

The correct bibliographic citation for this manual is as follows:

Thomas, Kirby. 2024. The Simple Guide to SAS®: From Null to
Novice. Cary, NC: SAS Institute Inc.

The Simple Guide to SAS : From Null to Novice

Copyright © 2024, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-68580-009-3 (Paperback)
ISBN 978-1-68580-010-9 (Web PDF)
ISBN 978-1-68580-011-6 (EPUB)
ISBN 978-1-68580-012-3 (Kindle)

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, or
otherwise, without the prior written permission of the
publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication
shall be governed by the terms established by the vendor at the
time you acquire this publication.

®

The scanning, uploading, and distribution of this book via the
Internet or any other means without the permission of the
publisher is illegal and punishable by law. Please purchase only
authorized electronic editions and do not participate in or
encourage electronic piracy of copyrighted materials. Your
support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The
Software and its documentation is commercial computer
software developed at private expense and is provided with
RESTRICTED RIGHTS to the United States Government. Use,
duplication, or disclosure of the Software by the United States
Government is subject to the license terms of this Agreement
pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a),
DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent
required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is
applicable, this provision serves as notice under clause (c)
thereof and no other notice is required to be affixed to the
Software or documentation. The Government’s rights in
Software and documentation shall be only those set forth in this
Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

April 2024

SAS® and all other SAS Institute Inc. product or service names
are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

SAS software may be provided with certain third-party
software, including but not limited to open-source software,
which is licensed under its applicable third-party software
license agreement. For license information about third-party
software distributed with SAS software, refer to
http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses

Contents

About The Author

Acknowledgments

Part One: Getting Started with SAS

1 Introduction

1.1 Note of Encouragement

1.2 Purpose of this Guide

2 Getting Started

2.1 SAS Windows

2.2 SAS OnDemand for Academics

2.3 SAS Studio

2.3.1 Tasks

2.3.2 Snippets

2.4 Data Setup

3 How SAS Works

®

®

®

3.1 DATA and PROC Steps

3.1.1 DATA Step

3.1.2 PROC Step

3.2 Data Structure

3.2.1 Columns/Variables

3.2.2 Values

3.2.3 PROC Contents

3.3 DATA Step Processing

3.4 OUTPUT Statements

3.5 SAS Libraries

3.5.1 Macro Libraries

3.5.2 Read-Only Access Libraries

4 Import/Export

4.1 Importing Data

4.2 Exporting Data

5 Viewing and Summarizing Data

5.1 Viewing Data

5.2 Summarizing Data

Part Two: Coding with SAS

6 Data Transformations

6.1 Sorting and De-duplicating Data

6.2 Calculating New Variables

6.3 Filtering

6.4 Conditional Logic

6.5 Manipulating Values

6.5.1 Character Functions

6.5.2 Numeric Functions

6.5.3 Date Functions

6.5.4 Manipulating Values Example

6.6 Formatting

6.6.1 User-Defined Formats

6.6.2 Storing User-Defined Formats

7 Combining and Aggregating Data

7.1 Combing Data Using the DATA Step

7.1.1 Appending Data

7.1.2 One-to-One Merge

7.1.3 One-to-Many Merge

7.2 PROC SQL

7.2.1 Types of Joins

7.2.2 PROC SQL Syntax

8 Comparing Data

8.1 DATA Step Compare Merge

8.2 PROC COMPARE

9 Reporting

9.1 PROC PRINT

9.2 PROC REPORT

9.3 Output Delivery System

9.3.1 ODS Destinations

9.3.2 ODS Graphics

10 Introduction to Selected Advanced Topics

10.1 Cloud Analytic Services (CAS)

10.2 Macro Language

10.2.1 Macro Variables

10.2.2 Macro Programs

Appendix A: Resources

Appendix B: Create GSS SAS Data Set

About The Author

Kirby Thomas is a Technical Communicator at SAS who enjoys
taking complex concepts and breaking them down into easy-to-
understand steps. She has a PhD in Sociology from Florida State
University, where her research focused on why women are less
likely than men to major and persist in science, technology,
engineering, and mathematics (STEM) fields. Her passion for
creating more accessible and equitable learning environments
was cultivated in her job at the Florida Department of
Education and continues to motivate her work every day. She
has over 9 years of experience programming in SAS and is
excited to share her lessons learned with new programmers so
that they can feel empowered to dive into coding without the
hindrance of perfection paralysis.

Learn more about this author by visiting her author page at
https://support.sas.com/en/books/authors/kirby-thomas.html.

https://support.sas.com/en/books/authors/kirby-thomas.html

There you can download free book excerpts, access example
code and data, read the latest reviews, get updates, and more.

Acknowledgments

First and foremost, thank you to Megan Jones. Without you, this
book would not exist. Your encouragement, faith in me, and
eagerness to learn inspired me and will undoubtedly inspire so
many others.

Greg Hand, thank you for sharing your screen and allowing me
to watch you code in SAS for hours while I learned. You had
unending patience for all of my questions and genuinely
wanted me to succeed. Without your gentle nudging, I would
still be getting lost in DO loops and avoiding macros, and my
code would suffer for it.

To my amazing family, your support, guidance, feedback, and
time are appreciated more than you know. From brainstorming
book titles and providing design advice to taking chores and
errands off of my to-do list, I have never felt alone in this
endeavor. I am so grateful for each one of you every single day.

Finally, thank you to all of the people who helped review, edit,
format, and prepare this book for publication. Each person who
touched this book made it better. Special thanks to Catherine
Connolly, Suzanne Morgen, Paul Grant, Kim Lewis, Kathryn

McLawhorn, Melissa Sandahl, Kyle Thomas, Robert Harris, and
Mandy Byrdic. If you find this book useful, it is because of them.

Part One: Getting Started with SAS

1 Introduction

1.1 Note of Encouragement

There is a common misconception that you must know
everything there is to know about coding before you begin and
that there is no room for errors. This could not be further from
the truth. The best way to learn how to code is simply to start
coding and to make a ton of mistakes along the way. There are
ways to minimize the risk of these mistakes (like making
specific data sets Read-Only) and ways to avoid common errors
altogether by learning from the misfortune of others (my pain
is your gain). Coding is messy, frustrating, and nonlinear, but
there is nothing quite like the feeling of accomplishment after
struggling with a program and ending up with your desired
results.

1.2 Purpose of this Guide

When I started programming in SAS, I struggled to find the best
resource to help me learn. User Manuals were dense and hard
to read. Videos were helpful but did not provide syntax and
explanations I could refer back to. I relied heavily on Google,
but it always took time to find the right article or blog post, and
I would have to find that web page again the next time I needed

to use that code or function. I cataloged my journey through
various scattered web bookmarks and an unformatted, ever-
growing Word document saved to my desktop with random
code snippets and explanations. As I continued my coding
journey, I relied heavily on this haphazard reference guide I
had created, often searching for keywords to find the piece of
code I needed.

I programmed like this for 8 years before a friend reached out
to me for some tips on how to start coding with SAS. I opened
my makeshift guide, and, as I stared bewildered at the
unorganized wall of text, I realized that it was completely
unhelpful to anyone but me. I decided that the best path
forward was to do a complete overhaul of my document,
organizing the information by topic, explaining common
business problems and how to solve them using SAS, detailing
common pitfalls to avoid, and providing example code. The
document became the story of my SAS journey, which is still
close to the beginning, and all the struggles and pitfalls I have
encountered along the way. The result was this guide, which is
intended to help new coders learn the basics and get started
with using SAS.

This guide is meant to be a living, breathing document that
grows with you along your SAS journey. Please add your own

thoughts, experiences, and code examples that are most
relevant to your work to the companion template that can be
downloaded at https://support.sas.com/en/books/authors/kirby-
thomas.html. You can also reinforce your learning by viewing
helpful video tutorials at https://video.sas.com/, find a training
course (sas.com/training), or check out a local SAS User Group
(https://www.sas.com/en_us/connect/user-groups.html). It is my
sincerest hope that you build upon the information in this guide
with your own knowledge and experiences so that it far
surpasses the usefulness that it holds in its original form. Let’s
jump in!

https://support.sas.com/en/books/authors/kirby-thomas.html
https://video.sas.com/
https://www.sas.com/en_us/training/overview.html
https://www.sas.com/en_us/connect/user-groups.html

2 Getting Started

The field of data analytics is fast-paced, ever-evolving, and often
intimidating to newcomers, but learning how to leverage data
analytics is a critical skill that can enrich your life in so many
ways. Not only can it dramatically increase your marketability
and financial security, as many companies compete to hire and
retain talent in these positions, but your work can lead to real
policy changes that can positively impact the world. For
example, data analytics has been used to improve water quality,
aid in natural disaster response, protect endangered species,
fight human trafficking, detect fraud, track the spread of
disease, and combat homelessness and food insecurity. To learn
more about how analytics can help humanity, visit
https://www.sas.com/en_us/data-for-good.html.

Now that we have discussed some of the benefits of data
analytics, let’s talk about why SAS is a great tool to help you on
your learning journey. To stay competitive in the field of
analytics, SAS has released a slew of products over the years to
assist users with their data management, forecasting, modeling,
machine learning, text analytics, and visual analytics needs, to
name a few. SAS Viya was specifically designed as a one-stop
shop software platform that allows users, businesses, and
organizations to access, manage, analyze, and visualize their

® ®

https://www.sas.com/en_us/data-for-good.html

data all in one place. The SAS Viya platform houses several
applications like SAS Drive to share and collaborate between
users, SAS Data Studio to prepare data, SAS Studio to develop
SAS code, SAS Model Studio to build models, and SAS Visual
Analytics to explore and visualize data.

With all of the products SAS has to offer, it is hard to know
where to start. And in my experience, starting is always the
most challenging part of any new venture. Rather than trying to
teach you everything there is to know about SAS, which would
be overwhelming and, quite frankly, outside the scope of my
knowledge, my goal in creating this guide is to create a
roadmap for new coders on what topics to start with to quickly
learn the basics of programming in SAS. To really understand
SAS and build a strong foundation, the best place to start, in my
opinion, is learning Base SAS .

Base SAS is a programming language at the heart of all SAS
Software, making it an essential step in learning SAS. Base SAS
is updated with new functionality every so often, resulting in
new versions. I am using SAS 9.4 (maintenance release TS1M7)
for all examples in this guide, so minor modifications might be
required if you are working in a different version. SAS Studio
(web-based), SAS Enterprise Guide (Windows client
application), and the SAS Windowing Environment (locally

®

®

® ®

® ®

®

®

®

®

® ®

installed) are all Graphical User Interfaces (GUIs) that can be
used to develop and run Base SAS code. Most of the code
discussed in this guide will work on any of these interfaces, and
although each GUI operates a little differently, Base SAS is the
common language used for all of them.

2.1 SAS Windows

There are four universal components to know about when
getting started, no matter which SAS programming GUI you use:
the Editor window, Log window, Output Data window, and
Results window. They usually appear as tabs (Code, Log, Output
Data, and Results) under each SAS program, and you can
customize the layout of these windows in many ways. Try out
different layout views and find what works best for you.

1. The Editor window (Code tab) in Figure 1 is where you do
most of your coding. This is where you enter and save the
syntax—or properly structured code—for your program. There
are line numbers on the left-hand side of the window for easy
reference. You can run entire programs or highlight a few lines
of code within a program and only run the portion of code that
you selected. This is helpful when you are building a new
program or troubleshooting a bug in your code. You might want
to run one step at a time and view your results. Be sure to save

®

®

your programs often as you work so that you don’t lose work
if your computer dies, restarts unexpectedly, you time out, or
get kicked off of your online session. Every data analyst has at
least one horror story about losing several hours of code work
because they didn’t save —or at least that’s what I tell myself to
sleep better at night.

Figure 1: Editor Window

2. The Log window, displayed in Figure 2, provides
information about how your code ran. It lists notes during

program execution, warnings, and error messages if
encountered. If there is an error in your code, a message will
appear in red in the log under the statement that caused the
error. Notes appear in blue, and warning messages in green.
Use the log messages to help you troubleshoot any issues you
encounter when executing your code. Always check the log
after running any code to ensure it ran the way you expected it
to. The log also provides additional useful information like the
number of variables and observations in each data set and how
long it took to process each DATA step. This can be invaluable
information for you if you need to know which part of the code
was taking the longest to run. There are statements and options
that allow users to customize their logs by adjusting the
appearance of the log, suppressing certain contents of the log,
or writing additional information to the log. More information
about these statements and options can be found at:
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lepg
/p119kau8rt2ebgn1bzaipafu6jp3.htm.

Figure 2: Log Window

https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lepg/p119kau8rt2ebgn1bzaipafu6jp3.htm

3. The Output Data window shows your output data tables
(see Figure 3). It is similar to an Excel spreadsheet, as it shows
the rows and columns of your data table. I often spot-check my
code using the Output Data window. For example, if I calculate
a new variable, I make sure that variable shows up in my
output table after I run my code and that the first few rows
have the appropriate calculated values in the new variable
column. Remember, SAS will not always give you an error if you
make a mistake. For example, suppose you type the wrong
variable name in a calculation. SAS might not give you an error
in the log because the wrong variable does exist in your data.
However, the calculation itself is wrong because you meant to
use a different variable. The most important lesson about
programming in SAS (and programming in general) is that
programs run exactly what you type/tell them to run, not what

you meant to run. So always spot-check your output for
accuracy.

Figure 3: Output Data Window

4. Finally, the Results window in Figure 4 displays any written
output such as descriptions, calculations from SAS procedures,
or sample data. Throughout this guide, the word print is used to
indicate outputting information to the results window. For
example, suppose you would like to see a data table description.
You can run PROC CONTENTS on this table, and the results of
this procedure are printed to the Results window for you to
view. If you want to know the mean value of one of the
variables in your data set, you can run PROC MEANS on the
variable and view the results in this window. It takes SAS time
to print results for you, so avoid printing large data sets (PROC
PRINT) or frequencies (PROC FREQ) for variables with over 100

value categories. It will take forever to run or warn you that
you are trying to print out too much information to the results
window. If you need to look at a large data set, it is easier to
view it in your Output Data window or to export the data to
Excel.

Figure 4: Results Window

2.2 SAS OnDemand for Academics

Now that we’ve covered the main components of Base SAS
GUIs, let’s walk through one of these interfaces together. Since
SAS Studio is the newest of these GUIs, is offered through SAS

®

®

®

Viya , and is available for free on the SAS OnDemand for
Academics website, I will give a brief overview of its layout and
features before diving into Base SAS syntax.

To start using SAS Studio for free, visit:
https://welcome.oda.sas.com/. If you have not done so already,
under Get Started, click SAS Profile to create an account
(Figure 5). Fill out the required fields and click Create Profile.

Figure 5: SAS OnDemand for Academics Welcome Page

® ®

®

®

®

https://welcome.oda.sas.com/

Once you have a registered account, from the Welcome page,
click Sign In in the upper right hand corner of the screen
(Figure 5) and type in your login information. Read and then
check the box next to Accept the terms of the license and the
terms of use and conditions. Then, click Sign In. Click the
Launch button next to Code with SAS Studio (Figure 6).

Figure 6: Launch SAS Studio

SAS Studio opens in a new tab in your browser.

®

®

®

2.3 SAS Studio

SAS Studio is a web-based programming interface that
connects to a local or hosted SAS server. When you log on, a
new session initiates, and a navigation pane appears on the left
side of the screen while a work area appears on the right side.
You might see a Start Page in the work area where you can
select New SAS Program, or SAS Studio might have already
opened a new program for you. By default, a new Program tab
reads Program 1 until you save it (Figure 7).

Figure 7: Screenshot of a New SAS Program in SAS Studio

®

®

®

®

Once saved, the Program tab will display the program name
that you chose. SAS programs are saved with the .sas file
extension and SAS tables are saved with the .sas7bdat file
extension. The Program tab has subtabs that are discussed in
detail in the SAS Windows section. At a high level, the Code
subtab is where you write your SAS code, the Log displays
information and errors when you run your code, the Output
Data subtab displays the SAS tables that you are working with,
and the Results subtab provides the results of data analysis and
anything you tell SAS to print out for you. When you save your
program, it saves the syntax in the Code subtab so that you can
open and rerun the code later.

Note: The Output Data subtab does not appear until you read
in or create a data table.

If you want SAS Studio to automatically open the program(s)
that you were working on and saved but did not close before
exiting your previous SAS Studio session (I highly recommend
this), click the hamburger icon (three stacked lines) in the
upper-right hand corner of the screen called More Application
Options, then Preferences > Start Up > Continue where you
left off1 (Figure 8).

Figure 8: SAS Studio Preferences

®

®

The Navigation Pane is typically located on the left-hand side of
the screen (Figure 7). It has five sections: Server Files and
Folders, Tasks and Utilities, Snippets, Libraries, and File
Shortcuts.

1. The Server Files and Folders section (labeled Explorer in
SAS Viya) provides access to your computer and server folders
that contain files, programs, and data tables.

2. The Tasks and Utilities section provides a point-and-click
feature that allows users to explore, visualize, and analyze data.

®

3. The Snippets section lets users save syntax that they use
frequently so that they can easily paste and edit it in new
programs.

4. The Libraries section displays the assigned SAS libraries for
your session and the data tables contained in each library. You
will learn more about assigning SAS libraries in the SAS
Libraries section of the guide.

5. The File Shortcuts section enables you to create shortcuts to
files on the SAS server or found at a URL and quickly access
them by double-clicking or dragging the shortcut to the work
area.

2.3.1 Tasks

While this guide focuses on writing your own code or syntax,
Tasks can be a useful tool when you are unsure of the syntax
needed for a procedure. You can use this point-and-click feature
in SAS Studio or SAS Enterprise Guide to generate the code
that you need, copy the syntax, and save it to your program for
future use. This syntax can then be run on any SAS GUI.

Let’s walk through an example. If you want to know summary
statistics about a data set but are unsure of the syntax needed to
create it, click on the Tasks section, expand Tasks and then

® ® ®

Statistics and double-click on Summary Statistics (Figure 9). A
new tab called Summary Statistics opens that lets you browse
and select a data table, select variables of interest, and run the
generated code.

Figure 9: SAS Studio Tasks in Navigation Pane

Note: For those just getting started, SAS provides several
preloaded data sets to practice with. When browsing for a data
table, go to the Libraries section in the navigation pane,
expand My Libraries and SASHELP.

In the Summary Statistics tab and Data subtab, click the data
set icon (select a table) under Data, expand My Libraries and
SASHELP, and double-click CLASS to load the Class table.
Under Roles, click the plus sign over the Analysis variables box,
click on Age and then OK. Next, click the plus sign over the
Classification variables box, click on Sex and then OK. There is
also an Options subtab that lets you choose which summary
statistics you would like included in your output. Keep the
default selections checked for now. Notice that once the
required roles are filled in on the Data tab, code is generated on
the right-hand side of the screen in the Code tab (Figure 10).
When you click Run (the little running person next to the save
button) or F3 on your keyboard, the code executes, and the
results are shown in the Results subtab.

Figure 10: Summary Statistics Task Generated Code

Note: The green text in the Code subtab displays comments
that are not part of the SAS syntax itself but that provide helpful
information about when and where the code was generated.
SAS ignores comments during code execution. /* denotes the
beginning of a comment, while */ denotes the end of the
comment2. It is always good practice to include comments in
your programs to help remind yourself or other coders that
might inherit your programs of why certain decisions were
made or what certain code blocks are doing.

We can see from the log that no errors occurred when running
the program (Figure 11).

Figure 11: Summary Statistics Task Log

The results in Table 1 show the number of observations, the
mean, standard deviation, minimum, and maximum ages for
females (F) and males (M). There were 9 females in the data set
with a mean age of 13.2222222, a standard deviation of
1.3944334, a minimum Age of 11, and a maximum Age of 15.

Table 1: Summary Statistics Task Results (PROC MEA

Analysis Variable : Age

Sex N
Obs

Mean Std Dev Minimum

F 9 13.2222222 1.3944334 11.0000000

M 10 13.4000000 1.6465452 11.0000000

Now you know what syntax to run the next time you need to
calculate summary statistics on a data set. You can copy the
code generated by the task into another program or save it to
your code snippets for future use.

2.3.2 Snippets

To add the code generated in the Tasks section to your snippets,
highlight the code in the Code subtab, right-click the
highlighted code, and then click Add to My Snippets. Give your
code snippet a name like Summary Statistics Task, and then
click Save. Now you can find this code snippet by expanding My
Snippets under the Snippets section of the navigation pane.
When you double-click the snippet, it will paste the code into
the Code subtab of the program that you are currently working
in (Figure 12). You will need to edit the data set name and
variable names to reflect any new data set or variables that you
would like to run summary statistics on.

Figure 12: Insert Code Snippet into Program

2.4 Data Setup

The data used in this book is available for download from the
SAS Author Page found at
https://support.sas.com/en/books/authors/kirby-thomas.html.
Once the data has been downloaded, save it to your computer. I
created a folder called Book_Data on my desktop and saved the
files in a subfolder called Input_Data. View the properties of the
folder that you save the book data to and make note of the
location. In my case, the location is:
C:\Users\Kirby\Desktop\Book_Data\Input_Data. When using

https://support.sas.com/en/books/authors/kirby-thomas.html

SAS Enterprise Guide or the SAS Windowing environment,
create a LIBREF called INPUT that references the location of
your saved data files. In my case, I would begin my program
with the following statement:

 LIBNAME input 'C:\Users\Kirby\Desktop\Book_

Update the location in single quotation marks to reflect where
your data is saved.

