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Preface 

Many flows of engineering interest are turbulent in nature, and thus it is important 
that students of Aerospace, Mechanical, Chemical, Civil and other allied branches 
of engineering must be given an opportunity to have at least one-semester long 
course on the fundamentals of turbulence and its modeling. Some educational insti-
tutes in India do offer such a course on turbulent flows and the enrolled students 
often look for an easy-to understand book on this otherwise difficult subject of 
study. 

Indeed there are some excellent books, written by some renowned authors, 
already available on this topic. The book First Course in Turbulence 
by H. Tennekes and J. L. Lumley is legendary: it has trained a generation of engi-
neers and researchers worldwide on the subject. In recent years, the book Turbulent 
Flows by S. B. Pope has gained immense popularity owing to the mathematical 
rigor and the wide range of topics that it covers. With its focus especially on turbu-
lence closure models and their implementations, the book Turbulence Modeling for 
CFD by D. C. Wilcox has been an equally popular book for reference. While these 
books are indeed extensive in terms of their contents and they do include both fun-
damental and advanced topics of the subject, it may still be quite challenging for 
teachers and students to cover most of the contents of any of these books during a 
single semester-long course. While we all do try to pick-and-choose topics based 
on their significance, it is often a struggling process for the teacher and the stu-
dents alike to ascertain what all to cover and with what degree to detail within the 
time constraints of a semester. 

The purpose of this new book is to cover the most essential aspects of turbu-
lence and its modeling such that the included contents can be taught at a pace 
and in a sequence that it becomes easier for students to learn the matter over a 
semester-long duration. The author believes that the sequence of contents, the vol-
ume of contents and the style of presentation included in this book are unique 
and apt so that students can make a very smooth transition from their already 
completed essential training in basic fluid mechanics to their next pursuit of learn-
ing advanced, complex but extremely useful concepts related to turbulence and 
its modeling. This book can ideally be used as the text book to teach turbulence
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viii Preface

and its modeling over a semester of 12–14 weeks to the final year under-graduate/ 
post-graduate students of Aerospace, Mechanical, Chemical, Civil and other allied 
branches of engineering. This book, by no means, is being presented or claimed as 
a substitute to any of the excellent existing books on the topic. However, this book 
can prove to be a useful stepping stone preparing a student to reach a stage where 
reading and comprehending other advanced texts and research papers related to 
this field of study would become easier. 

This book is based on my lecture notes that I have used to teach the course 
Turbulence and Its Modeling several times at Indian Institute of Technology Delhi. 
In fact, my decision to invest effort and time to convert those notes into a book is 
based on the persistent encouraging feedback from my students about the choice of 
contents and the organization of the course that I have offered in the past semesters. 

I would like to thank my current and former students Shishir Srivastava, Deep 
Shikha, Sagar Saroha and Farooq Ahmad Bhat for their generous efforts in helping 
me gather data, prepare figures and for providing constructive feedback at various 
stages of writing this book. Special thanks are due to Shishir for creating the cover 
picture for this book. 

New Delhi, India Sawan S. Sinha
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1Tensors 

A tensor of order .n .(∈ {0, 1, 2, 3, ...}) in three-dimensional space is defined as a 
mathematical entity consisting of .3n components. The numerical values of these 
components can vary depending on the coordinate system used to represent the ten-
sor. These .3n numbers are called the scalar components of the tensor within the 
chosen coordinate system. Although these scalar components generally depend on 
the chosen coordinate system for their representation, the tensor itself—as a mathe-
matical entity and as a representation of a physical quantity—remains independent 
of the coordinate system used. In other words, the tensor itself is invariant to the 
choice of the coordinate system used to express it. This property of invariance is 
ensured by a set of relationships between the .3n components of the tensor in one 
coordinate system and the corresponding set of.3n components in another coordinate 
system. These relationships ensure that despite the different scalar representations, 
the tensor remains consistent across all coordinate systems. Such a relationship is 
called the transformation rule of all tensors of order . n. A tensor of order zero is 
a special case wherein the transformation rule is trivial. Such a tensor is described 
by one (. 30) number, which is independent of the choice of the working coordinate 
system. 

In our study of fluid mechanics and turbulence, we come across tensors of various 
orders of fluid. Some examples of tensors are fluid density, velocity of a fluid particle 
and stress at a point. Density is a tensor of order. 0. It is completely described by. 30 = 1 
component. The velocity of a particle is a tensor of order 1 (.n = 1). When expressed 
in a coordinate system of our choice, velocity has .31 = 3 scalar components. Stress 
at a point is a tensor of order . 2. Thus, when expressed using a coordinate system, 
it has .32 = 9 scalar components. A tensor of order zero is also called a scalar, and 
that of order . 1 is also called a vector. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
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2 1 Tensors  

1.1 Expressing a First-Order Tensor Using a Cartesian 
Coordinate System 

Let us have a Cartesian coordinate system.Ox1( ̂e1)x2(ê2)x3( ̂e3), where O is the origin 
of the coordinate system (Fig. 1.1). The symbols . ê1, . ê2, and .ê3 are three mutually 
perpendicular unit vectors. The symbols . x1, .x2 and, .x3 denote the coordinates of an 
arbitrary location (say P, Fig. 1.1). If. T is a tensor of order one, we express the tensor 
in this coordinate system as: 

.T = T1ê1 + T2ê2 + T3ê3. (1.1) 

The symbols . T1, . T2, and .T3 are called the scalar components of the tensor . T along 
the unit vectors . ê1, . ê2, and . ê3, respectively. Note that in this book, we represent all 
tensors (except scalars) using an underlined alphabetical symbol. 

1.2 Transformation Rule: First-Order Tensors 

Let us now consider another Cartesian coordinate system . Ox1( ̂e1)x2(ê2)x3( ̂e3) 
(Fig. 1.2). The same tensor .T (1.1) can alternatively be expressed in this coordi-
nate system as: 

.T = T1 ê1 + T2 ê2 + T3 ê3. (1.2) 

In general, .T1 T1, .T2 T2, and .T3 T3. By definition, the tensor .T must be 
invariant to the choice of the coordinate system used to express it, the components 

Fig. 1.1 A Cartesian 
coordinate system. P 
represents an arbitrary 
location with coordinates. x1, 
. x2,. x3 

Fig. 1.2 Two different 
Cartesian coordinate systems 



1.2 Transformation Rule: First-Order Tensors 3 

of the tensor in these two coordinate systems must be related. To derive this trans-
formation rule, we first express the unit vectors of the second coordinate system in 
terms of the unit vectors of the first coordinate system: 

. ê1 = a11ê1 + a12ê2 + a13ê3 = 
3 

i=1 

a1i êi , 

ê2 = a21ê1 + a22ê2 + a23ê3 = 
3 

i=1 

a2i êi , 

ê3 = a31ê1 + a32ê2 + a33ê3 = 
3 

i=1 

a3i êi , (1.3) 

where the symbol 

. 

3 

i=1 

represents the sum of three relevant terms that would be generated by allowing the 
index. i to assume values. 1,. 2, and. 3. The coefficients.ai j  ’s appearing on the right-hand 
side (RHS) of (1.3) are the direction cosines between the unit vectors: 

.ai j  = êi · ê j , (1.4) 

where.i ∈ {1, 2, 3} and. j ∈ {1, 2, 3}. Substituting the equations of unit vectors of the 
second coordinate system from (1.3) in (1.2) leads to the following equation: 

.T = T1 
3 

i=1 

a1i êi + T2 
3 

i=1 

a2i êi + T3 
3 

i=1 

a3i êi . (1.5) 

Regrouping various terms on the RHS of (1.5) as coefficients of . ê1, . ê2, and .ê3 leads 
to: 

.T = 
3 

i=1 

Ti ai1 ê1 + 
3 

i=1 

Ti ai2 ê2 + 
3 

i=1 

Ti ai3 ê3. (1.6) 

Comparing (1.6) with (1.1), we arrive at the following set of relationships between 
the scalar components of the tensor . T in the two coordinate systems: 

.T1 = 
3 

i=1 

Ti ai1, T2 = 
3 

i=1 

Ti ai2, and T3 = 
3 

i=1 

Ti ai3. (1.7) 



4 1 Tensors  

This set of three equations is called the transformation rule of the tensor of order 
one. These three relationships can be expressed in a more compact manner as: 

.Tj = 
3 

i=1 

Ti ai j  , (1.8) 

where. j ∈ {1, 2, 3} and.Tj is the. j th scalar component of the tensor. T in the working 
coordinate system.Ox1( ̂e1)x2( ̂e2)x3( ̂e3). 

1.3 Expressing a Second-Order Tensor Using a Cartesian 
Coordinate System 

Now let us consider a second-order tensor. S. In a working coordinate system, it will 
have 9 scalar components. In the Cartesian coordinate system,. Ox1( ̂e1)x2(ê2)x3( ̂e3) 
this tensor is expressed as: 

. S = S11ê1ê1 + S12ê1ê2 + S13ê1ê3 + S21ê2ê1 + S22ê2ê2 + S23ê2ê3 

+ S31ê3ê1 + S32ê3ê2 + S33ê3ê3 = 
3 

i=1 

3 

j=1 

Si j  êi ê j , (1.9) 

where .Si j  is the .(i j  )th scalar component of the tensor . S in the working coordinate 
system.Ox1( ̂e1)x2(ê2)x3( ̂e3). The new mathematical entities .ê1ê1, .ê1ê2, .ê1ê3, .ê2ê1, 
.ê2ê2, .ê2ê3, .ê3ê1, .ê3ê2, and .ê3ê3 appearing in (1.9) are called dyads. Each dyad 
is an ordered combination of two of the original coordinate system’s unit vectors 
(equivalently, two mutually perpendicular directions). Note that.ê1ê2 = ê2ê1,. ê2ê3 
ê3ê2, and.ê3ê1 = ê1ê3. The quantity.Si j  is called the.(i j  )th component of the tensor. S 
along the dyad .êi ê j . Using the summation symbol, . S can be expressed equivalently 
in two ways. 

.S = 
3 

i=1 

3 

j=1 

Si j  êi ê j = 
3 

i=1 

3 

j=1 

S ji  ê j êi . (1.10) 

Equation (1.10) shows that simultaneous changes in the order of the indices of the 
dyad on the one hand and that of the indices appearing with the scalar components, 
on the other hand, keep the tensor unchanged. 

The transpose of a second-order tensor . S is defined as: 

.ST = 
3 

i=1 

3 

j=1 

S ji  êi ê j = 
3 

i=1 

3 

j=1 

Si j  ê j êi , (1.11) 

where the symbol .ST is the transpose of . S. In general, .ST S. 
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If a second-order tensor . S is such that .ST = S, it is called a symmetric tensor. In 
contrast, a second-order tensor . S is called an antisymmetric tensor if .ST = −S. For  
a symmetric tensor 

.Si j  = S ji  , if  i j . (1.12) 

For an antisymmetric tensor 

.S12 = −S21, S23 = −S32, S31 = −S13, and S11 = S22 = S33 = 0. (1.13) 

Any second-order tensor (A) can be expressed as the sum of a symmetric tensor 
(.Asymmetric) and an antisymmetric tensor (.Aantisymmetric): 

.A = Asymmetric + Aantisymmetric, (1.14) 

where 

.Asymmetric = 
A + AT 

2 
and Aantisymmetric = 

A − AT 

2 
. (1.15) 

A second-order tensor (. A) can be split into two parts: the isotropic part (.Aisotropic) 
and the anisotropic part (.Aanisotropic). These parts are defined as 

.Aisotropic = 
Trace( A) 

3 
I (1.16) 

and 

.Aanisotropic = A − 
Trace(A) 

3 
I (1.17) 

The Trace of a second-order tensor is defined as 

.Trace(A) = A11 + A22 + A33 (1.18) 

where the working coordinate system is a Cartesian coordinate system ((. Ox1( ̂e1) 
x2( ̂e2)x3(ê3)), Fig. 1.1). The tensor . I represents the identity tensor of order two. In  
the Cartesian coordinate system. 

.I = ê1ê1 + ê2ê2 + ê3ê3 (1.19) 
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1.4 Transformation Rule: Second-Order Tensors 

We wish to derive the transformation rule of a second-order tensor (. S). Referring to 
the two coordinate systems of Fig. 1.2, we start with the expression of the tensor . S 
in .Ox1(ê1)x2( ̂e2)x3( ̂e3) coordinate system: 

.S = 
3 

i=1 

3 

j=1 

Si j  êi ê j . (1.20) 

We use (1.3) to substitute the unit vectors of the second coordinate system in terms 
of the unit vectors of the first coordinate system. Subsequently, we separate the 
coefficients of the nine dyads, leading to the following expression of . S: 

.S = 
3 

p=1 

3 

q=1 

⎛ 

⎝ 
3 

i=1 

3 

j=1 

Si j  aipa jq  

⎞ 

⎠ êp êq . (1.21) 

Earlier, we expressed tensor . S directly in the first coordinate system (1.10), with 
summation implied over the indices. i and. j . However, the same tensor be expressed 
with summations over indices . p and . q: 

.S = 
3 

p=1 

3 

q=1 

Spq êp êq . (1.22) 

Now comparing (1.21) with (1.22) and matching the coefficients of .êp êq in the two 
equations, we arrive at the following expression: 

.Spq = 
3 

i=1 

3 

j=1 

Si j  aipa jq; where p, q ∈ {1, 2, 3}. (1.23) 

The set of nine equations represented by (1.23) is the transformation rule for the 
second-order tensors. 

1.5 Expressing Higher-Order Tensors Using a Cartesian 
Coordinate System 

The manner of expressing the first-order and second-order tensors discussed in pre-
vious sections may be extended to higher-order tensors, as well. For an . nth-order 
tensor with .3n scalar components, we will require .3n “dyad-like” members con-
structed with the three mutually perpendicular unit vectors of the chosen coordinate 
system (. ê1, . ê2, and . ê3). For example, a third-order tensor .Q is expressed as: 



1.6 Einstein’s Summation Rule 7 

.Q = 
3 

i=1 

3 

j=1 

3 

k=1 

Qi jk  êi ê j êk , (1.24) 

where .Qi jk  is the .(i jk)th scalar component of the tensor .Q in the given Cartesian 
coordinate system. 

1.6 Einstein’s Summation Rule 

So far, we have been expressing tensors using one or more summation signs . . 
While it is indeed a compact way of writing the tensors compared to writing all the. 3n 

terms explicitly, now onward, we wish to make the expression even more compact. 
We follow what is called Einstein’s summation rule. According to this rule, the mere 
appearance of an index two times in a term by itself implies summation over that 
index. However, care must be taken that an index must not appear more than two 
times in any term. Following Einstein’s summation rule, the final expressions of 
various Eqs. (1.5)–(1.24) can be expressed as shown in (1.25)–(1.30). 

An index appearing two times in a term is called a dummy index. In a term, 
the choice of an alphabet to represent a pair of dummy indices is not unique. Any 
symbol can be used as long as a dummy index does not appear more than two times. 
It is conventional to use the lowercase Latin alphabet to denote these indices. This 
is illustrated in some examples included in (1.25)–(1.30). In all these examples, 
every index is repeated exactly two times. The order of the tensor being expressed 
must be inferred based on the number of unit vectors that sequentially appear in 
the expression. The number of such unit vectors appearing in the sequence defines 
the order of the tensor. In some cases, the number of pairs of dummy indices may 
coincidentally match the order of the tensor, but this is not generally true. Example 6 
(1.30) represents the dot product of two vectors . A and. B, which is a tensor of order 
zero (a scalar, no unit vectors appearing therein). However, the number of pairs of 
dummy indices is still one. 

Example 1. 

. T = T1ê1 + T2ê2 + T3ê3 = 
3 

i=1 

Ti êi . 

The equivalent expression using Einstein’s summation rule is 

T = Ti êi = Tj ê j . (1.25) 

Example 2. 

. ê1 = 
3 

i=1 

a1i êi . 

The equivalent expression using Einstein’s summation rule is 

ê1 = a1i êi = a1k êk . (1.26) 



8 1 Tensors  

Example 3. 

. S = 
3 

i=1 

3 

j=1 

Si j  êi ê j . 

The equivalent expression using Einstein’s summation rule is 

S = Si j  êi ê j = Siq  êi êq = Spq êp êq . (1.27) 

Example 4. 

. ST = 
3 

i=1 

3 

j=1 

S ji  êi ê j . 

The equivalent expression using Einstein’s summation rule is 

ST = S ji  êi ê j . (1.28) 

Example 5. 

. Q = 
3 

i=1 

3 

j=1 

3 

k=1 

Qi jk  êi ê j êk . 

The equivalent expression using Einstein’s summation rule is 

Q = Qi jk  êi ê j êk = Qi jr  êi ê j êr = Qqjr  êq ê j êr . (1.29) 

Example 6. 

. φ = A1 B1 + A2 B2 + A3 B3 = 
3 

j=1 

A j B j . 

The equivalent expression using Einstein’s summation rule is 

φ = A j B j . (1.30) 

Einstein’s summation rule can also be used to express individual scalar compo-
nents of a tensor. In (1.31) and (1.32), we include such examples (Examples 7 and 8). 
Note that there are already one or more pairs of dummy indices in all these expres-
sions. Further, in each expression, there is one or more non-repeated index. Such a 
non-repeated index is called a free index. The number of free indices in an expres-
sion always matches the order of the original tensor to which this scalar component 
belongs. These free indices may be assigned values . 1, . 2 or . 3 to express various 
components of the tensor. 

Example 7. 

. Tj = 
3 

i=1 

Ti ai j  . 

The equivalent expression using Einstein’s summation rule is 

Tj = Ti ai j  . (1.31) 
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Example 8. 

. Spq = 
3 

i=1 

3 

j=1 

Si j  aipa jq  . 

The equivalent expression using Einstein’s summation rule is 

Spq = Si j  aipa jq  . (1.32) 

In an equation, if there are free indices, all terms of the equation must have the same 
number of free indices, and further, those free indices must be identical in all the 
terms on either side of the equation. For example, in the equation 

.Spq = Si j  aipa jq  , (1.33) 

the term on the left-hand side (LHS) and that on the RHS have exactly two free 
indices. Moreover, these free indices are .p and . q in each term. This manner of 
expressing tensors in a Cartesian coordinate system using free and dummy indices 
is called the index notation. 

1.7 Tensor Operations 

In this section, we define some tensor operations relevant to our study of fluid mechan-
ics. 

1.7.1 Dot Product of Two Tensors 

Let us consider two tensors .T (of order .t ≥ 1) and .N (of order .n ≥ 1). We define 
two types of dot product between two tensors:.T · N and.N · T . In general, these two 
dot products result in two different tensors. However, in the special case when both 
these tensors are of order one, then, .T · N = N · T . The execution of a dot product 
always results in a tensor with an order that is two less than the sum of the orders of 
the two participating tensors. 

To illustrate the algebraic implementation of a dot product, we consider the dot 
product of a second-order tensor with a first-order tensor. We perform this illustration 
using the Cartesian coordinate system of Fig. 1.1 as our working coordinate system. 
We first express the two participating tensors in a Cartesian coordinate system and 
subsequently simplify the algebra as much as possible. 

. T · N = T11ê1ê1 + T12ê1ê2 + T13ê1ê3 + T21ê2ê1 + T22ê2ê2 + T23ê2ê3 
+ T31ê3ê1 + T32ê3ê2 + T33ê3ê3 · N1ê1 + N2ê2 + N3ê3 . (1.34) 
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The right-hand side of Eq. (1.35) results into .27 individual terms. 

. T · N = T11ê1ê1 · N1ê1 + T12ê1ê2 · N1ê1 + T13ê1ê3 · N1ê1 
+ T21ê2ê1 · N1ê1 + T22ê2ê2 · N1ê1 + T23ê2ê3 · N1ê1 
+ T31ê3ê1 · N1ê1 + T32ê3ê2 · N1ê1 + T33ê3ê3 · N1ê1 
+ T11ê1ê1 · N2ê2 + T12ê1ê2 · N2ê2 + T13ê1ê3 · N2ê2 
+ T21ê2ê1 · N2ê2 + T22ê2ê2 · N2ê2 + T23ê2ê3 · N2ê2 
+ T31ê3ê1 · N2ê2 + T32ê3ê2 · N2ê2 + T33ê3ê3 · N2ê2 
+ T11ê1ê1 · N3ê3 + T12ê1ê2 · N3ê3 + T13ê1ê3 · N3ê3 
+ T21ê2ê1 · N3ê3 + T22ê2ê2 · N3ê3 + T23ê2ê3 · N3ê3 
+ T31ê3ê1 · N3ê3 + T32ê3ê2 · N3ê3 + T33ê3ê3 · N3ê3. (1.35) 

The rule by which the dot product operates is that in an expression like. T12ê1ê2 · N1ê1 
of (1.35), the rightmost unit vector from the expression appearing on the left side 
of the dot operator should dot with the leftmost unit vector from the expression 
appearing on the right-hand side of the dot operator. In other words, the “nearest” 
two unit vectors must dot with each other. Thus, 

.T12ê1ê2 · N1ê1 = T12 N1ê1 ê2 · ê1 = T12 N1ê1 (0) = 0. (1.36) 

Since the three unit vectors (. ê1,. ê2, and. ê3) are mutually perpendicular to each other, 
out of the 27 individual dot products of (1.35), only those survive which involve the 
dot products of the same unit vectors (.ê1 · ê1, .ê2 · ê2 and.ê3 · ê3). Accordingly, there 
are nine such surviving terms. 

