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Preface

What this book is about and who is the intended audience. This book is an
introduction to fuzzy approach to explainable AI. The intent is that the material
should be understandable even for undergraduate students—and, of course, graduate
students, researchers, and practitioners will also hopefully benefit from this material.

Need for explainable AI. What is explainable AI and why do we need it in the first
place?

Modern AI techniques—especially deep learning—provide, in many cases, very
good recommendationswhere a self-driving car should go,whether to give a company
a loan, etc. The problem is that these techniques are not (yet) perfect.

In some cases, the recommendations generated by an AI system are not good.
Of course, as the famous Marilyn Monroe movie says, “Nobody’s perfect”. Human
experts are not perfect either. However, when a human expert—be it a banking official
or a medical doctor—makes a recommendation, he or she can, if asked, provide an
explanation. If you find the explanation not sufficiently convincing, you can ask for
someone else’s advice.

Unfortunately, recommendations provided by an AI system (such as a deep neural
network) usually come without an explanation. So we cannot so easily separate good
and bad advice. It is therefore desirable to make AI more explainable.

Why fuzzy techniques. Providing an explanation means finding natural language
rules and ideas which are, in some reasonable sense, equivalent to the numerical
results provided by the AI tools. The problem of connecting natural language rules
and numerical decisions is known since 1960s. Then, the need was recognized to
incorporate expert knowledge into control and decision-making.

Experts use imprecise words like “small”. For this incorporation, a special
technique was invented—known as fuzzy techniques. This technique led to many
successful applications. It is therefore reasonable to use these techniques in designing
explainable AI.

What we study in this book. If we knew how to make AI explainable, teaching
this class would be easier. We would just teach the corresponding algorithms and
methods.

v
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At present, explainable AI remains largely an ultimate goal. We do not yet know
which tools will work better. So, instead of studying specific tools, it makes sense to
study the foundations for these tools, so that we will know why we need to use these
tools, and we will know which tools are better in which situations. This will help us
select appropriate tools for making current AI applications more explainable.

First topic: Introduction to fuzzy techniques. We want to better understand how
fuzzy techniques can help with explainable AI. For this, we need to have a good
understanding of these techniques. We will learn the corresponding techniques and
how they are used in control and in other applications.

We will also try to make these techniques themselves more explainable. Namely
we will explain the first-principle motivations for these techniques.

We will study all three main stages of fuzzy techniques:

• describing the original imprecise words like “small” in numerical terms,
• combining the corresponding numbers; to describe Boolean (and- and or-) combi-

nations of the corresponding properties, special “and” and “or” operations are used
for this;

• “defuzzification”—transforming imprecise recommendations into a precise
control value.

Second topic: Which version of fuzzy technique to select. In all three stages
of fuzzy techniques, there are several options. Empirically, in different situations,
different options work best. This makes sense, since in different situations, we have
different objectives. For example, if we launch a single drone to inspect an area,
the main objective is to maximize the probability that its mission succeeds. On the
other hand, if we launch a swarm of drones to inspect the same area, it is probably
OK if one of them does not do much—as long as, on average, the overall mission is
successful.

How do we select the best techniques? In some cases, we have finitely many
parameters. So, we need to find the best values of these parameters. To find the
largest and the smallest values of a function of several such variables, we can use
calculus. (Do not worry if you have forgotten some of it, we will refresh).

In many other cases, however, we need to select a function—e.g. the best “and”-
and “or”-operations. There is a natural generalization of calculus that deals with
such optimization problems. It is known as variational calculus, and it is actively
used in control. We will learn the basics of these techniques. As an example, we will
use this technique to come up with optimal “and”- and “or”-operations for the two
above-described drone situations.

Third topic: Towards explainable machine learning. The ultimate goal is to make
the results of machine learning (and other AI techniques) explainable. We are still
working on this.

Meanwhile, an important help would be to make the machine learning techniques
themselves explainable. At present, in many cases, the only reason we select some
techniques and some parameters of these techniques is that these techniques empir-
ically work well on several problems. This is not as convincing as when we prove
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that these techniques are, in some reasonable sense, optimal. We will analyse deep
learning from this viewpoint.

Final word before the actual material starts: Enjoy!

El Paso, TX, USA
December 2021

Vladik Kreinovich
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Chapter 1
Why Explainable AI? Why Fuzzy
Explainable AI? What Is Fuzzy?

1.1 Why Explainable AI?

What is one of the main purposes of science. One the main objectives of science is
to predict future events based on the information that we have. For example, we know
the temperature, wind speed, wind direction, and humidity at different locations, and,
based on this information, we want to predict tomorrow’s weather—e.g., tomorrow’s
temperature at different locations in El Paso and at different moments of time.

In general, we know the values of some quantities x1, . . . , xn , and we want to
predict the value of some quantity y. To predict this value, we need to apply some
algorithm to the available data x1, . . . , xn . Let us denote this algorithm by f . Then,
the predicted value is computed as y = f (x1, . . . , xn).

Where does this algorithm come from?

Where does the desired prediction algorithm come from? Often, the desired
algorithm comes from the theoretical analysis, but this theoretical analysis has to be
on some empirical dependencies. So, the big question is: how dowe find an empirical
dependence y = f (x)?

For this purpose, we need to perform several measurements, in which wemeasure
both the values x and the corresponding value y.

• We perform the first measurement, and get the values x (1) and y(1).
• We perform the second measurement, and get the values x (2) and y(2), etc.

Let us denote the overall number of measurements by K . Under this notation, we
know the values x (k) and y(k) for k = 1, . . . , K .
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2 1 Why Explainable AI? Why Fuzzy Explainable AI? What Is Fuzzy?

Based on this data, we need to find an algorithm y = f (x) for which y(k) =
f (x (k)) for all k. This algorithm is what a usual description of the scientific method
calls a hypothesis. Then, we test this hypothesis—by checking that the relation y =
f (x) holds for future measurements, and, if the hypothesis is confirmed, we can use
this algorithm.

Let us give examples.

First example: Ohm’s Law. One example is Ohm’s Law, according to which the
voltage V is proportional to the current I : V = I · R, for some coefficient R (known
as resistance). How did Ohm come up with this formula?

• He measured the voltage V (1) corresponding to no current I (1) = 0, and came up
with V (1) = 0.

• Then, he measured the voltage V (2) corresponding to no current I (2) = 1, and
came up with V (2) = 2.

• After that, he measured the voltage V (3) corresponding to no current I (3) = 2, and
came up with V (3) = 4.

• Finally, he measured the voltage V (4) corresponding to no current I (4) = 3, and
came up with V (4) = 6.

He then plotted the results:
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Ohm guessed that this data can be described by a the simplest possible formula—a
linear formula, in this case by the formula V = 2I :

He then performed additional measurements that confirmed his hypothesis, and his
formula became what we now call Ohm’s Law.

Second example: Galileo’s formula. How did Galileo come up with a formula
according to which the distance d traveled by a free falling body depends on time as
d = c · t2 for some constant c? He measured the distance d for different times.

• He measured the distance d(1) corresponding to no time t (1) = 0, and came up
with d(1) = 0.

• Then, he measured the distance d(2) after one second t (2) = 1, and came up with
d(2) = 1 unit.

• After that, he measured the distance d(3) after two seconds t (3) = 2, and came up
with d(3) = 4.

• Finally, he measured the distance d(4) after three seconds t (4) = 3, and came up
with d(4) = 9.
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He then plotted the results:

He then guessed that these measurement results fit the quadratic formula y = x2.
He then performed other measurement, checked that this formula holds for other
measurement results as well, and this became the law of physics.

How do we go from examples to the formula? In all these cases:

• we know the values x (k) and y(k) corresponding to k = 1, . . . , K , and
• we want to find a function y = f (x) for which y(k) = f

(
x (k)

)
for all k.

In reality, measurements are approximate, so we only have y(k) ≈ f
(
x (k)

)
, but for

now, we will ignore this difference.
Originally, this taskwasperformedbyguesses, but eventually, algorithms appeared

that solve this problem.
In mathematics, this problem is known as interpolation or extrapolation:

• it is called interpolation if the value x is in between some of the values x (k), and
• it is called extrapolation if the value x is outside the region of all the values x (k).

The names are different, but the algorithm is usually the same in both cases.
In computer science, this problem is known as machine learning:

• we have some examples x (k) and y(k), k = 1, . . . , K , and
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• we want to come up with an algorithm y = f (x) that, given x , would predict the
value y; this algorithm must be consistent with all the observations, so we must
have y = f (x) for which y(k) = f

(
x (k)

)
for all k.

Successes of machine learning, especially of deep learning. Lately, machine
learning—especially a complex of machine learning techniques known as deep
learning—has been spectacularly successful. A few year ago, a deep learning algo-
rithm learned how to play Go—a complex game for which AI could not achieve any
reasonable level—so well that it easily defeated a human world champion.

Deep learning algorithms make the current autonomous vehicles very successful.
They help withmedical diagnostics: e.g., they diagnose a lung disease based on anX-
raymuchmore accurately than a human radiologist.Machine learning algorithms are
used by banks to decide who to give loans to—and its use drastically has decreased
the banks’ losses.

But there is a problem: we need to make AI explainable. It would all be great if
the machine learning results were perfect, but they are not.

• Autonomous vehicles, while they are, on average, much safer than cars driven by
humans—did have accidents, and two people were killed.

• A medical system for analyzing X-rays is more accurate than human radiologists,
but it still sometime misdiagnoses.

And herein lies a problem:

• If a human radiologist is not 100% sure of the diagnosis, he/she can consult with
colleagues: they exchange their motivations, and hopefully, come up with a more
accurate diagnosis.

• If a bank refuses someone a loan based on the human analysis, the applicant can
ask why his/her application was declined, and, based on the bank’s explanation,
argue to change the bank’s decision—or at least understand what is needed to be
more successful next year. For example, the bank may say that the applicant does
not have enough credit history, in which case time will help.

• If a student is not happy with the grade on a test, the student can ask the instructor
(or the TA) and, if possible, argue that more partial credit is due—and often, such
arguments succeed.

On the other hand, many computer-based systems offer no explanation at all. So even
when the answer is wrong, there is no way we can know that it is wrong o to try to
get a more accurate answer. For example, the X-ray-based system errs 10% of the
time. If a machine learning system of the same type is used to decide who shall be
released from jail—as it often does nowadays—this means that in 10% of the cases:

• either reformed folks, who can become productive members of the society, unnec-
essarily remain jailed—which is not good,

• or, which is probably even worse, unreformed criminals are mistakenly released,
thus endangering the population.
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And when there are no explanations, it is impossible to argue against such decisions.
It is therefore extremely important to be able to provide explanations for AI-based

decisions, explanations that would state, in plain natural-language words, why this
decision was made. A few AI systems already provide such explanations, but as of
now, most machine learning-based system do not provide such an explanation.

1.2 Why Fuzzy Techniques Seem a Reasonable Approach
for Explainable AI

We need explainable AI: reminder. We want to translate numerical results—
produced by AI algorithms—into natural language. In other words, we want to have
some relation between:

• numerical recommendations and
• natural-language explanations.

In search for the desired translation, a natural idea is to look for known relations
between numerical recommendations and natural-language explanations. And such
a relation is indeed well-known: it is so-called fuzzy techniques.

Before we start analyzing them in detail, let us first briefly overview why these
techniques were invented in the first place.

A brief history of fuzzy techniques. Fuzzy techniques first appeared in 1960s,
when the appearance of first easy-to-use and not-very-expensive computers led to a
boom in computer-based automated control systems. One of the main specialists in
optimal control was Professor Lotfi Zadeh (pronounced LOT-fih Zah-DEH), a co-
author of then the most popular and most widely used textbook on optimal control.
For example, control folks are familiar with the term z-transform; this z stands for
Zadeh—Zadeh did not invent this notion, but he made the corresponding mathemat-
ical technique widely used in control applications.

Professor Zadeh was born in Baku, Azerbaijan. His father was an Iranian consul.

• Lotfi Zadeh got his Bachelor’s degree in Iran.
• Then he moved to the US where he got his graduate degrees.
• Upon receiving his Ph.D., he became a professor—first at Columbia University,
then at the University of California-Berkeley.

His main interest at that time was in improving control systems—since in many
cases, their performance was not as good as the performance of human controllers.
For example, a chemical plant controlled by an automatic system was usually not as
productive as when controlled by a skilled engineer.

At first, he tried to bridge the gap between human and automatic controllers
by optimizing controllers—making sure that their control strategies provided the
best possible values of the corresponding objective function. However, even when a
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supposedly optimal control was implemented, the automatic systems were still not
performing as well as human-controlled ones.

Of course, if the automatic control was based on the fully adequate description
of a controlled system, this gap would not be possible: by definition of a maximum,
nothing is larger than the maximum value, so there is no way to control better than
the optimal control. So, the fact that the automatic controllers did not perform as
well as human controllers means that:

• the automatic systems operated based on a not-fully-adequate description of the
system, while

• human controllers—who achieved a better performance—clearly had some more
adequate description in mind.

In other words, some expert knowledge about the controlled systems and control
strategies that was not implemented in the computer-based system. So, Zadeh con-
cluded that we need to extract this knowledge and use it in automatic control.

The reason why this knowledge was not used is not that the experts do not want
to share it. Such cases are rare: sometimes, a company protects its expertise—but
even in this case, the most skilled engineers are willing to share their knowledge with
other engineers from the same company.

The reason why this knowledge was not implemented in the computer-based
computer systems was much more fundamental:

• computers only understand precise language of numbers, but
• a significant part of expert knowledge is described by imprecise (“fuzzy”) words
from natural language.

Let us use self-driving cars as an example. In this case, we are not talking about
a difficult skill of controlling a chemical plant or analyzing X-ray images, we are
talking about a skill that the vast majority of US folks have: ability to drive a car. So
why not ask people how they drive, and then implement this strategy in an automatic
system?

Here is an example:

• You are driving on a freeway with a speed of 60 miles per hour.
• The car in front of you—at 60 ft. distance—is traveling at the exact samemaximum
speed.

• Then the car in front of you brakes a little bit, reducing its speed to 55 miles per
hour.

Your reaction: slow down a little bit.
The problem is that a computer does not understand what “a little but” means, it

needs to know:

• for how many milliseconds and
• with what exactly pressure (in pounds per square inch)
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we need to press the brakes. Hardly any driver can describe his/her driving in these
terms.

So, we need to translate expert rules that use imprecise (“fuzzy”) words from
natural language into a precise numerical control strategy. To take care of this need,
Zadeh developed a methodology for such a translation, a methodology that he called
fuzzy.

In the 1980s–1990s, this methodology had many applications:

• in industrial plants,
• in control of trains, cars, and elevators—it is still used by many automotive com-
panies when designing automatic transmissions,

• in consumer devices such as video cameras, rice cookers, washing machines, etc.

This methodology provides the relation between numerical control and natural-
language rules—exactly the relation that we need to implement explainable AI. So, it
is reasonable to try to use this methodology when designing explainable AI systems.

1.3 What Is Fuzzy Methodology

Case study: description. To explain Zadeh’s ideas, let us start with a toy example
of a simple thermostat that is controlled by turning a knob:

• if we turn it to the right, it warms the room up—and the more we turn it, the more
the room warms up;

• if we turn it to the left, it cools the room down—and the more we turn it, the more
the room cools down.

We would like to maintain an ideal temperature T0—e.g., 25 ◦C. When the temper-
ature T is different, i.e., when the difference �T = T − T0 is different from 0, we
need to apply some control, i.e., turn the knob some degrees from its original position.
Let us denote the angle between the resulting position of the knob and its original
position by u. Then:

• if u > 0, we turn the knob u degrees to the right—i.e., in the direction of heating,
and

• if u < 0, we turn the knob u degrees to the left—i.e., in the direction of cooling.

Commonsense rules. Let us describe natural commonsense rules.

• If the difference �T is negligible, then we should not heat or cool the room. In
other words, in this case, the angle u should also be negligible.

• If the room is slightly warmer than desired—i.e., if the difference �T is small
positive—thenwe should cool the rooma little bit. Cooling corresponds to negative
angles u, and cooling a little bit corresponds to small values u. So, in this case,
the control u should be small negative.
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• If the room is slightly colder than desired—i.e., if the difference �T is small
negative—thenwe should heat the room a little bit. Heating corresponds to positive
angles u, and heating a little bit corresponds to small values u. So, in this case, the
control u should be small positive.

We can have many more rules, with �T medium, large, etc., but for simplicity, let
us consider only these three rules.

Thus, we have the following three rules:

• If �T is negligible, then u should be negligible.
• If �T is small positive, then u should be small negative.
• If �T is small negative, then u should be small positive.

When is a control value reasonable? Based on these rules, when, for a given
different �T , is u a reasonable control—we will denote it by R(�T, u)? When one
of these rules has been applied, i.e., when:

(�T is negligible and u is negligible) or
(�T is small positive and u is small negative) or
(�T is small negative and u is small positive).

How to describe this in precise terms? To describe the above statement in precise
terms,we need first to understand how to describes statements like “�T is negligible”
in precise terms.

For some values of �T , this is easy. For example:

• the difference �T = 0 is clearly definitely negligible, while
• the difference �T = 5—meaning that instead of 25 ◦C, the room temperature is
30 ◦C—this difference is clearly not negligible.

However, when it comes to values in between 0 and 5, such as 1◦, 2◦, 3◦, the situation
is not so clear. If you ask a person whether he/she considers this difference to be
negligible, the answer will probably be not “absolutely negligible” or “absolutely
not negligible”, but rather something like “somewhat negligible” or “to some extent
negligible”. How can describe such answers in precise terms?

A natural idea is to ask a person to mark, on some scale—e.g., on a scale from 0
to 5—to what extent they consider this difference to be negligible. This sound weird,
but this is exactly what students do when they evaluate the instructor. The students
do not just have an option of answering “yes” and “no” to questions on how prepared
the instructor is for the class—that would correspond to 0 and 5—they also have an
option to select one of the intermediate values.

It does not have to be a scale from 0 to 5, we can use a scale from 0 to 10, or
any other scale. To be able to compare different results, it makes sense to divide the
resulting mark by the largest value. For example, if an expert marked 3 on a scale
from 0 to 5, we take a degree 3/5 = 0.6. These “scaled” values are known as degrees
of confidence.
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If there are several experts, then there is another natural way to assign a degree
of confidence to each statement like “the temperature difference of 2◦ (�T = 2) is
negligible”: polling. If out of 10 folks, 6 think that this value is negligible, then we
take the ratio 6/10 as the desired degree.

In both cases:

• if we are absolutely sure that the statement is true, then its degree is 1, and
• if we are absolutely sure that the statement is false, then its degree is 0.

Comment. We may have a more complex situation, when each expert marks his/her
degree of confidence in a statement on a scale. This is an important case, but in these
introductory lectures, we will not study this case.

Membership functions and fuzzy sets. For each property P (in our case, the prop-
erty “to be negligible”) and for each possible value of the quantity x (in our case, of
the quantity �T ), we can ask an expert (or experts) and get the degree of confidence
that the value x satisfies the property P . This value is usually denoted by μP(x).

The function that assigns, to each value x , this degree μP(x) is known as the
membership function or, alternatively, a fuzzy set.

Comment.μ (pronounced “mu”) is the Greek analogue of the letterm—the first letter
of the word membership.

Need for interpolation/extrapolation.There are infinitelymanypossible values x—
e.g., we can have different in temperatures equal to 1.5 or 0.8◦—and we cannot ask
infinitelymany questions to the expert. So, oncewe asked finitelymany questions and
got finitely many values μ

(
x (1)

)
, μ

(
x (2)

)
, …, to get the values μ(x) for all other x ,

we need to use the procedure that wementioned earlier—interpolation/extrapolation.
There are many different interpolation/extrapolation techniques. The simplest is

when we use linear functions to describe the missing values. This is called linear
interpolation. Let us describe how it works.

Linear interpolation: formulation of the problem.

• We know that the dependence of a quantity y on a quantity x is linear, i.e., that

y(x) = a · x + b (1.1)

for some values a and b.
• We know two cases in which we measured x and y:

– we know the values x1 and y1 for which

a · x1 + b = y1, (1.2)

and
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– we know the values x2 and y2 for which

a · x2 + b = y2. (1.3)

Based on this information, we need to find the formula for y(x).

Linear interpolation: solution. Subtracting (1.2) from (1.3), we conclude that

a · (x2 − x1) = y2 − y1. (1.4)

Dividing both sides by the difference x2 − x1, we conclude that

a = y2 − y1
x2 − x1

. (1.5)

Subtracting (1.2) from (1.1), we conclude that

a · (x − x1) = y − y1, (1.6)

therefore
y = y1 + a · (x − x1). (1.7)

Substituting the expression (1.5) for a into this formula, we conclude that

y = y1 + (x − x1) · y2 − y1
x2 − x1

. (1.8)

This formula is known as linear interpolation.

Linear interpolation: example 1. Suppose that we know that:

• for x1 = 0, we have y1 = 1, and
• for x2 = 5, we have y2 = 0.

In this case, we have

y = 1 + (x − 0) · 0 − 1

5 − 0
= 1 + x · −1

5
= 1 − x

5
. (1.9)

Linear interpolation: example 2. Suppose that we know that:

• for x1 = −5, we have y1 = 0, and
• for x2 = 0, we have y2 = 1.

In this case, we have
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y = 0 + (x − (−5)) · 1 − 0

0 − (−5)
= (x + 5) · 1

5
= x + 5

5
= 1 + x

5
. (1.10)

Triangular membership function. Let us use linear interpolation to find the mem-
bership function μN (x) describing what is negligible. Let us consider the simplest
situation, when the only thing we know is that:

• the value x = 0 is definitely negligible, i.e., μN (0) = 1;
• the value x = 5 is definitely not negligible, i.e., μN (5) = 0; and, similarly,
• the value x = −5 is definitely not negligible, i.e., μN (−5) = 0.

Common sense tell us that if a difference is not negligible, then larger differences in
temperature are not negligible too, so μN (x) = 0 for all x ≥ 5 and for all x ≤ −5.

To find the values μN (x) for x between 0 and 5, we can use linear interpolation.
In this case:

• for x1 = 0, we have y1 = 1, and
• for x2 = 5, we have y2 = 0.

This is exactly the above Example 1, so we conclude that for x ∈ [0, 5], we have
μN (x) = 1 − x/5.

To find the values μN (x) for x between −5 and 0, we can also use linear interpo-
lation. In this case:

• for x1 = −5, we have y1 = 0, and
• for x2 = 0, we have y2 = 1.

This is exactly the above Example 2, so we conclude that for x ∈ [−5, 0], we have
μN (x) = 1 + x/5.

Thus, we have the following expression for the membership function μN (x):

• for x ≤ −5, we have μN (x) = 0;
• for −5 ≤ x ≤ 0, we have μN (x) = 1 + x/5;
• for 0 ≤ x ≤ 5, we have μN (x) = 1 − x/5; and
• for x ≥ 5, we have μN (x) = 0.

Comment. For borderline values x = −5, x = 0, and x = 5, we can use two different
formulas, but this does not create any problem, since both formulas lead to the same
result. For example, for x = −5, we have:

• we have μN (−5) = 0 according to the formula from the first bullet, and
• we get the exact same value μN (−5) = 1 + (−5)/5 = 1 + (−1) = 0 if we us the
formula from the second bullet.
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The membership function μN (x) has the following form:

Comment. The graph of this function has the shape of the triangle, so such functions
are known as triangular membership functions.

Membership functions for “small positive” and “small negative”. For small pos-
itive, we can assume that:

• the value x = 0 is not small positive,
• the value x = 5 is definitely small positive, and
• the value x = 10 is again not small positive.

So, we have μSP(0) = 0, μSP(5) = 1, and μSP(10) = 0. If we use linear interpo-
lation to find the values μSP(x) for intermediate values x , we get the following
expression:

• for x ≤ 0, we have μSP(x) = 0;
• for 0 ≤ x ≤ 5, we have μSP(x) = 1 + (x − 5)/5 = 1 + x/5 − 1 = x/5;
• for 5 ≤ x ≤ 10, we have μSP(x) = 1 − (x − 5)/5 = 1 − x/5 + 1 = 2 − x/5;
and

• for x ≥ 10, we have μSP(x) = 0.

Similarly, for small negative, we can assume that:

• the value x = 0 is not small negative,
• the value x = −5 is definitely small negative, and
• the value x = −10 is again not small negative.

So, we have μSN (−10) = 0, μSN (−5) = 1, and μSN (0) = 0. If we use linear inter-
polation to find the values μSN (x) for intermediate values x , we get the following
expression:

• for x ≤ −10, we have μSN (x) = 0;
• for−10 ≤ x ≤ −5,wehaveμSN (x) = 1 + (x + 5)/5 = 1 + x/5 + 1 = 2 + x/5;
• for −5 ≤ x ≤ 0, we have μSN (x) = 1 − (x + 5)/5 = 1 − x/5 − 1 = −x/5; and
• for x ≥ 0, we have μSN (x) = 0.
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Need for “and”- and “or”-operations.So far,we learned how to describe statements
like “�T is negligible” and “u is negligible”. However, what we need is to find our
degree of confidence in more complex statements, e.g., in a statement

“�T is negligible and u is negligible”.

The situation is easy if both statements are either absolutely true or absolutely false:
then, we can simply use the usual truth table for “and”, according to which 0& 0 =
0&1 = 1&1 = 0 and 1&1 = 1—remember that here:

• 0 means “false”, and
• 1 means “true”.

But what shall we do in all other cases?
In principle,we can ask the expert about all possible pairs, but this largely increases

the number of questions that we need to ask the expert, and if we have not one but
many inputs, this becomes infeasible.

Since we cannot directly elicit the degrees of confidence of such complex state-
ments A& B from the expert, we need to to estimate this degree based on the known
degrees a = d(A) and b = d(B) of statements A and B. In other words, we need to
have an algorithm that:

• given the degrees of confidence a and b of the statements A and B,
• returns an estimate of the degree of confidence in the composite statement A& B.

We will denote such algorithm by f&(a, b). Such algorithms are known as “and”-
operations.