If you are using SAS Studio, you will need to upload the data
files to the SAS server before you can work with them. First,
create a folder to hold your book data. Right-click Files in the
navigation pane and select New > Folder. I named my folder
Data. Clever. I know. Now, right-click the folder you just created,
and click Upload Files (Figure 13).

Figure 13: Upload Files

® ®

®

When you click Choose Files, the file explorer opens and
enables you to navigate to where you saved your data files for
this book. You can select one data file or hold down the Ctrl
button and select several files to upload them all at once. Next,
click Open. A list of selected files appears in the Upload Files
window, and you can click the Upload button to upload the files
to the SAS server into your Data folder.

Right-click the Data folder that you uploaded the files to, and
then click Properties to copy this location. In my case, the
location is: /home/u1093828/Data. Create a LIBREF called INPUT

at the beginning of your SAS Studio programs to reference any
files found in this folder location:

 LIBNAME input '/home/u1093828/Data';

The INPUT LIBREF will be used throughout the code examples
to reference the location where the book data files are saved.
More information about creating LIBNAMES can be found in
the SAS Libraries section.

1 In SAS Studio V in SAS Viya , check the bubble next to
Options > Preferences > Start Up > Restore tabs listed
in Open Files pane.

2 Pro tip: If you highlight a block of text in your code
editor and then hold Ctrl and click /, SAS will comment
out the entire block of text you have selected. Use this
keystroke combination again to uncomment a
highlighted block of code. In the SAS Enterprise Guide ,
click Ctrl, Shift, / to uncomment.

®

® ®

® ®

3 How SAS Works

Now that you’re all set up, let’s dig into how SAS works. The
following definitions will be helpful to refer back to as you read
through this book:

SAS data sets: Proprietary format (like Excel, Oracle, etc.).
Makes data immediately available to the other elements of SAS.

PROC steps: Operate on data sets. Describe the type of
procedure output (analysis, report, etc.) that you want done to a
data set.

DATA steps: Process data sets on a row-by-row basis, usually to
prepare the data for PROC steps.

Global statements: Used to create SAS libraries, set options,
titles, footnotes, etc.

Comments: Used to document what is happening in SAS
programs. SAS does not process comments.

Macro language/Macros: Enables text substitution or
replacement in SAS programs.

3.1 DATA and PROC Steps

®

®

SAS syntax consists of a series of statements, and the end of
each statement is denoted by a semicolon3. A single SAS
statement can be split up onto several lines in your editor.
Statements can be organized into two types of steps: the DATA
step and the PROC step. While some statements can exist on
their own (for example, setting up a library or certain system
options), the real work in a SAS program happens within steps.

3.1.1 DATA Step

A DATA step reads in data and makes changes to it. This can
include renaming or recoding variables, creating or calculating
new variables, transposing data, merging data, saving it to a
new location, etc. DATA steps start with the keyword DATA and
end with the keyword RUN. In its most basic form, the DATA
step looks like this:

 data output-table-name(s);

 SET input-table-name(s);

 run;

You can add a WHERE statement to the DATA step if you would
like to subset your data by a certain expression, like where
country is equal to “USA” or where a transaction value is over

$50. You can add KEEP or DROP statements to tell SAS which
variables to output in your output table. You can use a RENAME
statement to change your variable names or an IF-THEN
statement to apply conditional logic to your data. A MERGE
statement enables you to merge two or more tables together on
whatever variable(s) you specify in your BY statement. We will
learn more about these statements later. Just remember that a
DATA step typically changes data in some way, starts with the
keyword DATA, and ends with the word RUN.

3.1.2 PROC Step

PROC steps run procedures on your data, like sorting it,
calculating means, calculating frequencies, or printing certain
observations. Rather than editing your data like the DATA step,
PROC steps can be used to analyze and visualize your data so
that you can take a deeper dive into what your data means.
They start with the PROC keyword and end with the word RUN.
The basic syntax for a PROC statement is:

 proc procedure-keyword data=input-table-name;

 run;

Procedures can also include statements like VAR and TABLES,
which tell SAS which variables to include in the procedure.
These statements come after the end of the PROC statement (or
after the first semicolon in the PROC step). Procedures also
typically have several available options that can be included to
indicate how you would like the procedure to run or what
calculations you would like SAS to perform and output for you.
For example, you can add options for SAS to include the median
and mode values of given variables in your PROC MEANS
output; provide row, column, or total percentages in your
frequency tables; round results; or print variable labels instead
of variable names4. Options might be included directly in the
PROC statement (or before the first semicolon) or could be
included to modify the default option in a different statement in
the PROC step.

It is easy to get overwhelmed by the number of options
available when you start coding, but over time, you will start to
appreciate the flexibility these options provide. You don’t need
to memorize these options. SAS has programming
documentation that lists all of the statement types and options
available for DATA steps and procedures5. You can bookmark
helpful documentation for quick reference.

3.2 Data Structure

There are two components to SAS data sets: a descriptor portion
and a data portion.

1. The descriptor portion contains information about the data
set and the individual columns/variables in the data set. This
includes information about the number of observations in the
data set, the date on which it was created, whether the data is
sorted, and the variable names, types, lengths, formats,
informats, and labels.

2. The data portion of SAS data sets contains all of the
variables (columns) and their values for each observation (row)
in the data set. An observation is some type of entity, like a
person, company, or country. It could also be a unit of time, like
a day, month, or year. These entities each have attributes that
can vary between observations. These attributes are called
variables. For example, if you have a data set where each
observation represents a person, you could have many
variables associated with each person like Name, Age, Gender,
Race, and Income. The information associated with each entity
and variable is a value (i.e., “Mary”, 39, “female”, “white”,
$45,000). You can view the data portion of a SAS data set by
looking at your Output Data tab.

3.2.1 Columns/Variables

Columns in a data set must have a name, type, and length.
Column names must:

Be between 1-32 characters

Start with a letter or underscore
Contain only numbers, letters, or underscores—though there
are ways to get around these requirements by using the
VALIDVARNAME option, which is discussed in more detail in
the Importing Data section below.

Letters can be upper or lowercase, and SAS is not case-sensitive
when referencing a variable name in code. Column types can
be character, numeric, or date depending on the type of values
in the column. Base SAS stores data as either character or
numeric data types, so dates are saved as numeric values.
Column lengths should be set to the number of characters in the
longest value in a character column or set to 8 for a numeric or
date column.

3.2.2 Values

Case does matter when referring to data values6. Character
column values can have a length up to 32,767 bytes (each
character is 1 byte) and can contain letters, numbers, special
characters, and blanks. A missing character value is denoted by

®

a space (“ ”). Numeric column values are stored with a length of
8 bytes. They can consist of numbers, minus signs, decimal
points, and E for scientific notation. SAS date values are stored
as numeric values representing the number of days between
January 1, 1960, and a specified date. Date values can be
negative. However, most users apply date formats to these
values for ease of interpretation. Missing numeric and date
values are represented by a period (.).

3.2.3 PROC Contents

To view the information included in the descriptor portion of a
data set, you can run PROC CONTENTS on the data set.

 proc contents DATA=table-name;

 run;

Table 2 shows what it looks like when I run PROC CONTENTS on
one of the book data sets named Coffee.

 proc contents data=input.coffee;

 run;

The first box tells us that the data set name is WORK.COFFEE
and that there are 9 rows/observations in the data set and 4
variables.

The last box shows us a list of these 4 variables in alphabetic
order. The variables in this data set are Afternoon_Favorites_,
Division, Morning_Standard_Orders, and Name. The numbers
in the first column tell us in which order these variables appear
in the data set. For example, Name is the first column in the
data set, followed by Division and Morning_Standard_Orders.
This table also tells us that these variables are all character
(stored as text), and lists the lengths, formats, informats, and
labels for each variable.

Table 2: PROC CONTENTS of Coffee Data Set

The CONTENTS Procedure

Data Set Name INPUT.COFFEE Observations

Member Type DATA Variables

Engine V9 Indexes

Created 8/23/2023 10:39 Observation
Length

Last Modified 8/23/2023 10:39 Deleted
Observations

Protection Compressed

Data Set Type Sorted

Label

Data
Representation

SOLARIS_X86_64,
LINUX_X86_64,
ALPHA_TRU64,
LINUX_IA64

Encoding utf-8 Unicode
(UTF-8)

Engine/Host Dependent Information

Data Set 131072

Page Size

Number of
Data Set
Pages

1

First Data
Page

1

Max Obs
per Page

2216

Obs in First
Data Page

9

Number of
Data Set
Repairs

0

Filename /home/u1093828/Data/coffee.sas7bdat

Release
Created

9.0401M7

Host
Created

Linux

Inode
Number

17022809

Access
Permission

rw-r--r--

Owner
Name

u1093828

File Size 256KB

File Size
(bytes)

262144

Alphabetic List of Variables and Attributes

Variable Type Len Form

4 Afternoon_Favorites_ Char 22 $22.

2 Division Char 9 $9.

3 Morning_Standard_Orders Char 21 $21.

1 Name Char 7 $7.

Note: Now that we have reviewed the structure of SAS data
sets, I have a few notes to keep in mind as you read through the
rest of this guide. First, I use the words Variable and Column,
Row and Observation, and Table and Data Set interchangeably
throughout this guide. Second, because SAS is not case-sensitive
when reading variable names, statements, functions, and
options in code, my code is usually a mix of uppercase,
lowercase, and proper case. While some of you might enjoy the
Wild West of coding like I do, I understand that others find
comfort in uniformity. Do what works for you.

3.3 DATA Step Processing

There are two phases in DATA step processing: compilation and
execution.

1. Phase 1, compilation, first scans the DATA step for syntax
errors. Syntax errors include things like forgotten semicolons,
misspelled keywords, unmatched quotation marks or
parentheses, or invalid options. If it finds any, you will get an
error, and the step will stop executing and print an error
message in your log. DATA steps are read character by
character from top to bottom and left to right. If the code does
not have any syntax errors, it is compiled into machine-
executable code, and a program data vector (PDV), which is
an area of memory where SAS builds a data set, is created. The
PDV contains all columns that will be read in or created during
the DATA step, along with the assigned attributes of those
variables, like whether they are character or numeric and how
long they are. This is the descriptor portion of the SAS data set.

2. During the execution phase, the PDV holds and manipulates
one row of data at a time. In this phase, SAS reads, manipulates,
and writes data to one or more data sets. Errors and warnings
can occur in this phase, too. For example, if the descriptor
portion identified a variable as numeric, but many of the values
that it reads in for that variable (as it loops through the data)
are character, SAS will let you know that in the log.

In order to know where statements and options should go
within a DATA step, it is essential to understand how the DATA

step is processed in SAS. For example, dropping variables too
soon could prevent you from doing important calculations but
dropping unnecessary variables too late in the process could
lead to slower processing time and performance. Let’s say you
need the variables Height and Weight from the Health_Chart
data set (Table 3) to calculate a new variable, BMI, but you do
not want the original variables in the output data set you are
creating. If you drop Height and Weight too soon, the DATA step
will not understand how to create BMI, and you can get errors
or null (missing) values in your output data set when you run
your code.

Suppose you are calculating a new variable, BMI, in a DATA step
based on variables Height and Weight in the read-in (or input)
data set Health_Chart, but you only want BMI (and not Health
and Weight) to appear in the final data set. To do this, you can
add a DROP statement to your DATA step. This ensures that
Height and Weight get read into the PDV so that the BMI
calculation can occur but that the Height and Weight columns
get flagged and dropped when data is written to the output data
set. Note that in this example, Weight is in pounds while Height
is in inches.

Table 3: Health_Chart Data Set

Patient_ID Height Weight Eye_Color Age

8727172 59 118 blue 21

6015638 66 149 green 42

9242748 56 89 brown 11

1135601 63 152 brown 65

3651067 74 210 blue 34

4437097 62 100 brown 16

6417249 67 145 blue 57

9462800 60 133 brown 89

9364322 72 283 brown 38

 data BMI;

set input Health Chart;

 set input.Health_Chart;

 BMI=Weight / (Height*Height) * 703;

 drop Weight Height;

 run;

Height and Weight are read into the PDV by the SET statement.
Then the BMI variable is created and calculated. Finally, Height
and Weight are dropped from the generated BMI data set
before it is output.

To save space or processing time, you can drop variables that
aren’t needed when reading in a data set in the SET statement.
That way, the column is never read into the PDV. Enclose the
DROP keyword, an equal sign, and the variable name in
parentheses after the SET statement to inform SAS that this
variable can be completely ignored. This is called a DROP data
set option rather than a DROP statement. For example, the
previous Health_Chart data set has the variable, Eye_Color, that
is not needed for this analysis and therefore does not need to be
read in or output to the BMI data set. We should put this
variable in a DROP data set option.

 data BMI;

set input Health Chart (drop=Eye Colo

 set input.Health_Chart (drop=Eye_Colo

 BMI=Weight / (Height*Height) * 703;

 drop Weight Height;

 run;

The same applies to a KEEP statement. KEEP statements provide
SAS with a list of variables to include when reading in a data set
(to decrease processing time) or in the output table once
calculations are complete. Any variable not listed in your KEEP
data set option is not read in (if it is in the SET statement).
Likewise, any variable not listed in a KEEP statement or a KEEP
data set option in the DATA statement is deleted at the end of
the DATA step. The code below keeps the Patient_ID and BMI
variables at the end of the DATA step. This code is equivalent to
adding a KEEP statement to the end of the DATA step listing
these two variables.

 data BMI (keep=Patient_ID BMI);

 set input.Health_Chart;

 BMI=Weight / (Height*Height) * 703;

 run;

Table 4: BMI Data Set

Table 4: BMI Data Set

Patient_ID BMI

8727172 23.830508

6015638 24.046602

9242748 19.951211

1135601 26.922650

3651067 26.959459

4437097 18.288241

6417249 22.707730

9462800 25.971944

9364322 38.377507

The resulting data set looks like Table 4. All variables from the
Health_Chart data set are read in, BMI is calculated from Height

and Weight, and then only Patient_ID and BMI are kept,
dropping all other variables from the BMI data set.

3.4 OUTPUT Statements

When you run a DATA step in SAS, there is an implicit OUTPUT
statement at the end of each step that writes out the contents of
the PDV to the specified data set(s). However, you can use one or
more explicit OUTPUT statements in your code if you would like
to control when and where each row is written to the output
table(s). This could be done with a series of IF-THEN statements
or within a DO loop to write out each iteration of the loop. If an
explicit OUTPUT statement is used, this overrides the implicit
OUTPUT statement at the end of the DATA step.

This example utilizes explicit OUTPUT statements to create four
data tables through a series of IF-THEN statements. It splits
patients in the Health_Chart table up into four different data
tables based on classifications resulting from the BMI
calculation. One table is created for each of the following BMI
classifications: Underweight (Table 5), Healthy Weight (Table 6),
Overweight (Table 7), and Obese (Table 8).

 data Under Healthy Over Obese;

 set input.Health_Chart (keep=Patient_I

 BMI=Weight / (Height*Height) * 703;

 drop Weight Height;

 if BMI<18.5 then output Under;

 else if BMI>=18.5 and BMI<25 then out

 else if BMI>=25 and BMI <30 then outp

 else if BMI>=30 then output Obese;

 run;

Table 5: Under Data Se

Patient_ID BMI

4437097 18.288241

Table 6: Healthy Data S

Patient_ID BMI

8727172 23.830508

6015638 24.046602

9242748 19.951211

6417249 22.707730

Table 7: Over Data Set

Patient_ID BMI

1135601 26.922650

3651067 26.959459

9462800 25.971944

Table 8: Obese Data Set

Patient_ID BMI

9364322 38.377507

The following example is a bit trickier because it uses a DO
loop. A DO loop tells SAS to execute the same statement
repeatedly until it reaches the number of times you have

specified or reaches the condition that you specified for it to
stop executing.

Suppose I have decided to take a road trip from Florida to the
Grand Canyon. I have a year to save money and plan to put
$175 a month into a vacation checking account. The following
code creates a table called Vacation that sets a new variable
called Vacation_Fund to 0. It then tells SAS to iterate through the
data 12 times (representing each month of my year time frame),
adding $175 each time. The explicit OUTPUT statement tells SAS
to write out a row for each iteration of the loop, while the
FORMAT statement tells SAS that the Vacation_Fund variable is
currency and should be formatted with a dollar sign in front
and no decimal places.

 data Vacation;

 Vacation_Fund=0;

 do Deposit=1 to 12;

 Vacation_Fund=Vacation_Fund+175;

 output;

 end;

 format Vacation_Fund dollar10.;

 run;

When I run this code, SAS will output a row for each iteration of
this DO loop, which stands for each month I deposit another
$175 into my account. The resulting table is Table 9.

Table 9: Vacation Data Set with
Explicit OUTPUT Statement

Vacation_Fund Deposit

$175 1

$350 2

$525 3

$700 4

$875 5

$1,050 6

$1,225 7

$1,400 8

$1,575 9

$1,750 10

$1,925 11

$2,100 12

This shows that I will have $2,100 saved for my Grand Canyon
trip if I save $175 a month for a year. If I were to run the same
code without the OUTPUT statement, then SAS would only
process a single, implicit OUTPUT statement at the end of the
DATA step, and I would only get one row of output, which is the
final calculation after SAS has looped through the data 12 times.

 data Vacation;

 Vacation_Fund=0;

 do Deposit=1 to 12;

 Vacation_Fund=Vacation_Fund+175

 end;

 format Vacation_Fund dollar10.;

 run;

Table 10: Vacation Data Set
without Explicit OUTPUT
Statement

Vacation_Fund Deposit

$2,100 13

Notice in Table 10 that the $2,100 number is correct. That is the
final amount I will have saved for my vacation after a year of
deposits. However, the Deposit number looks off. It is 13 instead
of 12. That is because when SAS is finished with a DO loop
iteration, it increases the iteration by 1 and then loops through
the data again. So, after the 12th iteration, SAS increased the
Deposit value to 13 but then did not run through the DO loop
again as 13 is higher than the specified value of 12. The explicit
OUTPUT statement inside the DO loop allows us to see what is
happening during each loop and avoids the confusion the
implicit OUTPUT statement would cause if the explicit OUTPUT
were removed from the DATA step.

Note: If I lost you in the discussion above, don’t worry. We
have not covered most of this material yet. But I wanted you to
see a more complex example of an explicit OUTPUT statement

so that you would understand how versatile and useful it can
be. You can always revisit this section later.

3.5 SAS Libraries

A SAS library is “a collection of one or more SAS files that are
recognized by SAS and can be referenced and stored as a unit.
Each file is a member of the library.”7 In other words, a SAS
library is a location that holds SAS files. A LIBREF is the name
that you designate for the library that points to the location
where these data files are stored. Most LIBREFS point to a folder
on your computer or a server that you have access to that
contains permanent data files. However, a LIBREF can also
point to a location that holds temporary files that are deleted
when your SAS session has ended. Anytime you create a table in
a SAS program and do not save it to a location as a permanent
file or do not specify a LIBREF, SAS saves these tables in a
temporary library called WORK. That way, if you reference the
table farther down in your program, SAS can find and access
the table. But as soon as you close out of your SAS session, the
WORK library tables are all deleted. You will need to rerun the
SAS program to create these WORK tables again if you need
them in the future.

If you assign a LIBREF to a location on your computer or a
server and save a table to this LIBREF location, you create a
permanent file that you can access at any time. This is helpful
because you do not have to rerun the program that created the
permanent file or SAS table in the future (unless it needs to be
updated). However, saving every table that you create in a SAS
program can take up a lot of space on your computer/server
and takes more time to read in than a table housed in the
WORK library. When I code, my programs typically start by
reading in the permanent file(s) I am working with, then all of
the calculations, merges, and data manipulations are completed
in WORK tables, and then one or more permanent files are
saved out at the end of the program that I will need for
reporting purposes or to reference later in other SAS programs.

It is helpful (but not required) to have separate libraries and
LIBREFS for your input and output data files. This is a good data
practice to help prevent you from accidentally overwriting any
input data files. To assign a library:

1. Start with the LIBNAME statement.

2. Create a name for your library (this is the LIBREF).

a. Note that the LIBREF can be a maximum of 8 characters.

3. Include the path to this library. This path should be enclosed
in quotation marks.

You do not need to include the RUN statement at the end as this
is not part of a DATA or PROC step.

 LIBNAME Libref 'path';

A LIBREF remains active until you clear it, delete it, or end your
SAS session. To clear a library, use the following syntax:

 LIBNAME Libref CLEAR;

For example, let’s say I have a folder on my desktop called
Book_Data with one subfolder called Input_Data that has all the
tables I want to read into SAS and use for the examples in this
book and another subfolder called Output_Data where I want to
save out the permanent files with the results of these examples.
I want the LIBREF for my Input_Data folder to be called INPUT
and the LIBREF for my Output_Data folder to be called
OUTPUT8. To do this, I would want to create two libraries at the
beginning of my SAS program.

 LIBNAME input 'C:\Users\Kirby\Desktop\Book_

 LIBNAME output 'C:\Users\Kirby\Desktop\Book

Now, I can reference the INPUT library when I am reading in a
source file, and I can reference the OUTPUT library when I
want to save out a permanent file.

 data output.Health_Formatted;

 set input.Health_Chart;

 Eye_Color=upcase(Eye_Color);

 run;

This code reads in a SAS table called Health_Chart from the
INPUT library, uppercases all values for Eye_Color in the data
table, and then saves out a permanent SAS table called
Health_Formatted in the OUTPUT library folder.