. T · N = T11 N1ê1 + T12 N2ê1 + T13 N3ê1 + T21 N1ê2 
+ T22 N2ê2 + T23 N3ê2 + T31 N1ê3 + T32 N2ê3 + T33 N3ê3. (1.37) 

Using Einstein’s summation rule, this dot product is written as: 

.T · N = Ti j  N j êi . (1.38) 

Now let us consider the dot product .N · T . This can be expressed as: 

. N · T = N1ê1 + N2ê2 + N3ê3 · T11ê1ê1 + T12ê1ê2 + T13ê1ê3 
T21ê2ê1 + T22ê2ê2 + T23ê2ê3 + T31ê3ê1 + T32ê3ê2 + T33ê3ê3 . (1.39) 

Following the same rule (the nearest two unit vectors dot with each other), we arrive 
at: 

. N · T = N1T11ê1 + N1T12ê2 + N1T13ê3 + N2T21ê1 + N2T22ê2 
+ N2T23ê3 + N3T31ê1 + N3T32ê2 + N3T33ê3. (1.40) 
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Using Einstein’s summation rule (1.40) is written as: 

.N · T = N j T ji  êi = Tji  N j êi . (1.41) 

In the expressions of both .T · N and .N · T we have only one unit vector appearing 
on the RHS of (1.38) and (1.41). This means that both .T · N and .N · T are vectors 
(tensors of order one). Now, for the two vectors to be identical, we must compare the 
. i th components of the two vectors. The. i th component of a vector is the coefficient of 
. êi in its expression (1.38 or 1.41). The. i th components of .T · N in (1.38) and that of 
.N · T in (1.41) are.Ti j  N j and.Tji  N j , respectively. Since. Ti j  N j (= Ti1 N1 + Ti2 N2 + 
Ti3 N3) Tji  N j (= T1i N1 + T2i N2 + T3i N3), we conclude that .T · N N · T . 

At this point, we introduce a new symbol called the Kronecker delta .(δ). This 
symbol has two indices as subscripts, with which we define 

.δi j  = êi · ê j , (1.42) 

where .êi and .ê j are the . i th and . j th unit vectors of our Cartesian coordinate system. 
Clearly, (1.42) leads to: 

.δi j  = 
1 if  (i , j ) = (1, 1), or  (2, 2), or  (3, 3) 
0 if  i j . 

(1.43) 

Note that following the definition of .δi j  and simultaneously using Einstein’s sum-
mation rule 

.δi i  = δ11 + δ22 + δ33 = 3. (1.44) 

The specific purpose of introducing the Kronecker delta symbol here is to sym-
bolically represent the dot product between the two unit vectors of the working 
Cartesian coordinate system. With this definition, one can avoid dealing with the 
expanded forms of various tensors (like what we had to do in (1.35) and (1.39)). We 
illustrate this by revisiting the dot product of (1.34). 

.T · N = Ti j  êi ê j · Np êp = Ti j  Np êi ê j · êp = Ti j  Np êi δ j p. (1.45) 

Once a Kronecker delta symbol appears in a term (.δ j p  in this particular example), 
we perform the following two simplifying steps: (1) remove the Kronecker delta 
symbol, and (2) replace either the remaining. j by. p or replace the remaining. p by. j 
in the term. By performing these two steps, we achieve (i) the removal of all those 
dot products wherein two different unit vectors participate and consequently vanish 
and (ii) retaining all those dot products wherein identical unit vectors participate. 
Employing these two steps, (1.45) readily simplifies as: 

.T · N = Ti j  Np êi δ j p  = Ti j  N j êi . (1.46) 

Alternatively, 

.T · N = Ti j  Np êi δ j p  = Tip  Np êi , (1.47) 

which leads to the same outcome as what we obtained in (1.38). 
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1.7.2 Double Dot Product of Two Tensors 

The double-dot product is defined for two tensors T and N of orders . t and . n, if  
.t ≥ 2 and .n ≥ 2. The resulting tensor is of order .t + n − 4. The double dot product 
operation is defined by performing two successive dot products between the right-
most unit vector of the tensor on the left and the left-most unit vector of the tensor 
on the right. We illustrate the double-dot operation using an example wherein two 
second-order tensors are participating: 

. T : N = Ti j  êi ê j : Npq êp êq = Ti j  Npq êi ê j : êp êq , 
= Ti j  Npq δ j p  êi · êq = Ti j  N jq  êi · êq = Ti j  N jq  δiq  , 
= Ti j  N j i  , (1.48) 

which is a scalar (because no unit vector appears in the final expression). 

1.7.3 Cross Product of Two Vectors 

The cross-product is defined for two vectors. The resulting quantity is also a vector. 
The cross product between vector . A and . B is defined as 

.A × B = εi jk  Ai B j êk , (1.49) 

where the symbol . ε is called the permutation symbol such that, 

. εi jk  = 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

+1 if  i j k and (i , j , k) follows a cyclic order 
(1, 2, 3) or (2, 3, 1) or (3, 1, 2), 

−1 if  i j k and (i , j, k) follows the reversed cyclic order 
(1, 3, 2) or (3, 2, 1) or (2, 1, 3), 

0 otherwise. 
(1.50) 

Based on this definition, it follows that only when .i j k, .εi jk 0. It can be 
verified that in case .i j k, the swapping of the positions of a pair of indices 
changes the sign of . εi jk  

.εi jk  = −ε j ik  = −(−ε jki  ) = ε jki  . (1.51) 

It can be verified that the permutation symbol (1.50) leads to the following relation-
ships 

. 
ê1 × ê2 = ê3, ê2 × ê3 = ê1, ê3 × ê1 = ê2, 
ê2 × ê1 = −ê3, ê3 × ê2 = −ê1, ê1 × ê3 = −ê2. 

(1.52) 

The RHS of (1.49) does lead to the following familiar expanded form of the cross 
product of two vectors 

.A × B = ( A2 B3 − A3 B2) ê1 + (A3 B1 − A1 B3) ê2 + ( A1 B2 − A2 B1) ê3. (1.53) 
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1.8 The . -. δ Identity 

It can be verified that the following relationship exists between the permutation 
symbol (. ε) and the Kronecker delta (. δ) symbols. 

.εi jk  εimn  = δ jm  δkn − δ jnδkm . (1.54) 

Equation (1.54) is called the . -. δ identity and often proves useful while performing 
algebraic manipulations of expressions involving multiple cross products. Note that 
the first index of the two permutation symbols on the LHS of (1.54) are identical. 

1.9 Spatial Derivatives of Tensors 

In later sections, when we derive the governing equations of fluid motion, we come 
across spatial derivatives of various kinematic and force-related quantities. Thus, we 
must define an operator (. ∇) with the help of which various derivatives of space-
dependent tensors can be expressed and algebraically manipulated. We refer to this 
operator as the nabla operator. Using the Cartesian coordinate system of Fig. 1.1, . ∇ 
is expressed as: 

.∇ = ê1 
∂ 

∂ x1 
+ ê2 

∂ 
∂x2 

+ ê3 
∂ 

∂x3 
, or ∇ = êm 

∂ 
∂ xm 

, (1.55) 

where .∂/∂ xm is the partial derivative operator with respect to the spatial coordinate 
.xm where.m ∈ {1, 2, 3}. In the context of this book, there are five specific operations 
of the nabla operator which we need to understand. These are the gradient of a 
tensor, the divergence of a tensor, the advection operator, the curl of a vector and 
the Laplacian of a tensor, 

The gradient of a tensor of order. t (where.t ≥ 0) results in a tensor of order.t + 1. 
We illustrate this operation using an example where .t = 2. 

.∇T = êm 
∂ 

∂ xm 
Ti j  êi ê j = êm 

∂ Ti j  
∂ xm 

êi ê j = 
∂ Ti j  
∂xm 

êm êi ê j . (1.56) 

Since the unit vectors. ê1,. ê2, and.ê3 do not depend on the spatial coordinates (. x1,. x2, 
and. x3), the spatial derivatives of these unit vectors do not appear in (1.56). The final 
expression in (1.56) has an ordered sequence of three unit vectors, which clearly 
shows that the resulting tensor is a third-order tensor. 

The divergence of a tensor of order . t is defined if .t ≥ 1. The resulting tensor is 
of order .(t − 1). We illustrate this operation using an example where .t = 2. 

. ∇ · T = êm 
∂ 

∂ xm 
· Ti j  êi ê j = 

∂ Ti j  
∂ xm 

êm · êi ê j = 
∂ Ti j  
∂ xm 

δmi ê j , 

= 
∂ Ti j  
∂ xi 

ê j , (1.57) 

which is a first-order tensor (only one unit vector appears on the RHS of (1.57)). 
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The Laplacian operator (.∇2) is defined as: 

.∇2 = ∇ · ∇  . (1.58) 

The Laplacian operator can act on a tensor of any order. The resulting tensor has the 
same order as the tensor on which the operator acted. In the Cartesian coordinate 
system, the Laplacian operator is expressed as: 

. ∇2 = ∇ · ∇  = êm 
∂ 

∂xm 
· ên ∂ 

∂ xn 
= êm · ên ∂2 

∂xm ∂ xn 
= δmn 

∂2 

∂xm ∂ xn 
, 

= ∂2 

∂ xm ∂ xm 
. (1.59) 

We illustrate the effect of this operator on a second-order tensor (. T ): 

.∇2T = ∇ · ∇  T = 
∂2 

∂ xm ∂ xm 
Ti j  êi ê j = 

∂2Ti j  
∂ xm ∂ xm 

êi ê j . (1.60) 

The right-most expression in (1.60) has an ordered pair of unit vectors (. êi ê j ), which 
implies the resulting tensor is a second-order tensor, like. T , itself. However,. ∇2T = 
T . 

The advection operator is defined as: 

. V · ∇  , (1.61) 

where .V is a vector. The advection operator can act on a tensor of any order. The 
resulting tensor is of the same order as the original tensor on which the advection 
operator acts. Let us consider an example wherein the advection operator acts on a 
vector . B. 

. V · ∇  B = Vm êm · ên ∂ 
∂ xn 

Bq êq = Vm δmn 
∂ 

∂ xn 
Bq êq , 

= Vn 
∂ 

∂xn 
Bq êq = Vn 

∂ Bq 
∂ xn 

êq . (1.62) 

The parentheses appearing on the LHS of (1.62) imply that the dot product operation 
must first be performed between .V and . ∇, and subsequently, the resulting operator 
acts on . B. 

The curl of a vector is defined as the cross product between the nabla operator 
and a vector: 

.∇ × V . (1.63) 

Expressing both the nabla operator and the vector .V using our Cartesian coordinate 
system and (1.49), (1.63) is expressed as 

.∇ × V = êm 
∂ 

∂ xm 
× Vp êp = êm × êp 

∂Vp 

∂xm 
= εmpn  

∂Vp 

∂xm 
ên . (1.64) 
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1.10 Index Notation and Tensor Identities 

In previous sections, we introduced the index notation, primarily to enable us to 
express a tensor in the Cartesian coordinate system in a compact manner. Addi-
tionally, the index notation also proves useful in demonstrating the proofs of various 
tensor identities. Since tensors themselves remain invariant to the choice of the work-
ing coordinate system, so are the tensor identities. Thus, it is adequate to prove a 
tensor identity using any one working coordinate system of our choice. Our Cartesian 
coordinate system, for which we use the index notation for brevity, is indeed an apt 
choice to demonstrate the proofs of tensor identities. For this purpose, we first use 
index notation to express one side (the LHS or the RHS) of the identity in the Carte-
sian coordinate system. Subsequently, various rules of the index notation, along with 
the relevant properties of the permutation symbol and the Kronecker delta symbol, 
are employed to simplify (and sometimes expand) the algebraic terms. Finally, these 
modified algebraic terms are converted back to the form which is independent of 
the choice of the working coordinate system. This process is illustrated using the 
following examples. 

Example 1. Prove that .∇ × ∇φ = 0. 

. ∇ × ∇φ = ∇  × êm 
∂φ 
∂ xm 

= εimk  
∂ 

∂ xi 
∂φ 
∂ xm 

êk = εimk  
∂2φ 

∂ xi ∂ xm 
êk . 

Now, we carefully change all . i’s to . m’s and all . m’s to . i’s in the last expression. The 
resulting tensor must remain unchanged because both . i and .m are dummy indices. 
Thus, 

. εimk  
∂2φ 

∂ xi ∂xm 
êk = εmik 

∂2φ 
∂ xm ∂ xi 

êk . 

However, merely interchanging the positions of . i and . k in the permutation symbol 
on the RHS must reverse the sign of the tensor 

. εimk  
∂2φ 

∂ xi ∂ xm 
êk = −εimk  

∂2φ 
∂ xm ∂ xi 

êk . (1.65) 

Since . ∂2φ 
∂xm ∂ xi = ∂2φ 

∂xi ∂ xm , the LHS and the RHS of (1.65) are identical except for the 
negative sign. For this to be true, both LHS and RHS must be zero. Thus, 

. εimk  
∂2φ 

∂xi ∂ xm 
êk = 0 ⇒ ∇  × ∇φ = 0. (1.66) 
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Example 2. Prove that .∇ · ∇ × V = 0. 

. ∇ · ∇ × V = êm 
∂ 

∂ xm 
· êp 

∂ 
∂ x p 

× Vq êq 

= êm 
∂ 

∂ xm 
· εpqr 

∂ Vq 
∂ x p 

êr = εpqr 
∂2Vq 

∂ xm ∂ x p 
êm · êr , 

= εpqr 
∂2Vq 

∂xm ∂x p 
δmr = εpqm 

∂2Vq 
∂xm ∂ x p 

. (1.67) 

Now, we carefully change all. p’s to. m’s and all. m’s to. p’s in the last expression. The 
resulting tensor must remain unchanged. Thus, 

.εpqm 
∂2Vq 

∂ xm ∂x p 
= εmqp 

∂2Vq 
∂ x p∂ xm 

. (1.68) 

However, merely interchanging the positions of .m and. p in the permutation symbol 
on the RHS must reverse the sign of the tensor leading to 

. εpqm 
∂2Vq 

∂ xm ∂ x p 
= −εpqm 

∂2Vq 
∂ x p∂ xm 

. (1.69) 

We observe that the LHS and the RHS of (1.69) are identical except for the negative 
sign. For this to be true, both LHS and RHS must be zero. 

. εpqm 
∂2Vq 

∂x p∂xm 
= 0 ⇒ ∇  · ∇ × V = 0. (1.70) 

Example 3. Prove that 

. ∇ × ω × V = V · ∇  ω − ∇ · ω V + ∇ · V ω − ω · ∇  V . 

. ∇ × ω × V = ∇  × εi jk  ωi V j êk = pkr 
∂ 

∂x p 
εi jk  ωi V j êr , 

= εpkr εi jk  
∂ωi 

∂ x p 
V j êr + εpkr εi jk  

∂Vj 

∂ x p 
ωi êr . (1.71) 

Both the terms in the RHS of the last expression in (1.71) have two permutation 
symbols with one common index. The . − δ identity (1.54) can be applied here. 
However, before we do so, we must re-arrange the indices of both the permutation 
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symbols such that the common index appears as the first index of each of these 
symbols. 

. εpkr εi jk  
∂ωi 

∂x p 
V j êr + εpkr εi jk  

∂Vj 

∂ x p 
ωi êr 

= (−εkpr  )(−εk ji  ) 
∂ωi 

∂x p 
V j êr + (−εkpr  )(−εk ji  ) 

∂ Vj 

∂x p 
ωi êr , 

= εkpr  εk ji  
∂ωi 

∂x p 
V j êr + εkpr  εk ji  

∂Vj 

∂ x p 
ωi êr , 

= δpj  δri  
∂ωi 

∂ x p 
V j êr − δpi δr j  

∂ωi 

∂ x p 
V j êr 

+ δpj  δri  
∂Vj 

∂ x p 
ωi êr − δpi δr j  

∂ Vj 

∂ x p 
ωi êr , 

= Vp 
∂ωr 

∂x p 
êr − 

∂ωp 

∂ x p 
Vr êr + ∂ Vp 

∂ x p 
ωr êr − ωp 

∂Vr 
∂ x p 

êr , 

= V · ∇  ω − ∇ · ω V + ∇ · V ω − ω · ∇  V , 

⇒ ∇  × ω × V = V · ∇  ω − ∇ · ω V + ∇ · V ω − ω · ∇  V . (1.72) 

Example 4. Prove that .V × ∇ × V = 1 2∇ V · V − V · ∇  V . 

. V × ∇ × V = Vp êp × êi 
∂ 

∂ xi 
× Vj ê j = Vp êp × εi jk  

∂Vj 

∂ xi 
êk , 

= εpkr Vpεi jk  
∂Vj 

∂ xi 
êr = −εkpr  Vp −εk ji  

∂ Vj 

∂ xi 
êr , 

= εkpr  εk ji  Vp 
∂ Vj 

∂ xi 
êr = δpj  δri  − δpi δr j  Vp 

∂Vj 

∂xi 
êr , 

= δpj  δri  Vp 
∂ Vj 

∂xi 
êr − δpi δr j  Vp 

∂ Vj 

∂ xi 
êr , 

. = δri  V j 
∂Vj 

∂xi 
êr − δr j  Vi 

∂Vj 

∂ xi 
êr = Vj 

∂ Vj 

∂ xi 
êi − Vi 

∂Vj 

∂ xi 
ê j , 

= êi 
1 

2 

∂ Vj V j 

∂xi 
− Vi 

∂ Vj 

∂xi 
ê j , 

= ∇ V · V 
2

− V · ∇  V , 

⇒ V × ∇ × V = 
∇ V · V 

2
− V · ∇  V . (1.73) 
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Example 5. Prove that . ∇φ · ∇  ∇φ = 1 2∇ ∇φ · ∇φ . 

. ∇φ · ∇  ∇φ = êm 
∂ 

∂xm 
φ · ên ∂ 

∂ xn 
êp 

∂φ 
∂x p 

, 

= êm · ên ∂φ 
∂xm 

∂ 
∂ xn 

êp 
∂φ 
∂ x p 

= δmn 
∂φ 
∂ xm 

∂2φ 
∂ xn∂x p 

ê p, 

= êp 
∂φ 
∂ xm 

∂2φ 
∂ xm ∂ x p 

= êp 
∂φ 
∂ xm 

∂ 
∂ x p 

∂φ 
∂ xm 

, 

= êp 
1 

2 

∂ 
∂x p 

∂φ 
∂ xm 

∂φ 
∂xm 

= 
1 

2 
∇ ∇φ · ∇φ , 

⇒ ∇φ · ∇  ∇φ = 
1 

2 
∇ ∇φ · ∇φ . (1.74) 

Example 6. Prove that .S : W = 0 where . S and .W represent a symmetric and an 
antisymmetric second order tensor, respectively. 

. S : W = Si j  êi ê j : Wmn êm ên = Si j  êi · Wmnδ jm  ên, 
= Si j  êi · W jn  ên = Si j  W jnδin  = Si j  W j i  . (1.75) 

The quantity on the RHS of (1.75) must remain unchanged if all . i’s are made . j’s, 
and all . j’s are made . i’s. Thus, 

. S : W = Si j  W j i  = S ji  Wi j  . (1.76) 

Since . S is a symmetric tensor .S ji  = Si j  . Thus, 

. S ji  Wi j  = Si j  Wi j  . (1.77) 

Since .W is an antisymmetric tensor .Wi j  = −W ji  . Thus, 

. Si j  Wi j  = −Si j  W j i  . (1.78) 

Now equating the RHS of (1.78) directly to the right-most term of (1.75), we conclude 

. −Si j  W j i  = Si j  W j i  . (1.79) 

Equation (1.79) has both sides identical except for the negative sign. This implies, 

. Si j  W j i  = 0 ⇒ S : W = 0. (1.80) 

In the subsequent chapters of this book, we frequently refer to these useful identities 
(Examples 1–6) while deriving the governing equations of turbulent flows. 



2Description of Fluid Kinematics 

2.1 The Continuum Description 

In this book, we describe fluid motion using the continuum description. The contin-
uum description does not track the motion of individual molecules but describes the 
motion of individual fluid particles. A fluid particle is assumed to be a point mass 
in the continuum description and is characterized by its velocity, acceleration (with 
respect to an inertial reference frame in context), density, pressure, and temperature. 
We refer to these quantities as the properties of the fluid particle. Ascertaining the 
values of these properties for each fluid particle in a domain of interest culminates 
in completely describing the motion of the fluid in that domain. 

To quantify the deformation process of a fluid medium, we invoke the idea of a fluid 
element. A fluid element is a small but finite-sized chunk of mass comprised of several 
fluid particles. We identify a fluid element at a reference time (. t), then examine how 
it subsequently deforms over an infinitesimal time duration . t . Figure 2.1 shows 
a cuboidal fluid element identified at time . t . Our working coordinate system is a 
frame-fixed Cartesian coordinate system .Ox1(ê1)x2(ê2)x3(ê3). At the current time 
. t , this fluid element has a cuboidal shape with its vertices being ABCDEFGH and 
its edge lengths are small but finite: . x1, . x2 and . x3 along the directions . ê1, . ê2, 
and . ê3, respectively. At the current time instant, the coordinates of the six vertices 
are: 

. Vertex A : (x1, x2, x3), 
Vertex B : (x1 + x1, x2, x3), 
Vertex C : (x1 + x1, x2 + x2, x3), 
Vertex D : (x1, x2 + x2, x3), 
Vertex E : (x1, x2, x3 + x3), 
Vertex F : (x1 + x1, x2, x3 + x3), 
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Fig. 2.1 A fluid element 
ABCDEFGH 

Fig. 2.2 The shape of the 
fluid element ABCDEFGH 
at.t + t . The shape of the 
same fluid element was a 
cuboid at time. t (Fig. 2.1) 

Vertex G : (x1 + x1, x2 + x2, x3 + x3), 
Vertex H : (x1, x2 + x1, x3 + x3). (2.1) 

Figure 2.2 shows the same fluid element at an infinitesimal time (. t) later at (.t + t). 
In general, the six vertices have their coordinates changed compared to what they 
were at . t . Individual vertices of the fluid element indeed translates with the local, 
instantaneous fluid velocity vector. 