Similarly, we need to have an algorithm that:

• given the degrees of confidence a and b of the statements A and B,
• returns an estimate of the degree of confidence in the composite statement A ∨ B.

We will denote such algorithm by f∨(a, b). Such algorithms are known as “or”-
operations.

Comment. For historical reasons:

• “and”-operations are also called t-norms, while
• “or”-operations are also called t-conorms.

Here, t comes from triangle.

Natural properties of “and”-operations.

• The statement A& Bmeans the same as B& A. It is therefore reasonable to require
that our estimates for the degree of confidence of these two composite statements
be equal, i.e., that f&(a, b) = f&(b, a). This property is known as commutativity.

• Similarly, if we have three statements, their “and”-combination does not depend
on the order in which we combine them: A& (B&C) means the same as
(A& B)&C . Thus, we must have f&(a, f&(b, c)) = f&( f&(a, b), c). This prop-
erty is known as associativity.
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• If our degrees of confidence in A and/or B increases, our degree of confidence in
A& B should also increase: if a ≤ a′ and b ≤ b′, then we must have f&(a, b) ≤
f&(a′, b′). This property is known as monotonicity.

• Finally, for the case when both statements A and B are either absolutely true or
absolutely false, wemust have the same value as in the usual truth table: f&(0, 0) =
f&(0, 1) = f&(1, 0) = 0 and f&(1, 1) = 1.

There exist many “and”-operations that satisfy all these properties. The most widely
used are min(a, b) and a · b.
Comment. The “and”-operation f&(a, b) = a · b is known as algebraic product. The
reason for this name is as follows:

• in middle school and in high school, in algebra classes, we study only one type of
product: the usual product of two numbers;

• however later, at the university level, we learn that there are many other types of
products: dot-product, matrix product, vector product (used in physics), etc.

The adjective algebraic is added to emphasize that we are not dealing with any of
these complex products, we are dealing with the simple product of two numbers—as
in high school algebra.

Natural properties of “or”-operations.Similar properties hold for “or”-operations:

• The statement A ∨ Bmeans the same as B ∨ A. It is therefore reasonable to require
that our estimates for the degree of confidence of these two composite statements
be equal, i.e., that f∨(a, b) = f∨(b, a). This property is known as commutativity.

• Similarly, if we have three statements, their “or”-combination does not depend on
the order in which we combine them: A ∨ (B ∨ C) means the same as (A ∨ B) ∨
C . Thus, wemust have f∨(a, f∨(b, c)) = f∨( f∨(a, b), c). This property is known
as associativity.

• If our degrees of confidence in A and/or B increases, our degree of confidence in
A ∨ B should also increase: if a ≤ a′ and b ≤ b′, then we must have f∨(a, b) ≤
f∨(a′, b′). This property is known as monotonicity.

• Finally, for the case when both statements A and B are either absolutely true or
absolutely false, wemust have the same value as in the usual truth table: f∨(0, 0) =
0, f∨(0, 1) = f∨(1, 0) = f&(1, 1) = 1.

Note that the last condition is the only one which is different from the properties of
an “and”-operation.

There existmany “or”-operations that satisfy all these properties. Themost widely
used are max(a, b) and a + b − a · b.
Comment. The operation a + b − a · b can be explained if we recall the de Morgan
law, according to which A ∨ B is equivalent to ¬(¬A&¬B). Let us explain this
law.

For example, you can get a discount on using El Paso buses if you are either a
student (A) or a senior person (B). So, a person gets a discount if A ∨ B is true.
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Thus, not getting a discount ¬(A ∨ B) means that you are not a student and not
a senior person: ¬A&¬B. So, ¬(A ∨ B) is equivalent to ¬A&¬B. Hence, the
same equivalence is true for negations of these two statements: A ∨ B is equivalent
to ¬(¬A&¬B).

Negation is naturally described as 1 − a. So, if we use algebraic product for &,
then the de Morgan formula leads to

f∨(a, b) = 1 − (1 − a) · (1 − b) = 1 − (1 − a − b + a · b)
= 1 − 1 + 1 + b − a · b = a + b − a · b.

Let us bring all this together. Now:

• we know how to describe the original statements like “�T is negligible”,
• we know how to describe “and”-combinations, and
• we know how to describe “or”-combinations.

We can therefore conclude that the degree μR(�T, u) to which the control u is
reasonable for the given value of �T can be computed as follows:

μR(�T, u) = f∨( f&(μN (�T ), μN (u)), f&(μSP (�T ), μSN (u)), f&(μSN (�T ), μSP (u))).

Numerical example. Let us take �T = 2 and u = −4, and, for simplicity, let us
use:

• min as an “and”-operation and
• max as an “or”-operation.

In this case:

• Since the value �T = 2 is between 0 and 5, we get

μN (�T ) = 1 − 2/5 = 0.6.

• The value u = −4 is between −5 and 0, so we get

μN (u) = 1 + (−4)/5 = 0.2.

Thus, f&(μN (�T ), μN (u)) = min(0.6, 0.2) = 0.2.

• Since the value �T = 2 is between 0 and 5, we get μSP(�T ) = 2/5 = 0.4.
• The value u = −4 is between −5 and 0, we get μSN (u) = −(−2)/5 = 0.4.

Thus, f&(μSP(�T ), μSN (u)) = min(0.4, 0.4) = 0.4.

• Since the value �T = 2 is larger than 0, we get μSN (2) = 0.
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• The value u = −4 is smaller than 0, so we get μSP(u) = 0.

Thus, f&(μSN (�T ), μSP(u))) = min(0, 0).
So, μR(�T, u) = max(0.2, 0.4, 0) = 0.4—this is the degree to which, for the

difference in temperatures �T = 2, it is reasonable to turn the thermostat’s know
u = −4◦, i.e., 4◦ of the left.

1.4 Summary of Fuzzy Methodology

Let us summarize what we have learned so far. We will describe the general steps—
and, in italics, we illustrate the general description by explaining what we did in our
example.
What problem we are solving. We want to come up with an algorithm that, given
the inputs x1, . . . , xn , generates an output y.

In our example, we have only one input x1 = �T ; based on this input, we want
to generate the value of y = u.

Step 1: eliciting rules from the experts. First, we ask the experts to provide natural-
language rules that describe y based on xi .

In our example, we had three such rules:

• If �T is negligible, then u is negligible.
• If �T is small positive, then u is small negative.
• If �T is small negative, then u is small positive.

Step 2: describing what is reasonable—first, in natural-language terms. Based
on the expert rules, we describe what it means for a value y to be reasonable for the
given inputs x1, . . . , xn . This means that:

• either the first rule is applicable, i.e., its condition(s) is satisfied and its conclusion
is satisfied,

• or the second rule is applicable, i.e., its condition(s) is satisfied and its conclusion
is satisfied, etc.

In our example, this reasonableness took the following form:

(�T is negligible and u is negligible) or
(�T is small positive and u is small negative) or
(�T is small negative and u is small positive).

Step 3: eliciting membership functions. The natural-language rules provided by
experts use imprecise natural-language words.

In our example, we used three imprecise words: negligible, small positive, and
small negative.
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For each of these words, we ask the expert, for different inputs x , to provide
his/her degree of confidence that the given value satisfies the property.

In our example, for negligible (N , for short), we had three values:

• μN (−5) = 0, meaning that the difference in temperatures�T = −5◦ is definitely
not negligible;

• μN (0) = 1, meaning that the difference in temperatures �T = 0◦ is definitely
negligible; and

• μN (5) = 0, meaning that the difference in temperatures �T = 5◦ is definitely not
negligible.

For small positive (SP, for short), we had the following three values:

• μSP(0) = 0, meaning that the difference in temperatures �T = 0◦ is definitely
not small positive;

• μSP(5) = 1, meaning that the difference in temperatures �T = 5◦ is definitely
small positive; and

• μSP(10) = 0, meaning that the difference in temperatures �T = 10◦ is definitely
not small positive.

For small negative (SN, for short), we had the following three values:

• μSN (−10) = 0, meaning that the difference in temperatures �T = −10◦ is defi-
nitely not small negative;

• μSN (−5) = 1, meaning that the difference in temperatures�T = −5◦ is definitely
small negative; and

• μSN (0) = 0, meaning that the difference in temperatures �T = 0◦ is definitely
not small negative.

We then use interpolation—e.g., linear interpolation—to find the values of all the
membership functions for all other values of the inputs.

In our example, we used linear interpolation to come up with expressions for the
three membership functions μN (x), μSP(x), and μSN (x).

Step 4. We select an “and”-operation f&(a, b), and we use it to combine the degrees
towhich different conditions are satisfied into a degree towhich the rule is applicable.

In our example:

• We know that the degree to which the statement “�T is negligible” is satisfied is
equal to μN (�T ).

• We know that the degree to which the statement “u is negligible” is satisfied is
equal to μN (u).

So, we conclude that the degree to which the statement

�T is negligible and u is negligible

is satisfied is equal to f&(μN (�T ), μN (u)).

Similarly, we conclude that the degree to which the statement



1.4 Summary of Fuzzy Methodology 19

�T is small positive and u is small negative

(which corresponds to the second rule) is satisfied is equal to f&(μSP(�T ), μSN (u)),
and the degree to which the statement

�T is small negative and u is small positive

(which corresponds to the third rule) is satisfied is equal to f&(μSN (�T ), μSP(u)).

Step 5. We select an “or”-operation f∨(a, b), and we use it to combine the degrees
to which each rule is satisfied into a degree to which the value y is reasonable. This
way, once we know the inputs, then, for each value y, we know the degree to which
this value is reasonable for the given inputs.

In our example, we combined the three degrees

f&(μN (�T ), μN (u)), f&(μSP(�T ), μSN (u)), and f&(μSN (�T ), μSP(u))

into a single degree

f∨( f&(μN (�T ), μN (u)), f&(μSP(�T ), μSN (u)), f&(μSN (�T ), μSP(u))).

This way, once we know the difference�T = T − T0 between the actual temperature
T and the desired temperature T0, we can compute, for each angle u, the degree to
which this angle leads to a reasonable control.

What next. If we simply want to provide advice to a human decision maker, then
this is all we need: we tell the decision maker which values are more reasonable and
which are less reasonable, and let him/her decide what to do.

However, in many practical situations, we are interested in an automatic control.
In this case, we need to transform such “fuzzy” recommendations into an exact con-
trol value. This transformation is known as defuzzification. We will study it in the
next lecture.

1.5 Exercises

1.

• Why do we need explainable AI in the first place?
• Why is it a reasonable idea to try to use fuzzy techniques when designing explain-
able AI?

• Whywere fuzzy technique invented in the first place—andwhowas their inventor?

2. We know that:

• for x1 = 1, we have y1 = 2, and
• for x2 = 2, we have y2 = 3.

Tasks:
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• Use the general linear interpolation formula that we had in class to come up with
the expression y = f (x) for the dependence of y on x .

• For your expression f (x), what is the value of f (1.5)?
• How is linear interpolation used in fuzzy techniques?

3. If the degree of confidence in a statement A is 0.7 and the degree of confidence in
a statement B is 0.8, then what are the estimated degrees of confidence in statements
A& B and A ∨ B? Consider two cases:

• “and”-operation is min(a, b) and “or”-operation is max(a, b);
• “and”-operation is a · b and “or”-operation is a + b − a · b.

4. Let us consider the following expert rules:

• if a cat is somewhat bored and you have a little bit of time, play with it a little bit;
• if a cat is very bored and you have a lot of time, play with it for a long time.

Describe step-by-step—like we did in class and like it is described in the correspond-
ing paper—how you would translate these rules into a formula for the corresponding
predicate R(b, t, p) meaning that if the cat is in the state b and you have time t , then
it is reasonable to play it for time p.

Let us now assume that:

• the cat is somewhat bored with degree 0.3 and very bored with degree 0.7;
• t = p = 1 h; the degree to which this time is a little bit is 0.4, the degree to which
this is a long time is 0.6;

• we use a · b as the “and”-operation and a + b − a · b as the “or”-operation.

What will then be the resulting degree μR(b, t, p)?



Chapter 2
Defuzzification

2.1 Formulation of the Problem: Reminder

In the previous chapter, we showed how, for each possible value u of control, we can
generate the degree μ(u) to which this value is reasonable. As a result, we get what
we called a membership function (or a fuzzy set) μ(u).

If we are designing an automatic system, then we need to generate a single control
value u that the system will apply. The process of transforming a fuzzy set into an
exact value is known as defuzzification.

2.2 Main Idea and the Resulting Formula

In practice, we can only apply finitemany values u. From the purely mathematical
viewpoint, there are infinite many real numbers, so in principle, we have infinitely
many control recommendations.However, in practice,we can only apply controlwith
some accuracy �u: we can turn the knob by 5◦, maybe by 5.2◦, but an instruction to
turn the knob by 5.234◦ makes no sense—the mechanism for turning will not have
such an accuracy.

Let us denote the smallest possible value u by u1. Then, the next distinguishable
value is u2 = u1 + �u, then u3 = u2 + �u, etc., until we reach the largest possible
value un . For each of these values ui we know the degree μ(ui ) to which this value
is possible. Based on this information, we must generate some value u.

Idea. We want to make sure that the value u is close to all possible values ui . We
will denote this closeness by u ≈ ui .

How can we describe this idea in precise terms?
Towards describing this idea in precise terms. As we have mentioned, one of the
ways to find the value μ(x) of each membership function is to have a poll. If out of
N experts, M believe that x satisfies the given property, then we take μ(x) = M/N .
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From this viewpoint, each degreeμ(ui )means thatμ(ui ) = Mi/N , where by Mi ,
we denoted the number of experts who believe that ui is a reasonable control value.
Thus, once we know the degreeμ(ui ), we can conclude that Mi = N · μ(ui ) experts
believe that ui is a reasonable control value. By bringing together all the opinions of
all the experts, we conclude that we have the following information about the desired
value u:

• we have the statements u ≈ u1, …, u ≈ u1 describing the opinion of

M1 = N · μ(u1) experts;

• we have the statements u ≈ u2, …, u ≈ u2 describing the opinion of

M2 = N · μ(u2) experts;

• …,
• we have the statements u ≈ un , …, u ≈ un describing the opinion of

Mn = N · μ(un) experts.

In other words, the tuple

(u, . . . , u, u, . . . , u, . . . , u, . . . , u)

should be close to the tuple

(u1, . . . , u1, u2, . . . , u2, . . . , un, . . . , un),

in which reach value ui is repeated Mi = N · μ(ui ) times.
A reasonable idea is to select the value u for which these two tuples are the closest,

i.e., for which the distance between the two tuples is the smallest possible.
So, howdowedefined thedistanceD(a, b)between the two tuplesa=(a1, . . . , ad)

and b = (b1, . . . , bd)?

How to define the distance between the two tuples: 1-D and 2-D case. In the 1-D
case, when a tuple consists of just one number, the distance d(a, b) between the two
numbers is simply the absolute value of their difference:

D(a, b) = |a − b|.

In the 2-D case, when we have a = (a1, a2) and b = (b1, b2), we can interpret
these tuples are points in the 2-D space. The distance between these two points can be
determined based on the Pythagoras theorem, according to which in a right triangle,
the square C2 of the hypotenuse C is equal to the sum A2 + B2 of the squares of its
sides:
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A

C B

This theorem can be used to find the distance D(a, b) between the points (a1, a2)
and (b1, b2):

x2

x1a1 b1

a2

b2
D

b1−a1

b2−a2

By the Pythagoras Theorem this distance is equal to

D(a, b) =
√

(b1 − a1)2 + (b2 − a2)2.

For example, the distance between the points a = (0, 1) and b = (3, 5) is equal to

√
(3 − 0)2 + (5 − 1)2 =

√
32 + 42 = √

9 + 16 = √
25 = 5.

How to define the distance between the two tuples: general case. In the general
multi-dimensional case, we have a similar formula for the distance between the points
a = (a1, . . . , ad) and b = (b1, . . . , bd):

D(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + · · · + (ad − bd)2,

i.e.,
D2(a, b) = (a1 − b1)

2 + (a2 − b2)
2 + · · · + (ad − bd)

2.

Let us apply this formula to our problem. We want to find the value u for which
the distance D(a, b) between the tuples

a = (u, . . . , u, u, . . . , u, . . . , u, . . . , u)

and
b = (u1, . . . , u1, u2, . . . , u2, . . . , un, . . . , un)
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is the smallest possible. Minimizing the distance is equivalent to minimizing its
square D2(a, b), which, according to the above general formula, is equal to

D2(a, b) = (u − u1)
2 + · · · + (u − u1)

2 (repeated N · μ(u1) times)+

(u − u2)
2 + · · · + (u − u2)

2 (repeated N · μ(u2) times)+

· · · +

(u − un)
2 + · · · + (u − un)

2 (repeated N · μ(un) times).

Taking into account that

a + · · · + a (b times) = a · b,

we conclude that

D2(a, b) = N · μ(u1) · (u − u1)
2 + · · · + N · μ(un) · (u − un)

2.

How can we find the value u that minimizes this expression?

Let usminimize this expression.A convenient way tominimize a function is to take
into account that, according to calculus, when a function attains its smallest or larger
value, its derivative is equal to 0. So, to find the minimum of the above expression,
we can differentiate it with respect to u and equate the derivative to 0.

To find the derivative, we need to recall a few rules.

• First, the derivative of the sum is equal to the sum of the derivatives: ( f + g)′ =
f ′ + g′. Because of this rule, to find the derivative of the expression, we can:

– find the derivative of each term N · μ(ui ) · (u − ui )2, and then
– add up the corresponding derivatives.

• The coefficient N · μ(ui ) does not depend on the unknown u. So, to compute
the derivative of this term, we can use the fact that (c · f )′ = c · f ′. In this case,
c = N · μ(ui ). Thus, to compute the derivative of each term, we can:

– compute the derivative of the expression (u − ui )2, and then
– multiply it by c = N · μ(ui ).

• How do we compute the derivative of the expression (u − ui )2? To compute this
expression, we:

– first compute the difference y = g(u) = u − ui , and
– then square this difference, i.e., compute the value f (y) = y2.
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In other words, the expression (u − ui )2 is a composition of these two elementary
functions:

f (g(u)) = f (u − ui ) = (u − ui )
2.

To compute the derivative of this expression, we can therefore use the chain rule

– the formula for describing the derivative of the composition:

( f (g(x))′ = f ′(g(x)) · g′(x).

• To compute the derivative of the expression (u − ui )2, we thus need to know:

– the derivative f ′ of the functions f (y) = y2—which is f ′(y) = 2y, and
– the derivative g′ of the function g(u) = u − ui , which is 1.

Thus,
( f (g(x))′ = 2g(u) · 1 = 2(u − ui ).

Multiplying this derivative by c = N · μ(ui ), we conclude that the derivative of each
term N · μ(ui ) · (u − ui )2 is equal to

N · μ(ui ) · 2 · (u − ui ).

Adding up all these derivatives, we conclusion that the derivative of the square-
of-the-distance function D2(a, b)—the derivative which should be equal to 0—is
equal to

N · μ(u1) · 2(u − u1) + · · · + N · μ(un) · 2(u − un) = 0.

To simplify this expression, we can divide both sides of this equality by 2N , and get

μ(u1) · (u − u1) + · · · + μ(un) · (u − un) = 0,

i.e.,
μ(u1) · u − u1 · μ(u1) + · · · + μ(un) · u − un · μ(un) = 0.

This is a linear equation with unknown u. To solve it, we keep all the terms propor-
tional to u in one side, and move all the other terms to the other side. This way, we
get the following equation:

(μ(u1) + · · · + μ(un)) · u = u1 · μ(u1) + · · · + un · μ(un).

By dividing both sides by the coefficient at u, we get the final formula

u = u1 · μ(u1) + · · · + un · μ(un)

μ(u1) + · · · + μ(un)
.
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This formula is known as centroid defuzzification.

How can we program this formula. Now, we can write a program implementing
fuzzy control. Indeed, suppose that we know the value u1, �u, and n, and we have
already written a program that compute the value μ(u) for a given u. Then, we can
easily compute the resulting control. For example, in Java, we can use the following
code for this computation:

double num = 0.0;

double den = 0.0;

double u = u1;

for(int i = 1; i <= n; i++)

{num += u * mu(u);

den += mu(u);

u += delta_u;}

double bar_u = num/den;

The corresponding membership functions can be also computed easily, e.g.,

public static double mu_N(double x)

{if (0 <= x && x <= 5){return 1 - x/5;}

elseif (-5 <= x && x <= 0) {return 1 + x/5;}

else{return 0;}

}

the values corresponding to each rule can be computed as

double r1 = f_and(mu_N(delta_T), mu_N(u));

double r2 = f_and(mu_SP(delta_T), mu_SN(u));

double r3 = f_and(mu_SN(delta_T), mu_SP(u));

and the value μ(u) as

return f_or(r1,f_or(r2,r3));

How do we select�u? In the previous text,�u was the accuracy with which we can
implement the control. But what if we do not know this accuracy?

In this case, we can use the fact—that we will explain in the next section—that the
resulting control value remains the same, no matter what small value �u we select.

So, any small value �u will work.

How do we select u1 and n? We want to cover all possible control values, so:

• u1, as we mentioned earlier, should be the smallest possible control value; and
• we should select n so that un is equal to the largest possible control value.
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2.3 Integral Form

The above formula is used to compute the defuzzification, but in textbooks, a some-
what different formula is presented, a formula that includes yet another concept from
calculus—integrals. Let us explain where this comes from.

What is an integral and how can we compute integrals. An integral is an area
under the curve. To compute the integral

∫ b
a f (x) dx , a natural idea—dating back to

the ancient Greeks—is to approximate the region under the curve by many narrow
vertical rectangles:

f (a)

a b

f (b)

In precise terms, we divide the interval [a, b] into many intervals

[x1, x2], . . . , [xn, xn+1]

of the same narrow width �x , where

x1 = a, x2 = x1 + �x, x3 = x2 + �x, . . . , and xn+1 = xn + �x = b.

For each narrow interval the area of the corresponding rectangle is equal to

f (xi ) · �x .

Thus, the overall area
∫

f (x) dx is approximately equal to the sum of these areas,
i.e., to ∫

f (x) dx ≈ f (x1) · �x + · · · + f (xn) · �x .

This sum is known as the integral sum.
All the terms in this sum have a common factor �x , so we get

∫
f (x) dx ≈ ( f (x1) + · · · + f (xn)) · �x,

thus
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f (x1) + · · · + f (xn) ≈ 1

�x
·
∫

f (x) dx .

In particular, this means that

μ(u1) + · · · + μ(un) ≈ 1

�u
·
∫

μ(u) du,

and

u1 · μ(u1) + · · · + un · μ(un) ≈ 1

�u
·
∫

u · μ(u) du.

Thus, the value u can be described as

u =
1

�u
·
∫

u · μ(u) du

1

�u
·
∫

μ(u) du
.

If we multiply both the numerator and the denominator by �u, we get the simplified
expression:

u =
∫
u · μ(u) du
∫

μ(u) du
.

This is the expression used in textbooks on fuzzy.

How to compute an integral. If we want to use the above formula to actually
compute the value u, then we need to compute the two integrals and then divide the
resulting values. How can we compute an integral?

For some simple functions f (x)—e.g., for f (x) = x2 or f (x) = x3—we know
the explicit expression for their integrals. However, for more complex function, such
an expression is rarely available, and the only way to compute an integral is to
compute the corresponding integral sum.

Suppose that we want to compute the integral
∫ b
a f (x) dx . We then select a small

step �x and compute the corresponding integral sum

∫
f (x) dx ≈ ( f (x1) + · · · + f (xn)) · �x .

For example, in Java, we can use the following code:

double sum = 0.0;

double x = a;

while(x <= b)

{sum += delta_x * f(x);

x += delta_x;}
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Comment. Strictly speaking, the resulting expression is slightly different for different
steps �x . However, as we will explain, in our case, it does not matter.

We are integrating the expert’s degrees of confidence. If these estimates corre-
spond to the scale from 0 to 10, then the corresponding degrees are 0, 0.1, …, 0.9,
1.0. Since the values μ(x) are thus only know with the accuracy of 1 decimal digit,
it makes no sense to compute the integral with higher accuracy. So, to find the value
u, we can use any small step �x .

2.4 Important Comment: Centroid Defuzzification Is Not a
Panacea

Example. While centroid defuzzification is widely used, it does not always lead to
good results, and here is an example why. Suppose that a car is driving on an empty
road, and there is a hole right in front. To avoid this hole, the car must turn either
to the left or to the right, to drive around this hole. In this case, selecting the control
means selecting an angle by which the car should turn.

Since the road is empty, it does not matter in which direction you turn. If we
denote:

• tuning to the right by a positive angle u > 0, and
• turning to the left by a negative angle u < 0,

then:

• not turning at all is not reasonable: μ(0) = 0, while
• turning by an angle u or by an angle −u are equally reasonable:

μ(u) = μ(−u).

An example of such amembership function describing reasonableness is shown here.

(u)

What will centroid defuzzification do in this case? To find the resulting value uC ,
we need to compute the sum

∑
i ui · μ(ui ). In this sum:

• for each term ui · μ(ui ) corresponding to a positive angle ui ,
• there is a term (−ui ) · μ(−ui ) corresponding to the negative angle −ui .



30 2 Defuzzification

Since μ(u) = μ(−u), these two terms cancel each other:

ui · μ(ui ) + (−ui ) · μ(−ui ) = ui · μ(ui ) + (−ui ) · μ(ui )

= (ui + (−ui )) · μ(ui ) = 0.

Thus, all the terms in the sum cancel each other, and the sum is 0:

∑

i

ui · μ(ui ) = 0.

Thus, the value uC is 0—i.e., we go straight into the hole. In this case, centroid
defuzzification leads to a disaster.

What can we do: idea. How can we avoid such a disaster? To answer this question,
let us recall how we came up with the formula for defuzzification.

We were looking for the value u for which the squared distance D2(a, b) between
the tuples a = (u, u, . . . , u) and the tuple b = (u1, u1, . . . , un) is the smallest
possible. In this analysis, we did not impose any a priori restrictions on possible
values u.

