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Preface

This book presents the latest research on applications of artificial intelligence and the
Internet of Things in renewable energy systems.Advanced renewable energy systems
must necessarily involve the latest technologies like artificial intelligence and Internet
of Things to develop low-cost, smart, and efficient solutions. Intelligence allows the
system to optimize the power, thereby making it a power-efficient system; whereas,
Internet of Things makes the system independent of wire and flexibility in operation.
As a result, intelligent and IoT paradigms are finding increasing applications in
the study of renewable energy systems. This book presents advanced applications
of artificial intelligence and the Internet of Things in renewable energy systems
development. It covers such topics as solar energy systems, electric vehicles, etc.
In all these areas, applications of artificial intelligence methods such as artificial
neural networks, genetic algorithms, fuzzy logic, and a combination of the above,
called hybrid systems, are included. The book is intended for awide audience ranging
from the undergraduate level up to the research academic and industrial communities
engaged in the study and performance prediction of renewable energy systems.
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Chapter 1
A Day-Ahead Power Output Forecasting
of Three PV Systems Using Regression,
Machine Learning and Deep Learning
Techniques

Muhammad Naveed Akhter, Saad Mekhilef, Hazlie Mokhlis,
and Munir Azam Muhammad

Abstract The forecasting of output solar power improves the quality, reliability
and stability of power system. The aim of this research is day-ahead prediction of
PV output power for 3 solar systems. The three PV systems are polycrystalline,
monocrystalline and thin-film systems. A deep learning technique (RNN-LSTM)
is proposed for day-ahead prediction of solar power output. The regression [GPR,
GPR(PCA) and machine learning [SVR, SVR(PCA)] techniques are also developed.
The forecasting accuracy is compared based on accuracy measurement parameters
such as RMSE, MSE, correlation coefficient (R) and coefficient of determination
(R2). One-year data for 2016 is considered for analysis. 70% of data is utilized for
training and 30% for validation and testing. It is found that deep learning technique
has better forecasting accuracy than other developed techniques in terms of lower
(RMSE, MSE) and higher (R, R2), for day head forecasting of PV power output.

Keywords Deep learning · Forecasting · Day ahead · PV power output
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1 Introduction

The demand for electrical energy has been increased due to world globalization
and modernization. On the other hand, the prime fossil fuel sources of electrical
energy are also being depleted from the earth [1]. Therefore, alternate sources of
energy are under research for the past few decades. Among these alternate sources,
PV sources have a major impact as renewable and sustainable energy sources. PV
energy has benefits like low maintenance cost, more robust, enhanced lifespan, and
fixed payback period [2].

The PV energy is utilized in both urban and rural areas for electrification [3, 4].
The installed PV capacity is enhanced from 2 GW in 2007 to 130 GW in 2019 [5].
Furthermore, it will be increased to 1700 GW by the end of 2030 according to report
of International Energy Agency (IEA) [6]. Figure 1 describes the PV power output
rise for the duration (2007–2019). The PV systems are mainly installed in China,
Germany, the USA, and Japan.

The PV power output production is strictly dependent upon the climate factors
such as humidity, wind speed, solar radiation and temperature. It has a strong correla-
tion with solar radiation. Due to fluctuation in the weather, the solar radiation varies
abruptly and alters the PV power output consequently. This variability output solar
power affects the quality of power system. Therefore, forecasting of solar power
output is necessary in order to maintain the power system’s stability and reliability.
Having the forecasted information, remedial measures are taken to maintain the
power system stability.

Various forecasting techniques have been used for the prediction of PV power
output such as regression, machine learning (SVM, ANN, ANFIS), physical, remote
sensing and sky imagemethods [8–11]. Table 1 elaborates the benefits and drawbacks
of these existing forecasting techniques.
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Table 1 Benefits and limitations of the existing forecasting techniques

Techniques Benefits Limitations

Persistence model [6] Linear data Nonlinear data

Statistical methods [6] Linear data Nonlinear data

ANN, ANFIS [12] Nonlinear data Random initial data, local
minima, overfitting, and
complex multilayered structure

SVM [13] No local minima Highly sensitive to kernel
function, tube radius (E) and
penalty factor (C)

ELM [6] Faster convergence Random choice of input
weights and hidden node biases

Physical methods (NWP) [14] Medium-term forecast Restriction on meteorological
data from local departments

Remote sensing [15] No need for ground sensors Low-resolution satellite data

Sky images [15] Very short-term prediction for
future cloud patterns

Limited coverage from ground

To overcome the limitations of existing techniques, a deep learning technique
(RNN-LSTM) is proposed. The forward pass of RNN is similar to MLP-ANN with
a lone hidden layer, except the activations in hidden layer from the current inputs
and preceding time steps. RNN has an issue of gradient vanishing. When weights
are adjusted by backpropagation, the network is optimized in a negative direction.
As a result, the network is not updated.

The objective of this study is to develop an LSTM-RNN technique for a day-ahead
forecasting of PV power output for 2016 data. Secondly, a day-ahead prediction
of power output is also performed annually using GPR, SVR, GPR (PCA), SVR
(PCA). Finally, a comparative analysis is performed for all these techniques. The
main contributions of the study are described as follows:

The contributions of this research are as follows.

(1) A (RNN-LSTM)method for day before prediction of PV power output of three
different PV systems.

(2) The regression [GPR, GPR(PCA)] and machine learning [SVR, SVR(PCA)]
techniques are also developed for a day-ahead prediction of PV power output.

(3) A comparative analysis of deep learning method is performed with the
regression and machine learning techniques.

The remaining paper is structured as follows; Sect. 2 describes the site, data
collection and methodology are described in Sect. 3. While results and discussions
are presented in Sect. 4. The conclusions are summarized in Sect. 5.
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Table 2 Description of different PV systems

PV system type No of PV modules Capacity of each module (W) Total capacity (KW)

Polycrystalline 16 125 2

Monocrystalline 25 75 1.875

Thin-film 20 135 2.7

Combined system 6.575

2 Description of Site and Data Preprocessing

PEARL’s grid-linked PV system was commissioned for use in October 2015.
Table 2 describes the types of PV systems and their capacity. The results calcu-
lated in this study are based on data measured between January 2016 and December
2016. A 5-min data is recorded by a webserver. The solar irradiance, wind speed,
ambient and PV module temperature are the four recorded parameters [16]. Data is
divided into two segments, 70% for training and 30% for testing in order to compare
all the applied techniques equally.

3 Methodology

3.1 Gaussian Process Regression

This is the nonparametric probabilistic model based on some kernel functions. It
represents that the joint Gaussian distribution is followed by a finite set of values.
GP model provides a way of indicating prior distributions over functions. For a
training data set D, = {xn, yn} for n = 1, 2, . . . ,N , where the input is xn∈ Rdx and
output yn ∈ R, the output in yn ∈ R. Suppose the observation model is

y = f (x) + ε (1)

where f is the latent function and ε is Gaussian noise with zero mean and variance
σ 2
n , i.e. ε ∼ N (0, σ 2

n ). While y is the actual target value y − [
y1 . . . yn

]T
and x is the

input features as x − [x1 . . . xn]T .
For the new sample Xtest , prediction is the average of prediction results for all

models

ypredicted = 1

P

P∑

P=1

Mp(Xtest) (2)

where Mp(Xtest) is the prediction result for new test data set.
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3.2 Support Vector Regression (SVR)

It is used to enhance the generalization ability by minimizing the empirical risk
and confidence interval using the hypothesis of structural risk minimization [17]. In
addition to classification, SVM can also be applied for successfully for regression
problems known as support vector regression (SVR).

The general mathematical function for SVM is given as

y = f (x) =
M∑

n=1

∝n.ϕ(x) = wϕ(x) (3)

where ϕ(x) perform the nonlinear transformation and out is the linearly weighted
sum of M. The decision function of SVM is described as

y = f (x) =
{

N∑

n=1

∝n.k(xn, x)

}

− b (4)

where k is kernel function. Proper choice of kernel function is necessary to make the
data separable in feature space. While N , ∝n and b are the number of training data,
objective function parameter and bias values, respectively.x and xn are independent
vector and vector used in the training.

3.3 Principal Component Analysis (PCA)

It transforms the group of correlated variables into small sets of variables that are not
correlated and preserves most of the information of original data. The orthonormal
transformation z can be used to transform w to new space y as follows:

Y = ZW (5)

The Y matrix elements are derived from linear combination ofW matrix elements,
which translates the pattern of linkage between the samples. The Y covariancematrix
is defined as:

CY = ZCWZY (6)

CW is the covariance of matrix W . The loading matrix Z can be found from the
eigenvalue equation shown as

(CY − λI)ei = 0 (7)
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The corresponding eigenvalues will determine the magnitude of these principal
components. Putting all the eigenvectors and eigenvalues in descending order, the
covariance of the first principal component is maximum. It should be considered that
there is no correlation between the resulting principal components, even though input
variables are correlated due to the orthogonality of the decomposed eigenvectors [18].

3.4 Deep Learning Technique (RNN-LSTM)

In training of RNN both forward and backward passes are involved. The weights
of RNN are adjusted by backward pass, known as backpropagation through time
(BPPT). BPPT consists of frequent application of the chain rule like standard
backpropagation.

The RNN has an important feature of using related mapping information between
input and output. However, the range of context is limited for standard RNN archi-
tectures. The LSTM improves the accuracy of basic RNN model. The basic LSTM
neuron is shown in Fig. 2. The subnets in LSTM-RNN are known as memory blocks.
Three gates are there in each memory block, namely, input, output, and forget gates.
These gates perform the operation of write, read and reset for memory cells. The
input gate saves and transfers the information towards output on its activation. Then,
the data is shifted to the next neuron on the activation of output gate. The forget gate
deletes the information in memory cell on its activation. Therefore, the activation of
these gates realizes the long short-term memory of input data sequence [19]. The

Fig. 2 LSTM-based neuron
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training of LSTM neurons is also performed by forward and backward passes. The
BPTT method is used for updating the neuron weight.

3.5 Performance Parameters to Measure Forecasting
Accuracy

The parameters used for the evaluation of the prediction model are given as follows:

(a) Root mean square error (RMSE)

RMSE =
√

1

N

∑N

i=1
(X − Y )2 (8)

(b) Mean square error (MSE)

MSE = 1

N

∑N

i=1
(X − Y )2 (9)

(c) Correlation coefficient (r)

r =
∑N

i=1

[(
X − Xavg

) ∗ (
Y − Yavg

)]

√∑N
i=1(X − Xavg)

2 ∗ ∑N
i=1(Y − Yavg)

2
(10)

(d) Coefficient of determination (R2)

R2 = 1 −
∑N

i=1(X − Y )2

∑N
i=1(Y − Yavg)

2
(11)

4 Results and Discussion

Figure 3 describes the training RMSE and MSE values for day-ahead forecasting of
power output for polycrystalline PV system in the year 2016. It is obvious from the
figure that the deep learning technique (RNN-LSTM) has the lowest training RMSE
andMSE values of 8.33 and 69.4, respectively, in comparison with other techniques.
While GPR (PCA) is second to deep learning technique. In Fig. 4, DL(LSTM) has
also performed better for day-ahead prediction of PV power output lowest testing
RMSE and MSE of 23.09 and 532.94 as compared to other techniques.
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Fig. 3 Training RMSE and MSE for polycrystalline PV system for the year 2016
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Figure 5 describes the training RMSE and MSE for day-ahead prediction of
Monocrystalline PV system power output for 2016 data. It is shown that the deep
learning technique (RNN-LSTM) has the lowest training RMSE and MSE values of
3.27 and 10.66, respectively, in comparison with other techniques. While GPR is at
the second position to deep learning technique with training RMSE and MSE of 19
and 360.7, respectively. In Fig. 6, GPR(PCA) has performed better than DL(LSTM)
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Fig. 6 Testing RMSE and MSE for monocrystalline PV system for the year 2016

with lowest testing RMSE and MSE of 16.94 and 287.12. However, the DL (LSTM)
has RMSE and MSE values of 19.97 and 278.3, respectively.

Figure 7 describes the training RMSE and MSE values for day-ahead prediction
of thin-film PV power output for the year 2016. It is obvious from the figure that
the deep learning technique (RNN-LSTM) has the lowest training RMSE and MSE
values of 3.58 and 12.84, respectively, in comparison with other techniques. While
SVR (PCA) is second to deep learning technique with RMSE and MSE values of
23.5 and 552.5, respectively. In Fig. 8, DL(LSTM) has also performed better for
day-ahead prediction of PV power output with the lowest testing RMSE and MSE
of 22.014 and 484.6 as compared to other techniques.
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Figure 9 describes the training R and R2 values for day-ahead prediction of power
output for polycrystalline PV system in the year 2016. It is obvious from the figure
that the deep learning technique (RNN-LSTM) has the highest training R and R2

values of 0.9976 and 0.9953, respectively, in comparison with other techniques. In
Fig. 10, DL (LSTM) has also performed better for day-ahead forecasting of PV
power output with highest testing R and R2 of 0.9851 and 0.9704 as compared to
other techniques.

Figure 11 describes the training R and R2 values for day-ahead forecasting of
power output for monocrystalline PV system in the year 2016. It is obvious from the
figure that the deep learning technique (RNN-LSTM) has the highest training R and
R2 values of 0.9988 and 0.9977, respectively, in comparison with other techniques.
In Fig. 12, GPR (PCA) has performed better for day–ahead prediction of PV power
output with the highest testing R and R2 values of 0.9763 and 0.9531 as compared
to other techniques. However, DL (LSTM) has also a comparative performance with
testing R and R2 of 0.967 and 0.935, respectively.
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Fig. 9 Training R and R2 for polycrystalline PV system for the year 2016
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Fig. 11 Training R and R2 for monocrystalline PV system for the year 2016
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Fig. 12 Testing R and R2 for monocrystalline PV system for the year 2016
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Fig. 14 Testing R and R2 for thin-film PV system for the year 2016

Figure 13 describes the training R and R2 values for day-ahead forecasting of
power output for thin-film PV system in the year 2016. It is obvious from the figure
that the deep learning technique (RNN-LSTM) has the highest training R and R2

values of 0.9997 and 0.9996, respectively, in comparison with other techniques. In
Fig. 14, DL (LSTM) has also performed better for day-ahead prediction of PV power
output with higher testingR and R2 values of 0.9940 and 0.9881 as compared to other
techniques.

5 Conclusion

This research proposed a deep learning technique (RNN-LSTM) for a day-ahead
forecast of output solar power for three different PV systems installed in the faculty of
engineering, UM, Kuala Lumpur, in comparison with regression [GPR, GPR (PCA)]
and machine learning [SVR, SVR (PCA)] techniques. The data for the year 2016 is
considered to compare the forecasting results of these techniques. The considered
performance parameters are RMSE, MSE, R, and R2. For the training phase, 70% of
data is used. While remaining 30% of data is used for the testing phase.

It is found that the DL (LSTM) has better prediction performance in terms of
lowest (RMSE and MSE) and highest (R and R2) for polycrystalline and monocrys-
talline PV systems compared with regression and machine learning methods.
However, for monocrystalline PV system DL (LSTM) has comparative performance
with GPR (PCA) for testing (RMSE and MSE) and with SVR (PCA) for testing (R
and R2).

Therefore, it is concluded that the deep learning technique (RNN-LSTM) is the
best technique for day-ahead prediction of output solar power for three different
systems. The forecasting performance can be evaluated for more than one-year data.
The ANN and ANFIS methods can also be incorporated for future work.
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Chapter 2
Internet of Things and Internet of Drones
in the Renewable Energy Infrastructure
Towards Energy Optimization

Ashok G. Matani

Abstract A significant growth in implementing various renewable energy systems
is observed throughout the world. Variable renewable electricity (VRE) sources such
as solar PV and wind power have gained attractive investments in many coun-
tries, resulting in rapid growth in the installed capacity of these green sources of
energy. The contribution of these variable renewable electricity energy sources had
produced around 8.7% of global electricity as compared to 27.3% of all renewable
energy sources at the world level. Therefore, there is an urgent need to improve
the power system flexibility as the progress of the integration of variable renewable
electricity energy sources. International efforts tomeet renewable energy deployment
and energy efficiency measures are resulting in a safe and reliable manner of renew-
able energy, thereby, resulting in minimized environmental, climate impacts, air
quality improvement, good public health, and increased jobs and economic growth,
increased grid reliability as well as lower energy costs on a household, corporate and
national levels, The joint efforts by various institutions, corporations, governments,
and non-governmental organizations (NGOs) has resulted in enhancing world level
energy efficiency highlighting the potential to significantly minimization of green-
house gas emissions on the earth. This paper highlights the latest developments in
implementing Internet of Things (IoT) GPS and GIS tools and applications in energy
sector in various parts of the world.