2.2 The Lagrangian Description of Fluid Continuum 

The Lagrangian description chooses time (. t) and the individual identity of a fluid 
particle to be the independent variables. Since the identity of a fluid particle is 
an independent variable, the Lagrangian description must devise a distinct way to 
name every particle in the flow domain. Even though there can be many creative 
ways to name individual particles, the conventional way of naming them is by the 
position vector of the location where a chosen fluid particle was at a fixed reference 
time in the past. Let us denote this reference time as .tref, and let .Y denote the 
position vector of the chosen particle at .t = tref. The fluid particle, which was at 
this location at the reference time, is then referred/identified by this position vector 
.Y at all later time instants (. t , see Fig. 2.3). The velocity of this fluid particle (a 
dependent variable) at the current time (. t) is represented symbolically as .V +(t, Y ). 
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Fig. 2.3 The symbols. r PO  
and. Y represent the position 
vectors of the same particle P 
at . t and.tref, respectively 

Similarly, the density, temperature, and pressure associated with this fluid particle at 
the current time instant are represented as .ρ+(t, Y ), .T +(t, Y ), and .p+(t, Y ). It is a  
common practice to use the superscript .+ with all dependent variables while using 
the Lagrangian description. With. Y representing the position vector of a chosen fluid 
particle at.tref, and. t representing the current time instant at which we wish to have the 
flow description, the symbols.V +(t, Y ),.ρ+(t, Y ),.T +(t, Y ), and.p+(t, Y ) represent 
the velocity, density, temperature, and pressure fields of the fluid domain. The symbol 
.Y represents a continuous spatial variable. We call .V +(t, Y ) as the instantaneous 
(at time . t) Lagrangian velocity field. Similarly, .ρ+(t, Y ), .T +(t, Y ), and . p+(t, Y ) 
are called the instantaneous Lagrangian fields of density, temperature and pressure 
respectively. 

While describing fluid motion, it is of interest to inquire about the rate of change 
of a dependent variable of a fluid particle with time. Let us examine the partial 
derivative of the dependent variables of the Lagrangian description with respect to 
time. At time . t , the partial derivative of a Lagrangian dependent variable . φ+(t, Y ) 
with respect to time is: 

. 
∂φ+(t, Y ) 

∂t
= lim 

t→0 

φ+(t + t, Y ) − φ+(t, Y ) 
t 

. (2.2) 

On the right-hand side, two observations of the dependent variable are being used. 
Since the derivative of the dependent variable is partial with respect to. t , by definition, 
both observations have the same value of . Y within the parentheses. In other words, 
the two observations have been made on the same fluid particle but at two different 

time instants: . t and .t + t . Thus, . ∂φ+(t,Y ) 
∂t precisely represents the current rate (at 

time. t) of change in the quantity. φ following that fluid particle which was at location 
. Y at the reference time (.tref). 

Replacing.φ+(t, Y ) by the velocity vector (.V +(t, Y ) in (2.2) gives us the expres-
sion for the instantaneous acceleration of the fluid particle which was at location . Y 
at the reference time .tref: 

.a+(t, Y ) = 
∂V +(t, Y ) 

∂t 
. (2.3) 

Similarly, the partial derivatives. ∂ρ+(t,Y ) 
∂t ,. ∂ p+(t,Y ) 

∂t , and. 
∂ T +(t,Y ) 

∂t represent the instan-
taneous rates of change in density, pressure and temperature of that fluid particle 
which was located at . Y at .tref. 
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In the Lagrangian description, the current location of an independently chosen 
fluid particle (which had its location at .Y at .tref) is a dependent variable. This is 
represented as .X+(t, Y ). Indeed, this quantity is related to the time integral of the 
velocity vector: 

.X+(t, Y ) = Y + 
t 

tref 
V +(t , Y ) dt  , (2.4) 

where .tref ≤ t ≤ t . 

2.3 The Eulerian Description of Fluid Continuum 

In the Eulerian description of a flow field, time (. t) and an independently chosen 
position vector .X (see Fig. 2.4) are treated as the set of independent variables. Con-
sequently, the velocity vector .V (X , t), density .ρ(X , t), temperature .T (X , t), and 
pressure.p(X , t) of the fluid particle located at .X at the current time. t are the depen-
dent variables. It is conventional that, unlike the Lagrangian dependent variables, 
the dependent variables of the Eulerian description do not have .+ as a superscript. 
A further distinction is made by the order in which the independent variables appear 
as arguments of the dependent variables. While the Lagrangian description had the 
time variable appearing first and the spatial variable (. Y ) appearing second, the Eule-
rian description had the spatial variable (X) appearing first and the time variable 
appearing second. The symbol.X represents a continuous spatial variable. The func-
tions .V (X , t), .ρ(X , t), .T (X , t), and .p(X , t) are called the instantaneous Eulerian 
velocity, density, temperature, and pressure fields. 

Determining the rate of change of a flow variable (such as velocity, density, 
temperature, and pressure) following a fluid particle is not as straightforward in 
the Eulerian description as it is in the Lagrangian description. In the Lagrangian 
approach, simply taking a partial derivative of a flow variable was sufficient (see 
Eq. 2.2). However, in the Eulerian description, the expression for the rate of change 
of .φ(t, x1, x2, x3) following the fluid particle located at .X at time . t is as follows: 

. lim 
t→0 

φ(X , t + t) − φ(X , t) 
t

= 
∂φ 
∂t 

+ V1 
∂φ 
∂ x1 

+ V2 
∂φ 
∂x2 

+ V3 
∂φ 
∂ x3 

, (2.5) 

Fig. 2.4 The Eulerian 
description of fluid motion 
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where the symbol.X represents the position vector at time.t + t of the fluid particle 
which was located at .X at time. t . The detailed derivation of (2.5) is available in [ 1]. 
The RHS of (2.5) involves not only the partial derivative of the Eulerian variable . φ 
with respect to time but also the partial derivatives of the dependent variable with 
respect to three spatial coordinates . x1, . x2, . x3. Referring back to (1.62), (2.5) can be 
expressed in a form which is independent of the choice of the working coordinate 
system: 

. lim 
t→0 

φ(X , t + t) − φ(X , t) 
t

= 
∂φ(X , t) 

∂t
+ V · ∇  φ(X , t), 

= 
∂ 
∂t 

+ V · ∇ φ(X , t). (2.6) 

In the study of fluid mechanics, the operator . ∂ 
∂t + V · ∇  is denoted by the symbol 

. 
D 
Dt , and is called the material derivative operator. It can act upon any dependent 
variable of the Eulerian description of a flow field. Here, the significance of the word 
“material” is that it represents the rate of change of the variable in context following 
the same fluid particle or material, which is at location .X at time . t . 

The material derivative operator is applied on the Eulerian velocity field to arrive 
at the acceleration of the local fluid particle .a(X , t): 

.a(X , t) = 
D 

Dt 
V (X , t). (2.7) 

A spatially varying Eulerian velocity field is called a non-uniform velocity field, 
whereas a time-dependent Eulerian velocity field is called an unsteady velocity field. 
In contrast, the Eulerian velocity field is described as steady if it has no time depen-
dence. Similarly, if an Eulerian velocity field has no dependence on space, it is called 
a uniform Eulerian velocity field. 

Consider an Eulerian velocity field that is expressed using a coordinate system 
.Ox1(ê1)x2(ê2)x3(ê3) (Fig. 1.1). If one particular scalar component of the velocity 
field is zero at all locations, then such a velocity field is called a two-component 
or a 2C velocity field. Similarly, a 1-component or a 1C velocity field exists when 
two particular scalar components are identically zero at all locations. If an Eulerian 
velocity field depends only on two coordinates of the working coordinate system, it 
is called a two-dimensional or a 2D velocity field. Similarly, a one-dimensional (or 
1D) velocity field is one in which the velocity field depends only on one coordinate. 
In general, a velocity field may depend on all three coordinates; thus, a velocity field 
is, in general, three-dimensional or 3D. 

The Lagrangian and the Eulerian descriptions of a continuum flow field offer their 
own individual advantages. The Lagrangian approach appears to be more intuitive 
in light of our fundamental training in classical particle mechanics, wherein, indeed, 
the governing equations of motion are directly written for independently chosen 
particles (rather than spatial locations). The particle’s current location of interest 
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is calculated as a dependent variable after determining its momentum. The mathe-
matical process of finding the rate of change of properties associated with a chosen 
fluid particle too is mathematically simpler in the Lagrangian description (merely, 
the partial derivative with time is required) compared to the Eulerian description, 
which involves computation of both the time and the spatial derivatives (2.6). Still, 
the Eulerian description has been the more popular way of describing fluid motion. 
This preference is attributable to the fact that for most engineering problems, our 
focus is indeed to measure and understand the behavior of fluid at independently 
chosen locations/regions rather than the behavior of specific fluid particles. Further, 
the expression of the forces exerted on a given fluid particle due to the interaction 
of the neighboring fluid particles (pressure forces and viscous forces, involves spa-
tial gradients of the dependent variables. The Eulerian description, with the spatial 
location being an independent variable, simplifies the algebraic expression and the 
manipulation of these gradients. In the rest of this book, we describe fluid turbulence 
using only the Eulerian description. Further, we restrict ourselves only to those flow 
fields in which density and temperature are constants and the velocity vector and 
pressure are the only dependent field variables. 

2.4 Kinematics of a Fluid Element in a 3C, 3D Velocity Field 

To understand the deformations and rotations associated with a fluid element, we 
refer back to the fluid element of Fig. 2.1. Figure 2.2 shows its deformed state at 
.t + t . In a general 3C velocity field, every constituent fluid particle of the fluid 
element would have its displacement vector, in general, with non-zero projections 
along all the three axes of the coordinate system. In general, the vertices A, B, C, 
and D would no longer be lying in a plane parallel to the .x1( ̂e1) − x2(ê2) plane. 
Similarly, the vertices, E, F, G, and H, would no more be confined to a plane parallel 
to the .x1(ê1) − x2(ê2) plane. In Fig. 2.5, we have shown projections of edges .AB, 
.AD and .AE of the fluid element on three orthogonal planes at time .t + t . These 
segments themselves have not been shown in the figure to avoid clutter on the figure. 
The projections of the segments .AB  and .AD on the .x1( ̂e1) − x2(ê2) plane are . AB  
and .AD , respectively. Similarly, the projections of segments .AD and .AE on the 
.x2(ê2) − x3(ê3) plane are .AD and.AE , respectively. The projections of segments 
.AE and.AB  on the.x3( ̂e3) − x1(ê1) plane are.AE and.AB  , respectively. Further, 
on these figures, we have shown various small angles that these projections make 
with the three axes:.x1( ̂e1), .x2(ê2), and.x3(ê3). The curved arrows indicate the sense 
in which these individual angles assume positive values. With Fig. 2.5 the reference, 
we can derive the various rates of geometric changes associated with the fluid element 
(more details available in [ 1]). 

1. The rate of fractional change in the length AB is derived as: 

. lim 
t→0 

1 

t 

( AB)t+ t − ( AB)t 

(AB)t 
= 

∂ V1 
∂x1 

. (2.8) 
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Fig. 2.5 Different projections of the edges.AB, .AD and.AE of the fluid element ABCDEFGH on 
the three planes of the working coordinate system at time.t + t . Relevant small angles and their 
directions are also marked on the figure. The same fluid element was a cuboid at time. t (Fig. 2.1) 

2. The rate of fractional change in the length AD is derived as: 

. lim 
t→0 

1 

t 

(AD)t+ t − (AD)t 

( AD)t 
= 

∂V2 
∂x2 

. (2.9) 

3. The rate of fractional change in the length AE is derived as: 

. lim 
t→0 

1 

t 

(AE)t+ t − (AE)t 

(AE)t 
= 

∂ V3 
∂x3 

. (2.10) 

4. The rate of fractional change in the volume (dilatation rate) of the fluid element 
ABCDEFGH is derived as: 

. lim 
t→0 

1 

t 

volt+ t − volt 
volt 

= 
∂V1 
∂x1 

+ 
∂ V2 
∂x2 

+ 
∂V3 
∂ x3 

. (2.11) 

5. The rate at which the projections.AB  and.AD on the.x1( ̂e1) − x2(ê2) plane tend 
to align with each other is derived as: 

. lim 
t→0 

3 + 3 

t
= 

∂ V2 
∂x1 

+ 
∂ V1 
∂x2 

. (2.12) 

6. The rate at which the projections of .AD and .AE on the .x2( ̂e2) − x3( ̂e3) plane 
tend to align with each other is derived as: 

. lim 
t→0 

1 + 1 

t
= 

∂ V3 
∂ x2 

+ 
∂V2 
∂x3 

. (2.13) 
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7. The rate at which the projections.AE and.AB  on the.x3( ̂e3) − x1(ê1) plane tend 
to align with each other is derived as 

. lim 
t→0 

2 + 2 

t
= 

∂ V1 
∂x3 

+ 
∂ V3 
∂x1 

. (2.14) 

8. The component of the averaged angular velocity vector along the unit vector.ê3 is 
derived as 

. 3 = lim 
t→0 

3 − 3 

2 t
= 

1 

2 

∂V2 
∂x1 

− 
∂V1 
∂ x2 

. (2.15) 

9. The component of the averaged angular velocity vector along the unit vector.ê1 is 
derived as 

. 1 = lim 
t→0 

1 − 1 

2 t
= 

1 

2 

∂V3 
∂x2 

− 
∂V2 
∂ x3 

. (2.16) 

10. The component of the averaged angular velocity vector along the unit vector.ê2 is 
derived as 

. 2 = lim 
t→0 

2 − 2 

2 t
= 

1 

2 

∂V1 
∂ x3 

− 
∂ V3 
∂ x1 

. (2.17) 

With its three scalar components (. 1 2, and . 3) the averaged angular velocity 
vector itself is expressed as. = 1ê1 + 2ê2 + 3ê3. It can be easily verified that 
this quantity is related to the curl of the velocity field as: 

. = 
1 

2 
∇ × V . (2.18) 

In fluid mechanics, the quantity .∇ × V is also called the vorticity vector. 
Further, the Cartesian components of the angular velocity vector are also related 

to the Cartesian components of the so-called rotation-rate tensor (R).. R is a second-
order tensor and is the antisymmetric part of the velocity gradient tensor (.∇ V ): 

.R = 
(∇ V ) − (∇ V )T 

2 
. (2.19) 

and 

.R = 3ê1ê2 − 2ê1ê3 − 3ê2ê1 + 1ê2ê3 + 2ê3ê1 − 1ê3ê2. (2.20) 
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On the other hand, the symmetric part of the velocity gradient tensor is called the 
strain-rate tensor (denoted by symbol S): 

.S = 
(∇ V ) + (∇ V )T 

2 
. (2.21) 

In a Cartesian coordinate system, the strain-rate tensor is expressed as: 

. S = S11ê1ê1 + S12ê1ê2 + S13ê1ê3 + S21ê2ê1 + S22ê2ê2 + S23ê2ê3 
+ S31ê3ê1 + S32ê3ê2 + S33ê3ê3. (2.22) 

It can be verified that the various scalar components of the tensor are: 

. S11 = 
∂V1 
∂ x1 

, S12 = 
1 

2 

∂V2 
∂x1 

+ 
∂ V1 
∂ x2 

, S13 = 
1 

2 

∂V3 
∂x1 

+ 
∂ V1 
∂ x3 

, 

S21 = 
1 

2 

∂ V1 
∂ x2 

+ 
∂V2 
∂ x1 

, S22 = 
∂ V2 
∂ x2 

, S23 = 
1 

2 

∂V3 
∂x2 

+ 
∂ V2 
∂x3 

, 

S31 = 
1 

2 

∂ V1 
∂ x3 

+ 
∂V3 
∂x1 

, S32 = 
1 

2 

∂V2 
∂x3 

+ 
∂ V3 
∂ x2 

, S33 = 
∂ V3 
∂x3 

. (2.23) 

The components .S11, .S22, and .S33 are called the normal strain-rate components, 
whereas the other six scalar components are called the shear strain-rate components. 
Clearly, the normal strain-rate components are identical to the expressions obtained 
in (2.8)–(2.10). Thus, the normal components.S11,.S22, and.S33 individually represent 
the rates of fractional change of the edges AB, AD, and AE, respectively. Further, we 
observe that the sum of the normal strain-rate components . (Sii  = S11 + S22 + S33) 
equals the dilatation rate of the fluid element ABCDEFGH (2.11). A comparison of 
the RHS of (2.12) with the expression of.S12 in (2.23) shows that the shear strain-rate 
component.S12 equals half the rate at which the projections of.AB  and.AD tend to 
align with each other (Fig. 2.5). Similarly, the shear strain-rate component.S23 equals 
half the rate at which the projections of.AD and.AE tend to align with each other. 
The shear strain-rate component .S31 equals half the rate at which the projections of 
.AE and .AB  tend to align with each other. 

2.5 A Vortex in a Flow Field 

A vortex (plural, vortices) can be described as a visually discernible coherent struc-
ture that includes a set of fluid particles moving along trajectories which curve around 
a common, identifiable axis. This axis may be stationary or may even be translating 
with respect to the reference frame in context. Further, this axis may be a straight 
line or a curve in the three-dimensional space of the fluid domain. 

A simple and familiar example of a vortex is a free vortex, which exists in a 
potential flow field. The flow field of a free vortex is one of the basic solutions of 
the governing equation of an incompressible potential flow field [ 1]. In Fig. 2.6 we 
present some streamlines associated with a free vortex with its centre coinciding 
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Fig. 2.6 Streamlines 
associated with a free vortex 
in a potential flow field 

with the origin of the working coordinate system. In this case, the axis of this vortex 
is a straight line normal to the plane of the paper, and this axis remains stationary 
with respect to the reference frame in context. In a free vortex, all streamlines not 
only curve around this common axis but are also closed streamlines. Further, these 
streamlines are concentric circles, with the origin being their common centre. Further, 
in a free vortex, all the fluid particles, except the one located at the center of the 
vortex have zero vorticity associated with them. Even though a free vortex is a 
legitimate example of a vortex, we must keep in mind that, the vortices found in 
viscous flows (non-potential flow) may not necessarily have circular streamlines or 
may not even have closed streamlines. Instead, the streamlines may be spiralling 
around the common axis, and this common axis may not even be a straight line. 
Further, typically, the fluid particles that make a vortex in a viscous flow field have 
non-zero vorticity associated with them. 

One obvious advantage of identifying vortices in a flow field is that it helps in flow 
visualization. Further, identifying vortices and their mutual interactions prove useful 
in gaining meaningful insights into the flow field leading to plausible explanations of 
various complex flow phenomena. Further, they help in identifying the presence of 
various length-scales and time-scales in the velocity field of a turbulent flow. These 
quantities are described in more detail Sect. 2.6. In the context of turbulent flows, a 
vortex is often called an eddy (plural, eddies). 

2.6 Characteristic Length and Time-Scales Associated 
with an Eddy 

Before we can describe the length scales and the time-scales associated with eddies, 
we adopt, for our discussion, a working definition of the order-of-magnitude (OM) 
of a number (. ζ ). We say that the OM of. ζ is.10M (symbolically expressed as. O (ζ ) = 
10M , or .ζ ∼ 10M ), if 

.10M−0.5 ≤ |ζ | < 10M+0.5, (2.24) 

where.M is an integer. For example, consider the case when.ζ = 1.5. Since. 100−0.5 ≤ 
1.5 < 100+0.5, following the definition (2.24), we conclude .O (1.5) = 100 = 1. If  
.ζ = 15, we find that.101−0.5 ≤ 15 < 101+0.5, and we conclude that. O (15) = 101 = 
10. 
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Closely related to the idea of the OM of a number is the characteristic value of 
an Eulerian field variable (. φ). We say that .φC is the characteristic value (a specific 
chosen number) of the variable . φ over a domain of interest, if 

.O φ 
φC 

= 100 = 1, (2.25) 

over most (if not all) of the domain of interest. 
Using .φC , we now define a normalized version of the variable 

. φ∗(x1, x2, x3) 

.φ∗ = 
φ 
φC 

. (2.26) 

Equation (2.25) implies that if .φC has been chosen aptly then 

.O φ∗ = 1, (2.27) 

over most of the domain of interest. 
The characteristic length scale of an eddy (.leddy) is a number such that its order-

of-magnitude is the same as the order-of-magnitude of the perceived diameter of that 
eddy. The characteristic time scale of an eddy (.teddy) is defined as a number that has 
the same order-of-magnitude as that of the time it takes for a typical fluid particle 
located on the periphery of the eddy to spiral/revolve around the axis of the eddy (as 
observed by an observer who is translating with the axis of the eddy). Based on. leddy 
and .teddy, the characteristic velocity (.veddy) of the eddy is defined as 

.veddy = 
leddy 
teddy 

(2.28) 

The order-of-magnitude of .veddy is the same as the OM of the velocity of a fluid 
particle located on the periphery of the eddy (as observed by an observer who is 
translating with the axis of the eddy). 