According to calculus, at a point where a function attains its minimum, its deriva-
tive is 0. In our analysis, we:

• differentiated the function that describes how the squared distance D2(a, b)
depends on u, and

• equated the derivative to 0.

We concluded that the derivative is equal to 0 for only one value u—the value uC = 0
corresponding to centroid defuzzification.

Usually, such a control value is reasonable, but in this example, the degree μ(uC)

to which this value is reasonable is equal to 0—which means that the value u = uC
is not reasonable at all.

To avoid such situations, a natural idea is to restrict our search to values u forwhich
the degree of reasonableness μ(u) is not smaller than some pre-defined threshold α

(pronounced alpha), i.e., for which μ(u) ≥ α:

u

In other words, we restrict the values u to the set of all the values for which
μ(u) ≥ α. Out of all possible values from this set, we select a value for which the
squared distance D2(a, b) between the two tuples is the smallest possible.
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Comments.

• In general, a set of all elements x that satisfy some property P(x) is denoted by
{x : P(x)}. In these terms, the above set is denoted as

{u : μ(u) ≥ α}.

• In general, for every fuzzy set μ(x) and for every value α ∈ (0, 1], the corre-
sponding set {x : μ(x) ≥ α} is known as the α-cut (pronounced alpha-cut) of the
original fuzzy set.

How to actually compute the corresponding value u. In our case, the set of all
possible values of u is the union of two intervals: [u1, u2] and [u3, u4]:

The resulting optimization problem is somewhat different from the problems that
we solved earlier in this chapter:

• instead of finding the minimum of a function the whole real line,
• we need to find the smallest value of the function on the union of two intervals—
intervals formed by those values x for which μ(x) ≥ α.

So now, we need to select a value u from one of the intervals at which the function
D2(a, b) attains its smallest possible value. In general, a function can attain its
smallest value on an interval:

• either inside this interval—in which case, according to calculus, its derivative at
this point is 0,

• or at one of the endpoints of this interval.

We know that the function D2(a, b) has only one point where the derivative is 0—the
point uC = 0, for which μ(uC) = 0 < α and which is, therefore, not in any of the
two intervals. Thus, we can conclude that the smallest possible value of the squared
distance D2(a, b) is attained at one of the endpoints of the intervals that form the
α-cut, i.e., in this case, at one of the points ui .

For which of the four endpoints is the value D2(a, b) the smallest? We know that
the value u = uC is the only value where the derivative is equal to 0. Thus, for all
other values u, the derivative cannot be equal to 0—it has to be either positive or
negative.

What are the values of this derivative for u > uC?
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• We cannot have some of these derivative values positive and some negative—since
then:

– in between the points where the derivative is positive and negative,
– the derivative should cross the 0 line and thus, be equal to 0 for some u > uC .

However, we know that for values u > uC , the derivative is not equal to 0. Thus,
the corresponding derivative values are either all positive, or all negative.

• If the derivative values were all negative, the function would decrease with u—and
we would not have a minimum at u = uC . Thus, all the corresponding derivative
values should be positive.

According to calculus, positive derivativemeans that the function is increasing. Since
u3 < u4, the value at the function D2(a, b) at the point u3 is smaller than its value at
u4—so among the values u > uC , the desired minimum can only be attained at the
point u3.

Similarly, for u < uC :

• We cannot have some of these derivative values positive and some negative—since
then:

– in between the points where the derivative is positive and negative,
– the derivative should cross the 0 line and thus, be equal to 0 for some u < uC .

However, we know that for values u < uC , the derivative is not equal to 0. Thus,
the corresponding derivative values are either all positive, or all negative.

• If the derivative values were all positive, the function would increase with u—and
we would not have a minimum at u = uC . Thus, all the corresponding derivative
values should be negative.

According to calculus, negative derivative means that the function is decreasing.
Since u1 < u2, the value at the function D2(a, b) at the point u2 is smaller than its
value at u1—so the desired minimum can only be attained at the point u2.

So, in situations like this, if the global minimum of the function D2(a, b)—as in
this case—is attained at a value uC for which μ(uC) < α, the desired conditional
minimum is attained at one of the endpoints u2 or u3 which are the closest to the
centroid value uC .

In our case, this means selecting either u = u2 or u = u3.

2.5 Exercises

6. What is the distance D(a, b) between the points a = (1, 2) and b = (6,−10)?

7. What is the squared distance D2(a, b) between the points a = (1, 2, 3) and b =
(−1,−2,−3)?

8. Use differentiation to find the minimum (= smallest value) of the expression
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(2x − 5)2 + 3x − 6.

9. Suppose that we have the following reasonableness degrees:

• for u1 = 0, we have μ(u1) = 0.5;
• for u2 = 1, we have μ(u2) = 1;
• for u3 = 2, we have μ(u3) = 0.5.

What will be the result of centroid defuzzification?

10. Write a program that simulates fuzzy control with the three rules that we had in
class:

• if �T is negligible, then u is negligible;
• if �T is small positive, then u is small negative;
• if �T is small negative, then u is small positive.

Your program should:

• input �T , and
• return the corresponding control u.

Use separate methods for computing the corresponding membership functions,
for computing the “and”-operation, and for computing the “or”-operation, so that if
you will need to change one of these things, all you would have to do it replace the
corresponding method without having to change the main method.

Test your program on the example of membership functions that we had in class
and values �T = +3 and �T = −3. For each of these two values of �T , use your
program to compute the resulting control value corresponding to the following two
pairs of “and”- and “or”-operations: cases:

• “and”-operation is min(a, b) and “or”-operation is max(a, b);
• “and”-operation is a · b and “or”-operation is a + b − a · b.
11. Write a general program for computing an integral of a given function over a
given range. Test it by showing how to compute the integral of x2 on the interval
[0, 1].

2.6 Self-Test 1

1. Introduction.

1a. What is explainable AI and why do we need it?
1b. What are fuzzy techniques and what is their purpose?
1c. Who invented fuzzy techniques?
1d. Why is it reasonable to use fuzzy techniques in explainable AI?
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2. Degrees of confidence.

2a. If an expert marked 3 on a scale from 0 to 4, what is the resulting degree of
confidence?

2b. If 4 out of 5 experts believe that the statement S is correct, what it its degree of
confidence?

2c. Why do we need interpolation in fuzzy techniques?
2d. What is a membership function?
2e. Assume that μ(−2) = 1 and μ(0) = 0. Use linear interpolation to find μ(−1).

3. “And”- and “or”-operations.

3a. What is an “and”-operation? What is an “or”-operation?
3b. Assume that our degree of confidence in A is 0.6, and degree of confidence in B

is 0.7. Use min, max, algebraic product, and a + b − a · b to estimate degrees
of confidence in A& B and A ∨ B.

4. Fuzzy methodology. Suppose that we have two rules:

• if a student studied hard, the student will get a good grade;
• if a student studied very hard, the student will get a very good grade.

A student studied for 3h and got 88/100 on the test. Assume that:

• the degree to which 3h means studying hard is 0.6, and the degree to which it
means studying very hard is 0.4;

• the degree to which 88 is a good grade is 0.8, and the degree to which 88 is a very
good grade is 0.2.

Based on this information, what is the degree to which the student’s grade is reason-
able? Use min and max.

5. Defuzzification.

5a. What is the distance D(a, b) between the points a = (−2,−3) and b = (1,−7)?
5b. What is the squared distance D2(a, b) between the points a = (0, 2, 4) and

b = (0,−2,−4)?
5c. Use differentiation to find the minimum (= smallest value) of the expression

x2 − 2x + 1.

5d. What is defuzzification and why do we need it?
5e. Suppose that we have the following reasonableness degrees: for u1 = −1, we

have μ(u1) = 0.5, and for u2 = 1, we have μ(u2) = 1. What will be the result
of centroid defuzzification?



Chapter 3
Which Fuzzy Techniques?

3.1 What We Study in This Chapter

We need to select fuzzy techniques. In the previous chapters, we explained why
fuzzy techniques are a reasonable tool for designing explainable AI, and we had a
brief overview of fuzzy techniques. However, as we have learned, there are many
different versions of fuzzy techniques. So, we need to decide which versions of these
techniques are most appropriate for explainable AI.

What exactly do we need to select? In each stage of the fuzzy techniques, we need
to make a selection.

We need to select an interpolation procedure.First,weneed tofind themembership
functions corresponding to the imprecise natural-language words like “negligible”
that experts use in their rules. For this purpose, we need to select an interpolation
procedure. In principle:

• we can have many different interpolation procedures,
• since there are many curves that you can draw that go through two given points

(x1, y1) and (x2, y2) on the plane.

The simplest of these curves is the straight line, which corresponds to linear
functions and linear interpolation—and this iswhatweused inour example.However,
simplest is not always the best—and we will see examples of that in this chapter.

We need to select “and”- and “or” operations. After that, we need to select
“and”- and “or”-operations. For each of these two classes of operations, we had
two examples—but there are many others. It is known that in different applications,
different “and”- and “or”-operations work best.

For example, several decades ago, when Stanford researchers worked on the
designing an expert system for diagnosing blood diseases, they spent a lot of effort
finding “and”- and “or”-operations that best reflects reasoning of medical doctors.

• At first, the researchers thought that they have discovered the general laws of
human reasoning.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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• However, when they applied the same “and”- and “or”-operations when designing
an expert system for geophysics, their system failed to capture what geophysicists
wanted—because geophysicists think differently.

This difference is easy to explain:

• A medical doctor tries his/her best not to harm the patient. Because of this, the
doctor does not make a serious decision until he/she is absolutely sure: a wrong
decision can be a disaster. If in doubt, and if the situation is not an emergency, the
doctor will recommend additional tests.

• In contrast, a geophysicist working for an oil company is likely to recommend
exploring the area even when there may be doubts—since an unnecessary delay
may help the competition get ahead. Even if sometimes, the resulting wells are
dry—it is still cheaper, on average, to suffer these problems in a few cases rather
than spend a lot of money on intensively studying each area.

In this chapter, we will analyze which “and”- and “or”-operations are most appro-
priate for applications to explainable AI.

We need to select a defuzzification procedure. Finally, we need to select the best
defuzzification procedure. We have already provided arguments that the best such
selection is centroid defuzzification—modified a little bit if needed, so this topic has
already been covered.

Which selections are better? Let us describe which selections are most appropriate
for explainable AI applications.

3.2 Interpolation Should Be Robust

Why we need interpolation in fuzzy techniques: reminder. One of the main ideas
in fuzzy techniques is that we describe each imprecise (“fuzzy”) natural-language
property like “small” by assigning:

• to each possible value x of the corresponding quantity,
• the degree μ(x) to which, according to the experts, the value x satisfies this
property—e.g., the degree to which x is small.

To find this function, we ask the experts.

• However, we can only ask finitely many questions to the experts.
• So, by asking finitely many questions, we will be able to only find out the values

μ
(
x (k)

)
at finitely many points x (1), x (2), etc.

To determine the value μ(x) for all other x , we need to use interpolation.

Need for robustness. In practical applications, the value of the quantity x comes
from measurements, and measurements are never absolutely accurate. Anyone who
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ever measured anything—be it voltage, current, blood pressure, whatever—knows
that if we repeat the measurement again, we will get, in general, a slightly different
value.

We want to make sure that this difference does not affect the results. For this
purpose, we want to make sure that:

• if two measurement results are close, i.e., if x ≈ x ′,
• then the corresponding values of the membership function should also be close:

μ(x) ≈ μ(x ′).

This property of not-changing-much when inputs change is known as robustness.

How can we describe robustness in precise terms.The above description of robust-
ness is not precise: it uses the imprecise natural-language word “close”. How can
make this description more precise? For this, let us use the same ideas as we used to
explain centroid defuzzification.

Suppose that:

• by asking experts, we know the values μ(a) and μ(b) for some values a < b, and
• we want to determine the values μ(x) for all intermediate values x ∈ [a, b].

Let �x denote the accuracy of our measurements. This means that:

• if we have two measurement results a and a′ for which a ≤ a′ < a + �x ,
• then these two measurement results may correspond to the same actual value of
the measured quantity.

For example, suppose that the measurement accuracy is 0.1.

• If, in two consequent measurements:

– we get the values 1.0 and 1.3,
– this means that during the time between the two measurements, the actual value
has changed.

Indeed:

– the difference 1.3 − 1.0 = 0.3 between the measurement results is larger than
the measurement accuracy;

– thus, this difference cannot be explained by the measurement uncertainty only.

In this sense, the values 1.0 and 1.3 are distinguishable—they allow us to distin-
guish between different actual values of the measured quantity.

• On the other hand, if in two consequent measurements:

– we get the values 1.0 and 1.05,
– then it may be that the actual value did not change.

Indeed, in this case:
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– the difference between themeasurement results is smaller than themeasurement
accuracy �x = 0.1;

– thus, this difference can be explained by the measurement accuracy only.

So, the values 1.0 and 1.05 are indistinguishable—these two measurement results
may correspond to the same value of the measured quantity.

So, if we start with the value x̃ = 1.0 and start considering larger and larger values,
then:

• at first, we get the values 1.01, 1.02, …, 1.09 which are indistinguishable from
1.0;

• the first value which is distinguishable from 1.0 is the value

x̃ + �x = 1 + 0.1 = 1.1.
In general, the values a′ which are too close to a are indistinguishable from a.

• The first value which is distinguishable from a is a + �x .
• Similarly, the first value distinguishable from a + �x is the value

(a + �x) + �x = a + 2 · �x,

etc.

So, in effect, we have only finitely many distinguishable values. Let us denote
x1 = a, x2 = x1 + �x , x3 = x2 + �x , … Let us denote the last value by xn ≈ b.

In this case, we have:

• x2 = x1 + �x ,
• x3 = x2 + �x = (x1 + �x) + �x = x1 + 2 · �x ,
• x4 = x3 + �x = (x1 + 2 · �x) + �x = x1 + 3 · �x , and
• in general, xi = x1 + (i − 1) · �x .

Now, the interpolation problem takes the following form:

• We know the value μ(x1) = μ(a), and we know the value μ(xn) = μ(b).
• We want to find all the intermediate values μ(x2), μ(x3), …, μ(xn−1).

In these terms, robustness means that the valuesμ(xi ) andμ(xi+1) corresponding
to two nearby values x should be close to each other. In other words, we must have:

(μ(a) =) μ(x1) ≈ μ(x2), μ(x2) ≈ μ(x3), . . . , μ(xn−1) ≈ μ(xn) (= μ(b)).

In other words, the tuple

� = (μ(x1), μ(x2), . . . , μ(xn−1))

formed by the left-hand sides of all the above closeness relations must be closed to
the tuple
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r = (μ(x2), μ(x3), . . . , μ(xn))

formed by the right-hand sides of these relations.
The smaller the distance between these two tuples, the more robust the resulting

membership function. So:

• if we want the most robust function,
• then we should select the intermediate values μ(x2),μ(x3), …,μ(xn−1) for which
the distance D(�, r) between these two tuples is the smallest possible.

3.3 Which Interpolation Is the Most Robust

How we can find the most robust interpolation: idea.Wealready know the formula
for the distance between the two tuples. According to this formula, the square of this
distance has the form

D2(�, r) = (μ(x2) − μ(x1))
2 + (μ(x3) − μ(x2))

2 + · · · + (μ(xn) − μ(xn−1))
2.

For each i , to find the value μ(xi ), we need:

• to differentiate the minimized expression D2(�, r) with respect to the unknown
μ(xi ), and

• to equate the derivative to 0.

Differentiation with respect to μ(x2). Let us start with the case i = 2, when we
need to find the value μ(x2).

In the above expression, only the first two terms

(μ(x2) − μ(x1))
2 and (μ(x3) − μ(x2))

2

depend on μ(x2). All other terms do not depend on μ(x2) and thus, their derivatives
with respect to the unknown μ(x2) is equal to 0. Thus, the derivative of the sum
D2(�, r) with respect to μ(x2) is equal to the sum of the derivatives of the first two
terms in this sum.

By using chain rule to differentiate each of these two terms, we find the expression
for this derivative, which should be equal to 0;

2(μ(x2) − μ(x1)) + 2 · (μ(x3) − μ(x2)) · (−1) = 0.

To simplify this formula, we can divide both sides by 2, thus:

(μ(x2) − μ(x1)) + (μ(x3) − μ(x2)) · (−1) = 0.
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Adding μ(x3) − μ(x2) to both sides, we conclude that

μ(x2) − μ(x1) = μ(x3) − μ(x2). (3.1)

Differentiation with respect to μ(x3). Similarly, for i = 3, the only two terms in
the sum D2(�, r) that depend on the value μ(x3) are the terms

(μ(x3) − μ(x2))
2 and (μ(x4) − μ(x3))

2.

So, the derivative of the sum D2(�, r) with respect to μ(x3) is equal to the sum
of the derivatives of these two terms.

Here, similarly, by using the chain rule and equating the derivative to 0, we get
the following equation:

2 · (μ(x3) − μ(x2)) + 2 · (μ(x4) − μ(x3)) · (−1) = 0.

To simplify this formula, we can divide both sides by 2, thus:

(μ(x3) − μ(x2)) + (μ(x4) − μ(x3)) · (−1) = 0.

Adding μ(x4) − μ(x3) to both sides of this equality, we conclude that

μ(x3) − μ(x2) = μ(x4) − μ(x3). (3.2)

Differentiation with respect to other unknowns. Similarly, by considering the
unknown value μ(x4), we conclude that

μ(x4) − μ(x3) = μ(x5) − μ(x4), (3.3)

and, in general, by considering the unknown value μ(xi ), we conclude that

μ(xi ) − μ(xi−1) = μ(xi+1) − μ(xi ). (3.4)

What we get. From the formulas (3.1)–(3.4), we conclude that

μ(x2) − μ(x1) = μ(x3) − μ(x2) = μ(x4) − μ(x3) = μ(x5) − μ(x4) = . . . =

μ(xi ) − μ(xi−1) = . . .

In other words, for each i , the difference μ(xi ) − μ(xi−1) between the values
μ(xi ) and μ(xi−1) of the membership function at nearby points is the same. Let us
denote this common difference by �μ. In terms of this notation, we have:

μ(x2) − μ(x1) = �μ; μ(x3) − μ(x2) = �μ; . . . μ(xi ) − μ(xi−1) = �μ; . . .
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Then:

• by adding μ(x1) to both sides of the equality μ(x2) − μ(x1) = �μ, we conclude
that

μ(x2) = μ(x1) + �μ;

• by adding μ(x2) to both sides of the equality μ(x3) − μ(x2) = �μ, we conclude
that μ(x3) = μ(x2) + �μ; substituting the above expression for μ(x2) into this
formula, we conclude that

μ(x3) = (μ(x1) + �μ) + �μ = μ(x1) + 2 · �μ;

• by adding μ(x3) to both sides of the equality μ(x4) − μ(x3) = �μ, we conclude
that μ(x4) = μ(x3) + �μ; substituting the above expression for μ(x3) into this
formula, we conclude that

μ(x4) = (μ(x1) + 2 · �μ) + �μ = μ(x1) + 3 · �μ;

• in general, we get
μ(xi ) = μ(x1) + (i − 1) · �μ.

Here, the same increase �x in x leads to the same increase �μ in μ:

Let us prove that the resulting dependence is linear. This is similar to a situation
when a car goes with a constant speed. For the car, this means the distance increases
linearly with time. Let us show that the dependence of μ(x) on x is also linear.
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Wewant to find the dependence ofμ(x) on x . What we have so far is a description
of how both xi and μ(xi ) depend on i : xi = x1 + (i − 1) · �x and

μ(xi ) = μ(x1) + (i − 1) · �μ.

So, to find the dependence of μ(x) on x , a natural idea is:

• to use the known relation xi = x1 + (i − 1) · �x between xi and i to describe i in
terms of xi , and then

• to substitute the expression for i in terms of xi into the formula that describes
μ(xi ) in terms of i .

Let us follow this idea. To find the expression of i in terms of xi , let us:

• subtract x1 from both sides of the equality xi = x1 + (i − 1) · �x , and then
• divide both sides by �x .

Thus, we conclude that

i − 1 = xi − x1
�x

.

Substituting the right-hand side of this equality instead of i − 1 into the formula

μ(xi ) = μ(x1) + (i − 1) · �μ,

we conclude that
μ(xi ) = μ(x1) + xi − x1

�x
· �μ,

i.e.,
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μ(xi ) = �μ

�x
· xi +

(
μ(x1) − x1

�x
· �μ

)
,

i.e., the desired linear form
μ(xi ) = a · xi + b,

where we denoted:

a = �μ

�x
and b =

(
μ(x1) − x1

�x
· �μ

)
.

Conclusion of this section. Our analysis shows that the most robust interpolation is
linear interpolation—exactly what we used to determine the membership functions
in our example.

Discussion. For interpolation, the most robust procedure turned out to be the same
as the simplest procedure—namely, linear interpolation. However, as we will see in
the next section on the example of “and”- and “or”-operations, the most robust is not
always the same as the simplest.
Terminological comment.

• In the usual optimization problems (e.g., when we selected the optimal control
value in the previous chapter) the unknown—that we want to determine—is a
number.

• In this section, the unknown—that we need to determine—is a function, namely,
the functionμ(x). In other words, we use optimization to determine how the value
μ(x) varies when x changes.

Such problems, in which we use optimization to determine a function, are known
as problems of variational optimization, and the derivative of theminimized function
with respect to the unknown value f (x) is known as the variational derivative.
Related comments about notations. Derivative with respect to f (x):

• is sometimes denoted differently than the usual notation
dy

dx
for the derivative,

• namely, as
δy

δ f (x)
.

Themain purpose of this difference is to emphasize that the unknown is a function.

3.4 “And”- and “Or”-Operations Must Be Robust Too

Expert’s degrees are only approximate. The expert estimate depends on a scale. If
we ask the expert to estimate the degree on a scale from 0 to 5, then possible values
of the resulting degree are:
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0/5 = 0.0; 1/5 = 0.2; 2/5 = 0.4; 3/5 = 0.6; 4/5 = 0.8; and 5/5 = 1.0.

However, if we ask the same expert to estimate his/her degree on a scale from 0
to 4, then we will get different possible values:

0/4 = 0.0; 1/4 = 0.25; 2/4 = 0.5; 3/4 = 0.75; and 4/4 = 1.0.

Suppose that in the first scale, the expert marked 4 on a scale from 0 to 5, leading
to an estimate of 0.8. However, no mark on a 0 to 4 scale will lead to the same value
0.8; the closest is the value 0.75 which corresponds to 3 on the 0 to 4 scale. The value
0.75 is close to 0.8, but different.

Similar problem occurs if we use polling: for different numbers of experts, we
get different values describing the same degrees of belief.

So, we need robustness. As we have argued, the same confidence level of an expert
leads, in general, to different degrees a �= a′—depending on the scale or on the
number of experts.

It is therefore reasonable to require that the corresponding small difference a′ − a
should affect the results as little as possible. In particular, for an “and”-operation, we
should require that, for each b:

• if a is close to a′—which we denoted by a ≈ a′,
• then the value f&(a, b) should be close to f&(a′, b): f&(a, b) ≈ f&(a′, b).

Similarly, for an “or”-operation, we should require that, for each b:

• if a is close to a′—which we denoted by a ≈ a′,
• then the value f∨(a, b) should be close to f∨(a′, b): f∨(a, b) ≈ f∨(a′, b).

3.5 Which Is the Most Robust “And”-Operation

What is an “and”-operation: reminder. In our analysis, we will use the following
two properties of an “and”-operation f&(a, b):

• that it is commutative f&(a, b) = f&(b, a), and
• that it coincides with the usual “and” when both a and b are equal to 0 or 1
(absolutely false or absolutely true):

f&(0, 0) = f&(0, 1) = f&(1, 0) = 0 and f&(1, 1) = 1.

Comment. The definition of an “and”-operation also requires that this operation be
associative andmonotonic, butwewill not need these twoproperties in our derivation.
It should be mentioned that the resulting most robust operation will be associative
and monotonic.
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Let us find our what is the most robust “and”-operation. In the previous section,
we have shown that the most robust dependence is linear. So, for each b, the depen-
dence of f&(a, b) on a must be linear. To make it clearer which of the two inputs
changes, we will denote the value f&(a, b) by fb(a).

Let us use this conclusion to derive the expression for the most robust “and”-
operation.

For some values b, we can directly use this conclusion. For each value b, to
perform interpolation, we need to know two different values fb(a1) = f&(a1, b) and
fb(a2) = f&(a2, b) of the desired function fb(a) = f&(a, b). Based on our definition
of an “and”-operation, we have this information only for the values b = 0 and b = 1:

• for b = 0, we know the values

f0(0) = f&(0, 0) = 0 and f0(1) = f&(1, 0) = 0;

• for b = 1, we know the values

f1(0) = f&(1, 0) = 0 and f1(1) = f&(1, 1) = 1.

Let us therefore apply linear interpolation for these two values of b.
Case ofb = 0. In this case,wehave f&(0, 0) = 0 and f&(1, 0) = 0. So, for the depen-
dence f0(a) = f&(a, 0), we have f0(0) = f0(1) = 0. We know that the dependence
y = f0(a) is linear, so we can use linear interpolation formula to find the values
f&(a, 0) for all a.

Here, a1 = 0, a2 = 1, y1 = y2 = 0, so the general linear interpolation formula
leads to

f&(a, 0) = f0(a) = y1 + a − a1
a2 − a1

· (y2 − y1) = 0 + a − 0

1 − 0
· (0 − 0).
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Thus, we conclude that for all a, we have f&(a, 0) = 0.
Case of b = 1. In this case, we have f&(0, 1) = 0 and f&(1, 1) = 1. So, for the
dependence f1(a) = f&(a, 1), we have f1(0) = 0 and f1(1) = 1. We know that the
dependence y = f (a) is linear, so we can use linear interpolation formula to find the
values f&(a, 1) for all a.