Keywords Sensor-based technology and data science · Efficiency and automation
of wind farms and solar fields · Remotely regulate and control tracking systems

1 Introduction

The practicality, applicability and flexibility of drones offer arewidely acknowledged
throughout the world, be it any field of application. Drones are now being used in
the energy sector for various applications in both the generation and distribution side
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of the sector. Reference [1] Major areas where drones can be employed include, but
are not limited to.

1. Power plant mapping and inspection,
2. Corridor Mapping,
3. Corona Detection,
4. Substation Static Line Inspection,
5. Intermittent Power [2].

Timeline of drones and exploration of drone-based applications.

2 Latest Emerging Innovative Trends in Renewable Energy

2.1 Optimizing Offshore Wind in the U.S.

Wind turbines are commissioned on ocean vistas in Northern Europe. A major
offshore wind farm in the Netherlands is providing power to one million house-
holds. The United States is planning to optimize the incredible potential of offshore
wind. Several states along the Eastern Seaboard have projects in the works, including
Virginia, New York, Rhode Island and New Jersey. Atlantic Shores wind farm
financed by the oil and gas company Royal Dutch Shell is planning to provide power
to about one million homes [3].
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2.2 More Number of Electric Vehicles Running on Roads

More and more electric vehicles (EVs) have been appearing on the roads in recent
years. According to estimates, there were only around 17,000 electric cars globally
in 2010. In 2020more than over sevenmillion EVs are being sold every day. The new
models “tidal wave” of new EV models, including the Rivian truck, Ford’s electric
Mustang, an affordable Volkswagen and Volvo’s electric SUV [4].

2.3 Utilities and Corporations Investing in Solar Energy
at Record Levels

Despite the upheaval caused by the COVID-19 pandemic, large-scale solar instal-
lations have not been much affected. According to a new report, solar installations
are expected to grow by 43 percent in the year 2021 and are expected to install a
total of 19 Gigawatts—for providing power to nearly four million homes. In addi-
tion to activity from utilities, corporations continue to invest in clean energy sources
at record levels. With Amazon’s latest investments in 26 solar and wind projects,
the company is now investing in 6.5 Gigawatts of renewable energy for providing
power to about 1.7 million homes for a year and has surpassed Google as the largest
corporate buyer of renewable [5].

2.4 Energy Efficiency Encouragement from Governments

Energy efficiency is an essential part of creating a clean energy economy—it saves
money, increases comfort and improves air quality. The energy plan includes a
considerable focus on energy efficiency. The plan looks to upgrade and weatherize
millions of homes and businesses and incentivize efficient-appliance manufacturing.
According to a report, consumers and businesses could save more than $1 trillion
on utility bills through 2050 when the new efficiency standards for many types of
appliances and products will be implemented [6].

2.5 Energy Storage Becoming a Significant Part of the Power
Grid

Energy storage, namely, battery storage is increasingly utilized homes, businesses
and power grid at record levels as prices for these technologies continue to drop.
A new report found that the cost of lithium-ion battery storage has reduced from
$1,200 per kilowatt-hour in 2010 to just $137 per kilowatt-hour in the year 2020.
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Table 1 Renewable energy capacity (GW)—for the year 2018

BRICS EU-28 China US Germany India Japan UK World total

Geotechnical
power

0.1 0.9 0.0 2.5 0.0 0.0 0.5 0.0 13.3

Bio power 44 42 17.8 16.2 8.4 10.2 4.0 7.7 130

Hydro power 519 130 322 80 5.6 45 22 1.9 1132

Solar power 214 115 176 62 45 33 56 13 505

Ocean power 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.5

Wind power 262 179 210 96 59 35 3.7 21 591

Concentrating
solar thermal
power

0.8 2.3 0.2 1.7 0.0 0.2 0.0 0.0 5.5

Total
renewable
energy
capacity

1040 469 727 250 119 124 86 44 2378

Per capita
capacity

0.2 0.7 0.3 0.6 1.4 0.05 0.5 0.6 0.2

**BRICS countries include Brazil, Russian Federation, India, China, South Africa

Energy storage is essential for increasing the amount of clean energy on the grid, and
it has proven to save utilities and consumers money, while preventing blackouts. A
massive Tesla battery in Australia has already saved more than $100 million in two
years, and U.S. power companies are implementing the same [7] (Tables 1 and 2).

3 IoT Applications Areas in Renewable Energy

3.1 Automation to Improve Overall Production

Solar and wind energy are the most popular renewable energy sources due to their
abundance availability and reliability as compared to any other renewable energy
sources. In 2019, Germany sufficed a quarter of its energy demands from its windmill
farms. The cost associated with energy production through these resources has also
decreased significantly. From the year 1977 onwards, the cost of solar panels has
reduced by 99%. Japan, Germany and China are the global leaders in using solar
energy [8].

The assimilation of Artificial Intelligence (AI) and Internet of Things (IoT)
systems along with sensors in solar and wind energy systems application had
increased their reliability. In order to maximize energy production, most of the solar
panels use dual-axis trackers. These tracking systems calibrate the angle of solar
panels and assist to receive the maximum solar radiation throughout the day [9].
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Table 2 Comparison of renewable energy indicators in 2018 and 2019

Year 2019 Year 2018

INVESTMENT [in billion USD]

Annual value of investment in renewable power and
fuels

billion USD 301.7 296.0

POWER [in GigaWatts]

Capacity of renewable energy (including
hydropower)

GigaWatts 2,588 2,387

Capacity of renewable energy (excluding
hydropower)

GigaWatts 1,437 1,252

Capacity of hydropower GigaWatts 1,150 1,135

Capacity of wind power GigaWatts 651 591

Capacity of solar PV GigaWatts 627 512

Capacity of bio power GigaWatts 139 131

Capacity of geothermal power GigaWatts 13.9 13.2

Capacity of concentrating solar thermal power
(CSP)

GigaWatts 6.2 5.6

Capacity of ocean power GigaWatts 0.5 0.5

HEAT

Approximated modern bio heat demand Exajoules (EJ) 14.1 13.9

Approximated solar hot water demand Exajoules EJ 1.4 1.4

Approximated geothermal direct-use heat demand Petajoules (PJ) 421 384

TRANSPORT

Annual ethanol production billion liters 114 111

Annual fatty acid methyl esters (FAME) biodiesel
production

billion liters 47 41

Annual hydrotreated vegetable oil (HVO) biodiesel
production

billion liters 6.5 6.0

Artificial Intelligence (AI) and Internet of Things (IoT) systems can be used
to remotely regulate and control these tracking systems to ensure maximum energy
production efficiency. By using analytics solutions, themovement of the sun and solar
radiation is tracked which is used to automatically adjust the angle of solar panels.
Also, Artificial Intelligence (AI) and Internet of Things (IoT) systems in wind energy
systems are used to monitor operating parameters affecting power generation [10].
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3.2 Smart Grids for Elevated Renewable Implementation

The growth of renewable energy is restricted due to less reliability of transmission
and distribution systems. The traditional energy grids were built to support the one-
way transmission of uniform energy from power plants and bill the customers once a
month. Hence nowadays these grids are not applied to support the varying electricity
supply from renewable sources. Artificial Intelligence (AI) and Internet of Things
(IoT) systems have enabled the creation of smart grids supporting manual switching
between renewable and long-established power plants to ensure an uninterrupted
power supply. This switching in smart grids is supporting the varying nature of
renewable energy and facilitates non-stop energy supply to the consumers [11].

3.3 IoT Increasing the Adoption of Renewable Systems

The development of smart grids through Artificial Intelligence (AI) and Internet of
Things (IoT) systems has escalated the growth of renewable energy sources. Because
they offer benefits of power consumption monitoring and real-time alerting which
allows energy utilities to include renewable sources for energy distribution [12].

3.4 Contribution from End Consumers

Even the end consumers are now utilizing renewable energy sources to reduce their
electricity bills and become self-dependent. Many countries and India are providing
solar subsidies to citizens to increase the adoption of renewable energy systems.
Countries are assisting the renewable energy users to develop solar stations on their
rooftop and use them for personal electricity needs. Moreover, consumers can also
discharge the excess electricity into the smart grids in exchange for money. This is
helping countries to increase the overall adoption of renewables and create a greener
environment for citizens to live in [13].

3.5 Balancing Supply and Demand

Smart grids allow energy utilities to provide consumers with a consistent power
supply. The integration of Artificial Intelligence (AI) and Internet of Things (IoT)
systems in renewable energy assists the energy suppliers to accommodate electricity
from renewable sources and suffice the end-consumer demands. The use of smart
energy meters on a commercial level gives real-time consumption data to elec-
tricity suppliers [14]. By using analytics and data processing solutions, they can
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also develop trends and patterns related to peak load conditions. Therefore, by using
manual switching techniques, energy utilities have reduced the use of power plants
during normal off-peak timings and run themwhen the electricity demand is extreme,
resulting in synchronizing the demand and supply conditions in addition to reducing
the emission limits of toxic substances in the environment [15].

3.6 Cost-Effectiveness

As per estimates, the global energy demands can be fulfilled by harnessing 1.2% of
solar energy from the Sahara desert (around 110,400 km2) thereby reducing losses
linked with the transmission and distribution of electricity from such a remote loca-
tion. Power losses in transmission lines can reach up to 10% for long distances
thereby creating complications and challenges which are preventing the escalated
growth of solar and renewable energy as a whole. Moreover, the implementation of
Artificial Intelligence (AI) and Internet of Things (IoT) systems in solar energy will
also reduce the cost of building and managing solar stations significantly [16]. Real-
time monitoring and predictive analytics features of Artificial Intelligence (AI) and
Internet of Things (IoT) systems are used to monitor parameters that can reduce the
efficiency of the power station or result in unexpected breakdowns. Hence, utilities
can cut some costs related to inspection and repairs; and improve their efficiency
[17].
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4 Significant Role of Big Data Analytics in the Renewable
Energy Sector

Data analytics and machine learning are assisting in data-driven decisions-making
for predicting of weather conditions and weather forecasting, maintaining the supply
chain, improving productivity, increasing affordability as well as fulfilling various
shortcomings in the energy sector infrastructure. This has resulted in implementa-
tion of these intelligent technical interventions and technologies has resulted in the
modernization of the energy sector [18].

4.1 Data Forecasting

Predictive analytics is the primary requirement of the energy sector for data fore-
casting. Hence, upgrading predictive analysis methods are assisting in the reduction
of costs, conserve energy, offering adaptability to changing conditions, and improving
final user experience is to be performed immediately towards enhancing forecasting
of power. The cost of mismanagement and errors in the renewable energy industry is
marginal and in this situation, forecasting helps to avoid that and accurately predicts
changes in demand, overloads, and potential failure of systems [19].

4.2 Efficient Resource Management

Optimum utilization and resources management of available energy infrastructure
is considered significant for the energy and power sector. By implementing data
analytics and predictive mechanisms, renewable energy suppliers are preparing
demand schedules before actual dates, predicting problems at the initial level,
dispatching energy resources comparatively in good situation and conserving saving
resources to the best possible levels resulting in low energy utilization and energy
tariffs bills for customers [20].

4.3 Intelligent Storage of Resources

There is an emerging need to conserve and store renewable energy. Therefore, new
capacity addition and new management systems are of significant importance and
big data and analytics assist in efficient renewable energy storage towards optimizing
energy storage [21].
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4.4 Improving Safety and Reliability

By implementing data analytics and big data tools, it is possible to achieve improved
safety, efficiency and reliability to estimate usage patterns, identify energy leakage
and the health of the energy infrastructure systems.

4.5 Predicting Transformer Breakdowns and Prevention

Mismanagement of energy is very much hazardous and uneconomical. Artificial
Intelligence (AI) predicts system overloads and gives awareness to users about poten-
tial transformer breakdowns. Hence, it is essential to implement data intelligence to
forecast andprevent deadly disasters so that energy systems infrastructure is protected
[22].

5 Maharashtra Using Drones in EHV Power Transmission
Lines and Towers

Maharashtra in India has become the first state to use drones for aerial surveillance
and inspection of extra-high voltage (EHV) power transmission lines and towers to
reduce risk to staff, slash maintenance costs and minimize losses from outages. The
Union Ministry of Home Affairs and the Director-General of Civil Aviation have
permitted the Maharashtra State Electricity Transmission Company Ltd. (MSETCL)
to utilize drones to inspect faulty lines, reducing the risk posed to operating staff
of MSETCL [23, 24]. Up till now, workers are using ladders and chairs to inspect
transformers which are very risky in the hilly areas of the State. Maharashtra State
Electricity Transmission Company Ltd., is planning to provide a drone equippedwith
ultraHDcameras to capture high-resolution close-up photographs andvideos ofEHV
lines and towers in each zone. Thiswill allow a better assessment of faults. In addition
to zonal offices, the head office in Mumbai will be monitoring the drones to guide
engineers and operators in case of any failure and guidance required. The proposed
drones will assist in slashing maintenance costs and reducing various losses from
outages. These drones have the potential to revolutionize the inspection of power lines
and transmission towers. It will also allow aerial surveillance, which is more efficient
than manually surveying power lines. Drones will also help to detect defects at the
incipient stage. The Maharashtra State Electricity Distribution Company Limited
(MSEDCL) is planning for the electrification of remote and inaccessible tribal areas
in Melghat and Gadchiroli of Maharashtra, which presently do not have electricity
due to geographical hurdles due to forest clearances [25].
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6 Long-Distance Drones Used for Surveillance to Avoid
Network Failures

Energy generating and transmission companies in Europe and other developed
economies are utilizing drones used for surveillance of long-distance grids for iden-
tification of damage and leaks to avoid network failures to avoid losses of billions
of dollars being incurred per year. Italy’s Snam, one of the biggest gas utilities in
Europe, is utilizing BVLOS drones in the Apennine hills around Genoa for scouting
a 20 km stretch of the pipeline because they fly beyond the visual line of sight
of operators. France’s RTE—a subsidiary of Snam and EDF’s network has tested
prototypes of long-distance drones which are flying at low altitudes over pipelines
and power lines. The company also tested a long-distance drone inspecting 50 km
range of transmission lines and sent data to virtually model a section of the grid. For
the coming two years, in drone technology, the company has planned a budget for
investing 4.8 million Euros ($5.6 million). France’s RTE—a subsidiary of Snam and
EDF’s network has recently tested prototypes of long-distance drones flying at low
altitudes for surveillance of pipelines and power lines [26].

According to Navigant Research reports, various power grid companies are plan-
ning to spend from about $2 billion in the year 2020 to more than $13 billion/year
on drones and robotics by 2026 globally. At present due to network failures and
forced shutdowns, the energy sector incurs a loss of about $170 billion every year.
For controlling these losses, flying robots traveling dozens of kilometers without
stopping are now utilized by power companies. New advanced technology drones
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which are 100 times faster thanmanual measurement, more accurate than helicopters
andwith artificial intelligence devices on board are now utilized by renewable energy
companies in various sectors to monitor and link solar and wind parks to grids [27].

7 Conclusions

Considering continuous exposure to weather, moisture intrusion and dust, solar
panels are easily damaged and hence their efficiency is affected. With programmed
waypoints, drone surveys are performed and replicated to pinpoint damage and
provide operators with up-to-date imagery of damage, cracks or shading. A drone
easily detects damage on a solar panel, monitors the panel’s efficiency also. With an
infrared camera, defects and temperature imbalances on solar panels are identified to
allow operators to quickly order repairs, and keep operations running at maximum
efficiency. Therefore, drone surveys are a fast and economical way for regular main-
tenance, and maintaining solar farms functioning at optimal efficiency. A drone also
conducts a complete thermal inspection by using an IR camera to identify sub-module
hotspots that manual inspections did not consider. Drone data is uploaded into an
interactive, online web map and sent to a Smartphone App for use by maintenance
and repair personnel in the field.