2.7 An Idealized Superposition of Eddies 

Let us consider a flow field wherein we have an idealized superposition of multiple 
eddies. For illustration purposes, we consider three such eddies (Fig. 2.7). These three 
eddies have their characteristic length scales (diameters) as.l1(= 2r1),.l2(= 2r2) and 
.l3(= 2r3). The characteristic time scales of three eddies are. t1,. t2 and. t3, respectively. 
The superposition is idealized in the way that: 

1. .C1, .C2 and.C3 are particles located at the respective centres of the three eddies. 
2. The centre of the second eddy (particle .C2) is located on the periphery of the 

first eddy. Similarly, the center of the third eddy (particle .C2) is located on the 
periphery of the second eddy. 
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Fig. 2.7 An idealized superposition of three eddies in a flow field 

3. Each eddy is assumed to behave like a rigid body. These rigid bodies (1, 2 and 3) 
can equivalently be treated as three different reference frames (1, 2 and 3). 

4. Particle .C2 is a common particle belonging both to body 1 and body 2. Particle 
.C3 is a common particle belonging both to body 2 and body 3. 

5. We assume the flow field to be planar and all three eddies have their axes along 
. ê3. Our working coordinate system is the Cartesian system.Ox1( ̂e1)x2(ê2)x3(ê3), 
which is fixed to the inertial reference frame (ground). 

6. In Fig. 2.7, the fluid particle .P is a part of the rigid body 3. 

Here our goal is to derive the expression of the velocity of the fluid particle. P , at the 
current instant, with respect to the ground frame using the kinematic and geometric 
features of the three eddies. We denote this velocity vector by .VP|G . This symbol 
follows the notation that .V Q|α means the velocity of an arbitrary fluid particle . Q 
with respect to the reference frame . α [ 2]. 

With an idealized superposition of vortices as shown in Fig. 2.7, the angular veloc-
ities of the three rigid bodies can be related to the characteristic time scales of the 
three eddies. 

. 1|G = 
2π 
t1 

ê3 

2|1 = 
2π 
t2 

ê3 

3|2 = 
2π 
t3 

ê3, (2.29) 

where the symbol. α|β represents the angular velocity of frame. α relative to frame. β. 
The symbol.G represents the inertial ground frame. Using the expressions in (2.29), 
angular velocities of the three frames relative to the ground frame are expressed as 
(see [ 2] for the full derivation of these relationships) 

. 3|G = 3|2 + 2|1 + 1|G 
2|G = 2|1 + 1|G (2.30) 
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To find .VP|G , we employ the velocity transfer relationship [ 1, 2]. 

.V P|G = V C3|G + 3|G × 
l3 
2 
ê1. (2.31) 

Further, successively employing the velocity transfer relationship, we arrive at the 
following equations. 

.V C3|G = V C2|G + 2|G × 
l2 
2 
ê1. (2.32) 

.V C2|G = V C1|G + 1|G × 
l1 
2 
ê1 (2.33) 

Using (2.32), (2.33) in (2.31) leads to the following expression of .V P|G . 

.V P|G = V C1|G + 1|G × 
l1 
2 
ê1 + 2|G × 

l2 
2 
ê1 + 3|G × 

l3 
2 
ê1. (2.34) 

Further, using the expressions of the angular velocities of various reference frames 
relative to the ground itself from (2.30) in (2.34) leads to the following expression 
of .V P|G at the current time instant 

.V P|G = V C1|G + 
π 
t1 

(l1 + l2 + l3) ̂e2 + 
π 
t2 

(l2 + l3)ê2 + 
π 
t3 
l3ê2 (2.35) 

Equation (2.35) is the exact expression of the velocity of the particle P with respect 
to the ground frame at the current instant in the context of the idealized superposition 
of eddies considered in this section. The expression on the RHS of (2.35) clearly 
shows the characteristic length and time-scales of the existing eddies do influence 
the velocity of the particle P with respect to the ground frame. We will learn in the 
next chapter that every turbulent flow shows eddies of multiple time and length scales 
present therein. Even though all the assumptions made for our idealized superposition 
of eddies may not hold good in a typical turbulent flow, the kinematic expression 
derived in (2.35) does provide us, at least, a qualitative insight how the characteristic 
length and time scales of the constituent eddies in a turbulent flow field can possibly 
influence the velocity of fluid particles. Accordingly, a velocity field with the presence 
of eddies of disparate characteristic length and time scales is said to have multiple 
time and length scales. 



3Nature of Turbulent Flows 

The nature of turbulent flows is often described in contrast to that of laminar flows. 
A laminar flow field may be steady or unsteady, whereas, a turbulent flow field is 
always unsteady. The velocity field in a laminar flow may be 1C, 2C or 3C, whereas 
the velocity field in a turbulent flow is always 3C. The velocity and the pressure 
fields in a laminar flow may be 1D, 2D or 3D, whereas in a turbulent flow field, the 
velocity as well as the pressure fields are always 3D. The vorticity field in a laminar 
may be zero or non-zero. A turbulent flow always always has a highly non-uniform 
and time-varying vorticity field. 

A laminar flow may or may not have the presence of vortices. Even if some vor-
tices are present in a laminar flow, there is a negligible disparity in the length and 
the time-scales of those resident vortices. Typically, these vortices can be described 
by a common characteristic length scale and a common characteristic time-scale. 
Furthermore, the order of the magnitude of the characteristic length scale and the 
characteristic time-scale are determined by the kinematic and geometric boundary 
conditions of the laminar flow field. For example, in the unsteady laminar flow field 
past a circular cylinder (of diameter . D) with the velocity field in the far upstream 
region being uniform (.Vo), vortices may periodically be shed in the wake. These vor-
tices have a common characteristic length scale (.leddy) and a common characteristic 
timescale (.teddy), which follows 

.O(leddy) = O(D) (3.1) 

.O(teddy) = O D 

Vo 
(3.2) 

In contrast, a turbulent flow field is always perceived to have a superposition of 
multiple eddies, with diverse length and time-scales. We have demonstrated earlier 
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in Chap. 2 (2.35) that an idealized superposition of multiple eddies in the flow 
field tends to introduce multiple time- and length-scales in the velocity field. The 
presence of multiple eddies in a turbulent flow is expected to introduce a multitude 
of length-scales and time-scales in the velocity field. While the characteristic length 
scale (.llargest-eddy) and the characteristic timescale (.tlargest-eddy) of the largest eddies 
in a turbulent flow field are still observed to depend on the geometric and kinetic 
boundary conditions the flow field, (a) the ratio of the characteristic length scale of 
the smallest eddies to that of the largest eddies and (b) the ratio of the characteristic 
timescale of the smallest eddies to that of the largest eddies seem to be governed by 
the Reynolds number (.ReL ) of the flow field. For illustration, let us again consider 
the flow past a circular cylinder (with .D being the diameter) and the far-upstream 
velocity being uniform.(V0). When the flow is turbulent in the wake of the cylinder. 
Like in the laminar flow past the cylinder, the length scale and the timescale of the 
largest eddies are still determined by the boundary and initial conditions. 

.O llargest-eddies = O (D) (3.3) 

and 

.O tlargest-eddies = O D 

Vo 
. (3.4) 

While the symbols. l and. t denote characteristic length and time scales, the subscript 
(“largest-eddies” or the “smallest eddies”) denote the category of eddies in the flow 
field. 

On the other hand, the characteristic timescale and the characteristic length scale 
of the smallest eddies have the following dependence: 

.O lsmallest-eddies 

llargest-eddies 
= O Re

− 3 
4 

L (3.5) 

and 

.O tsmallest-eddies 

tlargest-eddies 
= O Re

− 1 
4 

L (3.6) 

where the definition of .ReL itself is defined as 

.ReL = 
ρVollargest-eddy 

μ 
(3.7) 

The symbols . ρ and . μ represent density and the coefficient of dynamic viscosity of 
the fluid. The estimates of the orders-of-magnitude listed in (3.6) and (3.7) are based 
on the so-called Kolmogorov hypotheses. This will be our topic of detailed discussion 
later in Chap. 9. 

Turbulent flows show chaos-like behavior. Small changes in the initial/boundary 
conditions associated with a turbulent flow may result into significant changes in the 
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flow variables (.V (X , t) and.p(X , t)) at later times. This leads to unpredictability in 
the outcome when a turbulent flow experiment is performed next time in a laboratory. 

To further explain the meaning of the word unpredictability, we consider an 
experimental set-up of a flow, with the initial and boundary conditions being specified 
according to a given set of measurement devices. Once the experiment starts, the flow 
variables may change, both in time and space. These evolving flow variables are also 
recorded by the same measurement devices. Consider an experiment being performed 
twice (or being realized twice) ensuring that all initial and boundary conditions are 
identical (as recorded by our measurement devices). Subsequently, if the recorded 
values of the evolved flow variables at all locations and at all subsequent time instants 
are found to be correspondingly identical in the two realizations of the experiment, 
then we say that the outcome of the experiment is predictable and the experiment 
itself is repeatable. Otherwise, we say the outcome of the experiment is unpredictable 
and the experiment itself is not repeatable. For such a flow field, the outcomes of an 
experiment.V (X , t) and.p(X , t) must be treated as random variables at every.X and 
. t . If a turbulent flow experiment starts at .t = 0, at each location . X , which is within 
the flow domain of interest and at each time instant.t(> 0), we are dealing with four 
scalar random variables:.V1(X , t),.V2(X , t),.V3(X , t) and.p(X , t), where.V1,.V2 and 
.V3 are the three scalar Cartesian components of the local velocity vector (.V (X , t)). 

We must acknowledge, from a practical viewpoint, that the accuracy of any mea-
surement device is always limited up to a finite number of decimal places, and some 
perturbations beyond those decimal places in the boundary and initial conditions 
are naturally always present in the environment. These facts always introduce some 
small differences in the initial and boundary conditions across multiple realizations 
of a flow experiment. Since turbulent flows show chaos-like behavior these small 
differences (which are not sensed by our measurement devices) across different real-
izations of the experiments can be amplified to the extent that the measured outcomes 
from these different realizations of the experiment are significantly different from 
each other. Thus, at local time instant from a practical viewpoint, a turbulent flow 
experiment is apparently random. Accordingly, we must treat the velocity and the 
pressure variables measured in a turbulent flow experiment as random variables. If  
one could build perfect measurement devices with which the initial and boundary 
conditions of a turbulent flow experiment can be specified exactly, and the conse-
quent outcomes can be measured exactly, then the experiment would be repeatable, 
and the flow variables need not be treated as random variables. However, such perfect 
measurement devices do not exist. 

On the other hand, a typical laminar flow does not show any chaos-like behavior. 
This ensures that small differences in the initial and boundary conditions (naturally 
existing across multiple realizations of an experiment) remain small during the sub-
sequent evolution of the flow variables such that our measurement devices do record 
identical values of the flow variables in various realizations of the experiment. Thus, 
we do not treat the variables in a laminar flow field as random variables. 
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3.1 Governing Equations of Turbulent Flows 

Even though several differences exist between laminar and turbulent flows, both 
laminar and turbulent flow fields are governed by the same set of governing equations. 
For a constant density flow with no heat transfer, both turbulent flows and laminar 
flows, when observed with respect to an inertial reference frame are governed by the 
Navier Stokes equation set, which is expressed (in its coordinate system independent 
form) as: 

.∇ · V = 0, (3.8) 

. 
∂V 

∂t 
+ V · ∇  V = −  

1 

ρ 
∇ p + ν∇2V , (3.9) 

where .V and. p represent the local instantaneous velocity and pressure. The symbol 
.ν(= μ/ρ) denotes the kinematic viscosity of the fluid and is assumed to be a constant 
in this book. 

Equation (3.8) is a statement of mass conservation, and is commonly called the 
continuity equation. Equation (3.9) is a statement of Euler’s first axiom. We refer to 
this equation as the momentum equation. The reference frame in context is an inertial 
reference frame. The first term on the left-hand side (LHS) of (3.9) is the unsteady 
term, while the second term is the advection term. On the right-hand side, the two 
terms represent the pressure gradient force (per unit mass) of the fluid, and the net 
viscous force (per unit mass). The influence of any body force has been ignored in 
our discussion (assumed to be of negligible importance). 

If we use a Cartesian coordinate system (Fig. 1.1), which is fixed to the inertial 
reference frame in context, as our working coordinate system, the continuity equation 
is expressed as 

. 
∂Vi 
∂xi 

= 0, (3.10) 

where a repeated index implies summation (following Einstein’s summation rule dis-
cussed earlier in Chap. 1). The momentum equation (3.9) is accordingly represented 
in the Cartesian coordinate system as 

. 
∂ Vi 
∂t 

+ Vk 
∂ Vi 
∂ xk 

= − 1 

ρ 
∂ p 
∂xi 

+ ν 
∂2Vi 
∂ x2 k 

(3.11) 

Equations (3.10) and (3.11) form a set of four partial different equations (PDE) in 
as many unknowns (.V1,.V2,.V3 and. p). Thus, the governing equation set is mathemat-
ically closed. While the continuity equation is a linear partial differential equation 
(PDE), the momentum equation (3.11) is a non-linear PDE. This non-linearity arises 
because of the advection term in the momentum equation. 

Since the governing equation set of a turbulent flow (3.10–3.11) is mathematically 
closed, these partial differential equations can be solved numerically on computers 
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using the techniques and practices of computational fluid dynamics. Typically, a 
method adopted by CFD discretizes the computational domain into small volumes 
(or cells) to convert the partial differential equations into approximate algebraic 
equations. Further, since all turbulent flows are always unsteady, the CFD procedure 
also requires time marching, for which the temporal domain is also discretized into 
small timesteps. The dimensions of these cells and the size of the timesteps must 
be small enough to accurately resolve the smallest length and time scales of the 
turbulent flow field. 

Since at high Reynolds numbers, the smallest time scales and length scales of 
motion that exist in a turbulent flow tend to become exponentially small (3.7 and 
3.6), numerically simulating a turbulent flow field requires numerous small cells 
and numerous small time steps to arrive at a reasonably accurate solution of the 
evolving flow field. Thus, the computational effort required to solve the Navier-
Stokes equation for turbulent flows with adequate accuracy becomes computationally 
very expensive as the Reynolds number of the flow field increases. A numerical 
simulation adequately resolving the entire spectrum of length and time scales that 
exist in a turbulent flow field at the given Reynolds number is called a direct numerical 
simulation (DNS). Even with the massive advancement of computing technology 
achieved in recent decades, performing direct numerical simulations is still not a 
viable option for many turbulent flows of engineering interest which occur at high 
Reynolds numbers. 

The numerically computed instantaneous flow field,.V (X , t) and.p(X , t), from a 
direct numerical simulation, even if available, is at best, only one possible realization 
of the corresponding random experiment. This is so because, like our measurement 
devices, the accuracy with which the initial and boundary conditions can be spec-
ified on a computer to initiate a direct numerical simulation is also finite. Due to 
the perturbations existing in nature, these computer-specified initial and boundary 
conditions may still be different from those that would exist in nature. These small 
differences combined with the chaos-like tendency of the turbulent flows are potent 
enough to drive the outcome of the actual experiment away from the DNS-computed 
solution. Thus, the instantaneous flow field of a DNS solution has no predictive value. 
However, there are still other motivations to perform accurate direct numerical sim-
ulations of turbulent flows. Some of these motivations are presented and discussed 
in later chapters of this book (Chaps. 5 and 8). 

For many flows of practical interest, it is the Reynolds number which determines 
whether the flow field remains laminar or turns turbulent. For illustration, let us 
consider the flow of water through a pipe of diameter. D. It is observed that for a pipe 
with a reasonably smooth internal wall, the flow of water through the pipe is laminar 
if the Reynolds number (.ReD) is below 2300, where .ReD is defined as 

.ReD = UD/ν (3.12) 

where.U is expressed in terms of the volumetric flow rate (. Q) through any arbitrary 
cross-section of the pipe, 

.U = 
4Q 

π D2 (3.13) 
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The particular value of the Reynolds number below which the pipe flow is laminar is 
called the critical Reynolds number of the flow through a pipe. Similarly, other types 
of flows have their own critical Reynolds number. The critical Reynolds number 
for the boundary layer flow over a flat plate is .5.0 × 105, approximately, where the 
relevant Reynolds number for the flat plate boundary layer is defined as 

.Rex = 
Vox1 

ν 
(3.14) 

where .Vo is the magnitude of the uniform velocity field in the far-upstream region, 
and .x1 denotes the stream-wise (along the length of the plate) distance of a location 
measured from the nose of the flat plate. 

Even though it is observed that the laminar flow regime ceases to exist at a 
Reynolds number just above the respective critical value, the flow does not neces-
sarily become turbulent rightaway. For many flows of practical interest, there exists 
another value of the Reynolds number (let us call it .ReT , which has a value higher 
than that of the critical Reynolds number) beyond which the flow becomes turbulent 
(exhibiting the traits described earlier in this chapter). The flow regime that exists at 
a Reynolds number which is larger than the critical Reynolds number of that type of 
flow field but is still lower than.ReT is called a transitional flow. Transitional flows, 
too, are always unsteady, but they do not exhibit the wide ranges of length and time 
scales that are observed in turbulent flows (3.7 and 3.6). 

It is possible to calculate the critical Reynolds number for many flow fields 
employing the linear stability theory. However, an estimation of the Reynolds number 
beyond which a flow becomes turbulent is not amenable to any simple mathematical 
analysis. Indeed, even today, this topic is a subject of active research. Any further 
discussion on the estimation of the critical Reynolds number, estimation of .ReT or 
the behavior of transitional flows is deemed to be outside the scope of this book. In 
the rest of the text, we focus entirely on flows which have already become turbulent. 



4Random Variables and Their 
Characterization 

In the last chapter, we discussed that despite the governing equations of a turbulent 
flow being known, due to the extreme dependence of the flow field on the small 
differences in the initial/boundary conditions, we are forced to treat turbulent flows 
as apparently random, and we must treat the flow variables of a turbulent flow as 
random variables. In this chapter, we review the essential aspects of the probability 
theory so that these flow variables can be aptly characterized. In an incompressible 
turbulent flow, at every time instant and at every location, there are four associated 
random variables: .V1, .V2, .V3 and . p. While .V1, .V2 and .V3 denote the three scalar 
cartesian components of the local instantaneous velocity vector and . p is the local 
instantaneous pressure. 

At any chosen time instant, say . to, the symbol .p(X , to) denotes a set of random 
variables due to the continuously varying independent variable. X . This set of random 
variables is collectively referred to as the random pressure field existing at time . to. 
Similarly, at any chosen spatial location, say .Xo, the symbol .p(Xo, t) denotes a set 
of random variables due to the continuously varying independent variable. t). This set 
of random variables is collectively called as the random pressure process existing at 
the location .Xo. Similarly,.Vi (X , to) and.Vi (Xo, t) denote the random field of the. i th 
velocity component at time. to and the random process of the. i th velocity component 
at location .Xo. 

4.1 An Event 

We begin the review of the theory of probability in the context of a single random 
variable . φ. This variable is an outcome of a random experiment, say . ζ . The next 
time the experiment. ζ is performed, we can not predict the value of. φ with certainty. 
The value that the random variable. φ actually assumes next time the experiment. ζ is 
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performed is called the next realization of the random variable. φ. The sample space 
of the random variable . φ is defined as the set of all possible numerical values that . φ 
can take. The entire line of real numbers is taken to be the sample space of . φ. In the  
context of a random experiment, an event is defined such that the random variable 
. φ takes a value which is an element of a specific subset of the sample space. For 
example, an event (say Event A) is defined as 

.Event A : {φ< − 5} (4.1) 

If the next realization of . φ (when the experiment . ζ is performed next time) is such 
that .φ <  −5, we say that event A has occurred. Similarly, we can define many other 
events related to our random experiment . ζ : 

.Event B : {3 ≤ φ <  −5} (4.2) 

We can also define events more generally: in terms of an independent variable . ψ . 
This variable, .ψ can be assigned any arbitrarily chosen value from the line of real 
numbers. For example, 

.Event C : {φ<ψ} (4.3) 

4.2 Probability of an Event 

The probability of an event is the likelihood of the occurrence of that event when the 
random experiment is performed next time. If. B denotes an event,.P(B) denotes the 
probability of that event. By definition, 

.P(B) = 

⎧ 
⎪⎨ 

⎪⎩ 

1 if B is a certain event, 

0 if B is an impossible event, 

p where, 0< p<1 in general. 
(4.4) 

For two events A and B, if .P( A) >  P(B), we say that event A is more likely to 
happen than B when the random experiment is performed next time. Examples: 

.P( A) = 1 where Event A : {φ< − ∞} (4.5) 

.P(B) = 0 where Event B : {φ>∞} (4.6) 

Here event A is a certain event, whereas event B is an impossible event. 
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4.3 Cumulative Distribution Function of a Random Variable 

The cumulative distribution function (CDF) of a random variable . φ is defined as 

.Fφ(ψ) = P{φ<ψ} (4.7) 

where .P{φ <  ψ} represents the probability of the event .φ <  ψ , and .Fφ(ψ) is the 
CDF of the random variable. φ, and. ψ is an independent variable that can be assigned 
any arbitrarily chosen value from the real line to define a specific event. The variable 
.ψ is called the phase space variable of the random variable . φ. 

It follows from the definition of CDF (4.7) 

. P{ψa ≤ φ <  ψb} =  P{φ <  ψb} −  P{φ <  ψa} 
= Fφ(ψ = ψb) − Fφ(ψ = ψa) 

= Fφ(ψb) − Fφ(ψa) (4.8) 

where.ψa and.ψb are two numbers on the real line (.ψa ≤ ψb). Further, one can prove 
that the CDF has the following properties. 

• If .ψb > ψa , then it implies that .Fφ(ψb) − Fφ(ψa) ≥ 0. Thus, .Fφ(ψ) is a non-
decreasing function. 