Here, a1 = 0, a2 = 1, y1 = 0, y2 = 1, so the general linear interpolation formula
leads to

f&(a, 1) = f1(a) = y1 + a − a1
a2 − a1

· (y2 − y1) = 0 + a − 0

1 − 0
· (1 − 0).

Thus, we conclude that for all a, we have f&(a, 1) = a.

What can we do for all other values b?

• We want to find the values f&(a, b) corresponding to all possible a and b.
• So far, we have found the values f&(a, 0) = 0 and f&(a, 1) = a corresponding to
b = 0 and b = 1.

How can we find the values fb(a) = f&(a, b) for the values b between 0 and 1?
Since we assume that the “and”-operation is maximally robust, we can use lin-

ear interpolation. To be able to use linear interpolation, we need to know the val-
ues fb(a1) = f&(a1, b) and fb(a2) = f&(a2, b) for two different values a1 �= a2.
We can get these values by using commutativity and the already-proven properties
f&(a, 0) = 0 and f&(a, 1) = a:

• from the fact that f&(a, 0) = 0 for all a, we conclude that

f&(0, b) = f&(b, 0) = 0;

• from the fact that f&(a, 1) = a for all a, we conclude that

f&(1, b) = f&(b, 1) = b.

So, we have fb(0) = f&(0, b) = 0 and fb(1) = f&(1, b) = b. So, for the depen-
dence fb(a) = f&(a, b), we have fb(0) = 0 and fb(1) = b.We know that the depen-
dence y = fb(a) is linear, sowe can use linear interpolation formula to find the values
fb(a) = f&(a, b) for all a.
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Here, a1 = 0, a2 = 1, y1 = 0, y2 = b, so the general linear interpolation formula
leads to

f&(a, b) = fb(a) = y1 + a − a1
a2 − a1

· (y2 − y1) = 0 + a − 0

1 − 0
· (b − 0).

Thus, we conclude that for all a, we have f&(a, b) = a · b.
Conclusion of this section. The most robust “and”-operation is algebraic product.

Discussion.For interpolation, themost robust procedure turned out to be the simplest.
Is this the case here as well? Not really.

Indeed, minimum is easier to perform than the product: we do not need to compute
anything, we just need to decide which of the two numbers is smaller. So, this is the
case when the most robust selection is different from the simplest one.

3.6 Which Is the Most Robust “Or”-Operation

What is an “or”-operation: reminder. In our analysis, we will use the following
two properties of an “or”-operation f∨(a, b):

• that it is commutative f∨(a, b) = f∨(b, a), and
• that it coincideswith the usual “or”when both a and b are equal to 0 or 1 (absolutely
false or absolutely true):

f∨(0, 0) = 0 and f∨(0, 1) = f∨(1, 0) = f∨(1, 1) = 1.

Comment. The definition of an “or”-operation also requires that this operation be
associative andmonotonic, butwewill not need these twoproperties in our derivation.
It should be mentioned that the resulting most robust operation will be associative
and monotonic.

Let us find our what is the most robust “or”-operation. In the previous section, we
have shown that the most robust dependence is linear. So, for each b, the dependence
of f∨(a, b) on a must be linear. To make it clearer which of the two inputs changes,
we will denote the value f∨(a, b) by gb(a).
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Let us use this conclusion to derive the expression for the most robust “or”-
operation.

For some values b, we can directly use this conclusion. For each value b, to
perform interpolation, we need to know two different values gb(a1) = f∨(a1, b) and
gb(a2) = f∨(a2, b) of the desired function gb(a) = f∨(a, b). Based on our definition
of an “or”-operation, we have this information only for the values b = 0 and b = 1:

• for b = 0, we know the values

g0(0) = f∨(0, 0) = 0 and g0(1) = f∨(1, 0) = 1;

• for b = 1, we know the values

g1(0) = f∨(1, 0) = 1 and g1(1) = f∨(1, 1) = 1.

Let us therefore apply linear interpolation for these two values of b.
Case of b = 0. In this case, we have f∨(0, 0) = 0 and f∨(1, 0) = 1. So, for the
dependence g0(a) = f∨(a, 0), we have g0(0) = 0 and g0(1) = 1. We know that the
dependence y = g0(a) is linear, so we can use linear interpolation formula to find
the values f∨(a, 0) for all a.

Here, a1 = 0, a2 = 1, y1 = 0, and y2 = 1, so the general linear interpolation
formula leads to

f∨(a, 0) = g0(a) = y1 + a − a1
a2 − a1

· (y2 − y1) = 0 + a − 0

1 − 0
· (1 − 0).

Thus, we conclude that for all a, we have f∨(a, 0) = a.
Case ofb = 1. In this case,we have f∨(0, 1) = 1 and f∨(1, 1) = 1. So, for the depen-
dence g1(a) = f∨(a, 1), we have g1(0) = g1(1) = 1. We know that the dependence
y = f (a) is linear, so we can use linear interpolation formula to find the values
f∨(a, 1) for all a.



3.6 Which Is the Most Robust “Or”-Operation 49

Here, a1 = 0, a2 = 1, y1 = y2 = 1, so the general linear interpolation formula
leads to

f∨(a, 1) = g1(a) = y1 + a − a1
a2 − a1

· (y2 − y1) = 1 + a − 0

1 − 0
· (0 − 0).

Thus, we conclude that for all a, we have f∨(a, 1) = 1.

What can we do for all other values b?

• We want to find the values f∨(a, b) corresponding to all possible a and b.
• So far, we have found the values f∨(a, 0) = a and f∨(a, 1) = 1 corresponding to
b = 0 and b = 1.

How can we find the values fb(a) = f∨(a, b) for the values b between 0 and 1?
Since we assume that the “or”-operation is maximally robust, we can use lin-

ear interpolation. To be able to use linear interpolation, we need to know the val-
ues gb(a1) = f∨(a1, b) and gb(a2) = f∨(a2, b) for two different values a1 �= a2.
We can get these values by using commutativity and the already-proven properties
f&(a, 0) = 0 and f&(a, 1) = a:

• from the fact that f∨(a, 0) = a for all a, we conclude that

f∨(0, b) = f∨(b, 0) = b;

• from the fact that f∨(a, 1) = 1 for all a, we conclude that

f∨(1, b) = f∨(b, 1) = b.

So, we have gb(0) = f∨(0, b) = b and gb(1) = f∨(1, b) = 1. So, for the depen-
dence gb(a) = f∨(a, b), we have gb(0) = 0 and gb(1) = b. We know that the depen-
dence y = gb(a) is linear, sowe can use linear interpolation formula to find the values
gb(a) = f∨(a, b) for all a.
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Here, a1 = 0, a2 = 1, y1 = b, y2 = 1, so the general linear interpolation formula
leads to

f∨(a, b) = gb(a) = y1 + a − a1
a2 − a1

· (y2 − y1) = b + a − 0

1 − 0
· (1 − b).

Thus, we conclude that for all a, we have

f∨(a, b) = b + a · (1 − b) = a + b − a · b.

Conclusion of this section. The most robust “or”-operation is

f∨(a, b) = a + b − a · b.

Discussion. In this case too—just like for “and”-operations—the most robust proce-
dure is not the simplest. Indeed, the maximum is easier to compute than the product:
we do not need to compute anything, we just need to decide which of the two num-
bers is larger. So, this is the case when the most robust selection is different from the
simplest one.

3.7 Group Robustness Versus Individual Robustness

Robustness—as we have defined it—means robustness “on average”. In the pre-
vious text, as a measure of robustness, we took the distance between the two tuples,
i.e., the sum

D2(�, r) = (μ(x2) − μ(x1))
2 + (μ(x3) − μ(x2))

2 + · · · + (μ(xn) − μ(xn−1))
2

of the squares (μ(xi+1) − μ(xi ))2 of the differences μ(xi+1) − μ(xi ) between the
valuesμ(xi+1) andμ(xi ) of themembership function at the neighboring points xi and
xi+1. The smaller this sum, the more robust the interpolation. For this description of
robustness, he most robust interpolation is the one for which this sum is the smallest
possible.

Minimizing the sum is equivalent to minimizing the average of the squares of the
differences:

D2(�, r)

n − 1
= (μ(x2) − μ(x1))2 + (μ(x3) − μ(x2))2 + · · · + (μ(xn) − μ(xn−1))

2

n − 1
.

From this viewpoint, the previous understanding of robustness means robustness
“on average”.

Similarly,whenwe selected themost robust “and”- and “or”-operations,we under-
stood robustness “on average”.
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So far, we dealt with group robustness. In our analysis, we assumed that the values
f&(a, b) and f&(a′, b) are, on average, close to each other. This makes sense if we
control, e.g., a flock of UAVs for studying weather. Even if one of them fails, we
still have a good picture of the weather if most of all are successful and follow the
desired trajectory.

Sometimes, we need individual robustness. In some situations, we are interested in
the success of an individual object—e.g., we have a single UAV. In this case, the fact
that most other UAVs—that, e.g., collect weather information in other cities—will
be successful is no help if the UAV collecting weather information in our city of El
Paso fails.

To deal with such situations, we do not just want to require that sum of the squares
of the differences is small, we want to require that each difference is small, i.e., in
terms of a function f (x):

• if the values x and x ′ are close, then
• each corresponding pair f (x) and f (x ′) should also be close.

How can we describe such individual robustness. Wewant to make sure that if the
difference |x − x ′| is small, then the difference | f (x) − f (x ′)| should also be small.

Of course, the larger the difference |x − x ′|, the larger can be the difference
| f (x) − f (x ′)| between the corresponding values of the function f (x). So, the bound
on | f (x) − f (x ′)| should be proportional to |x − x ′|, i.e., we should require that

| f (x) − f (x ′)| ≤ K · |x − x ′|

for some coefficient K .
The smaller the value K , the smaller the bound on the difference

| f (x) − f (x ′)|

and thus, themore robust the function f (x). Thus, it is reasonable to find the functions
f (x) for which the value K is the smallest possible.

Historical comment.The condition that the inequality | f (x) − f (x ′)| ≤ K · |x − x ′|
must be satisfied for all x ad x ′ is known as the Lipschitz condition,
after a mathematician who first used it. If a function f (x) satisfies this condition, we
say that this function is a K-Lipschitz function.

3.8 Which Interpolation Is the Most Individually Robust

Formulation of the problem. Let us consider the same formulation as before:

• we know the values f (a) and f (b), and
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• we want to find the values f (x) for all x ∈ (a, b) so as to maintain maximum
individual robustness.

A natural lower bound on K .The desired inequality | f (x) − f (x ′)| ≤ K · |x − x ′|
must be held for all possible values x and x ′, in particular, for the values x = a and
x ′ = b. In this case, this inequality takes the form | f (b) − f (a)| ≤ K · |b − a|. If
we divide both sides by |b − a|, we conclude that

K ≥ | f (b) − f (a)|
|b − a| .

So, the value K cannot be smaller than the ratio in the right-hand side of this
inequality. We will denote this ratio by

r = | f (b) − f (a)|
|b − a| ;

in terms of this ratio, we must have K ≥ r .

What happens for linear interpolation. So far, we have studied only one interpo-
lation algorithm: namely, linear interpolation. According to this algorithm, for each
value x , we take

fL(x) = f (a) + x − a

b − a
· ( f (b) − f (a)).

This expression can be rewritten in the following equivalent form

fL(x) = f (a) + f (b) − f (a)

b − a
· (x − a),

i.e., in the form
fL(x) = f (a) + K0 · (x − a),

where we denoted

K0 = f (b) − f (a)

b − a
.

For every two values x and x ′, we therefore have the following expression for the
difference fL(x) − fL(x ′):

fL(x) − fL(x
′) = ( f (a) + K0 · (x − a)) − ( f (a) + K0 · (x ′ − a))

= f (a) + K0 · x − K0 · a − f (a) − K0 · x ′ + K0 · a.

The terms f (a) and − f (a) cancel each other. Also, the terms −K0 · a and K0 · a
cancel each other. Thus, we get

fL(x) − fL(x
′) = K0 · x − K0 · x ′ = K0 · (x − x ′).
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So, for the absolute value of the difference, taking into account that the absolute
value of the product is equal to the product of absolute values, we get

| fL(x) − fL(x
′)| = |K0| · |x − x ′|.

Here,

|K0| =
∣∣∣∣
f (b) − f (a)

b − a

∣∣∣∣ .

The absolute value of the ratio is equal to the ratio of absolute values, so we have

|K0| = | f (b) − f (a)|
|b − a| ,

i.e., |K0| = r . Thus, for the function fL(x) obtained by linear interpolation, we have

| fL(x) − fL(x
′)| ≤ r · |x − x ′|.

In other words, for this function, the desired inequality is satisfied for the smallest
possible value K = r .

So, linear interpolation is the most individually robust procedure. A natural ques-
tion is: is linear interpolation the only one with this property? The answer is “yes”,
let us prove it.

Linear interpolation is the only most individually robust procedure: a proof.
Let f (x) be the most individually robust function, i.e., a function for which we

have | f (x) − f (x ′)| ≤ r · |x − x ′|, where r = | f (b) − f (a)|
|b − a| . Let us prove that in

this case, this function f (x) comes from linear interpolation, i.e., for all x from the
interval (a, b), we have

f (x) = fL(x) = f (a) + f (b) − f (a)

b − a
· (x − a).

In principle, we can have two cases: when f (a) < f (b) and when f (b) < f (a).
Let us consider the first case f (a) < f (b).

Let us take any value x ∈ (a, b). Linear interpolation always produces values in
between f (a) and f (b), so in this case, f (a) < fL(x) < f (b).

1. Let us first prove that in this case, we cannot have

f (x) > fL(x) = f (a) + f (b) − f (a)

b − a
· (x − a).

Indeed, by subtracting f (a) from both sides of this inequality, we conclude that
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f (x) − f (a) >
f (b) − f (a)

b − a
· (x − a).

Here:

• We have f (x) > fL(x) and fL(x) > f (a), so f (x) > f (a). Thus,

f (x) − f (a) > 0, and | f (x) − f (a)| = f (x) − f (a).

• We have f (a) < f (b), so f (b) − f (a) > 0. Thus, | f (b) − f (a)|
= f (b) − f (a).

• We have a < b, so b − a > 0. Thus, |b − a| = b − a.
• Also, a < x , so x − a > 0. Thus, |x − a| = x − a.

So, the inequality

f (x) − f (a) >
f (b) − f (a)

b − a
· (x − a)

implies that

| f (x) − f (a)| >
| f (b) − f (a)|

|b − a| · |x − a|.

The ratio
| f (b) − f (a)|

|b − a| is what we denoted by r . Thus, we get

| f (x) − f (a)| > r · |x − a|.

However, we assumed that the function f (x) is maximally individually robust
and therefore, that | f (x) − f (x ′)| ≤ r · |x − x ′| for all x and x ′. In particular, for
x ′ = a, we conclude that

| f (x) − f (a)| ≤ r · |x − a|,

which contradicts to the opposite inequality | f (x) − f (a)| > r · |x − a| that we
derived. This contradictions shows that we cannot have f (x) > fL(x):

2. Let us now prove that in this case, we cannot have

f (x) < fL(x) = f (a) + f (b) − f (a)

b − a
· (x − a).
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Indeed, by subtracting, from f (b), both sides of this inequality, we conclude that

f (b) − f (x) > ( f (b) − f (a)) − f (b) − f (a)

b − a
· (x − a)

= ( f (b) − f (a)) ·
(
1 − x − a

b − a

)

= ( f (b) − f (a)) · b − a − (x − a)

b − a

= ( f (b) − f (a)) · b − x

b − a
= f (b) − f (a)

b − a
· (b − x).

Here:

• We have f (x) < fL(x) and fL(x) < f (b), so f (x) < f (b). Thus,

f (b) − f (x) > 0, and | f (b) − f (x)| = f (b) − f (x).

• We have f (a) < f (b), so f (b) − f (a) > 0. Thus, | f (b) − f (a)|
= f (b) − f (a).

• We have a < b, so b − a > 0. Thus, |b − a| = b − a.
• Also, x < b, so b − x > 0. Thus, |b − x | = b − x .

So, the inequality

f (b) − f (x) >
f (b) − f (a)

b − a
· (b − x)

implies that

| f (b) − f (x)| >
| f (b) − f (a)|

|b − a| · |b − x |.

The ratio
| f (b) − f (a)|

|b − a| is what we denoted by r . Thus, we get

| f (b) − f (x)| > r · |b − x |.

However, we assumed that the function f (x) is maximally individually robust
and therefore, that | f (x ′) − f (x ′′)| ≤ r · |x ′ − x ′′| for all x ′ and x ′′. In particular, for
x ′ = b and x ′′ = x , we conclude that

| f (b) − f (x)| ≤ r · |b − x |,

which contradicts to the opposite inequality | f (b) − f (x)| > r · |b − x | that we
derived. This contradictions shows that we cannot have f (x) < fL(x):
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3. Since the value f (x) cannot be larger than fL(x) and cannot be smaller that fL(x),
it must be exactly equal to fL(x):

f (x) = fL(x).

In other words, the function f (x) must be obtained by linear interpolation.

Comment. In the case of f (a) > f (b), the proof is similar.

3.9 The Most Individually Robust “And”-Operation

Formulation of the problem. Both inputs a and b to the “and”-operation are uncer-
tain. So, it is reasonable to require that when we change both a and b by nomore than
some value ε—i.e., when the largest of these two changes does not exceed ε—then
the value f&(a, b) will change by no more than some constant K times this ε. In
other words, we require that for all possible values a, a′, b, and b′, we have

| f&(a, b) − f&(a′, b′)| ≤ K · max(|a − a′|, |b − b′|).

We want to select an “and”-operation for which the corresponding coefficient K
is the smallest possible.

A natural lower bound on K . For a = b = 0 and a′ = b′ = 1, we have f&(0, 0) =
0, f&(1, 1) = 1, and max(|a − a′|, |b − b′|) = 1. So, for these values, the desired
inequality takes the form 1 ≤ K .

What happens for min(a, b). One can show that for f&(a, b) = min(a, b), the
desired inequality is satisfied for K = 1—and we know that this value is the smallest
possible. So, we know that the min t-norm is the most individually robust.

Let us prove that this the only most individually robust “and”-operation.

Min “and”-operation is the only most individually robust one: a proof. Suppose
that have an “and”-operation which is the most individually robust, this means that
for this operation, the desired inequality is satisfied for the smallest possible value K :

| f&(a, b) − f&(a′, b′)| ≤ max(|a − a′|, |b − b′|).

In particular, for a = b and a′ = b′, we have
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| f&(a, a) − f&(a′, a′)| ≤ |a − a′|.

In other words, for the function F0(a) = f&(a, a), we have

|F0(a) − F0(a
′)| ≤ |a − a′|.

For this function, we also have F0(0) = f&(0, 0) = 0 and F0(1) = f&(1, 1) = 1.

In this case, r = |F0(1) − F0(0)|
|1 − 0| = 1. Thus, the function F0(a) satisfies the con-

dition of individual robustness with the smallest possible coefficient K . We have
already proven that in this case, this function is linear.

By applying linear interpolation to the values F0(0) = 0 and F0(1) = 1, we con-
clude that F0(a) = a, i.e., that f&(a, a) = a.

Similarly, for a′ = b′ = 1, we have

| f&(a, 1) − f&(a′, 1)| ≤ |a − a′|.

In other words, for a function F1(a) = f&(a, 1), we have

|F1(a) − F1(a
′)| ≤ |a − a′|.

For this function, we also have F1(0) = f&(0, 1) = 0 and F1(1) = f&(1, 1) = 1.

In this case, r = |F1(1) − F1(0)|
|1 − 0| = 1. Thus, the function F1(a) satisfies the con-

dition of individual robustness with the smallest possible coefficient K . We have
already proven that in this case, the function is linear.

By applying linear interpolation to the values F1(0) = 0 and F1(1) = 1, we con-
clude that F1(a) = a, i.e., that f&(a, 1) = a.

If a ≤ b, then, from a ≤ b ≤ 1 and monotonicity, we conclude that
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f&(a, a) ≤ f&(a, b) ≤ f&(a, 1).

We know that f&(a, a) = a and f&(a, 1) = a. Thus, we get a ≤ f&(a, b) ≤ a,
hence f&(a, b) = a. Thus, when a ≤ b, we have f&(a, b) = min(a, b).

Due to commutativity, the same property is true for a ≥ b: then

f&(a, b) = f&(b, a) = min(a, b).

So, we always have f&(a, b) = min(a, b). Thus, the min “and”-operation is
indeed the only most individually robust one.

3.10 Robustness Versus Individual Robustness: Example

Simplified situation: general description. To illustrate the difference between
robustness and individual robustness, let us consider a simplified setting when we
have only three possible value of the degree of confidence:

• the two “classical” values 0 (“false”) and 1 (“true”), and
• the intermediate value 0.5 (“uncertain”).

In this case, we have 3 · 3 = 9 possible pairs (a, b) of confidence degrees:

(0.0, 1.0) (0.5, 1.0) (1.0, 1.0)

(0.0, 0.5) (0.5, 0.5) (1.0, 0.5)

(0.0, 0.0) (0.5, 0.0) (1.0, 0.0)

What if we use algebraic product. If we use the algebraic product f&(a, b) = a · b,
we get the following values of f&(a, b):

0.00 0.50 1.00

0.00 0.25 0.50

0.00 0.00 0.00

What is we use the minimum “and”-operation. If we use theminimum f&(a, b) =
min(a, b), we get somewhat different values of f&(a, b):
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0.00 0.50 1.00

0.00 0.50 0.50

0.00 0.00 0.00

The only difference between these two “and”-operations is in the central value:

0.5 · 0.5 = 0.25 �= min(0.5, 0.5) = 0.50.

Case of individual robustness. In individual robustness, we are interested in the
largest possible difference between the values of the “and”-operation in the neigh-
boring points.

Individual robustness: algebraic product. For the algebraic product, if we mark
all neighboring points, we get the following picture:

One can check that the largest difference between the values of the “and”-operation
in the neighboring points is the difference:

f&(1, 1) − f&(0, 5, 0.5) = 1 · 1 − 0.5 · 0.5 = 1 − 0.25 = 0.75.

Individual robustness: minimum “and”-operation. For the min operation, we can
draw a similar picture:

To emphasize the difference between the two “and”-operations, we underlined the
only different result. For the min operation, the largest possible difference is equal to
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f&(1, 1) − f&(0, 5, 0.5) = min(1, 1) − min(0.5, 0.5) = 1 − 0.5 = 0.5.

Individual robustness: conclusion. For the minimum “and”-operation, the largest
difference (0.5) between the values of the “and”-operation in neighboring points is
smaller than the corresponding value (0.75) for the algebraic product.

So, in this simplified setting—when we assume that we only have three possible
degrees of certainty—theminimum “and”-operation is more individually robust than
the algebraic product.

Robustness. Let us now compare these two “and”-operations from the viewpoint of
robustness in general. In this case, we are interested:

• not in the largest difference,
• but in the sum of the squares of all the differences between the values of the “and”-
operations at the neighboring points—which is exactly the squared difference
between the corresponding tuples.

The only difference between these two situations is in the value of f&(0.5, 0.5).
So, to compare which sum is larger, its is sufficient to consider only the sums of the
differences that involve this changing value—all other differences are the same for
both “and”-operations.

Robustness: algebraic product. For the algebraic product, we get the following
picture:

In this case, we have seven differences equal to 0.25 and one difference equal to 0.75.
So, the sum of the squares of these differences is equal to

7 · 0.252 + 0.752 = 7 · 0.0625 + 0.5625 = 0.4375 + 0.5625 = 1.0

Robustness: minimum “and”-operation. For the minimum “and”-operation, we
get the following picture:



3.11 The Most Individually Robust “Or”-Operation 61

In this case, we have 6 differences equal to 0.5 and 2 differences equal to 0. So, the
sum of the squares of these differences is equal to

6 · 0.52 + 2 · 02 = 6 · 0.25 = 1.5.

Robustness: conclusion. The sum 1.5 corresponding to the minimum “and”-
operation is larger than sum 1.0 corresponding to the algebraic product.

Thus, in this simplified setting, the algebraic product is more robust than the
minimum “and”-operation.

Summarizing. In this section, we consider a simplified setting, when we have only
three degrees of certainty: 0, 1, and 0.5. In this setting, if we use algebraic product,
then:

• on average, the differences between the values of the “and”-operation in the neigh-
boring points are smaller than for the minimum, but

• it is possible that this difference becomes equal to 0.75—which is larger than the
largest difference 0.5 corresponding to the minimum “and”-operation.

In other words:

• On the one hand, in this setting, algebraic product ismore robust than theminimum.
Indeed, for the algebraic product, the squared distance between the corresponding
tuples—which is equal to the sum of the differences between the values of the
“and”-operation in neighboring points—is smaller.

• On the other hand, in this setting, minimum is more individually robust than the
algebraic product. Indeed for the minimum “and”-operation, the largest differ-
ence between the values of the “and”-operation in neighboring points—which is
a measure of individual robustness—is smaller.

3.11 The Most Individually Robust “Or”-Operation

Formulation of the problem. Let us now go back from the simplified setting to the
original setting, when all possible values from the interval [0, 1] are possible values
of degree of certainty.
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Both inputs a and b to the “or”-operation are uncertain. So, it is reasonable to
require that when we change both a and b by no more than some value ε, then the
value f∨(a, b) will change by no more than some constant K times this ε. In other
words, we require that for all possible values a, a′, b, and b′, we have

| f∨(a, b) − f∨(a′, b′)| ≤ K · max(|a − a′|, |b − b′|).

We want to select an “or”-operation for which the corresponding coefficient K is
the smallest possible.

A natural lower bound on K . For a = b = 0 and a′ = b′ = 1, we have f∨(0, 0) =
0, f∨(1, 1) = 1, and max(|a − a′|, |b − b′|) = 1. So, for these values, the desired
inequality takes the form 1 ≤ K .

What happens for max(a, b). One can show that for f∨(a, b) = max(a, b), the
desired inequality is satisfied for K = 1—and we know that this value is the smallest
possible. So, we know that the max t-norm is the most individually robust.

Let us prove that this the only most individually robust “or”-operation.

