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XV. 

THE SHIELDING EFFECT OF PLANETARY MAGNETIC FIELDS. 

(From the Dublin Institute for Advanced Studies.) 

BY REV. JAMES McCONNELL AND E. SCHRODINGER. 

[Read 13 DECEMBER, 1943. Published 1 MARcH, 1944.] 

1. INTRODUCTION. SUMMARY. 

VERY much the same as in the case of Einstein's field-equations of 
gravitation in empty space, Maxwell's equations likewise admit of a term 
expressing that the potentials act also as sources of the field-the 

"cosmical term," as it is usually called. While in the case of gravitation 

anything but an ext,emnely low order of magnitude of this term is excluded 

by observation, the widespread 'belief that the corresponding Maxwellian 
term must be of the same low order, neither rests on direct experimental 

evidence, nor are there strong theoretical grounds for it. As one of us 

has recently pointed out,1 our present knowledge of the earth's magnetic 
field suggests for the constant in question ( M2 ) a value, still moderately 
small, but after all about .1032-times larger than the "cosmical" value. 

General field theories seldom fail to produce the term.2 This fact ought 
not to be over-emphasized, for they may have been deceived (see the 

footnote), and at any rate they do not positively indicate the order of 

magnitude. But quite a strong argument pro, (which we have never seen 

mnentioned and which would be all-but-quenched, if the term were 

insignificantly small) is this: the two equations curl A = H and 

curl H = - M2 A exclude an irrotational static magnetic field, and thus 

automatically exclude the existence of an isolated megnetic pole (the 

current version of Maxwe11ls theory has to exclude it explicitly). 
Reviewing the situation we deem that, just as in the case of gravitation, 

the "fL-term" ought not to be regarded as a "new addition" to Maxwell's 

equations but as being virtually contained in them. We have to decide, 
not whether there is a -term dr not, but what upper limit observation 

sets to the constant ,u. 

?E. Schr?dinger, Proc. R.I.A. (A), 49, 135, 1943. 

SH. Weyl, Raum-Zeit-Materie (Berlin, Springer, 1921), $36; A. Einstein, Sitz. Ber. 

d Preuss. Akad., p. 137, 1923; E. Schr?dinger, Proc. R.I.A. (A), 49, 55, 237, 275, 1943, 

In the last paper it is pointed out that, what had always? been interpreted as the 

Maxwellian field, is in fact, very likely, the mesxm field. This is the possible 

deception alluded to above. 

PROC. R.I.A., VOL. XLIX, SECT. A. [33] 
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The limit is imposed by large-scale static fields. The observed structure 
of the magnetic field on the surface of the earth certainly excludes a value 

of the constant /u considerably larger than ( 30,000 km. ) -'; it possibly 

supports this figure, which, as far as we can see, would not be at variance 

with any other phenomenon. 
The constant intervenes, of course, in computing from the known 

surface-field the field surrounding the earth, which is indeed much more 
strongly affected than the former-and so is its shielding effect towards 
charged particles, coming from outside (aurora-particles, cosmic rays). 
T'his is the object of the present investigation. We generalize, for the 

modified field, Stdrmer's results3-but not the refinements of Lemailtre 
and Vallarta, which would be infinitely laborious and is not required in 

a first survey. 
The constant y enters in form of the product p a, i.e. of the ratio 

of the radius a of the celestial body, and the length M- '. With the 

value of ,u-' mentioned above, pt a l 0 2 and roughly 20 for the 

sun. That is why we carry the numerical computations as far as 

pa = 20. 