Here is another example. The following code reads in a
permanent SAS table called Survey from the
C:\Users\kirby\Desktop\book_data\input_data folder and creates
a temporary WORK table called Survey.

 data Survey;

 Set input.Survey;

 run;

SAS interfaces typically have a navigation pane where you can
view your established libraries (including the WORK library)
and view and open the tables in each library. You will also see
another default library provided by SAS, SASHELP, listed in the
navigation pane. This library contains sample data used in
many of the examples provided in SAS documentation. Unlike
the WORK library, these files are not deleted and appear each
time you open a SAS session.

3.5.1 Macro Libraries

While using LIBREFS is relatively straightforward with SAS data
tables, you can run into issues when trying to use LIBREFS
when importing and exporting data in other file formats. This is
because SAS does not read LIBREF references when they are
inside of quotation marks. To get around this issue, you can
write out the entire file pathway or turn your library pathway
into a macro variable. I wish I had known how to use this trick
my first day of coding. Unlike LIBREFS, macro variables can still
be read inside of double quotation marks. We will cover more

about Macro Variables later as they are an advanced topic. But
essentially, macros are shorthand that can make your code
more dynamic and efficient.

In this example, you can think of a macro variable as word
substitution. Every time SAS comes across a macro variable, it
substitutes that word for the text that you specify when
creating the macro variable. Use the %LET statement to name
your macro variable, and then tell SAS what text to use in place
of that word when SAS encounters the word in your program.

 %let input = C:\Users\Kirby\Desktop\Book_Da

 %let output = C:\Users\Kirby\Desktop\Book_D

This code creates a macro variable called Input that will be
replaced with the text9 of the pathway to my Input_Data folder
when encountered in my program and a macro variable called
Output with the location of my Output_Data folder. You can
name your macro variable something different from your
LIBREF name, but I like to name them the same thing since they
are referencing the same location.

Note: In SAS, an ampersand (&) marks the start of a macro
variable, and a period (.) denotes the end of the macro variable.

When SAS encounters a macro variable, it replaces the variable
text with the text that was specified earlier on the right-hand
side of the equal sign in the %LET statement.

You can use the macro variable that you created to reference
the library location when coding inside of quotation marks, like
reading in an Excel file (or importing/exporting any data file
that is not a SAS table). We will talk more about imports and
exports in the next section (Import/Export). In this example, I
am importing the sheet Claim from an Excel file called Read In
Data.xlsx from the C:\Users\kirby\Desktop\book_data\input_data
folder and saving a temporary table in the WORK library called
Ouch.

 proc import OUT=Ouch

 DATAFILE= "&input.\Read In Data.xlsx"

 DBMS=xlsx REPLACE;

 SHEET="Claim";

 GETNAMES=YES;

 run;

Here, SAS substitutes the &input. macro variable text with the
text used when creating the input macro. This means the
DATAFILE= option now reads

C:\Users\Kirby\Desktop\Book_Data\Input_Data\Read In
Data.xlsx.

3.5.2 Read-Only Access Libraries

Many companies store data files on servers that multiple
employees can access and use simultaneously. Employees often
want to read in this data, manipulate and/or merge it with other
data, and output a new data file to a different folder without
altering the shared source/input file(s). It is extremely easy to
accidentally overwrite source files when learning to code
and working with data files. Most companies (but not all) have
backup files or recovery options for when this happens
(whew!!). Still, reaching out and telling people what happened
is time-consuming, annoying, and embarrassing.

To avoid this, I have implemented an approach I call “saving
myself from myself.” When I set the LIBNAME for a library that
contains source files that I do not want to change, I tell SAS to
give me Read-Only access to this folder. That way, I can read in
data files and work with them in SAS, but I cannot save out files
to that folder or overwrite any files in that folder. Once I’ve
completed all my merges and calculations, I save my final files
to a different folder that I have Write access to.

To do this, you can tell SAS at the beginning of the session that
you want to have Read-Only access to a particular folder for the
duration of the session. This ends when you close your session,
so if you ever need to write something to the source file library,
do not run the Read-Only access script during that session. Here
is the code for giving yourself Read-Only access to a source file
library during your SAS session.

 libname SF 'C:\Users\Kirby\Desktop\Book_Dat

 ACCESS=READONLY;

SF is the LIBREF for the same folder location that holds the
book data on my desktop. Now, if I try to write out a file to the
SF library, I will get an error message (Figure 14).

Figure 14: Read Only Library Error

3 Unless you are an avid Jane Austen reader, you have
likely had little interaction with semicolons in your
everyday life. Sure, they can be used to separate related
independent clauses or items in a complex list, but a
well-placed period or conjunction can render the
semicolon virtually unnecessary. Until now. SAS
programming has fully embraced the semicolon,
allowing the once-overlooked punctuation mark to reign
supreme. Respect the semicolon. Absorb it into your
subconscious. Otherwise, you may find yourself coding
early one morning before coffee, forgetting a semicolon
and SET keyword, and overwriting an important data
file with all null values. Theoretically, of course…

4 Keep reading. No subliminal messages about
semicolons here.

5 You can find the SAS 9.4 And SAS Viya 3.5
programming documentation here:
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_
3.5/pgmsaswlcm/home.htm

® ®

https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/pgmsaswlcm/home.htm

6 If you want to subset a data set to only the observations
with a Country value of “USA”, adding a WHERE
statement where country=“usa” will not pick up on any
records with a country value of “USA” or “Usa” or “UsA”
because case matters when matching to data values.
Here, the UPCASE function can be handy (WHERE
upcase(Country)=“USA”). With this statement, SAS checks
if the condition would be met if the values of country
were all uppercase but does not actually change the
underlying values of the variable Country. See section
Calculating New Variables for information on how to
create a new variable for Country with all uppercased
values.

7

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5
/basess/n0a43pssblhvu0n1b51enwlu24n5.htm

8 Make sure you have write access permission to the
folder that you want to output or export your data tables
to, or you will get an error.

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/basess/n0a43pssblhvu0n1b51enwlu24n5.htm

9 It is best practice never to enclose the text of your
macro variable in quotation marks when you create it
(i.e., in your %LET statement). Since SAS can recognize
macro variables inside of double quotation marks when
you run your code, use any required quotation marks
when calling the macro (i.e., “&input.”) rather than in
your %LET statement when creating the macro variable.

4 Import/Export

This section describes how to import data files into SAS and
export data files from SAS that are in different file formats. SAS
data tables have the file extension .sas7bdat and can be read in
and saved out as permanent files easily using the LIBREF.Table-
Name combination. Files with other extensions like Excel
(XLSX) and text (TXT) must be imported and exported
differently since they are formatted differently than SAS data
tables. The options specified in your import and export code tell
SAS how the data in the files is formatted and how SAS needs to
transform the data to get it into the SAS format when reading it
in or how to export it into a different file format when saving it
out as a permanent file.

4.1 Importing Data

Reading data of a different file type and format into SAS is one
of the most common yet trickiest things that we do in SAS.
Different options are available in PROC IMPORT statements
depending on the file type you are reading in. There are many
problems I run into frequently during SAS imports. I discuss
some common import options and pitfalls to avoid below.

When importing data files, several options can be included to
tell SAS about the file type, location, and format of the file that
you would like to read in. The DBMS option identifies the file
type. The OUT= option specifies the name and location of the
SAS output table once the data is read in. The REPLACE option
can be included if you’d like to overwrite a SAS table if it
already exists.

A delimiter is one or more characters that indicate the
boundary between one data field (variable) and the next. The
DELIMITER= option tells SAS what character(s) in the file
represent this boundary. Files are frequently tab (DELIMITER =
‘09’x or ‘05’x on mainframes) or comma delimited (DELIMITER
= ‘,’) but can be delimited by other characters like the pipe
delimiter ‘|’. SAS assumes that column names are in the first
line of a text file and that data begins on the second line.
Options can be included to tell SAS to start reading data at a
specific row number, whether to read in variable names, etc. If
no delimiter is specified, SAS assumes that the space character
is the delimiter.

An issue I frequently encounter when importing data is that
SAS truncates (cuts off) data values when reading in a file
because the GUESSINGROWS= option is set too low. The
GUESSINGROWS= option tells SAS how many table rows to scan

before determining whether a column should be classified as
numeric or character and the appropriate length to set for the
values in a column. It starts at row one and looks through the
number of rows specified (the default number is 20) to see
whether there are any character constants in the data values of
a column and what the longest value is for each column in the
observations surveyed. If your data set has longer values lower
down in the data set that were not scanned, these values will be
truncated to the length that SAS guessed as the longest value
based on what was scanned.

To get around this, you can increase the GUESSINGROWS=
option number, but this significantly slows down
performance/processing time when reading in very large data
sets. If you know what length a variable should be in a large
data set, a trick is to run the import code on a small number of
guessing rows. Next, copy the output in your log that displays
the best guess at the variable names, types, and lengths based
on what was read in, and paste this output into your editor.
Then, manually adjust the names, types, and/or lengths for
those variables to what you know they should be. By doing this,
you are manually telling SAS how to set up the PDV so that it
has the proper names and lengths of the variables that you are
reading in. If you now run this adjusted code in your data
editor, the code will run much faster because you have

hardcoded information for SAS, and it does not have to scan
any rows to guess at this information. It just starts writing out
one observation at a time based on the parameters that you
have specified. This makes importing time much faster for large
files. But keep in mind that this code will need to be adjusted if
there are any future changes to the file that you are importing,
like additional variables being added or columns being saved in
a different order. Hardcoding (manually specifying) variable
names, types, and lengths is a huge boost to efficiency when
reading in large data tables, but you lose out on the flexibility
that the PROC IMPORT with GUESSINGROWS has to offer as this
method will notice and account for changes in the read in file in
the future if you run the code again.

Option 1: Dynamic CSV Import with GUESSINGROWS

 proc import datafile = "&input.\Bills.csv"

 out = Eww

 dbms = CSV replace;

 guessingrows=5000;

 run;

Option 2: Static CSV Import with Hardcoded Values

 data WORK.EWW ;

 %let _EFIERR_ = 0;

 infile "&input.\Bills.csv" delimiter =

 DSD lrecl=13106 firstobs=2 ;

 informat Monthly_Bills $9. ;

 informat Amount best32. ;

 format Monthly_Bills $9. ;

 format Amount best12. ;

 input

 Monthly_Bills $

 Amount

 ;

 if _ERROR_ then call symputx('_EFIERR_

 run;

Another common issue is that variable names in the imported
file are not in the format accepted by SAS. For example, a
variable name in Excel might contain spaces, start with a
number, or contain a special character. SAS will read in these
variable names exactly the way they appear in the Excel
spreadsheet. But then you run into problems in your code when
you try to reference these invalid variable names. There are
three ways to fix this issue:

1. You can manually edit the external data file that you are
reading in to only contain valid SAS variable names (i.e., no
more than 32 characters, start with a letter or underscore, and
no special characters or spaces). However, this is not
recommended as it is tedious and time-consuming, especially if
you have a lot of variables in the file that you are importing.
Also, you might need to rerun the code every month or year
with updated data, which would require manually editing the
variable names in your input files every time you rerun the
code.

2. My preferred option is using the VALIDVARNAME=V7 option
in your import. This option tells SAS to replace any invalid
characters with an underscore. For example, the variable name
2002 becomes _2002. The variable Mary’s BP Readings becomes
Mary_s_BP_Readings. If a variable name looks cluttered with all
the underscores when you read it in, you can always use a
RENAME statement to make it more user-friendly (e.g.,
RENAME=(Mary_s_BP_Readings=MarysBP)). V7 is the default
VALIDVARNAME system option, so it does not have to be
specified in the VALIDVARNAME statement in the program.

3. There are cases where you might not want to change the
invalid variable name from the import file because you are
exporting the data back into the same format after your

calculations or because the resulting table will be used in code
or programs down the line that reference the original invalid
variable names. If the variable names are changed, it could
break code farther down the line that calls variables that no
longer exist because they have been renamed. In this case, SAS
has a cheat where you can signal it to use the invalid name10 by
enclosing the variable name in double (or single) quotation
marks followed by the letter n. For example, if you tell SAS to do
a frequency of Mary’s BP Readings, you will get an error.
However, if you tell it to do a frequency of “Mary’s BP
Readings”n, it will run the code. Magic.

Option 1: Edit variable names in Excel

Open the Excel file and edit the column names to fit SAS
variable naming conventions.

Option 2a: VALIDVARNAME option

 options VALIDVARNAME=V7;

 proc import OUT=coffee

 DATAFILE= "&input.\Read In Data.xlsx"

 DBMS=xlsx REPLACE;

 SHEET="Office Coffee Orders";

 GETNAMES=YES;

run;

 run;

 proc freq data=coffee;

 table afternoon_favorites_;

 run;

Option 2b: VALIDVARNAME option with a RENAME statement

 options VALIDVARNAME=V7;

 proc import OUT=coffee (rename=(Afternoon_Favo

 DATAFILE= "&input.\Read In Data.xlsx"

 DBMS=xlsx REPLACE;

 SHEET="Office Coffee Orders";

 GETNAMES=YES;

 run;

 proc freq data=coffee;

 table Afternoon_Favs;

 run;

Option 3: Use invalid variable names in code

 options VALIDVARNAME=ANY;

 proc import OUT=Coffee

 DATAFILE= "&input.\Read In Data.xlsx"

 DBMS=xlsx REPLACE;

 SHEET="Office Coffee Orders";

 GETNAMES=YES;

 run;

 proc freq data=coffee;

 table 'afternoon favorites!'n;

 run;

Another frustrating adventure is reading in fixed-width files.
Especially when there are no variable names in the file. When
reading in these files, you must tell SAS the starting position for
each variable before the variable name and format. Here is an
example.

Fixed-Width:

 data Plants;

 INFILE "&input.\Plants_Ive_Killed.txt"

 firstobs=1 /*Row to start reading in d

 obs=MAX /*Use a smaller number to scan

 all records */

 LRECL=5000 /*Sets # of characters to

 ENCODING="WLATIN1" /*Overrides current

 data set encoding */

 NOPAD /*Character strings do not get pa

 TRUNCOVER /*Use if any variables may co

 INPUT

 @1 Plant_Name $20.

 @21 Store $27.

 @48 Date_Bought yymmdd8.

 @56 Date_Died yymmdd8.

 ;

 format Date_Bought Date_Died mmddyy10.;

 run;

Finally, here are some import examples for other file types.
Make sure to download the template from
https://support.sas.com/en/books/authors/kirby-thomas.html
and add your own!

Tab Delimited:

 proc import datafile="&input.\GroceryList.txt

 out=food

 dbms=dlm

 replace;

 delimiter='09'x;

 run;

SPSS:

 proc import out=gss_imp

 datafile="&input.\GSS7218_R3.sav"

 dbms=SAV replace;

 run;

4.2 Exporting Data

When exporting your results table from SAS to another file
format, you will typically use a PROC EXPORT statement. The
DATA= option names the SAS table to export. The OUTFILE=
option tells SAS where to save the permanent table, the name of
the file, and the file extension. You can use the DBMS= and
REPLACE options the same way they were used in the imports
above. Make sure the output file is closed on your computer
before you run your export replace code to update that file.
Generally speaking, I have experienced fewer issues when
exporting data files than importing files into SAS, so I do not
have any cautionary advice. However, many people like to
format their exported tables/output and make them super fancy
by controlling the font, colors, size, etc. See the Reporting
section of the guide for more details about how to do this.

For the examples in this section, files will be written out to my
Output_Data subfolder. Make sure to update the location of your

library to reflect what folder you would like your output files to
be saved to. See the SAS Libraries section for more information
about setting up SAS libraries.

 %let output=C:\Users\Kirby\Desktop\Book_Data

 libname output "&output.";

Here are some basic Export examples that output SAS data
tables into other file formats without fancy formatting:

Excel:

 proc export DATA=input.claim

 OUTFILE= "&output.\Claim_Data.xlsx"

 DBMS=XLSX REPLACE;

 SHEET="Medical";

 run;

Fun fact: If you want to output several tables as separate tabs in
the same Excel workbook, keep the OUTFILE= information the
same but change the name in the SHEET= option to a different
name. This creates a new sheet/tab in the workbook you
already created in your previous PROC EXPORT statement. But

make sure the Excel workbook is closed before running the
next export procedure.

CSV:

 proc export data=input.claim

 outfile="&output.\medical_claims.csv"

 dbms=csv replace;

 run;

Fixed Width :

 data _null_;

 set input.Claim;

 file"&output.\Claim_Fixed_Width.txt"

 LRECL=500

 ENCODING="WLATIN1"

 NOPAD;

 put

 @1 PatientID $9.

 @10 ClaimID $11.

 @21 Ctype 3.

 @24 Date mmddyy10.

 @34 Claim_Desc $35.

 ;

 run;

Tab Delimited:

 proc export DATA=input.Claim

 OUTFILE= "&output.\Claim_Tab_Delimited

 DBMS=tab REPLACE;

 run;

10 If the VALIDVARNAME statement has been used, you
will need to specify VALIDVARNAME=ANY for SAS to
import invalid variable names. Otherwise, SAS will
default to the VALIDVARNAME=V7 option and attempt to
fix your invalid variable names.

5 Viewing and Summarizing Data

Once you’ve read your data into SAS, viewing and summarizing
your data is a good first step to understanding what’s currently
in the data set you are working with and what changes are
needed. This step also helps you identify missing or inaccurate
data so that you can determine what data cleaning steps should
be taken to prepare the data for analysis. The examples
throughout this section use data from the General Social Survey
(GSS), which can be downloaded at: https://gss.norc.org/get-the-
data. The GSS is a project of the independent research
organization NORC at the University of Chicago, with principal
funding from the National Science Foundation.

This is a large data set (with over 60,000 records and 6,000
variables) that is periodically updated. To ensure you can
replicate the results in this section, I have saved a static,
formatted, version of this data set with selected variables of
interest that can be downloaded from
https://support.sas.com/en/books/authors/kirby-thomas.html.
You can use this data set to follow along with all of the
examples below. To view the code on how this SAS data set was
created, see Appendix B: Create GSS SAS Data Set.

5.1 Viewing Data

https://gss.norc.org/get-the-data
https://support.sas.com/en/books/authors/kirby-thomas.html

The PRINT procedure lists the columns and rows of a data table.
By default, it lists all columns and rows, which you can also find
in the Output Data tab when you read in a file to SAS. This is not
always practical when dealing with large data sets. However,
when paired with the OBS= option and VAR statement, it can be
a great tool to see what information you’re working with. The
OBS= option enables you to limit the number of rows printed.
For example, OBS=10 prints only the first 10 rows of a data set
(Table 11). The VAR statement tells SAS which specific variables
you want to see in the results window. Also, you might want to
add a WHERE statement to your PROC PRINT so that you can
examine certain data rows that meet a specified condition, like
WHERE Year=1988, Marital=“MARRIED”, and Age=25 (Table 12).

 proc print Data=input.GSS (OBS=10);

 VAR YEAR ID AGE MARITAL WRKSTAT SEX PAR

 run;

Table 11: PROC PRINT First 10 Observations

Obs YEAR ID AGE MARITAL WRKSTAT

1 1972 1 23 NEVER WORKING

MARRIED FULLTIME

2 1972 2 70 MARRIED RETIRED

3 1972 3 48 MARRIED WORKING
PARTTIME

4 1972 4 27 MARRIED WORKING
FULLTIME

5 1972 5 61 MARRIED KEEPING
HOUSE

6 1972 6 26 NEVER
MARRIED

WORKING
FULLTIME

7 1972 7 28 DIVORCED WORKING
FULLTIME

8 1972 8 27 NEVER
MARRIED

WORKING
FULLTIME

9 1972 9 21 NEVER WORKING

MARRIED PARTTIME

10 1972 10 30 MARRIED WORKING
FULLTIME

 proc print data=input.GSS;

 WHERE year=1988 and marital="MARRIED"

 VAR YEAR ID AGE MARITAL SEX CLASS;

 run;

Table 12: PROC PRINT with WHERE Statement

Obs YEAR ID AGE MARITAL SEX

21947 1988 72 25 MARRIED MALE

21959 1988 84 25 MARRIED FEMA

22119 1988 244 25 MARRIED FEMA

22123 1988 248 25 MARRIED MALE

22324 1988 449 25 MARRIED MALE

22425 1988 550 25 MARRIED MALE

22621 1988 746 25 MARRIED FEMA

22688 1988 813 25 MARRIED MALE

22711 1988 836 25 MARRIED FEMA

22723 1988 848 25 MARRIED MALE

22863 1988 988 25 MARRIED MALE

22990 1988 1115 25 MARRIED FEMA

23078 1988 1203 25 MARRIED FEMA

23183 1988 1308 25 MARRIED MALE

23200 1988 1325 25 MARRIED FEMA

The UNIVARIATE procedure prints summary statistics for every
numeric variable in your data set, such as N, mean, median,
mode, standard deviation, variance, skewness, and extreme
values. You can limit the number of variables included in the
results by selecting variables of interest in the VAR statement.
There are additional options that you can use to add graphics,
calculate percentiles, etc. Table 13 displays the results of
running a PROC UNIVARIATE on the Age variable in the GSS
data set.

 proc univariate Data=input.GSS;

 VAR Age;

 run;

Table 13: PROC UNIVARIATE of Age

The UNIVARIATE Procedure

Variable: AGE (Age of respondent)