Max “or”-operation is the only most individually robust one: a proof. Suppose
that have an “or”-operation which is the most individually robust, This means that for
this operation, the desired inequality is satisfied for the smallest possible value K :

| f∨(a, b) − f∨(a′, b′)| ≤ max(|a − a′|, |b − b′|).

In particular, for a = b and a′ = b′, we have

| f∨(a, a) − f∨(a′, a′)| ≤ |a − a′|.

In other words, for the function G0(a) = f∨(a, a), we have

|G0(a) − G0(a
′)| ≤ |a − a′|.

For this function, we also have G0(0) = f∨(0, 0) = 0 and G0(1) = f∨(1, 1) =
1. In this case, r = |G0(1) − G0(0)|

|1 − 0| = 1. Thus, the function G0(a) satisfies the

condition of individual robustness with the smallest possible coefficient K . We have
already proven that in this case, the function is linear.
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By applying linear interpolation to the values G0(0) = 0 and G0(1) = 1, we
conclude that G0(a) = a, i.e., that f∨(a, a) = a.

Similarly, for a′ = b′ = 0, we have

| f∨(a, 0) − f∨(a′, 0)| ≤ |a − a′|.

In other words, for a function G1(a) = f∨(a, 0), we have

|G1(a) − G1(a
′)| ≤ |a − a′|.

For this function, we also have G1(0) = f∨(0, 0) = 0 and G1(1) = f∨(1, 0) =
1. In this case, r = |G1(1) − G1(0)|

|1 − 0| = 1. Thus, the function G1(a) satisfies the

condition of individual robustness with the smallest possible coefficient K . We have
already proven that in this case, the function is linear.

By applying linear interpolation to the values G1(0) = 0 and G1(1) = 1, we
conclude that G1(a) = a, i.e., that f∨(a, 0) = a.

If b ≤ a, then, from 0 ≤ b ≤ a and monotonicity, we conclude that

f∨(a, 0) ≤ f∨(a, b) ≤ f∨(a, a).

We know that f∨(a, 0) = a and f∨(a, a) = a. Thus, we get a ≤ f∨(a, b) ≤ a,
hence f∨(a, b) = a. Thus, when b ≤ a, we have f∨(a, b) = max(a, b).

Due to commutativity, the same property is true for a ≤ b: then

f∨(a, b) = f∨(b, a) = max(a, b).

So,we always have f∨(a, b) = max(a, b). Thus, themax “or”-operation is indeed
the most individually robust one.

3.12 General Conclusion

• If we are controlling a group of objects, and we want to achieve the best overall
result, we should use

f&(a, b) = a · b and f∨(a, b) = a + b − a · b.
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• If we are controlling an individual object, and we want to achieve the best result
for this object, we should use

f&(a, b) = min(a, b) and f∨(a, b) = max(a, b).

3.13 Exercises

12. Reproduce, in all detail, the proof that linear interpolation is the most robust.

13. Different marks on a 0-to-5 scale correspond to different degrees of confidence.
For each possible degree corresponding to marks on a scale from 0 to 5, find the
mark on a 0-to-4 scale which leads to the closest degree.

14. Reproduce, in all detail, the proof that algebraic product is the most robust “and”-
operation.

15. As you know, in the usual 2-valued logic, negation is defined by the formulas
f (0) = 1 and f (1) = 0. We would like to extend this function f (x) to all possi-
ble values x from the interval [0, 1]. Such an extension is known as the negation
operation. What is the most robust negation operation?

16. Prove that for the case when f (a) > f (b), linear interpolation is also the only
maximally individually robust interpolation.

17. Use the least squares method to find the dependence y = c1 · x + c2 for the case
when we have the following three measurements:

• x (1) = −2, y(1) = 1;
• x (2) = 0, y(2) = −1;
• x (3) = 2, y(3) = −1.

18. Suppose that we know that f (0) = 2 and f (2) = 1, and wewant to find the value
f (1) that minimizes the following expression

( f (1) − f (0))2 + ( f (2) − f (1))2.

Use variational derivative to find this value.
19. Let us assume that we know the values f (a) and f (b) for some a and b, and
we want to interpolate, i.e., to find the values f (x) for all x between a and b. By
definition, the maximally individually robust interpolation f (x) must satisfy the

inequality | f (x) − f (y)| ≤ r · |x − y| for all x and y, where r = | f (b) − f (a)|
|b − a| .

Provide an example of the values x and y showing that when a = 0, b = 1, f (a) =
0, and f (b) = 1, the function f (x) = x2 is not a maximally individually robust
interpolation. Hint: it is sufficient to consider values 0, 0.5, and 1.
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20. We have shown that the only maximally individually robust “or”-operation is
max(a, b). Maximally individually robust means, in this case, that for all possible
values a, b, a′, and b′, we must have

| f∨(a, b) − f∨(a′, b′)| ≤ max(|a − a′|, |b − b′|).

Provide an example of the values a, b, a′, and b′, showing that the “or”-operation
a + b − a · b is not maximally individually robust. Hint: it is sufficient to consider
values 0, 0.5, and 1.
21. Which “and” and “or”-operations should we use in the following two situations:

• if we are controlling a group of objects, and malfunctioning of one of them is OK
as long as, on average, they all fulfil their mission;

• if we are controlling a single object.



Chapter 4
So How Can We Design Explainable
Fuzzy AI: Ideas

4.1 Machine Learning Revisited

Formulation of theproblem.Wewant to find the dependence y = f (x)of a quantity
y on quantities x = (x1, . . . , xn). In each of several situations k = 1, . . . , K , we
know both:

• the value x (k) and
• the value y(k).

Based on this information, we want to find a function f (x) for which, for all k,
we have the value f

(
x (k)

)
is close to y(k): f

(
x (k)

) ≈ y(k).

Details. Usually, we select a family of functions f (x, c) characterized by some
parameters c = (c1, . . . , cm). We want to find the values ci of these parameters for
which f

(
x (k), c

) ≈ y(k) for all k.

Least squares idea. We want to make sure that:

• the value f
(
x (1), c

)
is close to y(1);

• the value f
(
x (2), c

)
is close to y(2);

• …, and
• the value f

(
x (K ), c

)
is close to y(K ).

In other words, we want to make sure that the tuple

� = (
f
(
x (1), c

)
, f

(
x (2), c

)
, . . . , f

(
x (K ), c

))

formed by the left-hand sides is close to the tuple

r = (
y(1), y(2), . . . , y(K )

)

formed by the right-hand sides.
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It is reasonable to select the values of the parameters c for which the distance
D(�, r) between these two tuples is the smallest, i.e., equivalently, for which the
square of this distance is the smallest:

D2(�, r) =
(
f
(
x (1), c

)
− y(1)

)2 +
(
f
(
x (2), c

)
− y(2)

)2 + · · · +
(
f
(
x (K ), c

)
− y(K )

)2
.

This formulation is known as the Least Squares approach.

Comment. As mentioned in the previous chapter, the least squares approach guaran-
tees smallness on average. If we want all individual differences to be small, we need
to use other data processing techniques.

How do we find the minimum: case of linear dependence.When the dependence
on the coefficients ci is linear, we can do what we did earlier:

• differentiate with respect to each ci , and
• equate the resulting derivatives to 0.

Linear dependence: case of n = 1. Suppose that we are looking for a linear depen-
dence y = c1 · x + c2. In this case, the expression that we want to minimize takes
the form (

c1 · x (1) + c2 − y(1)
)2 + · · · + (

c1 · x (K ) + c2 − y(K )
)2

.

Differentiating this expression with respect to c2 and equating the derivative to 0,
we get

2 · (
c1 · x (1) + c2 − y(1)) + · · · + 2 · (

c1 · x (K ) + c2 − y(K )
) = 0.

Dividing both sides of this equality by 2 and opening the parentheses, we conclude
that

c1 · x (1) + c2 − y(1) + · · · + c1 · x (K ) + c2 − y(K ) = 0.

Bringing terms proportional to the unknowns c1 and c2 together and moving all
other terms to the right-hand side, we get

c1 · x + c2 · K = y, (4.1)

where we denoted

x =
K∑

k=1

x (k) and y =
K∑

k=1

y(k).

Differentiating this expression with respect to c1 and equating the derivative to 0,
we get

2 · x (1) · (
c1 · x (1) + c2 − y(1)) + · · · + 2 · x (K ) · (

c1 · x (K ) + c2 − y(K )
) = 0.
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Dividing both sides of this equality by 2 and opening the parentheses, we conclude
that

c1 · (
x (1)

)2 + c2 · x (1) − x (1) · y(1) + · · · + c1 · (
x (K )

)2 + c2 · x (K ) − x (K ) · y(K ) = 0.

Bringing terms proportional to the unknowns c1 and c2 together and moving all
other terms to the right-hand side, we get

c1 · x2 + c2 · x = x · y, (4.2)

where we denoted

x2 =
K∑

k=1

(
x (k)

)2
and x · y =

K∑

k=1

x (k) · y(k).

Now, we get a system of two linear Eqs. (4.1) and (4.2) to find the two unknowns
c1 and c2.

To find the value c1, we can do the following:

• first, we multiply both sides of Eq. (4.1) by the coefficient x at c2 in Eq. (4.2),
getting

c1 · (x)2 + c2 · K · x = y · x;

• then, we multiply both sides of Eq. (4.2) by the coefficient K at c2 in Eq. (4.1),
getting

c1 · K · x2 + c2 · K · x = K · x · y;

• after that, we subtract the resulting equalities; in the resulting difference, the coef-
ficient at c2 is 0, so we get

c1 ·
(
K · x2 − (x)2

)
= K · x · y − x · y;

• we then divide both sides by the coefficient at c1, resulting in

c1 = K · x · y − x · y
K · x2 − (x)2

.

To find the value c2, we can do the following:

• first, we multiply both sides of Eq. (4.1) by the coefficient x2 at c1 in Eq. (4.2),
getting

c1 · x · x2 + c2 · K · x2 = y · x2;

• then, we multiply both sides of Eq. (4.2) by the coefficient x at c1 in Eq. (4.1),
getting
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c1 · x2 · x + c2 · (x)2 = x · y · x;

• after that, we subtract the resulting equalities; in the resulting difference, the coef-
ficient at c1 is 0, so we get

c2 ·
(
K · x2 − (x)2

)
= x2 · y − x · x · y;

• we then divide both sides by the coefficient at c2, resulting in

c2 = x2 · y − x · x · y
K · x2 − (x)2

.

Numerical example. Suppose that we have the following K = 3 measurement
results:

• x (1) = −1, y(1) = −2;
• x (2) = 0, y(2) = 1;
• x (3) = 1, y(3) = 2.

In this case:

x = (−1) + 0 + 1 = 0; y = (−2) + 1 + 2 = 1;

x2 = (−1)2 + 02 + 12 = 2; x · y = (−1) · (−2) + 0 · 1 + 1 · 2 = 4.

Thus,

c1 = 3 · 4 − 0 · 1
3 · 2 − 02

= 12

6
= 2;

c2 = 2 · 1 − 0 · 4
3 · 2 − 02

= 2

6
= 0.333 . . .

So, the desired dependence is y = 2x + 0.333 . . .

General case. For linear dependence on ci , we get a system of linear equations,
for solving which there are efficient algorithms, starting with Gaussian elimination.
In the general case of non-linear dependence, if we simply differentiate and equate
derivatives to 0, we get a system of non-linear equations. In this case, we need to use
more complex techniques.

Alternatively, we can use more sophisticated optimization techniques, such as
gradient descent, genetic algorithms, etc. There are many optimization algorithms—
their description can fill yet another course—andmany packages implementing these
algorithms. Usually, people use some of the known optimization algorithms, in most
cases, this is more efficient than coming up with your own algorithm.
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Sohowcanwedesign an explainable fuzzy system.Westartwith expert rules—this
what makes this approach explainable. We then use general fuzzy methodology—
explained in the previous chapters—to find the first-approximation dependence y =
f (x1, . . . , xn).
When applying the fuzzy methodology, we used some parameters—e.g., for neg-

ligible, we selected 5 as the borderline value starting with which the difference is
absolutely not negligible. The choice of these parameters is rather arbitrary. For
example, to describe what is negligible, we could use 4 or 6 instead of 5.

So, instead of picking a single such value:

• we make this value a parameter, and then
• we find the values of all these parameters for which, for each k, the predictions of
the resulting fuzzy system are the closest to the desired value y(k).

In fuzzy techniques, this process is known as tuning.

4.2 Exercises

22. So how can we use fuzzy techniques to come up with explainable AI?

23. What is tuning and how is it different from machine learning?

24. Write a program that, given two arrays of values x (1), …, x (K ) and y(1), …, y(K ),
uses the least squares method to find the values of the parameters c1 and c2 of the
linear dependence y = c1 · x + c2. Test your method on two examples:

• an examplewhen you have x (1) = 0, y(1) = 0, x (2) = 1, and y(2) = 1; in this exam-
ple, your program must return c1 = 1 and c2 = 0; and

• an example from this chapter.

4.3 Self-Test 2

1. Robustness: definitions and results

1a. What is robustness?
1b. Why do we want membership functions to be robust?
1d. Which interpolation is the most robust?
1c. Why do we want “and”- and “or”-operations to be robust?
1e. Which “and”- and “or”-operations are the most robust?

2. Robustness: techniques.

2a. What is variational optimization?
2b. What is variational derivative and why do we need it?
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2c–d. Suppose that we know that f (0) = 1 and f (1) = 3, and we want to find the
value f (0.5) that minimizes the following expression

( f (0) − f (0.5))2 + ( f (0.5) − f (1))2.

Use variational derivative to find this value.

3. Individual robustness.

3a. Suppose that we know the values f (a) and f (b) for some a < b. What does
it mean for an interpolating function f (x) to be individually robust? Provide a
precise definition.

3b. Which interpolation is the most individually robust?
3c. Provide an example showing that when we know that f (0) = 1 and f (1) = 0,

the function f (x) = (1 − x)2 is not maximally individually robust.
3d. Which “and”-operation is the most individually robust?
3e. Provide an example showing that algebraic product is notmaximally individually

robust.

4. Least squares.

• Suppose that we know that f (0) = 0, f (1) = 1, and f (2) = 4.
• Use the least squares formulas to come up with the best linear approximation to
this data.

5. Group versus individual control.

5a–b. Which “and” and “or”-operations should we use in the following two situa-
tions:

– if we are controlling a group of objects, and malfunctioning of one of them is
OK as long as, on average, they all fulfil their mission;

– if we are controlling a single object.

5c. So, how can we use fuzzy techniques in explainable AI?
5d. What is tuning and how is it different from machine learning?



Chapter 5
How to Make Machine Learning Itself
More Explainable

5.1 How Can We Make Machine Learning Itself More
Explainable: Idea

What is machine learning: reminder. As we recall, machine learning means that:

• we are given examples of inputs x (k) and outputs y(k), and
• we want to find an algorithm f (x) that, given the inputs x (k), would generate the
results close to y(k): f

(
x (k)

) ≈ y(k).

For example:

• we have some photos x (k) of pets, and
• for each photo, we have an indication y(k) of whether this is a cat or a dog.

We want to train a neural network so that,

• given a picture x ,
• the network will tell whether it is a picture of cat or of a dog.

A reason why machine learning results are not explainable. One of the problems
with many machine learning techniques—in particular, with deep learning—is that
many aspects of these techniques come from trial and error. Researchers tried this,
tried that, some thing worked, some did not. What worked is what we use now.

Is it fully convincing?Not really:maybe next year, researcherswill find something
which works even better.

Natural idea. The results of machine learning would be much more convincing if
we had a convincing explanation of various aspects of these techniques. This is what
we will study in this chapter.
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5.2 Selection of an Activation Function

How neural networks work. In a neural network, signals interchangingly undergo
two types of data processing procedures:

• linear transformations, when we transform the input signals s1, . . . , sn into their
linear combination s = a0 + a1 · s1 + · · · + an · sn; and

• non-linear transformations, when we transform the input signal s into an output
o = F(s) for some non-linear function F(x).

This non-linear function F(x) is known as the activation function.
The parameters of the corresponding linear transformations are selected so that

the output of this network on given inputs x (k) are as close as possible to the desired
output y(k). The determination of these parameters is known as training.

Traditional neural networks. In the traditional neural networks, to transform the
inputs x1, . . . , xn into the desired output y, we apply the following three transforma-
tions:

• first, we apply several (K ) linear transformations, each of which transforms the
inputs x1, . . . , xn into their linear combination

yk = wk0 + wk1 · x1 + · · · + wkn · xn;

• then, we apply the activation function F(x) to the signals yk , resulting in zk =
F(yk), i.e., in

zk = F

(

wk0 +
n∑

i=1

wki · xi
)

;

• finally, we apply a linear transformation to the values zk to get the final result
y = W0 + ∑K

k=1 Wk · zk , i.e.,

y = W0 +
K∑

k=1

Wk · F
(

wk0 +
n∑

i=1

wki · xi
)

.

In the traditional neural networks, mostly, the following activation function is

used—F(x) = 1

1 + exp(−x)
. This function—known as sigmoid or logistic activa-

tion function—was selected because it adequately reflects how signals are processed
in most biological neurons.

Numerical example. To illustrate how a neural network works, let us run a simple
numerical example of a 2-layer neural network with two inputs x1 = 1 and x2 = 2.

• In the first layer, we perform a linear transformation and compute the value y =
w0 + w1 · x1 + w2 · x2, for w0 = −5, w1 = 1, and w2 = 2.
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• In the second layer, we apply, to the result of the first layer, the sigmoid activation

function F(y) = 1

1 + exp(−y)
and get z = F(y).

What will be the result z of this data processing?

• After the first layer, we get

y = w0 + w1 · x1 + w2 · x2 = −5 + 1 · 1 + 2 · 2 = −5 + 1 + 4 = 0.

• Based on this value, on the second layer, we compute the value

z = f (y) = 1

1 + exp(−y)
= 1

1 + exp(−0)
= 1

1 + 1
= 1

2
= 0.5.

Deep neural networks. Interestingly, lately, a different type of neural networks
turned out to be much more efficient: deep neural networks, in which:

• we have many layers, and
• the activation function is different: it is the function

F(x) = max(0, x)

known as rectified linear function (ReLU, for short).

Natural question. A natural question is: why rectified linear activation function?

• In the traditional neural networks, the activation function was selected so as to
simulate biological neurons. This makes sense: living beings are the result of
billions of years of improving evolution which have perfected them.

• However, rectified linear function is used simply because it works well, there is
no widely used theoretical explanation. This makes results obtained by using this
function not perfectly convincing: what if someone comes upwith a new activation
function which works even better?

Let us try to explain why rectified linear activation function is used.

Main idea. Once the network has been training, we can use it, so that:

• given x ,
• the network will generate the desired value y = f (x).

Inmany applications—e.g., in controlling a car or a plane—reaction time is of impor-
tance. So, it is desirable to perform computations as fast as possible.

A deep neural networks has many layers which work one after another. Some of
these layers perform linear combination, some apply the activation function. Thus,
the time needed for the deep neural network to produce the result is much larger than
for the traditional neural network. How can we save time?
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• There is not much that can do to speed up the computation of a linear combination:
we already apply the fastest possible algorithms for this.

• However, the timeneeded to compute an activation functiondiffers: somenonlinear
functions are faster to compute, for other, computations require amuch longer time.

So, to save time, a reasonable idea is to select an activation function which is the
fastest to compute.

Which functions are the fastest to compute: a general reminder. In modern com-
puters, only a few operations are hardware supported: namely,

• minimum min(a, b),
• maximum max(a, b),
• sum a + b, and
• product a · b.
Everything else is implemented as a combination of these elementary operations.

For example:

• When you ask a computer to compute exp(x), it actually computes the sum of the
first few terms of the Taylor series of the function exp(x):

exp(x) ≈ 1 + x + x2

2! + x3

3! + · · · + xN

N ! (for some N ).

• Division a/b is computed as a · (1/b), and the inverse 1/b is computed by an
iterative procedure that consists of several additions and multiplications.

A comment about multiplication. Actually, even multiplication—while hardware
supported—is actually implemented as several additions, as a result of which multi-
plication is the slowest of the hardware supported operations.

For example, if we multiply 7 by 11—i.e., in binary terms, multiply 111 by 1011,
we—as usual—multiply 111 by each of the digits, and then add the results:

111

X 1011

------

111

111

+ 111

-------

1001101

As a result, we get the binary number

1001101 = 1 · 26 + 0 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20
= 64 + 8 + 4 + 1 = 77,
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i.e., exactly the number 7 · 11 = 77.

Which activation functions are the fastest to compute. Whatever we compute
consists of the hardware supported operations.

• The more operations we perform, the longer it takes.
• So, tomake computations faster, it is desirable to use as few operations as possible.

Let us therefore try by using just one such operation.
In these operations, we can use the input x and some constants c. Which constants

c are the fastest to generate? Usually, 0 is the easiest value to implement: in most
computers, this is default value of all numerical variables beforewe assign any values.
For example, when you define a numerical array in Java, its values are automatically
0s. From this viewpoint:

• the constant c = 0 does not need any additional operation to implement, while
• all other constants require an additional step of assigning the value c to some
computer cell.

So, c = 0 leads to the fastest computation.
In view of this, let us consider all three hardware supported operations one by

one.

What if we apply minimum. If we apply minimum, we have the following options:

• we can get min(x, x)—which does not make sense, since it is simply x ;
• we can get the minimum min(c, c′) of the two constants—which also does not
make sense, since it is simply equal to one of these constants;

• finally, we can use min(x, c).

For the simplest possible value c = 0, we get min(x, 0). This function is linearly
equivalent to the rectified linear function, since

min(x, 0) = −(max(−x, 0)),

and thus, leads to the same neural network results—since before and after an appli-
cation of the activation function, we have linear transformations anyway.

What if we apply maximum. If we apply maximum, we have three similar options:

• we can get max(x, x)—which does not make sense, since it is simply x ;
• we can get the maximum max(c, c′) of the two constants—which also does not
make sense, since it is simply equal to one of these constants;

• finally, we can use max(x, c).

The simplest case is max(x, 0)—which is exactly the rectified linear activation func-
tion.

What if we apply addition. If we apply the sum, we have three similar options:
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• we can get x + x = 2x—which is a linear function, and we need the activation
function to be non-linear—otherwise:

– if the activation function is linear, all this neural network will compute are linear
functions, while

– many real-life processes are nonlinear;

• we can get the sum c + c′ of the two constants—which also does not make sense,
since it is simply another constant;

• finally, we can use x + c—which is also a linear function.

What if we apply multiplication. We do not consider multiplication, since, as we
have mentioned, multiplication takes longer than addition, minimum, or maximum.

Conclusion of this section. It is desirable to select an activation function that can
be computed as fast as possible. This leaves us with two choices:

• the rectified linear function max(x, 0), and
• a linearly equivalent function min(x, 0).

So, we have indeed provided an explanation for the use of rectified linear activation
functions.

5.3 Selection of Pooling

What is pooling. One of the main applications of neural networks is to process
pictures. In a computer, a picture is represented by storing intensity values—or, for
color pictures, intensity values corresponding to three basic colors—for each pixel,
and there are millions of pixels. Processing all these millions of values would take a
lot of time.

To save this time, we can use the fact that for most images:

• once we know what is in a given pixel,
• we can expect approximately the same information in the neighboring pixels.

Thus, to save time, instead of processing each pixel one by one, we can combine
(“pool”) values from several neighboring pixels into a single value.

Which pooling operations are used. At present, the most efficient pooling opera-
tions are:

• max-pooling, when we combine two values a and b into a single value max(a, b),
and

• averaging, when we combine two values a and b into their arithmetic average
(a + b)/2; this is almost equivalent to sum-pooling, when combine two values a
and b into their sum a + b.
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These operations are selected because they work well. As we have mentioned earlier,
it is, in general, desirable to come up with a more convincing explanation for this
selection.

Numerical example. Suppose that the original values are a = 1.5 and b = 1.7.
Then:

• max-pooling replaces these two numbers with their maximum

max(1.5, 1.7) = 1.7;

• averaging replaces these two numbers with their average

1.5 + 1.7

2
= 3.2

2
= 1.6; and

• sum-pooling replaces these two numbers with their sum 1.5 + 1.7 = 3.2.

Our explanation. The whole objective of pooling is to speed up data processing.
From this viewpoint, we need to select a pooling operation which the fastest to
perform.

As we have argued earlier, this means that we need to select a pooling operation
which is performed by using the smallest possible number of hardware supported
computer operations—and these operations should be the fastest. The fastest is to
use only one hardware supported operation, then we get min(a, b), max(a, b), and
a + b—exactly the two empirically successful pooling operations plus an additional
operation min(a, b) which is similar to max-pooling.

Thus, we have indeed provided a reasonable explanation for the current choice of
pooling operations.

5.4 What About Fuzzy?

Let us apply the same ideas to selecting “and”- and “or”-operations.Let us apply
the same analysis to “and”- and “or”-operations in fuzzy logic.

Case of “and”-operations. Among all possible “and”-operations, the fastest (=
performed by a single hardware supported operation) is min(a, b)—since:

• a + b does not satisfy the condition f&(1, 1) = 1, and
• a · b takes longer time than min(a, b).

The next fastest—while still performed by a single hardware supported operation—is
a · b.
Case of “or”-operations. Among all possible “or”-operations, the fastest is
max(a, b)—since:
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• a + b does not satisfy the condition f∨(1, 1) = 1, and
• a · b does not satisfy the condition f∨(0, 1) = 1.

Conclusion of this section. So, we get yet another explanation of why min(a, b)
and max(a, b) are empirically successful in many applications.

5.5 Exercises

25. Suppose that a 2-layer neural network has two inputs x1 = 0 and x2 = 1.

• In the first layer, we perform a linear transformation and compute the value y =
w0 + w1 · x1 + w2 · x2.

• In the second layer, we apply, to the result of the first layer, the rectified linear
activation function and get z = F(y).

What will be the result z of this data processing in the following two situations:

• when w0 = w1 = w2 = 1, and
• when w0 = w1 = w2 = −1.