We can hardly avoid reproducing the main trend of the whole theory 

of shielding, which we believe to have put into neat form. It proves 

handier to speak throughout not of "shielding" but of "escape." Since 
we disregard the bodily screening effect of the planet,4 the orbits are, 
as it were, reversible. The minimum momentum which just enables a 
particle, coming from infinity, to impinge on a given point of the surface 

from a given direction, also just enables a particle of opposite charge to 

escape from there to infinity on the reversed orbit. 
Specializing, for the purpose of illustration, in the ,.-value quoted 

above [p, = ( 30,000 km. ) - ] , our results are briefly these: 

p. a - 0 2 (earth): The minimum momentum decreases steadilv 

towards the pole. At 500, where the cosmic-ray latitude-effect stops, it 
is (for any direction of launching) by about 20 per cent. larger than 

with p = 0. The bearing -on cosmic rays is hardly significant. But 

the percentage increase (as against the case A 
7- 0 ) increases 

considerably at higher latitudes. Hence there is a mutual bearing of 
the precise value assumed for fL and any quantitative theory of the 
aurora; 

p. a = 20 (sun): The minimum momentum for escape is, of course, 

considerably lowered as against . = 0, though much less than we 
might anticipate from the exponential decrease of the field. The potential 
bearing'on aurora theories is obvious. But, with the present scanty 
knowledge of the sun's magnetic field, it is useless. 

3 
For a general account of the Stornier theory cf. S. Chapman and J. Bartels, 

Geomagnetism, Vol. 2, p. 833, et seqq. (Oxford, Clarendon Press, 1940). 4 
Precisely to this point?and to the question of periodic orbits-?does Lema?tre's 

and Vallarta's improvement on Stornier refer. 
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MCCONxLL & SCHRODINGER-Planetary Magnetic Fields. 261 

? 2. THE REDucED HAMILTONIAN. 

Using spatial coordinates with the line-element 

dS2 = gik dx$dxk (ilk = 1,2, 3), (2, 1) 

the well-known Hamiltonian of a particle with charge e and rest-mass 

Int0, moving in an electromagnetic field with the potentials V, 

Ak (1k = 1, 2, 3), reads as follows: 

2 kKi. flA Pkler ~A;\1 Hf = eV - moe,4i + 2 gi - -'tk -- (2, 2) 

In ordinary vector notation the potentials of a static magnetic dipole D 

at the origin are5 

A = curl (D 
'De 

V,= 0. (2, 3) 

F'rom this, in polar coordinates, with D in the direction 0 = 0, 

A, = A2 = 0 A sin Df =(r) (2, 4) 
r 

,vhere 1, 2, 3 refer to r, 9,4 respectively, D is the dipole-strength, 
f is short for 

f(r0) (1 + MV)e (2, 5) 

Hence (replacing the subscripts 1, 2, 3 by r, 0, 4 for clarity): 

H - 

2 
sin26 or _f\2] Ir 

.o |1 + gn )2 c2 '- + rzPO + r2sin29 (P r )] 

(2, 6) 

Since 4 is not conitained, p , is a constant of the motion and the problem 

reduces to the two-dimensional motion in the meridional lhalf-plane qr, 0 
(with the same Hamniltonian). Moreover, H is a constant of the motion 

> MnO2. Let in be any constant > nO. Envisage the following 
function of the function H 

H2= (c - O2 1 
2inkc' - MO c~ = (2,) 

5E. Schr?dinger, Proc. R.I.A., 49, 137, 1943. 

[33*c] 
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(the square bracket [.i. .] teng that of (2, 6)). If q is any one of the 

six variables r, 0, 0, Pr) p ) P PA 

F H H aH 
a = 

F'-a - . q* (2, 8) 
aqa m% 

Hience the equations of motion can be obtained from the (very much 
simpler) Hamiltonian P ( H),' provided that we regard the constant ra 

as depending on the particular motion and as linked with its energy 

constant H by 

I - mTc 2 

(which means, that mn is the "relativistic mass" of the particle). In a 

word we have now formally reduced the problem to the two-dim6nsiona7 
"non-relativistic" motion with the Hamiltonian 

1 2 piP 2 
rsin0 re2 

r s r2+sinOeDf A 2 (2 9) 

which is of very familiar form. By putting it equal to p2 / 2 m, the 

constant p is obviously the total momentum of the (true) motion. 