• .Fφ(ψ = ∞) = 1. 
• .Fφ(ψ = −∞) = 0. 

4.4 Probability Density Function of a Random Variable 

If the CDF of a random variable is differentiable, the probability density function 
(PDF) of the random variable . φ is defined as 

. fφ(ψ) = 
dFφ(ψ) 
dψ 

= lim→0 

Fφ(ψ + − Fφ(ψ) 
(4.9) 

where. is a small independent change in the phase-space variable. Following the 
definition of PDF (4.9), . fφ(ψ)  can be expressed in terms of the probability of an 
event. 

. fφ(ψ) = lim→0 

Fφ(ψ + − Fφ(ψ) = lim→0 

P{ψ ≤ φ <  (ψ  + } 
. 

(4.10) 

Further, one can prove that the PDF has the following properties. 

• Since.Fφ(ψ) is a non-decreasing function, (4.9) implies that. fφ(ψ) ≥ 0, wherever 
it is defined. 
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• . 
ψb 
ψa 

fφ(ψ)dψ = ψb 
ψa 

d Fφ = Fφ(ψb) − Fφ(ψa) = P{ψa ≤ φ <  ψb}, where . ψa 

and .ψb are two arbitrarily chosen values on the real number line with .ψa < ψb. 
• . 

∞ 
−∞ fφ(ψ)dψ = Fφ(∞) − Fφ(−∞) = 1 − 0 = 1. 

4.5 Some Examples of Known PDFs 

We present some examples of random variables with known forms of their PDFs. 

Example 1. A random variable . φ is called a Gaussian random variable, if its PDF 
has the following form, 

. fφ(ψ) = 
1 

σ
√
2π 

exp − (ψ − μ)2 

2σ 2
(4.11) 

where . σ and . μ are constants. In the special case if .μ = 0 and .σ = 1, the random 
variable . φ is called a normal random variable. The PDF of the Gaussian random 
variable is plotted in Fig. 4.1. 

Example 2. A random variable . φ is called a uniformly distributed random variable 
between two chosen numbers . a and . b (.a < b), if its PDF has the following form, 

. fφ(ψ) = 
1 

b−a for a ≤ ψ ≤ b 
0 , otherwise, 

(4.12) 

where. b and. a are constants. The PDF of a uniformly distributed random variable is 
plotted in Fig. 4.2. 

Fig. 4.1 PDF of the normal 
random variable 
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Fig. 4.2 PDF of a uniformly 
distributed random variable 
with.a = 1 and. b = 2 

4.6 Joint CDF of Multiple Random Variables 

The joint CDF of a set of .N random variables .φ1, .φ2 .... .φN is defined as 

.Fφ1φ2...φN (ψ1, ψ2, ..., ψN ) = P{φ1 < ψ1, φ2 < ψ2, ..., φN < ψN } (4.13) 

where.ψ1,.ψ2,....,.ψN represent the respective phase space variables of the.N random 
variables. The symbol.{φ1 < ψ1, φ2 < ψ2, ..., φN < ψN } denotes an event when all 
the individual inequalities mentioned therein hold good simultaneously. The string 
appearing as the subscript of .F must clearly show all the random variables jointly 
described by the CDF. Accordingly, in general, the CDF will be a function of the set 
of corresponding phase-space variables of those random variables. In particular, the 
joint CDF of two random variables .φ1 and .φ2 is defined as .Fφ1φ2 (ψ1, ψ2) such that 

.Fφ1φ2 (ψ1, ψ2) = P{φ1 < ψ1, φ2 < ψ2} (4.14) 

Based on the definition (4.14), it follows that 

• .Fφ1φ2 (−∞, ψ2) = P{φ1 < −∞ and φ2 < ψ2} =  0. 
• .Fφ1φ2 (∞, ψ2) = P{φ1 < ∞ and φ2 < ψ2} =  P{φ2 < ψ2} =  Fφ2 (ψ2). 

In context of two random variables, .Fφ2 (ψ2) is also called the marginal CDF 
of .φ2. If the joint CDF is known, then the marginal CFD of either of the random 
variables can be determined. However, in general, we can not ascertain the joint CDF 
even when the individual marginal CDFs of the random variables are known. 
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4.7 Joint PDF of Multiple Random Variables 

The joint PDF of a set of random variables is defined as 

. fφ1φ2...φN (ψ1, ψ2, ..., ψN ) = 
∂ N Fφ1φ2...φN (ψ1, ψ2, ..., ψN ) 

∂ψ1∂ψ2...∂ψN 
(4.15) 

if such partial derivatives of the joint CDF exist. The symbols.ψ1, .ψ2, ...., .ψN repre-
sent the respective phase space variables of the.N random variables. The subscript of 
. f must clearly show all the random variables jointly described by the PDF. Accord-
ingly, in general, the PDF will be a function of the set of corresponding phase-space 
variables of those random variables. In particular, the joint PDF of two random 
variables .φ1 and .φ2 is defined as . fφ1φ2 (ψ1, ψ2) such that 

. fφ1φ2 (ψ1, ψ2) = 
∂2 Fφ1φ2 (ψ1, ψ2) 

∂ψ1∂ψ2 
(4.16) 

It can be proved that the joint PDF has the following properties (illustrated here for 
a set of two random variables .φ1 and .φ2). 

1. . fφ1φ2 (ψ1, ψ2) ≥ 0, whenever it is defined. 
2. 

. 

ψ1b 

ψ1a 

ψ2b 

ψ2a 

fφ1φ2 (ψ1, ψ2)dψ1dψ2 = 

{ψ1a ≤ φ1 < ψ1b, ψ2a ≤ φ1 < ψ2b} (4.17) 

where.ψ1a and.ψ1b are two arbitrarily chosen values on the real number line with 
.ψ1a < ψ1b. Similarly, .ψ2a and.ψ2b are two arbitrarily chosen values on the real 
number line with .ψ2a < ψ2b. 

3. 

. 

∞ 

−∞ 
fφ1φ2 (ψ1, ψ2)dψ2 = fφ1 (ψ1). (4.18) 

4. 

. 

∞ 

−∞ 
fφ1φ2 (ψ1, ψ2)dψ1 = fφ2 (ψ2). (4.19) 

5. 

. 

∞ 

∞ 

∞ 

∞ 
fφ1φ2 (ψ1, ψ2)dψ1dψ2 = 1 (4.20) 

where . fφ1 (ψ1) and . fφ2 (ψ2) are the two marginal PDFs in context. 
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4.8 Expected Value of a Function of Random Variables 

If .Q is a function of a set of random variables.φ1, φ2, ... φN , then the function. Q, in  
general, is also a random variable. The expected value of .Q or simply the expectation 
of Q (denoted by symbol . Q ) is defined as 

. Q(φ1, φ2, ...φN ) 
∞ 

−∞ 

∞ 

−∞ 
· · ·  

∞ 

−∞ 
Q(ψ1, ψ2, . . . , ψN ) 

fφ1φ2...φN (ψ1, ψ2, . . . , ψN ) dψ1 dψ2 · · ·  dψN (4.21) 

where . fφ1φ2...φN (ψ1, ψ2, ..., ψN ) is the joint PDF of the .N random variables. The 
expected value of .Q is also called the mean of Q. 

The expected value of Q is no more a random quantity: it is a deterministic quan-
tity. Its value does not depend on any individual realization of the experiment. The 
expected value of.Q is a characterizing feature of the entire random experiment itself. 
The right-hand side (RHS) of Eq. (4.21) shows that. Q is indeed the weighted inte-
gral of various possible values that .Q can take in a realization of the random experi-
ment, with the weight factor being the PDF function. fφ1φ2...φN (ψ1, ψ2, ..., ψN ). The 
values of random variable.Q which are more probable do get more weightage in this 
integration process. The expectation of .Q is a useful quantity for engineers, who 
can possibly attempt to design engineering systems based on this quantity rather 
than considering numerous probable values of the otherwise random quantity . Q. 
However, the exact computation of the expected value of .Q does require us to know 
the joint PDF of the random variables, . fφ1φ2...φN (ψ1, ψ2, ..., φN ), in advance. In 
this book, we collectively refer to the expected values of various random variables 
and their functions as the statistics of that random experiment which involves these 
random variables and their functions. 

For algebraic brevity, the expectation symbol. is often treated like a mathematical 
operator that can act on various functions of one or multiple random variables. There 
are some properties of the expectation operator which we will frequently refer to in 
the later chapters of this book. Here, we list these properties along with their proofs. 

4.8.1 Expectation of the Product of Q and a Non-random 
Quantity . a 

. aQ a Q (4.22) 

where.Q denotes a function of.N random variables (unless specified otherwise), and 
. a is a non-random quantity which may still be a function of time and space. 
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Proof: 

. aQ  

= 
∞ 

−∞ 

∞ 

−∞ 
... 

∞ 

−∞ 
aQ(ψ1, ψ2, ..., ψN ) fφ1φ2...φN (ψ1, ψ2, ...dφN )dψ1dψ2...ψN 

= a 
∞ 

−∞ 

∞ 

−∞ 
... 

∞ 

−∞ 
Q(ψ1, ψ2, ..., ψN ) fφ1φ2...φN (ψ1, ψ2, ...dφN )dψ1dψ2...ψN 

= a Q (4.23) 

where. a being a non-random quantity is not dependent on the phase-space variables 
.ψ1, ψ2, ..., ψN , and it has thus been taken out of the integration process in (4.23). 

4.8.2 Expectation of the Expectation of . Q 

. Q Q . (4.24) 

Proof: 

. Q 
∞ 

−∞ 

∞ 

−∞ 
· · ·  

∞ 

−∞ 
Q fφ1φ2...φN (ψ1, ψ2, . . . , ψN ) 

dψ1 dψ2 · · ·  dψN . 

Since . Q is a non-random quantity, it can be pulled out of the integration process, 
leading to 

. Q(φ1, φ2, . . . , φN ) Q 
∞ 

−∞ 

∞ 

−∞ 
· · ·  

∞ 

−∞ 
fφ1φ2...φN (ψ1, ψ2, . . . , ψN ) 

× dψ1 dψ2 · · ·  dψN 

Q 

where (4.20) has been employed. 

4.8.3 Expected Value of a Random Variable . φ1 

When .Q = φ1, we call the corresponding expectation (4.21) as the  expected value 
of the random variable .φ1. 

. φ1 

∞ 

−∞ 
φ1 fφ1 (ψ1)dφ1, (4.25) 

where . φ1 is the expected value of .φ1. 
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Example 1: 
The expected value of a Gaussian random variable (PDF as described in (4.11)) is 
determined as 

. φ1 

∞ 

−∞ 
ψ1 fφ1 (ψ1) dψ1 

= 
∞ 

−∞ 
ψ1 

1 

σ
√
2π 

exp − (ψ1 − μ)2 

2σ 2
dψ1 

= 
1 

σ 
√
2π 

∞ 

−∞ 
ψ1 exp − 

(ψ1 − μ)2 

2σ 2
dψ1 

= μ (4.26) 

Example 2: 
The expected value of a uniformly distributed random variable (.a < b, PDF as 
described in (4.12)) is determined as 

. φ1 

∞ 

−∞ 
ψ1 fφ1 (ψ1) dψ1 

= 
a 

−∞ 
ψ1 fφ1 (ψ1) dψ1 + 

b 

a 
ψ1 fφ1 (ψ1) dψ1 + 

∞ 

b 
ψ1 fφ1 (ψ1) dψ1 

= 0 + 
b 

a 
ψ1 

1 

b − a 
dψ1 + 0 

= 1 

b − a 

b 

a 
ψ1 dψ1 

= 1 

b − a 
ψ2 
1 

2 

b 

a 

= 1 

b − a 
b2 

2 
− 

a2 

2 

= 
b + a 
2 

(4.27) 

4.8.4 Expected Value of a Sum of Random Variables 

. φ1 + φ2 + ... + φN φ1 φ2 ... φN . (4.28) 

Proof: 
We provide the proof for the sum of two random variables,.φ1 and.φ2. This procedure 
can be easily extended to the sum of any number of random variables. We first define 
.Q(φ1, φ2) = φ1 + φ2. Thus, 
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. φ1 + φ2 Q 

= 
∞ 

−∞ 

∞ 

−∞ 
Q fφ1φ2 (ψ1, ψ2) dψ1 dψ2 

= 
∞ 

−∞ 

∞ 

−∞ 
(ψ1 + ψ2) fφ1φ2 (ψ1, ψ2) dψ1 dψ2 

= 
∞ 

−∞ 

∞ 

−∞ 
ψ1 fφ1φ2 (ψ1, ψ2) dψ1 dψ2 

+ 
∞ 

−∞ 

∞ 

−∞ 
ψ2 fφ1φ2 (ψ1, ψ2) dψ1 dψ2 

= 
∞ 

−∞ 
ψ1 

∞ 

−∞ 
fφ1φ2 (ψ1, ψ2) dψ2 dψ1 

+ 
∞ 

−∞ 
ψ2 

∞ 

−∞ 
fφ1φ2 (ψ1, ψ2) dψ1 dψ2 (4.29) 

Using (4.18) and (4.19), (4.29) simplifies to 

. φ1 + φ2 

∞ 

−∞ 
ψ1 fφ1 (ψ1) dψ1 + 

∞ 

−∞ 
ψ2 fφ2 (ψ2) dψ2 

φ1 + φ2 φ1 φ2 (4.30) 

4.8.5 Fluctuation in a Random Variable . φ1 

The difference between the random variable .φ1 and its expected value is called the 
fluctuation in .φ1. It is denoted by the symbol .φ1. 

.φ1 = φ1 φ1 (4.31) 

Like.φ1,.φ1, too, is a random variable. The expected value of the fluctuation is always 
zero. 

. φ1 0. (4.32) 

Proof: 

. φ1 φ1 φ1 (4.33) 

Using (4.30) in the RHS of (4.33) we arrive at 

. φ1 φ1 φ1 (4.34) 

Further, using (4.24), (4.34) simplifies to 

. φ1 φ1 φ1 0. (4.35) 
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4.8.6 Expectation of the Product of Two Random Variables 

. φ1φ2 φ1 φ2 φ1φ2 (4.36) 

Proof: 
First, in accordance with (4.31), we substitute.φ1 and.φ2 in terms of the corresponding 
expected values and fluctuations. 

. φ1φ2 ( φ1 φ1)( φ2 φ2) 
φ1 φ2 φ1 φ2 + φ1 φ2 φ1φ2 (4.37) 

Using (4.28) in (4.36) leads to 

. φ1φ2 φ1 φ2 φ1 φ2 

φ1 φ2 φ1φ2 (4.38) 

Further, using (4.23) and (4.35) simplifies (4.38) to  

. φ1φ2 φ1 φ2 φ1 φ2 φ1 φ2 

φ1φ2 (4.39) 

Finally using (4.32) in (4.39) leads to 

. φ1φ2 φ1 φ2 φ1φ2 

where . φ1φ2 is the expectation of the product of the fluctuations of the two ran-
dom variables .φ1 and .φ2. In general, . φ1φ2 0. If required, the expression of the 
expectation of the product of a higher number of random variables can similarly be 
derived. 

4.8.7 Moments of a Random Variable 

The . nth-order raw moment of the random variable .φ1 is defined as 

. φn 
1 

∞ 

−∞ 
fφ1 ψ

n 
1 dψ1. (4.40) 

The . nth-order central moment of the random variable .φ1 is defined as 

. (φ1 φ1 )
n

∞ 

−∞ 
(ψ1 φ1 )

n fφ1dψ1. (4.41) 



50 4 Random Variables and Their Characterization 

If .n = 2, then the corresponding central moment is called the variance of .φ1, and 
is denoted by . var (φ1) 

.var(φ1) (φ1 φ1 )
2 φ1φ1 φ 2 1 (4.42) 

The square-root of the variance of .φ1 is called the standard deviation of the random 
variable. 

Example 1: 
The variance of a Gaussian random variable (PDF as described in (4.11)) is deter-
mined as 

. φ1φ1 

∞ 

−∞ 
(ψ1 φ1 )

2 fφ1 (ψ1) dψ1 

= 
∞ 

−∞ 
(ψ1 − μ)2 fφ1 (ψ1) dψ1 

= 
∞ 

−∞ 
(ψ1 − μ)2

1 

σ
√
2π 

exp − 
(ψ1 − μ)2 

2σ 2
dψ1 

= 1 

σ
√
2π 

∞ 

−∞ 
(ψ1 − μ)2 exp − 

(ψ1 − μ)2 

2σ 2
dψ1 

= σ 2. (4.43) 

Example 2: 
The variance of a uniformly distributed random variable between those chosen num-
bers . a and . b (.a < b with the PDF as described in (4.12)) is determined as 

. φ1φ1 

∞ 

−∞ 
(ψ1 φ1 )

2 fφ1 (ψ1) dψ1 

= 
a 

−∞ 
ψ1 − 

a + b 
2 

2 

fφ1 (ψ1) dψ1 

+ 
b 

a 
ψ1 − 

a + b 
2 

2 

fφ1 (ψ1) dψ1 

+ 
∞ 

b 
ψ1 − 

a + b 
2 

2 

fφ1 (ψ1) dψ1 

= 0 + 
b 

a 
ψ1 − 

a + b 
2 

2 1 

b − a 
dψ1 + 0 

= 
(b − a)2 

12 
(4.44) 
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For a set of two random variables, .φ1 and .φ2, we define covariance of .φ1 and . φ2 
(denoted by the symbol .cov(φ1, φ2)) as  

. cov(φ1, φ2) (ψ1 φ1 )(ψ2 φ2 ) φ1φ2 

= 
∞ 

−∞ 

∞ 

−∞ 
(ψ1 φ1 )(ψ2 φ2 ) fφ1φ2 (ψ1, ψ2)dψ1dψ2 (4.45) 

The correlation coefficient of .φ1 and .φ2 is defined as 

.ρφ1φ2 =
φ1φ2 

φ1φ1 φ2φ2 

(4.46) 

4.9 Expectation of Derivatives of Random Processes 
and Random Fields 

Let .φ(X , t) denote a time-varying random field (and a random process). In the 
Eulerian description, the spatial position vector (. X ) and time (. t) are independent 
variables (Sect. 2.3). 

The symbol. φ(X , t) denotes the expected value of that specific random variable 
which is associated with the random field at an arbitrarily chosen location .X and 
at an arbitrarily chosen time instant . t . In general, . φ(X , t) , which is a non-random 
quantity, can still vary with time and space. The following relationships exist in the 
context of expectations of the partial derivatives of the flow variables. 

4.9.1 Partial Derivative with Respect to Time 

. 
∂ 
∂t 

φ X , t = 
∂ 
∂t 

φ X , t (4.47) 

Proof: 

. 
∂ 
∂t 

φ X , t = lim 
t→o 

φ(X , t + t) − φ(X , t) 
t 

(4.48) 

where. t is an arbitrary increment in. t . The expectation operator involves integration 
over the phase space variables, and thus time the position vectors are treated as 
constants during this integration process. Thus using (4.28), (4.48) is expressed as 

. 
∂ 
∂t 

φ X , t = lim 
t→o 

φ(X , t + t) − φ(X , t) 
t 

= 
∂ 
∂t 

φ(X , t) (4.49) 
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4.9.2 Partial Derivative with Respect to Spatial Coordinates 

. 
∂ 

∂ xi 
φ (x1, x2, x3, t) = 

∂ 
∂xi 

φ (x1, x2, x3, t) (4.50) 

where .xi is the . i th spatial coordinate of the position vector .X in a frame-fixed 
Cartesian coordinate system .Ox1( ̂e1)x2(ê2)x3(ê3) (Fig. 1.1). Using this coordinate 
system, we express 

.X = x1ê1 + x2ê2 + x3ê3 and φ(X , t) = φ(x1, x2, x3, t). (4.51) 

Here we provide the proof of (4.50) for the case .xi = x1. 

Proof: 

. 
∂ 

∂x1 
φ(x1, x2, x3, t) = 

lim 
x1→0 

φ(x1 + x1, x2, x3, t) − φ(x1, x2, x3, t) 
x1 

(4.52) 

where . x1 is an arbitrary increment in . x1. Using (4.28), (4.52) is expressed as 

. 
∂ 

∂x1 
φ (x1, x2, x3, t) = lim 

x1→o 

φ(x1 + x1, x2, x3, t) − φ(x1, x2, x3, t) 
x1 

= ∂ 
∂x1 

φ(x1, x2, x3, t) (4.53) 

4.10 Categorization of Turbulent Flows Based 
on Their Statistics 

A turbulent flow is called statistically stationary if all statistics at every location in 
the flow are independent of time. These statistics of the flow may still vary with 
location. A turbulent flow is called statistically homogeneous, if all statistics at every 
time instant are identical at all locations in the flow domain. These statistics of the 
flow may still vary with time. A turbulent flow is called statistically homogeneous 
along a specific line, if all statistics at every time instant are identical at all locations 
on that line. These statistics of the flow may still vary with time. A turbulent flow 
is called statistically homogeneous on a specific area, if all statistics at every time 
instant are identical at all locations on that area. These statistics of the flow may still 
vary with time. 
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4.11 Expectation and Averaging 

The expectation of a random variable or that of a function of a random variable(s) 
is defined as (4.21). However, determination of the expected value of a quantity fol-
lowing this definition would require us to be aware of the PDF (or the joint PDF) 
function appearing in the integral on the RHS of (4.21). In our study of turbulent 
flows, however, such PDFs or the joint PDFs of the flow variables are rarely known in 
advance. Thus, we cannot exactly calculate the expected values of the random vari-
ables by performing the integral on the RHS of (4.21). Therefore, we must explore 
alternate ways to find, at least approximately, the expected values of random vari-
ables of interest. There are certain kinds of averaging processes with which one can 
estimate these expected values. However, care must be taken in selecting the appro-
priate averaging procedure. Some of these averaging procedures can be employed 
for estimating various expected values only for certain types of turbulent flows. 

