

na

T

( )

( )

2

2
22

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

U

p

U

V

V

pT T T

(4.17.4)

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
T

p

T
p

T T

Substituting (∂p/∂T)V

∂
∂

Ê
Ë

ˆ
¯ =

-
- = +

Ê
ËÁ

ˆ
¯̃

- =
U

V
T

nR

V nb
p p

n a

V
p

n a

VT

2

2

2

2

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

V

p

p

T

T

VT V p

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂ ∂

∂ ∂
V

p

V T

p TT

p

V

( / )

( / )
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Substituting (∂p/∂T)V and (∂V/∂T)p

(4.17.6)

2 2 2

2 2 2
2 2

3

( – ) ( – )

2 2
( – ) – ( – ) –T

U n a V nb V nb

p V n a V RT
V nb nRT V nb

V naV

⎛ ⎞ ⎛ ⎞⎛ ⎞∂
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎜ ⎟⎝ ⎠

⎜ ⎟
⎝ ⎠

(4.17.7)

(v)
∂
∂

Ê
Ë

ˆ
¯ = -

T

V

na

C VU V , m
2

U to be a function of T and V

dU = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

U

T
T

U

V
V

V T

d d

Dividing by dV and introducing the condition of constant U

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T

T

V

U

VV U T

or
∂
∂

Ê
Ë

ˆ
¯ = -

∂ ∂
∂ ∂

T

V

U V

U TU

T

V

( / )

( / )

∂
∂

Ê
Ë

ˆ
¯ = - = -

T

V

n a V

nC

na

C VU V V

2 2

2

/

, ,m m

(vi)
∂
∂

Ê
Ë

ˆ
¯ = -

-V

T

C V nb

RTS

V , ( )m

S to be a function of T and V

dS = 
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

S

T
T

S

V
V

V T

d d

Dividing by dT an introducing the condition of constant S

∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
Ë

ˆ
¯ = -

∂ ∂
∂ ∂

S

T

S

V

V

T

V

T

S T

S VV T S S

V

T

or
( / )

( / )

∂
∂

Ê
Ë

ˆ
¯ = -

-
= -

-V

T

nC T

nR V nb

C V nb

RTS

V V, ,/

/( )

( )m m
(4.17.9)
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T1 V1 to T2 V2

entropy change.

F

dS = 
nC

T
T

p

T

V

V

, m
d +

∂
∂

Ê
ËÁ

ˆ
¯̃  dT

p = 
nRT

V nb

n a

V-
-

2

2

Therefore

∂
∂

Ê
ËÁ

ˆ
¯̃ =

-
p

T

nR

V nbV

dS = 
nC

T
T

nR

V nb
V

V , m
d d+

-

T1 V1 and T2 V2

DS = nCV  ln 
T

T
nR

V nb

V nb

2

1

2

1

+
-
-

ln

DS.

3 3.

b 3 mol–1 CV
–1 mol–1.

DS = CV  ln 
T

T
R

V b

V b

2

1

2

1

+
-
-

ln

DS –1 mol–1) ln 
373

298
–1 mol–1) ln 

10 0 06

1 0 06

-
-

Ê
ËÁ

ˆ
¯̃

.

.

–1 mol–1 –1 mol–1

D Ssys

F

CV  dT = –
RT

V nb-
 dV

D Ssys

Solution

Example 4.17.1

Solution

Problem 4.17.2

Solution

Problem 4.17.1
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The molar entropy change due to the isothermal change in pressure of an ideal 

gas is given by

D S = R
p

p
R

p

p

1

2

2

1

= - ln (Eq. 4.17.7)

S  – S  = – [R ln (p2/p R ln (p1/p

S  and S  are the molar entropies of an ideal gas at pressures p2 and 

p1 p

the entropy of one mole of the gas at pressure equal to 1 bar.†

S p1 = 1 bar and replacing p2 by the general term p

Sm – Sm = – R ln (p

p relative to that 

at 1 bar pressure. A plot of Sm – Sm for an ideal gas as a function of pressure is 

p

pressure and becomes less rapid at higher pressure.

4.18 STANDARD STATE FOR ENTROPY OF AN IDEAL GAS
S

R
m

o
/2
.3
0
3

-
S
m

†

–1 mol–1

(= R
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Equations (4.16.1) to (4.16.9) describe the characteristics of entropy change for 

of the molecules and thus the latter possess more energy and hence their motions 

in a large space and consequently their motion become more random or disordered. 

S(gaseous state) >> S(liquid state) > S(solid state)

Fe2O3 2(g) Æ 2O(l)

1
2 2

3
2

N g( ) + 2(g) Æ 3(g)

2(g) + Br2(l) Æ

entropy of the system increases as products contain larger number of gaseous 

molecules than the reactants and thus are more disordered than the latter.

processes.

The change in entropy of one mole of an ideal gas as given by Eq. (4.16.4) is

DSsys = R ln 
V

V

2

1

V2 V1 is the initial volume.

4.19 ENTROPY AND DISORDERLINESS

4.20 ENTROPY CHANGE IN ISOTHERMAL EXPANSION OR COMPRESSION OF AN IDEAL GAS

Entropy Change

of the System



A Textbook of Physical Chemistry

categories.

qrev = – w = RT ln 
V

V

2

1

and DSsys = 
q

T
R

V

V

rev = ln 2

1

qrev

the surroundings at temperature T

Ssurr = –
q

T

rev

Stotal Ssys Ssurr

Free expansion

w q

from volume V1 to V2

Ssys = R ln 
V

V

2

1

Since no heat is supplied by the surroundings the entropy change of the latter 

DSsurr

D Stotal = D Ssys + D Ssurr = R ln 
V

V
R

V

V

2

1

2

1

0+ = ln

Intermediate expansion Since D Ssys

Ssys = R ln 
V

V

q

T

2

1

= rev

qrev

qirr = – w = p  (V2 – V1)

Ssurr = –
q

T

p V V

T

irr ext= -
-( )2 1

qirr < qrev

D Stotal becomes

DStotal = DSsys + DSsurr = 
q

T

q

T

rev irr-

Reversible Change

Irreversible Change
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the values of DSgas and D Stotal

The entropy change of the system D Ssys

temperature is

D Ssys = nR ln 
V

V

q

T

2

1

= rev

D Ssys
–1 mol–1) ¥

3

1

Ê
ËÁ

ˆ
¯̃

–1

  The change in entropy of the surroundings D Ssurr

D Ssys + D Ssurr) for 

each of the three given processes.

(i) Reversible expansion

DSgas = – D Ssurr        and        D Stotal

(ii) Irreversible expansion

qirr = qrev

  The quantity qirr

hence

DSsurr = - = - -Ê
ËÁ

ˆ
¯̃

= - -Ê
ËÁ

ˆq q
Sirr rev

sys
K K

J

K

J

K298 298

836 6

298

836 6

298

. .
D

¯̃̄

and D Stotal = DSsys + D Ssurr = DSsys – DSsys + 
836 6

298

. J

K

Ê
ËÁ

ˆ
¯̃

–1

(iii) Free expansion q

DSsurr DStotal = DSsys
–1

Since in adiabatic processes q

DSsurr

DSsys = CV  ln 
T

T
R

V

V

2

1

2

1

+ ln

Example 4.20.1

Solution

4.21 ENTROPY CHANGE IN ADIABATIC EXPANSION OR COMPRESSION OF AN IDEAL GAS

Entropy Change of 

the System
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DSsys = Cp  ln 
T

T
R

p

p

2

1

1

2

+ ln

categories.

D Ssys

CV  ln 
T

T
R

V

V

2

1

2

1

= - ln (Eq. 2.11.6)

and Cp  ln 
T

T
R

p

p

2

1

1

2

= - ln

Thus       D Stotal = D Ssys + D Ssurr

entropy due to the volume change just compensates the decrease (or increase) in 

entropy due to the decrease (or increase) in temperature.

D Ssys = R ln 
V

V
C

T

T
V

2

1

2

1

+ , lnm

¢
(4.21.2)

T¢2

D Ssys = – CV  ln 
T

T
C

T

T
V

2

1

2

1

+
¢

, lnm (4.21.3)

T2

wirr > wrev (including the sign of w)

and moreover for adiabatic changes

D U = w

D Uirr > D Urev

or CV  (T¢2 – T1) > CV  (T2 – T1)

T¢2 < T1 T¢2 > T1 in the compression 

T ¢2 > T2 (4.21.4)

Reversible Change

Irreversible Change
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CV  ln 
T

T
C

T

T
V

¢2
1

2

1

> , lnm

  D Ssys = + ve

and thus D Stotal = D Ssys + D Ssurr = + ve

entropy due to the volume change is larger (or smaller) than the decrease (or 

increase) in entropy due to the temperature change and hence D Ssys is positive.

(i) For an adiabatic reversible process

D Ssys D Ssurr D Stotal

(ii)

  For an adiabatic process

dq

dU = dw

or nCV  dT = – p  dV

For an irreversible process against a constant pressure

nCV D T = – p  (V2 – V1)

or nCV  (T2 – T1) = p  (V1 – V2)

V1 = 
nRT

p

1

1

3 1 10 5 8 314 473

506 625
=

- -( . ) ( . ) ( )

( . )

mol kPa dm K mol K

kPa

V2 = 
nRT

p

T2

2

3 1 1
20 5 8 314

202 65
=

- -( . ) ( . )

( . )

mol kPa dm K mol

kPa

3

2
8 314 1 1¥Ê

ËÁ
ˆ
¯̃

- -. J K mol (T2

¥ -Ê
ËÁ

ˆ
¯̃

Ï - -( . )( . )
. .

0 5 8 314
473

506 625 202 65

1 1 2mol J K mol
K

kPa kPa

T
ÌÌ
Ó

¸
˝
˛

Example 4.21.1

Solution
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3
T T2 2473 4

473

5 2K

KÊ
ËÁ

ˆ
¯̃ -{ } = -Ê

ËÁ
ˆ
¯̃

/

T2

1 892

5
 + 1419

T2

D Ssys = n C
T

T
R

p

p
p, ln lnm

2

1

1

2

+
È

Î
Í

˘

˚
˙

D Ssys
5

2
8 314 2 303

359 48

473

1 1¥Ê
ËÁ

ˆ
¯̃ ¥ ¥ Ê

ËÁ
ˆ
¯̃

È

ÎÍ
- -. . log

.
J K mol

K

K

+ ( –1 mol–1) ¥ ¥ log 
506 625

202 65

.

.

kPa

kPa

Ê
ËÁ

ˆ
¯̃

˘
˚̇

–1 mol–1 –1 mol–1)

–1.

Since no heat is absorbed or given out to the surroundings

D Ssurr

Thus D Stotal = D Ssys
–1

(iii)

w

q

D U

D S = nR ln 
p

p

1

2

D Ssys = D Stotal

–1 mol–1) ¥
506 625

202 65

.

.

kPa

kPa

Ê
ËÁ

ˆ
¯̃

–1.
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D S = 
q

T

rev

qrev is the heat involved in the phase transformation. For the transformation 

qrev is equal to the molar enthalpy 

qrev Hm

Thus the entropy change per mole of phase transformation is given by

D Sm = 
DH

T

m

R

vapH –1

Tb

Thus D vapS°
( )

( )

31 171

353

1J mol

K

-
–1 mol–1

vapS

D vapS
( )

( )

44 012

373

1J mol

K

-
 = –1 mol–1

R –1 mol–1.

substances

fusS vapS

phase transforms into the chaotic gaseous phase.

T1) to

T2).

4.22 ENTROPY CHANGES IN A FEW TYPICAL CASES

Entropy Changes in 

a Reversible Phase 

Transformation

Trouton’s Rule

Entropy Change in 

an Irreversible Phase 

Transition
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2 Æ 2

D S = 
d dm

m

q

T

C T

T
C

T

TT

T
p

T

T

p= =
Ê
ËÁ

ˆ
¯̃Ú Ú

1

2

1

2 1
1 2

1

,

,

( )
( ) ln

–1 mol–1. Substituting this value 

T2 T1

D S1 = –1 mol–1) ¥ ¥ log 
273 15

263 15

.

.

K

K

Ê
ËÁ

ˆ
¯̃

–1 mol–1

2 Æ 2

D S2 = 
d freez

m

q

T

H

TÚ =
D

D H –1

D S2 = 
- -6 088 2

273 15

1.

( . )

J mol

K

–1 mol–1

2 Æ 2

D S3 = 
d s

d s
m

m

q

T

C

T
T C

T

TT

T
p

T

T

p= =Ú Ú
2

1

2

1
1

2

,

,

( )
( ) ln

–1 mol–1

D S3
–1 mol–1) ¥ ¥ log 

263 15

273 15

.

.

K

K

Ê
ËÁ

ˆ
¯̃

–1 mol–1

2 Æ 2

is given by

Ssys S1 S2 S3
–1 mol–1

–1 mol–1

surroundings and then determine the total change in entropy by adding entropy 

Ssurr

H

H
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H H Cp T)

–1 mol–1 –1 mol–1

–1

H –1 H

–1 –1

–1

D S = 
-

=
-Dfreez

1

K J mol

K

H

T

( . ) .

.

263 15 5 619 1

263 15

1

–1 mol–1

Stotal Ssys Ssurr

–1 mol–1 –1 mol–1

–1 mol–1

Stotal

in nature.

2 2

vapH –1.

Step I 2 Æ 2

D S1 = 
40 668 10

373

3 1. ¥ -J mol

K

–1 mol–1

Step II 2 Æ 2

D S2 = R ln 
p

p

1

2

 = ( –1 mol–1) ¥ ¥ log 
1 013 25

0 101 325

.

.

bar

bar

Ê
ËÁ

ˆ
¯̃

–1 mol–1

Total change in entropy is given by

S S1 S2
–1 mol–1 –1 mol–1

–1 mol–1

rU rH r S for the process

2 Æ 2

Cp
–1 mol–1 Cp

–1 mol–1

vapH –1

r U r H r S

Step I 2 Æ 2

qp rH = Cp T –1 mol–1 –1

Example 4.22.1

Solution

Example 4.22.2

Solution
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D r S = Cp  ln 
T

T

2

1

–1 mol–1) ¥ ¥ log 
373

293

K

K

Ê
ËÁ

ˆ
¯̃

–1 mol–1

D rU = D rH – p D rV = D rH

Step II 2 Æ 2

 qp vap H –1

D rS = 
40 668

373

1J mol

K

-
–1 mol–1

rU rH – p r V

–1
( . )22 414

373

273

3 1dm mol
K

K

- ¥Ê
ËÁ

ˆ
¯̃

–1 –1

–1

Step III 2 Æ 2

D rH = Cp (g) D T –1 mol–1 –1

D r S  = Cp (g) ln 
T

T

2

1

–1 mol–1) ¥ ¥ log 523

373

K

K

Ê
ËÁ

ˆ
¯̃

–1 mol–1) ¥ ¥
–1 mol–1

D rU = D rH – R(D T)
–1 –1 mol–1

–1 –1 –1

Thus D Utotal
–1 –1

D Htotal
–1 –1

D Stotal
–1 mol–1 –1 mol–1

S for the 

fusH
–1

vapH –1

–1 g–1

Æ
Æ
Æ

D S1 = 
334 72

273

1. J g

K

-
–1 –1

Example 4.22.3

Solution
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D S2 = 
C

T
T C

T

T

p
p

( )
( ) ln ( . ) ln

1
1 4 184

373

273

2

1

1 1d J K g
K

KÚ = = Ê
ËÁ

ˆ
¯̃

- -

–1 g–1

D S3 = 
2 259 36

373

1. J g

K

-

 = –1 –1

Stotal S1 S2 S3
–1 g–1

S ¥ –1 –1

substance. Let one be at higher temperature Th

Tc

the colder till the temperatures of both of them are the same. Let the equilibrium 

temperature be T

Cp  (Th – T) = Cp  (T – Tc)

or T = 
T Th c+

2

D Sh = C T C
T

T
p

T

T

p, , lnm m
hh

dÚ =

D Sc = 
C

T
T C

T

T

p

T

T

p

,

, ln
m

m
cC

dÚ =

The total change in entropy is

D Stotal = D Sh + D Sc

= Cp ln ln ln,

T

T

T

T
C

T

T T
p

h c
m

h c

+
Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

2

= Cp  ln 
( )

ln,

T T

T T
C

T T T T

T T
p

h c

h c
m

h c h c

h c

+Ï
Ì
Ó

¸
˝
˛

=
+ +Ê

ËÁ
ˆ
¯̃

2 2 2

4

2

4

= Cp  ln 
T T T T

T T

h c h c

h c

2 2 2

4
1

+ -
+

Ê
ËÁ

ˆ
¯̃

= Cp  ln 
( )T T

T T

h c

h c

-
+

Ê
ËÁ

ˆ
¯̃

2

4
1

Stotal of this 

Entropy Change when 

Two Solids at

Different 

Temperatures are 

Brought Together
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q and D Stotal
–1 –1

m1Cp(D T1) = m2Cp(D T2) i.e. m1D T1 = m2D T2

Therefore

T T)

2T T

T

Thus D Sh = nCp  ln 
T

Th

   = 
50

63 1

g

g mol-
Ê
ËÁ

ˆ
¯̃

–1 –1) (63 g mol–1 ¥ 333

393

K

K

Ê
ËÁ

ˆ
¯̃

–1

D Sc = nCp  ln 
T

Tc

  =
100

63 1

g

g mol-
Ê
ËÁ

ˆ
¯̃

–1 –1)(63 g mol–1 ¥ 333

303

K

K

Ê
ËÁ

ˆ
¯̃

–1

and   D Stotal = D Sc + D Sh
–1 –1

–1

Final temperature after mixing

–1 –1 –1) (T

–1 g–1 T)

T T

Solving for T

T

Entropy changes

Cp
–1 –1 –1 –1 mol–1

Example 4.22.4

Solution

Example 4.22.5

Solution
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D Sice = 
Dfus

m

H

T
 + nCp (1) ln 

T

T

2

1

=
1673 6

273

5

18 1

. J

K

g

g mol
+

Ê
ËÁ

ˆ
¯̃-

–1 mol–1) ¥ ¥ log 
304 43

323

. K

K

Ê
ËÁ

ˆ
¯̃

–1 –1 –1

D S  =  nCp  (1) ln 
T

T

2

1

 = 
30

18 1

g

g mol-
Ê
ËÁ

ˆ
¯̃

–1 mol–1) ¥ 304 43

323

. K

K

Ê
ËÁ

ˆ
¯̃

–1

D Stotal = D Sice + D S –1

–1

T

p) Æ Solid (T p)

D S = ST – S  = 
C

T
T

p
T

, m

K
d

0Ú
or ST = S  + 

C

T
T

p
T

, m

K
d

0Ú (4.23.1)

this minimum entropy may be assigned a zero value for a pure perfectly crystalline 

substance. third law of thermodynamics.

ST = 
C

T
T

p
T

, m

K

d
0Ú (4.23.2)

ST is called the third law entropy or simply the entropy at temperature T and

pressure p ST becomes the standard entropy ST .

To evaluate the value of ST

the heat capacity of the solid is determined from the Debye T

Cp = a T3 (4.23.3)

a Cp  (or CV  since

Cp  and CV

4.23 THE THIRD LAW OF THERMODYNAMICS

Planck’s Statement

Third Law Entropy

Entropy of a Solid
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min min

min min

, m , m , m

, m
0K 0K

d( K)
d d d

( K)

T T T T
p p p

T p
T T

C C C T
S T T T C

T T T T
= + = +∫ ∫ ∫ ∫

min

min

, m

, m
0K

d 2.303 d log ( K)
T T

p

p
T

C
T C T

T
= +∫ ∫ (4.23.4)

Tmin

T

either Cp /T versus T or Cp  versus log (T

The area under either of these curves gives the value of the integral.

Fig. 4.23.1 Schematic plot

of C
p, m

/T versus T

Fig. 4.23.2 Schematic plot

of C
p, m

versus log (T/K)

T

Tm.

(2) Transfrom the substance from solid to liquid at its melting point Tm.

Tm to the required temperature T.

  The addition of entropy changes in the above three processes gives the third 

T. Thus

m

m

, m , mfus m

0K m

(s) (1)Ä
d d

T T
p p

T
T

C CH
S T T

T T T
= + +∫ ∫

l

(4.23.6)

Figure 4.23 depicts the entropy variation as governed by Eq. (4.23.6)

Entropy of a Liquid

Entropy of a Gas
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D trsS = 
D trsH

T
(4.23.7)

Cp T T 2 –1 mol–1

–1

Cp T –1 mol–1

–1

Cp
–1 mol–1

(i) D S1 = 
C

T
T

p
T

, ( )m

K

s
d

m

0Ú
D S1

–1 mol–1 = 
0 035 0 001 2 2

0

200 . ( / ) . ( / )T T

T
T

K K
d

K

K +Ú
0 001 2

2

. 2 2)

(ii) D S2 = 
Dfus

m

H

T
=

¥7 5 10

200

3. –1 mol–1 –1 mol–1

(iii)   D S3 = 
C

T
T

p

T

T
, ( )m 1

d
m

b

Ú

Fig. 4.23.3 Variation of 

entropy of a substance 

with temperature

Example 4.23.1

Solution
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D S3
–1 mol–1 = 

60 0 016

200

300 +Ú . ( / )T

T
T

K
d

K

K

300

200

(iv)   D S4 = 
Dvap

b

H

T
=

¥30 10

300

3
–1 mol–1 –1 mol–1

(v)   D S  = 
C

T
T

p

T

T
, ( )m g

d
b

Ú

D S –1 mol–1 =
50 0

50 0
350

300
300

350

.
( . ) ln

T
T

K

K

dÚ =  = 7.71

ST = D S1 + D S2 + D S3 + D S4 + D S
–1 mol–1

–1 mol–1

Â
B

nB B

nB = (nB)  + nBx

nB)  is the amount of species B in the beginning of the reaction and nB is 

x.

species B is

dnB = nB dx

The corresponding entropy change of the reaction is

dS = Â
B

Sm(B) dnB  = Â
B

Sm(B) (nB dx)

D rS = 
∂
∂

Ê
ËÁ

ˆ
¯̃

S

T px
 = ÂB nB Sm(B) (4.24.1)

of D r S –1 mol–1.

Expression of Entropy 

of Reaction

4.24 ENTROPY OF REACTION AND ITS TEMPERATURE AND PRESSURE DEPENDENCE
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Fe2O3 2(g) Æ 2O(1)

the standard entropy change is given by

D rS Â
B

nB S m(B)

i.e. D rS S products – S reactants

Since S products = 2S m S m 2

and  S reactants = S m (Fe2O3 S m 2

therefore D rS S m S m 2 S m(Fe2O3 S m 2

D r S –1 mol–1

  
–1 mol–1

  The entropy of reaction is more if there is a change in the value of Dng (the 

is much larger than the entropy of condensed phases.

The change in the value of D r S

Since D r S° = Â
B

nB S m(B)

therefore
∂ ∞

∂
Ê
ËÁ

ˆ
¯̃ =

∂ ∞

∂

Ê

Ë
Á

ˆ

¯
˜Â( ) ( )Dr

B

B

m BS

T

S

Tp
p

n

= nB

B

m rB
Â =

C

T

C

T

p p, ( ) D
(4.24.2)

Thus d(D rS
D r

d
C

T
T

p
(p constant)

T  and T

d dr

r
( )D

D
S

C

T
T

T

T
p

T

T

∞ =Ú Ú
0 0

or D rS T – D rST  = 
Dr

d
C

T
T

p

T

T

0
Ú (4.24.3)

Computation of 

Entropy of Reaction

Effect of Temperature 

on Entropy of 

Reaction
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of D rCp

D rCp independent of temperature

D rST – D rS T  = D rCp ln 
T

T

Ê
ËÁ

ˆ
¯̃

(4.24.4)

D rCp dependent on temperature Cp

Cp = a + b T + c T2 +  

a b c D rCp

given by

D rCp = (D ra) + (D rb) T + (D r c) T 2 +  

D rS T – D rS T  = 
D

D Dr
r r+ + ( ) d

a

T
T

T

T

b c T + 
Ê
ËÁ

ˆ
¯̃Ú

0

D rS T – D rS T  = D ra ln 
T

T
b T T

c

0
0

2

Ê
ËÁ

ˆ
¯̃

+ - +D
D

r
r( )  (T 2 – T 2) +  

  

D rS  for the reaction

1

2
 N2(g) + O2(g) Æ NO2(g)

S m(N2
–1 mol–1 S m(O2

–1 mol–1

S m(NO2
–1 mol–1

and heat capacities are

Cp(N2
–1 mol–1 Cp(O2

–1 mol–1

Cp(NO2
–1 mol–1

D rS T  = S 2

1

2
S 2 S 2

  = 240 06
1

2
191 61 161 06. . .- ¥ -Ê

ËÁ
ˆ
¯̃

–1 mol–1 –1 mol–1

D rCp = Cp (NO2 -
1

2
Cp (N2 Cp (O2

  = 37 20
1

2
29 13 29 36. . .- ¥ -Ê

ËÁ
ˆ
¯̃

–1 mol–1 –1 mol–1

Example 4.24.1

Solution
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D ST  = D rST + D r Cp ln 
T

T

D S = - + - Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

16 805 6 725
348

298
. ( . ) ln –1 mol–1

–1 mol–1

D r S =  for the reaction

1

2
 N2(g) + O2(g) Æ NO2(g)

S m(N2
–1 mol–1 S m(O2

–1 mol–1

S m(NO2
–1 mol–1

and heat capacities are

Cp(N2
–1 mol–1 ¥ –3 (T

Cp(O2
–1 mol–1 ¥ –3 (T

Cp(NO2
–1 mol–1 ¥ –3 (T

For the given reaction

D rS  = Â
B

nBS m(B) = S m(NO2) -
1

2
S m(N2) – S m(O2)

= 240 06
1

2
191 61 161 06. . .- ¥ -Ê

ËÁ
ˆ
¯̃

–1 mol–1 –1 mol–1

Cp = a + bT

D rCp = D ra + (D rb)T

 = 27 78
1

2
28 46 26 85 30 85

1

2
2 26 8 49. . . . . .- ¥ -Ê

ËÁ
ˆ
¯̃

È
ÎÍ

+ - ¥ -Ê
ËÁ

ˆ
¯̃

¥
˘

˚
˙- - -

10 3 1 1
( / )T K J K mol

¥ –3 (T –1 mol–1

d dr

r
( )D

D
S

C

T

p

T

T

T

T
∞ = ÚÚ T

0
0

D rS T – D r S T  = - +
¥Ê

ËÁ
ˆ
¯̃

-

Ú 13 30 21 23 10 3

0

. .

T
T T

T

T

d
K

d  –1 mol–1

= - +
¥

-
È

Î
Í

˘

˚
˙

-

13 30
21 23 10

0

3

0. ln
.

( )
T

T
T T

K
 –1 mol–1

Example 4.24.2

Solution
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Substituting T T D rS
–1 mol–1

D rS  = –3348
�16.81 �13.30 ln 21.23 10 (348 � 298)

298

⎡ ⎤+ ×⎢ ⎥⎣ ⎦
–1 mol–1

–1 mol–1

–1 mol–1

Since D rS = Â
B

nBSm(B)

therefore
m, Br

B
B

(Ä )

T T

SS

p p
ν

∂⎛ ⎞⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∑

m m–
pT

S V

p T

⎛ ⎞∂ ∂⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

m, Br r
B

B

(Ä ) (Ä )
– –

pT p

VS V

p T T

∂⎛ ⎞⎛ ⎞∂ ∂⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ν (4.24.6)

(∂D rV/∂T

S SS

r r
g

(Ä ) (Ä )
Ä

pT

S V R
v

p T p

⎛ ⎞∂ ∂⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
(4.24.7)

g B
B(g)

Ä (B)ν ν= ∑ g g(product) – | (reactant) |= ν ν∑ ∑

The integrated form of Eq. (4.24.7) is

D rSp2
 – D r Sp1

 = – D ng R ln 
p

p

2

1

D r S

increase in pressure if Dng is negative and it decreases if Dng is positive.

D r S for the reaction

1

2
 N2(g) + O2(g) Æ NO2(g) D rS

–1 mol–1

D rSp2
 – D rS p1

 = – (D ng) R ln 
p

p

2

1

Effect of Pressure on 

Entropy of Reaction

Example 4.24.3

Solution
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D r Sp
2
 = - - -Ê

ËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

16 81
1

2
8 314

5

1
. ( . ) ln –1 mol–1

–1 mol–1

–1 mol–1

A thermodynamic system is a macro system consisting of a large number of 

statistical thermodynamics

properties of a system can be studied by treating the molecules on a statistical 

of distributing the particles in the given energy levels or in a given volume. The 

states of the system.

The essential results of the statistical analysis can be easily obtained by considering 

distributing the molecules in a given volume can be replaced by a model of 

distributing the given number of balls (equal to the number of molecules) in a 

First

toss

Second

toss

Nature of

combination

Nature and

number of microstates

4.25 ENTROPY AND PROBABILITY

Introduction

to Statistical 

Thermodynamics

Statistical Model of 

Tossing a Coin

Microstates

Associated with the 

Coin Tossed Twice
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are obtained. These are

The results of the analysis are:

First

toss

Second

toss

Third

toss

Fourth

toss

Nature of

combination

Nature and

number of microstates

A

AX = 
Number of microstates associated with configuration X

Number of microstates associated with 1:1 mixture

Microstates Asso-

ciated with the Coin 

Tossed Four Times

Definition of A-ratios
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The A

AI AII AIII AIV AV

0.166 0.666 1.000 0.666 0.166

The number of microstates (W N + 1) possible  

W = 
N

H T

!

! !

N is the number of times the coin is played and H and T are the respective 

W

easily calculate the A

A

H/N for increasing value of N

N increases the larger proportion of microstates 

H/N values falling in the 

N

no actual set of N H/N appreciably different 

Out of the very large number of microstates that can be assumed by any large 

Microstates

Associated with the 

Coin Tossed N Times

Fig. 4.25.1 Plots of A-ratio 

number for increasing 

value of N
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The macroscopic properties of a system depend upon the various microscopic 

states of the system. The fact that (i) majority of microstates of a system arise 

determination of a macroscopic property of a system are not very sensitive to 

the statistical mechanics an equilibrium state is characterized by the predominant 

 The 

classical thermodynamics tells us that if the system is at equilibrium then its entropy 

S is 

a function of W S = f (W W

SA = f (WA) and SB = f (WB)

SAB = f (WAB)

SAB = SA + SB

f (WAB) = f (WA) + f (WB)

WAB WA and WB since any microstate of 

WAB = WA ¥ WB

f (WA ¥ WB) = f (WA) + f (WB)

f is a logarithmic function. 

Thus

S μ ln (W)

or S = k ln (W

k

constant (R/NA).

Relationship between

Entropy and 

Maximum Number of 

Microstates
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 w U

H U + nR T)
–1 mol–1

Cp  (T3 – T2))

S

Total changes in the required quantities are

q

w

U

H

S –1 –1

S for this process if the total volume remains constant.

VNe = 2 V

Vtotal = V + VNe = V  + 2 V  = 3 V

D S  = nR ln 
V

V

2

1

–1 mol–1) ¥
3V

V

He

He

Ê
ËÁ

ˆ
¯̃

–1

D SNe = nR ln 
V

V

2

1

–1 mol–1) ¥
3

2

V

V

He

He

Ê
ËÁ

ˆ
¯̃

–1

S S SNe

–1 –1

–1

p V T U H S for 

Assume Cp and CV constants.

p1  V1 T1 p2 V2 T1

p2 V2 T1 p3 V3 T2

p3 V3 T2 p4 V4 T2

Step (d) : Adiabatic reversible compression     p4 V4 T2 p1 V1 T1

Step (a):

V
T
p

U U = f (T T

2.

Solution

3.

Solution
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H H U pV U pV RT

S S = nR ln (V2/V1) and V2 > V1

Step (b):

V

S

U U = w and w

T U = CV  (D T)

H = –ve H U pV U + R T.

U T are negative.

p = –ve

Step (c):

Step (d):

Cp and CV p

versus S U versus p T versus p H versus p V versus T S versus V V versus U V versus 

H U versus H  U versus T  H versus T T versus S U versus S and H versus S.

4.

Solution

Fig. 4.26.1 (i) p v. S graph. 

(ii) T v. p graph. This graph 

also represents U v. p and 

H v. p graphs with a scale 

factor of CV on the energy 

Cp on the enthalpy 

V v. T graph. This 

also represents V v. U and 

V v. H graphs. (iv) S v. V

graph. (v) U v. T graph. This 

also represents H v. T and 

U v. H graphs. (vi) T v. S

graph. This also represents 

U v. S and H v. S graphs



Second Law of Thermodynamics 241

CV

p V T U H S for one mole of an ideal gas for each step of 

Step (a) Isothermal expansion

T U H V = V2 – V1

D p = RT1 D 
1 1 1

1
2 1V

RT
V V

Ê
ËÁ

ˆ
¯̃ = -

È

Î
Í

˘

˚
˙

D S = 
q

T

w

T
R

V

V1 1

2

1

=
-

=
( )

ln

Step (b) Adiabatic expansion

T = T2 – T1

U = CV  (T2 – T1)

H U pV U + R T)

   = (CV  + R T = Cp  (T2 – T1)

S

V = V3 – V2

V3

V3 can be substituted in terms of V2

T1 V2

g –1
 = T2 V3

g –1

or V3 =
T

T
V1

2

1 1

2

Ê
ËÁ

ˆ
¯̃

-/g

V = 
T

T
V

T

T
V

C RV

1

2

1 1

2
1

2
21 1

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í
Í

˘

˚
˙
˙

=
Ê
ËÁ

ˆ
¯̃

-
È

Î
Í
Í

˘

˚
˙
˙

-/( ) /,g m

p = p3 – p2

Since for an adiabatic reversible process pVg

p = p2

V

V
p

RT

V

V

V

2

3
2

1

2

2

3

1
Ê
ËÁ

ˆ
¯̃

- =
Ê
ËÁ

ˆ
¯̃

-
È

Î
Í
Í

˘

˚
˙
˙

g g

TV g –1

p = 
RT

V

T

T

C Rp

1

2

2

1

1
Ê
ËÁ

ˆ
¯̃

-
È

Î
Í
Í

˘

˚
˙
˙

, /m

Step (c) Isothermal compression

D T D U D H

D S = R ln 
V

V

4

3

5.

Solution
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S

equal and opposite to that of step (a). Thus

D S = R ln 
V

V
R

V

V

4

3

2

1

= - ln

This gives us the relation

V

V

V

V

4

3

1

2

= or V4 = 
V V

V

1 3

2

Ê
ËÁ

ˆ
¯̃

D V = V4 – V3 =

, m /

1 3 3 1
3 1 2 1 2

2 2 2

� ( � ) ( � )

VC R
VV V T

V V V V V
V V T

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

D p = p4 – p3 =
2 2

2
4 3 4 3

1 1
� �

RT RT
RT

V V V V

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

= RT2
2 2

2 1
1 3 3 3 1

1
– ( – )

V RT
V V

VV V V V

⎡ ⎤
=⎢ ⎥

⎣ ⎦

=

, m /

2 2

2 1 1

VC R
RT T

V V T

⎛ ⎞
⎜ ⎟
⎝ ⎠

(V1 – V2)

Step (d) Adiabatic compression

T = T1 – T2

U = CV T = CV  (T1 – T2)

H = Cp T = Cp  (T1 – T2)

S

D V = (V1 – V4) = V1

, m /

3 1
1

2 2

1 � 1 �

VC R
V T

V
V T

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥=⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

p = p1 – p4

and p4 = p1 p)a p)b p)c

p)a p)b p)c

p p)a p)b p)c

  = 

, m , m/ /

1 2 2 2
1 2 1

2 1 2 1 2 1 1

1 1
– – – – 1 – ( – )

p VC R C R
RT T RT T

RT V V
V V V T V V T

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

V1
3 V2

dm3 and T1 T2 CV  = (3/2)R

p V T U H S involved in each of the four steps.

Step (a)

T U H

V = (V2 – V1
3

6.

Solution
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p = RT1

1 1

2 1V V
-

Ê
ËÁ

ˆ
¯̃

 = 3 –1 mol–1

¥ -
Ê
ËÁ

ˆ
¯̃- -

1

40

1

203 1 3 1dm mol dm mol

D S = R ln 
V

V

2

1

Ê
ËÁ

ˆ
¯̃

 = ( –1 mol–1) ¥
40

20

3 1

3 1

dm mol

dm mol

-

-

Ê
ËÁ

ˆ
¯̃

–1 mol–1

Step (b)

T = T2 – T1

D U = CV  (T2 – T1) = 
3

2
R (D T)

  = 
3

2

–1 mol–1 –1

D H = Cp (T2 – T1) = 
5

2
R(D T)

  = 
5

2

–1 mol–1 –1

D V = 

, m / 1.5

31
2

2

300 K
� 1 � 1 (40 dm )

200 K

VC R
T

V
T

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥=⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦

3

D p = 

, m /

1 2

2 1

� 1

pC R
RT T

V T

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 = 
8 314

40

200

300
1

3 1 1

3 1

5 2
.

/
kPa dm K mol

dm mol

K

K

- -

-

( )
( )

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙

S

Step (c)

T U D H

D V =

, m / 3 / 2

1
1 2

2

300 K
( � )

200 K

VC R
T

V V
T

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
3 mol–1) = – 36.74 dm3 mol–1
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D p = 

, m /

2 2

2 1 1

VC R
RT T

V V T

⎛ ⎞
⎜ ⎟
⎝ ⎠

(V2 – V1)

=

1.53 –1 –1

3 –1 3 –1

(8.314 kPa dm K mol ) (200 K) 200 K

300 K(40 dm mol ) (20 dm mol )

⎛ ⎞
⎜ ⎟
⎝ ⎠

3 mol–1

D S = R ln 
V

V
R

V

V

4

3

1

2

= ln –1 mol–1) ln 
20

40

Ê
ËÁ

ˆ
¯̃  = – –1 mol–1

Step (d)

T U –1 H –1

D V = V
T

T

C R

1
1

2

3 1
1 5

1 20 1
300

200
- Ê

ËÁ
ˆ
¯̃

È

Î
Í

˘

˚
˙ = - Ê

ËÁ
ˆ
¯̃

-
V m

dm mol
K

K

. / .

( )
ÈÈ

Î
Í

˘

˚
˙

 = – 16.74 dm3 mol–1

p p)a p)b p)c

S

REVISIONARY PROBLEMS

at higher temperature.
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T1 and T2

q

T

q

T

1

1

2

2

+

T1 and T2

such a cyclic process

d rev
 Ú Ê

ËÁ
ˆ
¯̃

q

T

to a state function S

 Ú  d(qrev/T

D Stotal Æ B is carried out reversibly 

∂
∂

Ê
ËÁ

ˆ
¯̃ + =

∂
∂

Ê
ËÁ

ˆ
¯̃

U

V
p T

p

TT V

(i) (∂S/∂U)V = 1/T and (∂S/∂V)U = p/T (ii) (∂T/∂V)S = – (∂p/∂S)V

 (iii)  dS = 
C

T
TV

T

d +
a

k
 dV   (iv) (∂S/∂T)V = CV/T

(v) (∂S/∂V)T = 
1

T
 [p + (∂U/∂V)T = (∂p/∂T)V

 (vi) (∂U/∂V)T = T (∂p/∂T)V – p

(vii) Cp – CV = T (∂p/∂T)V (∂V/∂T)p = –T (∂V/∂T)2
p / (∂V/∂p)T =

T V

T

a

k

2

(i) (∂U/∂V)T

 (ii) Cp – CV = R for one mole of an ideal gas

  (b) Evaluate (∂U/∂V)T

  (c) By integrating the total differential dU CV
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U = CV T – 
a

V
 + U¢

U ¢ U V at constant

T and (ii) change of T at constant V.

(i) dS = 
C

T

p
 dT – V a dp       (ii) (∂T/∂p)S = (∂V/∂S)p

 (iii)  (∂S/∂T)p = Cp /T   (iv) (∂S/∂p)T = V – T(∂V/∂T)p

(v) (∂S/∂p)T = 
1

T
 [(∂H / ∂p)T – V ∂V / ∂T)p = – V a

 (vi) m  = 
( / ) – ( –1)p

p p

T V T V V T

C C

∂ ∂
=

α

∂H/∂p)T

  (b) m

  (c) Using dS = 
C

T

p
 dT – Va dp or dS = 

C

T
TV

T

d +
a

k
 dV

(i) T V

V

CS

p T

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

κ
α

(ii) p

p

CS

V T V

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠ α

and  (iii) –
1

where
pT

VS

CV

V p C

⎛ ⎞∂
= =⎜ ⎟∂⎝ ⎠

κ γ
γ

(i)
T

S R

V V

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
(ii)

, mV

V

CS

T T

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

n of an ideal gas undergoes 

a change from T1 V1 to T2 V2

D S = n 2 2
, m

1 1

ln lnV

T V
C R

T V

⎡ ⎤
+⎢ ⎥

⎣ ⎦
T1 p1 to T2 p2 is

D S = n 2 1
, m

1 2

ln lnp

T p
C R

T p

⎡ ⎤
+⎢ ⎥

⎣ ⎦
D Ssys D Ssurr and D Stotal

  (c) Adiabatic reversible change.

  (d) Adiabatic irreversible change.

D S
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D S
temperatures are brought together.

(i.e. S S – S p p

H number of heads and T number of 

N

W = 
N

H T

!

! !

W
H

N

  for the values of N W

justify the statement that:

A

H/N H : T

A H/N ratio of the 

S = k ln W

k

4.23 Using the equation S = k ln W

V1 to V2

to the volume of the gas).

S = k ln W

∂U/∂V)T

form p = T f (V).

∂H/∂p)T

form V = T f (p).

∂U/∂V)T ∂H/∂p)T

is pV/T = constant.
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TRY YOURSELF PROBLEMS

the source temperature by D T D T

temperature (T1) from its hotter surroundings (T2) is proportional to T2 – T1

temperature difference T2 – T1 is proportional to (T2 – T1)2/T1.

    [Hint: dw/dt = d (qc/h¢ )/dt = (1/h¢) dqc/dt =

{(T2 – T1)/ T1 A(T2 – T1 μ (T2 – T1)2/T1

of the system are as indicated on the scale of the diagram. The heat capacities of 

the system are Cp
–1 mol–1 and CV

–1 mol–1.

Ú dqrev along each part of the cycle. The sum of these is 

 Ú  dqrev

Ú d(qrev /T ) along each part of the cycle. The sum of these

  is  Ú  d(qrev/T

 Ú d(qrev/T

[Ans. (a) q w

p and T.

p and T.

  (c) One mole of a gas (not necessarily ideal) is compressed reversibly and 

adiabatically.

  (d) One mole of gas (not necessarily ideal) is compressed reversibly and 

isothermally.
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into a vacuum chamber and thereby increases its volume.

4.4 Derive the relations

Cp = ;
S

p
VT

T

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

α p

VS T

Cp p

V C V

∂ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

–

T

S
V

p

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

α ; T

p

S

V

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
α κ

pVm = RT + Bp B = f (T

2

2
m m

d

d( – )
T

U RT B

V TV B

⎛ ⎞∂
=⎜ ⎟

∂⎝ ⎠
∂S/∂Vm)T ∂S/∂p)T and (∂H/∂p)T.

D S

D Sirr = D Srev D Sirr > D Srev   and    D Sirr < D Srev

∂p/∂V)T (∂T/∂p)S (∂S/∂T)p is equivalent to – (∂p/∂T)V.

D U = q + w

2

q

D S = 
d 0

0
q

T T
= =∫ ∫

statement.

p2

p1

(iii)    A compression at constant pressure p1

p – V

( – 1) /

1

2

(– )
1 –

w p

q p

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

γ γ

g = Cp /CV and q

– –
pT T

U V V
T p

p T p

⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
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  and that

T V T

H p p
T V

V T T

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

D S

2O(s) Æ 2 2O(l) Æ 2O(g)

2 2(g) Æ 2(g) + N2(g) Æ N2 4(l)

  (c) O2(g) + N2(g) Æ 2 and O2 2(g) Æ
  (g) Dissolution of a solute in a solvent

  (h) (1/2) N2 2(g) Æ 3(g)

2

2

2

2

2

2

N2 2(g) Æ 3(g)

N2O4(g) Æ 2NO2(g)

2 2(g) Æ 2

( / )
– ;

(l / )T V

U p T

V T

⎛ ⎞∂ ∂⎛ ⎞ = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

( / )

(1/ )
T p

H V T

p T

⎛ ⎞ ⎛ ⎞∂ ∂
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

NUMERICAL PROBLEMS

Ans.

∫ –1

–1

Ans. –1)

–1.

Ans.

(Ans.
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6 6 a = 1.24 ¥ –3 –1 and kT ¥ –1

a and kT
–1 mol–1

Ans.

Ans. –1 mol–1)

D S for 2 mol of NO2

Cp  of NO2 as Cp
–1 mol–1

¥ –3 (T Ans. –1)

V1 to

V1. Determine the value of D Sgas D Ssurr and D Stotal

–1 of heat is less absorbed 

than in step (i).

Ans. –1 –1

–1 –1 –1

–1 –1)

Ans.

Ans. –1)

D S
Cp

     Cp
–1 mol–1 ¥ –3 (T Ans. –1)

–1 mol–1

Cp
–1 mol–1 ¥ –3 (T

(Ans. –1 mol–1)

Cp
–1 mol–1 ¥ –4 –1) (T

–1. The heat capacity of 
–1 mol–1

–1. Determine the increase in 

Ans. –1 mol–1)

Cp
–1 mol–1 T

–1 mol–1. The molar change in enthalpy on 
–1 mol–1

D S for the change of state

2 Æ 2

(Ans. –1 mol–1)

Entropy as a Function 

of Temperature and 

Volume

Entropy as a Function 

of Temperature and 

Pressure
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pV = n(RT + Bp B 3 mol–1 and for 

Cp
–1 mol–1 ¥ –3 (T

  undergoes (in an irreversible process) the change in state

Æ
D U D H and D S. (Ans. –1)

4.14 A gas obeys the equation of state p(Vm – b) = RT

1 dm3 3 CV
–1 mol–1 ¥ –3(T

and b 3 mol–1. (Ans. –1 mol–1)
–1. During 

Ans.

D S 2 Æ 2

Cp 2
–1 mol–1 Cp 2

–1 mol–1

   D H –1

from the obtained value of D S Ans. –1 mol–1

2 Æ 2 D r H –1

    Cp
–1 mol–1

    Cp
–1 mol–1

D rS 2 Æ 2

also D Ssurr and D Stotal

(Ans. D rSsys
–1 mol–1 D Ssurr

–1 mol–1

D Stotal
–1 mol–1)

2 Æ 2

is negligible and

    Cp Cp

(Ans. D rSsys
–1 mol–1 D Ssurr

–1 mol–1

D Stotal

Æ

(Ans. D Ssys
–1 D Ssurr

–1 D Stotal
–1)

–1 g–1 and the enthalpy of 
–1

D S > Ú dq/T holds for this irreversible process.

(Ans. –1 –1)

2 Æ 2 Ans. –1)

Entropy Changes in 

a Real Gas

Reversible and 

Irreversible Processes



Second Law of Thermodynamics

2 Æ 2

rH
–1

S for the system and the surroundings.

(Ans. –1 mol–1 –1 mol–1)

Ssys for the reaction

2 2

Ssurr

Cp
–1 mol–1

      Cp
–1 mol–1

(Ans. Ssys
–1 Ssurr

–1 Stotal
–1)

  (c) The reaction

2 p 2 p

  represents an equilibrium reaction for some pressure p called the vapour pressure. 

Ans. p

H

3 3
–1

S

    Cp 3
–1 mol–1

    Cp 3
–1 mol–1

S H

S

3 Æ 3

(Ans. –1 S –1 H

Ssurr
–1 Stotal Ssys

–1)

Cp
–1 mol–1

        Cp 2
–1 mol–1

r H for the reaction

2 Æ 2
–1

Ans. –1 mol–1)

V1 to V2

Sgas Sreservoir and

Stotal system. (Ans. –1 –1

Sgas Sreservoir Stotal system.

(Ans. –1 –1 –1)
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D Sgas D Sreservoir and (iii) D Stotal system.

(Ans. –1 –1)

ortho

ortho

has a mole fraction of 1/9.     (Ans. –1 mol–1)

–1 –1

–1 –1

–1.

(Ans. –1 mol–1)

MISCELLANEOUS NUMERICALS

4.26 A possible equation of state for a liquid is

    V = V [1 + a t – kT (p

V t is temperature in 

a and kT

    
∂
∂

Ê
ËÁ

ˆ
¯̃

S

p T

 = – V a
∂
∂

Ê
ËÁ

ˆ
¯̃

S

V T
 = a /kT

    
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p T

 = V  [1 – a kT (p

D S and D H
a = 2.1 ¥ –4 –1 and

kT ¥ –6 –1.) (Ans. –1

   Cp 3
–1 mol–1

   Cp 3
–1 mol–1 ¥ –4 (T ¥  (T 2

   D vapH 3
–1

(Ans. –1)

a ¥ –4 –1 and (∂a/∂T)p = 9.6 ¥ –6 –2 V 3 g–1. Determine the

value of (∂Cp /∂p)T

(Ans. ¥ –3 –1 g–1 –1)

4.29 Suppose the amount dq of heat is transferred from a thermal reservoir at T1 to a 

thermal reservoir at T2

     dS = 
d dq

T

q

T2 1

-

   (i) T1 > T2

    (ii) T1 = T2 for the entire system to be at thermal equilibrium.

Residual Entropy

Third-law Entropy
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g = 4/3) in a state A(22.4 dm3

3

   (i)   State A Æ State B(22.4 dm3

   (ii)   State A Æ State D(33.6 dm3 Æ

(Ans. –1 mol–1 –1 mol–1

–1 mol–1 –1 mol–1)



We have already seen that for all reversible processes, the total change in entropy 

(D Stotal = D Ssys + D Ssurr) is zero and for all irreversible processes or natural 

processes, the value of total entropy increases, i.e.

D Stotal = 0, for a reversible process 

D Stotal > 0, for an irreversible process

Thus for an irreversible process, the total entropy goes on increasing and when the 

equilibrium is reached (where no further process takes place), the entropy attains 

a maximum value. No further change in entropy is possible at the equilibrium 

stage. Thus 

D Stotal(equilibrium) = 0

This criterion of equilibrium is very general and is not much useful because it 

requires knowledge not only of the possible processes in the system, but also of 

what the interaction with the surrounding might be. It will be desirable and also 

more useful to have a criterion which depends on the state of the system only.

of thermodynamics.

dq = dU – dw (5.1.1)

Here dw represents all types of work (including type p-V work) that is involved 

in system undergoing a general process.

The value of dq is related to entropy via second law of thermodynamics, that is 

dqrev = T dS

Since dqirr < dqrev

we get dqirr < T dS

Thus, in general, we have 

dq £ T dS

where the ‘less than’ sign is for an irreversible process and ‘equality’ sign is 

equilibrium for a reaction that is in progress (i.e. spontaneous or irreversible 

reaction), we retain only a ‘less than’ sign. Thus for a spontaneous reaction, we have 

Equilibrium Criteria,

A and G Functions5
5.1 CRITERIA FOR EQUILIBRIUM UNDER DIFFERENT CONDITIONS

Criterion of Total 

Change in Entropy

Limitation of 

Criterion of DStotal

Basic Expression 

to Establish other 

Criteria
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dq < T dS or T dS > dq (5.1.2)

Substituting Eq. (5.1.2) in Eq. (5.1.1), we get

T dS > dU – dw (5.1.3)

Equation (5.1.3) forms the basis for deriving the various criteria of equilibrium 

for a process that is taking place under different conditions such as under constant 

temperature and volume, constant temperature and pressure, etc. We derive below 

a few such criteria of equilibrium.

If the system undergoes only p-V work, then Eq. (5.1.3) reduces to

T dS > dU + pext dV

or extd
d d> +

pU
S V

T T
(5.1.4)

  If we impose the conditions that the process under consideration is taking place 

at constant energy and volume, then according to Eq. (5.1.4), we get 

dSU,V > 0 (5.1.5)

that is, under the conditions of constant U and V of the system, the entropy of 

the system will increase when a spontaneous process is taking place and its value 

goes on increasing as long as the reaction proceeds. When the reaction stops, i.e. 

when equilibrium is reached, it will attain a maximum value and thus dSU,V = 0. 

Thus, the criterion of equilibrium under the conditions of constant U and V is that 

Ssystem will attain a maximum value and dSU,V = 0.

  A system at constant energy and volume is, however, an isolated system because 

p-V work and energy in any form including heat cannot be exchanged between the 

system and the surroundings. Though this criterion depends only on the system, 

yet it is not a practical one.

Equation (5.1.4) can be rewritten as

dU < T dS – pext dV (5.1.6)

If the reaction is taking place under the condition of constant S and V, i.e. dS = 0

and dV = 0, we have

dUS,V < 0 (5.1.7)

  In this case, a decrease in the energy of the system is observed during the 

spontaneous process. When the energy attains a minimum value (i.e. no further 

decrease can be observed), the process ceases and it attains the equilibrium position. 

Thus, the criterion for a process to be at equilibrium under the conditions of constant 

S and V is that the energy function attains a minimum value and thus dUS,V = 0.

Again this criterion is not a practical one.

Equation (5.1.3) can be rewritten as

dw > dU – T dS (5.1.8)

The symbols dw represents the total work of all types that is involved in the system 

have

Criterion when 

Internal Energy 

and Volume are 

Constants

Criterion when 

Entropy and 

Volume are 

Constants

Criterion when 

Temperature 

and Volume are 

Constants
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d(TS) = T dS (constant T)

and Eq. (5.1.8) becomes

dw > d(U – TS) (constant T) (5.1.9)

Since the expression (U – TS) contains only state functions, it also represents a 

state function. It is represented by the symbol A (from the German Arbeit which 

means work). Thus

A = U – TS (5.1.10)

The function A being a state function, the change in its value while proceeding 

from state 1 to state 2 does not depend upon the path and is always determined 

following the reversible path (or paths) connecting the two states. For a reversible 

process, we will have

dwmax = dA (constant T)

or wmax = D A (constant T) (5.1.11) 

involved is different from wmax, yet D A has the same value in both cases. 

  The function A is called the work function or the work content or the Helmholtz 

free energy (or simply Helmholtz energy or Helmholtz function). The name free 

energy was given to this function by Helmholtz because the decrease in A (i.e. 

D A = –ve) represents the maximum amount of energy that is free or available for 

being converted into work (i.e. wmax < 0). Rewriting Eq. (5.1.9), we have

dw > dA (constant T)

or dA – dw < 0 (constant T) (5.1.12)

If we assume that the system can do only p-V work and that it is subjected to 

constant volume condition, then it is obvious that 

dw = 0

If the temperature of the system is also kept constant then from Eq. (5.1.12), it 

follows that

dAT, V < 0 (5.1.13)

that is, for a spontaneous process, occurring at constant T and V, the value of 

the function A for the system will decrease and it will continue to decrease as 

long as the process proceeds. Since A = U – TS, therefore dA = dU – T dS. Thus, 

it follows that the Helmholtz free energy decreases as a result of a decrease in 

energy (i.e. dU = –ve) and increase in the entropy (i.e. dS = +ve) of the system. 

When equilibrium is reached, it will attain a minimum value. Thus, at equilibrium

dAT,V = 0 for any process.

We now develop the criterion for equilibrium appropriate for the conditions which 

are important in chemistry, namely, constancy of temperature and pressure. In order 

of the net work (i.e. nonmechanical) and p-V work (i.e. mechanical): 

dwtotal = dwnet + dwp-V

= dwnet – pext dV (5.1.14)

Criterion when 

Temperature and 

Pressure are 

Constants
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Now from Eq. (5.1.8), we have

dw > dU – T dS

i.e. dwnet – pext dV > dU – T dS

If pext = psys = p, we will have

dwnet > dU + p dV – T dS

Since H = U + pV, for a process at constant pressure, we have

dH = dU + p dV (constant p)

Substituting this in the previous expression, we get

dwnet > dH – T dS (constant p)

and if the process is also carried out at constant temperature when d(TS) = T dS,

then

dwnet > dH – d(TS) (constant T and p)

or dwnet > d(H – TS) (constant T and p) (5.1.15)

G = H – TS (5.1.16)

  The function G is a state function because it is composed of functions of the 

state and therefore its differential is exact. This function is called Gibbs free energy

(or simply Gibbs energy or Gibbs function). Thus, we have

dwnet > dGT, p (5.1.17)

or dGT, p < dwnet

  If the spontaneous process is carried out in such a way that no net work is 

involved, dwnet = 0, then from the above expression, we get 

D GT, p < 0

that is, for a spontaneous process occurring at constant T and p, there occurs 

a decrease in free energy of the system and this decrease is continued till the 

equilibrium is reached. At this state, G attains a minimum value and hence

dGT, p = 0.

For a reversible process, we will have

dwnet = dGT, p

that is, the decrease in Gibbs free energy (i.e. dGT, p = –ve) for a reversible process 

is equal to the net amount of nonmechanical work that can be obtained (i.e. dwnet

= –ve) from the system.

If G is the free energy of a state neighbouring the equilibrium state and G0 is that 

of the equilibrium state, then

dG = G – G0 (5.1.18)

  Regardless of the choice of neighbouring state, we have 

If  dG > 0  The equilibrium is stable

dG = 0  The equilibrium is neutral

dG < 0  The equilibrium is unstable

Physical Interpre-

tation of Gibbs 

Function

Stability of 

Equilibrium
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x from the equilibrium state, the change 

in free energy is given by

eq

d d
G

G
x x

x
x =

∂Ê ˆ= Á ˜Ë ¯∂
(5.1.19)

  Hence, regardless of the value of dx , the system will be at equilibrium if

(∂G/∂x )x =x eq
 has a zero value. But to examine the stability of the equilibrium, 

higher derivatives are needed as described in the following.

Let us assume the existence of a Taylor series for the free energy at the 

equilibrium state (assuming that there exists no discontinuity in the value of G or 

any of its derivatives at the quilibrium state). We will have

dG = G – G0

  =

eq eq

2
2

2

1 1

2 !x x x x x x

x x x
x x x= = =

Ê ˆ Ê ˆ∂ ∂ ∂Ê ˆ + + + +Á ˜ Á ˜ Á ˜Ë ¯∂ Ë ¯ Ë ¯∂ ∂
eq

n
n

n

G G G

n

(5.1.20)

At equilibrium (∂G/∂x )x =x eq
 = 0. If (∂2G/∂x 2)x =x eq

 > 0, the sign of dG will be 

positive, since x 2 is always positive. This leads to a stable equilibrium.

  If (∂2G/∂x 2)x =x eq
 = 0, then there is a need of examining the higher derivatives. 

A nonzero value of (∂3G/∂x 3)x =x eq
may result in the negative value of dG as x 3

can have positive or negative value, and thus equilibrium will be unstable.

  If (∂3G/∂x 3)x=x eq
 = 0, then the equilibrium will be stable if (∂4G/∂x 4)x =x eq

 > 0

since x 4 always has a positive value. If this derivative is zero, then higher 

derivatives have to be examined.

  For a chemical reaction, dG is taken to be zero if (∂G/∂x )x = x eq
 = 0 and 

the stability of equilibrium is rarely studied, because the equilibrium is attained 

spontaneously, it is necessarily stable. It is for this reason, ∂G/∂x 
a thermodynamic driving force toward the equilibrium state.

The criterion of D G < 0 for predicting the spontaneous nature of a process is 

completely equivalent with that of D Stotal > 0. This equivalence can be shown as 

follows.

The free energy change D Gsys of an isothermal process is given by

D Gsys = D Hsys – T D Ssys (5.2.1)

5.2  RELATION BETWEEN DG AND DStotal FOR AN ISOTHERMAL AND ISOBARIC 

PROCESSES
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where D Hsys and D Ssys are the enthalpy and entropy changes of the system, 

respectively. Under the condition of constant pressure, we have

D Hsys = qp (5.2.2)

where qp is the heat transferred between the system and the surrounding. If a given 

system gains heat than surroundings supply equivalent heat and vice versa. Thus, 

it is obvious that

qsurr = – qp (5.2.3)

If it be assumed that the above transfer of heat is done reversibly by surroundings 

at constant temperature T, then

D Ssurr = 
syssurr pq Hq

T T T

D
= - = - (5.2.4)

or D Hsys = – T D Ssurr

Substituting this in Eq. (5.2.1), we have 

D Gsys = – T D Ssurr – T D Ssys

= –T (D Ssurr + D Ssys)

= –T D Stotal (5.2.5)

Thus, if D Stotal is positive, D Gsys in negative and vice versa.

The prediction of the nature of the expansion process of an ideal gas from the sign 

of D Stotal is, in fact, based on the principle of comparing entropy change of the 

surroundings under the given conditions with that under the reversible conditions. 