It is convenient to reduce the momenta by the factor6 e D / c, and 

to put 

e2Dt(S + h2 A) = / 

=D h (2,10) 

C2 eDp = 

Then (2, 9) reads 

Pt 2 ( h _ sin Of (r 2l) p 2 . ( + r siii r 2 ~~~~~(2, 11) 

Just like P, we take Pf non-negative. It -is the momentum in the 

meridional plane or, speaking of the two-dimensional motion, the 
momentum. The quantity in brackets is the momentum (m X velocity) 
in the p-directlon. It provides, for the two-dimensional motion,, a store 
of potential energy. But notice that the form of the latter still depends 

on the value of the ,integration constant h ( = the canonical p,). Let 

B We take e > 0, for eonvenience. 
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a be the angle between the three-dimensional velocity and the direction 
of increasing p, the "magnetic West." Then 

P = = Psina (2,12) 

and, from (2, 11), 

h - sinO9f ( r ) - P cos a. (2, 13) 

rsin 0 r2 

The sign is not ambiguous, as you verify by forming, with the 

Hlamiltonian (2, 9), the canonical equation which gives p. 

? 3. THn POTENTIAL ENERGY. 

We have to investigate the restrictions on escape, possibli imposed by 

the "potential energy." 

U(r,O) ,(r,O) 2, (3, 1) 

where 

B (r,A8 ) = A sin Of (r) (3, 2) r sin0 rt (3,2 

If j, = 0, from (2, 5), f = 1. In this case the function U has 

been extensively studied and represented in diagrams7. Qualitatively it 
behaves alike for any g. To examine the radial behaviour, form 

r3 _0 = - Ii H + 2sinO(1 + pr + jI2r2)e 9`. (3,3) 

For h 4 0, we have 4 < 0 and a4 /ar > 0. Thus U decreases 

permanently. Hence there is no energetic restriction on escape unless Ii is 
positive. 

If it is, then from the fact that 

a r3 ar I = - - 3 sinO r2e-kl < U (3, 4) 

you easily infer, that ' and u depend on r as qualitatively indicated 

in Fig. 1. 

The relevant point is, that u passes in every radial direction, first 

through a zero-minimum, then through a maximum. The series of these 

maxima-call it the rim-has one minimum at 0 -2- call it the pass. 

1 
See e.g. S. Chapman and J. Bartels, I.e., page 837. 
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This is the point of easiest escape. If we disregard the screening effect 
(if the body of the planet and also disregard a "point set of content 

zero" of exceptional initial values, then according to a famous tlheorem 
of Poincare's, a partiele launched anywhere inside the rim will sooner 
or later reach the pass and make its escape, provided it has sufficient 

energy. 

In the pass a4/ar 0 and 0 - . Hence from (3, 2) 

anld (3, 3) 

4X = f (r) 
Apass =2 (,a 

1' 1 ~~~~~~,* ~~(3) 
7h = (1 + pr1 + 1p2r2)e-L 

Fig. 1. 

that is to say 

l+tpass = r21+' gr + ,2r2) e-r (3, 65 

The letter r shll henceforth refer to the pass. 

? 4. THE MINIMUM ESCAPE MOMIENTUM. 

Now let the particle be launched at a distance a from the origin 

(a = radius of the planet), at a pole-distance 0 =- A and under an 

angle a with the "magnetic West" (i.e. the direction of increasirng ) 

From (2, 13) 

h sin Af(a) p (4,1) 
a sin A - at 

We are out to find the smallest P which allows escape. To lower 

P, we have h at our free disposal. Now, for eos a < 0, h could be 

negative; but then we could, with impunity, lower P further by taking 
h 0 instead, since we have seen that only with h positive does any 

restriction on escape arise. Hence h must be positive an,yhow. 
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Therefore (3, 5) and (3, 6) obtain and, to permit escape, P miust 

at least equal #pass But if P exceeded 4'paaa by a finite amount, you 

could in (4, 1) always chanige h in the direction that lowers P, irrespec 

tive of tpa,, being thereby possibly raised. So they must be equal. 
From (3, 5), (3, 6), and (4, 1) that gives 

COS (1 + ATr + 1At r2)e/hr 
4) 

(4L, 2) 

= arsinA (a + ,ur + t/2r2)et - stx (i + ,a)e~Za 

Putting 

r 
y 

a = x - = 
U(4,3) 

a 

y ou get 

sinl A(1 + x)et = 

= [1 2uz (u X - sin A cos a) + ?2 (u6 - sin A cos a) eUX (4,4) 

lThis transcendental equation solves the problem. x is a given quantity. 