4.11.1 Ensemble Averaging 

Consider the random variable at an arbitrarily chosen location (.Xo) and at an arbitrar-
ily chosen time instant (. to).That random variable is represented as. φ(X = Xo, t = to) 
or simply as .φ(Xo, to), where .φ(X , t) is an Eulerian variable of interest (such as a 
scalar component of the velocity vector or pressure). The ensemble average of the 
random variable .φ(Xo, to) is defined as 

. φ(Xo, to) N = 
1 

N 

N 

i=1 

i φ(Xo, to) (4.54) 

where . 
i φ(Xo, to) denotes the realized value of the random variable .φ(Xo, to) in the 

. i th realization of the experiment, and .N denotes the total number of times the tur-
bulent flow experiment has been performed. The relationship between the ensemble 
average and the expectation of the random variable .φ(Xo, to) is 

. lim 
N→∞ 

φ(Xo, to) N → φ(Xo, to) (4.55) 

The relationship (4.55) holds good without any restrictions to all types of turbulent 
flows. 

4.11.2 Time-Averaging 

We construct a time-averaged quantity (denoted by the symbol. φ(Xo) T ) associated 
with the random process.φ(X = Xo, t) where. t is the independent time variable and 
.Xo represents an arbitrarily chosen location in the flow field. 
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. φ(Xo) T = 
1 

T 

T2 

T1 
φ(Xo, t)dt (4.56) 

where .T = T2 − T1. The symbols .T1 and .T2 are the time instants at which the inte-
gration process starts and ends, respectively. If the turbulent flow field is known to be 
statistically stationary over the time period. T , then. φ(Xo) T can be used to estimate 
the expected value of .φ(Xo, t) at any arbitrarily chosen location.Xo and at any time 
.t ∈ [T1, T2]. 

. lim 
T→∞ 

φ(Xo) T → φ(Xo, t) (4.57) 

4.11.3 Line Averaging 

Let us identify a line (denoted by . L and having its length . L) existing in the domain 
of a turbulent flow. We construct a line-averaged quantity (denoted by the symbol 
. φ(to) L) at an arbitrarily chosen time instant, . to: 

. φ(to) L = 
1 

L L 
φ(X , to)dL (4.58) 

where .dL  represents an infinitesimal segment on the line . L. If the turbulent flow 
field is known to be statistically homogeneous along . L, then. φ(to) L can be used to 
estimate the expected value of .φ(X , to) at any location on . L and at any arbitrarily 
chosen time . to. 

. lim 
L→∞ 

φ(to) L → φ(X , to) (4.59) 

4.11.4 Area Averaging 

Let us identify an area (denoted by .A and having its magnitude . A) existing in the 
domain of a turbulent flow. We construct an area-averaged quantity (denoted by the 
symbol . φ(to) A) at an arbitrarily chosen time instant, . to: 

. φ(to) A = 
1 

A A 
φ(X , to)d A (4.60) 

where .d A  represents an infinitesimal part of the area . A. If the turbulent flow field is 
known to be statistically homogeneous on . A, then . φ(to) A can be used to estimate 
the expected value of .φ(X , to) at any location on .A and at any arbitrarily chosen 
time . to. 

. lim
A→∞ 

φ(to) A → φ(X , to) (4.61) 
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4.11.5 Volume Averaging 

To define volume averaging, let us identify a volume (denoted by .V and having 
its volume . V ) existing in the domain of a turbulent flow. We construct a volume-
averaged quantity (denoted by the symbol . φ(to) V ) at an arbitrarily chosen time 
instant, . to: 

. φ(to) V = 
1 

V V 
φ(X , to)dV (4.62) 

where.dV  represents an infinitesimal part of the volume. V . If the turbulent flow field 
is known to be statistically homogeneous in . V , then. φ(to) V can be used to estimate 
the expected value of .φ(X , to) at any location in the region . V and at any arbitrarily 
chosen time . to. 

. lim
V→∞ 

φ(to) V → φ(X , to) on volume V. (4.63) 

Even though the ensemble-averaging is the most versatile type of averaging (it can 
theoretically be applied to any type of turbulent flow field), it is often not employed to 
estimate the expected values of flow variables or their functions. Ensemble averaging 
would require repeating the turbulent flow experiment a very large number of times 
(4.55), which is often quite impractical to implement. On the other hand, if the 
flow field of interest is known to be statistically homogeneous/stationary, then we 
can perform that experiment only once and record our measurements. Subsequently, 
we can use the appropriate type of averaging (line/area/volume/time-averaging) to 
approximately find the expected values of the quantities of interest. Indeed, this is a 
common practice followed by experimentalists. The expected values of various flow 
variables and functions can also be estimated by performing the appropriate type of 
averaging (line/area/volume/time) of the database available from direct numerical 
simulations, provided the flow field is known to be statistically homogeneous along 
a line/area/volume or already known to be statistically stationary. 



5Governing Equations of the Mean Flow 
Field 

In this chapter, we derive the governing equations of the mean pressure and velocity 
fields. The governing equations of . V (X , t) and . p(X , t) can possibly provide 
us a direct way to compute these flow statistics without relying on any averaging 
procedure (discussed in Sect. 4.11). Further, these equations can help us gain deeper 
insights into what influences the evolution of the mean flow field in a turbulent flow. 

To derive the governing equations. V (X , t) and. p(X , t) we begin with the gov-
erning equations of .V (X , t) and .p(X , t) (3.8 and 3.9). To clearly distinguish them 
from the equations that we plan to derive for the mean variables, we refer to (3.10) and 
(3.11) as the  instantaneous Navier-tokes equation set, and the variables.V (X , t) and 
.p(X , t) appearing therein are called the instantaneous velocity vector and instanta-
neous pressure, respectively. As discussed in the last chapter, the instantaneous flow 
variables are treated as random variables. 

5.1 The Mean Continuity Equation 

We first subject the continuity equation (3.10) to the mean operator 

. 
∂Vi 
∂ xi 

= 0 or, 

∂V1 
∂x1 

+ 
∂V2 
∂x2 

+ 
∂ V3 
∂x3 

= 0. (5.1) 
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Using (4.28) and subsequently (4.50), we arrive at the following equation 

. 
∂ V1 
∂x1 

+ 
∂ V2 
∂ x2 

+ 
∂ V3 
∂x3 

= 0 ,  or  

∂ Vi 
∂xi 

= 0 (5.2) 

where a repeated index implies summation over the full range of the index (Ein-
stein’s summation rule). Equation (5.2) is called the mean continuity equation. The 
dependent variables in this equation are the mean values of the velocity components, 
. Vi . This equation describes the application of conservation of mass in the turbulent 
flow field in the mean sense. Like the instantaneous continuity equation (3.10), the 
mean continuity equation (5.2), too, is a linear partial differential equation (PDE). 

5.2 The Mean Momentum Equation 

Next, we subject the momentum equation (3.11) to the mean operator 

. 
ρ∂Vi 
∂t

+ ρVk 
∂Vi 
∂xk 

= − 
∂ p 
∂ xi 

+ μ 
∂2Vi 

∂xk ∂xk 
(5.3) 

Employing (4.50) and (4.48) to the terms that involve time or spatial derivatives leads 
to 

.ρ 
∂ Vi 

∂t
+ ρVk 

∂Vi 
∂xk 

= −  
∂ p 
∂ xi 

+ μ 
∂2 Vi 
∂ xk ∂ xk 

(5.4) 

Since . ρ and . μ are constants, they commute across both the mean and the derivative 
operators. 

The second term on the RHS Eq. (5.4) is the mean of the advection term. Using 
the instantaneous continuity equation (3.10), this terms is recast as 

. ρVk 
∂ Vi 
∂xk 

= ∂ (ρVk Vi ) 
∂ xk 

− ρ 
∂Vk 
∂ xk 

Vi = 
∂ (ρVk Vi ) 

∂ xk 
= 

∂ ρVk Vi 
∂xk 

(5.5) 

Using (4.36), (5.5) is expressed as 

. 
∂ ρVk Vi 

∂xk 
= 

∂ (ρ Vk Vi ) 
∂ xk 

+ 
∂ ρVk Vi 

∂ xk 
(5.6) 

Further, employing the mean continuity equation (5.2), the RHS of (5.6) is simplified 

. 
∂ ρVk Vi 

∂xk 
= ρ Vk 

∂ Vi 
∂xk 

+ ρ 
∂ Vk 
∂xk 

Vi 
∂ ρVk Vi 

∂ xk 

∂ ρVk Vi 
∂xk 

= ρ Vk 
∂ Vi 
∂xk 

+ 
∂ ρVk Vi 

∂xk 
(5.7) 
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Substituting (5.7) in (5.4) leads to 

.ρ 
∂ Vi 

∂t 
+ ρ Vk 

∂ Vi 
∂xk 

= −∂ p 
∂ xi 

+ μ 
∂2 Vi 
∂xk ∂ xk 

− 
∂ ρVk Vi 

∂ xk 
(5.8) 

Equation (5.8) is called the mean momentum equation. The set of equations com-
prised of (5.2) and (5.8) is called the mean Navier-Stokes equation or the Reynolds-
averaged Navier-Stokes (RANS) equation set. The primary unknowns of the mean 
Navier-Stokes equation set are the mean velocity components and mean pressure: 
. Vi and. p . Further, the process of subjecting the non-linear advection term to the 
mean operator (5.5) has led to the emergence of six "new" or secondary unknowns 

. V1V1 , . V1V2 , . V1V3 , . V2V2 , . V2V3 and . V3V3 . The six new unknowns on the 

RHS of (5.8) are related to a symmetric second-order tensor which is called the 
Reynolds stress tensor (. R): 

.R = −  ρVi V j êi ê j (5.9) 

Like the instantaneous momentum equations (3.11), the mean momentum equation 
(5.8) is non-linear PDE. The non-linearity arises because of the advection term 
(second term on the LHS of 5.8). 

Equations (5.2) and (5.8) have been presented using a frame-fixed Cartesian coor-
dinate system as the working coordinate system. In its coordinate-system independent 
form, the RANS equation set is expressed as 

. ∇ · V = 0 

ρ 
∂ V 
∂t 

+ ρV · ∇ V = −∇  p + μ∇2 V + ∇  · R (5.10) 

5.3 The Turbulence Closure Problem 

The instantaneous Navier-Stokes equation set (3.10)–(3.11) has four scalar PDEs 
in four unknown scalars (.Vi and . p). Thus, it is mathematically closed. The mean 
Navier-Stokes equation set, too, has four scalar PDEs (5.10). However, it involves 10 

unknown scalars (. V1 , . V2 , . V3 , . p , . V1V1 , . V1V2 , . V1V3 , . V2V2 , . V2V3 and 

. V3V3 ). Thus, the mean Navier-Stokes equation set is mathematically unclosed. 

This mismatch in the number of variables and the number of available equations 
involving these variables is called the turbulence closure problem. Thus, the mean 
Navier-Stokes set in its current form, even though being exact, is not complete enough 
to lead us to any solution of the mean flow field. To make any further progress 
towards obtaining a solution of the mean flow field with these equations, we must 
have additional equations that describe the variation of the six components of the 
Reynolds stress tensor that appear in (5.8). 
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5.4 The Reynolds Stress Tensor 

The SI units of the Reynolds stress tensor (5.9) are the same as the SI units of the 
instantaneous stress tensor (.Nm−2). Indeed, we can show that the Reynolds stress 
arises due to the flux of fluctuating momentum vector caused by the fluctuating 
velocity vector across an (imaginary) surface inside the bulk of the fluid. 

We consider a bulk of fluid, as shown in Fig. 5.1. Further, we consider an imaginary 
plane perpendicular to the direction of the unit vector .ê1 which passes through the 
location P which has its coordinates as .(x1, x2, x3) (Fig. 5.1). This plane divides the 
fluid bulk into two parts. We focus on the left part and identify this mass of the fluid 
as our system (Fig. 5.2). The outward normal unit vector for this exposed surface of 
the left bulk of the fluid is . ê1. We focus our attention on a small area . A (shown 
in Fig. 5.2) on this exposed surface, such that the centroid of this area coincides 
with location P (.x1, x2, x3). Over a unit time, the fluctuating velocity component . V1 

Fig. 5.1 Two parts of the fluid bulk created by an imaginary plane which is perpendicular to . ê1. 
The plane passes through location P. The two parts are shown separated and displaced only for the 
purpose of illustration 

Fig. 5.2 Loss of fluctuating fluid momentum per unit time caused by the fluctuating velocity vector 
component.V1 
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causes a certain amount of mass (. m) to leave (per unit time) the left part of the 
fluid bulk through area . A. 

. m = ρV1 A (5.11) 

where.V1 is the fluctuating component of the velocity vector along.ê1 at time. t and at 
the centroid of the small area . A. This leaving mass, in turn, causes, loss (per unit 
time) of a certain amount of fluctuating momentum vector, as well. This transport 
of the fluctuating momentum vector (denoted by . M with SI units as .kgms−2) is  
represented as 

. M = m V1 ê1 + V2 ê2 + V3 ê3 

= ρV1 A V1ê1 + V2ê2 + V3ê3 (5.12) 

The expected value of this momentum loss from the left bulk of the fluid per unit 
time can equivalently be perceived as a net external force vector. F acting along. −ê1 
direction on the left part of the fluid bulk. 

.F = −ρV1 A V1 ê1 + V2 ê2 + V3 ê3 (5.13) 

In the limit of . A → 0, the corresponding force components per unit area tend to 
match the definitions of the scalar components of the Reynolds stress tensor (5.9) 

. lim 
A→0 

F · ê1 
A 

= lim 
A→0 

−ρV1 AV1 

A
= −ρV1 V1 = R11 (5.14) 

. lim 
A→0 

F · ê2 
A 

= lim 
A→0 

−ρV1 AV2 

A
= −ρV1 V2 = R12 (5.15) 

. lim 
A→0 

F · ê3 
A 

= lim 
A→0 

−ρV1 AV3 

A
= −ρV1 V3 = R13 (5.16) 

Similarly, we can demonstrate the origin of other scalar components of the Reynolds 
stress tensor by dividing the fluid bulk at location P using planes with the appro-

priate unit normal vectors (.ê2 or . ê3). The three components . −ρV1V1 , . −ρV2V2 

and . −ρV3V3 are also called the normal Reynolds stress components. In contrast, 

the three components . −ρV1V2 , . −ρV2V3 and . −ρV3V1 are called the shear 

Reynolds stress components. 
In an instantaneous turbulent flow field of a Newtonian fluid, the instantaneous 

stress tensor, which is an Eulerian variable (denoted by. σ ), consists of two parts: the 
instantaneous pressure stress tensor and the instantaneous viscous stress tensor 

.σ = −pI  + τ (5.17) 
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where . I denotes the identity tensor of order two, and 

.τ = 2μS (5.18) 

The symbol . S denotes the instantaneous strain-rate tensor. In the absence of body 
force, it is the instantaneous stress tensor which causes the instantaneous acceleration 
of a fluid particle. 

.ρ 
∂ V 
∂t 

+ ρV · ∇V = ∇  · σ (5.19) 

In contrast, in the mean description of a turbulent flow, the effective stress tensor 
(we use the symbol.σ mean to denote this quantity) that causes a fluid particle to have 
its mean acceleration is the sum of the mean of the instantaneous stress tensor and 
the Reynolds stress tensor. 

.σ mean = σ + R = −  p I + τ + R (5.20) 

where 

. τ = 2μS = 2μ S = 2μ 
∇ V + ∇ V T 

2 
(5.21) 

where .R is the Reynold stress tensor as defined in (5.9). Using the new symbol 
proposed in (5.20), the mean momentum equation (5.10) can be expressed as 

.ρ 
∂ V 
∂t

+ ρ( V ) V · σ mean (5.22) 

Note that .σ mean is not the same as . σ . 

5.5 Transport Equation of the Reynolds Stress Tensor 

In Sect. 5.3, we identified the Reynolds stress tensor as the root cause of the tur-
bulence closure problem. Addressing the turbulence closure problem requires addi-
tional equations that can describe the evolution of the Reynolds stress tensor, ensuring 
that the total number of unknowns matches the number of governing equations. Thus, 
motivated by this requirement, we now wish to derive the exact governing equations 
of the components of the Reynolds stress tensor. The instantaneous momentum equa-
tion (3.11), along with the mean momentum equation (5.8), provide the starting point 
of this derivation. 

We first express the velocity and pressure variables in terms of the corresponding 
mean and fluctuating parts: 

.Vi = Vi Vi , and p = p + p (5.23) 
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Thus, the instantaneous momentum equation (3.11) is expressed as 

. 

∂ Vi Vi 

∂t
+ Vk Vk 

∂ Vi Vi 

∂xk 
= 

− 
1 

ρ 

∂ p + p 

∂xi 
+ ν 

∂2 Vi Vi 

∂ xk ∂ xk 
(5.24) 

Further, subtracting the mean momentum equation (5.8) from (5.24) leads to the 
governing equation of .Vi as follows: 

. 
∂Vi 
∂t 

+ Vq 
∂ Vi 
∂ xq 

= −Vq 
∂ Vi 
∂xq 

− Vq 
∂ Vi 
∂xq 

− 
1 

ρ 
∂ p 
∂ xi 

+ ν 
∂2Vi 

∂ xq ∂xq 

+ 
∂ Vi Vq 

∂xq 
(5.25) 

We multiply the scalar equation (5.25) by .Vj resulting into the following equation 

. Vj 
∂Vi 
∂t 

+ Vj Vq 
∂Vi 
∂ xq 

= −Vj Vq 
∂Vi 
∂ xq 

− Vj Vq 
∂ Vi 
∂ xq 

− Vj 
1 

ρ 
∂ p 
∂ xi 

+ νVj 
∂2Vi 

∂ xq ∂xq 
+ Vj 

∂ Vi Vq 
∂xq 

(5.26) 

Changing the indices. i’s to. j’s and. j’s and. i’s in (5.26) results into another equation, 
which is independent of (5.26) 

. Vi 
∂ Vj 

∂t 
+ Vi Vq 

∂ Vj 

∂ xq 
= −Vi Vq 

∂Vj 

∂xq 
− Vi Vq 

∂ Vj 

∂ xq 
− Vi 

1 

ρ 
∂ p 
∂ x j 

+ νVi 
∂2Vj 

∂ xq ∂ xq 
+ Vi 

∂ Vj Vq 

∂xq 
(5.27) 

Next, we add (5.26) and (5.27), subsequent similar terms from the two parent equa-
tions (Eqs. (5.26) and (5.27)) are grouped together for further algebraic simplifica-
tions. 

. Vi 
∂ Vj 

∂t 
+ Vj 

∂Vi 
∂t 

+ Vi Vq 
∂Vj 

∂xq 
+ Vj Vq 

∂Vi 
∂ xq 

= −Vi Vq 
∂ Vj 

∂xq 
− Vj Vq 

∂Vi 
∂xq 

+ −Vi Vq 
∂ Vj 

∂ xq 
− Vj Vq 

∂ Vi 
∂ xq 
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+ −Vi 
1 

ρ 
∂ p 
∂x j 

− Vj 
1 

ρ 
∂ p 
∂xi 

+ 

⎡ 

⎣Vi 
∂ Vj Vq 

∂xq 
+ Vj 

∂ Vi Vq 
∂ xq 

⎤ 

⎦ 

+ νVi 
∂2Vj 

∂xq ∂ xq 
+ νVj 

∂2Vi 
∂xq ∂xq 

(5.28) 

Next, we take the mean of the entire Eq. (5.28). Subsequently, using the distributive 
property of the mean operator over a sum of random variables (4.28), we arrive at 

. Vi 
∂Vj 

∂t 
+ Vj 

∂Vi 
∂t 

I 

+ Vi Vq 
∂ Vj 

∂xq 
+ Vj Vq 

∂ Vi 
∂ xq 

I I  

= −Vi Vq 
∂Vj 

∂ xq 
− Vj Vq 

∂Vi 
∂xq 

I I I  

+ −Vi Vq 
∂ Vj 

∂xq 
− Vj Vq 

∂ Vi 
∂xq 

I V  

+ −Vi 
1 

ρ 
∂ p 
∂x j 

− Vj 
1 

ρ 
∂ p 
∂xi 

V 

+ Vi 
∂ Vj Vq 

∂ xq 
+ Vj 

∂ Vi Vq 
∂xq 

V I  

+ νVi 
∂2Vj 

∂xq ∂ xq 
+ νVj 

∂2Vi 
∂xq ∂ xq 

V I  I  

(5.29) 

Further, we simplify terms . I –.V I  I  , individually. Various properties of the mean 
operator (Eqs. 4.22, 4.28, 4.47 and 4.50) are employed for the simplification process. 