Moments

N 64586 Sum

Mean 46.0993559 Sum

Obse

Std
Deviation

17.5347031 Varia

Skewness 0.41481013 Kurt

Uncorrected
SS

157112657 Corr

Coeff
Variation

38.0367637 Std E
Mean

Basic Statistical Measures

Location Variability

Mean 46.09936 Std
Deviation

Median 44 Variance

Mode 30 Range

 Interquartil
Range

Tests for Location: Mu0=0

Test Statistic p Value

Student’s
t

t 668.1372 Pr >
|t|

<.0001

Sign M 32293 Pr
>=
|M|

<.0001

Signed
Rank

S 1.04E+09 Pr
>=
|S|

<.0001

Quantiles (Definition 5

Level Quantil

100% Max 89

99% 86

95% 78

90% 72

75% Q3 59

50%
Median

44

25% Q1 31

10% 24

5% 22

1% 19

0% Min 18

Extreme Observations

Lowest Highest

Value Obs Value Obs

18 64538 89 64264

18 64521 89 64545

18 64408 89 64611

18 64344 89 64735

18 64304 89 64807

Missing Values

Missing Count Percent Of

Value All
Obs

Missin
Obs

. 228 0.35 100

5.2 Summarizing Data

The MEANS procedure outputs basic summary statistics like
mean, max, min, and range for numeric variables. You can
select which variables you want the summary statistics
calculated for in the VAR statement. You can also add a CLASS

statement if you would like the statistics calculated separately
for each group of another variable. For example, if I want the
summary statistics for Age in my data set but want the results
reported separately based on Sex, I would specify Age in the
VAR statement and Sex in the CLASS statement (Table 14).

 proc means data=input.GSS;

 VAR Age;

 CLASS Sex;

 run;

Table 14: PROC MEANS of Age by Sex in GSS

Analysis Variable : AGE of respondent

SEX N
Obs

N Mean Std Dev

FEMALE 36200 36044 46.64199 17.86597

MALE 28614 28542 45.41409 17.08291

The FREQ procedure displays how many times a specific value
occurs in the data set for each variable listed in the TABLES
statement. For example, if I run a PROC FREQ on the variable
PartyID, the output table would tell me how many people in my
data set were Democrats (strong versus not strong),
Republicans (strong versus not strong), Independents (leaning
Democrat, leaning Republican, or true Independents), or Other
(Table 15). Be careful not to run a PROC FREQ on a variable
with many different values, especially numbers with decimal
places. SAS outputs each value that it finds in a column and
counts how many times that value appears. This is super
helpful with character variables with 20 or fewer discrete
categories. However, SAS can stop processing and write an
error message in the log if you ask it to run a frequency on a
variable with over 100 different categories.

 proc freq data=input.GSS;

 TABLES PartyID;

 run;

Table 15: PROC FREQ of PartyID Variable in GSS

PARTYID Frequency Percent Cumulati
Frequenc

Frequenc

IND,NEAR
DEM

7792 12.1 7792

IND,NEAR REP 5721 8.88 13513

INDEPENDENT 9888 15.35 23401

NOT STR
DEMOCRAT

13294 20.64 36695

NOT STR
REPUBLICAN

9933 15.42 46628

OTHER PARTY 1072 1.66 47700

STRONG
DEMOCRAT

10378 16.12 58078

STRONG
REPUBLICAN

6318 9.81 64396

Frequency Missing = 418

The TABULATE procedure is helpful if you’d like to produce
two- or three-dimensional tables. Perhaps you are interested in
how Party ID differs by Sex. To create a table that has rows for
each PartyID and columns for Sex, use the TABULATE
procedure and list PartyID and Sex in the CLASS and TABLE
statements (Table 16). Dimensions in PROC TABULATE are
delimited by a comma. Whichever variable you specify first
(before the comma) in a two-dimensional TABLE statement will
be the row variable, while the second variable (after the
comma) will be the column variable.

 proc tabulate data=input.GSS;

 CLASS PartyID Sex;

 TABLE PartyID, Sex;

 run;

Table 16: PROC TABULATE of
PartyID by Sex in GSS

SEX

FEMALE MAL

N N

PARTYID

4086 3706
IND,NEAR
DEM

IND,NEAR REP 2716 3005

INDEPENDENT 5561 4327

NOT STR
DEMOCRAT

8084 5210

NOT STR
REPUBLICAN

5468 4465

OTHER PARTY 479 593

STRONG
DEMOCRAT

6244 4134

STRONG
REPUBLICAN

3312 3006

Let’s say you would like to further distinguish your results by
Race. You would need to create a three-dimensional table. To do
this, add Race as the first variable in the CLASS and TABLE
statements. By specifying Race first in the TABLE statement, you
are classifying it as the page variable, while PartyID remains
the row variable, and Sex remains the column variable. Table
17 shows that this code prints separate tables for each category
of Race by PartyID and Sex.

 proc tabulate data=input.GSS;

 CLASS PartyID Sex Race;

 TABLE Race, PartyID, Sex;

 run;

Table 17: PROC TABULATE of
PartyID by Sex and Race in GSS
(Multiple Tables)

RACE BLACK

SEX

FEMALE MAL

N N

PARTYID

583 489
IND,NEAR
DEM

IND,NEAR REP 160 117

INDEPENDENT 712 450

NOT STR
DEMOCRAT

1570 882

NOT STR
REPUBLICAN

182 146

OTHER PARTY 49 38

STRONG
DEMOCRAT

2246 1301

STRONG 94 71

REPUBLICAN

RACE OTHER

SEX

FEMALE MAL

N N

PARTYID

232 254
IND,NEAR
DEM

IND,NEAR REP 117 123

INDEPENDENT 546 441

NOT STR
DEMOCRAT

472 367

NOT STR
REPUBLICAN

155 163

OTHER PARTY 35 34

STRONG
DEMOCRAT

261 190

STRONG
REPUBLICAN

74 84

RACE WHITE

SEX

FEMALE MAL

N N

PARTYID

3271 2963
IND,NEAR
DEM

IND,NEAR REP 2439 2765

INDEPENDENT 4303 3436

NOT STR
DEMOCRAT

6042 3961

NOT STR
REPUBLICAN

5131 4156

OTHER PARTY 395 521

STRONG
DEMOCRAT

3737 2643

STRONG
REPUBLICAN

3144 2851

You can use many formatting options with PROC TABULATE to
create more complex tables. Two important options include the
* symbol to separate multiple column or row variables and the
ALL keyword to generate summary statistics for variables in a
specific dimension. In this example, the TABLE statement

includes PartyID as the row variable and Sex*Race as the two
column variables with the keyword ALL. Table 18 shows the
resulting table, which displays the same information as Table
17, but in a layout that is easier to read at a glance. Table 18 also
includes a summary column called All at the end that contains
the total number of people in each PartyID category.

 proc tabulate data=input.GSS;

 CLASS PartyID Sex Race;

 TABLE PartyID, Sex*Race all;

 run;

Table 18: PROC TABULATE of PartyID by Sex and Race

SEX

FEMALE MA

RACE RA

BLACK OTHER WHITE BLA

N N N N

PARTYID

583 232 3271 489
IND,NEAR
DEM

IND,NEAR REP 160 117 2439 117

INDEPENDENT 712 546 4303 450

NOT STR
DEMOCRAT

1570 472 6042 882

NOT STR
REPUBLICAN

182 155 5131 146

OTHER PARTY 49 35 395 38

STRONG
DEMOCRAT

2246 261 3737 130

STRONG
REPUBLICAN

94 74 3144 71

Part Two: Coding with SAS

6 Data Transformations

Now that you know what your data looks like, you are ready to
make changes to your data based on your business needs. Data
transformations can include operations like rounding values,
creating or calculating new variables, concatenating
(combining) two variables into a single new variable, or
transforming numeric values into character values.

It is good practice not to overwrite your original variables with
the data transformations that you perform. Instead, create a
new variable that you can compare against the original
variable. This enables you to make sure the transformation
worked the way you intended and to make different
transformations later using the original variable if someone
asks for a change or an additional calculation. You can always
drop the original variable from the final data, but at least the
variable still exists in your program if you need to make any
quick adjustments.

The transformations listed in this section typically occur when
working with a single data table. We will talk about merging
and combining data tables in another section.

6.1 Sorting and De-duplicating Data

Sorting data is one of the most frequent and useful procedures I
use in SAS. Sorting rows enables you to easily visualize your
data in an order that makes sense to you and/or the reader of
your output. For example, you might want to sort your data file
by family name to look up a record for a particular person
easily. I often sort data at the end of my DATA steps and then
look at the Output Data tab to make sure the DATA step I just
ran did what I think I coded it to do.

I also use sorting when I de-duplicate records. De-duplication is
extremely useful for removing repeat records, but I use it
primarily to identify the primary ID on a table. Every data table
should be unique by a single ID field or at least by a
combination of several fields in the data set. What I mean by
unique is that each row/observation in the data set can be
identified by this ID field or variable combination. No other row
has the same value (or combination of values) as another row
in the ID column(s).

For example, a data set with test scores might be unique by the
student ID (each student has a single row in the data set with
one column displaying their unique student ID and another
representing their test score). A weekly time sheet log, on the
other hand, might be unique by employee ID, date, and punch
in time. This is because the employee likely clocks in more than

once during the week, so you must look at each employee, date,
and punch in time to uniquely identify each row in the data set
representing a unique punch in. An employee ID does not
uniquely identify a record. Nor does the punch in time or date.
You need all three fields.

Knowing what variable(s) your table is unique by is imperative
if you want to merge it with other data tables later. If you do not
use the correct ID fields, you could lose important data or
accidentally duplicate or mismatch data pieces that should not
go together. Understanding what variable(s) a data set is
unique by is the most important part of data analytics.
Thank you for coming to my TED Talk.

Now, let’s walk through an example together. The code below
would take a data set called Claim, sort it by PatientID, Date,
and ClaimID, and save the resulting, sorted data set as
Claims_Sorted (Table 19). This data set is sorted by PatientID
first, meaning all of the records for a patient are now grouped
together starting with the patient with the lowest ID number
and moving down the list with the second highest number, etc.
Then, within each PatientID, the data is sorted by Date, meaning
that the claim that occurred first for that patient will occur on
the first row, followed by the claim that occurred second, and so
on. Adding ClaimID as the last variable in the sort means that if

two claims for a patient happened to occur on the same day, the
lowest ClaimID is on the first row and the larger ClaimID is on
the second row.

 proc sort data=input.Claim out=Claims_Sorted;

 by PatientID Date ClaimID;

 run;

Table 19: Claims_Sorted Data Set

PatientID ClaimID Ctype Date C

221923797 21460513062 755 05/17/2022 F

567660147 80995718432 177 11/12/2021 P
T

567660147 86902627542 222 11/12/2021 X
S

774658165 91833838898 755 05/28/2021 F

811279234 39343015857 177 09/05/2021 P

T

811279234 75217985959 300 12/09/2021 M

811279234 50564174591 496 03/31/2022 X
F

935472958 90557924941 562 10/31/2020 L

935472958 62369319156 41 02/18/2021 A
P
E

Once the data is sorted, the second PROC SORT runs the
NODUPKEY option BY PatientID, meaning that it reads in the
Claims_Sorted data and outputs a data set called Claims_ND that
only has one record per patient (Table 20). Based on the sort in
the previous step, it is keeping only the first claim for that
patient, as the NODUPKEY keeps the first instance (or row) for
whatever you de-duplicate by.

 proc sort data=claims_sorted out=claims_nd nod

 by PatientID;

 run;

;

Table 20: De-duplicated Claims Data Set

PatientID ClaimID Ctype Date C

221923797 21460513062 755 05/17/2022 F

567660147 80995718432 177 11/12/2021 P
T

774658165 91833838898 755 05/28/2021 F

811279234 39343015857 177 09/05/2021 P
T

935472958 90557924941 562 10/31/2020 L

If you add Date to the BY statement in the NODUPKEY sort, this
will produce a unique list on PatientID and Date, meaning you
will have one row for every patient/date combo, but in
instances where there were multiple claims in one day, it will
only keep the first (lowest ClaimID) claim for the patient on that
day.

6.2 Calculating New Variables

When coding, the need often arises to create a new variable
based on one or more variables that are already in your data
set. For example, you might want to create a new Income
variable that copies all values for Income and then replaces
missing values with your sample’s median Income. Or perhaps
you want to calculate a Total column in your data set based on a
Price column that you need to multiply by a state’s sales tax to
get the total cost. There are many ways to create variables in
SAS, but the easiest is to define them in a DATA step. Enter your
new variable name, =, and the expression needed to calculate
the values of the new variable.

In this example, the CATX function combines the First_Name
and Last_Name variables, separated by the specified delimiter
of space (‘ ‘), into one variable called FullName (Table 21). It is
good practice to create a new variable name (not already in the
data set) so that you do not overwrite any original data values.
Also, start with a LENGTH statement when you create a
character variable to avoid truncating values. Adding the
LENGTH statement before your SET statement will put your
newly created variable as the first column of your output data
set since you define its characteristics before reading in the
input data set. If the LENGTH statement comes after the SET

statement (but before you create your variable), then your
variable will appear at the end of your data set. Only the
variables of interest are kept in the output data set.

 data Create_Vars (keep=First_name Last_Name F

 Set input.Donations_JUL;

 Length FullName $50.;

 FullName=CATX(' ',First_Name, Last_Name

 run;

Table 21: Calculate New Variable
Example

First_Name Last_Name FullN

John Brown John
Brown

Kelsey Green Kelsey
Green

Sherlock Holmes Sherlo
Holm

You can also create variables using conditional logic statements
in DATA steps and with PROC SQL. See the Conditional Logic
section for more information.

6.3 Filtering

The WHERE statement is used for filtering rows. If the
expression included in this statement is true for a row on the
data set you are reading in, SAS outputs the row. If the
statement is false for a row on the input data set, that row is
excluded and does not appear in the output. Common operators
in a WHERE statement include:

= or EQ (equals)
^= or ~= or NE (does not equal)
> or GT (greater than)
< or LT (less than)
>= or GE (greater than or equal to)
<= or LE (less than or equal to)

Also, the word NOT, the ^ symbol, or the ~ symbol can all be
used to indicate the opposite of the operator that you use. For
example, you might want SAS to keep all records where a

variable is NOT equal to missing (e.g., ^= . for numeric variables
or ~= ‘ ‘ for character variables).

IN is also a very useful operator that enables you to choose a
list of values that should be included in the output data set. For
example, you could say where ice-cream flavor is chocolate,
vanilla, or strawberry. Only the rows with one of these three
flavors will be included in your results. All other flavors are
excluded. The values must be enclosed in quotation marks if
they are character values and should be separated by a space or
comma. All values should be enclosed in parentheses. For
example, IN (2, 3, 4) for numeric variables or IN (“CHOCOLATE”
“VANILLA” “STRAWBERRY”) for character variables. The IN
operator can be paired with NOT to indicate which rows should
not be output.

You can create compound conditions with AND / OR keywords.
You would use AND or an ampersand if a row must meet all
conditions specified in your WHERE statement. You would use
OR or the symbols | or ! if a row only needs to meet one
condition in the list to be included.

This example uses a WHERE statement to include records
where the year is equal to 2006, the respondent’s age is equal to

32, their degree includes “BACHELOR” or “GRADUATE”, and
their Class is not equal to missing (Table 22).

 Data And_Example;

 set input.GSS;

 where year=2006 and age=32 and degree

 "GRADUATE")and class^=" ";

 drop marital partyid;

 run;

Table 22: Filtering using WHERE / AND Operator Exam

YEAR ID AGE WRKSTAT DEGREE S

2006 10 32 WORKING
FULLTIME

GRADUATE F

2006 86 32 KEEPING
HOUSE

GRADUATE F

2006 352 32 WORKING
FULLTIME

BACHELOR F

2006 407 32 WORKING
FULLTIME

BACHELOR F

2006 544 32 WORKING
FULLTIME

BACHELOR M

2006 965 32 UNEMPL,
LAID OFF

GRADUATE F

2006 1665 32 WORKING
FULLTIME

BACHELOR F

2006 1699 32 WORKING

FULLTIME

GRADUATE M

2006 2097 32 WORKING
FULLTIME

BACHELOR M

2006 2415 32 UNEMPL,
LAID OFF

BACHELOR M

2006 2563 32 WORKING
FULLTIME

BACHELOR F

2006 2591 32 WORKING
FULLTIME

BACHELOR M

2006 2859 32 WORKING
FULLTIME

BACHELOR M

2006 3354 32 KEEPING
HOUSE

BACHELOR F

2006 3724 32 WORKING
FULLTIME

GRADUATE F

2006 4113 32 WORKING

FULLTIME

BACHELOR M

2006 4390 32 WORKING
FULLTIME

BACHELOR M

It is important to note that these operators can be used outside
of the WHERE statement, like when applying Conditional Logic.

6.4 Conditional Logic

There are times when you want to do calculations only if a
certain condition is met. For example, if you wanted to see
whether a sample of individuals were eligible to take a follow
up survey about their visit, you might want to create a column
called Eligible with a value of 1 if the individual is 18 or older
and 0 if the person is younger than 18 (Table 23). To accomplish
this, you can use an IF-THEN statement.

 data Eligible_Sample;

 Set input.health_chart;

 IF Age >= 18 THEN Eligible=1;

 ELSE Eligible=0;

 run;

Table 23: Conditional Logic Examp

Patient_ID Height Weight

8727172 59 118

6015638 66 149

9242748 56 89

1135601 63 152

3651067 74 210

4437097 62 100

6417249 67 145

9462800 60 133

9364322 72 283

In some cases, you might want to do more than one thing if a
certain criterion is met. For example, you might want to assign
a Language field and a Currency field based on the Country
listed in the following data set (Table 24).

Table 24: Travel Destin
Set

Country City

Usa Philadelp

Usa Boston

Germany Munich

Germany Berlin

Kyrgyzstan Bishkek

Italy Rome

Austria Vienna

To do this, you would use an IF-THEN DO statement. All DO
statements must be accompanied by an END statement to tell
SAS to stop processing the DO statement.

In this example, SAS creates a Language variable and a
Currency variable. It sets the Language to “English” for the
records where the uppercase of Country is “USA” and the
Currency to “Dollar”. For records where the uppercase of
Country is “GERMANY” or “AUSTRIA”, SAS sets the Language to
“German” and the Currency to “Euro”. “ITALY” records are
coded as having a Language of “Italian” and a Currency of

“Euro”. The ELSE DO statement codes all other records that do
not have an uppercase Country value of “USA”, “GERMANY”,
“AUSTRIA”, or “ITALY” as “Other” Language and Currency
(Table 25).

 data Travel_Needs;

 set input.Travel_Destinations;

 length Language $25. Currency $15.;

 if upcase(Country) = "USA" then do;

 Language="English";

 Currency="Dollar";

 end;

 else if upcase(Country) in("GERMANY" "A

 Language="German";

 Currency="Euro";

 end;

 else if upcase(Country) = "ITALY" then

 Language="Italian";

 Currency="Euro";

 end;

 else do;

 Language="Other";

Currency="Other";

 Currency= Other ;

 end;

 run;

Table 25: IF THEN DO Example

Country City Miles

Usa Philadelphia 4,117

Usa Boston 3,837

Germany Munich 1

Germany Berlin 363

Kyrgyzstan Bishkek 4,200

Italy Rome 587

Austria Vienna 270

Note: Remember to set a length first if you are creating a
character variable with your conditional logic. If you don’t, SAS

will automatically set the length to the first value generated for
the field and truncate any values longer than this.

To apply conditional logic using PROC SQL, you will use a CASE
WHEN statement. You will learn more about this syntax in the
PROC SQL section. For this example, notice the statement begins
with CASE WHEN, defines a condition (Miles < 1), and sets a
value for a new variable if that condition is met (“Walk”). It
continues with WHEN statements defining other conditions and
subsequent values. When the only records left that have not
met the criteria of the previous statements should all be coded
the same value for the new variable, use the ELSE statement.
Once all categories for the new variable have been defined, use
the keyword END to signify that there are no more categories
and then the AS keyword and the name of your new variable
(Transportation). Table 26 displays the results.

 proc sql;

 create table Travel as

 select *,

 case when Miles <= 1 then 'Walk'

 when Miles >= 600 then 'Fly'

 else 'Drive' end as Transportation

 from input.Travel_Destinations;

 quit;

Table 26: CASE WHEN Example

Country City Miles

Usa Philadelphia 4,117

Usa Boston 3,837

Germany Munich 1

Germany Berlin 363

Kyrgyzstan Bishkek 4,200

Italy Rome 587

Austria Vienna 270

Remember that you can use all the operators listed in the
Filtering section above when creating your conditional logic
rules.

6.5 Manipulating Values

SAS has hundreds of functions that enable you to perform
calculations on numeric and date values or manipulate
character values11. When appropriate, functions can be used to
turn character values into numeric and numeric values into
character. Functions start with the function name (e.g., UPCASE)
followed by a set of required and optional arguments separated
by commas and enclosed in parentheses. Functions can be used
on a single, specified numeric or character value or applied to
all values in a column when you list a variable name as one of
your arguments.

Functions are often used when creating new variables based on
calculations or manipulations done to one or more original
variables in the data set. An example of this would be creating a
new variable called Name by taking the uppercase values of a
field called Full_Name. If the first observation in your data set
has a Full_Name value of “Amy Conner”, the new Name column
would display “AMY CONNER”. Functions are also frequently
used in conditional logic. For example, you could use the
MISSING function to say that if a value for the variable Income
is missing, it should be replaced with the median Income value
for the data set.

Functions can also be stacked. This means that you can have a
function within a function. The resolved value of the inner

function is used as an argument in the outer function. This
comes in handy when you need to convert a character variable
to numeric before you perform a calculation on the values of
that variable. It can also be used to round the calculation
results, as you will see in the Manipulating Values section.

