
The
Staff Engineer’s

Path
A GUIDE FOR INDIVIDUAL CONTRIBUTORS

NAVIGATING GROWTH AND CHANGE

TANYA REILLY
Foreword by Camille Fournier, author of The Manager’s Path

Praise for The Staff Engineer’s Path

The book I wish I’d had when I stepped up to principal engineer. If you are
wondering what Staff+ means, and how to be successful in the role in your

organization, Tanya has laid out the path, with lots of practical, insightful
advice for you. This book will provide the tools to enable you to thrive

in a tech track role, acting with influence and impact.

—Sarah Wells, independent consultant and author,
former principal engineer at the Financial Times

This book feels like the missing manual for my whole career. It’s amazingly
reassuring to see the ambiguity of the role laid out in print, along with
great specific guidance on time management, consensus building, etc.

I’m going to cite this a lot.

—Titus Winters, principal engineer, Google, and
coauthor of Software Engineering at Google

Tanya is the perfect author for this exceptional guide to navigating the
murky role of staff-plus engineering. Her deep, direct experience

comes through in every section and taught me a great deal.

—Will Larson, CTO, Calm, and author of Staff Engineer

The job of senior leadership as an individual contributor has long been
ambiguous and difficult to define, and this book is a much-needed guide on

being successful in a relatively new role to our industry. Tanya does
an excellent job bringing large-company perspective and scaling company

challenges for a rounded view on how to be a successful staff engineer.

—Silvia Botros, principal engineer and
coauthor of High Performance MySQL, 4th edition

When you reach near the top of the individual-contributor scale, you’re
given a metaphorical compass and a destination. How you get there is your

problem. How you lead there is everybody’s problem. Tanya offers a solid
framework, a mapping approach, to help you lead from “here” to “there.”

This book offers a solid anchor for those new to the upper levels of
individual contributors, and new perspectives for those with

more experience. Staff engineer, know thyself.

—Izar Tarandach, principal security architect and
coauthor of Threat Modeling

Tanya Reilly captures with eerie accuracy the sinking feeling I experienced
when I first became the “someone” in “someone should do something.”

This book is a detailed exploration of what that actually means for
folks at the staff engineer level.

—Niall Richard Murphy, founder, CEO, and coauthor of
Reliable Machine Learning and Site Reliability Engineering

In The Staff Engineer’s Path, Tanya Reilly has brought desperately needed
clarity to the ambiguous and often misunderstood question of how to be a

senior technical leader without direct reports. Every page is chock full of
valuable insights and actionable advice for navigating your role, your org,

and carving out your career path—all delivered in Tanya’s trademark witty,
insightful, and down-to-earth style. This book is a masterpiece.

—Katie Sylor-Miller, senior staff frontend architect, Etsy

If you’re a senior engineer wondering what the next level is—a staff-level
engineer or a manager of staff engineers—this book is for you.

It covers so many of the things no one tells you about this role—
things that take long years, even with great mentors, to discover on your

own. It offers observations, mental models, and firsthand experiences about
the staff engineer role in a more distilled way than any other book has covered before.

—Gergely Orosz, author of The Pragmatic Engineer

The Staff
Engineer’s Path

A Guide for Individual Contributors
Navigating Growth and Change

Tanya Reilly

978-1-098-11873-0

[LSI]

The Staff Engineer’s Path
by Tanya Reilly

Copyright © 2022 Tanya Reilly. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield

Development Editor: Sarah Grey

Production Editor: Elizabeth Faerm

Copyeditor: Josh Olejarz

Proofreader: Liz Wheeler

Indexer: Sue Klefstad

Interior Designer: Monica Kamsvaag

Cover Designer: Susan Thompson

Cover Art Creator: Susan Thompson

Illustrator: Kate Dullea

September 2022: First Edition

Revision History for the First Edition
2022-09-20 : First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098118730 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Staff Engineer’s Path, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s
views. While the publisher and the author have used good faith efforts to ensure that the infor-
mation and instructions contained in this work are accurate, the publisher and the author dis-
claim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and instruc-
tions contained in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellectual property rights
of others, it is your responsibility to ensure that your use thereof complies with such licenses
and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098118730

Contents

 | Foreword vii

 | Introduction xi

PART I | The Big Picture

1 | What Would You Say You Do Here? 3

2 | Three Maps 31

3 | Creating the Big Picture 69

PART II | Execution

4 | Finite Time 115

5 | Leading Big Projects 151

6 | Why Have We Stopped? 189

PART III | Leveling Up

7 | You’re a Role Model Now (Sorry) 225

8 | Good Influence at Scale 253

9 | What’s Next? 285

 | Index 313

v

Foreword

When I wrote The Manager’s Path in 2016, I had many goals. I wanted to share
lessons I had learned growing up as a manager. I wanted to show those who
were interested in becoming managers what the job would be like. And I wanted
to force a reckoning across the industry that we needed to expect more from our
managers, and that the managers we were currently promoting often did not
have the right balanced focus of people, process, product, and technical skills to
do the job well. In short, I wanted to correct what I saw as a cultural failing in
tech: to both take management seriously as a critical role and to discourage it
from being the default path for ambitious engineers who want to grow their
careers.

I would say that I partially succeeded. Every time someone tells me they read
my book and decided not to become a manager, I do a little victory dance. From
that perspective, at least some people read my book and realize that this path
isn’t for them. Unfortunately, the alternative path of career growth for the indi-
vidual contributor, the staff+ engineering path, has lacked a similar guidebook.
This lack has led to many choosing to follow the management path despite know-
ing they would rather not have the responsibility for larger and larger groups of
people, because they cannot see another way forward. This is a great frustration
for engineers and managers alike: most managers want to have more strong
staff+ engineers in their organizations but don’t know how to cultivate them, and
many engineers want to stay on that path but see no realistic options beyond
going into management.

vii

One of the core challenges of the staff+ engineering path is the unspoken
expectation that part of being qualified to be on that path is figuring out how to
climb it without much in the way of directions. If you were destined to be a staff+
engineer, conventional wisdom argues, you would figure out how to get there
yourself. Needless to say, this is a frustrating and bias-ridden approach to career
development. As more and more companies realize the need for staff+ engineers,
we as an industry cannot afford to maintain a mysticism about the staff+ engi-
neering career path that ignores the underlying skills that lead to successful tech-
nical leaders.

With this in mind, you can imagine how thrilled I felt when Tanya Reilly
came up with a proposal for a book about career growth as a staff engineer, filling
in the missing half of the career ladder that my book left unexplored. I know
Tanya from her writing and speaking about technical leadership, and it is obvi-
ous that she wants to correct the cultural failings of the tech industry’s approach
to staff+ engineering in the same way that I wanted to correct the cultural failing
in the tech industry’s approach to management. Namely, Tanya wants to address
the overfocus on coding and technical contributions and the lack of clarity
around the skills that allow strong engineers to become successful multipliers
without needing to manage people.

In this book, Tanya has stepped up to the task of articulating these underly-
ing skills that are so crucial for successful staff+ engineers. She provides a frame-
work that shows how, using the pillars of big-picture thinking, execution, and
leveling up others, you can build impact that goes beyond your individual hands-
on contributions.

Reflecting the multifaceted nature of the staff+ engineering path, Tanya does
not try to dictate the precise mix of skills needed at each level above senior engi-
neer. Instead, she wisely focuses on how to build out these pillars from wherever
you are today. From developing technical strategy to leading big projects success-
fully and going from mentor to organizational catalyst, this book takes you
through these critical pillars and shows how to increase your impact on the suc-
cess of your company beyond writing code.

VIII |

There’s only one person in the driver’s seat for your career, and that person
is you. Figuring out your career path is one of the great opportunities and chal-
lenges of your life, and the earlier you accept that it’s up to you (plus a heaping
dose of luck), the better set you are to navigate the working world. This guide-
book shows you the skills you’ll need on the staff+ path, and it’s an essential
addition to every engineer’s library.

—Camille Fournier
Author, The Manager’s Path

Editor, 97 Things Every Engineering Manager Should Know
Managing Director, JP Morgan Chase

Board Member, ACM Queue
New York, NY, September 2022

 | IX

1 Although you’re not supposed to reply “a zookeeper who is also an astronaut” to the interview question.
Adult life is very limiting.

2 For the sake of brevity, I’m going to say “software engineer” throughout this book; however, if you’re a
systems engineer, data scientist, or any other practitioner of tech, I think you’ll find it relevant, too. All are
welcome here!

Introduction

Where do you see yourself in five years? The classic interview question is the
adult equivalent of “What do you want to be when you grow up?”: it has some
socially acceptable answers and a long enough time horizon that you don’t need
to commit.1 But if you’re a senior software engineer looking to keep growing in
your career, the question becomes very real.2 Where do you see yourself going?

Two Paths

You may find yourself at a fork in the road (Figure P-1), two distinct paths stretch-
ing ahead. On one, you take on direct reports and become a manager. On the
other, you become a technical leader without reports, a role often called staff engi-
neer. If you really could see five years ahead on both of these paths, you’d find
that they have a lot in common: they lead to many of the same places, and the
further you travel, the more you’ll need many of the same skills. But, at the start,
they look quite different.

xi

Figure P-1. A fork in the road.

The manager’s path is clear and well traveled. Becoming a manager is a com-
mon, and perhaps default, career step for anyone who can communicate clearly,
stay calm during a crisis, and help their colleagues do better work. Most likely,
you know people who have chosen this path. You’ve probably had managers
before, and perhaps you have opinions about what they did right or wrong. Man-
agement is a well-studied discipline, too. The words promotion and leadership are
often assumed to mean “becoming someone’s boss,” and airport bookshops are
full of advice on how to do the job well. So, if you set off down the management
path, it won’t be an easy road, but you’ll at least have some idea of what your jour-
ney will be like.

The staff engineer’s path is a little less defined. While many companies now
allow engineers to keep growing in seniority without taking on reports, this
“technical track” is still muddy and poorly signposted. Engineers considering this
path may have never worked with a staff engineer before, or might have seen
such a narrow set of personalities in the role that it seems like unattainable wiz-
ardry. (It’s not. It’s all learnable.) The expectations of the job vary across

XII | INTRODUCTION

3 This is changing. Will Larson, LeadDev, and others have been doing phenomenal work in paving the road.
I’ll link to resources throughout this book.

4 I reserve the right to change my mind later on.

companies, and, even within a company, the criteria for hiring or promoting staff
engineers can be vague and not always actionable.

Often the job doesn’t become clearer once you’re in it. Over the last few
years, I’ve spoken with staff engineers across many companies who weren’t quite
sure what was expected of them, as well as engineering managers who didn’t
know how to work with their staff engineer reports and peers.3 All of this ambi-
guity can be a source of stress. If your job’s not defined, how can you know
whether you’re doing it well? Or doing it at all?

Even when expectations are clear, the road to achieving them might not be.
As a new staff engineer, you might have heard that you’re expected to be a techni-
cal leader, make good business decisions, and influence without authority—but
how? Where do you start?

The Pillars of Staff Engineering

I understand that feeling. Through 20 years in the industry, I’ve stayed on the
staff engineer’s path, and I’m now a senior principal engineer, parallel to a senior
director on my company’s career ladder. While I’ve considered the manager’s
path many times, I’ve always concluded that the “technical track” work is what
gives me energy and makes me want to come to work in the morning. I want to
have time to dig into new technologies, deeply understand architectures, and
learn new technical domains. You get better at whatever you spend time on, and
I’ve consistently wanted to keep getting better at technical things.4

Earlier in my career, though, I struggled to make sense of this path. As a
midlevel engineer, I didn’t understand why we had levels above “senior”—what
did those people do all day? I certainly couldn’t see a path to those roles from
where I was. Later, as a new staff engineer, I discovered unspoken expectations
and missing skills I didn’t know how to describe, much less act on. Over the years,
I’ve learned from many projects and experiences—both successes and failures—
as well as from phenomenal colleagues and peers in other companies. The job
makes sense now, but I wish I’d known then what I know now.

If you’ve taken the staff engineer path, or are considering it, welcome! This
book is for you. If you work with a staff engineer, or manage one, and want to
know more about this emerging role, there’ll be a lot here for you too. In the next

INTRODUCTION | XIII

https://staffeng.com
https://leaddev.com/staffplus-new-york

5 Throughout this book I’m going to use the term “company” when talking about employers, but of course
you could be at a nonprofit, government agency, academic institution, or other type of organization.
Swap in whatever makes sense for you.

nine chapters I’m going to share what I’ve learned about how to be a great staff
engineer. I’ll warn you right now that I’m not going to be prescriptive about
every topic or answer every question: a great deal of the ambiguity is inherent to
the role, and the answer is very often “it depends on the context.” But I’ll show
you how to navigate that ambiguity, understand what’s important, and stay
aligned with the other leaders you work with.

I’ll unpack the staff engineer role by looking at what I think of as its three
pillars: big-picture thinking, execution of projects, and leveling up the engineers you
work with.

Big-picture thinking
Big-picture thinking means being able to step back and take a broader view.
It means seeing beyond the immediate details and understanding the con-
text that you’re working in. It also means thinking beyond the current time,
whether that means initiating yearlong projects, building software that will
be easy to decommission, or predicting what your company will need in
three years.5

Execution
At the staff level, the projects you take on will become messier and more
ambiguous. They’ll involve more people and need more political capital,
influence, or culture change to succeed.

Leveling up
Every increase in seniority comes with more responsibility for raising the
standards and skills of the engineers within your orbit, whether that’s your
local team, colleagues in your organization, or engineers across your whole
company or industry. This responsibility will include intentional influence
through teaching and mentoring, as well as the accidental influence that
comes from being a role model.

We can think of these three pillars as supporting your impact like in
Figure P-2.

XIV | INTRODUCTION

6 And a lot more. Check out Camille Fournier’s article “An Incomplete List of Skills Senior Engineers Need,
Beyond Coding”.

Figure P-2. Three pillars of staff engineer roles.

You’ll notice that these pillars sit on a solid foundation of technical knowl-
edge and experience. This foundation is critical. Your big-picture perspective
includes understanding what’s possible and having good judgment. When exe-
cuting on projects, your solutions will need to actually solve the problems they
set out to solve. When acting as a role model, your review comments should
make code and designs better, and your opinions need to be well thought out—
you need to be right! Technical skills are the foundation of every staff engineer
role, and you’ll keep exercising them.

But technical knowledge is not enough. Success and growth at this level
means doing more than you can do with technical skills alone. To become adept
at big-picture thinking, execute on bigger projects, and level up everyone around
you, you’re going to need “humaning” skills, like:

• Communication and leadership

• Navigating complexity

• Putting your work in perspective

• Mentorship, sponsorship, and delegation

• Framing a problem so that other people care about it

• Acting like a leader whether you feel like one or not6

INTRODUCTION | XV

https://oreil.ly/gGe2T
https://oreil.ly/gGe2T

Think of these skills like the flying buttresses you see on gothic cathedrals
(as in Figure P-3): they don’t replace the walls—or your technical judgment—but
they allow the architect to build taller, grander, more awe-inspiring buildings.

Figure P-3. Leadership skills are like the flying buttresses that let us keep massive buildings stable.

Each of the three pillars has a set of required skills, and your aptitude for
each of them will vary. Some of us may be in our element when leading and fin-
ishing big projects, but find it intimidating to choose between two strategic direc-
tions. Others may have strong instincts for understanding where the company
and industry are going, but lose control of the room quickly when managing an
incident. Still others may boost the skills of everyone they work with, but struggle
to build consensus around a technical decision. The good news is that all of these
skills are learnable, and you can become adept at all three pillars.

This book is divided into three parts.

Part I: The Big Picture

In Part I, we’ll look at how to take a broad, strategic view when thinking about
your work. Chapter 1 will begin by asking big questions about your role. What’s
expected of you? What are staff engineers for? In Chapter 2, we’ll zoom out fur-
ther and get some perspective. We’ll look at your work in context, navigate your
organization, and uncover what your goals are. Finally, in Chapter 3, we’ll look at
adding to the big picture by creating a technical vision or strategy.

XVI | INTRODUCTION

Part II: Execution

Part II gets tactical and moves on to the practicalities of leading projects and solv-
ing problems. In Chapter 4, we’ll look at choosing what to work on: I’ll share
techniques for how to decide what to spend time on, how to manage your energy,
and how to “spend” your credibility and social capital in a way that doesn’t dimin-
ish it. In Chapter 5 I’ll discuss how to lead projects that stretch across teams and
organizations: setting them up for success, making the right decisions, and keep-
ing information flowing. Chapter 6 will look at navigating the obstacles you’ll
meet along the way, celebrating a project that finishes successfully, and retro-
specting (but still celebrating!) if it’s canceled and cleanly shut down.

Part III: Leveling Up

Part III is about leveling up your organization. Chapter 7 will look at raising
everyone’s game by modeling what a great engineer acts like, how to learn out
loud, and how to build a psychologically safe culture. We’ll look at how to be the
“adult in the room” during an incident or a technical disagreement. Chapter 8 is
about more intentional forms of raising your colleagues’ skills, like teaching and
coaching, design review, code review, and making cultural change. Finally, Chap-
ter 9 will explore how to level up yourself: how to keep growing and how to think
about your career. Where do you go after your current role? I’ll discuss some
options.

One warning before we go further: this is a book about staying on the techni-
cal track. It is not a technical book. As I’ve said, you need a solid technical founda-
tion to become a staff engineer. This book won’t help you get that. Technical
skills are domain-specific, and if you’re here, I’m assuming that you already have
—or are setting out to learn—whatever specialized skills you need in order to be
one of the most senior engineers in your domain. Whether “technical” for you
means coding, architecture, UX design, data modeling, production operations,
vulnerability analysis, or anything else, almost every domain has a plethora of
books, websites, and courses that will support you.

If you’re someone who thinks that technical skills are the only ones that mat-
ter, you’re unlikely to find what you’re looking for in here. But, ironically, you
might also be the person who’ll get the most from this book. No matter how deep
or arcane your technical knowledge, you’ll find that work gets less annoying
when you can persuade other people to adopt your ideas, level up the engineers
around you, and breeze through the organizational gridlock that slows everyone

INTRODUCTION | XVII

down. Those skills aren’t easy to learn, but I promise they’re all learnable, and I’ll
do my best in this book to show the way.

Do you want to be a staff engineer? It’s fine not to aspire to more senior
engineering roles. It’s also fine to move to the manager track (or go back and
forth!), or to stay at the senior level, doing work you enjoy. But if you like the idea
of helping achieve your organization’s goals and continuing to build technical
muscle while making the engineers around you better at their craft, then read on.

O’Reilly Online Learning

For more than 40 years, O’Reilly Media has provided tech-
nology and business training, knowledge, and insight to
help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of
text and video from O’Reilly and 200+ other publishers. For more information,
visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/staff-eng-path.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit https://
oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

XVIII | INTRODUCTION

https://oreilly.com
https://oreilly.com
https://oreil.ly/staff-eng-path
mailto:bookquestions@oreilly.com
https://oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia.
Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

Thank you to the many, many people who helped make this book a reality.
Thank you to Sarah Grey, best of all possible development editors, and all of

the other phenomenal folks at O’Reilly, including acquisitions editor, Melissa
Duffield; production editor, Liz Faerm; copy editor, Josh Olejarz; Susan Thomp-
son, who created the incredible cover; and illustrator, Kate Dullea, who translated
my pencil scrawls into gorgeous art. This was my first time writing a book, and
you all took the terror out of it.

My thanks to Will Larson for his encouragement and support, and for help-
ing the staff engineering community find each other for the first time. Also
thanks to Lara Hogan for enthusiasm and introductions when I turned up in her
DMs all “but could I write a book??” Thank you both for showing what sponsor-
ship looks like.

I was lucky enough to have two of the wisest and most insightful engineers I
know along on this journey. Cian Synnott and Katrina Sostek, this book is infin-
itely better for your review and feedback over the last year. In particular, I am
indebted for your thoughtful suggestions around the parts that didn’t work. Con-
structive criticism is always harder, and I’m grateful for your time and energy.

Many people generously shared their time to discuss ideas, offer feedback, or
teach me something. I want to particularly thank Franklin Angulo, Jackie Beno-
witz, Kristina Bennett, Silvia Botros, Mohit Cheppudira, John Colton, Trish
Craine, Juniper Cross, Stepan Davidovic, Tiarnán de Burca, Ross Donaldson,
Tess Donnelly, Tom Drapeau, Dale Embry, Liz Fong-Jones, Camille Fournier,
Stacey Gammon, Carla Geisser, Polina Giralt, Tali Gutman, Liz Hetherston, Moj-
taba Hosseini, Cate Huston, Jody Knower, Robert Konigsberg, Randal Koutnik,
Lerh Low, Kevin Lynch, Jennifer Mace, Glen Mailer, Keavy McMinn, Daniel
Micol, Zach Millman, Sarah Milstein, Isaac Perez Moncho, Dan Na, Katrina
Owen, Eva Parish, Yvette Pasqua, Steve Primerano, Sean Rees, John Reese, Max
Schubert, Christina Schulman, Patrick Shields, Joan Smith, Beata Strack, Carl
Sutherland, Katie Sylor-Miller, Izar Tarandach, Fabianna Tassini, Elizabeth
Votaw, Amanda Walker, and Sarah Wells. Also, thanks to the many (so many!)
other people I spoke with via DMs, email, hallway conversation, or in spirited
Slack threads. You made this book better, and I appreciate you.

INTRODUCTION | XIX

https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Thank you to the people who drink afternoon tea: you demonstrate the
power of community every day. Thanks to everyone on the #staff-principal-
engineering channel on Rands Leadership Slack for being relentlessly supportive
and for sharing your experiences with humility. Huge appreciation to my collea-
gues at Squarespace and to the Google SRE diaspora. I’ve learned a ton from you
all. And I want to thank Ruth Yarnit, Rob Smith, Mariana Valette, and the whole
Lead Dev crew for the incredible technical leadership content they’ve shared with
the world. Thanks for what you do.

Thank you to the Hillfolks, including that very good dog. I’m lucky and privi-
leged to have you as friends. Thanks for letting me write in your caravan (and
quarantine there when I had COVID!) I look forward to decades more of friend-
ship and watching your baby oak trees grow.

Finally, to my whole family—my parents, Danny and Kathleen, and the
whole extended clan—thank you for being patient over the last year while I fell
off the planet.

And of course, Joel and Ms 9! I look forward to seeing you on Saturdays
again. To Joel (who came up with the idea that humaning skills are “flying but-
tresses”), thank you for great conversations about engineering organizations and
making good software. And thank you for all the sandwiches. And to Ms 9 (who
was Ms 6 when I wrote the first draft of this book!): thank you for your excellent
ideas, drawings, and hugs. I appreciate you lummoxes.

XX | INTRODUCTION

The Big Picture

PART | I

What Would You Say
You Do Here?

The idea of a staff engineer track, or “technical track”, is new to a lot of compa-
nies. Organizations differ on what attributes they expect of their most senior
engineers and what kind of work those engineers should do. Although most
agree that, as Silvia Botros has written, the top of the technical track is not just
“more-senior seniors,” we don’t have a shared understanding of what it is. So
we’ll start this chapter by getting existential: why would an organization want
very senior engineers to stick around? Then, armed with that understanding,
we’ll unpack the role: its technical requirements, its leadership requirements,
and what it means to work autonomously.

Staff engineering roles come in a lot of shapes. There are many valid ways to
do the job. But some shapes will be a better fit for some situations, and not all
organizations will need all kinds of staff engineers. So I’ll talk about how to char-
acterize and describe a staff engineering role: its scope, depth, reporting struc-
ture, primary focus, and other attributes. You can use these descriptions to be
precise about how you want to work, what kind of role you’re looking to grow
into, or who you need to hire. Finally, since different companies have different
ideas of what a staff engineer should do, we’ll work on aligning your understand-
ing with that of other key people in your organization.

Let’s start with what this job even is.

What Even Is a Staff Engineer?

If the only career path was to become a manager (like in the company depicted
on the left in Figure 1-1), many engineers would be faced with a stark and difficult
choice: stay in an engineering role and keep growing in their craft or move to
management and grow in their careers instead.

3

| 1

https://oreil.ly/xwgRn

1 I also recommend progression.fyi, which has an extensive collection of ladders published by various tech
companies.

2 One company I heard about used the levels “senior,” “staff,” and “principal,” in that order of seniority, but
got acquired by another company that used “senior,” “principal,” and “staff.” Chaos. The acquiring com-
pany changed all “staff” to “principal” and all “principal” to “staff,” and no one was happy. Both staffs
and principals saw the change as a demotion. Titles matter!

So it’s good that many companies now offer a “technical” or “individual con-
tributor” track, allowing career progression in parallel to manager roles. The lad-
der on the right in Figure 1-1 shows an example.

Figure 1-1. Two example career ladders, one with multiple paths.

Job ladders vary from company to company, enough that it’s given rise to a
website, levels.fyi, that compares technical track ladders across companies.1 The
number of rungs on these ladders varies, as do the names of each rung. You may
even see the same names in a different order.2 But, very often, the word senior is

4 | THE STAFF ENGINEER’S PATH

https://www.progression.fyi
https://levels.fyi

3 I like my friend Tiarnán de Burca’s definition of senior engineer: the level at which someone can stop
advancing and continue their current level of productivity, capability, and output for the rest of their
career and still be “regretted attrition” if they leave.

used. Marco Rogers, a director of engineering who has created career ladders at
two companies, has described the senior level as the “anchor” level for a career
ladder. As Rogers says, “The levels below are for people to grow their autonomy;
the levels above increase impact and responsibility.”

Senior is sometimes seen as the “tenure” level: you don’t need to go further.3

But if you do, you enter the “technical leadership” levels. The first rung above
senior is often called “staff engineer,” and that’s the name I’ll use throughout
this book.

In the dual-track job ladder from Figure 1-1, a senior engineer can choose to
build the skills to get promoted to either a manager or a staff engineer role. Once
they’ve been promoted, a role change from staff engineer to manager, or vice
versa, would be considered a sideways move, not a further promotion. A senior
staff engineer would have the same seniority as a senior manager, a principal
engineer would equate to a director, and so on; those levels might continue even
higher in the company’s career ladders. (To represent all of the roles above
senior, I’m going to use staff+, an expression coined by Will Larson in his book
Staff Engineer.)

A Note About Titles

I’ve occasionally heard people insist that job titles and leveling shouldn’t

(or don’t) matter. People who make this claim tend to say reasonable

things about their company being an egalitarian meritocracy that is wary

of the dangers of hierarchy. “We’re a bottom-up culture and all ideas are

treated with respect,” they say, and that’s an admirable goal: being early

in your career should never mean your ideas are dismissed.

But titles do matter. The Medium engineering team wrote a blog

post that lays out three reasons titles are necessary: “Helping people

understand that they are progressing, vesting authority in those people

who might not automatically receive it, and communicating an expected

competency level to the outside world.”

While the first reason is intrinsic and, perhaps, not a motivation for

everyone, the other two describe the effect that a title has on other

WHAT WOULD YOU SAY YOU DO HERE? | 5

https://oreil.ly/MpwsJ
https://oreil.ly/oUkHe
https://oreil.ly/oUkHe

people. Whether a company claims to be flat and egalitarian or not, there

will always be those who react differently to people of different levels,

and most of us are at least a little status-conscious. As Dr. Kipp Krukow-

ski, clinical professor of entrepreneurship at Colorado State University,

says in his 2017 paper, “The Effects of Employee Job Titles on Respect

Granted by Customers”, “Job titles act as symbols and companies use

them to signal qualities of their workers to individuals both inside and

outside of the firm.”

We make implicit judgements and assumptions about people all the

time. Unless we’ve invested a lot of time and energy in becoming aware

of our implicit biases, it’s likely that these assumptions will be influenced

by stereotypes. A 2015 survey, for example, found that around half of the

557 Black and Latina professional women in STEM surveyed had been

mistaken for janitors or administrative staff.

When a software engineer walks into a meeting with people they

don’t know, similar implicit biases come into play. White and Asian male

software engineers are often assumed to be more senior, more “techni-

cal,” and better at coding, whether they graduated yesterday or have

been doing the job for decades. Women, especially women of color, are

assumed to be more junior and less qualified. They have to work harder

in the meeting to be assumed competent.

As that Medium engineering article said, a job title vests authority in

people who might not automatically receive it, and communicates their

expected competency level. By anchoring expectations, it saves them

the time and energy they would otherwise have to spend proving them-

selves again and again. It gives them some hours back in their week.

The title you have now also influences the job you’ll have next. Like

many folks in our industry, I get daily emails from recruiters on LinkedIn.

Exactly three times in my life I’ve had a cold-call recruiting email that invi-

ted me to interview for a more senior job title than the one I already had.

All others have suggested a role at exactly the level that I was already at,

or a more junior one.

6 | THE STAFF ENGINEER’S PATH

https://oreil.ly/zD3kp
https://oreil.ly/zD3kp
https://oreil.ly/snmmY

So that’s what the job looks like on a ladder. But let’s look at why the techni-
cal leadership levels exist. I talked in the introduction about the three pillars of
the technical track: big-picture thinking, project execution, and leveling up. Why
do we need engineers to have those skills? Why do we need staff engineers at all?

WHY DO WE NEED ENGINEERS WHO CAN SEE THE BIG PICTURE?

Any engineering organization is constantly making decisions: choosing technol-
ogy, deciding what to build, investing in a system or deprecating it. Some of
these decisions have clear owners and predictable consequences. Others are
foundational architectural choices that will affect every other system, and no one
can claim to know exactly how they’ll play out.

Good decisions need context. Experienced engineers know that the answer to
most technology choices is “it depends.” Knowing the pros and cons of a particu-
lar technology isn’t enough—you need to know the local details too. What are
you trying to do? How much time, money, and patience do you have? What’s
your risk tolerance? What does the business need? That’s the context of the deci-
sion.

Gathering context takes time and effort. Individual teams tend to optimize
for their own interests; an engineer on a single team is likely to be laser-focused
on achieving that team’s goals. But often decisions that seem to belong to one
team have consequences that extend far beyond that team’s boundaries. The local
maximum, the best decision for a single group, might not be anything like the
best decision when you take a broader view.

Figure 1-2 shows an example where a team is choosing between two pieces of
software, A and B. Both have the necessary features, but A is significantly easier
to set up: it just works. B is a little more difficult: it will take a couple of sprints of
wrangling to get it working, and nobody’s enthusiastic about waiting that long.

From the team’s point of view, A is a clear winner. Why would they choose
anything else? But other teams would much prefer that they choose B. It turns
out that A will make ongoing work for the legal and security teams, and its
authentication needs mean the IT and platform teams will have to treat it as a
special case forever. By choosing A, the local maximum, the team is unknowingly
choosing a solution that’s a much bigger time investment for the company over-
all. B is only slightly worse for the team, but much better overall. Those extra two
sprints will pay for themselves within a quarter, but this fact is only obvious
when the team has someone who can look through a wider lens.

WHAT WOULD YOU SAY YOU DO HERE? | 7

Figure 1-2. Local maximum versus better decision.

To avoid local maxima, teams need decision makers (or at least decision
influencers) who can take an outsider view—who can consider the goals of multi-
ple teams at once and choose a path that’s best for the whole organization or the
whole business. Chapter 2 will cover zooming out and looking at the bigger
picture.

Just as important as seeing the big picture of the situation now is being able
to anticipate how your decisions will play out in future. A year from now, what
will you regret? In three years, what will you wish you’d started doing now? To
travel in the same direction, groups need to agree on technical strategies: which
technologies to invest in, which platforms to standardize on, and so on. These
huge decisions can end up being subtle, and they’re often controversial, so essen-
tial to making the decision is being able to share context and help others make
sense of it. Chapter 3 is all about choosing a direction as a group.

So, if you want to make broad, forward-looking decisions, you need people
who can see the big picture. But why can’t that be managers? And why can’t the
chief technology officer (CTO) just know all of the “business things,” translate
them into technical outcomes, and pass on what matters?

On some teams, they can. For a small team, a manager can often function as
the most experienced technologist, owning major decisions and technical direc-
tion. In a small company, a CTO can stay deeply involved in the gory details of
every decision. These companies probably don’t need staff engineers. But

8 | THE STAFF ENGINEER’S PATH

management authority can overshadow technical judgment: reports may feel
uncomfortable arguing with a manager’s technical decisions even when there’s a
better solution available. And managing other humans is itself a full-time job.
Someone who’s investing in being a good people manager will have less time
available to stay up to date with technical developments, and anyone who is man-
aging to stay deeply “in the weeds” will be less able to meet the needs of their
reports. In the short term that can be OK: some teams don’t need a lot of atten-
tion to continue on a successful path. But when there’s tension between the
needs of the team and the needs of the technical strategy, a manager has to
choose where to focus. Either the team’s members or its technical direction get
neglected.

That’s one reason that many organizations create separate paths for technical
leadership and people leadership. If you have more than a few engineers, it’s
inefficient—not to mention disempowering—if every decision needs to end up
on the desk of the CTO or a senior manager. You get better outcomes and
designs if experienced engineers have the time to go deep and build the context
and the authority to set the right technical direction.

That doesn’t mean engineers set technical direction alone. Managers, as the
people responsible for assigning headcount to technical initiatives, need to be
part of major technical decisions. I’ll talk about maintaining alignment between
engineers and managers later in this chapter, and again when we’re talking strat-
egy in Chapter 3.

What About Architects?

In some companies, “architect” is a rung on the technical track of the job

ladder. In others, architects are abstract system designers who have

their own career path, distinct from that of the engineers who implement

the systems. In this book I’m going to consider software design and

architecture to be part of the role of a staff+ engineer, but be aware that

this is not universally true in our industry.

WHY DO WE NEED ENGINEERS WHO LEAD PROJECTS THAT
CROSS MULTIPLE TEAMS?

In an ideal world, the teams in an organization should interlock like jigsaw puz-
zle pieces, covering all aspects of any project that’s underway. In this same ideal

WHAT WOULD YOU SAY YOU DO HERE? | 9

4 What were they thinking? Was this really what they intended to do? Of course, future teams will ask the
same of us.

world, though, everyone’s working on a beautiful new green-field project with no
prior constraints or legacy systems to work around, and each team is wholly dedi-
cated to that project. Team boundaries are clear and uncontentious. In fact, we’re
starting out with what the Thoughtworks tech consultants have dubbed an
Inverse Conway Maneuver: a set of teams that correspond exactly with the com-
ponents of the desired architecture. The difficult parts of this utopian project are
difficult only because they involve deep, fascinating research and invention, and
their owners are eager for the technical challenge and professional glory of solv-
ing them.

I want to work on that project, don’t you? Unfortunately, reality is somewhat
different. It’s almost certain that the teams involved in any cross-team project
already existed before the project was conceived and are working on other things,
maybe even things that they consider more important. They’ll discover unexpec-
ted dependencies midway through the project. Their team boundaries have over-
laps and gaps that leak into the architecture. And the murky and difficult parts of
the project are not fascinating algorithmic research problems: they involve spe-
lunking through legacy code, negotiating with busy teams that don’t want to
change anything, and divining the intentions of engineers who left years ago.4

Even understanding what needs to change can be a complex problem, and not all
of the work can be known at the start. If you look closely at the design documen-
tation, you might find that it postpones or hand-waves the key decisions that
need the most alignment.

That’s a more realistic project description. No matter how carefully you over-
lay teams onto a huge project, some responsibilities end up not being owned by
anyone, and others are claimed by two teams. Information fails to flow or gets
mangled in translation and causes conflict. Teams make excellent local maximum
decisions and software projects get stuck.

One way to keep a project moving is to have someone who feels ownership
for the whole thing, rather than any of its individual parts. Even before the
project kicks off, that person can scope out the work and build a proposal. Once
the project is underway, they’re likely to be the author or coauthor of the high-
level system design and a main point of contact for it. They maintain a high engi-
neering standard, using their experience to anticipate risks and ask hard
questions. They also spend time informally mentoring or coaching—or just

10 | THE STAFF ENGINEER’S PATH

https://oreil.ly/HdKyK

5 Hillel Wayne’s essay “We Are Not Special” points out that a lot of engineering solutions that used to
involve carefully tuning physical equipment are now done with a “software kludge” instead. I’m genuinely
always surprised we’ve had so few major fatal accidents from software so far. I wouldn’t like to depend on
us staying lucky.

setting a good example for—the leads of individual parts of the project. When the
project gets stuck, they have enough perspective to track down the causes and
unblock it (more on that in Chapter 6). Outside the project, they’re telling the
story of what’s happening and why, selling the vision to the rest of the company,
and explaining what the work will make possible and how the new project affects
everyone.

Why can’t technical program managers (TPMs) do this consensus-building
and communication? There is definitely some overlap in responsibilities. Ulti-
mately, though, TPMs are responsible for delivery, not design, and not engineer-
ing quality. TPMs make sure the project gets done on time, but staff engineers
make sure it’s done with high engineering standards. Staff engineers are respon-
sible for ensuring the resulting systems are robust and fit well with the technol-
ogy landscape of the company. They are cautious about technical debt and wary
of anything that will be a trap for future maintainers of those systems. It would
be unusual for TPMs to write technical designs or set project standards for test-
ing or code review, and no one expects them to do a deep dive through the guts
of a legacy system to make a call on which teams will need to integrate with it.
When a staff engineer and TPM work well together on a big project, they can be a
dream team.

WHY DO WE NEED ENGINEERS WHO ARE A GOOD INFLUENCE?

Software matters. The software systems we build can affect people’s well-being
and income: Wikipedia’s list of software bugs makes for good, if sobering, read-
ing. We’ve learned from plane crashes, ambulance system failures, and malfunc-
tioning medical equipment that software bugs and outages can kill people, and it
would be naive to assume there won’t be more and bigger software-related trag-
edies coming in our future.5 We need to take software seriously.

Even when the stakes are lower, we’re still making software for a reason.
With a few R&D-ish exceptions, engineering organizations usually don’t exist
just for the sake of building more technology. They’re setting out to solve an
actual business problem or to create something that people will want to use. And

WHAT WOULD YOU SAY YOU DO HERE? | 11

https://oreil.ly/WK0TK
https://oreil.ly/eNIXO
https://oreil.ly/iJgF2
https://oreil.ly/s9GQf
https://oreil.ly/fr7Dj
https://oreil.ly/fr7Dj

they’d like to achieve that with some acceptable level of quality, an efficient use of
resources, and a minimum of chaos.

Of course, quality, efficiency, and order are far from guaranteed, particularly
when there are deadlines involved. When doing it “right” means going slower,
teams that are eager to ship may skip testing, cut corners, or rubber-stamp code
reviews. And creating good software isn’t easy or intuitive. Teams need senior
people who have honed their skills, who have seen what succeeds and what fails,
and who will take responsibility for creating software that works.

We learn from every project, but each of us has only a finite number of expe-
riences to reflect on. That means that we need to learn from each other’s mistakes
and successes, too. Less experienced team members might never have seen good
software being made, or might see producing code as the only important skill in
software engineering. More seasoned engineers can have huge impact by con-
ducting code and design reviews, providing architectural best practices, and cre-
ating the kinds of tooling that make everyone faster and safer.

Staff engineers are role models. Managers may be responsible for setting
culture on their teams, enforcing good behavior, and ensuring standards are met.
But engineering norms are set by the behavior of the most respected engineers
on the project. No matter what the standards say, if the most senior engineers
don’t write tests, you’ll never convince everyone else to do it. These norms go
beyond technical influence: they’re cultural, too. When senior people vocally cele-
brate other people’s work, treat each other with respect, and ask clarifying ques-
tions, it’s easier for everyone else to do that too. When early-career engineers
respect someone as the kind of engineer they want to “grow up” to be, that’s a
powerful motivator to act like they do. (Chapter 7 will explore leveling up your
organization by being a role model.)

Maybe now you’re convinced that engineers should do this big-picture, big-
project, good-influence stuff, but here’s the problem: they can’t do it on top of the
coding workload of a senior engineer. Any hour you’re writing strategy, review-
ing project designs, or setting standards, you’re not coding, architecting new sys-
tems, or doing a lot of the work a software engineer might be evaluated on. If a
company’s most senior engineers just write code all day, the codebase will see
the benefit of their skills, but the company will miss out on the things that only
they can do. This kind of technical leadership needs to be part of the job descrip-
tion of the person doing it. It isn’t a distraction from the job: it is the job.

12 | THE STAFF ENGINEER’S PATH

Enough Philosophy. What’s My Job?

The details of a staff engineering role will vary. However, there are some
attributes of the job that I think are fairly consistent. I’ll lay them out here, and
the rest of the book will take them as axiomatic.

YOU’RE NOT A MANAGER, BUT YOU ARE A LEADER

First things first: staff engineering is a leadership role. A staff engineer often has
the same seniority as a line manager. A principal engineer often has the seniority
of a director. As a staff+ engineer, you’re the counterpart of a manager at the
same level, and you’re expected to be as much “the grown-up in the room” as
they are. You may even find that you’re more senior and more experienced than
some of the managers in your organization. Whenever there’s a feeling of “some-
one should do something here,” there’s a reasonable chance that the someone is
you.

Do you have to be a leader? Midlevel engineers sometimes ask me if they
really need to get good at “that squishy human stuff” to go further. Aren’t techni-
cal skills enough? If you’re the sort of person who got into software engineering
because you wanted to do technical work and don’t love talking to other humans,
it can feel unfair that your vocation runs into this wall. But if you want to keep
growing, being deep in the technology can only take you so far. Accomplishing
larger things means working with larger groups of people—and that needs a
wider set of skills.

As your compensation increases and your time becomes more and more
expensive, the work you do is expected to be more valuable and have a greater
impact. Your technical judgment will need to include the reality of the business
and whether any given project is worth doing at all. As you increase in seniority,
you’ll take on bigger projects, projects that can’t succeed without collaboration,
communication, and alignment; your brilliant solutions are just going to cause
you frustration if you can’t convince the other people on the team that yours is
the right path to take. And whether you want to or not, you’ll be a role model:
other engineers will look to those with the big job titles to understand how to
behave. So, no: you can’t avoid being a leader.

Staff engineers lead differently than managers, though. A staff engineer usu-
ally doesn’t have direct reports. While they’re involved and invested in growing
the technical skills of the engineers around them, they’re not responsible for
managing anyone’s performance or approving vacation or expenses. They can’t

WHAT WOULD YOU SAY YOU DO HERE? | 13

fire or promote—though local team managers should value their opinions about
other team members’ skills and output. Their impact happens in other ways.

Leadership comes in lots of forms that you might not immediately recognize
as such. It can come from designing “happy path” solutions that protect other
engineers from common mistakes. It can come from reviewing other engineers’
code and designs in a way that improves their confidence and skills, or from
highlighting that a design proposal doesn’t meet a genuine business need.
Teaching is a form of leadership. Quietly raising everyone’s game is leadership.
Setting technical direction is leadership. Finally, there’s having the reputation as
a stellar technologist that can inspire other people to buy into your plans just
because they trust you. If that sounds like you, then guess what? You’re a leader.

Yes, You Can Be an Introvert. No, You Can’t Be a Jerk.

The idea of “being a leader” can be a little intimidating for many people.

Don’t worry: not all staff and principal engineers need to be “people peo-

ple.” Staff engineering has plenty of room for introverts—and even the

quietest engineers can set a strong technical direction through their

judgment and good influence. You don’t have to love being around people

to be a good leader. You do have to be a role model, though, and you have

to treat people well.

Many of us even have stories of “that one engineer” who got shuffled

into a corner because they were too difficult for anybody to deal with.

The tech culture of the 1980s and 1990s, exemplified by discussions on

Usenet and the like, reveled in the popular image of the difficult, unpleas-

ant software engineer, whose colleagues not only tolerated their behavior

but made weird technical decisions just to avoid dealing with them.

Today, however, an engineer like this is a liability. No matter what their

output is, it’s hard to imagine how anyone could be worth the reduced

output and growth of other engineers and the projects that fail when that

engineer won’t collaborate across teams. Choosing these people as role

models can mess up whole organizations.

14 | THE STAFF ENGINEER’S PATH

https://en.wikipedia.org/wiki/Bastard_Operator_From_Hell

6 This is why I’m not a fan of giving experienced staff engineers coding interviews. If you’ve made it to this
level, either you can code well or you’ve learned to solve technical problems using your other muscles.
The outcomes are what matters.

If you suspect your colleagues will think this sidebar is about you,

check out Kind Engineering, where Evan Smith, SRE manager at Square-

space, gives concrete advice on how to be an actively kind coworker.

You’ll be surprised at how quickly you can turn around a reputation for

being difficult to work with.

YOU’RE IN A “TECHNICAL” ROLE

Staff engineering is a leadership role, but it’s also a deeply specialized one. It
needs technical background and the kinds of skills and instincts that come from
engineering experience. To be a good influence, you need to have high standards
for what excellent engineering looks like and model them when you build some-
thing. Your reviews of code or designs should be instructive for your colleagues
and should make your codebase or architecture better. When you’re making tech-
nical decisions, you need to understand the trade-offs and help other people
understand them too. You need to be able to dive into the details where neces-
sary, ask the right questions, and understand the answers. When arguing for a
particular course of action, or a particular change in technical culture, you need
to know what you’re talking about. So you have to have a solid foundation of
technical skills.

This doesn’t necessarily mean you’ll write a lot of code. At this level, your
goal is to solve problems efficiently, and programming will often not be the best
use of your time. It may make more sense for you to take on the design or leader-
ship work that only you can do and let others handle the programming. Staff
engineers often take on ambiguous, messy, difficult problems and do just
enough work on them to make them manageable by someone else. Once the
problem is tractable, it becomes a growth opportunity for less experienced engi-
neers (sometimes with support from the staff engineer).

For some staff engineers, deep diving through codebases will remain the
most efficient tool to solve many problems. For others, writing documents might
get better results, or becoming a master of data analysis, or having a terrifying
number of one-on-one meetings. What matters is that the problems get solved,
not how.6

WHAT WOULD YOU SAY YOU DO HERE? | 15

https://kind.engineering

YOU AIM TO BE AUTONOMOUS

When you started out as an engineer, your manager probably told you what to
work on and how to approach it. At senior level, maybe your manager advised
you on which problems were important to solve, and left it to you to figure out
what to do about it. At staff+ levels, your manager should be bringing you infor-
mation and sharing context, but you should be telling them what’s important just
as much as the other way around. As Sabrina Leandro, principal engineer at
Intercom, asks, “So you know you’re supposed to be working on things that are
impactful and valuable. But where do you find this magic backlog of high-impact
work that you should be doing?” Her answer: “You create it!”

As a senior person in the organization, it’s likely that you’ll be pulled in
many directions. It’s up to you to defend and structure your time. There are a
finite number of hours in the week (see Chapter 4). You get to choose how to
spend them. If someone asks you to work on something, you’ll bring your exper-
tise to the decision. You’ll weigh the priority, the time commitment, and the ben-
efits—including the relationship you want to maintain with the person who
asked you for help—and you’ll make your own call. If your CEO or other local
authority figure tells you they need something done, you’ll give that appropriate
weight. But autonomy demands responsibility. If the thing they asked you to
work on turns out to be harmful, you have a responsibility to speak up. Don’t
silently let a disaster unfold. (Of course, if you want to be listened to, you’ll have
to have built up a reputation for being trustworthy and correct.)

YOU SET TECHNICAL DIRECTION

As a technical leader, part of a staff engineer’s role is to make sure the organiza-
tion has a good technical direction. Underlying the product or service your orga-
nization provides is a host of technical decisions: your architecture, your storage
systems, the tools and frameworks you use, and so on. Whether these decisions
are made at a team level or across multiple teams or whole organizations, part of
your job is to make sure that they get made, that they get made well, and that
they get written down. The job is not to come up with all (or even necessarily
any!) of the aspects of the technical direction, but to ensure there is an agreed-
upon, well-understood solution that solves the problems it sets out to solve.

16 | THE STAFF ENGINEER’S PATH

https://oreil.ly/FOI1L

YOU COMMUNICATE OFTEN AND WELL

The more senior you become, the more you will rely on strong communication
skills. Almost everything you do will involve conveying information from your
brain to other people’s brains and vice versa. The better you are at being under-
stood, the easier your job will be.

Understanding Your Role

Those axioms should help you to start defining your role, but you’ll notice that
they leave out a lot of implementation details! The truth is that the day-to-day
work of one staff engineer might look very different from that of another. The
realities of your role will depend on the size and needs of your company or orga-
nization, and will also be influenced by your personal work style and preferences.

This variation means that it can be hard to compare your work to that of staff
engineers around you or in other companies. So in this section, we’re going to
unpack some of the role’s more variable attributes.

Let’s start with reporting chains.

WHERE IN THE ORGANIZATION DO YOU SIT?

Our industry hasn’t settled on any standard model for how staff+ engineers
report into the rest of the engineering organization. Some companies have their
most senior engineers report to a chief architect or the office of the CTO; others
assign them to directors of various organizations, to managers at various levels,
or to a mix of all of the above. There’s no one right answer here, but there can be
a lot of wrong answers, depending on what you’re trying to achieve.

Reporting chains (see the example in Figure 1-3) will affect the level of sup-
port you receive, the information you’re privy to, and, in many cases, how you’re
perceived by colleagues outside your group.

WHAT WOULD YOU SAY YOU DO HERE? | 17

Figure 1-3. Staff+ engineers reporting in at different levels of the org hierarchy. Even if these
engineers are all at the same level of seniority, A will find it much easier to have organizational
context and to be in director-level conversations than D will.

Reporting “high”

Reporting “high” in the org chart, such as to a director or VP, will give you a
broad perspective. The information you get will be high-level and impactful, and
so will the problems you’re asked to solve. If you’re reporting to a very competent
senior person, watching them make decisions, run meetings, or navigate a crisis
can be a unique and valuable learning experience.

That said, you’ll probably get a lot less of your manager’s time than you
would if you had a local manager. Your manager might have less visibility into
your work and therefore might not be able to advocate for you or help you grow.
An engineer working closely with a single team but reporting to a director may
feel disconnected from the rest of the team or might pull the director’s attention
into local disagreements that should have been solved at the team level.

If you find that your manager isn’t available, doesn’t have time to understand
the work that you do, or gets pulled into low-level technical decisions that aren’t a

18 | THE STAFF ENGINEER’S PATH

7 I recommend Lara Hogan’s article on building a “manager Voltron.”

8 If skip-level meetings aren’t common in your company, you may need to be clear that you’re not looking
to undermine or “report” on your manager; you want to understand the wider group’s priorities and make
the connections that can help you have the most impact. Ideally, your manager will understand the value
of skip-level meetings and help you set them up.

good use of their time, consider that you might be happier with a manager whose
focus is more aligned with yours.

Reporting “low”

Reporting to a manager lower in the org chart brings its own set of advantages
and disadvantages. Chances are that you’ll get more focused attention from your
manager, and you’ll be more likely to have an advocate. If you prefer to focus on
a single technical area, you might benefit from working with a manager who is
close to that area.

But an engineer assigned to a single team may find it hard to influence the
whole organization. Like it or not, humans pay attention to status and hierarchies
—and reporting chains. You’re likely to have much less influence if you’re
reporting to a line manager. The information you get is also prone to be more
filtered and centered on the problems of that specific team. If your manager
doesn’t have access to some piece of information, you almost certainly won’t
either.

Reporting to a line manager may also mean that you’re reporting to someone
less experienced than you are. That’s not inherently a problem, but you may have
less to learn from your manager, and they might not be helpful for career devel-
opment: chances are that they won’t know how to help you. All of this may be
fine if you’re getting some of your management needs met elsewhere.7 In partic-
ular, if you’re reporting to someone low in the org hierarchy, make sure to have
skip-level meetings with your manager’s manager.8 Find ways to stay connected to
your organization’s goals.

If you and your manager have different ideas about how you can be most
effective, that can cause tension. You can end up with a case of the local maxi-
mum issues I mentioned earlier, where your manager wants you to work on the
most important concern of the team, when there are far bigger problems inside
the organization that need you more. It’s harder for a technical or prioritization
debate to happen on a truly level playing field when one person is responsible for
the other’s performance rating and compensation. If you find that these argu-
ments are happening a lot, you might want to advocate to report to a level higher.

WHAT WOULD YOU SAY YOU DO HERE? | 19

https://oreil.ly/wY9Mp

WHAT’S YOUR SCOPE?

Your reporting chain will likely affect your scope: the domain, team, or teams that
you pay close attention to and have some responsibility for, even if you don’t hold
any formal leadership role in this domain.

Inside your scope, you should have some influence on short-term and long-
term goals. You should be aware of the major decisions being made. You should
have opinions about changes and represent people who don’t have the leverage to
prevent poor technical decisions that affect them. You should be thinking about
how to cultivate and develop the next generation of senior and staff engineers,
and should notice and suggest projects and opportunities that would help them
grow.

In some cases, your manager might expect you to devote the majority of your
skills and energy to solving problems that fall within their domain. In other
cases, a team may just be a home base as you spend some portion of your time
on fires or opportunities elsewhere in the org. If you report to a director, there
may be an implicit assumption that you operate at a high level and tie together
the work of everything that’s happening in the org, or you might be explicitly
allocated to some subset of the director’s teams or technology areas. Be clear
about which it is.

Be prepared to ignore your scope when there’s a crisis: there is no such thing
as “not my job” during an outage, for example. You should also have a level of
comfort with stepping outside your day-to-day experience, leading when needed,
learning what you need to learn, and fixing what you need to fix. Part of the value
of a staff engineer is that you don’t stay in your lane.

Nonetheless, I recommend that you get very clear on what your scope is,
even if it’s temporary and subject to change.

A scope too broad

If your scope is too broad (or undefined), there are a few possible failure modes.

Lack of impact
If anything can be your problem, then it’s easy for everything to become
your problem, particularly if you’re in an organization with fewer senior
people than it needs. There will always be another side quest: in fact, it’s all

20 | THE STAFF ENGINEER’S PATH

9 A side quest is a part of a video game that doesn’t have anything to do with the main mission, but that
you can optionally do for coins or experience points or just for fun. Picture lots of, “Well, I was about to
fight my way into the heavily guarded fortress to defeat the demon that’s been terrorizing this land, but
sure, I can go find your cat first.”

too easy to create a role that’s entirely side quests, with no real goal at all.9

Beware of spreading yourself too thin. You can end up without a narrative
to your work that makes you (and whoever hired you) feel like you achieved
something.

Becoming a bottleneck
When there’s a senior person who is seen to do everything, the convention
can become that they need to be in the room for every decision. Rather than
speeding up your organization, you end up slowing them down because
they can’t manage without you.

Decision fatigue
If you escape the trap of trying to do everything, you’ll have the constant
cost of deciding which things to do. I’ll talk in Chapter 4 about choosing
your work.

Missing relationships
If you’re working with a very broad set of teams, it’s harder to have enough
regular contact to build the sorts of friendly relationships that make it eas-
ier to get things done (and that make work enjoyable!). Other engineers
also lose out: they don’t get the sort of mentorship and support that comes
from having a “local” staff engineer involved in their work.

It’s hard to operate in a workplace where you can do literally anything. Better
to choose an area, build influence, and have some successes there. Devote your
time to solving some problems entirely. Then, if you’re ready to, move on to a
different area.

A scope too narrow

Beware, too, of scoping yourself too narrowly. A common example is when a staff
engineer is part of a single team, reporting to a line manager. Managers might
really like this—they get a very experienced engineer who can do a large percent-
age of the design and technical planning, and perhaps serve as a technical leader
or team lead for a project. Some engineers will love this too: it means you get to

WHAT WOULD YOU SAY YOU DO HERE? | 21

https://oreil.ly/LDRd5

go really deep on the team’s technologies and problems and understand all of the
nuances. But watch out for the risks of a scope that’s too narrow:

Lack of impact
It’s possible to spend all of your time on something that doesn’t need the
expertise and focus of a staff engineer. If you choose to go really deep on a
single team or technology, it should be a core component, a mission-critical
team, or something else that’s very important to the company.

Opportunity cost
Staff engineers’ skills are usually in high demand. If you’re assigned to a
single team, you may not be top of mind for solving a problem elsewhere
in the org, or your manager may be unwilling to let you go.

Overshadowing other engineers
A narrow scope can mean that there’s not enough work to keep you busy,
and that you may overshadow less experienced people and take learning
opportunities away from them. If you always have time to answer all of the
questions and take on all of the tricky problems, nobody else gets experi-
ence in doing that.

Overengineering
An engineer who’s not busy can be inclined to make work for themselves.
When you see a vastly overengineered solution to a straightforward prob-
lem, that’s often the work of a staff engineer who should have been
assigned to a harder problem.

Some technical domains and projects are deep enough that an engineer can
spend their whole career there and never run out of opportunities. Just be very
clear about whether you’re in one of those spaces.

WHAT SHAPE IS YOUR ROLE?

So long as it’s generally agreed that your work is impactful, you should have a lot
of flexibility around how you do it. That includes a certain amount of defining
what your job is. Here are a few questions to ask yourself:

Do you approach things depth-first or breadth-first?

Do you prefer to focus narrowly on a single problem or technology area? Or are
you more inclined to go broad across multiple teams or technologies, focusing on

22 | THE STAFF ENGINEER’S PATH

a single problem only when it can’t be solved without you? Being depth-first or
breadth-first is very much about your personality and work style.

There’s no wrong answer here, but you’ll have an easier and more enjoyable
time if your preference here is lined up with your scope. For instance, if you want
to influence the technical direction of your org or business, you’ll find yourself
gravitating toward opportunities to take a broader view. You’ll need to be in the
rooms where the decisions are happening and tackle problems that affect many
teams. If you’re trying to do that while assigned to a single deep architectural
problem, no one wins. On the other hand, if you’re aiming to become an indus-
try expert in a particular technical domain, you’ll need to be able to narrow your
focus and spend most of your time in that one area.

Which of the “four disciplines” do you gravitate toward?

Yonatan Zunger, distinguished engineer at Twitter, describes the four disciplines
that are needed in any job in the world:

Core technical skills
Coding, litigation, producing content, cooking—whatever a typical practi-
tioner of the role works on

Product management
Figuring out what needs to be done and why, and maintaining a narrative
about that work

Project management
The practicalities of achieving the goal, removing chaos, tracking the tasks,
noticing what’s blocked, and making sure it gets unblocked

People management
Turning a group of people into a team, building their skills and careers,
mentoring, and dealing with their problems

Zunger notes that the higher your level, the less your mix of these skills cor-
responds with your job title: “The more senior you get, the more this becomes
true, the more and more there is an expectation that you can shift across each of
these four kinds of jobs easily and fluidly, and function in all rooms.”

Every team and every project needs all four of these skills. As a staff engi-
neer, you’ll use all of them. You don’t need to be amazing at all of them, though.
We all have different aptitudes and enjoy or avoid different kinds of work. Maybe
it’s obvious to you which ones you enjoy and which you hope to never need. If

WHAT WOULD YOU SAY YOU DO HERE? | 23

https://oreil.ly/3S9HE

you’re not sure, Zunger suggests discussing each one with a friend and having
them watch your emotional response and energy while you talk about it. If
there’s one that you really hate, make sure you’re working with someone who’s
eager to do that aspect of the work. Whether you’re breadth-first or depth-first,
you’ll find it hard to continue to grow with only the core technical skills.

The Hyperspecialist Career Path

There are a few rare cases where a strong senior engineer in a very

business-critical domain can be successful without planning ahead or

influencing people around them. Zunger calls this the “hyperspecialist”

role, but notes that “over time your influence will wane. There are

actually very few jobs at senior levels that are purely hyperspecialists. It’s

not a thing people tend to need.” Pat Kua calls this path “the true individ-

ual contributor track”, noting that it still needs excellent communication

and collaboration skills. Depending on the company, the “hyperspecial-

ist” path may be considered a staff engineer role or be entirely separate.

How much do you want (or need) to code?

For “coding” here, feel free to swap in the core technical work of your career so
far. This set of skills probably got you to where you are today, and it can be
uncomfortable to feel that you’re getting rusty or out of date. Some staff engi-
neers find that they end up reading or reviewing a lot of code but not writing
much at all. Others are core contributors to projects, coding every day. A third
group finds reasons to code, taking on noncritical projects that will be interesting
or educational but won’t delay the project.

If you’re going to feel antsy unless you’re in code every day, make sure
you’re not taking on a broad architectural or influence-based role where you just
won’t have time. Or at least have a plan for how you’re going to scratch that itch,
so you’ll be able to resist jumping on coding tasks and leaving the bigger prob-
lems to fend for themselves.

How’s your delayed gratification?

Coding has comfortingly fast feedback cycles: every successful compile or test
run tells you how things are going. It’s like a tiny performance review every day!

24 | THE STAFF ENGINEER’S PATH

https://oreil.ly/9IF0B
https://oreil.ly/9IF0B

10 Charity Majors’s “The Engineer/Manager Pendulum” is an excellent article on this topic.

It can be disheartening to move toward work that doesn’t have any built-in feed-
back loops to tell you whether you’re on the right path.

On a long-term or cross-organizational project, or with strategy or culture
change, it can be months—or even longer—before you have a strong signal about
whether what you’re doing is working. If you’re going to be anxious and stressed
out on a project with longer feedback cycles, ask a manager who you trust to tell
you, regularly and honestly, how things are going. If you need that and don’t
have it, consider projects that pay off on a shorter timescale.

Are you keeping one foot on the manager track?

Although most staff engineers don’t have direct reports, some do. A tech lead
manager (TLM), sometimes called a team lead, is a kind of hybrid role where the
staff engineer is the technical leader for a team and also manages that team. It’s a
famously difficult gig. It can be challenging to be responsible for both the
humans and the technical outcomes without feeling like you’re failing at one or
the other. It’s also difficult to find time to invest in building skills on either side,
and I’ve heard TLM folks lament a loss of career progression as a result.

Some people take a management role for a couple of years, then a staff engi-
neer role, going back and forth every so often to keep their skills sharp on both
sides.10 We’ll look more at this “pendulum” and at TLM roles in Chapter 9.

Do any of these archetypes fit you?

In his article “Staff Archetypes”, Will Larson describes four distinct patterns he’s
seen staff engineering roles take. You can use these archetypes as you define the
kind of role you have, or would like to have:

Tech leads
Partner with managers to guide the execution of one or more teams.

Architects
Responsible for technical direction and quality across a critical area.

Solvers
Wade into one difficult problem at a time.

Right hands
Add leadership bandwidth to an organization.

WHAT WOULD YOU SAY YOU DO HERE? | 25

https://oreil.ly/aV16i
https://oreil.ly/uRrBq
https://oreil.ly/8eFBM
https://oreil.ly/8S4vR
https://oreil.ly/cYVGl

If you don’t see yourself in any of those archetypes, or your role crosses more
than one of them, that’s OK! These archetypes are not intended to be prescrip-
tive; they give us concepts to use in articulating how we prefer to work.

WHAT’S YOUR PRIMARY FOCUS?

So we’ve discussed your scope and your reporting chain: the rough boundaries of
the part of the organization you’re operating inside, and where in the organiza-
tion you sit. We’ve also looked at your aptitudes: how you like to work and what
kinds of skills you’re drawn to. But even if you understand all of that and have a
clear picture of the shape of your role, there’s one question left: what are you
going to work on?

As you grow in influence, you’ll find that more and more people want you to
care about things. Someone’s putting together a best practices document for how
your organization does code review, and they want your opinion. Your group is
doing a hiring push and needs help deciding what to interview for. There’s a dep-
recation that would be making more progress if it had a staff engineer drum-
ming up senior sponsorship. And that’s just Monday morning. What do you do?

In some cases, your manager or someone they report to will have strong
opinions about where you should focus, or will even have hired you specifically to
solve a particular problem. Most of the time, though, you’ll have some autonomy
in deciding what’s most important. Every time you choose what to work on,
you’re also choosing what not to do, so be deliberate and thoughtful about what
you take on.

What’s important?

Early in your career, if you do a great job on something that turns out to be
unnecessary, you’ve still done a great job. At the staff engineer level, though,
everything you do has a high opportunity cost, so your work needs to be
important.

Let’s unpack that for a moment. “Your work needs to be important” doesn’t
mean you should only work on the fanciest, most glamorous technologies and
VP-sponsored initiatives. The work that’s most important will often be the work
that nobody else sees. It might be a struggle to even articulate the need for it,
because your teams don’t have good mental models for it yet. It might involve
gathering data that doesn’t exist, or spelunking through dusty code or documents
that haven’t been touched in a decade. There are any number of other grungy
tasks that just need to get done. Meaningful work comes in many forms.

26 | THE STAFF ENGINEER’S PATH

11 You’ll hear Brooks’s Law quoted: “Adding manpower to a late software project makes it later.” While
Brooks himself called this “an outrageous simplification”, there’s truth to it. See The Mythical Man-
Month by Fred Brooks (Addison-Wesley).

Know why the problem you’re working on is strategically important—and if
it’s not, do something else.

What needs you?

There’s a similar situation when a senior person devotes themself to the sort of
coding project that any midlevel engineer could have taken on: you’re going to do
a stellar job on it, but chances are there’s a senior-sized problem available that
the midlevel engineer wouldn’t be able to tackle. To use an idiom my kid drop-
ped profoundly one day, “You don’t plant grass in your only barrel.”

Be wary of choosing a project that already has a lot of senior people on it.
Scope out who else is working on the problem and whether they seem likely to
succeed at solving it. Some projects may even be slowed by an extra leader join-
ing.11 In general, if there are more people being the wise voice of reason than
there are people actually typing code (or whatever your project’s equivalent is),
don’t butt in. Try to choose a problem that actually needs you and that will bene-
fit from your attention. Chapter 4 will give you some tools for deciding which
projects to take on.

Aligning on Scope, Shape, and Primary Focus

By now, you should have a pretty clear picture of what the scope of your role is,
how it’s shaped, and what you’re working on right now. But are you certain that
your picture matches everyone else’s? Your manager’s and colleagues’ expecta-
tions may differ wildly from yours on what a staff engineer is, what authority you
have to make decisions, and myriad other big questions. If you’re joining a com-
pany as a staff engineer, it’s best to get all of this straightened out up front.

A technique I learned from my friend Cian Synnott is to write out my under-
standing of my job and share it with my manager. It can feel a little intimidating
to answer the question “What do you do here?” What if other people think what
you do is useless, or think you don’t do it well? But writing it out removes the
ambiguity, and you’ll find out early if your mental model of the role is the same
as everyone else’s. Better now than at performance review time.

WHAT WOULD YOU SAY YOU DO HERE? | 27

https://oreil.ly/WIruQ

Here’s what such a role description might look like for Ali, a breadth-first
architect-archetype staff engineer, who is assisting with (but not leading) a large
cross-team project.

What Does Ali Do?

Overview

This document lays out a plan for my work over the next year. My pri-

mary focus is the success of the retail sales engineering group. I expect

to spend about half my time on technical direction for that group, and

about 30% contributing to the NewMerchandising project, with the

remainder split between cross-organizational initiatives (API working

group, architecture reviews) and community work (interviewing, mentor-

ing senior engineers). As part of the incident commander rotation, I

expect to be on call 1 week out of every 10.

Goals

1. Make retail sales successful by guiding technical direction, contri-

buting to org goal setting, and anticipating risks.

2. Act as a consultant/force multiplier for the success of NewMer-

chandising. Identify risks or gaps in engineering practices that

threaten the project’s goals.

3. Lead architecture reviews for teams in retail sales engineering.

4. Improve cross-engineering planning by participating in architec-

ture reviews for other sales groups.

5. Act as extra leadership bandwidth when needed, such as during

incidents or conflicts.

Sample activities

• Propose OKRs that address risks and opportunities for retail sales.

• Agree on goals and deliverables for NewMerchandising, and make

sure teams are aligned.

• Consult on architecture for teams across the org. Recommend

architectural approaches and contribute sections to RFCs, but

unlikely to be primary author on any.

28 | THE STAFF ENGINEER’S PATH

• Mentor/coach senior engineers.

• Interview senior and staff engineer candidates.

What does success look like?

• Retail sales is building systems that will scale for the next five

years.

• The NewMerchandising project is making consistent progress with

shared understanding of goals across all four teams.

Don’t obsess about getting this perfect: get it right enough. Describing your
goals doesn’t mean you’re forbidden from doing something else. But it’s a nice
reminder of what you intended to do, and it helps you keep an eye on whether
you’re actually doing the thing you claimed was your job.

You might decide that your focus needs to change earlier than you expected.
The state of the world can change or your priorities might shift. If so, write a new
role description with the new information. Being clear about your expectations of
yourself makes sure everyone’s on the same page.

IS THAT YOUR JOB?

Your job is to make your organization successful. You might be a technology expert
or a coder or affiliated with a specific team, but ultimately your job is to help your
organization achieve its goals. Senior people do a lot of things that are not in
their core job description. They can end up doing things that make no sense in
anyone’s job description! But if that’s what the project needs to be successful, con-
sider doing it.

Some of my coworkers at Squarespace tell the story of the day in 2012 when
their data center had a power outage and they carried fuel up 17 flights of stairs to
keep it online. “Hauling barrels of diesel” does not show up in most tech job
descriptions, but that’s what was needed to keep the site online (and it worked!).
When the machine room flooded at the ISP I worked at years ago, the job
became about making a bucket chain of trash cans to keep the water level low.
And when a Google project in 2005 was running late and we didn’t have enough
hardware folks available, my job for a couple of days was racking servers in a data
center in San Jose. You do what you need to do to make the project happen.

WHAT WOULD YOU SAY YOU DO HERE? | 29

https://oreil.ly/6TZ2Q

Usually this “not my job” work is less dramatic, of course. It can mean hav-
ing a dozen conversations to unblock a project your team depends on, or noticing
that your new engineer is lost and checking in with them. To reiterate: your job is
ultimately whatever your organization or company needs it to be. In the next
chapter, I’ll talk about how to understand what those needs are.

To Recap

• Staff engineering roles are ambiguous by definition. It’s up to you to dis-
cover and decide what your role is and what it means for you.

• You’re probably not a manager, but you’re in a leadership role.

• You’re also in a role that requires technical judgment and solid technical
experience.

• Be clear about your scope: your area of responsibility and influence.

• Your time is finite. Be deliberate about choosing a primary focus that’s
important and that isn’t wasting your skills.

• Align with your management chain. Discuss what you think your job is,
see what your manager thinks it is, understand what’s valued and what’s
actually useful, and set expectations explicitly. Not all companies need all
shapes of staff engineers.

• Your job will be a weird shape sometimes, and that’s OK.

30 | THE STAFF ENGINEER’S PATH

Three Maps

As a staff engineer, you need a broad view. Every time you react to an incident,
run a meeting, or give advice to a mentee, you’ll need context about the people
you’re working with and what the stakes are. When you propose a strategy or
move a project along, you’ll want to understand how your organization works
and the difficulties you might run into along the way. And you won’t make good
choices about what to work on unless you can step outside your day to day and
see where you’re all supposed to be going.

In Chapter 1, we zoomed out and took a big-picture view of what staff engi-
neers are and why organizations need them. We defined some axioms that are
helpful in understanding staff roles, and then I invited you to do a fact-finding
mission to unpack some aspects of your own role: your reporting chain, your
scope, your work preference, and your current primary focus. If you didn’t already
have a big picture of what your job is, I hope you now do. But if you’ve ever been
hiking or navigated through a new city, you’ll have seen that knowing where you
stand is just the beginning. Getting oriented means knowing about your sur-
roundings, too.

Uh, Did Anyone Bring a Map?

In this chapter, we’re going to describe the big picture of your work and your
organization by drawing some maps. Maps take different forms depending on
their purpose: you wouldn’t try to include elevation, voting districts, and subway
navigation on a single map, for example. So rather than overlaying all of the
information we have into one dense, unreadable picture, we’re going to set out to
build three different maps. They won’t be perfect models, but they’re useful tools
for thinking about work and asking yourself questions about where you are, how
your organization works, and what you’re all trying to do.

31

| 2

You can approach this as a mental exercise—just a metaphor for thinking
about your engineering organization—or you can actually set out to draw these
maps. It can be enlightening (and fun) to compare notes with a colleague and see
which landforms and points of interest you disagree on.

Here are the three maps we’re going to end up with:

A LOCATOR MAP: YOU ARE HERE

We’re going to start with your place in the wider organization and company. Last
chapter we talked about your scope, but to truly understand that scope, you need
to see what’s outside it. What’s along the borders? When you zoom way out, how
big is your part of the world compared to everywhere else? Think of it like one of
those maps that a news station throws up behind the presenter to remind you
where a particular place is, and put it in context.

You need the locator map because it’s tricky to be objective about any work
while you’re deep inside it. Unless you can maintain perspective, the concerns
and decisions of your local group will feel more important to you than they would
if you looked at them on a bigger scale. So we’ll try out some techniques for get-
ting that perspective. You’ll be honest with yourself about which of the projects
you care about would actually show up on a big map of the company, and which
ones you wouldn’t see unless you zoomed all the way in.