If the two values are different, the actual process is irreversible in nature. Let 

qactual be the amount of heat absorbed (or released) by the system from (or to) 

its surroundings. It is assumed that the surroundings supply (or gain) this heat 

reversibly at temperature T, then

(D Ssurr)actual = actualq

T
- (5.2.6)

Now if the same process were carried out reversibly, we would have

(D Ssurr)rev = – D Ssys = 
revq

T
- (5.2.7)

  While determining D Stotal, we, in fact, compare (D Ssurr)actual with (D Ssurr)rev

as shown below.

D Stotal = D Ssys + D Ssurr

= – (D Ssurr)rev + (D Ssurr)actual (5.2.8)

= rev actualq q

T T
- (5.2.9)

  Now if the actual process is carried out reversibly, it is obvious that

qactual = qrev

Reversible and 

Irreversible Nature 

of Isothermal 

Expansion of an 

Ideal Gas
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or (D Ssurr)actual = (D Ssurr)rev (5.2.10)

and thus D Stotal = 0 (5.2.11) 

  In other words if D Stotal = 0 for an actual expansion process we say that the 

process is reversible in nature. Now if the actual process is carried out irreversibly 

(or spontaneously) then 

qactual < qrev or –qactual > – qrev

or (D Ssurr)actual > (D Ssurr)rev

and thus D Stotal = positive (5.2.12)

  In other words, if D Stotal > 0 for an actual process, we say that the process 

is irreversible in nature. Now since qirr can never be greater than qrev for any 

irreversible process, it is obvious that D Stotal can never be negative. In other 

words, if we get D Stotal negative for a process, we say that the process can never 

occur in actual practice. In fact, the process will have a tendency to proceed in 

the reverse direction.

Coming to the criterion of G, we write

D G = D H – T D S (5.2.13)

where D H and D S are respectively the enthalpy and entropy changes of the system. 

Now D S of the system is always to be calculated following the reversible path 

T,

we have 

D Ssys = – (D Ssurr)rev = revq

T
(5.2.14)

For an ideal gas

D Hsys = 0 (5.2.15)

Equation (5.2.13) therefore becomes

D G = – T D Ssys = T(D Ssurr)rev = – qrev (5.2.16)

  Since q is positive for isothermal expansion of an ideal gas, the sign of D G
is negative. This implies that the expansion of an ideal gas from a given volume 

V1 (or pressure p1) to a larger volume V2 (or lesser pressure p2) is a spontaneous 

process. Note that the said expansion may be carried out reversibly or irreversibly, 

but how exactly it is achieved, is not answerable unless we take into account of q

actually involved in the expansion process.

Consider a general chemical equation

0 = Â
B

B Bn

  The amount of species with the progress of reaction is given by the expression

nB = (nB)0 + nBx 

where (nB)0 is the amount of species B in the beginning of the reaction and nB is 

the corresponding amount when the reaction has proceeded to the extent x .

5.3 GIBBS FREE-ENERGY CHANGE OF A CHEMICAL EQUATION
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of species B is

dnB = nB dx 

The corresponding Gibbs free-energy change of the reaction is

dG = Â = Â
B

m B
B

m BB d B dG n G( ) ( ) ( )n x

D rG = 
∂
∂

Ê
ËÁ

ˆ
¯̃

= Â
G

G
T px

n
,

( )
B

m m B (5.3.1)

that is, Gibbs free energy change of a reaction is the rate of change of Gibbs free 

energy with extent of reaction. It is equal to the free energy change per unit extent 

of reaction. The unit of D rG is J mol–1.

The D rG of a reaction is related to its D rH and D rS by the expression

D rG = D rH – T D rS

The reactions having D rG negative are known as exergonic reactions while those 

having D rG positive are known as endergonic reactions.

For a reaction to be feasible, its D rG should be negative, i.e.

D rG = D rH – T D rS < 0

  This implies that decrease in D r H and increase in D r S favour a chemical 

reaction. The latter condition becomes more important at higher temperatures.

  We can distinguish the following four cases depending upon the values of 

D rH and D rS.

Reactions with these characteristics can be carried out at any temperature, since 

for this D rG will be all the time negative. Example is:

2H2O2(g) Æ 2H2O(g) + O2(g)

D rH°
298K = – 211.29 kJ mol–1; T D rS°

298K = 39.33 kJ mol–1

D rG°
298K = – 250.62 kJ mol–1

Reactions can be carried only when |T D rS | < |D rH |, since only then D rG will 

have a negative value. The reaction must be strongly exothermic to overcome the 

handicap of the entropy decrease; at very high temperature –T D rS overcomes 

D rH and then the reaction can no longer proceed. Examples are:

(a) 3H2(g) + N2(g) Æ 2NH3(g)

D rH°
298K = – 92.22 kJ mol–1; T D rS°

298K = –59.23 kJ mol–1

D rG°
298K = – 32.99 kJ mol–1

(b) H2(g) + 
1

2
O2(g) Æ H2O(l)

D rH°
298K = – 285.83 kJ mol–1; T D rS°

298K = –48.68 kJ mol–1

D rG°
298K = – 237.15 kJ mol–1

Exergonic and 

Endergonic Reactions

Driving Forces of 

a Reaction

When Dr H < 0 and 

DrS > 0

When Dr H < 0 and 

DrS < 0
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Reactions can proceed only if T D rS > D rH, i.e. temperature of the reaction should 

be such that entropy factor T D rS predominates over the D rH factor. Examples are 

(a) N2O4(g) Æ 2NO2(g)

D rH°
298K = 57.20 kJ mol–1; T D rS°

298K = 52.40 kJ mol–1

D rG°
298K = 4.80 kJ mol–1

  Since for a spontaneous reaction, D r G should be negative, it is obvious that 

the decomposition of N2O4(g) to NO2(g) will not be spontaneous. However, at a 

higher temperature |T D S | becomes larger then D r H which makes D r G negative 

and thus the reaction becomes spontaneous in nature.†

(b) Ag(s) + 1
2  Hg2Cl2(s) Æ AgCl(s) + Hg(1)

D r H°
298K = 5.54 kJ mol–1; T D r S°

298K = 9.96 kJ mol–1

D rG°
298K = – 4.42 kJ mol–1

  Another examples of a reaction in which entropy dominates energy in 

determining the direction of reaction is the hard boiling of an egg. Egg albumen is 

protein whose structure is maintained in part by an immense number of hydrogen 

bonds. During the process of boiling, the hydrogen bonds are broken and much of 

disordering of the system produced by the collapse of the structure of the protein 

molecules, and expressed as T D S, is more than enough to counteract the large 

D H required to break all the hydrogen bonds. The result is that D G is negative 

and reaction at or above such a temperature is spontaneous.

Both the factors make D rG more and more positive and, therefore, such type of 

reactions are prohibited at all temperatures. Examples include:

N2(g) + 2O2(g) Æ 2NO2(g)

D rH°
298K = 66.36 kJ mol–1; T D r S°

298K = –36.29 kJ mol–1

D rG°
298K = 102.65 kJ mol–1

† Note: The decomposition reaction of N2O4 is, in fact, an equilibrium reaction, i.e.

N2O4  2NO2

The degree of dissociation of N2O4 at equilibrium is 0.19, i.e. if we start with pure N2O4

19% of it is decomposed into NO2. The calculated value of D rG°
298K = 4.80 kJ mol–1 predicts 

that one mole of N2O4 cannot be completely decomposed into NO2. To determine whether 

N2O4 decomposes or not and if yes, to what extent, the change in the total free energy of 

the system with extent of reaction (i.e. ∂Gtotal/∂x ) must be evaluated at various stages of 

decomposition (see Section 7.13). If the quantity comes out to be negative, it implies that dx 

amount of N2O4 can decompose into NO2. A positive value implies that the decomposition 

of amount dx  of N2O4 to NO2 is not possible. The decomposition reaction continues till 

(∂Gtotal/∂x ) becomes zero.

When DrH > 0 and 

DrS > 0

When DrH > 0 and 

DrS < 0



Equilibrium Criteria, A and G Functions 265

  These four cases are tabulated below.

 D rH D rS D rG Comment

– + – Always spontaneous

+ – + Never spontaneous

– – ? D rG depends upon

+ + ? conditions

1. It may be pointed out that thermodynamics cannot predict the rate of chemical 

reactions. What it can tell is whether a given reaction is feasible or not. If it is, and 

if its rate is very slow, than a suitable catalyst can be chosen which can accelerate 

the reaction. The value of D rG for the reaction is independent of the catalyst used.

No catalyst can be used for a thermodynamically prohibited reaction.

2. We know that at equilibrium D rG = 0, which gives rise to D rH = T D r S and 

hence Teq = D rH/D r S. If both D r H and D r S are positive, then the tendency towards 

greater randomness measured by D rS and weighed by multiplication with T, is just 

negative, the exothermic character of the reaction just compensates for the decrease 

in randomness again weighted by T.

3. Since D r G = D r H – T D rS, it follows that at low temperatures enthalpy changes 

dominate the D rG expression whereas at high temperature it is the entropy changes 

which dominate the value of D rG. Take, for example, the reaction 

H2O(l) Æ H2O(g)

  A change in the value of D rH with temperature of this reactions follows the 

equation

D r HT2
 – D r HT1

 = (D r Cp) D T = {Cp,m(g) – Cp,m(l)}{T2 – T1}

Since Cp,m(1) > Cp,m(g), it follows that D rH of this reaction decreases with increase 

in temperature. The value of T D rS will increase with increase in temperature since 

the reaction is attended to by an increase in entropy. Thus

At lower temperatures, D vapH > T D vap S and D vap G = +ve

At higher temperatures, D vapH < T D vap S and D vap G = –ve

Computation of Boiling Point of a Liquid In between when D vapH = T D vapS

and D vapG = 0, the system will be at equilibrium. The temperature at which this 

exist, is the boiling point of the liquid. It can be computed from the expression

Tb = D vap H/D vap S. At this point, heat given to the system is utilized only in 

increasing the entropy of the system at constant temperature.

Sulphur exists in more than one solid form. The stable form at room temperature is rhombic 

sulphur. But above room temperature the following reaction occurs: 

S(rhombic) Æ S(monoclinic)

Thermodynamic measurements reveal that at 101.325 kPa and 298 K, D rH = 276.144 J 

mol–1 and D rG = 75.312 J mol–1.

(a) Compute D rS at 298 K.

¸
˝
˛

A Few Comments 

Regarding Free 

Energy Change of 

a Reaction

Example 5.3.1
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(b) Assume the D rH and D rS Teq, the 

temperature at which rhombic and monoclinic sulphur exist in equilibrium with each other.

(a) Since D rG = D rH – T D rS, therefore

D rS = 
1 1

r r 276.144 J mol 75.312 J mol

298 K

H G

T

- -D - D -
=

= 0.674 J K mol

(b) When the rhombic sulphur is in equilibrium with monoclinic sulphur, we would have

D G = 0 = D rH – TeqD rS

Thus Teq = 
1

r
1 1

r

276.144 J mol
409.7 K

0.674 J K mol

-

- -
D

= =
D

H

S

4. Since G is a state function, therefore, D G value for any given process does 

not depend upon the path. Values of D rG for different chemical reactions may be 

combined in the same way as the chemical equations of the reactions considered 

may be combined into the equation of a new reaction. The following two examples 

illustrate the procedure. 

(i)  Consider the reaction

S(rhombic) + 3
2

O2 (g) Æ SO3 (g)

for which D rG° is required. Its value can be determined from the following two 

reactions:

S(rhombic) + O2(g) Æ SO2(g)   D rG°
1 =.–300.19 kJ mol–1

SO2(g) + 1
2 O2 (g) Æ SO3(g)   D rG°

2 = –70.87 kJ mol–1

   Adding these two reactions, we get 

S(rhombic) + 3
2

O2 (g) Æ SO3(g)

D rG° = D rG°
1 + D rG°

2 = –371.06 kJ mol–1

(ii) Suppose D rG° for the following reaction is required. 

8H+ + MnO–
4 + 5Fe2+ Æ 5Fe3+ + Mn2+ + 4H2O(1)

   This can be done by combining the following two reactions: 

16H+ + 2MnO–
4 + 10Cl– Æ 5Cl2(g) + 2Mn2+ + 8H2O(1)

     D rG°
1 = – 182.81 kJ mol–1

Cl2(g) + 2Fe2+ Æ 2Fe3+ + 2Cl–   D rG°
2 = – 113.55 kJ mol–1

the two, we get the required equation, D rG° for which will be:

D rG° = 1
r 1 r 2

1 5 1 5
( 182.81) ( 113.55) kJ mol

2 2 2 2

∞ ∞ -ÈÊ ˆ Ê ˆ ˘D + D = - + -Í ˙Ë ¯ Ë ¯Î ˚
G G

=

Solution

° °
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The above procedure of computing the free energy change of a coupled reaction 

(adenosine triphosphate) from ADP (adenosine diphosphate) and Pi (inorganic 

phosphate) is carried out by coupling it with the exergonic combustion of glucose. 

C6H12O6 + 6O2 Æ 6CO2 + 6H2O D rG = – 2 870 kJ mol–1

36ADP + 36Pi Æ 36ATP + 36H2O D rG = 1 205.0 kJ mol–1

C6H12O6 + 6O2 + 36ADP + 36Pi Æ D rG = –1 665 kJ mol–1

36ATP + 6CO2 + 42H2O

  The energy that is not trapped in ATP synthesis is used in maintaining normal 

body temperature.

Calculate D rG° for the reaction

C(graphite) + 2H2(g) + N2(g) + 
1

2
O2(g) Æ CO(NH2)2

from the following data

(i) CO2(g) + 2NH3(g) Æ H2O(g) + CO(NH2)2; D rG°
1 = 1.91 kJ mol–1

(ii) H2O(g) Æ H2 (g) + 
1

2
O2 (g); D rG°

2 = 227.44 kJ mol–1

(iii) C(graphite) + O2(g) Æ CO2(g); D rG°
3 = – 394.38 kJ mol–1

(iv) N2(g) + 3H2(g) Æ 2NH3(g); D rG°
4 = –32.43 kJ mol–1

The given reaction is

C(graphite) + 2H2(g) + N2(g) + 
1

2
O2(g) Æ CO(NH2)2

The above reaction can be obtained by adding the given reactions. Thus, we have 

D rG° = D rG°
1 + D rG°

2 + D rG°
3 + D rG°

4 = –197.46 kJ mol–1

There are two methods for computing the free energy change of a reaction.

Suppose the free energy change of a reaction

2N2O5(g) Æ 4NO2(g) + O2(g)

is required. The required data for the computation are as follows. 

2N2O5(g) Æ 4NO2(g) + O2(g)

 D fH°/kJ mol–1 11.3 33.18 0

S °/J K–1 mol–1 355.7 240.06 205.14

Now the enthalpy of reaction and entropy of reaction are

D r H° = Â nB D f H°(B)

= 4 D f H°(NO2, g) + D f H°(O2, g) – 2 D f H°(N2O5, g)

= [4 × 33.18 + 0 – 2 × 11.3] kJ mol–1

= 110.12 kJ mol–1

Example 5.3.2

Solution
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D rS° = Â nB S°m(B)

= 4 S°m(NO2, g) + S°m(O2, g) – 2 S°m(N2O5, g)

= [4 × 240.06 + 205.14 – 2 × 355.7] J K–1 mol–1

= 453.98 J K–1 mol–1

Finally, at 298 K, we have

D rG° = D rH° – T D rS°

= 110.12 kJ mol–1 – (298 K) (453.98 × 10–3 kJ K–1 mol–1)

= – 25.17 kJ mol–1

It has been suggested that a-cyanopyridine might be prepared from cyanogen and butadiene 

by the reaction

C4H6(g) + C2N2(g) Æ C6H4N2(s) + H2(g)

  In view of the thermodynamic data given below, would you consider it worthwhile to 

attempt to work out this reaction?

Molecule D f H°(298 K)

kJ mol–1

S°(298 K)

J K–1 mol–1

Butadiene(g) 111.9 277.9

Cyanogen(g) 300.5 241.2

a-Cyanopyridine(s) 225.2 322.5

H2(g) 0.0 103.6

We have

D r H° = D f H°(a-cyanopyridine) – D f H°(butadiene) – D f H°(cyanogen)

= (225.2 – 111.9 – 300.5) kJ mol–1

= –187.2 kJ mol–1

D r S° = S°(a-cyanopyridine) + S°(H2) – S°(butadiene) – S°(cyanogen)

= (322.5 + 103.6 – 277.9 – 241.2) J K–1 mol–1

= –93 J K–1 mol–1

D r G° = D r H° – T D r S°

= –187.2 kJ mol–1 – (298 K) (–93 × 10–3 kJ K–1 mol–1)

= –159.486 kJ mol–1

Since D G° is negative, a-cyanopyridine can be prepared starting from cyanogen and 

butadiene.

and from these values the value of free energy of a reaction can be determined. 

the standard free energy of formation of a compound is the change 

in the standard free energy when one mole of the compound is formed starting from 

the requisite amounts of elements in their stable states of aggregation.

  By convention, the standard free energy of formation of every element in 

Example 5.3.3
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Using the Data on 

Free Energy of 

Formation
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  The standard free energy of formation of a few substances are recorded in 

Appendix I. Using these values, one can calculate the value of D rG° of a reaction 

using the expression 

D rG° = B f

B

(B)Gn D ∞Â

i.e., D rG° = B f B f

products reactants

(B) | | (B)G Gn nD ∞ - D ∞Â Â

  The following two examples illustrate the procedure. 

(i) 4NH3(g) + 5O2(g) Æ 4NO(g) + 6H2O(1)

  The values of standard free energy of formation of the involved species are

4NH3(g) + 5O2(g) Æ 4NO(g) + 6H2O(1)

D fG°/kJ mol–1 –16.45 0 86.57 –237.13

Thus,

D rG°
298K = B f

B

(B)Gn D ∞Â
= 4D f G°(NO, g) + 6D f G°(H2O, 1) – 4D f G°(NH3, g) – 5D f G°(O2,g)

= {4 × 86.57 + 6 (– 237.13) – 4 (– 16.45) – 0} kJ mol–1

= –1 010.7 kJ mol–1

(ii) Oxidation of Cl– by MnO2(s).

The reaction along with the appropriate values of D f G° is

4H+ + MnO2(s) + 2Cl– Æ Mn2+ + Cl2(g) + 2H2O(l)

D f G°/kJ mol–1 0 – 464.84 – 131.17 – 223.43 0 – 237.19 

Thus D r G° = D f G°(Mn2+) + 2D f G°(H2O) – D f G°(MnO2) – 2D f G°(Cl–)

= [–223.43 + 2 × (–237.19) – (–464.84) – 2(–131.17)] kJ mol–1

= 29.37 kJ mol–1

Compute D r H°, D rS°, T D r S°, D r G° and the equilibrium vapour pressure of the transformation

H2O(l) Æ H2O(g)

at temperatures 323.15 K, 348.15 K, 373.15 K, 398.15 K and 423.15 K. Given:

D fH°(H2O, 1, 298.15 K) = –285.83 kJ mol–1

D fH°(H2O, g, 298.15 K) = –241.82 kJ mol–1

S°(H2O, l, 298.15 K) = 69.91 J K–1 mol–1

S°(H2O, g, 298.15 K) = 188.83 J K–1 mol–1

Cp(H2O, l) = 75.29 J K–1 mol–1

Cp(H2O, g) = 33.58 J K–1 mol–1

Assume Cp’s to be independent of temperature.

We have

 D r H°
298.15K = D f H°(H2O, g) – D f H°(H2O, 1)

= [–241.82 – (–285.83)] kJ mol–1 = 44.01 kJ mol–1

 D r S°
298.15K = S°(H2O, g) – S°(H2O, 1)

= (188.83 – 69.91) J K–1 mol–1 = 118.92 J K–1 mol–1

Example 5.3.4

Solution
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D rCp = Cp(H2O, g) – Cp(H2O, 1)

= (33.58 – 75.29) J K–1 mol–1 = – 41.71 J K–1 mol–1

The values of D r H°
T, D r S°

T and D rG°
T at temperature T can be obtained by using the

expressions

D r H°
T = D r H°

298.15K + D rCp (T – 298.15 K)

D r S °
T = D rS°

298.15K + D rCp In
K

T

298 15.

Ê
ËÁ

ˆ
¯̃

D rG°
T = D r H°

T – T D r S °
T

For the transformation to be at equilibrium, we have 

(D rG°
T)eq = 0

or (D rS°
T)eq = r

∞D TH

T

  For the reaction to be at equilibrium, we must change D rS °
T to (D rS °

T)eq. If this change 

is carried out only by changing the vapour pressure of water, we will have

(D r S°
T)eq – D r S°

T = 
eq

ln
1 bar

p
R

Ê ˆ
- Á ˜Ë ¯

(Eq. 4.24.8)

where (D r S°
T)eq and (D r S°

T) are the entropy changes of the transformation at pressure peq

and 1 bar, respectively.

The calculated values of D r H°
T, D r S°

T, TD r S°
T, D r G°

T, (D r S°
T)eq and peq are recorded in Table 

5.3.1.

Table 5.3.1 Computing thermodynamic data for H2O(1) H2O(g) reaction

T/K
Dr

kJ mol

HT
∞
-1

Dr

kJ mol

ST
∞

- -1 1

T STDr

kJ mol

∞
-1

Dr

kJ mol

GT
∞
-1

Dr eq

J K mol

GT
∞( )

- -1 1

eq †

bar

p

323.15 42.97 115.56 37.34 5.63 132.97 0.123

348.15 41.93 112.45 39.15 2.78 120.44 0.383

373.15 40.88 109.56 40.88 0 109.56 1.0

398.15 39.84 106.86 42.55 –2.71 100.06 2.265

423.15 38.80 104.32 44.14 –5.34 91.69 4.56

† Thus at 1 bar external pressure, the transformation of liquid water to water vapour 

is spontaneous provided T > 373.15 K. At T < 373.15 K, the reverse of the process is 

spontaneous. In general, the above transformation will be spontaneous at temperature T

provided the external pressure (or the pressure of water vapour in equilibrium with liquid 

water) is smaller than the corresponding equilibrium vapor pressure.

  Alternatively, peq may be determined from the expression peq = exp(–D rG°
T/RT).

See Section 5.5.
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Taking the following typical example, justify the fact that the sulphide ores are generally 

roasted to oxides for the extraction of metals instead of being reduced directly.

Reaction
Dr

kJ mol

G
-1

Dr

kJ mol

H
-1

Dr

J K mol

S
- -1 1

2ZnS(s) + C(s) Æ Zn(s) + CS2(g) 469.7 528.6 158.2

2ZnS(s) + 3O2(g) Æ 2ZnO(s) + 2SO2(g) –834.4 –879.0 –146.9

2ZnO(s) + C(s) Æ 2Zn(s) + CO2(g) 242.2 303.1 203.8

The reduction of ZnS with C is an endergonic reaction (D rG = +ve) with positive value of 

both D rH and D rS. This reaction will be feasible only when T D rS becomes greater than

D rH. Assuming D rH and D rS to be independent of temperature, the temperature above 

which this reaction will be feasible is given as

Teq = 
D
D

r

r

J mol

J K mol
K

H

S
=

¥
=

-

- -
528 6 10

158 2
3 341

3 1

1 1

.

.

  Similarly, the reduction of ZnO with C is an endergonic reaction with positive values 

of D rH and D rS. However, the temperature at which this reaction becomes feasible is much 

lower than 3 341 K.

Teq = 
D
D

r

r

J mol

J K mol
K

H

S
=

¥
=

-

- -
303 1 10

203 8
1 487

3 1

1 1

.

.

  However, the coupled reaction, i.e. roasting of ZnS and simultaneously reduction, is 

feasible at all temperature as D rG is negative with negative value of D rH and positive value 

of D rS as may be seen from the following computation.

Reaction
Dr

kJ mol

G
-1

Dr

kJ mol

H
-1

Dr

J K mol

S
- -1 1

2ZnS(s) + 3O2(g) Æ 2ZnO(s) + 2SO2(g) –834.4 –879.0 –146.9

Add

2ZnO(s) + C(s) Æ 2Zn(s) + CO2(g) 242.2 303.1 203.8

2ZnS(s) + 3O2(g) + C(s) Æ
2Zn(s) + CO2(g) + 2SO2(g)

–592.2 –575.9 56.9

The Helmholtz free energy is given by

A = U – TS

Therefore  dA = dU – T dS – S dT

For a system involving only reversible q and p–V work, we have

dU = dqrev + dw = T dS – p dV

Substituting this in the previous expression, we get

dA = (T dS – p dV) – T dS – S dT

= – p dV – S dT (5.4.1)

Example 5.3.5

Solution

5.4 THERMODYNAMIC RELATIONS INVOLVING FUNCTIONS A AND G

Relations

Involving the 

Function A
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It follows from this that 

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

A

V
p

T

(5.4.2)

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

A

T
S

V

(5.4.3)

∂
∂

Ê
Ë

ˆ
¯ =

∂
∂

Ê
Ë

ˆ
¯

S

V

p

TT V

(5.4.4)

  Equation (5.4.4) is one of the Maxwell relations which was derived earlier (Eq. 

4.14.12) from the entropy dependence on T and V. Equations (5.4.2) and (5.4.3) 

describe how the function A varies with the change of V and T, respectively.

The negative signs in these two equations imply that the function A decreases with 

the increase in volume at constant temperature and with the increase in temperature 

at constant volume.

The Gibbs free energy is given by

G = H – TS

Therefore dG = dH – T dS – S dT (5.4.5)

Since H = U + pV

therefore dH = dU + p dV + V dp

For a system involving only reversible q and p–V work, we have

dU = T dS – p dV

Therefore dH = (T dS – p dV) + p dV + V dp = T dS + V dp

Substituting this in Eq. (5.4.5), we get

dG = (T dS + V dp) – T dS – S dT

  = V dp – S dT (5.4.6)

It follows from this that

∂
∂

Ê
ËÁ

ˆ
¯̃

=
G

p
V

T

(5.4.7)

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

G

T
S

p

(5.4.8)

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

S

p

V

TT p

(5.4.9)

  Equation (5.4.9) is another Maxwell relation which was derived earlier (Eq. 

4.15.14) from the entropy dependence on T and p. Equations (5.4.7) and (5.4.8) 

describe how the function G varies with p and T, respectively.

  Equation (5.4.7) implies that the increase in pressure increases the free energy 

at constant temperature. The larger the volume of the system, the greater the 

increase in free energy for a given increase in pressure. Thus, the free energy of a 

gas, which has a comparatively large volume, increases much more rapidly with 

pressure as compared to that of liquid or a solid (Fig. 5.4.1).

Relations Involving 

the Function G
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The negative sign in Eq. (5.4.8) indicates that the function free energy decreases 

with the increase in temperature at constant pressure. The rate will be greater for 

gases which have larger entropies than for liquids or solids (Fig. 5.4.2).

Show that for an ideal gas undergoing isothermal reversible expansion D G = D A.

The function G and A are given by

G = H – TS and A = U – TS

The function H is given by

H = U + pV

Substituting this in the function G, we get

G = (U + pV) – TS = (U – TS) + pV

or G = A + pV

Thus, for a process

D G = D A + D (pV)

Now for an isothermal expansion of an ideal gas, we have

D (pV) = D (nRT) = 0 as D T = 0

so that D G = D A

For a chemical reaction 

D rG° = Â ∞ = Â
B B

n nB m r B mB and BG A A∞ ∞( ) ( )D

Since G = A + pV, we have

G°
m = A°

m + pVm

With this, D rG° becomes 

D rG° = Â = Â +
B B

n nB m B m mB BG A pV∞ ∞( ) [ ( ) ]

Taking pVm  0 for condensed phase and pVm = RT for gasesous phases, we have

D r G° = n nB

B

m B
g

BÂ + Â( )A RT∞ ( )
B

= D r A° + (D ng)RT

Fig. 5.4.1  Variation of G

with T

Fig. 5.4.2  Variation of G

with T

Problem 5.4.1

Solution

5.5 RELATIONSHIP BETWEEN DrG° AND DrA°
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where D ng is the change in the stoichiometric numbers of gaseous species in going 

from reactants to products.

D rG° at 298 K for the following reaction is – 3.202 MJ mol–1.

C6H6(1) + 7
1

2
O2(g) Æ 6CO2(g) + 3H2O(1)

Find D rA° at 298 K

For this reaction

D ng = 6 7
1

2
1

1

2
- = -

Now D r G° = D r A° + D r (pV) = D r A° + (D ng)RT

or D r  A° = D r G° – (D ng)RT

Substituting the given values, we get 

D r A° = – 3.202 × 106 J mol–1 – {(–1.5) (8.314 J K–1 mol–1) (298 K)}

= – 3.202 × 106 J mol–1 + 3 716.36 J mol–1

= – 3.198 3 × 106 J mol–1 = – 3.198 3 MJ mol–1

Although the change in free energy is useful as a criterion of equilibrium for a 

system whose temperature and pressure are constant, we need to calculate the 

changes in the free energy as a function of these variables. Here we derive the 

relations corresponding to the pressure change at constant temperature. 

The variation of free energy with pressure as given by Eq. (5.4.7) is 

∂
∂

Ê
ËÁ

ˆ
¯̃

=
G

p
V

T

or dG = V dp (T constant) (5.6.1)

Integrating this within the limits p1 and p2, we get 

d dG V p
p

p

p

p

1

2

1

2Ú Ú= (T constant) (5.6.2)

The volume occupied by condensed phases (liquids and solids) is nearly independent 

of pressure. Therefore, on integrating Eq. (5.6.2), we get

G2 – G1= V (p2 – p1) (5.6.3)

where G2 and G1 are the free energies at pressure p2 and p1, respectively. Since 

the volume occupied by condensed phases is small, unless the pressure change is 

very large, the right hand side of Eq. (5.6.3) in negligibly small. Thus, the pressure 

dependence of free energy for condensed phases may be ignored and thus G may 

be regarded to be temperature dependent only, i.e. 

G = f (T) or G(T, p) = G(T) (5.6.4)

Example 5.5.1

Solution

5.6 PRESSURE DEPENDENCE OF FREE ENERGY

For Condensed 

Phases
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Here, the volume is related to the pressure through the ideal gas equation 

V
nRT

p
=

Substituting this in Eq. (5.6.2) and integrating, we get

D G = G2 – G1 = nRT ln
p

p

2

1

(5.6.5)

In terms of volume change, we have

D G = nRT ln
V

V

1

2

(5.6.6)

Calculate D G for the conversion of 3 mol of liquid benzene at 80 °C (normal boiling point) 

to vapour at the same temperature and a pressure of 0.66 bar. Consider the vapour as an 

ideal gas.

The transformation

Benzene(1, 80 °C, 1 bar) Æ Benzene(g, 80 °C, 0.66 bar)

may be brought about by following the two steps given below.

Step 1
benzene

3 mol of liquid ver bly at

boiling point

80 C and at 1

Re si

∞ bbar

vapour at 1 bar
3 mol of benzeneæ Ææææææææ

D G = 0

Step 2
vapour at 1 bar
3 mol of benzene

at 80 C vapour at 0.66 bar
3 m

∞
æ Ææææ ool of benzene

D G = nRT ln
p

p

2

1

 = (3.0 mol) (8.314 J K–1 mol–1) (353.15 K) ln 
0 66

1

.Ê
ËÁ

ˆ
¯̃

= – 3 660.0 J mol–1 = – 3.66 kJ mol–1

Calculate the free energy change in the freezing of 18 g of water at 263.15 K, given that 

the vapour pressure of water and ice at 263.15 K are 0.287 Pa and 0.260 Pa, respectively.

The crystallization process

H2O(1, 263.15 K) Æ H2O(s, 263.15 K)

can be replaced by the following three reversible steps.

Step 1 H2O(1, 263.15 K, 0.287 Pa) 
Reversible

evaporation at
263.15 K and

0.287 Pa

æ Æææææææ  H2O(g, 263.15 K, 0.287 Pa)

For this process D G1 = 0 since the evaporation is reversible in nature.

Step 2 H2O(g, 263.15 K, 0.287 Pa) Æ H2O(g, 263.15 K, 0.260 Pa)

The free energy change in this process is

D GII = RT
p

p
ln 2

1

= (8.314 J K–1 mol–1) (263.15 K) (2.303) × log 
0 260

0 287

.

.

Pa

Pa

Ê
ËÁ

ˆ
¯̃

= –216.198 J mol–1

For Ideal Gases

Example 5.6.1

Solution

Example 5.6.2

Solution
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Step 3 H2O(g, 263.15 K, 0.260 Pa) 
Reversible

condensation
263.15 K and
0.260 Pa

æ Æææææææ  H2O(s, 263.15 K, 0.260 Pa)

Again for this process D GIII = 0,

The total change in D G is

D G = D GI + D GII + D GIII = D GII = – 216.198 J mol–1

The standard free energy G° of a substance at a given temperature is the free 

energy of the substance at 1 bar pressure.† Since the pressure has been stated, it 

may be noted that the standard free energy is a function of temperature only. The 

free energy of an ideal gas at pressure p relative to the standard free energy can 

be obtained from Eq. (5.6.5) by substituting p1 = 1 bar. Thus, we have

G(T, p) = G°(T) + nRT ln (p/1 bar) (5.6.7)

or
G T p

n

G T

n
RT p

( , ) ( )
ln ( / )=

∞
+ 1 bar

or m(T, p)= m°(T) + RT ln (p/1 bar) (5.6.8)

where m is the free energy per mole of the substance and is called the chemical

potential. Figures (5.6.1) and (5.6.2) show the variations of m – m° for an ideal 

gas with (p/1 bar) and ln (p/1 bar), respectively,

† Prior to the recommendation of 1 bar as the standard-state pressure, the value used was 

1 atm (= 101.325 kPa). This change causes the changes in Gibbs free energy by an amount

– (0.109 J K–1) T D ng, where D ng is the change in stoichiometric number of gaseous species.

The Standard Free 

Energy

Fig. 5.6.1 Variation of μμμμμ – μμμμμo for

an ideal gas with p/1 bar Fig. 5.6.2 Variation of μμμμμ – μμμμμo for an

ideal gas with ln (p/1 bar)
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For an isothermal reversible expansion of a van der Waals gas, show that

(i) D A = –nRT ln
V nb

V nb
n a

V V

2

1

2

2 1

1 1-
-

- -
Ê
ËÁ

ˆ
¯̃

(ii) D G = – nRT ln
V nb

V nb
n a

V V
n bRT

V nb V nb

2

1

2

2 1

2

2 1

2
1 1 1 1-

-
- -

Ê
ËÁ

ˆ
¯̃

+
-

-
-

Ê
ËÁ

ˆ
¯̃

(i) From Eq. (5.4.2), we have 

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

A

V
p

T

or dA = –p dV (T constant)

For the van der Waals equation, we have 

dA = -
-

-
Ê
ËÁ

ˆ
¯̃

nRT

V nb

n a

V
V

2

2
d

Hence D A = -
-

+ = -
-
-

- -
Ê
ËÚ ÚnRT

V nb
V

n a

V
V nRT

V nb

V nb
n a

V VV

V

V

V

1

2

1

2
2

2
2

1

2

2 1

1 1
d d ln ÁÁ

ˆ
¯̃

(ii) From Eq. (5.4.7), we have

∂
∂

Ê
ËÁ

ˆ
¯̃

=
G

p
V

T

or dG = V dp (T constant)

or D G = Ú V dp (Eq. 5.6.2)

While evaluating the integral, it is convenient to replace dp in terms of dV. The van der

Waals equation of state is

p = 
nRT

V nb

n a

V-
-

2

2

Therefore dp = -
-

+
nRT

V nb
V

n a

V
V

( )2

2

3

2
d d

Substituting dp in the expression of D G, we get

D G = -
-

+Ú ÚnRT
V

V nb
V

n a

V
V

V

V

V

V

( )2

2

2
1

2

1

2 2
d d

= -
- +

-
+Ú ÚnRT

V nb nb

V nb
V

n a

V
V

V

V

V

V

( )2

2

2
1

2

1

2 2
d d

= -
-

-
-

+Ú Ú ÚnRT
V nb

V nRT
nb

V nb
V

n a

V
V

V

V

V

V

V

V1 2

1

2

1

2

1

2

2

2

2
d d d

( )

= -
-
-

+
-

-
-

Ê
ËÁ

ˆ
¯̃

- -
Ê
ËÁ

ˆ
¯

nRT
V nb

V nb
n bRT

V nb V nb
n a

V V
ln 2

1

2

2 1

2

2 1

1 1
2

1 1
˜̃

Problem 5.6.1

Solution
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In principle, the integration over pressure in Eq. (5.6.2) can be carried out if the 

equation of state of a real gas relating V with p is known. This procedure will, 

however, depend upon the nature of the gas. G. N. Lewis removed the above 

dependence by proposing an alternative procedure which does not depend upon 

the nature of the gas. In order to keep the form of the resultant expression as that 

of an ideal gas (Eq. 5.6.5), a function f, called that fugacity of the real gas, is 

D G = G2 – G1 = nRT ln
f

f

2

1

or D m = m2 – m1 = RT ln
f

f

2

1

(5.7.1)

  The fugacity f plays the role of pressure and need not be equal to the actual 

pressure of the real gas. Thus, it may be known as corrected pressure which applies 

to real gases.

In general, the fugacity of a real gas is related to its pressure by an equation

f

p
= g

where g
real gas from the ideal gas behaviour. Since all gases approach ideality in the limit 

of zero pressure, it is obvious that

lim lim
p p

f

pÆ Æ
= =

0 0
1g (5.7.2)

  The fugacity is expressed in the same unit as pressure and thus the fugacity 

The chemical potential of a real gas at fugacity f relative to that at standard-state 

fugacity f ° as given by Eq. (5.7.1) is

m = m° + RT ln (f /f °)

where m and m° are the chemical potentials at fugacities f and f °, respectively. 

Substituting f in terms of p in the above equation, we get

m = m° + RT ln (p / f °) + RT ln g (5.7.3)

of an ideal gas, it can be said that the third term measures the deviations of a real 

gas from ideality. If whole of the deviations are to be ascribed to g, it is obvious 

that m° in (5.7.3) must be identical with that appeared in Eq. (5.6.8) which is 

applicable to ideal gases, i.e. m° of Eq. (5.7.3) must have the characteristics of an 

ideal gas. Thus, the standard state of a real gas is, in fact, some hypothetical state 

in which the gas behaves ideally at f ° = 1 bar.

5.7 FUGACITY FUNCTION AND ITS DETERMINATION FOR REAL GASES

The Fugacity 

Coefficient

The Standard State 

of m of Real Gases
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Equation (5.6.1) is applicable for all substances. Expressing it in terms of molar 

quantities and then using Eqs (5.6.5) and (5.7.1) separately, we get 

p

p

p pV p RT
p

p1

2 2

1
Ú = - =m,ideal ,ideal ,ideald

2 1
m m ln

p

p

p pV p RT
f

f1

2

1

2

1
Ú = - =m,real , real , reald

2
m m ln

Taking the difference, we have 

p

p
V V p RT

f

f
RT

p

p1

2 2

1

2

1
Ú - = -( ) ln lnm,real m,ideal d

or RT
f

f

p

p
V V p

p

p
ln ( )2

1

1

2 1

2Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

= -Ú m,real m,ideal d

  Let p1 be allowed to approach zero value, then from Eq. (5.7.2), we get 

lim
p

f

p1 0

1

1

1
Æ

=

With this, the previous equation becomes

RT
f

p
V V p

p
ln ( )2

2
0

2Ê
ËÁ

ˆ
¯̃

= -Ú m,real m,ideal d (5.7.4)

Now for a real gas

V Z
RT

p
Z V V

RT

p
m,real m,ideal m,idealand= = =

where Z is the compression factor. Introducing this in the previous expression, 

we get

ln
f

p

Z

p
p

p
2

2 0

12Ê
ËÁ

ˆ
¯̃

=
-Ú d (5.7.5)

  The integral over p in the above expression may be performed graphically if the 

data on Z (or Vm) are available in numerical tables or analytically if the analytical 

expression for Z(T, p) (or Vm in terms of p) is available.

In general, the value of f depends upon the value of Z. If Z is less than one, the 

right hand side of Eq. (5.7.5) will be negative and hence f2 will be smaller than p2.

On the other hand, if Z is greater than one, the right hand side will be positive and 

hence f2 will be greater than p2. For most gases (except H2 and He), Z is initially 

less than one but becomes greater then one at higher pressures. For such gases, f is 

initially less than p and becomes greater than p at higher pressures. These effects 

may be correlated with the van der Waals constants a and b. At lower pressures, 

where the attractive molecular forces predominate, the van der Waals equation for 

one mole of the gas takes the form

Evaluation of 

Fugacity

Interpretation

of the Value of 

Fugacity for a van 

der Waals Gas
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p
a

V
V RT+

Ê

ËÁ
ˆ

¯̃
=

m

m2
( )

or Z = 
pV

RT

a

V RT

m

m

= -1

i.e. Z < 1

  Hence, f less than p is due to the constant a (the molecules tend to stick 

together) At higher pressures, where the excluded volume plays the dominating 

role, the van der Waals equation takes the form

(p) (Vm – b) = RT

or Z = 
pV

RT
b

p

RT

m = +1

i.e. Z > 1

  Hence, f greater than p is due to constant b (the repulsive part of the 

  Thus, the neglect of the term b in van der Waals equation makes f less than p

and that of a makes it greater than p.

Show that if equation of state for a gas is

p(Vm – b) = RT

where b is a constant, the fugacity of the gas is given by

ln
f

p

bp

RT
=

Also show that if bp/RT is small (applicable at low pressure) this equation reduces to

f

p

p

p
=

ideal

where pideal is the pressure the gas would exert if it were to be ideal but with the same 

molar volume as the real gas at pressure p.

We have p(Vm – b) = RT

or Z = 
pV

RT

pb

RT

m = +1

Substituting this in the relation

ln
f

p

Z

p
p

p

=
-Ú 1

0

d

and integrating the resultant expression, we get

ln exp( )
f

p

bp

RT

f

p
bp RT= =or /

If bp/RT is small, we may write

f

p

bp

RT

RT bp

RT
= + =

+
1

From the given equation of state, we have

Problem 5.7.1

Solution
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RT + bp = pVm

Hence
f

p
p

V

RT

p

p
= Ê

ËÁ
ˆ
¯̃ =m

ideal

or p2 = f pideal

that is, pressure of the gas is the geometric mean of the ideal pressure and fugacity.

The fugacity of a certain gas is given by the expression

f = p + a p2

in which a is a function of temperature.

(a) Show that the gas must obey the following equation of state

pV

RT

p

p

m = +
+

1
1

a

a

(b) Also show that 

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
+

Ê
ËÁ

ˆ
¯̃

H

p

RT

p T

m

T

d

d

2

21( )a

a

(a) We have

f = p + a p2

or
f

p
p

f

p
p= + = +1 1a aor ln ln ( )

Since ln
f

p

Z

p
p

p

=
-Ú 1

0

d (Eq. 5.5.13) 

we have ln (1 + a p) ∫
a

a1

1

0 0+
=

-Ú Úp
p

Z

p
p

p p

d d

Thus
a

a1

1 1 1

+
=

-
=

-
=

-
p

Z

p

V V

p

V p RT

p

( / ) ( )m m,ideal m /

Hence
pV

RT

p

p

m = +
+

1
1

a

a

(b) Substituting the given expression of f in the relation

m = m° + RT ln (f / f °)

we get m = m° + RT ln {p(1 + a p) / f °}

or
m m

a
T T

R p p f=
∞

+ + ∞ln { ( ) / }1

Differentiation of the above expression with respect to T at constant p gives

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂ ∞
∂

Ê
ËÁ

ˆ
¯̃ +

+
Ê
ËÁ

ˆ
¯̃{ }m m

a

a/ /T

T

T

T

R

p
p

Tp p 1

d

d

Making use of Gibbs-Helmholtz equation (see, Problem 5.8.1), we get

Problem 5.7.2

Solution
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- = - +
+

Ê
ËÁ

ˆ
¯̃

H

T

H

T

Rp

p T

m m d

d2 2 1

∞

a

a

or Hm = H
RT p

p T
m

d

d
∞ -

+
Ê
ËÁ

ˆ
¯̃

2

1 a

a

Differentiation of the above expression with respect to p at constant T gives

∂
∂

Ê
ËÁ

ˆ
¯̃

= - Ê
ËÁ

ˆ
¯̃ +

-
+

Ï
Ì
Ó

¸
˝
˛

H

p
RT

T p

p

pT

m d

d

2

2

1

1 1

a

a

a

a( )

= -
+

Ê
ËÁ

ˆ
¯̃

RT

p T

2

21( )a

ad

d

A function a(T, p

a = Vm, ideal – Vm, real

where Vm, ideal and Vm, real are the molar volumes of an ideal gas and a real gas at the same 

T and p, respectively. Evaluate the function a for the general equation of state

pV

RT
Bp Cpm = + + +1 2

Further show that the fugacity of the gas is given by the expression 

ln (f / p) = Bp
Cp

+ +
2

2

From the given equation of state, we have

Vm, real = 
RT

p
Bp Cp( )1 2+ + +

Substituting this in the equation

a = Vm, ideal – Vm, real = 
RT

p
V- m,real

we get a =
RT

p

RT

p
Bp Cp- + + +( )1 2

or a = – (BRT + CRTp + )

Form Eq. (5.7.5), we have

ln
( )f

p

Z

p
p

V V

p
p

p p

=
-

=
-

Ú Ú1 1

0 0

d
/

d
m,real m,ideal

 = 
( )

( / )

V V

V p
p

RT p p
p

RT
p

p p pm,real m,ideal

m,ideal

d d d
-

=
-

= -Ú Ú Ú
0 0 0

1a
a

Substituting the expression of a and carrying out the integration, we get

ln (f / p) = Bp
Cp

+ +
2

2

Problem 5.7.3

Solution
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Show that for a van der Waals gas:

(a) ln ln
( )

f

p

RT

p V b

b

V b

a

RTV

Ê
ËÁ

ˆ
¯̃

=
-

+
-

-
m m m

2

(b) ln
( ) ( )

f

p

ap

RT

bp

RT

abp

RT

Ê
ËÁ

ˆ
¯̃

= - + +
2

2

32

(a) We have

RT
f

p
V V p

p
ln ( )= -Ú0

m m,ideal d (Eq. 5.7.4) 

 = 
0 0

p p

V p
RT

p
pÚ - Úm d d (5.7.6)

p in terms of dVm. The 

van der Waals equation of state for one mole of the gas is

p
RT

V b

a

V
=

-
-

m m
2

Therefore d d d
m

m

m

mp
RT

V b
V

a

V
V= -

-
+

( )2 3

2

Substituting dp in Eq. (5.7.6), we get

RT
f

p

RT V

V b
V

a

V
V RT p

V V p
ln

( )
ln= -

-
+ -

• •Ú Úm

m

m

m

md d
m m

2 2 0

2

= –
RT V b b

V b
V

a

V
V RT p

V V p( )

( )
lnm

m

m

m

md d
m m- +

-
+ -

• •Ú Ú2 2 0

2

= –
RT

V b
V

RT b

V b
V

a

V
V RT p

V V V p

m
m

m

m

m

md d d
m m m

-
-

-
+ -

• • •Ú Ú Ú( )
ln

2 2 0

2

= - - +
-

- -
• • •

RT V b
RTb

V b

a

V
RT p

V V V
p

ln ( )
( )

lnm
m m

m m m2

0

RT
f

p
RT p V b

RTb

V b

a

V

V V V

ln ln ( )
( )

= - - +
-

-
• • •

m
m m

m m m2

Remembering that

lim ( )
V

p V b pV RT
m

m m
Æ•

- = =

Problem 5.7.4

Solution
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we have

RT
f

p
RT p V b RT

RTb

V b

a

V
ln ln { ( ) }= - - +

-
-m

m m

/
2

or ln ln{ ( ) }
f

p
p V b RT

b

V b

a

V RT
= - - +

-
-m

m m

/
2

or ln ln
( )

f

p

RT

p V b

b

V b

a

V RT
=

-
Ê
ËÁ

ˆ
¯̃

+
-

-
m m m

2
(5.7.7)

(b) For one mole of the gas, the van der Waals equation is

p
a

V
V b RT+

Ê
ËÁ

ˆ
¯̃

- =
m

m2
( )

or pV pb
a

V

ab

V
RTm

m m

- + - =
2

Vm in the correction terms may be replaced by RT/p. Thus, we have

pV pb
ap

RT

abp

RT
RT V

RT

p
b

a

RT

abp

RT
m mor- + - = = + - +

2

2 2( ) ( )

Now V V b
a

RT

apb

RT
m,ideal m, real- = - - +

Ê
ËÁ

ˆ
¯̃( )2

Since

ln ( )
f

p RT
V V p

p
= - -Ú

1

0
m,ideal m, real d

we get ln
( ) ( )

f

p RT
b

a

RT

abp

RT
p

RT
bp

ap

RT

abp

RT

p

= - +
Ê
ËÁ

ˆ
¯̃

= - +
Ê
ËÁÚ1 1

22
0

2

2
d

ˆ̂
¯̃

(5.7.8)

Calculate the fugacity of n-octance (a van der Waals gas) at 430 K and 2 bar. Given: a = 

3.8 × 10–5 bar m6 mol–2 and b = 2.37 × 10–4 m3 mol–1.

Form the expression

ln
( ) ( )

f

p

bp

RT

ap

RT

abp

RT
= - +

2

2

32

we get

bp

RT
=

¥
¥

- -

- - -
( . ) ( )

( . ) (

2 37 10 2

8 314 10 430

4 3 1

5 3 1 1

m mol bar

bar m K mol KK)
.= ¥ -1 326 10 2

ap

RT( )

( . ) ( )

{( .2

5 6 2

5 3 1

3 8 10 2

8 314 10
=

¥
¥

- -

- - -
bar m mol bar

bar m K mol 11 2

2

430
5 946 10

)( )}
.

K
= ¥ -

abp

RT

2

3

5 6 2 4 3 1 2

2

3 8 10 2 37 10 2

2( )

( . ) ( . ) ( )

{
=

¥ ¥- - - -bar m mol m mol bar

(( . ) ( )}8 314 10 4305 3 1 1 3¥ - - -bar m K mol K

= 3.942 × 10–4

Example 5.7.1

Solution
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ln (f / p) = 1.326 × 10–2 – 5.946 × 10–2 + 3.942 × 10–4

     = – 4.581 × 10–2

Hence
f

p
= 0 955. or f = (0.955) (2 bar) = 1.91 bar

The expression for the variation of fugacity of a pure gas with temperature may be obtained 

by differentiating the expression

m2 – m1 = RT ln (f2 / p) – RT ln (f1 / p) (Eq. 5.7.1) 

(a) Show that the desired expression is

∂
∂

Ê
ËÁ

ˆ
¯̃ =

-ln ( / )f p

T

H H

RTp

m m
0

2

where Hm
0  is the molar enthalpy of the gas at zero pressure.

(b) Evaluate H Hm m
0 -  for one mole of a van der Waals gas.

(c) Evaluate C Cp p,m ,m
0 -  for one mole of a van der Waals gas.

(a) We have

m2 – m1 = RT ln (f2 / p) – RT ln (f1 / p)

m m2 1
2 1

T T
R f p R f p- = -ln ( / ) ln ( / )

Differentiating with respect to T at constant p, we get

∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂( / ) ( / ) ln ( / ) lnm m2 1 2T

T

T

T
R

f p

T
R

p p p

(( / )f p

T p

1

∂
Ê
ËÁ

ˆ
¯̃

- + =
∂

∂
Ê
ËÁ

ˆ
¯̃ -

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T

H

T
R

f p

T
R

f p

Tp p

2,m 1,m

2 2
2 1ln ( / ) ln ( / )

At zero pressure, f1 Æ p and hence
∂

∂
Ê
ËÁ

ˆ
¯̃ =

ln ( / )f p

T p

1 0

At zero pressure, we may write H H1,m mas 0 .  Dropping the subscript 2 and rearranging, 

we get

∂
∂

Ê
ËÁ

ˆ
¯̃ =

-ln ( / )f p

T

H H

RTp

m m
0

2
(5.7.9)

(b) For a van der Waals gas, we have

ln
( ) ( )

f

p

ap

RT

bp

RT

abp

RT
= - + +

2

2

32
(Eq. 5.7.8) 

Thus
∂

∂
Ê
ËÁ

ˆ
¯̃ = - -

ln ( / )f p

T

ap

R T

bp

RT

abp

R Tp

2 3

22 3 2

2

3 4

Hence
H H

RT

ap

R T

bp

RT

abp

R T

m m
0

2 2 3 2

2

3 4

2 3

2

-
= - -

Problem 5.7.5
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or H H
ap

RT
bp

abp

R T
mm

0
2

2 2

2 3

2
- = - - (5.7.10)

(c) Differentiation of Eq. (5.7.10) with respect to T at constant p gives

C C
ap

RT

abp

R T
p p,m ,m
0

2

2

2 3

2 3
- = - +

The pressure dependence of the quantity H Hm m
0 -  for a pure gas is

∂ -
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

( )H H

p

H

p T

m m m
0

T

because ( / )∂ ∂H pm
0

T
 is zero as Hm

0

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
H

p
C

T

p
m

,m JTm (Eq. 2.8.3)

Thus
∂ -

∂
Ê
ËÁ

ˆ
¯̃

=
( )H H

p
Cp

m m
,m JT

0

T

m

Making use of the above relation, drive the expression for mJT for a van der Waals gas.

For one mole of a van der Waals gas, we have 

H H
ap

RT
pb

abp

R T
m m
0

2

2 2

2 3

2
- = - -

Hence
∂ -

∂
Ê
ËÁ

ˆ
¯̃

= - -
( )H H

p

a

RT
b

abp

R T

m m
0

2 2

2 3

T

Thus mJT
m

= - -Ê
ËÁ

ˆ
¯̃

1 2 3
2 2C

a

RT
b

abp

R Tp,

(Eq. 2.9.3)

The change in the free energy with temperature at constant pressure as given by 

Eq. (5.4.8) is 

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

G

T
S

p

(5.8.1)

G (= H – TS), we have

- =
-

S
G H

T
(5.8.2)

Substituting this in Eq. (5.8.1), we get

∂
∂

Ê
ËÁ

ˆ
¯̃ =

-
= +

∂
∂

Ê
ËÁ

ˆ
¯̃

G

T

G H

T
G H T

G

Tp p

or (5.8.3)

In actual practice, one commonly employs the relations which give the variation 

in D rG with temperature. Such expressions can be conveniently written starting

Problem 5.7.6

Solution

5.8 TEMPERATURE DEPENDENCE OF FREE ENERGY

Gibbs-Helmholtz

Equation
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from Eq. (5.8.1) with the replacement of G with D rG and that of S with D rS.

Thus, we have 

∂
∂

Ê
ËÁ

ˆ
¯̃ = =

-( )D
D

D Dr
r

r rG

T
S

G H

Tp

(5.8.4)

or D D
D

r r
rG H T
G

T p

= +
∂

∂
Ê
ËÁ

ˆ
¯̃

( )
(5.8.5)

This equation is known as the Gibbs-Helmholtz equation.

To calculate the value of D rG at one temperature from a known value at some 

other temperature, it is more convenient to make use of the temperature dependence 

of D rG/T, rather than the temperature dependence of D rG itself. At a constant 

temperature, D rG = D rH – T D rS, so that

D D D D
Dr r r r

r

G

T

H T S

T

H

T
S=

-
= -

Differentiating D rG/T with respect to temperature at constant pressure, we get

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂
∂

Ê
ËÁ

ˆ
¯̃

( / ) ( / ) ( )D D Dr r rG T

T

H T

T

S

Tp p p

= - +
∂

∂
Ê
ËÁ

ˆ
¯̃ -

∂
∂

Ê
ËÁ

ˆ
¯̃

1 1
2T

H
T

H

T

S

Tp p

D
D D

r

( ) ( )r r

Employing Eqs (3.11.1) and (4.24.2), we get

∂
∂{ } = - + - = -

( / )D D D D Dr r r r rG T

T

H

T

C

T

C

T

H

Tp

p p

2 2
(5.8.6)

or
∂
- ∂

Ï
Ì
Ó

¸
˝
˛

=
( / )

( / )

D
Dr

r

G T

T T
H

p1 2

Now d d
1 1

2T T
T

Ê
ËÁ

ˆ
¯̃ = - .  With this, the previous equatoin becomes 

∂
∂

Ï
Ì
Ó

¸
˝
˛

=
( / )

( / )

D
Dr

r

G T

T
H

p1
(5.8.7)

  If D r H is independent of temperature, the plot D rG/T versus 1/T will be a 

straight line with slope equal to D r H. If D rH depends on temperature, then the 

slope of the plot at 1/T gives D rH at temperature T.

While using Eq. (5.8.7) to calculate the value of D rG at one temperature from a 

known value at some other temperature, two cases may be distinguished.

Temperature 

Dependence of 

DrG/T

Computation of 

DrG at Some Other 

Temperature
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D rH independent of temperature In this case, we have

d dr rD DG

T

H

T
T

Ê
ËÁ

ˆ
¯̃ = -

2
(p constant)

Integrating this, we have 

D Dr rG

T

H

T
I= +

or D rG = D rH + IT

where I is the constant of integration whose value may be calculated from the 

value of D rG0 at the given temperature T0. Thus

I
T

G H= -
1

0
0( )D Dr r

Substituting this in the previous expression, we have

D D D Dr r r rG H
T

T
G H= + -

0
0( ) (5.8.8)

For the reaction 1
2 2

3
2 2 3 298N g H g NH g r K( ) ( ) ( ),+ Æ ∞D G = –16.45 kJ mol–1 and Dr KH∞298

= – 46.11 kJ mol–1. Estimate the value of Dr KG∞500  if D rH° is considered independent of 

temperature.

From the expression

D D D Dr T r r rG H
T

T
G HT

∞ = ∞ + ∞ - ∞
0

0
( )

we get D rG°
T = - +

Ê
ËÁ

ˆ
¯̃

- +- - -46 11
500

298
16 45 46 111 1 1. ( . . )kJ mol

K

K
kJ mol kJ mol

= 3.66 kJ mol–1

D rH dependent on temperature The expression relating D rH with temperature 

may be derived starting from Eq. (3.11.1), which gives

∂
∂{ } =

( )D
Dr

r

H

T
C

p
p

or d(D rH) = (D rCp) dT (p constant)

The variation of D rCp with temperature is, as usual, given by the expression

D rCp = (D ra) + (D rb)T + (D rc)T 2 + 

where (D ra), (D rb) and (D rc) are constants. Substituting this in the previous 

expression and the carrying out the integration, we get

D rH = ( ) ( ) ( )D D Dr r ra T b
T

c
T

K+ + + +
2 3

1
2 3

(5.8.9)

where K1 is the constant of integration, whose value may be determined from the 

known value of D rH at some temperature T. Let D rH = D rH0 when T = T0. Then

Example 5.8.1

Solution
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D D D Dr r r rH a T b
T

c
T

K0 0
0
2

0
3

1
2 3

= + + + +( ) ( ) ( )

Thus K H a T b
T

c
T

1 0 0
0
2

0
3

2 3
= - + + +

Ï
Ì
Ó

¸
˝
˛

( ) ( ) ( ) ( )D D D Dr r r r

Substituting Eq. (5.8.9) in Eq. (5.8.6), we get

∂
∂{ } = - = - - - - -

( ) ( ) ( ) ( )D D D D Dr r r r rG T

T

H

T

a

T

b c T K

Tp
2

1
22 3

which on integration gives

D
D

D Dr
r

r rG

T
a

T b
T

c T K

T
K= - - - - + +ln

K 2 3 2

2
1

2
�

�

or D D
D D

r r
r rlnG a T

T b
T

c
T K K T= - - - - + +

K 2 6

2 3
1 2 (5.8.10)

where K2 is the constant of integration whose value may be determined from the 

known value of D rG at a certain temperature T. Let D rG = D rG0 when T = T0

Then

K
G

T
a

T b
T

c
T

K

T
2

0

0

0
0 0

2 1

02 6
= + + + + -

D
D

D Dr
r

r r

K
ln (5.8.11)

For H2O(1) Æ H2O(g)

D rG298K = 8.596 kJ mol–1 and

D rH/J mol–1 = 57 086.5 – 45.327 (T/K) + 4.966 ¥ 10–3 (T/K)2

Compute D rG380K.

Gibbs-Helmholtz equation is

∂
∂{ } = -

( / )D Dr rG T

T

H

Tp
2

or d dr
r( / )D

D
G T

H

T
T= -

2
(p constant) 

i.e. d J mol J molr( / ) [( . ) ( . ) ( / )D G T
T

T= - -- -1
57 086 5 45 327

2

1 1 K

+(4.966 × 10–3 J mol–1) (T / K)2] dT

Integrating this, we have

Dr J mol
J mol K

G

T T
T= +

-
- -57 086 5

45 327
1

1 1.
( . ) ln ( / )K

– (4.966 ¥ 10–3 J K–2 mol–1) T + K

where K is the constant of integration, the value of which can be calculated from

T = 298 K    D G = 8.596 kJ mol–1

Example 5.8.2
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Thus K =
¥

- -
- -

- -8 596 10

298

57 086 5

298
45 327

3 1 1
1 1. .