Considering mergers and rapid advancement in radio communication and smart-
phone technologies, consumer and commercial drones have grown at an exponential
rate. Radio communication assists in governing the aircraft movement, and smart-
phones had resulted in steep minimization of the prices of various equipment such
as chips, microcontrollers, cameras, accelerometers and other sensors. These have
resulted in capturing of data with better computing capabilities. Data analytics and
machine learning assist inmaking data-driven decisions for predictingweather condi-
tions, increasing affordability and improving shortcomings maintaining the supply
chain, thereby enhancing productivity.
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Chapter 3
Reinforcement Learning Algorithm
to Reduce Energy Consumption
in Electric Vehicles

Manavi Shukla and Mandeep Singh Burdak

Abstract This chapter consists of the analysis, design and testing of a reinforcement
learning algorithm that is used to monitor the fuel efficiency in different environ-
mental and terrain conditions to provide an optimized velocity, which if driven upon
can improve the energy consumption behavior of an electric vehicle. To monitor the
effects of the algorithm, a Simulink Electric Vehicle Model is used with parame-
ters of a normal Sedan Size car with a lithium-ion battery energy source. First, the
various factors that contribute to energy losses in an electric vehicle are defined.
Then, the model-free Q-learning technique is explained. Finally, the tested energy
consumption results are discussed, and further scope of this algorithm is mentioned.

Keywords Reinforcement learning · Electric vehicle · Energy optimization

1 Introduction

The upcoming technology of electric vehicles brings us the freedom to use batteries as
the fuel, making it a clean and feasible energy source. But unlike normal gas vehicles,
EVsmay not particularly have a huge tank for the gas. It uses a huge amount of battery
power to overcome external conditions like air drag, extra weight, inclination, and
temperature. Also, since the battery is being used for powering the complete vehicle,
air conditioner usage causes a major power drain [1]. All these factors ultimately
affect the range that you can get out of your EV in one full charge. We propose
an algorithm to monitor and optimize the range of the EV. The algorithm uses the
monitored data from different APIs to process the information and maximizes the
cost function of the total power required for given trip details, and on the basis of the
power required, power consumed and battery charge it assists the driver to follow
certain driving patterns for improving the range of the vehicle.
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1.1 Overview

For the development of the project, we collect data from the working electric vehicle
models in the market [2]. We make sure that the latest technologies and optimization
techniques have been incorporated into our project to make it more effective, cheap
and less time-consuming.Theoptimization algorithm is amachine learning technique
called reinforcement learning.

Reinforcement Learning. Unlike supervised learning, it does not contain labeled
training dataset to learn from. It works on the idea of exploiting and exploring given
information to find the optimal solution even for the situations that occur outside the
problem. It can be either model-based or model-free [7].

The model-based method is used when the actions to be taken can be planned
beforehand by predicting future outcomes and building a probability distribution
matrix for sets of states and actions in our environment.

The model-free method learns by trial and error. Therefore, for optimization of an
indefinite environment, where it’s impossible to predict all outcomes, this approach
is favored.

2 Literature Review

The use of reinforcement learning (RL) for energy management has been around for
a very long time. In real-life situations where the dynamics are always changing,
RL plays a crucial role in helping to find a strategy to manage the parameters that
help increase or decrease the cost function. Some researchers have also worked
on other core algorithms to solve the problem of optimal usage of battery/power
utilization without machine learning. Although, research is definitely tending toward
ML because of its sensitivity to unknown scenarios. With better methods, having
greater accuracy, ML has become dependable unlike ever before.

• In the past, researchers have proposed reinforcement-learning-based real-time
system for energy management for a plug-in HEV (Hybrid Electric Vehicle) [3]
in which the power supply is distributed between the battery and IC engine or
battery and ultracapacitor.

• In 2014, a system was proposed that optimizes vehicle’s fuel consumption where
cars are moving behind each other automatically. And the designed system was
able to work at the starting level of V2V (Vehicle to Vehicle) communications.
The system is developed based on Model Predictive Control (MPC) [4].

• In 2015, research was done for a hybrid electric tracked vehicle using
reinforcement-based energy management techniques. Two optimal control solu-
tions: Dyna Algorithm and Q-learning method were applied and it was concluded
that the computational cost of Dyna algorithm is substantially lesser than that of
the stochastic dynamic programming [5].
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3 Design and Analysis of Q-Learning-Based Algorithm

The energy requirements of a vehicle can be understood by the various forces applied
to it.

Ftotal = Fi + Fs + Fr + Fa (1)

where
Fi = Initial Force
Fs = Road Slope Force
Fr = Road Load Force
Fa = Aerodynamic drag force
As all these factors are predominantly depend on weight, velocity, and accelera-

tion of the vehicle and as weight optimization was not the intention of our research,
the velocity was taken as the primary action parameter of our algorithm [6]. For opti-
mization of an indefinite environment, where it is impossible to predict all outcomes,
model-free approach is favored. The equation that correctly defines the learning
approach is as follows.

Q(St,At) ← Q(St,At) + α
[
Rt + 1 + γmaxaQ(St+1,At) − Q(St,At)

]
(2)

where Q(St , At) = current state and action Qmatrix,
α, γ = learning rate, discount rate,
Rt = Reward f or the current action maxa,
Q(St+1, At) = Maximum expected f uture reward (Fig. 1).
We obtain various long natural driving schedules containing data for acceleration,

charge requirements, external factors such as wind speed, temperature, road gradient
4 from online datasets. The power request for the respective driving schedule is
calculated (Fig. 2).

Fig. 1 Block diagram of reinforcement learning algorithm
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Fig. 2 Sample trip data used for training the algorithm

Table 1 Table captions should be placed above the tables

Q-learning parameters Real-life dependent variables

Environment Location, road gradient, wind speed, fuel available

Agent Driving schedule (velocity, acceleration)

State Value of environmental parameters at next location

Rewards Ratio of distance upon power drawn in each iteration

Actions Velocity change corresponding to driving, accelerating, braking,
coasting, traction drive

We will use Web APIs to get traffic data, weather data and make environment
simulation in Simulink and also, the expected vehicle output data from the vehicle
manufacturer to build the algorithm. Then we assign these real-time data to the
equation variations (see Table 1).

In order to study the effects of our algorithm on a vehicle, we added a few blocks in
a default Simulink electric vehicle model to simulate its behavior in accordance with
more realistic environmental data points. This model simulates a vehicle driving on
different terrainswith variable elevation. In thismodel,we havemade different blocks
for simulating different systems in a vehicle in order to simplify the working and
making it easier to understand. The model takes in as input a series of velocity, wind
speed, temperature and road inclination angle which it experiences at any given time
interval. And as output this model gives us the value of various vehicle parameters
such as acceleration, velocity, distance covered, energy consumed, different energy
losses, torque produced, net tractive force experienced, state of charge of the battery,
etc., at any given time during the journey. These parameters are then automatically
exported toMATLABworkspace, where we have used them in our code to get power
requirement results, and then input suggestive velocity to optimize the same. The
output of the algorithm thus is a matrix [1 × N], with optimal velocity in the row for
different state parameters in n columns.

Finally, a sample trip from real electric vehicle drive schedules was taken for
testing the algorithm. The power required with respect to the time graph when the
car is driven on optimal velocity versus the velocity with which it was initially driven
is plotted (Fig. 3).
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Fig. 3 Power requirement as observed initially versus after the optimized velocity has been assigned

4 Result

We sampled the data in multiple time intervals to calculate the average power-saving
efficiency (Fig. 4).

Therefore, after testing our algorithm on a simulated vehicle of a normal size
sedan vehicle having vehicle parameters of a TATA Tigor car, we found that the
power consumed after optimization is 79.33% of the power consumed initially.

Fig. 4 A sampled graph for clear representation of power consumption variations of initial velocity
versus optimized velocity
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5 Conclusions

We can apply our reinforcement learning algorithm in any type of fuel-consuming
vehicle to increase fuel sustainability but mainly it is a new and efficient approach
to improve battery consumption in electric-charging-based vehicle because it is a
comparatively new area of research and not much has been done or implemented to
assure optimization of batteries. For example, a more personalized driver assistance
model will only be possible by partnering with a vehicle company to get day-to-day
user data to develop compatible hardware that can be attached to the vehicle to extract
all the data by the permission of the user.

This algorithm is not only restricted to land-borne vehicles; it can re-learn given
the parameters of any vehicle. For example, airplanes, ships, drones and even smart
home appliances. Our product is a tool to assist all battery backing devices, either as
an extension to the hardware the user is engaging with, or as a standalone software
with packaged embedded systems.
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Chapter 4
Simulation and Performance Analysis
of Standalone Photovoltaic System
with Boost Converter Under Irradiation
and Temperature

Kritika Khandelwal , Chetan Jain, and Sunil Agarwal

Abstract Renewable energy technology is the advanced technology capable of satis-
fying the problems of energy crisis that the world is facing as well as meeting the
future energy demands due to the availability of energy source in infinite quantity
in the atmosphere. This chapter presents a simulation and performance survey of
the standalone photovoltaic (PV) system with boost converter under irradiation and
temperature and in order to seize the utmost power at output Perturb and Observe
(P&O) Maximum Power Point Tracking Algorithm (MPPT) is used. The output
results are obtained and analyzed at different irradiations and temperature parame-
ters. Theproposedmodel is outlined and simulated inMATLAB/SIMULINKR2015a
software.

Keywords PV system · DC-DC boost converter · MPPT

1 Introduction

Solar Energy is the most ubiquitous, sustainable and inexhaustible source of energy.
These renewable sources of energy can be utilized for power generation as these are
easily available, non-polluted, optimal cost and an inexhaustible option for human
kind. Hence as a fuel of choice for power generation, solar energy has emerged as a
safe and comfortable energy solution [1–5]. Therefore, the energy generation through
the solar photovoltaic (PV) technology converting solar energy into electrical energy
offers distinctive advantages in comparison with coal, oil and nuclear energy.
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A group of many cells electrically connected together either in the series to give
a rise in output voltage or in parallel to give a rise in output current as per require-
ment is known as solar module. A group of the number of modules forms a solar
array or panel. These PV modules and arrays are used for PV power generation
projects to generate electricity [6–9]. The PV-based systems are accommodated in
grid-connected systems and are also employed in standalone applications such as
street lighting, water pumping, etc. [10]. A system for energy storage, control mech-
anism, converter and a measuring equipment are required for the balance of the
PV system to be connected to the grid. This chapter highlights the layout of the
DC-DC boost converter and its combination with the PV module with the applica-
tion of the MPPT algorithm using MATLAB software. To comprehend, simulink
models, mathematical equations, figures, flowcharts and tables have been provided
for optimal designs.

2 Circuit Model of PV Module

The PV module’s fundamental element is the PV cell that directly converts the sun’s
energy (light energy) into low output direct current (DC) voltage electrical energy.
These cells are semiconductor devices, generallymadeupof siliconmaterial, forming
a p-n junction. This conversion from light energy to electrical energy takes place
through the phenomenon called “photovoltaic effect”. For understanding the behavior
of solar photovoltaic cells under various operating and atmospheric conditions, the
modeling of solar cells is to be studied. Because of its non-linear characteristics,
accuracy is difficult. Hence the proper mathematical modeling of the PV module
is necessary. Through this, the performance of its current-voltage (I-V) and power-
voltage (P-V) properties are also studied at distinct irradiation and temperature,
respectively. The single-diode model circuit is employed for the modeling of the PV
module, also termed as five-parameter model (Is, n, Rs, Rp, Ipv), where Is = diode
saturation current (A), n = diode factor (1 ≤ n ≤ 2), Rs = series resistance (�),
Rp = parallel resistance (�) and Ipv = photocurrent (A). Figure 1 demonstrates the
electrical equivalent circuit of the PV cell. The working task of the series and parallel
resistances connected with the diode is represented as follows:

• To account for the drop-in voltage and internal dissipation (due to the flow of
current), the series resistance Rs is introduced.

• When the diode is in reversed biased condition, the parallel resistance Rp takes
the leakage current to the ground into consideration.

This model consists of current source Ipv in anti-parallel connection with Diode
D, parallel resistance Rp and series resistance Rs. From the figure, the output current
equation is

I = Ipv − Id (1)
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Fig. 1 PV cell’s general model

where Ipv = Current (Amp) generated through light energy, directly proportional to
solar irradiation and Id = diode current or Shockley equation (Amp).

Ipv is determined as

Ipv = [Isc + Ki(Tc − Tr)] · G (2)

where Voc= open-circuit voltage (V), Isc = short-circuit current (Amp) at 25 °C
and G = 1, Ki = temperature coefficient of cell’s short-circuit current (0.0032), Tc

= operating temperature (K), Tr = reference temperature (298 K) and G = solar
irradiation (W/m2).

The Shockley equation is

Id = Is{exp(q/nkTc) − 1} (3)

where Is = leakage current of diode (Amp), q = electron charge (1.60 × 10−19 C), n
= ideality factor of diode (1.2 for monocrystalline Si and 1.3 for polycrystalline Si)
and k = Boltzmann constant (1.38 × 10−23 J/K).

The equation derived for the solar cell’s output current on the basis of the practical
model is expressed as

I = Ipv − Id − Ip (4)

I = Ipv − Is{[exp
( q

nkTcNs

)
(V + IRs)] − 1}V + I Rs

Rp
(5)

where Ip = shunt branch current, Ns = No. of cells connected in the series, V =
output voltage (V) and I = input current (Amp).

The saturation current of diode is expressed as
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Fig. 2 I-V and P-V characteristics of PV module

Is = Irs(
Tc
Tr

)3exp

[
qEg0

nk

(
1

Tc
− 1

Tr

)]
(6)

where Irs = Reverse saturation current (Amp) at STC and Eg0 = Energy band gap of
semiconductor (1.1 eV for poly-crystalline Si at STC).

From Eq. (6), the reverse saturation current Irs is determined as

Irs = Isc/exp

(
qVoc

nkTcNs

)
− 1 (7)

Here, in PV cell, the temperature and irradiation are two factors affecting its
output. Therefore, the Standard Test Conditions (STC), i.e., on 25 °C temperature
and 1000 W/m2 solar irradiation at air mass (AM) of 1.5 is taken as the nominal
operating condition for the PV module. The attributes of PV cell (I-V and P-V
characteristics) are demonstrated in Fig. 2.

Here, the Maximum Power Point (MPP) is defined as the point of operation
or the only point where the maximum power is generated by the PV cell, having
coordinates (VMPP, IMPP). VMPP stands for maximum power point voltage and IMPP

for the maximum power point current. The Pm, Im and Vm in the graph denotes the
maximum power, maximum current and maximum voltage value.

3 Circuit Model of DC-DC Boost Converter

DC-DC boost converter is used to step up the value of the voltage from low input to
the high output voltage. An inductor (L), a diode (D), capacitor (C), load resistor (RL)
and high-frequency switch (S) are the basic components of the boost converter. The
low output from the PV module is used as an input to the boost converter. The duty
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Fig. 3 Circuit model of DC-DC boost converter

cycle (D) of the high-frequency power switch is a controlling mechanism deciding
its optimal operating point by causing the variation in the voltage. Figure 3 shows
the equivalent circuit of the DC-DC boost converter [11, 12].

The mean output voltage for the duty cycle (D) by fluctuating the ON time of the
button (switch) can be determined as

Vo

Vin
= 1

(1 − D)
(8)

where Vin = converter’s input voltage, Vo = converter’s output voltage and D= duty
cycle of converter.

Using Eqs. (9) and (11), the value of inductor and capacitor can be computed as
follows:

3.1 Choice of Inductor

Boost converter’s inductor (L) value is obtained from

L = VinD/(fs�IL) (9)

where fs = switching frequency and �IL = input current ripple.
The correlation between the input current ripple to output current is defined as

Current Ripple Factor (CRF) [1]. CRF should be within 30% for good prediction of
inductor value.

�IL/ Io = 0.3 (10)

The maximum value of output current should always be less than the current
rating of the inductor.
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3.2 Choice of Capacitor

Boost converter’s capacitor (C) value is obtained from

C = IoutD/(fs�Vo) (11)

where �Vo = Ripple in output voltage.
The ratio between the output voltage ripple to output voltage is defined as Voltage

Ripple Factor (VRF). VRF should be within 5% for good prediction of capacitor
value.