The equation has to be solved for i, which is "the distance of escape," 

expressed in the unit a, the radius of the planet. Thereafter the 

mninimum momentum for escape is given by (3, 6), viz. 

atp _ 1?ux?ux e-tx . (4, 5) 

The rest of this paper deals with the numerical evaluation of (4, 4) and 
(4, 5) in a number of cases, chosen for illustration. 

But we must still remove an objection whieh may have occurred to 
the reader. What if the particle were launched outside the rim-then 
the altitude of the pass would be irrelevant? Well, it must not be 
forgotten, that, given the point and the direction of laulnching 
(a, X, a), the position of the rim still depends on the momentum P 

we impart to the particle. It is not very difficult to show, that to make 

tne rim contract so far that the point (a, X ) is outside already at the 

outset, would always require a larger P than the one we have dctermiuied. 

? 5. NUMERICAL EVALUATION. 

From (2, 10) our P is the momentum times 

e D 

where D is the dipole moment. Our object is to study the inifluenes 

which various assumptions about the basic constant A have on the escape 
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mnomenta. _ Now it is not recommendable to make the comparison for the 

same value of D. For, given any information about the actual field at 

the surface, the value of D to comply with this information depends 

itself on the value adopted for t. 

We have therefore chosen, always to make the comparison for the 

same equatorial surface field.8 Calling D' the "Gaussian value" of D 

le. the dipole moment which produces for p. = 0 the same surface 
field on the equator, we have the relation9 

aD . (5 1) 

With the notation (4, 3) 

Di - D (1 + x + x2) e-x (5, 2) 

so that we obtain from (4, 5) and the last relation (2, 10) the final formula 

for the minimum escape momentum p 

a2 C 1 1 + UX + Vx 6(- , (5, ) 

where u, as before, is determined by (4, 4) as a function of X, a and 

x(= ta). 

It is customary and quite convenient to characterize a particle, 
instead of just by its momentum p, by the product 

8 = e 2 (5, 4) 

which is called its magnetic stiffness and has, when the particle moves 
orthogonal to a magnetic field, the well-known meaning: field-strength 
times radius of curvature of the path. I 

I The dimensionless factor on the right of (5, 3) thus gives S in the 

unit 
-D 

- a x Hequt (5, 5) 

-which characterizes the planetary field. Moreover, since e will nearly 

always be the electronic charge, it is convenient to 'think of (5, 4) and 

(5, 5) as expressed in "electron-volt." 

The value of (5, 5) in this unit is 

300 a Hequat. = 5-7 x 10 10 electron-volts, (5, 6) 

8 This* is the simplest to keep to in general. In the case of the earth the choice 
is irrelevant, the deviation of the surface-field from a classical dipole-field being 
certainly not larger than about 2 per cent. 

& 
Cf. Proc. R.I.A. (A), 49, p. 137, 1943. 
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where a is in cm., He inuat in Gauss and the numerical value refers 

to the earth. But let us recall, that S (though measured in electron-volt) 
is not in general the energy. The two coincide only in the limit for very 

fast particles, when the energy is a considerable multiple of the rest 
energy. 

In the following tables and graphs we omit the factor (5, 6), that is 

lo say, we tabuZate and plot as "magnetic stiffness S" directly the 

dimensionless factor (5, 3).10 Only in Fig. 6 are the actual energies 

calculated for electrons and protons, the scale of ordinates is in electron 

volt and refers, of course, to the earth. 

In the same way we tabulate and pltot the dimensionless quantity 'a 

as "escape distance,"'0 meaning really ua. The latter quantity can 
also be described as the radius of the circular orbit concentric with the 
equator in the equatorial plane. (In the two-dimensional motion the 
particle is in this case at rest on the "pass".) 