A TOPOGRAPHICAL MAP: LEARNING THE TERRAIN

The second map is all about navigating the terrain. If you’re setting off across the
landscape, you’ll go further and faster if you have a robust knowledge of what’s
ahead. In this section, we’ll look at some of the hazards on the map: the canyons
and ridges along the fault lines of your organization, the weird political bound-
aries in places nobody would predict, and the difficult people everyone’s been
going out of their way to avoid. If there’s quicksand ahead, or krakens to be wary
of, or an impassable desert full of the sun-bleached skeletons of previous travel-
ers, you’ll want to mark those pretty clearly before you set out on your journey.

Despite the dangers and difficulties, you might find that there are navigable
paths already in place. Discovering these paths will include understanding your
organization’s “personality” and how your leaders prefer to work, clarifying how
decisions are made, and uncovering both the official and the “shadow”
organization charts.

32 | THE STAFF ENGINEER’S PATH

A TREASURE MAP: X MARKS THE SPOT

The third map has a destination and some points on a trail to get there. It shows
where you’re going and lays out some of the stops on the journey. The voyage
might be perilous, but if you have a map, you’ll be able to see whether you’re get-
ting any closer to that huge red X.

Uncovering this map means taking a long view and evaluating the purpose
of your work. Is each project a goal in itself, or is it just a milestone along the
path to the actual goal? Sometimes you’ll discover that there isn’t a destination at
all or that there are several incompatible ones. When nobody has declared what
the treasure is, or everyone disagrees on how to get to it, a staff engineer can have
a huge impact by creating a vision or strategy, making decisions, or otherwise
drawing a brand-new treasure map for the organization. But I’m getting ahead of
myself. For now we’re looking at uncovering the existing big picture. Creating a
new one will happen in Chapter 3.

CLEARING THE FOG OF WAR

These three maps already exist in your organization; they’re just obscured. When
you join a new company, most of the big picture is completely unknown to you.
A big part of starting a new job is building context, learning how your new orga-
nization works, and uncovering everyone’s goals. Think of it like the fog of war
in a video game, where you can’t see what awaits you in the parts of the map you
haven’t explored yet. As you scout around, you clear the fog and get a better pic-
ture of the terrain, learning what’s surrounding you and whether there are
wolves coming to bother your villagers. You can set out to uncover the obscured
parts in all three of the maps and find ways to make that information easy for
other people to understand. For instance:

• Your locator map can help you make sure the teams you work with really
understand their purpose in the organization, who their customers are,
and how their work affects other people.

• Your topographical map can help highlight the friction and gaps between
teams and open up the paths of communication.

• Your treasure map can help you make sure everyone knows exactly what
they’re trying to achieve and why.

You’ll be able to clear some parts of the map through everyday learning, but
you’ll need to deliberately set out to clear other parts. A core theme of this

THREE MAPS | 33

https://oreil.ly/P6S9K

chapter is how important it is to know things: to have continual context and a
sense of what’s going on. Knowing things takes both skill and opportunity, and
you might need to work at it for a while before you start seeing what you’re not
seeing.

Let’s start with the skill. I spent a few months in the Irish countryside during
the pandemic and went for a lot of nature walks with my friends who live there.
At first, I thought I was seeing everything there was to see: a bunch of foxgloves
or an oak tree, things that were striking and beautiful. But my friends were see-
ing more than I was. They’d pause at a patch of mud that I wouldn’t have looked
at twice and point out the footprint of a pine marten. They’d pick out leaves that I
would have dismissed as just grass, and note that they’re delicious and peppery, a
treasure for foragers. Even the kids would see little flowers or dive on a patch of
wild strawberries that I’d have walked right past. Why could they see all of these
things when I couldn’t? Because they had learned to pay attention and they knew
what they were looking for.

Paying attention means being alert to facts that affect your projects or organi-
zation. And that means continually sifting information out of the noise around
you. If you can train your brain to say “That’s interesting!” and remember facts
that you might need later on, you’ll start to add detail to your maps and build
skills in synthesizing new information.

What sorts of facts are useful? Anything that can help you or others have
context for your work, navigate your organization, or progress toward your goals.
Here are some examples:

• A company all-hands presentation about an upcoming marketing push
might be a hint that huge traffic spikes you’re not ready for are coming
your way.

• Your director asks you to take on a project you don’t have time to do, but
you know which senior engineers in your organization are ready for oppor-
tunities to stretch their skills.

• A shift in corporate priorities could mean a platform you’d considered but
backburnered has become an amazing investment.

• Your database just disappeared, and you remember getting an email about
network maintenance.

Over time, you’ll get used to how news travels in your org and what you
should pay attention to. You’ll know which emails you need to read and which

34 | THE STAFF ENGINEER’S PATH

meetings you need to go to. If your brain’s not naturally “sticky” for retaining
information like this, I recommend challenging yourself to note down facts that
might be useful later, just to get yourself into the habit of paying attention. Think
of gathering context as a skill to build as part of your job.

But noticing only takes you so far. Paying attention doesn’t help if you don’t
have access to the decisions and discussions that affect your work. While you
might be privy to a daily flow of meetings, emails, and regrettable @here mes-
sages on Slack, there’s a lot of other information you won’t be able to ask for
unless you know it exists. How do you get into the “room where it happens”? I’ll
share some strategies in this chapter.

The Locator Map: Getting Perspective

As you grow in seniority, making a real impact will mean being able to put your
work in a bigger context, and recognizing that your point of view is heavily influ-
enced by where you’re standing. (Figure 2-1 gives maybe a little too much
perspective.)

Figure 2-1. A locator map of the Milky Way galaxy (original Milky Way image by
Jean Beaufort, CC0).

Of course, everyone else you work with will have their own point of view too:
their “You are here” marker will be somewhere else on the map. If you want to
make good decisions, you’ll need to be able to see from some of those other
points of view.

THREE MAPS | 35

The more time you spend absorbed in any domain and learning the nuances
of the work at your scope, the richer and more complex it will become for you. As
you understand the people, the problems, and the goals, you’ll become more
focused on them. That focus brings depth and understanding, but it comes with
some risks, especially for a staff engineer.

Let’s look at four of those risks now.

Prioritizing badly
When everyone around you cares about the same set of things, it’s easy to
magnify the importance of those things. The problems that exist outside
your group can start to appear simple or unimportant by comparison.
That’s why you see teams making those local maximum decisions I talked
about in Chapter 1: the local maximum starts to feel really important. The
more time you spend staring at your own group’s problems, the more they
seem special and unique and worthy of special, unique solutions. And
sometimes they are! But it’s unusual to find a problem that is genuinely
brand new. If you check for prior art and preexisting solutions, you’ll spend
less time reinventing wheels.

Losing empathy
It’s easy to overfocus and forget that the rest of the world exists, or start
thinking of other technology areas as trivial compared to your rich,
nuanced domain. It’s like you start looking at the world through a fish-eye
lens that makes the thing right in front of you huge and squeezes every-
thing else into the periphery. You can lose empathy for the work other
teams are doing: “That problem they’re solving is easy. I could solve it in a
weekend.”

The words you use, the things you choose to explain versus those you leave
implicit, and the motivations you ascribe to other people will all be influ-
enced by your perspective. That’s why it can be so difficult for engineers to
communicate with nonengineers. Figure 2-2 tells a familiar story about
how easy it is to misunderstand what other people know about your
domain.

Loss of empathy shows up in incidents, too, where teams can get absorbed
in the interesting technical details of the problem and forget there are
users waiting for the system to be back online.

36 | THE STAFF ENGINEER’S PATH

1 A popular metaphor, the boiling frog, says that if you drop a frog into a pot of boiling water, it will jump
out, but if you put a frog into cold water and very gradually increase the temperature, you can bring the
water to a boil and kill the frog. It’s often used as a cautionary tale to illustrate that gradual change can
become normal and that we can slide into catastrophe without reacting to it. I was so relieved when I
learned that real frogs don’t behave like this: they just jump out! Let’s leave the poor frogs alone, but the
metaphor is useful.

Figure 2-2. It’s easy to lose perspective about what other people know (source: https://xkcd.com/
2501 by Randall Munroe).

Tuning out the background noise
If one failure mode is your team’s concerns seeming more important than
everyone else’s, another is the exact opposite: you stop noticing problems at
all! If you’ve been working around the same mucky configuration file or
broken deploy process for months, you might get so used to it that you stop
thinking of it as something you need to fix. Similarly, you might not notice
that something that started out as just slightly annoying has slowly become
worse. Maybe a problem is close to becoming a crisis, but you don’t even
notice it anymore, so you can’t be objective about how quickly you need to
react.1

THREE MAPS | 37

https://xkcd.com/2501
https://xkcd.com/2501

Forgetting what the work is for
Being in your silo can mean that you lose your connection to what’s going
on elsewhere in the company. If your group originally took on some project
to solve a larger goal, the project might still be ongoing even though the
goal no longer matters or has already been solved in some other way. If
you’re working only on your own little part of a project, it’s easy to stop
thinking about what the project is for. You can slip into a world where
everyone does their own little part and nobody feels like they’re responsible
for the end result. You can lose sight of the ethics of what you’re doing, too,
and find yourself working on something that you wouldn’t really be OK
with if you stepped back and thought about the whole picture.

SEEING BIGGER

Open up your company’s org chart and look at where your group and others you
care about connect to the rest of the organization. When you extend the amount
of the map you can see, your own group might seem a lot smaller, and your “You
are here” pin might feel far from where the action is. But without perspective,
you can’t do impactful work. In this section we’ll look at some other techniques
for seeing the bigger picture

Taking an outsider view

When I was the newest person on an infrastructure team years ago, my colleague
Mark commented after a few weeks, “There’s this facial expression you do when
I describe our systems...” Certainly I’d thought a few of the aged systems needed
to be replaced, but I hadn’t realized I was wearing my opinions so clearly (and
rudely!) on my face. Two years later, the team’s hard work meant that the archi-
tecture had vastly improved. We were proud of the work. I thought it was pretty
good! Until a new person joined and…wore their opinions pretty clearly on their
face. By then, I had become a team insider. I needed a newer “new person” to
help me see the problems again.

When the new person on your team looks at an architectural tangle or a pile
of technical debt, they have no historical context. As my colleague, Dan Na, says,
a new person can always see the problems. They haven’t been around for the
gradual change and the boiling frogs: they’re just seeing the raw situation as it is.
Without preconceptions, they’re free to look around and ask, “What’s really hap-
pening here? Is any of this working?”

38 | THE STAFF ENGINEER’S PATH

https://oreil.ly/GD8Gz

Warning

Being new isn’t a license to be a jerk. It’s easy with hindsight to say, “This is terrible!

Why didn’t they just...” But have humility and assume there are good reasons for

everything being the way it is. Amazon’s principal engineer group acknowledges this

in one of its community tenets: “Respect what came before”.

Being new is the best opportunity you’ll have to get a complete outsider view,
but as a staff engineer, you should try to have this perspective all the time. You
need to be able to look at your own group as if you weren’t part of it and to be
honest about what you see. Do your technical decisions only make sense to peo-
ple who have forgotten that there’s a world outside your team? If you all stopped
doing the work you’re doing, how long would it be before other people would
notice or care? Have you gotten absorbed in the technology and forgotten what
your original goal was? How is everything? The next four sections offer techniques
for viewing things like an outsider.

Escaping the echo chamber

When you find yourself in an echo chamber where everyone you meet holds the
same set of opinions, it can be a shock when you connect with peers in other
groups and discover that some of their views are just…different.

After spending more than a decade at the bottom of the stack in infrastruc-
ture roles, it was a shock to my system when I first worked with product engi-
neering teams. They moved fast, took risks, and thought creating features that
customers loved was at least as important as those features having rock-solid relia-
bility. Our debates shook some of my firmly held beliefs and made them more
nuanced.

Seeking out peers in other groups is an important part of your job. Build
friendly relationships with other staff engineers. Get to a point where you can
speak the truth to one another, and it won’t be contentious, because you’ve built
up so much goodwill. This includes understanding any negative opinions that
other teams hold about your group—if you start seeing what’s valid about their
comments, you’ll do better work. Think of the other staff engineers as your team,
just as much as any team you’re part of.

The same principle applies across organizations. In Figure 2-3 and
Figure 2-4, I depict each staff engineer as scoped to a single group, and each
principal engineer as scoped to an organization. While the actual structure will
vary, the point is to be part of something that’s bigger than your own team or
group, so you can have a more objective view of what everyone is doing.

THREE MAPS | 39

https://oreil.ly/2R4ET

Figure 2-3. An example software engineering organization. Each group here contains multiple
teams. In this company, each staff engineer’s scope is a single group, and they consider themselves
to be part of their own group, but also part of a bigger virtual “team” of staff engineers.

Figure 2-4. Multiple engineering organizations inside a company, each of which has a staff engi-
neer. Every principal engineer is in their own org, but is also part of the virtual team of
principal engineers.

Go beyond engineering: build relationships with product folks, customer
support, administrative staff, and more. If your work affects them or their work
affects you, go be friendly and understand their point of view. It will give you a
whole new way of thinking about what’s important to your department or
your business.

40 | THE STAFF ENGINEER’S PATH

What’s actually important?

Befriending nonengineers is good for your perspective in another way: As an
engineer, it’s easy to get absorbed in technology. But technology is a means to
some end. Ultimately you’re here to help your employer achieve its goals. You
should know what those goals are. You should know what’s important.

A startup will have a different definition of what matters than a behemoth
tech giant or a local nonprofit. A mature product will have different needs than
an early one. Some goals, and thus some projects, matter more than others.
Figure 2-5 shows how a project that feels like the center of your universe can be
much less significant when looking at a bigger picture. The ordering will change
over time, so understand what matters right now. If your customers are leaving in
droves because your product is missing core features that your competitors have,
it’s probably not the time to push for a focus on technical debt. If everything is
smooth sailing and you’re anticipating growth, this might be a great time to
make sure your foundations are solid.

Figure 2-5. Putting your project in perspective. That upgrade might be the most important work
your organization has, but people looking at a bigger picture won’t see it as important.

A company’s goals extend beyond its stated objectives and metrics; they
include “continuing to exist,” “having enough money to pay everyone,” and “hav-
ing a good reputation.” My colleague, Trish Craine, head of operations for
engineering at Squarespace, calls these “the objectives that are always true.”
These are the needs of your company that are so obvious, they’re only really

THREE MAPS | 41

stated if they’re in danger. The product or service that your organization provides
should work. Its customers should want to use it. Deploying it shouldn’t be pain-
fully slow. Know your implicit goals as well as the explicit ones.

Tip

As time passes, your company’s priorities will change and parts of your map will fog

up again. To stay up to date with what’s important, pay attention to all-hands meet-

ings for your group and others, ask for skip-level one-on-ones with your manager’s

manager, and find face time with customers or teams that depend on you. If you

don’t have business context about why (or whether) your work matters, ask for it.

Notice when the goals change, too, because that might mean your scope or
focus should change. It’s OK if you’re not working on the most important thing,
but what you’re doing should not be a waste of your time. If you can’t explain to
yourself why what you’re doing needs a staff engineer, you might be doing the
wrong thing.

What do your customers care about?

Charity Majors, CTO of Honeycomb, often hands out stickers that say: “Nines
don’t matter when users aren’t happy.” “Nines” here refers to service level objec-
tives (SLOs), a common mechanism for measuring system availability. “Three
and a half nines of availability” means that 99.95% of the time, the service is up
and running. SLOs are useful, but as Majors points out, they don’t tell the whole
story. Because who defines what “available” means?

Mohit Suley, an engineering manager and former principal engineer at
Microsoft, has spoken about his team tracking down and contacting unreliable
ISPs where their search engine, Bing, wasn’t reachable. It wasn’t Bing that was
broken, but as Suley says, “A user doesn’t distinguish between DNS services,
ISP, your CDN, or your endpoint, whatever that might be. At the end of the day,
there are a bunch of websites that work, and a bunch that don’t.” You need to
measure success from your users’ point of view. (If your customers are other
teams inside your company, this still applies!) If you don’t understand your cus-
tomer, you don’t have real perspective on what’s important.

Have your problems been solved before?

Amazon’s tenet of “respect what came before” includes a reminder that “many
problems are not essentially new.” You’ll come up with better solutions if you
study what other people have already done before creating some new thing.

42 | THE STAFF ENGINEER’S PATH

https://oreil.ly/2pxrj
https://oreil.ly/9LeCI
https://oreil.ly/9LeCI
https://oreil.ly/Fsj4k
https://oreil.ly/Fsj4k
https://oreil.ly/2R4ET

2 That’s also why design documents should have an “alternatives considered” section; we’ll talk more
about design docs in Chapter 5.

Remember that your goal is to solve the problem, not necessarily to write code to
solve it. Take the time to understand what already exists—inside and outside
your organization—before building something new.2

Industry Perspective

Understand how other people in the industry have solved the problems

you’re working on. Your preferred publications and resources will depend

on your interests, but here’s some I find valuable for architecture, techni-

cal leadership and software reliability. I love the LeadDev and SREcon

conferences and try to make it to as many as I can. LeadDev has a new

(at the time of writing) conference track called StaffPlus. I’m hosting

some of their events, so I can’t be entirely objective, but I think it’s excel-

lent!

For online conversations, I like Rands Leadership Slack: the #archi-

tecture and #staff-principal-engineering channels are gold. The LeadDev

Slack’s #staffplus channel is very active during events, too.

I subscribe to the monthly InfoQ Software Architects’ Newsletter, as

well as the VOID report, and SRE Weekly. I read the Raw Signal newslet-

ter for a weekly dose of a manager point of view. I also eagerly await the

quarterly Thoughtworks Radar.

Whatever domain you’re in will have its own publications. Use them

to maintain perspective and spot new ideas that you can explore when

you need them. They’ll help you keep learning, too.

The Topographical Map: Navigating the Terrain

A locator map gives perspective, but you can’t navigate by it. You need another
map: one that shows the terrain.

Geologists study plate tectonics, the way the huge pieces of the earth’s litho-
sphere (see Figure 2-6) move against each other over time, forming mountains
and trenches and creating earthquakes and volcanic activity. Team tectonics have
similar properties. As domains of responsibility smash against each other, they

THREE MAPS | 43

https://oreil.ly/P3SYi
https://oreil.ly/S6OYy
https://leaddev.com/staffplus-new-york
https://oreil.ly/ZheFA
https://oreil.ly/ReBFX
https://oreil.ly/wx82Q
https://sreweekly.com
https://oreil.ly/CwcQp
https://oreil.ly/CwcQp
https://oreil.ly/iu0Sy

form an organizational terrain, complete with overlaps and conflict, ridges and
chasms.

Figure 2-6. Simplified map of Earth’s principal tectonic plates. (adapted from: Scott Nash, public
domain, https://oreil.ly/UdeNz).

Reorganizations can disrupt communication between groups that need to
work closely together. Teams that are under a heavy load can entrench and put
up barriers. A new senior leader can cause an earthquake that reshapes the land-
scape overnight. Navigating an organization (see Figure 2-7) requires a
topographical map.

Figure 2-7. A staff engineer navigating tricky terrain.

44 | THE STAFF ENGINEER’S PATH

https://oreil.ly/UdeNz

ROUGH TERRAIN

Let’s explore some of the difficulties you’ll face if you set out on a mission
without a detailed map of the terrain.

Your good ideas don’t get traction
Being right about a need for change is less than half the battle. You’ll have
to convince other people that you’re right and, even more difficult, convince
them to care that you’re right. That means knowing how to build momen-
tum within your organization: figuring out who can sponsor your idea or
help it spread, and how you can get it over the finish line and make it
“real.”

You don’t find out about the difficult parts until you get there
Many obvious-seeming journeys have some crucial point that nobody has
figured out how to get past. You may be attempting to scale a cliff that’s
defeated many other people before. Staff engineers can often navigate past
obstacles that less experienced engineers can’t, and it’s possible that you’ll
be able to succeed where others have failed. But if you know where people
got stymied in the past, you can take a different path or solve the hardest
part of the problem first, so other people will be convinced the project is
worth their effort.

Everything takes longer
Unless you know how your organization works, decisions that should be
straightforward will take months or quarters. The mechanics of your organ-
ization’s planning cycles will affect you too. There are times of year when
it’ll be easier to make the case for staffing a new project or to rally everyone
behind some goal. If you announce an initiative immediately after the
quarterly engineering OKRs have been set, you’ll have a hard fight and you
may have to wait a quarter before you’ll see any progress toward your goal.

UNDERSTANDING YOUR ORGANIZATION

Engineers sometimes dismiss organizational skills as “politics,” but these skills
are part of good engineering: considering the humans who are part of the sys-
tem, being clear about the problem you’re solving, understanding long-term con-
sequences, and making trade-offs about priorities. If you don’t know how to
navigate your organization, every change will be much more difficult.

THREE MAPS | 45

In this section, I’ll describe some ways you can clear the fog and understand
your company’s terrain. That starts with evaluating some aspects of your culture,
including what gets written down, how much trust there is, whether people are
eager or hesitant to change, and where new initiatives come from. This knowl-
edge will set your expectations about an average journey: will it be easy to make
progress? After that, we’ll look at some of the obstacles and shortcuts that will
show up on your topographical map.

What’s the culture?

Whenever I interview a job candidate, their first question is often, “What’s the
culture like?” I used to struggle to answer; where do you even start? Tomes have
been written on organizational culture. Now, though, I think most of the time
people are really asking these questions:

• How much autonomy will I have?

• Will I feel included?

• Will it be safe to make mistakes?

• Will I be part of the decisions that affect me?

• How difficult will it be to make progress on my projects?

• Are people…you know…nice?

Your company culture is not the only factor determining the answers to
these questions: individuals and leadership are part of it, too. But organizations
do have their own distinct “personalities,” so let’s talk culture.

If your organization has published a statement of values or principles, that
can help you see what the leaders care most about. But these values are
aspirational: the real values of the company are reflected in what actually hap-
pens every day.

To understand more about the engineering culture at your company, here
are a few questions you could ask yourself or discuss with a colleague. For most
of them there’s no right or wrong answer. It will be difficult to maneuver if your
company is all the way over on one side or another, but there’s a lot of space for
success in between.

Secret or open? How much does everyone know? In secret organizations, infor-
mation is currency and nobody gives it away easily. Everyone’s calendars are pri-
vate. Slack channels are invite-only. Often you can get access to something if you

46 | THE STAFF ENGINEER’S PATH

ask for it, but you have to know it exists! When all information is need-to-know,
it’s harder to come up with creative solutions or really understand why some-
thing’s not working.

In open organizations, you’ll have access to everything (even messy first
drafts!). You might get decision fatigue from choosing which information to con-
sume. You might not know which documents are official and need action, and
which are just early ideas. And open information can lead to more drama: it’s
harder for bad ideas to be quietly shut down.

Knowing the cultural expectations around sharing is crucial. In a culture that
keeps knowledge locked down, you’ll lose your boss’s trust if you reshare some-
thing they told you in confidence. In a more open company, you’ll be considered
political or untrustworthy if you withhold information or don’t make sure every-
one knows what’s going on.

Oral or written? What gets shared by word of mouth and what gets written
down? How much writing and review is involved in decisions? In some compa-
nies, it’s typical to make a big decision during a hallway conversation or to find
out your colleague has built a huge new feature after it launches (or when you get
paged for it). In other workplaces, every software change comes with a formal
specification, requirements, sign-offs, and an approvals checklist, and you can
expect a one-line change to take a quarter.

Thankfully, most workplaces are somewhere in between. If yours prefers
quick conversations, you may get pushback if you take the time to write a deci-
sion down—and a design document longer than a page just won’t get read. Big-
ger and more mature companies tend to be more deliberate about changes. If
you’re at one of those and you don’t create a change management ticket or a
design document, you’ll seem sloppy and irresponsible. One team I worked in
had a cowboy hat that would end up on the desk of whichever team member had
last done something a little too “Wild West.” It was affectionate, but it was a good
reminder too.

Top-down or bottom-up? Where do initiatives come from? A completely
bottom-up culture is one where employees and teams feel empowered to make
their own decisions and champion the initiatives they think are important. How-
ever, when those initiatives need broader support, they slow down. If teams disa-
gree about direction or priority, the lack of a central “decider” can lead to
deadlock.

THREE MAPS | 47

3 Shared-interest Slack channels, social clubs, and employee resource groups (ERGs) can be fantastic
ways to get to know people and make connections across the organization. Shoutout to my friends on the
#crosswords channel at work who share their New York Times Crossword times every day and the
#women-in-engineering channel participants who celebrate every member’s successes.

On the other hand, people in a fully top-down company will find it much eas-
ier to choose initiatives and take decisive action. Those decisions won’t be the
best ones, though, because they’re missing local context. The engineers likely feel
controlled and won’t be empowered to react to changes as they arise.

Staff+ engineers should be fairly autonomous and self-directed, but make
sure your organization agrees: if your manager expects to approve where you
spend your time, it can cause conflict if you don’t check in. If you’re used to seek-
ing permission or having work handed down, and you move to a bottom-up com-
pany, you’ll be seen as having low initiative and have trouble getting anything
done.

If you know how your organization tends to work, you’ll also know whether
to take your ideas to fellow grassroots practitioners and get their support first, or
whether to start by trying to convince your local director.

Fast change or deliberate change? Younger companies tend to make rapid deci-
sions and pivot abruptly to try a new opportunity. As companies get larger and
older, they take longer to change course. “Fast” organizations may be repelled by
the idea of taking on a long-term project like a two-year migration. Slow ones will
miss low-hanging opportunities to improve.

Depending on where you are, you’ll need to frame your initiatives differently.
If you’re somewhere that moves like lightning, you’ll want an incremental path
that shows value immediately. In a more deliberate environment, you’ll need to
show that you’ve thought through the whole plan. This is tightly connected to
oral and written culture, too.

Back channels or front doors? How do people in different groups talk with each
other? There may be formal paths for information and requests, but your social
culture adds informal channels too. If people are friendly across teams, they’ll
send a DM when they have a question and share ideas over coffee.3

If an engineer in one group can just go chat with a counterpart in another,
it’s going to be easier to make decisions that cross both teams. In some places,
the only real way to get work done is to have an “in” via a back channel with
someone on the team. If it’s more typical to file a ticket and wait, or to send a

48 | THE STAFF ENGINEER’S PATH

collaboration idea up your management chain until you and the other team have
a manager in common, everything will take longer—but it will also be more pre-
dictable and fair.

Understand what’s considered typical in your organization. If everyone is
strict about only using formal channels, it will be considered rude to ask ques-
tions out of turn, and people will judge you poorly for skipping the queue. If back
channels are the typical way to get things done, you’ll be waiting for a response
for a month when you could have just had a chat with that person who’s been
admiring your cat pictures on the company pets mailing list.

Allocated or available? How much time does everyone have? If teams are
understaffed and overworked, you’ll have trouble finding a foothold for any new
idea that isn’t on an existing product road map—the fastest and easiest response
is just to say no without really looking at the request. You’ll have the most impact
with any initiative that can free up time without major investment. Your most
likely successes will come when you can work alone or with a little help, and
don’t need to get a bunch of busy people to commit to anything new.

Teams that aren’t busy may seem easier to work with, but they have a differ-
ent problem: underallocated engineers rarely stay that way for long. If there are
plenty of free cycles available, chances are that a Cambrian explosion of compet-
ing novel grassroots initiatives is taking hold, each with a small number of devo-
tees. You’ll have more impact if you choose a nascent project, help it over the
finish line, and convince others to rally around it too.

Liquid or crystallized? Where do power, status, and reputation come from? How
do you gain trust? Some organizations, particularly in academia and in big and
old companies, have a clear hierarchy: the same group of people, in the same
configuration, climb the ranks together and have a fairly fixed structure for com-
municating, making decisions, and allocating the “good projects.” Each person is
like a node in a crystal lattice: so long as the people around you are moving up,
you’ll move up too. Senior people in groups like this will often say that they never
looked for promotion: they stayed where they were, got a project, got support
from the group, and got the promotion when it was their turn.

This sort of hierarchy is anathema to young, small, scrappy companies,
which claim to be something like a meritocracy. Let’s be realistic about that: suc-
cess still depends on having access to opportunities and sponsorship, so it’s
hugely affected by stereotype bias, in-group favoritism, and other cognitive bia-
ses. (See the website Is Tech a Meritocracy? for more.) “Liquid” companies offer

THREE MAPS | 49

https://en.wikipedia.org/wiki/Myth_of_meritocracy
https://istechameritocracy.com

more room to change your place in the structure, but you’ll likely have to hustle a
bit to get promoted. You might move from group to group to find high-impact
work so you can advance at your own pace. If you sit around waiting for someone
to assign you a project, you’ll be waiting a long time.

In teams with a solid crystalline lattice, it’s vital that you understand your
place in the hierarchy and know when your time will come to have a project that
will take you to the next level. If you suggest taking on something that’s been ear-
marked as a promotion project for someone else, you’ll ruffle feathers—one
friend who tried this said their boss looked at them “like I’d suggested stealing
the silverware.”

Try the slider diagram in Figure 2-8 to think about how these seven
attributes influence how your organization works. If you’re trying to cause a cul-
ture change, it’s often possible—with determined effort—to nudge the sliders in
one direction or the other over time. At least know where they are, and you’ll
avoid some of the pitfalls of working against the prevailing culture.

Figure 2-8. Most companies will be somewhere in the middle on each of these attributes.

Power, rules, or mission?

Here’s another lens to view your culture through: what do your leaders think is
important? In his 2005 paper, “A Typology of Organisational Cultures”, sociolo-
gist Ron Westrum wrote:

Through their symbolic actions, as well as rewards and punishments,

leaders communicate what they feel is important. These preferences then

become the preoccupation of the organization’s workforce, because

rewards, punishments, and resources follow the leader’s preferences.

Those who align with the preferences will be rewarded, and those who do

not will be set aside. Most longtime organization members instinctively

50 | THE STAFF ENGINEER’S PATH

https://oreil.ly/rtHz5

know how to read the signs of the times and those who do not soon get

expensive lessons.

Westrum classified organizations and their influence on information flows
using three categories (see Table 2-1):

Pathological
A low-cooperation culture where power and status are the goal and people
hoard information; in Westrum’s words, “a preoccupation with personal
power, needs, and glory”

Bureaucratic
A rule-oriented culture where information moves through standard chan-
nels and change is difficult; the preoccupation here, Westrum writes, is
with “rules, positions, and departmental turf”

Generative
A mission-oriented, high-trust, high-cooperation culture where informa-
tion flows freely; Westrum calls this “concentration on the mission itself”

Table 2-1. The Westrum organizational typology model: How organizations process information (Ron
Westrum, “A typology of organisational cultures”) BMJ Quality & Safety 13, no. 2 (2004), doi:
10.1136/qshc.2003.009522.

Pathological Bureaucratic Generative

Power-oriented Rule-oriented Performance-oriented

Low cooperation Modest cooperation High cooperation

Messengers shot Messengers neglected Messengers trained

Responsibilities shirked Narrow responsibilities Risks shared

Bridging discouraged Bridging tolerated Bridging encouraged

Failure → scapegoating Failure → justice Failure →inquiry

Novelty crushed Novelty → problems Novelty implemented

The DevOps Research and Assessment (DORA) group (now part of Google
Cloud) has shown that high-trust cultures that emphasize information flow have
better software delivery performance. It’s not surprising that an increasing num-
ber of software companies aim to have a generative culture. That means encour-
aging cooperative cross-functional teams, learning from blameless postmortems,
encouraging experimentation, taking calculated risks, and breaking down silos. If

THREE MAPS | 51

https://oreil.ly/tUnoa
https://oreil.ly/Epx4s
https://oreil.ly/Epx4s

your organization works like this, you’re going to have an easier time sharing
information and making progress.

If you know whether your workplace is oriented around power, rules, or mis-
sion, you’ll find it easier to get things done. A feeling for how much people will
share information, cooperate, take the time to help, and get behind new ideas
will keep you safer and less frustrated as you cross the terrain. If you know you’re
in a bureaucracy, you’ll have more success if you plan ahead, stay within the
rules, and respect the chain of command. If you’re in a pathological organization,
you’ll take fewer risks—and cover your ass when you do. Pushing a cart across
cobblestones is more difficult than doing so across smooth paving. If you know
the road will be rocky, you’ll budget more time, and you’re less likely to get mad
at aspects of the situation that you can’t control.

Noticing the points of interest

This brings us back to the topographical map. Understanding your organiza-
tion’s culture gives you a rough idea of how easy or difficult an average journey
will be. But to navigate, you’ll also want to understand the barriers, the difficult
parts of the journey, and the shortcuts. Here are a few points of interest in the
terrain of organizations I have known.

Chasms The plate tectonics of a company can form chasms between teams and
organizations. For instance, Figure 2-9 depicts the canyon that can form between
product-focused software engineering teams and the infrastructure, platforms, or
security teams providing services for them. Group cultures, norms, goals, and
expectations evolve differently, causing gaps that make it difficult to communi-
cate, make decisions, and resolve disputes.

Figure 2-9. The chasm between an infrastructure and a product engineering organization.

52 | THE STAFF ENGINEER’S PATH

https://oreil.ly/4zT4y

Smaller chasms can form even within an organization. The edges of each
team’s defined responsibilities rarely line up perfectly, and project work and
information can get lost in the gaps between teams.

Fortresses Fortresses are teams or individuals who seem determined to stop
anyone from getting projects done. Maybe you need their approval but can’t get
time with them. Or maybe they’re gatekeepers and seem to decide your idea is
bad before they even know what you’re asking. Although some fortresses are
petty tyrants, the majority are well-intentioned. They gatekeep because they care.
They’re trying to keep the quality of the code or architecture high and keep every-
one safe.

To pass through the fortress gates, you might need to bring a token of spon-
sorship from someone the gatekeeper respects, or know the password to lower
the drawbridge. (Common passwords include proving that you’ve mitigated all of
the risks of your proposed change, completing lengthy checklists or capacity esti-
mates, or replying to huge numbers of document comments with acceptable
answers.) Another option is a protracted, bloody battle where you argue every
point and pull other people into the fight—winning one of those can be such a
Pyrrhic victory that you almost regret trying. Or you can give up and go the long
way around the fortress, complicating your journey and losing access to any wis-
dom the gatekeeper would have shared.

Disputed territory It’s very hard to draw team boundaries in a way that lets each
team work autonomously. No matter how opinionated your APIs, contracts, or
team charters, there will inevitably be some pieces of work that multiple teams
think they own, and navigating those disputes can feel risky.

I worked on a project once that needed a critical system to be migrated from
one platform to another. Migrating this particular system accounted for less than
5% of my project, so I didn’t want to spend too much time on it—but when I
looked for someone to take responsibility for it, I hit a wall. Ownership of the sys-
tem was smeared across three teams, each responsible for a different aspect of its
behavior. Nobody could tell me whether migrating it to our new platform would
be safe. Each group said, “Yes, as far as I know, but you should also ask…” and
pointed to the next team. Without an owner who could speak for the whole sys-
tem, I went around in circles trying to build enough context to convince myself
that the migration would work. (It didn’t. Aligning the three teams around the
rollback wasn’t pretty either.)

THREE MAPS | 53

When two or more teams need to work closely together, their projects can
fall into chaos if they don’t have the same clear view of where they’re trying to get
to. The lack of alignment can lead to power struggles and wasted effort as both
sides try to “win” the technical direction. Overlaps in team responsibilities make
this worse, complicating decision making and wasting everyone’s time.

Uncrossable deserts As you try to achieve your goals, you’ll sometimes run into
a battle that other people consider unwinnable. This may be a project that’s just
too big or a politically messy situation that always ends with a veto from some
senior person. Whatever it is, people have tried it before, and any suggestion of
tackling it again will be met with discouragement and ennui.

That’s not to say you shouldn’t try! But you should have enough evidence to
convince yourself and others that this time will be different. It’s good to know
going in if you’re picking a fight that might be unwinnable.

Paved roads, shortcuts, and long ways around Companies that have worked to
make engineers efficient will often set up processes to ensure that the official
ways to do something are also the easiest ways. An example might be following a
self-service checklist to ensure a new component is safe to put into production. If
you’re lucky enough to have some of these easy, well-defined paths, know where
they are and use them.

Unfortunately, not all roads are well paved. We’ve all tried to solve a problem
the official way for a long time before someone told us the secret path to success:
the undocumented search feature, the admin who can set up an account for you,
or the one person in IT who responds to DMs. Sometimes the official way is the
way that everyone learns not to use. Figure 2-10 shows a paved road that doesn’t
lead to most of the places people actually want to go; they take the legacy paths
instead. If you don’t know these goat tracks through your org, everything takes
longer. But when you learn them, teams may ask you not to document them:
people should use the new path, they insist, and it will be better soon.

54 | THE STAFF ENGINEER’S PATH

Figure 2-10. The new paved road is beautiful, but most of the places people actually want to go
are deep in the marsh.

WHAT POINTS OF INTEREST ARE ON YOUR MAP?

What else should be on your topographical map? Are there unexpected cliffs you
can walk off? Are there behaviors or communication styles that would be per-
fectly fine in another company or team but that are considered rude in yours?
Are there guardrails you expect to be in place that just aren’t? Are there areas that
are prone to eruptions, or leaders who cause earthquakes (or surprise reorgs) for
people who thought they were on solid ground? How about local politics—which
teams are led by monarchs, and which by councils? Which ones are anarchy?
Who’s at war with whom?

Try sketching your own map. Remember that cartography is inherently polit-
ical: what you choose to include says something about you as well. Pay attention
to what you put at the center of the map and where you’re inclined to take sides.

Organizations end up with weird shapes due to reorgs, acquisitions, individ-
ual personalities, and, in some cases, people who just don’t like each other. If you

THREE MAPS | 55

https://oreil.ly/V5UbQ
https://oreil.ly/V5UbQ

4 I can recommend discussing landforms with a fifth grader, if you have one in your life. They’re well adap-
ted for questions like “What would a fjord be if it was a metaphor for humans trying to work together?”
(Two teams worked together to make a big project—a glacier—but they got angry with each other, the
project melted, and all that’s left is the water at the bottom. Now you know.)

5 The unspecified “they” often works as a keyword to alert you that you’re operating without enough infor-
mation. If you find yourself having a thought like this, double-check who you mean by “they.” If it’s “the
whole organization,” then that’s part of your problem. Understand exactly who you need to convince. I’ll
talk more about the official deciders and the “shadow” org chart later in this chapter.

come up with barriers, conduits for information, or other landforms that I
haven’t thought of, I’d love to hear about them.4

How are decisions made?

It is fascinating to watch how information and opinions flow through a company
and to see how unexpectedly they can become a plan of record. Suddenly every-
one’s using a new acronym or holding a particular opinion, and it can be hard to
see where that came from. A project that held great hope and promise is now dis-
missed as likely to fail. Everyone’s excited about microservices, or they’ve moved
on from microservices and they’re curious about serverless, or they think a mod-
ular monolith is just pragmatic common sense. One team has approval to hire
more people this year and another doesn’t. How did all of these decisions hap-
pen? Was there a memo?

Some decisions seem to emerge from conversations without anyone really
declaring that they’ve decided. Others happen more formally, but in rooms
you’re not in. If you have a lot of ideas, it can be frustrating when you see other
initiatives take root but not yours. Why aren’t they listening to your proposals?5

The truth is something that a lot of us struggle to make peace with: being techni-
cally correct about a direction is only the beginning. You need to convince other
people too—and you need to convince the right people.

If you don’t understand how decisions are made in your organization or
company, you’ll find yourself unable to anticipate or influence them. You might
also find that you think you hold the same opinions as everyone else about what
should happen next, and then find that suddenly everyone is advocating for a dif-
ferent path. If you consistently feel out of the loop, that’s a sign that you don’t
understand how decisions are made and who influences them.

56 | THE STAFF ENGINEER’S PATH

6 “Coordination Headwind: How Organizations Are Like Slime Molds” is a fantastic presentation about the
failure modes of bottom-up coordination.

Where is “the room”?

Decisions that affect you and your scope are happening every day, and it’s
uncomfortable if you keep being shocked by them. You should at least have a
feeling for where they’re coming from, and you’ll likely want to have some influ-
ence on them too. Let’s start with the formal channels and the official meetings
where big decisions get made.

Your access to decisions will be different depending on where in the organi-
zational hierarchy you sit. Some of these decisions will inevitably be happening
higher up in the company than you are. You can influence them by making sure
relevant information reaches those rooms via your reporting chain or other chan-
nels. But decisions are also being made directly at your scope, and, as much as
possible, you’ll want to be involved. If you’ve watched the musical Hamilton,
you’ll remember Aaron Burr’s craving to be “in the room where it happens.” As
Burr tells us, people who aren’t in the room “don’t get a say in what they trade
away”. While there are times when an outsider perspective can help, this isn’t
one of them. If you want to set technical direction or change your local culture,
you need to be an insider in the group that’s making the decisions.

Figure out where decisions are happening. Perhaps there’s a weekly manag-
ers’ meeting that’s intended to make organizational decisions but that often
weighs in on process or technical direction. A director might tend to make plans
in their staff meeting with the people who report to them. A central architecture
group might have a Slack channel where they come to consensus on the path for-
ward. If you’re not seeing how your organization works, ask someone you trust
to walk you through where a particular decision came from. (Be clear that you’re
not fighting the decision, just trying to understand the inner workings of your
organization.)

Beware: there might not be a “room” at all. At the most extreme ends, major
technical pronouncements might get made in one-on-ones with the most senior
leader, or they might be intended to be entirely bottom-up (and therefore often
not made at all).6 But if there is a “room where it happens” for the kind of deci-
sion you’re interested in, find out what that is and who is in it.

THREE MAPS | 57

https://oreil.ly/n2nNf
https://oreil.ly/G1Csw
https://oreil.ly/G1Csw

Asking to join in

Once you discover a meeting where important decisions get made, it’s natural to
want to be part of it. But you’ll need a compelling story for why that should hap-
pen. It seems obvious, but your reasons should be about impact to your organiza-
tion, not to you personally. No matter how much your peer managers like you,
framing your exclusion as being bad for your career advancement will be unlikely
to change hearts and minds. Show how including you will make your organiza-
tion better at achieving its goals. Show what you can bring that’s not already
there. Have a clear narrative about why you need access, practice your talking
points, and go ask to join.

You will probably get some resistance. Adding someone to a group is rarely
free for the people who are already there. Every extra person in any meeting
slows it down, extends discussions, and reduces attendees’ willingness to be vul-
nerable or brutally honest. If the group is used to working together, every new
person resets the dynamic; to some extent, attendees have to learn to work
together again.

If you do get an invitation, don’t make anyone regret inviting you. Will Lar-
son’s article “Getting in the Room” emphasizes that as well as adding value to
the room, you need to reduce the cost of including you: show up prepared, speak
concisely, and be a collaborative, low-friction contributor. If you make the room
less effective at making decisions or sharing information quickly, you won’t be
invited back.

If you don’t get into the room, don’t take it personally, especially in orgs
where people are still figuring out what their staff+ engineers are for and aren’t
yet on board with it being a leadership role. While they work that out, you’ll have
more influence (and will appear more of a leader) if you’re friendly and do good
work than if you grouse about not being invited to things. Understand the situa-
tion, be kind, and, as I said in Chapter 1, never be a jerk.

There are also some rooms you just shouldn’t be in. If you’re decidedly on
the individual contributor track, you usually shouldn’t be part of discussions
about compensation, performance management, and other manager-track
things. You might bring information to your manager or director that affects
those decisions, but it’s up to them to act. If big technical decisions are happen-
ing in the same room as those manager conversations, you could suggest split-
ting the topics into separate meetings.

Finally, remember that the room you’re trying to get into may contain less
power than you think. Years ago, I was shocked to discover that a group of

58 | THE STAFF ENGINEER’S PATH

https://oreil.ly/us7eX

directors didn’t think their opinions carried a lot of weight; they were frustrated
at not being able to influence the decisions of the real movers and shakers two
levels up. It turned out that there was another “room” I hadn’t ever thought
about. There were probably others above that! Be realistic about what you’re ask-
ing for access to.

The shadow org chart

So that’s the formal decision making. If you understand that, you’ll understand a
lot about how your organization sets its opinions and decides what to do. But
inevitably there’s a whole lot of other influence going on, and some of it will, on
the surface, make no sense whatsoever. Informal decision making doesn’t follow
rules based on hierarchy or job title. Those things certainly carry weight, but
there’s more going on.

While it’s important to understand who the official technical leaders are, it’s
just as important to understand who they listen to and how they make decisions.
What happens if Jan, the director of your infrastructure organization, seems to
be entirely on board with your idea, then suddenly goes cold? If you’re paying
attention, you’ll learn that Jan’s first move in any decision is to check in with
Sam, who joined the team 10 years ago. Sam is not particularly senior, but if Sam
thinks something is a bad idea, you’ll never get Jan on board. These influence
lines aren’t immediately obvious when you join an organization, so a good early
step is to make some friends and ask how the organization works.

In their book Debugging Teams: Better Productivity Through Collaboration,
Brian W. Fitzpatrick and Ben Collins-Sussman describe the “shadow org chart”:
the unwritten structures through which power and influence flow. The shadow
org chart helps you understand who the influencers of the group are, and it’s
probably not the same as the actual org chart. These influencers are the people
you need to convince before a change can happen.

The authors identify “connectors” who know people all across the org, and
“old-timers” who, regardless of rank or title, wield influence just from being
around a long time. These folks are likely to have a good pulse on what can and
can’t work, and the people who do have rank and title will likely trust them and
rely on their good judgment when making decisions. If you can get their buy-in,
you’re making good progress.

THREE MAPS | 59

https://oreil.ly/TrqIi

KEEPING YOUR TOPOGRAPHIC MAP UP TO DATE

I talked earlier about how important it is to keep your locator map up to date.
Keeping your topographic map fresh is even more important. The facts on the
ground will change quickly, and things that you think you know will stop being
true. On an average day, you might need to know that:

• A team you depend on has a new lead.

• A project you’ve been waiting for isn’t happening after all.

• Quarterly planning is about to start.

• A useful new platform is launching.

• Your product manager is about to go on extended leave.

There’s a lot of information to keep up with. But you need to know it all, so
you need to know what to look for. Here are some ways you can stay up to date:

Automated announcement lists and channels
Dedicated channels for sharing new design documents, announcing out-
ages, or linking change-management tickets give everyone an easy high-
level view of what’s going on. If these kinds of channels don’t exist and
you’d find them useful, consider creating them.

Walking the floor
The Lean manufacturing folks talk about gemba, the idea of walking the
manufacturing floor and seeing how things actually operate. Find some
avenues to stay attached to the work that teams around you are doing. This
could take the form of pairing on occasional changes, managing incidents,
or doing a deploy for a system you want to know more about. Drifting too
far from the technology doesn’t just reduce your context; it can reduce your
technical credibility. (More on that in Chapter 4.)

Lurking
I asked on Rands Leadership Slack about how everyone approaches know-
ing things, and a common thread was paying attention to information that
isn’t secret exactly, but isn’t necessarily for you. This included reading
senior people’s calendars, skimming agendas or notes for meetings you’re
not in, and—something that had never occurred to me—looking at the full
list of Slack channels sorted by most recently created so you can see what
new projects are happening.

60 | THE STAFF ENGINEER’S PATH

https://oreil.ly/zfdHj
https://oreil.ly/O4bad

7 Compliment something you admire, but please don’t tell your coworkers they’re attractive! In general, only
compliment something that the person made a choice to do. A well-written RFC, a smoothly run meeting, or
a cool desk toy are all fair game.

Making time for reading
In companies with a mature documentation culture, plans and changes
will often be accompanied by RFCs, design documents, product briefs, and
so on. Skim for some basic context, or schedule time on your calendar to
read deeply.

Checking in with your leadership
You need allies and sponsors who will tell you things. Check in often
enough to hear behind-the-scenes updates and to make sure the way you’re
thinking is still aligned with the way your leaders are.

Talking with people
Stepping out for coffee and a chat isn’t just pleasant relationship-building
—it’s a great source of context. If you really want perspective, talk to people
outside engineering: product, sales, marketing, legal, and so on. If you’re
creating a product, befriend your customer support folks: they know more
about what you’ve created than you do. Befriend the admin staff, too.
Admins are smart, resourceful, and well connected. They know what’s
going on, and they tend to be the most fascinating people in the company.
Go make friends.

“I Don’t Know How to Talk to People”

Many engineers have an aversion to anything that smells like “network-

ing.” It makes us think of smarmy ‘80s power lunches. (Or is that just

me?) But networking doesn’t have to be cynical or grubby. If you get to

know people and are friendly, sharing information and helping each other

will follow.

If you’re struggling to begin a conversation with someone, an easy

starting point is to ask a question, take an interest in what they work on,

or (genuinely) compliment something you admire about them.7 Most

people are interested in talking about their work or their priorities, and

most will be happy to explain how something they’re interested in works.

Small talk is a learnable skill that will pay dividends throughout your

THREE MAPS | 61

career. (And if you’re talking with someone more junior than you, it’s kind

of your responsibility to make it not awkward.)

IF THE TERRAIN IS STILL DIFFICULT TO NAVIGATE, BE A BRIDGE

The problems that slow down tech organizations are most often human ones:
teams that don’t know how to talk to each other, decisions that nobody feels
empowered to make, and power struggles. These are difficult problems! As you
add information to your topographical map, you may find places where it’s
tempting to scrawl “There be dragons” and vow to steer elsewhere. But a staff
engineer can often have the most impact by going where everyone else fears to
tread and making the dangerous territory easier for everyone else.

The Westrum model highlights the importance of “bridging” (see
Figure 2-11), making connections between parts of the organization that other-
wise would have enormous information gaps. The more you know the terrain,
the easier it will be to bridge gaps by sending the email summary nobody is send-
ing, introducing two people who should have spoken a month ago, or writing a
document to show how projects connect to each other.

Figure 2-11. When quarterly planning is a long way off, staff engineers can build connections to
bridge the gap between two orgs.

62 | THE STAFF ENGINEER’S PATH

Google’s DevOps site suggests preemptively building bridges: “Identify
someone in the organization whose work you don’t understand (or whose work
frustrates you, like procurement) and invite them to coffee or lunch.”

When you can, define the scope of your job so that it crosses the tectonic
plates and encompasses all of some system or problem domain, not just the part
belonging to a single team. That way, you can catch work that is getting dropped,
mediate conflicts, and help create a single story about what’s happening. When
there are major changes proposed, you’ll have enough context to say “Yes, this
migration is a good idea,” or “No, we have work to do.”

The Treasure Map: Remind Me Where We’re Going?

We’ve drawn two maps so far. The locator map shows where we are. The topo-
graphic map shows how we can navigate across the organization. But where are
we going? That’s the purpose of our third map (see Figure 2-12).

Figure 2-12. X marks the spot where the treasure is buried! Now you just need to get there.

THREE MAPS | 63

https://oreil.ly/DU4Nc

The treasure map gives us a compelling story of where we’re going and why
we want to get there. Let’s go on an adventure!

CHASING SHINY THINGS

I talked earlier in this chapter about how you need to look past your group’s local
problems and keep perspective about the world around you. You need that same
perspective across time. It’s easy to overfocus on short-term goals like the current
feature release or the latest unhappy App Store review. But think bigger. Where
are you trying to get to? Why are you doing any of this? To be clear, I’m not say-
ing you shouldn’t look for short-term wins. But thinking only about short-term
goals can be limiting. If you’re only thinking short term:

It’ll be harder to keep everyone going in the same direction
If the team doesn’t know the big plan, either they’ll go to the wrong place,
or every decision will be long, complicated, and full of discussion. Some-
times navigating around difficulties will mean taking an indirect path.
Everyone should be very clear about the course correction that will need to
come after that milestone.

You won’t finish big things
If your team keeps focusing on short-term projects to solve local problems
and pain points, you won’t be able to solve bigger, long-term problems that
take multiple steps. The value of your existing projects might not be clear
to people outside the team either.

You’ll accumulate cruft
If teams don’t know where they’re going, they have two options. They can
try to be flexible enough to support every future state, creating solutions
that are overcomplicated and hard to maintain. Or they can make local
decisions, taking the risk that their direction won’t match everyone else’s
and that their solution will be a weird edge case that everyone else has to
work around.

You’ll have competing initiatives
In an organization that relies on grassroots or bottom-up initiatives, there
might be multiple people trying to rally enthusiasm around completely dif-
ferent directions. They’re all trying to do the right thing and get people
aligned, but the end result is chaos.

64 | THE STAFF ENGINEER’S PATH

8 Civilization, now in its sixth edition, is a strategy game that has been around for decades. It uses a fog of
war, and you have to make good decisions between long-term and short-term investments. I recommend
playing Civilization to understand all things about staff engineering. Tell your boss it’s research.

Engineers stop growing
Focusing only on short-term goals limits the way you think about and
frame your work, and how much ownership you take of the work that falls
into the cracks between tasks. If the team is trying to achieve a big project,
they’ll have to identify the gaps between the assigned tasks and figure out
how to fill them, building skills in the process. A team that’s used to iterat-
ing on short, clearly specified goals won’t build muscle for bigger, more
difficult projects and won’t be able to tell the story of why they did what
they did.

TAKING A LONGER VIEW

If everyone knows where they’re going, life gets easier. There’s no need to keep
tight alignment along the way. Each team can be more creative in figuring out
their own route, with their own narrative for the problems they’ll need to solve to
get there. They’re less likely to go down wrong paths, and they’ll have enough
information to make decisions, reducing the amount of hedging and technical
debt they need to incur. They can celebrate the wins along the way, while remem-
bering that there is a long-term goal and that the real celebration won’t happen
until they get there.

Why are you doing whatever you’re doing?

An analogy I use a lot is the technology tree that you see in many strategy games,
such as Civilization.8 In case you haven’t, uh, invested way too many hours of your
life on this excellent game, I’ll explain how it works. You play as the ruler of a
civilization, trying to build an empire. Your path to greatness includes amassing
scientific knowledge, so as you go along you can choose to research various tech-
nologies. The set of available technologies form a directed graph (see Figure 2-13).
At the beginning you might research, say, pottery and hunting, but as you go
through the game, your skills will build on each other. In Civilization, you can’t
build a railroad without researching bridge building and steam engines. And you
can’t build steam engines without physics and engineering. So there’s going to
be a point in the game when you’re researching physics but your actual goal is to
build a railroad. You won’t have the real win until you’ve built the bridges,

THREE MAPS | 65

researched the steam engines, and ordered little hats for your train conductors.
(That last bit doesn’t really happen, unfortunately.) Unless you remember where
you intended to go and keep working on it, you don’t ever get to ride the train.

Figure 2-13. A section of the technologies graph from Sid Meier’s Civilization II, created by
Microprose/Activision (source: http://www.civfanatics.com).

When you’re choosing a technology to invest in, often that’s because it’s an
unavoidable step on the path to something else. You’re not building a new ser-
vice mesh for the joy of building a service mesh; you’re building it to make your
microservices framework easier to use, because you want to make it easy for new
services to get set up quickly, because you want teams to be able to ship features
faster. The real goal is to reduce time to market. When you know the real goal,
you can step back and evaluate whether any proposed work will get you closer
to it.

Sharing the map

It may take you time to dispel the fog of war and uncover the true destination of
your journey. Once you do understand it, don’t keep it to yourself. That means
telling the story to other people and letting them understand why it matters. Your
story should show where you are, where you’re going, and why you’re taking the
steps that you are along the way. If there are sea monsters or shortcuts to know,
you’ll probably want those marked—but don’t include any distractions. Make it
easy to see what’s going on. The map should describe the treasure—that is, give a
clear definition of success—so that everyone knows what they’re aiming for.

It’s motivational to see that you’re making progress, but it’s also surprisingly
easy to forget where you were and maybe even feel like you’re getting nowhere.
As the person with a map (see Figure 2-14), you’re well positioned to show that
everyone is getting closer to the goals (or course-correct if not). Tell the story of
where you came from as well as where you’re going.

66 | THE STAFF ENGINEER’S PATH

http://www.civfanatics.com

Figure 2-14. Tell the story of where you were and how much progress you’ve made as well as
where you’re going.

IF THE TREASURE MAP IS STILL UNCLEAR, IT MIGHT BE TIME
TO DRAW A NEW ONE

If everyone’s working from the same treasure map, your job here is done. But if
you discover that there are multiple competing paths or no plans at all, you might
need to help the group choose a destination. Sometimes all you need here is to
write up a short summary of where you see confusion or misalignment. By spell-
ing the facts out and sharing them, you’re forcing the conversation (or, perhaps,
the argument) into the open. But, after asking all of the questions, tracing the
Civilization tech tree, encouraging the people who disagree to talk with each
other, and thinking really hard, you might still conclude that no one has actually
chosen a long-term destination yet, or that there are multiple competing destina-
tions.

In that case, there’s nothing more to be gained from clearing the fog of war
from the map: it’s time to create a new map. That’s what the next chapter is
all about.

THREE MAPS | 67

Your Personal Journey

Before I close this chapter, let’s talk about your journey. As a staff engineer, it can
take longer to see the impact of your work. That means it’s harder—but also
more important—to tell the story of that work. When you look back, you should
have a narrative of what you were trying to achieve and how it went. What did
you and your group accomplish together? When you look ahead, you should have
a story too: what are you trying to do? How does your current work contribute to
that goal?

Once you have that narrative, even small tasks become part of a bigger story.
Any given week’s work might not be elucidating, but what did you do this month,
this quarter, this year? Are you getting closer to some treasure? To understand
your journey, you’ll need one more map, the trail map. We’ll draw that in Chap-
ter 9.

To Recap

• Practice the skills of intentionally looking for a bigger picture and seeing
what’s happening.

• Understand your work in context: know your customers, talk with peers
outside your group, understand your success metrics, and be clear on
what’s actually important.

• Know how your organization works and how decisions get made within it.

• Build or discover paths to allow information you need to come to you.

• Be clear about what goals everyone is aiming for.

• Think about your own work and what your journey is.

68 | THE STAFF ENGINEER’S PATH

Creating the
Big Picture

Here’s my favorite story about a group that was missing a big picture. An organi-
zation I was in had an upcoming all-hands meeting. People could propose topics
in advance, and there had been a question about a critical system—let’s call it
SystemX—that had caused some outages. I’d been tagged to respond. While I
prepared my talking points, I got three almost simultaneous DMs:

• The first: “Please reassure everyone that we know SystemX has been a
problem, but we’re staffing up the team that supports it and adding repli-
cas to help it scale. We don’t anticipate more outages.”

• At the same time: “So glad someone asked that question! We should
emphasize that SystemX has been deprecated and everyone should plan to
move off it.”

• And: “Hey, could you tell everyone that I’ve set up a working group to
explore how to evolve SystemX. We’ll announce plans next quarter. If any-
one wants to join the working group, they should contact me.”

The public forum would have been a great opportunity to spread awareness
of any of these three very reasonable paths forward. But why were there three
different plans?

At the end of Chapter 2, we finished uncovering the existing treasure map of
your organization. If your group already has one of those—a single compelling,
well-understood goal and a plan to get there—your big picture is complete. You
can jump to Part II, where I’ll talk about how to execute on big projects. But a lot
of the time, staff engineers find that the goal is not clear, or that the plan is dis-
puted. If that’s the situation you’re in, read on.

69

| 3

1 We’re focusing on vision and strategy, but these techniques can work for any big group decisions:
engineering values, coding standards, cross-organization project plans, etc.

2 If anyone wants to talk seed funding, drop me a line.

In this final chapter of Part I, we’re going to talk about creating the big pic-
ture. When the path is undefined and confusing, sometimes you need to get the
group to agree on a plan and create the missing map. This map often comes in
the form of a technical vision, describing a future state you want to get to, or a
technical strategy, outlining how you plan to navigate challenges and achieve spe-
cific goals. I’ll open by describing both of these documents, including why you’d
want each one, what shapes they might take, and what kinds of things you might
include in them. Then we’ll look at how to work as a group to create this kind of
document. We’ll look at the three phases of creating the document: the approach,
the writing, and the launch.1 Finally, we’ll work through a fictional case study to
see some of those techniques in action. Let’s lay that scenario out now, so you
can start thinking about how you’d approach it.

The Scenario: SockMatcher Needs a Plan

SockMatcher formed a few years ago as a two-person startup aiming to solve an
important problem: odd socks. People who have lost a sock upload an image or
video using the company’s mobile app, and a sophisticated machine learning
algorithm on the backend attempts to find another user who has lost one of an
identical pair. If one of the two sock owners wants to sell their odd sock to the
other, the algorithm then suggests a price. Every change in sock ownership is
tracked in a distributed sockchain ledger.

As you might imagine, venture capitalists went wild for it.2 SockMatcher
quickly grew into the largest odd-sock marketplace on the internet. The company
has expanded to add partnerships with several bespoke sock manufacturers, per-
sonalized sock recommendations, and even gloves and buttons. It launched an
external API that third parties can use for sock analysis as a platform (SaaaP).
Customers love the new features.

The company’s architecture has grown organically. It’s all built around a sin-
gle central database and data model, with a monolithic binary managing login,
account subscriptions, billing, matching, personalization, image and video
uploads, and so on. Product-specific logic is built into each of these functions.
For instance, the billing code includes logic for how customers are charged: per
successful match for socks, but as a quarterly subscription for buttons. Sock data

70 | THE STAFF ENGINEER’S PATH

.

and customer data are stored in the same large datastore, which includes sensi-
tive personally identifiable information (PII) about customers, like their names,
credit card numbers, and shoe sizes.

For competitive reasons, SockMatcher has prioritized getting new features
into the apps quickly, rather than building in a scalable or reusable fashion. For
example, the team implemented the gloves feature as a special case of the exist-
ing sock-matching functionality, adding a field to the sock data model to allow
marking an item as “left” or “right.” When a user uploads an image of a glove,
the software generates a mirror image, then treats the glove as just another kind
of sock.

When the company decided to add button matching, several senior engi-
neers argued that it was time to rearchitect and create a modular system where it
would be easy to add new types of matchable objects. Business pressures won
out, though, and button matching was also implemented as a special case of
socks, with new fields in the data model to allow specifying the number of but-
tons in a set and the number of holes per button. The billing code, personaliza-
tion subsystem, and other components contain hardcoded custom logic to handle
differences in socks, gloves, and buttons, mostly implemented as if statements
scattered throughout the codebase.

Now there’s a new proposed business goal: the company wants to expand to
match food storage containers and lids. This product will have different charac-
teristics from existing ones. Unlike socks, containers and their lids aren’t identi-
cal. The team will need different matching models and logic and a whole new set
of vendors and partnerships so that they can offer the customer a brand-new
replacement lid or container when no match is available. The company’s most
recent product strategy deck speculates about adding earrings, jigsaw-puzzle
pieces, hubcaps, and more in the future.

The new food storage container team is ready to start scoping out the feature.
They’re not eager to begin working in the existing monolith: they really want to
build their own independent matching microservice with their own datastore.
But even if they do, they’ll need code for authentication, billing, personalization,
safely handling PII, and other shared functionality—all of which are currently
optimized for the sock model. If they want to work autonomously, they’ll need to
expose this functionality from the monolith or reimplement it. Either will take
time, so they anticipate some pressure to declare food storage containers to be a
kind of sock and to work within the existing code, adding more edge cases

CREATING THE BIG PICTURE | 71

alongside gloves and buttons where needed. The team is split on what the right
next step is.

There are some other challenges:

• The API that was shared with third parties isn’t versioned, and so it’s diffi-
cult to change it; with new integrations planned, this problem will get
more difficult to solve the longer it’s left.

• The homegrown login functionality has always been, to quote the engineer
who built it three years ago, “kind of janky.” It’s got a few years of growth
left in it, but it’s not code anyone is proud of.

• The matching functionality is the best on the market and makes custom-
ers happy, but there are times when it fails to find a match even though
one is available.

• One team member has an idea for a new algorithm and system that will
find matches in a fraction of the current time. They’re really excited about
it.

• The team responsible for operating the monolith hasn’t been able to keep
up with its growth and is reacting constantly to scaling problems. They’re
paged several times every day for full disks, failed deploys, and software
bugs.

• With more and more engineers working in the same codebase and reusing
existing functionality, there’s more unexpected behavior, and user-visible
bugs are being pushed more often. Almost every team and user is affected
by almost every outage.

• Celebrities and influencers selling their socks have caused 100x spikes in
user traffic, leading to complete outages. The food storage container
launch might attract celebrity chefs to the platform, further increasing
demand.

• Every new piece of functionality slows the monolith’s build time, and
unowned, flaky tests aren’t helping: it typically takes three hours to build
and deploy a new version, lengthening most incidents.

• App Store reviews for the mobile app have begun to trend downward;
many of the one-star reviews note that availability has been poor.

72 | THE STAFF ENGINEER’S PATH

Although this scenario includes a lot of problems, many of them have
straightforward technical solutions. Every new person who joins the company
suggests changes: sharding the datastores, versioning the APIs, extracting func-
tionality from the monolith, and so on. Various working groups have kicked off.
They always start as a room of 20 people who care deeply but don’t agree, then
get mired in no one having time to focus on them. After all, there’s feature work
to do that feels more important or more likely to succeed. The engineering orga-
nization can’t seem to get momentum behind any single initiative.

What would you do? We’ll return to this scenario at the end of the chapter.

What’s a Vision? What’s a Strategy?

Should you build new functionality as a reusable platform or as part of a specific
product? Should teams learn the difficult new framework or stick with the popu-
lar deprecated one? Maybe each team can make their own decision: decentralized
decision making can let organizations move more quickly and solve their own
problems. But there can be disadvantages when each team decides for itself:

• There can be a “tragedy of the commons”, where teams pursuing their
own best action without coordinating with others leads to an outcome that
is bad for everyone. There’s that local maximum again.

• Shared concerns can be neglected because no one group has the authority
or an incentive to fix them alone.

• Teams may be missing enough context to make the best decision. The peo-
ple taking action might be different from the people experiencing the out-
comes, or might be separated in time from them.

When there are major unmade decisions, projects get slowed or blocked.
Nobody wants to delay their project for the sake of a long and painful fight to
make a controversial decision or choose a standard. Instead, groups make locally
good decisions that solve their own immediate problems. Each team chooses
directions based on their own preferences or on rumors about the organization’s
technical direction—and often embed those choices in the solution they create.

CREATING THE BIG PICTURE | 73

https://oreil.ly/KEPbi

3 You might notice that these kinds of topics still consume a ton of discussion time in code and design
reviews, even though they’re not at the core of any particular change. If that’s happening, or if you’re
seeing designs that have contradictory baked-in assumptions, that’s a sign that you need to make some
big central decisions, independent of any particular project or launch.

Postponing the big underlying questions makes them even harder to solve down
the line.3

When organizations realize they need to solve some of these big underlying
problems, the words vision and strategy get thrown around a lot. You’ll hear these
used both interchangeably and to mean distinct things. To avoid confusion over
terminology, let’s start with some working definitions we can use throughout
this chapter.

WHAT’S A TECHNICAL VISION?

A technical vision describes the future as you’d like it to be once the objectives
have been achieved and the biggest problems are solved. Describing how every-
thing will be after the work is done makes it easier for everyone to imagine that
world without getting hung up on the details of getting there.

You can write a technical vision at any scope, from a grand picture of the
whole engineering organization down to a single team’s work. Your vision may
inherit from documents at larger scopes, and it may influence smaller ones (see
Figure 3-1 for some examples).

A vision creates a shared reality. As a staff engineer who can see the big pic-
ture, you can probably imagine a better state for your architecture, code, pro-
cesses, technology, and teams. The problem is, many of the other senior people
around you probably can too, and your ideas might not all line up. Even if you
think you all agree, it’s easy to make assumptions or gloss over details, missing
big differences of opinion until they cause conflict. The tremendous power of the
written word makes it much harder to misunderstand one another.

74 | THE STAFF ENGINEER’S PATH

Figure 3-1. Depending on the size of the problem, you might start with an engineering-wide
vision, a team-scoped vision, or something in between. Don’t create a vision, strategy, etc.,
unless you need it.

A technical vision is sometimes called a “north star” or “shining city on the
hill.” It doesn’t set out to make all of the decisions, but it should remove sources
of conflict or ambiguity and empower everyone to choose their own path while
being confident that they’ll end up at the right place.

Resources for Writing a Technical Vision

If you’re setting out to write a technology vision document, here are

some resources I recommend:

• Fundamentals of Software Architecture by Mark Richards and Neal

Ford (O’Reilly)

• Chapter 4 of Making Things Happen by Scott Berkun (O’Reilly)

CREATING THE BIG PICTURE | 75

https://oreil.ly/RLl0h
https://oreil.ly/a9lx1

• “How to Set the Technical Direction for Your Team”, by James

Hood of Amazon

• “Writing Our 3-Year Technical Vision”, by Daniel Micol of Eventbrite

There’s no particular standard for what a vision looks like. It could be a pithy
inspirational “vision statement” sentence, a 20-page essay, or a slide deck. It
might include:

• A description of high-level values and goals

• A set of principles to use for making decisions

• A summary of decisions that have already been made

• An architectural diagram

It could be very detailed and go into technology choices, or it could stay high-
level and leave all of the details to whoever is implementing it.

Whatever you create, it should be clear and opinionated, it should describe a
realistic better future, and it should meet your organization’s needs. If you could
wave a magic wand and be done, what would your architecture, processes, teams,
culture, or capabilities be? That’s your vision.

WHAT’S A TECHNICAL STRATEGY?

A strategy is a plan of action. It’s how you intend to achieve your goals, navigating
past the obstacles you’ll meet along the way. That means understanding where
you want to go (this could be the vision we just discussed!) as well as the chal-
lenges in your path. When I use the word strategy in this chapter, I always mean a
specific document, not just being a strategic sort of thinker.

A technology strategy might underpin a business or product strategy. It
might be a partner document for a technical vision, or it might tackle a subset of
that vision, perhaps for one of the organizations, products, or technology areas it
encompasses. Or it might stand entirely alone.

Just like a technical vision, a technical strategy should bring clarity—not
about the destination, but about the path there. It should address specific chal-
lenges in realistic ways, provide strong direction, and define actions that the
group should prioritize along the way. A strategy won’t make all of the decisions,

76 | THE STAFF ENGINEER’S PATH

https://oreil.ly/zhD2Q
https://oreil.ly/Rew44

but it should have enough information to overcome whatever difficulties are stop-
ping the group from getting to where it needs to go.

Resources for Writing a Technical Strategy

The canonical book on strategy is Good Strategy/Bad Strategy by

Richard Rumelt (Currency). I recommend taking the time to read it if you

can. Other great resources include:

• “Technical Strategy Power Chords” by Patrick Shields

• “Getting to Commitment: Tackling Broad Technical Problems in

Large Organizations” by Mattie Toia

• “A Survey of Engineering Strategies” by Will Larson

• Technology Strategy Patterns by Eben Hewitt (O’Reilly)

• Rands Leadership Slack, specifically the channels #technical-

strategy and #books-good-strategy-bad-strategy

Just like a technology vision, a strategy could be a page or two or it could be a
60-page behemoth. It will likely include a diagnosis of the current state of the
world, including specific challenges to be overcome, and a clear path forward for
addressing those challenges. It might include a prioritized list of projects that
should be tackled, perhaps with success criteria for those projects. Depending on
its scope, it could include broad, high-level direction or decisions on a specific set
of difficult choices, explaining the trade-offs for each one.

In Good Strategy/Bad Strategy, Rumelt describes “the kernel of a strategy”: a
diagnosis of the problems, a guiding policy, and actions that will bypass the chal-
lenges. Let’s look at each one.

CREATING THE BIG PICTURE | 77

https://oreil.ly/EDODP
https://oreil.ly/RKUwO
https://oreil.ly/RKUwO
https://oreil.ly/tF2TU
https://oreil.ly/31lii
https://oreil.ly/O4bad

The diagnosis

“What’s going on here?” The diagnosis of your situation needs to be simpler than
the messy reality, perhaps by finding patterns in the noise or using metaphors or
mental models to make the problem easy to understand. You’re trying to distill
the situation you’re in down to its most essential characteristics so that it’s possi-
ble to really comprehend it. This is difficult. It will take time.

Guiding policy

The guiding policy is your approach to bypassing the obstacles described in the
diagnosis. It should give you a clear direction and make the decisions that follow
easier. Rumelt says it should be short and clear, “a signpost, marking the direc-
tion forward.”

Coherent actions

Once you’ve got a diagnosis and guiding policy, you can get specific about the
actions you’re going to take—and the ones you won’t. Your actions will almost
certainly involve more than technology: you might have organizational changes,
new processes or teams, or changes to projects. I really can’t stress this enough:
you’ll commit time and people to these actions rather than to the long list of other
ideas that were on the table at the start. This kind of focus will likely mean that
you and others don’t get to do some things you’ve been excited about. It is what it
is.