�Vo/Vo = 5% (12)

Using Vin = 16.85 V, Vout = 33.26 V, Iout = 1.663 amp and switching frequency
as 100 kHz values for designing converter, the calculated values of components are
as follows: R = 0.1 �, L = 10 mH, C1 = 1000 µF and R = 20 �.

4 Simulation Results

Hereinafter, the simulation results of the PV system are briefed in Sects. 4.1 and 4.2.
The result after the simulation of the PV module is discussed in Sect. 4.1, while the
following section discusses the results obtained after the overall simulation ofMPPT
DC-DC boost converter with the PV module.

4.1 Simulation of PV Module

The mathematical model of the PV module is modeled in MATLAB/Simulink soft-
ware using blocks of Simscape library tools. These library tools are obtained from
the Simulink library present in theMATLAB toolbar. The PV current (I) generated at
the output of the PVmodule is the function of Is, Irs, Ish and Ipv. The input parameters
of the PV module are substituted in the dialog box (properties) of the subsystems of
the PVmodule as shown in Fig. 4. The final circuit for PV (by the interconnection of
distinct subsystems) is shown in Fig. 5. The final Simulink model has a temperature
(T) in kelvin (K) and solar irradiation (G) in Weber per square meter (W/m2) as
input parameters in order to return the output current (I) and voltage (V) value of
the PV module. The Solarex MSX60 PV type is taken as the reference model for the
modeling of the PV module [13, 14].

The MSX60 module provides a nominal maximum power of 60 W, consisting of
36 poly-crystalline silicon cells connected in the series (Ns) having Voc = 21.1 V
and Isc = 3.8A, respectively. I-V and P-V attributes of the PV module at a constant
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Fig. 4 Subsystems of the PV module

Fig. 5 Final Simulink circuit of the PV module

solar irradiation (G = 1000 W/m2) and different temperature at 20, 40, and 60 °C is
shown in Fig. 6a, b while characteristics at a constant temperature (T = 25 °C) and
varying solar irradiation at 900, 1000, and 1100 W/m2 is shown in Fig. 7a, b.

The Fig. 6a, b results that the increment in the temperature value leads to the
decrement in the values of voltage andpowerwhile Fig. 7a, b results that on increasing
the solar irradiation, the value of voltage and power increases.
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Fig. 6 a I-V curve at a constant irradiation of 1000 W/m2 and varying temperature. b P-V curve
at a constant irradiation of 1000 W/m2 and varying temperature

4.2 Simulation of MPPT DC-DC Boost Converter

MPPT method acquires the maximum point by controlling the DC-DC converter
output voltage by disrupting this system and then scrutinizing the impact on the
PV power output [15, 16]. The detailed diagram of perturb and observe (P&O)
MPPT algorithm is demonstrated in Fig. 8. It is observed that the increase in power
P (dP/dV>0) due to the disturbance of the operating voltageV in the defined direction
leads to a shifting of the operating point toward the Maximum Power Point (MPP).

This disturbance in the voltage due to perturb and observe algorithm will be
continued in the same direction until the MPP is reached. Here, the reference point
(Vref) is referred to as the corresponding voltage at which MPP is reached [17–20].
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Fig. 7 a I-V curve at a constant temperature of 25 °C and varying solar irradiation. b P-V curve at
a constant temperature of 25 °C and varying solar irradiation

On the contrary, the disturbance in the operating voltage causes the decrement in
the power (dP/dV < 0) that will move the operating position apart fromMPP. Hence,
the direction of the subsequent disturbance will be reversed by this algorithm.

The output voltage, current, and power waveforms of boost converter fed with
PV using P&O algorithm are analyzed at constant 1000 W/m2 solar irradiation and
different temperatures are represented in Fig. 9a–c.

Figure 10a–c shown are at constant 25 °C temperature and different solar irradia-
tions. Here, the MPPT technique is extracting the utmost power from the PV system
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Fig. 8 Flowchart of perturb and observe algorithm

at 51.8% of the duty cycle. This can be done by matching the source impedances
with that of a load impedance through varying the duty cycle of converters.

The output power under consistent solar irradiation (G = 1000 W/m2) and
distinct temperatures as well as distinct solar irradiations and consistent temperature
(T = 25 °C) is represented in tabular form in Table 1 [11].

It is perceived that, as the temperature value rises, the value of output power
decreases whereas it increases with an increase in the solar irradiations. The ripple
in the designed boost converter is approximately 2%. Hence, the boost converter is
working with an efficiency of 92.6%. The output power of the boost converter shows
it has reached MPP at 0.47 sec at 55.31 W.
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Fig. 9 a Performance characteristic of boost converter at 20 °C. b Performance characteristic of
boost converter at 40 °C. c Performance characteristic of boost converter at 60 °C
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Fig. 10 a Performance characteristic of boost converter at 900W/m2. b Performance characteristic
of boost converter at 1000 W/m2. c Performance characteristic of boost converter at 1100 W/m2
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Table 1 Power output at operating parameters

Parameters Values PV module power (W) Boost converter power (W)

Constant solar irradiation
(G = 1000 W/m2)

20 °C 62.57 57.65

40 °C 51.07 46.38

60 °C 39.92 35.4

Constant temperature (T
= 25 °C)

900 W/m2 53.38 49.3

1000 W/m2 59.72 55.31

1100 W/m2 65.84 60.8

5 Conclusions

From the above simulation outcomes, it is seen that the output power of the boost
converter fed with photovoltaic module using perturb and observe maximum power
point tracking algorithm varies depending on the solar irradiation and temperature.
With the analysis of output results, it has been proved that the rise in the value of
temperature assist the decrease in the output power whereas for solar irradiations,
output power increases with an increase in solar irradiations. Many research have
been done in designing the boost converter but very few researchers were reported
considering ripple parameter in the inductor current. In the chapter, the ripple param-
eter is themain criteria in the designing of boost converter. Hence, the achieved output
result shows that the DC-DC boost converter is operating at 92.6% efficiency within
the operation range having approximately 2% ripple. Analyzing and observing the
variation in results, we conclude that the practical execution of thework is reasonable.
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Chapter 5
Analysis of Variation in Locational
Marginal Pricing Under Influence
of Stochastic Wind Generation

Poonam B. Dhabai and Neeraj Tiwari

Abstract This chapter presents an approach for analysis of variation in Locational
Marginal Pricing (LMP) due to integration of stochastic wind generation in stabilized
grid network by using Probabilistic Optimal Power Flow (P-OPF) in MATPOWER
environment. The competitive market led to the assessment of the nodal price values
for bidding the next MW charges. Consequently, the precise estimation and analysis
of LMPvalues become a challenging task in the presence of dubiouswind generation.
LMP at any power transport bus ‘z’ constitutes of: base LMP, LMP due to losses
at bus z and LMP due to congestion at the same bus. As LMP itself is composed
of congestion cost factors at an individual bus, it not only aids in the determination
of Network Rental (NR), yet in addition, has a significant part in the determination
and management of congestion from an economical perspective within the system.
Therefore presentedworkunderscores amethodology to analyze thevariation inLMP
values highlighting the congestion scenario. The analysis is carried out statistically
and power flow run. This analysis is performed on the wind data set obtained from
Indian Meteorological Department (IMD) section, Pune, India, on a standard IEEE
30 bus test system.

Keywords Uncertainty · Locational marginal pricing ·MATPOWER · Congestion
management

1 Introduction

Year-to-year increment in demand for electrical energy, urbanization, increased
global warming have turned us into grid modernization. The existing power grid
has the self-characteristic promoting the integration of uncertain and stochastic envi-
ronmentally friendly renewable energy sources (RES). Grid integration is the put into
practice of enhancing the methods to deliver higher penetration intensity of variable
RES in the stabilized power system without violating any of the system constraints.
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The power insertion into the power system may hamper the power flow into the
transmission lines. Due to continuous variation in power input due to stochastic
wind, congestion scenarios may occur within the system. The congestion occurrence
introduces the congestion cost factor into the nodal price at each bus. Computing the
LMP values at each bus, gives the per MW transfer charge. LMP computation can
be carried out in many different ways depending upon the observation required. The
LMP values can be utilized for determining the transmission zones of the system,
calculating the reliability margins of the system. The congestion link can be derived
by observing the variation in the values from the corresponding base values. The
LMP values mainly depend upon generator, transmission margin and load through
the network. The computation of LMP is a crucial task in presence of uncertain wind,
as it not only depends upon the varying cost of power transfer between any two points
in the system but also on the load flow pattern, variation in generation and load. Post
integration of wind source into the system changes the grid power flow pattern which
in hand includes the congestion cost factor in LMP computation depending upon the
penetration level of the source.

Yu [1] addressed the challenges and issues associatedwith current LMPoperations
and proposed nodal LMP system. Ge et al. [2] calculated the LMP values for East
China power market by analyzing the three components that constitute the formation
of LMP assuming the two different scenarios of the market. Albadi et al. [3] present a
manuscript investigating the effect of solar power plant on LMP in an interconnected
system in Oman through simulations. Umale and Warkad [4] approached ACOPF
considering losses for LMP model with real bus data system on 765 kV/400 kV
MSETCL; they also analyzed variation in the LMP based on transmission constraints
of transmission lines. Nnamdi et al. presents a decision tree model with different
power system variables for predicting the LMPvalues concluding better performance
of decision tree under certain circumstances [5]. Umale andWarkad [6] reflected the
importance of LMP in transmission congestion management and market operations
based on financial transmission rights. Variation in LMPwith the change of load into
the system was focused by Jain and Mahajan [7] for PJM 5 bus transmission system
for peak load period with and without transmission constraints. A new methodology
P2P for local energy market algorithm based on multi-phase low voltage distribution
system was proposed by Mortysn et al. [8]. Post integration of RES into the trans-
mission system changes the power flow of the system; this analysis was presented
by Poonam. Dhabai and Tiwari utilizing the linear sensitivity factors [9]. This work
is an extension of the analysis done in [9].

The chapter is alienated into the following subsections: Sect. 1 notifies the liter-
ature work on LMP. Section 2 speaks on problem formulation. Section 3 presents
the test case and related data along with assumptions. Section 4 showcases the algo-
rithmused for the computation of LMPs. Section 5 includes the results of the analysis.
Section 6 provides a discussion on the results obtained. Eventually, Sect. 7 concludes
the chapter with concluding notes on the work presented and potential future scope.
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2 Problem Formulation

2.1 Problem Description

The presented work is based on analyzing the variation in LMP from its base value
post integration of uncertain wind energy into the system with the change in its
location. To compute LMP, calculations of three factors are required: base LMP
values in presence of only conventional generation, LMP contributed due to losses
and LMP due to congestion. Mathematically, LMP formulation at any bus z can be
expressed as

LMPz = LMPbase(Conventional) + LMPLoss(z) + LMPcongestion(z) (1)

2.2 Methodology

The computation of LMP in real time is estimated usingMATPOWER [10] program-
ming by DC-P-P-OPF [12] algorithm. Considering the real-time based wind data
fromPune, India, (uncertainties) aremapped as input to the systemwith 1000 random
samples generated from the data after meticulous analysis of PDF and CDF (in the
obtained data, distribution followed is lognormal). These samples are then used as
uncertain input to standard IEEE 30 bus system and finally validated.

3 Test Case, Data, and Assumptions

3.1 Test Case

The IEEE 30 bus system consists of totally six conventional generators. Out of all
these, the minimum generation (19.2 MW) is at bus number 23 and the maximum
generation (60.97 MW) is at bus number 2. The transmission system consists of a
total of 41 transmission lines and 30 power busses. Table 1 shows the conventional
generator data of the system.
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Table 1 Conventional
generator data IEEE 30 bus
system

Bus number Generation (MW)

Bus-1 23.54

Bus-2 60.97

Bus-22 21.59

Bus-27 26.91

Bus-23 19.2

Bus-13 37.0

Table 2 Wind speed data Parameter Value

Wind speed-maximum 28.789 (m/s)

Wind speed-minimum 14.248 (m/s)

Mean wind speed-4 years 24.358 (m/s)

Variance-σ 10.654

3.2 Data Analysis

The collection of data is done for a window of four years, i.e., 1st January 2014–31st
December 2018. The wind data is collected and assessed at an interval of 3 h for
each day. After obtaining the data, meticulous analysis is done on it. PDF and CDF
are obtained in the MATH WAVE environment. Statistical analysis is presented in
[9]. The wind speed data follows a lognormal distribution. The wind speed is then
converted into the required power input samples [9]. These power input samples are
distributed normally. The most variable month for wind speed accounted for was the
month of June. Most of the uncertainties in input were supplemented by this month.
Table 2 gives the maximum and minimumwind speed limit from the accessible data.

The 1000 random samples are generated inMATLAB environment from themean
and variance followed by the wind speed.

3.3 Assumptions

For the computation of LMP, bus number 1 is considered to be the slack bus and
kept untouched. The wind plant is integrated into the grid firstly at bus number 23 as
the generation at this bus is minimum i.e. 19.2 MW. To match the practical aspect of
the wind plant, wind generator data of ‘GE 1.5 SLE’ [11] is considered. The output
power of the wind plant is scaled to this generator. Table 3 represents the technical
data for GE 1.5 SLE.

One generator of GE 1.5 SLE is rated to 1.5 MW and the wind farm integrated
into the transmission network is of 19.2 MW. Hence, the wind farm consists of 13
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Table 3 Technical data-GE
1.5 SLE

Parameter Value

Cut-in-speed 3.5 m/s

Cut-out-speed 30 m/s

Rated wind speed 12 m/s

Swept area 4567 m2

Rotor diameter 77 m

Output power 1.5 MW

Table 4 Test cases Base case Conventional generator

Cases Wind farm integration at

1 Bus-23

2 Bus-2

3 Bus-22

4 Bus-27

5 Bus-13

GE 1.5 SLE generators [13 × 1.5 = 19.5 MW]. To study the variation in LMP 5
different cases where the wind farm is integrated at different locations are considered
for the analysis. Table 4 gives the details for all the cases.

4 LMP Algorithm

To compute the LMP values at every node within the system, the following steps
were approached:

1. Run DC-P-OPF in MATPOWER environment with all conventional generators
into the system.

2. Obtain the base LMPs for every bus representing the non-congestion scenario.
3. Integrate the wind farm as per case 1, with uncertain generation record the new

LMPs for case 1.
4. Run DC-P-OPF for all the remaining cases to record the variation in LMPs.

4.1 Mathematical Calculation

The optimized mathematical equation of LMP is

Minimize : CT ∗ Pg = bTPL

Subject to : Pgmin ≤ Pg ≤ Pgmax
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PLmin ≤ PL ≤ PLmax (2)

c = bid of generator zone,
b = bid of load zone,
Pgmin, Pgmax = lower and upper limit of energy for generation,
PLmin, PLmax = lower and upper limit of energy for load.

5 Results

DC-P-OPF run for the base case provided the base LMP value for comparison of
the LMP values post wind integration. The LMP values recorded are in $/MWh.
The base case LMP for conventional generation obtained is 3.635 and considered as
reference LMP for comparison of remaining cases. Table 5 presents the nodal price
values for all 5 cases with wind generation.

The congestion occurrence into the transmission lines is calculated using the
performance index for all 5 cases shown in Table 6.

Figure 1 is the graphical representation of base LMP and new LMP values.