The substantial task in the numerical evaluation is to find, given 
x, X, a , the root u of equation (4, 4), which has then to be 

inserted in (5, 3). Though, as a rule, nothing but systematic trials, with 

subsequent interpolation, are of avail, a glance at the approximations 
obtainable for x- << 1 and for x >> 1 is useful. 

For x small you get, by developing the exponentials in (4, 4), without 
difficulty 

-t u O + sin A - cosa 2x2 + . . (5,7) 
4 sin X s/i-sina A cos a 

and then from (5, 3), (with the notation (5, 4) and the omission of tne 
factor (5, 5), as agreed upon) 

s-s0 +Wi - ?I (sinAX 
- cos a) 

\ xU0 u0 sinA'i/ - sin3) c )I A (5 8) 

where 

= I + j1 
- sin A cos a 1 

are the values for x = p a = 0, known from St6rmer's work. The 

factors of x2 prove to be positiv-e in many cases (actually in all those 

dealt with below). Thus, strangely enough, there is an initial increase 
of stiffness and of escape-distance, but followed eventually, and usually 

10 That is the meaning of the words " reduced stiffness," "reduced escape distaance" 
in the explanation of the tables and graphq. 
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very soon, by a maximum and subsequent' steady decrease. This 

complicated initial behaviour has an ill effect on the convergence of the 
power series, which are therefore as a rule of little value. 

For x large you deduce from (&, 4) 

(a - 1) = log ( (a ? v) [1 + 2 
t 

: 7 + <) (5 9) 
}sin'A(l + ut (u 

X 

where for abbreviation 

v = sinlA cosa . (5, 10) 

Putting also 

x 

=sin2,\ (5,11l) 
you obtain, by carefully developing the logarithms, 

+ log (l + v)X' log (1 + v)x' 1 

.1(I 
+ 

(1+ v) a2 

0(logx')2 + [(1 + V)2 + log(1 +? v)] logx' (5,12) 
(I + X-3 

The order of terms corresponds roughly to their efficiency between about 

x = 10 and x = 20, where, generally speaking, the formula works well. 

rierms of order x- 3 are neglected, but e.g. log x / x3 is included. The 

case of very small X (neighbourhood of the pole) would need special 
attention. It is best to draw u numerically from (5, 12) and then to 

iinsert it in the following very good approximation of (5, 3) 

(I 4j)sin2X (5,13) 

1 + (a + v) x 

in which only terms of relatipe order x - 3 are neglected. 

? 6. EXAMPLES. 

To study the escape-distance u and the required stiffness S for an 

extended range of the parameter x = - a (viz., from 0 -> 20) we 

picked out 4 cases: a particle launched from the equator or from 

Latitude 450, either in the. horizontal direction of easiest escape or 
vertically. (The "easiest escape" is eastward for a positive particle, it 
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corresponds to "easiest arrival" from the west--for a positive particle.) 
The angles A, a are: 

Equator, easiest: A = - a 7r 

7r wr ,, vertical: A = a = 

450 easiest: A = a = 7 

vertical: A = a a2 

5 

42 
0 

C, 
2 

O 1 5 10 15 jAa 20 
Fig. 2.-Escape distance (in the unit a) as a function of ,ua for the cases 

(a) vertical escape from magnetic equator; (c) vertical escape from 450 magnetic latitude; 
(b) easiest ,, , ,, * (d) easiest ,, 

0'25 

0'20 

0.1 

a~~~~~~~ao 
005 (/Qf =_ 

0 1 6 10 15 ,e 20 
Fig. 3.-Reduced minimum magnetic stiffness as a funcltion of MAa for magnetic 

latitudes 00 and 450 and for vertical and easiest escape. 
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TABLE I.-Equator. 