( . )
J mol

K

J mol

K
J mol K

× 2.303 × log (298) + (4.966 × 10–3 J K–2 mol–1) (298 K)

  = (28.846 – 191.565 – 258.23 + 1.480) J K–1 mol–1

  = – 419.47 J K–1 mol–1

Therefore, the dependence of D rG on temperature is given by

D rG/J mol–1 = 57 086.5 + 45.327 (T/ K) ln (T/K) – 4.999 ¥ 10–3 (T/K)2

– 419.47 (T /K)

Thus at 380 K, we have

D rG380K/ J mol–1 = 57 086.5 + 45.327 (380) (ln 380)

– (4.966 × 10–3) (380)2 – 419.47 × 380

= 57 086.5 + 102.315.05 – 717.09 –159 398.6 = – 714.14

D rG380K = – 714.14 J mol–1

For a chemical reaction D rH°298K = 195.267 kJ mol–1 and D rG°298K = 160.917 kJ mol–1

and D rCp is given by

D rCp/J K–1 mol–1 = –54.183 + (15.69 × 10–3 K–1) T – (2.105 × 105 K2)T –2

Derive the expression for D rG° as a function of T.

We write the given expression of D rCp as

D rCp = (D ra) + (D rb) T + (D rc) T –2

where (D ra) = –54.183 J K–1 mol–1; (D rb) = 15.69 × 10–3 J K–2 mol–1

(D rc) = –2.105 × 105 J K mol–1

Now we have

d(D rH) = (D rCp) dT (p constant)

   = {(D ra) + (D rb) T + (D rc)T –2} dT

Thus D D D Dr r r rH a T b
T

c
T

K= + - +( ) ( ) ( )
2

1
2

1
(5.8.12a)

where K1 is the constant of integration.

Now, from Gibbs-Helmholtz equation, we have 

d d dr r r r
r

D D D D
D

G

T

H

T
T

a

T

b
c

T

K

T
T

Ê
ËÁ

ˆ
¯̃ = - = - - + -{ }2 3

1
22

1( ) ( )
( )

Thus,
D

D
D Dr

r
r rK

G

T
a T

b
T

c

T

K

T
K= - - - + +( ) ln ( / )

( ) ( )

2 2

1
2

1
2 (5.8.12b)

where K2 is the constant of integration. Hence

D D
D D

r r
r rKG a T T
b

T
c

T
K K T= - - - + +( ) ln ( / )

( ) ( )

2 2

12
1 2

The expression of K1 as given by Eq. (5.8.12a) is

K H a T
b

T c
T

1
2

2

1
= - - +D D

D
Dr r

r
r( )

( )
( )

Example 5.8.3

Solution
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From the given value of D rH of 298 K, we have

K1 = 195 267 J mol–1 – ( –54.183 J K–1 mol–1) (298 K)

-
¥

+ - ¥
- - -

-( . )
( ) ( . )

( )

15 69 10

2
298 2 105 10

1

298

3 2 1
2 5 1J K mol

K J K mol
K

= [195 267 + 16 146.5 – 696.67 – 706.37] J mol–1

= 210 010.46 J mol–1

The expression of K2 as given by Eq. (5.8.12b) is

K
T

G a T T
b

T
c

T
K2

2
1

1

2 2

1
= + + + -È

ÎÍ
˘
˚̇

D D
D D

r r
r rK( ) ln ( / )

( ) ( )

From the given value of D rG at 298 K, we have

K2
1

31

298
160 917 54 183 298 298

15 69 10
= + - +

¥-
-

( )
( . ) ( ) ln ( )

( .

K
J J K K

J K--

-

È

Î
Í

¥ +
- ¥

¥ -
˘

˚
˙

2

2
5

2

298
2 105 10

2

1

298
210 010 46

)

( )
( . )

( )
.K

J K

K
J mol 11

=
1

298
160 917 91988 3 696 67 353 19 210 010 46 1

( )
( . . . . )

K
J mol- + - - -

= – 472.28 J K–1 mol–1

Hence, the expression of D rG as a function of T is

D rG = (54.183 J K–1 mol–1)T ln (T /K) – 
( . )15 69 10

2

3 2 1
2¥ - - -J K mol

T

+
¥ -( . )2 105 10

2

15 1J K mol

T
 + (210 010.46 J mol–1) – (472.28 J K–1 mol–1)T

Show that 

∂
∂

Ï
Ì
Ó

¸
˝
˛

=
( / )

( / )

G T

T
H

p1

Starting with the differentiation of G/T by T, we have

∂
∂{ } =

∂
∂

-Ê
ËÁ

ˆ
¯̃

( / )G T

T T

H

T
S

p p

= - +
∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂
∂

Ê
ËÁ

ˆ
¯̃ = - + -

1 1 1
2 2T

H
T

H

T

S

T T
H

C

T

C

Tp p

p p

= -
H

T 2

or
∂

- ∂
Ï
Ì
Ó

¸
˝
˛

=
( / )

( / )

G T

T T
H

p1 2

Since d(1/T) = – (1/T2) dT therefore, we have

∂
- ∂

Ï
Ì
Ó

¸
˝
˛

=
∂
∂

Ï
Ì
Ó

¸
˝
˛

=
( / )

( / )

( / )

( / )

G T

T T

G T

T
H

p p1 12

Problem 5.8.1

Solution
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Show that

(i) A U T
A

T V

= +
∂
∂

Ê
ËÁ

ˆ
¯̃ (ii) D D

D
r r

rA U T
A

T V

= +
∂

∂
Ê
ËÁ

ˆ
¯̃

( )

(iii)
∂

∂
Ê
ËÁ

ˆ
¯̃ = -

( / )D Dr rA T

T

U

TV
2

(iv)
∂

∂
Ê
ËÁ

ˆ
¯̃

=
( / )

( / )

D
Dr

r

A T

T
U

V1

(i) We start with the expression

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

A

T
S

V

A (= U – TS), we have

- =
-

S
A U

T

Substituting this in the previous expression and rearranging, we get 

A U T
A

T V

= +
∂
∂

Ê
ËÁ

ˆ
¯̃ (5.8.13)

(ii) Replacing A and U by D rA and D rU in Eq. (5.8.13), we get

D D
D

r r
rA H T
A

T V

= +
∂

∂
Ê
ËÁ

ˆ
¯̃

( )
(5.8.14)

(iii) Dividing by T in the expression

D rA = D rU – T D rS

we get
D D

Dr r
r

A

T

U

T
S= -

Differentiation of the above equation with respect to temperature at constant volume gives

∂
∂{ } =

∂
∂{ } -

∂
∂{ }( / ) ( / ) ( )D D Dr r rA T

T

U T

T

S

TV V V

= - +
∂

∂{ } -
∂

∂{ }1 1
2T

U
T

U

T

S

TV V

D
D D

r
r r( ) ( )

Employing the appropriate forms of Eqs. (2.4.9) and (4.14.6), we get 

∂
∂{ } = - + - = -

( / )D D D D Dr r r r rA T

T

U

T

C

T

C

T

U

TV

V V
2 2 (5.8.15)

(iv) Equation (5.8.15) may be written as 

∂
- ∂

Ï
Ì
Ó

¸
˝
˛

=
( / )

( / )

D
Dr

r

A T

T T
U

V1 2

Since d d
1 1

2T T
T

Ê
ËÁ

ˆ
¯̃ = - ,  therefore, we have

∂
∂

Ï
Ì
Ó

¸
˝
˛

=
( / )

( / )

D
Dr

r

A T

T
U

V1
(5.8.16)

Problem 5.8.2

Solution
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Variation of D rG of a reaction with temperature can be obtained by integrating the equation 

∂
∂{ } = -

( )D
Dr

r

G

T
S

p

(5.8.17)

where D rS of the system can be obtained by integrating the equation

∂
∂{ } =

( )D D
r rS

T

C

Tp

p

With the help of the above two expressions, derive the following expression.

D D Dr r r
K

G I C T
T

C I Tp p= - Ê
ËÁ

ˆ
¯̃ + -2 1ln ( )

where I2 and I1 are the constants of integration.

Since
∂

∂
Ê
ËÁ

ˆ
¯̃ =

( )D D
r rS

T

C

Tp

p

we have d dr

r
( )D

D
S

C

T
T

p= (p constant)

Considering D rCp to be independent to temperature, on integrating, we get 

D Dr r
K

S C
T

Ip= Ê
ËÁ

ˆ
¯̃ +ln 1 (5.8.18)

where I1 is the constant of integration.

  Substituting the above expression in Eq. (5.8.17), we get

d
K

dr r( ) lnD DG C
T

I Tp= - Ê
ËÁ

ˆ
¯̃ +{ }1 (p constant)

On integrating, we have

D D Dr r r
K

G C T
T

C T I T Ip p= - +Ê
ËÁ

ˆ
¯̃ - +ln 1 2

or D D Dr r r
K

G I C T
T

C I Tp p= - + -2 1ln ( ) (5.8.19)

where I2 is the constant of integration.

It is possible to supercool water without freezing. 18 g of water is supercooled to 263.15 K

(–10 °C) in a thermostat held at this temperature, and then crystallization takes place. 

Calculate D rG for this process. Given:

Cp(H2O, 1) = 75.312 J K–1 mol–1 Cp(H2O, s) = 36.400 J K–1 mol–1

D fusH (at 0 °C) = 6.008 kJ mol–1

The process of crystallization at 0 °C and at 101.325 kPa pressure is an equilibrium 

process, for which D G = 0. The crystallization of supercooled water is a spontaneous 

phase transformation, for which D G must be less than zero. Its value for this process can 

be calculated as shown below.

In this method, the given process

H2O (1, –10 °C) Æ H2O(s, –10 °C)

is replaced by the following reversible steps.

Problem 5.8.3

Solution

Example 5.8.2

Solution

Arithmetic Method
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(a) H2O(1, –10 °C) Æ H2O(1, 0 °C) (1)

D r m

K

K

dH C Tp1

263 15

273 15

1= Ú ,

.

.

( ) = (75.312 J K–1 mol–1) (10 K) = 753.12 J mol–1

Dr
m

K

K

dS
C

T
T

p
1

263 15

273 15

1
= Ú ,

.

.

( )
= (75.312 J K–1 mol–1) × ln 

273 15

263 15

.

.

K

K

Ê
ËÁ

ˆ
¯̃

= 2.809 J K–1 mol–1

(b) H2O(1, 0 °C) Æ H2O(s, 0 °C) (2)

D rH2 = – 6.008 kJ mol–1

Dr

J mol

K
S2

16 008

273 15
= -

-( )

( . )
 = – 21.995 J K–1 mol–1

(c) H2O(s, 0 °C) Æ H2O(s, –10 °C) (3)

Dr m

K

K

s dH C Tp3

273 15

263 15

= Ú ,

.

.

( )  = (36.400 J K–1 mol–1) (–10 K) = –364.0 J mol–1

Dr
m

K

K
s

dS
C

T
T

p
3

273 15

263 15

= Ú ,

.

.
( )

 = (36.400 J K–1 mol–1) × ln 
263 15

273 15

.

.

K

K

Ê
ËÁ

ˆ
¯̃

= –1.358 J K–1 mol–1

The overall process is obtained by adding Eqs (1), (2) and (3), i.e.

H2O(1, –10 °C) Æ H2O(s, –10 °C)

The total changes in D rH and D rS are given by

D rH = D rH1 + D rH2 + D rH3

= (753.12 – 6 008 – 364.0) J mol–1 = – 5 618.88 J mol–1

D rS = D rS1 + D rS2 + D rS3

= (2.809 – 21.995 – 1.358) J K–1 mol–1

= – 20.544 J K–1 mol–1

Now D rG of this process is given by 

D rG = D rH – T D rS

= – 5 618.88 J mol–1 – (263.15 K) (– 20.544 J K–1 mol–1)

= – 212.726 J mol–1

We start with Gibbs-Helmholtz equation 

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

( / )D Dr rG T

T

H

Tp
2

(1)

Now
∂

∂
Ê
ËÁ

ˆ
¯̃ =

( )D
Dr

r

H

T
C

p
p  = Cp,m(ice) – Cp,m(water)

= 36.400 J K–1 mol–1 – 75.312 J K–1 mol–1

= – 38.912 J K–1 mol–1

Analytical Method
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Therefore

d(D rH) = – (38.912 J K–1 mol–1) dT (p constant)

Carrying out the integration, we get

D rH = – (38.912 J K–1 mol–1) T + I (2)

where I is the constant of integration, the value of which can be determined from the 

following data:

At 0 °C, D rH = – 6.008 J mol–1. Therefore

I = D rH + (38.912 J K–1 mol–1)T

= – 6.008 J mol–1 + (38.912 J K–1 mol–1) (273.15 K)

= 4 620.81 J mol–1

Thus, the variation of D rH with temperature is given by

D rH = (4 620.81 J mol–1) – (38.912 J K–1 mol–1)T

Substituting Eq. (2) in Eq. (1), we get

d(D rG/T) = -
-Ê

ËÁ
ˆ
¯̃

- -I T

T
T

( . )38 921 1 1

2

J K mol
d

Again, performing the integration, we get

DrG

T

I

T
=  + (38.912 J K–1 mol–1) × ln (T / K) + K

where K is the constant of integration, the value of which can be determined from the fact 

that at T = 273.15 K, D rG = 0. Therefore

K = -
I

T
 – (38.912 J K–1 mol–1) × 2.303 × log (T /K)

= -
Ê
ËÁ

ˆ
¯̃

-4 620 81

273 15

1.

.

J mol

K
 – (38.912 J K–1 mol–1) × 2.303 × log (273.15)

= – 16.917 J K–1 mol–1 – 218.334 J K–1 mol–1

= – 235.253 J K–1 mol–1

Therefore, the dependence of D rG on temperature is given by

D rG = (4 620.81 J mol–1) + (38.912 J K–1 mol–1) T ln (T/K)

– (235.253 J K–1 mol–1)T

At T = – 10 °C, i.e. 263.15 K, D rG is given by

D rG263.15K = (4 620.81 J mol–1) + (38.912 J K–1 mol–1) (263.15 K)

× (2.303) log (263.15) – (235.253 J K–1 mol–1) (263.15 K)

= 4 620.81 J mol–1 + 57 073.27 J mol–1 – 61 906.83 J mol–1

= – 212.75 J mol–1

Alternatively, Eqs (5.8.18) and (5.8.19) may be employed to compute D rG for the freezing 

of supercooled water. We have

D rS = D rCp ln (T/K) + I1 (Eq. 5.8.18)

At the normal freezing point (273.15 K), D rS is given by

D
D

r
r freez J mol

K
S

H

T
= = -

-( )

( . )

6 008

273 15

1

 = – 21.995 J K–1 mol–1

Hence I1 = D rS – D rCp ln (T/K)

= (– 21.995 J K–1 mol–1) – ( – 38.912 J K–1 mol–1) (2.303) (log 273.15)

= 196.34 J K–1 mol–1
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The constant of integration I2 in Eq. (5.8.19) can be obtained by making use of the fact that 

D rG is zero at 273.15 K. Thus from Eq. (5.8.19), we get

I2 = D rCp T ln (T/K) – (D rCp – I1)T

Substituting the data, we have

I2 = (– 38.912 J K–1 mol–1) (273.15 K) (2.303) (log 273.15)

– (– 38.912 J K–1 mol–1 –196.34 J K–1 mol–1) (273.15 K)

= (– 59 638.60 + 64 259.08) J mol–1 = 4 620.48 J mol–1

Thus D rG at 263.15 K is

D rG = I2 – (D rCp)T ln (T/K) + (D rCp – I1)T

= (4 620.48 J mol–1) + (38.912 J K–1 mol–1) (263.15 K)

× (2.303) (log 263.15) + ( – 38.912 J K–1 mol–1

– 196.34 J K–1 mol–1) (263.15 K)

= (4 620.48 + 57 073.25 – 61 906.56) J mol–1

= – 212.83 J mol–1

U, H, S, A and G. These are the energy, 

the enthalpy, the entropy, the Helmholtz free energy and the Gibbs free energy. Of 

H, A and G, were developed by suitable changes of variables to create 

their differentials are exact. They are extensive variables.

dU = dq – p dV (5.9.1)

and dH = dq + V dp (5.9.2)

dU = T dS – p dV (5.9.3)

dH = T dS + V dp (5.9.4)

dA = – S dT – p dV (5.9.5)

dG = – S dT + V dp (5.9.6)

We note that these equations give us the convenient independent variables (also 

known as natural independent variables) which may be used for each of the four 

functions. These are

U = f (S, V)

H = f (S, p)

A = f (T, V)

and G = f (T, p)

Since dU, dH, dA and dG are all exact differentials, it follows that

∂
∂

Ê
Ë

ˆ
¯ =

∂
∂

Ê
Ë

ˆ
¯ = -

U

S
T

U

V
p

V S

and (5.9.7)

∂
∂

Ê
Ë

ˆ
¯ =

∂
∂

Ê
ËÁ

ˆ
¯̃

=
H

S
T

H

p
V

p S

and (5.9.8)

5.9 RESUME CONCERNING U, H, S, A AND G

Natural Independent 

Variables

Maxwell Relations 

and Other Partial 

Derivatives
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∂
∂

Ê
Ë

ˆ
¯ = -

∂
∂

Ê
Ë

ˆ
¯ = -

A

T
S

A

V
p

V T

and (5.9.9)

∂
∂

Ê
Ë

ˆ
¯ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

=
G

T
S

G

p
V

p T

and (5.9.10)

  Each of these equations tells us how one dependent variables changes with 

a change of one independent variable, keeping the appropriate variable constant. 

  Applying the Euler’s reciprocity relations to Eqs. (5.9.3) to (5.9.6), we get the 

most important relations, known as the Maxwell relations:

∂
∂

Ê
Ë

ˆ
¯ = -

∂
∂

Ê
Ë

ˆ
¯

T

V

p

SS V

(5.9.11) 

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
Ë

ˆ
¯

T

p

V

SS p
(5.9.12)

∂
∂

Ê
Ë

ˆ
¯ =

∂
∂

Ê
Ë

ˆ
¯

S

V

p

TT V

(5.9.13)

and
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
Ë

ˆ
¯

S

p

V

TT p

(5.9.14)

  All these relations are important because they equate the rate of change of 

a particular quantity, (which cannot be determined experimentally) with those 

experimentally observable quantities of pressure, volume and temperature.

The thermodynamic square (Fig. 5.9.1) is a mnemonic diagram that can be used to 

obtain a number of useful thermodynamic relations. This was suggested by Max 

involving only the work of expansion. 

  In this diagram, the thermodynamic functions U, H, G and A are placed on the 

sides of a square and the corners of the sides contain their respective independent 

variables; U = f (S, V), H = f (S, p), G = f (T, p) and A = f (T, V).

The Thermodynamic 

Square

Fig. 5.9.1 The

thermodynamic square to 

obtain a number of useful 

thermodynamic relations
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  To write the differential expression for any of these functions in terms of the 

differentials of its natural independent variables, we need only to note that the 

opposite this variable on the square. An arrow pointing away from a natural variable 

indicates a positive sign. Thus, we have

dU = T dS – p dV

dH = T dS + V dp

dA = –S dT – p dV

dG = – S dT + V dp

  The Maxwell relations can be read off form the above diagram using the corners 

of two opposite sides of the square with the signs determined by the placement of 

the arrows. If the arrows are symmetrically placed, the sign is positive, otherwise 

it is negative. Thus, we have

Sides U and G :
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

S

V

p

T

V

S

T

pT V p S

Sides H and A :
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

S

p

V

T

p

S

T

VT p V S

In this section, we derive a few thermodynamic relations concerning the functions 

S, A and G.

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂ ∂T

V

T p T

CS

V

V

( / )
(5.10.1)

We start with Eq. (4.14.14), such that

d d dS
C

T
T

p

T
VV

V

= +
∂
∂

Ê
ËÁ

ˆ
¯̃

For an isentropic change of state dS = 0. With this, the previous expression becomes 

0 =
C

T
T

p

T
VV

S
V

S( ) ( )∂ +
∂
∂

Ê
ËÁ

ˆ
¯̃ ∂

or
∂
∂

Ê
Ë

ˆ
¯ = -

∂ ∂T

V

T p T

CS

V

V

( / )

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂ ∂T

p

T V T

CS

p

p

( / )
(5.10.2)

We start with Eq. (4.15.15), such that

d d dS
C

T
T

V

T
p

p

p

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

5.10 DERIVATIONS OF SOME THERMODYNAMIC RELATIONS

(i)

(ii)
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For an isentropic change of state, we get

0 =
C

T
T

V

T
p

p

S
p

S( ) ( )∂ -
∂
∂

Ê
ËÁ

ˆ
¯̃ ∂ or

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂ ∂T

p

T V T

CS

p

p

( / )

Equations (5.10.1) and (5.10.2) can be used to derive the equation of state for an 

adiabatic reversible process, involving an ideal gas since for this process, change in 

entropy during expansion or compression is zero. The required relations, which were 

derived earlier, can be rederived from these two relations as shown in the following.

Temperature and volume relation Equation (5.10.1) is

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂ ∂T

V

T p T

CS

V

V

( / )
(Eq. 5.10.1)

For an ideal gas pV = nRT, therefore

∂
∂

Ê
ËÁ

ˆ
¯̃ =

p

T

nR

VV

With this Eq. (5.10.1) becomes

∂
∂

Ê
ËÁ

ˆ
¯̃ = - = -

T

V

nRT

C V

RT

C VS V V ,m

or
d d

,m

T

T

R

C

V

VV

= -
Ê

ËÁ
ˆ

¯̃
(S constant)

Integrating this, we have

ln ln ln ln
,

T

T

R

C

V

V

T

T

V

VV

2

1

2

1

2

1

1

2

Ê
ËÁ

ˆ
¯̃

= -
Ê

ËÁ
ˆ

¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

=
m

or
ÊÊ
ËÁ

ˆ
¯̃

R CV/ , m

Thus
T

T

V

V
T V T V

R C
R C R C

V

V V2

1

1

2
2 2 1 1=

Ê
ËÁ

ˆ
¯̃

=
/

/ /
, m

, m , mor

Hence T V
R CV/ , m  = constant (5.10.3)

Temperature and pressure relation We have from Eq. (5.10.2)

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂ ∂T

p

T V T

CS

p

p

( / )
(Eq. 5.10.2)

For an ideal gas pV = nRT, therefore

∂
∂

Ê
ËÁ

ˆ
¯̃ =

V

T

nR

pp

Using this relation, Eq. (5.10.2) becomes

∂
∂

Ê
ËÁ

ˆ
¯̃

= =
T

p

nRT

pC

RT

pCS p p,m

(iii) Equations of 

State for Adiabatic 

Reversible

Processes
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Rearranging, we get 

d d

,m

T

T

R

C

p

pp

= (S constant)

On integration, we get

ln ln
T

T

R

C

p

pp

2

1

2

1

Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃,m

or ln ln

/
T

T

p

p

R Cp

2

1

1

2

Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

- , m

or
T

T

p

p

R Cp

2

1

1

2

=
Ê
ËÁ

ˆ
¯̃

- / , m

or T p T p
R C R Cp p

2 2 1 1

- -
=

/ /, m , m

or T p
R Cp- / , m  = constant (5.10.4)

Pressure and volume relation Pressure-volume relationship can be obtained 

starting from either Eq. (4.14.14) or Eq. (4.15.15).

  Writing Eq. (4.14.14), we have

d d dS
C

T
T

p

T
VV

V

= +
∂
∂

Ê
ËÁ

ˆ
¯̃

Taking T = f (p, V), we have

d d dT
T

p
p

T

V
V

V p

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
Ë

ˆ
¯

Substituting the above expression of dT in the previous expression, we have

d d d dS
C

T

T

p
p

T

V
V

p

T
VV

V p V

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

+
∂
∂

Ê
ËÁ

ˆ
¯̃

or d d dS
C

T

T

p
p

C

T

T

V

p

T
VV

V

V

p V

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

For an ideal gas pV = nRT, therefore

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ =

T

p

V

nR

T

V

p

nR

p

T

nR

VV p V

; and

With these, we obtain

d d d
,m ,m

S
C

T

V

R
p

C

T

p

R

nR

V
V

V V= + +
Ï
Ì
Ó

¸
˝
˛

Dividing this equation by dV and introducing the condition of constant S (isentropic 

process), we have

0 =
∂
∂

Ê
ËÁ

ˆ
¯̃ + +

Ï
Ì
Ó

¸
˝
˛

C

T

V

R

p

V

C

T

p

R

nR

V

V

S

V,m ,m
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Rearranging, we have

∂
∂

Ê
ËÁ

ˆ
¯̃ = - +

Ê
ËÁ

ˆ
¯̃

Ê

ËÁ
ˆ

¯̃
= - +

p

V

C

T

p

R

nR

V

TR

C V

p

V

nR T

V CS

V

V V

,m

,m ,m

2

2

ÏÏ
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

= - +
Ê

ËÁ
ˆ

¯̃
= - +

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

p

V

R

V

pV

RC

p

V

R

CV V

2

2
1

,m ,m

= - +
-Ê

ËÁ
ˆ

¯̃
= -

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
= -

p

V

C C

C

p

V

C

C

p

V

p V

V

p

V

1
,m ,m

,m

,m

,m

g

Separating the variables, we get

d dp

p

V

V
= -g

Integrating this, we have

ln ln ln ln
p

p

V

V

p

p

V

V

2

1

2

1

2

1

1

2

Ê
ËÁ

ˆ
¯̃

= -
Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

g

g

or

or
p

p

V

V
p V p V2

1

1

2
2 2 1 1=

Ê
ËÁ

ˆ
¯̃

=
g

g g
or

or pV g = constant (5.10.5)

The two thermodynamic equations of state

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
T

p

T
p

T V

(5.10.6)

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p
V T

V

TT p

(5.10.7)

can be derived from Eqs (5.9.3) and (5.9.4). Writing Eq. (5.9.3), we get

dU = T dS – p dV

Dividing this by dV and introducing the condition of constant temperature, we get

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
T

S

V
p

T T

But
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

S

V

p

TT V

(Eq. 5.9.13)

Therefore
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ -

U

V
T

p

T
p

T V

Equation (5.9.4) is

dH = T dS + V dp

(iv) Thermodynamic 

Equations of State
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Dividing this by dp and introducing the condition of constant temperature, we get 

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
H

p
T

S

p
V

T T

(5.10.8)

But
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

S

p

V

TT p

(Eq. 5.9.14)

Therefore
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

H

p
V T

V

TT p

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂ ∂
∂ ∂

= +
∂ ∂

∂ ∂

È

Î
Í
Í

˘V

T

C

T

V p

V T

C

T

V T

V pS

V T

p

p p

T

( / )

( / )

( / )

( / )

2

˚̊
˙
˙

∂ ∂
∂ ∂

( / )

( / )

V p

V T

T

p

(5.10.9)

Since S = f (T, V), therefore

d d dS
S

T
T

S

V
V

V T

=
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

Dividing by dT and introducing the condition of constant S, we get

0 =
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

S

T

S

V

V

TV T S

Rearranging, we have

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂ ∂
∂ ∂

V

T

S T

S VS

V

T

( / )

( / )

Using Eqs (4.14.6) and (4.14.13), we have

∂
∂

Ê
ËÁ

ˆ
¯̃ = - =

∂ ∂
∂ ∂

V

T

C

T

C V p

T V TS

V T V T

p

k

a

( / )

( / )

Using Eq. (4.14.18), we have

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂ ∂
∂ ∂

+
∂ ∂

∂ ∂

È

Î
Í
Í

˘

˚
˙
˙

V

T

V p

V T

C

T

V T

V pS

T

p

p p

T

( / )

( / )

( / )

( / )

2

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂ ∂
∂ ∂

= -
∂ ∂
∂ ∂

+
∂U

T
p

V p

V T

C

T
p

V p

V T

C

TS

T

p

V T

p

p( / )

( / )

( / )

( / )

( VV T

V p

p

T

/ )

( / )

∂

∂ ∂

Ê

Ë
Á

ˆ

¯
˜

2

(5.10.10)

Since U = f (T, V), therefore

d d dU
U

T
T

U

V
V

V T

=
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

(v)

(vi)
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Dividing by dT and introducing the condition of constant S, we have

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

U

T

U

T

U

V

V

TS V T S

Using Eqs (5.10.6) and (5.9.11), we have

∂
∂

Ê
ËÁ

ˆ
¯̃ = +

∂
∂

Ê
ËÁ

ˆ
¯̃ -Ï

Ì
Ó

¸
˝
˛

-
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

U

T
C T

p

T
p

S

pS
V

V V

Using Eq. (4.15.21), we have 

∂
∂

Ê
ËÁ

ˆ
¯̃ = +

∂
∂

Ê
ËÁ

ˆ
¯̃ -Ï

Ì
Ó

¸
˝
˛

-{ }U

T
C T

p

T
p

C

TS
V

V

T Vk

a

= C T
p

T

C

T

p C

T
V

V

T V T V-
∂
∂

Ê
ËÁ

ˆ
¯̃ +

k

a

k

a

Since
∂
∂

Ê
ËÁ

ˆ
¯̃ =

p

T V T

a

k
(Eq. 1.3.60a)

we have
∂
∂

Ê
ËÁ

ˆ
¯̃ = =

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂ ∂
∂ ∂

U

T

pC

T

C p

T

T

p

C p

T

V p

V TS

V T V

V

V T

p

k

a

( / )

( / )

where we have used the cyclic rule (∂T/∂p)V (∂p/∂V)T (∂V/∂T)p + 1 = 0.

Using Eq. (4.14.18), we get

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂ ∂
∂ ∂

+
∂ ∂

∂ ∂

Ï
Ì
Ô

ÓÔ

¸
˝

U

T
p

V p

V T

C

T

V T

V pS

T

p

p p

T

( / )

( / )

( / )

( / )

2
ÔÔ

Ǫ̂

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂ ∂
H

T

VC

V TS

p

p( / )
(5.10.11) 

Since H = f (T, p), therefore

d d dH
H

T
T

H

p
p

p T

=
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

Dividing by dT and introducing the condition of constant S, we get

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T

H

T

H

p

p

TS P T S

Using Eqs (5.10.7) and (5.9.12), we have

∂
∂

Ê
ËÁ

ˆ
¯̃ = + -

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

∂
∂

Ê
ËÁ

ˆ
¯̃

H

T
C V T

V

T

S

VS
p

P p

(vii)
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which on using Eq. (4.15.24), becomes

∂
∂

Ê
ËÁ

ˆ
¯̃ = + -

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

H

T
C V T

V

T

C

TVS
p

P

p

a

= C
C

T
C

C

T

VC

T V T
p

p

p

p p

p

+ - = =
∂ ∂a a ( / )

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂ ∂
∂ ∂

- = -
∂ ∂
∂ ∂

+
A

T
p

V p

V T

C

T
S p

V p

V T

C

TS

T

p

V T

p

p( / )

( / )

( / )

( / )

(( / )

( / )

∂ ∂

∂ ∂

È

Î
Í
Í

˘

˚
˙
˙

-
V T

V p
S

p

T

2

(5.10.12)

We start with A = U – TS, which gives

dA = dU – T dS – S dT

Taking U = f (T, V) and substituting its differential in the above equation, we have 

d d d d dA
U

T
T

U

V
V T S S T

V T

=
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃ - -

Dividing the above expression by dT and introducing the condition of constant S,

we get

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ -

A

T

U

T

U

V

V

T
S

S V T S

Using Eqs (5.10.6) and (5.9.11), we have

∂
∂

Ê
ËÁ

ˆ
¯̃ = +

∂
∂

Ê
ËÁ

ˆ
¯̃ -Ï

Ì
Ó

¸
˝
˛

-
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

-
A

T
C T

p

T
p

S

p
S

S
V

V V

Using Eq. (4.15.21), we have

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃ -Ï

Ì
Ó

¸
˝
˛

Ê
ËÁ

ˆ
¯̃

-
A

T
C T

p

T
p

C

T
S

S
V

V

T Vk

a

Since
a

kT V

p

T
=

∂
∂

Ê
ËÁ

ˆ
¯̃

(Eq. 1.3.60a)

therefore
∂
∂

Ê
ËÁ

ˆ
¯̃ = - +

∂
∂

Ê
ËÁ

ˆ
¯̃

- =
∂
∂

Ê
ËÁ

ˆ
¯̃

-
A

T
C C

pC

T

T

p
S

pC

T

T

p
S

S
V V

V

V

V

V

Using the cyclic rule (∂p/∂T)V (∂T/∂V)p (∂V/∂p)T + 1 = 0, we have

∂
∂

Ê
Ë

ˆ
¯ = -

∂
∂

Ê
Ë

ˆ
¯

∂
∂

Ê
ËÁ

ˆ
¯̃

- = -
∂ ∂

∂ ∂
A

T

pC

T

T

V

V

p
S

pC V p

T V TS

V

p T

V T( / )

( / ) pp

S-

(viii)



Equilibrium Criteria, A and G Functions 305

Making use of Eq. (4.14.18), we get

∂
∂

Ê
Ë

ˆ
¯ = -

∂ ∂
∂ ∂

+
∂ ∂

∂ ∂

È

Î
Í
Í

˘

˚
˙
˙

-
A

T

p V p

V T

C

T

V T

V pS

T

p

p p

T

( / )

( / )

( / )

( / )

2

SS

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂ ∂
-

G

T

VC

T V T
S

S

p

p( / )
(5.10.13)

We start with G = H – TS, therefore

dG = dH – T dS – S dT

Taking H = f (T, p) and substituting its differential in the above equation, we have

d d d d dG
H

T
T

H

p
p T S S T

p T

=
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

- -

Dividing this by dT and introducing the condition of constant S, we have

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ -

G

T

H

T

H

p

p

T
S

S p T S

Making use of Eqs (5.10.7) and (5.9.12), we get

∂
∂

Ê
ËÁ

ˆ
¯̃ = + -

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

∂
∂

Ê
ËÁ

ˆ
¯̃ -

G

T
C V T

V

T

S

V
S

S
p

p p

Now using Eq. (4.15.24), we get

∂
∂

Ê
ËÁ

ˆ
¯̃ = + -

∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛

Ê
ËÁ

ˆ
¯̃

- = + -
G

T
C V T

V

T

C

TV
S C

C

T
C

S
p

p

p

p

p

a a
pp S-

= - =
∂ ∂

-
C

T
S

VC

T V T
S

p p

pa ( / )

∂
∂

Ê
ËÁ

ˆ
¯̃ =

p

T

S

VG

(5.10.14)

Since G = f (T, p), we write

d d dG
G

T
T

G

p
p

p T

=
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

Dividing this by dT and introducing the condition of constant G, we get

∂
∂

Ê
ËÁ

ˆ
¯̃ =

- ∂ ∂

∂ ∂
=

p

T

G T

G p

S

VG

p

T

( / )

( / )

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

S

T

C

T

S

V

V

TG

p

p

(5.10.15)

(ix)

(x)

(xi)
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We start with G = f (T, S). Its total differential is

d d dG
G

T
T

G

S
S

S T

=
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

Dividing by dT and introducing the condition of constant G, we have

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂ ∂
∂ ∂

S

T

G T

G SG

S

T

( / )

( / )
(5.10.15a)

Making use of Eq. (5.9.14), we have

∂
∂

Ê
ËÁ

ˆ
¯̃ ∫

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

G

S

G

p

p

S
V

T

VT T T p

and moreover, from Eq. (5.10.13) 

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂ ∂
-

G

T

VC

T V T
S

S

p

p( / )

Thus, Eq. (5.10.15a) reduces to

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂ ∂
-

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
-

∂ ∂

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

S

T

VC

T V T
S

V T VG

p

p p( / ) ( / )

1

=
C

T

S

V

V

T

p

p

-
∂
∂

Ê
ËÁ

ˆ
¯̃

C

C

VT

C

p

V S p

= +1
2a

k
(5.10.16)

where a kS is adiabatic compressibility. 

The latter is given as

k S

SV

V

p
= -

∂
∂

Ê
ËÁ

ˆ
¯̃

1

The given expression is

C

C

VT

C

p

V S p

= +1
2a

k

This rearranges to

C C
VTC

C

VTC

V V p C
p V

V

S p

V

S p

- = =
- ∂ ∂

a

k

a2 2

1( / )( / )

=
a 2

1

VTC

V V T T p C

V

S S p- ∂ ∂ ∂ ∂( / )( / ) ( / )

(xii)
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Making use of Eqs (5.10.9) and (5.10.2), we have

C C
VTC

V

V p

V T

C

T

T V T

C
C

VT
p V

V

T

p

V p

p
p

T

- =
-

∂ ∂
∂ ∂

∂ ∂
=

a a

k

2 2

1 ( / )

( / )

( / )

which is Eq. (4.14.18) and thus the given relation is obtained.

k

k
T

S

p

V

C

C
= (5.10.17)

Writing the expression for kT and kS, we get

k

k
T

S

T

S

V V p

V V p
=

- ∂ ∂
- ∂ ∂

( / )( / )

( / )( / )

1

1

=
( / )

( / )

( / )

( / ) ( / )

∂ ∂
∂ ∂

∫
∂ ∂

∂ ∂ ∂ ∂
V p

V p

V p

V T T p

T

S

T

S S

Making use of Eqs. (5.10.9) and (5.10.2), we get

k

k
T

S

T

T

p

V p

p

p

V

V p

V p

V T

C

T

V T

C

C

C
=

∂ ∂
∂ ∂
∂ ∂

∂ ∂
=

( / )

( / )

( / )

( / )

which is the required relation.

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃ -

A

T
p

V

T
S

p p

Since dA = – p dV – SdT, dividing by dT and introducing the condition of constant p,

we get
∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃ -

A

T
p

V

T
S

p p

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

A

p
p

V

pT T

(5.10.18)

Since dA = – p dV – S dT, dividing by dp and introducing the condition of constant 

T, we get

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

A

p
p

V

pT T

kT – kS = Ta 2V/Cp

where kT = – (1/V) (∂V/∂p)T and kS = – (1/V) (∂V/∂p)S and are known as isothermal 

compressibility and isentropic compressibility, respectively, and a
of thermal expansion

Taking V = f (p, T), we write

d d dV
V

p
p

V

T
T

T p

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

(xiii)

(xiv)

(xv)

(xvi)
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Dividing by dp and introducing the condition of constant entropy, we get

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

V

p

V

p

V

T

T

pS T p S

or
∂
∂

Ê
ËÁ

ˆ
¯̃

-
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

V

p

V

p

V

T

T

pT S p S

From the cyclic rule

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃ + =

T

p

p

S

S

TS T p

1 0

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂ ∂ ∂ ∂

= -
∂ ∂
∂ ∂

T

p p S S T

S p

S TS T p

T

p

1

( / ) ( / )

( / )

( / )

With this, the previous expression becomes

∂
∂

Ê
ËÁ

ˆ
¯̃

-
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

∂ ∂
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Ï
Ì
Ô

ÓÔ

¸
˝
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S p

S TT S p
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( / )

( / )

ÔÔ

Ǫ̂

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

S

p

V

TT p

Moreover, 
∂
∂

Ê
ËÁ

ˆ
¯̃ =

S

T

C

Tp

p

Hence
∂
∂

Ê
ËÁ

ˆ
¯̃

-
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂ ∂Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

V

p

V

p

V

T

V T

C TT S p

p

p

( / )

/

i.e. kT – kS = T a2V/Cp

(∂G/∂T)p involves G, T, and p), one can write a total of 336 (∫
partial derivatives out of eight common thermodyanmic variables p, V, T, U, H, S, A

and G. Bridgman has devised a procedure which permits to write the expression of 

(∂V/∂T)p, (∂V/∂p)T and (∂H/∂T)p

derivative (∂x/∂y)z as (∂x)z / (∂y)z and then to substitute the appropriate expressions 

of (∂x)z and (∂y)z from the total twenty-eight possible Bridgman formulae given 

in Table 5.11.1.

5.11 BRIDGMAN FORMULAE TO WRITE THE EXPRESSIONS OF FIRST PARTIAL DERIVATIVES
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As an illustration, we derive the expression of (∂G/∂T)S which we write as

(∂G)S/(∂T)S. Now consulting Bridgman formulae, we get

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

=
- + ∂ ∂

- ∂ ∂
=

∂ ∂
G

T

G

T

VC T S V T

V T

VC

T VS

S

S

p p

p

p( )

( )

/ ( / )

( / ) ( / TT
S

p)
-

which we have derived earlier (Eq. 5.10.13).

Table 5.11.1 Bridgman Formulae

(∂T)p = – (∂p)T = 1

(∂V)p = – (∂p)V = (∂V/∂T)p

(∂S)p = – (∂p)S = Cp/T

(∂U)p = – (∂p)U = Cp – p(∂V/∂T)p

(∂H)p = – (∂p)H = Cp

(∂G)p = – (∂p)G = – S

(∂A)p = – (∂p)A = – S – p(∂V/∂T)p

(∂V)T = – (∂T)V = – (∂V/∂p)T

(∂S)T = – (∂T)S = (∂V/∂T)p

(∂U)T = – (∂T)U = T(∂V/∂T)p + p(∂V/∂p)T

(∂H)T = – (∂T)H = – V + T(∂V/∂T)p

(∂G)T = – (∂T)G = – V

(∂A)T = – (∂T)A = p(∂V/∂p)T

(∂S)V = – (∂V)S = Cp(∂V/∂T)p/T + (∂V/∂T)p
2

(∂U)V = – (∂V)U = Cp(∂V/∂p)T + T (∂V/∂T)p
2

(∂H)V = – (∂V)H = Cp (∂V/∂p)T + T (∂V/∂T)p
2 – V(∂V/∂T)p

(∂G)V = – (∂V)G = –V(∂V/∂T)p – S(∂V/∂p)T

(∂A)V = – (∂V)A = –S(∂V/∂p)T

(∂U)S = – (∂S)U = p Cp (∂V/∂p)T / T + p (∂V/∂T)p
2

(∂H)S = – (∂S)H = –V Cp/T

(∂G)S = – (∂S)G = –V Cp/T + S (∂V/∂T)p

(∂A)S = – (∂S)A = p Cp (∂V/∂p)T /T + p(∂V/∂T)p
2 + S(∂V/∂T)p

(∂H)U = – (∂U)H = –V [Cp – p(∂V/∂T)p] – p[Cp(∂V/∂p)T + T(∂V/∂T)p
2]

(∂G)U = – (∂U)G = –V [Cp – p(∂V/∂T)p] + S[T(∂V/∂T)p + p(∂V/∂p)T]

(∂A)U = – (∂U)A = p[Cp(∂V/∂p)T + T(∂V/∂T)p
2]

(∂G)H = – (∂H)G = – V(Cp + S) + TS(∂V/∂T)p

(∂A)H = – (∂H)A = – [S + p(∂V/∂T)p] [V – T(∂V/∂T)p] + p(∂V/∂p)T

(∂A)G = – (∂G)A = – S[V + p(∂V/∂p)T] – pV(∂V/∂T)p
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One mole of steam is condensed reversibly to liquid water at 373 K and 101.325 kPa pressure. 

The heat of vaporization of water is 2.256 8 kJ g–1. Assuming that the steam behaves as an 

ideal gas, calculate w, q, D rU, D rS, D rA and D rG for the condensation process.

The process is

H2O(g, 101.325 kPa, 373 K) Æ H2O(1, 101.325 kPa, 373 K)

and D vapH = (2.256 8 kJ g–1) (18 g mol–1) = 40.624 kJ mol–1

Since the process takes place at constant pressure, therefore 

qp = – D vapH = – 40.624 kJ mol–1

w = – p D V = – p(Vm,1 – Vm, g)

p(Vm,g)

where Vm,g is the molar volume of the gas at 373 K. Hence

w = (101.325 kPa) {(22.414 dm3 mol–1) (373 K/273K)}

= 3 103.0 kPa dm3 mol–1 = 3 103 J mol–1

D rH = qp = – 40.622 4 kJ mol–1

D rS = - = -
-

- -40 622 4

373
108 907

1
1 1.

.
J mol

K
J K mol

D rG = 0

Since D rG = D rA + (D ng)RT, we have

D rA = – (D ng)RT = – (–1) (8.314 J K–1 mol–1) (373 K) = 3 101 J mol–1

D rU = q + w = – 40.622 4 kJ mol–1 + 3.101 kJ mol–1 = – 37.52 kJ mol–1

Show that the change 

2 mol of an ideal gas (2 bar, 273 K) Æ 2 mol of gas (1 bar, 273 K) carried out 

irreversibly against an external pressure of 1 bar is spontaneous.

D G for the process can be calculated using the expression

D G = nRT ln 
p

p

2

1

Substituting the given values, we get

D G = (2.0 mol) (8.314 J K–1 mol–1) (273 K) (2.303) log 
1 bar

2 bar

Ê
ËÁ

ˆ
¯̃

= –3 147.06 J

Since there occurs a decrease in the value of D G, it must therefore, be a spontaneous change. 

Compute D rG for the following processes.

(a) H2O (1, 1 atm, 373 K) Æ H2O(g, 1 atm, 373 K) 

(b) H2O (1, 2 atm, 373 K) Æ H2O(g, 2 atm, 373 K) 

(c) H2O (1, 1 atm, 300 K) Æ H2O(g, 0.80 atm, 300 K)

where atm stands for atmospheric pressure (= 101.325 kPa). Given that

5.12 MISCELLANEOUS NUMERICALS

1.

Solution

2.

Solution

3.
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Normal boiling point of water = 373 K

Cp,m(H2O, 1) = 75.312 J K–1 mol–1

Cp,m(H2O, g) = 33.054 J K–1 mol–1

D vapH(1 atm, 373 K) = 40.639 kJ mol–1

(a) H2O(1, 1 atm, 373 K) Æ H2O(g, 1 atm, 373 K)

373 K is the normal boiling point of water at 1 atm pressure. Therefore, the above process

takes place at equilibrium conditions. Thus

      D rG = 0

(b) H2O(1, 2 atm, 373 K) Æ H2O(g, 2 atm, 373 K)

This process can be replaced by the following three reversible processes.

(i) H2O(1, 2 atm, 373 K) Æ H2O(1, 1 atm, 373 K) 

(ii) H2O(1, 1 atm, 373 K) Æ H2O(g, 1 atm, 373 K) 

(iii) H2O(g, 1 atm, 373 K) Æ H2O(g, 2 atm, 373 K)

For step (i) D rG1 = 0 assuming no variation in D rG for condensed phase due to the pressure 

variation alone.

For step (ii) Process takes place at equilibrium conditions; that is

D rG2 = 0

For step (iii)

D rG3 = RT
p

p
ln ( . ) ( ) . log2

1

1 18 314 373 2 303
2

1
= ¥ ¥

Ê
ËÁ

ˆ
¯̃

- -J K mol K
atm

atm

= 2 149.92 J mol–1

  For the overall process

D rG = D rG1 + D rG2 + D rG3

= D rG3 = 2 149.92 J mol–1

(c) H2O (1, 1 atm 300 K) Æ H2O(g, 0.08 atm, 300 K)

This process may be replaced by the following four steps.

(i) H2O(1, 1 atm, 300 K) Æ H2O(1, 1 atm, 373 K)

(ii) H2O(1, 1 atm, 373 K) Æ H2O(g, 1 atm, 373 K)

(iii) H2O(g, 1 atm, 373 K) Æ H2O(g, 1 atm, 300 K)

(iv) H2O(g, 1 atm, 300 K) Æ H2O(g, 0.08 atm, 300 K)

Step (i)

Dr

K

K

d J K mol KH C Tp1

300

373
1 11 75 312 73= =Ú - -( ) ( . ) ( ) = 5 497.78 J mol–1

Dr

K

K

dS
C

T
T C

T

T

p
p1

300

373

2

1

1
1= =Ú

( )
( ) ln

= (75.312 J K–1 mol–1)(2.303) × log 
373

300

K

K

Ê
ËÁ

ˆ
¯̃

= 16.406 J K–1 mol–1

Step (ii)

D rH2 = 40 639 J mol–1

Solution
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Dr

J mol

K
J K molS2

1
1 140 639

373
108 95= =

-
- -( )

( )
.

Step (iii)

Dr

K

K

,m g d J K mol K J moH C Tp3

373

300
1 133 054 73 2 412 9= = - = -Ú - -( ) ( . ) ( ) . ll-1

Dr

K

K
,m g

d J K mol
K

S
C

T
T

p

3

373

300
1 133 054 2 303

300

37
= =Ú - -( )

( . ) ( . ) log
33 K

Ê
ËÁ

ˆ
¯̃

= – 7.200 J K–1 mol–1

The total changes of enthalpy and entropy in the above three steps are: 

Reaction
Dr

J mol

H
-1

Dr

J K mol

S
- -1 1

H2O(1, 1 atm 300 K) Æ H2O(1, 1 atm, 373 K); 5 497.78 16.406

H2O(1, 1 atm, 373 K) Æ H2O(g, 1 atm, 373 K); 40 639.0 108.95

H2O(g, 1 atm, 373 K) Æ H2O(g, 1 atm, 300 K); –2 412.9 –7.200

H2O(1, 1 atm, 300 K) Æ H2O(g, 1 atm, 300 K); 43 723.88 118.156

The change in D rG is given by

D rG = D rH – T D rS

= (43 723.88 J mol–1) – (300 K) (118.156 J K–1 mol–1)

= (43 723.88 J mol–1) – (35 446.8 J mol–1)

D rG = 8 277.08 J mol–1

For the fourth step, D rG is given by

D rG = RT ln 
p

p

2

1

 = (8.314 K–1 mol–1) (300 K) (2.303) log 
0 08

1

. atm

atm

Ê
ËÁ

ˆ
¯̃

= – 6 300.8 J mol–1

Adding this contribution, we get

D rG/J mol–1

H2O(1, 1 atm, 300 K) Æ H2O(g, 1 atm, 300 K) 8 277.08

H2O(g, 1 atm, 300 K) Æ H2O(g, 0.08 atm, 300 K) – 6 300.80

H2O(1, 1 atm, 300 K) Æ H2O(g, 0.08 atm, 300 K) 1 976.28 

The reaction

H2O(1, p, 273 K) Æ H2O(g, p, 273 K)

represents an equilibrium reaction for some pressure p, called the vapour pressure. Assuming 

the vapour pressure at 273 K. Given that

Cp, m(H2O, g) = 33.054 J K–1 mol–1

Cp, m(H2O, 1) = 75.312 J K–1 mol–1

D vapH(H2O, 373 K) = 40.639 kJ mol–1

4.
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(i) H2O(1, p, 273 K) Æ H2O(1, 101.325 kPa, 273 K) 

(ii) H2O(1, 101.325 kPa, 273 K) Æ H2O(1, 101.325 kPa, 373 K) 

(iii) H2O(1, 101.325 kPa, 373 K) Æ H2O(g, 101.325 kPa, 373 K) 

(iv) H2O(g, 101.325 kPa, 373 K) Æ H2O(g, 101.325 kPa, 273 K) 

(v) H2O(g, 101.325 kPa, 273 K) Æ H2O(g, p, 273 K)

The corresponding changes in D rH and D rS are given below:

D rH/J mol–1 D rS/J K–1 mol–1

(i) 0 0

(ii) 75.312 × 100 = 7 531.2 75.312 × ln 
373

273
 = 23.505 

(iii) 40 639
40 639

373
 = 108.952

(iv) 33.054(–100) = –3 305.4 33.054 ln 
273

373
= – 10.316

(v) 0 8.314 ln 
101 325. kPa

p

Ê
ËÁ

ˆ
¯̃

Total change 44 864.8 122.141 + 8.314 ln 
101 325. kPa

p

Ê
ËÁ

ˆ
¯̃

For this equilibrium process

D rG = 0 = D rH – T D rS

= ( . ) ( ) ( . )

( .

44 864 8 273 122 141

8 314

1 1 1

1

J mol K J K mol

J K mol

- - -

- -

-
Ï
Ì
Ó

+ 11 101 325
) ln

.

/p kPa

Ê
ËÁ

ˆ
¯̃

¸
˝
˛

Thus p = 0.632 kPa 

The vapour pressure of liquid mercury at 433 K is 4.19 mmHg. Calculate the free energy 

change accompanying the expansion of one mole of mercury vapour in equilibrium with 

liquid at 433 K to a pressure of 1 atm at the same temperature assuming the vapour behaves 

like an ideal monatomic gas.

The transformation of Hg(l) to Hg(g) at temperature 433 K and at the corresponding 

equilibrium pressure 4.19 mmHg will be reversible in nature. Thus, D G for this process will 

be equal to zero. But there will occur a change of free energy when the pressure of Hg(g) 

is changed form 4.19 mmHg to 760 mmHg which can be calculated using the expression

D G = nRT ln 
p

p

2

1

Substituting p2 = 760 mmHg and p1 = 4.19 mmHg, we get

Solution

5.

Solution
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D G = (1 mol) (8.314 J K–1 mol–1) (433 K) (2.303) log 
760

4 19

mmHg

mmHg.

Ê
ËÁ

ˆ
¯̃

= 18 725.4 J mol–1 = 18.725 kJ mol–1

Compute D rG for the change H2(g, 298 K, 1 atm) Æ H2(g, 323 K, 2 atm); given that H2(g)

is ideal, that its Cp, m is constant at 28.87 J K–1 mol–1 over the temperature range and that 

S298K for H2(g) is 130.58 J K–1 mol–1.

The change of free energy for the transformation

H2(g, T1 = 298 K, p1 = 1 atm) Æ H2(g, T2 = 323 K, p2 = 2 atm)

may be calculated as follows.

D rG = G(p2, T2) – G(p1, T1)= (H2 – T2S2) – (H1 – T1S1)

= (H2 – H1) – T2S2 + T1S1

DrG H H T S
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T
T R

p

p
T S

p
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p

p
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2

1
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T
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p
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T
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C T S T T T
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T
T R

p
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2

1

2

1

2

1 2 1 2Ú - - - -
È

Î
Í

˘

˚
˙Ú Ú,m
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d
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p p,m ,m( ) ( ) ln lnD D- - +
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Î
Í

˘

˚
˙1 2

2

1

1

2

Substituting the given values, we get

D rG = (28.87 J K–1 mol–1) (25 K) – (130.58 J K–1 mol–1) (25 K)

-
Ê
ËÁ

ˆ
¯̃

È

ÎÍ

+

- -

- -

( ) ( . ) ln

( .

323 28 87
323

298

8 314

1 1

1 1

K J K mol
K

K

J K mol )) ln ( / )1 2atm atm
˘

˚
˙

= 721.75 J mol–1 – 3 264.5 J mol–1 – (323) [2.326 J mol–1 – 5.763 J mol–1]

= – 1 432.6 J mol–1

D S = Cp, m ln 
T

T
R

p

p

2

1

1

2

+ ln

= (28.87 J K–1 mol–1) ln 
323

298
8 314

1

2

1 1K

K
J K mol

atm

atm

Ê
ËÁ

ˆ
¯̃

+
Ê
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ˆ
¯̃

- -( . ) ln

= 2.326 J K–1 mol–1 – 5.764 J K–1 mol–1

= – 3.438 J K–1 mol–1

S323K = S298K + D S = 130.58 J K–1 mol–1 – 3.348 J K–1 mol–1

= 127.142 J K–1 mol–1

Now H298K = 0

H323K = Cp, m D T = (28.87 J K–1 mol–1) (25 K) = 721.75 J mol–1

Thus G323K = H323K – TS323K

= 721.75 J mol–1 – (323 K) (127.42 J K–1 mol–1)

6.

Solution

Alternative Solution
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= – 40 345 J mol–1 = – 40. 345 kJ mol–1

G298K = H298K – TS298K = 0 – (298 K) (130.58 J K–1 mol–1)

= –38 912.8 J mol–1 = – 38.913 kJ mol–1

Thus D G = G323K – G298K = – 40.345 kJ mol–1 + 38.913 kJ mol–1

= – 1.432 kJ mol–1

REVISIONARY PROBLEMS

5.1 Show that the criterion of thermodynamic equilibrium under the different conditions 

are as follows:

(a) At constant energy and volume: Entropy attains a maximum value and dSU, V = 0

(b) At constant entropy and volume: Internal energy attains a minimum value and 

dUS, V = 0

(c) At constant entropy and pressure: Enthalpy attains a minimum value and

dHS, p = 0

(d) At constant temperature and volume: Helmholtz free energy attains a minimum 

value and dAT, V = 0

(e) At constant temperature and pressure: Gibbs free energy attains a minimum value 

and dGT, p = 0

5.2 Show that for a system

(a) Decrease in the value of Helmholtz free energy at constant temperature represents 

the maximum amount of the work that can be obtained from the system.

(b) Decrease in the value of Gibbs free energy at constant temperature and pressure 

is equal to the net available nonmechanical work.

5.3 State which one of the following four conditions will always lead to a spontaneous 

change and which one will never lead to a spontaneous change:

(i) D H = –ve ; D S = +ve

(ii) D H = +ve ; D S = –ve

(iii) D H = –ve ; D S = –ve

(iv) D H = +ve ; D S = +ve

5.4 Justify the following statements:

(a) The laws of thermodynamics cannot predict the rate of a chemical reaction. 

(b) A catalyst cannot change the values of D rH and D rG of given chemical reaction. 

(c) At low temperature, enthalpy change dominates the D rG expression whereas at 

high temperature, it is the entropy change which dominates the value of D rG.

(d) For an isothermal expansion of an ideal gas D rG = D rA.

5.4 Show that

 (∂A/∂V)T = p and (∂A/∂T)V = – S

and (∂G/∂p)T = V and (∂G/∂T)p = – S

substance. Show that

(i)  For condensed system G G°(T), i.e. the pressure dependence of G is ignored. 

(ii) For an ideal gas

m = m° + RT ln (p/1 bar)

(b) Draw a graph showing the variation of m – m° with pressure of an ideal gas.
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5.7 Show that for an isothermal change in an ideal gas 

  D G = nRT ln 
p

p
nRT

V

V

2

1

1

2

= ln

5.8 (a) Derive the following forms of Gibbs–Helmholtz equation: 

G = H + T(∂G/∂T)p D rG = ∂rH + T{∂(D rG)/∂T}p

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

( / )G T

T

H

Tp
2

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

( / )D Dr rG T

T

H

Tp
2

∂
∂

Ê
ËÁ

ˆ
¯̃

=
( / )

( / )

G T

T
H

p1

∂
∂

Ê
ËÁ

ˆ
¯̃

=
( / )

( / )

D
Dr

r

G T

T
H

p1

(b) Derive the corresponding relations for Helmholtz free energy.

thermodynamics derive the following relations:

dU = T dS – p dV dH = T dS + V dp

dA = – S dT – p dV dG = – S dT + V dp

(b) What are natural independent variables? State these for the functions, U, H, A

and G.

(c) Starting from the relations given in part (a), derive the following Maxwell relation 

and discuss their utility.

(∂T/∂V)S = – (∂p/∂S)V (∂T/∂p)S = (∂V/∂S)p

(∂S/∂V)T = (∂p/∂T)V (∂S/∂p)T = – (∂V/∂T)p

(d) Starting from the relations given in part (a), prove that:

(∂U/∂S)V = T and (∂U/∂V)S = – p

(∂H/∂S)p = T and (∂H/∂p)S = V

(∂A/∂T)V = – S and (∂A/∂V)T = – p

and (∂G/∂T)p = – S and (∂G/∂p)T = V

Hence show that

(∂U/∂S)V = (∂H/∂S)p (∂U/∂V)S = (∂A/∂V)T

(∂H/∂p)S = (∂G/∂p)T (∂A/∂T)V = (∂G/∂T)p

(e) Starting from the relation given in part (a), derive the relations

(∂U/∂V)T = T(∂p/∂T)V – p and (∂H/∂p)T = V – T(∂V/∂T)p

What are these called? Evaluate their values for an ideal gas. What do you 

conclude about the dependence of U on V and H on p at a constant temperature 

for an ideal gas?

5.10 (a) Derive the following relations:

( / )
( / )

∂ ∂ = -
∂ ∂

T V
T p T

C
S

V

V

( / )
( / )

∂ ∂ =
∂ ∂

T p
T V T

C
S

p

p

(b) An adiabatic reversible process is an isentropic process. Equations given in part 

(a) express the variation of V versus T and p versus T for such types of processes. 

The required relations can be derived by integrating these relations. For an ideal 

gas carry out the integrations and show that it leads to

T V T p
R C R CV/ /,m p,mconstant and constant= =-

(c) Derive the relation involving p and V for an isentropic process involving an ideal 

gas.
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5.11 Derive the following thermodynamic relations:

(i) ( / )
( / )
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,  where kS is adiabatic compressibility and is given as 
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(i) f = p for an ideal gas.

(ii) f > p for a van der Waals gas at higher pressures.

(iii) f < p for a van der Waals gas at lower pressures.