6 Discussion

From Table 5, the base LMP value indicates the non-congestion scenario with a
system operating without violating any transmission constraint. In base case LMP,
the congestion cost factor accounts to be zero. Post integration it can be clearly seen
that for all 5 cases the LMP varies along with the variation in wind plant input. The
LMP varies to a greater extent over different buses for all the cases considered. On
observing keenly, the LMP variation indicates the congestion scenario for different
cases. TheLMPvalues above the baseLMP indicate a violation of system constraints.
Table 6 gives the performance index for all 5 cases. It can be understood from the
values that for any case the system undergoes congestion increasing the LMP under
theworst-case scenario ofwind plant. From the PI it can be understood that if thewind
plant is integrated at bus-13 and 23 it gives the higher congestion within the system,
whereas when the wind farm is integrated at bus-27 gives minimum congestion and
hereby reducing the congestion cost factor in theLMP.The graph resembles the same.
Later on, the bids can be allotted from producers and consumers upon the minimum
LMP values. The variation in the LMP and violation of transmission congestion is
due to uncertain wind input and location of the wind farm.
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Table 5 LMP values for all 5 cases for all 30 buses

Bus number Base LMP Case 1 Case 2 Case 3 Case 4 Case 5

1 3.635 3.347 4.393 4.565 4.766 2.324

2 3.635 4.675 4.522 2.112 4.545 4.567

3 3.635 4.878 4.572 4.678 3.876 4.666

4 3.635 3.662 4.561 5.123 3.982 4.867

5 3.635 4.234 4.572 4.332 2.980 3.435

6 3.635 2.345 4.531 4.567 4.991 1.237

7 3.635 4.364 4.664 3.443 4.785 8.432

8 3.635 5.332 4.664 4.665 2.764 1.323

9 3.635 4.121 4.614 1.234 2.975 3.456

10 3.635 4.454 5.132 4.675 3.331 4.120

11 3.635 6.556 5.489 1.234 4.768 8.675

12 3.635 5.122 5.122 8.456 4.567 9.876

13 3.635 4.213 4.911 5.123 4.218 8.345

14 3.635 0.908 2.626 6.778 2.564 7.776

15 3.635 5.353 4.265 3.111 4.121 6.545

16 3.635 8.487 4.881 5.454 4.098 6.089

17 3.635 2.764 5.221 1.120 4.001 1.223

18 3.635 3.699 4.765 2.334 2.335 8.767

19 3.635 6.638 4.983 7.898 3.435 4.546

20 3.635 8.831 5.071 4.456 2.349 9.675

21 3.635 3.864 8.101 1.128 2.459 3.345

22 3.635 7.505 0.997 0.876 3.114 8.886

23 3.635 5.069 3.422 2.347 4.536 7.668

24 3.635 8.811 2.864 1.354 2.111 6.123

25 3.635 3.604 3.168 10.871 3.431 5.436

26 3.635 3.324 3.693 3.478 4.087 7.789

27 3.635 3.873 3.598 4.568 4.576 4.567

28 3.635 0.805 4.554 2.348 4.098 7.341

29 3.635 7.034 3.535 0.111 3.121 7.347

30 3.635 2.704 3.542 6.343 3.121 4.331

Table 6 Performance Index (PI) reflecting congestion scenario

Case Case 1 Case 2 Case 3 Case 4 Case 5

Mean 4.707 4.317 3.959 3.673 5.759

Median 4.429 4.574 4.394 3.929 5.763

Variance 4.215 1.499 6.193 0.737 6.596

PI (%) −30 −19 −9 −1 −58
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Fig. 1 LMP variation with uncertain wind generation of all 5 cases with respect to base LMP

7 Conclusion and Future Scope

7.1 Conclusion

Owing to suspicions at hand in renewable energy sources, it is indispensable to have
former awareness of system performance under these circumstances. This requires a
comprehensive revision, for instance, made in this work. The incorporation of wind
farms into the accessible systemnot only affects the powerflow in the networkbut also
varies theLMPs foremost to the congestion state of affairs and inclusion of congestion
cost. Moreover, it is obvious that it is not straightforwardly predictable devoid of this
kind of extended analysis that which of the bus node is gravely exaggerated due to
uncertainties miscellaneous with a contingency. This analysis provides a trouble-free
and accessible methodology for the computation of LMPs of every node under the
influence of uncertainty in wind generation. Computation and analysis of LMP is an
imperative pace to estimate the network rental, system reliabilitymargins, congestion
cost and manage the system congestion. The analysis indicates that LMP depends
mainly upon the location of the solar farm. The larger the difference between the
base and newLMP, the higher is the congestion introduced into the system increasing
the congestion cost, which increases the burden on the generation companies. By
analyzing the different locations prior, we can be able to manage the congestion into
the system. This analysis gives the commercial aspect tomanage the congestion from
an economical aspect; consequently, it can also be expanded to a practical system
incorporated with an uncertain wind farm.

7.2 Future Scope

This analysis can bewillinglymitigated to a realistic and real-time-based system inte-
grated with wind farms. The most favorable and optimized location can be thought
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of to utilize most of the available wind power without jeopardizing the system secu-
rity. Linear Sensitivity factors and LMPs are cooperative in shaping the factors like
Transmission Reliability Margin (TRM), Available Transfer Capability (ATC), reli-
ability margins, and congestion cost burden which forms a base building block in
congestion management.
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Chapter 6
Optimal Integration of Plug-in Electric
Vehicles Within a Distribution Network
Using Genetic Algorithm

Sakshi Gupta, D. Saxena, Mukesh Kumar Shah,
and Rajeev Kumar Chauhan

Abstract This chapter mainly discusses and analyzes two smart charging
approaches with objective functions as optimization of total daily cost (TDC)
acquired by the charging facilitator and peak to average ratio (PAR), in that order to
examine the effect on electric vehicle (EV) charging from both commercial and tech-
nical aspects. The proposed approaches are then executed on the industrial nodes of an
11 kV 37-bus distribution system to study the impacts as we increase the percentage
penetration. Any system can accommodate a limited amount of EV penetration into
it after which voltage and loading limits start to exceed. In this manner, here we are
attempting to assess the most extreme conceivable PEV penetration by which the
distribution system can entertain relating to both procedures.

Keywords Plug-in electric vehicle · Optimization · Charging strategies ·
State-of-charge · Genetic algorithm · Load flow

1 Introduction

In last years, electric vehicles have seen a stable increment in proving itself as a
sustainable alternative to commercial cars used from years running on petrol and
diesel. Due to various environmental boons such as decreased fossil fuel consump-
tion, reduced greenhouse gas releases, etc.,many administrations of various countries
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are trying various measures to increase the integration and development of EVs in
the distribution framework. One of the key concerns of using electric vehicles (EVs)
is their charging time and places. Most of the EVs are charged using a wired connec-
tion between the low voltage (LV) distribution system and the vehicle. Such types of
EV, having the likelihood to be associated with the infrastructure, are called plug-in
electric vehicle (PEV). Turker and Bacha [1] Proposed a contemporary vehicle to
grid (V2G) methodology called Optimal Logical Control (V2G-OLC) based upon
logical command series and compared it with classical optimal charging methodolo-
gies available with the main aim to minimize the charging cost incurred. Wei et al.
[2] Designed an operating model for cost minimization to discuss the issue of EV
charging in a park-and-charge arrangement. A system for ongoing charging the exec-
utives of an electric vehicle aggregator (EVA) taking an interest in electric vitality and
guideline markets was presented in [3]. Tan and Wang [4] Considered the influence
of EV charging process on both, transportation system and power system. For this
purpose, an integrated real-time EV charging navigation framework was developed,
modeling the struggle between electric vehicle charging stations (EVCSs)with a non-
cooperative gameapproach. Jeong et al. [5]Used adynamicwireless charging (DWC)
technology which lets the batteries to get charged automatically while the electric
vehicles (EVs) are in motion. Kong and Karagiannidis [6] Presented a review of all
the plug-in hybrid electric vehicle (PHEV) battery charging techniques prevailing
in the system. Wu et al. [7] Centres on the difficulties of energy planning for places
of business incorporated with photovoltaic frameworks and work environment EV
charging. Crow [8] Discussed the issues of overloading the distribution line due to
EV charging andmitigating them through real-time (dynamic) and day-ahead (static)
frameworks, using continuous and discrete charging rates. Zheng [9] Discusses an
aggregation charging model for vast number of EVs employing GA to reduce the
variations in power levels due to electric vehicle charging characteristics. There is a
noteworthy increase in the EV penetration in urban areas. In such situation, power
outages may occur if uncoordinated charging is done. Therefore, productive EV
charging the board is required for overseeing and assigning scant charging station
assets [10]. Different charging procedures, considering just the G2V framework,
have likewise been suggested in the writing which might lessen the effects of PEVs
on the energy framework [11–14].

Due to advancement in technology, immediate charging of PEVs is possible by
directly plugging them into the electrical power supply. Thus, this may lead to uncon-
trolled charging of a certain number of PEVs which may result in increased demand
thus leading to various problems such as peak power, overload issues, increment in
energy losses, reduction of distribution transformer (DT) lifetime, and voltage devi-
ations. These problems concerning the distribution system depend on various other
factors like number of PEVs integrating the system, their charging power, connec-
tion and disconnection time, energy demand, charging and discharging efficiency,
etc. Therefore, it is required to develop some charging methodologies to find out and
compare the effects of the integration of PEVs at various penetration rates. The objec-
tive of this chapter is to formulate smart chargingmethodologies for PEVs integration
in the distribution network optimally taking into account a unified G2V and V2G
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charging scheme. For this purpose, two smart charging strategies have been imple-
mented usingGenetic Algorithmswith heuristic initialization. Later on, the proposed
smart charging strategies were tested on 37-node distribution network using back-
ward forward load flow to identify the most extreme conceivable PEV penetration
by which the distribution system can entertain relating to both the procedures in the
lateral.

2 Problem Overview

The principle focus of this chapter is workplace automobile parking lots where
vehicles are parked in the day time in the industrial framework of a distribution
network.

The industrial area where the study is done is expected to have a parking space for
thousand vehicles including conventional and PHEVs both. The cars are parked in
specifically allotted areas in the car park which have charging slots for PEVs armed
with V2G and G2V both the functionalities. Every parking lot in the industrial lateral
is thought to be undertaken by a charging facilitator which performs PEVs smart
charging.

AsPEVs arrive in the car parking lot, the owners of PEVprovides their STD, initial
SOC (i.e., current State of Charge), PEV specifications (Battery capacity of PEV and
driving range of automobile known as all electric range (AER)), and predicted dura-
tion of parking to the charging facilitator. PEV specifications need not be submitted
by the PEV owner daily. It can just be entered once (at the time of arrival) for the
record and used in future. On the basis of information collected from the PEV owner,
the charging facilitator calculates the total required energy by PEVs and then an opti-
mized and effective charging schedule of PEV is generated utilizing a smart charging
methodology. Accordingly, the charging load of PEVs is included ideally into the
total industrial lateral’s load demand on half-hourly basis. The chargingmethodology
used by the charging facilitator is chosen relying on the prerequisites which may be
financial or technical. Here, two smart charging methodologies, which depend on
optimization of total daily cost (TDC) and peak to average ratio (PAR), individually,
are executed for optimal penetration of PEVs, and a systematic investigation is then
carried to assess the most extreme conceivable PEV penetration that the presented
techniques can incorporate inside the current distribution framework.

2.1 Modeling PVE’s Driving Pattern

To optimally integrate the PEVs into the distribution network, the total energy
demand which requires to be managed and controlled intelligently is important to be
estimated. Thus, modeling of energy requirement of PEVs is important.
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PEV charging happens during the daytime in the car parking lots. During the
daytime, cost of power is high so the charging of PEVs to its maximum value of SOC
is kept away from and the charging as indicated by PEVs’ next tour is executed [15].
For the examination, the data identifyingwith the followingmentioned characteristics
is embraced from reads which led for Singapore [16–18].

2.2 Distance Travelled Per Trip and Daily Mileage

The typical Daily Mileage traveled by a person is the aggregate number of miles
traveled over in a given time by a private automobile. Normal distribution data is
generated for dailymileage from data taken from [15]. It is expected that automobiles
reach the parking lot toward the finish of the 1st trip of the day. In this way, the first
trip distance is characterized as the separation which a PEV goes before reaching the
vehicle parking area. Figure 1 and Fig. 2 show the pdf (probability density function)
and normal distribution curve obtained for the daily mileage and first trip distance
traveled, respectively.

Fig. 1 Average daily mileage
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Fig. 2 First trip distance

3 Subsequent Trip Distance (STD)

The assessment of desired SOC at the departure time is subject to the assessment of
length to be gone for the following outing, which is a feasible errand for anyone
driving a PEV. Subsequent Trip Distance is characterized as mileage of all the
resulting tours that are taken by a PEV in the wake of leaving from car parking
lot and before at long last showing up at home. Here, STD is determined utilizing the
normal distribution for the distance traveled per trip and daily mileage. Hereinafter,
we have discussed PEVs arrival and departure times in Sect. 3.1. Sections 3.2 and
3.3 provide initial SOC and desired departure time SOC of PEVs and PEVs energy
requirement (Figs. 3 and 4).

3.1 PEVs Arrival and Departure Times

In this chapter, the charging car park is assumed to be situated in the industrial lateral
which is active from 9:00 a.m. to 6:00 p.m. using the attributes of the normal distri-
bution provided in Table 1, and a normally distributed pdf of arrival and departure
time values are created. Combining the pdfs (probability density functions) of At

(Arrival Time) and Dt (Departure Time), the combined pdf of Dt – At can be created,
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Fig. 3 Arrival time

Fig. 4 Departure time
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Table 1 Parameters of the
duration time probability
distribution

Time parameter Arrival Departure

μ 9 18

σ 2 1.2 1.2

Fig. 5 Total duration

which is basically the total duration for which the PEV is parked daily. The daily
parking duration time pdf is presented in Fig. 5.

3.2 Initial SOC and Desired Departure Time SOC of PEVs

The state of charge is a measurement of the amount of energy available in a PEV
battery at a definite point in time. So as to increase the battery timespan, the base
SOC of battery is taken to be 0.2 in this chapter. Starting SOC of PEVs at the hour
of arrival in parking lot is calculated depending on the AER and first trip distance.
SOCA of a PEV ensuring an AER (all electric range) of dR and d as its first trip
distance can be determined by Eq. (1):

SOCA = 1 − (d/dR). (1)
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Similarly, STD and AER values are utilized to determine the desired SOC at
departure time (SOCD) of PEVs, as shown in Eq. (2):

SOCD = (STD/dR) + 0.2. (2)

It is likewise noticed that the fundamental data with respect to the initial SOC,
that is to be given to the charging facilitator, is legitimately accessible to the PEV
proprietor (similar to the ordinary vehicle clients knowing the position of their fuel
tank).

3.3 PEVs Energy Requirement

Depending on the arrival (SOCA) and departure time SOC (SOCD), the required
energy of every individual PEVs (Ereq) can be calculated by Eqs. (3) and (4):

SOCreq =

⎧
⎪⎪⎨

⎪⎪⎩

1 − SOCA, SOCD ≥ 1
(SOCD − SOCA), SOCA < SOCD < 1

0, SOCD = SOCA
−(SOCA − SOCD), 0.2 < SOCD < SOCA

(3)

Ereq = (
SOCreq · BC

)
/η. (4)

The efficiency coefficient (η) is shown as.

(1) ηc, ηc = 0.9 when PEVs are charging, and
(2) 1/ηD, ηD = 0.95 when PEVs are discharging.

4 Problem Formulation

After the calculation of all the attributes and the energy requirement by PEVs,
charging strategy vectors are generated. These vectors will ultimately be used in
the smart charging strategy objectives. Therefore, the optimization of problem state-
ment for the two brilliant charging methodologies that are discussed in this chapter
is taken from [15]. The generation of a charging strategy vector for charging and
discharging is represented by Ck and Dk, and their formulation is given in [15]. The
time skyline vector is depicted by W = [1, ..., t, ..., T] and incorporates ‘48’ equiva-
lent half-hour time allotments. The quantity of PEVs showing up in car parking lot
during a specific timespan t is shown by a vector Z = [1, .., k, ..., N].

At any time period t, the total industrial load demand after N PEVs which are
integrated is calculated as

Pt
total = Pt

total + Pt
PEV , ∀t ∈ W. (5)
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It is noticed that the total load demand in the industrial area (Pt
total) before joining

of any PEVs is identical to Pt
base. At any time period t, the industrial lateral has how

much total power after the penetration of N number of PEVs is shown as

Sttotal =
√

(
Pt
total

)2 + (
Qt

base

)2
, ∀t ∈ W. (6)

Hereinafter, we have considered Sects. 4.1, 4.2, and 4.3 for discussing the different
strategies for charging the EVs.