A strategy should draw on your advantages. For example, when Isaac Perez
Moncho, an engineering manager in London, was writing an engineering strat-
egy for a company, he looked to create positive feedback loops. That company’s
product engineering teams were facing many problems, he told me: lack of tool-
ing, too many incidents, and poor deployments. But he had an advantage: a great
DevOps team who could solve those problems, if only they had more time. His
guiding policy was freeing up some of the DevOps team’s time. Making space for
them let them automate processes and free up even more time, creating a posi-
tive feedback loop that made them available to solve other problems. Think about
ways to amplify your advantages in a self-reinforcing way.

Finally, a strategy isn’t an aspirational description of what someone else
would do in a perfect world. It has to be realistic and acknowledge the constraints
of your situation. A strategy that can’t get staffed in your organization is a waste
of your time.

78 | THE STAFF ENGINEER’S PATH

4 I’ll talk about these kinds of documents when we’re looking at project execution in Chapter 5.

5 That said, Patrick Shields, a staff engineer at Stripe, told me once that he encourages people to write
small strategies for all sorts of things because “you need to learn to play amateur basketball before you
drop into the NBA.” It’s an excellent point.

DO YOU REALLY NEED VISION AND STRATEGY DOCUMENTS?

Technical visions and strategies bring clarity, but they can be overkill for a lot of
situations. Don’t make unnecessary work for yourself. If it’s easy to describe the
state you’re trying to get to or the problem you’re trying to solve, what you
actually want might be more like the goals section of a design document, or even
the description of a pull request.4 If everyone can get aligned without the docu-
ment, you probably don’t need it.5

If you’re sure you need something, think about what shape it should take.
Adapt to what your organization needs and will support. For example, if a lack of
direction is slowing you all down, you might want to get a group together to cre-
ate an abstract high-level vision, then get more concrete about how to implement
it. If you’re preparing for company growth, your CTO might ask you to get a
group together from across engineering and describe what your architecture and
processes will look like in three years. But if your group is repeatedly getting
stuck on a particular missing architectural decision, don’t spend too much time
on philosophy: make a call on the specific item that’s blocking you.

Writing technical vision or strategy takes time. If you can achieve the same
outcome in a more lightweight way, do that instead. Create what your organiza-
tion needs and no more.

The Approach

Creating a vision, a strategy, or any other form of cross-team document is a big
project. There will be a ton of preparation, then a ton of iteration and alignment.
Bear in mind that getting people to agree isn’t a chore that stands in between you
and the real work of solving the problem: the agreement is the work. Any insight
or bold vision you’re bringing to the project is only going to be worth anything if
you can bring people along on the journey with you. Just like you wouldn’t
admire time spent on an engineering solution that ignores the laws of physics,
advocating for a project that you know you won’t be able to convince your organi-
zation to do isn’t a good use of your time.

Although I’ve talked about strategies and visions separately up until now, for
the rest of this chapter I’m not going to distinguish between them much. They’re

CREATING THE BIG PICTURE | 79

very different things, but both involve getting people together, making decisions,
bringing your organization along, and telling a story. You can use the same
approach for creating other big-picture documents, like a technology radar or a
set of engineering values.

Creating any of these documents is a classic “1 percent inspiration and 99
percent perspiration” endeavor, but if you prepare properly, you increase your
chances of launching something that actually gets used. I’ll talk about some of
the prep work that can set you up for success, and then I’ll invite you to think
through the outputs of that prep work, evaluate whether you can succeed, and
decide whether to make the project official.

EMBRACE THE BORING IDEAS

I don’t know about you, but when I was new to the industry, I thought that very
senior engineers were wizards who would spend their days coming up with
insightful game-changing solutions to terrifyingly deep technical problems. I
imagined it to be something like a Star Trek: The Next Generation episode where
there’s an impending warp core antimatter containment failure or what have
you, and everyone’s out of ideas and freaking out, but then suddenly Geordi La
Forge or Wesley Crusher exclaims, “Wait! What if we <extreme technobabble>”
and taps eight characters on a touch screen, and the Enterprise is saved with sec-
onds to spare. Phew!

Real life is a bit different. OK, sometimes “What if we <extreme technobab-
ble>” actually is the answer: especially in very small companies, sometimes you
really are stuck until an experienced person drops in to describe a solution and
save the day. But if there are senior people around, most likely there are already
plenty of good ideas. The gap is getting everyone to agree on what to do.

As you go into this project to create a vision or a strategy, be prepared for
your work to involve existing ideas, not brand-new ones. As Camille Fournier,
author of The Manager’s Path, wrote:

I kind of think writing about engineering strategy is hard because good

strategy is pretty boring, and it’s kind of boring to write about. Also I think

when people hear “strategy” they think “innovation.” If you write some-

thing interesting, it’s probably wrong. This seems directionally correct,

certainly most strategy is synthesis and that point isn’t often made!

Will Larson adds, “If you can’t resist the urge to include your most brilliant
ideas in the process, then you can include them in your prework. Write all of

80 | THE STAFF ENGINEER’S PATH

https://oreil.ly/lPzPZ
https://oreil.ly/WgEPL
https://oreil.ly/3TH5a

6 A caveat: if you’re someone who always takes the back seat and cheers on others, make sure your organi-
zation recognizes that leadership. If not, make sure you have some opportunities to shine too. I’ll talk
about credibility and social capital in Chapter 4.

your best ideas in a giant document, delete it, and never mention any of them
again. Now…your head is cleared for the work ahead.”

Creating something that feels “obvious” can feel anticlimactic when you’re
writing it: we’d all love to show up with a genius visionary idea and save the USS
Enterprise! But usually what’s needed is someone who’s willing to weigh up all of
the possible solutions, make the case for what to do and not do, align everyone,
and be brave enough to make the (potentially wrong!) decision.

JOIN AN EXPEDITION IN PROGRESS

If someone is already working on the kind of document you want to create, don’t
compete—join their journey. Here are three ways to do that:

Share the lead
You can bring leadership to an existing project without taking over. Sug-
gest a formal split that gives each of you a chance to lead in a compelling
way. One takes the overall project, for example, while the other leads some
individual initiatives inside that work. You could also suggest co-leading:
take it in turns to be the primary author, and split up the work as it comes
along. If the leaders are enthusiastic about each other’s ideas and are all
pushing in the same direction, this can make for a very effective team.

Follow their lead
Put your ego aside and follow their plan. If they’re less experienced than
you, you can have a huge impact by nudging them in the right direction
and helping make the work as good as it can be. Being the grizzled, experi-
enced best supporting actor is an amazing role.6 You can use your deep
technical knowledge to fill gaps in their skills, for example, spelunking in a
legacy codebase to understand exactly how something works. You can also
advocate for the plan in rooms they aren’t in. Back them up and help make
the thing happen.

CREATING THE BIG PICTURE | 81

Step away
A third approach, of course, is to decide the work is going to succeed
without you, be enthusiastic about it, and go find something else to do. If
the project doesn’t need you, find one that does.

It can be difficult to let other people lead when their direction is not where
you’d planned to go. Tech companies’ promotion systems can incentivize engi-
neers to feel like they need to “win” a technical direction or be the face of a
project. This competition can lead to “ape games”: dominance plays and politick-
ing, where each person tries to establish themselves as the leader in the space,
considering other people’s ideas to be threatening. It’s toxic to collaboration and
makes success much harder to achieve.

My friend Robert Konigsberg, a staff engineer and tech lead at Google,
always says, “Don’t forget that just because something came from your brain
doesn’t make it the best idea.” If you tend to equate being right with “winning,”
step back and focus on the actual goal. Practice perspective: is their direction
wrong, or is it just different? Would you advocate just as hard for the path you
want if it had been a colleague’s idea? Even if it’s better, be wary of fighting for a
marginally better path at the cost of not making a decision at all. As Will Larson
writes, “Give your support quickly to other leaders who are working to make
improvements. Even if you disagree with their initial approach, someone trust-
worthy leading a project will almost always get to a good outcome.”

What if you don’t think the person’s ideas or leadership can work, even with
your support? While you sometimes need to be flexible, that shouldn’t extend to
endorsing ideas you think are dangerous or harmful. Even then, try to join the
existing journey and change its direction, rather than setting up a competing ini-
tiative from scratch: you’ll have allies in place and momentum already built, and
you’ll learn from whatever they’ve done so far.

If there really is no way for multiple people to succeed on the same project
without playing ape games, consider going somewhere with more available scope
(and a healthier culture).

GET A SPONSOR

Except in the most grassroots of cultures, any big effort that doesn’t have high-
level support is unlikely to succeed. A vision or strategy can begin without spon-
sorship, but turning it into reality later will be a challenge. Even early on, a
sponsor helps clarify and justify the work. If your director or VP is on board with

82 | THE STAFF ENGINEER’S PATH

https://oreil.ly/TmbEr
https://oreil.ly/TmbEr

your plans from the start, then what you’re creating is implicitly the organiza-
tion’s treasure map, not just yours—reducing the risk that you’re wasting your
time. Sponsorship can also add hierarchy to groups that would otherwise get
stuck attempting consensus. The sponsor can set success criteria and act as a tie-
breaker when decisions are stuck in committee. They can nominate a lead or
“decider”—sometimes called a directly responsible individual, or DRI—who will
get the final say when the group is stuck. You don’t necessarily need that, but
keep it in mind as an option that’s available to you.

Getting a sponsor might not be easy. Executives are busy and you’re implic-
itly asking them to commit resources, people, and time to your proposal over
something else they’d intended to do. Maximize your chances by bringing the
potential sponsor something they want. While a proposal that’s good for the com-
pany is a great start, you’ll get further with one that matches the director’s own
goals or solves a problem they care about. Find out what’s blocking their goals,
and see if the problem you’re trying to solve lines up with those. The sponsor will
also have some “objectives that are always true”: if you can make their teams
more productive or (genuinely) happier, that can be a compelling reason for
them to support your work.

Think about and practice your “elevator pitch” before trying to convince a
sponsor to get on board with your project: if you can’t convince them in 50
words, you may not be able to convince them at all. I once tried to talk Melissa
Binde, at the time a director of engineering at Google, into sponsoring a project I
cared deeply about. I went into all sorts of detail as I tried to make it important to
her, too. My spiel wasn’t convincing at all—but Melissa kindly took the opportu-
nity to coach: “The way you’re telling this story doesn’t make me care, and it
won’t make anyone else care either. Try again—tell the story from a different
angle.” She let me try a few different project rationales, and told me which ones
resonated. You will almost never get an opportunity like that, so go in with your
pitch already polished.

Can a staff+ engineer be a project sponsor? In my experience, no, not
directly. A sponsor needs the power to decide what an organization spends time
and staffing on, and such decisions are usually up to the local director or VP.

Once you have the sponsorship, check in enough to make sure you still have
it. Sean Rees, principal engineer at Reddit, says that one of the biggest mistakes a
staff+ engineer can make is not maintaining their executive sponsorship: “I think
this one is pernicious because you can start sponsored and have that wane as

CREATING THE BIG PICTURE | 83

realities change…and then have to navigate the tricky waters of getting back
into alignment.”

CHOOSE YOUR CORE GROUP

Some people are very disciplined about setting out on a journey and not getting
distracted by side quests, but most of us benefit from a little accountability.
Working with other people will give you that accountability. When one person is
distracted or flagging, the others will keep the momentum going, and knowing
that you’ll need to check in about the work can be a powerful motivator. Working
in a group also lets you pool your contacts, social capital, and credibility, so you
can reach a broader swathe of the organization. You’ll have to work to get every-
one aligned, but since ultimately you’ll need to align with your whole organiza-
tion, getting your core group to agree can help you uncover potential
disagreements early on.

Aim to recruit a small core group to help you create the document, as well as
a broader group of general allies and supporters. Of course, if you’ve joined
someone else’s journey, you’re going to be part of their core group instead. (For
the sake of simplicity, the rest of this chapter assumes you’re leading the effort.)

Who do you want in your group? Pull out your topographic map. Who do
you need on your side? Who’s going to be opposed? If there are dissenters who
will hate any decision made without them, you have two options: make very sure
that you have enough support to counter their naysaying, or bring them along
from the start. Bringing them along will be easier if you understand why they’re
against the work and what they’d like to see happen instead.

While you may have many colleagues who care about what you’re writing
and want to help, keep the core group manageable: two to four people (including
you) is ideal. A time commitment can help you here: if everyone who’s part of the
core team needs to commit 8 or 12 hours a week to this work, you’ll be able to
keep the group small without excluding anybody. (This is a good way to keep
“tourists” out of the way, too.) Outside the core team, you can offer more light-
weight involvement: you’ll interview them, try to represent their point of view in
your work, and let them review early drafts.

Once you have your core group, be prepared to let them work! Be clear from
the start about whether you consider yourself the lead and ultimate decider of
this project or more of a first among equals. If you’re later going to want to use
tiebreaker powers or pull rank, highlight your role as lead from the start, perhaps
by adding a “roles” section to whatever kickoff documentation you’re creating.

84 | THE STAFF ENGINEER’S PATH

https://oreil.ly/BKNe3

7 If you jumped ahead to this strategy chapter and skipped all of that “What even is your job?” introspec-
tion earlier in the book, your scope is the domain, team, or teams that you feel responsible for. It often
covers the same area that your manager covers, but not always.

But whether you’re the lead or not, let your group have ideas, drive the project
forward, and talk about it without redirecting all questions to you. Offer opportu-
nities to lead, and make sure you’re supportive when they take initiative. Their
momentum will help you move along faster, so don’t hold them back.

As for your broader group of allies, keep them engaged: interview them and
use the information they give you. Send them updates on how the document is
going. Invite them to comment on early drafts. Your path will be much easier if
you have a group of influential people who support what you’re doing, and the
knowledge they bring from across the organization will yield better results, too.

SET SCOPE

As you think about the specific problem or problems you’re trying to solve, con-
sider how much they sprawl across the organization. Do you want to influence all
of engineering, a team, a set of systems? Your plan’s scope may match the scope
of your role as a staff engineer, but might also extend well beyond it.7

Aim to cover enough ground to actually solve your problem, but be con-
scious of your skill level and the scope of your influence. If you’re trying to make
a major change to, say, your networks, you’d be wise to include someone from
the networks team in the core group and to build credibility with that team.
Otherwise, you’re setting yourself up for conflict and failure. If you’re trying to
write a plan for areas of the company that are well outside your sphere of influ-
ence, make sure you have a sponsor who has influence there—and ideally some
other core group members who have clear maps of those parts of the organiza-
tion.

Be practical about what’s possible. If your vision of the future involves some-
thing entirely out of your control, like a change of CEO or an adjustment in your
customers’ buying patterns, you’ve crossed into magical thinking. Work around
your fixed constraints, rather than ignoring them or wishing they were different.

That said, if you’re writing a vision or strategy for just your part of the com-
pany, understand that a higher-level plan may disrupt yours. Even if you’re writ-
ing something engineering-wide, a change in business direction can invalidate
all of your decisions. Be prepared to revisit your vision at intervals and make sure
it’s still the right fit for your organization. As you make progress on your vision

CREATING THE BIG PICTURE | 85

8 The answer to this one is usually no.

or strategy, you may find that your scope changes. That’s OK! Just be clear that it
has.

Be clear, too, about what kind of document you intend to create. I recom-
mend starting by having each of the core group members be really explicit about
what documents, presentations, or bumper stickers they hope will exist at the
end of the work. Then choose a document type and format that makes sense to
you and, most importantly, to your sponsor. If they are enthusiastic about a par-
ticular approach, soul-search before doing something else. Don’t make your life
harder than it has to be.

MAKE SURE IT’S ACHIEVABLE

As you think through the project ahead, how many big problems do you see? Are
there decisions that you really don’t know how to make, or massive technical dif-
ficulties? Having one or two problems you don’t know how to solve doesn’t mean
you shouldn’t wade in, but have a think about whether the problem is solvable
at all.

A practical step you can take here is to talk with someone who’s done some-
thing similar before. Ask something like: “I’m writing a vision/strategy and I cur-
rently see three problems ahead that I don’t yet know how to tackle. I’m willing
to try, but I don’t want to waste my time if this isn’t solvable. Can you give me a
gut check on whether I’ll hit a dead end?” Or perhaps: “Everything ahead seems
doable and I only have one problem, but it’s that my boss thinks this is a waste
of time and wants me to focus on something else entirely. Is this worth
continuing?”8

Maybe you think the problem is important and could be solved, but not cur-
rently by you. Is there a coach or mentor who could help you stretch to do it? Or
is this just too big for where you are in your career? If you’re a staff engineer
balking at a problem scoped for a principal engineer, that doesn’t reflect badly on
you: you’re actually doing pretty good risk analysis.

86 | THE STAFF ENGINEER’S PATH

If, at the end of this analysis, you decide that the problem isn’t solvable, or at
least not by you, you have five options:

• Lie to yourself, cross your fingers, and do it anyway.

• Recruit someone who has skills that you’re missing, and either work with
them or ask them to lead the project (and give you a subsection of it to
hone your skills on).

• Reduce your scope, add in the fixed constraints, and start this chapter
again with a differently shaped problem to solve.

• Accept that nobody’s going to write a vision/strategy to solve the problems
you can see, conclude that your company will probably be OK without one,
and go work on something else.

• Accept that nobody’s going to write a vision/strategy to solve the problems
you can see, conclude that your company won’t be OK without one, and
update your resume.

MAKE IT OFFICIAL

Before we move on, let’s recap those questions we’ve asked along the way. Here’s
a checklist to consider before starting to create a technical vision or strategy.

☐ We need this.

☐ I know the solution will be boring and obvious.

☐ There isn’t an existing effort (or I’ve joined it).

☐ There’s organizational support.

☐ We agree on what we’re creating.

☐ The problem is solvable (by me).

☐ I’m not lying to myself on any of the above.

Introspect a bit on that last question. If you can’t check all of these boxes, my
opinion is that you shouldn’t continue. There’s a high opportunity cost if you
spend your time on a vision or strategy instead of any of the other work that
needs a staff+ engineer.

If you do feel ready to go, though, here’s one final question: are you ready to
commit to the work and start working on it “out loud”? This might be a good

CREATING THE BIG PICTURE | 87

time to formally set up the vision or strategy creation as a project, with kickoff
documentation, milestones, timelines, and expectations for reporting progress. If
you have any tendency to procrastinate or get distracted, these structures are
especially important.

Your level of transparency here will depend on your knowledge of your orga-
nization: think about the topographical map you made last chapter. If you can be
open about work like this, it will be easier for people to bring you information
and gravitate toward you to help. If you feel you need to create a vision or strategy
in secret, understand why. Does it mean you don’t have enough support? Are you
unsure of your own level of confidence and commitment? If you need to do a bit
of the work first to convince yourself that you’re going to stick with it, well, I
won’t judge, but make it official as soon as you can. If you set everyone’s expecta-
tions, you’re less likely to meet with competing efforts—or at least you’ll find out
about them early.

The Writing

The prep work is done, the project is official, you’ve got a sponsor, you’ve got a
core group, and you’ve chosen a document format. The work you’re doing is
framed and scoped. Time to start writing the document for real.

THE WRITING LOOP

In this section, I’m going to talk through some techniques for actually creating
your vision, strategy, or other broad document. We’ll look at writing, interviewing
people, thinking, and making decisions, as well as staying aligned while you do
it. These techniques won’t necessarily happen in the order I’m listing them. In
fact, probably you’ll do most of them many times (see Figure 3-2), maybe even
occasionally dropping back to steps in the “Approach” section as your perspective
changes.

There will always be more information, so notice when you start to get
diminishing returns from this loop. It’s very easy for a vision or a strategy to keep
dragging on, particularly if it’s not your primary project, so timebox this work
and give yourself some deadlines. If you’ve set up milestones, use them as a
reminder to stop iterating and wrap up. Don’t be afraid to stop, even if it’s not
‘perfect”: you can—and should—revisit the document regularly to see what con-
text has changed. If you’ve missed something, there’ll be opportunities to add
it later.

88 | THE STAFF ENGINEER’S PATH

Figure 3-2. Iterating on writing a vision or strategy.

Initial ideas

Here are some questions you might ask when you’re initially thinking about cre-
ating a vision or strategy. These questions are just a starting point: there will be
many stakeholders and perspectives, and this is just an exercise to help you get
your thoughts in order before talking to others.

What documents already exist? If there are visions or strategies that encompass
yours, like company goals or values or a published product direction, you should
“inherit” any constraints they’ve set. Here’s where the perspective from your
locator map will come in handy. If you’re writing a wide-scale technical vision,
you should know what your organization hopes to achieve in the next few years.
The future that you’re envisioning should include success for those existing
plans and for the technical changes that have to happen to underpin them.

If there are team-level or group-level documents at a smaller scope than
yours, be aware of those too. Sometimes it’s inevitable that a vision or strategy
with a broader scope will cause a narrower one to have to change, but understand
the disruption that will cause and weigh it up when you’re thinking about
trade-offs.

What needs to change? What’s difficult right now? If your teams are complain-
ing about being blocked by dependencies on other teams, you might want to
emphasize autonomy. If new features are slow to ship, maybe what you want is
fast iteration speed. If your product is down as much as it’s up, maybe you need a
focus on reliability.

CREATING THE BIG PICTURE | 89

9 They’ve got a thorough list in Chapter 4 of their book, Fundamentals of Software Architecture (O’Reilly).

Knowing what you do about your company, where should your group be
investing? Mark Richards and Neal Ford talk about “architectural characteristics”
in software: scalability, extensibility, availability, and so on.9 Which of those char-
acteristics will you need to invest in as the business expands or changes?

Think big. If you’re working in a codebase that takes a day to build and
deploy, it might be tempting to wish for incremental improvement. “This needs
to take only half a day!” But go further than that. If you set a goal of 20-minute
deploys, the teams pushing toward that goal have an incentive to have bigger,
braver ideas. Maybe they’ll contemplate replacing the CI/CD system, or discard-
ing a test framework that can never be compatible with that goal. Inspire people
to get creative. (But, as I’ll discuss later in this chapter, don’t set goals that are
impossible for your organization to achieve.)

What’s great as it is? If you have snappy performance, rock-solid reliability, and
a simple and clean UI, make sure your future state includes keeping the things
that are working well. Maybe you’ll end up deliberately trading off some of that
greatness for something else you want more, but don’t do it unconsciously.

What’s important? You may be noticing a pattern here—this question has come
up in every chapter so far (and it’ll come up again, too). Your vision or strategy
will influence the work of many senior people. Don’t waste their time or yours on
things that don’t matter. If you’re getting teams to do an expensive migration
from one system to another, for example, there had better be a treasure at the
end. The more effort it’s going to take, the better the treasure needs to be.

What will Future You wish that Present You had done? Last one! I love the tech-
nique of envisioning a conversation with Future Me, two or three years older
(and hopefully wiser). I’d ask what the world looks like, what we did, and what we
wish we’d done. Which problems are getting a little worse every quarter and are
going to be a real mess if ignored? Do your future self a favor if you can, and
don’t ignore those. I call these favors “sending a cookie into the future”: it’s a
small but heartfelt gift from your current self to your future self.

Writing

At the end of thinking through these questions, you may be starting to identify
themes and have an opinion about what’s most pressing. This may be a good

90 | THE STAFF ENGINEER’S PATH

https://oreil.ly/RLl0h

10 Sarah Grey, development editor for this book, says that this could be an editorial nightmare if not handled
carefully and that the thought of aggregating all these drafts gives her a headache. If you take this path,
know what you’re getting into.

time to start a rough first draft. Be prepared to let other people change your
mind, though, and maybe change it a lot. You’ll edit and iterate as you talk to
other people and decide what to do next.

Writing as a group can be tricky. Here are two approaches:

Have the leader write a first draft for discussion
One option is that the leader of the group (again, I’m assuming that’s you)
writes up a first draft for discussion. This approach is great for giving the
document a consistent voice and set of concerns. Be aware, though, that
this draft will inevitably be influenced by its author’s interests and affilia-
tions. Reviewers and editors will be biased by what’s already in it, especially
if the person writing it has more influence or seniority than they do.

You can help mitigate this effect by spending a lot of time talking as a
group before you start to write. If you don’t feel strongly about some deci-
sions or have even chosen arbitrarily, flag that clearly: “I rolled some dice
and chose this direction. I think it’s a reasonable default if we can’t come to
a decision. I bet we can do better, though.” Make absolutely sure that any-
one who has more knowledge than you on this system will feel safe disa-
greeing with you. “Strong ideas weakly held” only works if you’re crystal
clear that that’s what is happening.

Aggregate multiple first drafts
The other approach is that each person in the core group writes their own
first draft, and then someone aggregates it afterward.10 Mojtaba Hosseini, a
director of engineering at Zapier, told me about a group that took this
approach at a previous company. Having multiple documents was a great
way to get everyone’s unbiased opinions, he said, but some participants
ended up getting emotionally invested in their own document, criticizing
the others instead of contributing to them. That group hadn’t nominated
anyone to combine the drafts or act as a tiebreaker when two disagreed.
Hosseini advises making clear up front that these documents are all inputs
to one final document that everyone gets to review at the end—no one
document will be the “winner.” Set expectations about who will write that
final version and mediate disagreements.

CREATING THE BIG PICTURE | 91

Interviews

Your core group’s ideas and opinions will reflect only the experiences of the peo-
ple in that group. You might not know what you don’t know about what’s diffi-
cult in teams other than yours—so put your preconceptions aside and talk to
people. Lots of people. Don’t just pick the colleagues you already know and like:
chances are they’re organizationally pretty close to you. Seek out the leaders, the
influencers, and the people close to the work in other areas.

Early on, you might ask broad, open-ended questions in your interviews.

• “We’re creating a plan for X. What’s important to include?”

• What’s it like working with…?”

• If you could wave a magic wand, what would be different about…?”

When you have scoped and framed your work, you might scope the conversa-
tion by describing how you’re thinking about the topic, sharing a work-in-
progress document, or asking for their reaction to a straw man approach.
Optimize for getting as much useful information as possible and for making
your interviewee feel like part of what you’re doing. I always end this kind of
interview with “What else should I have asked you? Is there anything important I
missed?”

Interviewing has another benefit: it shows the interviewees that you value
their ideas and intend to include them in what you write. You’ll hear about prob-
lems that you hadn’t considered and new opinions about problems you already
know about. Other people may disagree with you about what the biggest prob-
lems are. Have an open mind and take their thoughts seriously.

Thinking time

However you and your group like to process information (whiteboarding, writ-
ing, drawing diagrams, structured debate, sitting in silence and staring at a wall),
make sure you give yourselves a lot of time to do that. I think best by writing, so
when working on a vision or strategy, I need to write out my thoughts, then
refine and edit them for a long time until they make more sense to me. I also get
a lot from just talking through the ideas with colleagues, asking ourselves ques-
tions and trying to pick apart nuances. My colleague Carl, by contrast, likes to
load up his brain with information and sleep on it: he’ll usually have new
insights the next morning. In some cases, you’ll be able to build prototypes to

92 | THE STAFF ENGINEER’S PATH

test out your ideas. In others, the strategy will be more high-level and you’ll have
to walk through the consequences as a thought experiment instead.

Be open to shifts in your thinking. As you make progress in identifying the
areas of focus or the challenges to be solved, you’ll notice that you’re finding new
ways to talk about them. Lean into this and help it happen. The mental models
and abstractions you build will help you think bigger thoughts.

Thinking time is also a good time to check in on your motivations. Notice if
you’re describing a problem in terms of a solution you’ve already chosen—this
can be a mental block for a lot of engineers. We start out by comparing problems
to solve, but find ourselves talking in terms of technology or architecture we
“should” be using that would make everything better. As Cindy Sridharan says,
“A charismatic or persuasive engineer can successfully sell their passion project
as one that’s beneficial to the org, when the benefits might at best be superficial.”
Be especially aware of what you’re selling to yourself ! When looking at the work
you’re proposing to do, ask “Yes, but why?” over and over again until you’re sure
the explanation maps back to the goal you’re trying to achieve. If the connection
is tenuous, be honest about that. Your pet project’s time will come. This isn’t it.

MAKE DECISIONS

At every stage of creating a vision or a strategy, you’re going to need to make
decisions. This chapter has discussed many early decisions: what kind of docu-
ment to create, who to get involved, who to ask for sponsorship, how to scope
your ambition, which goals or problems to focus on, who to interview, and how
to frame the work. As you work through your vision or strategy, you’ll need to
weigh trade-offs, decide how to solve a problem, and decide which group of peo-
ple won’t get their wish.

Trade-offs

The reason decisions are hard is that all options have pros and cons. No matter
what you choose, there will be disadvantages. Weighing your priorities in
advance can help you decide which disadvantages you’re willing to accept. The
same holds for advantages: every solution is probably good for something!

One of the best ways I’ve seen to clarify trade-offs is to compare two positive
attributes of the outcome you want. I’ve heard these called even over statements.
When you say “We will optimize for ease of use even over performance” or “We
will choose long-term support even over time to market,” you’re saying, (to quote

CREATING THE BIG PICTURE | 93

https://oreil.ly/DggW1

“The Agile Manifesto”), “While there is value in the items on the right, we value
the items on the left more.” This framing makes the trade-offs clear.

Building consensus

Sometimes none of the options on the table can make everyone happy. Do try to
get aligned, but don’t block on full consensus: you might be waiting forever, and
so you’re back to implicitly choosing the status quo. Take a tactic from the Inter-
net Engineering Task Force (IETF), whose principles of decision making
famously reject “kings, presidents, and voting” in favor of what they call “rough
consensus,” positing that “lack of disagreement is more important than agree-
ment.” In other words, take the sense of the group, but don’t insist that everyone
must perfectly agree. Rather than asking, “Is everyone OK with choice A?” ask,
“Can anyone not live with choice A?”

When IETF working groups make decisions, they’re looking for a large
majority of the group to agree and for the major dissenting points to have been
addressed and debated, even if not to everyone’s satisfaction. There may not be
an outcome that makes everyone happy, and they’re OK with that. Mark Notting-
ham’s foreword to Learning HTTP/2 by Stephen Ludin and Javier Garza
(O’Reilly) notes of his experience in one such group: “In a few cases it was agreed
that moving forward was more important than one person’s argument carrying
the day, so we made decisions by flipping a coin.”

If rough consensus can’t get you to a conclusion and you’re not ready to flip
a coin, someone will need to make the call. This is why it’s best to decide up front
if you have, or someone else has, clear leadership authority and can act as a tie-
breaker. If there’s nobody in that role, you could ask your sponsor to adjudicate,
but make this a last resort. Your sponsor is likely so far away from the decision
that they don’t have all of the context, you’d be asking for a lot of their time, and
they might end up picking a path that nobody is happy with.

Not deciding is a decision (just usually not a good one)

When you’re choosing between Option A and Option B, there’s an implicit third
option, C: don’t decide. People often default to Option C, because it lets them stay
on the fence and not upset anyone. This is the worst thing you can do. Decisions
constrain possibilities and make it possible to make progress. Not deciding is in
itself a decision to maintain the status quo, as well as the uncertainty that sur-
rounds it. While keeping your options open indefinitely might feel like it’s giving
you flexibility, in the longer term your solution space stays large. Other decisions

94 | THE STAFF ENGINEER’S PATH

https://agilemanifesto.org
https://oreil.ly/x3Bds
https://oreil.ly/lP2OO
https://oreil.ly/lP2OO

that depend on this one have to hedge to prepare for any of the possible direc-
tions you might end up choosing later.

If you realize you’ll need more information to make an informed decision,
what extra information do you expect to get, and how? If you choose to wait, what
are you waiting for? Remember that you usually don’t need to make the best deci-
sion, just a good enough decision. If you’re stuck, timebox it. Instead of saying,
“We’ll choose the best storage system on the planet,” try, “Let’s research storage
systems for the next two weeks and choose by the end of that time.”

There are sometimes good arguments for postponing a decision. The excel-
lent decision-making website The Decider lists a few: when the time and energy
you would need to invest in deciding just isn’t worth any of the benefits the deci-
sion will give you, when getting it wrong carries heavy penalties and getting it
right carries little reward, or when you suspect the situation might just go away
on its own. But the key is that you decide not to decide. You add “make no deci-
sion (status quo)” to your list of options and deliberately choose it. You don’t just
throw up your hands and walk away.

When you can’t be sure that your decision is a great one, think about what
could go wrong. Can you include ways to course-correct or mitigate any negative
outcomes? Make it so that if you’re wrong, it’s not a terrible thing.

Show your work

However you make the decision, document it, including the trade-offs you con-
sidered and how you got to the decision in the end. Don’t elide the disadvantages:
be very clear about them and explain why you’ve decided this is still the right
path. In some cases, it’s genuinely going to be impossible to make everyone
happy, but you can at least show that you’ve understood and considered all of the
arguments. Not only is it respectful to give your coworkers this information, it
also reduces the risk of having to relitigate the decision every time a new person
joins the project and assumes you haven’t noticed the disadvantages they can see.

Making someone unhappy is, unfortunately, inevitable when you’re creating
a strategy or vision. If everyone gets their wish, it’s unlikely that you made any
real decisions. Be empathetic and try to solve everyone’s problems when you can,
but make a decisive call and show why you chose what you chose.

CREATING THE BIG PICTURE | 95

https://thedecider.app

GET ALIGNED AND STAY ALIGNED

Understand who your final audience will be. Will you need to convince a small
number of fellow developers? The whole company? People outside your com-
pany? Think about how you can bring each group along on the journey with you.

Keep your sponsor up to date on what you’re planning and how it’s going.
That doesn’t mean you should send them an unedited 20-page document while
you’re still trying to figure out what point you’re trying to make. Take the time to
get your thoughts together so that you can bring them a summary of how you’re
approaching various problems and what your options are. Unless they want to
see the work in progress, share the highlights of what you’re writing, rather than
the gory details. In particular, if you’re writing a strategy, make sure you’re
aligned at least at the major checkpoints: after you’ve framed the diagnosis, after
you’ve chosen a guiding policy, and again after you’ve proposed some actions. If
your sponsor believes you’re on the wrong path, you’ll want to find out before
you spend a lot more time on it.

Be reasonable

Your path should be aspirational, but not impossible. Some changes are much
too expensive to justify the investment. Other efforts just won’t win support in
your organization. There’s a political science concept called the Overton window
(Figure 3-3): the range of ideas that are tolerated in public discourse without
seeming too extreme, foolish, or risky. If your ideas are too futuristic for the peo-
ple you need to believe in them, your colleagues will dismiss your document and
you’ll lose credibility (more on that in Chapter 4). Be aware of what your organi-
zation will accept, and don’t take on an unwinnable battle.

Figure 3-3. The Overton window shows which ideas are politically acceptable at a given time
(source: based on an image from the Toronto Guardian).

96 | THE STAFF ENGINEER’S PATH

https://oreil.ly/wTFcR
https://oreil.ly/dANiZ

11 As he writes, you want to hear the “spicy opinions” in one-on-one meetings and adjust your plan as nec-
essary before the decision makers meet as a group.

Nemawashi

If you keep your stakeholders aligned as you go along, your document won’t ever
have a point where you’re sharing a finished document with a group of people
who are learning about it for the first time. When I spoke with Zach Millman,
pillar tech lead at Asana, about creating a strategy there, he told me that he used
the process of nemawashi, one of the pillars of the Toyota Production System. It
means sharing information and laying the foundations so that by the time a deci-
sion is made, there’s already a consensus of opinion.11 If there’s someone who’ll
need to give a thumbs-up to your plan, you’ll want those people to show up to any
decision-making meeting already convinced that the change is the right thing to
do. I’ve always framed this as “Don’t call for a vote until you know you have the
votes,” but I was delighted to learn that there’s a word for it.

Keavy McMinn told a similar story of a strategy she created while she was at
Github. By the time she was ready to share the document with the whole com-
pany, she had complete buy-in from her boss and his boss, and she’d done a ton
of behind-the-scenes prework. The decision makers already knew that the work
should be staffed. Launching the document still built momentum and excitement
around the work and helped a broader audience clarify the details and buy in to
the decisions.

Don’t forget that aligning doesn’t just mean convincing people of things. It
goes both ways. As you discuss your plans for a vision or strategy, those plans
might change. You might realize that many people are getting hung up on some
aspect of your document that wasn’t really important to you, and so you end up
removing it. You might compromise on some point that is a source of conflict, or
give extra prominence to something that wasn’t hugely important to you but that
is really resonating with your audience. You might even legitimately find a better
destination to aim for. All of this is OK, and is why writing a document like this
takes time.

CREATING THE BIG PICTURE | 97

https://oreil.ly/zJhkc
https://oreil.ly/cu6py
https://oreil.ly/Namw7

Work on your story

A vision or strategy that not everyone knows is of little value to you. You’ll know
the direction is well understood if people continue to stay on course when you’re
not in the room to influence their decisions. But to make that happen, you’ll need
to get the information into everyone’s brains. You can’t do that if you give your
organization a long document to memorize; you’ll need to help them out. This is
a place where the pithy one-liner or “bumper sticker” slogan I mentioned earlier
can really shine. In his article “Making the Case for Cloud Only”, Mark Barnes
writes about coming up with the slogan “Cloud only 2020” as a powerful way to
make it easy for everyone at the Financial Times to remember their cloud strategy.
Sarah Wells, speaking about the same migration, added, “It’s certainly the one
thing from our tech strategy that developers could quote.” If your teams know,
understand, and keep repeating the story of where they’re going, you’re much
more likely to get there.

Your project is also more likely to be successful—and cost less social capital
—if you can convince people that they want to go to the place you’re describing.
As you write, think about how your words will be received and be clear about
what story you’re trying to tell. To get back to the idea of drawing a treasure map,
imagine that you’ve done that, and now you’re in the pirate bar, rolling your
treasure map out on the table and trying to make the other people at your table
want to come along with you. What are you telling them?

You want a story that is comprehensible, relatable, and comfortable.
First, you’ll want to make sure the story is comprehensible. A short, coherent

story is much more compelling than a list of unconnected tasks. It’s hard to
make people enthusiastic about something they don’t understand, and you’re
missing the opportunity to have them tell the story when you’re not there. Even if
they’re brought along by your enthusiasm, if they don’t really understand the
plan, they can’t champion it.

Make sure the story is relatable. The reason the treasure is exciting for you
might not be at all exciting for other people, so the way you frame the story really
matters. If your vision is that your own team will have solved its most annoying
problems, live happier lives, and eat ice cream, that’s pretty compelling…for peo-
ple on your team. If achieving that vision will need work from other teams, you’ll
need more. Show how your work will make their lives better too.

Similarly, remember the Overton window and make sure the story is com-
fortable. A compelling story to take people on a journey from A to B will only
work if they’re actually at A. If they’re a long distance back from there, you might

98 | THE STAFF ENGINEER’S PATH

https://oreil.ly/jZ9SS
https://oreil.ly/juTzy

have more success in convincing them of A, and then waiting until that idea is
considered sensible and well-accepted before taking them on the next step.

Your story will help people as they execute on the plan too. As Mojtaba Hos-
seini told me, “When it gets difficult, everyone needs to know that the difficulties
are expected, and that they can be overcome. Don’t just tell the story of the gold
at the end of the journey. When there are problems, you need to be able to
emphasize that this is the part of the story where the heroes get caught in the
pit…but then they get out again!”

CREATE THE FINAL DRAFT

It can feel hard to believe, when you’ve spent weeks or months creating a docu-
ment, but not everyone will be excited to review it. Don’t be offended! While peo-
ple may have the best intentions, a lengthy document can stay open in a tab for a
long, long time. Think about how you can make it easy to read, or share the high-
lights in another way. Avoid dense walls of text. Use images, bullet points, and
lots of white space. If you can find a way to make your points clear and memora-
ble, more people will grasp them.

One way is to use “personas”: describe some of the people affected by your
vision or strategy—developers, end users, or whoever your stakeholders are—and
describe their experience before and after the work is done. Another approach is
to describe a real scenario that’s difficult, expensive, or even impossible for the
business now and show how that will change. Be as concrete as you can. Unless
you’re presenting solely to engineers in the same domain, avoid jargon. Some of
your readers will start tuning out after they hit a few acronyms or technical terms
they don’t know.

You may find it useful to have a second type of document to accompany the
one that you’ve written. If you’re going to present at an all-hands meeting or sim-
ilar, you’ll want a slide deck. You may want both a detailed essay-style or bullet-
pointed document and also a one-page elevator pitch with the high-level ideas. If
you’re comfortable sharing with people outside the company, you might write an
external blog post: this can be another opportunity to reach internal
audiences too.

CREATING THE BIG PICTURE | 99

The Launch

There’s a difference between a vision document that is one person’s idea and a
vision that is the company or organization’s officially endorsed north star, with
teams working to achieve it. I have seen so many documents die at this point
because the authors didn’t know how to make them real.

MAKE IT OFFICIAL

What’s the difference between your document being yours and the organization’s?
Belief, mostly. That starts with endorsement from whoever is the ultimate
authority for whatever scope your document needs. Usually this is whoever is at
the top of the people-manager chain: your director, VPs, CTO, or other executive.
If you’ve been using nemawashi and staying aligned with the people whose opin-
ions matter, that person might already be on board. If so, see if they’re willing to
send an email, add their name to the document as an endorsement, refer to it
when describing the next quarter’s goals, invite you to present your plan at an
appropriately sized all-hands, or make some other public gesture of accepting the
plan as real. If you don’t have their support, ask your sponsor to help you sell the
idea.

Make sure your document looks real. Host it on an official-looking internal
website. Close any remaining comments and remove any to-dos. Consider
removing the ability to add comments, and leave a contact address for feedback
instead. If you can include the head of the department or similar as a contact,
that’ll carry a lot more weight than if it has just engineers’ names on top.

An officially endorsed document gives people a tool they can use for making
decisions. However, there’s another important part of making the document real:
actually staffing the work in it. If you’ve proposed new projects or cross-
organization work, you may need headcount—and actual humans to fill that
headcount. If you’ll need a budget, computing power, or other resources to make
the work happen, that need should have come up in the course of agreeing on
the direction, but now you’ll face the reality of actually getting it. Talk with your
sponsor about how to work within your regular prioritization, headcount, OKR,
or budgetary processes.

Depending on your organization, you may be personally responsible for
starting to execute on the strategy, or you may be handing it off to other people to
make the work happen. In my experience, you’ll all be more successful if you
stay with it, making sure the work maintains momentum and the plan stays clear
as the vision or strategy turns into actual projects.

100 | THE STAFF ENGINEER’S PATH

KEEP IT FRESH

Shipping a vision or strategy doesn’t mean you can stop thinking about it. The
business direction or broader technical context may change and you’ll need to
adapt. You may also just find out that the direction you chose was wrong. It hap-
pens. Be prepared to revisit your document in a year, or earlier if you realize that
it’s not working. If the vision or strategy is no longer solving your business prob-
lems, don’t be afraid to iterate on it. Explain what new information you have or
what’s changed, update it, and tell a new story.

Case Study: SockMatcher

Time to go back to our friends at SockMatcher. When you read the scenario at
the start of the chapter, maybe you had ideas for what they should do. In some
ways, the technical problems are easy to solve. But making a change that affects
many people is anything but.

Let’s imagine you’re a staff engineer working at SockMatcher. Here’s the
story of your approach, writing, and launch.

APPROACH

Your previous project has just wrapped up and you’re looking for something
impactful to do next, ideally something that’s a bit of a stretch. Creating a plan
for the most contested core architecture in the company certainly fits the bill. It
also feels like an important problem, one that can have a huge impact on the
business.

Your manager is wary. Many others have tried to tackle this architecture
before—this may be an uncrossable desert! You suggest that you take a couple of
weeks to understand why previous attempts failed. If you don’t have a compel-
ling reason to believe that your journey can be different, you won’t do it.

Why didn’t previous attempts work?

You start out by chatting with two staff engineers who have taken a run at rear-
chitecting the monolith in the past.

The first, Pierre, spent three months creating a detailed technical design for
the monolith and surrounding architecture. Other teams weren’t impressed: they
disagreed with some trade-offs Pierre had made, the direction didn’t match their
own plans for their components, and they didn’t like having a solution handed to
them to implement. Unable to rally enthusiasm, Pierre decided the project

CREATING THE BIG PICTURE | 101

couldn’t be solved (at least, not with the current set of engineers). He’s still pretty
grumpy about it.

The other engineer, Geneva, set out to build a coalition before attempting a
rearchitecture. She set up a working group and there was a ton of interest. The
various participants were initially eager to work together, but the working group
got bogged down in debate and couldn’t agree on a path. The hours of meetings
became a time sink and people stopped going, including Geneva.

As you talk with these and other engineers who have opinions about “solv-
ing” the monolith, you notice two patterns. The first is that most people have a
specific solution in mind: “The problem is that we don’t have microservices” or
“We just need to shard the data stores.” Everyone wants their solution to “win,”
so consensus is impossible. The second pattern is that everyone is focused only
on the technical problems. There are lots of technically sound ideas, but no plans
for how to get the organization to buy in to a path forward.

You think you can be more successful if you tackle organizational alignment
as the crux of the problem. You resolve to get an executive sponsor and make
sure that any directions you propose are not just good technical solutions but are
viable within this organization. You’ll be pragmatic and low-ego, helping existing
ideas succeed rather than trying to have your own direction prevail.

Sponsorship

You’ve got some social capital and credibility (see Chapter 4) in the bank after
your last project, but you know that’s not enough to convince all of the many
teams that care about the monolith. You also know that you’re going to have to
make some decisions and you won’t be able to make everyone happy. If you need
complete consensus, you’re not going to succeed. Also, any plan you make is
likely to create engineering projects. If you’re not going to be able to staff the
work, you’d rather find that out early, before you waste your time. You need an
executive sponsor.

You start with Jody, the director whose teams operate the monolith: she has
a vested interest in making it easier to maintain. But she’s seen her people get
pulled into the two previous attempts to change the architecture, and she wants
to defend their time. They have their own projects, and she doesn’t want them to
be distracted by yet another new initiative. While she’s in favor of rearchitecture,
it’s in a “Next year, we hope, maybe” sort of way. She’s not interested in commit-
ting anyone to this work.

102 | THE STAFF ENGINEER’S PATH

Your next stop is Jesse, the director who’s taking on the food storage con-
tainer launch. With this high-profile project coming online, Jesse might have eas-
ier access to staffing and, if you can align his success metrics with your own, he’s
likely to support the work. When you talk to Jesse, you describe a future where
product teams can work autonomously, product engineers are happier, and new
features are delivered quickly. Jesse isn’t sure. That’s a nice future, but food stor-
age needs to launch this year; they can’t wait for a massive rearchitecture. You
agree: any solution must let the food storage folks launch with minimal friction.
Jesse is convinced. He agrees to sponsor and support your work.

Other engineers

You look for coauthors, a few colleagues who can bring different perspectives and
knowledge to the work. You also want to build allies across your organization and
engage anyone who will be skeptical of or pull against your plan.

You start with Pierre, the staff engineer who proposed the detailed previous
solution. He’s still feeling a bit raw from putting his heart into making a thor-
ough solution and meeting with complete apathy. He says some defeated (and
kind of mean) things about the company leadership and makes it clear that he
thinks your work is a waste of time. You ask if you can use his previous plan as
an input to some of the work you’re doing, crediting him for any parts of his
work you end up using—though you set expectations that you’ll scope your
project differently. The idea of his work getting used makes him a little more
willing to help. He still won’t join your group, but he agrees to be interviewed
and to review your plans later.

You have higher hopes as you invite Geneva to join efforts. She’s in. You’re
surprised when she tells you that her previous working group still exists, sort of:
three senior engineers meet and talk about architecture every week. They’ve
given the monolith problem a ton of thought, and you know they’ll be able to see
nuances that wouldn’t be immediately obvious to you. You invite them to team
up, asking them to commit two days a week for at least two months. One engi-
neer, Fran, agrees; the other two want to advise but can’t commit a big block of
time. You agree to come back to the working group meeting every few weeks
with updates.

CREATING THE BIG PICTURE | 103

You check in with some other potential allies:

• The team lead on the food storage container project is inclined to see prob-
lems as easier to solve than they actually are, especially when it comes to
work assigned to the monolith maintenance team. “Why don’t they just
build isolated modules within the monolith?” she asks. But if there’s a
plan, she’s on board.

• The databases lead is wary that your project will drop unexpected work on
his team. (It’s justifiable: there’s history.) You promise to keep him in the
loop and let him review plans early on.

• The staff engineer who wrote the original sock matching code is very ten-
ured and very influential. If she’s convinced, a lot of other people will be
too. She has some ideas and wants to be an early reviewer, too.

Scope

Your core group—you, Geneva, and Fran—talk about what you want to do and
what might be successful. Fran is eager to create a technical vision for how all of
your architecture evolves, but it’s not the right choice for your situation: you
don’t have that scope of influence and neither does your sponsor. Also, a project
of that scope couldn’t be ready in time for the food storage launch.

What about a vision for the core monolith architecture? That would clarify
where you’re all going, but teams would still be divided on how to get there. You
decide you need a broad architectural plan for the monolith and a strategy for
how to get there that explicitly includes the food storage launch. You’ll aim to
describe one year’s work and stay at a high level. You commit to making occa-
sional lower-level technical decisions, but only when the decision doesn’t have an
owner: you’ll leave most of the implementation details to the teams that will do
the work. And your strategy has to be official: it can’t be just a plan; it has to be
the organization’s chosen plan or you won’t consider the project a success.

Once you’re all on the same page, you write down what you’re going to do:
“Create a high-level one-year technical strategy for enabling the food storage
launch while evolving our core monolith architecture.” It’s a little vague, but it’s a
start!

You talk more about the scope and the problems, collecting links to the pre-
vious efforts and the working group’s notes, and getting yourselves (and your
shared vocabulary) aligned. Your document is rough and not something you’d

104 | THE STAFF ENGINEER’S PATH

share outside the core group, but it keeps your ideas in one place and lets you all
add extra thoughts as they come to you.

Once you have an elevator pitch for what you’re aiming to do, you check in
with Jesse, your sponsor. He’s on board with the scope and the kind of document
you’re creating. His suggestion for making your plan official is to add an organi-
zational OKR for it, with your name as the directly responsible individual (DRI).
That’s a little intimidating, but it will certainly give you the official endorsement
you were hoping for. He offers to make sure Jody and the other directors are
comfortable with it, and to get the OKR added.

You create a discussion channel for the effort, announce it in other channels
that are likely to have interested parties, and share notes about your scope and
what prior art you’re drawing from. You highlight that you want to talk with peo-
ple who have opinions, and are still welcoming collaborators who have at least
two days a week to spend on it. There are a lot of the former—and none of the
latter. You start listing people to talk with and set out to write your strategy.

THE WRITING

Before you jump into solutions, you want to be really clear about what problems
you’re solving. Your initial scope of “Create a high-level one-year technical strat-
egy for enabling the food storage launch while evolving our core monolith archi-
tecture” needs more clarity, but you don’t want to jump to solutioning either.
You need to diagnose the situation and describe exactly what’s going on.

Diagnosis

There are so many facts that you could consider:

• There’s an immediate product need to support food storage containers,
and there are indications that product lines will expand more in future.

• The team running the monolith is getting paged too much: that’s not sus-
tainable and needs to change.

• Your matching algorithm is a little slow and could have a higher hit rate.

• Your systems are not currently handling spikes in traffic.

• Users are unhappy with your availability.

• The login system is old and has a lot of technical debt.

• Deploying new code is slow and frustrating.

• External users depend on APIs you wish you could change.

CREATING THE BIG PICTURE | 105

12 If dropping some of this celebrity traffic was considered to be bad PR or a missed opportunity, you might
prioritize it anyway. Context is everything.

• Adding new products to match requires major logic changes in several
core components.

• Many developers just don’t like working in the monolith.

And that’s not even the entire list! You set out to select the facts that matter
most and tell a much simpler story. Your group spends some time brainstorming
about what’s important, what’s not working, and what’s great as it is. You imag-
ine your future selves looking at the same codebase with twice as many engi-
neers and another five products. If those products were implemented as edge
cases too, navigating the business logic for each feature would become horrific,
and changing anything in that scenario would be complicated and fraught.
Builds would be slower and deploys would fail more often. More celebrity users
would mean more outages. If you take no action, this is the future. You’d better
take some action!

Although you’ve got lots of ideas after your brainstorming session, you don’t
want to get too committed to them just yet. Instead, you go chat with some mem-
bers of your product teams, as well as engineering leaders and practitioners, aim-
ing to understand what’s important to them. You learn some new information:

• While you’d speculated that traffic spikes from celebrity endorsements
might be causing the decrease in availability, outages caused by overloads
are actually uncommon and brief: just a few minutes of downtime per
month. While you should certainly improve here, these outages are not the
most important contributor to your poor availability.12 It turns out that the
real damage is being caused by unremarkable code bugs, and by the fact
that it takes three hours to deploy a fix. Previous attempts to improve relia-
bility have centered on adding more testing to your release path—but this
actually slowed deploy times and lengthened outages.

• Many engineering teams complain about working in the monolith, but the
thing they actually hate is releasing code. A huge percentage of changes
have unexpected behavior. It’s hard to be sure that your change isn’t break-
ing someone else, and getting a fix out takes half a day. Teams are twitchy
from responding to outages.

106 | THE STAFF ENGINEER’S PATH

• The billing and personalization subsystems are by far the most contested
parts of the codebase. Most major feature changes come with a corre-
sponding change in one or both of those pieces of functionality, and their
logic is so complex that it’s easy to have unexpected side effects while mak-
ing even simple changes.

You learn a lot more, too: everyone you talk to has a different topic they want
to tell you about. But the interviews build up a pattern and let you see what’s
going on. You choose the most important subset of the facts and tell a much sim-
pler story.

Here’s your diagnosis:
Every new feature change needs complex logic changes in a set of shared compo-

nents. Modifying these components is slow and difficult. Unexpected interactions mean
that teams are constantly disrupting each other’s work and causing long outages. Every
new type of matching item will increase the number of points of coupling inside these
shared components and make the problem worse. Our systems need to be able to handle
more matching components and more teams adding them without development grind-
ing to a halt.

Choosing your focus can be one of the most painful parts of writing a strat-
egy. In this case, the unversioned APIs are still a problem, the unpleasant login
code will become a problem eventually, and improving the match functionality is
a real opportunity that you’re not going to try for right now. Those problems and
opportunities are real, but you’re making a hard decision and ignoring them for
now.

With the diagnosis, you check in with your sponsor, Jesse, and make sure he
agrees that you’re focusing in the right area. You show him the list of challenges
you’re not focusing on too, to make it clear that you see them but don’t think they
should come first. Jesse agrees.

Guiding policy

Now that you’ve got a clear sense of what’s happening, you can decide what to do
about it.

There’s a proposed guiding policy already on the table: some of your collea-
gues are pushing to completely break down the monolith. They say that the rear-
chitecture would make it easier to add new products, as well as reduce the
number of unintended breakages and the time to get a code fix built and
deployed when something’s broken. But teams would still need to make risky
changes to shared components. It would also mean that all of the teams would

CREATING THE BIG PICTURE | 107

begin running their own services, putting some of them on call for the first time
in their lives. Finally, a change like that would also take at least three years, with
no solution for shipping products in the meantime. So, while “let’s run microser-
vices instead” might be the perfect solution for a company with different con-
straints, it doesn’t acknowledge the current situation.

Instead, you look at the places where a small amount of work can have an
outsize impact. An obvious point of leverage is the two key shared components
where integration slows teams: billing and personalization. If those two were
easy to add to, instead of having hardcoded logic for each product, other teams
could safely add new kinds of matchable items. There would be fewer outages,
freeing up teams to spend their time on feature work and improving the system
further. It’s a virtuous cycle.

Here’s your guiding policy:
The billing and personalization systems should be easy and safe to integrate with.
You write up some notes about the guiding policies you didn’t choose, too.

You describe the reasons you considered microservices, and the advantages that
path would bring, but explain why they wouldn’t solve your problems.

Actions

You set out to outline the actions your group will need to take to navigate the
challenges and carry out your guiding policy.

It’s important that your actions are realistic, so you check in with the billing
and personalization teams and leadership and confirm that they’re on board with
your direction. The billing team already had some backlog work around offering
a menu of billing functionality that other teams could choose by setting configu-
ration options. The personalization folks had toyed with the idea of a plug-in
architecture with stable core functionality and isolated logic for each type of
matchable item. Teams adding new items would only have to modify their own
plug-in component. Both of these changes would make the shared components
more modular and enable self-service access to them, and the teams would be
happy for a reason to spend time on them.

There’s a bootstrapping problem, though: these are big, risky changes. Refac-
toring these core components is likely to cause many outages, so the teams have
not prioritized the work. You suggest adding the ability to release changes behind
feature flags, so a regression can be a quick switch back, rather than another
deploy. Safer deploys would reduce the cost and risk of the work.

108 | THE STAFF ENGINEER’S PATH

https://oreil.ly/ErwHv

The isolation work won’t happen overnight, and the food storage team will
need integrations with both these components in the meantime. The personali-
zation and billing teams are willing to treat food storage as a pilot customer and
optimize for making them successful, including writing the first version of their
integrations in their existing systems and migrating them to the self-service
model when it’s available. But those teams can’t take on both isolation and inte-
gration work at once with their current staffing. Jesse agrees to donate some of
the headcount that had been allocated to the food storage project and let both
those teams grow.

Here are your actions:

• Add a feature flagging system that allows staged rollouts and quick
rollbacks.

• Add two engineers to the payment team and one to the personalization
team.

• Modify the billing and personalization subsystems to allow easy, safe, self-
service additions of new matchable items.

• Have the billing and personalization teams onboard the food storage prod-
uct into their systems, then migrate them to be pilot customers of the new
self-service approach.

These actions are high-level and the teams involved have autonomy to design
solutions and make a lot of decisions. But this approach gives them a direction
and some concrete next steps. There are many, many other suggestions for
actions: everyone you talk to has a laundry list of the work they think should hap-
pen to make the monolith healthier. But your guiding policy lets you focus your
efforts and keep your list short.

You nominate Fran as the primary author to write up the plan, with you and
Geneva making many suggested edits. The document is honest about the trade-
offs of your plan as well as the alternatives you considered and why you didn’t
choose them.

After you’ve aligned with your sponsor (he suggests some wording changes
but is overall enthusiastic), you road test your plan by sharing the first draft with
a few of your allies. Some leave comments. You interview others in person and
shake out some concerns.

CREATING THE BIG PICTURE | 109

Your story becomes a little tighter every time you tell it. You share the docu-
ment with progressively broader groups and start to present about it at some
meetings.

THE LAUNCH

Let’s be honest: your plan is not universally beloved. Some of your colleagues are
underwhelmed (and, perhaps, a little angry): your document isn’t more “vision-
ary” than any of the ideas they had; it’s a little boring! Some insist that this prob-
lem didn’t need a strategy; you just needed to “just decide” what to do, and this
path was the obvious decision.

Other vocal factions disagree that your path is obvious: they think it’s just
wrong. One group is still arguing for moving everything to microservices.
Another wants more focus on handling load spikes. And while the food storage
container team can build some of their functionality as a microservice, they’ll still
be developing heavily inside the monolith—some of them are unhappy about
that. However, since you took the time to document the known disadvantages
and the alternatives you considered, none of this is news. The grumbling doesn’t
change the plan.

Happily, the positive voices are louder. Most people are energized by having
a single, official, agreed-upon direction. You have particularly strong buy-in from
allies who were along on the journey from the start. Your engineering-wide OKR
has raised your visibility, and your sponsor and his peers are aligned with the
work and willing to staff it. Your plan will take some load off the monolith main-
tenance team without needing a huge commitment from them, so Jody unexpect-
edly offers some of their help: they’ll provide the feature flag system.

You stay with the project for the next year, working directly on the billing
modularization project and acting as an adviser for the personalization work.
Immediately after the food storage team celebrates a successful launch, the prod-
uct team announces a new effort to match missing board game pieces. Your
work means that the board games team will be able to use the new isolated func-
tionality and just start building. With stable systems, the monolith maintenance
team is no longer reacting constantly: they’ve begun to work on improving the
developer experience and making the systems more resilient to load spikes.

By focusing your efforts, you removed an impediment for growth, and a bar-
rier that was slowing everyone down. And you’re ready for another project.

Onward to Part II of this book, Execution.

110 | THE STAFF ENGINEER’S PATH

To Recap

• A technical vision describes a future state. A technical strategy describes a
plan of action.

• A document like this is usually a group effort. Although the core group
creating it will usually be small, you’ll also want information, opinions,
and general goodwill from a wider group.

• Have a plan up front for how to make the document become real. That
usually means having an executive as a sponsor.

• Be deliberate about agreeing on a document type and a scope for the work.

• Writing the document will involve many iterations of talking to other peo-
ple, refining your ideas, making decisions, writing, and realigning. It will
take time.

• Your vision or strategy is only as good as the story you can tell about it.

CREATING THE BIG PICTURE | 111

Execution

PART | II

1 OK, not that quickly. It’s really difficult. But you eventually learn.

Finite Time

When I was new to the industry, I used to wonder why my senior colleagues
seemed so wary of committing to things. I would demonstrate that something
was a problem and, inexplicably, my boss and the senior engineers around me
would not drop everything and go solve that problem. Why didn’t they care?

Now that I’m the senior colleague, I get it. As a senior person, you can see a
host of problems: architectures that won’t scale, processes that waste everyone’s
time, missed opportunities. When someone points out one more, you add it to
the list.

The good news is that you’re unlikely to run out of work. The bad news,
though? You can’t do it all. While you might like to jump on every problem, you
quickly learn that doing that is just not sustainable.1 You have to make peace with
walking past things that are broken or suboptimal (or just really annoying) and
taking no action.

Doing All the Things

In this chapter, we’ll talk about choosing what to do. As a staff engineer, you’ll
have choices to make every day: whether you should join an incident response
call, how you’ll respond to a request for mentorship, whether to take on a particu-
lar side project. Not everything can be your problem. So what should be?

We’ve already looked at opportunity cost and only taking on work that’s
important for the company, but in this chapter I want to add an extra layer:
what’s important for you. Choosing projects that support your growth, reputa-
tion, and happiness can feel a little selfish in the short term, but your needs are
important, and you’re the person with the most incentive to watch out for them.

115

| 4

2 In this chapter I’m going to use the word project very loosely, to mean any initiative or standalone task,
from answering a colleague’s question to a huge cross-organizational effort that’s intended to last for
years.

Your time is the most obvious finite resource: there are exactly 168 hours in
every week, and that’s what you get for the rest of your life. We’ll start there, then
look at five other resources that you need to manage: energy, quality of life, credi-
bility, social capital, and skills. These five will carry different weights depending
on the stage of your career, your recent successes, and what else is going on in
your life. We’ll look at how new projects can affect them and how you can delib-
erately choose a project engagement “shape” that makes sense for you.

To conclude the chapter, I’ll work through some examples of the kinds of
work that you might consider starting, weighing up their value to the company
and to you. We’ll look at ways you can amplify the positives, decrease the nega-
tives, or just say no and decide not to do them.

There’s infinite work. There’s exactly one of you. Let’s start by looking at
your week.

Time

Everything you commit to has an opportunity cost. By choosing to do one thing,
you’re implicitly choosing not to do another. If you use five minutes between
meetings to fix a dead link in your documentation, you’re choosing not to reply to
an email or get a glass of water just then. If you agree to spend the next two years
on this big impactful project, you aren’t available for that one.2 No matter what
the scale, the decision has a cost.

FINITE TIME

I’m inclined to be optimistic about my time. Too optimistic. There’s always
important, interesting work available—and my default is to say, “I’ll do that. I’ll
fit it in somehow.” I’ve had to work to be aware of this tendency and to remem-
ber that I have finite time.

It’s an odd default that work calendars tend to only show meetings. If you’re
trying to do focused work, your planned schedule only shows the interruptions to
that work, not the work itself. Executive coach Fabianna Tassini of Confidantist
gave me the best advice for managing my workload: put nonmeetings in the calen-
dar too. And I don’t just mean big blocks of “make time” for other people to

116 | THE STAFF ENGINEER’S PATH

3 As I write this, my calendar includes making slides for an upcoming all-hands meeting, reading a design
that we’re going to discuss next Monday, catching up on a long and nuanced Slack thread, and texting the
guy who’s supposed to come stop my roof from leaking. In the past I might have squeezed these tasks in
around the meetings, but all four of them are more important than most of the meetings I have this week.

apologetically schedule over; I mean specific, deliberate items.3 It’s a powerful
way of visualizing what’s going to get done and when. See Figure 4-1 for an
example.

Figure 4-1. A day in the life. The calendar shows both meetings and focus work.

Having my work in my calendar means I can see whether I have time for a
side quest. I love side quests, so it’s helpful for me to be confronted with the

FINITE TIME | 117

reality of how I’ve planned my time and to ask, “If I start this work, what am I
not doing instead?” When someone asks me to review their 20-page document, I
can honestly tell them when (or whether) I’ll have time. If it’s more important
than something I’ve already scheduled, I can move that other thing and make
space. If I find that I’ve rescheduled the same piece of work multiple times, I’m
getting an indication of how important it is. Am I avoiding this thing? Might it
actually not…matter? Maybe I can stop trying to do it.

Calendars are great for days or weeks, but if we’re looking longer term, we
need a bigger picture. Figure 4-2 shows a sketch (I’ll call it a time graph) of a
month or a quarter before any projects go into it. I’ve blocked off a fraction of the
time for the kind of activity that is just the background noise of working in a cor-
porate environment: all-hands meetings, performance reviews, and so on.
Depending on the enterprise, this will be a bigger or smaller chunk, but most
likely some amount of your time is already spoken for.

Figure 4-2. Visualizing your finite time.

The rest of that time graph shows the hours you have available for project
work, long-term planning, reviewing code and documents, building relation-
ships, keeping up to date with what’s happening in the company and the indus-
try, mentoring, coaching, nudging projects in the right direction, and learning
new technologies you’ll be expected to have an opinion on. And having lunch.
Every time you take on something new, you’re adding a block to that graph.
Maybe it’s a huge block. Maybe it’s a tiny dot. Either way, it’s taking up space.

118 | THE STAFF ENGINEER’S PATH

HOW BUSY DO YOU LIKE TO BE?

Leadership work can be unpredictable. A crisis, outage, or launch can cause a
load spike. If a project needs more help than you predicted, you might find your-
self oversubscribed. So, when you’re filling your schedule, think about how vola-
tile your incoming workload might be.

If you allocate 100% of your time and something unexpected happens, your
choices are to drop something or run beyond capacity. If a lot of your tasks aren’t
time-sensitive, dropping things might be easy. But if you fill your schedule with
only important things, then when you hit your limit, by definition you’re drop-
ping something important. If you decide not to drop anything, then work life will
inevitably spill into other areas of your life, causing stress and exhaustion.

Know how many hours you want to work on an average week, how many
you’re comfortable spiking to, and at what point you’ll stop being able to handle
the load and fall over. I know people who run like the “A” person shown in
Figure 4-3 and are completely unruffled when a crisis or an opportunity means
they want to put in a few extra hours. I know others who work like person C,
always right at their maximum capacity and stressed out all of the time. Try to
leave at least a little buffer space if you can.

Figure 4-3. How full is your work schedule? If something extra happens, can you handle it
without melting down?

PROJECTQUEUE.POP()?

You’ve got a locator map to give you perspective about what’s important and a
treasure map to remember what you’re trying to achieve. Using those, you should
be able to evaluate any project’s importance. In theory, then, should you be able

FINITE TIME | 119

to sort the available projects, like in Figure 4-4, and have each engineer continu-
ally take the next item from the top of a priority queue?

Figure 4-4. A list of work sorted by priority. If a five-minute introduction is backed up behind all
of those projects, those people aren’t going to meet for a while.

I think we can all see that that would be a little silly. This list mixes big and
small work, and some engineers will be a better fit for some projects. There will
always be a balance between choosing the strictly most important next thing and
choosing the work that’s right for you.

So this next section will be about how to evaluate how well a project fits with
your needs. Note that this section will be a little selfish! You shouldn’t use these
rubrics in isolation: if you’re looking at something you might want to do, I’ll
assume you’ve already thought about whether the project is important, useful,
timely, achievable work that fits with your organization’s needs and culture.

But you are not an interchangeable cog in this organizational machine, and
taking care of your needs is compatible with being a team player. In fact, if you
look for ways that your projects can keep you healthy and happy and building
your skills, you’re going to do better work—and it will be easier for the company
to retain you. Everyone wins. So let’s talk about your needs.

Resource Constraints

If you’ve ever played the person-simulation video game The Sims, you’ll remem-
ber that each little simulated person (a Sim!) has a dashboard (see Figure 4-5)
showing their levels of comfort, energy, social life, etc. The needs bars increase
or decrease in various situations, and a big part of playing the game is keeping
your Sim in good shape, giving them activities to increase their level of “fun,”
giving them enough sleep to maintain “energy,” and so on. If one of the needs is

120 | THE STAFF ENGINEER’S PATH

4 If you are a sophisticated AI, of course you’re still welcome here. Thank you for choosing this book.

5 These categories are far from comprehensive, but they’re a useful model for thinking about projects.
What else would you put on your dashboard?

really in the red, your Sim gets into a terrible mood, and some activities just
aren’t available to them, even activities they’d benefit from.

Figure 4-5. Needs panel from The Sims 4, copyright EA Games (source: image from https://
www.ign.com).

YOUR DASHBOARD

OK, you’re probably not simulated. You’re probably a real human.4 But still, can
you imagine a little dashboard for yourself (Figure 4-6), showing your current
levels of various needs? Imagine it includes five resources: energy, credibility,
quality of life, skills, and social capital.5

Figure 4-6. A needs panel for taking on projects.

Let’s examine each of these needs and what increases and decreases them.

FINITE TIME | 121

https://www.ign.com
https://www.ign.com

6 At the time of writing, we’re entering year three of Covid and I don’t know anyone who’s at maximum
energy.

Energy

In theory, if you have a free hour, you can choose to spend it in any way you
want. In practice, it will depend on how much energy you have. It’s easy to run
out of what in my family we call smartbrain: the energy to stay focused on a piece
of work and do something useful with it. Once the smartbrain is gone, it’s a
struggle to do anything useful. At the end of a long day of meetings, I sometimes
have a free hour that I could use for reading documents, but my brain is mush: I
can parse the words, but there’s no way I’ll retain the information or notice any
unspoken nuances. I’ll have to spend five times as much willpower to stay on
that tab and not drift into reading Twitter. And if I try to write, I won’t be able to
put thoughts together: even replying to an email becomes an insurmountable
challenge. There’s a barrier to entry: you must have this much energy to be able to
start this task.

Different people are energized or exhausted by different things. I’m abso-
lutely wiped by one-on-one meetings, but I have friends who thrive on them. I
can code or write with no obvious internal limit once I’ve gotten started, but after
about an hour of reading documents or debugging, my brain starts shutting
down and my eyes glaze over. Understand what kinds of work are expensive for
you, and what kinds will leave you with some smartbrain at the end of the day.

Your energy will be affected by factors outside work. If you’ve got a baby
that’s not sleeping, you’re going to start the day with less energy in the tank. If
you’re moving to a new house, dealing with illness, or living through ongoing
stressful situations, those will take their toll on your energy too.6 Very few of us
can compartmentalize our energy: when you go to work, you’re still the same
you.

Quality of life

In tech, most of us are in the very privileged position of being able to do work we
enjoy and choose. The work can be hard, but it’s intellectually stimulating, it
tends to be well paid, and it’s usually not dangerous. We’re very lucky. But it’s
possible for this to be true and for the work you’re doing to still make you deeply
unhappy. Certainly not all of your quality of life will or should come from your
work; you may even stick with work you dislike because it’s a step toward some-
thing you want and you’re optimizing for future happiness. (See Chapter 9 for

122 | THE STAFF ENGINEER’S PATH

more about this.) But we spend a lot of our lives at work, and it’s reasonable to
want to feel good about it.

If you enjoy the kind of work you’re doing and the people you’re working
with, that will be a boost to your quality of life every day. If you’re bored or work-
ing with people who treat you badly, your job might chip away at your happiness
instead. Your quality of life will also be affected by other resources: if a project
eats up your energy, you might not be able to do other things you enjoy. If it
boosts your profile and makes people admire you, the recognition can feel good.
You’ll be affected by whether you believe in the journey you’re all taking: the
most interesting technology and enjoyable coworkers might not compensate for
feeling that you’re doing harm in the world. And, of course, money can have a
massive impact on your quality of life, and that of your family or dependents too.
As one person I spoke with said, “Working for a megacorp and getting the big-
gest bucks might not make me personally happy, but it would let me pay for my
mother’s elder care, and that might be something I weigh above personal
happiness.”

Credibility

As a staff engineer, it can be easy to drift up to higher-altitude problems and feel
less “in the trenches” with the technology. This is not inherently a bad thing:
there’s work available at all altitudes. But if you move entirely away from low-
level technical problems, other engineers might distrust your technical judgment
because they think of you as too disconnected. In some cases they might be right!
Your understanding of what’s possible and what’s good practice might get out of
date.