(b) In the lower pressure range, the pressure of a real gas is the geometric mean of 

the ideal pressure and fugacity. 

(c) Derive the expression of fugacity for each of the following equation of state. 

(i) p(Vm – b) = RT (ii) ( / )p a V V RT+ =m m
2

(iii) ( / ) ( )p a V V b RT+ - =m m
2

(iv) Z = 1 + Bp + Cp2/2 + 

(d) Derive the following expressions:

(i)
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(e) Show that for a van der Waals gas

H H
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TRY YOURSELF PROBLEMS

5.1 Derive the following relations:
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5.2 The Helmoholtz function of one mole of certain gas is given by 

A
a

V
RT V b f T= -

Ê
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ˆ
¯̃

- - +
m

mln ( ) ( )

  where a and b are constants and f (T) is a function of temperature only. Derive an 

  expression for the pressure of the gas. [Ans. p = RT /(Vm – b) – a/Vm
2]

5.3 The Gibbs function of one mole of a certain gas is given by

G RT p A Bp Cp Dp= + + + +ln
1

2

1

3

2 3

  where A, B, C and D are functions of temperature only. Find the equation of state of 

the gas. [Ans. V = (RT/p) + B + Cp + Dp2]
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5.4 Suppose that G is known as a function of p and T for a system. Derive the expressions 

for the other thermodynamic functions of the systems (V, S, H, U, A, Cp, CV, a and 

kT) in terms of G and its derivatives with respect to p and T only.

5.5 Show that
1 1
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5.6 Show that the criterion of thermodynamic equilibrium under the condition of constant 

entropy and pressure is dHS, p = 0.

5.7 What is meant by a system’s being in: (a) thermal equilibrium, (b) chemical equilibrium, 

(c) mechanical equilibrium and (d) thermodynamic equilibrium.

5.8 (a) Show that the graphs of H versus T and G versus T will always have opposite 

slopes.

[Hint: (∂H/∂T)p = Cp > 0 and (∂G/∂T)p = – S < 0]

  (b) What is the separation between these two plots at any temperature? How does 

this separation vary with temperature? [Ans. TS]

  (c) Show that the two plots will approach each other as the temperature is lowered 

and ultimately will meet as T Æ 0. Draw a schematic diagram showing these two 

curves.

  (d) Given the experimental fact of T.W. Richards that D G and D H of any system approach 

each other as the temperature is lowered and that as T Æ 0, they become identical,

i.e. lim
T

G H
Æ

=
0

D D

   Show that if graphs of D H versus T and D G versus T are plotted, the two graphs 

will have opposite slopes.

[Hint: D G = D H – T D S or T D S = D H – D G]

   D S = +ve fi D H > D G
or

   D S = –ve fi D G > D H

as T Æ 0, D H = D G. Thus, the variation of D H and D G as the temperature is 

lowered will have opposite trends.]

  (e) Nernst on examining the Richards plots observed that not only the two curves in 

any plot approach each other but their slopes seemed to approach zero, i.e.
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   These results are known as Nernst heat theorem. With this information, draw a 

schematic diagram illustrating the behaviour of D H versus T and D G versus T

curves. (f) Show that as T Æ 0, we must have D S = 0 and D Cp = 0.
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  (g) What is Planck’s contribution about the absolute value of entropy of a substance 

at 0 K. Is it in agreement with the Nernst heat theorem?
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  (h) According to the third law of thermodynamics 

      
lim
T

S
Æ

=
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0

   This implies that in the limit of absolute zero of temperature the entropy of a 

perfect crystalline substance must be independent of changes in pressure or volume, 

such that 
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   Using the appropriate Maxwell equation, show that 
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5.9 (a) A gas consisting of the amount n obeys the relation

      pV = n(RT + Bp)

where B is constant, is being compressed from a volume V to a volume V/2 

isothermally and reversibly. Derive the expressions for q, w, D U, D H, D Ssys,

D Ssurr, and D G.
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  (b) Suppose now the gas is allowed to return to its initial state by expanding 

isothermally into vacuum from a volume V/2 to a volume V. Calculate q, w, D U,

D H, D Ssys, D Ssurr and D G.

[Ans. Values of D U, D H, D S and D G are the same as

those in part (a) but of opposite signs, q = w = 0] 

  (c) Suppose now the gas is compressed reversibly and adiabatically from the state

p1, T1 p2. Derive the expressions for T2, q, w, D U,

D H, D Ssys and D G.

Given that CV, m of the gas varies with temperature according to the expression

      CV, m = a + bT

where a and b are constants.
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  w = D U
   D H = D U = +n[R(T2 – T1) + B(p2 – p1)]

   

D D DG H T S= -
˘
˚̇
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[Note: D G cannot be calculated unless the value of D S is provided.]

p1 D U, D H, D S and 

D G.

Ans T q w U. ;Final temperature will also be 2 0= - = =
È
ÎÍ

D

D D DH nB p p S nR
p

p
G nRT

p

p
nB p p= - = = + -

˘

˚
˙( ); ln ; ln ( )1 2

2

1

1

2
1 2

5.10 Suppose one mole of the gas (assumed to be ideal) is transported reversibly and 

isothermally from its equilibrium state at the surface of the earth where pressure is p0

to its equilibrium state at a height h from the earth where pressure is p(with p < p0).

One of the procedures to carry out the above process is to transport the gas by an 

h = 0 to h = h. The only work done in this process (and will have a negative sign) is 

the gravitational work and is equal to – Mg dh where M is the mass of 1 mole of gas 

and dh p–V and 

e energy dG such that

  dG = dw = – Mg dh

But dG = V dp – S dT, therefore, the above expression becomes

V dp – S dT = – Mg dh

Since the transport takes place at constant temperature, therefore, we have

V dp = – Mg dh

  Carry out the integration of the above equation from h = 0, p = p0 to h = h, p = p and 

show that it leads to the barometric formula.

5.11 A chemist reports that he has found the entropy of a particular system decreases during 

5.12 (a) Show that V, H and S are related to f and its derivatives by the following 
expressions.

    

V V RT
f f

p
H H RT

f f

TT p
m m m m= +

∂ ∞
∂

Ê
ËÁ

ˆ
¯̃

= -
∂ ∞

∂
Ê
ËÁ

ˆ
¯̃

∞ ∞ln ( / )
;

ln ( / )2

    

S S RT
f f

T
R f f

p
m m= -

∂ ∞
∂

Ê
ËÁ

ˆ
¯̃ - ∞∞ ln ( / )

ln ( / )

  (b) For a gas obeying equation of state

   pV = RT + Bp + Cp2 + 

where B, C, º, etc. are temperature dependent. Prove the following relations.

    

H H Bp T
B

T
p S S R p p

B

Tp p

= ∞ + -
∂
∂

Ê
ËÁ

ˆ
¯̃ + = ∞ - -

∂
∂

Ê
ËÁ

ˆ
¯̃ +; ln

    

C C T
B

T
C T

B

T
Bp p

p

p
p

= ∞ -
∂
∂

Ê
ËÁ

ˆ
¯̃

+ =
∂
∂

Ê
ËÁ

ˆ
¯̃ - +

2

2
; mJT



322 A Textbook of Physical Chemistry

5.13 A certain gas obeys the equations of state

pV RT
B

V

C

V

D

V
= + + + +

2 3

  Show that the fugacity of the gas is given by

ln ln
f

p

RT

V

B

RTV

C

RTV
= + + +

2 3

2 2

5.14 (a) Show that

(i) mJT =
∂
∂

Ê
ËÁ

ˆ
¯̃ -

È

Î
Í

˘

˚
˙ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

1 2

C
T

V

T
V

RT

C p

Z

Tp p p p

(ii)
∂

∂ ∂
=

∂ -
∂

Ê
ËÁ

ˆ
¯̃

= = -
∂
∂

Ê
ËÁ

ˆ
¯̃

2

2

0

2

1 1 1f

p T RT

H H

p RT
C

p

Z

T
T

p
V

( )m m
JTm

where Z is the compression factor of the system of a real gas.

  (b) Derive the expressions of mJT and (∂2f/∂p ∂T) for one mole of a van der Waals gas.

5.15 The formation of the oxide MxOy per mole of O2 consumed is written as

2
M(s) + O (g)

2
M O2

x

y y
x yÆ

  The free energy change of the reaction is given by D rG = D rH – T D rS
  If the enthalpy change D rH and entropy change D rS are assumed to be independent 

of temperature, the plot of D rG versus T is linear such as shown in Fig. 1, known as 

Ellingham diagram. Figure 1 is widely used to discuss the principles involved in the 

extraction of metal from its oxide.

T/K

Fig. 1 Ellingham
diagram
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  (i) The slope of linear plot of D rG versus T is

(a) positive for MxOy with the exception when M is carbon,

(b) nearly zero but positive for CO2 and

(c) negative for CO.

[Ans. (a) D rS of the oxide formation is negative as D ng = – 1

  (decrease in gaseous species),

(b) D rS is slightly positive as D ng = 0 (no change in the gaseous species),

(c) D rS is positive as D ng = +1 (increase in gaseous species).]

  (ii) The plots of D rG versus T for the various oxides formed from M(s) or M(l) are 

more or less parallel to one another.

(Ans. D rS of the reactions are, more or less, the same.) 

  (iii) The slope of D rG versus T plot becomes more positive when the oxide is formed 

from M(g).

(Ans. Larger decrease in the gaseous species.) 

  (iv) At T < 700 °C, the stable oxide of C is CO2 whereas at T > 700 °C, the stable 

oxide is CO. Given that at higher temperature the equilibrium reaction

    C + CO2 2CO

   sets in with D rH = 172.8 kJ mol–1 and D rS = 176.15 J K–1 mol–1.

(Ans. The temperature at which CO2 reacts with C to give CO

is equal to D rH/D rS as D rG = 0 which gives T = 981 K = 708 °C) 

  (v) Mercury(II) oxide decomposes spontaneously to its element by heating alone.

(Ans. D rG of oxide formation becomes positive at higher

temperature. It becomes unstable and thus decomposes.) 

  (vi) The reduction of MxOy by carbon at T > 700 °C may be represented as

    

2
M O C

2
M CO

y

x

y
x y + Æ +2 2

   The free energy of this reaction can be obtained from the following two reactions.

    

2
M O

2
M Ox r

x

y y
Gy+ Æ2 1D

    2C + O2 Æ 2CO D rG2

Obviously,

    D rG = D rG2 – D rG1

   For the reduction to be spontaneous, we must have D rG1 > D rG2, that is, the line 

representing the oxide formation of the metal M should lie above that of C. For 

each oxide, the temperature at which this condition is achieved can be determined 

from Fig. 1. Show that the ascending order of temperature for various oxides of 

M is as follows.

    TFe < TZn < TCr < TTi < TMg < TAl < TCa

  (vii) Show that reduction of Cr2O3 by Al is possible at all temperatures.

NUMERICAL PROBLEMS

5.1 (a) One mole of an ideal monatomic gas expands isothermally at 300 K into vacuum 

from an initial volume of 10 dm3 3.

  (b) One mole of the same gas expands isothermally and reversibly at 300 K from 10 

dm3 to 20 dm3.

   For each of the above two processes, calculate q, w, D U, D H, D A and D G.

Pressure

Dependence

of G
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  (c) Describe a process by which the gas could be restored to its initial state after each 

of the two processes. Show how surroundings could also be restored to their initial 

state in one of the above processes and for the second it cannot be restored.

(Ans. (a) q = w = 0; (b) q = –w = 1.728 kJ;

For both processes D U = D H = 0; D A = D G = – 1.728 kJ) 

5.2 Three moles of a gas with pV = n(RT + Bp) where B = 30 cm3 mol–1 and for which 

Cp/J K–1 mol–1 = 27.196 + 46.65 × 10–3 (T/K) undergoes an irreversible change in 

state given by

600 K, 10 bar Æ 300 K, 5 bar

  Calculate D U, D H and D S. Can you estimate the values of D A and D G from the given 

data? How do you reconcile the sign of D S calculated in this problem with the help 

of second law? (Ans. – 35.89 kJ, – 43.37 kJ, – 81.25 J K–1, no) 

5.3 An ideal gas is allowed to expand reversibly and isothermally at 298 K from a pressure 

of 1 bar to 0.05 bar. (a) What is the change in molar Gibbs energy? (b) What would 

be the change if the process occurs irreversibly? 

(Ans. (a) –7 422 J mol–1, (b) –7 422 J mol–1)

5.4 Calculate the difference between D rG and D rA at 20 °C for the reaction

H2(g,1atm) + 
1

2
O2 (g, 1atm) = H2O(1) (Ans. –3.716 kJ mol–1)

5.5 The density of NH3(g) at 200 °C and 5.066 MPa is 24.30 g dm–3. Estimate its fugacity.

[Hint: Make use of the expression f = p2
real /pideal) (Ans. 4.569 MPa) 

5.6 Calculate the fugacity of NH3 at 200 °C and 10.1325 MPa from the following data.

p/MPa 2.026 5 6.079 5 10.132 5 15.198 8 

V/cm3 1 866 570.8 310.9 176.6

  [Hint: Follow the graphical method, Eq. (5.7.5).] (Ans. 8.329 MPa)

5.7 For a van der Waals gas

Z b
a

RT

p

RT
= + - Ê

ËÁ
ˆ
¯̃

È
ÎÍ

˘
˚̇

1

  calculate its fugacity at 100 bar and 298 K. Given: a = 0.247 6 dm6 bar mol–2 and

b = 0.026 61 dm3 mol–1. (Ans. 106.9 bar) 

5.8 In the formation of silver chloride from its elements under normal conditions, D rG is 

–110.04 kJ mol–1 and D rH = –126.72 kJ mol–1 at 18 °C. What is the corresponding 

entropy change? Calculate the change in free energy for a 10 °C rise in temperature, 

assuming the rate of change of D rG with temperature, i.e. ∂(D rG)/∂T to remain constant.

(Ans. –57.32 J K–1 mol–1; 573.2 J mol–1)

5.9 For a certain process, D G = –50.208 kJ and D H = –73.198 kJ at 400 K. Find for the 

process at this temperature D S, [∂(D G)/∂T]p and [∂(D A)/∂T]V.

(Ans. –57.475 J K–1, 57.475 J K–1, 57.475 J K–1)

5.10 For a certain reaction

 D rG/J mol–1 = 56 818.7 + 67.36 (T/K) log (T/K) –303.72 (T/K)

D rS and D rH of the reaction at 25 °C.

(Ans. D rS = 107.70 J K–1 mol–1, D rH = 48.074 kJ mol–1)

5.11 For the sublimation Au(s) Æ Au(g)

D rH°298K = 378.65 kJ mol–1 and D rG°298K = 33.89 kJ mol–1

Relation between 

DrG and DrA

Fugacity

Temperature 

Dependence

of G
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  Further

Au(g): Cp = 20.92 J K–1 mol–1

Au(s): Cp/J K–1 mol–1 = 23.47 + 6.025 × 10–3 (T/K)

D rG° as a function of temperature.

(Ans. D rG°/J mol–1 = 379 656.2 + 5.857 6 (T/K) log (T/K)

–151.59 (T/K) + 3.013 × 10–3 (T/K)2)

5.12 For the reaction

FeCO3(s) = FeO(g) + CO2(g)

 D rG°/J mol–1 = 78 073.4 – 60.33 (T/K) log (T/K) – 25.397 (T /K)

  + 34.476 × 10–3 (T/K)2

D rH° and D rS° for the reaction at 25 °C

(Ans. D rH° = 82.801 kJ mol–1; D rS° = 180.33 J K–1 mol–1)

5.12 For the reaction

A(s) + B2(g) = AB2(g)

 D rG°/J mol–1 = 21 087.4 – (32.09 K–1)T log (T/K) + (6.32 × 10–3 K–2) T2

+
¥

+
( . )

. ( )
4 63 10

90 29
5 K

T
T/K

  Further

Cp(A)/J K–1 mol–1 = 11.185 + (10.950 × 10–3 K–1) T -
¥( . )4 89 105 2

2

K

T

Cp(AB2)/J K–1 mol–1 = 57.53 + (2.050 ×10–3 K–1) T -
¥( . )14 142 105 2

2

K

T

Cp of B2(g) as a function of T.

(Ans. Cp(B2)/J K–1 mol–1 = 32.412 + (3.74 × 10–3 K–1)T + (0.008 × 105 K2) /T2)

5.14 (a) Compute D rG for the reaction

   H2O(1, 1 atm, 323 K ) Æ H2O(g, 1 atm, 323 K)

Given that

   D vapH of H2O at 373 K = 40.639 kJ mol–1

   Cp(H2O, 1) = 75.312 J K–1 mol–1

   Cp(H2O, g) = 33.305 J K–1 mol–1 (Ans. D rG = 5.59 kJ mol–1)

  (b) If p is the vapour pressure of water at 323 K, then the following reaction will be 

at equilibrium:

   H2O(1, p, 323 K) Æ H2O (g, p, 323 K)

and D rG for this reaction will be zero. Compute the value of p at 323 K.

(Ans. 12.63 kPa) 

5.15 One mole of steam is condensed reversibly to liquid water at 100 °C and 101.325 kPa 

pressure. The enthalpy of vaporization of water is 2.257 kJ g–1. Assume that the steam 

behaves as an ideal gas, calculate w, q, D U, D H, D S, D A and D G for the condensation 

process.

Miscellaneous 

Numerical



Systems of Variable 

Composition6

6.1 PARTIAL MOLAR QUANTITIES

Thermodynamic relations derived earlier are applicable to closed systems. In a 

system where not only the work and heat but also several kinds of matter are being 

exchanged, a multicomponent open system has to be considered. Here, the amounts 

of the various substances are treated as variables like any other thermodynamic 

variables. For example, the Gibbs free energy of a system is a function not only of 

temperature and pressure, but also of the amount of each substance in the system, 

such that

G = f (T, p, n1, n2, ..., nk)

where n1, n2, ..., nk represent the amounts of each of the k components in the system. 

For simplicity, let a system contain only two components. The total differential of 

G is

dG =
∂
∂

Ê
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ˆ
¯̃ +
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ˆ
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(6.1.1)

In this equation, the partial derivatives (∂G/∂n1)T, p, n2
 and (∂G/∂n2)T, p, n1

 are known as 

partial molar free energies of components 1 and 2, respectively. In general, the partial 

derivative of a thermodynamic function Y with respect to the amount of component 

i of a mixture when, T, p and amounts of other constituents are kept constant, is 

known as the partial molar quantity of the ith component and is represented as 

Yi,pm (or simply as Yi). Thus

Yi, pm =
∂
∂

Ê
ËÁ

ˆ
¯̃

π

Y

ni T p n j

j i

, , s

(6.1.2)

1. It is the change in Y when 1 mole of component i is added to a system which 

is so large that this addition has a negligible effect on the composition of the 

system.

2. Let dY be the change in value of Y n of 

component i

Expression of 

Partial Molar 

Quantity

Definition of Partial 

Molar Quantity
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amount dni we mean that its addition does not cause any appreciable change in the 

composition of the system. If we divide dY by dni, we get the partial molar quantity 

(∂Y/∂ni). Thus, the partial molar quantity of component i the

The quantity Yi, pm represents the actual value of Y per mole of the ith species 

in a system of known composition. This value may or may not be equal to the

corresponding molar value Y* of the species in the pure state. In fact, in only ideal 

systems where either there exists no interaction between the constituents (ideal 

gases) or all interactions are of the same type (ideal solutions) that the two values, 

viz., the partial molar value and the molar value, are the same. In nonideal solutions, 

because of interactions between the constituents, the molar value of Yi* usually 

Yi, pm. Since the extent of interactions depend upon 

Y

may not be the same at all compositions. Hence, its value will also depend upon the 

composition of the solution. Thus, although the partial molar quantities are meant 

for the individual components of the system, their values are not only dependent 

on the nature of the particular substance in question but also on the nature and 

amounts of the other components present in the system.

volume of the ith species in an ideal solution will be equal to its molar volume in

the pure state. In a nonideal solution, the partial molar volume is the molar volume 

actually occupied by the substance in a solution of known composition. For example, 

at 50 mass percentage solution of ethanol in water at 25 °C, the partial molar 

volume are found to be

Vpm(C2H5OH) = 56.76 cm3 mol–1

Vpm(H2O) = 17.37 cm3 mol–1

The corresponding values for the pure components are

V*(C2H5OH) = 58.65 cm3 mol–1

V*(H2O) = 18.07 cm3 mol–1

Suppose 54 g of water (3 mol) is mixed with 54 g of ethanol (1.173 8 mol), we will 

then have

Volume of water before mixing = (3 mol) (18.07 cm3 mol–1) = 54.21 cm3

Volume of ethanol before mixing = (1.173 8 mol) (58.65 cm3 mol–1) = 68.85 cm3

The total volume on mixing is not equal to the sum of the individual volumes, i.e. 

54.21 cm3 + 68.85 cm3 = 123.06 cm3 but will have a value as calculated below.

Since the partial molar volumes are the actual molar volumes present in a 

solution of known composition, it is obvious, therefore, that the total volume of 

the solution of the given composition will be given as†

Vtotal = n1V1, pm + n2V2, pm

Physical

Significance of 

Partial Molar 

Quantity

Specific Example 

of Partial Molar 

Volumes

† See Section 6.10.
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Thus in the above example of 50 mass percentage ethanol-water solution, we have

Vtotal = n(H2O) Vpm(H2O) + n(C2H5OH) Vpm(C2H5OH)

= (3 mol) (17.37 cm3 mol–1) + (1.173 8 mol) (56.76 cm3 mol–1)

= 52.11 cm3 + 66.63 cm3

= 118.74 cm3

Example 6.1.1 The partial molar volumes of acetone and chloroform in a mixture in which the mole fraction of 

acetone is 0.53 are 74.17 cm3 mol-1 and 80.24 cm3 mol-1, respectively. What is the density 

of a solution? What will be the volume of solution weighing 1.0 kg?

Solution Let us consider a solution containing 0.53 mol of acetone and 0.47 mol of chloroform.

The volume of this solution will be

V= n1 V1, pm + n2 V2, pm

= (0.53 mol) (74.17 cm3 mol–1) + (0.47 mol) (80.24 cm3 mol–1)

= 39.31 cm3 + 37.71 cm3

= 77.02 cm3

The mass of the solution will be

m = n1M1 + n2M2

= (0.53 mol) (58 g mol–1) + (0.47 mol) (119.5 g mol–1)

= 30.74 g + 56.17 g = 86.91 g

The density of solution will be

r =
m

V
g= = -86 91

77 02
1 128

3

3.

.
.

g

cm
cm

The volume of 1 kg of solution will be

V1 =
1000

86 91

g

g.

Ê
ËÁ

ˆ
¯̃

(77.02 cm3) = 886.2 cm3

Example 6.1.2 The partial molar volume of methanol in a methanol-water solution at xmethanol = 0.39 is 

39.2 cm3 mol–1. The density of solution is 0.91 g cm–3. Calculate partial molar volume of 

water in the solution.

Solution Let we have 0.39 mol of methanol and 0.61 mol of water so that the total amount of these 

two substances is one mole and thus we have a solution of given composition. Now,

Mass of solution, m = n1M1 + n2M2

= (0.39 mol) (32 g mol–1) + (0.61 mol) (18 g mol–1)

= 23.46 g

Volume of solution, V =
m

r
= =-

23 46

0 91
25 78

3

3.

.
.

g

g cm
cm

Now from the expression

Vtotal = n1V1, pm + n2 V2, pm

we get V2, pm= (Vtotal – n1V1, pm)/n2

= {(25.78 cm3) – (0.39 mol) (39.2 cm3 mol–1)} / 0.61 mol

= 17.20 cm3 mol–1
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Example 6.1.3 It is required to prepare 103 cm3 of methanol-water solution at 25 °C with mole fraction of 

methanol equal to 0.78. Determine the volumes of methanol and water to be mixed at 25 °C. 
3 mol–1 and 40.49 cm3 mol–1,

respectively. The density of methanol at 25 °C is 0.79 g cm–3.

Solution Let n1 and n2 be the required amounts of methanol and water, respectivly, to prepare 103 cm3 of

the required solution. We will have

V = n1V1, pm + n2V2, pm

and x1 =
n

n n

1

1 2+

From the given data, we have

103 cm3 = n1 (40.49 cm3 mol–1) + n2 (15.69 cm3 mol–1)

0.78 =
n

n n

1

1 2+
fi 0.78 n2 = 0.22 n1

Substituting n1 = (0.78/0.22) n2

103 cm3 =
0 78

0 22
2

.

.
n

Ê
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ˆ
¯̃ (40.49 cm3 mol–1) + n2 (15.69 cm3 mol–1)

or 103 = (143.56 n2 + 15.69 n2) mol–1 = 159.25 n2 mol–1

or n2 =
10

159 25
6 28

3

.
.mol mol=

Thus n1 =
0 78

0 22

0 78

0 22
6 28 22 272

.

.

.

.
. .n = ¥ =mol mol

Now V2 =
n M2 2

2

1
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36 28 18
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322 27 32
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Example 6.1.4 The molar enthalpy of a binary liquid solution at constant T and p is given by the expression 

Hm /kJ mol–1 = 0.5xA + x + (0.05 xA + 0.04 x ) xA x . Determine the expressions of Hpm(A) 

and Hpm xA. Also determine the value of Hm
*(A), Hm

* DsolnH(0.5 mol A

Solution Since Hm = H/(nA + n ), we get

H/kJ mol–1 = 0.5 nA + n  + (0.05 nA + 0.04 n )
n

n n

n

n n

A

A B

B

A B+
Ê
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ˆ
¯̃ +

Ê
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ˆ
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Since Hpm(A) = (∂H/∂nA)T, p, n , we have

Hpm(A)/ kJ mol–1 = 0.5 + (0.05)
n

n n
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n n
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= 0.5 + 0.05 xAx  + (0.05 xA + 0.04 x ) (x  – 2 xAx )
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Substituting x  = 1 – xA and rearranging, we get

Hpm(A)/kJ mol–1 = 0.54 – 0.06 xA + 0.02 xA
3

Similarly working out Hpm ∂H/∂n )T, p, nA
, we get

Hpm
–1 = 1.0 + (0.04) 

n

n n

n

n n

A

A B

B
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 + (0.05 nA + 0.04 n )
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n

n n

n n

n n

A

A B

A B

A B( ) ( )2 3

2

= 1.0 + 0.04 xAx  + (0.05 xA + 0.04 x )(xA – 2xAx )

Substituting x  = 1 – xA and rearranging, we get

Hpm
–1 = 1.0 + 0.03 xA

2 + 0.02 xA
3

Now Hm
*(A) = lim

xA Æ1
Hpm(A) = (0.54 – 0.06 + 0.02) kJ mol–1 = 0.50 kJ mol–1

Hm
* lim

xA Æ0
Hpm

–1

The enthalpy of solution for

is given as

DsolnH = [(0.5 mol) Hpm(A) + (0.5 mol) Hpm

– [(0.5 mol) H *
m(A) + (0.5 mol) H *

m

= [{(0.5) (0.54 – 0.06 ¥ 0.5 + 0.02 ¥ 0.53) + (0.5) (1.0 + 0.03 ¥ 0.52

+ 0.02 ¥ 0.53

= (0.761 25 – 0.75) kJ = 0.011 25 kJ

= 11.25 J

Problem 6.1.1 The apparent molar volume of a solute in a solution of volume V

V2, app =
total volume of solution volume of pure solvent

amount of s

-
oolute

=
-V n V

n

1 1

2

*

Show that V2, pm = n
V

n
V V n
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Solution We have V2, app =
V n V

n

- 1 1

2

*

Rearranging this, we get

V = n2 (V2, app) + n1V 1
* (6.1.3)

Differentiating Eq. (6.1.3) with respect to n2 keeping n1 constant, we get

V2, pm =
∂
∂

Ê
ËÁ

ˆ
¯̃

V

n
n2

1

 = V2, app + n2

∂

∂
Ê
ËÁ

ˆ
¯̃

V

n
n

2

1

, app

2

(6.1.4)
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(Note that the differentiation of second term in Eq. (6.1.3) is zero as both n1 and V 1
* are 

independent of n2.)

Similarly, differentiation of Eq. (6.1.3) with respect to n1 gives

V1, pm =
∂
∂

Ê
ËÁ

ˆ
¯̃

V

n
n1

2

 = n
V

n
V

n

2

2

1
1

2

∂

∂
Ê
ËÁ

ˆ
¯̃

+, *app
(6.1.5)

Problem 6.1.2 The apparent molar volume of a solute in a solution is given by the following analytic 

expression

V2, app = a + bm + cm2

where a, b and c are constants and m is the molality of the solution. Show that

V2, pm = a + 2bm + 3 cm2

V1, pm = V1
* – bM1 m

2 – 2c M1m3

Solution From Eq. (6.1.4), we have

V2, pm = V n
V

n
n

2 2

2

2
1

,

,

app

app+
∂

∂
Ê
ËÁ

ˆ
¯̃

Let m1 be the mass of solvent. Since the molality of the solution is m = n2/m1, we have

n2 = mm1 and dn2 = m1 dm

With these, the previous expression becomes

V2, pm = V m
V

m
n

2

2

1

,

,

app

app+
∂

∂
Ê
ËÁ

ˆ
¯̃

From the given expression of V2, app, we have

V2, pm = (a + bm + cm2) + m(b + 2cm)

= a + 2bm + 3cm2

Now V = n2(V2, app ) + n1V 1
* (Eq. 6.1.3)

and also V = n1 V1,pm + n2 V2,pm

Equating these two equations, we have

n1V1, pm + n2V2, pm = n2(V2, app) + n1V*
1 (6.1.6)

For the present case, we have

n2 = mm1 and n1 = m1/M1

Substituting these along with the expressions of V2, pm and V2, app in Eq. (6.1.6), we get

m1
pm

M
V

1
1, + m m1(a + 2 bm + 3 cm2 ) = m m1(a + bm + cm2) +

m1

M
V

1
1*

Rearranging, we get

V1, pm = V 1
* – b M1m

2 – 2c M1m
3
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Example 6.1.5 The apparent molar volume of KI in CH3

V2, app/cm3 mol–1 = 21.45 + 11.5 m/mol kg-1

The density of pure methanol is 0.786 5 g cm–3. Find DrV for the process

CH3 CH3
–1).

Solution For 1 mol kg–1

n1 = (1 000 g)/M1 = (1 000 g)/(32 g mol–1) = 31.25 mol

n2 = m (1 kg) = 1 mol

V 1
* = 

M1

1

1

3

3 132

5
40 69

r
= =

-

-
-( )

.
g mol

(0.786 cm )
cm mol

g

Hence for m = 1 mol kg–1, we have

V2, app = 21.45 cm3 mol–1 + 11.5 cm3 mol–1 = 32.95 cm3 mol–1

Total volume of the solution will be

V = n2(V2, app) + n1V 1
* (Eq. 6.1.3)

= (1 mol) (32.95 cm3 mol–1) + (31.25 mol) (40.69 cm3 mol–1)

= 32.95 cm3 + 1 271.56 cm3 = 1 304.51 cm3

Now since V2, pm = V2, app + n2

∂

∂
Ê
ËÁ

ˆ
¯̃

V

n
n

2

2
1

,app
(Eq. 6.1.4)

= V2,app + m
∂

∂
Ê
ËÁ

ˆ
¯̃

V

m
n

2

1

,app

we get V2, pm = 21 45 11 53 1 3 1 1. . /cm mol cm mol mol kg- - -+{ }m

+
Ê

Ë
Á

ˆ

¯
˜

-
-

-
( / )

.

( / )
m

m
mol kg

cm mol

mol kg

1
3 1

1

11 5

2
For m = 1 mol kg–1, we have

V2, pm = 21.45 cm3 mol–1 + 11.5 cm3 mol–1 + 5.75 cm3 mol–1

= 38.7 cm3 mol–1

Finally, we have

V = n1V1, pm + n2V2, pm

Hence V1, pm =
1

1n
(V – n2V2, pm)

=
1

31 25( . )mol
{1 304.51 cm3 – (1 mol) (38.7 cm3 mol–1 )}

= 40.50 cm3 mol–1

Thus for the given process, we have

DrV = V1,pm – V1
*

= 40.50 cm3 mol–1 – 40.69 cm3 mol–1

= – 0.19 cm3 mol–1
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Problem 6.1.3 Suppose that the density of a solution is known as a function of the molar concentration c

of solute, that is r = f (c).

(a) If c = n2/V, where n2 is the amount of solute and V is the volume of solution, show 

that the partial molar volume of the solute is given by the expression

V2, pm =
M c

c c

T p n

T p n

2 1

1

- ∂ ∂

- ∂ ∂

( / )

( / )

, ,

, ,

r

r r

(b) Also show that the partial molar volume of the solvent is given by the expression

V1, pm = 
M

c c T p n

1

2
r r- ∂ ∂( / ) , ,

(c) If the density of the solution is a linear function of the molar concentration of solute, 

show that the partial molar volume of solvent is the same as the molar volume of the pure 

solvent and that the partial molar volume of the solute is independent of concentration.

Solution (a) Density of the solution can be written as

r =
n M n M

V

1 1 2 2+
(1)

where V is the volume of the solution. Rewriting this, we have

Vr = n1M1 + n2M2

or Vr = n1M1 + cVM2 (Since c = n2/V) (2)

Differentiating this with respect to n2 keeping T, p and n1 constant, we have

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

V

n
V

n
cM

V

n
T p n T p n T p n2 2

2
2

1 1 1, , , , , ,

r
r

++
∂
∂

Ê
ËÁ

ˆ
¯̃

VM
c

n
T p n

2
2

1, ,

or
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂V

n
V

c

c

n
cM

T p n T p n T p n2 2
2

1 1 1, , , , , ,

r
r VV

n
VM

c

n
T p n T p n

∂
Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃2

2
2

1 1, , , ,

Now, since c = n2/V, therefore

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
ËÁ

ˆ
¯̃

c

n V

n

V

V

n
T p n T p n2

2
2

2
1 1

1

, , , ,

Introducing this in the previous expression, we have

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃ -

∂
∂

Ê
ËÁ

ˆ
¯̃

V

n
V

c V

n

V

V

n
T p n T p n T p2

2
2

2
1 1

1

, , , , , ,

r
r

nn T p n

cM
V

n
1 1

2
2

È

Î
Í
Í

˘

˚
˙
˙

=
∂
∂

Ê
ËÁ

ˆ
¯̃

, ,

+ -
∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

VM
V

n

V

V

n
T p n

2
2
2

2

1

1, ,
Rearranging, we have

∂
∂

Ê
ËÁ

ˆ
¯̃

-
∂
∂

Ê
ËÁ

ˆ
¯̃ - +

È

Î
Í

˘

˚
˙ = -

V

n

n

V c
cM

n M

V
M

T p n T p n2

2
2

2 2
2

1 1, , , ,

r
r ∂∂

∂
Ê
ËÁ

ˆ
¯̃

r

c T p n, , 1
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∂
∂

Ê
ËÁ

ˆ
¯̃

-
∂
∂

Ê
ËÁ

ˆ
¯̃ - +

È

Î
Í

˘

˚
˙ = -

∂
∂

V

n
c

c
cM cM M

c
T p n T p n2

2 2 2

1 1, , , ,

r
r rÊÊ

ËÁ
ˆ
¯̃

T p n, , 1
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or V2, pm = 
∂
∂

Ê
ËÁ

ˆ
¯̃

=
- ∂ ∂

- ∂ ∂
V

n

M c

c c
T p n

T p n

T p n2

2

1

1

1, ,

, ,

, ,

( / )

( / )

r

r r
(4)

(b) Differentiating Eq. (2) with respect to n1 keeping T, p and n2 constant, we get

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

= +
∂
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Ê
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V
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V

n
M cM

V

n
T p n T p n T p1 1

1 2
1

2 2, , , , ,

r
r

,, , ,n T p n

VM
c

n
2 2

2
1
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∂
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Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
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ˆ
¯̃

= +
V

n
V

c

c

n
M c

T p n T p n T p n1 1
1

2 2 2, , , , , ,

r
r

MM
V

n
VM
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1

2 2

∂
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ˆ
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+
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Ê
ËÁ

ˆ
¯̃

, , , ,

Now c = n2/V, therefore

∂
∂

Ê
ËÁ

ˆ
¯̃
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∂
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Ê
ËÁ

ˆ
¯̃

c

n

n

V

V
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2
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Substituting this in the previous expression, we have

∂
∂
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ˆ
¯̃
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ˆ
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∂
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2
2
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Rearranging, we have
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ˆ
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=
- ∂ ∂r r

(c) Let the density of the solution be related to its molar concentration by the relation

r = a + bc

where a and b are constants. The constant a represents the density of pure solvent; substituting 

c = 0 in the above expression, we get a = r1. Thus, we have

r = r1 + bc

Therefore

d

d

r

c
b=

Now V2, pm = 
M c

c c

M b

bc bc

M b2 2

1

2

1

-
-

=
-

+ -
=

-d d

d d

r

r r r r

/

( / ) ( )
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In the expression, c does not appear. Therefore, it is obvious that the partial molar volume 

of the solute is independent of concentration.

Now V1, m =
M

c c

M

bc bc

M1 1

1

1

1( / ) ( )r r r r-
=

+ -
=

d d

= Molar volume of pure solvent

6.2 EXPERIMENTAL DETERMINATION OF PARTIAL MOLAR VOLUMES

A straightforward method for determining V1, pm of component 1 in a binary 

solution of known composition is to measure volumes of solutions obtained by 

between volume of solution and amount of component 1 is plotted. The slope of 

the line at the given composition of the solution gives the partial molar volume 

of the component 1.

Method of Intercept A considerably more precise method for the determination of partial molar volumes 

(or in general any partial molar quantity) is the method of intercepts. The principle 

underlying this method is described below.

Let Vm, mix be the volume of mixture containing a total of one mole of the two 

components. Obviously, it will be given as

Vm, mix =
V

n n1 2+
(6.2.1)

where V is the volume of the mixture containing the amounts n1 and n2 of 

components 1 and 2, respectively. Since partial molar volume of component 1 

∂V/∂n1)T, p, n2, (written hereafter as (∂V/∂n1)n2
since T and p remain

constant during the experiment), it follows that

V1, pm =
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂ +

∂
Ê
ËÁ

ˆ
¯̃

V

n

n n V

n
n n1

1 2

1
2 2

( ) m, mix

= Vm, mix + (n1 + n2)
∂

∂
Ê
ËÁ

ˆ
¯̃

V

n
n

m, mix

1
2

(6.2.2)

Since x1 + x2 = 1, the total molar volume Vm, mix at a given temperature and 

pressure will depend only on one of the mole fraction terms. Writing it as

Vm, mix = f (x2) (6.2.3)

we get dVm, mix =
dV

x
x

m,mix

d
d

2
2

Ê
ËÁ

ˆ
¯̃

(6.2.4)

Division of the above equation by dn1, and restriction to constant n2 gives

∂

∂
Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
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ˆ
¯̃

V

n

V

x

x

n
n n

m,mix m,mix

d1 2

2

1
2 2

d
(6.2.5)

Now since x2 =
n

n n

2

1 2+
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we have 
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
+

= -
+

x

n

n

n n

x

n n
n

2

1

2

1 2
2

2

1 2
2

( ) ( )
(6.2.6)

Hence, Eq. (6.2.5) becomes

∂

∂
Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

-
+

Ê
ËÁ

ˆ
¯̃

V

n

V

x

x

n n
n

m,mix m,mix

d1 2

2

1 2
2

d

Substituting the above equation in Eq. (6.2.2), we have

V1, pm = Vm, mix – x2

∂Ê
ËÁ

ˆ
¯̃

= +
Ê
ËÁ

ˆ
¯̃

V

x
V V x

V

x

m,mix

m,mix , pm

m,mix

d
i.e.

d

d2
1 2

2

(6.2.7)

A similar treatment for V2, pm yields

Vm, mix = V2, pm + x1

d

d

m,mixV

x1

Ê
ËÁ

ˆ
¯̃

(6.2.8)

Geometrical interpretation of Eq. (6.2.7) (or 6.2.8) is straightforward. This represents 

the tangent line drawn to the plot of Vm, mix versus x2 (or Vm, mix versus x1) with 

intercept equal to V1, pm (or V2, pm ) and slope equal to dVm, mix/dx2 (or dVm, mix/dx1). 

Vm, mix versus x2 and Vm, mix versus x1 represent a single plot as 

x1 + x2 is always equal to 1. This is illustrated in Fig. 6.2.1 where the intercepts 

are V1, pm at x2 = 0 (or x1 = 1) and V2 at x2 = 1 (or x1 = 0). In fact, Eq. (6.2.8) 

may be derived from Fig. 6.2.1. The slope of Vm, mix versus x2 given by 

expression

d

d 1

m, mix

2

, pm m, mix

2

V

x

V V

x
=

-

-
2

On rearranging this expression, we get

Vm, mix = V2, pm – (1 – x2)
d

d

m, mixV

x2

Since x1 + x2 = 1, it follows that dx1 = – dx2. Hence, the above expression becomes

Vm, mix = V2, pm + x
V

x
1

d

d

m, mix

1

Equations (6.2.7) and (6.2.8) are valid for any extensive property Y (say, V, U,

H, S, A and G) of the mixture. Hence, these equations may be generalized to

Ym, mix = Y1, pm + x
Y

x
2

2

d

d

m,mixÊ
ËÁ

ˆ
¯̃

Ym, mix = Y2, pm + x
Y

x
1

1

d

d

m,mixÊ
ËÁ

ˆ
¯̃
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Alternative Method In older literatures, partial molar volumes have been determined by plotting a graph 

between the reciprocal of the density of the solution versus the mass per cent of 

component 1 (or component 2), rather than Vm, mix versus x. Equation (6.2.7) can 

be rewritten in terms of the reciprocal of density of the mixture (1/rmix) and mass 

per cent of component 2 (w2), we have

Vm, mix = 
x M x M M x M M1 1 2 2 1 2 2 1+

=
+ -

r rmix mix

( )
(6.2.9)

Therefore

d

d

d

d

m,mix

mix

mix

2

V

x

M M
M x M M

x2

2 1
1 2 2 1

1
=

-
+ + -{ }Ê

ËÁ
ˆ
¯̃r

r
( )

( / )
(6.2.10)

The dx will be related to dw as shown below.

w2 = 
m

m m

n M

n M n M

x M

x M x M

2

1 2

2 2

1 1 2 2

2 2

1 1 2 2

100 100 100
+

¥ =
+

¥ =
+

¥

or w2 = 
x M

M x M M

2 2

1 2 2 1

100
+ -

¥
( )

(6.2.11)

Taking inverse of the above expression, we have

1

100 1002

1

2 2

2 1

2w

M

x M

M M

M
=

¥
+

-
¥

Differentiating the above expression, we have

- = -
¥

=
¥1

100

100

2
2 2

1

2
2

2

2 2
2
2

2

1 2
2w

w
M

x M
x x

x M

M w
d d or d (dw2)

Fig. 6.2.1 The method 

of intercepts to determine 

the partial molar volumes 

of components of a binary 

solution
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Substituting dx2 from the above expression in Eq. (6.2.10), we get

d

d

dm, mix

mix

mix
V

x

M M
M x M M

M w

x M2

2 1
1 2 2 1

1 2
2

2
2

2 100

1
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-
+ + -{ }

¥r

r
( )

( / )

ddw2

Making use of Eq. (6.2.11), we get

d

d

d

d

m, mix

mix

mix

2

V

x

M M x M

w

M w

x M w2

2 1 2 2

2

1 2
2

2
2

2
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100

1
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-
+

¥
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     =
M M M w

x w

2 1 1 2

2 2

1-
+

r

r

mix

mixd

d

( / )
(6.2.12)

Substituting Eqs. (6.2.12) and (6.2.9) in Eq. (6.2.7), we get

M x M M M
x

M M M w

x w

1 2 2 1 1
2

2 1 1 2

2

1+ -
= +

-
+

È

Î
Í

( ) ( / )

r r r

r

mix 1,pm

mix

2

d

dmix

˘̆

˚
˙

On simplifying, we get

1 1 1
2

2r r

r

mix 1, pm

mixd

d
= + w

w

( / )
(6.2.13)

Similarly, Eq. (6.2.8) will become

1 1 1
1

1r r

r

mix 2, pm

mixd

d
= + w

w

( / )
(6.2.14)

Hence, a tangent to the curve 1/rmix versus w2 at any particular w2 has an intercept 

on 1/rmix axis of 1/r1, pm, whereas a tangent to the curve 1/rmix versus w2 at any 

particular w1 has an intercept on 1/rmix of 1/r2, pm

by a single plot as w1 + w2 is always equal to 100. The partial molar volumes are 

obtained by multiplying the two intercepts with the respective molar masses.

If a solution contains more than two components (say, m), Eqs (6.2.2) to (6.2.6) 

will, respectively, take the form given below.

Vi, pm = Vm, mix + ntotal

∂

∂
Ê
ËÁ

ˆ
¯̃

π

V

ni
j i

n j

m, mix
(6.2.15)

Vm, mix = f (x1, x2, ..., xi–1, xi+1, ..., xm) (6.2.16)

dVm, mix = 
∂

∂
Ê
ËÁ

ˆ
¯̃π

Â
π

V

x
x

kk i

k

j k i

x j

m,mix
d

, �

(6.2.17)

∂

∂
Ê
ËÁ

ˆ
¯̃

=
∂

∂
Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

π π
π

Â
V

n

V

x

x

ni kk i

k

i
j i

n j
j k i

x j

m,mix m, mix

,

ˆ̂
¯̃

πj i

n j
(6.2.18)

Partial Molar 

Volumes in a 

Solution Containing 

More than Two 

Components
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∂
∂

Ê
ËÁ

ˆ
¯̃

= -
π

x

n

x

n

k

i

k

j i

n j total

(6.2.19)

Substituting Eqs. (6.2.18) and (6.2.19) in Eq. (6.2.15), we get

Vi, pm = Vm, mix – Â
∂

∂
Ê
ËÁ

ˆ
¯̃π

π
k i

k
k

x
V

x
j k i

x j

m, mix

,

(6.2.20)

Equation (6.2.20) is the required expression for the partial molar volume in a 

solution containing more than two components.

Problem 6.2.1 Show that

V1, pm = Vm, mix – x2

d

d

m, mix

2

V

x

can be written as

V1, pm = 
M mM mM

m

1 1 2
2

1

r r

r
+

+( ) d

d

where m is the molality of solute in the mixture and r is its density.

Solution

x2 = 
n

n n
m

n

m

n

n M

2

1 2

2

1

2

1 1+
= =and

Thus x2 = 
n

n mM n

mM

mM

2

2 1 2

1

11( / ) +
=

+

Hence dx2 = 
M

mM
m

mM

mM
m

M

mM
m1

1

1
2

1
2

1

1
21 1 1+

-
+

=
+

d d d
( ) ( )

The molar volume is

Vm, mix = 
x M x M M x M M1 1 2 2 1 2 2 1+

=
+ -

r r

( )

Hence,
d

d

m, mixV

x

M M M x M M

x2

2 1 1 2 2 1
2

2

=
-

-
+ -

r r

r( ) d

d

Replacing x2 and dx2 in terms of molality, we get

d

d

m, mixV

x2

 =
M M M mM mM M M mM

M m

2 1 1 1 1 2 1
2

1
2

1

1 1-
-

+ + -
¥

+
r r

r{ /( )}( ) ( ) d

d

=
M M mM mM

m

2 1 1 2
2

1 1-
-

+ +
r r

r( )( ) d

d

Thus x
V

x
2

2

d

d

m, mix  =
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2 1 1 2
21

1 1
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The molar volume of the mixture in terms of molality is

Vm, mix =
M mM mM M M1 1 1 2 11+ + -{ /( )}( )

r

=
M mM

mM

M M1 1

1

2 1

1r r
+

+
Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

Hence, V1, pm = Vm, mix – x2

d

d

m,mix

2

V

x

=
M mM mM

m

1 1 2
2

1

r r

r
+

+( ) d

d

The corresponding expression of V2, pm ( = Vm, mix – x1 dVm, mix/dx1) is

V2, pm =
M mM

m

2 2
2

1

r r

r
-

+ d

d

Example 6.2.1 The density r of an aqueous solution of a solute (Molar mass = 58.5 g mol–1) of given by

r/g cm–3 = 0.997 1 + 0.047 2 (m/m°) – 0.003 1 (m/m°)2 + 0.000 3 (m/m°)3

where m is the molality of solute in solution and m° = 1 mol kg–1. Determine partial molar 

volume of solvent in a solution of molality 0.5 mol kg–1.

Solution        From the given expression of density, we get

d( / )

( / )

r g cm

d

-

∞

3

m m
 = 0.047 2 – 2 ¥ 0.0031 (m/m°) + 3 ¥ 0.000 3 (m/m°)2

For 0.5 mol kg–1 solution, we get

r/g cm–3 = 0.997 1 + 0.047 2 ¥ 0.5 – 0.003 1 ¥ 0.52 + 0.000 3 ¥ 0.53

= 1.0200

Hence, r = 1.020 0 g cm–3

d g cm

d

( / )

( / )

r -

∞

3

m m
 = 0.047 2 – 2 ¥ 0.0031 ¥ 0.5 + 3 ¥ 0.000 3 ¥ 0.52

= 0.044 3

Hence,
d

d

r

m
 = 0.044 3 (g cm–3 /mol kg–1 )

  = 0.044 3 ¥ 103 g2 cm–3 mol–1

Now mM1 = (0.5 mol kg–1) (0.018 kg mol–1) = 0.009

mM2 = (0.5 mol kg–1) (58.5 ¥ 10–3 kg mol–1) = 0.029 25

Finally,

V1, pm = 
M mM mM

m

1 1 2
2

1

r r

r
+

+( ) d

d

=
18 0 009 1 0 029 25

1 0200
0 044 3

1

3 3 2

g mol

1.0200 g cm g cm

-

- -+
+

¥
. ( . )

( . )
( . 1103 2 3 1g cm mol- - )

= (17.647 + 0.394) cm3 mol–1

= 18.041 cm3 mol–1



Systems of Variable  Composition 341

6.3 CHEMICAL POTENTIAL

The most useful partial molar quantity is the partial molar free energy Gi, pm. It is 

so useful that it is given the name of chemical potential and a separate symbol mi

mi =
∂
∂

Ê
ËÁ

ˆ
¯̃

π

G

ni T p n j
j i

, , s
(6.3.1)

Chemical potential is an intensive property because it is a molar quantity.

Problem 6.3.1 Using the criterion

f (lx, ly, lz, . . .) = ln f (x, y, z, . . .)

for the homogeneity of a function of degree n, show that the partial molar quantities are 

intensive properties.

Solution Since the thermodynamic properties are homogeneous functions of degree 1 with respect 

to the amounts of substances, we may write

Y (ln1, ln2 ..., lnk) = l1 Y(n1 n2,...,nk) (6.3.2)

Differentiating both sides of Eq. (6.3.2) with respect to ni keeping the amounts of other 

substances constant, we get

∂
∂

=
∂

∂
Y n n n

n

Y n n n

n

k

i

k

i

( , , ..., ) ( , , ...., )l l l
l1 2 1 1 2

Dividing both sides by l, we get

∂
∂

=
∂

∂
Y n n n

n

Y n n n

n

k

i

k

i

( , , ..., )

( )

( , , ...., )l l l

l
l1 2 0 1 2

Rewriting the above expression in the common alternative form, we have

Yi, pm(ln1, ln2, . . ., lnk) = l0 Yi, pm(n1, n2 , . . . nk) (6.3.3)

Equation (6.3.3) states that the partial molar quantity Yi is a homogeneous function 

of zero degree with respect to amounts of substances, i.e. it is an intensive property.

Form Eq. (6.3.3), it is obvious that although Yi, pm, depends on the composition of the 

system (i.e. known values on n1, n2, etc.), it is not dependent on the total size of the 

system (i.e. whether the amounts of substances are simply n1, n2, ... or ln1, ln2,... .

In other words, it may be stated that Yi, pm is a function of mole fractions of the 

substances as these remain the same whether the amounts are n1, n2, ... or ln1, ln2,....

6.4 EXPRESSIONS OF dU, dH, dA AND dG FOR MULTICOMPONENT OPEN SYSTEM

If a system contains a total of k components, then

G = f (T, p, n1, n2, ..., nk)

Its differential is given by

dG =
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
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ˆ
¯̃

π

=

G

T
T

G

p
p

G

np n T n i T p nij j j

j i

, , , ,s s s

d d
1

kk

inÂ d
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Substituting Eq. (6.3.1) in the above equation, we get

dG =
∂
∂

Ê
Ë

ˆ
¯ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+
=
ÂG

T
T

G

p
p n

T n T n

i i

i

k

j j
, ,s s

d d dm
1

Making use of Eqs. (5.4.7) and (5.4.8), we get

dG = – S dT + V dp + mi i

i

k

nd
=
Â

1

(6.4.1)

Now since A = G – pV, therefore

dA = dG – p dV – V dp

Substituting for dG from Eq. (6.4.1), we get

dA = - + +
Ê
ËÁ

ˆ
¯̃

- -
=
ÂS T V p n p V V pi i

i

k

d d d d dm
1

= – S dT – p dV + mi i

i

k

nd
=
Â

1

(6.4.2)

Similarly, for enthalpy

H = G + TS

dH =  dG + T dS + S dT

= - + +
Ê
ËÁ

ˆ
¯̃

+ +
=
ÂS T V p n T S S Ti i

i

k

d d dm
1

d d

= T dS + V dp + mi i

i

k

nd
=
Â

1

(6.4.3)

and for energy U = H – pV

dU = dH – p dV – V dp

= T S V p n p V V pi i

i

k

d d d d d+ +
Ê
ËÁ

ˆ
¯̃

- -
=
Â m

1

= T dS – p dV + mi i

i

k

ndÂ (6.4.4)

If the amounts of all components are held constant, then Eqs. (6.4.1) to (6.4.4) 

are reduced to

dG =  – S dT + V dp (6.4.5)

dA = – S dT – p dV (6.4.6)

dH = T dS + V dp (6.4.7)

dU = T dS – p dV (6.4.8)

Equations (6.4.5) to (6.4.8) are applicable to closed systems.

From Eq. (6.4.2), it follows that

mi =
∂
∂

Ê
ËÁ

ˆ
¯̃

π

A

ni T V n j

j i

, , s

(6.4.9)

Different Ways of 

Defining Chemical 

Potential
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Similarly from Eqs. (6.4.3) and (6.4.4), we have

mi =
∂
∂

Ê
ËÁ

ˆ
¯̃

π

H

ni S p n j

j i

, , s

(6.4.10)

mi =
∂
∂

Ê
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ˆ
¯̃

π

U

ni S V n j

j i

, , s

(6.4.11)

Hence mi =
∂
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Ê
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ˆ
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ˆ
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(6.4.12)

From Eq. (6.4.12), it is obvious that the chemical potential plays a different role 

in each of Eqs (6.4.1) to (6.4.4), even though it is the same quantity in all cases.

6.5 THERMODYNAMIC RELATIONS INVOLVING PARTIAL MOLAR QUANTITIES

V, U, H, S, A and G are

given by

Vi, pm =
∂
∂

Ê
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ˆ
¯̃

π

V

ni T p n j

j i

, , ;s
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¯̃

π
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, , ;s
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¯̃

π
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ni T p n j
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, , ;s

Gi, pm = 
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Ê
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ˆ
¯̃

π

G

ni T p n j

j i

, , ;s

(6.5.1)

†

Now H = U + pV

Differentiating the above equation with respect to ni, keeping T, p and all other 

njs constant, we get

† ∂G/∂ni, ∂A/∂ni , ∂H/∂ni

and ∂U/∂ni . In each of these expressions, the variables kept constant are the corresponding 

natural independent variables and the amounts of all the constituents of the mixture except 

G(T, p), 

A(T, V), H(S, p) and U(S, V). The expression of various partial molar quantities (Eq. 6.5.1) 

are very similar to those of chemical potential with the notable exception that in all the 

partial molar quantities, the variables T and p are kept constant whereas in the expressions 

of chemical potential, the variables kept constant are the corresponding natural independent 

variables.
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∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
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Ê
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¯̃

π π
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ni T p n i T p n i Tj

j i
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, , , , ,s s pp n j

j i

, s
π

or Hi, pm = Ui, pm + pVi, pm (6.5.2)

Similarly for the functions A and G, we get

Ai, pm = Ui, pm – TSi, pm (6.5.3)

Gi, pm = mi = Hi, pm – TSi, pm (6.5.4)

Equations (6.5.2) to (6.5.4) show that the partial molar quantities are interrelated 

in the same way as the total quantities. Other expressions involving G, V, H, U, 

and so on have their respective analogues with μi, Vi, pm, Hi, pm, Ui, pm, and so on. 

For example, the relations
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∂
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which are applicable to a single-component system become
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tiation does not matter as G is

a state function.)
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Problem 6.5.1 Show that
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∂
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6.6 THE ESCAPING TENDENCY

Suppose a substance is present in two different regions a and b of a system. Let 

m(a) and m(b) be the values of chemical potentials of the substance in these two 

regions of the system. Suppose that we transfer the amount dn of the substance 

from the region a to region b. Then, according to Eq. (6.3.1), we have

dG(a) = m(a) (–dn) (6.6.1)

and dG(b) = m(b) (dn) (6.6.2)

The total change in free energy of the substance is given as

dG = dG(a) + dG(b)

or dG = (– m(a) + m(b)) dn (6.6.3)

Now if m(a) > m(b), then dG is negative and hence the above transfer of the 

substance from the region a to region b will occur spontaneously. Thus, the 

both the regions have the same value of chemical potential, since at this stage dG

will be equal to zero and hence the system will be at equilibrium.

region of high chemical potential to a region of low chemical potential, G.N. Lewis 

proposed the term escaping tendency for the chemical potential. The chemical 

potential of a component in a system is directly proportional to the escaping 

tendency of that component.

6.7 CHEMICAL POTENTIAL OF A GAS

The chemical potential m of an ideal gas at a given temperature is related to its 

pressure p through Eq. (5.6.8), i.e.

m = m° + RT ln (p/p°) (6.7.1)

where m° is the standard chemical potential when the pressure of the gas is p°,

(i,e. standard-state pressure of 1 bar). It may be noted that m depends on both T

and p whereas m° depends only on T.

Chemical Potential 

of an Ideal Gas
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Equation (6.7.1) suggests that at a given temperature, the pressure of the gas 

is a measure of its chemical potential. If inequalities in pressure exist in a gas 

potential) to the lower pressure region (lower chemical potential) until the pressure 

is equalized throughout the vessel. In the later stage, the gas has the same value 

of chemical potential throughout the container.

The chemical potential of a pure gas (ideal or real) at temperature T and pressure p

may be expressed in terms of chemical potential of an ideal gas (abbreviation; ig)

by the following identity.

m m m m m mg g g g g g, , , , , , , , , ,T p T T p T T p T p∫ + -{ } - -{ }∞ ∞ Æi i i i i 0 (6.7.2)

+ {mg, T, p – mg, T, p Æ 0}

where mig, T, p = mg,T, p 0 as all gases behave as an ideal gas at p = 0. The 

above identity is equivalent to

mg, T, p = mig, lnT

p p
RT

p

p

RT

p
p V p∞ +

∞
- +Ú Ú

0 0
d dm

= mig m d, lnT

p

RT
p

p
V

RT

p
p∞ +

∞
+ -Ê

ËÁ
ˆ
¯̃Ú0

(6.7.3)

Since for an ideal gas Vm = RT/p, the above expression for ideal gas is reduced to

mig, T, p = mig, lnT RT
p

p
∞ +

∞
(Eq. 5.6.8)

Equation (6.7.3) can be expressed in terms of T and Vm as independent variables 

by using the expression

d(pVm) = pdVm + Vm dp

i.e. dp =
1

Vm

[d(pVm) – p dVm

with the limits of integration are

RT to pVm for d(pVm)

and • to Vm for dVm

as the corresponding limits for dp are 0 to p. This follows from the fact that at

p pV RT V
p p

= = = •
Æ Æ

0
0 0

, lim limm mand

With these, Eq. (6.7.3) becomes

Vg , T, p= mi m
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For a van der Waals gas, we have
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V RT RT

p V

RT
= +

-
-

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙ -

∞
∞
ig

m m

m
m

2

-
-

- -
Ê
ËÁ

ˆ
¯̃•Ú

RT

V b

a

V

RT

V
V

V

m m
2

m
m

m

d

= mig
m

m m

m m

m
, ln lnT

RT V

V b

a

V
RT RT

p V

RT
RT

V

V b
∞ +

-
- - -

∞
+

-
2

(6.7.4)

Equation (6.7.4) reduces to Eq. (5.6.8) for an ideal gas (for which a = 0, b = 0

and Vm/RT = 1/p).