26.Whatwill be the result ofmax-pooling three values x1 = 0, x2 = 1, and x3 = −1?
of sum-pooling these three values?

5.6 Self-Test 3

1. Simulating a simple neural network.
Suppose that a 2-layer neural network has two inputs x1 = −2 and x2 = 2.

• In the first layer, we perform a linear transformation and compute the value y =
w0 + w1 · x1 + w2 · x2.

• In the second layer, we apply, to the result of the first layer, the rectified linear
activation function and get z = f (y).

What will be the result z of this data processing in the following two situations:

• when w0 = 0, w1 = 1, and w2 = 2, and
• when w0 = 0, w1 = −1, and w2 = −2.

2. Activation functions.

2a. What is an activation function and why do we need it?
2b. What activation function was used in traditional neural networks and why?
2c. What activation function is used in deep learning?
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2d. What operations are hardware supported on a computer? How does a computer
computes exp(x)?

2e. Explain why rectified linear activation functions work the best.

3. Pooling.

3a. What is pooling and why do we need it?
3b. What poolings are used in deep learning?
3c. If we pool together the values x1 = 1, x2 = 2, and x3 = 3, what will be the result

of max-pooling? sum-pooling?
3d. Explain why max-pooling and sum-pooling work the best.



Chapter 6
Final Self-Test

1. Explainable AI.

1a. What is explainable AI? Why do we need explainable AI?
1b. Why does it make sense to use fuzzy techniques in explainable AI?

2. Fuzzy techniques: general description.

2a. What are fuzzy techniques?
2b–d. Briefly describe the main steps of fuzzy techniques, and present formulas for

these steps:

– eliciting degrees of confidence and forming membership function,
– using “and”- and “or”-operations to estimate the degrees to which different
control values are reasonable,

– defuzzification.

3. Fuzzy techniques: example. Suppose that we have two rules:

• if a student is tired, the student needs some rest;
• if a student is very tired, the student needs a lot of rest.

A student marked his being tired as 6 on a 0-to-10 scale and being very tired as 4 on
this scale. To what extent it is reasonable for this student to rest for an hour? Assume
that:

• the degree to which 1h means some rest is 0.7, and
• the degree to which 1h means a lot of rest is 0.3.

Use min and max as “and”- and “or”-operations.
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4. Which fuzzy techniques?

4a. Which interpolation algorithm should we use when generating a membership
function and why?

4b–c. Which “and”- and “or”-operations should we use and why:

– when we control a group of objects, and
– when we control an individual object.

4d. What defuzzification procedure should we use and why?
4e. How fuzzy techniques can be used in explainable AI?

In all these question, just describe the main criterion used for the corresponding
selection—e.g., what exactly expression we optimize and why; no need to repeat the
derivation of the corresponding formulas from the criterion.

5. Making deep learning itself more explainable.

5a. What is a rectified linear activation function and how is it used?
5b. Explain why the rectified linear activation function is empirically the best.
5c. What is pooling and how is it used?
5d. Explain why max- and sum-poolings are empirically the best.



Appendix A
Terms Used in the Book (in Alphabetic
Order)

α-cut (pronounced alpha-cut). Let:

• μ(x) be a membership function (see), and
• α be a positive number from the interval [0, 1].
The α-cut of μ(x) is the set {x : μ(x) ≥ α} of all the values x for which the degree
μ(x) is greater than or equal to α.

Activation function. In a neural network, signals interchangingly undergo:

• linear transformations and
• non-linear transformations.

The corresponding nonlinear transformation is known as an activation function.

Algebraic product. The usual product a · b of two numbers.

“And”-operation. An algorithm that transforms:

• our degrees of confidence a and b in statements A and B
• into an estimate f&(a, b) for our degree of confidence in the statement

“A and B” (A& B).

Averaging. It is when we replace:

• several values a, . . . , an with

• their arithmetic average
a1 + · · · + an

n
.

Centroid defuzzification. A defuzzification (see) in which:

• based on a membership function μ(x),

• we generate the value x =
∫
x · μ(x) dx
∫

μ(x) dx
.
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Deep learning. Machine learning (see) that is based on a deep neural network (see).

Deep neural network. In the most general understanding, data processing in which
a signal goes through many different stages.

Defuzzification. An algorithm that transforms:

• a membership function μ(x) (see)
• into a single number x .

Explainable AI. It is when:

• an AI system not only provides recommendations,
• it also provides explanations for these recommendations.

Fuzzy set. Same as membership function (see).

Fuzzy methodology. Same as fuzzy techniques (see).

Fuzzy techniques. Techniques for translating:

• expert knowledge which has been formulated by using imprecise (“fuzzy”) words
from a natural language (like “small”)

• into precise computer-understandable terms.

Interpolation/extrapolation.

• In several cases k = 1, . . . , K , we know the values x (k) and y(k) of quantities x
and y.

• We want to find an algorithm f (x) which fits all this data, i.e., for which, for all
k, we have f

(
x (k)

) ≈ y(k).

K -Lipschitz function.A function f (x) is called a K -Lipschitz function if it satisfies
Lipschitz condition (see) with parameter K .

Least squares approach. In many practical situations:

• it is reasonable to assume that the dependence of y on x is determined by an
expression f (x, c) for some parameters c; and

• we know the values x (k) and y(k) corresponding to several cases k = 1, . . . , K .

The least squares approach is to select the values c for which the following sum
∑K

k=1

(
y(k) − f

(
x (k), c

))2
is the smallest possible.

Linear interpolation. An interpolation (see) in which the corresponding function
f (x) is linear.

Lipschitz condition. A function f (x) satisfies Lipschitz condition with parameter
K if for all x and x ′, we have | f (x) − f (x ′)| ≤ K · |x − x ′|.
Logistic activation function. Same as sigmoid activation function (see).

Machine learning. Same as interpolation/extrapolation (see).

Max-pooling. It is when we replace:
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• several values a1, . . . , an
• with a single value max(a1, . . . , an).

Maximally (most) individually robust function f (x) of one variable. Let us
assume that we are given a class of functions. A function from this class is called
maximally (most) individually robust if, for all x and x ′, it satisfies the inequality
| f (x) − f (x ′)| ≤ K · |x − x ′| with the smallest possible value K .

Maximally (most) individually robust function f (x, y) of two variables. Let
us assume that we are given a class of functions. A function from this class is
called maximally (most) individually robust if, for all x , y, x ′, and y′, it satisfies
the inequality | f (x, y) − f (x ′, y′)| ≤ K · max(|x − x ′|, |y − y′|) with the smallest
possible value K .

Membership function. For each natural-language expression P (e.g., “small”), a
membership function is a function that assigns:

• to each possible value x of a quantity,
• the degree μP(x) to which this value satisfies the given property (e.g., to which
this value is small).

Negation operation. An algorithm that transforms:

• our degree of confidence a in a statements A
• into an estimate f¬(a) for our degree of confidence in the statement

“not A” (¬A).

“Or”-operation. An algorithm that transforms:

• our degrees of confidence a and b in statements A and B
• into an estimate f∨(a, b) for our degree of confidence in the statement

“A or B” (A ∨ B).

Polling. A method for finding a degree of confidence in a statement S:

• we ask N experts, and
• if M of them thing that this statement is true, we take M/N as the desired degree.

Pooling. It is when we replace:

• several values a1, . . . , an
• with a single value.

Rectified linear activation function. A function F(x) = max(0, x).

Robust. A function f (x) is called robust if:

• whenever x is close to x ′ (denoted by x ≈ x ′),
• the values f (x) and f (x ′) of the function are also close: f (x) ≈ f (x ′).
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Sigmoid activation function. A function F(x) = 1

1 + exp(−x)
.

Sum-pooling. It is when we replace:

• several values a, . . . , an with
• their sum a1 + · · · + an .

t-Conorm. Same as “or”-operation (see).

t-Norm. Same as “and”-operation (see).

Tuning. We have:

• the data
(
x (k), y(k)

)
, and

• an algorithm f0(x) that fits the data, e.g., for which f0
(
x (k)

) ≈ y(k).

Tuning means finding an algorithm f (x) that provides a better fit with the data.

Variational derivative. A derivative with respect to a variable which is a value of
the unknown function.

Variational optimization. An optimization problem in which the unknown is a
function.
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Why Do We Need …? (in Alphabetic Order)

…α-cuts? In some situations—e.g., when we have an obstacle in front a car and we
can swerve:

• either to the left
• or to the right,

centroid defuzzification leads to hitting this obstacle. To avoid such disastrous rec-
ommendation, we need to limit the set of possible controls to values which are
sufficiently reasonable—i.e., for which the degree of reasonableness is not smaller
than a certain threshold value α (pronounced alpha). This set is exactly the α-cut.

…activation functions? In neural networks, data processing consists of interchang-
ingly applying linear and nonlinear transformations. If we only had linear trans-
formations, we would be able to only compute linear functions, and many real-life
dependencies are nonlinear. So, we need nonlinear transformations, and such trans-
formations are exactly what is called activation functions.

…“and”-operations? By asking experts and interpolating, we can get degrees of
confidence in statements like “the difference in temperatures �T is small positive”
and “control u is small negative”. However, to describe to what extent the rule is
applicable, we need to know the degree of confidence in an “and”-combination: e.g.,

�T is small positive and u is small negative.

We need to estimate this degree based on the known degrees of confidence in state-
ments “�T is small positive” and “u is small negative”. To perform such estimations,
we need “and”-operations.

…defuzzification? By applying fuzzy techniques to the expert rules, for each pos-
sible value u of control, we can generate the degree μ(u) to which this value is
reasonable. As a result, we get what is called a membership function (or a fuzzy set)
μ(u).
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If we are designing an automatic system, then we need to generate a single control
value u that the system will apply. So, we need to transform the fuzzy set into an
exact value. This transformation is known as defuzzification.

…explainable AI? Many AI programs—in particular, the ones that use deep
learning—just provide a recommendation, they do not come with any explanation.
We know that these programs are not perfect, that sometimes their recommendations
are wrong—but since there are no explanations, we do not know which recommen-
dations are wrong. It is therefore desirable to have such explanations.

…fuzzy techniques?A large part of expert experience—namely, the rules the experts
formulate in terms of imprecise words from natural language—are not used in
automatic control, because computer systems do not understand natural language.
Fuzzy techniques translate experts’ natural-language rules into precise computer-
understandable terms—i.e., into numbers.

…individual robustness?Our precise description of robustness means that, e.g., the
values f (a) and f (a′) corresponding to close a and a′ are, on average, close to each
other. This makes sense if we control, e.g., a flock of UAVs for studying weather.
Even if one of them fails, we still have a good picture of the weather if most of all
are successful and follow the desired trajectory.

Sometimes, we need individual robustness. In some situations, we are interested
in the success of an individual object—e.g., we have a single UAV. In this case, the
fact that most other UAVs—that, e.g., collect weather information in other cities—
will be successful is no help if the UAV collecting weather information in our city
of El Paso fails.

To deal with such situations, we do not just want to require that sum of the squares
of the differences is small, we want to require that each difference is small, i.e., in
terms of a function f (x):

• if the values x and x ′ are close, then
• each corresponding pair f (x) and f (x ′) should also be close.

This is exactly individual robustness.

…interpolation/extrapolation in fuzzy techniques?Todescribe a natural-language
property like “small”, fuzzy technique assigns, to each value x of the corresponding
quantity, the degree μ(x) to which this value satisfies the given property—e.g., to
which x is small. These degrees should come from the experts. However, there are
infinitely many possible values x , but we can only asked finitely many questions.
Thus, from the experts, we can only get finitely many values μ

(
x (1)

)
, μ

(
x (2)

)
, . . .

To get the values μ(x) for all other x , we need to use interpolation/extrapolation.

…max-pooling? To make sure that the pooling is performed as fast as possible.

…“or”-operations? By applying “and”-operations, we can find to what degree each
rule is applicable. However, what we need is the degree to which the control is
reasonable, i.e., to which

the first rule is applicable or the second rule is applicable.
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We need to estimate this degree based on the known degrees of confidence that each
rules is applicable. To perform such estimations, we need “or”-operations.
…pooling? One of the main applications of neural networks is to process pictures.
In a computer, a picture is represented by storing intensity values—or, for color
pictures, intensity values corresponding to three basic colors—for each pixel, and
there are millions of pixels. Processing all these millions of values would take a lot
of time.

To save this time, we can use the fact that for most images:

• once we know what is in a given pixel,
• we can expect approximately the same information in the neighboring pixels.

Thus, to save time, instead of processing each pixel one by one, we can combine
(“pool”) values from several neighboring pixels into a single value.

…rectified linear activation functions? Tomake sure that, when trained, the neural
network computes the result as fast as possible.

…robust “and”- and “or”-operations? The expert estimate depends on a scale. If
we ask the expert to estimate the degree on a scale from 0 to 5, then possible values
of the resulting degree are:

0/5 = 0.0; 1/5 = 0.2; 2/5 = 0.4; 3/5 = 0.6; 4/5 = 0.8; and 5/5 = 1.0.

However, if we ask the same expert to estimate his/her degree on a scale from 0 to
4, then we will get different possible values:

0/4 = 0.0; 1/4 = 0.25; 2/4 = 0.5; 3/4 = 0.75; and 4/4 = 1.0.

Suppose that in the first scale, the expert marked 4 on a scale from 0 to 5, leading to
an estimate of 0.8. However, no mark on a 0–4 scale will lead to the same value 0.8;
the closest is the value 0.75 which corresponds to 3 on the 0–4 scale. The value 0.75
is close to 0.8, but different.

Similar problem occurs if we use polling: for different numbers of experts, we get
different values describing the same degrees of belief. In both cases, the same con-
fidence level of an expert leads, in general, to different degrees a �= a′—depending
on the scale or on the number of experts.

It is therefore reasonable to require that the corresponding small difference a′ − a
should affect the results as little as possible, i.e., that the “and”- and “or”-operations
be robust.

…robust membership functions? In practical applications, the value of the quantity
x comes frommeasurements, and measurements are never absolutely accurate. Any-
one who ever measured anything—be it voltage, current, blood pressure, whatever—
knows that if we repeat the measurement again, we will get, in general, a slightly
different value.

We want to make sure that this difference does not affect the results. For this
purpose, we want to make sure that:
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• if two measurement results are close, i.e., if x ≈ x ′,
• then the corresponding values of the membership function should also be close:

μ(x) ≈ μ(x ′).

This is exactly what is called robustness.

…variational derivative? In variational optimization problems (see), we need to
find a function f (x) which is the best—i.e., of which the value of the corresponding
criterion J ( f ) is the smallest (or the largest) possible. Finding a function means
finding its value f (x) for all possible inputs x . To find the optimal value f (x), we
can differentiate the criterion J with respect to the unknown f (x)—the resulting
derivative is what is called variational derivative—and equate this derivative to 0.

…variational optimization? In many situations, we want to select a function which
is the best—e.g., wewant to select amembership functionμ(x) or an “and”-operation
f&(a, b). Such optimization problems, when we select the best function, are known
as variational optimization problems.



Appendix C
Solutions to Exercises

Solution to Exercise 1

First question. Why do we need explainable AI in the first place?
Answer. We all make mistakes:

• humans make mistakes,
• computer systems give wrong answers.

We can often deal with human mistakes:

• If you do not agree with the instructor’s grade, you can ask why the grade was
lowered and, based on this explanation, argue that you deserve more credit.

• If you do not get the bank loan and the folks explain the reason, you have a chance
to argue—or at least to know how to get a better chance next time.

The problem is that many AI programs—e.g., the ones that use deep learning—just
provide a recommendation, they do not come with any explanation. We know that
these programs are not perfect, that sometimes their recommendations are wrong—
but since there are no explanations, we do not know which recommendations are
wrong.

It is therefore desirable to have such explanations.

Second question. Why is it a reasonable idea to try to use fuzzy techniques when
designing explainable AI?
Answer.Desire for explanationsmeans thatweneed to be able to transformnumerical
recommendations into natural-language explanations. In other words, we need to
connect numerical recommendations with natural-language rules.

Such a connection has been explored before: this is exactly what fuzzy techniques
are about.

Third question. Why were fuzzy technique invented in the first place—and who
was their inventor?
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Answer.Fuzzy techniqueswere designedbyLotfiZadehwho realized that a largepart
of expert experience—namely, the rules the experts formulate in terms of imprecise
words fromnatural language—is not used in automatic control. So, he designed fuzzy
techniques to translate experts’ natural-language rules into precise control strategies.

Solution to Exercise 2

General background. We know that:

• for x1 = 1, we have y1 = 2, and
• for x2 = 2, we have y2 = 3.

First task. Use the general linear interpolation formula that we had in class to come
up with the expression y = f (x) for the dependence of y on x .
Solution.

f (x) = y1 + y2 − y1
x2 − x1

· (x − x1) = 2 + 3 − 2

2 − 1
· (x − 1) = 2 + x − 1 = x + 1.

Second task. For your expression f (x), what is the value of f (1.5)?
Solution. f (1.5) = 1.5 + 1 = 2.5.

Third task. How is linear interpolation used in fuzzy techniques?
Solution. For each natural-language property like “negligible”, we elicit, from the
expert, the degrees μ

(
x (k)

)
to which several values x (k) satisfy this property (i.e., to

which x (k) is negligible). To find the degrees μ(x) corresponding to all other values
x , we need to use interpolation—and linear interpolation is one of these techniques.

Fourth task. Explain, step by step, how we can derive the general formula for the
linear interpolation.
Solution. Linear interpolation assumes that the dependence of a quantity y on a
quantity x is linear, i.e., that

y(x) = a · x + b (C.1)

for some values a and b. We know two cases in which we measured x and y:

• we know the values x1 and y1 for which

a · x1 + b = y1, (C.2)

and
• we know the values x2 and y2 for which

a · x2 + b = y2. (C.3)

Based on this information, we need to find the formula for y(x).
Subtracting (C.2) from (C.3), we conclude that



Appendix C: Solutions to Exercises 95

a · (x2 − x1) = y2 − y1. (C.4)

Dividing both sides by the difference x2 − x1, we conclude that

a = y2 − y1
x2 − x1

. (C.5)

Subtracting (C.2) from (C.1), we conclude that

a · (x − x1) = y − y1, (C.6)

therefore
y = y1 + a · (x − x1). (C.7)

Substituting the expression (C.5) for a into this formula, we conclude that

y = y1 + (x − x1) · y2 − y1
x2 − x1

. (C.8)

Solution to Exercise 3

Task. If the degree of confidence in a statement A is 0.7 and the degree of confidence
in a statement B is 0.8, thenwhat are the estimated degrees of confidence in statements
A& B and A ∨ B? Consider two cases:

• “and”-operation is min(a, b) and “or”-operation is max(a, b);
• “and”-operation is a · b and “or”-operation is a + b − a · b.
Solution.

• In the first case,

f&(0.7, 0.8) = min(0.7, 0.8) = 0.7; f∨(0.7, 0.8) = max(0.7, 0.8) = 0.8.

• In the second case,
f&(0.7, 0.8) = 0.7 · 0.8 = 0.56;

f∨(0.7, 0.8) = 0.7 + 0.8 − 0.7 · 0.8 = 1.5 − 0.56 = 0.94.

Solution to Exercise 4

Task. Let us consider the following expert rules:

• if a cat is somewhat bored and you have a little bit of time, play with it a little bit;
• if a cat is very bored and you have a lot of time, play with it for a long time.
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Describe step-by-step—like we did in class and like it is described in the correspond-
ing paper—how you would translate these rules into a formula for the corresponding
predicate R(b, t, p) meaning that if the cat is in the state b and you have time t , then
it is reasonable to play it for time p.

Let us now assume that:

• the cat is somewhat bored with degree 0.3 and very bored with degree 0.7,
• t = p = 1 h; the degree to which this time is a little bit is 0.4, the degree to which
this is a long time is 0.6;

• we use a · b as the “and”-operation and a + b − a · b as the “or”-operation.

What will then be the resulting degree μR(b, t, p)?

Solution: general idea. First, we design a statement that describes when the value
p is reasonable. This statement means that:

• either the first rule is applicable, i.e., its conditions are satisfied and its conclusion
is satisfied,

• or the second rule is applicable, i.e., its conditions are satisfied and its conclusion
is satisfied.

Let us design statements corresponding to the rules.

Transforming the first rule into an “and”-statement. In the first rule, we have two
conditions:

• a cat is somewhat bored, and
• you have a little bit of time,

and we have one conclusion: “play a little bit”. So, that the first rule is applicable
means that the following “and”-statement is satisfied:

cat is somewhat bored and you have a little bit of time and
you play a little bit.

Transforming the second rule into an “and”-statement. In the second rule, we
also have two conditions:

• a cat is very bored,
• you have a lot of time,

and we have one conclusion: “play for a long time”. So, that the second rule is
applicable means that the following “and”-statement is satisfied:

cat is very bored and you have a lot of time and you play for a long time.

Combining the “and”-statements corresponding to the two rules. The play time
is reasonable if one of the two rules is applicable, i.e., when the following “or”-
statement is true:

(cat is somewhat bored and you have a little bit of time and
you play a little bit) or

(cat is very bored and you have a lot of time and you play for a long time).
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In terms of the variables b, t , and p, we rewrite this “or”-statement statement as
follows:

(b is somewhat bored and t is a little bit and p is a little bit) or
(b is very bored and t is a lot of time and p is a long time).

Computing the degree to which the first rule is applicable. In the part correspond-
ing to the first rule:

• the degree to which the cat is somewhat bored is 0.3,
• the degree to which t = 1 is a little bit is 0.4, and
• the degree to which p = 1 is a little bit is 0.4.

So, for the degree corresponding to the first rule, we get

f&(0.3, 0.4, 0.4) = 0.3 · 0.4 · 0.4 = 0.12 · 0.4 = 0.048.

Computing the degree to which the second rule is applicable. Similarly, for the
second rule, we get

f&(0.7, 0.6, 0.6) = 0.7 · 0.6 · 0.6 = 0.42 · 0.6 = 0.252.

Final step: computing the degree to which the given play time is reasonable. By
applying an “or”-operation to the degrees corresponding to the two rules, we get the
desired degree:

μR(b, t, p) = f∨(0.048, 0.252) = 0.048 + 0.252 − 0.048 · 0.252
≈ 0.3 − 0.012 = 0.288.

Solution to Exercise 6

Question. What is the distance D(a, b) between the points a = (1, 2) and b =
(6,−10)?
Solution.

D(a, b) =
√

(1 − 6)2 + (2 − (−10))2 =
√
52 + 122 = √

25 + 144 = √
169 = 13.

Solution to Exercise 7

Question. What is the squared distance D2(a, b) between the points a = (1, 2, 3)
and b = (−1,−2,−3)?
Solution.

D2(a, b) = (1 − (−1))2 + (2 − (−2))2 + (3 − (−3))2

= 22 + 42 + 62 = 4 + 16 + 36 = 56.
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Solution to Exercise 8

Task. Use differentiation to find the minimum (= smallest value) of the expression
(2x − 5)2 + 3x − 6.
Solution. When the minimum is attained, the derivative is 0. So, to find the value x
at which the expression attains its minimum, we need to differentiate this expression
and equate the derivative to 0. We get

2 · 2 · (2x − 5) + 3 = 0,

i.e., 8x − 20 + 3 = 0, hence 8x = 20 − 3 = 17 and x = 2.125. For this value x , the
above expression has the form

(2 · 2.125 − 5)2 + 3 · 2.125 − 6 = (4.25 − 5)2 + 6.375 − 6 =

0.752 + 0.375 = 0.5625 + 0.375 = 0.9375.

Solution to Exercise 9

Task. Suppose that we have the following reasonableness degrees:

• for u1 = 0, we have μ(u1) = 0.5;
• for u2 = 1, we have μ(u2) = 1;
• for u3 = 2, we have μ(u3) = 0.5.

What will be the result of centroid defuzzification?
Solution.

u = u1 · μ(u1) + u2 · μ(u2) + u3 · μ(u3)

μ(u1) + μ(u2) + μ(u3)
= 0 · 0.5 + 1 · 1 + 2 · 0.5

0.5 + 1 + 0.5
= 2

2
= 1.

Solution to Exercise 10

Task. Write a program that simulates fuzzy control with the three rules that we had
in class:

• if �T is negligible, then u is negligible;
• if �T is small positive, then u is small negative;
• if �T is small negative, then u is small positive.

Your program should:

• input �T , and
• return the corresponding control u.

Use separate methods for computing the corresponding membership functions,
for computing the “and”-operation, and for computing the “or”-operation, so that if
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you will need to change one of these things, all you would have to do it replace the
corresponding method without having to change the main method.

Test your program on the example of membership functions that we had in class
and values �T = +3 and �T = −3. For each of these two values of �T , use your
program to compute the resulting control value corresponding to the following two
pairs of “and”- and “or”-operations: cases:

• “and”-operation is min(a, b) and “or”-operation is max(a, b);
• “and”-operation is a · b and “or”-operation is a + b − a · b.
Solution.

public static double bar_u(double delta_T){

double delta_u = 0.01;

double num = 0.0;

double den = 0.0;

double u = -10.0;

while(u <= 10.0)

{num += u * mu(delta_T, u);

den += mu(delta_T, u);

u += delta_u;}

return num/den;}

public static double mu(delta_T, double u){

double r1 = f_and(mu_N(delta_T), mu_N(u));

double r2 = f_and(mu_SP(delta_T), mu_SN(u));

double r3 = f_and(mu_SN(delta_T), mu_SP(u));

return f_or(r1, f_or(r2,r3));}

public static double mu_N(double x){

if(0 <= x && x <= 5){return 1 - x/5;}

elseif (-5 <= x && x <= 0) {return 1 + x/5;}

else{return 0;}}

public static double mu_SP(double x){

if(0 <= x && x <= 5){return x/5;}

elseif(5 <= x && x <= 10){return 2.0 - x/5;}

else{return 0;}}

public static double mu_SN(double x){

if(-5 <= x && x <= 0){return -x/5;}

elseif(-10 <= x && x <= -5){return 2.0 + x/5;}

else{return 0;}}

public static double f_and(double a, double b){

return Math.min(a,b);}
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public static double f_or(double a, double b){

return Math.max(a,b);}

public static void main(String[] args){

Scanner read = new Scanner(System.in);

System.out.println("Enter the difference between" +

"the actual and the desired temperatures");

double delta_T = read.nextDouble();

System.out.println("For Delta T = ", delta_T, +

", use control u = ", bar_u(delta_T));

}

To apply a · b and a + b − a · b, replace the methods for computing “and”- and
“or”-operations with the following ones:

public static double f_and(double a, double b){

return a * b;}

public static double f_or(double a, double b){

return a + b - a * b;}

Solution to Exercise 11

Task. Write a general program for computing an integral of a given function over
a given range. Test it by showing how to compute the integral of x2 on the interval
[0, 1].
Solution. A general method for computing the integral should have, e.g., the follow-
ing form:

public static double integral(double a, double b,

double delta_x){

double sum = 0.0;

double x = a;

while(x <= b)

{sum += delta_x * f(x);

x += delta_x;}

return sum;}

To test this method, you can do the following: add the actual testing in the main
method, and add a method for computing f (x) = x2:

public static void main(String[] args)

{System.out.println(integral(0.0, 1.0, 0.01);}
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public static double f(double x){

return x*x;}

For small �x—e.g., for �x = 0.01—the resulting value should be close to

1∫

0

x2 dx = x3

3

∣
∣
∣
∣

1

0

= 1

3
= 0.33 . . .