You can build credibility by solving hard problems, being visibly competent
(see Chapter 7), and consistently showing good technical judgment. When I
asked on Twitter what causes a loss of credibility, one of the big themes was
absolutism: if you’re a fan of some technology and advocate for it in every single
situation, people will stop believing you know what you’re talking about.

Credibility extends to your skills as a leader, too. If you’re polite (even to
annoying people), communicate clearly, and stay calm in stressful situations,
other people will trust you to be the adult in the room. If you are rude or highly
dramatic, send emails that are unreadable walls of jargon, or make all-hands
meetings wait while you ask a rambling question that only applies to you, it will

FINITE TIME | 123

https://oreil.ly/BzVVW

7 There’s a good chance these three people are some kind of cosmic construct present in every
organization simultaneously.

8 Note that we make assumptions about other people’s abilities, and implicit bias plays a part when we’re
deciding how credible someone is. If you get extra credibility for free because of your demographic, think
about whether you can use that freebie to boost other people who don’t.

9 If you’re an RPG player, you could think of credibility as WIS and social capital as CHA.

10 Read Jane Jacobs and Pierre Bourdieu if you’d like to know more.

have the opposite effect.7 You will build credibility as a professional every time
you take on a chaotic situation and make it easier for everyone else to under-
stand. You’ll lose credibility when you’re seen as contributing to the chaos, or
when a project goes badly and you don’t do a good job of navigating the failure.

Credibility is another resource where there’s often a bar to entry. You won’t
be offered a difficult project or opportunity unless someone believes you can suc-
ceed at it. And any change you propose will be more welcome if other people
believe you know what you’re talking about.8 As Carla Geisser says in her article
“Impact for the Impatient”, “the Giant Maybe Unsolvable Problem will be easier
after you’ve shown you can get things done.”

At staff+ levels, you’re often trying to find a balance between seeing the big
picture and accepting pragmatic local solutions. If other engineers see staff engi-
neers as working in an ivory tower and advocating for work that doesn’t feel val-
uable, it’s even more important to be aware of your “credibility score” and
establish that you know what you’re doing. But it’s a fine line: if you ignore the
big picture and business needs, you’ll lose credibility with your leadership.

Social capital

While credibility is whether others think you’re capable of doing whatever you’re
trying to do, social capital reflects whether they want to help you do it.9 The term
comes from sociology, where it refers to the connections between people.10 In
business terms, though, we usually look at it like this: if someone asks you to do
something inconvenient to help them, do you say yes? It probably depends on
how much they’re in your good books. Do they help you out a lot, or are they con-
tinuously asking you for favors and giving nothing in return? Did you end up
regretting the last time you helped them? Whether we talk about it or not, every-
one has a bank account of capital with each of the people they know. If someone
has built up credit with you, you’re more likely to do them a favor or give them
the benefit of the doubt. Social capital is a mix of trust, friendship, and that

124 | THE STAFF ENGINEER’S PATH

https://oreil.ly/aGbzy
https://oreil.ly/qOa1K
https://oreil.ly/MwJ5B

11 He actually said “Rien ne réussit comme le succès,” but it amounts to the same thing.

feeling of owing someone a favor, or of believing they’ll remember that they owe
you one.

Social capital builds up over time, and you’ll need more of it with some peo-
ple than others. In general, you’ll want to stay on good terms with the people in
your reporting chain and build a track record of helping them achieve their goals.
If there’s a business-critical problem and you refuse to help, or you take on an
important project and don’t complete it, you’ll burn goodwill. And if you always
ask for favors but never repay them, you’ll start to find it difficult to get people to
help you.

As you spend time with people, have good conversations, work together with
them, help them out, make social connections, and support each other, goodwill
and social capital will build on both sides. Completing projects will build capital
too. If you delivered the project that made the company successful last year or
unpicked the impossible architectural knot that was slowing everyone down,
you’ll have a lot more leeway the next time you’re asking for something. As Alex-
andre Dumas said, nothing succeeds like success.11

Once you have social capital banked, spend it deliberately. When your star is
high, you can often get away with chartering an initiative that other people don’t
really believe in, just on the strength of their faith in you (or their desire to keep
you happy). Invest your social capital wisely. If you waste your “one unreasonable
request” token, you won’t get it back.

Skills

The skills resource behaves a little differently from the others, because it’s always
slowly decreasing. That doesn’t mean you’re forgetting what you know (though
you will lose fluency with technologies or techniques that you don’t use for a long
time); it means that any technical skill set slowly becomes less relevant and even-
tually gets out of date. Our industry moves fast. If you take on projects that teach
you nothing (or at least nothing that’s relevant to the projects or roles you want),
you won’t keep up with the rate of decrease.

FINITE TIME | 125

As you work through your career, you’ll increase your skills bar in three
main ways.

The first is by deliberately setting out to learn something: you take a class,
buy a book, or hack on a toy project. While this kind of structured learning can
often happen at work, you may struggle to find time for it, and find it spilling
into your free time.

The second way is by working closely with someone who is really skilled.
Being the least skilled person on a team of superstars will teach you more than
being the best person on an otherwise mediocre team. When you work with great
people, it’s almost impossible to avoid becoming greater yourself.

The third way—and the most common, I think—is learning by doing. You
get better at what you spend time on. If there’s a skill you want to hone, the easi-
est way to practice it will be to take on projects that need that skill.

There’s often a bar to entry for projects and roles: you won’t have a chance to
take on the project unless you have the appropriate skills. So, depending on what
you work on, you might be increasing your relevant skills every day or watching
them slowly erode.

E + 2S + ...?

When you’re considering taking on a project, there’s more to the equation than
whether the work is important for your company. You need to pay attention to
your dashboard of needs too. When you look at how you fill your time graph, pay
attention to what any new project, task, or initiative will do for each of your
resources: your energy, quality of life, credibility, social capital, and skills. (See
Figure 4-7 for an example.)

Unfortunately, I can’t give you a formula to plug numbers into: at different
times you’ll optimize for different resources, depending on your current levels of
each one and what you’re hoping to do. Some projects will be out of reach unless
you have a minimum level of some of these resources. Some life goals will too.

126 | THE STAFF ENGINEER’S PATH

Figure 4-7. Comparing projects based on their effect on each resource.

Not every project and task you take on has to be ideal, or even good for you.
Sometimes you’ll choose a project that’s terrible on one axis because it’s a good
choice for some other reason. Maybe you take a stint of working longer hours
than you would prefer because helping your team get through a crisis is impor-
tant to you. Or maybe you work on the project that’s most important to your
boss, with the understanding that you’re going to take time afterward to deep
dive on an idea you’ve had. Sometimes a project will even be objectively terrible
for you and you’ll have some reason to do it anyway. But over the long run, you
need to make sure your needs are being met.

BIN PACKING

Since projects can take a lot of different shapes and sizes, filling your time effi-
ciently isn’t easy. Figure 4-8 shows how complicated the decision can be. Adding
any of these blocks might mean that another, more important block can’t fit. And
of course you have the added complexity of keeping all of the resources in
good shape.

FINITE TIME | 127

12 I’m aware of the irony of writing this after clearly overthinking it for a chapter.

Figure 4-8. Choosing projects with your needs in mind is a difficult bin-packing problem.

It’s a multidimensional bin-packing problem. This is a famously difficult
thing to optimize, so don’t entirely overthink it, especially when the task in ques-
tion will only take an hour or two.12 Any given project will never be the be-all and
end-all of your dashboard scores. But the bigger the project, the longer you
should spend thinking about whether it’s a good fit.

Choosing Projects

New projects and tasks will become available every day. If you always say yes,
you’re unlikely to get anything completely finished. If you never say yes, you’ll
miss opportunities that would have been good for you, and you’ll look like a
slacker. You can fit a lot of small tasks into a day, and you usually have more than
one project on your plate at a time. But how many is too many? How do
you decide?

128 | THE STAFF ENGINEER’S PATH

https://oreil.ly/FOpGv

13 OK, I talked in Chapter 2 about organizations that have crystallized, where asking for a good project
before your turn will be frowned upon. If you’re in one of those orgs, make up your own mind about
whether this is terrible advice. I’m also conscious here that this dynamic will be influenced by culture,
gender roles, and other factors. Alex Eichler’s Atlantic piece about ask versus guess cultures is a good
read. All that said, unless it really feels impossible, register your interest in any project you want. Both you
and the person looking for a lead will lose out if they don’t realize that you’re interested in it.

EVALUATING A PROJECT

Engaging with a project can take lots of shapes. But it’s easier to plan and evalu-
ate your work if you’re clear about what you’re signing on for.

Let’s look at some places projects come from, and some of their characteris-
tics.

You’re invited to join

A project needs a lead or another contributor, and someone asks you. The project
is already underway, so it may already have momentum, and you probably won’t
need to convince your organization to care about it. And it feels good to be
sought out! But the project might not be what you think is most important, or the
kind of work you’d enjoy doing right now, and the fact that someone thinks you’d
be a good fit for it might mean that it’s very similar to work you’ve done before,
and not an opportunity for growth.

You ask to join

If there’s a project you think would be a great growth opportunity, teach you
skills you want, let you work with people you enjoy, or just be really fun, you can
go ask to join it. For a lot of folks, asking is so obvious that this recommendation
doesn’t feel worth saying. Some of us, though, prefer to hint at our availability
and wait to be invited. If you’ve ever done that, this public service announcement
is for you: even if it’s obvious that you’re the best fit, don’t wait for someone else
to notice. Go ask for the project you want.13 Everyone will be happier and you’ll
increase your chances of actually getting it.

You have an idea

Sometimes opportunities for new projects jump out at you. Working on your
own initiative likely means you’ll need to find the words and narrative to con-
vince other people to care, especially if you want them to work with you. It can be
frustrating to find yourself mired in navigating the organizational structures to
create a new project, get headcount, justify the business case, and show results,

FINITE TIME | 129

https://oreil.ly/JVH8d

when you just want to get into designing or coding. But once it’s underway, you
get to lead a project the way you want it to be led and maybe have a huge impact.

The fire alarm goes off

There’s a critically late project, a huge performance regression, or a scary inci-
dent—and you could save the day. Once again, it feels nice to be needed! And it
can be oddly relaxing to join in on a crisis: the goals are usually very clear and
there’s a bias toward action rather than consensus and planning. But it’s an
abrupt transition.

If there’s a sudden crisis that calls for all hands on deck (or you on deck), you
might be abruptly doing something else for a while, then returning to your regu-
lar project schedule (as in Figure 4-9). It’s a major context switch. It can be a bit
jarring, and afterward it might take you some time to get back on track with
whatever you were doing before. But helping out is often the right thing to do.

Remember, though, that if you do too much crisis response, it can be hard to
find opportunities for growth, or to have much of a narrative for your work other
than “I jumped on whatever the current fire was.”

Figure 4-9. Getting pulled away to help with a crisis.

You’re claiming a problem

After the fifth time you’re slowed down by a clunky API or some wodge of techni-
cal debt, you might find it hard to not just go take care of it. If you ranked all
available work, you might be hard-pressed to claim that this fix is the highest on
the list, but it’s bugging you and you don’t want to ignore it any longer. Time for a
side quest (see Figure 4-10) to fix it!

130 | THE STAFF ENGINEER’S PATH

Figure 4-10. Side quests take time away from your intended work.

When you’re blocked on bigger work, solving small, easy problems can be a
great way to build up momentum again. You get to fix the problems in front of
you, and probably get a lot of kudos (and credibility and social capital!) from your
peers. It feels amazing. But too much of this kind of work can keep you away
from longer-term projects.

You’re invited to join a grassroots effort

A more nebulous invitation is to get involved with some grassroots initiative, say,
a working group to improve testing across the company. This sort of initiative is
not on anyone’s OKRs and probably not something the company is already inves-
ted in. Joining a group like this can be a way to work with interesting people and
have a huge impact, or it can be a tremendous waste of time. It can be hard to tell
which you’re heading into, so be wary. Working groups can be effective if there’s
organizational buy-in, a clear time commitment, exit criteria, and a process for
making decisions. But if it’s a big group of overallocated people who like to talk
but have no power to change the things that are bothering them, it’s a social
group and no work will occur.

FINITE TIME | 131

Someone needs to…

It could be action items at the end of a meeting, an unexpected request from
another team, or a problem that nobody anticipated: some work doesn’t belong to
anyone, and you should do your fair share. If it will involve horrible levels of poli-
ticking, cruft, or tedium, consider taking on more than your fair share: sometimes
being the most senior person around means that you should shield your less
experienced colleagues and take on the grungiest work. Volunteering can build
credibility and goodwill with your team, and while it’s often frustrating, there’s a
weird satisfaction in getting to the end of the work and knowing that you’re the
reason it’s no longer a mess. But just like with jumping on problems, watch out
for doing too much of it at the expense of other results people are expecting from
you.

You’re just meddling

As a staff engineer, you’ll likely have opinions on a bunch of things (as in
Figure 4-11) you haven’t been invited to help with. If you see a project that’s going
in a dangerous direction, or you have ideas about how to make it better, you
might nudge your way in and have some conversations. Meddling can be very
welcome, or very much the opposite. Make sure you’re not “lobbing a water bal-
loon”: getting involved long enough to cause chaos, then disengaging without
sticking around to experience the consequences of your changes.

Figure 4-11. Working on a lot of small, frequently changing things. It can be hard to have a
narrative for this kind of work.

132 | THE STAFF ENGINEER’S PATH

Other People Aren’t Necessarily Right

Some of us allow low-priority other-people work to preempt even the

most high-priority things we were planning to do. You might be one of

those people if you always drop your own work to help with even a minor

outage, or respond on Slack within seconds, no matter what else you

were doing.

Sometimes interruptions really are more important than what you

were intending to do. But be discerning. Remember that other people

have limited access to your resource dashboard. Unless you’re very

lucky, only you will be taking care of your own resources.

WHAT ARE YOU SIGNING ON FOR?

As you consider taking on a new project, task, mentoring arrangement, meeting,
etc., understand its shape and ask yourself what impact it will have on your time,
both now and later. Be clear with yourself about what you’re adding to your
schedule and sending to Future You. Some projects start small but hit an inflec-
tion point (such as project approval), then start needing much more time. Others
are time-intensive at the start and then trail off. If you know it’s going to get busy
later on (as in Figure 4-12), will you still be able to handle it?

Figure 4-12. Splitting your efforts between multiple projects. Project 1 ramps up over time.

FINITE TIME | 133

14 Budget another few hours if you’re a chronic volunteer.

15 OK, only mostly a joke.

Be cautious about how you estimate time. If you’re agreeing to a one-hour
meeting every week, for example, is that really an hour, or will you need to do
extra prep and come away with action items?14 If the meeting is in the middle of
an empty four-hour block, will you still be able to use the other three hours pro-
ductively?

A project that seems small can actually be a huge time commitment if you’re
going to stick with it for a long time. Consider the boundaries and scope of your
involvement. If you’re taking on ownership of a process, will you be able to hand
it off to a team later on? If you’re temporarily joining a project or helping out
with a crisis, but don’t intend to be on it long term, be clear that you’re joining
just for the beginning to disambiguate it or to help the lead get started. Exit crite-
ria are especially important for work that is risky or that you’re not sure you
should be doing at all. You can reduce that risk by including formal go/no-go or
retrospective points, or framing things explicitly as a timeboxed experiment.

Even small projects or tasks can affect your resources, and their effect can be
disproportionate. A single meeting can build your social capital and credibility
substantially or drain your energy and morale so that you can’t focus for the rest
of the day. Pairing with someone very skilled for an afternoon can sometimes
teach you more than you’d pick up in a week of learning on your own.

QUESTIONS TO ASK YOURSELF ABOUT PROJECTS

Here are a few more resource questions to think about.

Energy: How many things are you already doing?

I joke that I have enough energy to care about five things at once.15 If I choose to
care about a sixth, one of the previous five has to fall off the list. Otherwise, as the
number of balls in the air increases, I’m likely to accidentally drop one—and it
won’t be the least important one. I can usually care about some extra things for
the duration of a meeting, and maybe a brief action item or two afterward. But
after that’s done, the slot is going to quickly get filled up by the topics in the next
meeting. So when someone invites me to care about some new problem they
have, I have to decide whether I want to stop caring about something else.

If the new project is asking you to care about something new, do you have a
free slot for that? Remember that your capacity will be affected by what’s

134 | THE STAFF ENGINEER’S PATH

16 As the philosopher Ron Swanson tells us, it’s better to whole-ass one thing than half-ass two things.

happening in “real life” too, not just work. If you’re expecting some huge life
event, this is probably not the time to start a project that will need a ton of your
energy and attention. Every choice means there’s something else you can’t do,
and if you choose too many things, you end up diluting your impact on any one
of them. So you really do need to choose your battles.16

Warning

If you tend to let distractions pull your attention in lots of directions at once, try to

build the habit of pausing for a few seconds before reflexively volunteering or agree-

ing to do something.

Energy: Does this kind of work give or take energy?

What kind of work will this project involve? If it’s going to take a gazillion white-
board conversations to build up context and you find those draining, this project
is going to be more expensive for you. If you find it hard to focus for a long time
and you’re going to need to read hundreds of pages of backstory or a stack of
industry white papers, that kind of project will be harder for you.

Do any of the people you’ll work with leave you exhausted every time you talk
to them? If you’re considering a project and get tired just thinking about the kind
of work that’s involved, weigh that up when you’re deciding whether to start it.

Energy: Are you procrastinating?

If you’re low on energy, it can be almost impossible to push through and take the
next step on some huge, ambiguous, complex project. You might find yourself
picking up some low-priority work to fill the gap. That can be OK: the last hour of
the day after some draining meetings can be a great time to tidy your desk or
archive old mail. But some low-priority tasks can start out easy, then grow into
another complicated project that you’ll need energy to tackle.

In his blog post “The first rule of prioritization: No snacking”, Intercom
cofounder Des Traynor discusses the magnetic pull that low-effort, low-impact
work can have for engineering teams. He describes Hunter Walk, now a partner
at Homebrew, drawing a 2 x 2 graph to map impact against effort (see
Figure 4-13), and warns against the quadrant of low effort and low impact,
describing such work as “snacking.” Since this work tends to be quick and useful
(and feels good), it can be easy to justify doing a lot of it. But, as Traynor notes,

FINITE TIME | 135

https://oreil.ly/VEFBv
https://oreil.ly/x58O3

“It feels rewarding and can solve a short-term problem, but if you never eat any-
thing of substance you’ll suffer.”

Figure 4-13. Projects can be high or low impact, high or low effort. Be wary of spending too much
time in the low-impact, low-effort quadrant.

When you’re tired, snacking can feel easier than resting. Notice when you’re
doing busywork because you’re tired, and find a way to rest instead.

Energy: Is this fight worth it?

In her article “OPP (Other People’s Problems)”, Camille Fournier cautions about
the grinding frustration of trying to solve all of the unowned problems you see.
Even if it ends successfully, an organizational project can take longer and drain
more energy than you’d intended. As Fournier writes: “Take a moment to reflect
on whether it was worth the effort to you, and think about how many more
things like this you see at the company you’re in that you really want to change
just as much as that one. Think about what else you could be doing with that
extra energy.”

Quality of life: Do you enjoy this work?

Think about the kind of work that your project will need. In Chapter 1, I quoted
Yonatan Zunger’s observation that every project needs core technical skills,
project management, product management, and people management. Depend-
ing on who else is on your project, some of those categories may not be assigned
to anyone and, if you’re leading the project, you’ll be filling in the gaps. Will you
enjoy that kind of work, or will you resent it for not being the thing you actually
want to do?

136 | THE STAFF ENGINEER’S PATH

https://oreil.ly/YoE84

Here are some more points to consider:

• If you like your work to be intense and have high stakes, will the project
have enough excitement to keep you happy? Conversely, if you prefer
things to be a little more predictable, will it be too stressful?

• If you hate working alone, will you have people to collaborate with? If you
find people exhausting, will you need to be in a big group all day?

• If you like pair programming, will this project let you pair? If you hate pair
programming, will this force you to do it?

• Will you have to be on call? Do you like being on call?

• Will the project require travel? Do you want that?

• Will it provide opportunities for conference talks, writing articles, or other-
wise publicly sharing what you learn? Do you want those?

• Will you get to work with people who make you feel comfortable and safe?
Will you be able to relax and be yourself around your coworkers?

Quality of life: How do you feel about the project’s goals?

Will this work align with your values and make you feel fulfilled, or do you feel a
bit “off” about it? For some people, value-aligned work means making sure
you’re not doing something that hurts others. For others, your work needs to
actively help create a better world. What is your project aiming to do? In most
cases, changing projects inside a company will not change how much your work
aligns with your values, but sometimes you’ll be doing something you feel better
or worse about. Think about the positive or negative effects of your work on the
world, and weigh up how it affects your own personal satisfaction with your life.

Credibility: Does this project use your technical skills?

If you’ve been operating at a very high altitude for a while, you might want to get
into the trenches occasionally to show that you still know what you’re talking
about. Different projects will use and showcase different skills, and doing diffi-
cult things gives you more credibility. If you can implement something that three
other people have already failed at, or make it tractable for other people, that’s a
solid boost to your reputation—and if you later want to do something more
abstract, you’ll have less risk of being seen as living in an ivory tower.

FINITE TIME | 137

17 If you’re more senior than your manager and “reporting low” (see Chapter 1), managing up might also
mean coaching them and helping them grow into their role.

Credibility: Does this project show your leadership skills?

A new project can be an opportunity to show that you’re a leader through taking
responsibility for outcomes, communicating frequently and well, and giving the
right level of detail around what’s going well and what’s not and why. And of
course, you’ll build trust with your organization by actually succeeding at the
project. Evaluate new projects for what kinds of skills they’re going to let you
demonstrate and how succeeding will reflect on you. Also be aware of the risk of
failure: if you’re taking on an unwinnable battle, will you be respected for trying,
or will you be blamed?

Social capital: Is this the kind of work that your company and your manager
expects at your level?

In Chapter 1, we explored what you and your organization believe your job is.
You may want to optimize for the kind of work your manager considers appropri-
ate for your level (or for a level you’d like to get promoted to). If you’re some-
where a staff engineer isn’t considered a success unless they’re writing code (or
designing systems or leading big projects), make sure you’re doing those things.

In general, work that matters to the people in your reporting chain is work
that builds social capital. Lest this start to feel really Machiavellian, I want to reit-
erate that this is just one aspect of the project! I suspect we all know the kinds of
people who only optimize for looking good to leadership, and those aren’t people
we tend to respect. But do keep an eye on your current standing with the people
who influence your calibration, compensation, access to good projects, and
future promotions. Managing up includes understanding your boss’s priorities,
giving them the information they need, and solving the problems that are in their
way—in other words, helping them be successful.17 Their success gives them
social capital that they can spend to help you.

Social capital: Will this work be respected?

Your project can build—or lose—social capital with your peers depending on
how it aligns with their values. If you’re working on something that other people
consider to be an important fight, or just a very cool project, that will build good-
will and they’ll be more inclined to help you. If they think you’re doing some-
thing pointless, misguided, or even evil, they’re going to think less of you, and

138 | THE STAFF ENGINEER’S PATH

https://oreil.ly/AILvi

18 As we’ll discuss in Chapter 8, it’s really easy to accidentally find yourself only sponsoring people like your-
self. Watch out for implicit bias here.

you’ll struggle to get their assistance or trust. I’ve seen many disapproving back-
channel conversations along the lines of “I’m really surprised to see [person]
work for [distasteful project or company].” If that person is well regarded, they
might be trusting their endorsement to add a shine to a shady-looking project.
Sometimes they’re right, but attaching their reputation to the project is a risky
move.

Social capital: Are you squandering the capital you’ve built?

Here’s a cautionary tale. I once worked on a team that hired a new senior-level
engineer, someone who came with big credentials and a lot of respect. It was
widely acknowledged that he’d been the only reason his previous project had suc-
ceeded, and we had high hopes for what he would do. And he started great! As
the most senior engineer on the team, he was immediately productive, solving
big problems and raising the standards for everyone else. We were so glad he’d
joined—until we weren’t.

After just a few weeks on the team, he noticed a system that wasn’t following
a best practice. He wasn’t wrong—it was a mess—but it wasn’t a system we
touched often, and it didn’t seem worth fixing. Our new colleague advocated for
the change anyway. His reputation and his enthusiasm swayed everyone else,
and nobody objected when he took two new grad engineers away from their
projects and dove headfirst into this one. Bad call. After several weeks, it became
clear that this project would take a few quarters—and cost 10 times what he’d
anticipated. But the senior engineer kept pushing ahead, insisting that it would
be worth it. It was a couple of months before he accepted reality and the project
was abandoned. The new grads returned to their previous priorities, and every-
thing went back to normal—except that our new hire was no longer quite so
esteemed. He’d squandered his social capital on a fight he didn’t particularly care
about. What a waste.

Notice when you’re in danger of wasting your social capital. And be deliber-
ate when you spend it to help other people, such as asking your company to
interview a friend who has a résumé they would normally pass up. This form of
support, sometimes called sponsorship, costs you something: if the person ends
up failing, being a jerk, or otherwise being a regrettable choice, it will reflect on
your judgment. Make sure the person you’re sponsoring is worth it.18 Be aware of

FINITE TIME | 139

this dynamic too when you’re looking to borrow capital from someone else—for
example, when you want executive sponsorship for a technical vision or strategy.
If you’re borrowing someone else’s authority and reputation to move a project
along, don’t squander it. They might not sponsor your ideas a second time.

Skills: Will this project teach you something you want to learn?

Tech changes fast, and your skills will become out of date over time unless you’re
deliberate about keeping up. A new project can be a great opportunity to practice
a skill you want to get better at. This could be for a role you’re aspiring to, aspects
of your current role, or just topics you’d enjoy knowing more about.

One way to think of this: what stories do you want to be able to tell on your
future résumé? Do you want to show that you can take on a big, ambiguous,
messy project and make it happen? Do you want an example of debugging some-
thing difficult, driving a major culture change, or turning junior engineers into
senior engineers? If so, look for projects that give you opportunities to practice
those skills.

Skills: Will the people around you raise your game?

Some people make you better at your job without setting out to teach you any-
thing: they’re so competent that you build skills just by bathing in their aura. OK,
the reality is that you learn by watching the skill being executed well, but I’ve
definitely had colleagues who seemed to have a magical effect on their team. A
whole lot of Part III of this book is going to be about being one of those people.
But I recommend you try to find people like that for yourself too.

Even if you’re the most senior person in your group, you can still learn from
the people around you. People who do great work tend to elevate the skills even
of those more senior than them. And if you have a team where the new grads are
in awe of the skills of the seniors, but the seniors are just as much in awe of the
skills of the new grads, that’s a team where everyone makes everyone else better.

Working with someone who’s great at a skill you want can take you up a level
in a way that’s hard to find otherwise. This is why internships can be so valuable.
But the same phenomenon holds throughout our careers. As a friend said when
she was offered an opportunity to work with her company’s CTO: “I’ll get to learn
how CTOs talk to people.” So, when you’re choosing a project, look at whether
you’ll work with people you’ll learn something from, and people who will inspire
you to do your best work.

140 | THE STAFF ENGINEER’S PATH

https://en.wikipedia.org/wiki/Observational_learning

WHAT IF IT’S THE WRONG PROJECT?

After viewing a potential project through the lens of each of those questions,
you’ve probably got a good feeling for whether you should take it on. Maybe you
shouldn’t! It’s possible for a project to be important but not actually right for you.

If you’ve decided that a project isn’t a good fit for your current schedule and
needs, you have a few options. You can try to do the thing anyway and accept the
consequences: a popular choice, but not a long-term sustainable one. You can try
to compensate for the negatives by canceling other work to make space on your
time graph, or getting your needs met elsewhere. You can make the project into
an opportunity for someone else. You can reshape it so that it does fit. Or you can
just say no. Let’s look at each of those.

Do it anyway?

A popular approach for projects that don’t fit is to nonetheless try to make them
happen. It feels like the path of least resistance: you don’t have to say no, and
surely (you tell yourself) Future You will figure something out.

This decision can even be the right one in the short term: you might take one
for the team and get a vital project done, even if it’s terrible for your time, energy,
skills growth, etc. If you find yourself taking on work that undermines your
needs, though, make sure you understand why. Is this a temporary situation?
What are the exit criteria and when do you expect to get there? If the plan relies
on self-sacrifice, that’s not something you can or should enable long term.

If you’ve been doing projects that aren’t good for you and there’s no end in
sight, this is a good conversation to have with your manager. If you tell them
“This work is sapping my energy and spilling over into my family time” or “I
want to do something higher-profile because I’d like to get promoted” or even
“This project is just making me really unhappy,” they should listen. Hiring staff
engineers is difficult and expensive, and most good managers will have a little
alarm signal going off in their brains if a senior engineer is emoting unhappi-
ness with their work. That doesn’t mean the situation will change immediately,
but your manager should help you find a path over time to something more com-
patible. If you have been very clear about your needs and are still unable to make
a change, that might be a signal that you’re in the wrong team or the wrong com-
pany.

This realization does not necessarily reflect badly on anyone: you might have
become a big fish that needs to move to a bigger pond. I’ve seen this happen a lot
for teams working on systems or products with relatively simple needs or small

FINITE TIME | 141

19 If you’re using the trick of putting work in your calendar, it can feel very freeing to get to that “meeting”
and decide not to do it or even reschedule it. You’re not going to do it. It’s gone. I’m told that bullet jour-
naling is helpful for letting go of things, because every day you copy the things you still care about to the
next page. You can decide not to move something, and just…let it go.

scope: what the individual needs and what the team needs stop aligning. It feels
harsh to say “If you want to grow, it’s time to do something else,” but that’s often
the reality.

Compensate for the project

If a project is a good fit in some aspects but not in others, is there a way you can
compensate for it? For example, can you add a side project that gives you the
enjoyment, skills growth, or credibility that you’re not getting from your main
project? If the gap is that you just don’t have time and energy for a particular
project, can you make space? If you’re using the trick of putting your work into
your calendar, you get a nice visual representation of this. If you know something
will take ten hours and you’re having trouble scheduling time for it, you’ll proba-
bly need to move something else out of the way.

And if you’ve got projects taking up space in your brain that need more time
and attention than you can give, it’s OK to decide that you’re going to stop caring
about one of them. Maybe you’re mentally keeping several projects warm on the
back burner, hoping that someday you’ll have time to get to them. My colleague
Grace Vigeant gave me great advice once: sometimes you have to torch the back
burner.19 Accept that a task is not important enough to get back to—or hand it
over to another chef!

Let others lead

A project that isn’t a good fit for you right now might be an excellent opportunity
for someone else. Think about your coworkers’ energy, skills, quality of life, cred-
ibility, and social capital, and see if there’s someone else who will benefit from
the project. Author and engineering leader Michael Lopp says that a leader’s job
is to “aggressively delegate.” He says that there’s guaranteed to be work that
shows up on your plate on which you can “get an A” every single time, and if you
give it to someone else, they’re probably going to get a B. But, he argues, a B is a
pretty great outcome for their first time doing this kind of work: “You’re demon-
strating trust by giving them work that’s scary to them and that you know—and
they know—is beyond their means. ‘I know you can do this. I’m going to help

142 | THE STAFF ENGINEER’S PATH

https://oreil.ly/sVogl

you with this.’ That’s amazing.” The other person gets to learn. And maybe you
can coach them from a B to an A.

If you’re the most senior engineer in the group, make sure you’re not taking
all of the opportunities to be publicly competent. Do a gut check for whether
someone else needs the project more.

Resize the project

If the project doesn’t work for you in its current form, sometimes you can
reshape it into something that does. Maybe you can’t join the project full time,
but you can join for the first month to evaluate the direction for feasibility, or act
as a consultant to a different lead. If you don’t have free cycles to take on an
ongoing mentoring relationship, maybe you can meet once. If you aren’t avail-
able to review a proposed design, maybe you can recommend someone else. And
if you aren’t willing to let a certain problem become one of the things you’re
going to care about on an ongoing basis, can you care about it for the duration of
a meeting and offer advice on how you’d proceed?

If a project would be interesting to you with some modifications, it’s usually
worth talking about that. The worst they can say is no.

Just don’t do it

Of course, the final option is to just not do the thing. Oof, it’s easier said than
done! It can be hard to leave something broken, to notice a problem that you
know you could solve, and ignore it every day. Sometimes you have to, though.
Not all problems are your problem. Either you’ll get to it later, or someone else
will, or it will stay broken and that just gets to be OK.

It can be even harder to say no if someone has asked you for help, especially
if you really could have stretched and done the thing. But saying no is the price of
high-quality work: if you do too many things, you won’t be able to do them well.

It’s common to feel uncomfortable saying no, enough that there are a ton of
articles out there with scripts for how to do it. I like this one from indiatoday.in,
for example, which recommends “I wish there were two of me,” “Unfortunately,
now is not a good time,” and “Thank you so much for thinking of me, but I
can’t!” Or this excellent advice from the Ask a Manager blog:

FINITE TIME | 143

https://oreil.ly/RuzbG
https://oreil.ly/KbzSV

Pay attention to how people you admire say no. You might be wary of

pushing back on a request because you can’t imagine how to do it in a way

that doesn’t alienate people. Look at colleagues who seem to do it suc-

cessfully, and see if you can find language, tone, and other cues that you

can adopt for yourself.

Or just think back on the times you said yes and wished you hadn’t! Your
“no” is a gift to your future self. I’ve started tagging emails with an #isaidno label
in Gmail, an idea I got when Amy Nguyen tweeted about doing something simi-
lar. It feels so good when the deadline rolls around and I’m not on the hook.

EXAMPLES

Let’s end this chapter by looking at some examples, weighing up the costs and
benefits of each, and working through ways to reduce the cost and increase the
benefits. I’m going to suggest some outcomes, but of course you might make
different trade-offs.

Example: Speaking at the all-hands meeting

You’ve just shipped a project that’s been running for 18 months. It was a difficult
project, and you’ve been working flat-out for the last couple of months. It
shipped, it landed well with customers, and you’re feeling triumphant. Also tired.
You’re about to click Submit on the PTO form when you notice an email from
your VP. They’d like you to present about the project at the engineering all-hands
in two weeks. You’ll be back from vacation then, but it’ll mean creating a presen-
tation deck when you’d planned to be on a beach. What do you do?

Let’s weigh up this opportunity, illustrated in Figure 4-14. It’s great visibility,
and your VP is inviting you to do it. That’s a boost to credibility and social capital.
It’ll take time, though: you won’t want to turn up with a half-assed presentation,
so it’s going to eat into your vacation time, denting your quality of life. It’ll take a
lot of energy, and you’re very tired after the big project. What should you do?

144 | THE STAFF ENGINEER’S PATH

https://oreil.ly/6SR5Q
https://oreil.ly/6SR5Q

Figure 4-14. Extra social capital and credibility, at the cost of some quality of life and a lot of
energy you don’t have to spare.

The biggest question I’d ask you is whether this is a new opportunity for you.
If you’re used to presenting to groups this big, you’re not going to learn as much
or get as much benefit from this opportunity as if it’s your first time ever. Are
you coming from a deficit of social capital or credibility? Do you need this boost,
or does launching the project mean that you’re already well regarded?

Unless this is an amazing opportunity for you or you really need this particu-
lar win, I’d look at who else this could be an opportunity for. Was there someone
else on the project who did good work but hasn’t had as much glory from it, or
who will learn a lot by presenting? Make sure you pick someone who will put in
the work and do a good job. It doesn’t have to be as good a job as you would have
done, but if you spend social capital to recommend someone who shows up with
shoddy slides they created in 10 minutes, it will reflect badly on you.

If you decide that this is an opportunity you should take, it might be worth
trying to reshape this project. Can you make it a shorter presentation and lower
the effort? Can you copresent with someone and have them take some of the load
of the slides? Best of all, can you postpone to the following all-hands meeting? By
then, you’ll have more information about usage numbers for your feature.

Example: Joining an on-call rotation

Your company has an on-call rotation for incident commanders: the people who
step up to coordinate major incidents that are visible to users or cross multiple
teams. You haven’t been an incident commander before, and you like the idea:

FINITE TIME | 145

it’s an opportunity to work across teams in a very visible leadership role, as well
as get into some interesting technical problems in real time. Plus, you never
learn as much about your systems as you do when something is broken. It’s a
little scary, though, because if there’s a big outage, all eyes will be on you.
There’ll be a learning curve that will take time. And, of course, you’ll be on call
and can be paged out of hours. What do you do?

Figure 4-15 shows how your resources will change if you take on this role.
Since you haven’t been an incident commander before, this is a skill boost for a
very transferable skill. Being the responsible person during a major incident also
tends to increase credibility and social capital—assuming you do it well. But
doing it well will mean an investment of time. And being paged out of hours can
be rough on your energy.

I’d weigh this one up based on quality of life. How resilient you are feeling at
this stage of your life? If you’re feeling a bit fried, adding an occasional extra
wake-up could cost more than you should spend right now. If you’ve got a young
child or your mental health needs managing, then it might be the wrong time in
your life to build a skill that comes with interrupted sleep.

Figure 4-15. Joining an on-call rotation is a fairly small-time commitment most of the time, but
can be a huge energy drain.

On the other hand, if you’ve recently been working on high-level projects
with long feedback loops, it can be fun to do something where you can see your
impact immediately. As one manager friend says, “At the end of an incident,
coming down from the adrenaline, it’s really clear what I did today.” If the on-call

146 | THE STAFF ENGINEER’S PATH

rotation comes with extra compensation, is it enough to compensate for the neg-
atives? Do it if the idea of doing it makes you happy. Maybe sign up for six
months and then reconsider.

Example: The exciting project you wish you could do

You’ve been at a company for a few years and you’ve done a lot of work to mod-
ernize architecture and processes. As a result, you’re now the point of contact for
a lot of things. If there’s a question about how the company does testing,
onboarding, incident response, or production readiness, you’ll end up in a meet-
ing about it. You’ve got a long backlog of improvements you’d like to make to
these processes, including some that are underway.

There’s a new project coming along in an area you don’t know a lot about but
find really interesting. Given an empty calendar, you could learn the base tech-
nology, and you know you could lead the project and make it successful. But you
don’t have an empty calendar! You’re worried that your lack of time would put
the project at risk. But you’d love to do this work and you’d love to have done it
too. It’d make a great résumé line. What do you do?

Figure 4-16 describes the effect on your resources. It sounds like this is a
project that would make you happy and build skills that you want to have. It
might be a boost to credibility, too. But if you take it on and fail, that’ll look pretty
bad for you. And it is likely to take more time than you have available, so failure
is a real risk.

Figure 4-16. A huge and high-effort project that you’re excited to start.

FINITE TIME | 147

What should you do? It depends on whether you’re ready to make space and
torch the back burner. This is a good conversation to have with your manager, or
their manager: how important is it that someone keeps iterating on the existing
processes? Are you polishing something that’s pretty good already? If the work is
needed, is there someone you can hand it off to?

I think you should take the new project. Be careful about drifting back into
the process work, though. This is a time when putting nonmeetings in your cal-
endar will be crucial: if your calendar is defined by what other people put into it,
you’re not going to have time left over for your project. Block out the time you
need for the project first, and then let other people claim time from what’s left.

Example: I want to want to

Your manager has asked you to lead a project. It’s critical to the business, highly
visible, and the sort of thing you could do really well. It’s bigger than anything
you’ve done before, and your coworkers would be a dream team of people you’d
enjoy working with and learning from. There’s only one problem: you just don’t
want to. It’s frustrating, because on paper the project looks amazing for your
career, a good opportunity that you may regret passing up. You wish you wanted
to do it, but you just don’t. The project needs the kind of work that you’ve done a
lot but don’t enjoy, and you’re longing to do something else—something you’ll
do less well but that will make you want to come to work in the morning.
Figure 4-17 shows the situation. What do you do?

Figure 4-17. An amazing opportunity…but you just don’t want to.

148 | THE STAFF ENGINEER’S PATH

20 The available hours may even decrease. As Will Larson says in one of my favorite of his articles, “Work on
What Matters”, “Even for the most career-focused, your life will be filled by many things beyond work:
supporting your family, children, exercise, being a mentor and a mentee, hobbies, and so the list goes on.
This is the sign of a rich life, but one side-effect is that time to do your work will become increasingly
scarce as you get deeper into your career.”

If you feel that strongly negative about anything, pay attention to the feeling;
don’t rationalize it away. No matter how good the opportunity, taking it isn’t
mandatory.

Before you say no, consider whether there are ways you could reshape this
project to fit your needs better. Would it be more interesting to you to coach
someone else as lead, or join in a different role that’s still helpful for your man-
ager? Would you be interested in joining for a month to get the project moving?
It’s OK if you still don’t want to, but think through whether there’s a variant that
would work better. Finally, if you’re looking for a different kind of work, tell your
manager and other people in your network, so they’ll think of you when some-
thing new comes up.

DEFEND YOUR TIME

A few years ago, I was considering emailing a VP of engineering to ask for
advice. I’d briefly worked with her years earlier and I was sure she’d remember
me, but the problem I was trying to solve didn’t have anything to do with her or
her organization. She was just someone I knew who would have a helpful per-
spective. I cast around for less busy people I could ask, but nobody came to
mind. So I worried about it out loud with friends on a group chat: “I want to ask
her, but I know she’s busy. But it would really help. But I don’t want her to feel
under obligation to help me.” One friend gave me advice that I’m still using years
later: “Ask her. You don’t get to that level without knowing how to defend your
time.”

You won’t succeed unless you can defend your time. The number of
demands on it will increase and the number of available hours will stay the same,
so be deliberate about what you prioritize.20 And, when you choose a project,
make sure you have enough of the resources you’ll need to do a good job.

In the next chapter, we’re going to look at leading big projects.

FINITE TIME | 149

https://oreil.ly/0QW3K
https://oreil.ly/0QW3K

To Recap

• By the time you reach the staff+ level, you will be largely (but probably not
entirely) responsible for choosing your own work. This includes deciding
on the extent and duration of your involvement with any given project. You
can’t do everything, so you’ll need to choose your battles.

• You are responsible for choosing work that aligns with your life and career
needs as well as advancing your company’s goals.

• You are responsible for managing your energy.

• Some projects will make you happier than others, or improve your quality
of life more.

• Your social capital and peer credibility are “bank accounts” that you can
pay into and spend from. You can lend credibility and social capital to
other people, but be conscious of whom you’re lending to.

• Skills come from taking on projects and from deliberately learning. Make
sure you’re building the skills you want to have.

• Free up your resources by giving other people opportunities to grow,
including starting projects and handing them off.

• Focus means sometimes saying no. Learn how.

150 | THE STAFF ENGINEER’S PATH

1 I’m going to say “project manager” throughout this chapter, but you might work with a program manager
(usually someone who’s responsible for multiple projects that have a shared goal). Sometimes you’ll see
the title technical program manager (TPM). For the purposes of this chapter, just assume I’m talking
about someone in any of these roles, and that they’re preternaturally organized and competent at
delivering products.

Leading Big Projects

What makes a great project lead? It’s rarely genius: it’s perseverance, courage,
and a willingness to talk to other people. Sure, there might be times when you
need to come up with a brilliant and inspired solution. But, usually, the reason a
project is difficult isn’t that you’re pushing the boundaries of technology, it’s that
you’re dealing with ambiguity: unclear direction; messy, complicated humans; or
legacy systems whose behavior you can’t predict. When the project involves a lot
of teams; has big, risky decisions along the way; or is just messy and confusing, it
needs a technical lead who will stick with it and trust that the problems can be
solved, and who can handle the complexity. That’s often a staff engineer.

The Life of a Project

In this chapter we’re going to look at the life of a big, difficult project. While
projects come in many shapes, as we saw in Chapter 4, I’m going to focus on the
kind that lasts for at least several months and needs work from multiple teams.
For the purposes of this chapter, I’ll assume that you’re the named technical lead
of the project, perhaps delegating to some subleads of smaller parts. I’ll assume
that nobody who is working on the project is reporting to you, but that you’re
nonetheless expected to get results. There are probably other leaders involved:
you might have project manager or product manager counterparts, and there
could be some engineering managers, each of whom has a team working on
their own areas.1 But, as the lead, you’re responsible for the result. That means

151

| 5

2 If you skipped Chapter 2, just imagine teams and organizations as tectonic plates moving against each
other, with friction and instability where the plates meet.

you’re thinking about the whole problem, including the parts of it that lie in the
fissures between the teams and the parts that aren’t really anyone’s job.2

We’ll begin before the project even officially starts, when you’re looking at a
vast, unmapped, and quite possibly overwhelming set of things to do. We’ll work
through some techniques for getting the lay of the land and making sense of it
all. And we’ll talk about creating the kinds of relationships where you’re sharing
information and helping each other rather than competing.

Then we’ll set this thing up for success the way a project manager would:
thinking through deliverables and milestones, setting expectations (including
your own), defining your goals, adding accountability and structure, defining
roles, and—the number one tool for success—writing things down.

After the project is set up and humming along, we’ll look at driving it. You’ve
got a destination, and you’ll need to make some turns and course corrections to
get there. I’ll talk about exploring the solution space, including framing the work,
breaking the problem down, and building mental models around it. When a
project is too big for any one person to track all of the details, narrative is vital.
We’ll look at some common pitfalls you might meet during design, coding, and
making big decisions. The chapter ends on spotting the obstacles in your path—
the conflict, misalignment, or changes in destination, and how to communicate
clearly while you navigate around them.

We won’t look at the end of the project until Chapter 6, but for now, let’s
start at the very beginning.

The Start of a Project

The beginning of a project can be chaotic, as people mill around trying to figure
out what they’re all doing and who’s in charge. Congratulations: as the technical
lead, you’re in charge. Sort of.

The other people on the project aren’t your direct reports, and they’re still
getting instructions from their managers. You have…maybe?…a mandate to get
something done. But it’s possible that not everyone agrees yet on what that man-
date is or whether they’re supposed to be helping you with it. If several different
managers or directors are involved, it might not be clear what you’re responsible
for and what they’re expecting to own. There might be other senior engineers on

152 | THE STAFF ENGINEER’S PATH

3 Check in on your biological needs too. Not trying to get in your business, but lots of people in our industry
are sleep-deprived. Are you? Sleep builds resilience and willpower and energy! It’s amazing. And when did
you last drink a glass of water?

the project, maybe some more senior than you. Are they supposed to follow your
lead? Do you have to take their advice?

IF YOU’RE FEELING OVERWHELMED…

Maybe you’re joining an existing project, with all of its history and decisions and
personality dynamics and documentation. Maybe the project is new, but there are
already detailed requirements, a project spec, milestones, and a documented list
of eager stakeholders. Or maybe there’s just a whiteboard scrawl, or—frustrat-
ingly often—a bunch of long email threads (some of which you weren’t cc’d on)
that culminated in a director deciding to fund a project to solve a poorly articula-
ted, unscoped problem. Almost certainly there are other people who want to give
you their opinions on that problem, and there might be immediate deadlines you
want to get ahead of. All of this comes up before you really have a handle on what
the project is for, what your role is, and whether you all agree on what you’re try-
ing to achieve. It’s a lot to think about.

What do you do? Where do you even start? Start with the overwhelm.
It’s normal to feel overwhelmed when you’re beginning a project. It takes

time and energy to build the mental maps that let you navigate it all, and at the
start of the project it might feel like more than you can handle. But, in the words
of my friend Polina Giralt, “that feeling of discomfort is called learning”. Manag-
ing the discomfort is a skill you can learn.

You might even find yourself feeling that you’ve been put in this position by
mistake or that the project is too hard for you, struggling with fear that you’ll let
others down or fail publicly: a common phenomenon known as imposter syn-
drome. Emotional overwhelm can get in the way of absorbing knowledge and
even affect your performance, making impostor syndrome almost self-fulfilling.

These feelings might be a signal that you’re low on one of the resources
from Chapter 4. If you’ve exhausted all of your energy, you’re low on time, or you
don’t feel like you have the skills to do what you need to do, that may manifest as
stress and anxiety. Check in with yourself and ask whether any of your resources
are at worrying levels.3 Is there anything you can do to get more time or energy or
build more skills? Are there people who could help?

LEADING BIG PROJECTS | 153

https://oreil.ly/2qXQH

You might also think about how this work would feel if someone else was
doing it. George Mauer, director of engineering at findhelp.org, told me that he
used to feel imposter syndrome, until he realized “99% of people don’t know
better than I what to do.” Maybe you’re figuring out what you’re doing as you go
along, but hey, everyone else is too! Is it just me, or is that really reassuring? No
matter who was doing this project, they’d find it difficult too.

The difficulty is the point. I find that I can handle ambiguity when I internal-
ize that this is the nature of the work. If it wasn’t messy and difficult, they
wouldn’t need you. So, yes, you’re doing something hard here and you might
make mistakes, but someone has to. The job here is to be the person brave
enough to make—and own—the mistakes. You wouldn’t have gotten to this
point in your career without credibility and social capital. A mistake will not
destroy you. Ten mistakes will not destroy you. In fact, mistakes are how we
learn. This is going to be OK.

Here are five things you can do to make a new project a little less
overwhelming:

Create an anchor for yourself

Here’s how I start, no matter the size of the project: I create a document, just for
me, that’s going to act as an external part of my brain for the duration of the
project. It’s going to be full of uncertainty and rumors, leads to follow, remind-
ers, bullet points, to-dos, and lists. When I’m not sure what to do next, I’ll return
to that document and look at what Past Me thought was important. Putting abso-
lutely everything in one place at least removes the “Where did I write that down?”
problem.

Talk to your project sponsor

Understand who’s sponsoring this project and what they’ll want you to do for
them. Then get some time with them. Go in prepared with a clear (ideally, writ-
ten) description of what you think they’re hoping to achieve from the project and
what success looks like. Ask them if they agree. If they don’t, or if there’s any
ambiguity at all, write down what they’re telling you and double-check that you
got it right. It’s surprisingly easy to misunderstand the mission, especially at the
start of a project, and a conversation with your project sponsor can confirm that
you’re on the right path (which is always reassuring). This is also a good time to
clear up any confusion about what your role will be and who you should bring
project updates to.

154 | THE STAFF ENGINEER’S PATH

http://findhelp.org

Depending on the project sponsor, you might have regular access to them, or
you might get a single conversation and then nothing more for months (a horri-
ble way to work, but it does happen). The less often you’re going to talk with
them, the more vital it is that you get all of the information up front.

Decide who gets your uncertainty

Think about who you’re going to talk with when the project is difficult and you’re
feeling out of your depth. Your junior engineers are not the right people! While
you can and should be open with them about some of the difficulties ahead,
they’re looking to you for safety and stability. Yes, you should show your less
seasoned colleagues that senior people are learning too, but don’t let your fears
spill onto them. Part of your job will be to remove stress for them, making this a
project that will give them quality of life, skills, energy, credibility, and social
capital.

That doesn’t mean you should carry your worries alone. Try to find at least
one person who you can be open and unsure with. This might be your manager,
a mentor, or a peer: the staff engineer peers I discussed in Chapter 2 can be per-
fect here. Choose a sounding board who will listen, validate, and say “Yes, this
stuff is hard for me too” rather than refusing to ever admit weakness or just try-
ing to solve your problems for you. And, of course, be that person for them or
others too.

Give yourself a win

If the problem is still too big, aim to take a step, any step, that helps you exert
some control over it. Talk to someone. Draw a picture. Create a document.
Describe the problem to someone else. In some ways, the start of the project is
when it’s easiest to not know things. You can preface any statement with “I’m
new to this, so tell me if I have this wrong, but here’s what I think we’re doing”
and learn a lot. Later on, it becomes a little more cognitively expensive or may
even feel a little embarrassing not to know things. (It’s not, though! Learning is
great!) Don’t waste the brief period where it’s easy to not know.

Use your strengths

Remember how, when we talked about strategy in Chapter 3, I said you should
build a strategy around your advantages? That’s true here, too. You’re going to
want to pour a lot of information into your brain as efficiently as possible, so use
your core muscles. If you’re most comfortable with code, jump in. If you tend to
go first to relationships, talk to people. If you’re a reader, go get the documents.

LEADING BIG PROJECTS | 155

Probably your preferred place to start won’t give you all of the information you
need, but it’ll be a good place to start convincing your brain that this is just
another project. Seriously, you’ve got this.

BUILDING CONTEXT

The start of a project will be full of ambiguity. You can create perspective, for
yourself and others, by taking on a mapping exercise like we did in Chapter 2.
That means building your locator map: putting the work in perspective; under-
standing the goals, constraints, and history of the project; and being clear about
how it ties back to business goals. It means filling out your topographical map:
identifying the terrain you’re crossing and the local politics there, how the people
on the project like to work, and how decisions will get made. And of course you’ll
need a treasure map that shows where you’re all going and what milestones you’ll
be stopping at along the way.

Here are some points of context you’ll need to clarify for yourself and for
everyone else:

Goals

Why are you doing this project? Out of all of the possible business goals, the
technical investments, and the pending tasks, why is this the one that’s happen-
ing? The “why” is going to be a motivator and a guide throughout the project. If
you’re setting off to do something and you don’t know why, chances are you’ll do
the wrong thing. You might complete the work without solving the real problem
you were intended to solve. I’ll talk about this phenomenon more in Chapter 6.

Understanding the “why” might even make you reject the premise of the
project: if the project you’ve been asked to lead won’t actually achieve the goal,
completing it would be a waste of everyone’s time. Better to find out early.

Customer needs

A story I tell a lot is about my first week in a new infrastructure team. A member
of the team described a project they were working on, upgrading some system to
make a new feature available. Another team, he said, needed the feature. “Why
do they need it?” I asked, glad of an opportunity to get the lay of the land. “Maybe
they don’t,” he said. “We think they do, but we have no way of knowing.” These
two teams sat in the same building, on the same floor.

Even on the most internal project, you have “customers”: someone is going
to use the things you’re creating. Sometimes you’ll be your own customer. Most

156 | THE STAFF ENGINEER’S PATH

4 Although it’s almost certainly apocryphal, there’s a Henry Ford quote about the Model T that illustrates
how people in different domains can fail to communicate: “If I had asked people what they wanted, they
would have said faster horses.”

of the time it’s going to be other people. If you don’t understand what your cus-
tomers need, you’re not going to build the right thing. And if you don’t have a
product manager, you’re probably on the hook for figuring out what those needs
are. That means talking to your customers and listening to what they say in
response.

Product management is a huge and difficult discipline, and it’s not easy to
understand what your users actually want—as opposed to what they’re telling
you.4 It takes time, so budget that time. Ask a user to let you shadow them using
the software you’re replacing. Ask internal users to describe the API they wish
they had, or show them a sketch of the interface you think they want and see how
they interact with it. Don’t mentally fill in what you wish they’d said; listen to
their actual responses. Try not to use jargon, because people can get intimidated
and not want to tell you that they didn’t understand. If you’re lucky enough to
have UX researchers on your team to study the customer experience, make sure
to read their work, talk to them, and try to observe some user interviews.

Even if you do have a product manager, that doesn’t mean you get to ignore
your customers! I love the conversations with product managers that Gergely
Orosz, author of the newsletter The Pragmatic Engineer, aggregates in his article
“Working with Product Managers: Advice from PMs”, especially Ebi Atawodi’s
comment that “You are also ‘product.’” Atawodi points out that engineering
teams should be just as customer-obsessed as product teams, caring about busi-
ness context, key metrics, and the customer experience.

Success metrics

Describe how you’ll measure your success. If you’re creating a new feature,
maybe there’s already a proposed way to measure success, like a product require-
ments document (PRD). If not, you might be proposing your own metrics. Either
way, you’ll need to make sure that your sponsor and any other leads on the
project agree on them.

Success metrics aren’t always obvious. Software projects sometimes implic-
itly measure progress by how much of the code is written, but the existence of
code tells you nothing about whether any problem has actually been solved. In
some cases, the real success will come from deleting lines of code. Think about

LEADING BIG PROJECTS | 157

https://oreil.ly/l9ofc
https://oreil.ly/YBaZO
https://oreil.ly/YBaZO

what success will really look like for your project. Will it mean more revenue
from users, fewer outages, a process that takes less time? Is there an objective
metric you can set up now that will let you compare before and after? In her
Kubecon keynote, “The Challenges of Migrating 150+ Microservices to Kuber-
netes”, microservices expert Sarah Wells spoke about judging the success of a
migration in two measurable ways: the amount of time spent keeping the cluster
healthy, and the number of snarky messages from team members on Slack about
functionality that didn’t work as expected.

If you initiated the project, be even more disciplined about defining success
metrics. If your credibility and social capital are strong, you can sometimes con-
vince other people to get behind a project based on their belief in you or by
means of a compelling document or an inspirational speech. But you can’t be
certain that you’re right! Treat your own ideas with the most skepticism and get
real, measurable goals in place quickly, so you can see how the project is trend-
ing. As Chapter 4 explained, your credibility and social capital can go down as
well as up. Don’t rely on them as the only motivator to keep the project going.

Sponsors, stakeholders, and customers

Who wants this project and who’s paying for it? Who are the main customers of
the project? Are they internal or external? What do they want? Is there an inter-
mediate person between you and the original project sponsor? If there’s a prod-
uct requirements document, this may all be spelled out, but you might have to
clarify for yourself who your first customer or main stakeholder is, what they’re
hoping to see from you, and when. If the impetus for the work has come from
you, then you might be on the hook to continually justify the project and make
sure it stays funded. It will be easier to sell the value of the work if you can find
other people who want it too.

Fixed constraints

Maybe there are some senior technical roles where you can walk in and start solv-
ing big problems, unconstrained by budget, time, difficult people, or other
annoying aspects of reality. I’ve never seen a role like that, though. Usually you’re
going to be constrained in some ways: understand what those constraints are.
Are there deadlines that absolutely can’t move? Do you have a budget? Are there
teams you depend on that might be too busy to help you, or system components
you won’t be able to use? Will you have to work with difficult people?

Understanding your constraints will set your own expectations and other
people’s too. There’s a big difference between “ship a feature” and “ship a feature

158 | THE STAFF ENGINEER’S PATH

https://oreil.ly/OTILj
https://oreil.ly/OTILj

5 It probably goes without saying, but be diplomatic when you describe this reality. If you write down the
most charitable description of the difficult person, antagonistic team, or indecisive director, you’ll feel
less awkward when someone inevitably forwards the email or document to them. You’ll build empathy for
them too and perhaps have some insights about how to work with them.

without enough engineers and with two stakeholders who disagree on the direc-
tion.” Similarly, creating an internal platform for teams that are eager to beta test
it is a different project from trying to convince a hundred engineers to migrate to
a new system that they hate. Describe the reality of the situation you’re in, so you
won’t spend all your time being mad at reality for not being as you wish it to be.5

Risks

Is this a “moonshot” or a “roofshot” project? Does it feel huge and aspirational,
or a fairly straightforward step in the right direction? In an ideal world, everyone
on the project would deliver their own part in perfect synchronization, with pre-
dictable availability of time and energy (and ideally a boost to credibility, skills,
quality of life, and social capital along the way!). The reality is that some things
will go wrong, and the more ambitious the project, the riskier it will be. Try to
predict some of the risks. What could happen that could prevent you from reach-
ing your goals on deadline? Are there unknowns, dependencies, key people who
will doom the project if they quit? You can mitigate risk by being clear about your
areas of uncertainty. What don’t you know, and what approaches can you take
that will make those less ambiguous? Is this the sort of thing you can prototype?
Has someone done this kind of project before?

One of the most common risks is the fear of wasted effort, of creating some-
thing that ends up never getting used. If you make frequent iterative changes,
you have a better chance of getting user feedback and course-correcting (or even
canceling the project early; we’ll look at that more in Chapter 6) than if you have
a single win-or-lose release at the end.

History

Even if this is a brand-new project, there’s going to be some historical context
you need to know. Where did the idea for the project come from? Has it been
announced in an all-hands meeting or email that has set expectations? If the
project is not brand new, its history may be murky and fraught. When teams
have already tried and failed to solve a problem, there might be leftover compo-
nents you’ll be expected to use or build on, or existing users with odd use cases
who will want you to keep supporting them. You might also face resentment and

LEADING BIG PROJECTS | 159

irritation from the people who tried and failed, and you’ll need to proceed very
carefully if you want to engage their enthusiasm again.

If you’re new to an existing project, don’t just jump in. Have a lot of conver-
sations. Find out what half-built systems you’re going to have to use, work
around, or clean up before you can start creating a new solution. Understand
people’s feelings and expectations, and learn from their experiences. Remember
that tenet of Amazon’s principal engineer community I mentioned in Chapter 2:
“Respect what came before.”

Team

Depending on the size of the project, you might have a few key people to get to
know or a massive cast of team members, leads, stakeholders, customers, and
people in nearby roles, some of whom influence your direction, some who’ll
make decisions you have to react to, and some of whom you’ll never speak with
directly. There’ll also be other people in leadership roles.

If you’re the lead of a project that only includes one team, you’ll probably talk
regularly with everyone on that team. On a bigger project with many teams
involved, you’ll need a contact person on each team. For even bigger projects, you
might have a sublead in each area (see Figure 5-1). Or maybe your project is just
one part of a broader project and you’ll be a sublead.

Figure 5-1. As the project lead (the root node of this tree) you may have contacts or subleads on
each of several other teams. Some of those subleads may be directing work for their own subleads.

It’s vital to build good working relationships with all of the other leaders and
help each other out. Don’t waste your time in power struggles. You’ll be more
likely to achieve your shared goals if you work well together, and of course work

160 | THE STAFF ENGINEER’S PATH

is a much more pleasant endeavor (higher quality of life, higher energy!) when
you’re harmonious with the people around you. Unfortunately, having multiple
leaders often means unclear expectations about who’s doing what—a common
source of conflict. Understand who the leaders are, how they’re involved in the
project, and what role they expect to play.

GIVING YOUR PROJECT STRUCTURE

With all of that context in mind, you can start setting up the formal structures
that will help you run the project. Setting expectations and structure and follow-
ing a plan can be time-consuming, but they really do increase the likelihood that
the thing you’re eager to start working on will actually succeed. The more people
involved, the more you’ll want to make sure you’re all aligned on your expecta-
tions. These structures will also act as tools to help you feel in control of what’s
going on—so if you’re still a little overwhelmed, don’t worry, this will make it
easier.

Here are some of the things you’ll do to set up a project.

Defining roles

I mentioned the risk of conflict when there are multiple leaders, so let’s start
there. At senior levels, engineering roles start to blur into each other: the differ-
ence between, say, a very senior engineer, an engineering manager, and a techni-
cal program manager might not be immediately clear. At a baseline, all of them
have some responsibility to be the “grown-up in the room,” identify risks, remove
blockers, and solve problems. By definition, the manager has direct reports, but
the engineer might too. The program manager sees the gaps, communicates
about the project status, and removes blockers, but everyone else should step up
and do those things if they aren’t happening. We might argue that the engineer
should have deeper technical skills, but some program managers are in deeply
technical roles and many have extensive software engineering experience. This is
even more complicated when a manager or TPM comes from an engineering
background and is still involved in big technical decisions, or when there’s more
than one staff engineer. Who does what?

The beginning of a project is the best time to lay out each leader’s responsi-
bilities. Rather than waiting until two people discover they’re doing the same job,
or work is slipping through the cracks because nobody thinks it’s theirs, you can
describe what kinds of things will need to be done and who will do them. The

LEADING BIG PROJECTS | 161

simplest approach is to create a table of leadership responsibilities and lay out
who should take on each one. Table 5-1 gives an example.

Table 5-1. Example table of leadership responsibilities

Product Manager Olayemi

Technical Lead Jaya

Engineering Manager Kai

Technical Program Manager Nana

Engineering Team Adel, Sam, Kravann

Understanding customer needs and providing
initial requirements

Product Manager

Providing KPIs for product success Product Manager

Setting timelines Technical Program Manager

Setting scope and milestones Product Manager, Engineering
Manager

Recruiting new team members Engineering Manager

Monitoring and ensuring team health Engineering Manager

Managing team members’ performance and
growth

Engineering Manager

Mentoring and coaching on technical topics Technical Lead

Designing high-level architecture Technical Lead (with support from
engineering team)

Designing individual components Technical Lead, Engineering Team

Coding Engineering Team (with support
from Technical Lead)

Testing Engineering Team (with support
from Technical Lead)

Operating, deploying, and monitoring systems Engineering Team, Technical Lead

Communicating status to stakeholders Technical Program Manager

Devising A/B experiments Product Manager

Making final decisions on technical approach Technical Lead

Making final decisions on user-visible behavior Product Manager

I really want to emphasize that this is just an example! Some projects will
have many more leaders than this. Some will have fewer. Internal-facing

162 | THE STAFF ENGINEER’S PATH

6 Though think how much better our industry’s internal solutions would be if they did.

projects, like on infrastructure teams, usually won’t have product managers.6 If
you would have put different names on different tasks here, that’s fine. If you
want to make all of this more sophisticated, a popular tool is RACI, also known
as a responsibility assignment matrix. Its name comes from the four key respon-
sibilities most typically used:

Responsible
The person actually doing the work.

Accountable
The person ultimately delivering the work and responsible for signing off
that it’s done. There’s supposed to be only one accountable person per task,
and it will often be the same person as whoever is “Responsible.”

Consulted
People who are asked for their opinion.

Informed
People who will be kept up to date on progress.

If you’re really into project management, you’ll probably enjoy reading about
the many, many variants of RACI, but I’m not going into that here. I’ll just note
that RACI turns the preceding list into a matrix, so you can set everyone’s expect-
ations even more clearly. It can be overkill for some situations, but when you
need it, you really need it. A staff engineer friend at Google told me about using
RACI for a chaotic project:

We needed some kind of formal framework to explicitly define who would

be making decisions. This helped us break out of two bad patterns: never

making a decision because we didn’t know who the decider was, so we’d

just discuss forever, and relitigating every decision over and over because

we didn’t have a process for making decisions. RACI didn’t solve either of

those problems entirely, but it at least provided some (fairly uncontrover-

sial) structure for people.

The uncontroversial structure is the real superpower here. It gives you a way
to broach the conversation without it being weird.

LEADING BIG PROJECTS | 163

https://oreil.ly/eebGs

7 Though try to avoid relying on one person’s very specific skill set. People move between companies often,
and you don’t want a single point of failure.

Lara Hogan offers an alternative tool for product engineering projects, the
team leader Venn diagram, which has overlapping circles for the stories of
“what,” “how,” and “why,” which are then assigned to the engineering manager,
the engineering lead, and the product manager. I’ve heard suggestions that a
fourth circle, the story of “when,” if you could squeeze it into that diagram, might
be assigned to a project or program manager.

However you approach it, try to get every leader aligned on what your roles
are and who’s doing what. If you aren’t sure that everyone knows you’re the lead
(or even that you are), then the stress of a new project gets even worse. As a sub-
lead for a project more than a decade ago, I found myself showing up at my
weekly meetings with the overall lead a little nervous about whether I’d done
what was expected of me. I could have saved myself a whole lot of anxiety by hav-
ing a direct conversation about it: “Here’s what I think I’m responsible for. Do
you agree? Am I taking the right amount of ownership?”

Last thought on roles: if you’re the project lead, you are ultimately responsi-
ble for the project. That means you’re implicitly filling any roles that don’t
already have someone in them, or at least making sure the work gets done. If
your teammates have no manager, you’re going to be helping them grow. If
there’s nobody tracking user requirements, that’s you. If nobody is project man-
aging, that’s you as well. It can add up to a lot. For the rest of this section, I’m
going to talk about some tasks that may be assigned to you in these roles.

Recruiting people

If there are unfilled roles that you don’t want to do or don’t have time to do, you
may have to find someone else to do them. That might mean recruiting someone
internally or externally, or picking subleads to be responsible for parts of your
project. Sometimes that will mean you’re looking for specific technical skills that
your team doesn’t have enough of or experience you don’t have.7 Look also for
the people who complement or fill the gaps in your own skill set. If you’re a big-
picture person, look for someone who loves getting into the details, and vice
versa. For bonus points, see if you can find people who absolutely love doing the
kind of work that you hate to do. That’s the best kind of partnership!

164 | THE STAFF ENGINEER’S PATH

https://oreil.ly/Eoi2I

I had an opportunity to lead a panel for LeadDev in October 2020, “Sustain-
ing and Growing Motivation Across Projects”. In it, Mohit Cheppudira, principal
engineer at Google, talked about what he looks for when he recruits people:

When you’re responsible for a really big project, you’re kind of building an

organization and you’re steering an organization. It’s important to get the

needs of the organization right. I spent a lot of time trying to make sure

that I had the best leads in all the different domains that were involved in

that one specific project. And, when you’re looking for leads, you’re look-

ing for people that don’t just have good technical judgment, but also have

the attitudes: they are optimistic, good at conflict resolution, good at com-

munication. You want people that you can rely on to actually drive this

project forward.

Recruiting decisions are some of the most important you will make. The
people you bring onto the project will make a huge difference in whether you
meet your deadlines, complete visible tasks, and achieve your goals. Their suc-
cess is your success, and their failure is very much your failure. Recruit people
who will work together, push through friction, and get the job done—people you
can rely on.

Agreeing on scope

Project managers sometimes use a model called the project management trian-
gle, which balances a project’s time, budget, and scope. You’ll sometimes also
hear this framed as “Fast, cheap, good: Pick two.” It feels obvious to say, but it’s
somehow easy to forget: if you have fewer people, you can’t do as much. Agree
on what you’re going to try to do.

Probably you’re not going to deliver the whole project in one chunk. If you
have multiple use cases or features, you’ll want to deliver incremental value
along the way. So decide what you’re doing first, set a milestone, and put a date
beside it. Describe what that milestone looks like: what features are included?
What can a user do?

Jackie Benowitz, an engineering manager who has led several huge cross-
organization projects, told me that she thinks about milestones as beta tests:
every milestone is usable or demonstrable in some way, and gives the users or
stakeholders an extra opportunity to give feedback. That means you have to be
prepared for each incremental change to potentially change the user require-
ments for the next one, because changing what your users can do will help them

LEADING BIG PROJECTS | 165

https://oreil.ly/o6Rj1
https://oreil.ly/o6Rj1
https://oreil.ly/4aboG
https://oreil.ly/4aboG

realize what else they want to do. They might also tell you that you’re on the
wrong track, giving you an early opportunity to change your direction.

To maintain this kind of flexibility, some projects won’t plan much further
than the next milestone, considering each one to be a destination in itself. Others
will roughly map out the entire project, updating the map when a change of
direction is needed. Whichever you prefer, make the increments small enough
that there’s always a milestone in sight: it’s motivational to have a goal that feels
reachable. I’ve also found again and again that people don’t act with a sense of
urgency until there’s a deadline that they can’t avoid thinking about. Regular
deliverables will discourage people from leaving everything until the end. Set
clear expectations about what you expect to happen when.

If the project is big enough, you might split the work into workstreams,
chunks of functionality that can be created in parallel (perhaps with different
subteams), each with its own set of milestones. They may depend on each other
at key junctures, and you may have streams that can’t start until others are com-
pletely finished, but usually you can talk about any one of them independently
from the others. You might also describe different phases, where you complete a
huge piece of work, reorient, and then kick off the next stage of the project. Split-
ting the work up like this makes it a little more manageable to think about. It lets
you add an abstraction and think at a higher altitude. If you can say a particular
workstream is on track, for example, then you don’t need to get into the weeds of
each task on that stream.

If your company is using product management or roadmapping software, it
will probably have functionality to organize your project into phases, work-
streams, or milestones. If everyone who needs to participate is in one physical
place, you can do the same thing with sticky notes on a whiteboard. What matters
is that you all get the same clear picture of what you’ve decided you’re doing and
when.

Estimating time

I have met almost nobody who is good at time estimation. This may be the
nature of software engineering: every project is different, and the only way we
can tell how long a project will take is if we’ve done exactly the same thing before.
The most common advice I’ve read is to break the work up into the smallest tasks
you can, since those are easiest to estimate. The second most common is to
assume you’re wrong and multiply everything by three. Neither approach is
very satisfying!

166 | THE STAFF ENGINEER’S PATH

I prefer the advice Andy Hunt and Dave Thomas give in The Pragmatic Pro-
grammer (O’Reilly): “We find that often the only way to determine the timetable
for a project is by gaining experience on that same project.” As you deliver small
slices of functionality, they explain, you gain experience in how long it will take
your team to do something—so you update your schedules every time. They also
recommend that you practice estimating and keep a log of how that’s going. Like
every other skill, the more you do it, the better you’ll get at it, so practice estimat-
ing even when it doesn’t matter and see if more of your estimates are right over
time.

Estimating time needs to include thinking about teams you depend on.
Some of these teams might be fully invested in the project, perhaps considering
it their main priority for the quarter or year. Others may see it as just one of
many requests competing for their attention. Talk with the teams you’ll need as
early as possible, and understand their availability.

Engineers in platform teams in particular have told me about the frustration
of receiving a last-minute request to add functionality that’s needed immediately
for launch, functionality they could have easily provided if they’d known about it
a few months earlier, when they could have incorporated it into their planning
for the quarter. The later you tell other teams you’ll need something from them,
the less likely you are to get what you need. If they do agree to scramble to
accommodate you, bear in mind that you’re interrupting their previous work:
you’re disrupting the time estimation for their other projects.