4.1 Charging Strategy A

The main agenda of this methodology is to optimize the total daily cost (TDC)
acquired by the charging facilitator who is in charge of organizing the charging and
discharging operation of PEVs in the car park. The TDC incurred by it is divided into
two parts, i.e., the cost of charging (Costcharge) and the cost of battery degradation
(Costbat). The Costcharge is represented by Eq. (7), and it includes charging cost of
PEV aside from the credits earned from PEV discharging

Costcharge =
T∑

t=1

(
N∑

k=1

(
Ct
k − Dt

k

) ∗ rPEV,k

)

· RT P(t). (7)

Here, the Real Time Price (RTP) data needed for this charging technique is the
predicted price information of the whole day that is made accessible by the distri-
bution system operator to the charging facilitator, and rPEV,k is the rate at which a
particular kth PEV is charged or discharged.

Due to the implementation of V2G technology, the EV batteries also degrade and
their efficiency reduces. Thus, the battery degradation cost (Costbat) is represented
by the following equation [15]:

Costbat =
N∑

k=1

(
cb,k Eb,k + cL

) · Edis,k/
(
LcEb,k DOD

)
. (8)

The TDC acquired by the charging facilitator is therefore given as the summation
of these two costs:

Costtotal = Costcharge + Costbat. (9)

Therefore, the aim of Strategy A is shown as

min{Costtotal}. (10)
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4.2 Charging Strategy B

The principle goal of this methodology is to limit the peak demand and straighten
the demand. The aim of limiting the peak demand and straightening the overall load
demand is accomplished by minimization of PAR [19], determined by the condition
as demonstrated below (11)

PAR =
max
tεH

Sttotal
∑T

t=1 S
t
total

T

. (11)

Therefore, the aim of Strategy B is shown as

min{PAR}. (12)

4.3 Smart Charging Strategy Constraints

Following constraints must be considered, for satisfying the PEVs energy require-
ment for both the strategies A and B.

tout ,k∑

t=tin ,k

Stk .rPEV,k = Ereq,k ∀k ∈ Z . (13)

Some other constraints like PEVs’ battery SOC constraint and the charging
framework constraint are shown by (14) and (15), respectively.

SOCmin ≤ SOCt
k ≤ SOCmax ∀t ∈ H ; k ∈ Z , (14)

0 ≤ rPEV,k ≤ Prated , ∀k ∈ Z . (15)

SOCmin and SOCmax values are taken to be 0.2 and 1, respectively, for the purpose
of this study. This is to be seen that for both the charging methodologies A and
B, the optimization problem is evaluated for N PEVs incorporating at a specific
timespan t, for example, N is the quantity of PEVs showing up at the car parking lot
at a specific timespan t. For the optimal integration of the PEVs in the car parking
lot, optimization is carried out each half-hour with the goal that we can adequately
consider each PEV showing up at a specific timespan t. Additionally, the absolute
PEV integration in the industrialized area is the sum total of each and every PEVs
showing up in parking lots at every timespan t. The PEV integration in the grid is
divided into 10 stages considering step size increases by 10%. Beginning from the
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least integration level, the smart charging system and the investigation technique
decides most extreme conceivable penetration of PEV for which as far as possible
loading and the voltage limits of the DT and distribution lines are not exceeded. The
limitations identified with the distribution framework and voltage limits are as per
the following.

Vmin
i

≤ Vi ≤ Vmax
i , (16)

Stagg < Trat, ∀t ∈ H, (17)

SPi ≤ SPmax
i . (18)

5 Implementation of Charging Strategies

The smart charging strategies are implemented using genetic algorithm. For the
execution of the charging techniques, as the search space of the improvement issue
for both the approaches is exceptionally huge, therefore it would be more feasible to
employ heuristic initialization rather than going for random population initialization.
Thus, heuristic initialization is used to tackle this complicated issue by lessening
down the search space.

A. Chromosome Representation

For the motive of this work and to implement Genetic Algorithm, chromosome
creation is the basic step to start with. Here, for representing a chromosome an (N ×
T) matrix is created, where N denotes the amount of PEVs reaching the car parking
lot at a specific time span t and T indicates the overall time period. Also, every row
of the chromosome is depicted by a strategy vector S for every PEV.

B. Heuristic Initialization

After the chromosome is created, we need to initialize the population in GA. For this
purpose, as discussed above we are using heuristic initialization. In this, a possible
strategy matrix (PSM) is created meant for every PEV entering the car parking lot
that contains all the permissible strategy vectors Sk and also satisfies constraint (13)
for corresponding PEVs.

C. Implementation of GA

After initializing the initial population, GA can be implemented using three operators
as described below.

1. Selection operator: Roulette wheel selection is used.
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2. Crossover operator: In this study, two-point row crossover is used for the
crossover operation. In two-point row crossover, two parents are randomly
selected and then two rows are randomly selected from it. The records in the
two rows are then interchanged amid the 2 parents to produce the two offspring.

3. Mutation operator: Here, flip mutation is used with objective-specific amend-
ments. Every row of each chromosome, i.e., the strategy vector Sk is flipped
with a certain mutation probability, for a specific PEV with alternative strategy
vector for the same PEV picked from its FSM.

6 Results and Discussion

The presented smart charging approaches are employed in the industrial nodes of an
11 kV 37-node distribution network for the purpose of optimum integration of PEVs
in distribution infrastructure. The network and load attributes of 37-bus distribution
network are taken from [20]. For the base load of the industrial area, i.e., non-PEV
load, as presented in Fig. 7, power factor is supposed to be 0.85. Furthermore, rating
of the DT providing the demand in the industrialized area is taken as 1 MVA. In this
way, the base load curve for the modern parallel is likewise the load curve of the DT.

In this work, for the purpose of load flow studies on the distribution network, BFS
(backward-forward sweep) technique is used. The loading and voltage limits of the
DT and distribution lines are taken from [15].

In this chapter, PHEV-30 (numerical subscript represents the AER of the vehicle
in miles) is considered for the integration in the lateral. It has a battery capacity of
13.8 kWh [15]. The annual average RTP information is acquired from the data taken
from Energy Market Authority, Singapore as shown in Fig. 6 [21]. Depending on
the base load profile of industrial (non-PEV) load as shown in Fig. 7, performance
of both the proposed methodologies are compared and this analysis is carried out
below. The charging slots installed in the car parking lots are assumed to have a
power rating of 2 kW.

Figure 8 shows the optimized total cost incurred by the charging facilitator in
strategy A at different penetration levels by running GA for 200 iterations. Similarly,
Fig. 9 shows the optimized PAR values obtained corresponding to each penetration
level.

Values of TDC and PAR at each penetration level are calculated for both the strate-
gies as shown in Table 2. Alongwith that Table 2 also encapsulates the corresponding
peak load of DT.

Table 3 gives the total peak load obtained at each penetration level for both the
strategies and shows us that Strategy A runs feasibly up to 10% PEV penetration,
while Strategy B runs feasibly up to 60% PEV penetration. Since the loading limit of
the DT is 1 MVA, after 10% PEV penetration peak load for Strategy A exceeds the
loading limits. Similarly, it was noted that after 60% PEV penetration for Strategy B,
loading limits were exceeded of the DT. Thus, the maximum conceivable penetration
of PEVs subject Strategy A is 10% and for Strategy B is 60%.
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Fig. 6 Annual average real time pricing data

Load demand profile of theDT for various integration stages of PEV attained from
Strategy A and B, respectively, is presented in Fig. 10a, b. It can be easily concluded
from Fig. 10 that for Strategy A, the load limit of the DT, i.e., 1 MVA is exceeded by
the peak load after 10% PEV penetration while in Strategy B it happens after 60%
PEV penetration.

It can be noted from both the graphs shown in Fig. 10a, b that the load demand
profiles of the DT are different from each other for the smart charging strategies
proposed. This is the result of charging methodologies using different objective
functions for optimization for both strategies used.

StrategyA focuses on TDC optimization/minimization as its target considering
economic point of view. This results in multiple peaks and drops in the load profile
generating due to charging and discharging operations while scheduling PEVs
depending on the high and low pricing structure (RTP). Contrary to that, Strategy B
focuses on the optimization of the peak-to-average (PAR) ratio as its objective which
in turn results in the flattening of curve of the industrial load. This declaration can
be backed up by Fig. 10b showing an almost flat profile of the load compared to that
in Fig. 10a.

Thus, it can be concluded that Strategy A should be opted if the main target is to
minimize theTDC that is acquired by the charging facilitator tominimize its expenses
but its drawback will be that it will not be possible to penetrate vast number of PEVs
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Fig. 7 Industrial based (non-PEV) power demand

Fig. 8 Total daily cost (TDC) incurred at different penetration levels from
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Fig. 9 PAR value obtained at different penetration levels from a to f

Table 2 Various attributes attained for both the charging schemes at different levels of PEV
penetration

PEV penetration (%) Strategy TDC (S$) PAR Peak load increment (%)

10 A $28.433 1.3541 3

B $30.584 1.2463 10

20 A $58.413 1.3973 36

B $65.260 1.2924 −2

30 A $89.376 1.4485 30

B $96.813 1.3600 −5

40 A $119.777 1.4872 45

B $127.856 1.3994 5

50 A $151.066 1.4995 44

B $159.715 1.4065 26

60 A $189.727 1.8764 50

B $198.483 1.7933 −12

into the network without compromising on the grid stability. Whereas, Strategy B
must be considered if the main purpose is to get the best out of the integration of
EVs in the distribution framework without violating the limits.



72 S. Gupta et al.

Table 3 Peak load obtained
at the industrial lateral for
different PEV penetration
levels

PEV penetration (%) Strategy Peak load (MVA)

0 0.051486819

10 A 0.974853927

B 0.056553326

20 A 1.290157629

B 0.050705634

30 A 1.230924103

B 0.048882706

40 A 1.376803453

B 0.054304671

50 A 1.367547258

B 0.064735656

60 A 1.420574864

B 0.045188597

Fig. 10 Load profile of theDT at various penetration levels corresponding to a strategyA b strategy
B

7 Conclusions

This chapter focuses on two smart charging strategies from both commercial and
technical perspectives for the optimum charging of plug-in electric vehicle (PEVs)
inworkplace parking lots incorporating both vehicle to grid (V2G) and grid to vehicle
(G2V) chargingmethodologies. The commercial objectivewasbasedonoptimization
of the total daily cost (TDC) which is acquired by the charging facilitator in that
industrial area. The technical objective focuses on minimizing the peak-to-average
(PAR) ratio for the purpose of straitening/flattening of the load curve. The strategies
were designed to allow integration of PEVs having all kinds of energy requirements,
i.e., positive, negative, or even zero. Also, the constraints concerning PEV batteries,
distribution system framework, and charging framework are taken into consideration.
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Based on the detailed analysis, after comparing both the smart charging strategies,
it was observed that Strategy A (optimization of TDC) allows very less maximum
PEV penetration into the distribution network as compared to that in Strategy B
(PARminimization). Apart from this, for every penetration level possible in both the
methodologies, it was noticed that Strategy A gives more economical benefits on the
other hand Strategy B gives more technical aids in relation to reducing peak load.
Thus, it is valuable to note that each methodology has its own pros and cons and
therefore, one needs to make a sound decision while selecting the strategy depending
on his requirements.
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Chapter 7
Frequency Control of 5 kW Self-excited
Induction Generator Using Gravitational
Search Algorithm and Genetic Algorithm

Swati Paliwal, Sanjay Kumar Sinha, and Yogesh Kumar Chauhan

Abstract For harnessing the wind energy, self-excited induction generator is
becoming more popular in today’s scenario. Nonlinear loads lead to major draw-
backs in self-excited induction generator such as poor voltage, frequency regulation
and reactive power consumption. This poor voltage and frequency of SEIG depends
onmany factors like types of load, capacitance involved for reactive power compensa-
tion and prime mover speed. The improved performance of SEIG can be obtained by
using steady-state analysis of equivalent circuit and usage of optimization techniques
in SEIG machine. The main objective of this chapter to select the values of shunt
and series capacitances at specified speed in order to achieve an optimum frequency
regulation using gravitational search algorithm (GSA) and genetic algorithm (GA).
GSA works on Newton’s law of gravity, whereas GA follows the steps of selection,
crossover andmutation. Both the techniques are based on heuristic approach of gbest
and pbest. Therefore, this study is carried out on an objective function of relative
mean error of frequency regulation. Correspondingly, the minimum fitness is calcu-
lated for resistive and resistive-inductive load. The improved performance validates
both the optimization techniques.

S. Paliwal (B) · S. K. Sinha
Department of Electrical and Electronics Engineering, Amity University, Noida, UP, India
e-mail: swatipaliwal03@gmail.com

S. K. Sinha
e-mail: sksinha6@amity.edu

Y. K. Chauhan
Department of Electrical Engineering, Kamla Nehru Institute of Technology, Sultanpur, India
e-mail: chauhanyk@yahoo.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
R. N. Shaw et al. (eds.), AI and IOT in Renewable Energy,
Studies in Infrastructure and Control,
https://doi.org/10.1007/978-981-16-1011-0_8

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1011-0_8&domain=pdf
mailto:swatipaliwal03@gmail.com
mailto:sksinha6@amity.edu
mailto:chauhanyk@yahoo.com
https://doi.org/10.1007/978-981-16-1011-0_8


76 S. Paliwal et al.

Nomenclature

Abbreviations

SEIG Self-excited Induction Generator
STATCOM Static synchronous compensator
ANFIS Adaptive neuro-fuzzy inference system
VSC Voltage source converter
SUMT Sequential unconstrained minimization technique
GSA Gravitational search algorithm
GA Genetic algorithm

Symbols

Xro Per unit blocked rotor reactance
R1, R2 Per phase stator and rotor resistance in per unit
X1, X2 Per phase stator and rotor leakage reactance in per unit
Xm, Xm

un Per unit magnetizing and unsaturated magnetizing reactance
F, v Per unit frequency and prime moverspeed
Csh, Cs Shunt and series capacitance in microfarad
Xm

mn Minimum value of magnetizing reactance in per unit
Xm

mx Maximum value of magnetizing reactance in per unit
Xc Shunt capacitance in per unit
Fmn Minimum value of frequency in per unit
Fmx Maximum value of frequency in per unit
Is Slip factor
Vs Stator voltage in per unit
Vgen Air gap voltage in per unit
Is Stator current in per unit
Il Load current in per unit

1 Introduction

Per capita energy consumption of a country describes the standard of living of its citi-
zens. Therefore, with the increase in demand of energy, the fuel consumption has also
increased linearly. This fuel consumption has been amajor concern for researchers in
lieu of saving fossil fuel for future generation. The contribution of renewable energy
resources towards the saving of fossil fuels and clean power generation would help in
achieving milestones in the growth path of the world. Amongst renewable resources,
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India has the fourth highest installed capacity of wind in the world with total installed
capacity of 37.50 GW (as on 31 December 2019) with 62.03 Billion Units were
generated in the fiscal year of 2018–19 (MNRE annual report 2019–20 [1]). With
the renewed interest in wind energy generation, the focal point is towards induction
generators in comparison to synchronous generators which were used traditionally.
In isolated areas, squirrel cage induction generators are very popular because of their
several benefits. Nowadays, self-excited induction generator (SEIG) is used because
of its various advantages like low cost, less maintenance over squirrel cage induction
generator. SEIG also carries disadvantages like poor voltage regulation and consump-
tion of reactive power under varying speeds. To overcome the drawbacks of SEIG,
the capacitor bank plays an important role [2]. The placement of capacitor bank is
either in short shunt or in long shunt. In paper [2], capacitive excitation compensa-
tion technique has been used for improvement in different profiles of voltage levels.
Similarly, Swati et al. in paper [3] have computed an optimized capacitance value
for initializing the voltage build up in three-phase self-excited induction generator.
Apart from capacitive values, limits of different machine parameters are also a point
of concern for improved performance of self-excited induction generator. In paper
[4], S. S. Murthy et al. have designed 5 kW, 50 Hz, 230 V, 4 pole, single-phase AC
generator by keeping the manufacturing constraints into view. The steady-state anal-
ysis of unbalanced load is done by using two-port equivalent networks for standalone
conditions [4]. Further, the advancement in optimization techniques has helped to
improve the performance of induction generators. In paper [5], adaptive neuro fuzzy-
based inference system (ANFIS)with static compensator (STATCOM) has been used
for controlling the voltage of SEIG during change in load conditions and also for
balancing the harmonics.