6.5.1 Character Functions

Character values (often referred to as strings) are case-sensitive
and must be in quotation marks. The following is a list of
common functions used to transform or combine character
values.

SUBSTR: Returns a portion of a character value based on the
start position and length that you specify

SCAN: Returns a section of a character value depending on the
delimiter and position that you specify. Positive numbers
indicate the word position from left to right, while a negative
number represents the word position from right to left.

UPCASE: Makes all letters in a value uppercase

LOWCASE: Makes all letters in a value lowercase

PROPCASE: Makes the first letter in a value uppercase and the
rest of the values lowercase

CAT: Concatenates character values and adds a space between
them. Does not remove leading or trailing blanks.

CATS: Concatenates character values with no space in between
and removes leading and trailing blanks

CATX: Concatenates character values with a custom delimiter
that you specify

COMPRESS: Removes specified characters from character
value. Default removes spaces, but you can specify a list of
characters to remove or use different modifiers to specify all
letters, all numbers, punctuation marks, etc.

INPUT: Transforms character values into numeric values. This
only works if the character value contains only numeric data.

6.5.2 Numeric Functions

Numeric values are not in quotation marks and must only
include digits, decimal points, and negative signs. The following
is a list of common functions used in SAS to transform numeric
values or make calculations.

SUM: Adds values together

MEAN: Calculates the average (mean)

MEDIAN: Calculates the median

RANGE: Calculates the range

MIN: Calculates the minimum

MAX: Calculates the maximum

ROUND: Rounds numeric values to the decimal point that you
specify

PUT: Transforms numeric values into character values

6.5.3 Date Functions

SAS internally records datetime values as the number of
seconds between midnight, January 1, 1960, and the specified
date and time. SAS date values are stored internally as the
number of days between January 1, 1960, and a specified date.
All dates and datetime values are stored as integers that are
positive if they occur after January 1, 1960, and negative
integers if they occur before this date. We rarely see these

integers in our results as dates are typically formatted so that
we can easily interpret them.

When an expression includes a fixed date value, use the SAS
date constant syntax: “ddmmmyyyy”d, where dd represents a 2-
digit day, mmm represents a 3-letter month, and yyyy
represents a 2- or 4-digit year. For example, you might want to
tell SAS to keep all records after “01JUN2020”d.

The following functions can be used to transform date variables
in SAS.

MONTH: Returns a number from 1 to 12 that represents the
month

DAY: Returns a number from 1 to 31 that represents the day of
the month

YEAR: Returns the 4-digit year

MDY: Returns a SAS date value from the month, day, and year
numbers that you input

YRDIF: Calculates the number of years between two dates listed
in the first and second arguments. The 'AGE' option should be
used in the third argument for a precise age using a birthdate

field (first argument) and another date field (second argument
—could be the current date or the date of the interview, etc.).
The 'ACT/ACT' option uses the actual number of days between
the two dates, and then divides the number of days from years
with 365 days by 365 and divides the number of days from
years with 366 days by 366 to get the year difference. You can
also specifically set the number of days in a year to divide by
with the 'ACT/360' or 'ACT/365' options, regardless of the actual
number of days in a specific calendar year. The '30/60' option
calculates the year difference based on an assumed 30-day
calendar month and 360-day year.

DATDIF: Calculates the number of days between two dates
listed in the first and second arguments. You can use all of the
same options as YRDIF in the third argument except for the
'AGE' option.

INTNX: Increments a SAS date by a specified number of
intervals. This function can be used to find the date of next
Tuesday, a date 24 weeks in the future, to subtract 2 quarters
from a date, etc. There can be up to 4 arguments in the INTNX
function. The first is the interval, which can be days, weeks,
months, quarters, or years. The second argument is the date
that you are starting from. The third argument is the number of
intervals by which the date should be incremented (can be

positive or negative). The fourth and final argument is optional
and represents where the date value is aligned within an
interval before being incremented. You can specify 'beginning',
'middle', 'end', and 'sameday', though the default is 'beginning'.

6.5.4 Manipulating Values Example

Here is an example that walks through several data
transformations. This code reads in a data set called
Donations_JUL (Table 27), creates several new variables using
data transformations, and outputs a new data set called
Transformations (Table 28).

Table 27: Donations_JUL Data Set

First_Name Last_Name Address DOB

John Brown
6523 E
Cherry
St

5/22/1957

Kelsey Green
3111
Orange
Ave

3/16/1989

Sherlock Holmes 221B
Baker
Street

1/6/1977

 data Transformations;

 set input.Donations_JUL;

 Substr_Ex=substr(Address, 1, 4);

 Scan_Ex=scan(Address, 2, ' ');

 Upcase_Ex=upcase(First_Name);

 Catx_Ex=catx(' ',First_Name, Last_Name

 Input_Ex=input(compress(Address,' ', 'a

 Sum_Ex=sum(Donation, Merchandise);

 Month_Ex=month(DOB);

 Mdy_Ex=mdy(7,31,2022); /*date of analy

 Yrdif_Ex=round(yrdif(DOB, Mdy_Ex, 'AGE

 Datdif_Ex=datdif(Donation_Date, Mdy_Ex

 Intnx_Ex=intnx('month’, Donation_Date,

 format Mdy_Ex Intnx_Ex mmddyy10.;

 run;

Table 28: Transformations Data Set (Created Variable

Substr_Ex Scan_Ex Upcase_Ex Catx_Ex In

6523 E JOHN
John
Brown

65

3111 Orange KELSEY
Kelsey
Green

31

221B Baker SHERLOCK Sherlock
Holmes

22

The Substr_Ex variable is created using the SUBSTRING
function to extract the first four digits from the Address
variable. The function tells SAS to start reading at position 1
and stop reading after 4 characters have been read in.

Next, the Scan_Ex variable is created by using the SCAN
function on the Address variable and pulling in the second
word. The function specifies that ‘’ (the space character) is the
delimiter used to separate words in Address. Hence, SAS knows
that the second word is the first word after the first space in
Address.

The Upcase_Ex variable is created using the UPCASE function
on the First_Name variable. This makes all letters in the name
capitalized. First_Name and Last_Name are then concatenated
using the CATX function with a space delimiter to generate the
Catx_Ex variable.

The Input_Ex variable uses the INPUT and COMPRESS functions
together to compress out all the upper and lowercase letters in
the Address string (in this case leaving only the digits behind)
and then inputting those numbers to create a numeric variable
rather than a character variable made up of digits.

The code then moves into numeric data transformations. The
Sum_Ex variable adds each donor’s Donation and Merchandise
values to get the total amount spent. The Month_Ex variable
uses the MONTH function to extract the month from the donor’s
DOB, while the MDY function is used to create the variable
Mdy_Ex representing the date of the analysis. The Yeardif_Ex
variable takes the difference between the date of the analysis
(Mdy_Ex) and the donor’s birthday (DOB) to calculate the
donor’s age and then rounds the result to the hundreds place
with the ROUND function. The actual number of days between
the analysis date (Mdy_Ex) and the Donation_Date is calculated
using the DATDIF function, while the INTNX function is used to
create a variable (Intnx_Ex) representing one month after the

donation date for each donor to indicate when each person
should be contacted to request additional donations.

6.6 Formatting

Formats are used to change the way values are displayed in
the data and in reports, but they do not change the underlying
data values. Formats are applied using a FORMAT statement
and contain a period so that SAS knows it is a format and not a
variable name.

There are three generic formats that SAS uses for character,
numeric, and date values. In these formats, w represents the
width of the variable, and d indicates the number of decimal
places. Character variables are typically in the form $w.,
numeric variables are typically in the form w.d, and date
variables are often in the format MMDDYYw. Remember, w
indicates the width, so if a date is in the format MMDDYY8., it
will appear as 04/22/21. Alternatively, the format MMDDYY10.
will be displayed as 04/22/2021 as it allows for a length of ten
characters rather than just eight.

There are many different built-in SAS formats that you can use,
and you can also create your own. I will list a few of the most

popular SAS formats here, but you will definitely want to make
note of the ones that you use most frequently in your work.

If you are dealing with very large numbers, you might want
to use the COMMAw.d format to display commas in your
numeric results.
If you are working with currency values, you can use the
DOLLARw.d format to display the dollar sign in front of your
values.
PERCENTw.d displays values as a percentage.
The Zw.d format adds leading zeros to a number until the
number reaches the specified width.
MMDDYYw. is the most common date format I come across,
though you might need to put a date in DDMMYYw. format or
YYMMDDw. format.

To apply a format to a variable, add a FORMAT statement to
your DATA step, specify the variable name that you want to
apply it to, and then the format that you would like to use. Don’t
forget the period! You can assign multiple formats with a single
FORMAT statement.

Continuing with the data set from the Manipulating Values
section, let’s add some formats12 to these variables to see how
they are displayed differently. Table 29 displays the results.

 data Format;

 set input.Donations_JUL;

 format DOB mmddyy8. Donation_Date YYMMD

 Donation dollar10.2 First_Name $1.

 Merchandise best8. Last_Name $upcase15

 run;

Table 29: Formatted Donations_Jul Data Set

First_Name Last_Name Address DOB D

J BROWN 6523 E
Cherry
St

05/22/57 $

K GREEN 3111
Orange
Ave

03/16/89 $

S HOLMES 221B
Baker
Street

01/06/77 $

Note: Informats are identical to formats except they are
typically used to tell SAS how to import/read data, whereas
formats tell SAS how to display/output data.

6.6.1 User-Defined Formats

While SAS has several built-in formats to choose from, users
often find that they need to create a specific format for their
data to meet their business needs. Maybe you have custom
categories for how Age should be grouped in your data for
reporting purposes. Or perhaps you would like SAS to display
each of your numeric values representing race or gender in
words. Whatever your needs, you can easily create a format
that works for you. To create a format, use the following syntax:

 proc format;

 VALUE format-name

 Data-value-1 = 'Label 1'

 Data-value-2 = 'Label 2';

 run;

The PROC FORMAT statement tells SAS that you are defining
one or more formats. The second statement starts with the
VALUE keyword followed by the name of the format that you

are creating. Your format name should start with a letter or
underscore, not end in a number, not be longer than 32
characters, and not be the same as a format supplied by SAS. If
you are applying the format to a character variable, you will
need to add a $ in front of the format name.

Next, provide the labels that you would like to apply to the
values of a variable in your data set. The original variable
values are found on the left side of the equal sign, and the
associated formatted values are on the right side. Add a
semicolon after your last label, and then add the RUN
statement.

Consider the following data set representing the fictional results
of five people surveyed about their self-rated health (Table 30).
We want to print the data in a more user-friendly format so that
people will better understand what the data means. The
following formats are applied to help clarify the results.

Table 30: Survey Data S

Participant Gender

1 M

2 F

3 M

4 X

5 F

Example 1: Add text format to the numeric values of a variable

 proc format;

 VALUE HEALTH_TXT

 1 = "Poor"

 2 = "Fair"

 3 = "Good"

 4 = "Very Good"

 5 = "Excellent";

 run;

Example 2: Add text format to a range of numeric values of a
variable

 proc format;

 VALUE INCOME_TXT

 LOW - < 25000 = "Low"

 25000 - < 75000 = "Middle"

 75000 - HIGH = "High";

 run;

Example 3: Add text format to character values of a variable

 proc format;

 VALUE $GENDER_TXT

 "M" = "Male"

 "F" = "Female"

 OTHER = "Other";

 run;

While the examples above are broken into three PROC FORMAT
steps, it is possible to define more than one format in a single
PROC FORMAT step. You will need to add multiple VALUE
statements and always add a semicolon after the final label in
each individual format.

Now that the formats have been defined, we can assign these
formats as a property of our Survey variables using a FORMAT

statement in the DATA step.

 data Survey_Formatted;

 SET input.Survey;

 FORMAT Health HEALTH_TXT. Income INCOME

 run;

 proc print data=Survey_Formatted; run;

Any results will now print with the formatted values rather
than the underlying data values (Table 31).

Table 31: Formatted Survey Data Se

Obs Participant Gender In

1 1 Male Lo

2 2 Female H

3 3 Male H

4 4 Other M

5 5 Female M

If you assign a format using the FORMAT statement in a PROC
step, that format will be assigned to results of the procedure but
will not be applied to the underlying data or future DATA or
PROC steps unless reassigned.

6.6.2 Storing User-Defined Formats

All formats are stored in catalogs. When you create a user-
defined format, that format is saved to the Formats catalog in
the WORK library. The format will exist for the duration of your
SAS session but will be deleted when the session ends.
Therefore, every time you start a new session, you will need to
run the PROC FORMAT statement for SAS to be able to properly
reassign the format(s) to your data.

To ensure this is not an issue, many people move their PROC
FORMAT statements to the beginning of the program that uses
these formats. That way, when the program is run in full, the
formats are defined at the beginning of the program and can be
used/applied throughout the rest of the program.

However, some people use user-defined formats in several of
their programs, and do not want to copy and paste these

formats to the beginning of every single program that uses
them. There are a few options here.

My favorite option is to add your user-defined formats to your
autoexec file. An autoexec file is a program that runs every
single time that you open SAS. You want to add things here that
you use frequently and need throughout your programs. For
example, many people add macros or library assignments to
their autoexec file to not have to rerun this code for each
individual program. However, you want to avoid burdening
your autoexec file with a lot of SAS code. If you read in data
sets/perform calculations here, SAS will take forever to start up
because it automatically runs everything in the autoexec file
before you can even start coding. So, save the autoexec for
quick things like system options and assigning frequently used
formats, macros, and LIBNAMES. Editing your autoexec file can
differ depending on what version of SAS you use. You can find it
under Options > Autoexec file in SAS Studio V. In SAS
Enterprise Guide , you can go to Options > SAS Programs,
check the box next to Submit SAS code when server is
connected, click Edit…, and add the code that you want SAS to
run when it connects to the server.

If you have several formats/code snippets that you want SAS to
run that you use in many programs, but you don’t want SAS to

® ®

®

automatically run them every time it opens, you can use
something called a global statement. For this option, you create
a program that defines your formats, sets your macros, and can
even perform common cleaning or analysis steps on your data
sets. Instead of copying this code into several of your programs,
you can simply save this code as a single program, and then tell
SAS to run this program when you are coding in a different
program. Super cool! You can do this by using the global
statement %INCLUDE. Let’s say you create your user-defined
formats program called formats.sas and save it to the following
location: C:\Documents\SAS\frequent\formats.sas. Now, when
you open a new program, you can add a statement at the top
that says:

 %INCLUDE "C:\Documents\SAS\frequent\formats

SAS will find this program and run it in its entirety. Everything
in that program has now been defined and is in your WORK
library. You can continue coding and use any formats defined in
your formats program.

Finally, you can create your own permanent format catalog.
First, use a LIBNAME statement to define the location where

you want your formats saved.

 LIBNAME PERM 'C:\SASPermFiles'

Next, when creating your user-defined formats, define the
catalog location and name in your PROC FORMAT statement to
tell SAS where to permanently save your formats. In this
example, the catalog is called Formats, and the location is the
same as the PERM LIBREF (C:\SASPermFiles).

 proc format LIBRARY=PERM.Formats;

 <user defined format code>;

 run;

Now, you must tell SAS where your format catalog(s) are located
and in what order to search for them.

 OPTIONS FMTSEARCH = (PERM.FORMATS);

SAS now knows to search the Formats catalog in the PERM
library whenever formats are applied to variables in the rest of
the SAS program.

11 To find a list of all SAS functions, visit:
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_
3.5/lefunctionsref/p1q8bq2v0o11n6n1gpij335fqpph.htm

12 The BEST w. format writes as many significant digits as
possible for each value in the width specified.
Sometimes scientific notation is used to retain
information that would otherwise be cut off. Formats
only impact how the data is displayed, they do not
change the actual value stored in SAS.

®

https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/p1q8bq2v0o11n6n1gpij335fqpph.htm

7 Combining and Aggregating Data

There are many different ways to combine (merge) data in SAS.
Before digging into this section, make sure you have read and
understand the Sorting and De-duplicating Data section above. I
cannot stress enough the importance of understanding what
variable(s) your data is unique by. You will also need to
understand what key fields are required for matching data and
how you want to join your data.

It is important to understand conceptually what you want out
of your data merge before you even attempt to start coding.
When combining data, I always ask myself the following
questions:

1. What are each of my data sets unique by, and do I need to de-
duplicate the data before combining?

2. What variables from each data set (if any) am I using to link
these data sets together? In other words, are there key fields I
am matching on?

3. What variables from each data set do I want in the final data
set?

4. What rows do I want to be returned after the merge? Rows
that were included in the first data set only (with information
from data set 2 added), rows that were in the second data set
only (with information from data set 1 added), only the rows
that were in both data sets, or all rows that were in either data
set?

These answers tell me the best way to go about combining the
data.

7.1 Combing Data Using the DATA Step

7.1.1 Appending Data

This simplest case of combining data from two or more tables is
when you need to append (or stack) data from two or more
tables together into one table. Sometimes, you have two tables
with the same variables but different records/rows that must be
combined into one table. This often happens with data that is
collected over time. The following two tables represent received
donations, but one was collected in July (Table 32), whereas the
other was collected in August (Table 33).

Table 32: Donations_JUL Data Set

First_Name Last_Name Address DOB

John Brown
6523 E
Cherry
St

5/22/1957

Kelsey Green
3111
Orange
Ave

3/16/1989

Sherlock Holmes 221B
Baker
Street

1/6/1977

Table 33: Donations_AUG Data Set

First_Name Last_Name Address DOB

John Brown
6523 E
Cherry
St

5/22/1957

Kelsey Green
3111
Orange
Ave

3/16/1989

Sherlock Holmes 221B
Baker
Street

1/6/1977

Essentially, all we want to do here is stack these two tables on
top of each other so that all the donation data is in one table
with six rows rather than in two tables with three rows each.
Each row is unique, so we do not need to de-duplicate or merge
the two data sets together on an ID field to pull in additional
columns. Instead, we want all rows and all columns from both
data sets. To do this, put both data set names in a single SET
statement.

 data Donations_All;

 set input.Donations_JUL input.Donations

 run;

Table 34: Appending Data – Donations_All Data Set

First_Name Last_Name Address DOB

John Brown 6523 E
Cherry
St

5/22/1957

Kelsey Green 3111
Orange
Ave

3/16/1989

Sherlock Holmes 221B
Baker
Street

1/6/1977

John Brown 6523 E
Cherry
St

5/22/1957

Kelsey Green 3111
Orange
Ave

3/16/1989

Sherlock Holmes 221B
Baker
Street

1/6/1977

Street

Now, we have a single data set called Donations_All with all
rows from Donations_JUL and Donations_AUG stacked on top of
each other (Table 34). You can list all of the data sets you want
to stack in the SET statement.

PROC APPEND also enables you to stack data sets, but rather
than creating a new data set with all of the combined data, it
overwrites and updates the original base table to contain all of
the records. The APPEND procedure is more efficient when the
base data set is large.

7.1.2 One-to-One Merge

The next type of DATA step merge is called a one-to-one merge.
A one-to-one merge means that the ID that you are matching
your data sets on is unique in each data set. In other words,
each ID value only has one row in data set 1 and one row in
data set 2. This merge is useful when you have two data sets
with the same unique id field(s), and you need to add additional
information (columns) to one of the tables.

The basic syntax for a DATA step merge is below.

 data output-table-name;

 merge input-table-name1 input-table-nam

 by column(s);

 run;

When merging data using the MERGE statement, you must
ensure that the variables that you are joining on (also known as
the BY variables) between two (or more) data sets have the
same name and data type, and that the data sets are all sorted
by the variable(s) that you are merging on.

If a variable name exists on both data sets, the column in the
first data set will be overwritten with the values in the second
data set in the output table. This is fine for the BY variables that
you are matching on but could have unintended consequences
for any variables you are not matching on.

For example, let’s say we want to merge the Donations_JUL and
Donations_AUG data sets. We want the output table to have
three rows (one for each donor) and include the Donation
column for the July data set and the Donation column for the
August data set. Without renaming at least one of the Donation
columns when merging, this data would result in the second
data set’s Donation value overwriting the first data set’s
Donation value (Table 35).

 proc sort data=input.Donations_JUL out=Sort_JU

 by First_Name Last_Name DOB; run;

 proc sort data=input.Donations_AUG out=Sort_AU

 by First_Name Last_Name DOB; run;

 data Donations_Merged ;

 merge Sort_JUL Sort_AUG ;

 by First_Name Last_Name DOB;

 run;

Table 35: Bad DATA Step Merge

First_Name Last_Name Address DOB

John Brown 6523 E
Cherry
St

05/22/1957

Kelsey Green 3111
Orange
Ave

03/16/1989

Sherlock Holmes 221B
Baker

01/06/1977

Street

Since all of the column names in the first data set
(Donations_JUL) are the same as the column names in the
second data set (Donations_AUG), the columns in
Donations_AUG overwrite all of the columns in Donations_JUL.
This is not the output that we are looking for. We want one
Donation column from the July data set and the other Donation
column from the August data set to show up together in the
final output table. To do this, let’s rename and relabel the
Donation columns and drop the information that we do not
need (Table 36).

 proc sort data=input.Donations_JUL out=Sort_JU

 by First_Name Last_Name DOB; run;

 proc sort data=input.Donations_AUG out=Sort_AU

 by First_Name Last_Name DOB; run;

 data Donations_Merged (drop=Donation_Date Mer

 merge Sort_JUL (rename=(Donation=Donati

 Sort_AUG (rename=(Donation=Don

 by First_Name Last_Name DOB;

 label Donation_JUL='July Donations' Don

 Donations';

 run;

Table 36: Donations_Merged Data Set

First_Name Last_Name Address DOB

John Brown 6523 E
Cherry
St

05/22/1957

Kelsey Green 3111
Orange
Ave

03/16/1989

Sherlock Holmes 221B
Baker
Street

01/06/1977

That’s better. Since we renamed the Donations column in the
Donations_JUL data set to Donations_JUL, the renamed
Donations_AUG column did not overwrite it because it had a
different name.