6.8 CHEMICAL POTENTIAL OF A GAS IN A MIXTURE OF IDEAL GASES

The expression for the chemical potential of an ideal gas in a mixture of ideal 

gases can be obtained by replacing p in Eq. (6.7.1) by the partial pressure of the 

gas in the gaseous mixture. Thus

mi(mix) = m°i + RT ln ( pi /p°) (6.8.1)

where p° = 1 bar. Since pi = xip, therefore

 mi (mix) = m°i + RT ln ( p/p°) + RT ln xi (6.8.2)

= m*i + RT ln xi (6.8.3)

where m*i represents the chemical potential of the pure ideal gas at temperature T

and pressure p and is given as

 m*i = m°i + RT ln (p/p°) (6.8.4)

Since xi < 1, the term RT ln xi in Eq. (6.8.3) has a negative value. It, therefore, 

follows that

mi (mix) < m*i (6.8.5)
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that is, the chemical potential of an ideal gas in a mixture of ideal gases with a 

total pressure p is less than the corresponding value for the pure ideal gas at the 

same total pressure p.

Consider a system in which a pure gas A is separated from a mixture of gases,

containing the gas A as one of the components, by a suitable membrane permeable 

to the pure gas as shown in Fig. (6.8.1). Let the pressure of the pure gas be the 

same as the total pressure of the mixture of gases.

chemical potential region to a lower chemical potential region, we can conclude 

that gas A will diffuse from the region of the pure gas to that of the mixture of 

gases, i.e. from the left hand side to the right hand side of Fig. 6.8.1.

6.9 PARTIAL MOLAR QUANTITIES OF A GAS IN A MIXTURE OF IDEAL GASES

Expressions for the various partial molar quantities of an ideal gas in a mixture of 

ideal gases can be obtained from Eq. (6.8.3), which gives

mi (mix) = m*
i
 + RT ln xi (6.9.1)

Partial Molar Entropy Differentiating Eq. (6.9.1) with respect to temperature, keeping p and nis constant,

we get

∂

∂
Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê

ËÁ
ˆ

¯̃
+

m mi

p n

i

p

i
T T

R x

i

( )

,

*

ln
mix

s

or Si, pm = S*
i, m – R ln xi (6.9.2)

where S*
i, m can be derived from Eq. (6.8.4) and is given by

S*
i, m = S°i, m – R ln (p/p°)

Partial Molar Volume Similarly, differentiating Eq. (6.9.1) with respect to p keeping T and nis constant, 

we get

∂

∂
Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê

ËÁ
ˆ

¯̃

m mi

T n

i

T
p p

i

( )

,

*
mix

s

Deriving (∂m*i / ∂p)T from Eq. (6.8.4), and then substituting in the above expression,

Phenomenon of 

Diffusion

Fig. 6.8.1 Process of 

diffusion
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we get

∂

∂
Ê
ËÁ

ˆ
¯̃

= = =
mi

T n

i i
p

RT

p
V

RT

p
V

i

( )

,

, ,
*mix

s

pm pmor (6.9.3)

that is, the partial molar volume of an ideal gas in a mixture of ideal gases is the 

same as that of the molar volume of the pure ideal gas.

For an ideal gas mixture, we have

V = 
nRT

p

where n is the total amount of all the gases in the mixture. Comparing this with 

Eq. (6.9.3), we get

Vi, pm = V

n
(6.9.4)

that is, the partial molar volume is simple the average molar volume and thus the 

partial molar volume of all gases in a mixture has the same value.

6.10 ADDITIVITY RULES

In order to express the free energy of a system in terms of chemical potential and

the amount of the components, we will require the integrated from of the equation

dG = mi i

i

ndÂ (6.10.1)

This can be done by considering a system consisting of a very large quantity 

of the mixture of uniform composition. This system will be in equilibrium and, 

therefore, will have the same values of ms throughout. Consider a small volume 

volume is increased so as to enclose the greater quantity of the mixture. This can 

be done by integrating Eq. (6.10.1). If n¢i and ni are the amounts of ith component 

before and after the expansion and G ¢ and G are the corresponding free energies, 

then we have

d dG n
G

G

i in

n

i
i

i

¢ ¢Ú ÚÂ= m

or G – G ¢ = mi

i

i in nÂ - ¢( ) (6.10.2)

since mi remains constant. Initially if the volume is zero, then n¢i = 0 and G ¢ = 0.

Thus, the above equation reduces to

G = Â
i

i in m (6.10.3)

This is the additivity rule for the Gibbs free energy. Knowing the chemical potential 

and the amount of each constituent of a mixture, we can compute the total free 

energy G

contains only one component, then Eq. (6.10.3) reduces to

Comment on Partial 

Molar Volume

Additivity Rule for 

Free Energy
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G = nm or m = 
G

n
(6.10.4)

Thus, the chemical potential of a pure substance is simply the molar free energy. 

In the mixture, mi stands for the partial molar free energy of the substance i.

The additivity rule is applicable to all the partial molar quantities. These can 

be derived as follows.

Differentiating Eq. (6.10.3) with respect to temperature keeping p and all nis

constant, we have

∂
∂

Ê
ËÁ

ˆ
¯̃ = Â

∂
∂

Ê
ËÁ

ˆ
¯̃

G

T
n

Tp n
i

i

p ni i, ,s s

m
(6.10.5)

∂
∂

Ê
Ë

ˆ
¯ -

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

G

T
S

T
S

p n

i

p n
i

i i, ,
,

s s
pm= and

m
(Eq. 6.4.5)

Thus S = Â
i

i in S ,pm (6.10.6)

Differentiating Eq. (6.10.3) with respect to pressure keeping T and all nis constant, 

we have

∂
∂

Ê
ËÁ

ˆ
¯̃

= Â
∂
∂

Ê
ËÁ

ˆ
¯̃

G

p
n

pT n

i
i

T ni i, ,s s

m

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

=
G

p
V

p
V

T n

i

T n

i

i i, ,

,

s s

pmand
m

(Eq. 6.4.5)

Thus V = Â
i

i in V ,pm (6.10.7)

The chemical potential of the ith component is given as

mi = Hi, pm – TSi, pm (Eq. 6.5.4)

Multiplying this equation by ni and summing, we have

Â = Â - Â
i

i i
i

i i
i

i in n H T n Sm , ,pm pm

which reduces to

G = Â -
i

i in H TS, pm

G = H – TS, therefore

H = Â
i

i in H ,pm (6.10.8)

Multiplying the expression Hi, pm = Ui, pm + pVi, pm with ni and adding, we have

Â = Â + Â
i

i i
i

i i
i

i in H n U p n V, , ,( )pm pm pm

which reduces to

Additive Rule for 

Entropy

Additive Rule for 

Volume

Additive Rule for 

Enthalpy

Additive Rule for 

Internal Energy
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H = Â +
i

i in U pV, pm

H = U + pV; therefore

U = Â
i

i in U , pm (6.10.9)

Starting with the equation

               Ai, m = Ui, pm – T Si, pm (Eq. 6.5.3)

we have Â = Â - Â
i

i i
i

i i
i

i in A n U T n S, , ,pm pm pm

which reduces to

Â = -
i

i in A U TS,pm

U – TS = A, thus

A = Â
i

i in A , pm (6.10.10)

Hence, additivity rule is applicable to all extensive properties.

The above additivity rules can also be derived with the help of Euler’s theorem

to the amounts of the substances present in the system, and thus at constant T and

p may be written as

Y = f (n1, n2, ... nk)

where Y stands for any one of the above functions. Applying Euler’s theorem, 

we get

Y = n
Y

n
n

Y

n
n

Y

n
k

k
1

1
2

2

∂
∂

+
∂
∂

+ +
∂
∂

�

= Â
∂
∂

Ê
ËÁ

ˆ
¯̃

= Â

π

i
i

i T p n i
i in

Y

n
n Y

j

j i

, ,

,

s

pm (6.10.11)

The additivity rule is also applicable to the total amount or the total mass, so that

n = Â
i

in( )1 (6.10.12)

m = Â
i

i iM n (6.10.13)

Thus, the partial molar amounts are all equal to unity and the partial molar mass 

of a substance is its molar mass.

Not that the Euler’s theorem has been applied to the function Y written as

Y = f (n1, n2, ..., nk )

and not as

Y = f (T, p, n1, n2, ..., nk) (6.10.4)

since the function Y

to either T or p. For instance, the function G is not a homogeneous function of 

Additive Rule for 

Helmholtz Free 

Energy

Derivation of 

Additive Rule using 

Euler’s Theorem

Additive Rule for the 

Amount and Mass of 

a Substance
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either T or p (see

values of temperature and pressure.

Problem 6.10.1 Show that G T and p.

Solution If it be assumed that G T and p,

according to Euler’s theorem, we would have

G = T
G

T
p

G

pp T

∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

= –TS + pV

G = H – TS = U + pV – TS

Since the two equations of G are not identical, our assumption that G is a homogeneous 

function in T and p must be wrong.

Example 6.10.1 The volume of an aqueous solution of NaCl at 25 °C is expressed as a function of the 

amount m

V/cm3 = 1 000.94 + 16.4 (m/mol) + 2.14 (m/mol)3/2 – 0.002 7 (m/mol)5/2

(a) Find the partial molar volume of NaCl in water in 1 mol kg–1 solution.

(b) Given that the molar volumes of NaCl(s) and liquid water are 27.00 and 18.07 cm3

mol–1 DrVm for

(i)
1000

18
H2 solution (1 mol kg–1)

NaCl(1 mol kg–1 solution)

(iii) H2 H2O(1 mol kg–1 solution)

Solution (a) The partial molar volume of NaCl in the solution can be determined by evaluating the 

expression ∂V/∂m. From the given expression of V, we get

∂
∂
V

m
 = (16.4 cm3 mol–1) + 

3

2
(2.14 cm3 mol–1) (m/mol)1/2

–
5

2
(0.0027 cm  mol–1 ) (m/mol)3/2

Substituting m = 1 mol, we get

V2, pm = (16.4 cm3 mol–1 ) + 
3

2
(2.14 cm3 mol–1) –

5

2
 (0.002 7 cm3 mol–1)

= 19.60 cm3 mol–1

(b) From the given expression of total volume, we get for 1 mol kg–1 solution

V/cm3 = 1 000.94 + 16.4 + 2.14 – 0.002 7

i.e. V = 1 019.48 cm3

In 1 mol kg–1 solution, we will have

n1 =
1000

18

1000

18
1

1 2

g

g mol
mol and mol- = =n

Hence, following the additivity rule, we write
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n1 V1, pm + n2 V2, pm = Vtotal

1000

18
mol

Ê
ËÁ

ˆ
¯̃

V1, pm+ (1 mol) (19.60 cm3 mol–1 ) = 1 019.48 cm3

Thus V1, pm = 18.00 cm3 mol–1

Now, we have

(i) 1000

18
H2 solution (1 mol kg–1)

DV = Vsoln. – 
1000

18
mol

Ê
ËÁ

ˆ
¯̃ Vm

*(H2O) – (1 mol) Vm
* (NaCl, s)

= 1 019.48 cm3 – 
1000

18
mol

Ê
ËÁ

ˆ
¯̃  (18.07 cm3 mol–1 ) – (1 mol) (27.00 cm3 mol–1)

= –11.41 cm3

NaCl(1 mol kg–1 solution)

 DV = V2, pm – V*
2, m

= 19.60 cm3 mol–1 – 27.00 cm3 mol–1 = –7.4 cm3 mol–1

(iii) H2 H2O(1 mol kg–1 solution)

DV = V1, pm – V*
1, m

= 18.00 cm3 mol–1 – 18 07 cm3 mol–1 = – 0.07 cm3 mol–1

Example 6.10.2 What volume (in dm3) of water should be added to 2 dm3 of laboratory alcohol (96 mass 

per cent ethanol and 4 mass per cent water) so that it is converted into vodka (44 mass per 

cent ethanol and 56 mass per cent water)? How much volume in dm3 of vodka is formed? 

96% ethanol Vodka

Vpm(H2O) 0.916 cm3 g–1 0.953 cm3 g–1

Vpm(ethanol) 1.273 cm3 g–1 1.243 cm3 g–1

3 g–1.

Solution Let m1 and m2 be the respective masses of ethanol and water in the given 2 dm3 of the 

laboratory alcohol and let m3 be the mass of water added to convert laboratory alcohol into 

vodka. Following the additivity rule, we write

m1 (1.273 cm3 g–1) + m2 (0.916 cm3 g–1) = 2 000 cm3 (1)

m1 (1.243 cm3 g–1) + (m2+ m3) (0.953 cm3 g–1) = V (2)

where V is total volume of vodka formed. From the given percentage of laboratory alcohol 

and vodka, we write

m

m

1

2

96

4
24= = (3)

m

m m

1

2 3

44

56+
= (4)

From Eqs (3) and (4), we get

m1 = 24 m2
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m2 + m3 =
56

44

56

44
1m = (24 m2) = 30.545 4 m2

i.e. m3 = 29.545 4 m2

Substituting m1 in terms of m2 in Eq. (1), we get

(24 m2) (1.273 cm3 g–1) + m2 (0.916 cm3 g–1) = 2 000 cm3

which on solving for m2 gives

m2 = 63.556 6 g

Hence m1 = 24 m2 = 1 525.358 4 g

m3 = 29.545 4 m2 = (29.545 4)(63.556 6 g) = 1 877.805 g

Substituting m1, m2 and m3 in Eq. (2), we get

(1 525.358 4 g) (1.243 cm3 g–1) + (63.556 6 g + 1 877.805 g) (0.953 cm3 g–1) = V

which gives

V = 3 746.14 cm3

Finally V3 = (m3

= (1 877.805 g) (1.003 cm3 g–1) = 1 883.44 cm3
� 1.883 dm3

Example 6.10.3

expression

V/cm3 (mol of mixture)–1 = 109.4 – 16.8 x  – 2.64 x2

where x VA, pm, V  and DV.

Solution We are given that

V/cm3 (mol of mixture)–1 = 109.4 – 16.8 x  – 2.64 x2

Let the mixture contain the amounts nA and n

expression, we have

V

n n

n

n n

n

n nA B

B

A B

B

A B

cm
+

= -
+

-
+

3
2

2
109 4 16 8 2 64. . .

( )

or V/cm3 = 109.4 (nA + n ) – 16.8 n  – 2.64
n

n n

B

A B

2

( )+
(1)

Now V
V

n

n

n n
A, pm

B

A B

cm cm=
∂
∂

Ê
ËÁ

ˆ
¯̃

= +
+A nB

( . ) ( . )
( )

109 4 2 643 3
2

2

= 109.4 cm3 + (2.64 cm3)x2 (2)

V  = 
∂
∂

Ê
ËÁ

ˆ
¯̃

= - -
+

V

n

n

n nB

B

A B

cm cm cm
nA

109 4 16 8 2 64
23 3 3. . ( . )

( )

+
+

( . )
( )

2 64 3
2

cm B

A B
2

n

n n

    = 92.6 cm3 – (5.28 cm3) x  + (2.64 cm3) x2 (3)
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DV, we determine nAV*
A, m and n V*

, m from Eq. (1) by substituting 

n  = 0 and nA = 0, respectively. Thus

nAVA
*

,m = 109.4 nA

n V*, m = 109.4 n  – 16.8 n  – 2.64 n  = 89.96 n

Hence DV = V(mixture) – V(pure)

= 109 4 16 8 2 64 109 4 89 96
2

. ( ) . .
( )

. .n n n
n

n n
n nA B B

B

A B
A B+ - -

+
Ï
Ì
Ó

¸
˝
˛

- +{ }

= 2.64 n  – 2.64
n

n n
n

n

n n
n xB

A B
B

B

A B
B B

2

2 64 1 2 64 1
( )

. . ( )
+

= -
+

Ê
ËÁ

ˆ
¯̃

= -

= 2.64 n xA

6.11 GIBBS-DUHEM EQUATION

For a multicomponent open system, we have

G = Â
i

i in m

Differentiating the above equation, we get

dG = Â + Â
i

i i
i

i in nm md d( )

dG = – S dT +V dp + Â
i

i inm d (Eq. 6.4.1)

Equating the two equations, we get

Â
i

i in dm  = – S d T +V dp (6.11.1)

which is the Gibbs-Duhem equation.

 If temperature and pressure of the system are held constant, we have

Â
i

i in dm = 0 (6.11.2)

Equation (6.11.2) shows that if the composition varies, the chemical potential do 

not change independently but in a related way. Taking, for example, a system of

two constituents, Eq. (6.11.2) becomes

n1 dm1 + n2 dm2 = 0 (6.11.3)

Rearranging, we have

dm2 = -
Ê
ËÁ

ˆ
¯̃

n

n

1

2
1dm (6.11.4)

that is, if a given variation in composition produces a change dm1 in the chemical 

dm2 of the second component is given by the above equation. It may be noted that 

if dm1 is positive (i.e. an increase in the value of m1) then dm2 is negative (i.e. a 

decrease in the value of m2) and vice vissa.

Gibbs-Duhem

Equation Involving 

Chemical Potential

Physical

Interpretation of 

Gibbs-Duhem

Equation
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Equation (6.11.4) has been derived for the changes in chemical potential caused

by the variation in composition of a solution containing two constituents. Similar 

relations can be derived for any of the partial quantities. In general, we can write 

(when T and p are constant)

Â =
i

i in Y( ),d pm 0 (6.11.5)

where Yi, pm, is any partial molar quantity.

Taking, for example, the Gibbs-Duhem equation involving partial molar volume, 

we have

V = Â
i

i in V , pm (6.11.6)

Therefore dV = Â + Â
i

i i
i

i in V n Vd dpm pm, , (6.11.7)

Taking V = f (T, p, ni), we have

dV = 
∂
∂

Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+ Â
∂
∂

Ê
ËÁ

ˆ
¯̃

π

V

T
T

V

p
p

V

np n T n i i T p nj j j

j

, , , ,s s s

d d

ii

dni

At constant T and p, we have

dV = Â
∂
∂

Ê
ËÁ

ˆ
¯̃

= Â

π

i i T p n

i
i

i i

V

n
n V V n

j

j i

, ,

,

s

pmd d dor (6.11.8)

Subtracting Eq. (6.11.8) from Eq. (6.11.7), we get

Â =
i

i in Vd pm, 0 (6.11.9)

For a binary solution, we have

n1 dV1, pm + n2 dV2, pm = 0

or dV1, pm = – 
n

n

2

1

dV2, pm (6.11.10)

From Eq. (6.11.10), it follows that the changes in partial molar volumes of the 

two components vary in the opposite direction, i.e. if partial molar volume of one 

component increases then there occurs a decrease in the partial molar volume of 

the second component and vice versa.

6.12 FREE ENERGY AND ENTROPY OF MIXING OF IDEAL GASES

Let a number of gases at the same temperature and pressure be mixed as shown 

in Fig. 6.12.1. Since the total volume after mixing is the sum of the individual 

volumes, the temperature and pressure of the system after mixing will be the same 

as that of unmixed gases. The free energy of mixing of the above process can be 

computed as follows.

Gibbs-Duhem

Equation for 

Volume

General

Expression of 

Gibbs-Duhem

Equation
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Since each gas is present at the same T and p, its chemical potential is given by 

the expression

mi = mi° + RT ln 
p

p∞
Ê
ËÁ

ˆ
¯̃

(6.12.1)

Hence Ginitial = Â
=

k

i
i in

1

m (6.12.2)

The pressure of the entire system is still p, but the individual gases have partial 

pressure given as

pi =
n

n
p

n

n
p x pi

i
i

i
iÂ

= = (6.12.3)

where xi is the amount fraction of ith gas. The chemical potential of individual 

gases will be given by the expression

m ¢i = m°i + RT ln
p

p

i

∞
Ê
ËÁ

ˆ
¯̃

(6.12.4)

which in view of Eq. (6.12.3) becomes

m ¢i = m°i + RT ln
x p

p
RT

p

p
RT xi

i i∞
Ê
ËÁ

ˆ
¯̃

= ∞ +
∞

Ê
ËÁ

ˆ
¯̃

+È
ÎÍ

˘
˚̇

m ln ln

Using Eq. (6.12.1), the above expression becomes

m ¢i = mi + RT ln xi (6.12.5)

Hence G  = Â ¢ = Â +
= =

k

i
i i

k

i
i i in n RT x

1 1

m m( ln )

= Â + Â
= =

k

i
i i

k

i
i in RT n x

1 1

m ln (6.12.6)

Using Eq. (6.12.2), we have

G  = Ginitial + RT Â
=

k

i
i in x

1

ln (6.12.7)

Fig. 6.12.1 Mixing of gases

at the same temperature and

pressure

Free Energy of 

Unmixed Gases

Free Energy of 

Mixed Gases
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The free energy of mixing is given as

DmixG = G  – Ginitial

From Eq. (6.12.7), we get

DmixG = RT Â = Â Ê
ËÁ

ˆ
¯̃

= Â
= = =

k

i
i i

k

i

i
i

k

i
i in x nRT

n

n
x nRT x x

1 1 1

ln ln ln (6.12.8)

In Eq. (6.12.8), n represents the total amount of gases which are being mixed 

together.

Since xi < 1, therefore, every term on the right side is negative and so the sum 

is always negative, i.e. a decrease in free energy occurs. It follows from this that 

the formation of a mixture from the pure constituents always occurs spontaneously.

If there are only two substances in the mixture (binary system), then we have 

x1 = x and x2 = 1 – x

With these, Eq. (6.12.8) becomes

 DmixG = nRT [x ln x + (1 – x ) ln (1 – x

A plot of DmixG/nRT versus x is shown in Fig. 6.11.2. The curve exhibits 

minimum at x = 1/2 and is symmetrical about this value of x.†

The greater decrease in free energy of mixing is associated with the formation of 

the mixture having equal amounts of the two constituents.

Free Energy of 

Mixing

Fig. 6.12.2 DmixG/nRT

versus x for a binary ideal 

mixture

† The value of x can be obtained by differentiating Eq. (6.12.9) with respect to x and equating 

the resultant expression to zero.

∂
∂

( / )DmixG nRT

x
 = ln ( ) ln ( ) ( )x x

x
x x

x
+ + - - + -

-
-

Ê
ËÁ

ˆ
¯̃ =

1
1 1 1

1

1
0

or ln x – ln (1 – x) = 0  or  ln
x

x1
0

-
=   or

x

x
x

1
1

1

2-
= =or
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Example 6.12.1 Calculate DmixG for mixing the constituents of air (80 mole per cent nitrogen and 20 mole 

per cent oxygen) at 298 K so as to get 1 mol of air.

Solution Substituting xN2
= x1 = 0.8 and xO2

= x2 = 0.2 in the expression

DmixG = nRT [x1 ln x1 + x2 ln x2

we get DmixG = (1 mol) (8.314 J K–1 mol–1) (298 K) (0.8 ln 0.8 + 0.2 ln 0.2)

= (2 447.6 J) (– 0.178 5 – 0.321 9)

= –1 224.8 J �  –1.225 kJ

Problem 6.12.1 Show that the free energy of mixing of three gases has a minimum value with respect to 

each gas only when x1 = x2 = x3 = 1/3.

Solution The expression for free energy of mixing of three gases is

DmixG = nRT [x1 ln x1 + x2 ln x2 + x3 ln x3

Since x1 + x2 + x3 = 1, we get

DmixG = nRT [x1 ln x1 + x2 ln x2 + (1 – x1 – x2) ln (1 – x1 – x2

For a minimum value of DmixG with respect to each gas, we set (∂DmixG/∂x1)x2
 and 

(∂DmixG/∂x2)x1
separately equal to zero, i.e.

∂
∂

Ê
ËÁ

ˆ
¯̃

Dmix

1

G

x
x2

 = 1 + ln x1 – 1 – 1n (1 – x1 – x2)

= ln x1 – ln x3 = 0  fi x1 = x3

∂
∂

Ê
ËÁ

ˆ
¯̃

Dmix

2

G

x
x1

 = 1 + ln x2 – 1 – 1n (1 – x1 – x2)

= ln x2 – ln x3 = 0  fi x2 = x3

From these, it follows that

x1 = x2 = x3

Now, since x1 + x2 + x3 = 1, we will have

x1 = x2 = x3 = 1/3

Comment: The above procedure may be extended to a mixture of n gases. It may be shown 

that, DmixG for mixing n gases has a minimum value provided x1 = x2 = � = x = 1/n.

Entropy of Mixing Since (∂G/∂T)p = –S, 

∂
∂{ } =

∂
∂

Ê
ËÁ

ˆ
¯̃

-
∂

∂
Ê
ËÁ

ˆ
¯̃

( )

, , ,

Dmix final initialG

T

G

T

G

Tp n p n p ni i i

  = – (S  – Sinitial) = – DmixS

Thus, differentiating Eq. (6.12.8), we get

∂
∂{ } = Â

( )
ln

DmixG

T
nR x x

p i
i i
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Therefore DmixS = - ÂnR x x
i

i iln (6.12.10)

The negative sign means that DmixS is always positive. This corresponds to the 

increase in randomness which occurs in mixing the molecules of several kinds.

A plot of DmixS/nR versus x of a binary mixture according to the equation

DmixS = – nR [ x ln x + (1 – x) ln (1 – x

is shown in Fig. 6.12.3. The entropy of mixing has a maximum value when x =
1

2
. †

This value can be obtained by differentiating Eq. (6.12.11) with respect to x and

equating the resultant expression to zero. The numerical value of which per mole 

of mixture is

Dmix S

n
 = – (8.314 J K–1 mol–1)

1

2

1

2

1

2

1

2
ln ln+Ê

ËÁ
ˆ
¯̃

= – (8.314 J K–1 mol–1) ln 
1

2
 = + 5.763 J K–1 mol–1

Thus, in a mixture containing only two substance the entropy of mixing per mole 

of the mixture varies between 0 and 5.763 J K–1, depending on the composition 

of the mixture.

Enthalpy of Mixing That fact that

DmixG = – T DmixS (6.12.12)

indicates that for the mixing of ideal gases DmixH = 0 since DG = DH – T DS. This 

is to be expected because there exist no forces of attraction between the molecules 

of ideal gases (i.e. they move independent of each other). Equation (6.12.12) shows 

that the driving force, DmixG which produces the mixing is entirely an entropy effect. 

The mixed state is a more random state, and is therefore, a more probable state.

Fig. 6.12.3 Plot D mix S/nR

versus x for a binary ideal 

mixture

† ln general, the entropy of mixing of n gases has a maximum value provided x1 = x2 = �

= xn = 1/n.
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Volume of Mixing The fact that the volume of the mixture is equal to the sum of the individual volumes 

DmixV. The latter can be obtained by 

differentiating the DmixG with respect to pressure, temperature and composition 

being constant, that is

DmixV = 
∂

∂
Ï
Ì
Ó

¸
˝
˛

( )

,

Dmix

s

G

p T ni

(6.12.13)

Since DmixG is independent of pressure (Eq. 6.12.8), the above derivative has a 

zero value. Hence

DmixV = 0

For the binary mixture, Eq. (6.12.10) may be written as

DmixS = – nR (x1 ln x1 + x2 ln x2) (6.12.14)

From the Dalton’s law of partial pressure, we have

x1 = 
p

p

1 and x2 = 
p

p

2 (6.12.15)

where p1 and p2 are the partial pressures of the two gases in the mixture and p is

the total pressure. As mentioned earlier, the total pressure p of the mixture will be 

the same as that of unmixed gases since the total volume of the gases is the sum 

of the volumes of the individual gases. Substituting Eq. (6.12.15) in Eq. (6.12.14), 

we get

DmixS = – nR
n

n

p

p

n

n

p

p

1 1 2 2ln ln+Ê
ËÁ

ˆ
¯̃

or DmixS = n1 R ln
p

p
n R

p

p1
2

2

+ ln (6.12.16)

Since the change in entropy of a gas in an isothermal expansion from pressure 

p1 to pressure p2 is given by

DS = nR ln
p

p

1

2

it follows immediately from Eq. (6.12.16) that the entropy of mixing is simply a sum 

of the entropy changes for each gas undergoing an expansion from its pressure p to 

its partial pressure pi in the mixture, i.e. the entropy change in the mixing process 

is simply due to the pressure changes for each gas as given by Eq. (6.12.16).†

Generalization of 

the Expression of 

Entropy of Mixing

† Alternatively, the entropy change during the isothermal mixing process may be attributed 

expression for such a process is given by

 DS = nR ln 
V

V

final

initial

Hence, for a binary mixture, we have

DS = n1R ln 
V

V

final

1

+ n2R ln 
V

V

final

2

(6.12.17)
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Equation (6.12.16) is applicable only when the initial pressures and temperatures 

of the gases before mixing are identical. The expression for the entropy of mixing 

then calculate the change in entropy of each gas using the expression

DS = n C
T

T
R

p

p
p, ln lnm

2

1

1

2

+
Ê
ËÁ

ˆ
¯̃

(6.12.18)

each gas we may employ the expression

DS = n C
T

T
R

V

V
V , ln lnm

2

1

2

1

+
Ê
ËÁ

ˆ
¯̃

(6.12.19)

Example 6.12.2

energy change, the entropy change and the enthalpy change relative to the unmixed gases 

Solution (i)

xA =
n

n n

A

A B

mol

(10 mol) + (10 mol)+
= =

( )
.

10
0 5

Substituting these in the relation

DmixG = nRT [xA ln xA + x ln x

we get DmixG = (20 mol) (8.314 J K–1 mol–1

= – 34 352.6 J �  – 34.353 kJ

Now DmixS = –
Dmix J

K
J K

G

T
= = -34 352 6

298
115 28 1.

.

DmixH = 0

(ii)

xA =
n

n n

A

A B

mol

mol mol+
=

+
=

( )

( ) ( )
.

10

10 20
0 333

x  = 1 – xA = 0.667

Substituting these in the relation

DmixG = nRT [xA ln xA + x  ln x

we get DmixG = (30 mol) (8.314 J K–1 mol–1) (298 K)

¥ (0.333 ln 0.333 + 0.667 ln 0.667)

= – 47 321 J = – 47.321 kJ

Now DmixS = –
DG

T
= = -47 321

158 80 1J

298 K
J K.

DmixH = 0
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(iii) From parts (i) and (ii), we have

D

D
mix

mix
1

kJ

J K

G

S

1

1

34 353

115 28

= -

=

Ï
Ì
Ó

-

. ;

.

D

D
mix

mix
1

kJ

J K

G

S

2

2

47 321

158 80

= -

=

Ï
Ì
Ó

-

. ;

.

Subtracting the expression (a) from the expression (b), we get

Obviously, for this mixing we will have

DmixG = DmixG2 – DmixG1 = –47.321 kJ – (–34.353 kJ)

= –12.968 kJ

DmixS = DmixS2 – DmixS1 = 158.80 J K–1 – 115.28 J K–1

= 43.52 J K–1

DmixH = 0

Example 6.12.3 (a) One dm3 bulb containing nitrogen at 1 bar pressure and 25 °C is connected by a tube 

with a stop-cock to a 3 dm3 bulb containing carbon dioxide at 2 bar pressure at 25 °C. The 

stop-cock is opened and the gases are allowed to mix until equilibrium is reached. Assuming 

that the gases are ideal, what is DS for this spontaneous change?

(b) What is the total change in entropy if the 3 dm3 bulb contains oxygen at 2 bar instead 

of carbon dioxide? Explain the difference, if any, between this value and that obtained in 

part (a).

Solution (a) Amount of N2 = 
pV

RT
= - -

( )( )

( . )( )

100 1

8 314 298

3

3 1 1

kPa dm

kPa dm K mol K

= 0.040 4 mol

Amount of CO2 = 
( )( )

( . )( )

200 3

8 314 298

3

3 1 1

kPa dm

kPa dm K mol K- -

= 0.242 2 mol

Now, employing the relation

DmixS = nA R ln
V

V
n R

V

V

final

A
B

final

B

+ ln

we get DmixS = (0.040 4 mol) (8.314 J K–1 mol–1 ) ¥ ln 
4

1

3

3

dm

dm

Ê
ËÁ

ˆ
¯̃

+ (0.242 2 mol) (8.314 J K–1 mol–1) ¥ ln 
4

3

3

3

dm

dm

Ê
ËÁ

ˆ
¯̃

= 0.465 6 J K–1 + 0.579 3 J K–1 = 1.044 9 J K–1

(b) DmixS will be the same, since the two gases are different, assumed to be ideal and they 

do not interact with each other.
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Example 6.12.4 Two dm3 of methane under 4 bar and 298 K and 4 dm3 of oxygen under 20 bar and 298 K 

are forced into a 3 dm3 evacuated reaction vessel, the temperature being maintained at 298 

K. Calculate the change in entropy of gases assuming that they are ideal.

Solution Amount of CH4 = 
pV

RT
= - -

( )( )

( . )( )

400 2

8 314 298

3

3 1 1

kPa dm

kPa dm K mol K

= 0.322 9 mol

Amount of O2 =
( )( )

( . )( )
.

2 000 4

8 314 298
3 229

3

3 1 1

kPa dm

kPa dm K mol K
mol- - =

Now, employing the relation

 DmixS = nA R ln
V

V
n R

V

V

final

A
B

final

B

+ ln

we get DmixS = (0.322 9 mol) (8.314 J K–1 mol–1) ln 
3

2

3

3

dm

dm

Ê
ËÁ

ˆ
¯̃

    + (3.22 9) (8.314 J K–1 mol–1) ln 
3

4

3

3

dm

dm

Ê
ËÁ

ˆ
¯̃

= 1.088 5 J K–1 – 7.723 1 J K–1 = – 6.634 6 J K–1

Example 6.12.5 A thermally insulated vessel is divided into two compartments by a partition of insulating 

contains 0.6 mol of N2

gases mix. Calculate the resultant entropy change. Given that CV(He) = (3/2) R, CV(N2) = 

(5/2)R and may be assumed to be independent of temperature.

Solution Temperature of the mixture This may be calculated as follows.

Heat gained by He = nCV, m dT

= (0.4 mol) {(3/2) (8.314 J K–1 mol–1)}(Tf – 293 K)

= (4.988 4 J K–1) (Tf – 293 K)

Heat lost by N2 = nCV,m dT

= (0.6 mol) {(5/2) (8.314 J K–1 mol–1)} (373 K – Tf)

= (12.471 J K–1) (373 K – Tf)

Heat gained = Heat lost

(4.988 4 J K –1) (Tf – 293 K) = (12.471 J K–1) (373 K – Tf)

Tf (4.988 4 J K –1 + 12.471 J K–1) = 12.471 ¥ 373 J + 4.988 4 ¥ 293 J

Tf =
6 113 28

17 459 4
350 14

1

.

.
.

J

J K
K- =

Volume of the container containing He

=
nRT

p
=

- -( . )( . ) ( )

( . )

0 4 8 314 293

101 325

3 1 1mol kPa dm K mol K

kPa

= 9.617 dm3
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Volume of the container containing N2

=
nRT

p
=

- -( . )( . )( )

( . )

0 6 8 314 373

202 65

3 1 1mol kPa dm K mol K

kPa

= 9.182 dm3

Total volume after mixing = 9.617 dm3 + 9.182 dm3 = 18.799 dm3

Now, employing the relation

DS = n C
T

T
R

V

V
V , ln lnm

f

i

f

i

+
Ê
ËÁ

ˆ
¯̃

For each of the two gases, we get

DSHe = (0.4 mol) 
3

2
8 314

350 14

293

1 1Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

È

ÎÍ
- -( . ) ln

.
J K mol

K

K

+ (8.314 J K–1 mol–1) ln 
18 799

9 617

3

3

.

.

dm

dm

Ê
ËÁ

ˆ
¯̃

˘

˚
˙

= (0.4 mol ) (2.221 8 J K–1 mol–1 + 5.572 6 J K–1 mol–1)

= 3.117 8 J K–1

DSN2
 = (0.6 mol)

5

2
8 314

350 14

373

1 1Ê
ËÁ

ˆ
¯̃

È
ÎÍ

Ê
ËÁ

ˆ
¯̃

- -( . ) ln
.

J K mol
K

K

+ (8.314 J K–1 mol–1) ln 
18 799

9 182

.

.

dm

dm

3

3

Ê
ËÁ

ˆ
¯̃

˘

˚
˙

= (0.6 mol) (–1.314 6 J K–1 mol–1 + 5.957 5 J K–1 mol–1)

= 2.785 7 J K–1

and DmixS = DSHe + SN2

= 3.117 8 J K–1 + 2.785 J K–1

= 5.903 5 J K–1

Example 6.12.6 One mole of helium at 298 K is mixed with two moles of neon at the same pressure but at 

a temperature of 398 K in such a way that the total volume remains constant and there is 

no heat exchange with the surroundings. Calculate DStotal for this process.

Solution The changes in p and T of the two gases in the mixing process may be depicted as follows.

Helium

n

T

p

V V

i

1

1

1

298

=
=

=

Ï

Ì
ÔÔ

Ó
Ô
Ô

mol

K

n

T

p

V V V

=
=

=

= +

Ï

Ì
ÔÔ

Ó
Ô
Ô

1

1 2

mol

f

He

?

?

Neon

n

T

p

V V

=
=

=

Ï

Ì
ÔÔ

Ó
Ô
Ô

2

398

2

mol

K2

n

T

p

V V V

=
=

=

= +

Ï

Ì
ÔÔ

Ó
Ô
Ô

2

1 2

mol

f

Ne

?

?
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Thus, we calculate

Final temperature after mixing

nHe CV, m (Tf – Ti) = nNe CV, m (T2 – T1)

(1 mol) (Tf – 298 K) = (2 mol) (398 K – Tf)

Tf = 
1 094

3

K
  = 364.67 K

Now, employing the relation

DS = n C
T

T
R

V

V
V,m ln lnf

i

f

i

+
È

Î
Í

˘

˚
˙

we have DSHe = ( ) . ln
.

ln1 1 5
364 67

298

1 2

1

mol
K

K
R R

V V

V

Ê
ËÁ

ˆ
¯̃

+
+È

Î
Í

˘

˚
˙ (1)

 DSNe = ( ) . ln
.

ln2 1 5
364 67

398

1 2

2

mol
K

K
R R

V V

V

Ê
ËÁ

ˆ
¯̃

+
+È

Î
Í

˘

˚
˙ (2)

Assuming ideal behaviour, we will have

V1 =
n RT

p
V

n RT

p

1 1
2

2 2and =

Hence
V

V

n T

n T

1

2

1 1

2 2

298

2 398
= =

( )

or
V V

V

1 2

2

298 2 398

2 398

1094

2 398
1 374

+
=

+
= =

( )

( ) ( )
. ;   ln (1.374) = 0.318 0

V V

V

2 1

1

2 398 298

298

1094

298
3 671

+
=

+
= =

( )
. ;    ln (3.671) = 1.300 5

Hence, Eqs (1) and (2) becomes

DSHe = (1 mol) (1.5 R (0.201 9) + 1.300 5 R)

= (1 mol) (0.303 0 + 1.300 5) R = (1 mol) (1.603 5 R)

DSNe = (2 mol) [1.5 R (– 0.087 5) + 0.318 0 R

= (2 mol) (– 0.131 1 + 0.318 0) R = (2 mol) (0.186 9 R)

DmixS = DSHe+ DSNe = (1.977 3 mol) R = 16.439 J K–1

Alternative Solution Alternatively, 

then make use of Eq. (6.12.17) to determine DmixS. This method is also illustrated here. We 

have

p
R

V
p

R
initial initialHe

mol K
Ne

mol K
( )

( ) ( ) ( )
; ( )

( ) ( ) (
= =

1 298 2 398

1

))

( )
( ) ( ) ( . )

; ( )
( ) (

V

p
R

V V
p

R

2

1 2

1 364 67 2
final finalHe

mol K
Ne

mol
=

+
=

)) ( . )364 67

1 2

K

V V+

Now, employing expression

DS = n C
T

T
R

p

p
p, ln lnm

f

i

initial

final

+
È

Î
Í

˘

˚
˙
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we get DSHe = ( ) ln
.

ln
.

1
5

2

364 67

298

298

364 67

1 2

1

mol
Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

+
+Ê

ËÁ
ˆ

R R
V V

V

K

K ¯̃̄
È

Î
Í

˘

˚
˙

= ( ) ( . ) ln
.

1
5

2
0 202 0

298

364 67

1 094

298
mol

Ê
ËÁ

ˆ
¯̃ + Ê

ËÁ
ˆ
¯̃

È
ÎÍ

˘
˚̇

R R

= (1 mol) [0.505 0 R + 1.098 6 R

= (1.603 6 mol) R =  13.332 J K–1

DSNe = ( ) ln
.

ln
.

2
5

2

364 67

398

398

364 67

1 2

2

mol
K

K

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

+
+Ê

ËÁ
ˆ

R R
V V

V ¯̃̄
È

Î
Í

˘

˚
˙

= ( ) ( . ) ln
. ( )

2
5

2
0 0875

398

364 67

1094

2 398
mol

Ê
ËÁ

ˆ
¯̃ - + Ê

ËÁ
ˆ
¯̃

È
ÎÍ

˘
˚

R R ˙̇

= (2 mol) [(– 0.218 6) R + R 

= (2 mol) [(– 0.218 6) R + R 

= (0.373 8 mol) R = 3.108 J K–1

Hence DmixS = DSHe + DSNe

= 13.332 J K–1 + 3.108 J K–1

= 16.440 J K–1

REVISIONARY PROBLEMS

mi = ( / ) , ,∂ ∂
π

G ni T p n j

j i

s

mi =
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

π π

A

n

H

n

A

ni T V n i S p n i S Vj

j i

j

j i

, , , , ,s s ,,n j

j i

s
π

Is the chemical potential an intensive or extensive property?

6.2 (a) The partial molar derivative

∂
∂

Ê
ËÁ

ˆ
¯̃

π

Y

ni T p n j

j i

, , s

is known as partial molar quantity and is represented by the symbol Yi. Depending 
upon the nature of variable Y, the partial derivative may be called partial molar volume, 

of the expressions given in Q. 6.1 but only one of them is the partial molar quantity. 
Identify this from Q. 6.1.

(b) The derivative ( / ) , ,∂ ∂
π

Y ni T p n j

j i

s
may be interpreted by either of the following 

(i) This represents the change in Y per mole of component i

(ii) This represents the change in Y when one mole of component i is added to a 

system which is large enough so as to cause no change in the composition.

Justify these statements from the derivative ( / ) , ,∂ ∂
π

Y ni T p n j

j i

s
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6.3 How would you show that the partial molar quantities are related to each other 

exactly by the same expressions as those of total quantities for a closed system, i.e. 

the expressions relating partial molar quantities (applicable to an open system) can 

be obtained by replacing the total quantities in the relations applicable to a closed 

system by the corresponding partial molar quantities?

chemical potential to a region of low chemical potential’? Thus justify how far it is 

true to identify the chemical potential with the escaping tendency of the substance.

6.5 Show that

(a) The chemical potential of a pure ideal gas is given by

μ = μ° + RT ln (p/1 bar)

On what variables will m and m° depend?

μi(pi,T) = μi*(p, T) + RT ln xi

(d) In a mixture of ideal gases, the partial molar volume is simply the average molar 

volume and that it has the same value for each gas of the mixture.

(e) The important condition of equilibrium is that mi should have uniform value 

throughout the system.

6.6 Show that partial molar quantities are additive and hence derive the following additivity 

rules.

    

U n U S n S H n H

n n A n A m n M

G

i
i i

i
i i

i
i i

i
i

i
i i

i
i i

= Â = =

= Â = =

= Â

; ; ;

( ) ; ; ;

S S

S S1

ii
i i

i
i in G n= Â m

6.7 (a) Derive the Gibbs-Duhem equation in the form

       S
i

i in Y( )d = 0 at constant T and p

where Yi is a partial molar quantity. It may be mi, Vi, Ui, Hi and so on.

(b) For a binary system show that

dV1= –
n

n
V2

1
2d

6.8 (a) Derive the following expressions for the free energy of mixing and entropy of 

mixing involving ideal gases.

       DmixG = nRT Â
i

i ix xln

       DmixS = –nR Â
i

i ix xln

mixV = mixH = 0

mixG mixS will have 

a maximum value at x = 1/2 when two gases are mixed together.



Systems of Variable  Composition 369

TRY YOURSELF PROBLEMS

6.1 Show that for an ideal gas

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
mi

T n n
i

T n n i T V

i
V

V
p

V

U

n
H T

, , , , ,

;

1 2 1 2

VV
p

T
i

V ni

∂
∂

Ê
ËÁ

ˆ
¯̃

,

∂
∂

Ê
ËÁ

ˆ
¯̃

= -
∂
∂

Ê
Ë

ˆ
¯

S

n
S V

p

Ti T V

i i
V ni, ,

where Vi, Hi and Si are partial molar quantities.

6.2 (a) Suppose that V as a function of m can be expressed by the relation

V = a + bm + cm2

where m is the molality and a, b and c and constants at a given T and p. Show that

V2 = (b + 2 c m)/n1m1 (where n1m1 = 1 kg)

V1 =
a c m

n

- 2

1

where V2 and V1 are the partial molar volumes of solute and solvent, respectively.

(b) For a certain binary solution at constant T and p

V2 = a2 + 2a3m + 3a4m
4

where m is molality and a2, a3 and a4 are constants. Determine the expression for the 

total volume V of solution as a function of m.

6.3 Suppose that the density r of a solution is known as a function of the mass percentage 

(w) of solute. Show that the partial molar volumes of solute V2 and solvent V1, are 

given by the expressions

V2 =
M w

w
V

M w

w

2
1

11
100

1
r r

r

r r

r
-

- ∂
∂

Ï
Ì
Ó

¸
˝
˛

= +
∂
∂

Ï
Ì
Ó

¸
˝
˛

( )
;

If r is a linear function of w and if w∂r/∂w is small compared with r, show that to 

a good approximation V1 and V2 are constants.

(Hint: Make use of Eqs (6.2.13) and (6.2.14).)

6.4 (a) If V is the volume of a two-component solution containing the amounts n1 and n2

of solvent and solute, respectively, show that

V2 =
M V n2 2- ∂ ∂( / )r

r

in which M2 is the molar mass of the solute and r is the density of the solution. 

(b) Show that

V1 =

M
n V

n n
1

2

1 2

+
∂
∂

Ê
ËÁ

ˆ
¯̃

r

r

(Hint: Make use of Eqs (6.2.13) and (6.2.14).)

6.5 Derive the following relations.

U = TS – pV + Â
i

i in m

H = TS + Â
i

i in m

A = – pV + Â
i

i in m
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6.6 Which of the following derivatives are equal to the chemical potential and which are 

equal to the partial molar quantity?

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
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ˆ
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∂
∂
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n

G

n

U

n

H

ni T V n i T p n i T p nj j j, , , , , ,

; ; ;
ii S p n

i S V n i T p n i

j

j j

U

n

H

n

V

n

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
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∂
∂

Ê
Ë

, ,

, , , ,

;

; ; ÁÁ
ˆ
¯̃

∂
∂

Ê
ËÁ

ˆ
¯̃

T p n i T p nj j

S

n
, , , ,

;

6.7 Show that

(i)
d

d
and

d

d

m mix m,mix( / )

( / )

( / )

( / )

,V x

x
V

V x

x
V

2

2
1

1

1
2

1 1
= =

(ii)

d

d
and

d

d

1

1

1

1

1

12

2 1

1

2 2

/

( / )

/

( / )

r

r

r

r

w

w

w

w

Ê
ËÁ

ˆ
¯̃

=

Ê
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ˆ
¯̃

=

where Vm, mix and r are the molar volume and density of a binary solution containing 

a mole fraction x2 (or mass per cent w2) of component 2, respectively. r1 and r2 are 

the partial molar densities of components 1 and 2, respectively.

NUMERICAL PROBLEMS

6.1 The volume of an aqueous solution of sodium chloride at 25 °C was found to obey 

the relation

V/cm3 kg–1 = 1 003 + 16.62 (m/mol kg–1) + 1.77 (m/mol kg–1)3/2

+ 0.12 (m/mol kg–1)2

Find the partial molar volume of the components at m = 0.1 mol kg–1 by explicit 

differentiation. (Ans. 17.483 cm3 mol–1)

6.2 For iodine in methanol solution, the apparent molar volume of the solute is independent 

of the concentration of the solution and is equal to 62.3 cm3 mol–1 at 25 °C.

The densities of solid I2 and pure methanol at 25 °C are 4.93 g cm–3 and 0.786 5 g 

cm–3, respectively. Find DV for the following.

I2(s) = I2(m = 1 mol kg–1)

CH3 CH3OH(1 mol kg–1 I2 solution)

I2(s) + 32.2 CH3 Solution (m = 1 mol kg–1)

(Ans. 10.8 cm3, 0 cm3 10.8 cm3)

6.3 At 25 °C, the density of succinic acid in water is given by the expression (valid up 

to 5.5% acid).

r/g cm–3 = 0.997 + 0.003 04 w

where w is the mass per cent of solute. Calculate V1 and V2 for 0, 2 and 4% solution 

of succinic acid. (Ans. 18.05, 90.70; 18.05, 96.67; 18.16, 96.90 cm3 mol–1)

6.4 The partial molar volumes of water and glycerol in a solution of xH2O = 0.5 at 15.6 °C 

are found to be VH2O = 17.3 cm3 mol–1 and Vgly = 72.68 cm3 mol–1. The corresponding 

values for the pure components are V*
H2O = 18.0 cm3 mol-1 and V*

gly = 72.8 cm3 mol–1.

Calculate the volume of the solution when 5 mol of water are mixed with 5 mol of 

glycerol. Compare this value with that obtained by adding the volumes of the pure 

components. (Ans. 450.5 cm3, 454 cm3)

Partial Molar Quantities
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6.5 The partial molar volume of ethanol in a 60 mole per cent ethanol-water solution is 

57.5 cm3 mol–1. The density of solution is 0.849 g cm–3. Calculate the partial molar 

volume of water in the solution. (Ans. 16 cm3 mol–1)

6.6 It is required to prepare 3 m3 of a 60 mole per cent water solution containing ethanol 

and water. Determine the volumes of ethanol and water to be mixed in order to 

prepare the required solution. The partial molar volume of ethanol and water in 60 

mole percent water solution are

Vpm(C2H5OH) = 57.5 cm3 mol–1 and Vpm(H2O) = 16 cm3 mol–1

(Ans. 2.548 m3 water and 0.528 m3 ethanol)

6.7 Three moles of N2

with 5 mol of H2

(Ans. 44.016 J K–1)

Cp, m for each gas is 5R S for the 

process? (Ans. 12.008 J K–1)

6.10 Calculate the entropy of unmixing of 100 g air considered as 21% vol O2, 78% vol 

N2 and 1% vol Ar. (Ans. 16.485 J K–1)

and 7 mol of toluene (T) with a second solution at the same temperature containing 

3 mol of benzene, 2 mol of toluene and 4 mol of p-xylene (X). Assume the solutions 

are ideal in nature.

(Hint: S1

S2

S3

S

using the expression

S S3 S1 S2. (Ans. 35.59 J K–1)

6.12 One dm3 of O2 and 4 dm3 of N2

to form an ideal gas mixture of 3 dm3 at the same temperature. Calculate the entropy 

change for the process. (Ans. – 0.019 7 J K–1)

6.13 A 1 dm3 3

S for the process?

(Ans. 0.429 3 J K–1)

6.14 A vessel is divided into two compartments of equal volumes by a partition. Each 

compartment contains 1.0 mole of the same absolutely identical gases at the same 

temperature and pressure. The partition is removed and the gases are allowed to mix. 

Calculate the resultant entropy change. (Ans. mixS = 0)

(Note: One may expect to get a value of 2R ln 2 on the basis of Eq. (6.12.10), but 

the actual value is zero. This contradiction is known as Gibbs paradox. The basic 

reason for this contradiction is that Eq. (6.12.10) is applicable for two different gases 

(may be two similar gases differing in some respects so that their molecules are 

distinguishable from each other, e.g., two gases comprising of different isotopes) and 

not to the two absolutely identical gases. The molecules in a mixture formed from the 

latter gases cannot be distinguished and, therefore, one cannot apply Dalton’s law of 

partial pressure (pi = xi ptotal

expression (Eq. 6.12.10). Hence, in such a case, Eq. (6.12.10) will not valid.)

Free Energy and 

Entropy of Mixing
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6.15 (a) When chloroform is added to acetone at 25 °C, the volume of mixture varies with 

composition as follows.

xchloroform 0 0.194 0.385 0.559 0.788

Vm/cm3 mol–1 73.99 75.29 76.5 77.55 79.08

0.889 1.000

79.82 80.67

Determine the partial molar volumes of the two components at xchloroform = 0.5. 

(b) What will be the volume of a solution of mass 1 kg at xchloroform = 0.5? What will 

be the total volume of the unmixed components?

6.16 Given below are the densities of aqueous solutions of sulphuric acid at various mass 

per cent of H2SO4. Determine the partial volumes of H2O and H2SO4 at 50 mass per 

cent of H2SO4.

mass % 10 20 30 40 50 60 70

density/g cm–3 1.066 1.139 1.219 1.303 1.395 1.498 1.611

80 90 100

1.727 1.814 1.831

(Ans. 1.036 cm3, 2.151 cm3)

Experimental
Determination
of Partial Molar 
Volumes



Thermodynamics of Chemical

Reactions7

7.1 DESCRIPTION OF A REACTION IN PROGRESS

A chemical reaction, in general, may be written as

0 = Â
B

BBn (7.1.1)

where Bs represent the various constituents of the reaction and nBs are the 

values for products and negative for reactants.

reaction may be represented in terms of the extent of reaction (x

n(B) = n0(B) + nBx (7.1.2)

where n0(B) is the amount of B at t = x is that of the amount of a 

substance, i.e. mol.

From Eq. (7.1.2), we may write

d B

d

n( )

x
 = nB (7.1.3)

that is, the change in the amount of a reactant or a product with the change in 

chemical reaction.

Illustration

two products:

|n1| A1 + |n2| A2 n3A3 + n4A4 (7.1.4)

If the reaction is started with n0(A1) and n0(A2) as the amounts of A1 and A2,

respectively, and if x is the extent of reaction, we will have

n(A1) = n0(A1) + n1x

n(A2) = n0(A2) + n2x

n(A3) = v3x

n(A4) = v4x

Since n s are negative for reactants and positive for products, the amounts of A1

and A2 will decrease whereas those of A3 and A4 will increase with the increase 

in the extent of reaction.

Representation

of a Chemical 

Equation

Extent of Reaction
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7.2 THERMODYNAMICS OF CHEMICAL REACTIONS (REACTION POTENTIAL)

and pressure is given by

dG = –S dT + V dp + Â
B

B Bdm n (7.2.1)

Substituting dnB in terms of dx from Eq. (7.1.3), we get

dG = –S dT + V dp + Â
B

 (nB mB) dx (7.2.2)

Â
B

(nBmB) is given the special name of the reaction potential and is 

expressed as

Â
B

nBmB = D rG� (7.2.3)

If the amounts of different species in a reaction change only because of the chemical 

reaction whose progress is measured by x, then from Eq. (7.2.2) if follows that

Dr
�G

G

T p

=
∂
∂

Ê
ËÁ

ˆ
¯̃x ,

(7.2.4)

the reaction potential is equal of the rate of change of total free energy 

with extent of reaction at constant temperature and pressure.

(Eq. 7.2.3), the value of which can be calculated from values of free energy of 

formation tabulated in Appendix II. Here after, we represent the reaction potential 

simply as D rG.

A = – Dr
�G = – (∂G/∂x)T, p

reaction.

value of dG. Under constant temperature and pressure conditions, we have

( )

( )

i d    d      Spontaneous

ii d    d      

r

r

G G

G G

= <
= >

D
D

x

x

0

0 Not ppossible

( )iii d    d      EquilibriumrG G= =

¸

˝
Ô

Ǫ̂D x 0

(7.2.5)

Since dx is positive for the forward reaction, the above conditions, therefore, 

lead to

(i) D rG < 0,     Spontaneous in the forward direction.

For the reaction given in Eq. (7.1.4), D rG is given as

D rG = n3m3 + n4m4 – (|n1| m1 + |n2| m2)

|n1| m1 + |n2| m2 > n3 m3 + n4m4 (7.2.6)

(ii) D rG > 0,      Not spontaneous in the forward direction. In fact, 

products will be converted to reactants.

Definition of 

Reaction Potential 

and Affinity of a 

Chemical Reaction

Nature of Chemical 

Reaction

Criterion for a 

Spontaneous

Reaction

Criterion for a 

Nonspontaneous

Reaction
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For D rG > 0, we will have

n3 m3 + n4m4 > |n1| m1 + |n2| m2 (7.2.7)

(iii) D rG
change in x produces dG = 0.

|n1| m1 + |n2| m2 = n3 m3 + n4m4 (7.2.8)

Equation (7.2.8) is the requirement for the reaction at equilibrium. It should 

be noted that this equation contains only intensive variables and will not depend 

upon the relative amounts of different species involved in a chemical reaction.

7.3 HOMOGENEOUS IDEAL GAS REACTION

and its partial pressure by the relation

mB = m°B + RT ln (pB/p°) (7.3.1)

where p°

reaction potential is given by

D rG = Â
B

nBmB = D rG° + RT Â
B

nB ln (pB/p°)

or D rG = D rG° + RT ln ’ ∞( )
B

B
B( / )p p n (7.3.2)

where D rG° = Â ∞
B

B Bn m

’
B

stands for the multiplication symbol.

Illustration As an example, let us apply the above expression for the following gas phase 

reaction:

2HCl(g) + 
1

2
O2 H2O(g) + Cl2(g)

v(HCl) = – 2; v(O2) = –1/2; v(H2O) = 1 and v(Cl2) = 1

D rG = D rG° + RT ln
( / )( / )

( / ) ( / ) /

p p p p

p p p p

H O Cl

HCl O

2 2

2

2 1 2

∞ ∞

∞ ∞

Here D r G

temperature T and at a constant pressure p; the gases comprising reactants and 

D rG° is the standard reaction potential 

when each of the gaseous reactants and products has partial pressure of 1 bar at 

temperature T.

Criterion of 

Reaction at 

Equilibrium

Reaction Potential 

of a Chemical 

Equation
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D rG° term and the logarithm term in Eq. (7.3.2)

determine the thermodynamic progress of the reaction. Starting with all reactants

and no products, we have

D rG = D rG° + RT ln

’ ∞

’ ∞

B
products

B

B
reactants

B

B

B

( )

( )

| |

( / )

( / )

p p

p p

n

n

= D rG° + RT ln
zero

B
reactants

B
B’ ∞

= - •

( )

| |( / )p p n

D rG D rG° might

On the other hand, when all products and no reactants are present, we have

D rG = D rG° + RT ln

’ ∞
B

products

B
B

zero

( )

( / )p p n

 = + •

D rG
inevitable.

At some intermediate mixture of reactants and products, the two terms in Eq. (7.3.2) 

D rG equal to zero. At this stages, the reaction will 

be at equilibrium.

where G has been plotted against x.

’ ∞
B

B
B( / )p p n reaction quotient 

Qp°. At equilibrium condition, Qp° is given the name of standard equilibrium constant 

Kp°, such that

Kp
° = (Qp°)eq = ’ ∞{ }

B
B eq

B( / )p p n
(7.3.3)*

Now, at equilibrium, we have

(i) D rG = 0

and (ii) ’ ∞ = ∞
B

B
B( / )p p Kp

n

D rG° = –RT ln K°p = – 2.303 RT log K°p

or K°p = (10)–D rG° /(2303 RT) (7.3.4)

Reaction Potential 

of a Reaction 

Started with 

Reactants only

Chemical Potential 

of a Reaction 

Started with

Products only

Essential

Requirement for 

a Reaction at 

Equilibrium

Reaction Quotient 

and Equilibrium 

Constant

value of standard equilibrium constant by a factor of (1.013 25)Dvg.
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rG° is a function of temperature only and is independent of the partial

pressures of the components of the reaction, it follows from Eq. (7.3.4) that the

equilibrium constant Kp
° also depends only on the temperature and is independent 

of the pressure of the system.

A convenient way of expressing reaction potential is provided by Eqs (7.3.2) and

D rG = – RT In K°
p + RT ln Q°p = RT In

Q

K

p

p

∞

∞
(7.3.5)

If for a particular reaction Q°
p < K°

p rG is negative and dG will also be 

Q°
p increases

and eventually it becomes equal to K°
p rG becomes equal to zero. At this stage, 

the reaction stops resulting in equilibrium, i.e. no further change in the reaction is 

observed. If for a given reaction Q°
p > K°

p rG is positive and dG will also 

In fact, it would have a tendency to proceed in the reverse direction.