. Vi 
∂ Vj 

∂t 
+ Vj 

∂Vi 
∂t 

I 

= 
∂ Vi V j 

∂t
= 

∂ Vi V j 

∂t 
(5.30) 

Term.I I  simplifies to 

. Vi Vq 
∂Vj 

∂xq 
+ Vj Vq 

∂ Vi 
∂ xq 

I I  

= Vq 
∂ Vi V j 

∂xq 

= Vq 
∂ Vi V j 

∂ xq 
(5.31) 
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Term.I I I  simplifies to 

. −Vi Vq 
∂Vj 

∂ xq 
− Vj Vq 

∂ Vi 
∂ xq 

I I I  

= − 
∂ Vi V j Vq 

∂xq 
+ Vi V j 

∂Vq 
∂ xq 

(5.32) 

To further simplify the last expression, we first subtract (5.2) from (3.10) and obtain 
the fluctuating continuity equation 

. 
∂Vq 
∂xq 

= 0. (5.33) 

Next, using (5.33) in (5.32), simplifies Term.I I I  to 

. −Vi Vq 
∂Vj 

∂ xq 
− Vj Vq 

∂Vi 
∂xq 

I I I  

= − 
∂ Vi V j Vq 

∂xq 
+ Vi V j 

∂Vq 
∂xq 

= − 
∂ Vi V j Vq 

∂ xq 
= −  

∂ Vi V j Vq 

∂xq 
(5.34) 

Term.I V  simplifies to 

. −Vi Vq 
∂ Vj 

∂ xq 
− Vj Vq 

∂ Vi 
∂xq 

I V  

= −  Vi Vq 
∂ Vj 

∂xq 
− Vj Vq 

∂ Vi 
∂xq 

(5.35) 
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Term .V is split into two different groups of terms (explanation to be provided later 
in Chap. 9). 

. −Vi 
1 

ρ 
∂ p 
∂x j 

− Vj 
1 

ρ 
∂ p 
∂ xi 

V 

= 

⎛ 

⎝− 
1 

ρ 

∂ p Vi 

∂ x j 
+ 

p 

ρ 
∂Vi 
∂x j 

⎞ 

⎠ + 

⎛ 

⎝− 
1 

ρ 

∂ p V j 

∂xi 
+ 

p 

ρ 
∂ Vj 

∂xi 

⎞ 

⎠ 

= − 1 

ρ 

∂ p Vi 

∂x j 
+ 

p 

ρ 
∂ Vi 
∂x j 

+ − 
1 

ρ 

∂ p V j 

∂ xi 
+ 

p 

ρ 
∂Vj 

∂ xi 

= −  
1 

ρ 

∂ p Vi 

∂x j 
+ p 

ρ 
∂Vi 
∂x j 

− 
1 

ρ 

∂ p V j 

∂ xi 
+ p 

ρ 
∂Vj 

∂ xi 

= −  
1 

ρ 

⎛ 

⎝ 
∂ p Vi 

∂ x j 
+ 

∂ p V j 

∂xi 

⎞ 

⎠ + 
1 

ρ 
p 

∂ Vj 

∂xi 
+ 

∂ Vi 
∂ x j 

= −  
1 

ρ 

⎛ 

⎝ 
∂ p Vi 

∂ x j 
+ 

∂ p V j 

∂xi 

⎞ 

⎠ + 
2 

ρ 
p si j (5.36) 

where.si j  represents the.(i j  )th component of the fluctuating strain-rate tensor (2.21) 

.si j  = 
1 

2 

∂Vj 

∂ xi 
+ 

∂ Vi 
∂x j 

(5.37) 

The first term on the RHS of (5.36) can be altered using the Kronecker delta symbols 
to cast Term. V 

. −Vi 
1 

ρ 
∂ p 
∂x j 

− Vj 
1 

ρ 
∂ p 
∂xi 

V 

= 

− 
1 

ρ 

⎛ 

⎝ 
∂ p Vi 

∂xq 
δ jq  + 

∂ p V j 

∂ xq 
δiq  

⎞ 

⎠ + 
2 

ρ 
p si j (5.38) 
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Term.V I  simplifies to 

. Vi 
∂ Vj Vq 

∂ xq 
+ Vj 

∂ Vi Vq 
∂ xq 

V I  

= Vi 
∂ Vj Vq 

∂xq 
+ Vj 

∂ Vi Vq 
∂xq 

= 0. (5.39) 

Term.V I  I  is expressed as 

. νVi 
∂2Vj 

∂ xq ∂ xq 
+ νVj 

∂2Vi 
∂ xq ∂ xq 

V I  I  

= ν Vi 
∂2Vj 

∂xq ∂xq 
+ Vj 

∂2Vi 
∂xq ∂xq 

= ν 
∂ 

∂xq 

∂ Vj 

∂ xq 
Vi − 

∂ Vi 
∂xq 

∂Vj 

∂ xq 
+ 

∂ 
∂xq 

∂Vi 
∂ xq 

V j − 
∂ Vj 

∂ xq 
∂ Vi 
∂xq 

= ν 
∂ 

∂xq 

∂ Vj 

∂ xq 
Vi + ∂ 

∂xq 

∂Vi 
∂xq 

V j + − 
∂ Vi 
∂ xq 

∂Vj 

∂ xq 
− 

∂Vj 

∂ xq 
∂Vi 
∂xq 

= ν 
∂ 

∂xq 

∂Vj 

∂xq 
Vi + 

∂ Vi 
∂xq 

V j − 2 
∂Vi 
∂ xq 

∂ Vj 

∂xq 

= ν 
∂ 

∂xq 

⎛ 

⎝ 
∂ Vj Vi 

∂ xq 

⎞ 

⎠ − 2 
∂ Vi 
∂ xq 

∂ Vj 

∂xq 

= ν 
∂2 

∂xq ∂ xq 
V j Vi − 2 

∂ Vi 
∂xq 

∂Vj 

∂ xq 

= ν 
∂2 Vj Vi 

∂xq ∂ xq 
− 2ν 

∂Vi 
∂ xq 

∂ Vj 

∂ xq 
(5.40) 
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Substituting (5.30), (5.31), (5.34), (5.35), (5.38), (5.39) and (5.40) in (5.29) and 
multiplying the entire equation by . ρ we arrive at the following equation 

. 

∂ ρVi V j 

∂t
+ Vq 

∂ ρVi V j 

∂ xq 

= − ρVi Vq 
∂ Vj 

∂ xq 
− ρVj Vq 

∂ Vi 
∂ xq 

− 2μ 
∂ Vi 
∂ xq 

∂Vj 

∂xq 

+ 2 p si j  + ν 
∂2 ρVj Vi 

∂ xq ∂xq 

+ 

⎛ 

⎝− 
∂ p Vi 

∂x j 
− 

∂ p V j 

∂xi 

⎞ 

⎠ + ∂ 
∂ xq 

−ρVq Vi V j (5.41) 

Using the definition (5.9), Eq. (5.41) is cast as the transport equation of .Ri j  . 

. 
∂ R 
∂t 

+ Vk 
∂ R 
∂xk 

= −Riq  
∂ Vj 

∂xi 
− R jq  

∂ Vi 
∂xq 

+ 2μ 
∂Vi 
∂xq 

∂Vj 

∂xq 

− 2 p si j  + ν 
∂2 Ri j  

∂ xq ∂xq 

+ 

⎛ 

⎝ 
∂ p Vi 

∂x j 
+ 

∂ p V j 

∂xi 

⎞ 

⎠ + ∂ 
∂xq 

ρVq Vi V j (5.42) 

Symbolically (5.42) is expressed as 

. 
∂ Ri j  

∂t 
+ Vq 

∂ Ri j  

∂xq 
= Pi j  + i j  − i j  + i j  − Ti j (5.43) 

where, .Pi j  , . i j  , . i j  , . i j  and.Ti j  are the .(i j  )th components of the following tensors. 

.P = −  R · ∇ V − R · ∇ V T (5.44) 

. = 2μ ∇ V 
T · ∇ V (5.45) 

. = 2 p s (5.46) 

. = ν∇2 R (5.47) 
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.T = −  ∇ p V − ∇ p V 
T − ∇  · ρV V V (5.48) 

Accordingly, the corresponding coordinate system-independent form of (5.43) is  

. 
∂ R 
∂t 

+ ( V )R = P + − + − T (5.49) 

In the literature of turbulent flows, a partial differential equation of the form 

. 
∂ψ 
∂t 

+ Vq 
∂ψ 
∂ xq 

= P1 + P2 + ... + PN , (5.50) 

is called the mean transport equation of. ψ , and the terms.P1,.P2,. ... and.PN appearing 
on the RHS of (5.50) are called the processes that influence the evolution of .ψ in 
the flow field. On the other side of the equation (the left-hand side), the first term is 
called the unsteady term, and the second term is called the advection process. The 
two partial differentiation operators on the LHS of (5.50) are often combined in the 
following form. 

. 
∂ 
∂t 

+ Vq 
∂ 

∂xq 
(5.51) 

Physically, this combined operator represents the rate of change in . φ (the quantity 
on which it acts) following the local mean velocity . V (X , t) . In other words, the 
LHS of (5.50) represents the rate of change in the quantity .ψ following the mean 
motion of the local fluid particle. This operator is called the mean material derivative 
operator. In accordance with (5.50), Eq. (5.49) is called the mean transport equation 
of the Reynolds stress tensor. For brevity, we refer to this Eq. (5.49) simply by the 
acronym RSTE. 

Equation (5.49) shows that the rate of change of the Reynolds stress tensor fol-
lowing the mean velocity of the local fluid particle happens under the influence of 
five processes:. P ,. ,. ,. and. T . The tensor. P is called the production process of the 
Reynolds stress tensor. The tensor. is called the dissipation process of the Reynolds 
stress tensor. The tensor . is called the pressure-strain correlation process. The 
tensor . represents the molecular diffusion process of the Reynolds stress tensor in 
the turbulent flow field. The tensor .T involves gradients of the covariance of pres-
sure and velocity, along with the divergence of the triple correlation of fluctuating 
velocity components. 

5.6 Turbulence Kinetic Energy 

Some additional physical insights into Eq. (5.49) and the involved processes can be 
gained by focusing on the trace of this equation. The trace of (5.49) can be readily 
obtained by setting . j = i in (5.43). 
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. 
∂ Rii  

∂t 
+ Vq 

∂ Rii  

∂xq 
= Pi i  + i i  − i i  + i i  − Ti i (5.52) 

The trace of the Reynolds stress tensor is related to turbulence kinetic energy per 
unit mass of the fluid (denoted by symbol. k, and quite often called, in a more simple 
manner, as the turbulence kinetic energy): 

.k = 
Vi Vi 

2
= −  

Rii  

2ρ 
. (5.53) 

Indeed, the turbulence kinetic energy has a clear physical meaning. It represents the 
mean of part of instantaneous kinetic energy contained in the fluctuating velocity 
field. This is illustrated by the following relationship. 

. 
Vi Vi 
2 

= 
Vi Vi 

2
+ 

Vi Vi 

2
= 

Vi Vi 
2

+ k. (5.54) 

The LHS represents the mean of kinetic energy per unit mass. The first term on the 
RHS represents the kinetic energy per unit mean associated with the mean velocity 
field, and the second term on the RHS of (5.54) represents the the turbulence kinetic 
energy per unit mass. 

Using (5.52) and (5.53), the transport equation of the turbulence kinetic energy 
is expressed as 

. 
∂k 

∂t 
+ Vq 

∂k 

∂ xq 
= −Pi i  

2ρ 
− i i  

2ρ 
+ i i  

2ρ 
− i i  

2ρ 
+ 

Ti i  
2ρ 

(5.55) 

The full algebraic expression of this equation is 

. 
∂k 

∂t 
+ Vq 

∂k 

∂ xq 
= −  Vi V j 

∂ Vi 
∂ x j 

I 

− ν 
∂ Vi 
∂ xq 

∂ Vi 
∂xq 

I I  

+ 
1 

ρ 
p sii  

I I I  

+ ν 
∂2k 

∂ xq ∂ xq 

I V  

− 
1 

ρ 

p Vi 

∂xi 

V 

− 
∂ 

∂xq 
Vq 

Vi Vi 
2 

V I  

(5.56) 

The first term on the RHS of (5.56). I = −  Vi V j 
∂ Vi 
∂ x j is called the production 

rate of k. It can be demonstrated that .−I appears in the mean transport equation 
of the turbulence kinetic energy associated with mean velocity .( Vk Vk /2). The 
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transport equation of . Vk Vk /2 can be readily obtained by multiplying (5.8) by  
. Vi , and subsequently taking the trace of the resulting equation. 

. 
∂ 
∂t 

Vi Vi 
2

+ Vq 
∂ 

∂xq 

Vi Vi 
2 

= −  
1 

ρ 
∂ p 
∂xi 

Vi ν 
∂2 Vi 
∂xk ∂xk 

Vi 
∂ 

∂ x p 
Vi Vp Vi 

+ Vi Vp 
∂ Vi 
∂x p 

−I 

(5.57) 

The presence of the same process .I in Eqs. (5.56) and (5.57) with opposite signs 
shows that .I is indeed the mechanism by which energy is exchanged between the 
kinetic energy associated with the mean velocity.( Vi Vi /2), and the kinetic energy 

associated with the fluctuating field . Vi Vi /2 of the same local fluid particle. 

The second term on the RHS of (5.56) is called the dissipation rate of . k. It is often 
denoted by the symbol . 

. = ν 
∂ Vi 
∂ xq 

∂Vi 
∂ xq 

(5.58) 

Since . involves the mean of the sum of the square of all nine components of the 
fluctuating velocity gradient tensor, . is a positive-definite quantity. 

. ≥ 0. (5.59) 

This realization leads to the conclusion, that the dissipation rate can never increase 
the turbulence kinetic energy associated with a fluid particle. Whenever the gradient 
of the fluctuating velocity field exists (. 0), the dissipation rate decreases . k. 

Further, we can demonstrate that the dissipation rate process (. ) appears with a 
positive sign in the mean transport equation of the mean internal energy of the flow 
field. This equation can be derived by taking the mean of the instantaneous governing 
equation of the internal energy per unit mass (. e), which is another Eulerian variable. 
The instantaneous equation of . e for a Newtonian fluid with constant density and 
without any source term is [ 1]: 

. 
∂e 

∂t 
+ Vq 

∂e 

∂xq 
= 2ν Smn Smn + 

κ 
ρ 

∂2T 

∂ xk ∂xk 
, (5.60) 

where . S represents the instantaneous stain-rate tensor. The symbol . κ , represents 
the thermal conductivity of the fluid medium. Taking the mean of (5.60) and using 
relevant properties of the mean operator, results into the following equations. 
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. 
∂e 

∂t 
+ Vq 

∂e 

∂ xq 
= 2νSmn Smn + 

κ 
ρ 

∂2T 

∂xk ∂ xk 
∂ e 
∂t 

+ Vq 
∂ e 
∂ xq 

+ Vq 
∂e 

∂xq 
= 2ν Smn Smn 2ν Smn Smn 

+ 
κ 
ρ 

∂2 T 

∂xk ∂ xk 
(5.61) 

Substituting 

.Smn = 
1 

2 

∂ Vm 
∂ xn 

+ 
∂ Vn 
∂xm 

(5.62) 

in (5.61) leads to 

. 
∂ e 
∂t 

+ Vq 
∂ e 
∂ xq 

= −  Vq 
∂e 

∂xq 
+ 2ν Smn Smn 

κ 
ρ 

∂2 T 

∂ xk ∂xk 

+ ν 
∂Vm 
∂xn 

∂ Vm 
∂xn 

+ν 
∂ Vn 
∂ xm 

∂Vm 
∂xn 

(5.63) 

The simultaneous presence of. on the RHS of (5.56) and on the RHS of (5.63) with 
opposite signs clearly shows that. is the mechanism by which the turbulence kinetic 
energy is converted to the mean internal energy (heat) associated with the local fluid 
particle. 

The third term on the RHS of (5.56) involves the covariance of pressure and 
strain-rate. The mean continuity equation (5.33) implies that there is no net effect of 
the pressure-strain correlation process on the evolution of . k. 

. 
1 

ρ 
p Sii  = 

1 

ρ 
p S11 + 

1 

ρ 
p S22 + 

1 

ρ 
p S33 = 0. (5.64) 

However, it does not mean the three individual components . 1 
ρ p S11 , . 

1 
ρ p S22 

and . 1 
ρ p S33 , are unimportant. These individual components, in general, can still 

cause the individual Reynolds stress components . V1V1 , . V2V2 and . V3V3 to 

decrease/increase. For example, if . 1 
ρ p S11 > 0 (causing an increase in . V1V1 in 

accordance with (5.43)) as well as . 1 
ρ p S22 > 0 (causing an increase in . V2V2 in 

accordance with (5.43)), the constraint (5.64) guarantees that in such a situation: 

. 
1 

ρ 
p S33 = − 1 

ρ 
p S11 + 

1 

ρ 
p S22 < 0 (5.65) 
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and correspondingly, the pressure strain-correlation must cause a decrease in. V3V3 . 

Thus, the apparent role of the pressure strain correlation tensor on . k is to cause a 
redistribution of the relative share of turbulence kinetic energy contributed by the 
three orthogonal fluctuating velocity components. 

Term.I V  on the RHS of (5.56) is the molecular diffusion process of. k. In contrast 
to the role of . , which causes a local conversion of turbulence kinetic energy into 
heat, the molecular process causes a spatial redistribution of . k in the flow field from 
a region where . k is higher to those where . k is lower. 

It can be demonstrated (detailed derivation not included here) that the term 

.− 1 
ρ 

∂ p Vi 
∂ xi is related to the expectation of the rate of work done per unit mass by the 

fluctuating pressure forces while the local fluid particle undergoes displacement due 
to the fluctuating velocity vector .(V ). 

To explain the physical meaning of Term.V I  , we first define a quantity called the 
fluctuating kinetic energy per unit mass. This is defined as .Vq Vq /2. Next, we refer 

to Fig. 5.1. Over a unit time, the fluctuating velocity component .V1 causes a certain 
amount of mass (. m) to be transported across the small area . A. 

. m = ρV1 A (5.66) 

Associated with this transported mass, the amount of fluctuating kinetic energy that 
is transported is . mVk Vk /2. Thus, the amount of fluctuating kinetic energy being 

transported per unit area per unit time is.ρV1 Vk Vk /2. We call this quantity the flux of 

fluctuating kinetic energy caused by the fluctuating velocity component .V1. Similarly, 
if we consider a small area. A with unit normal along the.ê2 direction (or along the 
.ê3 direction), we get the corresponding flux of the fluctuating kinetic energy caused 
by the.V2 component (or the.V3 component) as.ρV2 Vk Vk /2 (or.ρV3 Vk Vk /2). Thus, 
we define the . i th component of a relevant flux vector (Q) as  

.Qi = ρVi 
VpVp 

2 
(5.67) 

The Term.V I  can now be expressed in terms of the .Q vector. 

. − 
∂ 

∂xq 
Vq 

VpVp 

2 

V I  

= −  
1 

ρ 
∂ Qq 

∂ xq 
= − 1 

ρ 
∇ · Q (5.68) 

Thus, Term .V I  represents the gradient of the flux of the fluctuating turbulence 
kinetic energy caused by the transporting action of the fluctuating velocity vector 
itself. 

Earlier in Chap. 4 we defined a statistically homogeneous flow field, which has 
the expected values of all variables and their moments spatially independent. There 
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exists another class of turbulent flows wherein, even though the expected value of 
the primary flow variables (velocity and pressure) may not be spatially independent, 
however, the expected values of all the products of the fluctuating quantities are still 
spatially independent 

. 

∂ φ1φ2... 

∂xi 
= 0, (5.69) 

where .φ1, .φ2, etc. represent the fluctuating parts of various flow variables. Such a 
turbulent flow is called homogeneous turbulence. In such a flow field, the following 
processes appearing in the transport equation of the Reynolds stress tensor (5.41) 
are zero: 

. Vq 
∂ ρVi V j 

∂ xq 
= 0 

ν 
∂2 ρVj Vi 

∂ xq ∂xq 
= 0 

⎛ 

⎝− 
∂ p Vi 

∂x j 
− 

∂ p V j 

∂xi 

⎞ 

⎠ + ∂ 
∂xq 

−ρVq Vi V j = 0. (5.70) 

Since these processes vanish in homogeneous turbulence, they are called inhomoge-
neous processes. Similarly, in the transport equation of . k, the advection process on 
the LHS of (5.56), and the processes marked as .I V  and .V on the right-hand side 
of the equation are called inhomogeneous processes of the transport equation of . k. 

5.7 The RSTE and the Turbulence Closure Problem 

Earlier in Sect. 5.3, we discussed that addressing the turbulence closure problem 
of the mean Navier-Stokes equation set (5.10) requires the inclusion of additional 
equations describing the variation of the Reynolds stress tensor in the turbulent flow 
field. Indeed, at the first glance, the derived transport equation of the Reynolds stress 
tensor (5.43) appears to provide six additional scalar equations. These equations may 
be added to the mean Navier-Stokes equation set (5.10), making the total number of 
equations ten (.10 = 1 + 3 + 6). Does this help us achieve mathematical closure? 

We realize that the transport equation of the Reynolds stress tensor (5.49) has itself 
introduced several new unknowns. These new unknowns are (i) the six independent 
scalar components of the. tensor, (ii) the five independent scalar components of the 

. tensor, the three scalar components of the . p V vector and the ten independent 

scalar components of the third-order tensor . V V V . We call these additional . 24 

scalar quantities as the tertiary unknowns. Thus, the equation set comprised of (5.10) 
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and (5.43) now has .10 scalar equations but .34 scalar unknowns. These unknowns 
are listed as: 

. 04 Primary Unknowns: Vi and p 

06 Secondary unknowns: −ρVi V j 

24 Tertiary Unknowns: i j  , i j  , p Vi , and Vi V j Vk 

Evidently, even with the inclusion of the exact transport equation of the Reynolds 
stress tensor (5.49), the turbulence closure problem persists. In fact, any further 
attempt to derive the exact governing equations for the tertiary unknowns would 
invariably introduce newer unknowns. Thus, to address the turbulence closure prob-
lem, we must adopt an alternate approach. Instead of deriving further exact governing 
equations for the new unknowns, we should approximately model them in terms of 
the flow variables for which governing equations have already been included. 