Agreeing on logistics

There are a lot of small decisions that can help set your project up to run
smoothly, and you’ll probably want to discuss them as a team. Here are some
examples:

When, where, and how you’ll meet
How often are you going to have meetings? If you’re a single team, will you
have daily standups? If you’re working across multiple teams, how often
will the leads get together? Will you have regular demos, agile ceremonies,
retrospectives, or some other way to reflect?

How you’ll encourage informal communication
Meetings can be a fairly formal way to exchange information, and they
probably don’t happen every day. How can you make it easy for people to
chat with each other and ask questions in the meantime? If you all sit

LEADING BIG PROJECTS | 167

https://oreil.ly/KCF9o
https://oreil.ly/KCF9o

8 It’s likely there are at least some people who are outside the office, and not uncommon for everyone on
the team to be in a different city or time zone! If everyone is distributed around the globe, it’s best if they
have a good amount of overlap in their work days, especially if they will need to work together closely. It’s
hard to build a trusting relationship on completely asynchronous communication.

together, this can be pretty easy, but in an increasingly remote workforce,
that’s starting to become unusual.8 In a new project where people don’t
know each other, they may be hesitant to send DMs, so you can encourage
conversation with a social channel, informal icebreaker meetings, or (if
people’s lives allow it) getting everyone in the same place for a couple of
days. Even silly things like meme threads can give people a connection that
will make them quicker to ask each other questions and offer help.

How you’ll all share status
How would your sponsor like to find out what’s going on with the project?
What about the rest of the company: where do you want them to go to find
out more? If you’re planning to send regular update emails, who will send
them and at what cadence?

Where the documentation home will be
Does the project have an official home on the company wiki or documenta-
tion platform? If not, create one and make it easy to find with a memorable
URL or prominent link. This documentation space will be the center of the
project’s universe and should link out to everything else. It will give you a
single place to start when you’re looking for a meeting recap, a description
of the next milestone, or the wording of a related OKR. You want everyone
to be looking at the same up-to-date information. It’s a single fixed point in
a chaotic universe!

What your development practices will be
In what languages are you going to work? How are you going to deploy
whatever you create? What are your standards for code review? How tested
should everything be? Are you releasing behind feature flags? If you’re
adding a new project in a company that has been around for a while,
maybe there are standard answers for all of these questions. Others may
depend on technical decisions you’ll make as you work through the project.
Begin the discussions, though, and get everyone aligned.

168 | THE STAFF ENGINEER’S PATH

9 Be clear about this point throughout the project! It’s common for new leaders to sort of hint that it might
be nice if everyone did something you need them to do. Think of it this way: if you’re ambiguous, you’re
making more work for everyone else as they try to figure out how much the thing you’ve asked for mat-
ters. Be explicit about what you want people to do.

Having a kickoff meeting

The last thing you might do as part of setting up a project is to have a kickoff
meeting. If all of the important information is written down already, this might
feel unnecessary, but there’s something about seeing each other’s faces that
starts a project with momentum. It gives everyone an opportunity to sync up and
feel like part of a team.

Here are some topics you might cover at your kickoff:

• Who everyone is

• What the goals of the project are

• What’s happened so far

• What structures you’ve all set up

• What’s happening next

• What you want people to do9

• How people can ask questions and find out more

Driving the Project

My favorite talk about managing projects is “Avoid the Lake!”, by Kripa Krishnan,
VP of Google Cloud Platform. I’d often heard the term “driving a project”
without really thinking about what that means, but Krishnan makes the analogy
clear when she says, “Driving doesn’t mean you put your foot on the gas and you
just go straight.” Driving, in other words, can’t be passive: it’s an active, deliber-
ate, mindful role. It means choosing your route, making decisions, and reacting
to hazards on the road ahead. If you’re the project lead, you’re in the driver’s seat.
You’re responsible for getting everyone safely to the destination.

In Chapter 3 we looked at one of the responsibilities of a project lead: mak-
ing sure decisions get made. We’re going to look now at some of the other chal-
lenges you might encounter on the road as you drive your project toward
its destination.

LEADING BIG PROJECTS | 169

https://oreil.ly/NHWFj

EXPLORING

I’m always suspicious when a brand-new project already has a design document
or plan, and even more when those include implementation details: “Build a
GraphQL server with Node.js to…” and so forth. Unless the problem is really
straightforward (in which case, are you sure it needs a staff engineer?), you won’t
have enough information about it on day one to make these kinds of granular
decisions. It will take some research and exploration to understand the project’s
true needs and evaluate the approaches you might take to achieve them. If you’re
creating a design where it’s difficult to articulate the goals (or if the goals are just
a description of your implementation!), that’s a sign that you haven’t spent
enough time in this exploration stage.

What are the important aspects of the project?

What are you all setting out to achieve? The bigger the project, the more likely it
is that different teams have different mental models of what you’re trying to ach-
ieve, what will be different once you’ve achieved it, and what approach you’re all
taking. Some teams might have constraints that you don’t know about, or unspo-
ken assumptions about the direction the project will take: they might have only
agreed to help you because they think your project will also achieve some other
goal they care about—and they might be wrong! Team members may fixate on
smaller, less important aspects of the project or niche use cases, or expect a dif-
ferent scope than you do. They may be using different vocabulary to describe the
same thing, or using the same words but meaning something different. Get to
the point where you can concisely explain what different teams in the project
want in a way that they’ll agree is accurate.

Aligning and framing the problem can take time and effort. It will involve
talking to your users and stakeholders—and actually listening to what they say
and exactly what words they use. It may involve researching other teams’ work to
understand if they’re doing the same thing as you, just described differently. If
you’re going into this project with well-formed mental models, it can be difficult
to set those preconceptions aside and explore how other people think about the
work. But it will be even more painful to try to drive a project where everyone’s
using different words, or is aiming for a different destination.

As you explore, and uncover expectations, you’ll start building up a crisp def-
inition of what you’re doing. Exploring helps you form an elevator pitch about
the project, a way to sum it up and reduce it to its most important aspects. You’ll
also start building up a clear description of what you’re not doing. Where projects

170 | THE STAFF ENGINEER’S PATH

are related to yours, you’ll begin to show how one is a subset of the other, or how
they overlap. It’s clarifying to describe work that seems similar but isn’t actually
related, or work that seems entirely unrelated but has unexpected connections.
I’ll talk a little later in this chapter about building mental models to help you and
others think about a problem in the same way. The better you understand the
problem, the easier it will be to frame it for other people.

What possible approaches can you take?

Once you have a clear story for what you’re trying to do, only then figure out how
to do it. If you’ve gone into the project with an architecture or a solution in mind,
it can be jarring to realize that it might not actually solve the real problem that
you’ve framed as part of your exploration. This is such a difficult mental adjust-
ment that I’ve seen project leads cling tightly to their original ideas about what
problem they’re solving, resisting all information that contradicts that worldview.
That doesn’t make for a good solution. So really try to keep an open mind about
how you’re solving the problem until you have agreed on what you need to solve.

Be open to existing solutions too, even if they’re less interesting or conve-
nient than creating something new. In Chapter 2, I talked about building per-
spective by studying and learning from other teams (both in your company and
outside) before diving into creating some new thing. The existing work might not
be exactly the shape of whatever you’ve been envisioning, but be receptive to the
idea that it might be a better shape, or at least a workable one. Learn from his-
tory: understand whether similar projects have succeeded or failed, and where
they struggled. Remember that creating code is just one of the stages of software
engineering: running code needs to be maintained, operated, deployed, moni-
tored, and someday deleted. If there’s a solution that means your organization
has fewer things to maintain after your project, weigh that up when you’re choos-
ing your approach.

CLARIFYING

A big part of starting the project will be giving everyone mental models for what
you’re all doing. When there are a lot of moving parts, opinions, and semirelated
projects, it’s a strain to keep track of them all. As the project lead, you have an
incentive to spend time understanding the tricky concepts if it helps you achieve
your project. But the people you ask for help have a different focus and may not
try as hard. Unless you take the time to reduce the complexity for them, they

LEADING BIG PROJECTS | 171

could end up thinking about the project in a way that leads them to optimize for
the wrong outcome or muddy a clear story you’re trying to tell your organization.

In The Art of Travel (Vintage), Alain de Botton talks about the frustration of
learning new information that doesn’t connect to anything you already know—
like the sorts of facts you might pick up while visiting a historic building in a for-
eign land. He writes about visiting Madrid’s Iglesia de San Francisco el Grande
and learning that “the sixteenth-century stalls in the sacristy and chapter house
come from the Cartuja de El Paular, the Carthusian monastery near Segovia.”
Without a connection back to something he was already familiar with, the
description couldn’t spark his excitement or curiosity. The new facts, he wrote,
were “as useless and fugitive as necklace beads without a connecting chain.”

I love that quote and think about it a lot while trying to help other people
understand something. How can I hook this concept onto their existing knowl-
edge? How can I make it relevant and spark their curiosity about it? Maybe I can
build a necklace chain back via connecting concepts, or use an analogy to give
them an idea that’s close enough to be useful, even if it’s not exactly correct.

Let’s look at a few ways you can reduce the complexity of big messy projects
by building shared understanding.

Mental models

When you start learning about Kubernetes, you’re deluged with new terms: Pods,
Services, Namespaces, Deployments, Kubelets, ReplicaSets, Controllers, Jobs,
and so forth. Most documentation explains each of these concepts through its
relationship to other new terms, or describes them in abstract ways that make
perfect sense if you already understand the whole domain. If you’re coming in
cold, it can be overwhelming—until a friend frames it in relation to something
familiar. They might use an analogy that lets you imagine the behavior of some-
thing you already know: “Think of this part like a UNIX process.” They might
use an example instead, to give you a hint to the shape of the concept being
described: “This is likely to be a Docker container.” Neither of these models is
perfect, but they don’t have to be: they have to be close enough to make a chain
back to some other thing you already understand, to give you something to hook
the knowledge onto.

I’ve deployed these sorts of rhetorical devices throughout this book, using
video game analogies and geographical metaphors to describe concepts. Connect-
ing an abstract idea back to something I understand well removes some of the
cognitive cost of retaining and describing the idea. It’s like I’m putting the idea

172 | THE STAFF ENGINEER’S PATH

into a well-named function that I can call again later without needing to think
about its internals. (See, I just did it again.)

Just like we build APIs and interfaces to let us work with components
without having to deal with their messy details, we can build abstractions to let
us work with ideas. “Leader election” is something we can understand and
explain more easily than “distributed consensus algorithm.” As you describe the
project you want to complete, you’ll likely have a bunch of abstract concepts that
aren’t easy to understand without a whole lot of knowledge in the domain you’re
working in. Give people a head start by providing a convenient, memorable name
for the concept, using an analogy, or connecting it back to something they
already understand. That way they’ll be able to quickly build their own mental
models of what you’re talking about.

Naming

Two people can use the same words and mean quite different things. I joke that
conversations with one of my favorite colleagues always devolve into us arguing
about the meanings of words. But once we understand each other, we can speak
in a very nuanced, high-bandwidth way and have a much more powerful conver-
sation about where we actually agree or disagree.

In 2003, Eric Evans wrote Domain-Driven Design (Addison Wesley) and gave
us the concept of deliberately building what he called a “ubiquitous language”: a
language shared by the developers of a system and the real-world domain experts
who are its stakeholders. Inside a company, even very common words like user,
customer, and account may have specific meanings, and those can even change
depending on whether you’re talking to someone in finance, marketing, or engi-
neering. Take the time to understand what words are meaningful to the people
you intend to communicate with, and use their words when you can. If you’re
trying to talk with multiple groups at once, provide a glossary, or at least be delib-
erate about describing what you mean by the terms you’re using.

Pictures and graphs

If you really want to reduce complexity, use pictures. There’s no easier way to
help people visualize what you’re talking about. If something’s changing, a set of
“before” and “after” pictures can be clearer than an entire essay. If one idea fits
within another, you can draw them as nested; if they’re parallel concepts, they
can be parallel shapes. If there’s a hierarchy, you might depict it as a ladder, a
tree, or a pyramid. If you’re representing a human, using a stick figure or smiley-
face emoji is clearer than just drawing a box.

LEADING BIG PROJECTS | 173

https://oreil.ly/CEQmR

Be aware of existing associations: don’t use a cylinder on your diagram
unless you’re OK with many readers thinking of it as a datastore. If you use col-
ors, some of your audience will try to interpret their meaning, for example
assuming that green components are intended to be encouraged and red ones
should be stopped.

Pictures can also take the form of graphs or charts. If you can show a goal
and a line trending toward that goal (like in Figure 5-2), it’s easy to see what suc-
cess will look like. Similarly, if your line is trending toward some disaster point
you’re highlighting, the need for the project can become viscerally clear.

Figure 5-2. A graph can show progress toward a goal.

DESIGNING

Once the exploration is done and the work is clarified, you’ll probably have a lot
of ideas for what happens next: what you’re going to build or change, and what
approach you’re going to take. Don’t assume everyone you work with under-
stands or agrees with those ideas. Even if you’re not hearing objections when you
talk about them, your colleagues may not have internalized the plan and their
implicit agreement may not mean anything. You’ll need to work to make sure
everyone is aligned. The most efficient way to do that is to write things down.

Why share designs?

In Chapter 2 I discussed oral versus written company cultures. The bigger the
company, the more likely that your culture has shifted toward the latter, and that
there is some expectation that you will write and review design documentation.
That’s because it’s very difficult to have many people achieve something together
without shared understanding, and it’s hard to be sure you have that shared

174 | THE STAFF ENGINEER’S PATH

10 I wrote a blog post for the Squarespace engineering blog that includes a sample template: “The Power of
‘Yes, if’: Iterating on Our RFC Process”.

understanding without a written plan. Whether you’re creating features, product
plans, APIs, architecture, processes, configuration, or really anything else where
multiple people need to have the same understanding, you won’t truly know if
people understand and agree until you write it down.

Writing it down doesn’t mean you need a 20-page technology deep dive for
every tiny change. A short, snappy, easy read can be perfect for getting a group
on (literally) the same page. But you should at least include the important aspects
of the plan, and let other people get in touch with you if they see hazards in your
path. Asking for review on a design doesn’t just mean asking about the feasibility
of an architecture or a series of steps; it includes agreeing on whether you’re solv-
ing the right problem at all and whether your assumptions about other teams
and existing systems are correct. An idea that seems like an obvious path for one
team may cause work for or break the workflows of another org. As my friend
Cian Synnott says, a written design is a very cheap iteration.

RFC templates

A common approach to sharing information in this way is a design document,
often called a request for comment document (or RFC). Although you’ll find
RFCs used at many companies, there’s not really a consistent standard for what
one should look like or how they get used. Different companies will have differ-
ent levels of detail and formality, you’ll share more or less broadly, comments
may or may not be encouraged, and you might have an official approval step or
meeting to discuss the design.

I’m not going to weigh in on which process is best—it really depends on
your culture—but I’m a big fan of having templates for documents like this.10 No
matter how amazing we are as architects, there’s a lot to remember when design-
ing a complex system or process or change. And humans aren’t great at paying
attention to all of the things. As Atul Gawande, author of The Checklist Manifesto:
How to Get Things Right (Picador), says:

We are not built for discipline. We are built for novelty and excitement, not

for careful attention to detail. Discipline is something we have to work at.

It somehow feels beneath us to use a checklist, an embarrassment. It runs

counter to deeply held beliefs about how the truly great among us—those

LEADING BIG PROJECTS | 175

https://oreil.ly/Pdb3l
https://oreil.ly/Pdb3l
https://oreil.ly/gp5f2

11 He goes on to show that checklists save lives. Few people reading this will be responsible for life-critical
systems, but if you are, please have protocols and checklists!

we aspire to be—handle situations of high stakes and complexity. The

truly great are daring. They improvise. They do not have protocols and

checklists. Maybe our idea of heroism needs updating.11

Gawande argues that using a checklist helps us talk to each other, avoid com-
mon mistakes, and make the right decisions intentionally instead of implicitly. A
good RFC template helps you think through the decisions and reminds you of
topics you might otherwise forget. Going through the exercise of creating this
kind of document and answering some (perhaps uncomfortable) questions about
your plan will help ensure you haven’t missed some vital category of problem.

What goes in an RFC?

Your company may already have its own RFC template, and you should follow
that if it exists. However, here are the headings that I put in every RFC, and that I
think should be included at an absolute minimum.

Context I like documents to be anchored in space and time. When someone
stumbles across this document in two years, the header should give them
enough context to decide whether it’s relevant to whatever they’re searching for.
It should have a title, the author’s name, and at least one date; I like “created on”
and “last updated on,” but either of those is better than none. Include the status
of the document: whether it’s an early idea, open for detailed review, superceded
by another document, being implemented, completed, on hold. I like a standard
format for headers so that scanning an RFC quickly is really easy, but it’s more
important that the information is available than that it’s standardized.

Goals The goals section should explain why you’re doing this at all: it should
show what problem you’re trying to solve or what opportunity you’re trying to
take advantage of. If there’s a product brief or product requirements document,
this section could be a summary of that, with a link back. If the goal just suggests
the question, “OK, but why are you doing that?” then you should go a step fur-
ther and answer that question too. Provide enough information to let your
readers know whether they think you’re solving the right problem. If they disa-
gree, that’s great—you found out now and not after you built the wrong thing.

176 | THE STAFF ENGINEER’S PATH

The goal shouldn’t include implementation details. If you send me an RFC
with a goal of “Create a serverless API to translate the sounds of chickens,” I can
absolutely believe that that’s what you’re trying to do, and I can review the RFC
and try to appraise your design. But without knowing what actual problem you’re
trying to solve and for whom, I can’t evaluate whether this is really the right
approach. You’ve specified in the goal that you’re setting out to make it server-
less, so you’ve already made a major design decision without justifying it. The
specific implementation should serve the goal; it should not be the goal. Leave the
design decisions to the design section.

Design The design section lays out how you intend to achieve the goal. Make
sure that you include enough information for your readers to evaluate whether
your solution will work. Give your audience what they need to know. If you’re
writing for potential users or product managers, make sure you’re clear about the
functionality and interfaces you intend to give them. If you’ll depend on systems
or components, include how you’ll want to use them, so readers can point out
misunderstandings about their capabilities.

Your design section could be a couple of paragraphs or it could be 10 dense
pages. It could be a narrative, a set of bullet points, a bunch of subsections with
headers, or any other format that will clearly convey the information.

Depending on what you’re trying to do, the design section could include:

• APIs

• Pseudocode or code snippets

• Architectural diagrams

• Data models

• Wireframes or screenshots

• Steps in a process

• Mental models of how components fit together

• Organizational charts

• Vendor costs

• Dependencies on other systems

What matters is that at the end, your readers should understand what you
intend to do and should be able to tell you whether they think it will work.

LEADING BIG PROJECTS | 177

12 Dr. Rebecca Johnson offers the best test I’ve ever read for accidental use of the passive voice: “If you can
insert ‘by zombies’ after the verb, you have passive voice.” It almost always works. “The data will be encryp-
ted in transit [by zombies].” Thanks, zombies!

Wrong Is Better Than Vague

I’ve often seen people be a little hand-wavy in writing this design section

—or avoid committing to a plan at all—because they don’t want people to

argue with them about the details. But it’s a better use of your time to be

wrong or controversial than it is to be vague. If you’re wrong, people will

tell you and you’ll learn something, and you can change direction if you

need to. If you’re trying out a controversial idea, you can find out early

whether your colleagues will pull against your approach. Having disa-

greements about your design doesn’t mean that you need to change

course, but it gives you information you wouldn’t have had otherwise.

Here are two tips to make your design more precise:

• Be clear about who or what is doing the action for every single

verb. If you find yourself writing in the passive voice, like “The data

will be encrypted in transit” or “The JSON payload will be

unpacked,” then you’re obscuring information and making the

reader guess. Instead, write with active verbs that have a subject

who does the action: “The client will encrypt the data before it is

transmitted” or “The Parse component will unpack the JSON pay-

load.”12

• Here’s a tip that was a game-changer for me: It’s fine to use a few

extra words or even repeat yourself if it means avoiding ambiguity.

As software engineer and writer Eva Parish recommends in her

post “What I Think About When I Edit”:

Instead of saying “this” or “that,” you should add a noun to

spell out exactly what you’re referring to, even if you’ve just

mentioned it.

Example: We only have two boxes left. To solve this, we

should order more.

178 | THE STAFF ENGINEER’S PATH

https://oreil.ly/zSRhh
https://oreil.ly/TExXb

13 If you love spreadsheets and this just makes the project more attractive to you, sub in whatever
technology you find most mundane.

Revision: We only have two boxes left. To solve this short-

age, we should order more.

Since I read Eva’s article, I notice so many examples where a bare

“this” or “that” in a design document obscures information. For example,

“A proposal exists to replace OldSolution, which was built to provide

OriginalFunctionality, with NewSolution. TeamB needs this, so we should

discuss requirements.” What does TeamB need: the proposal, the original

functionality, or the new solution?

If you struggle with writing, bear in mind that it’s a learnable skill.

Any learning platform your company has access to will probably have a

technical writing class on offer. Or consider Google’s courses, Technical

Writing One and Technical Writing Two. The Write the Docs website also

offers a ton of resources on how to write well.

Security/privacy/compliance What do you have worth protecting, and from
whom are you protecting it? Does your plan touch or collect user data in any
way? Does it open up new access points to the outside world? How are you stor-
ing any keys or passwords you’re going to use? Are you protecting against insider
or external threats, or both? Even if you think there are no security concerns and
believe this section isn’t relevant, write down why you believe that is the case.

Alternatives considered/prior art If you could solve this same problem with
spreadsheets, would you still want to do it?13 The “alternatives considered” sec-
tion is where you demonstrate (to yourself and others!) that you’re here to solve
the problem and you aren’t just excited about the solution. If you find yourself
omitting this section because you didn’t consider any alternatives, that’s a signal
that you may not have thought the problem through. Why wouldn’t simpler solu-
tions or off-the-shelf products work? Has anyone else at your company ever tried
something similar, and why isn’t their solution a good fit? I have a policy that if a
plausible-seeming option already exists inside the company and we’re not going
to use it, the RFC author has to send the new design to the people who own that
system and give them an opportunity to respond.

LEADING BIG PROJECTS | 179

https://oreil.ly/DUTL2
https://oreil.ly/DUTL2
https://oreil.ly/g535C

Those are the headings that I think absolutely have to be included, even on a
tiny RFC. They’re the “keep you honest” sections! But there are some others that
are often helpful if you want to get the most value out of the document you’re
writing.

Background What’s going on here? What information does a reader need to
evaluate this design? You could include a glossary if you’re using internal project
names, acronyms, or niche technology terms that reviewers might not know.

Trade-offs What are the disadvantages of your design? What trade-offs are you
intentionally making because you think the downsides are worth the benefits?

Risks What could go wrong? What’s the worst that could happen? If you’re a bit
nervous about system complexity, added latency, or the team’s lack of experience
with a technology, don’t hide that concern: warn your reviewers and give them
enough information to draw their own conclusions about it.

Dependencies What are you expecting from other teams? If you’re going to
need another team to provision infrastructure or write code, or if you need secu-
rity, legal, or comms to approve your project, how much time will you need to
allow them? Do they know you’re coming?

Operations If you’re writing a new system, who will run it? How will you moni-
tor it? If it will need backups or disaster recovery tests, who will be responsible
for those?

Technical pitfalls

While this is not intended to be a technical or architectural book, I do want to call
out a few pitfalls I often see in design documentation. Catch them for yourself so
other people don’t have to.

It’s a brand-new problem (but it isn’t) There are occasional exceptions, but your
problem is almost certainly not brand new. I already talked about looking for
prior and related projects, but it’s important enough to mention again here.
Don’t miss the opportunity to learn from other people, and consider reusing
existing solutions.

This looks easy! Some projects are seductively harder than they look, and you
might not realize that until you’re deep in the weeds of implementing them.
Software engineers don’t always really internalize that other domains are as rich
and nuanced and complex as their own. They might see, say, an accounting sys-

180 | THE STAFF ENGINEER’S PATH

14 One of the most expensive phrases ever uttered in software engineering.

tem and assume they can build a better, cleaner, simpler one. How could previ-
ous teams have put thousands of engineer-hours into this!? But building an
accounting system (or a payroll system, or a recruitment system, or even some-
thing to correctly share on-call schedules) is actually a hard problem. If it seems
trivial, it’s because you don’t understand it.

Building for the present If you’re building for the state of the world as it is right
now, will your solution still work in three years? Even if you’re designing for five
times the current number of users and requests, there are other dimensions to
think about. If the system needs to know about all teams or all products at your
company, what happens as the company grows, or has acquisitions, or is
acquired? If you have five times as many products, will this component become a
bottleneck as everyone waits for one team to add custom logic for them? If your
team doubles in size, will its members still be able to work in this codebase?

Building for the distant, distant future If you’re designing for a few orders of
magnitude more than your current usage, do you have a real reason to go that
big? If it’s trivial to handle more users, that’s great, do it, but watch out for over-
engineered solutions that are much more complicated than they need to be. If
you’re adding custom load balancing, extra caching, or automatic region failover,
explain why it’s worth the extra time and effort. “We might need it later” is not a
good enough justification.14

Every user just needs to… If you have five users, you can probably individually
teach each of them all the arcane rules of your system. If you have hundreds, or
more, they’re going to do it wrong; if you don’t plan for that, your design doesn’t
work. Any part of your solution that involves humans changing their workflows
or behavior will be difficult and needs to be part of the design.

We’ll figure out the difficult part later This one is common in migrations: you
spend a quarter building and deploying the system, polishing it up, and making
it perfect for a couple of easy use cases—and then you have to figure out how to
make it work for more difficult cases. What happens if that turns out not to be
possible? Ignoring the difficult part of your project might also mean pushing
complexity to someone else, like requiring every existing caller of an API to
change their code rather than being backward compatible, or forcing your clients
to write their own logic to interpret arcane and scattered information.

LEADING BIG PROJECTS | 181

15 Parkinson also coined the law that “work expands so as to fill the time available for its completion.” The
dude was insightful!

Solving the small problem by making the big problem more difficult If you have
lots of tiny projects with barely enough staffing to scrape by, you’ll see people
working around difficult problems in hacky ways instead of engaging with them
directly. These tacked-on solutions often have hidden dependencies on existing
system behavior that mean it will be harder to implement a more comprehensive
solution later. If your organization refuses to invest in solving the underlying
problem, you may not have any choice, but at least call it out in your design.
Think about how you can solve the smaller problem without making the bigger
one less tractable.

It’s not really a rewrite (but it is!) If you’re looking at a huge software system
and envisioning it in a different shape, be honest with yourself and others about
how much work that will take. You might imagine “just” taking the business
logic and refactoring it, for example, or rearchitecting it for the cloud. But unless
your code is already very modular and well organized (in which case, are you sure
you need to rearchitect?), chances are you’ll end up rewriting a lot more than you
intended. If your project is a veiled “rewrite from scratch,” be honest with your-
self and admit it.

But is it operable? If you struggle to remember how something works at 3 p.m.,
you won’t understand it at 3 a.m. And the people who join your team after you’ve
moved on will find it much harder. Make sure you create something that other
people can reason about. Aim to make systems observable and debuggable. Make
your processes as boring and as self-documenting as possible.

Speaking of operability, if it’s going to run in production, decide who’s on
call for it and put that in the RFC. If that’s your own team, make sure you have
more than three people (ideally at least six) or you’ll be setting yourselves up for
burnout and dropped pages.

Discussing the smallest decisions the most Who doesn’t love a good bikeshed
discussion! The expression “bikeshedding” came from C. Northcote Parkinson’s
1957 “Law of Triviality”, which holds that since it’s much easier to discuss a triv-
ial issue than a difficult one, that’s where teams tend to spend their time.15 Par-
kinson’s example was a fictional committee evaluating the plans for a nuclear
power plant but spending the majority of its time on the easiest topics to grasp,

182 | THE STAFF ENGINEER’S PATH

https://oreil.ly/AE5w5
https://oreil.ly/D8nvw

16 I wrote a talk once where someone left no comments on the entire 83-slide deck except to suggest a
replacement for the bikeshed picture I’d included on one of the slides. True story! I don’t think they were
being ironic.

like what materials to use for the staff bicycle shed.16 Tech people are usually
aware of the concept of bikeshedding, but even senior people drift into writing
long paragraphs about the most trivial, reversible decisions, while not engaging
at all with the ones that are harder to grasp or to find consensus on.

These are just a few of the common pitfalls. You’ve probably noticed others.
Add those to your list and be really sure you’re not falling prey to them yourself.

CODING

Most software projects will involve writing a lot of new code or changing existing
code. In this section, I’ll talk about how a project lead can engage with this kind
of hands-on technical work. (If you’re not a software engineer, swap in whatever
core technical work makes sense for you here.)

Should you code on the project?

As the project lead, how much code you contribute will vary depending on the
size of the project, the size of the team, and your own preferences. If you’re on a
tiny team, you might be deep in the weeds of every change. On a project with
multiple teams, you might contribute occasional features, or just small fixes, or
you might work at a higher level and not code at all. Many project leads find that
they review a lot of code, but don’t write much themselves.

As Joy Ebertz points out, “Writing code is rarely the highest leverage thing
you can spend your time on. Most of the code I write today could be written by
someone much more junior.” Ebertz notes, however, that coding gives you a
depth of understanding that’s hard to gain otherwise and helps you spot prob-
lems. What’s more, “If spending a day a week coding keeps you engaged and
excited to come to work, you will likely do better in the rest of your job.” Finally,
staying involved in the implementation ensures that you feel the cost of your own
architectural decisions as much as your team does.

Notice, though, if you’re contributing code at the expense of more difficult,
more important things. This is a form of the snacking I mentioned in Chapter 4:
taking on work that you know how to do (and that has a shorter feedback loop)
and avoiding the big, difficult design decisions or crucial organizational
maneuvering.

LEADING BIG PROJECTS | 183

https://oreil.ly/mPHXC

Be an exemplar, but not a bottleneck

As the person responsible for moving the project along, your time is going to be
less predictable than other people’s. You’ll probably have more meetings than
everyone else does too. So if you take on the biggest, most important problems,
chances are you’ll take longer to get to coding work than someone else would,
which can block others and make you a bottleneck. If you’re coding, try to pick
work that’s not time-sensitive or on the critical path.

Think of your code as a lever to help everyone else. Katrina Owen, coauthor
of 99 Bottles of OOP and a staff engineer at GitHub, told me about a project
where she created a standard way of writing a test for API pagination, then
replaced all of the existing tests with her approach. By changing all of the current
pagination tests, she was implicitly improving future tests too: anyone creating
one would copy the pattern that was already there.

Aim for your solutions to empower your team, not to take over from them.
Ross Donaldson, a staff engineer working on database systems, has described
part of his work to me as “scouting and cartography”:

I come back to the team and say, “I found this problem, that river, these

resources,” then we can all together discuss how we want to approach this

new information. Then maybe I go out and build a rough bridge over the

new river, which the team will own and improve. I provide an opinion or

two and remind people of some of the tools they have at their disposal,

but otherwise prioritize their sense of ownership over my own sense of

code aesthetic.

Polina Giralt, senior staff engineer at Squarespace, adds,

If there’s something only I understand, I’ll do it, but insist that someone

pairs up with me. Or if it’s an emergency and I know how to fix it, I’ll do it

myself and explain it later. Or I’ll write the code to establish a new pattern,

but then hand it off to someone else to continue implementing it. That

way it forces knowledge sharing.

Rather than taking on every important change yourself, find opportunities
for other people to grow, by chatting over the details or pair programming on the
change. Pairing shares knowledge and builds other people’s skills. Pairing also
means you can dip in for the key part of a change, then leave your colleague to
complete the work.

184 | THE STAFF ENGINEER’S PATH

https://oreil.ly/kEpkE

If you’re reviewing code and changes, be aware of how your comments are
received. Even if you think you’re relatable and friendly, it can be intimidating for
early-career engineers when a staff engineer comments on their work. You want
the rest of the team to think of you as a resource to learn from, not as someone
who criticizes every decision and makes them feel inadequate. Sometimes it’s
better to let someone set a pattern that’s good enough and not overrule them, even
if you would have done it better. Also, be careful that you’re not doing all the
code reviews—or you’ll be a single point of failure and the rest of your team
won’t learn as much.

A staff+ engineer is an exemplar in another, more implicit way: whatever you
do will set expectations for the team. For that reason, it’s important to produce good
work. Meet or exceed your testing standards, add useful comments and docu-
mentation, and be very careful about taking shortcuts. If you’re the most senior
person on the team and you’re sloppy, you’re going to have a sloppy team. (I’ll
talk more about being a role model in Chapter 7.)

COMMUNICATING

Communicating well is key for delivering a project in time. If the teams aren’t
talking to each other, you won’t make progress. And if you’re not talking to peo-
ple outside the project, your stakeholders won’t know how it’s going. Let’s look at
both of these types of communication.

Talking to each other

Find opportunities for your team members to talk with each other regularly and
build relationships, even (or maybe especially) on fully remote teams. It should
feel easy to reach out and ask questions, and they should be comfortable enough
with each other that they can disagree without it getting tense. You can make
relationship building easier with shared meetings, friendly Slack channels,
demos, and social events. If you have a small number of teams, key people from
adjacent teams can attend each other’s meetings or standups. The goal is com-
fortable familiarity.

Familiarity will make it feel safer to ask clarifying questions too. Engineers
who don’t know each other may feel uncomfortable saying “I don’t know what
that term means” or “What are the implications of the problem you just
described?” It will be harder to work together, share knowledge, and uncover
misunderstandings as a result. Aim to get to a place where it’s normal for your
team to ask questions and admit what they don’t know.

LEADING BIG PROJECTS | 185

Sharing status

Your project has other people who care about it: stakeholders, sponsors, cus-
tomer teams who are waiting for you to be done. Make it easy for them to find
out what’s going on, and set their expectations about when you’ll reach various
milestones. That might mean one-on-one conversations, regular group email
updates, or a project dashboard with statuses.

As you understand the progress of your project, you’ll probably pick up a lot
of detail and nuance about who’s doing what, what’s intended to happen when,
and how each part of the project is going. When you’re delivering status updates,
you might feel inclined to share everything you know: more information is bet-
ter, right? Not necessarily! Too much detail can obscure the overall message and
make it harder for your audience to take away the conclusion you intended.

Instead, explain your status in terms of impact and think about what the
audience will actually want to know. They probably don’t care that you stood up
three microservices; they care about what users can do now, and when they’ll be
able to do the next thing. If it’s becoming clear that you’re not going to hit a key
milestone date, that’s a fact you’ll want to pass on. But if one team is delayed in a
way that doesn’t change your delivery date, that delay may not be relevant to
them. Calling it out may even look like you’re trying to escalate something that
doesn’t need escalation.

If you think your audience really will want all the details, at least lead with
the headlines. Don’t assume that they’ll sift through your update for the key facts
or read between the lines to pick up nuances. If something is not clear, spell out
the takeaways. Practice following facts with “That means…” or explaining that
you’re doing something “so that we can…”

Be realistic and honest about the status you’re reporting. If your project is
having difficulties, it may be tempting to put on a brave face, hope you’ll sort
everything out, and report that the status is green. When you do this, though, you
risk an unpleasant surprise at the end of the project when you have to admit that
it’s not and hasn’t been for a while. Have you ever heard someone talk about a
“watermelon” project? They’re all green on the outside, but the inside is red. If
your project is stuck, don’t hide it: ask for help.

NAVIGATING

Something will always go wrong. Maybe you realize that a technology that’s been
core to your plans isn’t going to be a good fit after all: it won’t scale, it’s missing
some table-stakes feature, or it’s got a licensing condition your legal team has

186 | THE STAFF ENGINEER’S PATH

17 Unless you’re really spending your social capital on a passion project that nobody else cares about, as
discussed in Chapter 4! In that case, sorry, you’re probably on your own. But I hope you’ve got enough
goodwill that your colleagues and manager are still sort of enthusiastic about it on your behalf and are
willing to help you get it unstuck.

absolutely vetoed. Maybe your organization announces a change in business
direction and now needs you to solve a different problem. Maybe someone vital
to the project quits. It is inevitable that you’ll meet some roadblocks and have to
change direction, and you’ll have a better time if you go into the project assum-
ing something is going to go wrong—you just don’t know yet what it will be. This
attitude can help you be more flexible, so you’ll find it sort of interesting when
the roadblock arrives, rather than being frustrated by it. Reframe these diversions
as an opportunity to learn and to have an experience you wouldn’t have had
otherwise.

As the person at the wheel, you’re accountable for what happens when your
project meets an obstacle. You don’t get to say, “Well, the project is blocked and
so there’s nothing we can do”: you are responsible for rerouting, escalating to
someone who can help, or, if you really have to, breaking the news to your stake-
holders that the goal is now unreachable. Avoid those “watermelon projects”: if
the project status is green apart from one key problem that’s going to be impossi-
ble to solve, the project status is not really green!

Whatever the disruption, work with your team to figure out how you can nav-
igate around it. The bigger the change, the more likely it is that you’ll need to go
back to the start of this chapter, deal with the overwhelm all over again, build
context, and treat the project like it’s restarting. Whatever happens, make sure
you keep communicating well about it. Don’t create panic or let rumors start.
Instead, give people facts and be clear about what you want them to do with the
information.

When you’re having difficulties, remember that you are not the only person
who wants your project to succeed.17 Your manager’s job is to make you
successful, and your director’s job is to make your organization successful. If
you’re not telling them you need help, it’s going to be harder for them to do their
jobs. Some people really resist asking for help. It feels like failure, maybe. But if
you’re stuck and need help, the biggest failure is not asking for it. Don’t struggle
alone.

LEADING BIG PROJECTS | 187

I’ll talk about navigating obstacles a lot more in the next chapter, when we
look at some of the reasons that projects can get stuck and how to get them back
on track.

To Recap

• Staff engineers can take on problems that seem intractable and make them
tractable.

• It’s normal to feel overwhelmed by a huge project. The project is difficult.
That’s why it needs someone like you on it.

• Set up the structures that will reduce ambiguity and make it easy to share
context.

• Be clear on what success on the project will look like and how you’ll
measure it.

• Leading a project means deliberately driving it, not just letting things
happen.

• Smooth your path by building relationships and deliberately setting out to
build trust.

• Write things down. Be clear and opinionated. Wrong gets corrected, vague
sticks around.

• There will always be trade-offs. Be clear what you’re optimizing for when
you make decisions.

• Communicate frequently with your audience in mind.

• Expect problems to arise. Make plans that assume there will be changes in
direction, people quitting, and unavailable dependencies.

188 | THE STAFF ENGINEER’S PATH

Why Have
We Stopped?

As the project’s driver, you’re responsible for getting everyone safely to the desti-
nation. But there are a lot of reasons your journey might stop early. You could
run into roadblocks: accidents, toll booths, or a country road full of sheep. You
might find that you’ve lost your map, or that the various people in the car disa-
gree about where you’re going. Or you might just realize you should be going
somewhere else.

The Project Isn’t Moving—Should It Be?

In Chapter 5, we talked about starting projects. Now it’s time to look at ways they
can halt. We’ll start with two kinds of temporary stops you might encounter
when something’s going wrong: getting blocked by something, and getting lost.

Then we’ll look at ways you might intentionally stop the journey. Sometimes
this means declaring victory too soon, but it’s also sometimes just time for the
journey to end, whether it’s reached its destination or not.

This is a good opportunity to note that, as a leader in your organization, you
can help projects that you’re not leading too. Sometimes the best use of your time
will be to set aside what you were doing and use pushes, nudges, and small steps
(and, OK, sometimes major escalations) to get a stalled project moving again. As
Will Larson says, this small investment of time can have a huge impact:

A surprising number of projects are one small change away from succeed-

ing, one quick modification away from unlocking a new opportunity, or

one conversation away from consensus. With your organizational privi-

lege, relationships you’ve built across the company, and ability to see

around corners derived from your experience, you can often shift a proj-

189

| 6

https://oreil.ly/LKc0I

ect’s outcomes by investing the smallest ounce of effort, and this is some

of the most valuable work you can do.

For consistency, the rest of this chapter will assume that you’re leading the
project that has stopped. However, a lot of these techniques will work just as well
if you’re stepping in to help.

Don’t forget, though: seeing a problem doesn’t necessarily mean you should
jump on it. As I said in Chapter 4, you need to defend your time. Don’t get into the
situation depicted in the time graph in Figure 6-1, where you’re caught up in so
many side quests and assists that you have no time for the work you’re
accountable for. Be discerning! Choose the opportunities where your help is
most valuable, and then take deliberate action, with a plan for stepping away
again afterward.

Figure 6-1. It’s possible to fill your time with helping and nudging along projects and leave no
space for the main project you promised to do.

Let’s start with the first set of reasons projects stall: they get blocked.

YOU’RE STUCK IN TRAFFIC

In a perfect world, teams would be autonomous and never have to think about
each other’s work. In reality, any big project is going to span multiple teams,
departments, and job functions. Even a single person’s procrastination can some-
times be enough to miss an important deadline. And when the project is a migra-
tion or a deprecation, success might depend on work from every other
engineering team, with many opportunities to get blocked along the way.

190 | THE STAFF ENGINEER’S PATH

No matter what kind of blockage you’re dealing with, you’ll use some of the
same techniques:

Understand and explain
You’ll debug what’s going on and understand the blockage. Then you’ll
make sure everyone else has the same understanding of what’s happening.

Make the work easier
You’ll work around blockages by not needing as much from the people
you’re waiting for.

Get organizational support
It’s easier to get work prioritized when you can show that it’s an organiza-
tional objective. You’ll demonstrate the value of the work so that you can
get that support. And sometimes you’ll escalate to get help getting past a
blockage.

Make alternative plans
Sometimes the blockage just isn’t going to go away, and you’ll use creative
solutions to succeed. Or you’ll accept that the project just can’t happen in
its current form.

Let’s look at how to use these techniques when you’re blocked in various
ways: waiting for another team, a decision, an approval, a single person, a project
that’s not assigned, or all of the teams involved in a migration.

BLOCKED BY ANOTHER TEAM

We’ll start with a classic dependency problem: your project is on track but you
need work from another team, and it’s not happening. If you’re lucky, a leader of
that team is telling you up front what’s going on and when they’ll be ready to go.
If you’re less lucky, the team has stopped replying to your emails and you’re piec-
ing together what’s going on. Waiting on them is frustrating. They have all the
information you have, and they know there’s a launch date! Why don’t they care?
Go find out.

What’s going on?

If a team you depend on is not delivering what you need, there’s almost certainly
a great reason why. Three likely reasons are misunderstandings, misadventures,
or misaligned priorities.

WHY HAVE WE STOPPED? | 191

Misunderstandings
Even in organizations with clear communication paths, information can
get lost. One team thinks it’s obvious that something needs to happen by a
specific date. The other team has no idea that there’s a deadline, or has
taken away a different interpretation of what they’ve been asked to do.

Misadventure
Life happens. Someone quits, or gets sick, or needs to take abrupt leave.
The team you depend on is understaffed, overloaded, or blocked by their
own downstream dependencies. It might be impossible for them to meet
the deadline, no matter how important it is.

Misalignment
Maybe the team has impressive velocity—just not on your project. Even if
you’re working on something vital, the other team may have an even
higher priority. Take a look at Figure 6-2. Project C is Team 2’s highest pri-
ority, and they’re focused on it above any other work they have to do. But
it’s only Team 1’s third-highest priority! They’ll get to it if they have time.

Figure 6-2. Teams with misaligned priorities. If each team works on its most important project,
Team 2 will likely be waiting on Team 1.

192 | THE STAFF ENGINEER’S PATH

Navigating the dependency

Here are those four techniques in action:

Understand and explain Start by understanding why the other team isn’t mov-
ing. Do they not understand what’s needed? Is something in their way? Under-
standing means talking to each other. If DMs or emails aren’t working, take it to
a synchronous voice conversation–yes, this means a meeting. If the team is hard
to reach, going through back channels might help: hopefully you’ve built a bridge
with someone on or near the team. (See Chapter 2.)

Explain why the work is important, and spell out what you’re hoping they’ll
deliver and by when. Give them another chance to tell you whether that’s realis-
tic, or whether there’s something else they can do that would solve your problem.

Make the work easier If you need something from a team that doesn’t have time
to provide it, try asking them for something smaller. That might mean a single
feature you absolutely need, instead of the several you’d really like. If they’re
blocked by dependencies of their own, think about whether there’s anything you
can do to help unblock them: if you can solve their problem so they can solve
yours, then everyone wins! Sometimes you can end up taking a side quest down
a chain of dependencies until you find a small nudge that will let everyone start
moving again.

Alternatively, you might be able to offer to do part of the work for them, for
example by having another team write code and send it to them for review. Be
aware that this offer might not be as helpful as you intend: supporting an
untrained person through making a change in a difficult codebase, for example,
can often take more effort than doing it yourself. Don’t be offended if the team
doesn’t take you up on the offer.

Get organizational support If the team you’re waiting for is doing something
they think is higher priority, find out whether they’re right. If priorities are
unclear, ask your organization’s leadership to adjudicate on which project should
“win.” Be respectful and friendly, but ask enough questions to understand. I
hope it goes without saying, but if your organization considers your work to be
less important, you should leave the other team alone to focus on the thing they’re
doing.

But if your blocked project is genuinely more important, this may be a case
for escalation to a mutual leader. No matter how frustrated you are, deliver the
unemotional facts: explain what you need, why it’s important, and what’s not
happening. Consider discussing the situation with your project sponsor or

WHY HAVE WE STOPPED? | 193

manager before escalating. They may have alternatives to suggest, or may be will-
ing to have some of those conversations for you.

Warning

Escalating doesn’t mean raising a ruckus or complaining about the other team. It

means holding a polite conversation with someone who has the power to help, and

trying to solve a problem together. Keep it constructive.

Make alternative plans If the team’s really not going to be available, you’ll need
to find another way around the blockage. That might mean rescoping your
project, choosing a different direction, or shipping later than you’d intended to. It
is what it is. Make sure you talk with your stakeholders and project sponsor about
any change of dates and make sure they understand what you’re blocked on.
They may have ideas for unblocking that haven’t occurred to you.

BLOCKED BY A DECISION

Should the team take path A or path B? Should they design for a single, specific
use case or try to solve a broader problem? How should they lay out their archi-
tecture, APIs, or data structures? So much depends on the details, and it’s diffi-
cult to make progress without them. You could design for maximum flexibility,
but that’s expensive, and you want to avoid overengineering. But it will feel terri-
ble if you have to throw your solution away in a year because you took the wrong
path. So you ask your stakeholders for specific requirements, use cases, or other
decisions. And you get…nothing. How can someone ask you to build something
and not know what they want?!

What’s going on?

When you’re waiting for a decision from someone else, it’s tempting to think of
their work as easier than yours. They just need to decide what they want, right?
Then you have the actually difficult work of building it. I’ve seen this bias a lot for
decisions that need to come from outside engineering. “Why won’t the product
team just…?” As with many uses of the words “just” or “simply,” the answer will
be complicated. Product or marketing (or anyone else) can’t make a snap deci-
sion any more than you can. Or they may be waiting for information from some-
one they depend on before they can decide.

They might also not understand what you’re asking. This is especially com-
mon when you have engineers explaining an engineering problem to nonengi-
neers. I’ve seen an engineer ask a stakeholder, “Do you want X or do you want

194 | THE STAFF ENGINEER’S PATH

Y?” and hear “Yes, that would be great!” in response. That stakeholder isn’t
intentionally being obtuse! Different contexts and different domain languages
mean that they don’t see much distinction between the two things you’ve asked
for, so it’s impossible for them to make an informed choice.

Navigating the unmade decision

When your decision is blocked on someone else’s decision, have empathy: the
decision is likely not any easier where they’re standing. But, of course, you don’t
want to wait forever, so here are some techniques for making progress when
someone’s having trouble deciding.

Understand and explain Remember that you’re on the same side. Rather than
seeing the person you’re waiting for as an obstacle, see if you can navigate the
ambiguity together. Understand what information or approval they need to make
a decision and try to help them get it. Make sure they know why it matters and
what can’t happen until and unless they decide. Explain the impact on the things
they (not you!) care about. If they’re blocked, understand who or what they’re
waiting for.

Make the work easier Think about how you’re asking the question, and build a
mental model of how the other person is receiving it. Really try to get into their
head: if you were them, how might you interpret the words? Are there easy mis-
understandings? Think about whether you can use pictures, user stories, or
examples to reframe the question. The decision might be easier once everything
clicks for them.

Sometimes the problem is that the decision doesn’t have a clear owner and
the various stakeholders just can’t agree. If the decision you need is blocked by
conflict, consider playing mediator, helping each side understand the other’s
point of view and find a solution that suits them both. If your decision makers
are blocked by their decision makers, give them the information they need in the
format they need to take back. Take the time to give them talking points that the
people they’ll need to interact with will understand. And if some parts of the deci-
sion are more important than others, explain what’s hard or expensive to reverse
later and what doesn’t really matter.

Get organizational support If you’re still not able to get a key decision made,
talk to your project sponsor about what they’d like to do. They may have some
ideas about paths forward, or be in some rooms you’re not in where they can
push for a decision to happen.

WHY HAVE WE STOPPED? | 195

1 Consider Lightweight Architectural Decision Records for showing why you made the choice you did.

Make alternative plans Moving a project ahead with a major decision still
unmade tends to be unsatisfying and complicated: when you have to stay open to
all kinds of future directions, the solutions can’t be as sleek and elegant. They’re
often more expensive too. But sometimes keeping your options open is the best
choice you have available.

Alternatively, sometimes it’s OK to make your best guess about the right
path and take the risk that you’re wrong. If you do guess, document the trade-offs
and the decision.1 Make sure the decider knows that you’re guessing and under-
stands the implications of the direction you chose. Spend some time thinking
about the worst that could happen and what you might later wish you’d done,
and mitigate those risks in any way you can.

Finally, be realistic. If your organization can’t make this crucial decision, is
working around it going to be enough? Will you just run into the same problem
for the next decision? It may be time to accept that you just can’t continue the
work for now. If that’s the case, talk to your project sponsor, tell them what
you’ve tried, and make sure they agree that it’s not possible to proceed.

BLOCKED BY A SINGLE $%@$% BUTTON CLICK

We’ve all been there, and it’s incredibly frustrating. You’re waiting on a team or
an approver that just needs to check a box, deploy a config, or review a five-line
pull request. It’ll take them 10 minutes! Why don’t they just click the freakin’
button?!

What’s going on?

I used to be on a team that configured load balancing for everyone else at the
company. Our documents said we needed a week’s notice to add a new backend
to our balancers but, truthfully, each request took about half an hour. We needed
to provision extra capacity, change configurations, and restart services. It was a
frequent task, and a straightforward one for someone who knew what they were
doing. Other teams knew that what we were doing wasn’t rocket science, so we
regularly got requests like “We’re launching tomorrow, so please set up our load
balancing today.” And, usually, we didn’t.

Why did we insist on a week’s notice? Because these configurations weren’t
our only work. Hundreds of teams used our banks of balancers, and load
balancing was just one of the four critical services my team supported. We didn’t

196 | THE STAFF ENGINEER’S PATH

https://oreil.ly/BO1Kq

2 Looking back, I have much more sympathy for the other teams. The number of configurations needed to
run a service in production was massive, and any team coming up to a launch had a lot to think about.
Yes, they probably should have realized they needed load balancing ahead of time, but we were one of 15
prelaunch conversations they needed to have. And we should have figured out a way to replace our man-
ual steps with something self-service for the most common cases. Perspective.

want to react constantly: we wanted to plan out our weeks, and to make these
configuration changes in batches rather than continually restarting services every
time. As a result, we had little sympathy for people who came in hot and angry
about why we hadn’t done the thing they’d told us about only a few hours ago.
Our team motto became “lack of planning on your part is not an emergency on
mine.”2

Once again, the world looks very different when you’re on the other team!
Your request is only one small part of someone’s work, one little block on their
time graph. It may be only a single button click for them, but they have a lot of
other people sending them unclicked buttons too. They might be understaffed
and struggling. They might be finding edge cases as they work to improve their
operations. I’ve seen teams realize that their process for handling requests can’t
scale, and dedicate some team members to building a better approach, making
the team short-staffed and even slower in the short term.

Bear in mind that other teams often take on accountability when they give
approval. When you ask a security team to “just click the button” to approve your
launch, or a comms team to approve your external messaging, you’re asking
them to share (or entirely own!) responsibility if something goes wrong. They
shouldn’t do that lightly.

Navigating the unclicked button

If the team is just not doing the work, then you can use most of the mechanisms
for handling blocked dependencies that I discussed earlier in the chapter. But if it
turns out that there’s a standard way of interacting with them and you didn’t use
it, you’ll need a different approach. If you’re not in a real hurry, maybe you can
just wait and let the team get to the work when they get to it. But if you have a
real deadline, you can’t exactly go back in time and use the process. Here are
those techniques again:

Understand and explain If you really need to skip the queue, try asking. Be as
polite and friendly as possible: you’ll get better results by apologizing rather than
yelling at the busy team.

WHY HAVE WE STOPPED? | 197

If someone goes out of their way to help you, say thank you. In companies
that have peer bonuses or spot bonuses, there’s already a structure for saying
thank you: use it. If the team is located together, can you send them a thank-you
gift, like fancy tea or chocolate? At least include them in the list of people you
thank in the launch email. Afterward, you won’t be remembered as the team that
asked for something at the last minute, you’ll be remembered as the team that
built bridges and made friends.

Make the work easier Just like with a team dependency, make the thing you
need as small as possible. Structure your request so it’s easy to say yes to, with as
little reading needed as possible. (See Figure 6-3 for an example.) If you have
access to other kinds of requests the team gets, look at what problems tend to
arise: what information is missing, what’s complicated, what’s controversial. Try
to make your ticket be one of the easy ones, the kind that the person doing the
work picks up first because they won’t need to think too hard about it.

Figure 6-3. A request with all of the information laid out and not much reading to do.

Get organizational support If you really can’t get help any other way and the
deadline matters, you may need to ask for help skipping the queue. Be warned:
escalating may build bad blood with the team you’re looking for help from:
nobody likes having their director or VP asking them to move a request to the
front of the line. Mitigate any potential animosity as much as possible by being
clear that you understand why the team has this process, and that you’re apolo-
getically asking to circumvent it just this once.

Make alternative plans It’s possible that having (or making) a connection with
someone on that team will be enough to raise the priority. (This isn’t how the
world should work, but often it’s how it does work.) If none of these options do
work, though, you may just be waiting. Let your stakeholders know you’ll be
delayed.

198 | THE STAFF ENGINEER’S PATH

BLOCKED BY A SINGLE PERSON

If waiting for a team is frustrating, it can be even worse when a whole important
project is waiting on a single person. The work is allocated, it’s on someone’s desk,
and they’re just not doing it.

What’s going on?

I once had a project blocked by a coworker who needed to write a couple of short
Python scripts to solve a problem. Weeks passed, and the scripts didn’t material-
ize, and my urge to just write them myself got stronger every day. My colleague
always had a good excuse: there was an outage, or he’d needed the day off, or his
computer had a hardware problem that needed to be fixed. After a few weeks of
being frustrated at his lack of progress, I realized he wasn’t slacking: he was
intimidated. He’d come from an operations role and had been used to the kind of
interrupt-driven work where you bounce from fire to fire, rarely getting a block of
focus time. This project was his opportunity to begin writing code, but he didn’t
really believe he could do it, and so he couldn’t get started.

The reasons your colleague gives you for being blocked aren’t necessarily the
real ones. The person could be intimidated, stuck, or oversubscribed. They could
be stressed out about something in their personal life that makes it impossible to
focus, or they might be getting messages from their leadership about what’s
most important—and are nervous to tell you that your project isn’t on that list.
Or maybe they didn’t understand what you were asking for the first two times
you explained it, and they’re too embarrassed to ask a third time. All of these
causes look the same from the outside: the person’s just not doing the work.

Navigating a colleague who isn’t doing the work

When someone is having trouble getting their work done, there are some ways
you can help. Let’s be clear: you’re not this person’s boss or therapist, and it’s not
your role to fix their procrastination. But you may be able to get the outcome you
want and, if it’s a less experienced person, take the opportunity to teach them
some skills. Here’s what you can do:

Understand and explain See if you can learn more about what’s going on with
your colleague. Next time you talk with them, don’t just accept their promise that
the work will be ready in another week: dig a little deeper. You might not be able
to find out what’s really going on, but you’ll get a sense for whether it’s some-
thing you’ll be able to help with.

WHY HAVE WE STOPPED? | 199

3 If you’re the procrastinator, consider the calendaring trick I mentioned in Chapter 4: put the task you
need to do in your calendar. If even understanding the first step is difficult, make a calendar block just for
figuring out what the first step of the work will be, and schedule a separate block for working on that step.
Give Future You the smallest possible tasks to do.

Be very clear about why the work is necessary. This is particularly useful
when you’re waiting on a more senior colleague, who (presumably!) is making
deliberate judgments about relative importance and not just procrastinating.
Describe the business need, and show what can’t happen until their work hap-
pens. If they have a heavy workload, ask them to let you know if they won’t be
able to get the work done, so you’ll have time to find an alternative. Consider set-
ting an earlier go/no-go deadline after which you’ll both understand that they’re
not going to be ready in time and you should find an alternative approach.

Make the work easier Make it as easy as possible for the person to do the thing
you want. That might mean adding structure, breaking the problem down, or
creating milestones: when the project is too difficult, sometimes even thinking
about how to break it up can be too difficult.3 Don’t obfuscate the request by mak-
ing the person search through a document for action items assigned to them or
intuit what you’re asking them to do: just spell out what you need. Look at Brian
Fitzpatrick and Ben Collins-Sussman’s “Three Bullets and a Call to Action” tech-
nique for asking for something from a busy executive: it works here too!

What Are You Asking For?

I love the “Three Bullets and a Call to Action” method that Brian Fitzpa-

trick and Ben Collins-Sussman outline in their book, Debugging Teams

(O’Reilly). As they write: “A good Three Bullets and a Call to Action email

contains (at most) three bullet points detailing the issue at hand, and

one—and only one—call to action. That’s it, nothing more—you need to

write an email that can be easily forwarded along. If you ramble or put

four completely different things in the email, you can be certain that

they’ll pick only one thing to respond to, and it will be the item that you

care least about. Or worse, the mental overhead is high enough that your

mail will get dropped entirely.”

200 | THE STAFF ENGINEER’S PATH

4 It is really difficult to watch work that you care about being done badly, but try not to step in and do it for
them. If it’s critical that the problem gets solved right now, see if you can work with the other person and
get them to take each step, rather than just doing it yourself. Your colleague won’t learn to drive if you
take the wheel.

If your colleague is overwhelmed, this may be an opportunity for coaching.
Reassure them that what they’re working on is legitimately difficult but learna-
ble. Help them, but try not to take over.4 Ask questions, answer questions, and
help them find their way.

If your colleague seems willing to do the work but is having trouble getting
started, see if you can work with them on it. This was the solution for the collea-
gue I mentioned earlier: pairing on the scripts got him past the intimidating first
steps of the work and able to continue on his own. Pairing can also take the form
of whiteboarding together or sitting down together to edit a document at the
same time. This last one can sometimes be a good approach when you’re waiting
on your manager: you can meet for a one-on-one meeting, suggest that they use
the time to do the thing you need, and stay there with them so you’re available to
answer any questions they have along the way.

Get organizational support While you should try other approaches before esca-
lating, ultimately someone is not doing their job, and that’s a people manage-
ment issue. Having a difficult conversation with their manager is uncomfortable,
but if the other person is the reason a project is going to fail, you’re not doing
your job either if you ignore it. Just like I’ve said for other situations, escalating
doesn’t mean complaining: it means asking for help. If your colleague is blocked
because they’re working on something their manager thinks is more important,
for example, talking to that manager may be the only way to adjust the priorities.

BLOCKED BY UNASSIGNED WORK

What about when the work isn’t assigned to anyone? When a group of teams are
working together to solve a problem, sometimes there’s an effort that everyone
agrees needs to happen but that isn’t on anyone’s roadmap. It’s too big for any
one engineer to tackle, it needs a lot of dedicated time, or it will involve creating a
new component that will need ongoing ownership and support: it needs a team
to own it. Maybe there are several different teams that consider themselves
involved in the work—they’d turn up to a meeting about it and have many opin-
ions on any RFC—but none of them intend to commit code to achieve it.

WHY HAVE WE STOPPED? | 201

What’s going on?

This is an example of a plate tectonics problem (see Chapter 2). Every team has
clear boundaries on what they’re responsible for. Strong boundaries can be great
—they keep everyone focused—but now there’s some crucial foundational work
that doesn’t belong to anyone. We saw this situation in the SockMatcher scenario
in Chapter 3. Many engineers cared about the architecture: Geneva’s working
group to discuss the problems drew many participants. But the challenges were
too big for anyone to solve as a side project. Unless it gets dedicated attention, the
work is just not going to happen.

If nobody is assigned to do the work, there’s limited value in breaking it
down, optimizing it, or making plans: you’re stuck until someone owns it. It’s
very common for engineers to keep trying to solve an organizational blocker like
this by putting more effort into the adjacent technical work. (See Figure 6-4 for
an illustrative treasure map: that impassable ridge is your lack of staffing!)

Figure 6-4. Unless you can find a way past the impassable ridge, it doesn’t really matter which of
the first three paths you take. But teams invest a lot of time debating which doomed path to take.

202 | THE STAFF ENGINEER’S PATH

But unless the organizational problem is solved, no amount of designs and
clever solutions will help. The organizational gap is the crux of the problem. If
you can’t solve that, you’re wasting your time.

Navigating the unassigned work

When you’re blocked on work that doesn’t seem to be anyone’s responsibility,
there are a few things you can do.

Understand and explain It’s not always obvious that work is unowned, particu-
larly when there are a lot of teams that are closely adjacent to it. Since you’re the
person most interested in its success, don’t be surprised if other people think
that you’re the owner now. Have a whole lot of conversations, follow the trail of
clues, and figure out exactly what’s going on. Interpret the information and draw
explicit conclusions. Then write them down! (See the following sidebar.) Keep it
brief and make clear statements: just like I said about design documentation in
Chapter 5, wrong is better than vague, and you won’t uncover any misunder-
standings unless you remove the ambiguity.

Rollup

Denise Yu, a manager at GitHub, describes “the art of the rollup”: sum-

marizing all of the information in one place to “create clarity and reduce

chaos.” It’s a versatile technique, useful in any situation where there’s a

ton of backstory and several different narrative threads and where some

people might not have kept track of what’s going on.

Aggregating the facts that go into the rollup is a great way to build

your knowledge and make sure you understand what’s going on. But

writing it all down also might mean you synthesize new information that

nobody had articulated before. Perhaps Alex says, “The new library will

give us authentication for this end point.” And later Meena tells you, “We

won’t be able to upgrade to the new version of the library until Q3.” You

can write down both facts, but also the interpretation, “We won’t have

authentication until at least Q3.”

WHY HAVE WE STOPPED? | 203

https://oreil.ly/5U1wf

That conclusion might seem obvious with all of the context, but if

nobody has reached it before, it may come as a shock to some. By spell-

ing it out, you give everyone an opportunity to react to the information

and course-correct.

Make the work easier If you have time to mentor, advise, or join the team doing
the work, mention that in your rollup. Directors may be more inclined to build a
team around an existing volunteer, and the chance to learn from a staff+ engi-
neer can be an incentive that they can offer to other team members they’re invit-
ing to join.

Get organizational support Your highest-value work on this project will be advo-
cating for organizational support and an owning team. Before you set out to find
a sponsor for the work, make sure you’ve honed your elevator pitch and can
explain why the problem is worth your organization’s time. You’ll want your
sponsor not just to believe you, but to be able to justify the effort to their peers
and leadership if they need to.

Make alternative plans If there’s been a credible promise of staffing, be patient
and give it time to happen: project staffing involves readjusting teams, which
managers and directors (understandably) prefer to be deliberate about. But if you
can’t get a commitment for anyone to own the work, or if it’s always “next quar-
ter” without any specifics about where the staffing will come from, that’s a sign
that your project isn’t a high priority for the organization and should be
postponed.

BLOCKED BY A HUGE CROWD OF PEOPLE

The last type of roadblock I’m going to talk about is when the project needs help
from everyone: it’s the kind of deprecation or migration where all of the teams
using a service or component need to change how they work. Chances are, not all
of them will want to.

I’ve worked on many, many software migrations, and I know how frustrating
they can be. You have good reasons for moving off an old system, you know
exactly what needs to happen and you’ve communicated plenty, but other teams
are ignoring your emails. When you chase them, they say they’re busy—but
you’re busy too! Why can’t they see that this work matters?

204 | THE STAFF ENGINEER’S PATH

What’s going on?

Every team and every person has their own story. One might be broadly in favor
of the migration but just doesn’t have time. Another might be opposed to the
change: they might prefer the old system, or feel that the new one is missing
some feature they care about. A third group might not have feelings either way,
but they’re just tired of a constant, demoralizing stream of upgrades, replace-
ments, and process changes that they don’t seem to get any benefit from.

The people pushing for the migration and the people pushing against are all
being reasonable. But being stuck in a half-migration situation isn’t good for any-
one: teams need to spend time on supporting both the old system and the new
system, and new users may have to spend time understanding which to use, par-
ticularly if the migration stalls and seems at risk of being canceled.

Navigating the half-finished migration

The half-migration slows down everyone who has to engage with it. This is a
place where a staff engineer can step in and have a lot of impact. Here are some
ways you can get everyone over the finish line.

Understand and explain The narrative of a migration can get lost, and I’ve some-
times heard a migration framed as “that infrastructure team just wants to play
with new technology” when the reality is an immovable business or compliance
need that infrastructure team doesn’t love either. Equally, I’ve heard “that prod-
uct team doesn’t care about paying down technical debt; they only want to create
new features,” when the team in question has already spent half of the quarter
reacting to other migrations and are desperate to get started on their own objec-
tives. Understand both sides and help tell both stories. Show why the work is
important and also why it’s hard. Be a bridge.

Make the work easier Once again, the key to convincing other people to do
something is to make the thing easy to do. In general, lean toward having the
team that’s pushing for the migration do as much extra work as possible, rather
than relying on every other team to do more. If there’s any step you can auto-
mate, automate it. If you can be more specific about exactly what you want each
team to do—which files you want them to edit, for example—spend extra time
providing that information. Also, it hopefully goes without saying, but the new
way has to actually work without forcing the teams to jump through hoops.

Try to make the new way the default. Update any documentation, code, or
processes that point people toward the old path. Identify people who might

WHY HAVE WE STOPPED? | 205

5 This only works if the graph is showing progress: if it’s clear no one is doing the work, it can backfire. But
the social side of influencing people is such a great tool: “Everyone else is doing it, why aren’t we?”

encourage the old way and ask for their help. If you have the organizational sup-
port for it, consider an allow-list of existing users, or some friction to make the
old way harder to adopt. One approach I’ve seen is to keep the old way working
fine so long as new users write “i_know_this_is_unsupported” or similar as part
of their configuration.

Show the progress of the work. I worked on one project where I needed to
get hundreds of teams to change their configs to use a different endpoint. When
I shared the graph showing how many had been done and how many were left to
do, people were more eager to do their part to get the numbers down. Something
in our brains really likes seeing a graph finish its journey to zero!5

Some teams will be genuinely too busy to move, or will have a use case that
isn’t quite supported by your automation. There might also be some components
that nobody owns anymore, so there’s no team to update them. Can you pair with
the team, or make the change for them?

Get organizational support The migration will be easier if you can show that
this work is a priority for your organization. The corollary to this, of course, is
that the work should actually matter. If teams are snowed under by changes, your
organization should be prioritizing the most important ones and finishing the
first set of changes before starting the next set. If you can’t convince your leader-
ship that your migration should be reflected on the organization’s quarterly goals
or list of important projects, maybe it’s a sign that this is not where you should
be spending time right now.

Make alternative plans By the end of the migration, you may need some creative
solutions. If you have an organizational mandate and teams are still not moving,
can you withdraw support for the old way, or even start adding friction along the
path, for example by introducing artificial slowness or even turning it off at inter-
vals? Don’t do this without strong organizational support (and don’t do it at all if
it’s going to break things for your customers; be sensible). If the final teams are
really refusing to move off the old system, can you make them its sole supporters
and owners, so that it runs as a component of their own service? Last out turns
out the lights, friends.

206 | THE STAFF ENGINEER’S PATH

You’re Lost

Let’s move on to the second set of reasons you might have trouble making pro-
gress: you’re just lost. It’s not that you’re blocked by anything that you can see:
you just don’t know the way. This might be because you don’t know where to go
now, because the problem is too hard, or because you’re not sure if you still have
organizational support for what you’re doing. You’ll use different techniques in
each case.

YOU DON’T KNOW WHERE YOU’RE ALL GOING

Imagine 40 teams working on the same legacy architecture. There’s a single
massive codebase, a decade of regrettable decisions, a tangled mess of data that’s
owned by everyone all at once. Teams are scared to refactor existing code, so they
bolt new features onto the outside. You’ve been tagged as the leader who is
responsible for fixing it and you have a team dedicated to the work. There’s an
organizational goal to “modernize the architecture.” It feels like you have a clear
mandate to do the work! And yet…there are so many decisions to make. There
are so many stakeholders, a huge number of comments on every document, too
many voices in every meeting. It’s been a few months and you’ve made no real
progress.

What’s going on?

We saw this with the SockMatcher scenario in Chapter 3: it’s difficult to solve a
problem that half the company cares passionately about! Everyone has an opin-
ion. Everyone’s sure they know the right thing to do. In this example, there’s
almost certainly a group of people advocating for creating microservices. Another
faction might want feature flagging and fast rollbacks so that it’s safer to make
changes. A third wants to move to event-driven architecture. A fourth doesn’t
care what happens so long as the underlying data integrity problems are resolved.
Those are just four of the many fine suggestions.

A huge group tackling an undefined mess will almost inevitably get stuck in
analysis paralysis. Everyone agrees that something should be done, but they can’t
align on what. You can’t steer this project because it’s just a bunch of ideas:
there’s no project to steer.

Choosing a destination

You can’t start finding a path to the destination until you’re very clear about what
that destination is. Here are some approaches for choosing it:

WHY HAVE WE STOPPED? | 207

6 This will never entirely work, but keep trying. The more you can keep people out of the weeds, the more
chance you have of succeeding.

Clarify roles With a group this big, the leader can’t be just one voice in the
room. Be clear about roles from the beginning. Be explicit that you want to hear
from everyone, but that you’re not aiming for complete agreement: you will ulti-
mately make a decision about which direction to take. If you don’t feel that you
have the power to name yourself the decider, ask your project sponsor or organi-
zational lead to be clear that they will back you up. If you don’t have that kind of
organizational support, you may not be set up to succeed.

Choose a strategy Unless you know where you’re going, you have little chance
of getting there. Set a rule that, until you all agree on exactly what problem you’re
solving, nobody is allowed to discuss implementation details.6 If you can, choose
a small group to dig into the problems and create a technical strategy. Emphasize
that any strategy will, by definition, make trade-offs, and that it can’t make every-
one happy. You’ll pick a small number of challenges, and leave the other real
problems unsolved for now. Chapter 3 has lots more on how to write a strategy:
set the expectation that it will not be a short or painless journey.

Choose a problem If you’ve been assigned engineers who are eager to start cod-
ing in the service of the goal, it can be frustrating (and politically unpopular) to
say that you need to spend time on a strategy first. If you really don’t have time to
evaluate all of the available challenges and rank the work by importance, choose
something, any real problem. Set expectations that you won’t allow the group to
get diverted by the other (very real) issues, but that you fully intend to return to
them after solving the first one. Once again, wrong is better than vague: any
deliberate direction will probably be better than staying frozen in indecision.

Choose a stakeholder One way you can choose a problem to solve is by choos-
ing a stakeholder to make happy. Rather than solving “the shared datastore stinks
and we need to rethink our entire architecture!” can you solve “one team wants to
move its data elsewhere”? Reorient the project around getting something to some-
one. Aim to solve in “vertical slices”: first you help one stakeholder complete
something, and then another. Progressing in some direction can help break the
deadlock and clarify the next steps. Once you’re showing some results, consider
revisiting the idea of creating a strategy and having a big-picture goal.

208 | THE STAFF ENGINEER’S PATH

7 As Leslie Lamport cautioned, you should “specify the precise problem to be solved independently of the
method used in the solution.” He wrote, “This can be a surprisingly difficult and enlightening task. It has
on several occasions led me to discover that a ‘correct’ algorithm did not really accomplish what I wanted
it to.”