Example 7.3.1 At 1 105 K, the value of K°
p for the reaction SO2(g) + 1

2
O2  SO3(g) is 0.63. Calculate;

(a) the standard free energy change for this reaction at 1105 K; (b) the free energy change 

at 1105 K for the reaction

SO2(1 bar) + 1
2

O2(25 bar) = SO3(2 bar)

Fig. 7.3.1 Graph of free 

energy of a reacting system 

against extent of reaction 

at constant temperature 

and pressure. At = 0, 

only reactants (|v1| mol

of A1 and |v2| mol of A2)
are present. At = 1 
mol, only products (v3

mol of A3 and v4 mol
of A4) are present. At 
= e the reaction is at 
equilibrium

Factor Affecting 

Equilibrium

Constant

A Convenient Way 

of Expressing

Reaction Potential
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Solution (a) Employing the relation

D rG° = –RT ln K°
p

we get D rG° = –(8.314 J K–1 mol–1) (1 105 K) (2.303) log (0.63)

= 4 245.5 J mol–1

(b) Employing the relation

 D rG = D rG° + RT ln Q° = D rG° + RT ln
( / )

( / )( / ) /

p p

p p p p

SO

SO O

3
∞

∞ ∞
2 2

1 2

we get D rG = (4 245.5 J mol–1) + (8.314 J K–1 mol–1 )(1 105 K) ln 
2

1 25 1 2¥
Ê
ËÁ

ˆ
¯̃( ) /

= (4 245.5 – 8 419.5) J mol–1 = – 4 174 J mol–1

In  (a) D rG positive indicates that the reaction is not possible, and in 

(b) D rG becomes negative, thus the reaction is possible.

Example 7.3.2

N2O3(g)  NO2(g) + NO(g)

was studied at 25 °C with initial amount of N2O3 equal to 1.0 mol. At equilibrium, the extent 

of reaction is found to be 0.3 mol for a total pressure of 1 bar. Calculate K°p and D rG° for

the reaction.

Solution

eq

0=t

t

N O g

mol

1.0 mol mol

2 3

1 0

0 3

( )

.

.-

NO NO g

0 0

0.3 mol 0.3 mol

2 ( )+

Now p
N2O3

=
n

n
p

N O

total

bar bar2 3
0 7

1 3
1 0 538= =

.

.
( ) .

p
NO2

 =
n

n
p

NO

total

bar bar2
0 3

1 3
1 0 238= =

.

.
( ) .

p
NO

= p
NO2

= 0.231 bar

K p° = ’
B

(pB/p°)vB =(p
NO2

/p°)(p
NO

/p°)(p
N2O3

/p°)–1

= (0.231 bar/1 bar) (0.231 bar/1 bar) (0.538 bar/ 1 bar)–1

= 0.099

D rG° = –RT ln K°p = – (8.314 J K–1 mol–1) (298 K) ln (0.099)

= 5 729.7 J mol–1
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7.4 EXPRESSION OF Kp
° FOR A REACTION INVOLVING HETEROGENEOUS PHASES

of equilibrium is called homogeneous. If the equilibrium contains substances in 

more than one phase, the equilibrium is said to be heterogeneous. In this section, we 

develop the expression of the equilibrium constant for a heterogeneous equilibrium.

Illustration

C(s) + 
1

2
O2(g)  CO(g) (7.4.1)

D rG = Â
B

B Bn m (7.4.2)

For the given reaction, we have

n(CO) = +1; n(C) = –1 and n(O2) = –1/2

DrG = m(CO, g) – m(C, s) – 
1

2
m(O2, g) (7.4.3)

Now for an ideal gas, we write

      mg(T, p) = mg°(T) + RT ln (p/p°) (7.4.4)

where m°g is the standard chemical potential of the gas and p

corresponding expression for a condensed phase is given by an expression analogous 

to Eq. (5.6.4), such that

mcond(T, p) = m°cond(T ) (7.4.5)†’

Substituting Eqs (7.4.4) and (7.4.5) in Eq. (7.4.3), we get

D rG = {m°CO(g) + RT ln (pCO /p°)} – m°
C(s)

-
1

2
 {m°

O2(g)
+ RT ln (pO2

/p°)}

or D rG = m m mCO g C s O g
CO

O2

( ) ( ) ( ) /
ln

( / )

( / )
∞ - ∞ - ∞Ê

Ë
ˆ
¯ +

∞
∞

Ê

Ë
Á

ˆ

¯
˜

1

2 2 1 2
RT

p p

p p

or D rG = D rG° + RT ln
( / )

( / ) /

p p

p p

CO

O2

∞

∞

Ê

Ë
Á

ˆ

¯
˜1 2

† Equation 7.4.5 follows from the fact that Vm for condensed phases has a small value and 

thus m = m° + Vm dp � m°.
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At equilibrium, we have

D rG = 0

D rG° = –RT ln
( / )

( / ) /

p p

p p

CO eq

O eq2

∞

∞

Ê

Ë
Á

ˆ

¯
˜1 2

= – RT ln K°
p

Conclusion K°p for a reaction involving gases and condensed phases 

can be written as usual considering only the partial pressures of gases, and ignoring 

condensed phases. However, D rG° contains the standard free energies of all the 

reactants and products.

One of the important examples of heterogeneous equilibrium is an equilibrium 

we have

H2O(1)  H2O(g)

Let p

K °
p = (p/p°)

Example 7.4.1 For the reaction

NH4HS(s)  NH3(g) + H2S(g)

the equilibrium pressure at 298 K was found to be 0.67 bar. Calculate K°
p and D rG° of the 

reaction.

Solution

NH4HS(s)  NH3(g) + H2S(g)

At equilibrium

pNH
3
 = pH

3
S

Since pNH
3

+ pH
2
S = 0.67 bar, we have

pNH
3

= pH
2
S =

0 67

2

. bar
 = 0.335 bar

K°
p = ’ ∞ = ∞ ∞ =

B
B NH H S

B bar bar( / ) ( / )( / ) ( . / )p p p p p pn

3 2
0 335 1 2

= 0.112

D rG° = –RT ln K°
p = – (8.314 J K–1 mol–1) (298 K) ln (0.112)

= 5 424.0 J mol–1

7.5 DYNAMIC EQUILIBRIUM (LAW OF MASS ACTION)

system were actually found from the study of the rates of some reversible reactions 

expressed the dependence of concentrations on the rate of reaction in a very general 

law of mass action, and applied the results to the problem of  

that chemical equilibrium is a dynamic
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and not a static equilibrium. It is characterized not by the cessation of all reactions 

but by the fact the rates of forward and reverse reactions become the same.

Accodring to the law of mass action,

The rate of a reaction is proportional to the product of effective concentrations 

of the reacting species, each raised to a power which is equal to the corresponding 

stoichiometric number of the substance in the balanced chemical equation.

Illustration Let us apply the law of mass action to a general reaction

| n1 | A1 + | n2 | A2 n3A3 + n4A4

Now the rate of the forward reaction is

- =
1

1

1
1 2

1 2

| |

[ ]
[ ] [ ]| | | |

n
n nd A

d
A Af

t
k (7.5.1)

where kf is the proportionality constant.

- =
1

3

3
3 4

3 4

n
n nd A

d
A Ab

[ ]
[ ] [ ]

t
k (7.5.2)

At equilibrium, both the rates are equal; thus

kf [A1]
|n1|[A2]

|n2| = kb[A3]
n3 [A4]

n4

or
[ ] [ ]

[ ] [ ]| | | |

A A

A A

f

b
eq

3 4

1 2

3 4

1 2

n n

n n
= =

k

k
K (7.5.3)

or Keq = ’
B

B
B( )c n

(7.5.4)

be replaced in terms of partial pressures as the latter are directly proportional to 

Keq = ’
B

B
B( )p n

(7.5.5)

For reactions involving condensed phases in addition to gases, the effective 

concentrations of solids and liquids remain constant and thus are merged in the 

constant Keq, with the result that the form Keq is still given by Eq. (7.5.5).

Note Keq of Eq. (7.5.4) is represented as Kc while that of Eq. (7.5.5) is reprsented 

as Kp.

7.6 GENERAL RULES TO WRITE Q°
p AND K°

p FOR ANY REACTION

Expressions of Q°
p and K°

p for any reaction can be derived following the rules given 

below.

∑ Products are written in the numerator and reactants in the denominator.

∑
are used.

∑ Solids and liquids—these do not appear in Q°
p and K°

p because their chemical 

rG°.
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∑ If a reaction is multiplied by some constant, say n, then the value of K° for the

new reaction is

K°
p(new reaction) = (K°p)

n(old reaction) (7.6.1)

 ∑ If a reaction can be obtained by the addition or subtraction of two or more 

separate reactions, then the K°
p value of the new reaction can be obtained from 

the K°
p

(can be derived through D rG° considerations) will be helpful in calculating 

the value of K°
p in such a situation.

(i) If a reaction is multiplied by some constant then its K°
p value raises 

exponentially by the same constant (Eq. 7.6.1).

(ii) If a reaction is being added to some other reaction then the K°
p of the 

former gets multiplied with that of the latter.

(iii) If a reaction is being subtracted from some other reaction then the K°
p

of the latter gets divided with that of the former.

Example 7.6.1

(i)   H2(g) + 
1
2  S2(g)  H2S(g) ; K°

p1

(ii)   2H2(g) + S2(g)  2H2S(g); K°
p2

Show that K°
p2 = (K°

p1)
2

Solution D rG°
1 = – RT ln K°

p1

and for the second reaction D rG°
2 = – RT ln K°

p2

Since D rG°
2 = 2D rG°

1, therefore, it follows that

–RT ln K°
p2 = – 2RT ln K°

p1

or K°
p2 = (K°

p1)
2

Example 7.6.2 If K°
p for H2(g) +

1
2 S2(g)  H2S(g) is 0.80 determine the value of K°

p for 

2H2(g) + S2(g)  2H2S(g).

Solution For the reaction

H2(g) + 
1
2 S2(g) = H2S(g) (7.6.2)

K°
p1  = 

( / )

( / )( / ) /

p p

p p p p

H S

H S

2

2 2

1 2

∞

∞ ∞
= 0.80
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If the reaction is multiplied by 2, we have

i.e. 2 2
1
2 2¥ + =ÈÎ ˘̊H g S g H S g2( ) ( ) ( ) i.e. 2H2(g) + S2(g)  2H2S(g)

K°
p for this reaction will be

K°
p2 =

( / )

( / ) ( / )

p p

p p p p

H S

H S2

2

2

2

2

∞

∞ ∞
= (K°

p1
)2 = (0. 80)2 = 0.64

Example 7.6.3 If K°
p1 = 0.80 for H2(g) + 1

2 2S g( ) H2S(g), determine the value of K°
p for

H2S(g)  H2(g) + 1
2 2S g( )

Solution If the reaction is multiplied by –1, the reaction gets inverted, i.e. reactants become products 

we get the given second reaction, i.e.

- ¥ + =ÈÎ ˘̊ = +1 2
1
2 2 2 2 2

1
2 2H g S g H S g or H S g H g S g( ) ( ) ( ) ( ) ( ) ( )

K°
p3

 = 
( / ) ( / )

( / ) .
.

( ) ( )
/

( )

p p p p

p p K p

H g S g

H S g

22

2 1

1 2
1 1

0 80
1 25

∞ ∞

∞
=

∞
= =

Example 7.6.4

(i) H2(g) + 1
2

S2(g)  H2S(g) K°
p1

 = 0.80

(ii) 3H2(g) + SO2(g)  H2S(g) + 2H2O(g) K°
p2

= 1.8 ¥ 10–4

Find the value of K°
p for the following reaction at 1 362 K.

4H2(g) + 2SO2(g)  S2(g) + 4H2O(g)

Solution

K°
p value of the resultant equation is 

given by

K°
p =

( )

( )

.

.
.

K

K

p

p

2

1

2

2

4 2

81 8 10

0 8
5 06 10

∞

∞
=

¥Ê
ËÁ

ˆ
¯̃

= ¥

7.7 STANDARD EQUILIBRIUM CONSTANT IN UNITS OTHER THAN PARTIAL PRESSURES

K°
p

pressures. In some cases, it is convenient to express compositions of various species 

in terms of other units such as molar concentrations, mole fractions, amounts of 

species, etc. In this section, we develop expressions for the equilibrium constant 

given below.
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concentrations as K°
c.

K°
p = ’ ∞

B
B

B( / )p p n
(7.7.1)

and K°
c = ’ ∞

B
B

B( / )c c n
(7.7.2)

where p° and c° are the standard units of pressure and concentration, respectively. 

pV = nRT, may be written as

p = 
n

V
 RT = cRT (7.7.3)

where c is the concentration of the gas expressed as amount of gas per unit volume. 

Substituting Eq. (7.7.3) in Eq. (7.7.1), we get

K°
p = ’ ∞

B
B

B( / )c RT p n

= ’ ∞ ∞ ∞
B

B
B( / ) ( / )c c c RT p n

= K°
c (c°RT/p°)D ng (7.7.4)

where Dng is the difference in the stoichiometric numbers of gaseous species 

between products and reactants, that is,

 Dng = Â = Â - Â
B

g g gB product reactantn n n( ) ( ) | ( ) | (7.7.5)

Example 7.7.1 For the reaction

CH4(g) + 2H2S(g)  CS2(g) + 4H2(g)

K°
p = 2.05 ¥ 109 at 25 °C. Calculate (i) K°

p and (ii) K c
° at this temperature for the reaction

2H2(g) + 1
2

CS2(g)  H2S(g) + 1
2

CH4(g)

Solution For the reaction

CH4(g) + 2H2S(g)  CS2(g) + 4H2(g)

K°
p is given by

K°
p =

( / ) ( / )

( / ) ( / )
.

p p p p

p p p p

CS H

CH H S2

2 2

4

4

2

92 05 10
∞ ∞

∞ ∞
= ¥

and for the reaction

2H2(g) + 1
2

CS2(g)  H2S(g) + 1
2

CH4(g)

K° ¢
p =

( / ) ( / )

( / ) ( / )

/

/

p p p p

p p p p K p

H S CH

H CS2

2 4

2

1 2

2 1 2

1∞ ∞

∞ ∞
=

∞

=
1

2 05 10
2 21 10

9

5

.
.

¥
= ¥ -

Standard Equilibrium 

Constant K°c
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Now K°¢
c  = K°¢

p
c RT

p

g∞
∞

Ê
ËÁ

ˆ
¯̃

-Dn

For the given reaction, we have

D ng = –1

K°¢
c = ( . )

( ) . (

( .
2 21 10

1 8 314 298

101 325

5

3 3 1 1

¥
( )-

- - -mol dm kPa dm K mol K)

kPaa)

È

Î
Í

˘

˚
˙

 = 5.40 ¥ 10–4

Kx = ’
B

B
B( )x

n
(7.7.6)

xB = pB/ptotal or pB = xB ptotal (7.7.7)

Substituting this in Eq. (7.7.1), we get

K°
p = ’ ∞

B
B

B( / )p p n

= ’ ∞
B

B total
B B{( ) ( / ) }x p pn n

= Kx(ptotal/p°)D ng

or Kx = K°
p(ptotoal /p°)–D ng (7.7.8)

as

Kn = ’
B

B
B( )n n

Now pB = xBptotal = 
n

n
pB

total
total

Ê
ËÁ

ˆ
¯̃

(7.7.9)

where nB is the amount of constitutent B and ntotal is the total amount of gases in 

the system. Substituting this in Eq. (7.7.1), we get

K°
p = ’ ∞

B
B

B( / )p p n

= ’
Ê
ËÁ

ˆ
¯̃

∞
Ï
Ì
Ó

¸
˝
˛B

B

total
total

Bn

n
p p

n

= ’ ∞ ∞( ) ∞{ }
B

B total total
B B B( / ) / ( / )n n n n p pn n n

= K°
n (n°/ntotal)

D ng (ptotal/p°)D ng (7.7.10)

where n° = K°
p depends only on temperature and

Equilibrium

Constant Kx

Equilibrium

Constant Kn
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K°
p, K°

c is also independent 

of pressure and depends only on temperature. Kx and Kn depend both on pressure 

and temperature.

7.8 PRINCIPLE OF LE CHATELIER AND BRAUN

Statement

of the variables such as temperature, pressure and concentration are changed. It 

states.

If a system at equilibrium is subjected to a change, the system will react in such 

a way so as to oppose or reduce the change if this is possible, i.e. the system tends 

to balance or counteract the effects of any imposed stress.

Illustration Examples of this principle are:

(i) Pressure increase Reaction will shift in a direction where 

the number of gaseous molecules is 

reduced; thus lowering the pressure p.

endothermic direction, i.e. it is shifted 

to high enthalpy side.

(iii) One of the components of the  Reaction proceeds in a direction so as 

system is added to reduce the amount of this component.

temperature and pressure variations of chemical reactions is given below.

D rG

D rG =
∂
∂

Ê
ËÁ

ˆ
¯̃

G

T px ,

is a function of T, p and x, i.e.

D rG = f (T, p, x )

d(D rG) =
∂

∂
Ê
ËÁ

ˆ
¯̃ +

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂

∂
Ê
ËÁ

ˆ
¯̃T

G T
p

G p G
p T T p

D D Dr r rd d d
, , ,x x x

x (7.8.1)

Following Eqs (5.4.7) and (5.4.8), we write the above expression as

d(D rG) = – D rS dT + D rV dp + G¢¢ dx (7.8.2)

where G¢¢ =
∂

∂
Ê
ËÁ

ˆ
¯̃

=
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂x x x
DrG

G

T p T p T p, , ,

(7.8.3)

If we insist that the variations in temperature, pressure and the extent of reaction 

D rG) = 0 and hence 

d(D rG) = 0. At equilibrium D rS = D rH/T, so that Eq. (7.8.2) becomes

Thermodynamic

Proof
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0 = - Ê
ËÁ

ˆ
¯̃ ∂ + ∂ + ∂¢¢D

Dr
eq r eq eq eq

H

T
T V p G( ) ( ) ( )x

where Geq
¢¢ is the value of G≤ at equilibrium. Since in the latter, G has a minimum 

value, therefore Geq
¢¢  must be positive. At constant pressure, dp = 0 and the above 

equation gives

∂

∂
Ê
ËÁ

ˆ
¯̃

=
¢¢

xeq r

eq
T

H

TGp

D
(7.8.4)

and at constant temperature, dT = 0, the above equation gives

∂

∂
Ê
ËÁ

ˆ
¯̃

= -
¢¢

xeq r

eq
p

V

GT

D
(7.8.5a)

For gases behaving ideally, we have

∂

∂
Ê
ËÁ

ˆ
¯̃

= -
¢¢

x neq g

eq
p

RT

pGT

( )D
(7.8.5b)

Equations (7.8.4) and (7.8.5) describe the dependence of the extent of reaction at 

equilibrium on temperature and pressure, respectively.

Since Geq
¢¢ is positive, the sign of (dxeq/dT)p in Eq. (7.8.4) depends on the sign of 

D rH.

∑ If D rH is positive, an endothermic reaction, then (dx /dT)p is also positive, 

i.e. an increase in temperature increases the extent of reaction at equilibrium.

∑ For an exothermic reaction, D rH is negative and thus (dxeq/dT)p is negative, 

i.e. increase in temperature decreases the equilibrium extent of the reaction.

Table 7.8.1 Effect of temperature on a reaction at equilibrium

Nature of Sign Sign Sign Shift in the equilibrium

reaction of D rH of dT of dxeq

Endothermic 

reaction

¸
˝
Ô

Ǫ̂

+ve +ve

–ve

+ve

–ve

Forward direction or endothermic 

direction or high enthalpy side

direction or low enthalpy side

Exothermic 

reaction

¸
˝
Ô

Ǫ̂

–ve +ve

–ve

–ve

+ve

direction or high enthalpy side

Forward direction or exothermic 

direction or low enthalpy side.

Temperature 

Dependence
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side may be understood from the following analysis.

Products

with D rH = S
B

nB Hm(B)

= S
B

(products)

nBHm(B) – S
B

(reactants)

|nB|Hm(B)

(1) D rH positive In this case, we have

S
B

(products)

nBHm(B) > S
B

(reactants)

|nB| Hm(B)

High enthalpy side

If the reaction proceeds in forward direction (or from low enthalpy side to high 

as the endothermic direction. On the other hand, if the reaction proceeds in the 

(2) D rH negative In this case, we have

S S
B

(products)

B m
B

(reactants)

B mB Bn nH H( ) | | ( )<

and thus the reaction may be written as

Low enthalpy side

Based on the arguments given above, we can show that the forward direction 

(i.e. from high enthalpy to low enthalpy side) is the exothermic direction and the 

reverse one is the endothermic direction.

statement is:

On increasing the temperature, equilibrium is shifted in the endothermic direction 

or towards high enthalpy side and on decreasing temperature, it is shifted in the 

exothermic direction or towards low enthalpy side.

∂xeq/∂p)T in Eq. (7.8.5b) depends on that of Dng. If Dng is negative, 

that is, the sum of stoichiometric numbers of gaseous products is less than that of 

gaseous reactants, the derivative (∂xeq/∂p)T has a positive value. Thus, increase 

in pressure increases the extent of reaction.

If Dng is positive, then (∂xeq/∂p)T is negative and thus increase in pressure 

decreases the extent of reaction.

Hence, the net effect of increasing pressure is to shift the reaction in a direction 

where the sum of stoichiometric numbers of gaseous molecules is lowered, thus 

lowering the p. In other words, increase in pressure shifts the equilibrium to the 

low volume side of the reaction whereas a decrease in pressure shifts it to the 

high volume side.

Highlighting Endo-

thermic and Exo-

thermic Directions

Pressure

Dependence
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7.9 TEMPERATURE DEPENDENCE OF STANDARD EQUILIBRIUM CONSTANT K°P

equilibrium constant on temperature can easily be derived from the variation of 

dependence, we need to consider the relation of shift in the extent of reaction with 

that of the equilibrium constant. If the extent of reaction is increased, it means 

the equilibrium is shifted in the forward direction and thus more of the reactants 

are converted into products. In other words, the concentrations of products are 

of the equilibrium constant. Hence, the increase in the extent of reaction leads to 

an increase in the value of equilibrium constant. Similarly, it can be shown that 

a decrease in the extent of reaction decreases the value of equilibrium constant. 

Table 7.9.1 Effect of temperature on a reaction at Equilibrium Constant

Nature of reaction Sign of 

D rH
Sign

of dT

Sign of 

dxeq

Variation in the value of 

equilibrium constant

Endothermic

reaction

+ve +ve +ve Increase

Exothermic

reaction

–ve +ve –ve

Van’t Hoff Equation †

d

d

r r

T

G

T

H

T

D D∞{ } = -
∞

2

Since D rG° = – RT ln K°
p

therefore
d

d

r
2T

RT K

T

H

T

p-
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
= -

∞∞ln D

i.e.
d

d

r
2

ln K

T

H

RT

p
∞

=
∞D

(7.9.1)

Qualitative

Predictions

Quantitative

Relationship

between ln K°p and T

† Note that the direct differential rather than the partial differential are used since both K°
p

and DrG° are independent of pressure.
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∑ For an endothermic reaction, D r H° > 0 and thus the right hand side of

K°
p (and so also K°

p)

increases with increase in temperature.

∑ For an exothermic reaction, D rH° < 0 and thus the right hand side of the 

above equation is negative, which leads to the fact that ln K°p (and so also 

K°
p) decreases with increase in temperature.

Equation (7.9.1) may be written as

d

d

r
ln

( / )

K

T

H

R

p
∞Ï

Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
= -

∞

1

D
(7.9.2)

van’t Hoff equation.

d ln K°
p =

Dr d
H

RT
T

∞
2

(7.9.3)

Integrating the above expression, we have

ln K°
p = -

∞
+

DrH

RT
I (7.9.4)

where I

value of K°
p at a given temperature. According to Eq. (7.9.4), ln K°

p varies linearly 

with 1/T with a slope equal to – D rH°/R (Figs 7.9.1a and 7.9.1b).

Alternative Form 

of van’t Hoff 

Equation

Integrated Form of 

van’ Hoff Equation

Fig. 7.9.1a Plot of ln K°p versus 1/T where 

DrH° is negative. Example includes 
formation of ammonia from N2 and H2

Fig. 7.9.1b Plot of ln K°p versus 1/T where

DrH° is positive. Example includes the 
dissociation of HI into H2 and I2
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If we integrate Eq. (7.9.3) within the limits of T1 and T2, we get

ln
( )

( )

K

K

H

R T T

p T

p T

2

1

1 1

2 1

∞

∞
= -

∞
-

Ê
ËÁ

ˆ
¯̃

Dr
(7.9.5a)

i.e. ln
( )

( )

K

K

H

R

T T

T T

p T

p T

2

1

2 1

2 1

∞

∞
=

∞ -Ê
ËÁ

ˆ
¯̃

Dr
(7.5.5b)

From this, it also follows that if the temperature is raised (T2 > T1), then

(i) K°
p (T2)

 > K°
p(T1)

, if D rH° is positive

(ii) Kp(T2)
< K°

p (T1)
 , if D rH° is negative

Example 7.9.1 For the equilibrium

H2O(1) � ��� ��  H2O(g)

(a) show that

ln
p

p

H

R T T

2

1 2 1

1 1Ê
ËÁ

ˆ
¯̃

= -
∞

-
Ê
ËÁ

ˆ
¯̃

Dvap

where p2 and p1 are the vapour pressure of liquid water at temperatures T2 and T1, respectively.

D vapH° = –1

Solution (a) For the reaction

H2O(1) �  H2O(g)

the standard equilibrium constant is

K°p =
p

p

H O2

∞
Substituting this in the expression

d

d

r
2

ln K

T

H

RT

p
∞

=
∞D

(Eq. 7.9.1)

we get
d

d
or d d

H O vap

2 H O

vap

2
2

2

ln ( / )
ln( / )

p p

T

H

RT
p p

H

RT
T

∞
=

∞
∞ =

∞D D

Integrating this expression, we have

d
dvap

2
ln ( / )p p

H

R

T

Tp

p

T

T

∞ =
∞

Ú Ú1

2

1

2D

or ln
p

p

H

R T T

2

1 2 1

1 1Ê
ËÁ

ˆ
¯̃

= -
∞

-
Ê
ËÁ

ˆ
¯̃

Dvap

(b) log
.

( . ) ( . )

p

p

2

1

3 1

1 1

44 01 10

2 303 8 314

1

373

Ê
ËÁ

ˆ
¯̃

= -
¥ -

- -
J mol

J K mol K
--

È

ÎÍ
˘

˚̇
=

1

323
0 954

K
.

Hence
p

p
p

p2

1
1

28 98
8 98

1

8 98
0 111= = = =.

. .
.or

bar
bar.
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Equation (7.9.3) to (7.9.5) are applicable only when D r H° is independent of

temperature. If D rH° depends on temperature, then the expression relating K°
p and

T can be derived as follows.

D rH° as given by Eq. (3.11.2) is

d (D rH°)= D rCp dT (7.9.6)

where D rCp = Â
B

B Bn Cp ( )

that is D rCp = S S
B

(products)

B
B

(reactants)

BB Bn nC Cp p( ) | | ( )-

If the dependence of Cp is given by

Cp = a + bT + cT 2 + . . .

then D rCp = D ra+ (D rb)T + (D rc)T 2 + . . . (7.9.7)

Substituting this in Eq. (7.9.6) and integrating, we have

D rH° = I1 +(D ra)T + 
D Dr r

2 3

b
T

c
T2 3+ +� (7.9.8)

where I1 is the constant of integration, the value of which is to be determined from 

D rH° at a given temperature. Substituting the above expression 

of D rH° in Eq. (7.9.1), we get

d ln K°
p =

I

RT

a

RT

b

R

c

R
T T1

2
+ + + +Ê

ËÁ
ˆ
¯̃

D D Dr r r

2 3
d� (7.9.9)

Integrating this, we have

ln K°
p = - + Ê

ËÁ
ˆ
¯̃ + + + +

I

RT

a

R

T b

R
T

c

R
T I1 2

2

D D Dr r r

K 2 6
ln � (7.9.10)

where I2 is the constant of integration, which is to be evaluated with the help of 

D rG° or K°
p at some temperature.

Example 7.9.2 For the reaction

1
2

N2(g) + O2(g) �  NO2(g) D rH°
298K

–1

D rG°
298 K

–1

obtain a general expression relating K° with temperature and compute the value 

of K°
p

Cp(N2)/J K–1 mol–1 = 28.46 + 2.32 ¥ 10–3(T/K)

Cp(O2)/J K–1 mol–1 = 26.85 + 8.49 × 10–3(T/K)

Cp(NO2)/J K–1 mol–1 = 27.78 + 30.85 ¥ 10–3(T/K)

Solution For the given reaction

D rCp =
B

ÂnBCp(B) = Cp, m (NO2) – 1
2

Cp, m(N2) – Cp, m(O2)

= [–13.30 + 21.2 ¥ 10–3(T/K)] J K–1 mol–1

Expression for 

K°p when DrH° is 

Dependent on 

Temperature
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From the expression

d

d

r
r

( )D
D

H

T
Cp

∞
=

we get d(D rH°) = [{–13.30 + 21.2 ¥ 10–3(T/K)} J K–1 mol–1] dT

D rH° = - + ¥
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ +- - -13 30 21 2 10

2

3
2

1 1
1. .T

T
I

K
J K mol

where I1 is the constant of integration whose value may be obtained from the fact that at 

298 K, D rH ° –1. Hence

I1 = D rH° – - + ¥
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

- - -13 30 21 2 10
2

3
2

1 1. .T
T

K
J K mol

= 33 18 10 13 30 298
21 2 10

2
2983

3
2 1. .

.
( )¥ - - ¥ +

¥Ï
Ì
Ó

¸
˝
˛

È

Î
Í

˘

˚
˙

-
-J mol

= [33.18 ¥ 103 – (– 3 963.4 + 941.32)] J mol–1

= 36.202 ¥ 103 J mol–1

Hence, D rH° = - + ¥
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

-13 30 10 6 10 3
2

. .T
T

K
J K–1 mol–1 + 36.202 ¥ 103 J mol–1

Substituting this in the expression

d

d

r
2

ln K

T

H

RT

p
∞

=
∞D

we get
d

d

K
J K mol

ln . . / .K

T RT R RT

p
∞

= - +
¥È

Î
Í

˘

˚
˙ +

¥-
- -13 30 10 6 10 36 202 103

1 1
3

22

1J mol-

Integrating this expression, we get

ln K°
p = - +

¥ Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

-
- -13 30 10 6 10 3

1 1.
ln ( / )

.

R
T

R

T
K

K
J K mol

–
36 202 103

1
2

. ¥
+-

RT
IJ mol

where I2 is the constant of integration. Its value can be obtained from the fact that at 298 K,

ln K°p = -
∞

= -
¥

= -
-

- -
Dr J mol

J K mol K

G

RT

51 31 10

8 314 298
20 71

3 1

1 1

.

( . ) ( )
.

I2 = ln K°p – - Ê
ËÁ

ˆ
¯̃ +

¥ Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

-
- -13 30 10 6 10 3

1 1.
ln

.

R

T

R

T

K K
J K mol

+
¥ -36 202 103

1.

RT
J mol

= - - - +
¥È

Î
Í

˘

˚
˙ +

-

20 71
13 30

8 314
298

10 6 10

8 314
298

36 2023

.
.

.
ln ( )

.

.
( )

. ¥¥ 10

8 314 298

3

( . )( )

= – 20.71 + 9.114 – 0.380 + 14.612

= 2.64
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Hence ln K°
p = - ( ) +

¥ Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

-
- -13 30 10 6 10 3

1 1.
ln

.

R

T

R

T

K K
J K mol

–
36 202 10

2 64
3

1.
.

¥
+-

RT
J mol

At 343 K, we get

ln K°
p = - +

¥
-

¥-13 30

8 314
343

10 6 10

8 314
343

36 202 10

8 314 3

3 3.

.
ln ( )

.

.
( )

.

( . ) ( 443
2 64

)
.+

= –9.34 + 0.44 – 12.69 + 2.64 = – 18.95

K°
p = 5.89 ¥ 10–9

Example 7.9.3 Equilibrium constant for the relation

1
2 2

1
2 2I g Br g IBr g( ) ( ) ( )+ � ��� ��

can be represented by

log K°
p =

( . )
.

277 4
0 3811

K

T
+

Find D rG°
298K, D rH°

298K and D rS°
298K for the reaction.

Solution D rG° and K°
p is

D rG° = –RT ln K°
p = – 2.303 RT log K°

p

Substituting the given expression of log K°, we get

D rG° = - +Ê
ËÁ

ˆ
¯̃2 303

277 4
0 3811.

.
.RT

T

K

T = 298 K, we have

D rG° = –2.303 (8.314 J K–1 mol–1) (298 K)
277 4

298
0 3811

.
.

K

K
+

Ê
ËÁ

ˆ
¯̃

= – 7 486 J mol–1

D rH° is

 D rH° = RT
K

T

p2
d

d

ln ∞

For the given expression of log K°p, this becomes

D rH° = RT
T T

2 2 303
277 4

0 3811
d

d

K
.

.
.+Ê

ËÁ
ˆ
¯̃{ }

= RT
T

R2

2

2 303 277 4
2 303 277 4-

¥Ê
ËÁ

ˆ
¯̃ = -

. .
. ( . )

K
K

Hence D rH° = – 2.303(8.314 J K–1 mol–1) (277.4 K) = –5 311.4 J mol–1

Now D rS° =
D Dr r J mol J mol

K

H G

T

∞ - ∞
=

- +- -5 311 4 7 486

298

1 1.

= 7.30 J K–1 mol–1
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Problem 7.9.1 Show that for gaseous equilibria

d

d

rln K

T

U

RT

c
∞

=
∞D

2

where K°
p = K°

c (c°RT/p°)D ng.

Solution

d

d

r
ln K

T

H

RT

p
∞

=
∞D

2

Substituting K°
p in terms of K°

c rH°
rU°, we have

d

d

r gln { ( / ) } ( )K c RT p

T

U RT

RT

c
g∞ ∞ ∞

=
∞ +D D Dn n

2

or
d

d

d

d
g

r
2

gln ln ( / ) ( )K

T

c RT p

T

U

RT T

c
∞

+
∞ ∞

=
∞

+D
D D

n
n

or
d

d
g

r
2

gln ( / )

( / )

( )K

T

c R p

c RT p

U

RT T

c
∞

+
∞ ∞

∞ ∞
=

∞
+D

D D
n

n

Cancelling the term g/T, we get

or
d

d

r
2

ln K

T

U

RT

c
∞

=
∞D

7.10 PRESSURE DEPENDENCE OF EQUILIBRIUM CONSTANTS

In this section, we describe the pressure dependence of quilibrium constants 

K°
p, K°

c and Kx.

K°
p is related to the standard free energy change of the

reaction by the relation

rG° = –RT ln K°p

rG° represents the free energy of the reaction where all its reactants 

and products are at the standard state of 1 bar pressure, its value depends only on 

temperature. It is thus obvious that K°
p also shows only temperature dependence 

and is independent of the pressure of the system.

Since K°
c = K°

p (c° RT/p°) ng

it is obvious that K°
c K°

p depends only on temperature and is independent of 

pressure of the system.

Since Kx = K°
p (ptotal/p°)–D ng,  we have

ln Kx = ln K°
p – Dng ln (ptotal/p°)

Pressure

Dependence of K°
p

Pressure

Dependence of K°c

Pressure

Dependence of Kx
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∂
∂

Ê
ËÁ

ˆ
¯̃

= - = -
ln K

p p

V

RT

x

Ttotal total
g

r g1
D

D
n (7.10.1)

Pressure dependence of Kx

consider two cases given below.

(i) D vg = 0, i.e. there is no change in the stoichiometric number of gaseous molecules 

in the system, then

Kx = K°
p

In such a case, the position of equilibrium does not depend on the total pressure.

(ii) D rng π 0, the effect of pressure as predicted from Eq. (7.10.1) are:

D rng < 0, thus there is a decrease in the gaseous species, Kx increases

with increase in pressure.

D rng > 0, thus there is an increase in the gaseous species, Kx decreases

with increase in pressure.

7.11 EFFECT OF AN INERT GAS ON EQUILIBRIUM

reaction can be derived as follows.

Consider the general reaction

v1A1 + v2A2 � v3A3 + v4A4 (7.11.1)†

Let the reaction be carried out starting only from the reactants with n1 and n2 as the 

initial amounts of A1 and A2, respectively. Let the extent of reaction at equilibrium 

be represented as xeq

v1A1 + v2A2 � v3A3 + v4A4

x = 0 n1 n2  0 0

x = xeq n1 – v1xeq n2 – v2xeq v3xeq v4xeq

ntotal = (n1 – v1 xeq) + (n2 – v2 xeq) + v3 xeq + v4 xeq

p
n

n
p p

n

n
p

p

A

eq

total
total A

eq

total
total

A

eq

1 2

3

1 1 2 2

3

=
-

=
-

=

n x n x

n x

;

nn
p p

n
p

total
total A

eq

total
total;

4

4=
n x

Quantitative

Predictions

† In Eq. (7.11.1), all stoichiometric numbers are considered as positive numbers.
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Kp =
( ) ( )

( ) ( )

p p

p p

n
p

A A

A A

eq

total
total

e

3

3

4

4

1

1

2

2

3
3 4

n n

n n

nn x n x

=

Ê
ËÁ

ˆ
¯̃

qq

total
total

eq

total
total

eq

n
p

n

n
p

n

Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

-

n

nn x n x

4

1
1 1 2 2

nn
p

total
total

Ê
ËÁ

ˆ
¯̃

n2

=
( ) ( )

( ) ( )

n x n x

n x n x

n n

n n

3 4

1 1 2 2

3 4

1 2

eq eq

eq eq

total

totaln n

p

n- -
Ê
ËÁ

ˆ
¯̃̄

Dng

(7.11.2)

Now let the amount n of an inert gas be added at equilibrium and let the extent 

of reaction at equilibrium be x¢eq

n¢total = n + (n1 – n1x ¢eq) + (n2 – n2x ¢eq) + n3x ¢eq + n4x ¢eq

Since n¢total > ntotal, it follows that the mole fractions of various constituents will 

of various constituents and then substitutng in the expression for Kp, we get

Kp =
( ) ( )

( ) ( )

n x n x

n x n x

n n

n n

3 4

1 1 2 2

3 4

1 2

¢ ¢

- ¢ - ¢

¢
¢

eq eq

eq eq

total

totn n

p

n aal

Ê
ËÁ

ˆ
¯̃

Dng

(7.11.3)

value of D vg

Here D ng = 0. For this case, Eqs (7.11.2) and (7.11.3) become

Kp =
( ) ( )

( ) ( )

n x n x

n x n x

n n

n n

3 4

1 1 2 1

3 4

1 2

eq eq

eq eqn n- -
(7.11.4)

Kp =
( ) ( )

( ) ( )

n x n x

n x n x

n n

n n

3 4

1 1 2 1

3 4

1 2

¢ ¢

- ¢ - ¢
eq eq

eq eqn n
(7.11.5)

Since K remains unaffected, it is obvious that

xeq = x¢
eq

that is, there is no effect on the equilibrium position by the addition of an inert gas.

Here D ng

(a) Inert gas added keeping pressure of the system constant In this case, the

denominator of Eq. (7.11.3) will be greater than that of Eq. (7.11.2). Now, in 

Kp, its

is increased, i.e.

x¢
eq > xeq

Reaction Involving 

No Change 

in Number of 

Gaseous Species

Reaction with 

an Increase 

in Number of 

Gaseous Species
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(b) Inert gas added keeping volume of the system constant Following the ideal 

gas equation

pV = nRT

we get
p

n
 =

RT

V

or
p

n

Ê
ËÁ

ˆ
¯̃

Dng

 = 
RT

V

Ê
ËÁ

ˆ
¯̃

Dng

p

n

p

n

RT

V

total

total

total

total

g g gÊ
ËÁ

ˆ
¯̃

=
¢
¢

Ê
ËÁ

ˆ
¯̃

= Ê
Ë

ˆ
¯

D D Dn n n

Substituting this in Eqs (7.11.2) and (7.11.3), we get

Kp =
( ) ( )n x n x

n x x

n n

n n

n
3 4

1 1 2 2

3 4

1 2

eq eq

eq eq

g

n n n

RT

V-{ } -{ }
Ê
Ë

ˆ
¯

D

=
( ) ( )n x n x

n x x

n n

n n

n
3 4

1 1 2 2

3 4

1 2

¢ ¢

- ¢{ } - ¢{ }
Ê
Ë

ˆ
¯

eq eq

eq eqn n n

RT

V

D g

V, this gives

xeq = x ¢eq

that is, there is no effect on the equilibrium position of the reaction.

Here D ng is Negative. Again, we may consider two subcases.

(a) Inert gas added keeping pressure of the system constant Following the

arguments given above, we can show that in the present case.

x¢eq < xeq

(b) Inert gas added keeping volume of the system constant Here again, we get

 xeq = x ¢eq

that is, there is no effect on the equilibrium position of the reaction.

xeq caused by the addition of an inert gas may 

also be understood qualitatively as follows.

In general, the equilibrium constant may be written as

Kp =

’

’
=

’

’

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛

p

p

p

p

( )

( )

( )

( )| | | |

x p

x p

n

n

p total

r total

p

r

p

r

p

r

n

n

n

n
ÔÔ

Ï
Ì
Ó

¸
˝
˛

p

n

total

total

gDn

(7.11.6)

above are:

Reaction with a 

Decrease in Number 

of Gaseous Species

Qualitative

Predictions
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Here D n = 0; In this case, the expression of Kp becomes independent of ptotal and

ntotal, hence

 x ¢eq = xeq

Here D vg = +ve. In this case, we have

(a) p constant ntotal and hence the second 

Kp

Eq. (7.11.6) will increase and hence

 x ¢eq > xeq

(b) V constant ntotal but also ptotal

x ¢eq = xeq

Here D ng = –ve: In this case, we have

(a) p constant ntotal and hence the second 

term of Eq. (7.11.6) is increased as D ng Kp constant, the 

x ¢eq < xeq

(b) V constant ntotal but also ptotal

x ¢eq = xeq

From Eqs (7.11.2) and (7.11.3), we can also derive the effects produced on the 

equilibrium position as a result of increasing pressure without the addition of an 

(i) Dng is zero Under this condition, Eqs (7.11.2) and (7.11.3) become independent 

xeq = x ¢eq

(ii) Dng is positive In this case, (p¢total)
Dng > (ptotal)

Dng

x ¢eq < xeq

(iii) Dng is negative In this case (p¢total)
Dng < (ptotal)

Dng and thus, we must have

x ¢eq > xeq

Problem 7.11.1

SO2(g) + 1
2 2O ( )g � ��� ��  SO3(g)

when (i) pressure of the system is increased without addition of any inert gas, (ii) inert gas 

the system constant.

No Change 

in Number of 

Gaseous Species

Increase in Number 

of Gaseous 

Species

Decrease in 

Number of 

Gaseous Species

Effects Caused 

by Increase in 

Pressure without 

Adding Inert Gas
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Solution

SO2(g) + 1
2 2O g( )� ��� ��  SO3(g)

Let at equilibrium, the amounts of various species be nSO2
 , nO2

 and nSO3
, respectively.

Let ntotal be the amount of the gas including the inert gas and p

the partial pressures of various constituents are given by

pSO
2
 =

n

n
p

SO

total

2 ; pO
2
 = 

n

n
p

O

total

2 ; pSO
3
 = 

n

n
p

SO

total

3

Kp is given by

Kp =
p

p

n n p

n n p n n p

SO

SO O

SO total

SO total O total2

3

2

3

2 2
p

=
( / )

( / ) / )

Rearranging this, we get

n

n n

p

n
K p

SO

O SO total

3

2 2

1 2

1 2

( ) /

/

=
Ê
ËÁ

ˆ
¯̃

(7.11.7)

(i) If the pressure is increased by compressing the system without addition of gas from 

outside, the right hand side of Eq. (7.11.7) increases as Kp is a constant. Consequently, 

more of SO3 is produced from the combination of SO2 and O2.

(ii) If an inert gas is added at constant volume both ntotal and p increase in the same ratio. 

remains unaffected.

(iii) If an inert gas is added at constant pressure, ntotal is increased while p remains constant. 

mixture with the inert gas decreases the extent of conversion of SO2 and O2 to SO3.

7.12 GENERAL TREATMENT OF A REACTION IN PROGRESS

A chemical reaction, in general, may be written as

0 = Â
B

BBn (7.12.1)

where B represents constituent of the reaction and nB is the corresponding 

a reactant) in the balanced chemical equation of the reaction.

nB = (nB)0 + nBx (7.12.2)

where (nB)0 is the initial amount of the reactant (or product) and x is the extent of 

reaction (unit: mol).

G = Â
B

B Bn m (7.12.3)

Expression of 

Gibbs Function
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abbrevation: cd) is given as

mB(cd) = m°B(cd) (7.12.4)

given as

mB(g) = m°
B(g) + RT ln

p

p

B

°
(7.12.5)

where pB is the partial pressure of the gas B in a mixture of gases and p° is the 

Substituting Eqs (7.12.4)–(7.12.5) in Eq. (7.12.3), we get

G = Â + Â +
∞

Ê
ËÁ

ˆ
¯̃B(cd)

B B
o

B(g)
B B

o Bn n RT
p

p
m m ln

= Â + Â
∞B

B B
o

B(g)
B

Bn n RT
p

p
m ln (7.12.6)

where the summations Â Â Â
B(cd) B(g) B

and,  are over condensed phases, gases and all 

species, respectively, in a chemical reaction.

pB, is related to the extent of reaction through the 

expression

pB = xB p

=
n

n
p

n

n
pB

total

B B

B g
B B

=
+

Â +
( )

{( ) }
( )

0

0

n x

xn
(7.12.7)

Substituting Eq. (7.12.7) in Eq. (7.12.6), we get

G = Â + Â
∞

Ê
ËÁ

ˆ
¯̃B

B B
o

B(g)
B

Bn RT n
x p

p
m ln

= Â + ÂÊ
ËÁ

ˆ
¯̃ ∞

+ Â
B

B B
o

B(g)
B

B(g)
B Bn RT n

p

p
RT n xm ln ln

= Â +
∞

+ Â
B

B B
o

total
B(g)

B Bn n RT
p

p
RT n xm ln ln (7.12.8)

Equation (7.12.8) is usually written as

G = Gpure + D mixG (7.12.9)

where Gpure = Â +
∞B

B B
o

totaln n RT
p

p
m ln (7.12.10)

D mixG = RT Â
B(g)

nB ln xB (7.12.11)
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∂
∂

Ê
ËÁ

ˆ
¯̃

= +
∞

G n n
RT

p

pT px x
m

x,

lnS
B

B
B
o totald

d

d

d

+ Â +Ê
ËÁ

ˆ
¯̃

RT
n

x n
x

B(g)

B
B B

Bd

d

d

dx x
ln

ln
(7.12.12)

Now since

1. nB = (nB)0 + nBx fi
d

d

Bn

x
 = nB

2. ntotal = Â
B(g)

nB = Â
B(g)

{(nB)0 + nB x} fi d

d

total

B g
B

n

x
n= Â

( )

3. ln xB = ln 
n

n

n

n

B

total

B

B

=
Â

ln = ln nB – ln (Â nB)

fi
d

d

d

d

d

d

d

d

d

d

B B B

B

B

B

ln ln lnx n n

n

n

n

n

x x x x x
= -

Â
= -

1 1

S
S B

=
n nB

B Bn n
-

S
S

B

4. S S
S
S

S
S

S
n

x
n

n n

n

n
B

B
B

B

B

B

B
B

B B

B

d

d

ln

x

n n
n

n
= -

Ê
ËÁ

ˆ
¯̃

= -
Ê
ËÁ

ˆ
¯̃

= S
S S

S
S Sn

n
n nB

B B

B
B B- = - =

n

n
0

Eq. (7.12.12) reduces to

∂
∂

Ê
ËÁ

ˆ
¯̃

= + Ê
Ë

ˆ
¯ ∞

+
G

RT
p

p
RT x

T px
n m n n

,

ln lnS S S
B

B B
o

B(g)
B

B(g)
B B (7.12.13)

Equation (7.12.13) may be written as

∂
∂

Ê
ËÁ

ˆ
¯̃

= Â + Â
∞

Ê
ËÁ

ˆ
¯̃

G
RT

x p

pT px
n m n

,

ln
B

B B
o

B(g)
B

B

= Â + Â Ê
ËÁ

ˆ
¯̃B

B B
o

B(g)
B

B

°
n m nRT

p

p
ln

= Â + ’ Ê
ËÁ

ˆ
¯̃B

B B
o

B g

B

°

B

n m
n

RT
p

p
ln

( )

Expression of 

Reaction Potential
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= D G° + RT ln Q°p (7.12.14)

where Q°p , the standard reaction quotient, is given as

Q°p = ’
∞

Ê
ËÁ

ˆ
¯̃B g

B
B

( )

p

p

n

(7.12.15)

(Note: ’
B g( )

 stands for multiplication of (pB/p°)nB for all gaseous 

species in a chemical equation.)

∂G/∂x)T, p

symbol D �G
of reaction.

For a reaction to be at equilibrium,

dG = D �G dx = 0 fi D �G = 0

and Q°
p = K°p

D G° = – RT ln K°p (7.12.16)

Illustration G (= Gpur e + D mixG) and (D G/∂x)T, p by using 

Eqs (7.12.10), (7.12.11) and (7.12.13) for the reaction

N2O4(g) �  2NO2(g)

which is initiated with reactant having amount equal to the corresponding 

(nN2O4
)0 = 1 mol; (nNO2

)0 = 0

nN2O4
 = –1;  nNO2

 = 2;  Â = - =
B g

B
( )

n 2 1 1

ntotal = Â = Â +
B g

B
B g

B B
( ) ( )

{( ) }n n 0 n x

= {(nN2O4
)0 + vN2O4

x} + {(nNO2
)0 + vNO2

x}

= (1 mol – x) + (0 + 2x) = 1 mol + x (7.12.17)

Expression of Gpure

Gpure = Â +
∞B

B B
o

totaln n RT
p

p
m ln (Eq. 7.12.10)

= Â + +
B

B B
o

total{( ) } ln
º

n RT n
p

p
0 n x mB

= (1 mol) m°
N2O4

 + x (–m°
N2O4

 + 2 m°
NO2

) + RT (1 mol + x) ln
p

p∞

(7.12.18)

Reaction at 

Equilibrium
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D mixG = RT Â
B(g)

nB In xB = RT Â
B(g)

nB ln
n

n

B

total

(Eq 7 12 11)

= RT n
n

n
Â +

+
B(g)

B B
B B

total

{( ) ) ln
{( ) }

0
0n x

n x

= RT ( ) ln ln1
1

2
2

1
mol

mol

1 mol + mol
-

-Ê
ËÁ

ˆ
¯̃

+
+

Ê
ËÁ

ˆ
¯̃

È

ÎÍ
˘

˚̇
x

x

x
x

x

x
(7.12.19)

∂
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ˆ
¯̃
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ËÁ

ˆ
¯̃ ∞

+ Â
G

RT
p

p
RT x

T px
n m n n

,

ln ln
B

B B
o

B(g)
B

B(g)
B B (Eq 7.12.13)

= Â + ÂÊ
ËÁ

ˆ
¯̃ ∞

+ Â
+

B
B B

o

B(g)
B

B(g)
B

B B

total

n m n n
n x

RT
p

p
RT

n

n
ln ln

( )0

= - +( ) +
∞

m mN O
o

NO
o

2 4 2
2 RT

p

p
ln

    + -
-
+

Ê
ËÁ

ˆ
¯̃

+
+

Ê
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ˆ
¯̃

È

ÎÍ
˘

˚̇
RT ln ln

1

1
2

2

1

mol

mol mol

x

x

x

x

= 2
4

12 4

2

2 2
m m

x

x
NO
o

N O
o

2 mol
-( ) +

∞
+

-

Ê
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ˆ
¯̃

RT
p

p
RTln ln (7.12.20)

x ¢ = x/mol,

we get

G
RT

p

p

pure

N O
o

N
o

N O
o

mol
= + ¢ -( ) + + ¢

∞
m x m m x

2 4 2 2 4
2 1( ) ln (7.12.21)

Dmix

mol

G
RT= - ¢

- ¢
+ ¢

Ê
ËÁ

ˆ
¯̃

+ ¢
¢

+ ¢
Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

( ) ln ln1
1

1
2

2

1
x

x

x
x

x

x
(7.12.22)

∂
∂

Ê
ËÁ

ˆ
¯̃

= -( ) +
∞

+
¢

- ¢
Ê
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ˆ
¯̃

G
RT

p

p
RT

T px
m m

x

x,

ln ln2
4

12 4 2NO
o

N O
o

2
(7.12.23)

m°NO2(g)
–1 and m°N2O4(g)

–1

Gpur e, D mixG, Gtotal, and (∂G/∂x)T, p at 298 K and

1 bar pressure for different values of x¢

Expression of

DmixG

Expression of

Dr
�G

Computation of 

Gpure, DmixG and

Reaction Potential
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Table 7.12.1 Values of Gpur e, D mixG, Gtotal G x )T, p, for the reaction N2O4(g) �  2NO2(g)

x ¢ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gpure 97.89 98.36 98.84 99.31 99.78 100.26 100.73 101.21 101.67 102.15 102.62

D mixG 0 –1.29 –1.89 –2.22 –2.37 –2.37 –2.23 –1.96 –1.56 –0.97 0

Gtotal 97.89 97.07 96.95 97.09 97.41 97.89 98.50 99.25 100.18 101.18 102.62

( / ) ,∂ ∂
-

G T px

kJ mol 1
–• –3.22 0.29 2.43 4.06 5.44 6.74 8.07 9.59 11.76 •

... spontaneous.... ≠.................nonspontaneous............................................... .....................................

equilibrium

x ¢eq = 0.19

x ¢, we get three curves

Gpure versus x ¢ shows minimum at x = 0

(pure dimer) and that D mixG versus x¢ shows at x¢
free energy of unmixed components favours pure dimer whereas the free energy of 

between these two trends and lies at 19.0% dissociation of N2O4 as is shown by 

the minimum of Gtotal versus x curve.

Figure 7.12.1 represents, in fact, a typical variation of Gtotal with x of a reaction.

Gibbs valley. In general, x varies

from xmin to xmax.

∑ At xmin, one (or more) of the products has been exhausted while at xmax one 

or more) of the reactants has been exhausted.

∑ At some intermediate values, xeq, Gtotal

of xeq

∑ ∂Gtotal/∂x of the curve is negative, 

indicating spontaneity in the forward direction, while to right of the minimum, 

the slope of the curve is positive, indicating spontaneity in the reverse 

direction.

∑ Before the equilibrium, increase in the value of Gpure with increase in x is

smaller than the corresponding decrease in D mixG Gtotal smaller 

and smaller.

∑ After the equilibrium, increase in Gpur e is larger than the corresponding 

decrease in the value of D mixG Gtotal larger and larger.

∑ At equilibrium the increase in the value of Gpure is just equal to the decrease 

in D mixG

by dx at constant T and p

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂

∂
Ê
ËÁ

ˆ
¯̃

+
∂( )

∂
Ê
ËÁ

ˆ
¯̃

G G G

T p T p T p

total pure mix

x x x, , ,

D

Graphical

Representations

Summary of Fig. 

7.12.1
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At equilibrium Gtotal is minimum, thus (∂Gtotal/∂x)T, p = 0, therefore, it follows that

∂

∂
Ê
ËÁ

ˆ
¯̃

= -
∂

∂
Ê
ËÁ

ˆ
¯̃

G G

T p T p

pure mix

x x
, ,

( )D
(7.12.24)

that is, the minimum in Gtotal occurs at the point where D mixG decreases as rapidly 

as Gpure increases. Before the equilibrium

∂

∂
Ê
ËÁ

ˆ
¯̃

< -
∂

∂
Ê
ËÁ

ˆ
¯̃

G G

T p T p

pure mix

x x
, ,

( )D
(7.12.25)

and beyond the equilibrium

∂

∂
Ê
ËÁ

ˆ
¯̃

> -
∂

∂
Ê
ËÁ

ˆ
¯̃

G G

T p T p

pure mix

x x
, ,

( )D
(7.12.26)

Fig. 7.12.1 Plot of Gpure,

DmixG and Gtotal versus x
(Gibbs Valley)
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Equation (7.12.23), in fact, is

∂
∂

Ê
ËÁ

ˆ
¯̃

G

T px ,
= D rG° + RT ln Q°p

where Q°p =
4

1

2

2

¢
- ¢

Ê
ËÁ

ˆ
¯̃ ∞

Ê
ËÁ

ˆ
¯̃

x

x

p

p

D rG° or by substituting 

x¢eq = 0.19 in the expression of Q°p.

K°
p =

4 0 19

1 0 19
0 150

2

2

( . )

( . )
.

-
= (since p = p°)

Alternatively, we have

K°
p = exp(– D rG°/RT) = exp(– 4.73/(8.314 ¥ 10–3 ¥ 298))

= 0.148

Equations (7.12.21) – (7.12.23) may also be used to study the effect of pressure 

on the equilibrium value of extent of reaction (x¢
eq). Figure 7.12.2 displays a few 

plots of Gpure and Gtotal along the value of x¢
eq

x¢
eq

principle.

Computation

of Equilibrium 

Constant

Effect of Pressure 

on Equilibrium

Fig. 7.12.2 Plots of Gpure

and Gtotal at different 

pressures
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Equations (7.12.21)–(7.12.23) may also be used to study the effect of temperature

on the equilibrium value of extent of reaction and the equilibrium constant of the 

reaction.

m°N2O4
 and m°NO2

 at different temperatures may be computed using 

Table 7.12.2 m°N2O4
 and m°N2

 at temperatures other than 298 K

Substance Cp/J K–1 mol–1 = a + b(T/K)2 + c (T/K)2 D fH°
298K D fG°

298K

a b ¥ 103 c ¥ 106 –1 –1

N2(g) 29.295 –2.2634 5.6649 0 0

O2(g) 26.648 9.55 –1.328 0 0

NO2(g) 25.036 45.550 –18.420 33.18 51.31

N2O4(g) 36.208 160.98 –77.984 9.16 97.89

Equations to be used are

D fG°
T
 = - Ê

ËÁ
ˆ
¯̃ - - + +( ) lnD

D D
r

r r

K 6
a T

T b
T

c
T K K T

2

2 3
1 2

(Eq. 5.8.10)

where K1 = D rH°
T0

 – ln ( ) ( ) ( )D D Dr r ra T b
T

c
T

0
0
2

0
3

2 3
+ +

È

Î
Í

˘

˚
˙

K2 =
D

D
D Dr

o

0
r

r r

K 2 6

G

T
a

T b
T

c
T

K

T

T0 0
0 0

2 1

0

+ Ê
ËÁ

ˆ
¯̃

+ + -( ) ln

T0 = 298 K

m°
NO2

 and m°
N2O4

 are as follows.

T/K m°
NO2

mol–1 m°
N2O4

mol–1

318 52.53 103.85

338 53.76 109.82

358 54.99 115.81

Gpure and Gtotal are plotted in 

as the reaction is endothermic.

Equations (7.12.10), (7.12.11) and (7.12.13) can also be used to study the effect 

2O4 and NO2 at any 

pressure and also the effects caused by the addition of inert gas.

Effect of 

Temperature on 

Equilibrium
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Problem 7.12.1 xeq ) for the decomposition of 1 mol of N2O4,

according to the reaction

N2O4 �  2NO2

is a function of the pressure. Show that if the mixture remains in equilibrium as the pressure 

is changed, the apparent isothermal compressibility (kT) is given by

kT = -
∂
∂

Ê
ËÁ

ˆ
¯̃

= + -È
ÎÍ

˘
˚̇

1
1 1

1

2
1

V

V

p
p

T

( / ) ( )x xeq eqmol

(b) Show that kT has a maximum value at xeq = 0.5 mol and also show that at this maximum 

p = (3/4) Kp.

Solution

N O NO
 mol eq eq

2 4
1

2
2

2
- x x

�

xeq

Now, from ideal gas equation, we have

pV = (1 mol + xeq) RT

Hence
∂
∂

Ê
ËÁ

ˆ
¯̃

= -
+

+
∂

∂
Ê
ËÁ

ˆ
¯̃

V

p

RT

p

RT

p pT T

( )1

2

mol eq eqx x

Fig. 7.12.3 Plot of Gpure

and Gtotal at different 

temperatures
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  Thus -
∂
∂

Ê
ËÁ

ˆ
¯̃

=
+

-
∂

∂
Ê
ËÁ

ˆ
¯̃

1 1

2V

V

p

RT

p V

RT

pVT T

( )mol

p

eq eqx x

=
1 1

1p p
T

-
+

∂

∂
Ê
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ˆ
¯̃( )mol eq

eq

x

x
(7.12.27)

Now, the equilibrium constant of the decomposition reaction is given by

Kp =
( ) { /( )}

{( ) /( )}

p

p

p

p

NO

N O

eq eq

eq eq

mol

mol mol

2

2 4

2 2 22 1

1 1
=

+

- +

x x

x x

=
4 2

2

x

x

eq

2
eq1 mol -

p (7.12.28)

or     Kp (1 mol2 – x 2eq) = 4 x 2eqp

Differentiating the above expression with respect to p at constant T, we get

K
p

p
p

p

T T

-
∂

∂
Ê
ËÁ

ˆ
¯̃

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

= +
∂

∂
Ê
ËÁ

ˆ
¯̃

2 4 82x
x

x x
x

eq

eq

eq eq

eq
(7.12.29)

[The term (∂Kp/∂p)T = 0 as Kp is independent of p.]