7.1.3 One-to-Many Merge

The most complex DATA step merge is called the one-to-many
merge (or many-to-one). This means that on one data set, there
are many rows with the same ID value that you are merging on,
while the other data set has only one row for each ID value.

For example, let’s say you have a data set called Claim that
contains patient claim data (Table 37). Your data set is unique
by the ClaimID field. This means that the same patient
(PatientID) might appear in multiple rows if they have more
than one claim. The ClaimID column, however, is unique as
each value is never repeated on any other row. The data set also
has a variable called Date, representing the date of the claim,
and Ctype, a numeric field with a number from 1 to 900,
representing the type of procedure the patient received.
Looking only at this data set, it is impossible to know what these
procedures are as they are only represented as numeric codes.

Table 37: Claim Data Set

PatientID ClaimID Date

221923797 21460513062 755

567660147 80995718432 177

567660147 86902627542 222

774658165 91833838898 755

811279234 39343015857 177

811279234 75217985959 300

811279234 50564174591 496

935472958 90557924941 562

935472958 62369319156 41

Let’s say you have another data set called Claim_Type
containing one variable called Ctype and one called Claim_Desc
(Table 38). This table is unique by Ctype and lists the numbers
1-900 with their associated claim description in the Claim_Desc
field. Rather than showing all 900 rows, the example data set
below highlights a few selected rows to illustrate the merge
process.

Table 38:

Claim_Type Data Set

Ctype Claim_Desc

41 Annual
Physical
Exam

177 Physical
Therapy

222 X-Ray
Shoulder

300 MRI Spine

496 X-Ray
Femur

562 Lipid Panel

755 Flu Vaccine

Now that you have a separate data set that tells you what each
Ctype value represents, you want to merge the Claim_Desc
column from the Claim_Type data set onto your Claim data set
so that you actually know what all of the Ctype codes mean. In
this scenario, you would want to merge the two data sets on the
Ctype variable and pull in the Claim_Desc field from the
Claim_Type data set (Table 39).

 proc sort data=input.Claim out=sort_claim; by

 proc sort data=input.Claim_Type out=sort_claim

 data Merged_Claims;

 merge sort_claim sort_claim_type;

 by Ctype;

 proc sort; by PatientID Date;

 run;

Table 39: Merged Claims

PatientID ClaimID Ctype Date C

221923797 21460513062 755 05/17/2022 F

567660147 80995718432 177 11/12/2021 P
T

567660147 86902627542 222 11/12/2021 X
S

774658165 91833838898 755 05/28/2021 F

811279234 39343015857 177 09/05/2021 P
T

811279234 75217985959 300 12/09/2021 M

811279234 50564174591 496 03/31/2022 X
F

935472958 90557924941 562 10/31/2020 L

935472958 62369319156 41 02/18/2021 A
P
E

7.2 PROC SQL

7.2.1 Types of Joins

The most complex part of merging data using PROC SQL is
usually identifying the type of join you want. Before we get into
the SAS syntax for PROC SQL, let’s walk through a conceptual
example of each of the four joins: left join, right join, inner join,
and full join. The tables below represent two data sets that we
want to join (Table 40).

Table 40: Jobs and Salaries Data Se

Data Set 1: Jobs

Name Job

Data
Salar

Name

Table 40: Jobs and Salaries Data SeAshley Teller

Emma ManagerData Set 1: Jobs

Name JobJohn Accountant

Emma

John

Susan

7.2.1.1 Left Join

Let’s say your HR representative wants to see a list of each
employee that has a job title (all rows in data set 1) with their
associated salary information appended on when available. To
get this list, you would left join the Jobs and Salaries data sets
matching on employee Name. A left join returns all rows in data
set 1 (Jobs) and appends on any requested information from
data set 2 (Salaries) when available. This would result in the
following table (Table 41).

Table 41: Left Join of Jobs and
Salaries Data Sets

Left Joined Data

Name Job Salary

Ashley Teller .

Emma Manager $100,000

John Accountant $55,000

Notice that Ashley still appears in the data set using a left join
because a record for her did exist in data set 1 even though
there was no associated record for her in data set 2. Since she
was not in the Salaries data set, a salary was not found for her.
Therefore, she is assigned a Salary value of missing. As a
reminder from the Values section, missing numeric values are
represented by a period in SAS.

7.2.1.2 Right Join

Alternatively, the HR representative might want a report of all
known employees with salaries at the bank (all rows in data set
2) with job titles appended, when available. To get this list, you
would right join the Jobs and Salaries data sets on employee
Name. This will return all rows in data set 2 and add

information from data set 1 when available. The results look
like this (Table 42).

Table 42: Right Join of Jobs and
Salaries Data Sets

Right Joined Data

Name Salary Job

Emma $100,000 Manager

John $55,000 Accountant

Susan $40,000

When using a right join, Ashley no longer appears in the
merged data set (because she does not have Salary
information), but Susan does. Since Susan is not in data set 1,
however, the Job field is blank/missing for her in the merged
data set. As a reminder, missing character variables are
represented by a space in SAS.

7.2.1.3 Inner Join

Your HR manager might want only the list of employees with a
known job title and salary. In this case, you would inner join the
Jobs data set with the Salaries data set on Name. This will
return only the records on data set 1 that also existed in data set
2 (Table 43).

Table 43: Inner Join of Jobs and
Salaries Data Sets

Inner Joined Data

Name Job Salary

Emma Manager $100,000

John Accountant $55,000

Only Emma and John had both Job and Salary information.
Ashley and Susan were dropped from the merged data set since
they were not in both input data sets.

7.2.1.4 Full Join

Finally, your HR representative might want to know all
available information so that he can work on filling in any

missing data. In this case, you should do a full join on Name so
that all rows from data set 1 and all rows from data set 2 are
included (Table 44).

Table 44: Full Join of Jobs and
Salaries Data Sets

Full Joined Data

Name Job Salary

Ashley Teller .

Emma Manager $100,000

John Accountant $55,000

Susan $40,000

All employees are included in the merged data set and have
missing values where they did not have a Name match on the
other data set.

Before you start coding, always walk through what is needed
conceptually and what type of join you need to achieve the
desired result. As data analysts, we often get requests to merge
data with little instruction on how to join it and what the
resulting data will be used for. Don’t be afraid to ask about the
goals/purpose of the merged data set to make sure you provide
the most useful information.

For example, suppose a client asks you to merge the jobs and
salaries data. In this case, they likely will not understand the
question if you ask them what kind of join you should do. But
you could ask whether they want all employee information,
even if there is missing information, or whether they only want
data for employees with both job and salary information.

7.2.2 PROC SQL Syntax

My preferred method for merging data in SAS is PROC SQL,
which enables you to pick and choose what variables you want
from data sets. Sorting is not necessary, and the variables that
you are matching on are not required to have the same name. A
PROC SQL step is structured differently than a DATA step and
ends with a QUIT statement rather than a RUN statement. Since
there is a lot of flexibility in which variables you can pull in, it
is good practice to specify which data set you are referring to

when referencing a particular variable. For example, if both
data sets have a variable named Income, you will need to
specify if you want SAS to select the Income variable from data
set 1 or the Income variable from data set 2. PROC SQL enables
you to nickname each table so that you do not have to write the
full name of the table out every time you reference a variable
from that table. To nickname a table, enter the table name in
the FROM clause and then type AS and the name that you want
to nickname the table. I typically nickname my first table a, my
second table b, and so on. I use a one-letter nickname for
efficiency. But you can nickname your tables whatever you like,
as long as it follows SAS naming conventions.

 proc sql;

 CREATE TABLE output-table-name AS

 SELECT column(s)

 FROM input-table-name AS nickname

 <join type input-table-name2 AS nicknam

 ON column(s)

 WHERE expression

 GROUP BY column(s)

 HAVING expression

 ORDER BY column(s);

 quit;

In a typical PROC SQL step, you start with a CREATE TABLE
statement that names the output table that you are creating. If
you leave this statement out, SAS will print the table results to
the results viewer rather than create a table in the WORK
library. This can be problematic when dealing with large data
sets.

The SELECT statement tells SAS which variables you want to
pull from one or more tables. Since you can pull variables from
multiple tables simultaneously, you must start with the table
name, add a period, and then the variable name. Alternatively,
you can use the table nickname, period, and variable name
denotation (i.e., SELECT student.student_ID or SELECT
a.student_ID). If you want to name the variable something
different or are calculating a variable, you will use the AS
keyword to name the variable (i.e., a.StudentID as ID or
max(a.score) as max_score).

The FROM clause tells SAS what input tables you want to read
in and specifies the join criteria (left, right, inner, full) when
merging tables. You can nickname your tables with the AS
keyword to use shorthand when referencing any variables from
that table throughout your PROC SQL step.

The ON clause provides the name of the variable(s) that the
data sets are being matched on.

The WHERE clause tells SAS if you want to apply a filter to the
records that you are reading in from the input table(s). Be sure
to specify the table or table nickname if you filter on particular
variables (i.e., WHERE a.year=2002 and b.contribution>25).

The GROUP BY clause enables you to aggregate and group your
data by one or more specified variables. For example, if you
have a table with 10 exam records for each student, a GROUP
BY clause would enable you to output one record for each
student with their average test score. See the PROC SQL GROUP
BY Example section below for more details.

Like the WHERE clause, the HAVING clause is also a way to
filter rows. But rather than filtering rows out of the input tables,
the HAVING clause reads in all rows from the input tables but
filters out rows that do not meet specific criteria before writing
it out to the output table.

The ORDER BY clause is the same as a SORT procedure. It tells
SAS which variables to sort the output table by.

7.2.2.1 PROC SQL Data Merge Example

Let’s say you have a data set called Student_Demographic, and
you want to merge on all exam info for those students from a
file called Assessment. The Student_Demographic table has the
following variables: StudentID, Race, Gender, and Age (Table
45). This file is unique by StudentID.

Table 45: Student_Demographic Da
Set

StudentID Race Gender

MU100256 Black Female

SG547868 White Female

FR364701 Hispanic Male

GR259262 White Male

The Assessment file has the following variables: StudentID,
Exam_Date, Subject, Score (Table 46). StudentID is not unique in
this file as a student might have multiple test scores. This file is
unique by the combination of StudentID and Subject since each
student has one test score in each subject.

Table 46: Assessment Data Set

StudentID Exam_Date Subjec

MU100256 11/22/2019 ELA

MU100256 3/19/2019 MATH

MU100256 5/20/2019 SCIENC

SG547868 11/22/2019 ELA

SG547868 3/19/2019 MATH

SG547868 5/20/2019 SCIENC

FR364701 11/22/2019 ELA

FR364701 3/19/2019 MATH

FR364701 5/20/2019 SCIENC

KR159435 11/22/2019 ELA

KR159435 3/19/2019 MATH

KR159435 5/20/2019 SCIENC

To match these data sets together, you would use the StudentID
field. This is a one-to-many merge since StudentID is unique in
the demographic table but repeats in the assessment file. If you
want to only keep records for students with both a
demographic record and an assessment record (inner join), the
code would be:

 proc sql;

 create table Demo_Exam as

 select a.StudentID, a.Race, a.Gender, b

 b.Subject, b.Score

 from input.Student_Demographic as a

 inner join input.Assessment as b

 on a.StudentID=b.StudentID;

 quit;

The resulting table contains records for only the students that
existed on both files (Table 47). Adding a HAVING clause of

Score > . would remove the observation below with a missing
assessment score (StudentID= SG547868).

Table 47: Demo_Exam Data Set (Inner Join)

StudentID Race Gender Exam_Date Su

MU100256 Black Female 11/22/2019 EL

MU100256 Black Female 03/19/2019 M

MU100256 Black Female 05/20/2019 SC

SG547868 White Female 11/22/2019 EL

SG547868 White Female 03/19/2019 M

SG547868 White Female 05/20/2019 SC

FR364701 Hispanic Male 11/22/2019 EL

FR364701 Hispanic Male 03/19/2019 M

FR364701 Hispanic Male 05/20/2019 SC

Suppose you want to keep all records on the
Student_Demographic file regardless of whether they have a
corresponding Assessment record. In that case, you’d use a left
join rather than an inner join. If you want all Assessment
records regardless of whether they have a
Student_Demographic record, you’d do a right join. Finally, if
you want all records on either file, you’d do a full join rather
than an inner join.

 proc sql;

 create table Demo_Exam as

 select coalesce(a.StudentID, b.StudentI

 a.Race, a.Gender, b.Exam_Date, b.Subjec

 from input.Student_Demographic as a

 full join input.Assessment as b

 on a.StudentID=b.StudentID;

 quit;

A cool trick if you are doing a full join and your matching ID (in
this case StudentID) in some cases is populated on data set 1
with no corresponding record on the data set 2 (e.g.,
StudentID=“GR259262”) while in other cases is populated on

data set 2 with no corresponding record on data set 1 (e.g.,
StudentID=“KR159435”), you can use the COALESCE function.

In your SELECT statement, enter: COALESCE(a.StudentID,
b.StudentID) as StudentID. This creates a new variable called
StudentID that is filled in with the Student_Demographic
StudentID when it exists but uses the Assessment StudentID if
the StudentID does not exist/is missing on the
Student_Demographic file. If you only used the StudentID from
the demographic file (select a.StudentID), the table below would
have missing values for StudentID “KR159435”. If you only used
the StudentID from the assessment file (SELECT b.StudentID),
the table below would have a missing value for student ID
“GR259262” as this ID does not exist on the Assessment file.
COALESCE allows us to pull in all StudentID information
available (Table 48).

Table 48: Demo_Exam Data Set (Full Join)

StudentID Race Gender Exam_Date Su

FR364701 Hispanic Male 11/22/2019 EL

FR364701 Hispanic Male 05/20/2019 SC

FR364701 Hispanic Male 03/19/2019 M

GR259262 White Male

KR159435 03/19/2019 M

KR159435 11/22/2019 EL

KR159435 05/20/2019 SC

MU100256 Black Female 05/20/2019 SC

MU100256 Black Female 11/22/2019 EL

MU100256 Black Female 03/19/2019 M

SG547868 White Female 05/20/2019 SC

SG547868 White Female 03/19/2019 M

SG547868 White Female 11/22/2019 EL

You can also use the COALESCE function on other variables
(that are not the matching ID). Remember, the first variable you
list in the function takes precedence, and the second specified
variable only fills in information missing from the first
variable. If you add a third variable to the function, it will only
fill in information missing in both the first and second
variables, and so on.

Another shortcut available in PROC SQL is the * symbol. If you
want to select all variables from the Student_Demographic
table, you’d enter: SELECT a.*. To select all variables from the
Assessment table, type SELECT b.*. If you want all variables
from both tables, you’d simply enter * for the SELECT
statement.

 proc sql;

 create table Demo_Exam as

 select *

 from input.Student_Demographic as a

 full join input.Assessment(rename=(Stud

 on a.StudentID=b.ID;

 quit;

If you tell SAS to pull in all variables from both data sets, but
both data sets have a variable with the same name (like
StudentID), SAS will give you a warning message because it
does not know which StudentID column you want. You can get
around this by renaming the duplicate variable name on one of
the data sets. Be sure to update your ON clause accordingly if
you change the name of a match ID variable, like StudentID
(Table 49).

Table 49: Demo_Exam Data Set (RENAME Option)

StudentID Race Gender Age ID

FR364701 Hispanic Male 21 FR364701

FR364701 Hispanic Male 21 FR364701

FR364701 Hispanic Male 21 FR364701

GR259262 White Male 20

 KR159435

 KR159435

 KR159435

MU100256 Black Female 21 MU100256

MU100256 Black Female 21 MU100256

MU100256 Black Female 21 MU100256

SG547868 White Female 19 SG547868

SG547868 White Female 19 SG547868

SG547868 White Female 19 SG547868

7.2.2.2 PROC SQL GROUP BY Example

The GROUP BY clause is great for aggregating data. This is
useful when you want to add, count, or take the
minimum/maximum of all values down a particular column for
a specified group. Unlike the calculations that we saw in the
Data Transformations section that calculate values across a row,
the GROUP BY clause makes it possible to make calculations
down a column. This restructures your output data so that you

have fewer rows than your input table that is unique by
whatever variable(s) you identified in your GROUP BY clause.

For example, let’s say you want to get the average assessment
score for each student in the Assessment data set across all
three subjects. To do this, you would tell SAS to select the
StudentID variable, take the Score variable’s average, and group
the results by StudentID. You can sort by descending average
Score to rank the students from highest to lowest performing.

 proc sql;

 create table Avg_Assessment as

 select StudentID, avg(Score) as Avg_Sco

 from input.Assessment

 group by StudentID

 order by Avg_Score desc;

 quit;

The code above produces a data set called Avg_Assessment with
two columns: StudentID and Avg_Score (Table 50). Each student
will have one row in the data set, displaying that student’s
average test score across all three subjects. Notice that one
student, “SG547868,” has a missing test score for “SCIENCE”. The

average function takes the average of available data, “MATH”
and “ELA” and provides an average score of (68+74)/2=71.

Table 50: Avg_Assessment Data
Set Using GROUP BY Clause

StudentID Avg_Score

FR364701 95

MU100256 90

SG547868 71

KR159435 38.66666667

One error that is easy to get when attempting a GROUP BY
aggregation is that you add a variable to your SELECT
statement that is not one of the GROUP BY variables and you do
not tell SAS to do some kind of aggregation function with it. For
example, if you added the Exam_Date variable to the SELECT
statement in the example above, SAS would be unable to
GROUP BY the StudentID as it does not know which date to

select for each student. This yields undesirable results (Table
51).

Table 51: GROUP BY Error

StudentID Exam_Date Avg_Sc

FR364701 11/22/2019 95

FR364701 03/19/2019 95

FR364701 05/20/2019 95

MU100256 05/20/2019 90

MU100256 03/19/2019 90

MU100256 11/22/2019 90

SG547868 11/22/2019 71

SG547868 03/19/2019 71

SG547868 05/20/2019 71

KR159435 05/20/2019 38.666

KR159435 11/22/2019 38.666

KR159435 03/19/2019 38.666

To fix this issue, make sure that some calculation is performed
on every variable in your SELECT statement except for the
GROUP BY variable(s). This is true even for character variables
that have the same value populated for all rows of the BY group
(e.g., Race). Tell SAS to take the max value of that variable, and
the GROUP BY clause will work. It will only keep one instance of
the value in the output data set. In this example, add the MAX
function to pull only the last exam date, and then the GROUP BY
clause will work (Table 52).

 proc sql;

 create table Avg_Assessment as

 select StudentID,

 max(Exam_Date) as Last_Exam format=mmdd

 avg(Score) as Avg_Score

 from input.Assessment

 group by StudentID

 order by Avg_Score desc;

 quit;

Since you are creating a new variable called Last_Exam by
taking the maximum date value, make sure to tell SAS how to
format the new date or it will display the integer date value
instead.

Table 52: GROUP BY with Max Exam
Date

StudentID Last_Exam Avg_Sc

FR364701 11/22/2019 95

MU100256 11/22/2019 90

SG547868 11/22/2019 71

KR159435 11/22/2019 38.6666

8 Comparing Data

Now that we’ve covered how data is merged, we can discuss
how to compare data sets. When you are just getting started
with coding, it is helpful to practice by trying to replicate
projects that others have already done. This way, you can write
your code and compare your output table to the actual output
table to see if you get the same results. If you see any
differences, this can help you identify areas to work on and ask
follow-up questions about. Also, if you are working on a high-
stakes or high-visibility project, you might be tasked with
replicating work with one or more people for quality assurance
before the results are published.

Finally, as your data analysis skills grow, you will inevitably
look back at some of your beginning programs and cringe at
how clunky they are. You will likely want to go back and make
your programs more streamlined and efficient. It is helpful to
run your new code against your old code to make sure that
your new code is still producing the same results. These are all
examples of why comparing data is such a useful skill to have
in your toolbox.

8.1 DATA Step Compare Merge

One way to compare data is by using a DATA step merge. This is
extremely helpful when you are trying to compare two data
sets and want to create three output tables: records that appear
in both tables (Both), records that appear in data set 1 only
(Base_Only), and records that appear in data set 2 only
(Compare_Only). Make sure you sort your Base and Compare
tables by the ID(s) that you want to merge on first. Once the
tables are sorted, run the code below to get the three output
tables. Update the BY statement to reflect the variables that you
are merging on and the Base and Compare table names in the
MERGE statement to your two input table names.

 data Base_Only Compare_Only Both;

 merge Base (in=a) Compare (in=b);

 by ID;

 if a=1 and b=0 then output Base_Only;

 if b=1 and a=0 then output Compare_Onl

 if a=1 and b=1 then output Both;

 run;

Note that this merge only looks at the variables that you are
merging on (the BY variables) to see whether a record is in both

data sets or only in a single data set. It does not compare other
fields in your data set. So, if you have a record with the same ID
on both data sets, but the Name field on data set 1 is different
than the Name field on data set 2, the merge above will list the
record in the Both data set and keep only the Name from data
set 2. To compare all fields in a data set, it is best to use PROC
COMPARE.