In paper [6], intelligent neural network-based control algorithm employed on
voltage source converter (VSC)-based battery energy storage system has been used
for excellent dynamic and steady-state response of the system. In paper [7, 8],
MohamedA. Enany has investigated the voltage profile and power capability of series
compensated self-excited induction generator for short shunt and long shunt compen-
sation configurations using genetic algorithm-based assessment and ANFIS, respec-
tively [9–11]. The proposed results have been comparedwith the experimental results
which validate both. In paper [12], genetic algorithm has been used for short shunt
SEIG for improving the two objectives of voltage regulation and optimum perfor-
mance capability which depend upon voltage regulation as well as loadability. In
paper [13–17], genetic algorithm has been used for assessing the different parameters
of SEIG like speed, capacitance, leakage reactance, stator and rotor resistance.

In this chapter, 5 kW,415V, 10.1A,� connected short shunt self-excited induction
generator has been used. For improvement of frequency regulation, two optimizing
techniques, gravitational search algorithm (GSA) and genetic algorithm (GA) have
been implemented in order to get better performance. This chapter is outlined as
introduction, machine modelling, problem formulation, results and discussion and
conclusion.
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2 Machine Modelling

In this section, machine modelling of SEIG has been explained using equivalent
circuit diagram. The frequency regulation of SEIG can be improved by connecting
series capacitance in combinationwith shunt capacitance. Depending upon the place-
ment of series capacitance, a SEIG can be classified as short shunt and long shunt
SEIG. Figure 1 shows a schematic diagram of short shunt SEIG. A capacitor bank
is connected across the stator terminal of induction machine and load in order to
supply reactive power to the induction generator for self-excitement. The value of
capacitance at specified speed provides the optimum performance of SEIG.

The appropriate modelling is needed to improve the voltage and frequency regu-
lation of SEIG for cost-effective utilization and improved performance. Therefore,
to know the operation and design of SEIG machine the steady-state performance
plays an important role. Modelling of short shunt SEIG includes the calculation of
unknown variables from the steady-statemodel. In this chapter, themagnetizing reac-
tance and unknown frequency can be calculated with the help of Newton–Raphson
method in steady-state equivalent circuit of SEIG. Figure 2 represents the stator and

Fig. 1 Short shunt 3-Ø SEIG

Fig. 2 Equivalent circuit of SEIG
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Fig. 3 Steady-state equivalent circuit

rotor side of SEIG.

Er = sEro (2.1)

where s is slip factor,

X2 = sXro (2.2)

where Xro is Blocked rotor reactance.
For further calculation of machine parameters, the steady-state model is as shown

in Fig. 3.
For steady state,

Ztotal = ZPQ + ZPR + ZRS (2.3)

where

ZPQ =
{(

R2F

F − v

)
+ jFX2

}
||jFXm.

ZRS =
{
jXc

F
||(RL + jFXL

}

ZPR = R1 + jX1

For solving the two unknowns, magnetizing reactance (Xm) and generated
frequency (F), the two nonlinear equations separated by real and imaginary parts
are being solved using Newton-Rapson method.

f (Xm,F) = (
(P1Xm + P2)F

2 + · · · (P5Xm + P6) + P7 = 0
)

(2.4)
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g(Xm,F) = (
(Q1Xm + Q2)F

3 + · · · (Q7Xm + Q8) + Q9 = 0
)

(2.5)

Coefficients P and Q are expressed in Appendix 2. After the calculation of
unknown variables, performance parameters are being solved using Eqs. 2.6–2.10.

Is = Vgen ∗ F((ZPR + ZRS)) (2.6)

VS = {(Vgen ∗ F) − (Is ∗ ZPR)} (2.7)

Ic =
{

Vs

(−j Xc
F )

}
(2.8)

IL = Is − Ic (2.9)

Power = VS ∗ IL (2.10)

Steps to be involved in calculating unknown parameters by using Newton–
Raphson method.

1. Read the input parameters of machine.
2. Apply loop impedance method for load calculation.
3. Select the initial values of magnetizing reactance and frequency.
4. With the help of Jacobian matrix, calculate �Xm and �F.
5. If elements are within permissible limits, print Xm and F. If not, repeat step 3.

3 Problem Formulation

In this section, the design parameters v,Csh,Cs are computed for optimum frequency
regulation using gravitational search algorithm and genetic algorithm. Therefore, the
objective is optimized frequency regulation.

3.1 Objective Function

Mean Relative Error of frequency regulation is the objective function of SEIG which
is defined as mean summation of frequency mismatch between load and rated condi-
tions from no load point to 50 load points (for 5 kW machine). It depends on shunt
capacitance, series capacitances and speed (Csh, Cs, v) which is expressed in terms
of Fobj.



7 Frequency Control of 5 kW Self-excited Induction … 81

Fobj = 100%

n

50∑
n=1

{ [FLn(v,Csh,Cs) − Fr]
Fr

}
(3.1)

The Fitness of this objective function is expressed in terms of

f = 1

(1 + Fobj)
(3.2)

This objective function is subjected to various constraints and bound on variables
which are described as

Equality constraints: It is expressed in Eq. (3.3) and is used to solve Xm and
F using Newton-Rapson method and inequality constraints which are expressed in
terms of Xm, F is shown in Eqs. (3.4a, 3.4b). Both are required in order to express
the equations of steady-state equivalent circuit of SEIG.

Z1 and Z2 at nth load point are solved using Eqs. (2.4) and (2.5).

Z = Z1(v,Csh,Cs,Xm,F) + jZ2(v,Csh,Cs,Xm,F) (3.3)

Xmn
m ≤ Xm ≤ Xmx

m (3.4a)

Fmn ≤ F ≤ Fmx (3.4b)

For deep saturation of SEIG operation, Xm
mn and Xm

mx are taken as 0.1 pu and
Xm

uns, respectively. Fmn and Fmx are considered as v pu and 0.90 v pu, respectively,
from viewpoint of quality.

Bound limits: For covering the solutions, limits are important parameter which
include

15µF ≤ Csh35µF (3.5a)

50µF ≤ Cs300µF (3.5b)

0.88 pu ≤ v ≤ 1.16 pu. (3.5c)

3.2 Flowchart of Algorithm Used

As mentioned earlier, GSA works on the principle of Newton law of gravity where
each particle attracts the other via gravitational force. In GSA, agents act as objects
and their performance is being measured in terms of their masses. The gravity force
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pushes the objects globally towards heavy masses of objects which will provide
better solutions in terms of gbest and pbest. The flowchart of GSA methodology
shows the following steps: Initialization of GSA parameter, selection of constraints
and identification of pbest and gbest values as shown in Fig. 4. In flowchart, G(t)
is a function of initial value and time, whereas best(t) and worst(t) of population
are defined as minimum fitness value of agents at time ‘t’. Figure 5 represents the

Fig. 4 Flowchart of GSA
technique

Initialize all machine 
parameters,magnetizing 

characteristics ,GSA
parameters

Set itr=1

Set the 
constraints(equality
and inequality) and 
bound conditions
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Set the 
desired

objective
function

Evalutate the 
fitness

G(t),best(t),worst 
of population

Update the 
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Calculate the 
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Print End
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For initial 
population
,generate
Xm and F

Set the 
desired

objective
function

Evaluate the 
fitness for 
population

Reproduction
Crossover
Mutation

Convergence

Calculate the 
performance of 
SEIG machine

Print the output

End

Max.
Generation

Yes

No

Yes

No

New
Fitness

A

Fig. 5 Flowchart of GA technique

flowchart of GA steps involved in SEIG machine. GA technique includes the steps
of reproduction, crossover and mutation.
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4 Results and Discussion

In this section, relativemean error for frequency regulation of different loading condi-
tions has been compared. Correspondingly, the minimum fitness required for 5 kW,
415 V Induction motor operated as SEIG has been validated by using optimization
techniques of GSA and GA. The rated capacity at rated voltage is represented as 50
load points, i.e. from no load to rated load for 5 kW machine.

Comparison between GSA and GA results

InTable 1, optimized frequency regulation is investigated for 50 load points (Resistive
load). It is observed that the highest fitness and power output of 0.61 pu is achieved
above the rated speed at 1.03 pu in case of GSA technique as compared to GA.
The increase in capacitance supplies the excitation VARs at reduced speed and thus
maintains the terminal voltage and frequency.

Whereas Table 2 represents the optimum frequency regulation for R-L load with
unequal series capacitances. Tables 1 and 2 also show the comparison of two opti-
mization technique. In case of resistive load, root mean square error of frequency
regulation gives a power output of 0.6158 pu in GSA and 0.6078 pu in GA, respec-
tively. In case of R-L load, mean relative error of frequency regulation gives a power
output of 0.5990 pu in GSA and 0.5935 pu in GA, respectively. Therefore, the power
output of resistive load is better than resistive-inductive load.

Figure 6 show the droop in frequency at rated speed for R load using two opti-
mization technique named GSA and GA. The figure shows that GSA technique is
better than GA techniques as the frequency is better in case of GSA optimization
technique.

Figure 7 represents the fitness of resistive load for different parameters like shunt
capacitance, series capacitance and speed of prime mover. This fitness is based on
bound limits for covering the solutions within specified range.

Figure 8 indicates the maximum loading point condition and rated speed point
for R-L load conditions. The maximum loading point occurs above the rated speed
for GSA.

Table 1 GSA versus GA for resistive load

v Cs Csh Pl Technique

1.03 203.49 16.51 0.6158 GSA

1.03 199.34 15.98 0.6078 GA

Table 2 GSA versus GA for resistive-inductive load

v Cs Csh Pl Technique

0.99 189.48 17.42 0.5992 GSA

0.99 181.00 18.62 0.5935 GA
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Figure 9 represents the fitness for optimum frequency regulation in case of R- L
load during different parameters constraints.

Conclusion: This chapter represents the 5 kW, 415 V, 10.1 A, � connected short
shunt SEIG. The relative mean error of frequency regulation is optimized with the
help of GSA andGA optimization technique. The required optimized value of capac-
itance and speed are being selected by these heuristic approaches. The simulated
results of both GSA and GA are in proximity and validated the results in table
[1, 2]. The validated results concluded that the GSA technique gives better perfor-
mance in terms of frequency regulation for both R and R-L load. It provides good
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scope of research in an area of self-excited induction generator for better performance
in terms of voltage and loadability by using different optimization techniques.

Appendix 1: Specification of Self-excited Induction
Generator

5 kW, 415 V, 10.1 A line, � connected, 4 pole, 50 Hz Rs = 0.0532 pu, Rr = 0.0337
pu, Xs = 0.0533 pu, Xr = 0.0733 pu, Xm

uns = 3.48 pu.
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Appendix 2: Coefficients of Ztotal

The coefficients P and Q are defined as

P1 = −X1 ∗ RL ∗ (X2 + Xm) − X2 ∗ RL ∗ Xm

P2 = X1 ∗ RL ∗ v ∗ (X2 + Xm) + X2 ∗ RL ∗ Xm ∗ v

P3 = R1 ∗ R2 ∗ RL + X1 ∗ Xc ∗ R2 + (R1 ∗ Xc + RL ∗ Xc) ∗ (X2 + Xm)

+ R2 ∗ Xm ∗ Xc

P4 = ((−v ∗ R1 ∗ Xc) − v ∗ RL ∗ Xc) ∗ (X2 + Xm)

Q1 = 0

Q2 = X1 ∗ RL ∗ R2 + (X2 + Xm) ∗ (R1 ∗ Xc + RL ∗ Xc) + Xm ∗ R2 ∗ RL

+ Xm ∗ Xc ∗ X2

Q3 = (X2 + Xm) ∗ (−R1 ∗ RL ∗ v − X1 ∗ Xc ∗ v) ∗ Xm ∗ Xc ∗ X2 ∗ v

Q4 = −RL ∗ Xc ∗ R2 − R1 ∗ R2 ∗ Xc
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Chapter 8
Cloud Based Real-Time Vibration
and Temperature Monitoring System
for Wind Turbine

Subharshi Roy, Barnali Kundu, and Debanjan Chatterjee

Abstract In the present scenario, Renewable Energy requires real-time condition
monitoring for their uninterrupted performance.Wind turbines are often subjected to
huge mechanical, and thermal stresses which in turn result in causing faults. In this
paper, a Cloud-based Real-time Monitoring System (CRMS) has been developed
for the early detection of a problem and identify the need for maintenance before a
wind turbine fails. CRMS associated with vibration sensor and temperature sensor
can easily detect the fault and alarming system indicates the operator personnel
about the abnormal state of the motors in the industrial plant. With real-time data
monitoring system and LabVIEW, it enables the detailed spectral analysis of the
system. A wireless sensor networks are included in this research work for a real-
time condition monitoring. Therefore, the authors of this paper have developed a
prototype which can provide smart maintenance to elongate the life of wind turbine
and prevent the harm of nearby equipments.

Keywords Real-time condition monitoring micro-electromechanical system ·
Wind turbine

1 Introduction

Technological advancements and social awareness in the climatic health are
promoting the use of renewable energy in an increasing proportion. In particular,
wind farm are capable to produce 10.4% of total renewable energy. The installation
of wind energy throws vast challenges for operations and maintenance. Rough envi-
ronmental characteristics and implementation of largewind turbines lead to relatively
high breakdown rates for wind turbines. Increased product maintenance has a signif-
icant role to keep system healthy so as to obtain safe and smooth operation efficiently
and cost effectively. The best maintenance strategy involves condition monitoring
where overall operational cost of periodic maintenance and plant shutdown time can

S. Roy · B. Kundu (B) · D. Chatterjee
Guru Nanak Institute of Technology, Sodepur, Kolkata, India
e-mail: barnali.kundu@gnit.a.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
R. N. Shaw et al. (eds.), AI and IOT in Renewable Energy,
Studies in Infrastructure and Control,
https://doi.org/10.1007/978-981-16-1011-0_9

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-1011-0_9&domain=pdf
mailto:barnali.kundu@gnit.a.in
https://doi.org/10.1007/978-981-16-1011-0_9


90 S. Roy et al.

be minimized [1]. So, proper condition monitoring and diagnostics are vital for such
machinery due to the continual extended use. Condition monitoring is a graphical
trend of themachine parameters for the purpose of detection, analysis, and correction
of the machine problems much before the failure takes place [2, 3].

Vibrations are inevitable phenomenon that leads to various types of malfunctions
in the machine. In some scenarios, the vibrations originated from a machine can
cause damage to the nearby machinery. Rotor faults are mainly caused by pulsating
mechanical loads such as reciprocating compressors or coal crushers, etc., and due
to imperfections in the manufacturing process of the rotor cage which cause high
mechanical and thermal stress [4]. Analysis associated with bearing faults are over-
whelmingly used in the induction motors and motors reliability studies show that
bearing problems amount to over 40% of all machine failures [5]. A vibration sensor
is able to sense mechanical vibration of each component that occurred with increased
noise. Temperature will also increase above the limiting value which is prescribed
by the manufacturer of the particular motor. In [6], the researcher has mentioned
the two possible positions for sensor placement. In order to detect the failures
promptly or the arisen malfunctions, it is important to identify the manifestations
of the faults occurred. The researchers have claimed that an Internet of Things (IOT)
based real time monitoring system can save the maintenance cost approximately 10–
40% per year [7]. In [8], the authors have mentioned the two possible positions for
sensor placement. So, proper condition monitoring and diagnostics are vital for such
machinery due to the continual extended use. Condition monitoring is a graphical
trend of the machine parameters for the purpose of detection, analysis and correction
of the machine problems much before the failure takes place [9, 10]. Vibrations are
inevitable phenomenon that leads to various types of malfunctions in the machine.
In some scenarios, the vibrations originated from a machine can cause damage to the
nearby machinery. Rotor faults mainly caused by pulsating mechanical loads such
as reciprocating compressors or coal crushers etc., and due to imperfections in the
manufacturing process of the rotor cage which cause high mechanical and thermal
stress [11]. Analysis associated with bearing faults are overwhelmingly used in the
induction motors and motors reliability studies show that bearing problems amount
for over 40% of all machine failures [12]. A vibration sensor is able to sensemechan-
ical vibration of each component occurred with increased noise. Temperature will
also increase above the limiting value which is prescribed by the manufacturer of the
particular motor. In order to detect the failures promptly or the arisen malfunctions, it
is important to identify the manifestations of the faults occurred. Vibration analysis
of electrical machines is used to monitor the characteristics frequency in order to
determine the motor faults. .