Rearranging Eq. (7.12.29), we get

∂

∂
Ê
ËÁ

ˆ
¯̃

= -
+

x x

x x

eq eq

eq eq2p K p
T p

4

8

2

Substituting the expression of Kp from Eq. (7.12.28), we get

∂

∂
Ê
ËÁ

ˆ
¯̃

= -
-x x xeq eq eqmol

p p
T

( )1

2

2 2

(7.12.30)

Substituting Eq. (7.12.30) in Eq. (7.12.27), we get

-
∂
∂

Ê
ËÁ

ˆ
¯̃

= +
+

-1 1 1

1

1

2

2

V

V

p p pT ( )

( )

mol

mol

eq

eq eq
2

x

x x

kT = 
1

1 1
p

+ -
È

Î
Í

˘

˚
˙

x
x

eq

eq
2

mol( )

(b) To show that kT has a maximum value at xeq = 0.5, we set (∂kT/∂xeq)p = 0. Thus, we have

∂
∂

Ê

ËÁ
ˆ

¯̃
= + - + -

È

Î
Í

˘

˚
˙ =

k

x
x

x
T

p
peq

eq

eq
mol

2

1 1

2
1 1 0( ) ( )

which gives xeq = (1/2) mol. Substituting this value in the expression of Kp, we get 

      Kp = 
4

1

4

3

3

4

2

2 2

x

x

eq

eqmol -
= fi =p p p K p
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Problem 7.12.2 Consider the reaction H2(g) + I2(g) �  2HI(g).

(a) If there are one mole of H2, one mole of I2 and zero mole of HI present before the 

reaction advanced, express the free energy change for the reaction in terms of extent of 

reaction.

(b) What form would the expression G have if iodine were present as solid?

Solution (a) The reaction is

H2(g) + I2(g) � 2HI(g)

At t = 0 1 mol  1 mol  0 mol

At teq 1 mol – x ¢  1 mol – x ¢ 2 x ¢ Total amount = 2 mol

If we represent x ¢/mol by x, then the total value of G of the system is given by

G/mol = (1 – x ) mH
2
(g) + (1 – x ) mI

2
(g) + 2x mHI(g)

= (1 – x ) {m°
H

2
(g) + RT ln (pH2

/p°) } + (1 – x ) {m°
I
2
(g) + RT ln (pI

2
/p°)}

+ 2x {m°
HI(g) + RT ln (pHI/p°)}

= (1 – x ) {m°
H2(g) + RT ln xH2

 + RT ln (p/p°)}

+ (1 – x ) {m°
I2(g) + RT ln xI2

 + RT ln (p/p°)}

+ (2x ) {m°
HI(g) + RT ln xHI + RT ln (p/p°)}

= m°
H2(g) + m°

I2(g) + x (2m°
HI(g) – m°

H2(g) – m°
I2(g)) + 2RT ln (p/p°)

+ RT [(1 – x ) ln xH2
 + (1 – x ) ln xI2

 + 2x ln xHI]

= m°
H2(g) + m°

I2(g) + x Dr
�G∞  + 2RT ln (p/p°)

+ - - + - - +È
ÎÍ

˘
˚̇

RT ( ) ln ( ) ( ) ln ( ) ln1
1

2
1 1

1

2
1 2x x x x x x

= m°
H2(g) + m°

I2(g) + x DrG° + 2RT ln (p/p°)

+ - - +È
ÎÍ

˘
˚̇

2 1
1

2
1RT ( ) ln ( )x x x xln

(b) G/mol = (1 – x ) mH2(g) + (1 – x )mI2(s) + 2x m°
HI(g)

= (1 – x ) {m°
H2(g) + RT ln (pH2

/p°)} + (1 – x ) m°
I2(s)

+ 2x {(m°
HI(g) + RT ln (pHI(g)/p°)}

= m°
H2(g) + m°

I2(s) + x (2m°
HI(g) – m°

H2(g) – m°
I2(s))

+ (1 – x ) RT ln (pH2
/p°) + 2x RT ln (pHI(g)/p°)

= m°
H2(g) + m°

I2(s) + x DrG° + RT (1 – x ) [ln xH
2
 + ln (p/p°)]

+ 2 x RT [ln xHI + ln (p/p°)]

= m°
H2(g) + m°

I2(s) + x DrG° + (1 + x ) RT ln (p/p°)

+ RT ( ) ln
( )

( )
ln1

1

1
2

2

1
-

-
+

+
+

Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

x
x

x
x

x

x

= m°
H2(g) + m°

I2(s) + x DrG° + (1 + x )RT ln (p/p°)

+ RT [(1 – x ) ln (1 – x ) + 2x ln (2x ) – (1 + x ) ln (1 + x )]
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7.13 CHARACTERISTICS OF HOMOGENEOUS GASEOUS REACTIONS

In this section, we consider a few typical characteristics of homogeneous gaseous 

reactions having zero, positive and negative values of Dvg.

REACTIONS WITH NO CHANGE IN GASEOUS SPECIES

Consider the reaction

A(g) + B(g) �  C(g) + D(g) (7.13.1)

Thus Kp =
p p

p p

C D

A B

¥
¥

(7.13.2)

Knowing the value of Kp and the initial amounts of A and B, the amounts of various 

species at equilibrium can be calculated as follows:

A + B � C + D Total amounts

At t = 0 a b 0 0 a + b

At equilibrium a – x b – x x x a + b

Partial pressures
a

a b
p

-
+

x b

a b
p

-
+

x x

a b
p

+
x

a b
p

+

We have Kp = 
{ /( )}

( )( )

x

x x

x

x x

p a b

a

a b
p

b

a b
p

a b

+
-
+

Ê
Ë

ˆ
¯

-
+

Ê
Ë

ˆ
¯

=
- -

2 2

(7.13.3)

This quadratic equation can be solved for x. One of the values of x will determine 

the equilibrium composition of the reaction and the other will have an unreasonable 

value, which must be ignored.

Some Conclusions From Eqs. (7.13.2) and (7.13.3), the following conclusions can be drawn:

∑ Since Dng = 0, therefore

Kp = Kc = Kx = Kn (7.13.4)

∑ If we have a set of equilibrium partial pressures, multiplication of each of 

the partial pressures by the same factor does not change the value of Kp, i.e.

the relative amounts of components present at equilibrium are independent 

of the total pressure or volume of the system.

∑ The relative amounts of the components present at equilibrium remain 

unaltered by the addition of an inert gas.

∑ Kp is independent of the units in which pressures or concentrations are 

expressed.

∑ Addition of any extra gas A, B, C or D, when the reaction is at equilibrium, 

will change the relative amounts of various species without changing the 

value of Kp. Such changes can be calculated as follows:

Let the amount n of the gas A be introduced at equilibrium. The system will 

readjust its equilibrium, and let the amount x¢ of gas A be consumed at equilibrium. 

The amount of various species at equilibrium will be
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A + B C D� +
+ - ¢ - ¢ ¢ ¢a n bx x x x

Thus Kp =
x

x x

¢
+ - ¢ - ¢

2

( )( )a n b
(7.13.5)

Since now the denominator is greater than in the previous case, x¢ will be 

greater than x in order to keep the value of Kp same. Thus, more of C and D 

will be formed. This is also in agreement with the Le Chatelier principle. If at 

equilibrium, the gas C or D is introduced, then x¢ will decrease, i.e. lesser of A 

and B will combine to give C and D.

Temperature Effect Effect of temperature on the equilibrium will depend upon the nature of the 

reaction—whether it is exothermic or endothermic:

Exothermic reaction  Equilibrium will be shifted to the left, i.e. lesser amounts 

of products will be produced.

Endothermic reaction  Equilibrium will be shifted to the right, i.e. larger amounts 

of products will be produced.

Example H2(g) + CO2(g) �  H2O(g) + CO(g)

REACTIONS WITH INCREASE IN GASEOUS SPECIES

Consider the relation

A �  B + C (7.13.6)

Thus, Kp =
p p

p

B C

A

¥
(7.13.7)

Knowing the value of Kp and the initial amount of A, the amounts of A, B and C 

corresponding to the equilibrium at a given pressure can be calculated as follows:

  A � B + C  Total amount

At t = 0 a 0 0 a

At equilibrium a – x x x a + x

Partial pressures
a

a
p

-
+

x

x

x

xa
p

+
x

xa
p

+

We have Kp = 

x

x

x

x

x

x x

x

x

a
p

a

a
p

p

a a a
p

+
Ê
ËÁ

ˆ
¯̃

-
+

Ê
ËÁ

ˆ
¯̃

=
- +

=
-

2

2 2

2 2( )( )
(7.13.8)

Some Conclusions Although Kp is independent of p for reactions of ideal gases, p appears on the right 

hand side of the above equation. This fact has the following consequences.

∑ At a given temperature, the composition of the system at equilibrium depends 

on the value of p. Since Kp has to be independent of pressure, it follows that 

if p increases x has to decrease, i.e. lesser of A will be dissociated. This also 

follows from the Le Chatelier principle.
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∑ The numerical value of Kp depends on the units of pressure but the standard

equilibrium constant K°p is fundamentally dimensionless. This follows from

the fact that in the expression

mi = m°i + RT ln (pi/p°)

the ratio of partial pressure to the standard-state pressure is involved. By 

convention, Kp is given the units of p.

∑ Since Dng π 0, therefore

Kp π Kc π Kx π Kn (7.13.9)

∑ On the basis of Le Chatelier principle, it can be predicted that the dissociation 

of a compound is partially suppressed, when one of the dissociation products 

is initially present. Let the amount b of B be already present; then the amount 

of A dissociated can be calculated as follows:

  A � B + C Total amounts

At t = 0 a b 0 a + b

At equilibrium a – x¢ b + x¢ x¢ a + b + x¢

Partial pressures
a

a b
p

- ¢
+ + ¢

x

x

b

a b
p

+ ¢
+ + ¢

x

x

x

x

¢
+ + ¢a b

p

Thus Kp = 
( )( )

( )( )

b

a a b
p

+ ¢ ¢
- ¢ + + ¢

x x

x x
(7.13.10)

Solving this quadratic equation in x ¢ will give the amount of A dissociated.

The equilibrium constant of this type of reactions can also be written in terms of

degree of dissociation. The latter gives the fraction of the reactant dissociated, i.e. 

out of 1 mol of the reactant, how much of the reactant is present in the dissociated 

form. Thus, if we have 1 mol of A to start with and at equilibrium if a is the degree 

of dissociation, then

A � B + C

Fraction in the beginning 1  0 0

Fraction at equilibrium 1 – a a a

If a is the original amount of A, we will have

A � B + C

In the beginning a  0 0

At equilibrium a(1 – a)  aa aa

Total amount at equilibrium = a(1 – a) + aa + aa = a (1 + a)

Deriving the expressions of partial pressure and then substituting in the expression 

of Kp would give

Kp = 
p p

p

a

a
p

a

a
p

a

a
p

B C

A

=
+

Ï
Ì
Ó

¸
˝
˛ +

Ï
Ì
Ó

¸
˝
˛

-
+

Ï
Ì
Ó

¸
˝
˛

=

a

a

a

a

a

a

a( ) ( )

( )

( )

1 1

1

1

22

21- a
p (7.13.11)

Knowing Kp and p, we can solve Eq. (7.13.11) for a.

Equilibrium

Constant in terms 

of Degree of 

Dissociation
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For the reaction

A � B + C

Amount involving extent of reaction a – x x  x

degree of dissociation a(1 – a) aa  aa

On comparing the amount, it follows that

x = aa

REACTIONS WITH DECREASE IN NUMBER OF GASEOUS SPECIES

Consider the reaction of Eq. (7.13.6) written in the reverse direction

B + C �  A 

For this reaction, we will have

K ¢p =
p

p p K p

A

B C

=
1

(7.13.12)

where Kp

Thus K ¢p has the characteristics which are inverse of characteristics of Kp. For

example, if p is increased then the amount of A produced from B and C is increased.

Example  Formation of NH3(g) from N2(g) and H2(g)

(1/2) N2(g) + (3/2) H2(g) �  NH3(g)

Dng = –1

Illustrations The following three examples illustrate the kind of effects discussed above.

Example 7.13.1 Two moles of PCl5 are heated at 502 K till equilibrium is reached at a total pressure of 

101.325 kPa. Calculate the composition at equilibrium and also the percentage of PCl5
decomposed ( K°p = 0.446 1).

Solution PCl5 decomposes on heating according to the reaction

PCl5(g) �  PCl3(g) + Cl2(g)

The expression of K°
p , as given by Eq. (7.13.8) is

K°
p =

x

x

2

2 2
1

a
p

-
( / )bar

Substituting the given value of p and K°
p, we get

x

x

2

2 24

0 4661

1 013 25
0 46

mol -
= =

.

.
.

Solving the quadratic equation for x, we have

x = 1.12 mol

Amount of PCl5 = 2.0 mol – 1.12 mol = 0.88 mol

Amount of PCl3 or Cl2 = 1.12 mol

Percentage of PCl5 decomposed = 
1 12

2
100 56

. mol

mol
¥ =

Relation between 

Extent of Reaction 
and Degree of 
Dissociation



416 A Textbook of Physical Chemistry

Example 7.13.2 If pressure p of the system given in Example 7.13.1 is raised to 1 013.25 kPa at the same 

temperature, calculate the percentage of PCl5 decomposed.

Solution Substituting p = 1 013.25 kPa = 10.132 5 bar in the expression of K°
p we get

K°p =
x

x

2

2 24
10 132 5

mol -
.  = 0.466 1

Solving the quadratic expression for x, we get

x = 0.42 mol

Thus Percentage of PCl5 decomposed = 
0 42

2
100

. mol

mol
¥  = 21

Example 7.13.3 If the vessel of the system given in Example 7.13.1 already contains 1 mol of Cl2, calculate 

per cent of PCl5 decomposed. The equilibrium pressure is 101.325 kPa.

Solution In the present case, the amounts of various species in the beginning and at equilibrium will 

be

  PCl5(g) � PCl3(g) + Cl2(g)

To start with 2 mol  0  1 mol

At equilibrium 2 mol – x x  1 mol + x

Total amount of gases at equilibrium = 3 mol + x

The partial pressures are

pPCl5
 =

2

3

1
3 2

mol

3 mol + mol

mol

3 mol +
PCl Cl

-
=

+
=

+x

x

x

x

x

x
p p p p p; ;

Substituting these in the standard equilibrium constant expression

K°
p =

( / ) ( / )

( / )

p p p p

p p

PCl Cl

PCl5

3 2
∞ ∞

∞

we get K°
p =

x x

x x

( )

( )( )

1

2 3

mol

mol mol

+
- +

 (p/p°)

Since p = 101.325 kPa, therefore

x x

x x

( )

( )( )

.

.
.

1

2 3

0 4661

1 013 25
0 46

mol

mol mol

+
- +

= =

Solving for x, we get

x = 0.96 mol

Thus Percentage of PCl5 decomposed = 
0 96

2
100 48

. mol

mol
¥ =

Example 7.13.4 0.10 mole each of SO2 and SO3 are mixed in a 2.0 dm3

attained as

2SO2(g) + O2(g) � 2SO3(g)

The equilibrium pressure is 281.68 kPa. Calculate (a) the mole fraction O2 at equilibrium, 

(b) K°p and K°c and (c) the percentage dissociation of SO3

0.1 mol of SO3 and none of O2 or SO2.
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Solution (a) Let x be the amount of O2 that is formed at equilibrium. We will have

2SO2
+ O2 2SO3

t = 0 0.1 mol 0 0.1 mol Total amount at equilibrium

teq 0.1 mol + 2x x 0.1 mol – 2x 0.2 mol + x

V = 2 dm3

Total amount of gases at equilibrium can be calculated by using ideal gas equation

pV = nRT

where T = 300 K, p = 281.68 kPa, and V = 2 dm3

Thus n =
pV

RT
= - -

( . ) ( )

) ( )

281 68 2

300

3kPa dm

(8.314 kPa dm mol K K3 1 1
 = 0.226 mol

Hence 0.2 mol + x = 0.226 mol

x = 0.026 mol

Mole fraction of oxygen = 
0 026

0 226
0 1151

.

.
.

mol

mol
=

(b) The expression of K°p for the given reaction is

K°p =
( / )

( / ) ( / )

( / )

( / ) ( /

p p

p p p p

x p p

x p p x p p

SO

SO O

SO

SO O

3

2 2

3

2 2

2

2

2

2

∞

∞ ∞
=

∞

∞ ∞∞
=

∞Ê
ËÁ

ˆ
¯̃)

( )

( ) ( )

x

x x

p

p

SO

SO O

3

2 2

2

2

where xs are the mole fractions. Evaluating these xs and substituting in the above expression, 

we get

K°p =
( . / . )

( . / . ) ( . / . ) .

0 048 0 226

0 152 0 226 0 026 0 226

100

281 68

2

2

kPa

kPa

Ê
ËÁÁ

ˆ
¯̃

=
( . ) ( . )

( . ) ( . ) .

0 048 0 226

0 152 0 026

100

281 68

2

2

Ê
ËÁ

ˆ
¯̃

= 0.308

Now K°
p = K°

c

c RT

p
K K

c RT

p
c p

∞
∞

Ê
ËÁ

ˆ
¯̃

=
∞

∞
Ê
ËÁ

ˆ
¯̃

-D Dn ng g

or
o o

Dng for the reaction is –1. Thus

K°
c = 0 308

1 8 314 300

100

3 3 1 1

.
( ) ( . ) ( )

( )
¥

- - -mol dm kPa dm K mol K

kPa

= 7.68

(c) We are given with the following data.

2SO2 + O2 �  2SO3

At t = 0 0.1 mol

Let x be the amount of O2 formed at equilibrium, then the amounts of various species are

Amount of SO3 = 0.1 mol – 2x

Amount of SO2 = 2x

Amount of O2 = x

The amount of gases = 2x + x + 0.1 mol –2x = 0.1 mol + x
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Evaluating the mole fractions of SO2, O2 and SO3 and then substituting in the expression 

of K°
p, we get

K°p =
( . ) ( . )

( )

0 1 2 0 1

2

1002

2

mol mol kPa- + Ê
ËÁ

ˆ
¯̃

x x

x x p

The pressure p

of ideal gas equation

pV = nRT

Thus for n = (0.1 mol + x ), V = 2 dm3, T = 300 K,  we get

p = 
( . ) ( . ) ( )

( )

0 1 8 314 300

2

3 1 1

3

mol kPa dm mol K K

dm

+ - -x

= (1 247 kPa mol–1) (0.1 mol + x )

With this K°
p becomes

K°
p =

( . )0 1 2

4

100

1 247

2

3 1

mol kPa

kPa mol

- Ê
ËÁ

ˆ
¯̃-

x

x

Solving the cubic equation, by approximation method, we get

x = 0.036 4 mol

Per cent dissociation of SO3 =
2 0 036 4

0 1
100 72 8

¥
¥ =

.

.
.

7.14 STUDY OF A FEW IMPORTANT HOMOGENEOUS GASEOUS REACTIONS

DISSOCIATION OF WATER

Consider a system consisting of water vapour in a glass bulb at 298 K with a total 

pressure equal to its normal vapour pressure of 27 mmHg. We will be interested 

in knowing how much of water has been dissociated to hydrogen and oxygen gas 

at equilibrium.

Let a be the degree of dissociation of water vapour which, according to its

is the fraction of the substance dissociated, i.e. out of one mole how much of the 

substance is present in the dissociated form.

The following table gives the requisite data for calculation:

H2O(g) � H2(g) +
1

2
2O g( ) Total amount

Initial amount n 0 0 n

Amount at 

equilibrium
n(1 – a) n a 1

2
n a n 1

1

2
+Ê

ËÁ
ˆ
¯̃a

Mole

fraction
1

1 2

-
+

a

a /

a

a1 2+ /

a

a

/

/

2

1 2+

Partial

pressure
1

1 2

-
+

a

a /
p

a

a1 2+ /
p

a

a

/

/

2

1 2+
p

Expression of K°p
in Terms of a
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The standard equilibrium constant in terms of degree of dissociation is

K°
p =

( / ) ( / )

( / )

/

/

/p p p p

p p

p

p

p

pH O

H O2

2 2 1 2

2

1 2∞ ∞

∞
=

+ ∞
Ê
ËÁ

ˆ
¯̃ + ∞

Ê
ËÁ

ˆ
¯̃

a

a

a

a

11 2

1

1 2

/

( )

/

-
+ ∞

Ê
ËÁ

ˆ
¯̃

a

a

p

p

Simplifying, we get

K°
p =

a

a a

3 2 1 2

1 22 1 1 2

/ /

/

( / )

( ) ( / )

p p∞
- +

(7.14.1)

a.

can be used since the value of Kp for the reaction is very small as can be seen 

from the following calculations.

From the table of DfG° we can calculate D rG°
298K of the reaction.

H2O(g) = H2(g) + 1
2

 O2(g)

D r G°298K = D fG°(H2, g) + 1
2

D fG°(O2, g) – D fG°(H2O, g)

= 0 + 0 – (– 228.57 kJ mol–1)

= 228.57 kJ mol–1

Since D r G° = –RT ln K°
p

log K°
p = -

∞
= -

-

- -

Dr

1 12.303

J mol

(2.303) (8.314 J K mol ) 298K)

G

RT

( )

(

228 570 1

= –40.059

Hence K°
p = 8.73 × 10–41

As K°p is small, we can approximate

1 – a � 1 and 1 + a/2 �  1

Thus K°
p = 

a3 2 1 21

2

/ /( / )p bar
(7.14.2)

or a = 
2

1

1 414 8 73 10

27

760
1 013 25

1 2

2 3
41K

p

p
o

bar
bar

( / )

. .

.
/

/
Ê

Ë
Á

ˆ

¯
˜ =

¥ ¥

¥Ê

-

ËË
ˆ
¯{ }

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙/

/

/

1
1 2

2 3

bar

= 7.51 ¥ 10–27

We can see that a

SYNTHESIS OF AMMONIA

Before making attempts to carry out a given reaction, it is worthwhile to consider its 

feasibility using the thermodynamic principle. Nernst and Haber from the following 

thermodynamic data showed that the synthesis of ammonia based on the reaction,

Thermodynamic

Feasibility of the 

Reaction
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1
2

 N2(g) + 3
2

 H2(g) �  NH3(g)

in principle, is feasible.

Df K
o

kJ mol

H298
1-

S298
1

K
o

1J K mol- -

Cp, m

1J K mol- -1

N2(g) — 191.62 29.12

H2(g) — 130.68 28.83

NH3(g) –46.11 192.45 35.06

DrS°298K = 192 45 191 62 130 681
2

3
2

1 1. ( . ) ( . )- -{ } - -J K mol (7.14.3)

= – 99.38 J K–1 mol–1

DrG°298K = DrH°298K – T DrS°298K

= –46 110 J mol–1 – (298 K) (– 99.38 J K–1 mol–1)

= –16 494.8 J mol–1 (7.14.4)

The negative value of Gibbs function of reaction indicates that the reaction is 

feasible.

The equilibrium constant of the reaction is computed as follows:

log K°298K
= - =

¥

-

- -

Dr 298K
o

J mol

J K mol

G

RT2 303

16 494 8

2 303 8 314 298

1

1 1.

( . )

. ( . ) ( KK)

= 2.89

K°298K = 7.78 ¥ 102 (7.14.5)

Though the reaction is possible with such a large value of K°p, its rate of 

combination is very slow. We can increase the rate by increasing temperature. 

This will decrease the value of K°p, since the reaction is exothermic, but it is still 

helpful. The rate can also be increased by using a suitable catalyst. The latter 

will not change the value of DrG° or K°p for the above reaction, but will help in 

increasing the rate of the reaction by following an alternative path.

Now we shall consider how to calculate the value of K°p or equilibrium concentrations 

of N2, H2 and NH3 under a given condition of the system. We write the reaction 

as

1
2 2

3
2 2 3N g H g NH g( ) ( ) ( )+ �

with K°
p = 

( / )

( / ) ( / )/ /

p p

p p p p

NH

N H

3

2 2

1 2 3 2

∞

∞ ∞

For the sake of convenience, we start with the dissociation of NH3. The reaction 

will be just reverse of the above reaction, i.e.

NH3(g) �
1
2  N2(g) + 3

2
 H2(g)

Evaluation of 

Equilibrium

Constant

Evaluation of 

Equilibrium

Concentrations of 

Species
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Its equilibrium constant is

K°p
¢ =

( ) ( )/ /p p

p p

N H

NH

2

3

2

1 2 3 2
1

∞

Obviously K° ¢p = 1/K°
p

Let a be the degree of dissociation of NH3. We then have

NH3(g) � ��� ��
1

2
2N g( )

+ 3

2
2H g( )

Total amount

At t = 0 n 0 0 n

At equilibrium n(1 – a) (1/2) n a (3/2) n a n(1 + a)

Mole fraction
1

1

-
+

a

a

a

a2 1( )+
3

2 1

a

a( )+

Partial pressure
1

1

-
+

a

a
p

a

a2 1( )+
p

3

2 1

a

a( )+
p

Thus K°
p¢ =

( ) ( )/ /p p

p p

N H

NH

2 2

3

1 2 3 2
1

∞

=

a

a

a

a

a

a

a2 1

3

2 1

1

1

1 3 3

4 1

1 2 3 2

2
( ) ( )

(

/ /

+
Ê
ËÁ

ˆ
¯̃ +

Ê
ËÁ

ˆ
¯̃

-
+

Ê
Ë

ˆ
¯

∞
=

-

p p

p
p aa 2 )

p

p∞
Ê
ËÁ

ˆ
¯̃

(7.14.6)

and K°
p =

4 1

3 3

2

2

( )- ∞Ê
ËÁ

ˆ
¯̃

a

a

p

p
(7.14.7)

Example 7.14.1 In a system, the equilibrium reaction

(1/2) N2(g) + (3/2)H2(g) �  NH3(g)

was studied starting from pure NH3. It is found that at 10.1325 bar pressure and 673 K, the 

gaseous mixture contains 3.85 mol % of NH3. Calculate Kx, K°p and a.

Solution The gaseous mixture contains 3.85 mol % of NH3. Thus, its mole fraction is given by

xNH3
 =

3 85

100
0 038 5

.
.=

The total mole fraction of the remaining gases, namely N2 and H2, is

xN2
+ xH2

 = 1 – 0.038 5 = 0.961 5

Since nitrogen and hydrogen are present in one is to three ratio, therefore, their 

individual mole fractions are
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xN2
 = (1/4) ¥ 0.961 5 = 0.240 4

xH2
 = 0.961 5 – 0.240 4 = 0.721 1

Kx =
x

x x

NH

N H

3

2 2

1 2 3 2 1 2 3 2

0 038 5

0 240 4 0 7211( ) ( )

.

( . ) ( . )/ / / /
= = 0.128

Their partial pressures are

pNH3
 = xNH

3
p = 0.038 5 ¥ 10.132 5 bar = 0.390 1 bar

pH2
= xH2

p = 0.721 1 ¥ 10.132 5 bar = 7.306 5 bar

pN2
 = xN2

p = 0.240 4 ¥ 10.132 5 bar = 2.435 9 bar

Substituting these in the expression of K°p we get

K°p =
( / )

( / ) ( / )/ /

p p

p p p p

NH

H N

3

2 2

3 2 1 2

∞

∞ ∞

=
( . / )

/ ) ( . / )/ /

0 3901 1

5 1 2 435 9 13 2 1 2

bar bar

(7.306 bar bar bar bar

= 0.012 65

If a is the degree of dissociation of NH3, then we have

  NH3 � (1/2)N2 + (3/2)H2

At equilibrium 1 – a a /2  3 a /2

Total fraction = 1– a +
a a

a
2

3

2
1+ = +

Thus, the mole fraction of NH3 is

xNH3
 =

1

1

-
+

a

a

Equating this to 0.038 5, we get

 a = 0.926

or, at equilibrium 92.6 mol % of NH3 is dissociated into H2 and N2.

Example 7.14.2 For a reaction

NH3(g) �  (1/2)N2(g) + (3/2)H2(g)

K°
p = 79.1 at 400 °C. Show that the fraction of NH3 dissociated at a total pressure p is given 

by

a = 1
3 3

4

1 2

+
∞Ê

Ë
Á

ˆ

¯
˜

-
( / )

/

p p

K p
o

Calculate the value of K°
c for the given reaction.

Solution The given reaction is

NH3(g) �  (1/2)N2(g) + (3/2)H2(g)

Its K°
p is given as

K°
p =

( / ) ( / )

( / )
.

/ /p p p p

p p

N H

NH

2 2

3

1 2 3 2

79 1
∞ ∞

∞
=
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The expression of K°
p in terms of degree of dissociation (a) of NH3 as given by Eq. (7.14.6) 

is

K°
p =

3 3

4 1 1

2a

a a

( / )

( ) ( )

p p∞
- +

Rearranging this, we get

4(1 – a2)K°
p – 3 3 2a (p/p°) = 0

or a2{4K°
p + 3 3 ( p/p°)} = 4K°

p

Thus a = 
4

4 3 3

1

1
3 3

4

1 2

1 2

K

K p p p p

K

p

p

p

o

o

o

+ ∞

Ê

Ë
Á

ˆ

¯
˜ =

+
∞

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

( / ) ( / )

= 1
3 3

4

1 2

+
∞Ê

Ë
Á

ˆ

¯
˜

-
( / )

/

p p

K p
o

Now K°
c = K°

p

c RT

p

g∞
∞

Ê
ËÁ

ˆ
¯̃

-Dn

For the given reaction, Dng = + 1

Thus K°
c = ( . )

( ) ( . ) ( )
79 1

1 8 314 673

100

3 3 1 1 1
mol dm kPa dm K mol K

kPa

- - - -
È

Î
Í

˘

˚
˙ = 11 414.

Example 7.14.3 If in the system given in Example 7.14.1 the pressure is changed to 5 066.25 kPa, the 

mixture was found to contain 15.11 mol % of NH3. Calculate the degree of dissociation.

Solution In the present case, we have

xNH3
 = 0.151 1 pNH3

= 0.151 1 ¥ 5 066.25 kPa = 765.51 kPa

xN2
 = 0.212 2 pN2

 = 0.212 2 ¥ 5 066.25 kPa = 1 075.06 kPa

xH2
 = 0.636 7 pH2

= 0.636 7 ¥ 5 066.25 kPa = 3 225.68 kPa

Thus Kx =
0 1511

0 212 2 0 636 7
0 643

1 2 3 2

.

( . ) ( . )
.

/ /
=

K°
p =

( . / )

( . / ) ( . ) (/

765 51 100

1 075 06 100 3 225 68 1001 2

kPa kPa

kPa kPa kPa kPaa)
.

/3 2
0 012 74=

It is to be noted that K°
p is the same since it is independent of pressure but Kx depends on 

the value of pressure.

The degree of dissociation as calculated from the expression

xNH3
=

1

1

-
+

a

a
 = 0.151 1

is a = 0.736

Thus, it can be seen that the degree of dissociation has decreased as the pressure in increased, 

as would be expected from the Le Chatelier’s principle.
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DISSOCIATION OF DINITROGEN TETROXIDE

The following is the Table containing information needed to deal with the 

dissociation of dinitrogen tetroxide.

N2O4(g) � 2NO2(g) Total amount

Initial amount n 0 0

Amount at time t n(1 – a) 2 na n(1 + a)

Mole fraction
1

1

-
+

a

a

2

1

a

a+

Partial pressure
1

1

-
+

a

a
p

2

1

a

a+
p

D f H°/mol–1 9.16 kJ 33.18 kJ

Let at t = 0, V0 be the volume of the gas at a pressure p. Using ideal gas equation, 

the density of the gas is given by

pV0 = nRT =
m

M
RT

or r0 =
m

V

pM

RT0

=

Let at equilibrium, the total amount of the gases be n(1 + a) and let V1 be its 

volume.

Then pV1 = n(1 + a)RT or V1 =
n RT

p

( )1+ a

Density of the gas at equilibrium will be given by

r1 =
n M

V

nM p

n RT

¥
=

+1 1( )a

or r1 =
r

a
0

1+
Rearranging this, we have

 a =
r r

r
0 1

1

-
(7.14.8)

When the reaction is carried out under constant volume condition, the pressure of 

the system increases since on dissociation, amount of the gas increases from n to

n(1 + a). If the ideal gas behaviour is assumed, then

p0 =
nRT

V
and p1 = n

RT

V
( )1+ a

Thus p1 =(1 + a)p0 or a = 
p p

p

1 0

0

-
(7.14.9)

Degree of 

Dissociation

from Density 

Measurement at 

Constant Pressure

Degree of 

Dissociation

from Pressure 

Measurement at 

Constant Volume



Thermodynamics of Chemical Reactions 425

Thus, the value of a can be calculated at any stage of dissociation from the 

pressure measurements.

The expression for K°
p is

K°p =
( / )

( / )

p p

p p

p

p

p

p

NO

N O

2

2 4

2

2

2

2

1

1

1

4

1

∞

∞
= + ∞

Ê
ËÁ

ˆ
¯̃

-
+ ∞

Ê
ËÁ

ˆ
¯̃

=
-

a

a

a

a

a

a 22

p

p∞
Ê
ËÁ

ˆ
¯̃

(7.14.10)

Experimentally, it is found that at room temperature and 1 bar total pressure, the 

degree of dissociation of N2O4 at equilibrium is 0.19, the numerical value of the 

standard equilibrium constant will be

K°p =
4 0 19

1 0 19
1 1 0 149 8

2

2

¥
-

=
.

.
( / ) .bar bar

With K°
p, the value of DrG° can be calculated as follows.

DrG°298K = – 2.303 RT log K°p

= – (2.303) (8.314 J K–1 mol–1) (298 K) log (0.149 8)

= 4 704 J mol–1
�  4.70 kJ mol–1

By measuring the percentage dissociation as a function of temperature, we can 

determine DrG° as a function of temperature. Then with the help of Gibbs-Helmholtz 

equation, we can obtain enthalpy of the reaction DrH298K.

The degree of dissociation of N2O4 does not depend upon the amount of N2O4

taken to start with. However, the degree of dissociation of N2O4 does depend 

upon pressure. The expression relating these two can be obtained by rearranging 

Eq. (7.14.9). Thus, we have

a =
K

K p p

p

p

o

o + ∞

È

Î
Í
Í

˘

˚
˙
˙4

1 2

( / )

/

(7.14.11)

a approaches zero. On the other hand, as 

the pressure approaches zero, a approaches one. These changes are exactly what 

would be expected from the Le Chatelier’s principle.

7.15 MISCELLANEOUS NUMERICALS

1. (a) For the reaction

C2H4(g) + H2(g) �  C2H6(g)

calculate K°p at 25 °C. Given are the standard free energies of formation at 298 K:

D f G°(C2H4) = 68.124 kJ mol–1; D f G°(C2H6) = –32.886 kJ mol–1

(b) For the reaction given in part (a), standard enthalpies of formation and standard entropies 

of various species are given below. Calculate K°
p.

Expression of 

Equilibrium

Constant

Thermodynamic

Data For the 

Reaction

Effect of Pressure 

on Degree of 

Dissociation
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D fH°(C2H4) = 52.283 kJ mol–1; D f H°(C2H6) = –84.667 kJ mol–1

S°(C2H4) = 219.45 J K–1 mol–1; S°(C2H6) = 229.49 kJ mol–1;

S°(H2) = 130.58 J K mol–1;

(c) Also calculate K°
c for the reaction given in part (a).

Solution (a) The standard free energy change of the reaction

C2H4(g) + H2 C2H6(g)

is given by

 D rG° = D f G°(C2H6) – D f G°(C2H4)

Thus substituting the given data at 298 K, we get

D rG°298K = (– 32.886 – 68.124) kJ mol–1 = – 101.01 kJ mol–1

Now since log K°
p =

- ∞
¥
Dr

2.303

G

RT

we get log K°
p =

( . )

( . ) ( ) ( . )
.

101 01 10

8 314 298 2 303
17 704

3 1

1 1

¥
=

-

- -
J mol

J K mol K

or K°
p = 5.06 ¥ 1017

(b) D r H° of the given the reaction is given by

 D r H° = D f H°(C2H6) – D f H°(C2H4)

= (– 84.667 – 52.283) kJ mol–1 = –136.95 kJ mol–1

 D r S° of the reaction is

D r S° = S°(C2H6) – S°(C2H4) – S°(H2)

= (229.49 – 219.45 – 130.58) J K–1 mol–1 = –120.54 J K–1 mol–1

Now since D r G° = D r H° – T DrS°

we get D r G° = – 136.95 ¥ 103 J mol–1 – (298 K) (–120.54 J K–1 mol–1)

= –101.029 ¥ 103 J mol–1 = –101.029 kJ mol–1

Calculating K°
p from the reaction

log K°
p = -

∞Dr

2.303

G

RT

we get log K°
p =

101 029 10

2 303 8 314 298
17 707

3 1

1 1

.

. ( . ) ( )
.

¥
=

-

- -
J mol

J K mol K

or K°
p = 5.06 ¥ 1017

(c) The change in the stoichiometry number of gaseous species in a reaction is given by

D S Sn n ng
p

products

p
r

reactants

r= -
( ) ( )

| |

Thus, for the given reaction, we get

Dng = – 1

Substituting this along with K°p at 298 K in the relation

K°
c = K°

p
c RT

p

∞
∞

Ê
ËÁ

ˆ
¯̃

-Dng
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we get K°
c = ( . )

( )( . ) ( )
(

5 06 10
1 8 314 29817

3 1 1

¥
Ê
ËÁ

ˆ
¯̃

- - - - -
mol dm J K mol K

100 kPa

11)

= 1.254 ¥ 1019

2. What is the partial pressure of HCl(g) above a solution that is 2 mol dm–3 in H+

and 2 mol dm–3 in Cl– ? Given: DfG°(HCl, g) = –95.27 kJ mol–1 and DfG°(Cl–) = 

–131.17 kJ mol-1.

Solution To calculate the partial pressure of HCl above the solution containing H+ and Cl–, we 

consider the reaction

   H+ + Cl– � HCl(g)

  DfG°/kJ mol–1 0  –131.17 –95.27

Thus DrG° = –95.27 kJ mol–1 – (–131.17 kJ mol–1) = 35.9 kJ mol–1

   log K° = 
- ∞

=
- ¥

= -
-

- -
Dr

2.303

J mol

J K mol K

G

RT

35 9 10

2 303 8 314 298
6

3 1

1 1

.

. ( . ) ( )
..29

Hence K° = 5.1 ¥ 10–7

Since K° = 
( / )

) ([ ]/ )
.

pHCl
+ 3

bar

([H ]/mol dm Cl mol dm

1
5 1 10

3

7

- - -
-= ¥

we get pHCl/1 bar = 2 ¥ 2 ¥ 5.1 ¥ 10–7

or pHCl = (2.04 ¥ 10–6) (1 bar) = 2.04 ¥ 10–6 bar = 0.204 6 Pa

3. In a study of the water-gas reaction

CO2(g) + H2(g) �  CO(g) + H2O(g)

a mixture of CO2 and H2 initially containing 42.4 mol % H2 was brought to equilibrium 

in a closed vessel at 1 259 K. The system was then found to contain 15.2 mol % H2.

Calculate K°p and DrG° for the reaction at 1 259 K.

Solution At t = 0, H2 is equal to 42.4 mol %, and therefore CO2 will be 100 – 42.4 = 57.6 mol 

%. At equilibrium, H2 is found to be 15.2 mol %, i.e. 42.4 – 15.2 = 27.2 mol % has 

combined with CO2 to give CO(g) and H2O(g). It is clear from the stoichiometry that 

the same amount of CO or H2O is formed. The mole percentage of CO2 will be equal 

57.6 – 27.2 = 30.4. Thus at equilibrium, the amount per cents of various species are

CO g H g CO g H O22
30 4

2
15 2 27 2 27 2

( ) ( ) ( ) ( )
. % . % . % . %

+ +� g

  Now since for the reaction

Dng = 0

therefore K°
p = K K

n n n n

n n n n
c n
∞ ∞= =

∞ ∞

∞ ∞

( / ) ( / )

( / )( / )
;

CO H O

CO H

2

2 2

(where n° = 1 mol)

Substituting the value, we get

K°
p = K°

n = 
27 2 27 2

30 4 15 2
1 602

. .

. .
.

¥
¥

=

Since DrG° = – RT ln K°
p

we get DrG° = – (8.314 J K–1 mol–1) (1 259 K) (2.303) ¥ log (1.602)

= – 4 933.65 J mol–1
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4. H2S dissociates according to the equation

2H2S(g) �  2H2(g) + S2(g)

At 1 125 °C and at a total pressure of 101.325 kPa, the degree of dissociation of H2S

is 0.305. Calculate K°
p for this reaction at 1 125 °C.

Solution If a is the degree of dissociation of H2S, then the amounts of species involved in the 

reaction are

2 2

1 2
2H S(g) H g S g2 2

n n n( ) ( / )

( ) ( )

-
+

a a a

�

Total amount of species = n(1 – a) + na + n(a/2) = n (1 + a/2)

The partial pressures of the species are

pH
2
S = xH2S p = 

n

n
p p

( )

( / ) ( / )

1

1 2

1

1 2

-
+

=
-

+
a

a

a

a

pH
2
 = xH2

p = 
n

n
p p

a

a

a

a( / ) /1 2 1 2+
=

+

pS
2
 = xH2

p = 
n

n
p p

a

a

a

a

/

( / )

/

/

2

1 2

2

1 2+
=

+

Substituting these in the expression of K°
p, we get

K°
p =

a

a

a

a

a

( / )
( / )

/

( / )
( / )

( )

(

1 2
100

2

1 2
100

1

1

2

+
Ï
Ì
Ó

¸
˝
˛ +

Ï
Ì
Ó

¸
˝
˛

-

p pkPa kPa

++
Ï
Ì
Ó

¸
˝
˛a / )

( / )
2

100

2

p kPa

=
0 5 100

1 1 0 5

3

2

. ( / )

( ) ( . )

a

a a

p kPa

- +

Substituting the given value a, we get

K°
p =

0 5 0 305 1 013 25

0 695 1 0 152 5
0 025 8

3

2

. ( . ) .

( . ) ( . )
.

¥ ¥
+

=

5. COCl2 gas dissociates according to the equation

COCl2(g) �  CO(g) + Cl2(g)

When COCl2 is heated to 724 K at 101.325 kPa, density of the gas mixture at 

equilibrium is 1.162 g dm–3. Calculate (a) the degree of dissociation, (b) K°p and 

(c) DrG° for the reaction at 724 K.

Solution (a) Let a be the degree of dissociation of COCl2. The amount of various species 

involved in the given reaction are

COCl CO Cl

at 0

and at eq

2 2

0 0

1

� +

=

-

t n

t n n n( )a a a

Total amount of the gases = n(1 + a)
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V =
n RT

p

( )1+ a

Density of the mixture, r = 
nM

V

nM p

n RT

COCl COCl2 2=
+( )1 a

or a =
pM

RT

COCl2 1
r

-

Substituting the given values of r, p, MCOCl2
and T, we get

a =
( . ) ( )

( . ) ( . ) (

101 325 99

1 162 8 314 72

1

3 3 1 1

kPa g mol

g dm kPa dm K mol

-

- - - 44
1

K)
-

= 1.435 – 1 = 0.435

(b) The partial pressures of the species involved in the reaction are

pCOCl2
 =

n

n
p p p

n

n
p p

( )

( )
;

( )

1

1

1

1 1 1

-
+

=
-
+

=
+

=
+

a

a

a

a

a

a

a

a
CO

pCl2
 =

n

n
p p

a

a

a

a( )1 1+
=

+

Substituting these in the expression

K°
p =

p p p p

p p

CO Cl

COCl

/ /

/

∞( ) ∞( )
∞( )
2

2

we get K°
p = 

a

a

a

a

a

a

1

1

1

1

2

2

2

+ ∞
Ê
ËÁ

ˆ
¯̃

-
+ ∞

Ê
ËÁ

ˆ
¯̃

=
- ∞

Ê
ËÁ

ˆ
¯̃

p

p

p

p

p

p

Hence K°
p =

( . )

( . )

. .

.

0 435

1 0 435

101 325

100

0 189 2

1 0 189 2

2

2-
¥

Ê
ËÁ

ˆ
¯̃

=
-

kPa

kPa
(1.0132 5)

= 0.236 4

(c) Since DrG° = – RT ln K°
p, we get

DrG° = – (8.314 J K–1 mol–1) (724 K) (2.303) ¥ log (0.236 4)

= 8 682.8 J mol–1

6. N2O4 dissociates according to the equation

N2O4(g) �  2NO2(g)

When 0.578 g of N2O4 was introduced into a 1 dm3

equilibrium pressure was 24.12 kPa. Calculate (a) the degree of dissociation and, 

(b) K°
p at this temperature.

Solution Let a be the degree of dissociation of N2O4. The amounts of the species involved in 

the reaction are
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N O g 2NO g

At eq

2 4 2

1 2

( ) ( )

( )

�

t n n- a a

where n = (0.578 g)/MN2O4
 = (0.578 g)/(92 g mol–1) = 0.006 282 mol

Total amount of species = n(1 – a) + 2na = n(1 + a)

Since pV = nRT, for this case

n¢ = n(1 + a) = 
pV

RT
= - -

( . ) ( )

( . ) ( )

24 12 1

8 314 308

3

3 1 1

kPa dm

kPa dm K mol K

= 9.42 ¥ 10–3 mol

Solving for a, we get

 a =
0 009 42

0 006 282
1 0 5

.

.
.- =

Substituting a in the expression of K°
p we get

K°
p =

( / )

( / )

( / )

( / )

(p p

p p

p p

p p

NO

N O

2

2 4

2

2

2

2

1
1

1

4∞

∞
= +

∞Ê
Ë

ˆ
¯

-
+

∞Ê
Ë

ˆ
¯

=

a

a
a

a

a pp p/ )∞
-1 2a

=
4 0 5

1 0 5

24 12

100

2

2

¥
-

Ê
ËÁ

ˆ
¯̃

.

.

. kPa

kPa

= 0.322

7. (a) PCl5 dissociates according to the equation

PCl5 3(g) + Cl2(g)

When 0.03 mol of PCl5 was brought to equilibrium at 502 K and 101.325 kPa the 

volume of the system was 2.09 dm3. Calculate (i) the degree of dissociation and 

(ii) K°p

(b) What will be the degree of dissociation when 0.20 mol of PCl5 is brought to 

equilibrium in a 3 dm3 vessel at 502 K?

Solution Let a be the degree of dissociation of PCl5. The amount of various species involved 

in the reaction are

5 3 2PCl (g) PCl (g) + Cl (g)�

At t = 0 n 0 0

At teq n(1 – α) nα nα

Total amount of species at equilibrium = n (1 + a)

(a) In this case

n = 0.03 mol

Thus from the ideal gas equation, we have

(i) (0.03 mol) (1 + a) = 
pV

RT
= - -

( . ) ( . )

) ( )

101 325 2 09

502

3

1 1

kPa dm

(8.314 kPa dm K mol K3

= 0.050 7 mol

or a =
( .

( . )
.

0 050 7

0 03
1 0 69

mol)

mol
- =
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(ii) The partial pressure of the species are

pPCl
5
 =

n

n
p p p

n

n
p p

( )

( )
;

( )

1

1

1

1 1 13

-
+

=
-
+

=
+

=
+

a

a

a

a

a

a

a

a
PCl

pPCl
5
 =

n

n
p p

a

a

a

a( )1 1+
=

+
Substituting these in the expression of K°

p, we get

K°
p =

( / ) ( / )

( / )

( / )

( )

( )
( /

p p p p

p p

p p

p

PCl Cl

PCl

23

5

1

1

1

2

∞ ∞

∞
= +

∞Ê
Ë

ˆ
¯

-
+

a

a
a

a
pp

p p

∞Ê
ËÁ

ˆ
¯̃

=
∞

-
)

( / )a

a

2

21

Substituting the value of a, we get

K°
p =

0 69

1 0 69

101 325

100
0 920 4

2

2

.

.

.
.

-
Ê
ËÁ

ˆ
¯̃

=
kPa

(b) We have

K°
p =

a

a

2

21

( / )p p∞
-

Replacing p in terms of total amount of gases, we get

K°
p=

a

a

a

a

a2

2

2

21 1

1

-
¢

∞
=

-
+

∞
n RT

Vp

n RT

Vp

( )

=
a

a

2

1- ∞
nRT

Vp

or
a

a

2

1-
 = K

Vp

nRT
p
o ∞

For the given data, we have

a

a

2 3

3 1 11

0 920 4 3 100

0 2 8 314-
= - -

( . ) ( ) ( )

( . ) ( . ) (

dm kPa

mol kPa dm K mol 5502
0 33

K)
.=

or a2 + 0.33 a – 0.33 = 0

Solving for a, we get

a = 
- ± +

=
- ±0 33 0 33 4 0 33

2

0 33 1 195

2

2. ( . ) ( . ) . .

 = – 0.762 (not possible) or 0.432

8. PCl5(g) dissociates according to the reaction

PCl5(g) �  PCl3(g) + Cl2(g)

At 523 K, K°p = 1.80. Find the density of the equilibrium mixture in g dm–3 at a total 

pressure of 100 kPa.

Solution Let a be the degree of dissociation of PCl5. The amount of various species at equilibrium 

are
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5 3 2PCl PCl Cl+�

At teq n(1 – α) nα nα

   Total amount of the gases = n (1 + a)

The value of a can be determined from K°
p

K°
p =

( / ) ( / )

( / )

( / )

( / )

p p p p

p p

p p

p p

PCl Cl

PCl

3

5

∞ ∞

∞
= +

∞Ê
Ë

ˆ
¯

-
+

∞Ê
2 1

1

1

2a

a
a

aËË
ˆ
¯

=
∞

-
a

a

2

21

( / )p p

(where p° = 100 kPa)

or a2 = K°
p (1 – a2) (since p = 100 kPa)

or a = K Kp p
o o/( )1+

Substituting the value of K°
p we get

a = 180 2 80 0 80/ . .=

Now using ideal gas equation, we have

pV = n¢RT = n(1 + a) RT = (m/MPCl5
) (1 + a) RT

r =
m

V

pM

RT
=

+
=

-

- -
PCl5 kPa g mol

J K mol( )

( ) ( )

( . ) ( . ) (1

100 102

1 8 8 314

1

1 1a 5523 K)

r = 1.30 g dm–3

9. Solid NH4HS dissociates according to the equation

NH4HS(s) � NH3(g) + H2S(g)

The dissociation pressure of solid NH4HS is 66.87 kPa at 288 K. (a) Calculate K°
p for

this reaction. (b) What fraction of the solid will dissociate when 0.1 mol of NH4HS

is introduced into a 1 dm3

mol of NH4HS is introduced into a 1 dm3
3 at 20.26 kPa and 

298 K?

Solution (a) Dissociation pressure = 66.87 kPa

Since NH3 and H2S are present in equal amounts, we have

pNH3
 = pH2S = 33.435 kPa

Thus K°
p = (pNH3

/p°) (pH2S/p°) = 
33 435

100
0 111

2
.

.
kPa

kPa

Ê
ËÁ

ˆ
¯̃

=

(b) Let a be the degree of dissociation. Therefore, at equilibrium, we have

NH4HS(s) � NH3(g) + H2S(g)

At teq (0.1 mol)(1 – α) (0.1 mol)α (0.1 mol)α

pNH3
= pH

2
S = 

nRT

V
=

- -( . ) ( . ) ( )0 1 8 314 298

1

3 1 1

3

a mol kPa dm mol K K

dm

= (247.76 a)
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Thus K°
p = (pNH3

 /100 kPa) (pH2S/100 kPa) = (2.477 6 a)2

or a =
K p

o

2 477 6.
which gives a =

0 111

2 477 6

.

.
= 0.135

(c) Let a ¢ be the degree of dissociation. Therefore, we have

NH4HS(s) � NH3(g) + H2S(g)

At teq (0.1 mol) (1 – α′ ) (0.1 mol)α′ (0.1 mol)α′

pNH3
 = 20.26 kPa + 

( . ) ( . )( )0 1 8 314 298

1

1 1

3

a ¢ - -mol kPa dm mol K K

dm

3

= 20.26 kPa + 247.76 a ¢ kPa

pH2S =
( . ) ( . )( )0 1 8 314 298

1

1 1

3

a ¢ - -mol kPa dm mol K K

dm

3

= 247.76 a ¢ kPa

K°
p = (pNH3

/p°) (pH2S/p°) ; (p° = 100 kPa)

= (0.202 6 + 2.477 6 a ¢ ) (2.477 6 a ¢ )

or (2.477 62 a ¢ )2 + 0.202 6 ¥ 2.477 6 a ¢ –  K°
p = 0

6.139 a ¢2 + 0.502 a ¢2 – 0.111 = 0

Solving for a ¢, we get

 a ¢ =
- + +

¥
=

- +
=

0502 0 502 4 6 139 0 111

2 6 139

0 502 1 726

12 278
0 1

2. ( . )( . )

.

. .

.
. 00

10. The density of an equilibrium mixture of N2O4 and NO2 at 101.325 kPa is 3.62 g dm–3

at 288 K and 1.84 g dm–3 at 348 K. What is the enthalpy of reaction for

N2O4(g) � 2NO2(g)

Let n be the amount of N2O4 at t = 0 and a be the degree of dissociation of N2O4 at 

equilibrium. Then

N2O4(g) �  2NO2(g)

n(1 – a) n(2a)

Total amount of species at equilibrium = n(1 + a)

Now employing the ideal gas equation, we get

pV = n(1 + a) RT = 
m

M
(1 + a)RT

pM = r (1 + a)RT

or a =
pM

RTr
-1

At 288 K, a =
( . ) ( )

( . ) ( . ) (

101 325 92

3 62 8 314 288

1

3 3 1 1

kPa g mol

g dm kPa dm K mol

-

- - - KK)
- 1

  = 1.076 – 1 = 0.076
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At 348 K, a ¢ =
( . ) ( )

( . ) ( . ) (

101 325 92

1 84 8 314 288

1

3 3 1 1

kPa g mol

g dm kPa dm K mol

-

- - - KK)
 – 1

   = 1.752 – 1 = 0.752

Now K°
p =

( / )

( / )

( / )

( / )

p p

p p

p p

p p

NO

N O2 4

2

2

2

2

2

1
1

1

4

1

∞

∞
= +

∞Ê
Ë

ˆ
¯

-
+

∞Ê
Ë

ˆ
¯

=

a

a
a

a

a

--
∞

a 2
( / )p p

Therefore K°
p at 288 K =

4 0 076

1 0 076

101 325

100
0 023 6

2

2

¥
-

Ê
ËÁ

ˆ
¯̃

=
.

.

.
.

kPa

kPa

and K°
p at 348 K =

4 0 752

1 0 752

101 325

100
5 275

2

2

¥
-

Ê
ËÁ

ˆ
¯̃

=
.

.

.
.

kPa

kPa

Now ln
( )

( )

K

K

p T

p T

2

1

o

o
 = -

∞
-

È

Î
Í

˘

˚
˙ = -

∞ -D Dr r

2

H

R T T

H T T

RT T

1 1

2 1

1 2

1

( )

For the given two temperatures, this gives

2 303
5 275

0 023 6

60

8 314 2881 1
. log

.

.

( )

( . ) ( ) (

Ê
ËÁ

ˆ
¯̃

=
∞

- -
Dr K

J K mol K

H

3348 K)

Therefore D rH°=
( . ) ( . ) ( ) ( )

( )
log

.

.

2 303 8 314 288 348

60

5 275

0 023 6

1J K mol K K

K

1- - Ê
ËÁ

ˆ
¯̃̄

= 75.14 ¥ 103 J mol–1 = 75.14 kJ mol–1

11. HgO dissociates according to the equation

HgO(s) �  Hg(g) + 1

2
O2(g)

This dissociation pressure is 51.56 kPa at 693 K and 108.02 kPa at 723 K. For this 

reaction, calculate (a) Dr H and (b) Dr S at 723 K.

Solution Pressure p at 693 K = 51.56 kPa

Pressure p at 723 K = 108.02 kPa

Stoichiometry of the given reaction indicates that

nHg(g) = 2nO2
(g)

Therefore, it follows that

pHg(g) = 2pO2
(g)

The partial pressures of Hg(g) and O2(g) at the given temperatures are:

At 693 K pHg(g) = 
2

3
51 56¥ . kPa  = 34.373 kPa

and pO2(g) = 
1

3
 × 51.56 kPa = 17.187 kPa
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At 723 K pHg(g) =
2

3
¥ 108.02 kPa = 72.013 kPa

and pO2
(g) = 

1

3
¥ 108.02 kPa = 36.007 kPa

Substituting these in the expression of K°p we get

K°
p at 693 K = (pHg /p°)(pO2

/p°)1/2 = (0.343 7)(0.171 9)1/2 = 0.142 5

K°
p at 723 K = (pHg/p°) (pO2

/p°)1/2 = (0.7201)(0.360 1)1/2 = 0.432 1

Now since ln
( )

( )

K

K

H

R T T

p T

p T

2

1

1 1

2 1

o

o
r= -

∞
-

Ê
ËÁ

ˆ
¯̃

D

we get D r

o

o
H

R T T

T T

K

K

p T

p T

∞ =
¥ ¥

-
2 303 1 2

2 1

2

1

.
log

( )

( )

For the given two temperatures, this yields

D r H° =
2 303 8 314 693 723

30

0 4321

0 142 5

1 1. ( . ) ( ) ( )

( )
log

.

.

J K mol K K

K

- - Ê
ËÁ

ˆ
¯̃̃

= 154 061 J mol–1 = 154.061 kJ mol–1

Now D r G° at 723 K = – RT ln K°p

= – (8.314 J K–1 mol–1) (723 K) ¥ 2.303 log 0.432 1

= 5 044.7 J mol–1 = 5.045 kJ mol–1

Thus D rS° =
D Dr r mol J mol

K

H G

T

∞ - ∞
=

-- -154 061 5 044 7

723

1 1.

  = 206.11 J K–1 mol–1

12. The value of K°
p for the reaction

1
2

H2(g) + 1
2

I2(g) �  HI(g)

is 8.32 at 873 K and 1 bar pressure. Calculate K°
p, K°

c, and Kx for

(i)   2HI(g) �  H2(g) + I2(g)

(ii)   H2(g) + I2(g) �  2HI(g)

(iii)   HI(g) � 1
2 2

1
2 2H g I g( ) ( )+

Solution For the reaction

1
2 2

1
2 2H g I g HI g( ) ( ) ( )+ �

we have K°
p =

( / )

( / )
.

/

p p

p p p p

HI

H
1/2

I( / °)
2

∞
∞

=
2

1 2
8 32

(i) For the reaction 2HI(g) �  H2(g) + I2(g), we have

K°
p
¢ =

( / ) ( / )

( / ) ( . )
.

p p p p

p p K

H I

HI
o2

2 2

2 2

1 1

8 32
0 014 45

∞ ∞

∞
= = =

p
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(ii) For the reaction

H2(g) + I2(g) �  2HI(g)

we have K°¢¢p =
( / )

( / ) ( / )
( . ) .

p p

p p p p
K p

HI

H I

o∞
∞ ∞

= = =
2

2 2

2 2

8 32 69 22

(iii) For the reaction

HI(g) � 1
2 2

1
2 2H I g( ) ( )g +

we have K°¢¢¢p  =
( / ) ( / )

( / ) ( . )
.

/ /p p p p

p p K p

H I

HI
o

2 2

1 2 1 2
1 1

8 32
0 012

∞ ∞

∞
= = =

Since for these reactions Dng = 0, it follows that for all the reactions

K°
p = Kx = K°

c

13. Assume that the decomposition of HNO3 can be represented by the following equation

4HNO3(g) �  4NO2(g) + 2H2O(g) + O2(g)

and that at a given temperature and pressure the reaction approaches equilibrium. 