Vertical Easiest 
x = a - _ _ 

U U 
Slt S - S/S0 u 5S - S/So 

O 2 0'25 1 1 2'414 0'1716 1 1 

0 1 2-007 0-2510 1-003 1004 2 428 0 1725 13006 1?005 

0'2 2-019 O'2529 1'009 13011 2-449 0-1741 13014 3?014 

0-25 2'024 0 2537 1-012 1 015 2 455 0-1749 13017 1 019 

0'3 2 027 0-2544 1P013 1 018 2-457 0-1755 1'018 1'023 

0-4 2 027 0-2554 1?013 1-021 2 448 01761 1?014 13026 

0 5 2'018 0 2553 1-009 1-021 2-424 0-1756 1-004 1o024 

1 1 908 02418 0 954 0 967 2*220 01627 0920 0 948 

5 1 410 0-1206 0 705 0-482 1 513 0-0713 0 627 0-415 

10 1260 0 0726 0-6a0 0-291 1 317 0&0409 0-546 0(238 

20 1 159 0 0433 0 579 0-173 1-190 0-0222 0 493 0-129 

u = reduced escape distance 

UO = ,, , , for a=?0 

S = reduced stiffness 

so ,, 1) 1) for , = 0 

TABiE II.-Latitude 450. 

Vertical Easiest 

x = t a- _ _ _ _ _ - _ _ _ _ - _ _ _ - _ 

U I S SISq to s L S/Se 

0 4 0-0625 1 1 41327 00535 1 1 

0 04 4O001 0 0631 1*0002 1 009 4-332 0 0540- 1 001 1*008 

041 3-987 0 0655 01997 1-048, 41325 0'0560 0 9996 1 047 

0'2 3'891 010712 01973 13139 4t226 0&0607 01996 1-135 

0-25 3-813 0 0742 0-953 1*188 4-140 0-0631 0-935 1-179 

.0-3 3-725 0 0771 0 931 13233 4-040 0-0653 0-934 13220 

0 4 3 537 0-0820 0 884 13313 3 828 0-0689 Q-885 1-288 

0 5 3-356 0 0858 0-839 1-373 3-625 0-0715 0-838 1-336 

1 2 693 0-0925 01673 1*481 2-890 0-0739 0-668 1 382 

5 1-564 0-0550 0-391 0 880 1-636 0-0382 0-378 0-714 

10 1-334 0-0345 0-333 0-552 1-376 0 0226 0-318 0-423 

20 1 195 0o0201 0-299 0-321 13220 0 0122 0 282 0 228 

This content downloaded from 195.34.79.228 on Wed, 18 Jun 2014 11:47:48 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


McCoNNELL & SCHRIDINGER-PPlanetary Magnetic Fields. 271 

Tables I and II and Figs. 2 and 3 contain the results (but differently 
collected in the figures and in the tables, for practical reasons). Let us 
repeat, that the "absolute" values u, S are given in the unit a and 

a Hequ. respectively, while the relative values u / ut0, S / SO are to show 

the percentage change as compared with the customary assumption It = 0. 
The behaviour can be read off the figures and hardly needs a 

commentary. It is, on the whole, what was to be expected, except for 
one notable point. While the initial rising of the S-curves above the 
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Fig. 4.-The relative escape distances for vertical escape, uo Fig. 5.-The magnetic stiffuesses for vertical escape, So and 
and u (for 1A = 0 and MAa 0 2 respectively) as func tions of S (for," = 0 and 4a = 0-2 respectively), as functions of the 

the magnetic latitude (2 - A). magnetic latitude (2 - A) 

starting value (,u = 0, customary theory) is quite insignifieant at the 
equator, it develops into a notable feature at the higher latitude. 

This induced us, to examine in more detail the dependence on latitude 
and we chose the case of vertical launching and the parameter 
x = , a = 0(2 (somewhat suggested1' by geomagnetic data). The 

results are given in Figs. 4 and 5 and in Table III. 

11 
Cf. Proc. R.I.A. (A), 49, p. 139, 1943. 
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T1ABLE III.-Magnetic stiffness anSd escape distance for vertical escape at 
different latitudes. 