8.2 PROC COMPARE

To compare two data sets on all fields, run a PROC COMPARE.
Make sure you sort the two data sets by their unique ID(s). SAS
compares row 1 of data set 1 to row 1 of data set 2, and so on.
So, if your data isn’t sorted properly, all rows will be marked as
mismatches. Also, check to see whether both data sets have the
same number of total records. If they do not, start with the
DATA Step Compare Merge to discover what record(s) are
missing in one of your data sets and whether they should be
included. Once you have the same number of records and your
data is properly sorted, you’re ready to run the PROC COMPARE.

 proc compare base=dataset1 compare=dataset2

out=nonmatches

 outnoequal outall listvar;

 run;

In a COMPARE procedure, you will list the name of the first data
set as the BASE= option and the name of the second data set as
the COMPARE= option. These are the only two arguments
required. However, you can include many different options to
help visualize any differences. I included the options I find most
useful above. You can output a data set of mismatches and
specify the name for this table in the OUT= argument. The
OUTNOEQUAL option tells SAS to only output records with at
least one mismatched value for a row. The OUTALL option tells
SAS to write one row for the Base data set followed by the same
mismatched row in the Compare data set. It also writes rows
that display what the difference/mismatched value is between
the base and compare data sets as well as the percentage
difference between the two values. LISTVAR is helpful if you
want to see whether there is a column in one data set that does
not exist in the other data set.

9 Reporting

As data analysts, we often view our job as accurately merging,
cleaning/transforming, and analyzing data. But that is only half
of the story. For all of your work to be effective and meaningful,
you need to be able to communicate your results with others.
Often, your audience is not made up of other data analysts, it is
policy makers, communications directors, CEOs, or worse, the
general public. If you try to copy and paste your output with
ugly variable names like Amt_q1, I guarantee your audience’s
eyes will glaze over, and all your hard work will end up in the
physical or digital recycle bin. As data analysts, we have a duty
not only to analyze data but also to effectively
communicate what that data says.

Luckily, SAS has several reporting options to help you
communicate your results in an easy-to-understand way. PROC
PRINT enables you to format and print information from SAS
data tables to the Results tab. PROC REPORT enables you to
create and format both detailed and summary reports. Finally,
the output delivery system (ODS) allows for style and
formatting enhancements to reports that can be output to
different destinations like PDF or Microsoft Word.

9.1 PROC PRINT

PROC PRINT enables you to print all or selected portions from
your output data tables. Frequently used options include:

Adding titles and footnotes to the printed data table.
Selecting certain variables or observations to print.
Adding and displaying labels.
Applying formats.

You can also change the font or size of the text in your table and
apply background colors to specific rows, columns, or cells if
the cell meets specified criteria (e.g., the cell is greater than 100
or the response was “yes”).

In this example, we are printing data from the Donations_JUL
data table. The NOOBS option means that the observation
number (or row count) should not be included in the results.
The LABEL option tells SAS to print the specified labels listed in
the code below rather than the variable names as the column
headers. The VAR statement lists the variable(s) that should be
included in the report (and the order in which they should
appear), and the LABEL statement defines the labels for each
specified variable. A second VAR statement for the Donation
variable specifies that this column should be displayed with a
gold background. The FORMAT option is used to choose how the
Donation_Date values are displayed. Finally, the SUM statement

tells SAS to add up all values of the Donations variable and
display the total, $746, in the report (Table 53).

 proc print data=input.donations_JUL noobs labe

 var First_Name Last_Name Address Donati

 var Donation / style(data)={backgroundc

 label First_Name = 'Donor First Name'

 Last_Name = 'Donor Last Name'

 Donation_Date = 'Donation Date

 format Donation_Date date9.;

 sum Donation;

 run;

Table 53: PROC PRINT Example with Labels

Donor
First
Name

Donor
Last
Name

Address
Donation
Date

Dona

John Brown 6523 E
Cherry
St

12JUL2022 $500

Kelsey Green 3111 13JUL2022 $25

Table 53: PROC PRINT Example with Labels

Donor
First
Name

Donor
Last
Name

Address
Donation
Date

Dona

Orange
Ave

Sherlock Holmes 221B
Baker
Street

08JUL2022 $221

$746

In In the following example, a format is applied so that readers
of the report can easily distinguish between low, medium, and
high donations. The format is named donorlevel, and Donations
under $75 are classified as rose, those between $75 and $250
are classified as yellow, and Donations that are $250 or higher
are classified as BILG, for brilliant yellow-green. Instead of the
VAR Donations statement having a background color of gold
like the previous example, it is given a background color of
the donorlevel format. This means that the donation column
will have a background color based on the donation value in
the cell. Also, this example adds a title to the printed output that
reads “Large Donors for Follow-Up Marketing Campaign” (Table
54).

f t

 proc format;

 value donorlevel

 low-<75='rose'

 75-<250='yellow'

 250-high='BILG';

 run;

 title 'Large Donors for Follow Up Marketing

 proc print data=input.donations_JUL noobs labe

 var First_Name Last_Name Address Donati

 var Donation / style(data)={backgroundc

 label First_Name = 'Donor First Name'

 Last_Name = 'Donor Last Name'

 Donation_Date = 'Donation Date

 Donation = 'Donation Level';

 format Donation_Date date9.;

 run;

 title;

Table 54: PROC PRINT Example with Conditional Styl
Format

Large Donors for Follow Up Marketing Campaign

Donor
First
Name

Donor
Last
Name

Address
Donation
Date

Dona
Level

Name Name

John Brown 6523 E
Cherry
St

12JUL2022 $500

Kelsey Green 3111
Orange
Ave

13JUL2022 $25

Sherlock Holmes 221B
Baker
Street

08JUL2022 $221

Note: If you’d like to customize your background colors, you
can go to:
https://support.sas.com/content/dam/SAS/support/en/books/pro-
template-made-easy-a-guide-for-sas-users/62007_Appendix.pdf
to see what color options are available. To learn more about
style attributes that you can apply to your reports, visit:

https://support.sas.com/content/dam/SAS/support/en/books/pro-template-made-easy-a-guide-for-sas-users/62007_Appendix.pdf

https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/ods
ug/p1pt77toue3iyun0z4l9gth5as9f.htm.

9.2 PROC REPORT

Like PROC PRINT, PROC REPORT can also be used to print data
tables. However, PROC REPORT has additional functionality that
allows users to create spanning headings and merge cells with
repeating data. PROC REPORT can also output and format
summary reports/statistics. The general syntax for PROC
REPORT is as follows:

 proc report DATA=input-table-name <option(s)>;

 COLUMN variable-1 < … variable-n>;

 DEFINE variable-1 / <options>;

 DEFINE variable-n / <options>;

 COMPUTE; ENDCOMP;

 BREAK;

 RBREAK;

 run;

The statements in PROC REPORT are defined as follows:

https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/odsug/p1pt77toue3iyun0z4l9gth5as9f.htm

The DATA statement specifies which data table you want to
use for your report.
The COLUMN statement tells SAS which variables/columns to
include in the report and prints them in the order listed.
The DEFINE statement explains how to use and display each
defined variable. Without this statement, the variable name,
label, and format information defaults to what exists in the
data set.
The COMPUTE and ENDCOMP statements are used to
perform any calculations needed for the report.
The RBREAK statement produces a report summary row at
the beginning or end of a report, whereas the BREAK
statement creates a summary for each grouping specified in
the report.

A basic example of PROC REPORT can be found below. A data
set called Demo_Exam is read in, and the COLUMN statement
specifies that the variables StudentID, Exam_Date, Race, Gender,
Subject, and Score should all be included in the report. The
DEFINE statement and DISPLAY option are used for specified
variables to tell SAS to print the text in single quotation marks
as the column heading in the report rather than using the
variable name. For example, the report will print Exam Date
rather than Exam_Date as the header for the column
representing the date on which the student took the exam

(Table 55). If an alternative heading is not specified using the
DISPLAY option for a variable listed in the COLUMN statement,
the SAS variable name will be used as the column header or the
variable’s pre-defined label (when the LABEL option is used).

 proc report DATA=input.demo_exam;

 COLUMN StudentID exam_date Race Gender

 DEFINE StudentID / DISPLAY 'Student ID

 DEFINE exam_date / DISPLAY 'Exam Date'

 DEFINE subject / DISPLAY 'Subject';

 DEFINE score / DISPLAY 'Exam Score';

 run;

Table 55: PROC REPORT Example

Student
ID

Exam
Date

Race Gender Sub

MU100256 11/22/2019 Black Female ELA

MU100256 03/19/2019 Black Female MA

MU100256 05/20/2019 Black Female SCI

Table 55: PROC REPORT Example

Student
ID

Exam
Date

Race Gender Sub

SG547868 11/22/2019 White Female ELA

SG547868 03/19/2019 White Female MA

SG547868 05/20/2019 White Female SCI

FR364701 11/22/2019 Hispanic Male ELA

FR364701 03/19/2019 Hispanic Male MA

FR364701 05/20/2019 Hispanic Male SCI

The next example shows how to create spanning report
headers, sort data, and add summary information to reports.
Using parentheses in the COLUMN statement with specified text
enables you to create spanning headings.

As you can see, ‘Student Exam Scores 2019’ is inside the first set
of parentheses, indicating a spanning header covering all
variables and additional subheadings in the report. Next, a
second set of parentheses tells SAS that ‘Student Info’ is a
subheading spanning the StudentID, Race, and Gender
variables. The third set of parentheses indicate that ‘Exam Info’
is another subheading spanning across the Exam_Date, Subject,
and Score variables. The ORDER option in the DEFINE
statements explains that the report should be organized first by
descending (from Z to A) StudentID, then by ascending (from A
to Z) Race and ascending Gender.

The SPANROWS option in the DATA statement merges cells with
repeating data. So instead of listing out the StudentID
“SG547868” three times, the report lists it only once, and the
additional two cells are merged with the first cell to indicate
that the first three exams listed all belong to the same student.
Race and Gender data are also merged as each student’s race
and gender do not change across different observations.

Additional options can be used for numeric variables. For
example, when grouping data, summarizing data, or calculating
new columns, you can specify how numeric information should
be aggregated. For instance, when Score is defined, the
ANALYSIS option is used with the specified statistic mean. This

ensures that the average, or mean, is given when Score data is
grouped. The ANALYSIS option is only used with numeric data.
The BREAK statement provides a summary row for each
student that reports that student’s average test score. The
RBREAK option is at the report level, so it provides a summary
row for average exam score across all students. Summary
statistics are calculated based on the specified statistic for each
numeric variable listed in the report (Table 56).

 proc report DATA=input.demo_exam spanrows;

 COLUMN ('Student Exam Scores 2019' ('St

 StudentID Race Gender) ('Exam Info' exa

 DEFINE StudentID / ORDER descending 'St

 DEFINE Race / ORDER;

 DEFINE Gender / ORDER;

 DEFINE exam_date / DISPLAY 'Exam Date'

 DEFINE score / ANALYSIS mean 'Exam Sco

 BREAK after StudentID / summarize;

 RBREAK after / summarize;

 run;

Table 56: PROC REPORT Example with Custom Heade

Student Exam Scores 2019

Student Info Exam Info

Student
ID

Race Gender
Exam
Date

Sub

SG547868 White Female 11/22/2019 ELA

03/19/2019 MA

05/20/2019 SCI

SG547868

MU100256 Black Female 11/22/2019 ELA

03/19/2019 MA

05/20/2019 SCI

MU100256

FR364701 Hispanic Male 11/22/2019 ELA

03/19/2019 MA

05/20/2019 SCI

FR364701

While the previous two examples were detailed reports, PROC
REPORT also enables the creation of summary reports. The
GROUP option in the DEFINE statements tells SAS what
variables to group information by. Here, we are grouping to the
StudentID, Race, and Gender level. This means the output table
will only have one row per unique StudentID, Race, and Gender
combination.

The WHERE option specifies that we are only including records
without missing scores in the output. The COLUMN statement
lists the variables to include in the report and sets up the same
headings as the previous example. Notice that the COLUMN
statement also includes variable names for computed variables
and creates another variable called Score2 that is equivalent to
the Score variable. This is necessary because we want to do two
different types of analysis with the Score variable in the code

below. The DEFINE N statement tells SAS to count the records in
each group. Since each student only has one race and one
gender, it is counting how many exams each student has taken.
While most students have 3 exam scores, we can see in the
example above that student “SG547868” is missing a “SCIENCE”
Score. Based on the WHERE option excluding missing scores,
she will only have a count of 2 for her Exam Count as her
missing test score row was excluded.

Since we are reporting one row per student, we need to do
some sort of calculation on any additional variables that we
include, or the GROUP option will not work. If we used the
statement – DEFINE score / DISPLAY ‘Exam Score’ – for
example, all three rows for each student would be printed since
we did not tell SAS to compute any calculation on Exam Score.
To make sure there is only one row per student, the DEFINE
Score statement uses the ANALYSIS mean option, and the
DEFINE Score2 statement uses the ANALYSIS max option to
report each student’s average and maximum exam scores in
separate columns labeled Exam Score Average and Exam Score
Max in the report.

Next, we DEFINE two additional variables, Extra_Credit and
Final_Score and use the COMPUTED option to tell SAS that we
are creating these variables in the compute block below. The

compute block creates a variable called Extra_Credit and gives
each student a value of 2 points. A second compute block
creates the variable called Final_Score by taking the mean of
each student’s exam scores (denoted by Score.mean) and then
adding the Extra_Credit variable, or the 2 bonus points, to each
student’s Score (Table 57).

 proc report DATA=input.Demo_Exam (WHERE=(Score

 COLUMN ('Student Exam Scores 2019' ('St

 StudentID Race Gender) ('Exam Info' N S

 Extra_Credit Final_Score));

 DEFINE StudentID / GROUP 'Student ID';

 DEFINE Race / GROUP;

 DEFINE Gender / GROUP;

 DEFINE N / 'Exam Count';

 DEFINE Score / ANALYSIS mean 'Exam Sco

 DEFINE Score2 / ANALYSIS max 'Exam Sco

 DEFINE Extra_Credit / computed 'Extra C

 DEFINE Final_Score / computed 'Final Sc

 COMPUTE Extra_Credit;

 Extra_Credit=2;

 ENDCOMP;

 COMPUTE Final_Score;

 Final_Score= Score.mean+Extra_Cred

 ENDCOMP;

 run;

;

Table 57: PROC REPORT Group Option

Student Exam Scores 2019

Student Info Exam Info

Student
ID

Race Gender
Exam
Count

Exam
Score
Averag

FR364701 Hispanic Male 3 95

MU100256 Black Female 3 90

SG547868 White Female 2 71

The final example utilizes the ACROSS option to transpose the
exam data for each subject. This means that rather than three
separate rows listing the exam score for each student in each
subject, there will be one row per student that lists each subject
as its own column. Now, all three exam scores for the student
are in the same row rather than being on three separate rows.

The COLUMN statement creates a spanning header called
‘Student Exam Scores 2019’. It then lists the variables to include
in the report. Notice that there is a comma after the variable
subject, and then Exam_Date and Score are listed. This tells SAS
to report the Exam_Date and the Score for each subject the
student took an exam in. This means these two columns will
appear in the table once for “ELA”, again for “MATH”, and again
for “SCIENCE”. Since we are still grouping the data by
StudentID, Race, and Gender, we must specify an ANALYSIS
option for Exam_Date and exam Score. I chose the default
ANALYSIS option for Exam_Date (sum) and mean for exam
Score, but I could have chosen anything because the across
option for subject specifies that each Exam_Date and Score be
written for each subject. Essentially, we are telling SAS to take
the sum/mean of a single number, which is simply that same
number. Taking the minimum or maximum of a single number
also results in the same number, so again, the ANALYSIS option
that you choose here does not matter in this specific scenario
(Table 58).

 proc report DATA=input.demo_exam;

 COLUMN ('Student Exam Scores 2019' Stud

 subject, (exam_date score));

 DEFINE StudentID / GROUP 'Student ID';

DEFINE R / GROUP

 DEFINE Race / GROUP;

 DEFINE Gender / GROUP;

 DEFINE subject / across;

 DEFINE exam_date / ANALYSIS 'Exam Date

 DEFINE score / ANALYSIS mean 'Exam Sco

 run;

Table 58: PROC REPORT Across Option

Student Exam Scores 2019

Subject

ELA MATH

Student

ID
Race Gender

Exam

Date

Exam

Score

Exam

Date

FR364701 Hispanic Male 11/22/2019 88 03/19/

MU100256 Black Female 11/22/2019 90 03/19/

SG547868 White Female 11/22/2019 74 03/19/

9.3 Output Delivery System

The Output Delivery System (ODS) allows users to format SAS
output into colorful, easy-to-read charts and reports that are
more user-friendly than the traditional, default output. It can
convert SAS output into other file formats like HTML, RTF, PDF,
XLSX, etc. ODS can be used to change things like colors, fonts,
borders, headers, and styles for reports and control image size,
resolution, style, and file format for charts and graphs.

This functionality is especially useful when you need to
reproduce the same report every so often but with updated
data. For example, suppose you need to create quarterly PDF
reports on your company’s earnings. You can use SAS and the
ODS functionality to write a program that reads in data,
calculates the necessary columns, formats the data in a way
that is consistent with your company’s style guide, and outputs
the calculations into a beautiful PDF. Now, when you need to
create the same report for the next quarter of earnings, you can
update the program to read in the new input data for the
quarter and then rerun the exact same program to generate the
report. This saves you time and effort each quarter so that you
don’t have to copy and paste data into templates (which creates
opportunities for errors) or spend hours formatting your output
in other software programs.

There are entire books (much longer than this one) that discuss
the extensive capabilities of ODS. However, most jobs prefer
their reports to be formatted in a customized, specific way.
Rather than trying to learn/memorize all of the different ODS
functionality, I have found it more helpful to search for specific
ODS syntax once I have an idea of what a report needs to look
like (e.g., a PDF of a bar chart or a Microsoft Word document
with a data table). Once you learn the basics of ODS, there are
many SAS resources available to you that can help you create
customized reports.

9.3.1 ODS Destinations

ODS takes the data that you specify and puts it into a table or
graph template to create one or more output objects. The
objects are then sent to specified destinations that are either
formatted by SAS (e.g., listing, output) or formatted by third
parties (e.g., HTML, RTF, Excel).

Start by telling SAS what destination or file format you want to
create the report in. If you wanted to make a PDF, this line
would read ODS PDF. Then add the SAS code that you want to
run and output the results. Finally, end with an ODS CLOSE
statement. In this case, it would be ODS PDF CLOSE. This is
called the sandwich method because your SAS code is

sandwiched between an ODS statement that opens the file
destination and an ODS CLOSE statement that closes the file
destination.

 ODS destination <destination option(s)>;

 <SAS code to generate output for destination

 ODS destination close;

If you want to output your results to multiple destinations, you
can open several destinations at once and close them
individually when you are done or use the ODS _ALL_ CLOSE;
statement to close all open destinations at once.

Example syntax for saving charts and graphs to ODS
destinations can be found in the ODS Graphics section below.

9.3.2 ODS Graphics

ODS graphics enables you to create interesting visual
representations of your data in the form of charts and graphs
that you can use in your reports. If you are working in Base
SAS version 9.3 or later, ODS graphics is included and
available to use. The most common charts and graphs I work
with are histograms, bar charts, line plots, scatter plots, and box

®

plots. These, and many other chart options, are available using
the SGPLOT procedure.

 proc sgplot DATA=input-table <options>;

 plot statement(s) / <options>;

 <appearance statements>;

 run;

Let’s say we want to examine whether there is any correlation
between height and weight. In other words, on average, as
height increases, does weight also increase? We can explore this
by generating a scatterplot of the Height and Weight data from
the Health_Chart data set. The code below tells SAS to read the
Health_Chart data set and create a scatter plot with the Weight
variable plotted on the Y axis of the chart and the Height
variable plotted on the X axis.

 proc sgplot data=input.health_chart;

 scatter y=weight x=height;

 run;

Figure 15: Scatter Plot Default

This scatterplot (Figure 15) indicates that Height and Weight are
correlated, though there are a few outliers (or data points that
are extremely different from the trend). The doctor might want
to follow up with these patients. However, it is impossible to
know which patients to follow up with from this scatter plot

alone. The doctor might want a customized scatterplot that
displays all the information she needs in one place.

The code below updates the scatterplot to include data labels
for each point that displays the PatientID. It specifies where the
data labels should be printed with the DATALABELPOS option
of TOP. This indicates that the label should be printed on top of
the data points, though you can specify TOP, BOTTOM, RIGHT,
LEFT, or a combination of these positions (e.g., TOPLEFT). Also,
to make the points more visible and appealing, we can specify
in the MARKERATTRS option that the symbol for each point
should be a filled-in diamond, and the SIZE should be increased
to 14.

 proc sgplot data=input.Health_Chart;

 scatter y=Weight x=Height / datalabel=Patien

 datalabelpos=top

 markerattrs=(symbol=DiamondFilled size=14px

 run;

Figure 16: Scatter Plot Fancy

The updated scatterplot (Figure 16) prints each PatientID above
each scatterplot point that is now represented by a large, filled-
in diamond. The doctor now has the information that is needed
to follow up with patients as necessary.