Show that if we start with pure HNO3, then at equilibrium

K°
p =

1024

7

1
7

4 3

2

( )

( ) ( )

pO

O

2

p p p- ∞

Solution The reaction is

4HNO3(g) �  4NO2(g) + 2H2O(g) + O2(g)

Its K°
p is

K°
p = 

( ) ( )

( ) ( )

p p p

p p

NO H O O

HNO

2 2 2

3

4 2

4 3

1

∞

It is obvious from the reaction that

pNO2
 = 4pO2

pH2O = 2pO2

pHNO3
 = p – pNO2 – pH2O – pO2

= p – 7pO2

Thus substituting these in the above expression, we get

K°p =
1 024

7

1
2

2

7

4 3

( )

( ) ( )

p

p p p

O

O- ∞

14. Consider the dissociation of N2O4(g) at 25 °C. Suppose one mole of N2O4

in a vessel under 101.325 kPa pressure. The standard free energies of formation 

of N2O4(g) and NO2(g) are respectively 97.89 and 51.31 kJ mol–1. (a) Calculate 

K°p, Kx and K°c. (b) Calculate the amount of N2O4 dissociated. (c) If 5 mol of argon 

amount of N2O4 dissociated? (d) If the volume of the vessel, determined by conditions 

in (a), is kept constant and 5 mol of argon are introduced, what will be the amount 

of N2O4 dissociated?
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Solution (a) Given that

2 4 2N O (g) 2NO (g)�

ΔfG
°/kJ mol–1 97.89 51.31

The free energy change of the reaction is

 DrG° = 2DfG°(NO2) – DfG°(N2O4)

= (102.62 – 97.89) kJ mol–1 = 4.73 kJ mol–1 = 4 730 J mol–1

Since DrG° = – RT ln K°
p, therefore

log K°
p =

- ∞
=

- -

- -
Dr J mol

J K mol K

G

RT2 303

4 730

2 303 8 314 298

1

1 1. . ( . ) ( )

= –0.829 0

K°
p = 0.148

Also K°
p =

( / )

( / )

{ ( / )}

( / )

p p

p p

x p p

x p p

NO

N O

NO

N O2 4

2 2

2 4

2 2∞

∞
=

∞

∞

=
x

x
p p K p px

NO
2

N O2 4

2 ( / ) ( / )∞ = ∞

For p = 101.325 kPa, we have

Kx =
K

p p

p
o

( / )

.

.
.

∞
= =

0 148

1 0132 5
0 146

K°
c =

( / )

/

( / )

/

c c

c c

p RT

p RT c

NO

O

NO

N O

2

2 4

2

2 4

2 2
1∞

∞
=

∞N

=
p

p c RT

K

c RT

K p

c RT

p pNO

N O

o

2

2 4

2
1

∞
=

∞
=

∞

∞

=
( . ) ( )

( ) ( . ) ( )

0 148 100

1 8 314 2983 3 1 1

kPa

mol dm kPa dm mol K K- - - -

= 5.97 ¥ 10–3

(b) If a is the amount of N2O4 dissociated, then

n(N2O4) = (1 mol – a) and n(NO2) = (2a)

Total amount of gases = 1 mol + a

The mole fractions are

xN2O4
 =

1

1

2

1

mol

mol
and

mol
NO2

-
+

=
+

a

a

a

a
x

K°
p =

( / )

( / )

{ ( / )}

( / )

( /
p p

p p

x p p

x p p

p p
NO

N O

NO

N O2 2 4

mol
2

4

2

2 2
2

1∞

∞
=

∞

∞
=

+
a

a
∞∞Ï

Ì
Ó

¸
˝
˛

-
∞Ï

Ì
Ó

¸
˝
˛

)

( / )

2

1 mol

1 mol +

a

a
p p

=
4

1

2

2 2

a

a

( / )

( )

p p∞
-mol
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Therefore a/mol = 
K

p p K

p

p

o

o4

0 148

4 1 0132 5 0 148
0 187 7

( / )

.

. .
.

∞ +
=

¥ +
=

The amount of N2O4 dissociated is

a = 0.187 7 mol

(c) Let a ¢ be the amount of N2O4 dissociated in the presence of 5 mol of Argon, then

n(N2O4) = 1 mol – a ¢ and n(NO2) = 2a ¢

and the total amount will be

5 mol + (1 mol +a ¢) = 6 mol + a ¢

Substituting these in the expression of K°
p , we get

K°
p =

2

6

1

6

4

1

2

2

a

a

a

a

a

¢
+ ¢

∞Ï
Ì
Ó

¸
˝
˛

- ¢
+ ¢

∞Ï
Ì
Ó

¸
˝
˛

=
¢mol

mol

mol

( / )

( )
( / )

(

p p

p p
mmol mol- ¢ + ¢

∞
a a) ( )

( / )
6

p p

Rearranging this, we get

(a ¢/mol)2 {4(p/p°) + K°
p} + 5K°p (a ¢/mol) – 6K°p = 0

Substituting p = 101.325 kPa and K°
p = 0.148, we get

or 4.201 (a ¢/mol)2 + 0.74 (a ¢ mol) –0.888 = 0

Solving for a ¢, we get

       a ¢/mol =
- + + ¥ ¥

¥
=

- +0 74 0 74 4 4 201 0 888

2 4 201

0 74 3 933

8 402

2. ( . ) . .

.

. .

.

= 0.38

(d) Volume of the vessel, V =
nRT

p

RT
=

( . )1 187 7 mol

101.325 kPa

Pressure of the system after introducing 5 mol of Argon is given as

p =
nRT

V

RT

RT
=

+ ¢¢( )

( . ) / .

6

1 187 7 101 325

mol

mol kPa

a

=
( )( . )

( . )

6 101 325

1 187 7

mol kPa

mol

+ ¢¢a

where a ¢¢ is the new amount of N2O4 dissociated.

Since K°
p =

( )( / )

( )( )

4

1 6

2a

a a

¢¢ ∞
- ¢¢ ¢¢

p p

mol mol +

Substituting the value of p in terms of a ¢¢, we have

K°
p =

4

1 6

6 101 3252a

a a

a¢¢
- ¢¢ + ¢¢

+ ¢¢
( ) ( )

( ) ( . )

mol mol

mol

(1.187 7 mol)

kPa

(( )100 kPa
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= 4

1 1 172 2

2a

a

¢¢
- ¢¢( ) ( . )mol mol

or 4(a ¢¢/mol)2 + 1.172 2 K°p (a ¢¢/mol) – 1.172 2 K°p = 0

or 4(a ¢¢/mol)2 + 0.173 5 (a ¢¢/mol) – 1.173 5 = 0 (since K°
p = 0.148)

Solving for a ¢¢, we get

a ¢¢/mol =
- + + ¥ ¥

¥
=

- +0 173 5 0 173 5 4 4 0 1735

2 4

0 173 5 1 675

8

2. ( . ) . . .

= 0.188

15. At high temperature CO2 dissociates according to the equation

2CO2(g) � 2CO(g) + O2(g)

At 101.325 kPa pressure the percentage of oxygen at equilibrium is 2.05 ¥ 10–5 at 

1 000 K and at 1 400 K is 1.27 ¥ 10–2. Assuming the enthalpy change D r H of the 

reaction to be independent of temperature, calculate the standard free energy change 

and the standard entropy change at 1 000 K.

Solution At equilibrium, we have

2CO2(g) �  2CO(g) + O2(g)

n(1 – 2a) n(2a) na

Total amount of gases = n(1 – 2a) + 2na + na = n(1 + a)

Percentage of oxygen at equilibrium, x =
a

a1
100

+
¥

Since a is expected to be very small, we may write x = a ¥ 100 or a = x/100

Thus, At 1 000 K, a = 2.05 ¥ 10–5/100 = 2.05 ¥ 10–7

At 1 400 K, a = 1.27 ¥ 10–2/100 = 1.27 ¥ 10–4

The partial pressures of CO2, CO and O2 are

pCO2
 = xCO2

p =
n

n
p p

( )

( )

1 2

1

1 2

1

-
+

=
-
+

a

a

a

a

pCO = xCOp =
n

n
p p

( )

( )

2

1

2

1

a

a

a

a+
=

+

pO2
 = xO2

p =
n

n
p p

a

a

a

a( )1 1+
=

+

Substituting these in the expression

K°
p =

( / ) ( / )p p p p

p p

CO O

CO
2
2

2
( / °)

∞ ∞2
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we get  K°
p =

2

1 1

1 2

1

4

1 2

2

2

3

a

a

a

a

a

a

a

a

+
∞Ê

Ë
ˆ
¯ +

∞Ê
Ë

ˆ
¯

-
+

∞Ê
Ë

ˆ
¯

=
-

( / ) ( / )

( / )
( )

p p p p

p p
22 1( )+ ∞

Ê
ËÁ

ˆ
¯̃a

p

p

Assuming a to be negligible in comparison to 1, we get

   K°
p = 4a3( p/p°)

Thus K°
p (1000 K) = 4 ¥ (2.05 ¥ 10–7)3 (1.013 25) = 32.42 ¥ 10–21

   K°
p (1400 K) = 4 ¥ (1.27 ¥ 10–4)3 (1.013 25) = 8.30 ¥ 10–12

   DrG° = – RT ln K°p

   = – (8.314 J K–1 mol–1) (1 000 K) ¥ 2.303 log (32.42 ¥ 10–21)

   = 373 095 J mol–1 = 373.10 kJ mol–1

since log
K

K

H

R T T

p T

p T

( )

( )

2

1

1 1

1 2

o

o
r

2.303

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
=

∞
-

Ê
ËÁ

ˆ
¯̃

D

DrH° =
2 303 8 314 1 000 1 400

400

8 30 10

32 4

1 12. ( . ) ( ) ( )

( )
log

.

.

J K mol K K

K

1- - -¥
22 10 21¥

Ê
ËÁ

ˆ
¯̃-

= 563 482.2 J mol–1 = 563.48 kJ mol–1

DrS° =
D Dr r J mol

K

H G

T

∞ - ∞
=

¥ - ¥ -( . . )

( )

563 48 10 373 10 10

1 000

3 3 1

= 190.38 J K–1 mol–1

16. PCl5 vapour decomposes on heating according to

PCl5(g) �  PCl3(g) + Cl2(g)

The density of a sample of partially dissociated PCl5 at 101.325 kPa and 503 K was 

found to be 4.8 g dm–3. Calculate the degree of dissociation and DrG° for the reaction 

at 503 K.

Solution Let a be the degree of dissociation of PCl5. At equilibrium, we will have

PCl PCl Cl

(1 )
5 3 2� +

-n n na a a

   Total amount of gases = n(1 + a)

Now employing ideal gas equation, we get

pV = n(1 + a) RT

or 1

5

5+ = = =a
r

pV

nRT

pV

m M RT

pM

RT( / )PCl

PCl

Thus a =
pM

RT

PCl5 1
r

-

For the given value of r, we get

a =
( . ) ( . )

( . ) ( . ) (

101 325 208 5

4 8 8 314 5

1

3 3 1 1

kPa g mol

g dm kPa dm mol K

-

- - - 003
1

K)
-

= 1.053 – 1 = 0.053
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Now K °
p = 

( / ) ( / )

( / )

( / ) ( / )p p p p

p p

p p p p
PCl Cl

PCl

2

5

3 1 1∞ ∞

∞
= +

∞Ê
Ë

ˆ
¯ +

∞Ê
Ë

ˆ
¯

a

a

a

a
11

1

-
+

∞Ê
Ë

ˆ
¯

a

a
( / )p p

   =
a

a

2

21- ∞
Ê
ËÁ

ˆ
¯̃

p

p

Substituting a = 0.053, we get

K°
p =

0 053

1 0 053

2

2

.

.-
 (1.013 25) = 2.854 ¥ 10–3

DrG° = –RT ln K°
p

= – (8.314 J K–1 mol–1) (503 K) ¥ 2.303 ¥ log (2.854 ¥ 10–3)

= 24 506 J mol–1 = 24.506 kJ mol–1

17. The equilibrium pressure at 25 °C for the reaction

CuSO4  3H2O(s) �  CuSO4  H2O(s) + 2H2O(g)

is 0.746 8 kPa. The standard enthalpy change at this temperature is 112.968 kJ mol–1.

(a) What is the value of K°
p ?

(b) Determine whether the reaction is spontaneous at 298 K and 101.325 kPa.

(c) Calculate DrS° for the reaction.

(d) Give a physical explanation for the result in (c).

(e) Explain the result in (b) using the values of DrH° and DrS°.

Solution (a) For the reaction

CuSO4
.3H2O(s) �  CuSO4

.H2O(s) + 2H2O(g)

we have K°
p = (pH

2
O /p°)2 = (0.746 8 kPa/100 kPa)2

   = (7.468 ¥ 10–3)2 = 5.577 ¥ 10–5

(b) To predict the nature of reaction, we calculate Dr Go of the reaction

DrG° = – RT ln K°p

= – (8.314 J K–1 mol–1) (298 K) ¥ 2.303 ¥ log (5.577 ¥ 10–5)

= 24 270 J mol–1 = 24.27 kJ mol–1

Since DrG° is positive, the reaction will not be spontaneous.

(c) DrS° = 
D Dr r kJ mol kJ mol

K

H G

T

∞ - ∞
=

-- -112 968 24 27

298

1 1. .

( )

= 0.298 kJ K–1 mol–1 = 298 J K–1 mol–1

(d) Since the number of gaseous substance on the product side is larger than in the 

reactant side, the reaction as written will be attended to by a large increase in entropy.

(e) Large positive value of change of enthalpy factor dominates over T DrS° term, and 

thus overall DrG° is positive.
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18. The following data for the equilibrium composition of the reaction

2Na(g) �  Na2(g)

at 1.013 MPa pressure and 1 482.53 K have been obtained.

mass % Na (monomer gas) = 71.3

mass % Na2 (dimer gas) = 28.7

Calculate the standard equilibrium constant K°
p.

Solution At equilibrium, we have

2 2

28 7

Na g Na g

71.3 g g

3.1 mol 0.624 mol

( ) ( )

.

�

   Total amount of species = 3.1 mol + 0.624 mol = 3.724 mol

The partial pressures are

pNa = xNap = 
3 1

3 724
1 013 0 843

.

.
. .¥ =MPa MPa

pNa2
=  xNa2

p =
0 624

3 724
1 013 0 170

.

.
. .¥ =MPa MPa

K°p =
p p

p p

Na

Na

kPa kPa

kPa kPa

2

2 2

170 100

843 100
0 023 9

/

( / )

( / )

( / )
.

∞

∞
= =

19. Given are the following standard free energies of formation at 298 K.

CO(g) CO g H O H O l

kJ molf

2 2 2

1 137 17 394 36 228 57 23

( ) ( ) ( )

/ . . .

g

D G - - - - - 77 13.

(a) Find D r G
o and the standard equilibrium constant K°p at 298 K for the reaction

CO(g) + H2O(g) �  CO2(g) + H2(g)

(b) Find the vapour pressure of pure water at 298 K.

(c) If CO, CO2 and H2 are mixed so that the partial pressure of each is 101.325 kPa 

and the mixture is brought into contact with excess of liquid water. What will 

be the partial pressure of each gas when equilibrium is attained at 298 K. The 

volume available to the gases is constant.

Solution (a)     DrG° = D f G°(CO2, g) + D f G°(H2, g) – D f G°(CO, g) – D f G°(H2O, g)

        = [– 394.36 + 0 + 137.17 + 228.57] kJ mol–1

         = – 28.62 kJ mol–1

Since DrG° = – RT ln K°p

therefore   log K°p = -
∞

=
-

- -
Dr

2.303

mol

J K mol K

G

RT

( )

. ( . ) ( )

28 620

2 303 8 314 298

1

1 1

   = 5.02

Thus K° = 1.047 ¥ 105

(b) For the determination of vapour pressure of water, we consider the equilibrium 

H2O(1) �  H2O(g)

The free energy change of the reaction is

D r G° = D f G°(H2O, g) – D f G°(H2O, 1)

= – 228.57 kJ mol–1 + 237.13 kJ mol–1 = 8.56 kJ mol–1
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Now employing the reaction

log K°
p = -

∞Dr

2.303

G

RT

we get log K°
p = -

¥
= -

-

- -
( . )

( . ) ( . ) ( )
.

8 56 10

2 303 8 314 298
1 500

3 1

1 1

J mol

J K mol K

or K°
p = 3.16 ¥ 10–2

Now, since K°
p = pH2O(g)/p° the vapour pressure of water will be equal to 3.16 kPa.

(c) Since now H2O(g) will remain in equilibrium with H2O(1), the partial vapour 

pressure of the former will be given by

pH2O = 3.16 kPa

At equilibrium, the partial vapour pressure of CO(g) will decrease from the given 

value of 101.325 kPa as it will combine with H2O(g) to give products. Let x be the 

decrease in the pressure of CO, then

pCO
2

= pH2
 = 101.325 kPa + x

Substituting these in the expression

K°
p =

( / ) ( / )

( / ) ( / )

p p p p

p p p p

p p

p p

CO H

CO H O

CO H

CO H O2

2 2

2

2 2
∞ ∞

∞ ∞
=

we get K°
p =

( . )

( . ) ( . )
.

101 325

101 325 3 16
1 047 10

2
5kPa

kPa kPa

+
-

= ¥
x

x

   =
( / . )

( / . ) ( . )
.

1 101 325

1 101 325 0 03119
1 047 10

2
5+

-
= ¥

x

x

kPa

kPa

or 1 + (x/101.325 kPa)2 + 2(x/101.325 kPa) = 3 266 – 3 266 (x/101.325 kPa)

or (x/101.325 kPa)2 + 3 268 (x/101.325 kPa) – 3 265 = 0

Solving for x/101.325 kPa, we get

x/101.325 kPa = 
- + + ¥

=
- +3 268 3 268 4 3 265

2

3 268 3 270

2

2

x/101.325 kPa � 1

Therefore the partial pressures of various species at equilibrium will be

pCO2
= pH2

 = 202.65 kPa

pH2O = 3.16 kPa

pCO =
p p

p K p

CO H

H O

kPa kPa

kPa

2 2

2

202 65 202 65

3 16 1 047 105o
=

¥
=

( . ) ( . )

( . ) ( . )
00 124. kPa

20. A container whose volume is V contains an equilibrium mixture that consists of 

2 mol each of PCl5, PCl3 and Cl2 (all as gases). The pressure is 3 bar and temperature is 

T. A certain amount of Cl2(g) is now introduced, keeping the pressure and temperature 

constant, until the equilibrium volume is 2V. Calculate the amount of Cl2 that was 

added and the value of K°P.

Solution At equilibrium, we have

PCl PCl Cl

2 mol 2 mol 2 mol

25 3� +

Total amount of gases = 6 mol
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Thus K°
p =

( / ) ( / )

( / )

/

/

p p p p

p p

p p

p p

PCl Cl

PCl

3
∞ ∞

∞
=

∞Ê
Ë

ˆ
¯

∞Ê
Ë

ˆ
¯

2

5

2

6
2

6

2

Substituting p = 3 bar, we get

K°
p = 1

Let x be the amount of PCl3 that combines when the amount y of chlorine is added 

keeping p and T constant. Thus, the amounts of PCl3, Cl2 and PCl5 become

n(PCl3) = 2 mol – x

n(Cl2) = y + 2 mol – x

n(PCl5) = 2 mol + x

2 is twice the initial volume, it follows 

that the total amount of gases in 2V is 2 ¥ 6 mol = 12 mol. Since n(PCl3) + n(PCl5)

is 4 mol, the total amount of chlorine is 8 mol.

Total amount of gases = y + 6 mol – x = 12 mol

Their partial pressures are

pPCl3
=

2 2
3

mol

12 mol

mol

12 mol
bar

-
=

-
¥

x
p

x

pCl2
 =

8 8
3

mol

12 mol

mol

12 mol
bar = 2 barp = ¥

pPCl5
=

2 2
3

mol +

12 mol

mol +

12 mol
bar

x
p

x
= ¥

Substituting these in the expression

K°
p =

( / ) /

( / )

p p p p

p p

PCl Cl

PCl

2

5

3
∞ ∞( )

∞
(where p° = 1 bar)

we get

2
2

4

2 2

2
1

mol

4 mol

2 mol +

mol

mol

mol

-Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

=
-

+
=

x

x

x

x

( )
( )( )

( )
(as K°p = 1)

or 4 – 2 (x/mol) = 2 + (x/mol)

or 3 (x/mol) = 2

x/mol =
2

3
= 0.67

Therefore, the amount of Cl2 added

y = 6 mol + x = 6.67 mol
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21. For the reaction

C2H6(g) �  C2H4(g) + H2(g)

K°
p is 0.05 and DrG° is 22.384 kJ mol–1 at 900 K. If an initial mixture comprising 

20 mol of C2H6 and 80 mol of N2(inert) is passed over a dehydrogenation catalyst at 

The total pressure is kept at 0.5 bar. Given: DrS° = 135.143 J K–1 mol–1 at 300 K. 

Calculate DrG° at 300 K. (Assume DrCp = 0.)

Solution Let x be the amount out of 20 mol of C2H6 that dissociate to give C2H4 and H2. Thus, 

we have

C H g C H g H g

mol

2 6 2 4 2

20

( ) ( ) ( )� +
- x x x

Total amount of gases = 80 mol + (20 mol – x + x + x ) = 100 mol + x

Thus K°
p = 

x

x
p p

x

x
p p

x

x

100 100

20

mol mol

mol

100 mol +

+
∞Ê

ËÁ
ˆ
¯̃ +

∞Ê
ËÁ

ˆ
¯̃

-

( / ) ( / )

( pp p/ )∞Ê
ËÁ

ˆ
¯̃

   =
x p p

x x

2

100 20

( / )

( ) ( )

∞
+ -mol mol

   =
( / ) ( / )

{ ( / )}{ ( / )}

x p p

x x

mol

mol mol

2

100 20

∞
+ -

Substituting the value of p and K°
p we have

0.05 = 
0 5

2 000 80

2

2

. ( / )

( / ) ( / )

x

x x

mol

mol mol- -
(where p° = 1 bar)

or    11(x/mol)2 + 80(x/mol) – 2 000 = 0

(x/mol) = 
- + +

¥
=

- +
=

80 80 4 11 2 000

2 11

80 307 3

22

227 3

22

2 ( ) ( ) . .

= 10.33

Therefore n(C2H6) = 20 mol – 10.33 mol = 9.67 mol

n(H2) = n(C2H4) = 10.33 mol

n(N2) = 80 mol

Total amount of gases = 100 mol + 10.33 mol = 110.33 mol

Amount % of C2H6 = 
9 67

110 33
100 8 765

.

.
.

mol

mol
¥ =

Amount % of H2 and C2H6 separately = 
10 33

110 33
100 9 363

.

.
.

mol

mol
¥ =

Amount % of N2 = 
80

100 72 509
mol

110.33 mol
¥ = .
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Since DrCP
is zero, therefore, DrH° and DrS° will be independent of temperature, i.e.

DrH°300K = DrH°900K

DS°300K = DS°900K

Now DrG°900K = DrH°900K – (900 K) DrS°900K

DrG°300K = DrH°300K – (300 K) DrS°300K

DrG°300K – DrG°900K = (600 K) DrS° = 600 ¥ 135.143 J mol–1

= 81.085.8 J mol–1 ª 81.086 kJ mol–1

DrG°300K = DrG°900K + 81.086 kJ mol–1

= 22.384 kJ mol–1 + 81.086 kJ mol–1= 103.47 kJ mol–1

22. A 2 dm3

reaction

CO(g) + 2H2(g) �  CH3OH(g)

Hydrogen is introduced until the equilibrium total pressure is 7 bar at which point 0.06 

mol of methanol is formed. (a) Calculate K°p.

if the same amounts of CO and H2 are used, but no catalyst is present such that no 

reaction occurs?

Solution (a) Let y be the amount of H2 that is the introduced and let the amount of methanol 

formed be equal to x. At equilibrium, we will have

CO + H CH OH3

mol

2 2

0 1 2

�

. - -x y x x

Total amount, n = (0.1 mol – x ) + (y – 2x ) + x = 0.1 mol + y – 2x

The total amount as given by the ideal gas equation is

n =
pV

RT
= - -

( ) ( )

( . ) ( )

700 2

8 314 700

3

3 1 1

kPa dm

kPa dm K mol K
= 0.240 6 mol

Amount of H2 introduced = y = n – 0.1 mol + 2x

Now it is given that x = 0.06 mol. Thus, we have

y = 0.240 6 mol – 0.1 mol + 0.12 mol = 0.260 6 mol

K°p =
( / ) ( / )

.
(

p p

p p p p

x

n
p p

x

n
p

CH OH

CO H
2

3

2
( / °)( / °) mol

∞Ê

Ë
Á

ˆ

¯
˜ =

∞Ê
Ë

ˆ
¯

-0 1
// ) ( / )p

y x

n
p p∞Ê

Ë
ˆ
¯

-
∞Ê

Ë
ˆ
¯

2
2

=

0 06

0 240 6
7

0 04

0 240 6
7

0 140 6

0 240 6
7

2

.

.

.

.

.

.

¥Ê
ËÁ

ˆ
¯̃

¥Ê
ËÁ

ˆ
¯̃

¥Ê
ËÁ

ˆ
¯̃

=
11 746

1 164 16 733

1 722

19 581

.

( . ) ( . )

.

.
=

= 0.089 6



Thermodynamics of Chemical Reactions 447

(b) Total amount of CO and H2 if no reaction occurs

= 0.1 mol + 0.260 6 mol = 0.360 6 mol

The pressure corresponding to this would be

p =
0 360 6 7

0 240 6

.

.

¥ bar
 = 10.49 bar

23. For the reaction

CO2(g) + H2(g)  CO(g) + H2O(g)

K°p has the value 10–5 at 298 K and DrS° = – 41.84 J K–1 mol–1. (DrH° and DrS° do

not change with temperature). One mole of CO, 2 mol of H2 and 3 mol of CO2 are 

introduced into a 5 dm3 DrG° at 298 K, (b) the equilibrium

pressure, (c) the amount of H2O(g) present at equilibrium, and (d) K°p at 373 K. 

Solution Let x be the amount of CO2 that combines at equilibrium. Thus, we have

CO2(g) + H2(g) � CO(g) + H2O(g)

3 mol – x 2 mol – x 1 mol + x x

(a) DrG° = – RT ln K°
p

= – (8.314 J K–1 mol–1) (298 K) ¥ 2.303 log (10–5)

= 28 529 J mol–1 = 28.529 kJ mol–1

(b) Total amount of gases = (3 mol – x ) + (2 mol – x ) + (1 mol + x ) + x = 6 mol

peq =
nRT

V
=

- -( ) ( . ) ( )

( )

6 8 314 298

5

3 1 1

3

mol kPa dm K mol K

dm

= 2 973.09 kPa

(c) K°
p = 

( / )( / )

( / )( / )

( / )
p p p p

p p p p

x
p p

x

CO H O

CO H2

mol

mol∞ ∞

∞ ∞
=

+
∞Ê

ËÁ
ˆ
¯̃

2

2

1

6 66

3

6

2

6

mol

mol

mol

mol

mol

( / )

( / ) ( / )

p p

x
p p

x
p p

∞Ê
ËÁ

ˆ
¯̃

-
∞Ê

ËÁ
ˆ
¯̃

-
∞Ê

ËÁ
ˆ̂
¯̃

=
x x

x x

x x

x x

( )

( )

( / )( / )

( / ) ( /

1

2

1

3 2

mol

(3 mol ) mol

mol mol

mol mo

+
- -

=
+

- - ll)

= 10–5

Since K°
p is very small, therefore, the value of x/mol is expected to be small. Thus

K°p =
( / )( )x mol

(3) (2)

1
10 5= -

or x / mol = 6.0 ¥ 10–5

(d) DrG°373K = DrH°373K – T DrS°373K

DrG°298K = DrH°298K – T DrS°298K

DrG°373K – DrG°298K = DrS° (298 K – 373 K);

(since DrH° and DrS° are independent 

of temperature)

DrG°373K = DrG°298K – (75 K) DrS°
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= 28 529 J mol–1 + (75 K) (41.84 J K–1 mol–1)

= 31 667 J mol–1 = 31.667 kJ mol–1

Now since DrG° = –RT ln K°
p , we get

log K°
p = -

∞
= -

-

- -
Dr

2.303

J mol

J K mol K

G

RT

31 667

2 303 8 314 373

1

1 1( . ) ( . ) ( )
 = – 4.434

K°
p = 3.681 ¥ 10–5

Alternatively, since

DrG° = DrH° – T DrS°

therefore, DrH° = DrG° + T DrS°

= 28 529 J mol–1 + (298 K) (– 41.84 J K–1 mol–1)

  = 16 060.68 J mol–1

log
( )

( )

K

K

H

R T T

p T

p T

2

1

1 1

2 1

o

o
r

2.303
= -

∞
-

È

Î
Í

˘

˚
˙

D

Thus log
( . )

( . ) ( . )

( )K p 373

5

1

1 110

16 060 68

2 303 8 314

75K
o

J mol

J K mol-

-

- -=
KK

(373 K) 298 K)(

È

ÎÍ
˘

˚̇

or log .
( )K p 373

510
3 681

K
o

- =

   K°
p(373K) = 3.681 ¥ 10–5

REVISIONARY PROBLEMS

7.1 (a) What do you understand by the term extent of reaction?

(b) If the reaction is carried out starting only from the reactants, show that the change in 

the amount of each component is related to its stoichiometry number by the expression

d d d
d

2

n n n

n

1

1

2 3

3n n
x= = = =�

where ns have negative values for reactants and positive values for products.

7.2 (a) The change in the free energy of a chemical reaction or due to changes in 

temperature and pressure is

dG = –S dT + V dp + S
B

B Bdm n

Express this in terms of extent of reaction and show that the reaction potential DrG

is given by

DrG = S
B

B Bm n  = (∂G/∂x )T, p

(b) Derive the following conditions regarding the nature of the reaction

 dG = DrG dx < 0 spontaneous

dG = DrG dx > 0 not possible

dG = DrG dx = 0 equilibrium
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7.3 (a) Show that the homogeneous ideal gas reactions, the reaction potential is given as

DrG = DrG° + RT ln { ( / ) }’ ∞
B

B
Bp p n

where the symbol P stands for multiplication to be carried over all the species of the 

reaction with nBs negative for reactants and positive for products.

(b) Comment upon the statement that ‘the relative magnitudes of the DrG° term and 

the logarithm term in the equation of part (a) determines the thermodynamic progress 

of the reaction’.

(c) What do you understand by the term reaction at equilibrium? State the conditions 

when the reaction is at equilibrium? The value of x at equilibrium is known as extent 

of reaction at equilibrium, xeq. Can it have a value of zero or one?

(d) Equation of part (a) can be rewritten as

DrG = DrG° + RT ln Q°p

where Q°p is the standard reaction quotient. Answer the following:

(i) What will be the value of DrG at equilibrium?

(ii) Q°p at equilibrium is written as K°
p . What is the name given to K°

p ?

(e) Show that at equilibrium

K°
p = 10–DrG°/(2.303 RT)

From this relation, justify that ‘K°
p of a reaction depends only on temperature and is 

independent of partial pressures of the components and that of the total pressure of 

the system’.

(f) Show that the equation of part (a) can be written as

DrG = RT
Q

K

p

p

ln
∞

∞

Discuss the nature of the reaction when

(i) Q°p > K°
p ; (ii) Q°p = K°

p and (iii) Q°p < K°
p

7.4 For a chemical reaction at equilibrium involving only gases, derive the following 

expressions:

(i) K°
p = K°

c (c°RT /p°)Dng (ii) K°
p = Kx (p/p°)Dng

(iii) K°
p = K

p p

n n
n
o

g

total

total/ °

/ ∞Ê
ËÁ

ˆ
¯̃

Dn

where K°
c , Kx and K°

n have their usual meanings.

7.5 (a) What do you understand by the term ‘reaction at equilibrium’? Is it a static 

equilibrium?

(b) Show that the reaction at equilibrium can be characterized by an equilibrium 

K = 
k

k

f

b

where kf and kb are the rate constants for the forward and the backward reactions? 

Using the law of mass action of Guldberg and Waage, show that the equilibrium 

constant of a reaction

a A + b B � c C + d D
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can be written as

K =
[ ] [ ]

[ ] [ ]

C D

A B

c d

a b

7.6 (a) State the principal of Le Chatelier and Braun as applicable to the chemical reactions.

With the help of this rule predict qualitatively the effect of

(i) changing the pressure

(ii) changing the temperature, and

(iii) addition of one of the components of the reaction.

(b) The quantitative explanation of Le Chatelier principle can be provided by 

thermodynamic criterion for equilibrium with the aid of which following expression 

can be derived

∂

∂
Ê
ËÁ

ˆ
¯̃

=
¢¢

∂

∂
Ê
ËÁ

ˆ
¯̃

= -
¢¢

= -
x x neq r

eq

eq r

eq

g
and

T

H

TG p

V

G

RT

p T

D D D( )

ppG¢¢eq

where G¢¢eq ={(∂2G/∂x 2)T, p}eq. Derive these relations.

(c) Using the relation of part (b), discuss the effects of temperature and pressure on 

the reaction.

2 2 3

1 3
N (g) + H (g) NH (g)

2 2
� ΔrH

° = – 46.11 kJ mol–1

H2(g) + Cl2(g) � 2HCl(g) ΔrH
° = – 184.61 kJ mol–1

N2O4(g) � 2NO2(g) Endothermic

Show that the above effects are consistent with the Le chatelier’s principle.

7.7 Discuss the effect of pressure on each of the following equilibrium constants.

Kp, Kx, Kc and Kn

7.8 (a) Derive the relation

d

d

o

r
ln K

T

H

RT

p =
∞D

2

or ln K
H

RT
Ip

o r= -
∞

+
D

or ln
( )

( )

K

K

H

R T T

p T

p T
o

2

1

1 1

2 1

o

r= -
∞

-
È

Î
Í

˘

˚
˙

D

(b) Give schematic sketches of plots between log K°
p ant 1/T for an endothermic and 

an exothermic reaction. What will be their slopes?

(c) With the relation given in part (a), derive the following conclusions.

K°p(T
2
) > K°p (T

1
) if D rH° is positive

and K°p (T
2
) < K°p (T

1
) if D rH° is negative

where T2 > T1.

(d) Derive the following relation

d

d

o
rln K

T

U

RT

c =
∞D

2
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7.9 Taking the typical reaction of

SO2(g) + 
1

2
O2(g) � ��� ��  SO3(g)

discuss the effect of an inert gas on equilibrium.

7.10 (a) Explain why it is permissible to omit the activity terms of pure solids and liquids 

while writing the K°p expression for a heterogeneous reaction involving gaseous and 

pure condensed phases.

(b) Take the following typical heterogeneous reaction

A(1) �  A(g) or A(s) �  A(g)

show that ln
p

p

H

T T

2

1 2 1

1 1
= -

∞
-

È

Î
Í

˘

˚
˙

Dr

R

7.11 Taking the following typical reactions along with the data provided, write down the 

expressions for the equilibrium constants K°p , Kx and K°c.

Discuss qualitatively the effects of pressure, volume and inert gas on the value of x.

Are these effects consistent with the Le Chatelier’s principle?

7.12 On the basis of Le Chatelier’s principle, discuss the effects of temperature, pressure

and addition of common substance on the following typical examples:

(i) Dng = 0; exothermic (ii) Dng = 0; endothermic

(ii) Dng = +ve; exothermic (iv) Dng = +ve; endothermic

(v) Dng = –ve; exothermic (vi) Dng = –ve; endothermic

7.13 For the reaction

N2O4(g) � 2NO2(g)

(i) Derive the following relations for one mole of gaseous mixture:

Gpure = xDm°D + xMm°M + RT ln (p/p°)

DmixG = RT (xD ln xD + xM ln xM)

where subscript D stands for dimer and M for monomer.
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(i) Show that for this reaction x /mol is equal to a.

(ii) Show that Gpure and DmixG can be written in terms of x¢ (= x,/ mol) as follows:

Gpure/mol = m°D + (2m°M – m°D) x¢ + [1 + x¢ ] RT ln (p/ p°)

= m°D + D rG x ¢ + [1 + x¢ ] RT ln (p/p°)

DmixG/mol = RT [(1 – x¢  ) ln (1 – x¢  ) + 2x¢ ln (2x¢  ) – (1 + x¢  ) ln (1 + x¢  )]

(iv) If m°D = 97.89 kJ mol–1, m°M = 51.31 kJ mol–1 and DrG° = 4.73 kJ mol–1.

Calculate the values of Gpure, DmixG and Gtotal for the following values of x¢  and then 

plot these against x¢ .
x¢  = 0.0, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 1.0

(v) Show that at equilibrium DmixG decreases as rapidly of Gpure increases, i.e.

∂

∂
Ê
ËÁ

ˆ
¯̃

= -
∂

∂
Ê
ËÁ

ˆ
¯̃

G G

T p T p

pure mix

x x
, ,

( )D

(vi) Show that

∂

∂
Ê
ËÁ

ˆ
¯̃

< -
∂

∂
Ê
ËÁ

ˆ
¯̃

G G

T p T p

pure mix

x x
, ,

( )D

before equilibrium

∂

∂
Ê
ËÁ

ˆ
¯̃

> -
∂

∂
Ê
ËÁ

ˆ
¯̃

G G

T p T p

pure mix

x x
, ,

( )D

beyond equilibrium.

7.14 Consider the reaction

H2(g) + I2(g) �  2HI(g)

(a) If there are one mole of H2, one mole of I2 and zero mole of HI present before 

the reaction advanced, express the free energy of the reaction in terms of extent 

of reaction x.

(b) What form would the expression for the G have if the iodine were present as 

solid?

with the help of standard free energies of formation, DrG° of a given reaction can be 

calculated.

7.16. Explain:

(i) Why is the synthesis of NH3 preferably carried out at low temperature and high 

pressure?

(ii) Why is the manufacture of O3 carried out at high temperature and high pressure?

TRY YOURSELF PROBLEMS

7.1 What is the effect of a catalyst on the DrG° of a chemical reaction?

7.2 Prove that for a chemical reaction

ln K
S

R

H

RT
G T Sp

o
r=

∞
-

∞
= -

D D
D Dr r

universeand

7.3 The reaction

1

2

3

2
2 2 3N g H g NH g( ) ( ) ( )+ =
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was started with initial amounts as

n(N2, g) = 1 mol; n(H2, g) = 2 mol ; and n(NH3, g) = 0.5 mol.

What would be the extent of reaction at the stage when

(a) n(N2, g) = 0.5 mol, (b) n(H2, g) = 1.2 mol, and (c) n(NH3, g) = 1.0 mol?

(Ans. (a) 1 mol, (b) 0.533 mol, and (c) 0.5 mol)

7.4 Suppose the reaction N2O4(g) �  2NO2(g) is started with initial amounts as

N2O4(g) = n and NO2(g) = n¢
Show that the extent of the reaction is related to the degree of dissociation through 

the relation

x = na

and hence show that if n = 1 mol then x / mol = a.

7.5 The maximum percentage yield of SO3 obtained from the reaction of SO2 and O2 is 

greater at 25 °C than at 250 °C. Predict the sign of DrH°.

7.6 The free energy of a reaction at progress may be taken as a function of T, p and x,

that is

G = f (T, p, x )

Show that

(a) dG = – S dT + V dp + DrG dx

dA = – S dT – p dV + DrG dx

dH = T dS + V dp + DrG dx

dU = T dS – p dV + DrG dx

(b) DrG
G A H U

T p T V S p S

=
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃x x x x, , , ,VV

(c)
∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

G

T

A

T
S

G

p

H

pp V T S, , , ,

;
x x x x

== V

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃ = -

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

Ê
ËÁ

ˆ
¯̃

A

V

U

V
p

H

S

U

ST S p V, , , ,

;
x x x x

== T

NUMERICAL PROBLEMS

7.1 (a) For ozone at 298 K D f G° = 163.43 kJ mol-1, compute the standard equilibrium 

constant K°p for the reaction

3O2(g) �  2O3(g)

(b) The above reaction is studied starting from 3 mol of O2 at 298 K. Assuming that 

the advancement at equilibrium is very much less than unity, show that

x =
3

2
p K p (Ans. 2.35 ¥ 10–29)

7.2 0.1 mol of H2 and 0.2 mol of CO2

the following reaction occurs to give an equilibrium pressure of 50.662 5 kPa.

H2(g) + CO2(g) �  H2O(g) + CO(g) (1)

Analysis of the mixture shows that it contains 10 mol % of H2O.

A mixture of CoO(s) and Co(s) is then introduced such that the additional equilibria 

(2) and (3) are established

CoO(s) + H2(g) �  Co(s) + H2O(g) (2)

Equilibrium

Constant
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CoO(s) + CO(g) �  Co(s) + CO2(g) (3)

Analysis of the new equilibrium mixture thus obtained is found to contain 30 mole 

% of H2O.

Calculate the three standard equilibrium constants Kc1, Kc2 and Kc3 for the reaction 

(1), (2) and (3), respectively. (Ans. 0 075 63, 9, 119.048)

7.3 Consider the equilibrium

2NO(g) + Cl2(g) �  2NOCl(g)

At 298 K for NOCl(g), D f G° = 66.358 kJ mol–1. The D f G° for NO(g) is 86.688 kJ 

mol–1. If NO and Cl2 are mixed in the molar ratio 2 : 1 show that at equilibrium

x
NO

=
2

1
3

2

2
1 3 1 3

p K
x

p Kp p

Ê

ËÁ
ˆ

¯̃
= -

Ê

ËÁ
ˆ

¯̃

/ /

and NOCl

Assume that xNOCl = � 1. Note how each one of these quantities depends on pressure.

Evaluate xNO at 101.325 kPa and 1 013.25 kPa. (Ans. 5.3 ¥ 10–3 , 2.4 ¥ 10–3)

7.4 For the reaction

MnCO3(s) �  MnO(s) + CO2(g)

DrG°/kJ mol–1 = 115.729 – 0.059 2 (T/K) log (T/ K)

determine the temperature at which the dissoiciation pressure of CO2(g) will be

50.662 5 kPa. (Ans. 668.85 K)

7.5 Calculate the equilibrium pressure of oxygen over CuO and Cu at 25 °C. Given

DfG°(CuO) = –127.2 kJ mol–1. (Ans. 2.62 ¥ 10–43 kPa)

7.6 In the reaction XY2 �  X + 2Y, all the three substance are ideal gases. A 10.0 dm3

2. A catalyst for dissociation is then introduced 

and when the equilibrium is attained, the pressure of the mixture is 121.59 kPa. The 

temperature is 300 K. Find the standard equilibrium constant for the given reaction.

(Ans. 0.005 79)

7.7 For the reaction

H2(g) + I2(g) �  2HI(g)

K°
p = 54.8 at 417 °C. (a) When a mixture initially containing 8 mol of HI, 2 mol 

of H2 and 0.5 mol of I2 is heated to 417 °C, will more HI be formed? (b) What is 

the maximum amount of HI that can be formed when 1 g of H2 and 100 g of I2 are 

heated to 417 °C in a 2 dm3
2, I2 and HI was 

brought to equilibrium at 417 °C. What was the composition of the system?

(Ans.  (a) no more HI formation, but some HI will decompose;

(b) 0.681 6 mol;

(c) n(H2) = 0.319 mol, n(I2) = 0.319 mol, n(HI) = 2.362 mol)

7.8 Consider the reaction for manufacture of NO from NH3

4NH3(g) + 5O2(g) = 4NO(g) + 6H2O(g) + heat

Suppose 4 mol of NH3 and 5 mol of O2 are mixed at 773 K and 1.013 MPa pressure 

and equilibrium is attained.

(a) Explain whether this much information is sufficient for the calculation of 

concentrations of all species.

(b) Discuss the change in relative amounts that would follow if temperature is raised 

while pressure is constant.

(c) What change in relative amounts will take place if pressure is decreased to

0.101 3 MPa keeping T constant?
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(d) How will the value of K°
p for the equilibrium at 773 K compare with that of K°

p

at 873 K?

(e) How will the value of K°
p at 1.013 MPa compare with the value of K°

p at

0.101 3 MPa.

(Ans. (a) Since Kp is not known, equilibrium concentrations cannot be 

determined,

(b) equilibrium will be shifted to left,

(c) equilibrium will be shifted to right,

(d) ln (K°
p(873K) /K°

p(773K) rH°/ {R(773 K) (873 K)}

(e) remains same)

7.9 It is required to pass CO and H2O vapour at 1.013 MPa and 0.506 5 MPa, respectively, 

into a reaction chamber at 973 K and to withdraw CO2 and H2 at partial pressures of 

1.595 MPa. Is this theoretically possible? K°p for the reaction

CO(g) + H2O(g) �  CO2(g) + H2(g)

is 0.71.

7.10 A chemist claims that the following reaction occurs at 298 K

SF6(g) + 8HI(g) �  H2S(g) + 6HF(g) + 4I2(s)

Is it thermodynamically possible? Given

f G°(SF6, g) = –991.608 kJ mol–1
f G°(H2S, g) = –33.012 kJ mol–1

f G°(HI, g) = 1.297 kJ mol–1
f G°(HF, g) = –270.73 kJ mol–1

f G° of CCl4(1) is – 68.618 kJ mol–1. Is it thermodynamically possible to prepare 

CCl4(1) from C(s) and Cl2(g) at 298 K? Are there any conditions assumed in your 

answer?

2 and 

N2 at room temperature. Is this possible?

7.13 It is possible to prepare essentially pure HCl by combination of elements. This is not 

so for HI. Explain how you would arrive at this conclusion thermodynamically.

7.14 For the reaction

FeCl3(g) �  FeCl2(g) + 
1
2 Cl2(g)

K°p is 7.4 ¥ 10–13 at 1473 K and 1.2 ¥ 10–11
rH° rS° for

the reaction at 1773 K and 101.325 kPa. (Let initially the amount of FeCl3 be one 

mole and those of Cl2 and FeCl2 be zero.) 

7.15 Consider the reaction

Ag2O(s) �  2Ag(s) + 
1
2  O2(g)

for which

rG°/J mol–1 = 32 384 + 17.32(T /K) log (T /K) –116.48(T /K)

(i) At what temperature will the equilibrium pressure of O2 be 101.325 kPa?

(ii) Express log K°p r H° r S° as a function of temperature

[Ans. (i) 460 K

(ii) log K°p = – (7 071 K/T ) – 3.778 log (T /K) + 25.48;

r H°/ J mol–1 = 32 384 – 7.531 (T /K)

r S°/ J K–1 mol–1 = 108.95 – 17.32 log (T /K)]

Thermodynamic

Feasibility

Temperature 

Variations
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7.16 The following table gives the standard Gibbs free energy of formation of Cl(g) at 

three temperatures:

T/K D fG°/ kJ mol–1

100 115.19

1 000 62.19

3 000 –56.43

(a) For the reaction 
1
2 Cl2(g) �  Cl(g), determine the standard equilibrium constant 

K°p at each of these temperatures. Determine the mean DrH° and then DrS°

at each of these temperatures.

(b) At 1 700 K and 111.46 kPa, one gram of chlorine occupies 19.6 dm3. What are

K°p Kx and K°c for the following reaction?

1
2 Cl2(g) �  Cl(g)

Assume ideal gas behaviour.

(c) At 1 600 K, the degree of dissociation of chlorine is 0.071 at 101.325 kPa. What 

are K°p, Kx and K°c for the following reaction?

Cl2(g) �  2Cl(g)

Assume ideal gas behaviour.

7.17 (a) The equilibrium constant for the dissociation

2H2S(g) �  2H2(g) + S2(g)

is K°p = 0.011 8 at 1 338 K while the enthalpy of dissociation is DH° = 177.40 kJ 

mol–1. Find the standard equilibrium constant of the reaction at 1 200 K.

(Ans. 0.050 7)

(b) If the degree of dissociation of the reaction of part (a) at 1 023 K and 101.325 

kPa is 0.055, calculate K°p of the reaction. What will be the effect of (i) increase 

in pressure, and (ii) the addition of an inert gas in the reaction mixture?

(Ans. 0.009 186)

7.18 For the reaction

H2(g) + I2(g) �  2HI(g)

K°p = 50.0 at 721 K and K°c = 669 at 623 K. Find DrU° and D r H° of the reaction.

(Ans. 98.84 kJ mol–1, 98.84 kJ mol–1)

7.19 The standard equilibrium constant for the reaction

Ba2+ + Y4–
�  BaY2–

(where H4Y represents ethylendiamine tetraacetic acid)

is 108.01 at 0 °C and 107.68 at 30 °C Calculate the enthalpy change and the entropy 

change for the reaction. Assume DH° to be independent of temperature.

(Ans. –17.422 kJ mol–1, 89.55 J K–1 mol–1)



(pB = xB pB
*

mB(soln) = m (1)

m  = mB°  + RT (pB /p°) (2)

p

mB(soln) = mB°  + RT ln (pB /p°) (3)
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Chemical Equilibrium in an Ideal 

Solution

Annexure
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k i †
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Substance
Df

kJ mol

H ∞
-1

Df

kJ mol

G∞
-1

S∞
- -J K mol1 1

Cp,m

1J K mol- -1

Inorganic Compounds

NaCl(s)

NaI(s)

Na2CO3(s)

3(s)

Na2 4(s)

KCl(s)

Kl(s)

KMnO4(s)

K2 2O7(s)

3(s)

2(s)

2(s)

CaO(s)

2(s)

CaC2(s)

CaCO3

BaCO3(s)

BaO(s)

Fe2O3

Fe3O4

a)

2(s)

ZnO(s)

CuO(s)

4(s) 109

4 ◊ 2O(s) 134

4 ◊ 2O(s) 280

Values of Thermodynamic

Properties

Appendix I

SELECTED VALUES OF THERMODYNAMIC PROPERTIES AT 298.15 K AND 1 BAR

(Contd
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Substance
Df

kJ mol

H ∞
-1

Df

kJ mol

G∞
-1

S∞
- -J K mol1 1

Cp,m

1J K mol- -1

3(s)

2(s)

3O4(s)

Al2O3 a)

2 a)
CdO(s)

4 2O(s)

2Cl2(s)

2(s)
O3

2

2O(l)

2O2(l)

2

I2

2

3

2

NO2
N2
N2O4(l)
N2O4
N2O5(s)
N2O5

3
N2 4(l)

3NO3(s)

4Cl(s)
PCl3
PCl5

CO2

2(l)

(Contd
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Substance
Df

kJ mol

H ∞
-1

Df

kJ mol

G∞
-1

S∞
- -J K mol1 1

Cp,m

1J K mol- -1

Organic Compounds

4

C2 2

C2 4

C2 6

–117 –113

3

3

3CO2

C2 5

C3 8

C4 10

C6 6

Ions in Solutions
–

F–

Cl–

–

I–

2–

–

4
2– –293

NO3
–

4
+

CO3
2–

3
–

CN–

–
3

IO–
3

MnO4
–

MnO4
2– –653 59

Zn2+ 46

Cu2+

+

Fe2+

Fe3+

2+

Li+

Na+

K+

(Contd
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Substance
Df

kJ mol

H ∞
-1

Df

kJ mol

G∞
-1

S∞
- -J K mol1 1

Cp,m

1J K mol- -1

3+

Gaseous Atoms

O

F

Cl

I

N

C

Elements in their Stable States of Aggregation

2 0 0

O2 0 0

F2 0 0

Cl2 0 0

2(l) 0 0

I2(s) 0 0

0 0

N2 0 0

0 0

Al(s) 0 0

Zn(s) 0 0

Cu(s) 0 0

0 0

Fe(s) 0 0

0 0

Li(s) 0 0

Na(s) 0 0

K(s) 0 0
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Df

kJ mol

H ∞
-1

2O

2O

• 2O

NaCl(s)

2O

2O

• 2O

2O

2O

• 2O

KCl(s)

2O

2O

• 2O

2O

2O

• 2O

C N O F Cl I

436 412 388 463 565 431 366 299 338

348 484 338 276 238 259

C== 612

305 163 270 200

N== 613 409

N∫∫ 890 945

360 146 185 203

O== 743 497

565 155

431 254(242)

366 219 193

99 210 178 151

250 212 264

176

ENTHALPY OF FORMATION OF SOLUTES AND SOLUTIONS AT 298.15 K AND 1 BAR PRESSURE

APPROXIMATE BOND ENTHALPIES (IN kJ mol–1) AT 298.15 K
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Cp, m/J K–1 mol–1 = a + b (T/K) + c(T/K)2

Gas a b × 103 c × 106

2

N2

O2

CO

CO2

2O

4

C2 4

C2 6

C6 6

3

Cl2
NO

NO2

3

N2O4

MOLAR HEAT CAPACITIES OF GASES AT CONSTANT PRESSURE AS A FUNCTION OF 

TEMPERATURE (298 K TO 1 000 K)



CGS units SI units
Physical quantity

Name Symbol Name Symbol

–8 A°

s s

Celsius

kelvin

Ï
Ì
Ó

°C

°K

Ï
Ì
Ó

kelvin K

joule J
kilojoule kJ

A A

Physical quantity Name of unit
–2 –1

joule 2 s–2

C = A s

volt 2 s–3 A–1 –1 s–1

2 s–3 A–2 –1

–1

2

3

–3

–1

–1

2 –2

–2

W–1

tesla –2 –2

–1

–1

Units and Conversion FactorsAppendix II

CGS UNITS VIS-A-VIS UNITS

UNITS DERIVED FROM THE BASIC SI UNITS
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Quantity Unit Equivalent*

A° 10–10 –1 2

10–3 3

10–5 N

10–7 J

¥ 10–19 J
–1

–2

–2

6 2) 105 –2

10–1 –1 s–1

Fraction Symbol Multiple Symbol

10–1 d 10 deka da

10–2 102

10–3 103 kilo k

10–6 m 106 M

10–9 nano n 109 G

10–12 1012

10–15 1015 P

Constant SI units

g –2

NA ¥ 1023 –1

–24 2

a0
–11

k –23 J K–1

e –19 C

me
–31

F 4 –1

R ¥ 10–2 3 –1 –1

–1 –1

3 K–1 –1

3 K–1 –1

3 K–1 –1

V –2 3 –1

h ¥ 10–34 J s

m –27

c0
8 –1

–2

CONVERSION OF CGS UNITS TO SI UNITS

VALUES OF SOME PHYSICO-CHEMICAL CONSTANTS



Criterion of chemical reaction

at equilibrium, 375

nonspontaneous, 374

spontaneous, 374

Cross-derivative rule, 4

Cyclic integral, 11 Cyclic process, 3

Cyclic rule, 6

boundary, 2

closed system, 2

enthalpy function, 52

entropy function, 178

extensive variable, 3

fugacity, 278

Gibbs free energy, 259

Helmholtz free energy, 258

intensive variable, 3

isolated system, 2

open system, 2

partial molar quantities, 326

state variables, 2

surroundings, 2

Derivatives

First, 4

Partial, 3

Second, 4

Total, 4

Degree of dissociation, 414

from density measurement, 424

from pressure measurement, 424

Differential

enthalpy of dilution, 133

enthalpy of solution, 133

exact, 12

inexact, 12

partial, 3

total, 4

Dissociation of

dinitrogen tetroxide, 424

water, 418

Additivity rule, 349 Adiabatic

process, 3

Adiabatic volume change of

an ideal gas, 80

a van der Waals gas, 95

Apparent molar volume, 330

Barometric formula, 321

Boltzmann equation

for entropy, 232

Bomb calorimetre, 130

Bond dissociation enthalpy, 139

Bond enthalpy, 139

Born Haber Cycle, 126

Boundary, 2

Bridgman formulae, 308

Calorie, 1

Carnot cycle, 163

Charles law, 49, 50

Chemical equilibrium

in gases, 375

in ideal solutions, 465

involving condensed phases, 379

Chemical potential, 341

of an ideal gas, 345

Change in state

adiabatic, 3

at constant pressure, 3

at constant volume, 3

Classical thermodynamics, 1

Clausius inequality, 181

Closed systems, 2

compressibility, 24

performance, 168

thermal expansion, 24

Compression process, 30

Index
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in isothermal volume change, 187

in a reversible phase transforma-

tion, 215

in an irreversible phase transforma-

tion, 215

in a chemical reaction, 224

Equation of state

thermodynamic, 187, 193, 301

Equilibrium

chemical, 375

criteria for, 256

constant Kc, 384

constant Kn, 385

constant Kp, 376

constant Kx, 385

dynamic, 380

stability, 259

Equilibrium constant

pressure dependence of, 388

temperature dependence of, 389

Escaping tendency, 341

Euler’s reciprocity relation, 4, 13

Euler’s theorem for homogeneous

functions, 28

Exact differential, 12

Exergonic reaction, 263

Exothermic reaction, 120

Expansion

adiabatic, 80, 95

free, 78

involving an ideal gas, 76

involving a van der Waals gas, 90

irreversible, 78, 84, 94, 97

isothermal, 76

multistage, 33

reversible, 77, 81, 88, 90, 95

single-stage, 32

Extensive variable, 3

Extent of reaction, 119, 373

First law of thermodynamics, 46

Free energy

change of a reaction, 262

Gibbs, 259

Helmholtz, 258

Effect on equilibrium of

pressure, 386

inert gas, 396

temperature 387

Endergonic reaction, 263

Endothermic reaction, 121

Energy, 47

Lattice, 126

temperature variation, 50

Enthalpy, 52

standard, 118

temperature variation, 53

Enthalpy of

combustion, 128

dilution, 132

formation, 122

formation of ions, 137

hydration, 134

ionization, 136

neutralization, 135

precipitation, 137

reaction, 119

solution, 131

transition, 137

Entropy

and disorderlines, 209

and probability, 229

characteristics of 184

function, 178

of mixing, 356

of system, 181

of surroundings, 181

of universe, 183

residual, 235

standard state of, 208

temperature and volume depen-

dence, 185

temperature and pressure depen-

dence, 191

third law, 221

Entropy changes

for an ideal gas, 199

in expansion of an ideal gas, 209

in isobaric volume change, 192
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of formation, 268

of mixing of ideal gases, 356

partial molar, 326

pressure dependence of, 274

standard, 276

standard tables of, 459

temperature dependence 

of, 286

First law of themodynamics, 46

Fugacity, 278

Function

energy, 47 enthalpy, 52

entropy, 178

free energy, 259 fugacity, 278

homogeneous, 28 thermody-

namic, 17

Gibbs paradox 371

Gibbs-Duhem equation, 355

Gibbs-Helmholtz equation, 286

Gibbs valley, 406

Green’s theorem, 11

Heat capacity at constant vol-

ume, 51, 58

at constant pressure, 51, 58

table of values, 459, 464

Heat capacity difference, 58

expressions, 58

for an ideal gas, 59

for an van der Waals gas, 59

Helmholtz free energy, 258, 271

Henry’s law, 465

Hess’s law, 124

Homogeneous

ideal gas reactions, 375, 412

functions, 28

Ideal solution, 327

Inexact differentials, 12

Integral

enthalpy of solution, 131

enthalpy of dilution, 132

graphical interpretation of, 9

cyclic, 12

ordinary, 9

Integrating factor, 20

Integration

cyclic, 12

ordinary, 9

Intensive variable, 3, 28

Inversion temperature, 71

Irreversible process, 37

Isobaric process, 3

Isochoric process, 3

Isolated system, 3

Isothermal volume change of

an ideal gas, 76

a van der Waals gas, 90

Isothermal process, 3

Joule’s

experiment, 62

for an ideal gas, 67

for a van der Waals gas, 67, 70

Joule-Thomson experiment, 65

Kelvin temperature scale, 173

Kirchhoff’s relation, 148

Law of conservation of energy, 47

Law of mass actin, 380

Lattice energy, 126

Le Chatelier’s principle, 386

Legendre Transformations, 21

Line integral, 10

Maxwell relations, 297

Mechanical equivalent of heat, 1

Nernst heat theorem, 319

Open system, 2

Partial derivatives, 3

Partial molar quantity, 326, 343

Patital molar volume, 327

determination of, 335

Perpetual motion machine
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Probability and entropy, 229

Process

adiabatic, 3

compression, 30

expansion, 30

irreversible, 37

isenthalpic, 65

isobaric, 3

isochoric, 3

isothermal, 3

reversible, 37

quasi-static, 3

Quasi-static process, 3

Raoult’s law, 465

Reaction

endergonic, 263

endothermic, 121

exergonic, 263

exothermic, 120

Reaction of

dissociation of dinitrogen tetrox-

ide, 424

dissociation of water, 418

synthesis of ammonia, 419

Reaction potential, 374

Reaction quotient, 376

Resonance energy, 146

Reversible processes, 37

Second law of thermodynamics, 162

statements, 166

Sign convention of heat and

Solution

enthalpy of, 131

ideal, 327

nonideal, 327

Spontaneity of reaction, 263

Standard equilibrium constant, 376

Standard molar enthalpy, 118

State function, 16

Statistical thermodynamics, 1

Surroundings, 2

Synthesis of ammonia, 419

System

closed, 2

isolated, 2

multicomponent, 326

of variable composition, 326

open, 2

Table of thermodynamic

properties, 459

Temperature

inversion, 71

Kelvin, 173

The thermodynamic square, 297

Thermochemistry, 118

Thermodynamic

criteria of equilibrium, 256

equation of state, 187, 193, 301

temperature scale, 173

Thermodynamics

classical, 1

of chemical reactions, 373

second law of, 162

statistical, 1

third law of, 221

zeroth law of, 46

Third law of entropy, 221

Total differentials, 4

Trouton’s rule, 215

Units and Conversion factors, 465

Values of

physical constants, 466

thermodynamic properties, 457

Varibales

extensive, 3

intensive, 3

Van’t Hoff equation, 389

compression, 30

expansion, 30

Zeroth law of thermodynamics, 46
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