YOU DON’T KNOW HOW TO GET THERE

What if you know exactly where you’re going? The destination is well understood
and there aren’t blockers in your path, but you’re still not getting there. You’re
not sure how to solve the next problem in front of you, or the project is huge and
you’re not even sure which problem you’re supposed to solve next. I mentioned
last chapter how self-fulfilling imposter syndrome can be: if you’re finding the
work difficult, that can become a vicious cycle that makes you have less capability
for tackling it. Maybe you’re avoiding thinking about it, but the longer you ignore
the project, the worse it feels.

What’s going on?

The project is just difficult! It might be that there are a massive number of topics
to keep track of and you feel entirely out of your depth, particularly when some-
thing is going wrong. Or, there’s one impossible task, a technical challenge or an
organizational hurdle, and you just don’t know how to get past it. If you haven’t
seen this kind of problem before, it might take you time to even recognize what’s
happening, and longer to find solutions.

Finding the way

The path forward is unknown but not unknowable! Here are some techniques to
start finding your way:

Articulate the problem Make sure you have a crisp statement of what you’re try-
ing to do. If you’re struggling to articulate it, try writing it out or explaining it out
loud to yourself. Notice places where you could be more precise about who or
what you’re referring to or what is happening versus what should be happening.
Refine your understanding by talking through the problem with anyone who’s
willing to discuss it with you.

Revisit your assumptions Is it possible that you’ve already assumed a specific
solution and are struggling to solve the problem only within that context?7 Are
you looking for a solution that’s an improvement on every axis when trade-offs
might be acceptable? Are you dismissing any solutions because they seem “too

WHY HAVE WE STOPPED? | 209

https://oreil.ly/LO1jT

easy”? Explaining out loud why you think the problem can’t be solved might help
you discover some movable constraints you hadn’t noticed before.

Give it time Have you ever been blocked by a coding or configuration problem
that you just couldn’t crack, and then the next morning you could immediately
solve it? Sleep is amazing. Vacations can do the same thing. I’ve found that if I
take a few days away from a problem, I’ll almost always come back with better
ideas, even if I haven’t thought about it in the meantime.

Increase your capacity Trying to solve a problem in the tiny spaces between
meetings will constrain the ideas you can have. Schedule yourself some dedica-
ted time to really unpack the situation in your mind: it can take a few hours even
to clear out the noise of whatever else you were thinking about. Aim to bring
your best brain to that meeting with yourself: for me that means good sleep, non-
stodgy food, plenty of water, and a room with good light and air. You know your
own brain: do whatever makes you smart.

Look for prior art Are you really the first person to ever solve a problem like
this? Look for what other people have done, internally and externally. Don’t for-
get that you can learn from domains other than software: industries like aviation,
civil engineering, or medicine often have well-thought-out solutions to problems
tech people think we’re discovering for the first time!

Learn from other people Talking through the problem with a project sponsor or
stakeholder can sometimes give you enough extra context or ideas to find your
next steps. You can also learn from people outside your company. Most technical
domains have active internet communities. See if there’s a place where experts
on the topic hang out, and spend time there absorbing how they think and what
keywords and solutions they mention that you don’t know about.

Try a different angle Spark creative solutions by looking from another angle. If
you’re trying to solve a technical problem, think about organizational solutions.
If it’s an organizational problem, imagine how you’d approach solving it with
code. What if you had to outsource it: who would you pay to solve this problem
and what would they do? (Might that be an option?) If you weren’t available, who
would this work get reassigned to and how would they approach it?

Start smaller If you’re overwhelmed with tasks and it’s not clear what comes
first, try solving one single small part and see if you can feel a sense of progress
and make the rest of the work feel more achievable. Another angle is to ask your-
self whether you really need to solve the problem well. Could a hacky solution be

210 | THE STAFF ENGINEER’S PATH

good enough for now? Or can you start with a terrible solution and iterate so that
you’re not starting with a blank page?

Ask for help While it might feel like your skills are the only thing standing
between success and failure, you’re not alone. Ask for help from coworkers, men-
tors, or local experts. If you’re someone who hates asking for help, remember
that by learning from other people’s experiences, you’re amortizing the time they
had to spend learning the same thing: it’s inefficient to have you both figure out
solutions from first principles.

YOU DON’T KNOW WHERE YOU STAND

Here’s the last form of being lost and, in some ways, it’s the scariest: you don’t
know if your work is still necessary. A comment you heard at the latest all-hands
meeting might make you nervous that a new initiative will derail yours. Maybe
you’ve noticed that your manager or project sponsor is checking in less often,
and seems less interested in your results. Or there was a company announce-
ment that listed all of the important projects—and yours wasn’t on it. Yikes.
Some of the people you’re working with seem disengaged: they talk about your
project more as “if” than “when” and they’re prioritizing other work. Have they
heard something you haven’t? Is the project still happening? Nobody is telling
you anything. Are you still in charge?

What’s going on?

Organizational changes, leadership changes, and company priority changes can
all affect enthusiasm for your project. If you have a new VP or director, they may
not think the problem you’re solving is important, or, sometimes worse, they
may think it’s so important that they’re solving it with a much bigger scope than
you had taken on and a different lead. Your project genuinely could be at risk of
being killed, and nobody’s thought to tell you. This missing communication is
especially common if your leadership position is an unconventional one—for
example, if you’re in an organization adjacent to the one that’s doing most of the
work, or if you’re leading people who are more senior than you are. It’s easy to be
forgotten when priorities change, or left out of meetings where decisions are
happening.

Or it might not be that at all! Your project might be going so well that you’re
just getting less attention from your leadership. When there are fires elsewhere,
nobody checks in on a project that’s humming along. Silence could mean “keep
doing what you’re doing.”

WHY HAVE WE STOPPED? | 211

Getting back on solid ground

Continuing on the same path without knowing where you stand is just a recipe
for stress, and you may be wasting your time. Here are some things you can do:

Clarify organizational support Brace for the idea that you might not like the
answers, and go find out what’s happening. Talk with your manager or project
sponsor, explain what you’ve heard, and ask whether your project is intended to
continue.

Clarify roles If you’re the lead but find yourself hesitant to claim that title, or if
you aren’t sure what you’re allowed to do, you need to formalize roles. The RACI
matrix I described in Chapter 5 might be a useful tool here, as might the role
description document from Chapter 1. By the way, if you’re trying to run a project
with a title like “unofficial lead,” that’s an invitation to fail—if you’re the lead and
nobody else knows you are, you’re not the lead.

Ask for what you need If you’re missing the authority, the official recognition,
or the influence to do the work, who can help you find those things? It’s natural
to want some reassurance that your project is still important. It’s fine to ask for a
mention of the project at an all-hands meeting or to have it listed on the organi-
zation’s goals. You might not get what you want, but you definitely won’t if you
don’t ask.

Refuel It’s demoralizing to work on something that nobody else seems to care
about. If you and your team are feeling low on energy, you may need to deliber-
ately build that back up again. Refueling could mean setting new deadlines,
building a new program charter, or having a new kickoff or off-site meeting:
resetting with “Welcome to Phase 2 of the project” is somehow more motiva-
tional than “Let’s keep doing what we’ve been doing, but I swear it will be differ-
ent this time.” If you can add a new team member or two who are raring to go,
their enthusiasm can be enough to get the team moving again.

You Have Arrived…Somewhere?

There’s a third reason projects stop: the team thinks the project has reached its
destination…yet somehow the problem is not solved.

I’ve seen many projects end like Figure 6-5: just short of their goal. All of the
tasks on the project plan are completed, the team members have collected their
kudos and moved on to other things, yet the customer is still not happy.

212 | THE STAFF ENGINEER’S PATH

Figure 6-5. The team declared victory and went home—but there was another, better treasure
they never got to.

In this section we’ll look at three ways you might declare victory without
actually reaching your destination: doing only the clearly defined work, creating
solutions you don’t tell your users about, and shipping something quick and
shoddy. Watch out for these end states!

BUT IT’S CODE COMPLETE!

I feel like I’ve had this conversation a hundred times in my career:

“I’m excited for the new foo functionality. When will it be available?”

“Oh, it’s done!”

“Amazing! How do I start using it?”

“Well…”

WHY HAVE WE STOPPED? | 213

8 They also distinguish between “done” and “done-done,” and credit a 2002 article from author and agile
coach Bill Wake where he asks the enigmatic question, “Does ‘done’ mean ‘done’?”

The “Well…” is always followed by the reasons I can’t use it today. Foo still
has hardcoded credentials; it’s only running in staging, not in production; one of
the PRs is still out for review. But it’s done, the other person will insist. It’s just
not usable yet.

What’s going on?

Software engineers often think of their job as writing software. When we plan
projects, we often only list the parts of the work that are about writing the code.
But there’s so much more that needs to happen to allow the user to get to the
code: deploying and monitoring it, getting launch approvals, updating the docu-
mentation, making it run for real. The software being ready isn’t enough.

Heidi Waterhouse, a developer advocate for LaunchDarkly, once blew my
mind with the observation that “nobody wants to use software. They want to
catch a Pokémon.” A user who wants to play a video game doesn’t care what lan-
guage the code is in or which interesting algorithmic challenges you’ve solved.
Either they can catch a Pokémon or they can’t. If they can’t, the software may as
well not exist.

Making sure the user can catch a Pokémon

As the project lead, you can prevent work from falling through the cracks by look-
ing at the big picture of the project, not just which tasks were done. Here are
some techniques you can use:

Define “done” Before you start the work, agree on what the end state will look
like. The Agile Alliance proposes setting a definition of done, the criteria that must
be true before any user story or feature can be declared finished.8 This might
include a general checklist for all changes—I’ve often seen PR templates include
a section for explaining how the change was tested, for example—as well as a
specific set of criteria for individual projects. Similarly, user acceptance testing
lets intended users of a new feature try out the tasks they’ll want to do with it and
agree that those features are working well. Even internal software can have user
acceptance tests. Until those are completed and the user declares that they’re
happy, nobody gets to claim the project is done.

214 | THE STAFF ENGINEER’S PATH

https://oreil.ly/2Tsnm
https://oreil.ly/2Tsnm
https://oreil.ly/3Mray

Be your own user Is it possible for you to regularly use what you’re building? Of
course, this isn’t always going to apply, but if there’s a way for you to share your
customers’ experience, take the time to do that. This is sometimes called eating
your own dog food or “dogfooding.”

Celebrate landings, not launches Celebrate shipping things to users, rather than
milestones that are only visible to internal teams. You don’t get to celebrate until
users are happily using your system. If you’re doing a migration, celebrate that
the old thing got turned off, not that the new thing got launched.

IT’S DONE BUT NOBODY IS USING IT

Have you ever seen a platform or infrastructure team spend months creating a
beautiful solution to a common problem, launch it, celebrate, and then get frus-
trated that nobody seems to want to use it? They’re sure it’s better: it genuinely
improves its users’ lives. But teams are still doing things the old, difficult way.

What’s going on?

The team is not thinking beyond the technical work. Unfortunately, internal sol-
utions are often marketed like this: we create some useful thing. We give it a cute
name. We (maybe) write a document explaining how to use it. And then we stop.
The thing we created probably has potential users who would love it, but they
have no way to know it exists; if they stumble across it, the name offers no hint as
to what it does. Common search terms for the problem don’t suggest this solu-
tion. I call these “Beware of the Leopard” projects, from one of my favorite parts
of Douglas Adams’s classic book The Hitchhiker’s Guide to the Galaxy (Pan
Books).

“But the plans were on display…”

“On display? I eventually had to go down to the cellar to find them.”

“That’s the display department.”

“With a flashlight.”

“Ah, well, the lights had probably gone.”

“So had the stairs.”

“But look, you found the notice, didn’t you?”

WHY HAVE WE STOPPED? | 215

https://oreil.ly/qHyWM
https://oreil.ly/qHyWM

9 Google used to have a project called Sisyphus, a name that’s memorable to some but an unlikely series of
letters to others. I’ll always be impressed with whoever set up the shortlinks go/sysiphus and go/sisiphus
as redirects to go/sisyphus. It’s a good security practice too; it prevents someone standing up a fake ser-
vice at the misspelled place.

“Yes,” said Arthur, “yes I did. It was on display in the bottom of a locked

filing cabinet stuck in a disused lavatory with a sign on the door saying

‘Beware of the leopard.’”

It’s like the creators of the solution are trying to hide it! The information
exists—someone got to mark their documentation milestone as green—but it will
never be found by anyone who doesn’t know what they’re looking for.

Selling it

Michael R. Bernstein has a great analogy for creating solutions and then not mar-
keting them at all. He says it’s like a farmer planting seeds, watering, weeding,
and growing a crop, and then just leaving it in the field. You need to harvest what
you grew, take it to people, and show them why they want it. The best software in
the world doesn’t matter if users don’t know it exists or aren’t convinced it’s
worth their time. You need to do the marketing.

Tell people You don’t just need to tell people that the solution exists: you need to
keep telling them. A lot of migrations stay at the half-migration stage because
engineers assume that users will just come find the software. Help them find it.
Send emails, do road shows, get a slot at the engineering all-hands. Offer white-
glove service to specific customers who are likely to advocate for you afterward. If
you’re in a shared office, consider putting up posters! Get testimonials. Under-
stand what anyone might be wary of, or unenthusiastic about, and make sure
your marketing shows that you’ve thought about (and hopefully fixed) those prob-
lems. Be persistent and keep telling people until they start telling each other.

Make it discoverable Whatever you’ve created, make it easy to find. This means
linking to it from anywhere its intended users are likely to look for it. If you have
multiple documentation platforms, make sure a search on any of them will end
up at the right place. If your company uses a shortlink service, set up links for all
of the likely names, including the misspellings and any hyphenations people are
likely to guess.9

216 | THE STAFF ENGINEER’S PATH

https://oreil.ly/u65tj

IT’S BUILT ON A SHAKY FOUNDATION

The last type of “done but not really done” I’m going to talk about is one that can
cause a lot of conflict. It’s when a prototype or minimum viable product has gone
into production and the users can use it pretty well, but everyone knows that it’s
hacked together. The user can catch a Pokémon, and the job is done: time to
move on to the next thing, say the product managers! But the engineers know
that the infrastructure won’t scale, the interfaces aren’t reusable, or the team is
pushing appalling technical debt into the future.

What’s going on?

There might be good reasons to ship something as cheaply and quickly as possi-
ble. When there’s a competitive market—or a risk that there’s no market at all—
it’s often more important to get something launched than for that something to be
solid. But when the team has moved on, that cheap solution remains in place.
The code may be untested—or untestable. The feature may be an architectural
hack that everyone else now needs to work around.

I used to work in a data center, a long time ago, and one thing I learned
there is that there’s no such thing as a temporary solution. If someone ran a
cable from one rack to another without neatly cabling and labeling it, it would
stay there until the server was decommissioned. The same is true for every tem-
porary hack: if you don’t have it in good shape by the end of the project, it’s going
to take extraordinary effort to clean it up later.

Shoring up the foundations

While you can get away with shipping shoddy software in the short term, it’s not
a sustainable practice. You’re pushing the cost of the software to yourself in
future. As a staff engineer, you have more leverage than most. Here are some
ways you can advocate for keeping standards high.

Set a culture of quality Your engineering culture will be led by the behavior of
the most senior engineers. If your organization doesn’t have a robust testing cul-
ture, start nudging it in the right direction by being the person who always asks
for tests. Or be the squeaky wheel who always asks, “How will we monitor this?”
or the one who invariably points out that the documentation needs to be updated
with the pull request. You can scale these reminders for the project with style
guides, templates, or other levers. We’ll look at setting standards and causing cul-
ture change in Chapter 8.

WHY HAVE WE STOPPED? | 217

Make the foundational work a user story Ideally, the organization agrees that
shipping solutions isn’t just about features—it’s about preparing for the future.
There’s a healthy balance of feature and maintenance work, and teams build the
time for high quality into the cost of their projects. Even teams that build light-
weight first versions to get early user feedback or take on technical debt to get a
competitive product to market faster always return to improve whatever they’ve
shipped.

Unfortunately, few organizations work in ideal ways. You can help by mak-
ing sure the user stories for the project include any cleanup work you’ll need to
do. You might frame this as part of user experience (nobody’s excited about a
product that’s flaky or falls over a lot), or as laying the foundation for the next
feature. If users file related bug reports or there are action items after outages,
you can sometimes use those to justify the cleanup work. Focus the conversation
back on the customer’s needs and show that the work has a real impact on them.

Negotiate for engineer-led time If your company doesn’t have a regular culture
of cleaning up as you go along, see if it’s possible for you to get momentum
around having regular cleanup weeks. I’ve heard these called “fix-it weeks” and
“tech debt weeks,” and I’ve also seen a fair amount of cleanup happen during
engineering exploration time, like “20% time” or “passion project week.”
Another option is to set up a rotation where one person on the team is always
dedicated to responding to issues and making things better. Don’t get hung up
on the name or whether something really “counts” as technical debt. The point is
that it’s a dedicated time to do work that everyone in engineering knows is neces-
sary.

THE PROJECT JUST STOPS HERE

As you navigate the obstacles and deal with the difficult situations, you’ll get
closer to your destination—or discover that it isn’t reachable after all. Let’s end
the chapter by looking at four ways the project can come to a deliberate end:
deciding you’ve done enough, killing it early, having it canceled by forces outside
your control, and declaring victory.

This is a better place to stop

It’s possible to get to a point where further investment is just not worth the cost
and to declare that the project is “done enough.” In Chapter 2 I talked about the
local maximum: a team working on something low-priority because it’s the most
important problem in their own area, while the team next door has five more

218 | THE STAFF ENGINEER’S PATH

important projects that they don’t have time to get to. Is your team polishing and
adding features to something that’s really as done as it needs to be? It might be
time to declare success and do something new. Before you do, look at the failure
modes in the previous section and make sure you’re not abandoning unhappy
customers, bailing once the technical work is done, or walking away from a half-
migration. If you’re all good, congratulations on reaching the new destination!

It’s not the right journey to take

One of the biggest successes I ever saw celebrated could have been considered a
failure. A team of senior people worked for months to create a new data storage
system. Other teams were eagerly awaiting it. But as the work progressed, the
team discovered that the new system wouldn’t work at scale. Rather than deny
reality and search for possible use cases for what they’d created, they killed the
project and wrote a detailed retrospective.

Was that a failure? Not really! Other teams were disappointed not to get the
system they were hoping for. But the storage team couldn’t have discovered that
the solution wouldn’t work without exploring it. If they’d realized that the tech-
nology couldn’t work for them and pushed on anyway, then that would have been
a failure.

Have you heard of the sunk cost fallacy? It’s about how people view the invest-
ments of time, money, and energy they’ve already made: if you’ve already put a
lot of time and energy into something, you’re more likely to stick around and see
it through, even if that’s a bad idea. It can be difficult to break out of this frame of
mind, but without a highly tuned sense of whether something’s still a good idea,
you can stay on the wrong path for a long time.

Try to notice if you’re in an impossible situation; if so, bail out early. Pushing
on with a doomed project is just postponing the inevitable and it prevents you
from doing something more useful. Good judgment includes knowing when to
cut your losses and stop. Consider writing a retrospective and sharing as much as
you can about what happened. Few things are as powerful for psychological
safety as saying “That didn’t work. It’s OK. Here’s what we learned.”

The project has been canceled

The company’s enthusiasm for what you’re all doing can change. Maybe the
project has been dragging on too long or is more difficult than expected, and the
benefit no longer justifies the cost. Maybe a new executive has a different direc-
tion in mind, the market has changed, or your organization is overextended and
looking for initiatives to cut. For whatever reason, the project isn’t happening.

WHY HAVE WE STOPPED? | 219

Someone in your management chain takes you aside and tells you the difficult
news. If you’re lucky, you find out before the rest of the company does.

Let’s start with the feelings, because this is a tough situation. It feels bad.
Even if your team understands and accepts the reason for the cancellation—even
if you all agree!—it’s jarring to suddenly drop the plans and milestones you’ve
built. You all might feel like the work you’ve done has been for nothing. If you
weren’t part of the decision to cancel, it can feel like a personal failure. You
might feel angry, disappointed, and cheated or resent that a change that affects
you so much has happened in a room you weren’t in. This may be a legitimate
complaint: if managers make big technical decisions but leave the technical-track
folks out of the room, that might be worth a conversation. But most of the time,
these decisions are made at a higher level, by people who are looking at a much
bigger picture and optimizing for something different than you are.

Work through your own feelings and acknowledge them. Talk it through
with your manager or your sounding board. Try to understand the bigger picture
and get as much perspective as you can. Then talk with your team or subleads.
Tell them what’s happening, leading with the why. Give them time to talk about
their own reactions to the news. Respect that they might be mad at you, the
project lead, as the bearer of the bad news or the person who didn’t manage to
“save” the project. It’s important that they hear it directly from you or another
leader: don’t let them find out from the gossip mill, a mass email, or the com-
pany all-hands meeting.

Give yourself and your team a little time, then shut the project down as
cleanly as you can. If you can stop running binaries, turn them off; if you can
delete code, delete it. If you think there’s a real chance that the project will be
restarted later, document what you can so that some future engineer can under-
stand what you were trying to do. (Be realistic about the chances of this resurrec-
tion happening, though.) Consider a retrospective if there’s something to learn.

It’s not fair, but a canceled project can derail promotions or break a streak of
great performance ratings. Do what you can to showcase everyone’s work. If your
team members are moving on to other projects, make a point of telling their new
managers about their successes and offer to talk with them or write peer reviews
at performance review time. If someone’s on the cusp of promotion, emphasize
that to their new lead, so they don’t have to build up a new track record
from scratch.

220 | THE STAFF ENGINEER’S PATH

Celebrate the team’s work and the experience you had together. It’s sad to
dissolve a team that was working well together, but look for opportunities to work
with those people again.

This is the destination!

Congratulations! You have done the thing you set out to do!
Before you celebrate, double-check that you have actually reached the desti-

nation. Are your measurable goals showing the results you want? Can the user
catch a Pokémon? Are the foundations solid and clean? If you’re really at the end,
it’s time to declare victory. Take the time to mark the occasion and make your
success feel special. For some teams, celebrating means parties, gifts, or time off.
There might be email shout-outs or recognition at all-hands meetings. Look for
opportunities to give team members (and yourself !) visibility through internal
and external presentations or articles on your company blog. And consider a ret-
rospective: they’re not just for looking at things that went wrong. You can learn
just as much from things that went right.

If there’s an aspect of your culture that you want to enforce, like people help-
ing each other or communicating well, highlight the ways that it showed up dur-
ing the project. Shout out people who went above and beyond or demonstrated
any behaviors you’d like to see more of. A successful project can be a fantastic
opportunity to celebrate the aspects of your culture that you most appreciate and
show others what great engineering looks like.

And in the spirit of showing your organization how to do great engineering,
let’s move on to Part III of the book, Leveling Up.

To Recap

• As the project lead, you are responsible for understanding why your
project has stopped and getting it started again.

• As a leader in your organization, you can help restart other people’s
projects too.

• You can unblock projects by explaining what needs to happen, reducing
what other people need to do, clarifying the organizational support, esca-
lating, or making alternative plans.

WHY HAVE WE STOPPED? | 221

• You can bring clarity to a project that’s adrift by defining your destination,
agreeing on roles, and asking for help when you need it.

• Don’t declare victory unless the project is truly complete. Code complete-
ness is just one milestone.

• Whether you’re ready or not, sometimes it’s time for the project to end.
Celebrate, retrospect, and clean up.

222 | THE STAFF ENGINEER’S PATH

Leveling Up

PART | III

You’re a Role Model
Now (Sorry)

“Don’t think out loud,” my friend Carla Geisser warned me when I became a
staff engineer. “You’ll find out a month later that people are talking about your
half-baked idea like it’s already a project.” My colleague Ross Donaldson
described his own role even more starkly: “Being staff doesn’t absolve you of
being wrong, but it does mean you need to be careful when you open your dang
mouth.”

This is the blessing and the curse of a staff engineer title: people will assume
you know what you’re talking about—so you’d better know what you’re talking
about! Your work will be a little less checked and your ideas considered more
credible. Rather than guiding you, people will look to you for guidance.

What Does It Mean to Do a Good Job?

Most of all, you’ll be a role model. How you behave is how others will behave.
You’ll be the voice of reason, the “adult in the room.” There will be times when
you’ll think “This is a problem and someone should say something”…and realize
with a sinking feeling that that someone is you. When you model the correct
behavior, you’re showing your less experienced colleagues how to be a good engi-
neer. Later, in Chapter 8, we’ll look at how to actively, deliberately influence your
organization and colleagues for the better. But this chapter is about passive influ-
ence, the kind that you have just by the way you act as an engineer and as
a person.

225

| 7

VALUES ARE WHAT YOU DO

Your company might have a written definition of what good engineering means:
written values, perhaps, or engineering principles. But the clearest indicator of
what the company values is what gets people promoted. No matter how much
your organization claims to encourage collaboration and teamwork, that message
will be undermined if any staff engineers get to that level through “heroic” soli-
tary efforts. If your engineering principles describe a culture of thorough code
reviews, but senior engineers approve PRs without reading them, everyone else
will rubber-stamp code reviews too. The work that you do is implicitly the type
and standard of work that others will see as correct and emulate.

Engineering goes beyond what you do when you’re talking to computer sys-
tems; it’s also about how you talk to humans. So sometimes being a good engi-
neer boils down to being a good colleague. If you’re mature, constructive, and
accountable, you’re telling your new grads that’s what a senior engineer does. If
you’re condescending, impossible to please, or never available, that’s what a
senior engineer does, too. You shape your company every day, just by how you
behave.

BUT I DON’T WANT TO BE A ROLE MODEL!

Being a role model is not always comfortable. But as you become more senior,
it’s one of the biggest ways you’ll affect your organization. Like it or not, you’re
setting your engineering culture. Take that power seriously. Being a role model
doesn’t mean you have to become a public figure, be louder than you’re comfort-
able with, or throw your weight around. Many of the best leaders are quiet and
thoughtful, influencing through good decisions and effective collaboration (and
showing fellow quiet people that there’s space for them to lead).

If the idea of being a leader is terrifying, you may need to build up to it. Start
small. Maybe compliment someone’s success on a public channel, or offer to
help onboard a new person. Think of leadership as a skill to build, just like you
would learn a new language or technology. The more you practice, the easier it
will be.

Be the best engineer and the best colleague that you can be. Do a good job
and let others see it. (And help others do the same! We’ll discuss how in Chap-
ter 8.) That’s what being a role model is.

226 | THE STAFF ENGINEER’S PATH

WHAT DOES IT MEAN TO DO A GOOD JOB AS A SENIOR ENGINEER?

In this chapter, I’m going to spell out the four big attributes that I think you
should be modeling. Let’s be clear: these are aspirational qualities, skills you
should strive to learn and keep learning. I’m explicitly not saying that you need to
score 100% on each of these attributes to be a “real engineer,” or any form of
gatekeeping like that; these are ideals. This is how you should try to be. We’re all
works in progress.

One more caveat: the tech industry is awash in advice, most of it subjective.
This list is too! Best practices all depend on the situation. There will be edge
cases and special circumstances; if my advice contradicts your own judgment,
trust yourself. A staff engineer has the good sense to know when the conven-
tional wisdom is wrong.

The four attributes we’re going to look at for the rest of the chapter are being
competent, being a responsible adult, remembering the goal, and looking ahead.

First up, competence.

Be Competent

As a staff+ engineer, or any senior person, a big part of your role is to take on
things that need to be done and to reliably do them well. Competence includes
building (and keeping) knowledge and skills, being self-aware, and having high
standards.

KNOW THINGS

No matter how good your leadership, you can’t be a technical leader without the
“technical” part. Your big-picture thinking, project execution, credibility, and
influence are underpinned by knowledge and experience. A big part of the value
proposition of hiring you is your knowledge: you have seen some things.

Build experience

Stephanie Van Dyk, staff engineer at Google, draws parallels between the founda-
tional skills needed for her job and those she uses in her longtime hobby as a
weaver. “Technical skills come from study and practice,” she says. “They aren’t
inherent. No one is born a skilled weaver; no one is born a skilled computer engi-
neer.”

Experience comes through time, exposure, and study—not innate aptitude. It
takes work to develop technical skills. You can learn a lot from books, but there’s
no substitute for working through problems yourself, learning your own

YOU’RE A ROLE MODEL NOW (SORRY) | 227

techniques for solving them, and seeing what works and what doesn’t. Paula
Muldoon, a senior software engineer and violinist, describes playing in an
orchestra in a way that resonates for me: “You want to get so good at your craft
that your focus can be almost entirely on what other people are doing and you
don’t have to worry about your own execution.” Invest time—lots of time—in
honing your technical skills so that they become second nature to you.

How much time? The American Society of Civil Engineers publishes its
engineering grades, and its requirements include number of years of experience:

• Grade V (Typical titles: Senior engineer, program manager): 8+ years

• Grade VI (Typical: Principal engineer, district engineer, engineering man-
ager): 10+ years

• Grade VII (Typical: Director, city engineer, division engineer): 15+ years

• Grade VIII (Typical: Bureau engineer, director of public works): 20+ years

We’re less rigorous in software engineering. Job levels vary a lot across com-
panies. Most places don’t consider years of experience when allocating grades or
titles, but staff engineers typically have at least 10 and principal engineers have at
least 15.

Don’t rush past your prime learning years. Some organizations encourage
their best talent by offering them senior roles, like management or staff engi-
neering, relatively early in their careers. The push for career progression may
entice you to accept. But, as Charity Majors warns:

Never, ever accept a managerial role until you are already solidly senior as

an engineer. To me this means at least seven years or more writing and

shipping code; definitely, absolutely no less than five. It may feel like a

compliment when someone offers you the job of manager—hell, take the

compliment —but they are not doing you any favors when it comes to

your career or your ability to be effective.

It’s the same for staff+ roles. Do a whole lot of soul-searching before taking a
role that takes you further from the tech. You could be cheating yourself out of
your prime fully immersive hands-on experience-building years.

228 | THE STAFF ENGINEER’S PATH

https://www.asce.org/engineergrades
https://www.asce.org/engineergrades
https://oreil.ly/vmIuH

1 There’s also sometimes an implication of “doesn’t seem nerdy” or “doesn’t look like an engineer”; we all
should be aware of our implicit bias. But I’m speaking here to the people who are genuinely trying to help
themselves or their coworkers build skills.

Are You “Technical Enough”?

I’ve sometimes heard engineers describe other people as “not technical

enough,” and it’s a framing I always push back on. Apart from being a lit-

tle dismissive, it claims to describe who someone is instead of the skills

they have.1 It leaves no actionable path to becoming “technical enough.”

If you’re inclined to describe someone in this way, be more precise. Do

you mean:

• They haven’t yet spent enough years doing hands-on technical

work?

• They don’t yet know the domain you’re working in?

• They’re missing specific skills? Which skills?

Being competent and knowledgeable doesn’t mean you have to

know the most about every topic. Sometimes, when you come into a new

domain, you will know the least, and that’s OK!

Build domain knowledge

Software has an extraordinary number of technology areas, each with its own
specialized knowledge and vocabulary. Knowing mobile development, algorith-
mic computer science, or networking doesn’t prepare you for a frontend UX
project. Years of experience in fintech won’t prepare you for a health care startup.
But if you’re interested in a new technology area or domain, you can still go try it
out. That means that even very experienced engineers can find themselves being
beginners.

When you move into a new role, there will inevitably be skills that you don’t
have yet, or domain knowledge that will be new to you. You may find that you’re
learning from the junior engineers you work with. (This is a good thing!) Here is
where your technical knowledge provides a foundation. While you might not rec-
ognize the specifics of the problems in this new domain, your general experience
should help you recognize their shapes. You should be able to pattern-match what

YOU’RE A ROLE MODEL NOW (SORRY) | 229

https://oreil.ly/jRVit

2 When I started a new job after 12 years at Google, a company famed for using its own internal technology
stack for everything, I relied on this kind of pattern-matching. I did lots of drawing systems on white-
boards and asking, “Is there a thing that looks kind of like this, and you would use it in this situation? Oh,
that’s what Envoy does! OK, got it!”

you’re encountering to something else you recognize, so you’re not completely at
sea.2 The broader your scope of experience, the more “hooks” you’ll have to hang
new knowledge off, and the faster you can learn new things.

When you move into a new technology area or business domain, be deliber-
ate about learning quickly. Learn the technology in whatever way is most effective
for you. Get a sense of the appropriate trade-offs; the resource constraints; the
common arguments, biases, and in-jokes. Know which technologies are on the
market and how they might be used. Read the core literature. Know who the
“famous people” in the domain are and what they advocate for. (Twitter is handy
for this.) Then take on some projects that will let you build instincts and experi-
ence, so you can become as competent in this new area or domain as you were in
your last.

Stay up to date

Being a senior engineer means having a growth mindset and a drive to improve.
It’s embarrassing for everyone when a technical leader insists on a “best practice”
that has been debunked for a decade or a technology that everyone else has
moved on from. Stay engaged with what’s happening in your part of the industry.
Even if you aren’t deep in the code any more, your spidey-sense should stay sharp
for “code smells” or problems waiting to happen. Even if you don’t know the lat-
est, hottest tool or practice, know how to find out.

Notice if your role is preventing you from continuing to learn. In particular,
be wary of drifting so far from the technology that you’re only learning how your
company operates. While you should also learn enough about the business to
make good choices, keep yourself anchored in the tech. I’ll talk more about learn-
ing in Chapter 9.

Show That You’re Learning

Junior engineers need to see that lifelong learning is part of being a

senior engineer, and that they’ll never reach the end of their journey.

They also need to see that your skills and knowledge didn’t magically

230 | THE STAFF ENGINEER’S PATH

come to you—it’s all learnable. Be open about what you’re learning, and

show how you’re doing it. When you’re making a statement that involves

obscure knowledge or a logical leap, fill in the gaps for the folks around

you: tell them why you came to the conclusion you did, what information

you used, and how you came by that information. Be clear that you’re

learning so it’s safe for them to learn too.

BE SELF-AWARE

Competence is built on knowledge and experience, but you also need to be able
to apply those abilities. That starts with having the self-awareness to know what
you can do, how long it will take, and what you don’t know. It means being able
to say “I’ve got this” and knowing that you do, in fact, have this. Competence
means having well-founded confidence that you’ll be able to solve the problem.
You don’t need to be arrogant, speak in incomprehensible jargon, or show off.
True confidence comes from having done the work for long enough that you’ve
learned to trust yourself.

Admit what you know

Some people are brought up to brag about their accomplishments. Others are
brought up to minimize them. Whichever you innately are, aim to get to a level
where you’re confident and honest with yourself about what you know and what
you don’t. There are going to be some areas where you know a lot and are unusu-
ally skilled. Be confident about applying those skills to solve the problems that
need them.

Being competent doesn’t mean you need to be the best. I’ve sometimes seen
tech people be shy about claiming to be an expert, because they can always think
of someone in the industry who is better than they are. Don’t set your bar at “best
in the industry.” It won’t help anyone if you hold back out of modesty. When the
skill is needed, don’t wait for someone else to say, “Hey, aren’t you great at regu-
lar expressions”? Volunteer that you are—it’s not a brag, just a statement of fact.

If you know what skills you bring, then you know where you can step up and
help, where you’ll be a good mentor, and what you still need to learn.

Admit what you don’t know

You won’t know everything, and it’s vital that you don’t pretend you do. If you
bluff, you’ll lose opportunities to learn—and you may make bad decisions. You’ll
also waste the opportunity to set an example. Every time you admit you don’t

YOU’RE A ROLE MODEL NOW (SORRY) | 231

https://xkcd.com/208
https://xkcd.com/208

know everything and let people see you learning, you show your junior engineers
that it’s normal to continuously learn.

Admitting ignorance is one of the most important things we can do as tech
leads, senior engineers, mentors, managers, and other influencers of team cul-
ture. I love asking for an “ELI5,” a term that comes from Reddit and means
“Explain it like I’m five years old.” It’s a helpful shortcut to mean “Look, rather
than guessing my level of understanding, just spell it out for me. I promise not to
be offended if you tell me things I already know.” (The social contract here is that
you can’t get offended if they start with the very basics of the topic.)

We spend a huge amount of our work lives communicating, trying to get a
shared model of the world into our brains so that we can collaborate or make
decisions. It slows everything down when people in a conversation bluff or disen-
gage a bit because they don’t want to be called out on not knowing something. If
senior people can admit they don’t know things, everyone else will do it too.

Understand your own context

A huge part of self-awareness is understanding that you have a perspective, that
your context is not the universal context, and that your opinions and knowledge
are specific to you. You’ll need to escape your echo chamber every time you talk
to teams in other areas or explain technical topics to nonengineers. You’ll know
what information you have that they might not, so you can bridge that gap. (You
can read more about building this kind of perspective in Chapter 2.)

It’s much harder to explain something simply! It requires more understand-
ing of the topic and more self-awareness about your own context. But it’s a real
indicator of expertise. If you can explain a topic in plain language, so that nonex-
perts can hook it onto something they already understand, you really understand
it.

HAVE HIGH STANDARDS

Your standards will serve as a model for how other people work. Know what
high-quality work looks like and aim for that standard in everything you do, not
just the parts you enjoy most. Write the clearest documentation you can. Be the
first person to know if your software breaks. There are always trade-offs, of
course: sometimes the right move is to slap a solution together with duct tape as
quickly as possible. But make that determination based on the problem you’re
trying to solve, not how interesting the work is to you.

232 | THE STAFF ENGINEER’S PATH

3 If you’re thinking, “I don’t make mistakes because I’m competent and careful,” the gut-punch feeling
when you do make one will be so, so much worse.

Seek out constructive criticism

Having high standards means making your work as good as it can be. Look for
opportunities to put aside your ego and ask someone else to help make your
work better. Ask for code review, design review, and peer evaluations. When
you’ve got an idea you love, invite your colleagues to poke holes in it. When you
“request comments,” don’t secretly resent them; each one is an opportunity to
make your solution better, so take them seriously even if you don’t use them all.
Your solutions are not you and they don’t define you. Criticism of your work isn’t
criticism of you. (You’ll give constructive criticism too, of course. We’ll explore
that in Chapter 8.)

Own your mistakes

At some point you will make a mistake, and it might be a big one. Maybe you
reviewed code and didn’t notice a bug that cost the company a ton of money.
Maybe you wrote that code! Maybe you said something in a meeting that you
later found out made someone cry (or quit).

Mistakes are normal.3 Humans aren’t perfect, and mistakes are how we
learn. What matters most is how you respond to your mistakes. It’s easy to get
defensive, deflect blame, or fall to pieces (that someone else needs to pick up). To
be competent, you need to own your mistakes. Don’t beat yourself up, but don’t
deny the impact or insist that the mistake wasn’t really your fault. Admit what
happened, then set out to fix it. Communicate quickly and clearly and make sure
everyone has the information they need. If there’s any risk that someone else will
get blamed, clarify that they didn’t do anything wrong. If you hurt someone else’s
feelings, acknowledge the hurt and apologize. (Even if you wouldn’t have felt bad
in the same situation, their feelings are real.)

If you caused an outage or took an expensive wrong path, consider having a
retrospective afterward where you talk through what happened, how you recov-
ered, and what you learned. Be open and matter-of-fact about the part you played.
It’s much easier to understand what happened when nobody’s trying to downplay
their missteps.

Making a mistake just stings. Solving the problem you caused may be the last
thing you want to do in that moment. But it’s the best thing you can do to retain
the goodwill and social capital of your team. If you react well and fix the problem

YOU’RE A ROLE MODEL NOW (SORRY) | 233

you caused, you could even end up with more esteem from your colleagues. And
a leader being open about their mistakes will make it easier for everyone else to
do the same: it’s a big boost to the team’s psychological safety.

Be reliable

My final thought on competence is this: be reliable. One of the biggest compli-
ments I give is, “Alex is going to be in that meeting, so I don’t need to go.” When
I say that, I’m not just saying that any information I have will be represented in
the meeting. I’m also saying that I think the right thing will happen. The situa-
tion will be managed. I don’t need to be there. I’m saying that I find Alex reliable.

A reputation for reliability is like the credibility and social capital we talked
about in Chapter 4: it builds up as people see you do the work and get things
under control. Be the sort of person who is trusted to get it done well.

Part of reliability is also finishing what you start. Use the techniques in
Chapter 6 to make sure you’re not blocked or stopping too early. Stick with it
even after it gets boring or difficult. And if you stop deliberately because the
project isn’t the right use of resources, own and communicate that decision. You
accepted responsibility for the work, so take it to the finish line.

That brings us to the second attribute senior engineers should strive for:
being the responsible person in the room.

Be Responsible

Like it or not, a senior or staff title turns you into an authority figure—and, as the
philosopher Uncle Ben once told Spider-Man, with great power comes great
responsibility. The more senior you get, the more you have to internalize that
nobody else is coming to be the “grown-up in the room.” You are the “someone”
in “someone should do something.”

In this section, we’ll look at three aspects of responsibility: taking ownership,
taking charge, and creating calm.

TAKE OWNERSHIP

Senior people own the whole problem, not just the parts that go as planned.
You’re not running someone else’s project for them: it’s yours and you don’t
passively let it sink or swim. When something goes wrong, you don’t shrug and
decide the work is impossible. You navigate the problem and you’re accountable
for the result. (Chapter 6 has techniques for getting unblocked that can help
here!)

234 | THE STAFF ENGINEER’S PATH

Avoid what John Allspaw calls “Cover Your Ass Engineering” (CYAE):

Mature engineers stand up and accept the responsibility given to them. If

they find they don’t have the requisite authority to be held accountable for

their work, they seek out ways to rectify that. An example of CYAE is “It’s

not my fault. They broke it, they used it wrong. I built it to spec, I can’t be

held responsible for their mistakes or improper specification.”

Ownership also means using your own good judgment: you don’t need to
constantly ask for permission or check whether you’re doing the right thing. But
that doesn’t mean you should operate in private. While the classic advice is to
seek forgiveness rather than ask permission, Elizabeth Ayer, a product and deliv-
ery advisor, offers a more open and predictable approach: “radiating intent”, the
idea of signaling what you’re about to do before you do it. You’re giving everyone
else context about your actions—and you’re creating an opportunity to intervene
if you’re about to do something dangerous.

Ayer calls out another important advantage of radiating intent: “The ‘radia-
tor’ keeps responsibility if things go sour. It doesn’t transfer the blame the way
seeking permission does.” That’s key to ownership too.

Make decisions

Professional engineers in some disciplines are responsible for putting their seal
on documents: an engineer might sign off on the structural integrity of a build-
ing, for example. By doing so, they’re attesting that the document is structurally
safe and taking on legal liability for any mistakes they’ve made. They’re person-
ally on the hook for that decision.

While software engineers don’t currently have this kind of professional
responsibility, as technical leaders, we must be prepared to make the final call
and own the outcome. In particular, when a decision is needed, avoid staying on
the fence: weigh the options, choose decisively, and explain your reasoning. Be
honest with yourself as you consider the trade-offs: you should be able to vote
against your own preferences when you know it’s the best move.

Owning decisions includes accepting that you might be wrong. Make the
cost of a wrong decision as low as possible, and if it turns out that you are wrong,
own that, too.

YOU’RE A ROLE MODEL NOW (SORRY) | 235

https://oreil.ly/lfRcs
https://oreil.ly/fXxG4

Ask “obvious” questions

One of the best things about being senior is that you can ask questions that are
so obvious, nobody else is willing to ask them. Here are a few examples:

• It sounds like you’re planning to run a mission-critical microservice in a
team with only two engineers. How do you intend to handle on-call for it?

• I assume you’ve evaluated what it would take to move off this old system
instead of working so hard to keep it alive?

• What will happen if users start to depend on that incrementing field in
your API that you’re telling them to ignore?

• You’ve run this odd-sounding proposal by security, right?

• What would it take to support this use case that we keep asking people not
to do on our platform?

As a leader, you have a responsibility to make the implicit explicit. It’s not
fair, but if a junior person asks these questions, the team may sigh and say, yes,
obviously we thought of that. If an expert asks, team members learn that they
should include explicit answers to these questions in their design documenta-
tion. (Or they genuinely consider the question for the first time!)

Don’t delegate through neglect

A few years ago I wrote a conference talk that went a bit viral. OK, we’re not talk-
ing otters holding hands viral, but it swept across tech Twitter, hit the front page of
Hacker News, that sort of thing. The talk was about the leadership and adminis-
trative tasks that aren’t on anyone’s job ladder but are needed to make a team
successful: all the unblocking, onboarding, reminders, mentoring, and schedul-
ing. I called this kind of work “glue work”.

Why did the talk hit such a nerve? Because although projects can’t succeed
without it, this kind of work is rarely rewarded or allocated fairly. It falls to
whomever on the team can’t look away from the problem, often a junior person
with a strong sense of ownership.

The problem is, when junior people do too much administrative or leader-
ship work and not enough technical work, they’re spending their prime technical
learning years in a way that doesn’t teach them technical skills. That can stunt
their careers in the long run. But, often, leaders don’t step in: the glue work is
needed for the project to succeed, and they’re just glad it’s getting done.

236 | THE STAFF ENGINEER’S PATH

https://noidea.dog/glue

4 The Incident Command System was introduced by fire departments in the ‘60s and is now used by most
emergency services in the United States to coordinate disaster response. One of the roles it defines is the
incident commander, someone whose job is not to fight the fire, but to coordinate and take command. It
works well for the kinds of software outages that are chaotic or that cross multiple teams.

If glue work is needed for your organization or your project, recognize it and
understand who is doing it. Be aware that managers, promotion committees, and
future employers might consider this work to be leadership when a staff engineer
does it, but dismiss it when a more junior engineer does. So take ownership and
do a lot of the work that’s not anybody’s job but that furthers your goals. Redirect
your junior colleagues toward tasks that will develop their careers instead.

TAKE CHARGE

Gently redirecting your colleagues towards more valuable work is an example of
what I’m going to talk about next: taking charge of the situation. Note that taking
charge doesn’t necessarily mean you have prior authority. It means that you see a
gap and you’re stepping up to fill that gap.

Step up in an emergency

Being able to take control of a mess is a key aspect of technical leadership. If
security detects a breach, a database gets dropped, or a meteor hits US-East-1,
there are likely to be many responders. Unless they’re working together, the
ensuing chaos can make the problem worse. Everything goes better if someone is
coordinating.

Unfortunately, coordinating only works if everyone knows you’re coordinat-
ing. If you don’t take charge explicitly, you’ll just be one more person making
noise. Ideally, you’ll have emergency plans in place before the disaster hits, so
that the role of the coordinator is well understood: the classic Incident Command
System is a popular choice.4 If not, you’re going to have to find a way to
announce that you’re coordinating and set expectations about what you’re going
to do. Then make sure your coordination is valuable. A few ways to do this are to
take clear notes, make sure that everyone involved in the emergency has the
same context, and ask everyone to radiate intent about what they’re doing
and when.

YOU’RE A ROLE MODEL NOW (SORRY) | 237

https://oreil.ly/DUxaG

Ask for more information when everyone is confused

Earlier in this chapter, I talked about admitting what you don’t know and asking
obvious questions. During an emergency, you’ll often need to do both at once.
When teams are sharing information to resolve the issue, they often don’t all
have the context to interpret it. Objective facts like “the FooService has 1% 401
errors” aren’t helpful to anyone who doesn’t know what’s typical for the service.
Is that bad? Is there a theory for what’s happening? How does FooService fit into
this outage?

Someone needs to be brave enough to say, “I don’t know what to do with the
information you just gave me!” Take charge and ask. Tech can be fraught with
egos and insecurity, and it’s sometimes scary (or legitimately risky!) for junior
people to admit that they don’t know something. It’s safer for senior people
to ask.

Feigned Surprise

Feigned surprise used to be a standard part of conversation for sysad-

mins and software engineers: “You’ve seriously never used Linux?” It was

part of the BOFH toolbox, designed to undermine those who were still

learning (the noobs and the lusers) and let the more experienced tech

folks feel superior.

How do you ask questions in that environment? Mostly, you don’t.

You make a poker face, try to keep up, and hope the topic changes to

something you know. When you absolutely can’t avoid it, you ask for help

in private. It takes much longer to learn anything.

But then the Recurse Center (then called Hacker School) called out

the phenomenon in its social rules. Naming the behavior gave people

power over it: it was something they could recognize and ask others not

to do. The Recurse Center built in a mechanism to keep the rules low-

stakes too: “The social rules are lightweight. You should not be afraid of

breaking a social rule. These are things that everyone does, and breaking

one doesn’t make you a bad person. If someone says, ‘Hey, you just

feigned surprise,’ don’t worry. Just apologize, reflect for a second, and

move on.”

238 | THE STAFF ENGINEER’S PATH

https://en.wikipedia.org/wiki/Bastard_Operator_From_Hell
https://oreil.ly/WLk0r
https://oreil.ly/WLk0r

Don’t feign surprise, but go even further. Every time someone apolo-

gizes for asking a basic question and there’s a chorus of reassurance

from others who insist that it’s actually a good question, culture is built.

That’s an environment where it’s easy to learn.

Drive meetings

Meetings are another place where it really helps to have someone step up and
take charge. If the group is passive, distracted, or inclined to turn a work meeting
into a social conversation, any one of the attendees can (in theory) say, “OK, let’s
get started on our agenda.” But most meeting attendees are hesitant to play that
role. Step up when it’s needed. Make sure there is an agenda: collect items to dis-
cuss at the start of the meeting, or set the example of sending around the agenda
in advance. Remember what you’re hoping to get out of the meeting, and drag it
back to that topic if it goes too far astray.

If the meeting doesn’t have notes, was it really worth getting together? Meet-
ing notes are a great example of glue work. If a junior person is taking notes,
they’re unable to participate, and it’s considered low-status administrative work.
If a senior person takes notes, they’re making sure the meeting is effective, and
everyone’s very impressed!

Meeting notes are a great lever for making progress on your projects, so
don’t hesitate to volunteer to take them. You can record the facts you think are
most important, document decisions made, and be the first to frame the deci-
sion. Then you can invite everyone to confirm what you wrote. As a moderator, if
you need to give everyone a moment to think and reflect, you can also say, “Wait
a moment, I need to catch up with the notes.” They’re a useful flow control for
the meeting.

If you see something, say something

Another common situation where you might need to take charge is an awkward
one: when someone just said something disrespectful or offensive in a public
channel. Other people in the room might want to say something but feel like they
lack the social capital. Use your position as a leader and speak up.

Like many engineers, I find these situations uncomfortable, so I asked Sarah
Milstein, engineering VP at Daily, for advice. She always seems fearless when
confronted with “advanced humaning” problems, so I was disappointed to learn
that speaking up isn’t magically easier when you’re a manager. The adrenaline

YOU’RE A ROLE MODEL NOW (SORRY) | 239

awfulness, she told me, doesn’t go away. You just accept the discomfort. Go in
knowing that it’s going to be awkward, but that it will be better to have said
something than not. You don’t have to say the perfect thing—there often isn’t a
perfect thing—but you do need to speak up.

While the conventional wisdom for feedback is to praise in public and criti-
cize in private, this is a time when it’s vital that you say something public: if it
looks like the original message wasn’t addressed, it can create an environment
where that kind of message is seen to be acceptable. If someone is attacked in
front of a group, you need to support them in front of the same group. If nobody
addresses the problem, your group dynamics will become weird and
uncomfortable.

It’s best if you can deal with this kind of situation quickly, but it’s OK to
return to it a little later: “Look, I feel this hanging in the air and I wish I’d
addressed it at the time, but I want to go back to it.” By addressing it, you can
“give the energy a place to travel,” Milstein says. She adds, “Almost always, some-
body thanks me later for having spoken up in a hard situation.”

Here are some more techniques from Milstein:

• Describe the culture that you’re aiming to build, and use that as a refer-
ence. For example, “You all know that respect for each other is a big value
here. It’s part of how we get things done. That message violated those
norms.”

• Give the person a path to being on the same side as you. For example, if
they made a hurtful joke about a tense news story, show that you under-
stand why someone would joke just then. “I get using humor in hard sit-
uations, but let’s be mindful that people in this meeting might be affected
by what’s going on.”

• If it’s a private conversation, you can appeal to the person’s values: “I know
you really care about fairness, so I want to flag something you said that you
might not have realized the implications of.”

Finally, this isn’t a thing that should end with you. While you have the power
and responsibility to address culture issues, this situation is a behavior problem
too. You can also tell a relevant manager so that, if there’s a pattern, they can
help address it. That’s their role, not yours.

240 | THE STAFF ENGINEER’S PATH

CREATE CALM

The final factor in being the responsible grown-up in the room: stay calm. Tired,
stressed people often disagree about the right way to proceed. If you can stay
calm and constructive and avoid casting blame, other people will too.

Defuse, don’t amplify

If you’re dealing with a big problem, try to make it smaller. If you’re dealing with
a small problem, keep it small. When someone brings you a fraught situation, stay
calm. Ask questions. Understand why they’re telling you. Do they just need to
vent? Are they hoping you’ll take action? Be curious, even about topics you think
you understand. If there’s a problem, acknowledge it. Even just seeing that you
have the same information and don’t seem to be panicking can be enough to
reduce a colleague’s anxiety.

Even if you can see something you can do, don’t react reflexively. A senior
person making a fuss can blow up a minor thing into a big, loud issue, so be cer-
tain that you have all of the facts and that you’re genuinely helping by joining in.
If your actions will amplify rather than calming the situation down, consider
staying out of it. Also, remember the warning at the start of Chapter 6: make
sure this side quest is the right use of your time.

Finally, be cautious about where you share your anxieties or frustrations.
While you can acknowledge that there are problems, don’t let your worries about
them spill out on more junior people: it’s not fair to ask them to carry your con-
cerns, and you’re amplifying the problem if you upset them. That’s not to say you
have to keep your worries to yourself: you can vent to your manager, close peers,
or the project sounding board you chose in Chapter 5. But be clear about whether
you’re complaining socially or you want the other person to do something. Be
especially clear in one-on-ones with other leaders about whether you’re asking for
action, unpacking something for yourself, or sharing context. They might reflex-
ively react and amplify something that you’d just intended to blow off steam
about.

Avoid blame

I still remember one of the first mistakes I made in production. While updating a
customer record, I’d somehow deleted their entire account. I was 22, new to the
team (and the industry), and absolutely petrified that taking the blame would
mean the end of my short career. My coworker Tim cleaned up my mess and I’ll
never forget his reaction: “It’s always interesting to see how new people handle

YOU’RE A ROLE MODEL NOW (SORRY) | 241

their first screw-up. We’ve all been there.” It was such a relief ! Of course I was
still upset, but the sick feeling in my stomach was gone. If every one of my
coworkers had survived their first mistake, I would too. In the middle of the
annoying task of recovering the customer data, Tim took the time to be kind.

A big outage is an expensive training course, and if you’re paying the cost,
you’d better all learn something! If someone made a mistake or discovered an
edge case by breaking something, create an environment where everyone will
feel safe talking through the event. If you’re curious and avoid blame, you’ll find
it easier to ask question like:

• Exactly what happened?

• What factors led them down this path?

• Was there information they didn’t have, but could have had?

• Where did their mental models diverge from reality?

Be consistent

Have you ever had a leader who is a complete wild card? You don’t know how to
prepare for any meeting with them. One day they only care about high-level
project delivery dates; the next, they’re asking you to justify the tiniest technical
decisions. They tell you that one goal is the most important business need and
then, just as you’ve finished adjusting your project plans, they prioritize some-
thing else. It’s chaotic. You can’t know where you stand.

Don’t be that leader. Instead, create a sense of safety and calm by being con-
sistent and predictable. Your colleagues should know what they can expect if they
ask you to help with something. During times of change or difficulty, the way you
show up and express yourself at work can reassure your colleagues: yes, change
can be scary, but they can rely on you to be steady while you all work through it.

It’s harder to be consistent when you’re stressed out or working beyond your
capacity, so being consistent means taking care of yourself. Remember
Figure 4-3: leave a little space in your life for unplanned events. Work in a way
that is sustainable for you. That means taking time off, getting enough rest, and
doing the things outside work that make you happy. Remember, you’re modeling
sustainable work for your colleagues too.

242 | THE STAFF ENGINEER’S PATH

5 But don’t help a business to survive at the cost of releasing software that endangers, exploits, or hurts
other people: the company has bought your time and energy, but not your moral compass. We’ll look
more at values in Chapter 9.

Remember the Goal

On to the third attribute of being a role model senior engineer: remembering
what the heck you’re all doing here. It’s not just technology! There’s a broader
context: a business that’s trying to achieve something, a mission you’re setting
out on. In this section, we’ll look at bringing business context (and budget con-
text) to your decisions and solving the entirety of the bigger problems your users
care about, not just your team’s tasks. And we’ll think about achieving the goals
as a team, not as individuals.

REMEMBER THERE’S A BUSINESS

As a senior engineer, you have a responsibility to the future as well as the
present. You will always be responsible for creating software that stands up
under stress. But you’re working for a business (or a nonprofit, government
agency, or other organization) that has goals. The software is the means to those
ends, not an end in itself.

Adapt to the situation

I took part in a hackathon once for a volunteer event, and I remember the team
lead looking at my code and saying, “Wow, tests? That’s, uh, nice.” He was being
polite, but it was clear that tests were unusual—and not particularly welcome.
Speed was much more important than accuracy, and the code was going to be
thrown away later. As far as he was concerned, I’d wasted my time.

Sometimes a faster solution is better; sometimes a more stable one is. If
time to market is vital to your business’s survival, getting a shoddy first version
out the door might be more important than having beautiful code and architec-
ture.5 Similarly, if you’re shipping software to accompany a holiday promotion or
a major sporting event, an imperfect solution is much better than a late one.

Priorities sometimes change during an outage, too. Maybe you’ve got a rule
that you always do a clean rolling restart of your service so that you only have a
couple of instances offline at a time. When everything is broken, though, your
usual principles might go right out the window: sometimes the fastest thing to
do is to turn the whole thing off and then back on again. A midlevel engineer
might strive for the platonic ideal of a clean, technically elegant fix, but their

YOU’RE A ROLE MODEL NOW (SORRY) | 243

senior mentor will teach them that this is when you get the system back online
first and clean up later.

As the business changes, your priorities will change. Be OK with that. It’s
inevitable. Growth, acquisition, new markets, or a change in fortunes will mean
that your goals may get thrown out as the company pursues a new direction or
even a new culture. If you don’t like that or it doesn’t fit your values, you might
no longer be in the right place. But if you just resent change, you’ll spend your
time being unhappy. Expect it, and you’ll embrace it as a new challenge instead.

Be aware that there’s a budget

Your high engineering standards will always be in tension with the amount of
money the business is willing to spend on good engineering. That tension
doesn’t mean you should drop your principles and start advocating for shoddy
software, but do keep the idea of a budget in the back of your mind. Remember
that other people are limited in what they can spend on headcount, vendor tool-
ing, and so on.

Don’t obsess about the budget: it’s easy to get frozen in indecision, trying to
decide if one project or another is really worth the cost. But have a feeling for
what kinds of expenditure, savings, or new revenue are considered big. Under-
stand how your company makes money and know whether you’re in good times
or lean times. Bear those facts in mind when you’re deciding what to suggest
your organization spends time on.

Spend resources mindfully

“Growing up” in Google during a time of plenty, it took me a decade longer than
it should have to realize that headcount is finite and staffing a project has an
opportunity cost. Part of your technical judgment is “spending” that finite head-
count wisely.

You’ll probably have a ton of ideas about places you can innovate, invent
something new, or make one of your systems a little better. Make sure you’re
choosing work that your business actually needs. Your team has finite time and
energy; is this the right way to spend it? Take Dan McKinley’s advice too and be
judicious about where you spend your “innovation tokens”: that is, your compa-
ny’s “limited capacity to do something creative, or weird, or hard.” If you can only
invest in a few places, is this the right place?

Build the most useful thing, not the thing that would be most fun to build.
And when it’s time to stop polishing something and declare that it’s good
enough, stop.

244 | THE STAFF ENGINEER’S PATH

http://boringtechnology.club

6 Perfectly spherical users, as some friends say.

REMEMBER THERE’S A USER

I remember once sitting with a vendor in a huge cafeteria with hundreds of
coworkers. My colleague Mitch and I listened as the vendor explained how a fea-
ture we’d been asking for was now ready for us. But I’d tried the feature and it
didn’t work. We argued back and forth until I pulled out my laptop and showed
him.

“Oh, I get it now,” the vendor said. “You’re using Chrome. It works on Fire-
fox and Internet Explorer.” (Yeah, this was a while ago.) “But don’t worry, not
many people use Chrome.”

“Look around you,” Mitch replied, gesturing around the cafeteria. “See all of
these people? Everyone in this room uses Chrome.”

I’ve seen too many teams create a feature for a set of fictional, perfect users
who don’t exist.6 Know who uses your software and know how they use it. Make
sure they can use the thing you’re creating for them, and that they want to.

Part of getting this right is the classic solution: write it down! Be clear about
the exact requirements you’re creating for, and share those requirements
broadly. Get the proposed API reviewed before you start the code. Show a
mockup of the user interface before you start creating it. Check in frequently and
show updates. Once again, avoid CYAE: whether you built it to spec or not, if you
didn’t make your user happy, you built the wrong thing.

REMEMBER THERE’S A TEAM

The final thought in focusing on the mission: remember you’re not doing this
work alone. While you may be the best coder on the team, the most experienced
engineer, or the fastest problem solver, that doesn’t mean you should jump on all
of the problems. You’re working as part of a team, not a collection of competing
individuals. Don’t become a single point of failure where the team can’t get any-
thing done when you’re not available. It’s not sustainable. It hides problems.

Just like I advised you to be self-aware, be aware of the capabilities of your
team. If you can reach your goal by empowering someone else to do better work,
that’s just as much a victory as if you solve it yourself. Consider your impact to be
what wouldn’t have happened without you, not just what you personally did.

YOU’RE A ROLE MODEL NOW (SORRY) | 245

7 Think of it as a Ship of Theseus: every individual component may get replaced over the years, but the
fundamental system continues. It’s all metaphysical architecture.

Look Ahead

While there are, as you’ve seen, times when your first priority will be to get some-
thing to market quickly, most of the time you’re planning for a longer time hori-
zon. The code and architecture you work on are likely to still be in use in 5 or 10
years. The interconnected software systems that make up your production envi-
ronment may last much longer, and each component will influence the ones that
follow.7 As Titus Winters writes in Software Engineering at Google (O’Reilly), “Soft-
ware engineering is programming integrated over time.” Expect the impact of
your software to stick around.

Your organization, codebase, and production environment probably existed
before you joined them. They’ll probably exist after you move on. Don’t optimize
for now at the cost of future velocity or engineering ability. It’s OK to plant some
seeds that you won’t personally see grow.

Here are a few ways you should be thinking beyond the current moment.

ANTICIPATE WHAT YOU’LL WISH YOU’D DONE

Remember our question from in Chapter 3: “What will Future You wish Present
You had done?” When you’re making plans or doing work, consider your future
self and your future team to be stakeholders: after all, they’ll have to deal with
whatever decisions you make now.

Telegraph what’s coming

Be clear about what your broad direction is, even if you don’t know the details
yet. Here’s an example: teams sometimes avoid announcing deprecation dates
for old systems, because they’re not quite ready to begin the major migration to
the new system. But you can announce the intention to deprecate it. If everyone
knows a migration will begin in a year or two, new projects will know not to
invest in it. Some teams may find themselves with free time and move to the new
system without you even asking them. A small amount of work now will set peo-
ple’s expectations, save their time, and make your future deprecation project a
little easier.

246 | THE STAFF ENGINEER’S PATH

https://oreil.ly/nBaaK

8 Another Ship of Theseus! The people have all changed but the organization remains.

Tidy up

Have you ever had to work in a tool shed where the last person didn’t clean up
after themselves? It’s horrible. You grab the drill and the battery’s out of power.
The safety goggles aren’t in their case; you search through three boxes before
finding them with the sander. The floor is covered in detritus. There is no flow
state in an environment like that. Everything takes three times as long as it
should.

Now think about what it’s like when every tool you want is at arm’s reach.
Your workflow just works. So take the time to leave your production environment,
codebase, or documentation so that it just works for whoever comes along next.
Write tests that will let you refactor your code without breaking things. Follow
your style guide so that the people who copy your approach will also be following
your style guide. Leave no traps, like dangerous scripts that everyone needs to
remember not to run or configurations that are changed locally but not updated
in source control. Make it safe to move around.

Keep your tools sharp

Don’t just tidy up: continually invest in making your environment better. If you
can move quickly and safely, you’ll spend less time on repetitive work and you’ll
be able to do more. Increasing your velocity increases your reliability, too: every
minute you shave off your time to detect a problem or deploy a fix is a minute
you’ve taken off every outage.

Look for optimizations that will let you build, deploy, and release more
quickly: smaller builds, intuitive tooling, fixing or deleting flaky tests, repeatable
processes, automation everywhere. Be judicious about where you invest: building
tooling, platforms, or processes takes time, so choose the optimizations that will
genuinely make a difference.

Create institutional memory

Every time someone leaves your company, you lose institutional knowledge. If
you’re lucky, you have some old-timers storing history in their brains. But even-
tually, inevitably, you’ll have complete staff turnover.8 When an old system
breaks, there’ll be nobody left to say “Oh, yes, I remember when we ran into this
before. Here’s what we did last time.”

YOU’RE A ROLE MODEL NOW (SORRY) | 247

9 Be inspired by the Sandia National Laboratories report on creating pictographic information to deter
future humans from interfering with nuclear waste repositories in 10,000 years when current languages
will be long gone. You don’t need to think quite that far ahead, but imagine if the systems you work with
are still around in 10 years: what will people need to know? How can they accidentally hurt themselves?

10 In case you’re curious: the outage meant that a lot of Hosted Graphite’s users became slow all at once
and their usually short-lived connections stayed open, increasing the number of connections until they
reached a limit in the load balancer and prevented anyone else from connecting. The write-up is a good
time.

My ex-colleague John Reese, at the time a principal engineer at Google, often
also took the role of systems historian: he curated a record of how the site relia-
bility organization had evolved and how running software in production had
changed over the years. To create institutional memory, he wrote in-depth arti-
cles about the parts of the ecosystem he knew best, then interviewed others to
uncover the past, documenting formative systems and practices. Although he’s
moved on from Google now, that history lives on with a new set of curators.

While most organizations don’t have someone deliberately writing down
their history (though maybe we should!), you can send information into the
future by writing things down. This includes decision records that explain what
you were thinking, systems diagrams that include the obvious things that “every-
one knows,” and code comments that include context on what’s going on. How-
ever you create the history, include searchable keywords so that future people
have some chance of understanding what you did and why—and think about
what you know that future people might not.9

EXPECT FAILURE

My all-time favorite incident retrospective is the one Fran Garcia wrote about his
then-employer, Hosted Graphite, being taken down by an AWS outage. The rea-
son I love this one is that Hosted Graphite didn’t use AWS, so the team was quite
surprised at being affected by its outage.10 They had no way of predicting it.

How many unpredictable failures like that lurk in your systems? Assume it’s
a lot. The network will fail, the hardware will fail, the people will have an off day.
There will always be bugs. Odd interactions between parts of the system you
haven’t even thought about will cause problems.

You can’t predict everything that will go wrong, but you can predict that
something will go wrong. Plan for what you’ll do when it does. Build the
expectation of failure into your products: test the error paths as thoroughly as the
success paths, and make the product do something sensible and user-friendly

248 | THE STAFF ENGINEER’S PATH

https://oreil.ly/PWTxV
https://oreil.ly/zsPgE
https://oreil.ly/OuP1u

11 2038 is coming!

when it doesn’t get the kind of response it expects. Make sure you’ll find out
when your systems aren’t behaving, and have a plan for how you’ll respond to it.

Plan in advance for major incidents by adding some conventions around
how you work together during an emergency: introduce the incident command
system I mentioned earlier, for example, and practice the response before you
need it. Your disaster plans will invariably have something go wrong, so simulate
disaster with chaos engineering tooling or controlled outages. Drills, game days,
or tabletop exercises can let you uncover which parts of your response won’t
work. And of course, if you haven’t tested restoring your backups, assume you
don’t have any backups.

OPTIMIZE FOR MAINTENANCE, NOT CREATION

Software is created once, but it will need to be maintained for years. If you’ve got
a binary running in production, it will need monitoring, logging, business con-
tinuity, scaling, and so on. Even if you intend to never touch the code again, the
technical or regulatory ecosystem may force you to care: think of all the old sys-
tems that needed to be updated for Y2K, to support IPv6 or HTTPS, or for com-
pliance concerns like SOX, GDPR, or HIPAA. Those won’t be our last disruptive
changes.11

Software gets maintained for much longer than it takes to create it, so don’t
build code that’s hard to maintain. Here are some ways you can help Future You
and your future team.

Make it understandable

At the moment you create new code or design a new system, you understand it
well. Probably the people on your team also have a strong mental model of how it
works. Expect that knowledge to decay a little every day. The system will never
again be as well understood as it is on the day it’s created. If it’s hard to under-
stand then, good luck in two years, when something breaks and you’re trying to
load that mental model back into your brain.

You have two choices to let future people understand your system.
One option is to focus on education and hands-on experience. You can run

continual classes about the system, making sure that everyone who might have to
work on it in future is fully trained and has logged enough hours to handle any
problems that might arise.

YOU’RE A ROLE MODEL NOW (SORRY) | 249

https://oreil.ly/SOdWl
https://oreil.ly/NWys8

12 Refactoring: Improving the Design of Existing Code by Martin Fowler et al. (Addison-Wesley).

13 If it’s so few lines of code that it’s getting obfuscated and complicated again, you went too far. We’re aim-
ing for understandability, not stunt programming.

The other option is to make it as easy as possible for people to understand
the system when they need it. That means writing documentation with that
future person as the main audience: a clear, short introduction; at least one big,
simple picture (use arrows to show which direction data moves); links to any-
thing they might wonder about. Then expose the system’s inner workings as
clearly as possible. Make it possible to see what it’s doing, through tooling, trac-
ing, or useful status messages. Make your systems observable: easy to inspect,
analyze, and debug. And keep them simple, which I’ll talk about next.

Keep it simple

There’s a Martin Fowler quote that I love: “Any fool can write code that a com-
puter can understand. Good programmers write code that humans can under-
stand.”12 Senior engineers sometimes think they can demonstrate their prowess
with the flashiest, most complicated solutions. But it’s easier to make something
complicated. It’s much harder to make it simple!

How can you make something simple? Spend more time on it. When you
think of a solution to the problem you’re working on, treat it as “just the first.”
Spend at least the same amount of time on another solution. Now that you
understand it better, see if you can make it simpler: fewer lines of code, fewer
branches, fewer teams, fewer hours of maintenance, fewer running binaries,
fewer files touched.13 The longer the system is intended to last, the longer you
should spend trying to make it as simple as you can. Make it easy to build mental
models of the system or the code.

Beware of organizations that seem to reward complexity. Ryan Harter, a staff
data scientist, has written about how he’s seen people create complicated solu-
tions to prove that they’re doing hard work. “I’ve seen folks slip machine learning
into places it doesn’t belong to get a flashy launch.” He cautions, “Really, what
we should want are simple solutions to complex problems. The complexity of our
work is a cost to bear, not something to maximize!”

When you’re dealing with inherently complex problems, make a deliberate
decision about where in the system you’re going to put the complexity: that one
terrifying module with the inscrutable business logic or performance optimiza-
tions. Make it so that someone looking at the entire system can treat that

250 | THE STAFF ENGINEER’S PATH

https://oreil.ly/Su2IS

component as a magic black box and reason about everything else, so that there’s
a single place to go to when it’s time to understand and modify the complex part.

Build to decommission

Someday your system will be turned off. How hard is that going to be for the peo-
ple working on it then? Will they have to dig deep into the logic of other systems,
unwinding tendrils that touch business logic and tracing through code to under-
stand what data they’re accessing? Or will there be a clean interface and a simple
cutover?

Your architecture will evolve, and your components will settle into the mid-
dle. While it might be faster now for you to just wire in the new system, library,
or framework, think about what will happen afterward. Will it be possible to
replace it later without demolishing whatever other people have built on top of it?

Imagine knowing that you personally will need to decommission this compo-
nent in 10 years. Future You won’t be any less busy than Present You, so what
can you do to help them out? Might you add a clean interface, make it easy to see
which clients are still using a server, or design in a way that keeps a little distance
between two systems that are being integrated? If you set out from the start to
build a component that’s easy to decommission, you’ll have the side effect of
building something modular and easy to maintain.

CREATE FUTURE LEADERS

Building up your team is an important part of future planning. It often will be
easier and faster for you to solve problems or lead projects than for others to do
it, but that doesn’t mean you should take over. Your junior engineers are future
senior engineers. Give them the space to learn, and opportunities to do hands-on
work and solve increasingly difficult problems. Chapter 8 will have a lot more
about how to continually raise their skill levels.