Solution to Exercise 12

Task. Reproduce, in all detail, the proof that linear interpolation is the most robust.
Solution: see Sect. 3.3 of Chap.3.

Solution to Exercise 13

Task.Differentmarks on a 0-to-5 scale correspond to different degrees of confidence.
For each possible degree corresponding to marks on a scale from 0 to 5, find the mark
on a 0-to-4 scale which leads to the closest degree.
Solution. For the 0-to-5 scale, possible results are:

0

5
= 0; 1

5
= 0.2; 2

5
= 0.4; 3

5
= 0.6; 4

5
= 0.8; 5

5
= 1.

For the 0-to-4 scale, possible results are:

0

4
= 0; 1

4
= 0.25; 2

4
= 0.5; 3

4
= 0.75; 4

4
= 1.

So:

• for the 0-to-5 mark 0, which corresponds to the value 0, the closest is the value 0
which corresponds to 0 on the 0-to-4 scale;

• for the 0-to-5 mark 1, which corresponds to the value 0.2, the closest is the value
0.25 which corresponds to 1 on the 0-to-4 scale;

• for the 0-to-5 mark 2, which corresponds to the value 0.4, the closest is the value
0.5 which corresponds to 2 on the 0-to-4 scale;

• for the 0-to-5 mark 3, which corresponds to the value 0.6, the closest is the value
0.5 which corresponds to 2 on the 0-to-4 scale;

• for the 0-to-5 mark 4, which corresponds to the value 0.8, the closest is the value
0.75 which corresponds to 3 on the 0-to-4 scale;

• for the 0-to-5 mark 5, which corresponds to the value 1, the closest is the value 1
which corresponds to 4 on the 0-to-4 scale.
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Solution to Exercise 14

Task. Reproduce, in all detail, the proof that algebraic product is the most robust
“and”-operation.
Solution: see Sect. 3.5 of Chap.3.

Solution to Exercise 15

Problem. As you know, in the usual 2-valued logic, negation is defined by the
formulas f (0) = 1 and f (1) = 0. We would like to extend this function f (x) to all
possible values x from the interval [0, 1]. Such an extension is known as the negation
operation. What is the most robust negation operation?
Solution. What we want is an example of interpolation. We want to find the function
f (x) for which:

• for x1 = 0 we have y1 = f (x1) = 1, and
• for x2 = 1 we have y2 = f (x2) = 0.

We have proven that themost robust interpolation is linear interpolation. By applying
the linear interpolation formula, we get

f (x) = y1 + y2 − y1
x2 − x1

· (x − x1) = 1 + 0 − 1

1 − 0
· (x − 0) = 1 − x .

Solution to Exercise 16

Task. Prove that for the case when f (a) > f (b), linear interpolation is also the only
maximally individually robust interpolation.
Solution. When f (a) > f (b), the formula for linear interpolation

fL(x) = f (a) + f (b) − f (a)

b − a
· (x − a)

can be rewritten as

fL(x) = f (a) − f (a) − f (b)

b − a
· (x − a).

Let us take any value x ∈ (a, b). Linear interpolation always produces values in
between f (a) and f (b), so in this case, f (a) > fL(x) > f (b).

1. Let us first prove that in this case, we cannot have

f (x) < fL(x) = f (a) − f (a) − f (b)

b − a
· (x − a).

Indeed, by subtracting, from f (a), both sides of this inequality, we conclude
that
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f (a) − f (x) > f (a) −
(

f (a) − f (a) − f (b)

b − a
· (x − a)

)

=

f (a) − f (a) + f (a) − f (b)

b − a
· (x − a) = f (a) − f (b)

b − a
· (a − x).

Here:

• We have f (x) < fL(x) and fL(x) < f (a), so f (x) < f (a). Thus,

f (a) − f (x) > 0, and | f (a) − f (x)| = f (a) − f (x).

• We have f (a) > f (b), so f (a) − f (b)0. Thus, | f (a) − f (b)| = f (a) −
f (b).

• We have a < b, so b − a > 0. Thus, |b − a| = b − a.
• Also, a < x , so x − a > 0. Thus, |x − a| = x − a.

So, the inequality

f (a) − f (x) >
f (a) − f (b)

b − a
· (x − a)

implies that

| f (a) − f (x)| >
| f (a) − f (b)|

|b − a| · |x − a|.

In general, x ′ − x ′′ = −(x ′′ − x ′), hence |x ′ − x ′′| = |x ′′ − x ′|. Thus, the above
inequality about absolute values can be equivalently rewritten as

| f (x) − f (a)| >
| f (b) − f (a)|

|b − a| · |x − a|.

The ratio
| f (b) − f (a)|

|b − a| is what we denoted by r . Thus, we get

| f (x) − f (a)| > r · |x − a|.

However, we assumed that the function f (x) is maximally individually robust
and therefore, that | f (x) − f (x ′)| ≤ r · |x − x ′| for all x and x ′. In particular,
for x ′ = a, we conclude that

| f (x) − f (a)| ≤ r · |x − a|,

which contradicts to the opposite inequality | f (x) − f (a)| > r · |x − a| that we
derived. This contradictions shows that we cannot have f (x) > fL(x).
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2. Let us now prove that in this case, we cannot have

f (x) > fL(x) = f (a) − f (a) − f (b)

b − a
· (x − a).

Indeed, by subtracting f (b) from both sides of this inequality, we conclude that

f (x) − f (b) > ( f (a) − f (b)) − f (a) − f (a)

b − a
· (x − a) =

( f (a) − f (b)) ·
(

1 − x − a

b − a

)

= ( f (a) − f (b)) · b − a − (x − a)

b − a
=

( f (a) − f (b)) · b − x

b − a
= f (a) − f (b)

b − a
· (b − x).

Here:

• We have f (x) > fL(x) and fL(x) > f (b), so f (x) > f (b). Thus,

f (x) − f (b) > 0, and | f (x) − f (b)| = f (x) − f (b).

• We have f (a) > f (b), so f (a) − f (b) > 0. Thus, | f (a) − f (b)| = f (a) −
f (b).

• We have a < b, so b − a > 0. Thus, |b − a| = b − a.
• Also, x < b, so b − x > 0. Thus, |b − x | = b − x .

So, the inequality

f (b) − f (x) >
f (b) − f (a)

b − a
· (b − x)

implies that

| f (b) − f (x)| >
| f (b) − f (a)|

|b − a| · |b − x |.

The ratio
| f (b) − f (a)|

|b − a| is what we denoted by r . Thus, we get

| f (b) − f (x)| > r · |b − x |.

However, we assumed that the function f (x) is maximally individually robust
and therefore, that | f (x ′) − f (x ′′)| ≤ r · |x ′ − x ′′| for all x ′ and x ′′. In particular,
for x ′ = b and x ′′ = x , we conclude that

| f (b) − f (x)| ≤ r · |b − x |,
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which contradicts to the opposite inequality | f (b) − f (x)| > r · |b − x | that we
derived. This contradictions shows that we cannot have f (x) < fL(x).

3. Since the value f (x) cannot be larger than fL(x) and cannot be smaller that
fL(x), it must be exactly equal to fL(x):

f (x) = fL(x).

In other words, the function f (x) must be obtained by linear interpolation.
The statement is proven.

Solution to Exercise 17

Task. Use the least squares method to find the dependence y = c1 · x + c2 for the
case when we have the following three measurements:

• x (1) = −2, y(1) = 1;
• x (2) = 0, y(2) = −1;
• x (3) = 2, y(3) = −1.

Solution. Here, K = 3,

x = x (1) + x (2) + x (3) = (−2) + 0 + 2 = 0,

y = y(1) + y(2) + y(3) = 1 + (−1) + (−1) = −1;

x2 = (
x (1)

)2 + (
x (2)

)2 + (
x (3)

)2 = (−2)2 + 02 + 22 = 4 + 0 + 4 = 8;

x · y = x (1) · y(1) + x (2) · y(2) + x (3) · y(3)

= (−2) · 1 + 0 · (−1) + 2 · (−1) = −2 + 0 + (−2) = −4.

So,

c1 = K · x · y − x · y
K · x2 − (x)2

= 3 · (−4) − 0 · (−1)

3 · 8 − 02
= −12

24
= −1

2
= −0.5

and

c2 = x2 · y − x · x · y
K · x2 − (x)2

= 8 · (−1) − 0 · (−4)

3 · 8 − 02
= −8

24
= −1

3
= −0.33 . . .
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Solution to Exercise 18

Task. Suppose that we know that f (0) = 2 and f (2) = 1, and we want to find the
value f (1) that minimizes the following expression

( f (1) − f (0))2 + ( f (2) − f (1))2.

Use variational derivative to find this value.
Answer. Differentiating with respect to f (1), we get

2 · ( f (1) − f (0)) · (−1) + 2 · ( f (2) − f (1)) · 1 = 0.

Dividing both sides by 2, we get:

( f (1) − f (0)) · (−1) + ( f (2) − f (1)) = 0,

so
f (1) − f (0) + f (2) − f (1) = 2 f (1) − f (0) − f (2) = 0.

To separate the variable, we add f (0) and f (2) to both sides, getting

2 f (1) = f (0) + f (2),

so

f (1) = f (0) + f (2)

2
.

In our case, f (0) = 2 and f (2) = 1, so

f (1) = 2 + 1

2
= 3

2
= 1.5.

Solution to Exercise 19

Task. Let us assume that we know the values f (a) and f (b) for some a and b,
and we want to interpolate, i.e., to find the values f (x) for all x between a and b.
By definition, the maximally individually robust interpolation f (x) must satisfy the

inequality | f (x) − f (y)| ≤ r · |x − y| for all x and y, where r = | f (b) − f (a)|
|b − a| .

Provide an example of the values x and y showing that when a = 0, b = 1, f (a) =
0, and f (b) = 1, the function f (x) = x2 is not a maximally individually robust
interpolation. Hint: it is sufficient to consider values 0, 0.5, and 1.

Solution. In this case, r = | f (b) − f (a)|
|b − a| = 1 − 0

1 − 0
= 1, so maximally individually

robust interpolation f (x) must satisfy the inequality

| f (x) − f (y)| ≤ 1 · |x − y| = |x − y|
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for all x and y.
However, for x = 0.5 and y = 1, we have

| f (x) − f (y)| = |0.52 − 12| = |0.25 − 1| = 0.75,

while |x − y| = |0.5 − a| = 0.5. So, here, | f (x) − f (y)| > |x − y|. Thus, the func-
tion f (x) = x2 is not a maximally individually robust interpolation.

Solution to Exercise 20

Task. We have shown that the only maximally individually robust “or”-operation is
max(a, b). Maximally individually robust means, in this case, that for all possible
values a, b, a′, and b′, we must have

| f∨(a, b) − f∨(a′, b′)| ≤ max(|a − a′|, |b − b′|).

Provide an example of the values a, b, a′, and b′, showing that the “or”-operation
a + b − a · b is not maximally individually robust. Hint: it is sufficient to consider
values 0, 0.5, and 1.
Solution. For a = b = 0 and a′ = b′ = 0.5, we have f∨(a, b) = f∨(0, 0) = 0 and

f∨(a′, b′) − f∨(0.5, 0.5) = 0.5 + 0.5 − 0.5 · 0.5 = 1 − 0.25 = 0.75.

So here | f∨(a, b) = f∨(a′, b′)| = |0 − 0.75| = 0.75.
On the other hand, here, |a − a′| = |b − b′| = |0 − 0.5| = 0.5, so

max(|a − a′|, |b − b′|) = max(0.5, 0.5) = 0.5.

Thus, here
| f∨(a, b) − f∨(a′, b′)| > max(|a − a′|, |b − b′|).

Solution to Exercise 21

Question. Which “and” and “or”-operations should we use in the following two
situations:

• if we are controlling a group of objects, and malfunctioning of one of them is OK
as long as, on average, they all fulfil their mission;

• if we are controlling a single object.

Answer.

• If we are controlling a group of objects, and we want to achieve the best overall
result, we should use

f&(a, b) = a · b and f∨(a, b) = a + b − a · b.
• If we are controlling an individual object, and we want to achieve the best result
for this object, we should use
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f&(a, b) = min(a, b) and f∨(a, b) = max(a, b).

Solution to Exercise 22

Question. So how can we use fuzzy techniques to come up with explainable AI?
Answer. We start with expert rules—this what makes this approach explainable. We
then use general fuzzy methodology—explained in the previous chapters—to find
the first-approximation dependence y = f (x1, . . . , xn).

When applying the fuzzy methodology, we used some parameters—e.g., for neg-
ligible, we selected 5 as the borderline value starting with which the difference is
absolutely not negligible. The choice of these parameters is rather arbitrary. For
example, to describe what is negligible, we could use 4 or 6 instead of 5.

So, instead of picking a single such value:

• we make this value a parameter, and then
• we find the values of all these parameters for which, for each k, the predictions of
the resulting fuzzy system are the closest to the desired value y(k).

Solution to Exercise 23

Question. What is tuning and how is it different from machine learning?
Answer. We have:

• the data
(
x (k), y(k)

)
, and

• an algorithm f0(x) that fits the data, e.g., for which f0
(
x (k)

) ≈ y(k).

Tuning means finding an algorithm f (x) that provides a better fit with the data.
The difference frommachine learning is that, in addition to the data, we also have

an algorithm f0(x) that fits the data.

Solution to Exercise 25

Task. Suppose that a 2-layer neural network has two inputs x1 = 0 and x2 = 1.

• In the first layer, we perform a linear transformation and compute the value y =
w0 + w1 · x1 + w2 · x2.

• In the second layer, we apply, to the result of the first layer, the rectified linear
activation function and get z = F(y).

What will be the result z of this data processing in the following two situations:

• when w0 = w1 = w2 = 1, and
• when w0 = w1 = w2 = −1.

Solution. For w0 = w1 = w2 = 1, after the first layer, we get

y = w0 + w1 · x1 + w2 · x2 = 1 + 1 · 0 + 1 · 1 = 1 + 0 + 1 = 2;

after which, we compute

z = max(0, y) = max(0, 2) = 2.
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For w0 = w1 = w2 = −1, after the first layer, we get

y = w0 + w1 · x1 + w2 · x2 = −1 + (−1) · 0 + (−1) · 1 = −1 + 0 − 1 = −2;

after which, we compute

z = max(0, y) = max(0,−2) = 0.

Solution to Exercise 26

Task. What will be the result of max-pooling three values x1 = 0, x2 = 1, and x3 =
−1? of sum-pooling these three values?
Solution. After max-pooling, we get

max(0, 1,−1) = 1.

After the sum-poling, we get

0 + 1 + (−1) = 0.



Appendix D
Solutions to Self-Tests

D.1 Solutions to Self-Test 1

Question 1

Question 1a. What is explainable AI and why do we need it?
Answer. Many AI programs—in particular, the ones that use deep learning—just
provide a recommendation, they do not come with any explanation. We know that
these programs are not perfect, that sometimes their recommendations are wrong—
but since there are no explanations, we do not know which recommendations are
wrong. It is therefore desirable to have such explanations.

When an AI system not only provides recommendations, but also provides expla-
nations for these recommendations, this is called explainable AI.

Question 1b. What are fuzzy techniques and what is their purpose?
Answer. Fuzzy techniques are techniques for translating expert knowledge which
has been formulated by using imprecise (“fuzzy”) words from a natural language
(like “small”) into precise computer-understandable terms.

Question 1c. Who invented fuzzy techniques?
Answer. Lotfi Zadeh.

Question 1d. Why is it reasonable to use fuzzy techniques in explainable AI?
Answer.Desire for explanationsmeans thatweneed to be able to transformnumerical
recommendations into natural-language explanations. In other words, we need to
connect numerical recommendations with natural-language rules.

Such a connection has been explored before: this is exactly what fuzzy techniques
are about.

Question 2

Question 2a. If an expert marked 3 on a scale from 0 to 4, what is the resulting
degree of confidence?
Answer. 3/4 = 0.75.
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Question 2b. If 4 out of 5 experts believe that the statement S is correct, what it its
degree of confidence?
Answer. 4/5 = 0.8.

Question 2c. Why do we need interpolation in fuzzy techniques?
Answer. To describe a natural-language property like “small”, fuzzy technique
assigns, to each value x of the corresponding quantity, the degree μ(x) to which
this value satisfies the given property—e.g., to which x is small. These degrees
should come from the experts. However, there are infinitely many possible values x ,
but we can only asked finitely many questions. Thus, from the experts, we can only
get finitely many values μ

(
x (1)

)
, μ

(
x (2)

)
, . . . To get the values μ(x) for all other x ,

we need to use interpolation/extrapolation.

Question 2d. What is a membership function?
Answer. For each natural-language expression P (e.g., “small”), a membership func-
tion is a function that assigns, to each possible value x of a quantity, the degreeμP(x)
to which this value satisfies the given property (e.g., to which this value is small).

Question 2e. Assume thatμ(−2) = 1 andμ(0) = 0. Use linear interpolation to find
μ(−1).
Answer. Here, for x1 = −2, we have y1 = 1, and for x2 = 0, we have y2 = 0. Thus,
for x = −1, we have

μ(−1) = y1 + y2 − y1
x2 − x1

· (x − x1) = 1 + 0 − 1

0 − (−2)
· (−1 − (−2))

= 1 + −1

2
· 1 = 1 − 1

2
= 1

2
= 0.5.

Question 3

Question 3a. What is an “and”-operation? What is an “or”-operation?
Answer. An “and”-operation is an algorithm that transforms our degrees of confi-
dence a and b in statements A and B into an estimate f&(a, b) for our degree of
confidence in the statement “A and B” (A& B).

An “or”-operation is an algorithm that transforms our degrees of confidence a
and b in statements A and B into an estimate f∨(a, b) for our degree of confidence
in the statement “A or B” (A ∨ B).

Question 3b. Assume that our degree of confidence in A is 0.6, and degree of
confidence in B is 0.7. Usemin,max, algebraic product, and a + b − a · b to estimate
degrees of confidence in A& B and A ∨ B.
Answer. The degree of confidence in A& B is equal to either min(0.6, 0.7) = 0.6
or to 0.6 · 0.7 = 0.42.

The degree of confidence in A ∨ B is equal to either max(0.6, 0.7) = 0.7 or to
0.6 + 0.7 − 0.6 · 0.7 = 1.3 − 0.42 = 0.88.

Question 4

Problem 4. Suppose that we have two rules:
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• if a student studied hard, the student will get a good grade;
• if a student studied very hard, the student will get a very good grade.

A student studied for 3h and got 88/100 on the test. Assume that:

• the degree to which 3h means studying hard is 0.6, and the degree to which it
means studying very hard is 0.4;

• the degree to which 88 is a good grade is 0.8, and the degree to which 88 is a very
good grade is 0.2.

Based on this information, what is the degree to which the student’s grade is reason-
able? Use min and max.
Answer. The grade is reasonable if:

• either the first rule is applicable, i.e., its condition(s) are satisfied, and its conclusion
is true,

• or the second rule is applicable, i.e., its condition(s) are satisfied, and its conclusion
is true.

In this case, it means that

(student studies hard and got a good grade) or
(student studied very hard and got a very good grade).

Here:

• the degree to which the first rule is applicable is

f&(0.6, 0.8) = min(0.6, 0.8) = 0.6;

• the degree to which the second rule is applicable is

f&(0.4, 0.2) = min(0.4, 0.2) = 0.2.

Thus, the degree to which the grade is reasonable is

f∨(0.6, 0.2) = max(0.6, 0.2) = 0.6.

Question 5

Question 5a. What is the distance D(a, b) between the points a = (−2,−3) and
b = (1,−7)?
Answer.

D(a, b) =
√

(−2 − 1)2 + ((−3) − (−7))2 =
√
32 + 42 = √

9 + 16 = √
25 = 5.

Question 5b. What is the squared distance D2(a, b) between the points a = (0, 2, 4)
and b = (0,−2,−4)?
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Answer.

D2(a, b) = (0 − 0)2 + (2 − (−2))2 + (4 − (−4))2

= 02 + 42 + 82 = 16 + 64 = 80.

Question 5c. Use differentiation to find the minimum (= smallest value) of the
expression x2 − 2x + 1.
Answer. At the point where the minimum is attained, the derivative is equal to 0. For
this function, the derivative is equal to 2x − 2. This expression is equal to 0 when
2x − 2 = 0, then 2x = 2 and x = 1.

For x = 1, the value of the function is 12 − 2 · 1 + 1 = 1 − 2 + 1 = 0. So, the
desired smallest value is 0.

Question 5d. What is defuzzification and why do we need it?
Answer. By applying fuzzy techniques to the expert rules, for each possible value u
of control, we can generate the degree μ(u) to which this value is reasonable. As a
result, we get what is called a membership function (or a fuzzy set) μ(u).

If we are designing an automatic system, then we need to generate a single control
value u that the system will apply. So, we need to transform the fuzzy set into an
exact value. This transformation is known as defuzzification.

Question 5e. Suppose that we have the following reasonableness degrees: for u1 =
−1, we have μ(u1) = 0.5, and for u2 = 1, we have μ(u2) = 1. What will be the
result of centroid defuzzification?
Answer.

ū = u1 · μ(u1) + u2 · μ(u2)

μ(u1) + μ(u2)
= (−1) · 0.5 + 1 · 1

0.5 + 1
= 0.5

1.5
= 0.333 . . .

D.2 Solutions to Self-Test 2

Question 1

Question 1a. What is robustness?
Answer. A function f (x) is called robust if:

• whenever x is close to x ′ (denoted by x ≈ x ′),
• the values f (x) and f (x ′) of the function are also close: f (x) ≈ f (x ′).

Question 1b. Why do we want membership functions to be robust?
Answer. In practical applications, the value of the quantity x comes from measure-
ments, and measurements are never absolutely accurate. Anyone who ever measured
anything—be it voltage, current, blood pressure, whatever—knows that if we repeat
the measurement again, we will get, in general, a slightly different value.

We want to make sure that this difference does not affect the results. For this
purpose, we want to make sure that:
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• if two measurement results are close, i.e., if x ≈ x ′,
• then the corresponding values of the membership function should also be close:

μ(x) ≈ μ(x ′).

This is exactly what is called robustness.

Question 1b. Which interpolation is the most robust?
Answer. The most robust is linear interpolation, when, based on the known value
f (a) and f (b), we estimate all other values f (x) as

f (x) = f (a) + f (b) − f (a)

b − a
· (x − a).

Question 1c. Why do we want “and”- and “or”-operations to be robust?
Answer. The expert estimate depends on a scale. If we ask the expert to estimate the
degree on a scale from 0 to 5, then possible values of the resulting degree are:

0/5 = 0.0; 1/5 = 0.2; 2/5 = 0.4; 3/5 = 0.6; 4/5 = 0.8; and 5/5 = 1.0.

However, if we ask the same expert to estimate his/her degree on a scale from 0 to
4, then we will get different possible values:

0/4 = 0.0; 1/4 = 0.25; 2/4 = 0.5; 3/4 = 0.75; and 4/4 = 1.0.

Suppose that in the first scale, the expert marked 4 on a scale from 0 to 5, leading to
an estimate of 0.8. However, no mark on a 0–4 scale will lead to the same value 0.8;
the closest is the value 0.75 which corresponds to 3 on the 0–4 scale. The value 0.75
is close to 0.8, but different.

Similar problem occurs if we use polling: for different numbers of experts, we get
different values describing the same degrees of belief. In both cases, the same con-
fidence level of an expert leads, in general, to different degrees a �= a′—depending
on the scale or on the number of experts.

It is therefore reasonable to require that the corresponding small difference a′ − a
should affect the results as little as possible, i.e., that the “and”- and “or”-operations
be robust.

Question 1d. Which “and”- and “or”-operations are the most robust?
Answer. f&(a, b) = a · b and f∨(a, b) = a + b − a · b.
Question 2

Question 2a. What is variational optimization?
Answer. Variational optimization is an optimization problem in which the unknown
is a function.

Question 2b. What is variational derivative and why do we need it?
Answer. Variational derivative is a derivative with respect to a variable which is a
value of the unknown function. Why do we need it?
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In variational optimization problems, we need to find a function f (x)which is the
best—i.e., of which the value of the corresponding criterion J ( f ) is the smallest (or
the largest) possible. Finding a function means funding its value f (x) for all possible
inputs x . To find the optimal value f (x), we can differentiate the criterion J with
respect to the unknown f (x)—the resulting derivative is what is called variational
derivative—and equate this derivative to 0.

Question 2c–d. Suppose that we know that f (0) = 1 and f (1) = 3, and we want to
find the value f (0.5) that minimizes the following expression

( f (0) − f (0.5))2 + ( f (0.5) − f (1))2.