In this paper, a Cloud-based Real-time Monitoring System (CRMS) has been
developed for the early detection of a problem and to identify the need for mainte-
nance before a motor fails. CRMS associated with vibration sensor and temperature
sensor can easily detect the faulty motors, and alarming system indicates the oper-
ator personnel about the abnormal state of the motors in the industrial plant. Consid-
ering the present scenario of Wind plants and existing issues of real-time monitoring
system, an integrated communication systemusingwireless sensor nodes is proposed.



8 Cloud Based Real-Time Vibration and Temperature Monitoring … 91

Table 1 Specifications of
test system

Specifications

Manufacturer (MODEL No.) GE (190906 T)

Type and class TDC & B

Power rating 1 kW

Volts (V) 230 V

Rated current (A) 12 A

Frequency (Hz) 50

Rated speed (RPM) 1425

Rated current (A) 1.9 A

Insulation temp rise 80 °C

Therefore, the authors of this paper have developed a prototype which can provide
smart maintenance to elongate the life of motors and prevent the harm of nearby
equipments (Fig. 1).

2 Analysis of Electromagnetic Vibration Effects

Analysis of electromagnetic vibration effects modern motors/generators does not
involve variable elements of electromotive forces, but due to internal and external
motor faults, such as nominal power supply quality and load and electromagnetic
vibrationmight deviate from the normal operation of the generator. Excessive amount
of electromagnetic vibration of generators results in a resonance condition on the
structural aspects of the motor. There are two prior sources of EM vibrations in
induction motors: radial and tangential electromagnetic forces. Simulation has been
performed using COMSOL Multiphysics software and results of magnetic Flux
Density distribution and current Density distribution shown in Fig. 2a, b.

The magnetic waves in co-ordinance with Maxwell’s law (1) develop a radial
EM force-wave with doubled line frequency. The prior vibration is developed at the
frequencies of radial electromagnetic forces [13]:

frotor = flinekzrt(1− s)

p
(1)

where p is no. of pole pair, s is the slip, zrt is no. rotor teeth, k = 1, 2, 3….
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Fig. 1 Schematic view of
wind turbine

Fig. 2 a Magnetic flux density b current density using COMSOL multiphysics

3 Prototype Description

In this paper, a prototype is developed which is implemented on an induction
generator as shown in Fig. 3 and the specifications are given in Table 1.

A. Vibration Sensors

MPU-6050 tri-axial accelerometer is aligned to the generator surface with sensitivity
of 100 mV/g. Samples are recorded with signals of duration 2 s where sampling rate
is 20 kS/s. The spectrum was recorded through tri-axial accelerometers aligned on
the induction generator. The combination of 3-axis accelerometer and gyroscope on
the similar silicon die processes Motion Fusion 6-axis algorithms. The device nodes
access external magnetometers through an auxiliary I2C master bus which allows
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Fig. 3 Experimental Setup with prototype implementation

the other device nodes to gather external data without interruption from the system
processor.

B. Temperature Sensors

DHT22 has been interfaced with themicrocontroller. It employs digital signal collec-
tion technique where the sensors are connected with 8-bit single-chip computer. The
sensors of this model are pre-compensated and pre-calibrated in the high precision
calibration chamber. The coefficient is saved in the OTP memory where the sensor
detection cites coefficient from the memory. The analog input of the microcontroller
receives sensors data and projected into human–machine interface of temperature
monitoring system.

C. Wireless Sensor Node (WSN)

A wireless sensor network is formed for transmission of data from sensors to micro-
controller or monitoring devices using ESP-NOW protocol developed by Espressif.
This protocol enables data transmission in between nodes via Master–Slave commu-
nication without the use of WiFi. Individual NODEMCU ESP8266 are connected
to MPU6050 and DHT22 forming two separate Master nodes. Initially, the sensor
nodes are paired and an encrypted peer-to-peer connection is formed without the
requirement of TLS Handshake protocol.

The vibration data derived requires constant flow to the monitoring systems.
The flow of data is made through self-configured wireless networks to pass the
data through the network to a specified main location where the data can be moni-
tored and analyzed. NodeMCUClient–Server communication is done via ESP-NOW
communication protocol. The hardware model of prototype and PCB of the Tri-axal
accelerometer connection is shown in Fig. 4a, b, respectively.
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(a) (b)

Fig. 4 a Hardware model of prototype b PCB of the tri-axial accelerometer connection

D. Cloud Storage

The data retrieved through the microcontroller is transferred wirelessly to a Time
Series Database (TSDB) optimized for storing and serving series of data points
indexed in time order through associated pair of time(s) and value(s). The functional
block diagram of Wireless sensor node is shown in Fig. 5. The cloud server accepts
data via protocols such as HTTP, TCP, and UDP. The microcontroller program has

Fig. 5 Wireless sensor node functional block diagram
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Fig. 6 LABVIE model for vibration monitoring

been set to process and regulate real-timedata from the sensors and store it to the cloud
with InfluxDB Cloud, a high accessible storage and time series data retrieval with
Graphite protocol support.

4 Experimental Results

This section deals with the experimental methodology that was performed by the
prototype under real-time operating conditions to verify sensitivity of the measure-
ment, reliability in data transmission between sensor nodes and cloud-base server,
system stability and efficiency, and results are retrieved (Fig. 7).

Data from accelerometer in Fig. 7a, b and from gyroscopic in Fig. 8a, b are
necessary for fault detection. The MPU6050 sensitivity level is enough to detect
anomalies that are harmful to the generator. Figures show the amplitude-time level
recorded for healthy and unhealthy generator condition, i.e., failure in ball bearing.
It clearly elaborates the difference between healthy and generator with bearing fault
with respect to their amplitudes. With frequency of 50 Hz at running condition, the
data clearly indicates the increase in vibration in motor with bearing failure.

A. Temperature sensor results
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(a)  (b)

Fig. 7 Waveform of (a) unhealthy and (b) healthy generator obtained from accelerometer

(a) (b)

Fig. 8 Waveform of (a) unhealthy and (b) healthy generator obtained from gyroscope

The normal working condition in healthy generator and abnormal increase in temper-
ature in the unhealthy generator is detected by the sensor updating the fluctuations
at LabView and cloud-server, respectively. LabView model has been developed
in Fig. 9. The sensor was placed on the motor’s front-rear ball bearing areas and
casing. Compared to the healthy generator, the rise in temperature at the unhealthy
motor (faulty ball bared motor) raised much rapidly and settled around 43 °C.
Figure 10 shows the Human–Machine Interface (HMI) of temperature monitoring
panel. Increase in temperature has been properly updated at the LabView user
interface, sensor nodes, and cloud server.

A. Cloud server result

Figure 11 shows the data is updated successfully in the cloud server in case of healthy
and unhealthy motors. The fluctuations in the data clarify the increase in vibrations
as per the health of the generators. The data is stored in the data logger system with
respect to time span. Also, the data can be downloaded as Comma-Separated Value
(CSV) files for further analysis or machine learning algorithms.
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Fig. 9 LABVIEW model of temperature monitoring system

Fig. 10 Human–Machine Interface (HMI) of temperature monitoring panel

5 Conclusion

Aclear understanding of themotor phenomena that causes vibrations at such frequen-
cies is a major factor for diagnosing of induction generator-based wind turbine.
Condition monitoring using vibration analysis is a very reliable diagnostic method
compared to other methods for both electrical andmechanical faults in the AC gener-
ator. In the upcoming generations, periodic manned inspections of renewable power
plant will be obsolete. In this current era of real-time data monitoring and predic-
tive maintenance, the improvisation of condition monitoring of industrial equipment
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(a) (b)

Fig. 11 Waveform of a unhealthy and b healthy generator from InfluxDB

is necessary. With the help of IoT, wireless sensor node and cloud computing, the
longevity of wind power plant and safe operations are achieved. The sensor data can
be used further used for machine learning algorithms for predictive maintenance of
the induction generators-based wind turbine. The vibration and anomaly detection
accuracy can be improved using various other methods such as Wavelet transform,
Short-Time Fast Fourier (STFT) Transform, or Power Spectrum Density (PSD).
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Chapter 9
Smart Solar-Powered Smart Agricultural
Monitoring System Using Internet
of Things Devices

Paras Patel, Anand Kishor, and Gitanjali Mehta

Abstract India is the fastest-growing big financial system in the world, with a
massive population, useful demographics, and excessive catch-up potential. In India,
agriculture is a primary activity, around two-third of India’s population remains
dependent upon agriculture. In developing nations, farmers aren’t using smart agri-
cultural technique but if they begin the use of smart agricultural technique with the
assist of this technique, they can produce good yield crops, wide range of develop-
ment on the agriculture, and canmake superior amount of profit. To reduce long-time
expenditure in agriculture, use of renewable energy is important for that smart solar
is the primary energy which may be used.

Keywords Smart solar system · GSM module · Internet of things

1 Introduction

India is the speediest growing enormous economy on the planet, with a huge
populace, helpful demographics, and excessive catch-up potential. In essential area
of economy, exercises are attempted through on double utilizing common assets.
Farming, fishing, dairy, and other normal items are alluded to as so in light of the fact
that they shape the base of all particular item. Since limit of the characteristic timewe
get is from farming, dairy, fishing, it is likewise called agriculture and unified area [1–
3]. Agriculture plays a fundamental capacity inside the Indian monetary framework.
More than 70% of the rustic families rely on farming. Agriculture is a significant
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Fig. 1 Smart solar system

area of Indian monetary framework since it makes commitments around 17% and
large GDP and gives work to more than 60% of the populace [4–6]. Agriculture is
the technology & artwork of cultivation of plants & domestic animal. Farming was
the evolution for development of mankind. For example,—Punjab, Haryana, Uttar
Pradesh. Figure 1 shows a smart solar system with the following specifications:

• Area—200 square feet
• Cost—2–3 Lakh
• Output—2.5 kw
• Average annual energy output—5000kwh
• Size of solar cell—156 mm by 156 mm
• Diameter—16 feet
• No. of slides—12
• Weight—400–450 kg.

2 Proposed System Design and Working Principle

Present-day farming is another and rising idea utilized in developing the yield of
a harvest with the aid of using advanced technology to help in conventional culti-
vating rehearses. Ideas, for example, exactness inAgriculture (PA), Internet of Things
(IoT),Wireless SensorNetworks (WSN), andmany other techniques are utilizedwith
conventional framing to help in the profit of harvests, growing efficiency, and control-
ling of expenses. The purpose of the execution is to exhibit the smart and brilliant
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Fig. 2 System design

abilities of the microprocessor to permit the choices to be taken on irrigation of the
vegetation, checking the temperature of fields, soil moisture, and many more based
on the non-stop tracking of the ecological conditions in the field [7, 8].

Figure 2 shows the designed system. There are many different types of sensors
which are used in our system. These sensors are constantly observing the parameters
& forward it to the Arduino board for additional handling which goes about as an
IoT gateway. “This passage has been given the wireless service by putting in a GSM
module which will be updating the records to the cloud”. With the help of GSM
module, we can also able to operate our device over 2G and 4G networks.

The frameworks have been diverse in that the sensor hubs planned, utilized explicit
detecting units for tracking surroundings. In sensor hubs comprised of soil wetness,
temperature, air humidity, and laser sensors. In sensor hubs, the best effective is to
acquire a soil wetness sensor. In most of the gadget planned, hubs didn’t contain any
energy gathering gadgets, and as such could best effective capacity for a specific time
period earlier than the hub’s energy flexibility could need to be supplanted. In this
work, we expand on top of these recently published works, and furthermore exploit
the segments that take lead of the element present in the blueprint of a remote IoT
organization [9, 10].

Sensors networks have been geared up with photovoltaic panels for power harvest
to be able to rise the overall run-time of the network. When sensor information was
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Fig. 3 Assembled system
with components

estimated and conveyed to the objective, time stamps were set on the bundles and
stock, which would then be able to be explored later to decide any potential activities
that are expected to additional consideration of the yields [11, 12]. Figure 3 shows
the assembled system with different components.

3 Sensor Description

To gauge the particular ecological conditions needed in an agricultural positioning
framework, two kinds of sensors have been used:

(1) Soil wetness sensors

The Grove Soil Wetness Sensor is fit for estimating the dampness content material
inside the soil. This sensor was chosen as it can properly check the volumetrically
water contendent material inside the dirt in a roundabout way by utilizing the elec-
trical obstruction among the two pushes. This is helpful in rural frameworks, for the
explanation that through realizing the dampness levels inside the dirt, fields could best
need to be flooded when needed and will restrict the expansion of microorganisms
[2]. Figure 4 shows the assembled soil moisture sensors with equipment.

(2) Humidity and Temperature sensors
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Fig. 4 Assembled soil moisture sensors with other equipment

Figure 5 shows the assembled humidity and temperature sensor. Temperature and
mositure sensor can estimate the natural data with skimming point precision, up to
0.4° for temperature and 2% for comparable dampness. This sensor was chosen as
most extreme harvests will create the best yield while the temperature and dampness
are inside an ideal range. These estimations end up being fundamental in nurseries as

Fig. 5 Assembled humidity and temperature sensor
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Fig. 6 Connected router with model

open-air circumstances can altogether influence those inside the nursery. The ability
to control the circumstances can altogether help with inside the improvement of the
plants itself as most required definite temperature and mugginess stages at some
point of the different levels of growth [3–14]. Figure 6 shows the connected router
with model.

(3) Obstacle sensor

This sensor can work at the standard of sound waves and their appearance property. It
has two sections such as supersonic transmitter and supersonic recipient. Transmitter
communicates the 40 kHz sound wave and, on its gathering, it imparts the electric
sign to the miniature regulators. The speed of sound in air is now known.

Subsequently from time needed to get again the sent sound wave, the hole of
hindrance is determined. Here, it is utilized for impediment location if there should
be an occurrence of cell robot and as a development finder in product habitation
for halting burglaries. The supersonic sensor permits the robot to find and avoid
hindrances and furthermore to gauge the hole from the deterrent. The scope of activity
of supersonic sensor is 10–30 cm.
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4 Software Used

(1) Arduino IDE

When operating with the InduinoR3 Board, select the board as Arduino UNO from
the Tools Boards sequence and choose the Appropriate Com Port.

(2) AVR Studio Version 4

It is utilized to compose, manufacture, compile, and troubleshoot the implanted C
program codes that have been consumed in the miniature regulator to have the option
to perform wanted tasks. This software program promptly gives.hex file that can be
effortlessly consumed into the miniature regulator.

Proteus 8 Simulator

Proteus 8 is single of the extraordinary reenactment programming program for
different circuit designs of miniature regulator. It has virtually all miniature regula-
tors and computerized segments that are promptly accessible in it and along these
lines it far generally utilized test system. It might be utilized to check program and
embedded drawing for gadgets before genuine equipment examination. The simu-
lation of programming of micro-controller likewise can be completed in Proteus.
Simulation avoids the opportunity of harming apparatus because of inaccurate plan.
Figure 7 shows the program codes.

The advantages and disadvantages of the proposed system are as

Advantages

• Actual-Time Data & Productivity Insight
• Low Operation Expenses
• Increased Quality of Productivity
• Accurate Farming and Field Rating
• Third eye Monitoring
• Water Conservation
• Increasing renewable energy.

Disadvantages

• The Cost Involved in Smart Agriculture
• There could be wrong Analysis of Weather Conditions
• Reliability
• Increased channel maintenance.



108 P. Patel et al.

Fig. 7 Program codes

5 Conclusions

Smart Agricultural Field observing framework can assume a significant function in
Agricultural countries. Through this framework, soil condition can be monitored.
This framework can assist with continuing cultivation and accurately. This frame-
work forestalls the misuse of water. Some more sensors with more information
investigation should be possible as future work of this chapter. IoT sensors have high
efficiency and accuracy, so it is easy to obtain the direct data of ground wateriness
and warmth in agriculture field. The water stages indicator is used, so prevents the
waste of water and saves water; it helps the farmers to expand their production. By
forcing this framework, farming, plant lands, parks, gardens, golf courses can be
irrigated. Thus, this device is more affordable and proficient when contrasted with
various types of mechanization gadget. In huge scope applications, high sensitivity
sensors can be applied for huge regions of agricultural grounds.
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