I’ll leave you with one more quote from John Allspaw’s “On Being a Senior
Engineer”:

The degree to which other people want to work with you is a direct indica-

tion of how successful you’ll be in your career as an engineer. Be the engi-

neer that everyone wants to work with.

If you take nothing else away from this chapter, take that last sentence: the
metric for success is whether other people want to work with you. If they don’t, reeval-
uate your approach.

YOU’RE A ROLE MODEL NOW (SORRY) | 251

https://oreil.ly/aANg3
https://oreil.ly/aANg3

To Recap

• Your words and actions carry more weight now. Be deliberate.

• Invest the time to build knowledge and expertise. Competence comes from
experience.

• Be self-aware about what you know and what you don’t.

• Strive to be consistent, reliable, and trustworthy.

• Get comfortable taking charge when nobody else is, including during a
crisis or an ambiguous project.

• When someone needs to say something, say something.

• Create calm. Make problems smaller, not bigger.

• Be aware of your business, budgets, user needs, and the capabilities of
your team.

• Help your future self by planning ahead and keeping your tools sharp.

• Write things down, even when they’re “obvious.”

• Expect failure and be ready for it.

• Design software that’s easy to decommission.

• The metric for success is whether other people want to work with you.

252 | THE STAFF ENGINEER’S PATH

Good Influence
at Scale

How do you raise the skills of the people around you? As a staff engineer, part of
your job is to enable your colleagues to do better work, to create better solutions,
to be better engineers. We already started on this journey last chapter with the
idea of being a role model engineer: doing the best engineering work you can and
letting others see it. That’s what we usually mean when we say someone is “a
good influence.” They behave in the way we’d like others to behave.

But now we’ll go further and look at more active ways you can use your good
influence to improve other people’s skills and your organization’s engineering
culture.

Good Influence

When you work with someone who is missing skills or has lower standards than
you, don’t get frustrated: take the time to bring them up a level.

Why is it so important to help other engineers do better work? First, good
engineering inevitably goes beyond yourself. If your colleagues do better work,
you can do better work too. While some engineers are extraordinary solo artists,
even the most powerful virtuoso will meet some problems that are too big to
solve alone. If you can help your colleagues become better engineers, you’ll be
working with more competent people, which means your own work will be easier
(and less annoying). Better engineers means better software, which means better
business outcomes.

The second reason is that the industry keeps changing. Even if your engi-
neering organization is on the cutting edge right now, at some point there’ll be a
new game-changing architecture, tool, or process that you want everyone to

253

| 8

adopt. Getting the teams you work with to use it will be an exercise in frustration
unless you know how to influence and teach new skills.

The last reason is that it’s just the right thing to do. As a senior person, you
have outsize influence on how well your organization creates software, and even
on how our industry behaves and evolves. In the same way that you take pride in
improving your code quality, reliability, and usability, you can take pride in your
high standards. If you teach your midlevel colleagues to be fantastic engineers,
think of the midlevel engineers they’ll be teaching in 10 years. You’re sending
high standards into the future.

SCALING YOUR GOOD INFLUENCE

For most of us, leadership through influence starts with individual relationships:
reviewing someone’s code, hosting an intern, or mentoring a new grad. You
might progress to leading small teams, probably having one-on-one meetings
with each person on the team. As your scope grows, though, it becomes harder to
have enough influence purely through individual interactions. There just aren’t
enough hours in the day. As Bryan Liles, a principal engineer at VMware,
describes it: “My job at VMware is to be able to influence 14,000 engineers…I’m
trying to think ‘What can I do to make 14,000 engineers better?’”

Depending on your seniority, your scope, and your aspirations, you might be
aiming to influence far fewer people (or many more!). In this chapter, we’re
going to look at good influence at the micro and macro levels: from improving
the skills of your coworkers, team, or group to changing the trajectory of your
whole organization or even the entire industry. I’ll describe three tiers of influ-
ence (see Figure 8-1):

Individual
You’re working in a way that grows another person’s skills.

Group
You’re scaling your influence by bringing new skills or a change of
approach to multiple people at once.

Catalyst
The change you make goes beyond your direct influence. You’re setting up
frameworks or community structures that let your positive influence con-
tinue even after you step away.

254 | THE STAFF ENGINEER’S PATH

https://oreil.ly/ScVHa

Figure 8-1. Tiers of influence. Group influence goes further than individual influence. Catalyst
influence keeps going even when you stop investing more effort.

What forms can influence take? I’ll describe four mechanisms for bringing
your colleagues up a level, and give examples at each tier:

Advice
We’ll start with giving advice, both solicited and unsolicited. At the individ-
ual level, this can mean mentoring, peer feedback, or just answering ques-
tions. You can scale your advice to the group level through writing and
presenting, and get to the catalyst level by making it easy for your collea-
gues to advise each other.

Teaching
We’ll look at deliberately teaching skills to individuals through training,
pairing, shadowing, or coaching. Then we’ll scale to groups using onboard-
ing materials, codelabs, classes, and workshops. The catalyst level is teach-
ing other people to teach, setting curricula, and influencing the topics that
everyone is exposed to.

Guardrails
We’ll explore how to give people guardrails so they can work safely. For
individuals, I’ll talk about code review, design review, and how to be some-
one’s project guardrail. For groups, we’ll look at some of the processes,

GOOD INFLUENCE AT SCALE | 255

policies, and robots that can keep us on track. Finally, at the catalyst level,
we’ll explore the ultimate guardrail: culture change.

Opportunities
Finally, we’ll look at helping people grow by matching them with opportu-
nities that will help them learn. For individuals, I’ll talk about delegation,
sponsorship, and highlighting good work. For groups, the biggest opportu-
nity you can give your team might be stepping back, making space, and
sharing the spotlight. And it becomes a catalyst when the entry-level and
midlevel folks you sponsored become dynamic, skilled, problem-solving
senior people who take on challenges and create new opportunities that
you never imagined.

Table 8-1 shows these three tiers and four mechanisms, with some examples.

Table 8-1. Some examples of scaling advice, teaching, guardrails, and opportunity across the
organization and beyond.

Individual Group Catalyst

Advice Mentoring, sharing
knowledge, feedback

Tech talks,
documentation,
articles

Mentorship program,
tech talk events

Teaching Code review, design
review, coaching,
pairing, shadowing

Classes, codelabs Onboarding curriculum,
teaching people to teach

Guardrails Code review, change
review, design review

Processes, linters,
style guides

Frameworks, culture
change

Opportunity Delegating,
sponsorship,
cheerleading, ongoing
support

Sharing the spotlight,
empowering your
team

Creating a culture of
opportunity, watching
with pride as your
superstar junior
colleagues change the
world

Think of these tiers and mechanisms as a list of options available to you, not
a checklist to try to complete. Play to your strengths and do the ones that you
enjoy, find easy, or want to get better at. And although they’re framed as a hierar-
chy, don’t skip past the “smaller” ones. Leveling up your colleagues through code
review or sponsorship will have a ripple effect across the company, and even the
most world-changing technologists still mentor people they believe are worth
investing in.

256 | THE STAFF ENGINEER’S PATH

1 “Watch out, there’s a bear behind you” is also acceptable unsolicited advice.

Similarly, don’t get too focused on chasing the catalytic types of influence in
the right-hand column of Table 8-1. Having too many programs and frameworks
can be overwhelming for your organization, and you will often have more impact
by taking part in an existing initiative than by setting up something new. If
there’s already an onboarding curriculum, for example, teaching a class in it will
usually be more valuable than setting up a separate education initiative. Navigat-
ing a single team through a difficult design can often be much more important
than tinkering with the RFC process. Do the individual and group work first, and
only go broader if the need and value is very clear.

All that said, let’s start with advice.

Advice

“Free advice,” the maxim goes, “is worth exactly what you paid for it.” And it’s
true that advice is noisy: there’s bad signal mixed in with good, and it tends to not
be tailored to the person who’s receiving it. However, everyone needs advice
sometimes, and giving it is one of the ways you can pass on your experience. If
you’ve had successes and made mistakes, let other people learn from them too.

Who Asked You?

Before you offer advice, think about whether it’s welcome. Solicited

advice is when someone else asks for something: a recommendation,

feedback on their work, help deciding what to do. When it’s unsolicited,

they haven’t asked.

Before you offer your thoughts, think about whether the other per-

son is asking for them. Think too about whether you even have enough

context to tell them something that’s both helpful and nonobvious. If

you’re not sure whether your advice will be welcome, ask them.

There are times when unsolicited advice is valuable. “Your slides

were amazing, but you talk to your shoes when you present and it’s hard

to understand you” is difficult but probably kind unsolicited advice.1 But

think about your role and your relationship with the person. Some advice

should come from friends, not strangers. And, again, don’t just launch in.

Ask “Can I offer some advice?” and get their permission.

GOOD INFLUENCE AT SCALE | 257

2 Don’t name or shame the person you think needs advice, though.

Here are some other places where unsolicited advice might

be helpful:

• When you think the person is in a situation they can’t see out of.

“Hey, I know this isn’t the question you’re asking, but that job sit-

uation you described doesn’t seem healthy. You deserve better.”

• When you have key information the other person doesn’t have. “I

heard you say you’re going to start using the Foo platform; just

want to make sure you know it’s going to be turned down next

year.”

If you’re itching to give unsolicited advice on a topic nobody is asking

you about, consider writing a blog post or tweeting about it instead.2

INDIVIDUAL ADVICE

There are a few ways that you might give someone individual advice on a situa-
tion they’re in. These include being a mentor figure to them, answering their
questions, commenting on work they did, or giving peer feedback at performance
review time.

Mentorship

Mentoring is often an engineer’s first experience of leadership. In companies
with formal mentorship programs, you might be assigned to help a new person
get oriented. Mentorship can happen organically too: sit next to someone, intro-
duce yourself, and answer their questions, and you might find yourself with an
informal mentee.

By sharing your perspective and what you’ve learned, you can accelerate
other people’s learning and save them from making unnecessary mistakes. You
can tell them stories about similar situations you’ve been in, what you did, and
what the outcomes were. Senior engineering director Neha Batra describes men-
toring as “sharing your experience so an engineer can leverage it themselves.”
But remember, mentoring is focused on your experience.

Solicited or not, the advice that worked for you might not work for someone
else. Author and management coach Lara Hogan (whose name will come up a lot

258 | THE STAFF ENGINEER’S PATH

https://oreil.ly/2QWel
https://oreil.ly/2QWel

3 Resilient Management (A Book Apart)

this chapter!) warns that “advice that might work for one person (“Be louder in
meetings!” or “Ask your boss for a raise!”) may undermine someone else,
because members of underrepresented groups are unconsciously assessed and
treated differently.”3 The best practices of a decade ago also might not work for a
younger coworker now, and the social dynamics (or technology stack) of the expe-
rience you had might not map well to the one your colleague is facing. I’ve had
colleagues push back on advice that I targeted wrong. “Just DM the director and
ask them to invite you to the meeting” is an easy thing to say when the director is
a peer, and much more difficult when they’re your boss’s boss’s boss!

Be careful of unsolicited advice in mentor/mentee conversations. When
someone starts describing a difficult project, for example, the easy, intuitive
response is to say what you, the sage advice-giver, would do in the same situa-
tion. It’s kinder (if more difficult) to figure out what they actually need. Maybe it
turns out that they do want help. But it’s just as likely that they’re looking for
reassurance that other people would also find the problem or situation difficult.
They might be doing rubber duck debugging, explaining something to you so
they can unpack it for themselves. They might just want to tell a war story, to
hear commiserations and congratulations for what they’ve navigated so far.
Unsolicited advice derails all of those things. It can help to ask “Do you need
space to vent or are you looking for advice?” and then give either comfort and val-
idation or solutions as requested.

Mentoring is not just for new people: I have mentees with decades of experi-
ence as well as mentors of my own who I ask for advice. It’s not necessarily one-
way either. Your mentee might give you a new perspective or teach you about
topics that they know better than you do.

If you’re getting into a mentoring relationship, set it up for success. Set
expectations, such as that you’ll meet once a week for six weeks. Agree on what
you’re trying to achieve: does the mentee want to onboard and feel comfortable
in a new company, learn a new codebase, or get career advice to strive toward a
new role? If all of this is settled up front, you’re less likely to find yourselves sit-
ting in a room staring at each other all “What were we supposed to talk about?”

GOOD INFLUENCE AT SCALE | 259

https://oreil.ly/vCJ0t

Answering questions

If you have a vast repository of knowledge and everyone’s afraid to ask you any-
thing, your knowledge will stay in your own head. Be accessible. Depending on
your work style, that might mean offering office hours, being friendly and easy to
DM, or spending some of your time just hanging out near the teams you work
with—office spaces with sofas are fantastic for this sort of thing.

Make reaching out to you worth the effort. Some engineers seem to guard
their knowledge preciously, answering only direct questions and not a
word more.

“Will the /user endpoint give me the user’s full name?” asks the junior

engineer.

“No,” replies the senior engineer, “it can only give you the username.”

The junior engineer tries to hack around the problem for an hour before

nervously asking, “Is there a different endpoint that could give me the full

name?”

“Sure,” says the senior engineer, “use /fulluser.”

What a waste of an hour! The senior person had information, and it didn’t
occur to them to impart it. That doesn’t mean you should infodump, offloading
every snippet of information that could connect to the topic at hand. But under-
stand what advice is being implicitly solicited, even if it’s not directly asked for. If
you’re not sure, ask what your colleague is trying to do and ask if they need help.

Code and design review can be another time to answer implicit questions
and give advice. If you see a place where your colleague could solve a problem in
a better way, tell them. But be clear about whether you’re just sharing interesting
information or asking them to change course: it’s frustrating to get a bare com-
ment like “The Foo library also would work here” without context about whether
that means you hate the current approach.

Domain-specific information goes beyond technology. If you’ve learned ways
to navigate your organization and get things done, that’s valuable knowledge that
you can pass on to mentees and other colleagues. Share the topographical map
you built in Chapter 2!

Feedback

One of my self-appointed roles in my current job is to be a test audience for col-
leagues doing conference talks. I love watching tech talks and I’ve invested a lot

260 | THE STAFF ENGINEER’S PATH

of time in learning how to do them well, so the presenter and I both benefit. As I
watch the talk, I take a ton of notes, highlighting the parts I found funny, insight-
ful, or educational. But I also point out anything that didn’t work, anything I
thought wasn’t correct, anywhere I started to tune out. Good and bad, I tell the
truth. It’s a waste of the presenter’s time otherwise.

When someone asks you to review a document or pull request or conference
talk, do call out the sections that you think are great, but pay them the respect of
being (kindly!) honest about their work. Giving constructive and critical feedback
isn’t easy. It takes effort to tease out exactly what isn’t working and find the
words to explain why it’s not as good as it can be. It’s a more difficult conversa-
tion. But you won’t help your colleague if you hide the truth.

Peer reviews

If your company has a performance management cycle, you might be asked for a
specific kind of feedback: peer reviews. These reviews have two audiences and
you should keep both in mind.

The first is the person who asked you for feedback. Assume that they asked
because they genuinely want to know how to improve. I’ve seen people struggle
with “What could this person do better?” questions in peer feedback, because it’s
easy to see the answers as criticism. But take the question literally: what could
your colleague do better? How could they become more awesome? If you can’t
think of anything, ask yourself why they aren’t one level more senior (or two!),
and give them advice on behaviors they should focus on to get there.

But also remember that the feedback will be read by the person’s manager
and potentially others who are calibrating their performance or evaluating them
for promotion. Give those people the information they need to help your collea-
gue grow and to notice patterns that need to be addressed. But think about how
your words will be perceived and whether they can be taken out of context by
someone who doesn’t know the work you’re describing. If you find yourself hold-
ing back on describing an area for growth because you don’t want to accidentally
torpedo a well-deserved promotion, consider delivering private feedback by email
or in person instead.

Just like giving mentorship advice, remember that what works for one per-
son might be terrible advice for another. This is especially prevalent in advice
about communication style. For example, “be aggressive” is advice that will make
some people seem more like leaders, but will get others in trouble. It’s a com-
mon joke in tech women circles that you know you’re acting at senior level when

GOOD INFLUENCE AT SCALE | 261

4 2014. A good year.

5 X couldn’t start without Y and Y couldn’t start without X, and so neither could start.

you get your first peer review saying you’re “abrasive.”4 (That might also be the
first time your reviews don’t say you should be “more assertive.” It’s a fine line to
walk.) So watch out for implicit bias and be aware of how you’re describing the
same behavior across different people. Was it “consensus building” or “indeci-
siveness”? Were they “refreshingly down to earth or “unprofessional”? Often it
depends on who you’re talking about. The folks at Project Include offer more rec-
ommendations for providing feedback.

SCALING YOUR ADVICE TO A GROUP

You can’t meet individually with everyone who needs advice or write feedback for
your whole organization: you’d have no time left in your quarter. But you can
give a tech talk or write an article on literally anything you want, and chances are
it will reach some people who find it helpful. That’s a great way to scale your
advice.

Years ago, a group of volunteers at Google wanted to increase the quality of
testing and hit on a novel solution: they started writing their advice as simple
one-pagers, printing them out, and putting them up in toilet stalls. “Testing on
the Toilet” is the ultimate in unsolicited advice, but it’s popular and amusing,
and people read it!

If you want to tell something to more people, write it down. Documentation
means that you don’t have to explain how to do something again and again. A
FAQ, a how-to, even a descriptive channel topic can let you say something once
but have it read by many people. And if you write something that applies to peo-
ple outside your company, consider sharing it further as a blog post or article.

In addition, look for opportunities to get a microphone and an audience. Can
you get a slot at an all-hands meeting, conference, or tech talk event? Sometimes
you can use these opportunities to deliver a message you’re focused on alongside
the message you’ve been asked to share. I was invited once to present to a huge
group about an incident of my choice. At the time, I was really trying to get the
word out about dependency management and how important it is to be
deliberate about what systems you depend on. So I talked the group through a
recent outage that had been made much worse by a circular dependency that
stopped the systems from coming back online.5 The opportunity to present at

262 | THE STAFF ENGINEER’S PATH

https://oreil.ly/KYbCm
https://oreil.ly/UMO42
https://oreil.ly/UMO42
https://oreil.ly/F2bnz
https://oreil.ly/F2bnz

this big meeting let me frame the outage story so that it highlighted the message
I wanted to share. It was an audience and a microphone at the right time.

BEING A CATALYST

If you want to be a catalyst, set up advice flows that don’t need you to be involved.
Make it easy for your colleagues to help each other.

If your team or organization relies on one-on-one conversations to under-
stand how anything works, one of the most powerful things you can do is encour-
age people to write things down. Start small: going from an oral culture to
writing everything down won’t win you any friends. Instead, look for a small but
meaningful change. Are you missing an easy-to-use documentation platform?
Might teams sign on for creating a FAQ of the most common questions they’re
interrupted by? Might your director endorse a quarterly documentation day?

You can scale audience-and-microphone-style advice by setting up monthly
tech talks or lunch-and-learn meetings. This is a bigger commitment than just
scheduling the meeting: you’ll have to solicit talks, send reminders, and possibly
watch practice runs. Be clear about what you’re getting into, plan for it on your
time graph, and ideally start with at least three people to share the load.

Similarly, you can scale mentorship further by setting up a mentorship pro-
gram. Be warned: the administrative work will be more time-consuming than
you might expect, and this work is generally not considered to be part of an engi-
neer’s job. If you can find a manager who is interested in doing the same thing,
they will likely find it easier to frame the work as part of their job description.
Convincing someone else to set up a mentorship program still counts as being a
catalyst!

Teaching

On to the second type of good influence, and it’s a step up from advice: teaching.
What’s the difference between telling people things and teaching them things?
Understanding. When you’re giving advice, you’re explaining how you relate to
the topic, and the receiver can take your advice or leave it. When you’re teaching,
you’re trying to have the other person not just receive the information but inter-
nalize it for themselves.

Deliberate teaching is not just for a more senior person to help a more junior
one: it’s useful any time someone new is joining a team, or when you’ve got
more domain knowledge than someone else. I love asking a colleague for an
overview of their systems, for example, so I can fill in a mental gap in the overall

GOOD INFLUENCE AT SCALE | 263

architecture. At the end of an hour of whiteboarding, I’ll have a much clearer pic-
ture of how their systems interact with others, and I’ll have made my own dia-
gram to refer back to or to add to their documentation.

INDIVIDUAL TEACHING

Anywhere there’s a knowledge gap between you and someone you’re working
with, there’s an opportunity to teach. Sometimes this means formal training or
coaching. But there’s also plenty of teaching to be done within the regular struc-
tures of working together: pair programming, shadowing, and review.

Unlocking a topic

Think back to the best classes you ever took. What was successful about them? I
bet you walked away feeling like you had a handle on something you didn’t have
before: a new skill or understanding that you could build on. Great classes
“unlock” a topic for you, sparking curiosity and interest.

Teachers have a specific goal, often formalized in a lesson plan. If you’re
teaching, you should too. Some examples:

• Are you giving an overview of a system? If so, by the end of the session,
the person you’re teaching should be able to draw the system on a white-
board and describe it to someone else.

• Are you walking through a codebase? Aim to give them everything they
need to send their first pull request.

• Are you showing them how to use a tool or API? Describe three to five
common scenarios they should be able to handle on their own by the end
of the session.

Successful teaching includes hands-on learning and activating knowledge:
the student should be doing as well as listening. Find opportunities to let them
lead, whether that means using the tool themselves, typing commands, or
opening tabs on their laptop instead of yours. It’s even better if they end up with
an “artifact” to refer back to, like a diagram or code snippet.

Pairing, shadowing, and reverse shadowing

Here’s another way you can teach: working directly with someone else. Working
together has a spectrum of approaches (see Figure 8-2), from shadowing, where
you’re doing all of the work with your coworker observing, to pairing, where

264 | THE STAFF ENGINEER’S PATH

you’re working together, to reverse shadowing, where they’re doing all of the
work with you watching to give them feedback.

Figure 8-2. The spectrum of working together. Different points on this line will be useful in differ-
ent situations.

Shadowing is a way of teaching by demonstrating: your “shadow” watches
you execute a skill and takes notes on how you’re approaching it. It’s a great
opportunity to be a visible role model and show your colleague how to work with
high standards.

With pairing, you’re still working together, but the “shadow” has become an
active participant. Pairing can mean pair programming, coauthoring a document,
whiteboarding an architecture, or solving a problem together. It’s another oppor-
tunity for role modeling, but also for teaching: working side by side means you’ll
be able to share knowledge and check for understanding in real time.

Finally, you might “reverse shadow,” where the learner performs the task
and the experienced person watches and gives notes. No matter how closely the
learner has paid attention, they’ll learn the most by activating the knowledge and
practicing the task. Reverse shadowing can also serve as a type of guardrail,
which I’ll discuss later in this chapter.

Code and design review

Reviewing code and designs can be an excellent form of teaching. You get to
highlight perils your colleague might not know about and suggest safer alterna-
tives. You also get to encourage behaviors you want to see more of.

GOOD INFLUENCE AT SCALE | 265

6 I’ve sometimes tried to anchor reviewers by noting the context in the change description. For example:
“I’m new to this language, so if something looks weird, it’s probably not a deliberate stylistic choice! I
welcome nitpicking and advice on what’s idiomatic.”

A review from a senior person can be a real confidence booster. Be careful,
though: a review done wrong can destroy someone’s confidence rather than
boosting it. It can be soul-destroying to work through a barrage of comments that
are condescending, seem arbitrary, or that you don’t understand.

As a teacher, your job is to impart the knowledge and point out problems in
a way that retains your student’s confidence and growth mindset. Code review
will show up again in the “guardrails” section, and I’ll talk there about reviewing
to prevent harm to your systems, but for now, here are some ideas to bear in
mind as you review to teach:

Understand the assignment Be aware of the context. Is your colleague new to
the language or technology and looking to learn, or do they just need a second
pair of eyes for safety?6 Understand the stage of work, too: if you’re reading a first
high-level draft, start with the foundations and the approach and don’t get into
the nitpicky details. If everyone has bought in and this is the last review before
launch, it’s not the time for big directional questions: get right into the weeds
and be extra alert for what could go wrong.

Explain why as well as what A review comment like “Don’t use shared_ptr, use
unique_ptr” only tells the code author what to do right now. They won’t know
what to do next time. Teaching means sharing understanding, not just facts.
While the code author can go read documentation on whatever you just told
them about, they might not recognize why it applies. A short explanation or a
link to a relevant article or specific Stack Overflow post (rather than a general
manual) will be a shortcut to help them learn.

Give an example of what would be better If a section of a design is confusing,
don’t just say “please make this more clear.” It’s hard to know what to do with
that! Offer a couple of suggestions of what you think the author is trying to say.

Be clear about what matters When you’re less experienced, it can be hard to cal-
ibrate the advice you’re given. Some things are vitally important, some are nice to
have, and some are just personal preference. Annotate your advice so it’s clear.
Some examples:

266 | THE STAFF ENGINEER’S PATH

7 A little window into my life. :laughing:

• “Use parameterized queries here instead. You’re opening yourself up to
SQL injection attacks—a malicious user could drop our database!”

• “The way you’re approaching this will work fine, but we prefer to avoid the
singleton pattern. Here’s a link to the section of our style guide that talks
about why.”

• “I’d recommend one bigger microservice here rather than two small ones
—I think it’ll be easier to maintain. But I don’t feel strongly; your call.”

• “This is just a nitpick, but all of the other spellings in this file are in Amer-
ican English, so let’s call this one organization instead of organisation.7

Choose your battles John Turner, a software engineer who has written about
code review for the Squarespace engineering blog, recommends reviewing code
in several passes: first high-level comments, then in increasing detail. As he
points out: “If the code doesn’t do what it’s supposed to, then it doesn’t matter if
the indentation is correct or not.” This advice works for RFCs too: if your first
comment is that the author is solving the wrong problem, it’s not helpful to leave
a hundred technical suggestions.

If you mean “yes,” say “yes” Make it clear whether you consider your comments
to be blocking or not, and whether you’re otherwise happy with the change. Call
out the good as well as the bad. In particular, explicitly say “This looks good to
me” on design documents. Code review tends to end by clicking a button to say
that you believe the change is safe to merge. When there are a lot of reviewers,
though, each one may be hesitant to approve until the others have weighed in. If
you have no objections, say so.

Remember that engineers who are earlier in their careers may find you
intimidating or be reluctant to question your suggestions even when they think
you’re wrong. Think about how to make your comments friendly, approachable,
and, well, human. If the pull request or RFC needs a lot of work, the most con-
structive approach might not be to bury your colleague in comments: consider
setting up time to talk or pair with them instead.

GOOD INFLUENCE AT SCALE | 267

https://oreil.ly/3VLqa
https://oreil.ly/3VLqa

Coaching

The last form of individual teaching I’m going to talk about is coaching. Whereas
mentoring involves sharing your personal experiences, coaching teaches people to
solve problems for themselves. It can be a slower process, but your colleague will
learn much more by making their own connections than they will from you giv-
ing them the answers.

Coaching’s a set of odd skills that sound pretty straightforward but take time
and deliberate effort to learn. You shouldn’t expect to be immediately good at it!
Here are the three big skills you’ll need:

Asking open questions Open questions are the ones that can’t be answered with
“yes” or “no”: they yield much more information. Try to dig into the problem
rather than starting with a solution. Ask questions that help your coachee identify
and unpack aspects of the problem that they might not already have considered.

Active listening Reflect back what you’ve heard, to make sure that you’ve really
understood and to let the person hear how you frame what they’ve said. The feel-
ing of being understood can be powerful and help people feel less alone. Your
framing can give your colleague a new way to describe what they’re working
through, helping them come up with new solutions.

Making space Leave enough space and silence for the coachee to reflect. If you
tend to reflexively jump in when there’s a silence, count to five in your head
before speaking again so the other person can process.

When you’re new to being a coach, it feels very strange to not just help. If you
have the answer, shouldn’t you just give it? No. As management consultant Julia
Milner warns in her TEDx talk, you can’t know every detail of the situation.
When you provide a solution, the coachee is likely to reflexively respond with
what Milner calls a “Yes, but…,” a reason your advice can’t work. Instead, she
says, good coaching involves drawing out their own best ideas, providing them
the space to reflect, and helping them take their own journey to a solution that
works for them.

SCALING YOUR TEACHING TO A GROUP

Teaching one person at a time is great for that one person, but it’s a slow way to
spread information. You can scale your teaching by creating materials for a class.

Putting together a class takes a ton of effort. There’s a high up-front cost for
the first time you teach it, but you’ll amortize that cost every time you teach it
again. Just like individual teaching, your class should have a specific goal for

268 | THE STAFF ENGINEER’S PATH

https://oreil.ly/ghwkC

8 The Kotlin Koans are a great example, and fun to work through. Google also has a ton of great codelabs.

what your students will know or be able to do at the end. Include exercises or
some way for the students in the class to practice what they’ve learned.

If you want to make your class asynchronous, consider making something
that students can use at their own pace. A great example of this kind of teaching
is a codelab: a guided tutorial that takes the student step by step through building
something or solving exercises.8

I used to work on a project that was perpetually underfunded and survived
on a rotating cast of volunteers, interns, and people on short-term residency pro-
grams. Many were new to the company or even the industry. Dropping them
straight into our codebase (an intimidating networking library) would have made
them run screaming, so we created and documented a learning path.

On day one, we had them send two pull requests: one to add a joke to our
repository of jokes, and one to add their name to the list of people on the team.
We would find a reason to do a little back-and-forth on this, so they’d get used to
the code review process. On day two, we’d have them build and run a tiny client
and server we’d created just for this purpose. They’d watch it running in produc-
tion, and look at its UI and the logs and metrics it was exporting. Then they’d
make a local change to the library—adding a new log message, maybe, or even
tweaking the logic—and deploy it to prove to themselves that the code still
worked and that they could see their change in the monitoring data. It was very
effective. By the time they got to making actual changes on week two, they
weren’t scared of the code. It was just code.

When the majority of your contributors only stay for three months, you need
to get them up to speed quickly. We used this same well-documented learning
path for every new contributor, and it didn’t take long for it to repay our invest-
ment.

BEING A CATALYST

You can scale your classes further by teaching other people to teach them. Differ-
ent teachers have different styles; embrace that. Let your new teachers begin to
own their own classes: they should have access to edit the slides and exercises, or
they should have your blessing to create their own variants. Shadow them and
give honest feedback: they want to learn. Once they start teaching other people to

GOOD INFLUENCE AT SCALE | 269

https://oreil.ly/XXtus
https://oreil.ly/OqlOA

teach the class, it has life without you. (At this point I usually slink away and
remove myself from the teaching rotation.)

If your class is applicable to all your engineers, try to add it to an onboarding
curriculum or internal learning and development path—all of your new hires will
learn what you want them to know without you having to find a way to reach
them. If your company doesn’t already have this kind of learning culture, you can
have a huge impact by advocating for an onboarding process, evangelizing learn-
ing paths, or setting up a framework that makes it easy to create codelabs.

Guardrails

Think of the railings you might find along a cliffside walking path. They’re not
for leaning on, but they’re there to steady yourself when you need them. A small
stumble won’t doom you: the railings will stop you going over the edge. Guard-
rails encourage autonomy, exploration, and innovation. We all move faster when
the going is safe. In this section we’ll look at some ways you can add guardrails
for your colleagues, first individually and then at scale.

INDIVIDUAL GUARDRAILS

You can provide guardrails by reviewing code, designs and changes, and by offer-
ing support through scary projects.

Code, design, and change review

I’ve already described how code and design review can be great teaching tools.
There’s a third type of review that can be effective, too: change management.
That’s the process of writing down exactly what you’re going to do before you do
it and having someone else agree that you’ve described the right set of steps. It’s
like code review, but for command lines or clicking buttons in the right order.

You can use code, design, and change reviews as powerful guardrails to help
your colleagues. When someone knows their work will be reviewed, it’s easier for
them to feel confident working independently. They know there will be a check to
make sure they don’t cause an outage or spend months building an architecture
that can’t work. The guardrail helps them avoid dangerous mistakes.

If you want to be a good guardrail, don’t ever rubber-stamp changes. Read
carefully: every line of code, every section of a design, every step of a proposed
change. Here are some categories of problems you should look for:

270 | THE STAFF ENGINEER’S PATH

Should this work exist?
What problem does your colleague intend to solve? Are they using a techni-
cal solution to solve a problem that should have been solved by talking to
someone?

Does this work actually solve the problem?
Will the solution work? Will users be able to do what they need and what
they expect? Are there errors or typos? Any bugs or performance issues?
Does the design propose using a system in a way that won’t work?

How will it handle failure?
How will the solution handle weird edge cases, malformed input, the net-
work randomly disappearing, load spikes, or whatever else can go wrong?
Will it fail in a clean way, or will it corrupt data or take a user’s money
without giving them the service they’ve paid for? How will you discover
problems?

Is it understandable?
Will other people be able to maintain and debug new code or systems? Are
the components or variables named intuitively? Is the complexity contained
in a well-chosen place?

Does it fit into the bigger picture?
Does the change set a precedent or create a pattern you might not want
other people to copy? Does it force other teams to do extra work for future
changes? Is this a risky change that’s scheduled at the same time as a high-
profile launch?

Do the right people know about it?
Is everyone copied on the change who should be? Are there names
attached to any actions that need to happen, or is there a lot of passive voice
where it isn’t clear which team is doing what? Do the people involved know
what is expected of them?

As a reviewer, be open to the idea that you don’t know everything. Ask ques-
tions and be constructive. A good guardrail is not an arbitrary gatekeeper: you’re
on the same side as the person you’re keeping safe, and you want them
to succeed.

GOOD INFLUENCE AT SCALE | 271

Project guardrails

If you’ve ever stretched to take on a difficult project, you’ll know that it’s a great
way to build skills, but it’s also nerve-wracking! You’re more likely to fail, because
you’re doing something that’s hard for you. So it’s nice when you have a more
experienced colleague who has done a project of this size or shape before: they
can help keep you safe. That doesn’t mean they’ll do the work for you or protect
you from all possible mistakes, but they’ll let you know if you’re getting close to a
disaster you won’t be able to recover from. That’s what it means to act as a
project guardrail.

I remember leading a project that was a real stretch for me. It had more
moving parts than anything I’d done before, more stakeholders, and way more
politics. Every week when I met with my team lead, he’d ask questions about the
project: “Just out of interest, how were you planning to balance these two con-
flicting business priorities?” Of course, I didn’t have a plan: I hadn’t noticed the
problem creeping up. But the questions were enough to put me back on course,
and I was able to suggest paths forward. Although I didn’t realize it at the time,
the team lead was acting as a guardrail. He was making sure I’d noticed that I
was walking close to a cliff edge, and if I didn’t have a good idea for what to do,
he was ready to coach.

Being a project guardrail isn’t just for less experienced folks: you can play
this role for any colleague who is leading a project or taking on a difficult task.
Even very seasoned people can use support in a project that’s using a new skill
set. If someone asks you to be a mentor or adviser on a project, they’re probably
hoping for at least a little guarding.

A guardrail can offer support as well as safety. Lara Hogan suggests being
specific about how you can help with the project, like promising to review
designs or advocate for ideas with upper management, as well as being explicit
about when and how your colleague should ask you for help. She suggests lines
like “Shoot me an email if person B is unresponsive to you for three days; I can
be your muscle there.”

SCALING YOUR GUARDRAILS TO A GROUP

You can’t personally review every change and support every project, and you’ll
just slow everyone down if you try. Let’s look at how you can add guardrails for
your team or organization without getting in everyone’s way.

272 | THE STAFF ENGINEER’S PATH

https://oreil.ly/gAC0X
https://oreil.ly/gAC0X

Processes

Rather than individually teaching your coworkers the right thing to do, you can
write down a standard set of steps and convince the organization to follow them.
For example, what’s the “right way” to launch a new feature at your company?
Your prelaunch process might include answering questions like:

• Do we need security approval?

• How much notice should we give the marketing team or customer
support?

• Should we ship behind a feature flag?

• Is there standard monitoring, eventing, and documentation we should
add?

• Do we need to tell other teams to expect extra load?

And many more! As the company grows and the organization gets more
complex, there will be more ways for a launch to cause an outage or public rela-
tions mess. And so a process is born.

Opinions about processes vary. Some people will be delighted to have clear
steps and the safety that comes from standardization. Others will insist that peo-
ple should think instead of mindlessly following protocols and that checklists and
approvals just slow them down. Nobody’s wrong; it’s a trade-off. But the bigger
the company, the more likely you’ll need some sort of structure that helps people
do the right thing without having to ask the same questions every time.

Here are some other examples where adding a process or checklist might be
helpful:

• Responding to a major outage or security incident

• Sharing and agreeing on RFCs or designs

• Adopting a new technology or language

• Making and recording decisions that cross multiple organizations

In general, aim to make processes as lightweight as possible. If you add a
complicated procedure with lots of boilerplate, central approval, and long waiting
periods, it’s not going to be a good guardrail: people will just sneak around it.
Make the right way the easy way.

GOOD INFLUENCE AT SCALE | 273

9 This is also just generally good life advice.

Process Preamble

Here’s the introduction I wrote for a process FAQ document at work. Feel

free to use it if it’s helpful for you too.

There are a lot of questions about how <topic> should work. It’s hard

to find a balance for how prescriptive to be with processes like this.

• If you write nothing down, most people hate that and complain

that they don’t know how to do anything.

• If you write down guidelines, people interpret them as law and

argue that they’re wrong because they don’t cover edge cases.

• And if you write down every edge case, you end up with a three-

ring binder of policy and legalese, and it probably still won’t cover

every situation. And everyone still hates it!

This document attempts to give mostly correct answers to some fre-

quently asked questions. These answers will not apply perfectly in every

situation. Think twice before discarding them, but if they don’t make

sense for a situation you’re in, do the thing that makes sense instead. All

guidelines are wrong sometimes. (If these guidelines are wrong a lot, pro-

pose a change.)

When in doubt, think hard about the other humans involved in what

you’re doing, assume they’re reasonable people trying their best, and

also be a reasonable person trying your best.9

Written decisions

Here’s another way you can make it easier to do the right thing: make a decision
once and write it down, so people don’t have to have the same argument again
and again. Written decisions remove a little decision fatigue from people’s lives:
the rules say we usually do X, so that’s what we’ll do!

Here are four examples:

Style guides As Google’s style guide site explains, a style guide for a project is “a
set of conventions (sometimes arbitrary) about how to write code for that project.

274 | THE STAFF ENGINEER’S PATH

https://oreil.ly/gkUmT

It is much easier to understand a large codebase when all the code in it is in a
consistent style.” The word style here covers a lot of ground, from naming con-
ventions to error handling to which language features are OK to use. By making
the decisions once and writing them down, you save teams from having the same
“do we use lower camel case or snake case for variable names?” arguments for
every new project. You’ll end up with more consistent code, too.

Paved roads Some companies document their set of standard, well-supported
technologies and recommend (or mandate) that teams don’t step off that “paved
road.” I like the format popularized by the Thoughtworks Tech Radar, marking
technologies as “Adopt,” “Trial,” “Access,” and “Hold.”

Policies Companies can make rules: for example, “Every team should run a ret-
rospective after an outage.” If the rule is enforced, breaking it could be seen as
failing to do one’s job, with implications for performance reviews. Use policies
sparingly. It’s hard to account for all the edge cases—and there will always be
edge cases. Besides, if there are too many policies, people just won’t remember
all the things they’re supposed to do.

Technical vision and strategy A technical vision or strategy (see Chapter 3) gives
a clear direction within which teams can choose their own paths to solving
problems.

Robots and reminders

Software consultant Glen Mailer says he looks for ways to make it as easy as pos-
sible for people to remember to do the right thing. This means putting the right
solution in their faces—sometimes literally! He gave an example of a workplace
where everyone was supposed to track their project time using timesheets. Of
course, people often forgot until someone came up with a solution: they stuck a
timesheet grid and a pen on the exit door at head height. When anyone pushed
the door to leave, the timesheet would be in front of their eyes—much harder to
forget.

If you’re trying to introduce a process or a written decision, see if there are
ways you can (gently) put it in people’s faces. Even better, have an automated sys-
tem do the right thing so humans don’t have to. Some examples:

Automated reminders Rather than always reminding someone that it’s their
week to follow the release process, set up automation that puts it in their calen-
dar or DMs them about it. The reminder should include a link to the process.

GOOD INFLUENCE AT SCALE | 275

https://oreil.ly/FUHQP

10 Check out Christina Schulman and Etienne Perot’s entertaining talk on SRSly, including its origin story:
automation accidentally sent all of the disks in a data center to be erased at once. As they noted, if you
ask efficient automation to do something stupid, it will do so very efficiently.

Linters Have a code linter enforce as much of your style guide as it can, so
reviewers don’t have to.

Search Make sure that any search for how to do something brings up the right
way to do it, even if that means updating all of the “wrong” documents to have
headers that point to the right place.

Templates If all RFCs are supposed to have a security section, make sure there’s
an easy RFC template and that it includes a security section.

Config checkers and presubmits Can you add automation that automatically
runs unit tests, or runs safety checks on configs before committing them? Goo-
gle’s data center safety system, SRSly, is a great example: it allows setting guard-
rails like “No more than 5% of servers may be rebooted at once” and “Don’t
decommission a server for this system if the on-call for it recently got paged.”10

BEING A CATALYST

Creating robots, policies, and processes that reinforce your message scales fur-
ther than being a guardrail for individual colleagues. But they all still rely on you
doing something. If you really want a message to stick, you need everyone to
believe in it and care about it. You want your organization to get to a state where
it would be considered weird to do something else. The most effective guardrail
is also the most difficult to put in place: culture change. Unless you can make the
guardrail part of your culture, you’ll always be chasing compliance.

Most tech companies now have code review and write tests. But that wasn’t
always the case! All of the guardrails that we take for granted today were intro-
duced by people who cared enough to argue for why the change was worth the
time. If you’re introducing a culture change, be patient. It takes a lot of time and
dedicated effort to make everyone behave in a different way, but it’s the only way
you’ll ever be able to stop pushing the process along manually.

Here are some ways you can make your culture change journey easier:

Solve a real problem

The culture change should be closely aligned with what the organization needs.
Expect any proposal to be confronted with a lot of “why” questions. Have good

276 | THE STAFF ENGINEER’S PATH

https://oreil.ly/k8ohr

answers that aren’t just aspirational: really, what does the business get out
of this?

Choose your battles

Rather than a process for design review, try to instill a respect for design review
and trust that teams will make their own choices about what form works for
them. Offer some easy defaults, but don’t get hung up on whether everyone’s fol-
lowing exactly the same process.

Offer support

Your processes and automations should support the change you want: they
should make it easy to do the right thing.

Find allies

Don’t try to change the culture on your own. Ideally, your allies will include high-
level sponsors and influencers in the organization you’re trying to change. Con-
sult the shadow org chart you mapped out in Chapter 2.

Opportunity

The last type of good influence we’re going to look at is finding people the experi-
ences they need to grow. People learn by doing, even more than they do from
teaching or coaching or advice. Every project or role is a chance for visibility, rela-
tionships, and résumé lines, all of which can lead to further opportunities. Let’s
look at how you can send those experiences to your colleagues, both individually
and at scale.

INDIVIDUAL OPPORTUNITIES

As a senior person, you will have many occasions where you can help other peo-
ple find opportunities to grow. You’ll be able to directly offer projects and learn-
ing experiences through delegation. But you’ll also be able to suggest people for
assignments, promote their work, or connect them with information that can
help them.

Delegation

Delegation means giving part of your work to someone else. When you delegate,
you’re usually not just tossing someone a project and walking away: you’re inves-
ted in the outcome. That might mean you’re tempted to micromanage or to han-
dle all of the difficult parts of the project yourself. But when you hand over the

GOOD INFLUENCE AT SCALE | 277

11 This pattern is common in recruiting mails: “Come do exactly the thing you’re currently doing, but at
another company.” There are times when that will work (we’ll explore motivations for changing jobs in
Chapter 9), but the most successful recruitment I’ve seen is for roles that offer people a step up, some-
thing slightly scary.

work, really hand it over. As Lara Hogan says, your colleagues won’t learn as
much if you only delegate the work after you’ve turned it into “beautifully pack-
aged, cleanly wrapped gifts.” If you instead give them “a messy, unscoped project
with a bit of a safety net,” they’ll get a chance to hone their problem-solving abili-
ties, build their own support system, and stretch their skill set. A messy project is
a learning opportunity that’s hard to get otherwise.

Target the level of difficulty to the person you’re delegating to—don’t throw
organizational chaos to a new grad! But when you’re looking for someone to dele-
gate to, think beyond the most obvious people. Anyone who can do an A+ perfect
job on a project isn’t going to learn from it.11 Instead, try to find someone who
will find the work a bit of a stretch but manageable with support. Promise them
that support. You might need to give them a little push to help them see that the
work is within their reach: they might not yet see themselves as a project lead, an
incident commander, etc., but the fact that you see them like that can be a tre-
mendous boost to their confidence. Describe the guardrails you can provide for
them and explain why you think they can handle the project.

Be warned that, when you delegate, you’re not going to get a clone. (Sorry, we
don’t have that technology yet.) Inevitably the person you’ve delegated to is going
to take a different approach than you would have. Be a guardrail, coach them,
and ask questions, but inhibit the urge to step in. So long as they’re going to ach-
ieve the goals, let them do it their way. I absolutely love how Molly Graham, most
recently the chief operating officer at Quip, frames handing off work as “giving
away your Legos”:

There’s a lot of natural anxiety and insecurity that the new person won’t

build your Lego tower in the right way, or that they’ll get to take all the fun

or important Legos, or that if they take over the part of the Lego tower you

were building, then there won’t be any Legos left for you. But at a scaling

company, giving away responsibility—giving away the part of the Lego

tower you started building—is the only way to move on to building bigger

and better things.

278 | THE STAFF ENGINEER’S PATH

https://oreil.ly/PJ06s
https://oreil.ly/ltqKy
https://oreil.ly/ltqKy

One key Lego-relinquishing behavior to watch out for is that you should be
redirecting questions about the project to the other person, not proxying the infor-
mation. That is: when someone asks you a question about the project, you may
think that you have the current state. But answering the question makes you the
point of contact, potentially undermining the colleague to whom you handed off
the project. You might also have the wrong answer! Instead, give visibility to the
person who took over the project: note that they’re the expert and owner for the
topic and show that you trust them to make decisions. You’ll give the project
owner a connection to someone new and any extra opportunities that come out
of that connection. The next time the interested person has a question about the
project, they’ll know where to go. And the project will be off your plate.

Sponsorship

Sponsorship is using your position of influence to advocate for someone else. It’s
more active than mentorship: you’re deliberately unlocking opportunity for other
people, not just giving them advice. It takes more work, too: if you want to be a
great sponsor, you need to know what your colleague will benefit from and what
opportunities they’re looking out for. You’re investing your time and social capi-
tal in their growth.

Rosalind Chow, associate professor of organizational behavior and theory at
Carnegie Mellon University, has described what she calls “the ABCDs of
sponsorship”:

Amplifying
Promoting your colleague’s good work and making sure other people know
about their accomplishments

Boosting
Recommending them for opportunities and endorsing their skills

Connecting
Bringing them into a network, giving them access to people they wouldn’t
otherwise be able to meet

Defending
Standing up for them when they’re unfairly criticized; changing any nega-
tive perceptions of them

The opportunities that you can offer through sponsorship may seem like
small ones, but they lead to greater things. If you recommend someone to lead a

GOOD INFLUENCE AT SCALE | 279

https://oreil.ly/Ndm87
https://oreil.ly/Ndm87

small project, you’re setting them up to later be seen and chosen for a bigger one.
Every time you give someone a shout-out, comment on their work, or even
retweet them, you’re signal-boosting their good work and making sure the other
people in your network know about them and think of them when opportunities
arise. If someone in another team is being a superstar, make sure their boss
knows. If you’re in a company that writes peer reviews, a review is a great way to
make sure the good work goes on the record.

Who should you sponsor? Look for people who want opportunities to grow
and who you trust to do good work. You’re spending your social capital by recom-
mending them, so don’t waste that by sending opportunities to people who don’t
actually want them, or who won’t put in the effort. Sponsor colleagues who have
untapped potential, who are worth investing in. Watch out for in-group favori-
tism, though, a cognitive bias that can let you evaluate other people more favora-
bly if they’re like you. In the words of Mitch Kapor, founder of Lotus, cofounder
of the Electronic Frontier Foundation, and cochair of the Kapor Center for Social
Impact: “We talk about the meritocracy of Silicon Valley, when really it’s a mir-
rortocracy, as people tend to hire people who look like themselves at greater rates
than other sectors.” Pay attention to who you’re recommending or helping, and
make sure you’re not accidentally only sponsoring people who look like you. It’s
surprisingly easy to do.

Connecting people

Even if a role or project isn’t yours to delegate and you aren’t being asked to
make a recommendation, you can still offer opportunities just by knowing that
they exist. As a staff+ engineer, you’ll probably have broader context than other
engineers you work with: as I described in Chapter 2, you’ll be spending more
time just knowing things. Keep an ear out for opportunities that will help your col-
leagues. You can remember that a conference call for papers is open, that a team
lead role is opening up, or that a new internal training program is offering a skill
someone is trying to learn. By connecting people with information, you expand
their options.

SCALING YOUR OPPORTUNITIES TO A GROUP

Some of the catalytic types of influence I’ve already described give people visibil-
ity and opportunities to learn leadership and teaching skills. But here’s one more
way you can scale opportunity: sharing the stage.

280 | THE STAFF ENGINEER’S PATH

https://oreil.ly/bbO1B

Share the spotlight

As the most senior person on a team or on a project, there’s going to be a lot of
things that you do best. That might make it tempting to jump on every difficult
problem. But while it might feel amazing to be the resourceful and knowledgea-
ble senior person who’s leading the team to greatness every day, what you’re
actually doing is overshadowing the rest of the team and preventing them from
growing.

Instead, translate your superstardom into helping everyone do better work.
Let other people do work that’s not as good as you would have done it, so long as
it’s good enough. That’s how they learn. Sharing the stage includes delegation, but
it can also mean making space: letting other people notice that the work needs to
be done so they can build leadership skills by picking it up or learning to delegate
for themselves.

Here are some ways you can make sure you’re sharing the spotlight:

• If someone asks a question in a group meeting, leave a gap or explicitly
hand off the floor to another person on your team.

• Add a less senior colleague to a meeting you go to, and let them speak
about their work.

• Invite a less senior colleague to review designs or code that connects to
their work, and be clear that their opinion matters.

Warning

While being the face of every project limits your team, the opposite extreme can

have problems too. If you prefer to delegate everything, make sure you’re aligned

with your management chain about how you work. Most managers will expect some

direct execution and visible accomplishments from their staff engineers. Don’t put

yourself into so much of a support role that nobody’s quite sure what you do.

BEING A CATALYST

You can take steps to keep opportunity and sponsorship flowing even when
you’re not there. While most workplaces have some concept of mentorship,
sponsorship might not already be well understood. Look for ways that you can
teach your colleagues to look beyond the obvious candidates to suggest for oppor-
tunities. Some ideas include: advocating for an inclusive interview process,

GOOD INFLUENCE AT SCALE | 281

https://oreil.ly/PdxHq

inviting a speaker on implicit bias, or setting the culture that open team roles are
posted on an internal job board.

The best way you can be a catalyst in the industry is by empowering your col-
leagues to become great engineers who do great things. As you offer opportuni-
ties that turn your midlevels into seniors and then into staff engineers, teach
them to offer advice, teaching, guardrails, and opportunities to the people who
will follow them. The staff engineers you grew will grow the staff engineers who
follow them. Your leadership will keep going.

Warning

For someone to be promoted to your level, they don’t need to be as good as you are

now: they need to be as good as you were when you were first promoted to the level.

If you keep seeing people join your level who aren’t as capable as you are, don’t

snark about lowered standards: think about whether that means you’ve grown.

At the start of the chapter I listed three reasons to improve your coworkers’
skills: getting more done, keeping your technology up to date, and improving the
industry. Here’s a fourth: other people’s growth is your growth. If you can dele-
gate, you’ll be able to take responsibility for bigger, more difficult problems,
handing off parts of them to the rest of your group. The more your colleagues
can do, the more you can do. As Bryan Liles says, “How you can get pushed up is
by building a whole bench behind you.”

At some point, you might look at the people who are doing the job you used
to do and realize you’ve gone up a level. What do you do then? In Chapter 9 we’ll
look at what’s next.

To Recap

• You can help your colleagues by providing advice, teaching, guardrails, or
opportunities. Understand what’s most helpful for the specific situation.

• Think about whether you want to help one-on-one, level up your team, or
influence further.

• Offer your experience and advice, but make sure it’s welcome. Writing and
public speaking can send your message further.

• Teach through pairing, shadowing, review, and coaching. Teaching classes
or writing codelabs can scale your teaching time.

282 | THE STAFF ENGINEER’S PATH

https://oreil.ly/ScVHa

• Guardrails can let people work autonomously. Offer review, or be a project
guardrail for your colleagues. Codify guardrails using processes, automa-
tion, and culture change.

• Opportunities can be much more valuable than advice. Think about who
you’re sponsoring and delegating to. Share the spotlight in your team.

• Plan to give away your job.

GOOD INFLUENCE AT SCALE | 283

What’s Next?

We started this book with a journey to understand what your job is. Since then,
you’ve unpacked your scope and primary focus, mapped your org, developed
strategy and vision, prioritized work, led projects, navigated obstacles, modeled
good engineering, and brought your colleagues up a level. It’s been a journey!
And now we’re at the final topic: we’re back to you. But instead of looking more
at what you’re doing now, we’re going to look at where you go from here. We’re
going to look at leveling up yourself.

What does leveling up even mean? It depends on the circumstances and it
depends on you. So we’ll start by returning to a theme throughout this book:
what’s important? We’ll look at the big picture of your career, where you’re going,
and what you need from your next steps. Then we’ll take a look at your current
role and evaluate whether it’s a step toward where you want to go.

The staff engineer role is loosely defined, so it’s not surprising that the paths
onward are loosely defined too. We’ll look at some of the options you have, and
I’ll share stories from other people who have traveled onward from staff+ roles.
These stories are just a sampler of the range of things you can do, but they might
serve as inspiration for your own journey.

To finish, we’ll consider the influence you’ll have throughout your career. As
a senior person, you’re one of the leaders of our industry. You’re responsible for
the choices you make, and you’ll influence other people’s choices too. And you’re
the only person who can drive your career. We’ll start there.

Your Career

A friend at a huge company once compared his career journey to playing Diablo,
a classic role-playing video game. “I fight all the monsters and clear the dun-
geon,” he said, “and eventually I collect enough experience points to go up a

285

| 9

level. But then…I just start again in a new dungeon and the monsters have also
gone up a level! What’s the point?!”

What is the point, for you? Where are you going?
Back in Chapter 2, we drew three maps to describe your work. Let’s draw a

fourth now: the trail map. Imagine your career as a journey across mountainous
terrain. There are many paths marked on your map, some well-traveled and
some overgrown. Some trails have limited visibility, but you can stay oriented by
catching glimpses of landmarks as you travel. Some are twisty and you might
need to take a path that seems to lead away from your destination, but that’s the
only way to where you want to go.

Not all destinations are on the map, and many of the interesting ones can
only be reached by leaving the trail. If you always choose your next destination
based only on where the marked paths lead (see Figure 9-1), you might just keep
following other people’s footsteps to the next dungeon and miss out on places
you actually wanted to go.

Figure 9-1. Following local trails. None of the marked paths go to the destination, but if you have
a map you’ll know the right place to leave the trail.

286 | THE STAFF ENGINEER’S PATH

But where are you going? Maybe you’ve got a clear destination with mile-
stones along the way. Maybe you don’t know exactly where you’re going, but you
know the rough direction you want to travel. Or maybe you’re not going any-
where in particular: you’re just enjoying the journey.

For the rest of this chapter, I’ll assume you want to go somewhere from here.
Career progression is often framed as climbing a career ladder and growing your
seniority, responsibility, power, and wealth. That’s just a subset of the trails,
though. Let’s look at what’s important to you.

WHAT’S IMPORTANT TO YOU?

Staff engineer Cian Synnott has written about creating a priority list as a way to
stay oriented and make sure his work is supporting what he wants from his life.
Creating a list like this is a great way of introspecting about what matters to you.
What are your career and life priorities? Here are some common ones:

Being financially secure
It might be most important to you to pay off debts, prepare for college fees,
or save for your retirement.

Supporting your family
If you’ve got family who depend on you, you might accept a job you enjoy
less for the sake of a salary that lets you take care of them. You could be
optimizing for a steady paycheck with good benefits and no fear of layoffs.

Having a flexible schedule
You might want flexibility, like a schedule that accommodates childcare or
eldercare or a chronic illness or disability. Or maybe you just want a sched-
ule that gives you lots of free time to do the things you enjoy.

Learning a lot
Maybe you want the intellectual satisfaction of becoming world class in a
particular domain or being the kind of generalist who can step up to any
challenge—maybe you’re the person we talked about in Chapter 3 who
saves the Starship Enterprise!

Being visible
It might be important to you to have the respect and admiration of your
peers, to be “industry famous,” or to be representation in a prestigious role,
someone that other people can see being successful so that they can
imagine it too.

WHAT’S NEXT? | 287

https://oreil.ly/4ShIX

Doing cool things
You might want to work on cool and exciting projects, things you find ener-
gizing and fun.

Challenging yourself
It can feel amazing to look back at challenges you tackled that were bigger
than you could have imagined.

Building wealth
Can we take a moment to appreciate how incredibly lucky we are to be in an
industry that is (currently) highly compensated? You might be looking to
get as much money in the bank as possible over your career.

Working for yourself
Maybe you don’t enjoy having other people make decisions that affect you,
or just want the experience of being your own boss. If you ultimately want
to set up a company or work independently, you might be trying to build
the skills, experience, and contacts to feel confident doing that.

Making a difference
Maybe your lifelong goal is to make the world better, to leave a legacy that
outlasts you. That could mean teaching, inventing something, or building
communities that make tech a more friendly place. Or it might mean using
technology as a tool to cause the real change you want: creating products
that improve people’s lives, or being able to support causes that need you.

Enabling your vocation
You might be working to support the thing you really care about: succeed-
ing in a music career, say, or making your hobby farm viable.

There are lots of other things you could optimize for: making friends, travel-
ing the world, taking care of your health, and so on. There’s no right answer: it’s
personal to you, and it’s likely to change over your career. Take a moment to
think about what’s on your priority list at this stage of your life.

WHERE ARE YOU GOING?

Your priority list will keep you oriented, but it doesn’t tell you exactly where to
go. For that, you need to draw your trail map and mark in some milestones. The
amount of detail in your trail map and the span of time it covers will be up to
you, but if you’ve got a faraway goal, plot some steps that will take you closer.

288 | THE STAFF ENGINEER’S PATH

Where do you see yourself in five years? And what does that mean you need to do
now?

Like the other maps, the trail map will be better if you don’t draw it alone. If
you base it only on your own experiences, you won’t be able to find the nonobvi-
ous paths, and the trails will be limited to what you can see from where you
stand. You can expand your perspective by reading, attending conferences, and
especially by asking other people about their journeys. Seek out the people who
have taken paths you’re interested in and talk with them.

Your manager may be able to help with your career, but that’s never guaran-
teed, and especially now. At staff+ levels, your manager might not even know
how to help you: you’re likely on a path that they haven’t taken. Being senior
doesn’t mean you know it all, though, and you’ll still need help and guidance.
That means it will be up to you to seek out other sources of advice, teaching, and
guardrails, and to look for the opportunities that will help you grow.

If you do discover an ambitious path you’re excited by, really consider it. It
can be tempting to choose your route based on what’s most clearly signposted,
but think beyond what you can see from here. Yes, some paths will be harder,
feel riskier, or have less available support, but if there’s something ambitious you
wish for, don’t limit yourself. If the role, impact, or lifestyle you want ends up not
feeling achievable from where you are, you can still take steps toward it, maybe
moving to a vantage point that will tell you more about where to go after that. A
career is a long time.

WHAT DO YOU NEED TO INVEST IN?

If you imagine yourself as having succeeded at your goals and achieved whatever
is important to you, what does that look like? What skills does that successful
future person have that you don’t currently have? What lines are on their
résumé? How did they spend their time and who did they get to know? Ask your-
self these questions as you decide what roles and opportunities to take.

Building skills

I’ve sometimes heard people say they’re really not good at something: functional
programming, say, or telling a good story. I prefer a different framing: that’s not
a skill you’ve leveled up (yet). If you’ll forgive one final tortured video game meta-
phor, think about games like Final Fantasy, where every mission gives you ability
points to improve your skills. Let’s say you get new ability points this year, and
you currently have 14 points in wielding Python (Figure 9-2). You can invest

WHAT’S NEXT? | 289

1 I love Dina Levitan’s story of realizing that she wasn’t bad at axe throwing, she was just using a kind of axe
that didn’t work for her throwing style. As she says, “We can all learn to hit the target… but it’s important
to choose the right axe.”

some points in getting to level 15, or you can ignore that skill and focus on other
things, like getting better at JavaScript. Or maybe you’ll get your first points in
something entirely new.

Figure 9-2. Choosing where to put this year’s ability points.

I’ve often heard people say that you should focus on what you’re good at. I
don’t entirely agree: you should put points into what you want to be good at so
you can build up those skills.

Everything in tech is learnable, if it’s worth the time investment. It might not
be! There are more available technical domains and skills than there is time to
learn them, so you can’t ever be an expert in everything. That’s OK: strong teams
are built from people who each have a subset of the necessary skills. But if there
are skills you need to get you to your goal, or gaps in your abilities that make you
feel insecure, assume they’re just unknown, not unknowable. You just haven’t
put ability points there yet.

That said, don’t make your journey harder than it needs to be. If the work
you’re doing all day fills you with dread or exhausts you instead of exciting you,
look for a different path to your goal.1 Charity Majors, CTO of Honeycomb,
points out that keeping up with our fast-paced industry means managing energy:
“If you want a sustainable career in tech, you are going to need to keep learning
your whole life… Make sure that you a) know yourself and what makes you

290 | THE STAFF ENGINEER’S PATH

https://oreil.ly/lt25t
https://oreil.ly/jumRI

happy, b) spend your time mostly in alignment with that. Doing things that make
you happy gives you energy. Doing things that drain you are antithetical to your
success.”

Practicing skills you find difficult may turn them into strengths and reduce
how much energy they cost—or they may never stop being a slog. Decide what
the skill is worth to you. Each of us will find different things easy, and where to
spend your points is up to you.

Imposter Syndrome

New grads just entering the industry would be stunned to see how many

of the staff engineers they look up to feel like imposters. Depending on

the path you’ve taken, you might feel insecure about, say, technical strat-

egy, or influencing people, or systems design. Some systems folks feel

weird about not having logged more hours writing code. Some product

engineers suspect that they’re “supposed to be” more adept at

operations.

Imposter syndrome is a horrible, insecure feeling: it can even make

you do less good work because you don’t feel safe taking calculated

risks. Take comfort in the fact that it’s common, even at this level. Find

opportunities to put ability points into something that makes you nerv-

ous, and show yourself that it’s just another learnable, knowable topic.

But most of all: if you’re “impostoring,” try to give yourself a break.

Nobody knows everything.

Building a network

Skills are rarely enough to take you where you want to go. You need contacts too.
Depending on the business article you read, you’ll hear that upward of 70%,
maybe as many as 85%, of jobs are not actually published: they’re found through
networking. When an internal project needs a lead, there’ll be a buzz of back-
channel conversation among the nearby folks in leadership roles to see who they
recommend. When a conference needs a speaker or a project needs a paid con-
sultant, the participants will reach out to people they know. It pays to be known.

It pays to know people, too. Having contacts in various roles gives you
insight into how people in those roles behave, what “competent” and “professio-

WHAT’S NEXT? | 291

2 This is another reason representation matters so much.

3 Half of the “confident” people you talk to at a conference are running the interaction in software and hop-
ing they’re Doing Social properly. I’ve, uh, heard.

nal” look like for them, and how they communicate.2 Having a strong network
means you’ll always have experts to go to for advice and to learn from.

CTO Yvette Pasqua has spoken about how to build a network in a sustainable
way, without burning all of your introvert energy. It doesn’t matter if networking
isn’t innate or comfortable for you, she says: “If you don’t know who to talk to or
how to start, a little secret is that none of us do.” Pasqua reaches out to people
she’d like to talk with and invites them to chat about a specific topic she thinks
they’ll find interesting too. She recommends joining groups and communities—
but only the kinds that give you energy—and connecting one-on-one with people
at events.

That last one can be excruciating for introverts and socially awkward folks,
but there are a ton of mechanical tricks you can learn to make it OK. I love
author and “recovering awkward person” Vanessa Van Edwards’s Science of Peo-
ple website for learning some of this “humaning” magic that other people seem
to have been born knowing how to do. Check out her article “How to Network”,
for example, for tips on talking to people at events like where to stand, how to
remember people’s names, and what to talk about. All of this stuff is learnable.3

Building visibility

If you have skills, but nobody knows about them, you won’t get invited to use
them. Let people see you solving problems, asking insightful questions, or show-
ing up with a clear strategy when there’s chaos, and they’re more likely to think
of you when an opportunity arises. You’ll meet interesting people too: they’re
more likely to reach out because they see you’re working on something that’s rel-
evant to both of you.

You may choose to build an external reputation, making a name for yourself
with open source contributions, industry working groups, articles, podcasts, vid-
eos, conference talks, and so on. These kinds of ventures are usually optional, but
can be incredibly helpful if you’re looking for roles or connections, and they’re
ways you can have good influence across the industry too. Some employers
encourage external contributions, either to help with recruitment or to draw
attention to a company’s product or service. If you take this path, expect being a

292 | THE STAFF ENGINEER’S PATH

https://oreil.ly/JHTrC
https://oreil.ly/JHTrC
https://oreil.ly/fkXsx
https://oreil.ly/fkXsx
https://oreil.ly/JXjuH

4 If you’re one of the tiny number of people who can throw together some slides, stroll on stage and deliver
an unrehearsed talk that gets a standing ovation, I’m not talking about you. Keep doing your wizardry. Tell
me your secrets.

“public person” to take some investment—this is one of the places you’ll be
spending your ability points.

Being offered opportunities doesn’t mean you need to take them, but if you
do get one you want, don’t waste it: show what you can do. If you have a proposal
accepted for a conference, for example, don’t present a talk you threw together on
the plane.4 If you’ve joined an open source community, don’t start out by picking
fights. Let people see you do the work with grace and aplomb—be visibly
competent.

Choosing roles and projects deliberately

The most time-efficient way to build skills, visibility, and contacts is as part of
your job. You’ll get better at whatever you spend time on. In fact, it’s easy to gain
a specialty accidentally just because it’s what you’re doing at work: one experience
leads to another, and next thing you know you have a specialization. Spend five
years writing storage systems, for example, and you’re going to get good at writ-
ing storage systems: you’ll have relevant skills, you’ll work with other storage
experts, and you’ll have storage-related lines on your résumé. When an ex-
colleague is hiring a storage expert, they’ll think of you. Spend the same five
years on a popular mobile app, and you’ll build a completely different set of cre-
dentials. It’s easy to get typecast.

So choose roles that will give you the experiences you want to have. There are
some things you can only learn at big companies, others you can only learn at
small companies. Some things will be easier as a manager, others only if you’re
really hands-on. If you’re not sure what you need, find someone who’s doing the
role or living the lifestyle you want, and ask them what key experiences brought
them to where they are today. (You can sometimes snoop their résumé on
LinkedIn instead, but real-life conversations will tell you more.)

You get better at what you spend time on, so be deliberate about choosing
roles and projects that will give you skills you want to have. Mason Jones, who
has been an engineering leader at over 10 startups since starting with Travelocity
in 1995, agrees: “Consistently and mindfully taking positions where I could
expand my knowledge and broaden my experience has been the single most val-
uable thing I’ve done throughout my career.”

WHAT’S NEXT? | 293

Your Current Role

Every job should help you grow toward your long-term goals and meet your
immediate needs. Unfortunately, often people end up in roles that don’t do
either. We’ll start this section by looking at whether your job is good for you, then
move on to evaluating whether it’s possible for it to match your wish list.

FIVE METRICS TO KEEP AN EYE ON

Is your current role taking you closer to your goals? Might it be doing the oppo-
site? Experienced engineering director Cate Huston offers five metrics for evalu-
ating your job health:

• Whether you’re learning

• Whether you’re investing in transferable skills or navigating dysfunction

• How you feel about recruiting other people to your team

• How confident you feel

• How stressed you feel

A great job situation keeps you growing toward your goals, and your self-
confidence and abilities stay high. A bad one—which has stagnation, working
with a bully, lack of support, impossible deadlines, or other difficulties—might
get worse slowly enough that you don’t notice when you’re well past the point
where you should have walked away from it. I’ve seen friends in unhealthy work
situations become convinced that they don’t have the skills to get hired some-
where else. As a result, they stay in roles where they’ve stagnated, and the lack of
skills becomes self-fulfilling. As Huston says, “Sometimes five years of experi-
ence is just…the same year of experience, five times over.” Oof.

In another article, Huston explains that while your employer is buying your
time, they’re only renting your “brand.” OK, the notion of having a personal
brand will feel squicky and artificial to a lot of engineers, but think beyond pol-
ished people with expensive hair and expensive fonts: your brand is how you’re
perceived by other people. If your job is making you less employable, Huston
says, “I hope your employer is paying a lot of rent—because they are destroying
the market value. At times that might be worthwhile, but often it is not, and peo-
ple realize that too late.”

294 | THE STAFF ENGINEER’S PATH

https://oreil.ly/7JLMI
https://oreil.ly/qw2J2

We all have good weeks and bad weeks, so one model I’ve recommended to
friends is to track these metrics over a few months (see Table 9-1) and see how
things are trending over time.

Table 9-1. Tracking the signals of job health described in Cate Huston’s “5 signs it’s time to quit your
job”.

Signals Are you
learning? Are
you growing?

Are you
learning
transferable skills
or just how to
cope with your
org’s
dysfunction?

How do you
feel about
recruiting
friends to your
company?

How’s your
confidence
and how
capable do
you feel?

Is your job
physically
good for
you?

Scale 0: stagnant
5:rocketship
growth

0: learning to
cope in this org
5: learning
transferable
skills

0: morally
conflicted
5: wildly
enthusiastic

0: confidence
being eroded
5: confidence
growing

0: stress
stress
stress
5: feeling
healthy

<date>

<date>

…

Tracking metrics can shield you from recency bias and let you look at a big-
ger picture over time. If you can look back and see that things have mostly been
good, you’ll be less likely to rage-quit over a bad month. But if you notice that you
keep having bad months, or that your metrics are trending worse over time,
notice that you might be in a situation that’s not good for you. Consider Captain
Awkward’s Sheelzebub principle, a question to ask yourself about bad relation-
ships: “If things stayed exactly like they are, would you stay: Another month?
Another 6 months? Another year? Another 5 years? How long?”

CAN YOU GET WHAT YOU WANT FROM YOUR ROLE?

Is your job moving you toward your long-term goals? Is it a healthy environment?
Take a moment to look through your priority list and evaluate how well your job
is meeting your needs (see Figure 9-3). Make sure you appreciate what’s great, as
well as identify what’s missing. It’s easy to take the good stuff for granted.

WHAT’S NEXT? | 295

https://oreil.ly/7JLMI
https://oreil.ly/7JLMI
https://captainawkward.com
https://captainawkward.com

Figure 9-3. Evaluate your role and see what’s working and what you wish were different.

No matter how great your job is, you almost certainly didn’t conclude that it’s
perfect! You’ll rarely find a role that is the best for everything on your priority list.
Making the most money is often in tension with doing good in the world. Learn-
ing the most can mean not taking on the most prestigious roles. Big career
accomplishments can mean not having time and energy left for other aspects of
your life. This is why nobody else can make career decisions for you: we’ll all
make different trade-offs. But look at what’s not optimal and think about whether
it’s something you can change without compromising too much somewhere else

SHOULD YOU CHANGE JOBS?

If you want to fix something that’s not working, you have two options: modify
your existing job or move to a new one. Let’s look at some of the reasons to do
each.

Reasons to stay in the same role or company

If your current role is giving you most of what you need and taking you where
you want to go, it can be rewarding to continue doing the same thing for a long
time. Staff engineering benefits from the longevity, domain knowledge, and rela-
tionships that you build over time in one place. Here are some other reasons it’s
good to spend a long time in one place:

Feedback loops
Staying in one place for longer gives you the feedback loop that comes
from seeing the consequences of your actions. When engineers move
around a lot, everyone’s seeing the results of someone else’s past decisions

296 | THE STAFF ENGINEER’S PATH

instead of the outcomes of their own. You may also get to see the collea-
gues you leveled up become senior or staff engineers and then become role
models themselves.

Depth
The more you know a single domain or a single stack, the deeper and more
nuanced your understanding will get. It takes time to intuitively under-
stand something so well that you can build on the knowledge. It’s also
faster to do things you’ve done before; you’ll be able to make progress more
quickly.