Use variational derivative to find this value.
Answer. Differentiating with respect to f (0.5), we get

2 · ( f (0) − f (0.5)) · (−1) + 2 · ( f (0.5) − f (1)) · 1 = 0.

Dividing both sides by 2, we get:

( f (0) − f (0.5)) · (−1) + ( f (0.5) − f (1)) = 0,

so
f (0.5) − f (0) + f (0.5) − f (1) = 2 f (0.5) − f (0) − f (1) = 0.

To separate the variable, we add f (0) and f (1) to both sides, getting

2 f (0.5) = f (0) + f (1),

so

f (0.5) = f (0) + f (1)

2
.

In our case, f (0) = 1 and f (1) = 3, so

f (0.5) = 1 + 3

2
= 4

2
= 2.

Question 3

Question 3a. Suppose that we know the values f (a) and f (b) for some a < b. What
does it mean for an interpolating function f (x) to be individually robust? Provide a
precise definition.

Answer. Individually robust means that for all x and x ′, the function f (x) satisfies
the inequality | f (x) − f (x ′)| ≤ K · |x − x ′| with the smallest possible value K .

Question 3b. Which interpolation is the most individually robust?
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Answer. The most individually robust is linear interpolation.

Question 3c. Provide an example showing that when we know that f (0) = 1 and
f (1) = 0, the function f (x) = (1 − x)2 is not maximally individually robust.
Answer. For the function fL(x) = 1 − x , we have | fL(x) − fL(x ′)| ≤ |x − x ′|, so
the desired inequality is satisfied for K = 1. However, for the function f (x) = (1 −
x)2, we have f (0) = (1 − 0)2 = 12 = 1 and f (0.5) = (1 − 0.5)2 = 0.52 = 0.25.
So, for x = 0 and x ′ = 0.5, we get

| f (x) − f (x ′)| = | f (0) − f (0.5)| = |1 − 0.25| = 0.75

and |x − x ′| = |0 − 0.5| = 0.5, so

| f (x) − f (x ′)| > |x − x ′|,

while in the maximally individually robust case, we should have

| f (x) − f (x ′)| ≤ |x − x ′|.

Question 3d. Which “and”-operation is the most individually robust?
Answer. f&(a, b) = min(a, b).

Question 3e. Provide an example showing that algebraic product is not maximally
individually robust.
Answer. For min, we have |min(a, b) − min(a′, b′)| ≤ max(|a − a′|, |b − b′|), i.e.,
we have individual robustness with K = 1. However, for the algebraic product
f&(a, b) = a · b, for a = b = 0.5 and a′ = b′ = 1, we have

| f&(a, b) − f&(a′, b′)| = |a · b − a′ · b′| = |0.5 · 0.5 − 1 · 1| = |0.25 − 1| = 0.75,

while

max(|a − a′|, |b − b′|) = max(|0.5 − 1|, |0.5 − 1|) = max(0.5, 0.5) = 0.5.

So here,

| f&(a, b) − f&(a′, b′)| = 0.75 > max(|a − a′|, |b − b′|) = 0.5.

Thus, algebraic product is not maximally individually robust, because that would
mean, in particular, that

| f&(a, b) − f&(a′, b′)| ≤ max(|a − a′|, |b − b′|).

Question 4

Question.
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• Suppose that we know that f (0) = 0, f (1) = 1, and f (2) = 4.
• Use the least squares formulas to come up with the best linear approximation to
this data.

Answer. Here, K = 3,

x = x (1) + x (2) + x (3) = 0 + 1 + 2 = 3,

y = y(1) + y(2) + y(3) = 0 + 1 + 4 = 5;

x2 = (
x (1)

)2 + (
x (2)

)2 + (
x (3)

)2 = 02 + 12 + 22 = 0 + 1 + 4 = 5;

x · y = x (1) · y(1) + x (2) · y(2) + x (3) · y(3)

= 0 · 0 + 1 · 1 + 2 · 4 = 0 + 1 + 8 = 9.

So,

c1 = K · x · y − x · y
K · x2 − (x)2

= 3 · 9 − 3 · 5
3 · 5 − 32

= 27 − 15

15 − 9
= 12

6
= 2

and

c2 = x2 · y − x · x · y
K · x2 − (x)2

= 5 · 5 − 3 · 9
3 · 5 − 32

= 25 − 27

6
= −2

6
= −1

3
= −0.33 . . .

Question 5

Question 5a–b. Which “and” and “or”-operations should we use in the following
two situations:

• if we are controlling a group of objects, and malfunctioning of one of them is OK
as long as, on average, they all fulfil their mission;

• if we are controlling a single object.

Answer.

• If we are controlling a group of objects, and we want to achieve the best overall
result, we should use

f&(a, b) = a · b and f∨(a, b) = a + b − a · b.
• If we are controlling an individual object, and we want to achieve the best result
for this object, we should use

f&(a, b) = min(a, b) and f∨(a, b) = max(a, b).
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Question 5c. So, how can we use fuzzy techniques in explainable AI?
Answer. We start with expert rules—this what makes this approach explainable. We
then use general fuzzy methodology—explained in the previous chapters—to find
the first-approximation dependence y = f (x1, . . . , xn).

When applying the fuzzy methodology, we used some parameters—e.g., for neg-
ligible, we selected 5 as the borderline value starting with which the difference is
absolutely not negligible. The choice of these parameters is rather arbitrary. For
example, to describe what is negligible, we could use 4 or 6 instead of 5.

So, instead of picking a single such value:

• we make this value a parameter, and then
• we find the values of all these parameters for which, for each k, the predictions of
the resulting fuzzy system are the closest to the desired value y(k).

Question 5d. What is tuning and how is it different from machine learning?
Answer. We have:

• the data
(
x (k), y(k)

)
, and

• an algorithm f0(x) that fits the data, e.g., for which f0
(
x (k)

) ≈ y(k).

Tuning means finding an algorithm f (x) that provides a better fit with the data.
The difference frommachine learning is that, in addition to the data, we also have

an algorithm f0(x) that fits the data.

D.3 Solutions to Self-Test 3

Question 1

Question. Suppose that a 2-layer neural network has two inputs x1 = −2 and x2 = 2.

• In the first layer, we perform a linear transformation and compute the value y =
w0 + w1 · x1 + w2 · x2.

• In the second layer, we apply, to the result of the first layer, the rectified linear
activation function and get z = f (y).

What will be the result z of this data processing in the following two situations:

• when w0 = 0, w1 = 1, and w2 = 2, and
• when w0 = 0, w1 = −1, and w2 = −2.

Answer. For w0 = 0, w1 = 1, and w2 = 2:

• after the first layer, we get

y = w0 + w1 · x1 + w2 · x2 = 0 + 1 · (−2) + 2 · 2 = 0 − 2 + 4 = 2;
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• then, in the second layer, we get

z = F(y) = max(0, y) = max(0, 2) = 2.

For w0 = 0, w1 = −1, and w2 = −2:

• after the first layer, we get

y = w0 + w1 · x1 + w2 · x2 = 0 + (−1) · (−2) + (−2) · 2 = 0 + 2 − 4 = −2;

• then, in the second layer, we get

z = F(y) = max(0, y) = max(0,−2) = 0.

Question 2

Question 2a. What is an activation function and why do we need it?
Answer. In a neural network, signals interchangingly undergo:

• linear transformations and
• non-linear transformations.

If we only had linear transformations, we would be able to only compute linear
functions, and many real-life dependencies are nonlinear. So, we need nonlinear
transformations. The corresponding nonlinear transformations are known as activa-
tion functions.

Question 2b. What activation function was used in traditional neural networks and
why?
Answer. In the traditional neural networks, mostly, the following activation function

is used—F(x) = 1

1 + exp(−x)
. This function—known as sigmoid or logistic activa-

tion function—was selected because it adequately reflects how signals are processed
in most biological neurons.

Question 2c. What activation function is used in deep learning?
Answer. In deep learning, a different type of neural networks turned out to be much
more efficient: the function

F(x) = max(0, x)

known as rectified linear function (ReLU, for short).

Question 2d. What operations are hardware supported on a computer? How does a
computer computes exp(x)?
Solution. In modern computers, only a few operations are hardware supported:
namely,

• minimum min(a, b) and maximum max(a, b); these two are the fastest;
• sum a + b which takes somewhat longer to compute, and
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• product a · b which takes the longest—since a usual multiplication algorithm
includes several additions.

Everything else is implemented as a combination of these elementary operations.
For example:

• When you ask a computer to compute exp(x), it actually computes the sum of the
first few terms of the Taylor series of the function exp(x):

exp(x) ≈ 1 + x + x2

2! + x3

3! + · · · + xN

N ! (for some N ).

• Division a/b is computed as a · (1/b), and the inverse 1/b is computed by an
iterative procedure that consists of several additions and multiplications.

Question 2e. Explain why rectified linear activation functions work the best.
Answer.Adeepneural networks hasmany layerswhichwork one after another. Some
of these layers perform linear combination, some apply the activation function. Thus,
the time needed for the deep neural network to produce the result is much larger than
for the traditional neural network. How can we save time?

• There is not much that can do to speed up the computation of a linear combination:
we already apply the fastest possible algorithms for this.

• However, the timeneeded to compute an activation functiondiffers: somenonlinear
functions are faster to compute, for other, computations require amuch longer time.

So, to save time, a reasonable idea is to select an activation functionwhich is the fastest
to compute. Whatever we compute consists of the hardware supported operations.

• The more operations we perform, the longer it takes.
• So, tomake computations faster, it is desirable to use as few operations as possible.

It is therefore desirable to use just one such operation—and the fastest, which leads
to min and max. The input can be x or a constant.

• it makes no sense to compute min(x, x) or max(x, x)—since both expressions are
equal to x ;

• so, we end up with min(x, c) or max(x, c).

The fastest-to-generate constant is 0—since it is the default contents of the cells. So,
we end with max(x, 0) or min(x, 0).

Question 3

Question 3a. What is pooling and why do we need it?
Answer. Pooling is when we replace several values a1, . . . , an with a single value.

One of the main applications of neural networks is to process pictures. In a com-
puter, a picture is represented by storing intensity values—or, for color pictures,
intensity values corresponding to three basic colors—for each pixel, and there are
millions of pixels. Processing all these millions of values would take a lot of time.

To save this time, we can use the fact that for most images:
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• once we know what is in a given pixel,
• we can expect approximately the same information in the neighboring pixels.

Thus, to save time, instead of processing each pixel one by one, we can combine
(“pool”) values from several neighboring pixels into a single value.

Question 3b. Which poolings are used in deep learning?
Answer. Deep learning uses:

• max-pooling, when we combine two values a and b into a single value max(a, b),
and

• averaging, when we combine two values a and b into their arithmetic average
(a + b)/2; this is almost equivalent to sum-pooling, when we combine two values
a and b into their sum a + b.

Question 3c. If we pool together the values x1 = 1, x2 = 2, and x3 = 3, what will
be the result of max-pooling? sum-pooling?
Answer.Max-pooling leads tomax(1, 2, 3) = 3, and sum-pooling to 1 + 2 + 3 = 6.

Question 3d. Explain why max-pooling and sum-pooling work the best.
Answer. The whole objective of pooling is to speed up data processing. From this
viewpoint, we need to select a pooling operation which the fastest to perform.

Thismeans that we need to select a pooling operationwhich is performed by using
the smallest possible number of hardware supported computer operations, and these
operations should be the fastest. If we use only one hardware supported operation,
we get min(a, b), max(a, b), and a + b.

D.4 Solutions to Final Self-Test

Question 1

Question 1a. What is explainable AI? Why do we need explainable AI?
Answer. Explainable AI is when an AI system not only provides recommendations,
it also provides explanations for these recommendations.

Why do we need it? Many AI programs—in particular, the ones that use deep
learning—just provide a recommendation, theydonot comewith any explanation.We
know that these programs are not perfect, that sometimes their recommendations are
wrong—but since there are no explanations,we do not knowwhich recommendations
are wrong. It is therefore desirable to have such explanations.

Question 1b. Why does it make sense to use fuzzy techniques in explainable AI?
Answer.Desire for explanationsmeans thatweneed to be able to transformnumerical
recommendations into natural-language explanations. In other words, we need to
connect numerical recommendations with natural-language rules.

Such a connection has been explored before: this is exactly what fuzzy techniques
are about.
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Question 2

Question 2a. What are fuzzy techniques?
Answer.Fuzzy techniqueswere designedbyLotfiZadehwho realized that a largepart
of expert experience—namely, the rules the experts formulate in terms of imprecise
words fromnatural language—is not used in automatic control. So, he designed fuzzy
techniques to translate experts’ natural-language rules into precise control strategies.
Question 2b–d. Briefly describe the main steps of fuzzy techniques, and present
formulas for these steps:

• eliciting degrees of confidence and forming membership function,
• using “and”- and “or”-operations to estimate the degrees to which different control
values are reasonable,

• defuzzification.

Answer.

• First, for each natural-language term P like “small” used by experts, we ask the
expert, for different inputs x , to provide his/her degree of confidence that this
value x satisfies the corresponding property (e.g., the degree to which x is small).
This way, we get the degrees μP

(
x (k)

)
corresponding to finitely many values

x (1) < . . . < x (K ). Then, we use interpolation—usually, linear interpolation—to
estimate the degrees μP(x) corresponding to other values x . For values x between
x (k) and x (k+1), linear interpolation has the form

μP(x) = μP
(
x (k)

) + μP
(
x (k+1)

) − μP
(
x (k)

)

x (k+1) − x (k)
· (
x − x (k)

)
.

• For each rule Ri of the type

“if Pi1(x1) and … and Pin(xn), then Pi (u)”,

we estimate the degree ri (u) to which this rule is applicable, as

ri (u) = f&(μPi1(x1), . . . , μPin (xn), μPi (u)).

After that, we compute the degree μ(u) to which the control u is reasonable as

μ(u) = f∨(r1(u), r2(u), . . .).

• Finally, for automatic control, we transform the fuzzy set μ(u) into a single con-
trol value u. This defuzzification is usually performed by applying the centroid
defuzzification formula

u =
∫
u · μ(u) du
∫

μ(u) du
.

Question 3

Question. Suppose that we have two rules:
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• if a student is tired, the student needs some rest;
• if a student is very tired, the student needs a lot of rest.

A student marked his being tired as 6 on a 0-to-10 scale and being very tired as 4 on
this scale. To what extent it is reasonable for this student to rest for an hour? Assume
that:

• the degree to which 1h means some rest is 0.7, and
• the degree to which 1h means a lot of rest is 0.3.

Use min and max as “and”- and “or”-operations.
Solution. The grade is reasonable if:

• either the first rule is applicable, i.e., its condition(s) are satisfied, and its conclusion
is true,

• or the second rule is applicable, i.e., its condition(s) are satisfied, and its conclusion
is true.

In this case, it means that

(student is tired and needs some rest) or
(student is very tired and needs a lot of rest).

Here:

• the degree to which the first rule is applicable is

f&(0.6, 0.7) = min(0.6, 0.7) = 0.6;

• the degree to which the second rule is applicable is

f&(0.4, 0.3) = min(0.4, 0.3) = 0.3.

Thus, the degree to which the grade is reasonable is

f∨(0.6, 0.3) = max(0.6, 0.3) = 0.6.

Question 4

Question 4a. Which interpolation algorithm should we use when generating a mem-
bership function and why?
Solution. When we know the values μ(a) and μ(b), then to find values μ(x) for
intermediate values x , we should use linear interpolation

μ(x) = μ(a) + μ(b) − μ(a)

b − a
· (x − a).

It is selected to minimize the effect of measurement uncertainty—due to which for
the same actual value of the quantity, we may have somewhat different measurement
results—on the result. In precise terms, for the values
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x1 = a, x2 = x1 + �x , …, xn = xn−1 + �x = b,

we want to make sure that μ(xi+1) ≈ μ(xi ), i.e., that the squared distance

D2 = (μ(x2) − μ(x1))
2 + (μ(x3) − μ(x2))

2 + · · · + (μ(xn) − μ(xn−1))
2

between the tuples formed by the left-hand and right-hand sides of these approximate
equalities is as small as possible.

Question 4b–c. Which “and”- and “or”-operations should we use and why:

• when we control a group of objects, and
• when we control an individual object.

Answer. Expert’s degrees are also approximate, they depend on the scale: a degree
0.8 corresponding to 5 on a 0-to-5 scale is not equal to any value coming from the
0-to-4 scale, on that scale, the closest value is 3/4 = 0.75. Since close degree may
correspond to the exact same expert opinion, we want the difference in degrees to
minimally affect our results: if a ≈ a′, then f&(a, b) ≈ f&(a′, b) and f∨(a, b) ≈
f∨(a′, b).
For group control, we want to make sure that the distance between the cor-

responding tuples is the smallest possible, which leads to f&(a, b) = a · b and
f∨(a, b) = a + b − a · b.
For individual control, we want to make sure that all the differences between the

resulting values of “and”- and “or”-operations are small, i.e., that

| f&(a, b) − f&(a′, b′)| ≤ K · max(|a − a′|, |b − b′|)

and
| f∨(a, b) − f∨(a′, b′)| ≤ K · max(|a − a′|, |b − b′|)

for the smallest possible value K . This leads to f&(a, b) = min(a, b) and f∨(a, b) =
max(a, b).

Question 4d. What defuzzification procedure should we use and why?
Answer. Let μ(u1), μ(u2), . . . be the degrees to which the values u1, u2, . . . are
reasonable. In a polling scheme, this means that out of N experts, N · μ(ui ) consider
the value ui to be reasonable.Wewant the value u which is the closest to the opinions
of all experts, i.e., for which:

• u ≈ u1 for N · μ(u1) experts,
• u ≈ u2 for N · μ(u2) experts, etc.

It is natural to interpret it as saying that the squared distance between the tuple
(u, u, . . .) formed by the left-hand sides of all these approximate equalities and
the tuple (u1, . . . , u1, u2, . . . , u2, . . .) formed by its right-hand sides is the smallest
possible. This leads to the following formula—known as centroid defuzzification:
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u = u1 · μ(u1) + u2 · μ(u2) + · · ·
μ(u1) + μ(u2) + · · · ≈

∫
u · μ(u) du
∫

μ(u) du
.

Question 4e. How fuzzy techniques can be used in explainable AI?
Solution. We start with expert rules—this what makes this approach explainable.We
then use general fuzzy methodology—explained in the previous chapters—to find
the first-approximation dependence y = f (x1, . . . , xn).

When applying the fuzzy methodology, we used some parameters—e.g., for neg-
ligible, we selected 5 as the borderline value starting with which the difference is
absolutely not negligible. The choice of these parameters is rather arbitrary. For
example, to describe what is negligible, we could use 4 or 6 instead of 5.

So, instead of picking a single such value:

• we make this value a parameter, and then
• we find the values of all these parameters for which, for each k, the predictions of
the resulting fuzzy system are the closest to the desired value y(k).

Question 5

Question 5a. What is a rectified linear activation function and how is it used?
Answer. In a neural network, signals interchangingly undergo:

• linear transformations and
• non-linear transformations.

If we only had linear transformations, we would be able to only compute linear
functions, and many real-life dependencies are nonlinear. So, we need nonlinear
transformations. The corresponding nonlinear transformations are known as activa-
tion functions.

In deep learning, the following activation function is used:

F(x) = max(0, x),

known as rectified linear function (ReLU, for short).

Question 5b. Explain why the rectified linear activation function is empirically the
best.
Answer.Adeepneural networks hasmany layerswhichwork one after another. Some
of these layers perform linear combination, some apply the activation function. Thus,
the time needed for the deep neural network to produce the result is much larger than
for the traditional neural network. How can we save time?

• There is not much that can do to speed up the computation of a linear combination:
we already apply the fastest possible algorithms for this.

• However, the timeneeded to compute an activation functiondiffers: somenonlinear
functions are faster to compute, for other, computations require amuch longer time.

So, to save time, a reasonable idea is to select an activation functionwhich is the fastest
to compute. Whatever we compute consists of the hardware supported operations.
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• The more operations we perform, the longer it takes.
• So, tomake computations faster, it is desirable to use as few operations as possible.

It is therefore desirable to use just one such operation—and the fastest, which leads
to min and max. The input can be x or a constant.

• it makes no sense to compute min(x, x) or max(x, x)—since both expressions are
equal to x ;

• so, we end up with min(x, c) or max(x, c).

The fastest-to-generate constant is 0—since it is the default contents of the cells.
So, we end with max(x, 0) or min(x, 0).

Question 5c. What is pooling and how is it used?
Answer. Pooling is when we replace several values a1, . . . , an with a single value.

One of the main applications of neural networks is to process pictures. In a com-
puter, a picture is represented by storing intensity values—or, for color pictures,
intensity values corresponding to three basic colors—for each pixel, and there are
millions of pixels. Processing all these millions of values would take a lot of time.

To save this time, we can use the fact that for most images:

• once we know what is in a given pixel,
• we can expect approximately the same information in the neighboring pixels.

Thus, to save time, instead of processing each pixel one by one, we can combine
(“pool”) values from several neighboring pixels into a single value.

Question 5d. Explain why max- and sum-poolings are empirically the best.
Answer. The whole objective of pooling is to speed up data processing. From this
viewpoint, we need to select a pooling operation which the fastest to perform.

Thismeans that we need to select a pooling operationwhich is performed by using
the smallest possible number of hardware supported computer operations, and these
operations should be the fastest. If we use only one hardware supported operation,
we get min(a, b), max(a, b), and a + b.
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• Novák V, Perfilieva I, Močkoř J (1999) Mathematical principles of fuzzy logic.
Kluwer, Boston, Dordrecht

A textbook on deep learning:

• Goodfellow I,BengioY,CourvilleA (2016)Deep learning.MITPress,Cambridge,
MA

Additional reading on topics studied in the lectures:

• Cohen K, Bokati L, Ceberio M, Kosheleva O, Kreinovich V (2022) Why fuzzy
techniques in explainable AI?Which fuzzy techniques in explainable AI. In: Rayz
J, Raskin V, Dick S, Kreinovich V (eds) Explainable AI and other applications of
fuzzy techniques. Proceedings of the annual conference of the North American
fuzzy information processing society NAFIPS’2021,West Lafayette, IN, 7–9 June
2021. Springer, Cham, Switzerland, pp 74–78

• Kosheleva O, Kreinovich V (2013) Finding the best function: a way to explain
calculus of variations to engineering and science students. Appl Math Sci 7(144):
7187–7192

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
V. Kreinovich, Towards Explainable Fuzzy AI: Concepts, Paradigms, Tools,
and Techniques, Studies in Computational Intelligence 1047,
https://doi.org/10.1007/978-3-031-09974-8

129


 -2047 62940 a -2047
62940 a
 
https://doi.org/10.1007/978-3-031-09974-8


130 Appendix E: Additional Readings

• KreinovichV,KoshelevaO (2021)Optimization under uncertainty explains empir-
ical success of deep learning heuristics. In: Pardalos P, Rasskazova V, Vrahatis
MN (eds) Black Box optimization, machine learning and no-free lunch theorems.
Springer, Cham, Switzerland, pp 195–220

• Nguyen HT, Kreinovich V, Lea B, Tolbert D (1992) How to control if even experts
are not sure: robust fuzzy control. In: Proceedings of the second internationalwork-
shop on industrial applications of fuzzy control and intelligent systems, College
Station, 2–4 Dec 1992, pp 153–162

• Nguyen HT, Kreinovich V, Tolbert D (1993) On robustness of fuzzy logics. In:
Proceedings of the 1993 IEEE international conference on fuzzy systems FUZZ-
IEEE’93, San Francisco, CA, Mar 1993, vol 1, pp 543–547

• Nguyen HT, Kreinovich V, Tolbert D (1994) A measure of average sensitivity for
fuzzy logics. Int J Uncertainty Fuzziness Knowl-Based Syst 2(4):361–375


	Preface
	Contents
	1 Why Explainable AI? Why Fuzzy Explainable AI? What Is Fuzzy?
	1.1 Why Explainable AI?
	1.2 Why Fuzzy Techniques Seem a Reasonable Approach for Explainable AI
	1.3 What Is Fuzzy Methodology
	1.4 Summary of Fuzzy Methodology
	1.5 Exercises

	2 Defuzzification
	2.1 Formulation of the Problem: Reminder
	2.2 Main Idea and the Resulting Formula
	2.3 Integral Form
	2.4 Important Comment: Centroid Defuzzification Is Not a Panacea
	2.5 Exercises
	2.6 Self-Test 1

	3 Which Fuzzy Techniques?
	3.1 What We Study in This Chapter
	3.2 Interpolation Should Be Robust
	3.3 Which Interpolation Is the Most Robust
	3.4 ``And''- and ``Or''-Operations Must Be Robust Too
	3.5 Which Is the Most Robust ``And''-Operation
	3.6 Which Is the Most Robust ``Or''-Operation
	3.7 Group Robustness Versus Individual Robustness
	3.8 Which Interpolation Is the Most Individually Robust
	3.9 The Most Individually Robust ``And''-Operation
	3.10 Robustness Versus Individual Robustness: Example
	3.11 The Most Individually Robust ``Or''-Operation
	3.12 General Conclusion
	3.13 Exercises

	4 So How Can We Design Explainable Fuzzy AI: Ideas
	4.1 Machine Learning Revisited
	4.2 Exercises
	4.3 Self-Test 2

	5 How to Make Machine Learning Itself More Explainable
	5.1 How Can We Make Machine Learning Itself More Explainable: Idea
	5.2 Selection of an Activation Function
	5.3 Selection of Pooling
	5.4 What About Fuzzy?
	5.5 Exercises
	5.6 Self-Test 3

	6 Final Self-Test
	Appendix A Terms Used in the Book (in Alphabetic Order)
	Appendix B Why Do We Need …?  (in Alphabetic Order)
	Appendix C Solutions to Exercises
	Appendix D Solutions to Self-Tests
	D.1  Solutions to Self-Test 1
	D.2  Solutions to Self-Test 2
	D.3  Solutions to Self-Test 3
	D.4  Solutions to Final Self-Test
	Appendix E Additional Readings