Next, we’d like to create a histogram of the Age reported in the
GSS data set to see what the Age distribution was for the
respondents. Histograms are like bar charts but for numeric
data. There are no spaces between the bars because the width
of the bars, or bins, are all the same and represent the distance
between categories. This is different from bar charts that
represent categorical data. Each bar in a bar chart denotes a
discrete category, like Red, Yellow, and Blue, which do not have
a measurable distance between them like numeric data does
(e.g., the distance between the number 1 and number 3 is 2). We
can output our Age histogram to a PDF so that it is easy to email
and share with others. The ODS PDF statement opens the PDF
destination, and the FILE= statement specifies the location and
file name for where the PDF document should be saved. The
ODS PDF CLOSE statement tells SAS that we are done outputting
information to this destination so that it can be closed and
saved.

 ods pdf file = "&output.\Histogram_Default.p

 proc sgplot data=input.GSS;

 histogram Age;

 run;

 ods pdf close;

Figure 17: Histogram Default

This histogram (Figure 17) displays the Age of the respondents
on the X axis (the width of the bar) and the percentage of
respondents in each category (the height of the bar) on the Y
axis. This histogram is challenging to read. The bars are skinny,

and it is difficult to tell what Age range (bin) is represented by
each bar. It would be easier to read this histogram if the bars
were sectioned into decades.

The code below updates the bar chart to show the midpoint of
the bins (SHOWBINS option). It specifies that the first midpoint
represented on the X axis should be 5 (BINSTART=5), and the
bin width should be 10 (BINWIDTH=10). This creates nine bars
representing ages 0-10, 10-20, 20-30, and so on. The midpoint of
each bin (e.g., 5, 15, 25) are displayed on the chart as the bin
markers. This code also specifies that the Y axis, representing
the percentage of respondents in each bin, should start at 0 and
go up to 24% with a tick mark for each 2% increase.

 ods pdf file = "&output.\Histogram_Fancy.pdf

 proc sgplot data=input.GSS;

 histogram Age/ showbins binstart=5 binw

 yaxis values=(0 to 24 by 2);

 run;

 ods pdf close;

Figure 18: Histogram Fancy

This histogram (Figure 18) is much easier for me to interpret.
About 2% of the respondents were between the ages of 10 and
20, while about 21% were between 30 and 40. Much better.
Always try to make your life, and the lives of the consumers of
your report, easier.

The last example we will look at is a bar chart. Now, each bar
represents a category, not a bin. Here, we are creating a Word
document (RTF file extension) called BarChart_Default that
displays a bar chart of the Marital_Status variable reported in

the GSS data. This chart shows each marital status category
across the X axis and the number of respondents (frequency
count) in each category on the Y axis.

 ods rtf file = "&output.\BarChart_Default.rt

 proc sgplot data=input.GSS;

 vbar Marital;

 run;

 ods rtf close;

Figure 19: Bar Chart Default

This bar chart (Figure 19) shows that the majority of GSS
respondents were married, while the fewest identified as being
separated. While this is a solid bar chart, it might raise
subsequent questions about each marital status. For example,
what is the average Age of the respondents in each category?

Are never married individuals typically younger than married
people? Are widows typically older? Let’s find out.

Here, we modified our bar chart to report the average Age of all
respondents in each marital status category on the Y axis. This
is done by specifying that the RESPONSE option should equal
the Age variable and that the STAT that should be reported is
the MEAN for each group. The FILLATTRS option tells SAS that
we want our bars to be BLUE, while the DATALABELATTRS
option specifies that our data labels should be BLACK with a
SIZE of 15 and a BOLD font WEIGHT. The BARWIDTH option
must be a value between 0 and 1, with 1 representing the
maximum width and 0 representing the narrowest bar possible.
The DATASKIN option enables you to add a special effect to your
bars. The default value is NONE, but you can try out CRISP,
GLOSS, MATTE, PRESSED, and SHEEN to see whether these
options make your report more enjoyable to look at. I went with
PRESSED here. Finally, I want to label my X and Y axes to clarify
what each represents.

 ods rtf file = "&output.\BarChart_Fancy.rtf

 proc sgplot data=input.GSS;

 vbar Marital/ response=Age stat=mean

 fillattrs=(color=blue)

datalabelattrs=(color=black size=15 we

 datalabelattrs (color black size 15 we

 barwidth=.5 dataskin=pressed;

 label Age='MEAN AGE' Marital='MARITAL S

 run;

 ods rtf close;

Figure 20: Bar Chart Fancy

Figure 20 displays the result. For those reading along in an e-
book, how are your eyes feeling? That is an intense shade of
blue. For those reading along in a printed copy of this book, is
that PRESSED effect keeping you awake? There is only so much
vividness I can provide in black and white. But it is important
to understand that your reports might be viewed in different
mediums, so always consider your audience.

We can see from this bar chart that never married individuals
do have the lowest mean Age while widowed respondents had
the highest Age, on average. There was not much difference in
Age between the divorced, married, and separated marital
status categories.

10 Introduction to Selected Advanced Topics

Congratulations! If you have made it this far, you can
(un)officially call yourself a SAS Novice! Well done. Now you
can dive headfirst into the world of analytics with confidence.
To help you take that first step from Novice to Noteworthy, here
is a brief introduction to two important advanced topics.

10.1 Cloud Analytic Services (CAS)

The emergence of cloud computing has transformed the field of
data analytics. Now, computing services (infrastructure,
platform, and software) can be delivered over the internet for
faster computing time, for less start-up costs (eliminates the
need to buy and maintain hardware like servers), and to
increase the flexibility to scale up or down easily based on
business needs. SAS Viya and SAS Cloud Analytic Services
(CAS) offer these advantages to users.

SAS Viya is an open, cloud-enabled platform that supports
high-performance analytics. It is a software platform that
allows users, businesses, and organizations to access, manage,
analyze, and visualize their data all in one place. CAS is a part
of the SAS Viya platform. It is a server that provides a cloud-
based run-time environment that utilizes distributed computing

® ®

®

®

for faster run times and high-powered analytics. CAS can use
multiple machines or multiple threads on a single machine to
speed up processing by designating one controller node and
several worker nodes. The controller node splits up the data
between the worker nodes, which process data simultaneously
and return the results to the controller node to assemble.

While Base SAS code (the traditional SAS code that has been
covered so far in this book) can be run in SAS Viya , some Base
SAS procedures can be routed through the CAS server, while
others must still run through a traditional SAS Compute server.
If you are working with large data sets (e.g., more than 25GB) or
a step takes a long time to process on the traditional compute
server, consider using the CAS server. SAS maintains
documentation on what Base SAS procedures can run CAS
actions13. Some procedures are not CAS-enabled and must be
rewritten in the CAS Language (CASL) to be routed through the
CAS server. CASL is a scripting language that is quite different
from the traditional SAS programming language. To learn more
about CASL, see the CASL Programmer’s Guide14.

To run processes through CAS, you must first connect to a CAS
server using a CAS statement. Then, tables must be copied from
physical locations into memory. Users can set up a caslib where
in-memory tables can be loaded and accessed during the CAS

®

®

®

®

session. Calculations are completed in memory, and any
resulting tables must be saved back out to a physical location if
you want to access them after the CAS session has ended.

10.2 Macro Language

I absolutely hated macros when I first started coding. I am a
very linear thinker who loves transparency and seeing exactly
what is happening in what order. Marcos can be sneaky,
powerful, and nested, which made me feel a bit like I was
unpacking a nesting doll without knowing what would be in the
center. Because I did not fully understand how they worked, I
fought against using them in my code for a long time. I can’t
believe I am admitting this in writing, but I was wrong. I don’t
say that often, so macros really are special.

The SAS macro language can be viewed as a form of
shorthand that drastically reduces the amount of code that you
need in a program, increasing efficiency and reducing
opportunities for error. Macro variables, in their most basic
form, are text substitutions. In contrast, macro programs are
often referred to as programs that write programs.

SAS recognizes two symbols as macro triggers when they occur
at the beginning of a word. The & symbol (e.g., &LIBREF)

®

indicates a macro variable reference, while the % sign (e.g.,
%LET) indicates a macro statement, function, or call. When SAS
encounters a macro trigger as it reads through the code of your
program, the macro reference is routed to a component called
the macro processor.

The macro processor replaces macro variables with the
appropriate text substitutions (that are then sent back to the
input stack to be compiled). SAS reads only the substituted text
while executing the program. For macro programs, the macro
processor compiles the program and saves it. Then, when that
macro program is called later in the session, SAS executes the
stored macro program code.

10.2.1 Macro Variables

Macro variables store text. You can think of a macro variable as
text substitution. Consider some articles that you’ve read with
acronyms. The acronym is defined at the beginning of the paper
(e.g., Graphics Interchange Format (GIF)), and then the
abbreviation can be used throughout the rest of the article
(GIF15) to save the writer from having to type out the long
definition over and over again. Macro variables function in the
same way. You first define the macro variable (which creates an
entry in the symbol table). Then, every time you reference that

variable, SAS knows to substitute in the definition that you
created earlier.

One way to create a macro variable is to use a %LET statement.
For example, if you want to create a macro variable called qtr
that you populate as Q1, Q2, Q3, or Q4 depending on what
quarter you are running the report in, you would use the %LET
qtr=Q1; statement when it’s the first quarter and the %LET
qtr=Q2; in the second quarter, and so on. Now, you can write
your program code and use the &qtr macro variable throughout
anywhere the quarter is required. The &qtr macro variable will
be replaced with the text Q1, Q2, Q3, or Q4 depending on what
you have defined qtr as in your %LET statement at the
beginning of the program. This is super helpful because you do
not have to do a find-and-replace every time you need to update
the quarter or create and save 4 separate SAS programs. You
just update the definition of qtr in the %LET statement at the
beginning of your program to reference the current quarter,
and it updates the code throughout the entire program
accordingly. No more find and replace. Just update the %LET
statement and you are done!

It is important to note that if there is no space after your macro
variable reference, you must use a period to denote the end of
the macro variable. Without a space or a period, SAS does not

recognize where the end of the macro variable reference is and
continues to read in extra text. For example, if you have a
variable called Q1_earnings in your data set and defined your
&qtr macro variable as Q1, you could not call that variable by
using &qtr_earnings in your report code. SAS will think the
entire variable name is the macro reference, and it will not be
able to find &qtr_earnings in the symbol table. If you need to
call that variable, you will need to refer to it as &qtr._earnings
so that SAS knows to stop reading when it gets to the period and
replaces &qtr. with Q1 and therefore writes out the full variable
name Q1_earnings.

When you create a macro variable, it is called a user-defined
macro. These macro variables are saved in the global symbol
table when defined outside of a macro program and apply to all
code run during the SAS session. Alternatively, when macro
variables are defined inside a macro program, they are saved to
a local symbol table that only applies to that macro program.
Local definitions are only used inside of a specific macro
program, whereas global definitions are applied throughout all
of your code.

SAS also has some automatic macro variables16 that are defined
in the global symbol table when SAS starts up. These automatic
variables often describe things about your session, like the

current date (&SYSDATE), the day of the week (&SYSDAY), and
your user ID (&SYSUSERID). These automatic variables can be
used throughout your code so that you don’t have to constantly
update your code with the current date every time you run
your program. You can view all macro variables and their
associated values in the Log using the following command.

 %put _all_;

10.2.2 Macro Programs

Macro programs are more complex than macro variables and
start with a %MACRO <name>; statement and end with a
%MEND <name>; statement. When you run the code, the macro
program is compiled and saved to the macro catalog. Only
when that macro program is called with the %NAME statement
does the macro program code execute. While macro variables
are especially useful when a text reference needs to be updated
throughout a program, macro programs are particularly helpful
when you need to loop through data multiple times.

For example, if you want to produce a report for each district in
a state that reads in the district’s data, performs calculations,
and outputs the results for each district, it might be helpful to

write a macro program. That way, you create the report code
only once, but each time you call the macro and input the
specific district name and number, the report uses the
appropriate information for that district only when generating
each report. Rather than having to write a separate program for
each district, you write one macro program that writes each
district’s program for you.

While the specifics of macro programming are outside the
scope of this book (you can have macro program calls inside of
other macro programs!), I hope this explanation helps you
better conceptualize what macros are so that you are not
terrified of them like I was and feel confident learning more
about them and creating macros of your own.

13 Currently located in the SAS 9.4 and SAS Viya 3.4
Programming Documentation found at:
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_
3.4/proc/p0nnkdmqmz48w8n1kqofzc7mcla4.htm

14

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4
/caslpg/titlepage.htm

® ®

https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/proc/p0nnkdmqmz48w8n1kqofzc7mcla4.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/caslpg/titlepage.htm

15 I refuse to pronounce this acronym as JIF for the same
reason I refuse to acknowledge that a tomato is fruit. No
tomato smoothies for me please.

16

https://go.documentation.sas.com/doc/en/mcrolref/1.0/p1
4ym6slnzfstzn1t9yp5v31ijis.htm

https://go.documentation.sas.com/doc/en/mcrolref/1.0/p14ym6slnzfstzn1t9yp5v31ijis.htm

Appendix A: Resources

Table 59: Resource Links

Resource Link

CASL

Programmer’s

Guide

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3

Data for Good https://www.sas.com/en_us/data-for-good.html.

SAS 9.4 and

SAS Viya 3.5

Programming

Documentation

https://go.documentation.sas.com/doc/en/pgmsascdc/9.

SAS Automatic

Macros

https://go.documentation.sas.com/doc/en/mcrolref/1.0/p

SAS Colors https://support.sas.com/content/dam/SAS/support/en/b

users/62007_Appendix.pdf

®

®

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/caslpg/titlepage.htm
https://www.sas.com/en_us/data-for-good.html
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/pgmsaswlcm/home.htm
https://go.documentation.sas.com/doc/en/mcrolref/1.0/p14ym6slnzfstzn1t9yp5v31ijis.htm
https://support.sas.com/content/dam/SAS/support/en/books/pro-template-made-easy-a-guide-for-sas-users/62007_Appendix.pdf

Table 59: Resource Links

Resource LinkSAS Functions https://go.documentation.sas.com/doc/en/pgmsascdc/9.

SAS Library https://documentation.sas.com/doc/en/pgmsascdc/9.4_3

SAS Log https://go.documentation.sas.com/doc/en/pgmsascdc/9.

SAS

Procedures

that use CAS

Actions

https://go.documentation.sas.com/doc/en/pgmsascdc/9.

SAS Studio –

Free Version

https://welcome.oda.sas.com/

SAS Style

Attributes

https://go.documentation.sas.com/doc/en/pgmsascdc/9.

SAS Users

Group: General

https://www.sas.com/en_us/connect/user-groups.html

®

https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/p1q8bq2v0o11n6n1gpij335fqpph.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/basess/n0a43pssblhvu0n1b51enwlu24n5.htm
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lepg/p119kau8rt2ebgn1bzaipafu6jp3.htm
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/proc/p0nnkdmqmz48w8n1kqofzc7mcla4.htm
https://welcome.oda.sas.com/
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/odsug/p1pt77toue3iyun0z4l9gth5as9f.htm
https://www.sas.com/en_us/connect/user-groups.html

Table 59: Resource Links

Resource LinkSAS Users

Group: The

Boston Area

Resources Page

https://www.basug.org/resources

SAS Video

Portal

https://video.sas.com/

https://www.basug.org/resources
https://video.sas.com/

Appendix B: Create GSS SAS Data Set

I downloaded the General Social Survey (GSS) data from
https://gss.norc.org/get-the-data. I saved it as a Statistical
Package for the Social Sciences (SPSS) file (extension .sav) since
.sas7bdat was not an available option. I imported this file into
SAS, kept only the variables of interest, and reformatted the
variables. Several variables of interest were read in as numeric
values with character formats that defined what each number
represented (for example, 1=MALE and 2=FEMALE). I created
new variables that used the put function to save these character
formats as the actual values for each variable to make working
with this data easier for the examples in this book. The code
used to import and format the data is below.

 %let input = C:\Users\kirby\Desktop\book_dat

 libname input "&input.";

 options VALIDVARNAME=V7;

 /*GSS Data*/

 proc import out=gss_imp

 datafile="&input.\GSS7218_R3.sav"

 dbms=SAV replace;

 run;

 data gss_imp2;

 set gss_imp;

keep year id wrkstat marital age degree

https://gss.norc.org/get-the-data

 keep year id wrkstat marital age degree

 run;

 data gss_imp3;

 set gss_imp2;

 if marital>. then marital2=put(marital,

 else marital2="";

 if wrkstat>. then wrkstat2=put(wrkstat,

 else wrkstat2="";

 if degree>. then degree2=put(degree, de

 else degree2="";

 if sex>. then sex2=put(sex, sexa.);

 else sex2="";

 if race>. then race2=put(race, racea.);

 else race2="";

 if partyid>. then partyid2=put(partyid,

 else partyid2="";

 if class>. then class2=put(class, class

 else class2="";

 drop marital wrkstat degree sex race pa

 run;

 data "&input.\GSS.sas7bdat";

 set gss_imp3;

 rename marital2=MARITAL wrkstat2=WRKSTA

 sex2=SEX race2=RACE partyid2=PARTYID cl

 run;

Contents

1. About The Author
2. Acknowledgments
3. Part One: Getting Started with SAS

1. 1 Introduction
1. 1.1 Note of Encouragement
2. 1.2 Purpose of this Guide

2. 2 Getting Started
1. 2.1 SAS Windows
2. 2.2 SAS OnDemand for Academics
3. 2.3 SAS Studio

1. 2.3.1 Tasks
2. 2.3.2 Snippets

4. 2.4 Data Setup
3. 3 How SAS Works

1. 3.1 DATA and PROC Steps
1. 3.1.1 DATA Step
2. 3.1.2 PROC Step

2. 3.2 Data Structure
1. 3.2.1 Columns/Variables
2. 3.2.2 Values
3. 3.2.3 PROC Contents

3. 3.3 DATA Step Processing

®

®

®

4. 3.4 OUTPUT Statements
5. 3.5 SAS Libraries

1. 3.5.1 Macro Libraries
2. 3.5.2 Read-Only Access Libraries

4. 4 Import/Export
1. 4.1 Importing Data
2. 4.2 Exporting Data

5. 5 Viewing and Summarizing Data
1. 5.1 Viewing Data
2. 5.2 Summarizing Data

4. Part Two: Coding with SAS
1. 6 Data Transformations

1. 6.1 Sorting and De-duplicating Data
2. 6.2 Calculating New Variables
3. 6.3 Filtering
4. 6.4 Conditional Logic
5. 6.5 Manipulating Values

1. 6.5.1 Character Functions
2. 6.5.2 Numeric Functions
3. 6.5.3 Date Functions
4. 6.5.4 Manipulating Values Example

6. 6.6 Formatting
1. 6.6.1 User-Defined Formats
2. 6.6.2 Storing User-Defined Formats

2. 7 Combining and Aggregating Data
1. 7.1 Combing Data Using the DATA Step

1. 7.1.1 Appending Data
2. 7.1.2 One-to-One Merge
3. 7.1.3 One-to-Many Merge

2. 7.2 PROC SQL
1. 7.2.1 Types of Joins
2. 7.2.2 PROC SQL Syntax

3. 8 Comparing Data
1. 8.1 DATA Step Compare Merge
2. 8.2 PROC COMPARE

4. 9 Reporting
1. 9.1 PROC PRINT
2. 9.2 PROC REPORT
3. 9.3 Output Delivery System

1. 9.3.1 ODS Destinations
2. 9.3.2 ODS Graphics

5. 10 Introduction to Selected Advanced Topics
1. 10.1 Cloud Analytic Services (CAS)
2. 10.2 Macro Language

1. 10.2.1 Macro Variables
2. 10.2.2 Macro Programs

5. Appendix A: Resources
6. Appendix B: Create GSS SAS Data Set

	About The Author
	Acknowledgments
	Part One: Getting Started with SAS
	1 Introduction
	1.1 Note of Encouragement
	1.2 Purpose of this Guide

	2 Getting Started
	2.1 SAS Windows
	2.2 SAS® OnDemand for Academics
	2.3 SAS® Studio
	2.3.1 Tasks
	2.3.2 Snippets

	2.4 Data Setup

	3 How SAS® Works
	3.1 DATA and PROC Steps
	3.1.1 DATA Step
	3.1.2 PROC Step

	3.2 Data Structure
	3.2.1 Columns/Variables
	3.2.2 Values
	3.2.3 PROC Contents

	3.3 DATA Step Processing
	3.4 OUTPUT Statements
	3.5 SAS Libraries
	3.5.1 Macro Libraries
	3.5.2 Read-Only Access Libraries

	4 Import/Export
	4.1 Importing Data
	4.2 Exporting Data

	5 Viewing and Summarizing Data
	5.1 Viewing Data
	5.2 Summarizing Data

	Part Two: Coding with SAS
	6 Data Transformations
	6.1 Sorting and De-duplicating Data
	6.2 Calculating New Variables
	6.3 Filtering
	6.4 Conditional Logic
	6.5 Manipulating Values
	6.5.1 Character Functions
	6.5.2 Numeric Functions
	6.5.3 Date Functions
	6.5.4 Manipulating Values Example

	6.6 Formatting
	6.6.1 User-Defined Formats
	6.6.2 Storing User-Defined Formats

	7 Combining and Aggregating Data
	7.1 Combing Data Using the DATA Step
	7.1.1 Appending Data
	7.1.2 One-to-One Merge
	7.1.3 One-to-Many Merge

	7.2 PROC SQL
	7.2.1 Types of Joins
	7.2.2 PROC SQL Syntax

	8 Comparing Data
	8.1 DATA Step Compare Merge
	8.2 PROC COMPARE

	9 Reporting
	9.1 PROC PRINT
	9.2 PROC REPORT
	9.3 Output Delivery System
	9.3.1 ODS Destinations
	9.3.2 ODS Graphics

	10 Introduction to Selected Advanced Topics
	10.1 Cloud Analytic Services (CAS)
	10.2 Macro Language
	10.2.1 Macro Variables
	10.2.2 Macro Programs

	Appendix A: Resources
	Appendix B: Create GSS SAS Data Set