Magnetic s / /o 
Latitude 

? 
u s S/u0 s/s0 

00 2 0 25 2 019 0-253 1'0095 Pl011 

100 2'062 0 235 2'080 |0239 1P009 1P015 

200 21265 04195 t2279 0(200 1P006 1*026 

300 2-667 0-141 2'668 04148 P.0005 1P049 

450 4 0'062 3'891 0 071 0 973 1-139 

600 8 0*016 61847 0 023 01856 1P451 

700 17V097 0(0034 10-917 0(0074 01639 24164 

800 661328 0(00023 18&735 0 0012 0-282 5-472 

uo= reduced escape distance for M = 0 

u ,, , , I , , ,ua 0-2 

SO L reduced stiffness for ,u = 0 

S ,, ,, , 02 

e.v. 
5 x 109 

5 x 1018 

107 

5x 106 

100 

O5 105 

105 

5 x 104 

600 650 70' 750 800 850 900 
Magnetic Latitude 

Fig. 6.-Minimum kinetic energy in electron-volts for the aurora region. 
'Vertical launching (or artival). The scale of ordihates is logarithmic. 

(1) proton, A 0; (3) electron, ,' - 0; 

(2) , u, ,ua=02; (4) ,, , a = 02. 
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It will be seen that this moderate value of x, which in the neighbour 

hood of the equator has no relevant consequences, increases the magnetic 

stiffness required by a particle to reach the earth in the zone of aurora, 

by a factor 2, 3, 4 .. . ., which actually increases to vo at the pole. At 

the same time the escape-distance u is steadily reduced in a roughly, 
reciprocal manner. (Of course, none the less, S goes iyonotonically to 
zero, u monotonically to infinity with increasing latitude.) 

Thus aurora theories would be quantitatively affected, if g a were 
0 2 (instead of being zero). We have plotted in Fig. 6 the energies of 

electrons and of protons, required to reach the earth within the auroral 
zone-both fo,r , = 0 (curves (1) and (3)) and for y a = 0 2 (curves 

(2) and (4)). The scale of ordinates is logarithmic. 
It wlill also be observed, that the range of energies which is noticeably 

affected is considerably lower than that of cosmic ray particles, so that 
thejr expected behaviour is not appreciably altered. 

This content downloaded from 195.34.79.228 on Wed, 18 Jun 2014 11:47:48 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 259
	p. 260
	p. 261
	p. 262
	p. 263
	p. 264
	p. 265
	p. 266
	p. 267
	p. 268
	p. 269
	p. 270
	p. 271
	p. 272
	p. 273

	Issue Table of Contents
	Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, Vol. 49 (1943/1944), pp. 1-292
	Front Matter
	On the Particle Equation of the Meson [pp. 1-28]
	Systematics of Meson-Matrices [pp. 29-42]
	The General Unitary Theory of the Physical Fields [pp. 43-58]
	A New Exact Solution in Non-Linear Optics (Two-Wave-System) [pp. 59-66]
	The Recombination Law for Weak Ionisation [pp. 67-90]
	The Intensity Distribution of Proper Vibrations [pp. 91-100]
	On the Production of Mesons by Proton-Proton Collisions [pp. 101-133]
	The Earth's and the Sun's Permanent Magnetic Fields in the Unitary Field Theory [pp. 135-148]
	Non-Linear Quantum Electrodynamics of the Vacuum [pp. 149-176]
	Relations between Statistics: The General and the Sampling Problem When the Samples Are Large [pp. 177-196]
	On the Production of Mesons by Light Quanta and Related Processes [pp. 197-224]
	The Point Charge in the Unitary Field Theory [pp. 225-235]
	Unitary Field Theory: Conservation Identities and Relation to Weyl and Eddington [pp. 237-244]
	On the Cascade Production of Mesons [pp. 245-257]
	The Shielding Effect of Planetary Magnetic Fields [pp. 259-273]
	The Union of the Three Fundamental Fields (Gravitation, Meson, Electromagnetism) [pp. 275-287]
	The Paths of the Particles in a Vortex Street [pp. 289-292]