Relationships
You’ve invested time in knowing people all over the organization, and you
have people you trust and enjoy working with. You’ve built up enough
mutual goodwill that even the biggest technical disagreements are collegial,
not heated. That’s an asset that takes time to build up again.

Context
After investing time and effort into learning how to navigate your organiza-
tion, you have a skill set that might not translate to another one. You’ve
figured out the OKR process, you know the shadow org chart, and you
know how to get things done.

Familiarity
You know the work, the schedule, and the people. If you observe particular
religious holidays, pick your kid up from school every afternoon, or you
always play bocce at lunchtime on Thursdays, you’ve already set up your
schedule to make that happen. It just works, and you’re reluctant to change
anything.

Reasons to move

But there are also good reasons you might want to move around at intervals:

Employability
If you stay at one place for a very long time, you might be learning how to
work in that culture rather than learning transferable skills. The world out-
side can shift, and you can get left behind. Keeping more skills and
domains fresh can keep more doors open.

WHAT’S NEXT? | 297

Experiences
There will be a limited number of experiences available in any one place,
and a limited number of people to learn from. Once you’ve collected every-
thing available, you might be ready for something new.

Growth
It can sometimes be easier to get a step up in level or scope by changing
jobs. Maybe the next level feels too far out of reach to be realistic, or
involves the kind of politics or work you’re just not interested in. If you’re
struggling to get your name in the ring for the important, challenging, or
visible projects where you are, it can be easier to find a new job than get a
promotion you’re hoping for.

Money
Changing jobs can be the fast track to higher salaries. While some compa-
nies stay up to date with their current employees, often new hires can
negotiate better salaries, stock grants, and hiring bonuses.

Mismatch
Not all paths to growth exist at all companies. If you’re looking to become
an industry expert on a topic your organization doesn’t really need an
expert in, if the projects you’re energized by aren’t the ones that your lead-
ership wants to invest in, or if there are more senior people than there are
leadership opportunities, it might be time to move on. Not all roles are
available in all places.

The right next steps will depend on what you need. In the next section, we’ll
look at some of the paths onward from here, some staying where you are, others
changing roles or companies.

Paths from Here

Where do you go from here? Let’s look at a sample of your options:

KEEP DOING WHAT YOU’RE DOING

If your job is giving you what you need, there’s no need to change anything. I
want to emphasize that because our industry puts a lot of focus on changing jobs
frequently, and the regular “new job” announcements can make you feel like you
should be moving too. If you’re in a growing niche, you might be able to stay in
the same team and still have plenty of room to learn and grow for decades. Or

298 | THE STAFF ENGINEER’S PATH

you might not be looking for further growth at all: you may just want to use your
current skills and keep doing much the same job until you retire.

If that second one is you, be a little wary about industry changes making
your skills obsolete. Technologies and your business will change, and even lead-
ership skills can slowly become old fashioned if you don’t keep them up to date.
Social norms, communication styles, best practices…it’s all going to change. So
staying still probably means moving and learning a little, just enough to stay up
to date.

WORK TOWARD PROMOTION

Staying in the same role can often be a path to the next level up. As your influ-
ence, knowledge, and impact expand, you and your manager may start to feel
that it’s time for you to be promoted.

Progressing to higher levels can be lucrative and can give you the credibility
that comes with a more senior job title; as I said in Chapter 1, it saves you having
to spend time and energy on proving you should be in some conversations. And,
honestly, being promoted or being offered a bigger job just feels nice. But unpack
that feeling: is it really about the level, or are you actually looking for cash, pres-
tige, interesting challenges, broader scope, respect, getting in “the room,” a sense
of progression, or something else entirely? It’s fine to want any of these things,
but be sure that the next level is going to give you what you want, or you may end
up quickly feeling underwhelmed by your new title.

Understand what promotion means at your company: does your director
decide who gets promoted? Is there a promotion committee who will review your
work? There may be a written career ladder with expectations at the next level,
but these expectations are often low on detail about what’s really expected. There
may also be restrictions on how many people can be promoted, or how many
people can exist in a particular role: you might not be able to get promoted unless
there’s an appropriately sized scope or project that needs leadership.

If you’re looking for promotion, discuss it with your manager and ask for
their guidance. Connect with other people at the next level and understand what
their path was. Looking for footsteps to follow can be intimidating if the other
person has been in the role for a few years. Remember, you’re looking to be as
impactful as they were when they got promoted, not where they are now.

WHAT’S NEXT? | 299

WORK LESS

Success can mean working less in your current role. One engineer I spoke with,
Jens Rantil, swapped a staff engineering role for 80% time and a 20% pay cut at
a much smaller company. As he said, “Every Thursday is a Friday! It’s amazing!”
Rantil observes that moving to 80% time is the first time many people set a price
tag on their free time and decide what having more of it is worth. (Remember
that a pay cut goes beyond immediate salary: it’s also likely to affect retirement
savings.) While 80% is the most common schedule change, I’ve seen engineers
arrange to work 60%, 40%, and even 20% time; some employers may be interes-
ted in retaining your skills for one day a week.

If you’re cutting back your hours, be deliberate about where those hours are
coming from. It might be easiest to drop your focus time and just go to meetings,
but that may not be what makes you happy, and it might mean you don’t achieve
the outcomes your manager wants either. Or you might find that you end up
working extra unpaid hours just so you can do the fun part of your job: if you
weren’t able to avoid working overtime at five days a week, be really clear about
why you think you can stick to working four.

Make sure to align your expectations with your manager’s and team’s. If you
still want to work toward a promotion, or be considered to lead interesting
projects, make sure your manager knows. Agree on how you’ll handle specific
situations like on-call, holiday weeks, or weeks where you’re out sick on one of
the other days. Be warned that many teams won’t be enthusiastic about having
less of your time; from the headcount allocation point of view, the team may have
whatever number of engineers it has, and if you work fewer hours, they don’t get
someone else to make up the slack. But you may be able to achieve a lot in less
time. One person I spoke with said that they don’t get much less done since they
started working five-hour days—they only have four hours of productive work in
them on any given day anyway.

CHANGE TEAMS

If you’re ready for a change but happy with your current employer, an internal
transfer can be a great move. You keep a good amount of your context, relation-
ships, credibility, and social capital, but you get to start fresh on something new.
Burin Asavesna, a software architecture lead at Hilti, told me that he thinks of
this kind of restart as being like an experienced player of a game making a new
low-level character: technically you’re starting from scratch, but in reality you
already know how the game works and you’ll fly up the levels.

300 | THE STAFF ENGINEER’S PATH

Moving between teams or organizations can be an excellent way of building
bridges: you’ll still have contacts on your own team, and you’ll bring knowledge
and culture with you to the new one. You’ll also bring perspective: you already
have an outside view of the team and how they’re perceived by the rest of the
organization.

BUILD A NEW SPECIALTY

The breadth of the tech world means that there’s always something new to learn.
You might enjoy learning about something very adjacent to what you already
know, adding a new dimension to your knowledge, or begin putting a lot of abil-
ity points into something entirely new. You might even build a new accidental
specialization. A lot of the most interesting innovations come from people who
are very comfortable with more than one domain: interesting things happen on
the boundaries!

Building a new specialty might mean more than a new team; it might mean
moving to a different career track, either temporarily or permanently. Former
principal engineer Lou Bichard has written about moving from being a “product-
minded engineer” to officially becoming a product manager. As he says: “Taking
a little time out to do something a bit different might help you bring some new
perspectives into your work.”

EXPLORE

Some companies will let you take short-term gigs, embed in a team, take part in a
rotation program, or just try out a new team for a while. One staff software engi-
neer at a huge company told me about doing this kind of exploration after being
on the same team for six years. Her company had a wide range of opportunities,
including rotation programs, so she decided to take some time to explore what
was out there. Over two years, she tried out three teams: a large site reliability
team working on mature infrastructure, a small research team working on a
recently released product, and a medium-size team working with a nonprofit to
create a new open source product. After these vastly different experiences, it was
clear to her that the research team matched her interests and had lots of growth
opportunities, and she’s been there for the last year and a half.

WHAT’S NEXT? | 301

https://oreil.ly/51xAs

TAKE A MANAGEMENT ROLE

Are you feeling a pull toward management? Some staff engineers move entirely
onto the management track and continue to grow there. Others take a stint in
management before returning to an IC role.

In a famous article, Charity Majors introduced what she calls the engineer/
manager pendulum, the idea of deliberately moving back and forth between
manager and IC roles every few years. Majors rejects the idea that you have to
choose a lane and stay there:

The best frontline eng managers in the world are the ones that are never

more than 2-3 years removed from hands-on work, full time down in the

trenches. The best individual contributors are the ones who have done

time in management. And the best technical leaders in the world are often

the ones who do both. Back and forth. Like a pendulum.

Majors emphasizes that management should never be seen as a promotion
—it’s a change of profession with a different set of skills to learn. There should
be no change in status when you go from people leadership to technical leader-
ship or vice versa: each will build a separate set of skills, and will enhance the
skills on the other side. But she doesn’t recommend trying to do both at once:
“You can only really improve at one of these things at a time: engineering or
management.”

Will Larson argues that a hybrid engineer/manager role is not always a bad
choice, so long as you’ve already built up solid experience as both team manager
and technical contributor. But he agrees that if you’re trying to learn either set of
skills on the job, you’re going to have a hard time: “If you’ve built up your experi-
ence as both team manager and technical contributor, then sure give it a whirl if
it’s what checks the most career boxes for you, but I do consistently recommend
against folks starting their management career in such a role.”

If you’re going into this kind of hybrid role, have a plan for how you’re going
to make it sustainable, perhaps by having a bench of other senior people you can
delegate to or lean on when you need them.

TAKE ON REPORTS FOR THE FIRST TIME

What if you haven’t tried people management before? If you’ve never been a
manager or had direct reports, it can be intimidating to take on your first

302 | THE STAFF ENGINEER’S PATH

https://oreil.ly/1eBJs
https://oreil.ly/1eBJs
https://oreil.ly/wnP3C

management role in your later career. But here are three reasons you might be
ready for your first direct reports:

• If a future goal needs you to have management experience, you’ll eventu-
ally need to start building that skill set.

• If you’re at a company or on a team where decision making and context
only come to folks on the manager track, you might decide that the man-
agement track will give you more leverage to get projects done.

• Or if you’re at the top of your career ladder and are interested in the busi-
ness problems of the next level up (and can’t convince your organization to
add another rung), managing a team may be the next step to growth for
you.

Some companies have the concept of staff engineers with reports, some
don’t. Taking on reports might require you to change tracks.

If you’re used to being an IC at the level of a senior manager, director, or VP,
it might be tempting to argue that you should manage an organization at the
same scope. Amanda Walker, an engineering director in security at Google, and
a past staff engineer with reports, advises against this; she recommends that you
spend some time as a line manager before taking on a more senior organiza-
tional role: “Just as having been a software engineer helps me be better at manag-
ing software engineers, having been a line manager helps me be better at
managing other managers. It’s easier to coach a sport you have played well.”

If you’ve been used to working at an organization-wide scope, though, it may
not be an enticing prospect to go back to managing sprints for a single feature
team. One possible compromise is to look for an opportunity to take a tech lead
or team lead role for a cross-team project, taking on management responsibility
for a small number of people on that team.

How you show up as a manager affects the lives of your reports, so if you’re
going to be a manager, invest in it. Majors says that your minimum tour of duty
should be two years:

If you really want to try being a manager, and the opportunity presents

itself, do it! But only if you are prepared to fully commit to a two year long

experiment…It takes more than one year to learn management skills and

wire up your brain to like it. If you are waffling over the two year commit-

ment, maybe now is not the time. Switching managers too frequently is

WHAT’S NEXT? | 303

https://oreil.ly/7xGlc

5 Graham adds, “I’ve found that people that know you well are always going to be the ones that find you the
phase 2 roles that are ‘shaped like you.’ People that don’t know you are always going to offer you the job
you just had.” This has been exactly my experience too.

disruptive to the team, and it’s not fair to make them report to someone

who would rather be doing something else or isn’t trying their ass off.

Committing to management means accepting that it will take time. Expect
not to do nearly as much coding, architecting, or technical work as you would
otherwise—and understand that you might not get to do any. In The Manager’s
Path, Camille Fournier writes, “It’s OK to feel nostalgia for the simpler times,
and a little bit of fear for what you’re giving up. But you can’t do everything all at
once. Becoming a great manager requires you to focus on the skills of manage-
ment, and that requires giving up some of your technical focus.”

Majors agrees: “If you’re a manager, your job is to get better at management.
Don’t try to cling to your former glory.”

FIND OR INVENT YOUR OWN NICHE

Senior leadership roles often have specific needs. Even at the same company, one
staff engineer opening will need someone with strong architectural skills;
another will want a skilled project leader who is great at crossing organizations; a
third will be looking for extra leadership bandwidth. The more senior you get, the
more likely you are to be looking for a role that needs your specific skills, rather
than shaping yourself to fit a generic role.

Molly Graham (of the “give away your legos” article I mentioned last chap-
ter!) says that careers come in two phases: first learning what your strengths are,
and then finding “holes that are shaped like you.” “Happiness,” Graham says, “is
going to come from finding roles that fall in the intersection of what you love
doing and what you are great at.” But she adds:

Beware the role that sounds absolutely tailor made for you but also feels

completely exhausting when you imagine doing it. Doubly beware if the

job is “fancy”—where your friends and family are going to think it’s cool—

because then your ego gets in the mix and wants you to take it even

though your gut says that you will hate most days on that job. That venn

diagram—things you’re exceptional at but hate doing—is one that can

lead to career mistakes.5

304 | THE STAFF ENGINEER’S PATH

https://oreil.ly/gs701
https://oreil.ly/XhUGB

One way you can find a role shaped like you is by carving it out yourself. If
you get this opportunity, you can fill a gap that your organization has and create a
job you love at the same time. When Keavy McMinn was ready for a change at
her current company, she found it liberating to openly discuss her goals with her
manager: “This is what I’m good at and really want to do. How can I be of most
value to you and the company?” Together, they crafted a mutually beneficial new
role as the technical adviser to the CPO at Stripe.

McMinn says that creating her own role was feasible because she was in a
privileged position and was comfortable with the risk of asking to do something
different. This path won’t be available to everyone. But, she says, it’s surprisingly
common: “It might be helpful for you to know that people do this! Give yourself
permission to explore the idea of crafting a new role, together with the people
who can support you. No one else really can or will drive that conversation for
you. See it as an experiment, even—which can relieve some pressure!”

Another great piece of advice I got, from leadership coach Fabianna Tassini
of Confidantist, is that if you get a chance to design your role, you should include
a lot of what you love to do. Make the work that gives you energy about 70% of
your job. The other 30% should be things you’d like to practice and get better at.
(Of course, the company needs to actually need the role you’re creating; you may
need to compromise to find something that fits you and your employer.)

DO THE SAME JOB FOR A DIFFERENT EMPLOYER

Starting in a new workplace can give you a completely different perspective and
fill experience gaps that you have. Depending on the experiences you’re looking
for, you might choose a different organization size, technology stack, domain, or
culture. Just try not to “rebound,” if you can. Molly Graham writes: “Sometimes
when you’re in a job, particularly if you’re not happy or burnt out, you have a ten-
dency to pick a ‘rebound job.’ Just like a rebound relationship, a rebound job just
helps you get out of your current situation, but it often isn’t the best or healthiest
long-term choice.” She adds, “Picking the opposite of what is currently making
you miserable won’t lead to happiness, it just helps you get out of a bad situa-
tion.”

If you have the option, take your time about choosing your new role and
understand what you’re actually looking for. Don’t just jump for the first good-
enough recruiter mail that crosses your path. You deserve better.

Since staff+ roles still mean wildly different things in different places, have
an explicit conversation with future employers about what it means to them and

WHAT’S NEXT? | 305

https://oreil.ly/PQz9Q

what your job would be. As staff engineer Amy Unger writes, “It’s likely that each
company and even each manager you talk to will have assumptions about what
combination of skills they’re hiring for and an inability to articulate them.” Ask a
lot of questions.

Staff+ interview slates are far from standardized: you might get asked about
coding puzzles, systems design, previous projects, what you’d do in various lead-
ership scenarios, or “Tell me about a time you…” Many organizations will share
the interview slate in advance. If they don’t, it’s fine to ask your recruiter what to
expect, so you can make sure you’re prepared. Use the questions you get as a hint
about how the new company sees the role, and remember that you’re interview-
ing your interviewers too.

CHANGE EMPLOYERS AND GO UP A LEVEL

Changing companies can be an opportunity to reinvent yourself. It can also allow
you to find roles that just aren’t available where you are. If you’re struggling to
prove yourself through the promotion process on your current ladder, it can
sometimes be easier to interview for the next level elsewhere. If your company is
growing too slowly to need more senior leaders, or doesn’t have room for another
principal engineer or senior manager until someone quits, you can sometimes
find more opportunity by leaving.

Changing companies and going up a level is usually easier if you’re already
an expert in the new company’s domain. It’s a harder sell to say that you want to
operate at the next level up and also learn about, say, the health care or construc-
tion industry.

If you’re looking at a role that’s the next level up, be careful that the industry
really does regard it as an increase. The levels.fyi site can help you calibrate what
different titles mean in different companies.

CHANGE EMPLOYERS AND GO DOWN A LEVEL

Sometimes you’ll take a path that seems to go backward in some aspects: a
smaller scope, less money, a less prestigious job title, or a role where you’re a
beginner. If you think about your path only in terms of everything improving or
increasing, you’re going to limit your options. In particular, moving to a bigger
company will often come with higher expectations and corresponding downlevel-
ing. Going down a level can often be possible without decreasing your compensa-
tion, and it can let you shore up your technical foundations, or do more of a kind
of work you enjoy. Josh Kaderlan, now a senior engineer at Datadog, told me why

306 | THE STAFF ENGINEER’S PATH

https://oreil.ly/02zWd
https://levels.fyi

he was comfortable giving up the staff title that he had at his previous company:
“If you make title a gating factor for a new job, you increasingly limit your oppor-
tunities. Being in this new environment has been rewarding, especially given
that I am no longer always the most senior person in every conversation, and I
have the opportunity to learn from people who have more and different experi-
ence than I do.”

Another engineer, Stacey Gammon, told me she thinks of her career as
being similar to the engineer/manager pendulum, but moving between technical
leadership and hands-on coding roles. When we talked, she was leaving a
leadership-focused principal engineer role at a publicly listed company and
weighing offers from several other companies for much “smaller” roles where
she would have more time to code.

SET UP YOUR OWN STARTUP

If you’re really looking for a change, and want to be your own boss, you might
consider the challenge of setting up your own company. James Kirk, a former
staff machine learning engineer at Spotify, told me about leaving his role and
cofounding a startup as CTO. He told me: “I was interested in starting some-
thing myself because it seemed challenging and rewarding, and that’s the kind of
itch that just gets worse over the years until you scratch it. I started connecting
with some local VCs and their communities a couple years ago and through
them met the person who is now my cofounder. We starting throwing ideas
around and eventually found some things that we were really excited about and
that’s when we took some VC cash, quit our day jobs, and started in earnest.”

If you’re preparing to set up your own business, that can be a good reason to
focus on compensation for a while first: you’re building up a safety net of cash to
give yourself some time without much income. Kirk adds: “I don’t think that,
practically, I would have been comfortable taking the risk if I didn’t have a few
years of healthy tech comp stashed away before leaving.”

GO INDEPENDENT

Another version of going to work for yourself is working independently, through
consulting, contracting, indie app development, training, or other part-time
work.

Emily Bache, a software consultant and author of several programming
books, says that the real benefit of being independent is the freedom: “I have a lot
of control over how I spend my days, I have lots of time to read and learn things

WHAT’S NEXT? | 307

and share my ideas. I get to go to interesting places, meet interesting people, and
work on interesting coding problems.”

Bache emphasized that working independently benefits from a strong preex-
isting network, so potential collaborators and customers will know what you can
do and will approach you. It helps to keep your public presence up to date too:
“Marketing is a constant—I aim to speak at about 10 conferences and local
events each year, plus publishing articles. I also invest time posting on social
media—Twitter and LinkedIn—so that people can find me through them.”

Consulting is not for everyone. One consultant, Vlad Ionescu, warns: “Even
for folks that want to take it up mid-to-late-career, it’s a big switch (different skills
are needed, finding clients, etc.) and it’s not as glamorous as many find it (usu-
ally less money than a stable FAANG job, more stress, etc.). A lot enjoy it and are
a fit for it, but a lot of wide-eyed hopeful engineers get badly burned.”

So understand what you’re getting into. Make sure you’re clear about the
trade-offs, and accept them. And just like with setting up a startup, you can
reduce your risk by starting with a safety net of cash.

Finally, remember that being independent means you’ll be missing many of
the support structures you might have expected in other roles. Chris Vasselli,
who left a staff engineering role at Box to become a full-time indie app developer,
advises: “While you’re at a company, learn from as many teams/experts as you
can. Frontend, backend, desktop, mobile, design, security, QA, localization, build
& release, even (especially!) marketing, growth, and biz dev. When you’re an
indie, you are responsible for all of these.” Be prepared to wear a lot of hats.

CHANGE CAREERS

After years in technical roles, some people feel a pull toward doing something
different. That might mean a career shift into education, academia, policy, or
research, bringing your technical experience and background to solving a differ-
ent kind of problem.

My favorite example of branching out in a new direction is Peter Lyons, who
left his role as a staff engineer at Intuit, teamed up with his partner, chef Chris-
tella Kay, and set up a retreat for programmers in the Adirondack mountains.
Now he slings pancakes instead of code. He says that the COVID-19 quarantine
helped him realize what was important to him: “It motivated us to make big
changes to flip our lifestyle so that we could spend our days working together on
something we cared deeply about.”

308 | THE STAFF ENGINEER’S PATH

https://oreil.ly/aJtsl

Prepare to Reset

If you do move to another job, be prepared to be a beginner again. All of the
maps you drew in Chapter 2 are now out of date! Even if you’re in a new role in
the same organization, you’ll likely be starting from a different place and differ-
ent context. You’ll need to build perspective again and draw a new locator map.
You’ll need to learn the terrain, culture, and politics and draw a new topographi-
cal map. You’ll need a new treasure map to help you understand where you’re
going.

Author and distributed systems engineer Cindy Sridharan warns against try-
ing to do a new job using the rules of the previous one.

Not all newly hired senior leaders are entirely committed to or feel com-

fortable turning themselves into the leader the organization truly needs,

rather than the leader they’ve grown to be over the past years. Many lead-

ers take the opposite approach of trying to mold the organization in their

image or the image of the past workplace. Engineering leaders brought

into embattled organizations tasked with stabilizing the chaos are often

heavily incentivized to do this. Many a time these folks, in my experience,

tend to fail harder and more often than those who try to learn the organi-

zational ropes and tailor their leadership style to fit the organizational cul-

ture.

So don’t just jump into your new role. Take the time to talk with as many
people as you can. Figure out how to get connected, how to know things, and
how to be in the right rooms. Learn the shadow org chart. Solve some problems,
but be humble and assume there were good reasons for previous technical deci-
sions—everything has trade-offs. Figure out how to level up the engineers
around you. Understand what’s important. And enjoy a relatively quiet time graph
for a while before your calendar fills up with meetings.

Your Choices Matter

We’re at the end of the book now! I’ve got one final thing to say about choosing
your path. It’s not really about your career, but it’s about your job as a senior per-
son in the industry:

You need to take software seriously.
Making software can be fun. There tends to be room for creativity and some

whimsy, and most of us don’t wear suits to work. But software has a massive

WHAT’S NEXT? | 309

https://oreil.ly/HfjSK

influence on everyone’s lives. When an application crashes and loses someone’s
half-written essay, or poor input validation drops someone’s health insurance
claim, we’re wasting people’s time and causing them anxiety and stress. The
risks of AI and algorithmic bias are well documented. Abuse on social networks,
leaks of private information, and deliberately addictive apps destroy people’s
lives. Our choices can mean that real people suffer.

Software is used for life-critical systems, and that’s going to become more
common every year. The engineers you level up today may later be responsible
for planes, medical treatments, or nuclear power plants. We need to teach new
engineers the values of diligence and care that are hallmarks of some other life-
critical engineering disciplines. Canadian engineers famously wear a faceted ring
intended to remind them of the obligations and ethics of their profession. We
need, as an industry, to have the same kind of mindset.

In a time where software engineers are considered senior after four to five
years, we might forget that there’s more to learn. In one where many engineers
move on every two to three years, we may be incentivized to build for the current
moment (and the current profit and the current promotion) rather than for the
long term. Today’s college kids and teenagers are going to have enough to deal
with: don’t send them shoddy systems and technical debt too.

You can take this job seriously and also really enjoy it! There’s a ton of room
for creativity and fun stuff. But bring your good judgment to evaluating the
stakes. Know how your software will be used. Be firm about what’s negotiable
and what’s not. You have more influence than you think you do, and the choices
you make matter. What the senior people do sets the culture for the industry.

Build good software. Build a good software career. Build a good software
industry. Thanks for reading. <3

To Recap

• You are responsible for your career and choices. There are a lot of options
about what to optimize for. Know what’s important to you. Be deliberate.

• You’ll increase your access to opportunities with skills, visibility, relation-
ships, and experiences.

• Everything is learnable if it’s worth the time investment.

310 | THE STAFF ENGINEER’S PATH

https://oreil.ly/uEw7I

• Check in with yourself occasionally and make sure your role is still giving
you what you need. Look at what’s good as well as what’s not working.

• There are excellent reasons to spend a long time with one employer. There
are excellent reasons to move around too. Either way, you have several
options for paths onward.

• Software has a massive influence on the lives and livelihoods of just about
everyone on earth. Take the responsibility seriously.

WHAT’S NEXT? | 311

Index

A
ability points, 289

active listening, 268

Adams, Douglas, 215

advice, 257-263

group advice, 262

individual advice, 258-262

teaching versus, 263

unsolicited advice, 257

Agile Alliance on definition of done, 214

Allspaw, John, 235, 251

American Society of Civil Engineers, 228

answering questions, 260

archetype job definitions, 25

The Art of Travel (de Botton), 172

Asavesna, Burin, 300

asynchronous teaching, 269

Atawodi, Ebi, 157

autonomy of job, 16

culture of an organization, 47

“Avoid the Lake!” (Krishnan), 169

Ayer, Elizabeth, 235

B
Bache, Emily, 307

Barnes, Mark, 98

Batra, Neha, 258

begin again, 309

(see also changing jobs)

Benowitz, Jackie, 165

Berkun, Scott, 75

Bernstein, Michael R., 216

biases

being “technical enough”, 229

credibility, 124

race and gender, 6

same behavior, different people, 262

success via access and sponsorship, 49

Bichard, Lou, 301

big-picture thinking

about missing the big picture, 69

about staff engineer role, xiv, xvi

bridging, 63, 198

creating the big picture

about, 70

about missing the big picture, 69

the approach, 79-88

creating what’s needed, 79

final draft, 99

getting and staying aligned, 96-99

the launch, 100

making decisions, 93-95

revisiting, 101

313

SockMatcher case study, 101-110

SockMatcher, about, 70-73

technical strategy, 76-78

technical vision, 74-76

vision versus strategy, 73-79

writing it, 88-93, 99

longer view, 65-66

sharing the map, 66

loss of, 38

maps needed, 31

(see also maps)

seeing bigger, 38-42, 64

short-term goal limitations, 64

why needed, 7-9

bikeshedding, 182

Binde, Melissa, 83

blame avoided, 241

boiling frogs, 37, 38

boring ideas embraced, 80

Botros, Silvia, 3

bottom-up cultures

failure modes of, 57

job titles, 5

management style, 47

room where decisions made, 57

Brooks, Fred, 27

Brooks’s Law, 27

budget as limited resource, 244

bugs can kill, 11

bumper sticker slogan, 98

bureaucratic culture of organization, 51

business context of the goal, 243-244

business of your own, 307

consulting or contracting, 307

C
calendars

automated reminders, 275

nonmeetings too, 116

procrastination avoided, 200

calm attitude, 241-242

consistency of behavior, 242

Canadian engineers’ faceted ring, 310

canceled project, 219

Captain Awkward’s Sheelzebub principle,

295

career ladders, 3

changing jobs for promotions, 298,

306

hyperspecialist career path, 24

job titles, 4, 5

software design and architecture, 9

career progression

about, 285

career change, 308

first direct reports, 302-304

learning strengths, finding niche, 304

paths from here, 298

what to invest in, 289-293

building a network, 291

building skills, 289-291

building visibility, 292

choosing roles and projects, 293

what’s important to you, 287

where are you going, 288

your current role

about, 294

five metrics to watch, 294

should you change jobs, 296-298

what are you getting currently, 295

catalyst for colleague learning

about being a catalyst, 254-256

advice flows, 263

guardrails, 276

314 | INDEX

opportunities for colleagues, 281

teaching other teachers, 269

“The Challenges of Migrating 150+ Micro-

services to Kubernetes” (keynote

address; Wells), 158

change reviews for guardrails, 270

changing jobs, 296-298

career change, 308

engineer/manager pendulum, 302

exploring jobs in same company, 301

learning before working independently,

308

moving down a level, 306

for promotions, 298, 306

same job, different employer, 305

startup of your own, 307

chasms between teams in organizations,

52

The Checklist Manifesto (Gawande), 175

checklists in decision making, 175

Cheppudira, Mohit, 165

chief technology officer (CTO), 8

Chow, Rosalind, 279

Civilization strategy game, 65

coaching to teach, 268

code reviews for teaching, 265-267

individual guardrails, 270

codelabs, 269

coding on your project, 183-185

style guides, 274

linters, 276

whether you should code on the project

you lead, 183

pair programming, 184

coding practices in project logistics, 168

coding workload and job requirements, 12

technical role, 15

whether you should code on the project

you lead, 183

pair programming, 184

your preferences, 24

collaboration in leadership role, 13

Collins-Sussman, Ben, 59, 200

comfort levels (see discomfort manage-

ment)

communication

answering questions, 260

asking for information amid confusion,

238

asking manager about creating niche,

305

asking open questions, 268

asking “obvious” questions, 236

feigned surprise, 238

between groups, 48, 61, 167, 185

chasms between teams, 52

chatting, 48, 61, 101, 106, 149, 167, 185

new job, 309

pair programming, 184

conversation with Future You, 90

culture of an organization, 48

information sharing, 46, 51

disrespectful statement countered, 239

escalation up the hierarchy, 193, 198,

201

explaining to unpack for themselves,

259

explicit about what people to do, 169

feedback with honesty, 260

(see also feedback)

“I don’t know how to talk to people”, 61

interviews

job interviews for staff+, 306

strategy and vision documents, 92

INDEX | 315

leadership role, 13

nemawashi, 97

Overton window, 96, 98

overwhelmed by project

anchor document for Future Self,

154

sounding board for difficulties, 155

talk with sponsor, 154

peer reviews, 261

perspective awareness, 36

pictures and graphs, 173

project logistics, 167

project management, 167, 185

canceled project, 220

marketing your project, 215-216

project historical context, 160

status updates, 168, 186

thank-you acknowledgments, 198

rollups summarizing, 203

saying no, 143

silence in a conversation, 268

staff engineer skills, 13, 17

status updates, 168, 186

migration progress, 206

takeaways, 186, 203

talking through a problem, 210

team hierarchies in projects, 160

technical strategy, 76-78

resources for writing, 77

technical vision, 74-76

resources for writing, 75

Three Bullets and a Call to Action, 200

truth in strong relationships, 39

ubiquitous language, 173

competence of staff engineers, 227

compliments, 61

consensus building, 94

nemawashi, 97

consistency of behavior, 242

constraints (see resource constraints)

constructive criticism, 233

“Cover Your Ass Engineering” (CYAE), 235

Craine, Trish, 41

creating your own job, 304

credibility as resource, 123

questions about project selection, 137

crisis situations, 130

creating calm, 241-242

consistent behavior, 242

expecting failure, 248

fast may be better than best, 243

Incident Command System, 237

scope of job ignored during, 20, 29

sliding into by not noticing, 37

taking charge, 237

culture of an organization, 46-50

about culture, 46

catalyzing oral to written culture, 263

communication, 48

culture of quality, 217

meaning of doing a good job, 225

values are what you do, 226

guardrails as part of culture, 276

hierarchy liquid or crystallized, 49

information sharing, 46, 51

management style, 47

power, rules, or mission, 50

respect, 240

(see also respect)

staffing and workload, 49

customers

building project context, 156, 158

eating your own dog food, 215

not happy but project done, 212

316 | INDEX

project blocked by lack of decisions, 194

remembering the customer, 245

status updates, 186

D
de Botton, Alain, 172

Debugging Teams (Fitzpatrick and Collins-

Sussman), 59, 200

The Decider website, 95

decision making

big-picture thinking and, 7-9

bottleneck in, 21

chasms between teams, 52

checklists for, 175

consensus building, 94

nemawashi, 97

culture of an organization, 47

decentralized across teams, 73

The Decider website, 95

decision fatigue, 21

documenting, 95, 196, 274

Lightweight Architectural Decision

Records tool, 196

local maximum, 7

reporting to a line manager, 19

team decision making, 10, 19, 36

tragedy of the commons, 73

mitigations included, 95

not deciding is a decision, 94

ownership, 235

project blocked by, 194-196

scope of job and, 20

strategy and vision documents, 93-95

terrain of your organization, 56-59

asking to join in, 58

how decisions are made, 56

shadow org chart, 59

where decisions are made, 57

trade-offs, 93

even over statements, 93

decommissioning built in, 251

delegation as opportunity, 277

delegating everything, 281

leader’s job is to delegate, 142

design reviews for teaching, 265-267

individual guardrails, 270

designing a project, 174-183

about, 174

design documentation, 174

asking “obvious” questions, 236

bikeshedding, 182

pitfalls, 180-183

RFC security section, 276

RFC templates, 175-180, 276

RFC templates sample, 175

wrong better than vague, 178

development practices in project logistics,

168

DevOps Research and Assessment

(DORA) group, 51

difficulties expected, 99

difficult people in charitable light, 159

direct reports for the first time, 302-304

disasters (see crisis situations)

discomfort management

being a role model, 226

building a network, 292

called learning, 153

disrespectful statement countered, 239

documentation

advice to a group, 262

anchor for overwhelming project, 154

catalyzing oral to written culture, 263

customer requirements, 245

INDEX | 317

decision making, 95, 196, 274

Lightweight Architectural Decision

Records tool, 196

design documentation, 174

bikeshedding, 182

pitfalls, 180-183

RFC security section, 276

RFC templates, 175-180, 276

RFC templates sample, 175

wrong better than vague, 178

optimizing for maintenance, 250

processes documented, 273-274

project blockage, 203

project logistics, 168

retrospective of killed project, 219, 220

retrospective of successful project, 221

rollups summarizing, 203

writing skills and courses, 179

dogfooding, 215

domain knowledge, 229

changing jobs for, 298

new specialty for fresh start, 301

staying in current job, 297

teaching, 263

Domain-Driven Design (Evans), 173

Donaldson, Ross, 184, 225

“done” defined, 214

E
eating your own dog food, 215

Ebertz, Joy, 183

echo chamber, 39

“The Effects of Employee Job Titles on

Respect Granted by Customers” (Kru-

kowski), 6

Eichler, Alex, 129

elevator pitch, 83, 170

emergencies (see crisis situations)

empathy loss, 36

energy as constrained resource, 122

happiness and energy, 290, 304

questions about project selection,

134-136

escalation up hierarchy, 193, 198, 201

culture of respect, 240

estimating time, 166

Evans, Eric, 173

even over statements, 93

execution of projects

about staff engineer role, xiv, xvii

ambiguity as nature of the work, 154

multiple teams involved, 9

project management, 151

(see also project management)

scope of project, 165

expecting failure, 248

experience to build technical skills, 227

exploring jobs in same company, 301

F
failure expected, 248

feedback

delayed gratification, 24

frequent iterative changes for, 159

honesty, 260

long-term consequences of actions, 296

milestones as beta tests, 165

peer reviews, 261

positive feedback loops as strategy, 78

promotions and, 261

public response to disrespect, 240

success metrics, 157

feigned surprise, 238

Fitzpatrick, Brian W., 59, 200

318 | INDEX

Ford, Neal, 75, 90

fortress of gatekeepers, 53

Fournier, Camille, vii-ix, xv, 80, 304

Fowler, Martin, 250

Fundamentals of Software Architecture

(Richards and Ford), 75, 90

future planning, 246-251

paths from here, 298

your career

about, 285

what to invest in, 289-293

what’s important to you, 287

where are you going, 288

your current role

about, 294

five metrics to watch, 294

should you change jobs, 296-298

what are you getting currently, 295

G
Gammon, Stacey, 307

Garcia, Fran, 248

Garza, Javier, 94

gatekeeper fortresses, 53

Gawande, Atul, 175

Geisser, Carla, 124, 225

gemba (walking the floor), 60

generative culture of organization, 51

“Getting in the Room” (Larson), 58

“Getting to Commitment” (Toia), 77

Giralt, Polina, 153, 184

glue work, 236

goals

building project context, 156

change in goals, change in focus, 42

discussing with manager, 305

learning everyone’s goals, 33

losing sight of, 38

making organization successful, 29, 41

outsider view, 8, 39, 41

primary focus as current high-level, 3

project achievements, 170

remembering the goal, 243-244

RFC contents, 176

scope of job and influence on goals, 20

short-term goal limitations, 64

staff engineer job description, 28

thinking time for solutions, 93

Good Strategy/Bad Strategy (Rumelt), 77

Graham, Molly, 278, 304, 305

graphs for communication, 173

grassroots initiatives, 131

guardrails

about, 270

culture of organization, 276

group guardrails, 272

individual guardrails, 270

project guardrails, 272

H
happiness and energy, 290, 304

Harter, Ryan, 250

Hewitt, Eben, 77

hierarchies, 17

escalating up, 193, 198, 201

culture of respect, 240

first among equals, 84

liquid or crystallized, 49

scope of job affected by, 20

shadow org chart, 59

skip-level meetings, 19

teams for projects, 160

The Hitchhiker’s Guide to the Galaxy

(Adams), 215

INDEX | 319

Hogan, Lara, 19, 258, 272, 278

Hood, James, 75

Hosseini, Mojtaba, 99

“How to Set the Technical Direction for

Your Team” (Hood), 75

“humaning” skills required, xv, xvii

building skills, 289-291

disrespectful statement countered, 239

leadership role, 13-15

people management, 23

first direct reports, 302-304

talking to people, 61

Hunt, Andy, 167

Huston, Cate, 294

hyperspecialist career path, 24

I
“Impact for the Impatient” (Geisser), 124

implicit bias, 262

importance of knowing things, 33

(see also maps)

imposter syndrome, 153, 291

Incident Command System, 237

“An Incomplete List of Skills Engineers

Need, Beyond Coding” (Fournier), xv

independent consulting or contracting, 307

individual contributors, 4, 24

influencer role of staff engineers (see level-

ing up)

InfoQ Software Architects’ Newsletter, 43

information sharing

bridging, 62

communication opportunities, 185

culture of an organization, 46

leadership influence, 50

nemawashi, 97

project logistics, 167

rollups summarizing, 203

sharing the treasure map, 66

teaching, 263

teaching a group, 268

teaching an individual, 264-268

terrain of your organization, 56

(see also topographic maps)

writing it down, 174

(see also documentation)

innovation tokens spent mindfully, 244

institutional memory, 247

understandable code, 249

intent radiated, 235

emergencies, 237

interviews

job interviews for staff+, 306

strategy and vision documents, 92

introverts welcome, jerks not, 14

Kind Engineering website, 15

network building for introverts, 292

new outsider eyes, 39

Inverse Conway Maneuver, 10

Ionescu, Vlad, 308

J
job definition

aligning with others’ expectations,

27-29

ambiguity of, xii, 3

don’t know where you stand, 211-212

removed via writing out, 27-29

task ambiguity, 154

archetype job definitions, 25

autonomy, 16

big-picture thinking, xiv

(see also big-picture thinking)

career ladder, 3

320 | INDEX

coding workload and, 12, 15

communication skills, 13, 17

execution of projects, xiv

(see also execution of projects)

hyperspecialist career path, 24

job titles, 5

leader not manager, 13-15

leveling up, xiv

(see also leveling up)

make organization successful, 29, 41

primary focus, 3, 26, 29

risks of overfocusing, 36

reporting chains, 17

scope of job, 20-22

bridging, 63, 198

defined, 85

hauling barrels of diesel, 29

skills required, xiii-xvi

(see also skills required of staff engi-

neers)

technical direction of organization, 16

technical skills, xv, 15

(see also technical skills)

years of experience, 228

your work preferences, 22-26

job titles, 5

managerial as job change not promo-

tion, 302

(see also promotions)

moving down a level with new job, 306

Johnson, Rebecca, 178

Jones, Mason, 293

K
Kaderlan, Josh, 306

Kapor, Mitch, 280

Kay, Christella, 308

Kind Engineering website, 15

Kirk, James, 307

Konigsberg, Robert, 82

Krishnan, Kripa, 169

Krukowski, Kipp, 6

Kua, Pat, 24

L
Lamport, Leslie, 209

Larson, Will

appreciation of, xiii, xix

archetype job definitions, 25

boring ideas embraced, 80

engineer/manager hybrid role, 302

getting into the decision room, 58

helping others’ projects, 189

Staff Engineer book, 5

staff+, 5

supporting others, 82

“A Survey of Engineering Strategies”,

77

“Work on What Matters”, 149

“Law of Triviality” (Parkinson), 182

LeadDev conferences, 43

appreciation of, xiii, xx

content updates, 43

“Sustaining and Growing Motivation

Across Projects”, 165

leadership role, 13-15

autonomy of job, 16

consistency of behavior, 242

credibility, 123

delegating aggressively, 142

future leaders, 251

getting in the decision room, 58

helping others’ projects, 189

mentoring as, 258

INDEX | 321

(see also mentoring)

project ultimate responsibility, 164

driving the project, 169

skill that can be learned, 226

technical direction of organization, 16

technical leadership/coding hybrid, 307

technical role also, 15, 228

leading projects (see project management)

Leandro, Sabrina, 16

learning for gaining skills, 230

(see also skills required of staff engi-

neers)

Learning HTTP/2 (Ludin and Garza), 94

leveling up

about staff engineer role, xiv, xvii

(see also role model)

cross-team projects, 10

leadership role, 14

raising others’ skills

about, 253

advice used, 257-263

scaling, 254-257

scope of job and, 20, 21, 22

technical role, 15

why needed, 11-12

levels.fyi website on job ladders, 4, 306

Levitan, Dina, 290

Lightweight Architectural Decision

Records tool, 196

Liles, Bryan, 254, 282

linters, 276

local maximum, 7

reporting to a line manager, 19

team decision making, 10, 19, 36

tragedy of the commons, 73

locator maps, 35-42

about, 32

context of a project, 156

customers happy, 42

perspective, 35-38, 39-42

across time, 64

problem solved previously, 42

seeing bigger, 38-42, 64

updating, 42

new job, 309

what’s actually important, 41

logistics of project, 167

Lopp, Michael, 142

Ludin, Stephen, 94

lurking for information, 60

Lyons, Peter, 308

M
Mailer, Glen, 275

maintenance optimized for, 249-251

Majors, Charity

doing what makes you happy, 290

engineer/manager pendulum, 302

managers’ job to manage, 304

managers’ two-year commitment, 303

solidly senior before managerial, 228

“Making the Case for Cloud Only”

(Barnes), 98

Making Things Happen (Berkun), 75

manager path, xi, 3

engineer/manager hybrid role, 302

engineer/manager pendulum, 302

technical leadership/coding, 307

first direct reports, 302-304

gaining experience first, 228

management role for fresh start, 302

one foot on the path, 25

staff engineer leadership role, 13

(see also leadership role)

322 | INDEX

technical decision making, 8

two-year commitment, 303

The Manager’s Path (Fournier), 80, 304

maps

about need for, 31

context of a project, 156

new job, 309

building, 33

creating a new map, 67, 309

points of interest on your map, 55-59

creating the big picture

about, 70

about missing the big picture, 69

the approach, 79-88

creating what’s needed, 79

final draft, 99

getting and staying aligned, 96-99

the launch, 100

making decisions, 93-95

revisiting, 101

SockMatcher case study, 101-110

SockMatcher, about, 70-73

technical strategy, 76-78

technical vision, 74-76

vision versus strategy, 73-79

writing it, 88-93

importance of knowing things, 33

updating locator maps, 42, 309

updating topographic maps, 60, 309

updating treasure map for new job,

309

locator maps, 35-42

about, 32

customers happy, 42

perspective, 35-38, 39-42

perspective across time, 64

problem solved previously, 42

seeing bigger, 38-42, 64

updating, 42

what’s actually important, 41

topographic maps

about, 32

bridging, 62

culture of an organization, 46-50

information sharing, 46, 50

navigation, 43

navigation without a map, 45

points of interest in organizations,

52-54

points of interest on your map, 55-59

understanding your organization,

45-54

updating, 60

trail maps

about, 286

paths from here, 298

what to invest in, 289-293

what’s important to you, 287

where are you going, 288

your current role, 294

treasure maps

about, 33

chasing shiny things, 64

creating a new map, 67

longer view, 65-66

sharing the map, 66

updating for new job, 309

where are we going, 63

your personal journey, 68

marketing your project, 215-216

marketing yourself, 308

Mauer, George, 154

McKinley, Dan, 244

McMinn, Keavy, 97, 305

INDEX | 323

meetings

calendar your nonmeetings too, 116

the decision room, 58

lunch-and-learn meetings, 263

notes taken by senior engineer, 239

project kickoff meeting, 169

project logistics, 167

skip-level meetings, 19

solving problems, 15

taking charge, 239

teams communicating, 185

mental model of project, 172

mentoring

about staff engineer role, xiv

colleague overwhelmed, 201

cross-team projects, 10

future leaders, 251

how to set up for success, 259

leadership role, 13

lifelong learning demonstrated, 230

mentorship program, 263

raising others’ skills, 258

unsolicited advice warning, 258

meritocracies

job titles, 5

liquid or crystallized structure, 49

mirrortocracy, 280

metrics for success, 157

people want to work with you, 251

Micol, Daniel, 75

migration pushback, 204-206

announcing intention to deprecate, 246

status updates of progress, 206

milestones as beta tests, 165

Millman, Zach, 97

Milner, Julia, 268

Milstein, Sarah, 239

mirrortocracy, 280

misspellings for links, 216

mistakes

blame avoided, 241

learning from, 12, 242

owning your mistakes, 233, 241

Moncho, Isaac Perez, 78

monolith project overwhelm, 207-208

Muldoon, Paula, 228

The Mythical Man-Month (Brooks), 27

N
Na, Dan, 38

names aiding mental models, 173

nemawashi, 97

network building, 291

needed for working independently, 308

Nguyen, Amy, 144

niche creation, 304

99 Bottles of OOP (Owen), 184

no, 143

nobody is using it, 215-216

Nottingham, Mark, 94

O
objectives that are always true, 41

“On Being a Senior Engineer” (Allspaw),

251

open questions, 268

opportunities for colleagues

about, 277

catalyst, 281

group opportunities, 280

individual opportunities, 277-280

opportunity cost

everything you commit to, 116

job scope too narrow, 22

324 | INDEX

strategy and vision documents, 87

work needs to be important, 26

optimizing for maintenance, 249-251

Orosz, Gergely, 157

outsider view for bigger picture, 38

Overton window, 96, 98

overwhelmed by a project, 153

colleague overwhelmed, 201

discomfort management, 153

five things to do, 154

legacy monolith problem, 207-208

Owen, Katrina, 184

ownership, 234-237

cross-team projects, 10

disputed territory, 53

glue work, 236

loss of, 38

owning your mistakes, 233, 241

radiating intent, 235

P
pairing on work, 184, 201

teaching, 264

Parish, Eva, 178

Parkinson, C. Northcote, 182

Pasqua, Yvette, 292

pathological culture of organization, 51

paths available, xi, xiii, xviii, 3-5

paying attention, 33

(see also maps)

peer reviews, 261

praising superstars to managers, 280

people management as discipline, 23

(see also “humaning” skills required)

Perot, Etienne, 276

pictures for communication, 173

planning and looking ahead, 246-251

policies, 275

The Pragmatic Programmer: Your Journey

to Mastery (Thomas and Hunt), 167

predictability of behavior, 242

processes, 273-274

procrastinator blocking project, 199-201

product management

about, 157

customer needs for context, 156

one of the four disciplines, 23

product requirements document (PRD),

157, 158

programming (see coding entries)

Progression.fyi website on job ladders, 4

project management

about, 151

beginning a project, 152-169

context of project, 156-161

“done” defined, 214

functionality requests received late,

167

kickoff meeting, 169

milestones, 165

overwhelmed by project, 153

structure of project, 161-169

teams, 160, 164

cleanup or fix-it weeks, 218

driving the project, 169-187

about, 169

clarifying, 171-174

coding, 183-185

communicating, 167, 185

designing, 174-183

exploring project definition, 170-171

navigating around obstacles, 186

recruiting people, 165

glue work, 236

INDEX | 325

helping others’ projects, 189

one of the four disciplines, 23

project guardrails, 272

project lead’s ultimate responsibility,

164, 169

project management triangle model,

165

stopped project (see project stopped)

structure of project

beta tests at milestones, 165

defining roles, 161

logistics, 167

recruiting people, 164

scope of project, 165

style guides, 274

thank-you acknowledgments, 198

time estimation, 166

project selection

asking to join, 129

career progression, 293

choosing projects, 128-134

questions to ask yourself, 134-140

wrong project selected, 141-144

defending your time, 149

examples

exciting project, 147

good project you don’t want, 148

joining an on-call rotation, 145

speaking at all-hands meeting, 144

exit criteria, 134

resources available, 126

saying no, 143

project stopped

about, 189

helping others’ projects, 189

arrived at destination, 221

arrived but not at end

about, 212

built on shaky foundation, 217-218

code complete but not, 213

nobody is using it, 215-216

project just stops, 218-221

blockage

about, 190

another team, 191-194

decisions, 194-196

huge crowd of people, 204-206

one person, 199-201

one stupid button click, 196-198

unassigned work, 201-204

thank-you acknowledgments, 198

you’re lost

about, 207

how do you get there, 209

where are you going, 207-208

where do you stand, 211-212

promotions

changing jobs for, 298, 306

feedback and, 261

managerial as job change not promo-

tion, 302

moving down a level with new job, 306

working toward, 299

publications (see resources)

Q
quality of life as a resource, 122

questions about project selection, 136

reducing time available, 149

R
RACI (responsibility assignment matrix)

tool, 163

radiating intent, 235

326 | INDEX

emergencies, 237

Rands Leadership Slack, 43

writing a technical strategy, 77

Rantil, Jens, 300

Raw Signal newsletter, 43

rebound job, 305

recruiting people for projects, 164

Rees, Sean, 83

Reese, John, 248

relationships

broad job scope limiting, 21

chatting, 48, 61, 106, 185, 309

communication between groups, 48, 61

consensus building, 94

escaping the echo chamber, 39

remote and global workforce, 168

shadow org chart, 59

sponsorship, 83

staying in current job, 297

team leaders, 160

reliability, 234

reminders to do the right thing, 275

reporting chains, 17

scope of job affected by, 20

reputation and visibility, 292

resource constraints

about, 120

bin packing problem, 127

budget, 244

building project context, 158

credibility, 123

defending your time, 149

helping others’ projects, 190

energy, 122

happiness and energy, 290, 304

questions about project selection,

134-136

examples

exciting project, 147

good project you don’t want, 148

joining an on-call rotation, 145

speaking at all-hands meeting, 144

innovation tokens spent mindfully, 244

overwhelmed by a project, 153

project selection, 126, 128-134

exit criteria, 134

questions to ask yourself, 134-140

wrong project selected, 141-144

quality of life, 122

saying no, 143

skills, 125

social capital, 124

spending mindfully, 244

time, 116-118

resources

books

The Art of Travel (de Botton), 172

The Checklist Manifesto (Gawande),

175

Debugging Teams (Fitzpatrick and

Collins-Sussman), 59, 200

Domain-Driven Design (Evans), 173

Fundamentals of Software Architec-

ture (Richards and Ford), 75, 90

Good Strategy/Bad Strategy

(Rumelt), 77

The Hitchhiker’s Guide to the Gal-

axy (Adams), 215

Learning HTTP/2 (Ludin and

Garza), 94

Making Things Happen (Berkun),

75

The Manager’s Path (Fournier), 80

INDEX | 327

The Mythical Man-Month (Brooks),

27

99 Bottles of OOP (Owen), 184

The Pragmatic Programmer: Your

Journey to Mastery (Thomas and

Hunt), 167

Software Engineering at Google

(Winters), 246

Staff Engineer (Larson), 5

Technology Strategy Patterns

(Hewitt), 77

conferences

LeadDev, 43

SREcon, 43

StaffPlus, 43

online

American Society of Civil Engineers

years of experience, 228

“Avoid the Lake!” (Krishnan), 169

“The Challenges of Migrating 150+

Microservices to Kubernetes”

(keynote address; Wells), 158

The Decider, 95

“The Effects of Employee Job Titles

on Respect Granted by Custom-

ers” (Krukowski), 6

“Getting in the Room” (Larson), 58

“Getting to Commitment” (Toia), 77

“How to Set the Technical Direction

for Your Team” (Hood), 75

“Impact for the Impatient”

(Geisser), 124

“An Incomplete List of Skills Engi-

neers Need, Beyond Coding”

(Fournier), xv

Kind Engineering, 15

“Law of Triviality” (Parkinson), 182

levels.fyi on job ladders, 4, 306

“Making the Case for Cloud Only”

(Barnes), 98

“On Being a Senior Engineer” (All-

spaw), 251

Progression.fyi on job ladders, 4

Rands Leadership Slack, 43

Science of People, 292

“A Survey of Engineering Strate-

gies” (Larson), 77

“Technical Strategy Power Chords”

(Shields), 77

“Testing on the Toilet” (Google),

262

“We Are Not Special” (Wayne), 11

“What I Think About When I Edit”

(Parish), 178

“Work on What Matters” (Larson),

149

“Working with Product Managers”

(Orosz), 157

writing courses, 179

“Writing Our 3-Year Technical

Vision” (Micol), 75

publications

InfoQ Software Architects’ Newslet-

ter, 43

Raw Signal newsletter, 43

SRE Weekly, 43

Thoughtworks Technology Radar,

43

the VOID report, 43

writing a technical strategy, 77

writing a technical vision, 75

respect

disrespectful statement countered, 239

interviewing for strategy and vision, 92

328 | INDEX

job titles and, 5

respecting what came before, 39, 42

role models setting norms, 12

responsibility (see ownership)

reverse shadowing to learn, 264

RFC (request for comment) templates,

175-180, 276

design documentation pitfalls, 180-183

sample template, 175

security section, 276

Richards, Mark, 75, 90

risks involved in a project, 159

Rogers, Marco, 5

role model role of staff engineers

about, xiv, 225

(see also leveling up)

but I don’t want to, 226

coding on your project, 184

linters, 276

style guides, 274

culture of quality, 217

meaning of doing a good job, 225

values are what you do, 226

guardrails

about, 270

group guardrails, 272

individual guardrails, 270

project guardrails, 272

introverts welcome, jerks not, 14

Kind Engineering website, 15

new outsider eyes, 39

looking ahead, 246-251

meaning of doing a good job

about, 225, 227

being competent, 227

being responsible, 234

building domain knowledge, 229

creating calm, 241-242

having high standards, 232-234

knowing things, 227-231

staying up to date, 230

taking charge, 237

taking ownership, 234-237

norms and standards, 12, 13

opportunities for colleagues

about, 277

catalyst, 281

group opportunities, 280

individual opportunities, 277-280

remembering the customer, 245

remembering the goal, 243-244

remembering the team, 245

teaching

about, 263

asynchronous, 269

learning path to guide, 269

teaching a group, 268

teaching an individual, 264-268

teaching other teachers, 269

rollups summarizing, 203

rubber duck debugging, 259

Rumelt, Richard, 77

S
salary

compensation focus before own

startup, 307

increase from changing jobs, 298

working less instead, 300

Schulman, Christina, 276

scope of job, 20-22

bridging, 63, 198

crisis situations extending, 20, 29

defined, 85

INDEX | 329

scaling good influence, 254-257

side quest distractions, 20, 84

scope of project, 165

self-awareness, 231

senior engineer path, xi, 3-5

“senior” in career ladders, 4

senior engineers toward problems, 115

lifelong learning, 230

meaning of doing a good job

about, 227

being competent, 227

being responsible, 234

being self-aware, 231

building domain knowledge, 229

creating calm, 241-242

having high standards, 232-234

knowing things, 227-231

staying up to date, 230

taking charge, 237

taking ownership, 234-237

service level objectives (SLOs), 42

shadow org chart, 59

shadowing to teach, 264

sharing information (see information shar-

ing)

Shields, Patrick, 77

Ship of Theseus, 246

side quests

calendar reigning in, 117

compensation for bad project, 142

distractions from scope of job, 20, 84

helping others’ projects, 190

project selection, 130

silence in a conversation, 268

simple and maintainable, 250

single point of failure risk, 164, 185, 245

skills required of staff engineers, xiii-xvi

building skills, 230, 289-291

discomfort management, 153

being a role model, 226

disrespectful statement countered,

239

the four disciplines, 23

importance of knowing things, 33

(see also maps)

people management, 23

(see also “humaning” skills)

raising others’ skills, 253

advice used, 257-263

scaling, 254-257

technical skills, xv

(see also technical skills)

understanding your organization, 45-54

(see also maps)

updating, 125, 230

changing jobs for, 297

questions about project selection,

140

writing, 179

skip-level meetings, 19

slogans that are pithy, 98

Smith, Evan, 15

social capital, 124

questions about project selection,

138-140

SockMatcher case study, 101-110

about SockMatcher, 70-73

software bugs can kill, 11

importance of software, 309

software engineer

about term, xi

paths available, xi

software design and architecture, 9

330 | INDEX

Software Engineering at Google (Winters),

246

sounding board for difficult times, 155

canceled project, 220

venting worries, 241

sponsors

ABCDs of sponsorship, 279

advocating for someone, 279-280

building project context, 158

confirming project mission with, 154

getting a sponsor, 82

project blocked by lack of decisions, 194

status updates, 96, 97, 154, 186

project logistics, 168

talking through a problem, 210

spotlight sharing, 281

SRE Weekly, 43

SREcon conferences, 43

Sridharan, Cindy, 93, 309

Staff Engineer (Larson), 5

staff engineers

about paths available, xi, xiii, xviii, 3-5

Canadian engineers’ faceted ring, 310

career ladder, 3

Civilization strategy game for research,

65

definition of job (see job definition)

don’t think out loud, 225

engineer/manager hybrid role, 302

(see also manager path)

hyperspecialist career path, 24

importance of knowing things, 33

(see also maps)

importance of software, 309

bugs can kill, 11

introverts welcome, jerks not, 14

overwhelmed by a project, 153

discomfort management, 153

five things to do, 154

people want to work with you, 251

role models, 225

(see also role model role)

skills required, xiii-xvi

(see also skills required of staff engi-

neers)

technical program managers and, 11

staff+, 5

leadership role, 13-15, 228

(see also leadership role)

project sponsorship by, 83

reporting chains, 17

software design and architecture, 9

StaffPlus conferences, 43

stakeholders, 173

building project context, 158

personas in strategy and vision docu-

ments, 99

project blocked by lack of decisions, 194

solving problem by making happy, 208

status updates, 97, 186

talking through a problem, 210

startup of your own, 307

consulting or contracting, 307

status updates, 168, 186

migration progress, 206

takeaways, 186, 203

story to gain and maintain alignment, 98

strategy and vision, 73-79

the approach, 79-88

about, 79

achievability, 86, 96

choosing your core group, 84

embracing the boring ideas, 80

getting a sponsor, 82

INDEX | 331

joining a journey in progress, 81

making it official, 87

setting scope, 85

create what the organization needs, 79

getting and staying aligned, 96-99

group guardrails, 275

the launch, 100

budget and headcount, 100

making decisions, 93-95

revisiting, 101

strategy defined, 76

technical strategy, 76-78

resources for writing, 77

technical vision, 74-76

resources for writing, 75

writing it, 88-93

final draft, 99

first draft, 90

resources for, 75, 77

writing loop, 88-90

style guides for coding, 274

linters, 276

success metrics, 157

people want to work with you, 251

Suley, Mohit, 42

sunk cost fallacy, 219

“A Survey of Engineering Strategies” (Lar-

son), 77

Synnott, Cian, 27, 175, 287

T
takeaways, 186, 203

taking charge, 237

Tassini, Fabianna, 116, 305

teaching

about, 263

asynchronous, 269

learning path to guide, 269

teaching a group, 268

teaching an individual, 264-268

teaching other teachers, 269

team leader Venn diagram, 164

teams

changing teams for fresh start, 300

communication between groups, 48,

61, 185

cross-team projects, 9

communication, 185

decision making

effects of decentralized, 73

local maximum of, 10, 19, 36

disputed territory, 53

the four disciplines, 23

future leaders, 251

other staff engineers as your team, 39

praising superstars to managers, 280

projects

blocked by another team, 191-194

canceled project, 219

communication, 185

glue work, 236

hierarchies, 160

migration pushback, 204-206

recruiting people, 164

relationships among team leaders,

160

remembering it’s a team, 245

relationships under broad job scope, 21

strategy and vision documents, 84

writing it, 88-93

team tectonics like plate tectonics, 43,

52

tech lead manager, 25

thank-you acknowledgments, 198

332 | INDEX

time and energy resources, 244

tech lead manager (TLM), 25

technical program managers (TPMs), 11

(see also project management)

technical skills

being “technical enough”, 229

book not providing, xvii

building skills, 289-291

credibility of technical judgment, 123

admitting what you don’t know, 231

don’t think out loud, 225

foundation of knowledge and experi-

ence, xv

leadership role of staff engineer, 15

(see also leadership role)

meaning of doing a good job, 227-231

one of the four disciplines, 23

single point of failure risk, 164, 185, 245

technical direction of organization, 16

updating, 125, 230

changing jobs for, 297

questions about project selection,

140

website comparing career ladders, 4

technical strategy, 76-78

resources for writing, 77

“Technical Strategy Power Chords”

(Shields), 77

technical vision, 74-76

resources for writing, 75

technology radar, 80

Technology Strategy Patterns (Hewitt), 77

temporary solutions do not exist, 217

“Testing on the Toilet” (Google), 262

thank-you acknowledgments, 198

thinking time, 92

Thomas, Dave, 167

Thoughtworks

Inverse Conway Maneuver, 10

Technology Radar, 43, 275

time as finite

about, 115, 116

allocation of time, 119

exit criteria, 134

project selection, 119, 133

choosing projects, 128-134

about, 115

important for you, 115

questions to ask yourself, 134-140

wrong project selected, 141-144

defending your time, 149

consistent behavior via, 242

helping others’ projects, 190

estimating time, 166

examples

exciting project, 147

good project you don’t want, 148

joining an on-call rotation, 145

speaking at all-hands meeting, 144

finite time, 116-118

managers’ two-year commitment, 303

quality of life reducing time available,

149

resource constraints

about, 120

bin packing problem, 127

credibility, 123

energy, 122

project selection, 126, 128-134

quality of life, 122

skills, 125

social capital, 124

saying no, 143

time estimation, 166

INDEX | 333

time graphs, 118

Toia, Mattie, 77

top-down cultures, 47

topographic maps

about, 32

bridging, 62

context of a project, 156

navigation, 43

without a map, 45

points of interest in organizations,

52-54

decision making in your organiza-

tion, 56-59

on your map, 55-59

shadow org chart, 59

understanding your organization, 45-54

about, 45

culture, 46-50

information sharing, 46, 50

power, rules, or mission, 50

updating, 60

new job, 309

trade-offs in decision making, 93

even over statements, 93

trail maps

about, 286

paths from here, 298

what to invest in, 289-293

building a network, 291

building skills, 289-291

building visibility, 292

choosing roles and projects, 293

what’s important to you, 287

where are you going, 288

your current role

about, 294

five metrics to watch, 294

should you change jobs, 296-298

what are you getting currently, 295

transparency in vision and strategy docu-

ments, 88

treasure maps

about, 33

chasing shiny things, 64

context of a project, 156

creating a new map, 67

longer view, 65-66

sharing the map, 66

updating for new job, 309

where are we going, 63

your personal journey, 68

Turner, John, 267

U
ubiquitous language, 173

unassigned work blocking project, 201-204

Unger, Amy, 306

user acceptance tests, 214

(see also customers)

V
Van Dyk, Stephanie, 227

Van Edwards, Vanessa, 292

Vasselli, Chris, 308

venting worries, 241, 259

Vigeant, Grace, 142

visibility and reputation, 292

vision and strategy, 73-79

the approach, 79-88

about, 79

achievability, 86, 96

choosing your core group, 84

embracing the boring ideas, 80

getting a sponsor, 82

334 | INDEX

joining a journey in progress, 81

making it official, 87

setting scope, 85

create what the organization needs, 79

getting and staying aligned, 96-99

group guardrails, 275

the launch, 100

budget and headcount, 100

making decisions, 93-95

revisiting, 101

strategy defined, 76

technical strategy, 76-78

resources for writing, 77

technical vision, 74-76

resources for writing, 75

writing it, 88-93

final draft, 99

first draft, 90

resources for, 75, 77

writing loop, 88-90

visualization via pictures and graphs, 173

the VOID report, 43

W
Wake, Bill, 214

Walker, Amanda, 303

walking the floor (gemba), 60

Waterhouse, Heidi, 214

Wayne, Hillel, 11

“We Are Not Special” (Wayne), 11

websites (see resources)

Wells, Sarah, 98, 158

Westrum, Ron, 50, 62

“What I Think About When I Edit” (Par-

ish), 178

Winters, Titus, 246

“Work on What Matters” (Larson), 149

working less as future path, 300

“Working with Product Managers”

(Orosz), 157

worries vented, 241, 259

writing a technical strategy, 77

writing a technical vision, 75

writing it down (see documentation)

“Writing Our 3-Year Technical Vision”

(Micol), 75

Y
years of experience, 228

Yu, Denise, 203

Z
Zunger, Yonatan, 23

INDEX | 335

About the Author
Tanya Reilly has over twenty years of experience in software engineering, most
recently working on architecture and technical strategy as a senior principal engi-
neer at Squarespace. Previously she was a staff engineer at Google, responsible
for some of the largest distributed systems on the planet. Tanya writes about
technical leadership and software reliability on her website, No Idea Blog. She’s
an organizer and host of the LeadDev StaffPlus conference and a frequent confer-
ence and keynote speaker. Originally from Ireland, she now lives in Brooklyn
with her spouse, kid, and espresso machine.

Colophon
The cover paper art is by Susan Thompson. The oak branch in the cover art was
created from crepe paper and then photographed. The cover fonts are Gilroy and
Guardian Sans. The text fonts are Minion Pro and Scala Pro; the heading and
sidebar font is Benton Sans.

https://noidea.dog

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Introduction
	Two Paths
	The Pillars of Staff Engineering
	Part I: The Big Picture
	Part II: Execution
	Part III: Leveling Up
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. The Big Picture
	Chapter 1. What Would You Say You Do Here?
	What Even Is a Staff Engineer?
	Why Do We Need Engineers Who Can See the Big Picture?
	Why Do We Need Engineers Who Lead Projects That Cross Multiple Teams?
	Why Do We Need Engineers Who Are a Good Influence?

	Enough Philosophy. What’s My Job?
	You’re Not a Manager, but You Are a Leader
	You’re in a “Technical” Role
	You Aim to Be Autonomous
	You Set Technical Direction
	You Communicate Often and Well

	Understanding Your Role
	Where in the Organization Do You Sit?
	What’s Your Scope?
	What Shape Is Your Role?
	What’s Your Primary Focus?

	Aligning on Scope, Shape, and Primary Focus
	Is That Your Job?

	To Recap

	Chapter 2. Three Maps
	Uh, Did Anyone Bring a Map?
	A Locator Map: You Are Here
	A Topographical Map: Learning the Terrain
	A Treasure Map: X Marks the Spot
	Clearing the Fog of War

	The Locator Map: Getting Perspective
	Seeing Bigger

	The Topographical Map: Navigating the Terrain
	Rough Terrain
	Understanding Your Organization
	What Points of Interest Are on Your Map?
	Keeping Your Topographic Map Up to Date
	If the Terrain Is Still Difficult to Navigate, Be a Bridge

	The Treasure Map: Remind Me Where We’re Going?
	Chasing Shiny Things
	Taking a Longer View
	If the Treasure Map Is Still Unclear, It Might Be Time to Draw a New One

	Your Personal Journey
	To Recap

	Chapter 3. Creating the Big Picture
	The Scenario: SockMatcher Needs a Plan
	What’s a Vision? What’s a Strategy?
	What’s a Technical Vision?
	What’s a Technical Strategy?
	Do You Really Need Vision and Strategy Documents?

	The Approach
	Embrace the Boring Ideas
	Join an Expedition in Progress
	Get a Sponsor
	Choose Your Core Group
	Set Scope
	Make Sure It’s Achievable
	Make It Official

	The Writing
	The Writing Loop
	Make Decisions
	Get Aligned and Stay Aligned
	Create the Final Draft

	The Launch
	Make It Official
	Keep It Fresh

	Case Study: SockMatcher
	Approach
	The Writing
	The Launch

	To Recap

	Part II. Execution
	Chapter 4. Finite Time
	Doing All the Things
	Time
	Finite Time
	How Busy Do You Like to Be?
	projectqueue.pop()?

	Resource Constraints
	Your Dashboard
	E + 2S + ...?
	Bin packing

	Choosing Projects
	Evaluating a Project
	What are you signing on for?
	Questions to Ask Yourself About Projects
	What If It’s the Wrong Project?
	Examples
	Defend Your Time

	To Recap

	Chapter 5. Leading Big Projects
	The Life of a Project
	The Start of a Project
	If You’re Feeling Overwhelmed…
	Building Context
	Giving Your Project Structure

	Driving the Project
	Exploring
	Clarifying
	Designing
	Coding
	Communicating
	Navigating

	To Recap

	Chapter 6. Why Have We Stopped?
	The Project Isn’t Moving—Should It Be?
	You’re Stuck in Traffic
	Blocked by Another Team
	Blocked by a Decision
	Blocked by a Single $%@$% Button Click
	Blocked by a Single Person
	Blocked by Unassigned Work
	Blocked by a Huge Crowd of People

	You’re Lost
	You Don’t Know Where You’re All Going
	You Don’t Know How to Get There
	You Don’t Know Where You Stand

	You Have Arrived…Somewhere?
	But It’s Code Complete!
	It’s Done but Nobody Is Using It
	It’s Built on a Shaky Foundation
	The Project Just Stops Here

	To Recap

	Part III. Leveling Up
	Chapter 7. You’re a Role Model Now (Sorry)
	What Does It Mean to Do a Good Job?
	Values Are What You Do
	But I Don’t Want to Be a Role Model!
	What Does It Mean to Do a Good Job as a Senior Engineer?

	Be Competent
	Know Things
	Be Self-Aware
	Have High Standards

	Be Responsible
	Take Ownership
	Take Charge
	Create Calm

	Remember the Goal
	Remember There’s a Business
	Remember There’s a User
	Remember There’s a Team

	Look Ahead
	Anticipate What You’ll Wish You’d Done
	Expect Failure
	Optimize for Maintenance, Not Creation
	Create Future Leaders

	To Recap

	Chapter 8. Good Influence at Scale
	Good Influence
	Scaling Your Good Influence

	Advice
	Individual Advice
	Scaling Your Advice to a Group
	Being a Catalyst

	Teaching
	Individual Teaching
	Scaling Your Teaching to a Group
	Being a Catalyst

	Guardrails
	Individual Guardrails
	Scaling Your Guardrails to a Group
	Being a Catalyst

	Opportunity
	Individual Opportunities
	Scaling Your Opportunities to a Group
	Being a Catalyst

	To Recap

	Chapter 9. What’s Next?
	Your Career
	What’s Important to You?
	Where Are You Going?
	What Do You Need to Invest In?

	Your Current Role
	Five Metrics to Keep an Eye On
	Can You Get What You Want from Your Role?
	Should You Change Jobs?

	Paths from Here
	Keep Doing What You’re Doing
	Work Toward Promotion
	Work Less
	Change Teams
	Build a New Specialty
	Explore
	Take a Management Role
	Take on Reports for the First Time
	Find or Invent Your Own Niche
	Do the Same Job for a Different Employer
	Change Employers and Go Up a Level
	Change Employers and Go Down a Level
	Set Up Your Own Startup
	Go Independent
	Change Careers

	Prepare to Reset
	Your Choices Matter
	To Recap

	Index
	About the Author