Historically, several such approximate models have been proposed. Many of these 
closure models are phenomenological in nature. They have been proposed based on 
our experimental or DNS-based observations of various quantities of interest in 
some very simple flow fields such as a turbulent boundary layer, a homogeneous 
shear flow, or a decaying turbulent flow. Despite their simplicity, an experimental or 
DNS database of such flow fields does provide very useful information with which 
we can possibly develop deeper insights into the variation of Reynolds stresses and 
their relationship with the primary flow variables. Such accumulated information 
and insights are often leveraged while attempting to develop new turbulence closure 
models. With such motivation, in the next two chapters, we examine two such simple 
flow fields: (i) turbulent boundary layer (Chap. 6), and (ii) decaying turbulence (Chap. 
7). Subsequently, in Chap. 8, where we review a couple of popular turbulence closure 
models, we will further highlight how some specific observations from such flow 
fields have been employed to optimize the performance of these models. 



6Turbulence Near a Solid Wall 

In this chapter, we examine a turbulent boundary layer that develops over a thin 
and wide flat plate (Fig. 6.1). The flow field in the far-upstream conditions is .V0ê1, 
where.Vo is a constant. The plate is fixed to the reference frame in context (the ground 
frame). We employ a frame-fixed Cartesian coordinate system.Ox1( ̂e1)x2(ê2)x3( ̂e3). 
The origin of the coordinate system is fixed at a location such that the boundary layer 
is turbulent at all locations .x1 > 0. 

The width of the plate in .±ê3 is very large, such that the influence of the plate 
edges is negligible in the zone of interest. Like any other turbulent flows, the velocity 
field.V (X , t) and the pressure field.p(X , t) are unsteady and three-dimensional (3D, 
which means all flow variables vary with all three spatial coordinates, . x1, .x2 and 
. x3). Further, generally, the velocity field has three components (3C). The flat plate 
imposes, like in a laminar boundary layer, the no-slip and no-penetration boundary 
condition on the velocity field at .x2 = 0. Our intent in this chapter is to examine 
the observed behavior of expectations of various variables of interest within the 
turbulent boundary layer in the DNS database. Even though the boundary conditions 
of this flow field are very simple, still the flow field offers an opportunity for us to 
understand how the presence of a solid wall influences the expectations of various 
flow variables of interest. Further, this study provides some cues which have helped 
in the development of turbulence closure models. 

6.1 Observed Behavior of the Mean Flow Field 

Like any turbulent flow field, the instantaneous velocity and pressure fields are 
unsteady and three-dimensional, and the velocity field is inherently 3C. 

. 
∂ V 
∂t 

= 0 and 
∂ p 
∂t 

= 0 (6.1) 
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Fig. 6.1 A flat plate placed in an otherwise uniform stream 

. 
∂V 

∂ xi 
0 and 

∂ p 
∂ xi 

0 (6.2) 

where .i = 1, 2 or . 3. 
However, the turbulent flow field over a thin and wide plate is known to be 

statistically stationary and statistically homogeneous in the .±ê3 direction (Fig. 6.1). 
Thus, the time derivative and the spatial gradient along the.ê3 direction of all expected 
values are zero at all locations and at all time instants. 

. 
∂ . 
∂t 

= 0 (6.3) 

and 

. 
∂ . 
∂x3 

= 0 (6.4) 

Further, the velocity field in this flow is known to be statistically two componential 
with 

. V3 0 ⇒ V = V1 e1 + V2 e2 (6.5) 

Like any other turbulent flow field, the fluctuating components of all flow variables 
are unsteady and 3D. 

. 
∂ V 
∂t 

= 0 and 
∂ p 
∂t 

= 0 (6.6) 

. 
∂ V 
∂ xi 

0 and 
∂ p 
∂ xi 

0 (6.7) 

Further, like any other turbulent flow field, the fluctuating velocity component is 3C 
(In general, .V1, .V2, and .V3 are all non-zero.) 

The local boundary layer thickness.δ(x1) of a turbulent boundary layer is defined 
to be the wall-normal distance (. x2) where 

. V1(x1, x2 = δ(x1)) = 0.99Vo. (6.8) 

In Fig. 6.2 we present the mean values of various statistics computed using the 
DNS database of Schlattr and Örlu [ 3]. The variations in various statistics have been 
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Fig. 6.2 Variation in mean 
quantities along the 
wall-normal direction at a 
stream-wise station where 
the Reynolds number based 
on the momentum thickness 
is.3970. Source of DNS 
data: [ 3]. The vertical axis on 
the right is to be used for 
. V1 . The vertical axis on the 
left is to be used for the 
velocity correlation data 

shown along the wall-normal distance at a stream-wise (along the plate) station (. xa) 
where the Reynolds number based on the momentum thickness is .3970. 

.Rex1 = 
ρVoθ 

μ 
= 3970 (6.9) 

where . θ represents the local momentum thickness. 
The vertical axis on the right-hand side corresponds to the normalized mean 

stream-wise velocity (. V1 ), where the normalizing quantity is the far-upstream 
velocity (represented by the symbol .Vo). In the far-upstream locations, the veloc-
ity vector is purely stream-wise, and the flow field is laminar, with no fluctuations 
present in any flow variable. The vertical axis, on the left-hand side, corresponds to 

the other quantities:. V1V1 , . V2V2 , . V3V3 and. V1V2 . These quantities have been 

normalized by .V 2 o . On the other hand, the horizontal axis represents the normalized 
wall-normal distance from the plate, with the normalizing quantity being the local 
boundary layer thickness (.δ(xa)). There are several pertinent observations. 

1. At .x2 = 0, . V1 0 due to the no-slip condition. As .x2 → δ(x1) increases, 
. V1 /Vo monotonically increases and tends to reach its asymptotic value of 
unity as .x2 → δ(xa). 

2. The slope of the . V1 curve (or . ∂ V1 
∂ x2 ) is observed to be the highest at the wall 

(.x2 = 0) and then subsequently decays monotonically to reach zero as . x2 → 
δ(xa). 

3. In contrast to the variation in the mean stream-wise velocity, the variations in 

. V1V1 , . V2V2 , . V3V3 and. V1V2 are non-monotonic (see the inset zoomed-in 

view in Fig. 6.2). The no-slip and the no-penetration conditions do ensure that 
at .x2 = 0, all these quantities are zero. However, as one moves away from the 
wall, there is a sharp increase observed in all these quantities. As the wall-normal 
distance further increases, the quantities tend to decrease and eventually vanish 
near the edge of the boundary layer. 
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4. Close to the wall, among the three components. V1V1 ,. V2V2 and. V3V3 ,. V1V1 

seems to have the highest magnitude and . V2V2 seems to have the smallest 

magnitude. However, as one approaches the edge of the boundary layer, the 

disparity in the magnitudes of. V1V1 , . V2V2 and. V3V3 tends to disappear and 

at locations .x2/δ(xa) >  0.9, we observe 

. V1V1 ≈ V2V2 ≈ V3V3 (6.10) 

5. Even though at locations close to the wall, . V1V1 , . V2V2 and . V3V3 are not 

equal, the order of magnitude of all three quantities is still deemed to be the same. 

6. The quantity . V1V2 , too, shows non-monotonic variation with the wall-normal 

distance. It is zero at the wall (at .x2 = 0) due to the no-slip and no-penetration 
conditions. As .x2 increases, it first increases, reaches a peak value, and then 
subsequently tends to vanish as one approaches the boundary layer edge. Further, 

. V1V2 < 0 at all locations in the boundary layer. 

6.2 Simplified Governing Equations of the Mean Flow Field 

To further understand the observations gathered from Fig. 6.2, we refer again to the 
mean Navier-Stokes equations set (5.2 and 5.8). These equations in their current 
forms represent the governing equations of a general constant-density turbulent flow 
field of a Newtonian fluid. For the flow over the flat plate as described in Fig. 6.1, 
however, this equation set can be subsequently simplified. The first set of simplifica-
tion invokes properties (6.3), (6.4) and (6.5). Employing (6.5), in the mean continuity 

equation (5.2),. ∂ V3 
∂ x3 vanishes, leading to the following simplified form of the mean 

continuity equation 

. 
∂ V1 
∂ x1 

+ 
∂ V2 
∂ x2 

= 0 (6.11) 

Next, we examine the mean momentum equation along the .ê1 direction 

. ρ 
∂ V1 

∂t
+ ρ V1 

∂ V1 
∂x1 

+ ρ V2 
∂ V1 
∂ x2 

+ ρ V3 
∂ V1 
∂ x3 

= −  
∂ p 

∂ x1 
+ μ 

∂2 V1 
∂x1∂ x1 

+ μ 
∂2 V1 
∂x2∂ x2 

+ μ 
∂2 V1 
∂x3∂ x3 

− 
∂ ρV1V1 

∂ x1 
− 

∂ ρV2V1 

∂x2 
− 

∂ ρV3V1 

∂ x3 
(6.12) 
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Using (6.3), (6.4) and (6.5), (6.12) simplifies to 

. ρ V1 
∂ V1 
∂ x1 

+ ρ V2 
∂ V1 
∂ x2 

= −  
∂ p 

∂ x1 
+ μ 

∂2 V1 
∂x1∂ x1 

+ μ 
∂2 V1 
∂ x2∂ x2 

− 
∂ ρV1V1 

∂x1 
− 

∂ ρV2V1 

∂ x2 
(6.13) 

Next, we examine the mean momentum equation along the .ê2 direction 

. ρ 
∂ V2 

∂t 
+ ρ V1 

∂ V2 
∂x1 

+ ρ V2 
∂ V2 
∂ x2 

+ ρ V3 
∂ V2 
∂ x3 

= −  
∂ p 
∂x2 

+ μ 
∂2 V2 
∂ x1∂x1 

+ μ 
∂2 V2 
∂ x2∂ x2 

+ μ 
∂2 V2 
∂ x3∂ x3 

− 
∂ ρV1V2 

∂ x1 
− 

∂ ρV2V2 

∂ x2 
− 

∂ ρV3V2 

∂ x3 
(6.14) 

Using (6.3), (6.4) and (6.5), (6.14) simplifies to 

. ρ V1 
∂ V2 
∂x1 

+ ρ V2 
∂ V2 
∂ x2 

= −  
∂ p 
∂x2 

+ μ 
∂2 V2 
∂x1∂x1 

+ μ 
∂2 V2 
∂ x2∂ x2 

− 
∂ ρV1V2 

∂x1 
− 

∂ ρV2V2 

∂ x2 
(6.15) 

Next, we examine the mean momentum equation along the .ê3 direction 

. ρ 
∂ V3 

∂t
+ ρ V1 

∂ V3 
∂x1 

+ ρ V2 
∂ V3 
∂ x2 

+ ρ V3 
∂ V3 
∂ x3 

= −  
∂ p 
∂ x3 

+ μ 
∂2 V3 
∂x1∂ x1 

+ μ 
∂2 V3 
∂x2∂ x2 

+ μ 
∂2 V3 
∂ x3∂ x3 

− 
∂ ρV1V3 

∂ x1 
− 

∂ ρV2V3 

∂x2 
− 

∂ ρV3V3 

∂ x3 
(6.16) 

Using (6.3), (6.4) and (6.5), (6.16) simplifies to 

. 0 = −  
∂ ρV1V3 

∂x1 
− 

∂ ρV2V3 

∂ x2 
(6.17) 
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The simplified form of . V3 involves merely the spatial gradients of the two 

specific components of the Reynolds stress tensor: . −ρV1V3 and. −ρV2V3 . Since 

. V3 is already known to be zero for this flow field, we do not have any immediate 
motivation to further analyze (6.17). 

6.3 Order-of-Magnitude Analysis of the Governing Equations 

Equations (6.11), (6.13), and (6.15) can be further simplified by performing an order-
of-magnitude (OM) analysis of these equations. This analysis is similar to the one 
performed for a laminar boundary layer [ 1]. However, care must be taken to use 
appropriate characteristic values for the mean velocity components and the relevant 
Reynolds stress components. 

We say that.φC is the characteristic value of the mean of the variable. φ(x1, x2, x3, t) 
over a domain of interest, if 

.O φ 
φC 

= 100 = 1 (6.18) 

over most of the domains of interest. Using.φC , we now define a normalized version 
(denoted with a superscript . ∗) of the mean variable 

. φ ∗ = 
φ 
φC 

(6.19) 

Equation (6.18) implies that if .φC has been aptly chosen, then 

.O φ ∗ = 1 (6.20) 

over most of the domains of interest. 
In the context of the governing equations of the flow over a flat plate, if we 

appropriately choose two numbers .V1C and .V2C as the characteristic values of the 
variables. V1 and. V2 , then we can define the normalized version of these variables 
as 

. V1 
∗ = 

V1 
V1C 

and V2 
∗ = 

V2 
V2C 

(6.21) 

such that 

.O V1 
∗ = 1 and O V2 

∗ = 1 (6.22) 

over most of the domains of interest. Here,. V1 ∗ and. V2 ∗ are still variables of.x1 and 
. x2, but they are not dependent on time (the flow being statistically stationary) or . x3 
(the flow being statistically homogeneous along the .ê3 direction). For the boundary 
layer flow, we choose 

.V1C = Vo (6.23) 
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To choose appropriate characteristic values of the Reynolds stress components, 
we refer back to our observations in Fig. 6.2. Specifically, our observation included 
in (6.10) suggests that .ρa2V 2 o could be an apt choice of the characteristic value for 
the normal Reynolds stress components, where. a is an appropriately chosen positive 
constant, such that, 

.O[a] =  1 and a < 1 (6.24) 

Thus, the corresponding normalized forms of these stress components are defined 

. ρV1V1 
∗ = 

ρV1V1 

ρa2V 2 1C 

ρV2V2 
∗ = 

ρV2V2 

ρa2V 2 1C 

ρV3V3 
∗ = 

ρV3V3 

ρa2V 2 1C 
(6.25) 

such that 

.O ρV1V1 
∗ = 1, O ρV2V2 

∗ = 1 and O ρV3V3 
∗ = 1 (6.26) 

Equation (6.25) implies that 

.O V1V1 = O V2V2 = O V3V3 = O [aVo] (6.27) 

Based on these observations, we conjecture 

.O V1V2 ≤ O a2V 2 o (6.28) 

Thus, we normalize the shear stress Reynolds stress components, as well, using the 
same characteristic value which has been used for normalizing the normal stress 
components 

. ρV1V2 
∗ = 

ρV1V2 

ρa2V 2 1C 

ρV2V3 
∗ = 

ρV2V3 

ρa2V 2 1C 

ρV3V1 
∗ = 

ρV3V1 

ρa2V 2 1C 
(6.29) 
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such that 

.O ρV1V2 
∗ ≤ 1, O ρV2V3 

∗ ≤ 1 and O ρV3V1 
∗ ≤ 1 (6.30) 

Further, we define characteristic length-scales, .L1C and .L2C , for the mean flow 
inside the boundary layer such that with these length-scales, the gradients of various 
scalar variables along the .ê1 and .ê2 directions are to normalized as 

. 
∂ V1 
∂ x1 

∗ 
= ∂ V1 

∂x1 

L1C 

V1C 
, 

∂ V1 
∂ x2 

∗ 
= 

∂ V1 
∂x2 

L2C 

V1C 
, 

∂ V2 
∂ x1 

∗ 
= ∂ V2 

∂ x1 
L1C 

V2C 
, 

∂ V2 
∂ x2 

∗ 
= 

∂ V2 
∂ x2 

L2C 

V2C 
⎛ 

⎝ 
∂ ρVi V j 

∂ x1 

⎞ 

⎠ 

∗ 

= 

⎛ 

⎝ 
∂ ρV i V j 

∂x1 

⎞ 

⎠ L1C 

ρa2V 2 1C 
⎛ 

⎝ 
∂ ρVi V j 

∂x2 

⎞ 

⎠ 

∗ 

= 

⎛ 

⎝ 
∂ ρV i V j 

∂ x2 

⎞ 

⎠ L2C 

ρa2V 2 1C 
(6.31) 

such that 

. O ∂ V1 
∂x1 

∗ 
= 1, O ∂ V1 

∂ x2 

∗ 
= 1, 

O ∂ V2 
∂ x1 

∗ 
= 1, O ∂ V2 

∂ x2 

∗ 
= 1 

O 

⎡ 

⎢ 
⎣ 

⎛ 

⎝ 
∂ V1V1 

∂x1 

⎞ 

⎠ 

∗⎤ 

⎥ 
⎦ = 1, O 

⎡ 

⎢ 
⎣ 

⎛ 

⎝ 
∂ V1V1 

∂ x2 

⎞ 

⎠ 

∗⎤ 

⎥ 
⎦ = 1 

O 

⎡ 

⎢ 
⎣ 

⎛ 

⎝ 
∂ V2V2 

∂x1 

⎞ 

⎠ 

∗⎤ 

⎥ 
⎦ = 1, O 

⎡ 

⎢ 
⎣ 

⎛ 

⎝ 
∂ V2V2 

∂ x2 

⎞ 

⎠ 

∗⎤ 

⎥ 
⎦ = 1 

O 

⎡ 

⎢ 
⎣ 

⎛ 

⎝ 
∂ V3V3 

∂x1 

⎞ 

⎠ 

∗⎤ 

⎥ 
⎦ = 1, O 

⎡ 

⎢ 
⎣ 

⎛ 

⎝ 
∂ V3V3 

∂ x2 

⎞ 

⎠ 

∗⎤ 

⎥ 
⎦ = 1 (6.32) 
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and 

. O 

⎡ 

⎢ 
⎣ 

⎛ 

⎝ 
∂ V1V2 

∂x1 

⎞ 

⎠ 

∗⎤ 

⎥ 
⎦ ≤ 1, O 

⎡ 

⎢ 
⎣ 

⎛ 

⎝ 
∂ V1V2 

∂ x2 

⎞ 

⎠ 

∗⎤ 

⎥ 
⎦ ≤ 1 

O 

⎡ 

⎢ 
⎣ 

⎛ 

⎝ 
∂ V2V3 

∂x1 

⎞ 

⎠ 

∗⎤ 

⎥ 
⎦ ≤ 1, O 

⎡ 

⎢ 
⎣ 

⎛ 

⎝ 
∂ V2V3 

∂ x2 

⎞ 

⎠ 

∗⎤ 

⎥ 
⎦ ≤ 1 

O 

⎡ 

⎢ 
⎣ 

⎛ 

⎝ 
∂ V3V1 

∂x1 

⎞ 

⎠ 

∗⎤ 

⎥ 
⎦ ≤ 1, O 

⎡ 

⎢ 
⎣ 

⎛ 

⎝ 
∂ V3V1 

∂ x2 

⎞ 

⎠ 

∗⎤ 

⎥ 
⎦ ≤ 1 (6.33) 

Further, using the characteristic values of the velocity components (.V1C , .V2C ) and 
the characteristic length-scales (.L1C ,.L2C ), we define the normalized versions of the 
second derivatives of the velocity components 

. 
∂2 V1 
∂x1∂ x1 

∗ 
= 

∂2 V1 
∂x1∂ x1 

L2 
1C 

V1C 
, 

∂2 V1 
∂ x2∂ x2 

∗ 
= 

∂2 V1 
∂ x2∂ x2 

L2 
2C 

V1C 
, 

∂2 V2 
∂x1∂ x1 

∗ 
= 

∂2 V2 
∂x1∂ x1 

L2 
1C 

V2C 
, 

∂2 V2 
∂ x2∂ x2 

∗ 
= 

∂2 V2 
∂ x2∂ x2 

L2 
2C 

V2C 
, (6.34) 

such that 

. O ∂2 V1 
∂ x1∂ x1 

∗ 
= 1, O ∂2 V1 

∂ x2∂ x2 

∗ 
= 1, 

O ∂2 V2 
∂ x1∂ x1 

∗ 
= 1, O ∂2 V2 

∂ x2∂ x2 

∗ 
= 1 (6.35) 

To perform the OM analysis of (6.11), (6.13), and (6.15), we implement the 
following three steps separately for each of these three equations. 

1. We substitute the dimensional variables and their derivatives by their non-
dimensional counterparts using (6.21), (6.31), and (6.34). 

2. Using the anticipation (which is based on the appropriately chosen characteristic 
values of the velocity components .V1C and .V2C and the length-scales .L1C and 
.L2C ) that all normalized versions of the variables would have their orders of 
magnitude unity over most of the domain of interest, we identify those terms (if 
any) which have smaller orders of magnitude than the other additive terms of the 
equation. These identified terms can then be discarded from the equation. 

3. We substitute the normalized versions of the variables by their dimensional coun-
terparts using (6.21, (6.31), and (6.34) and arrive at a simplified version of the 
governing equation. 
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The order-of-magnitude analysis of the governing equations is performed at an arbi-
trary location (. x1, . x2, . x3) and at an arbitrary time (. t) inside the turbulent boundary 
layer region. In the neighborhood of such a location, we deem the following choices 
of the length-scales to be appropriate 

. O [L1C ] = O [x1] , 
O [L2C ] = O [δ (x1)] (6.36) 

Accordingly, we choose, 

.L1C = x1 and L2C = δ(x1) (6.37) 

Further, we deem .Vo to be an appropriate choice of .V1C . However, at this point, 
we do not have any cues available to choose .V2C . Nonetheless, we do initiate our 
OM analysis and move on to explore if any further cues emerge to choose . V2C 
appropriately. 

6.3.1 Continuity Equation 

Substituting the raw variables by their normalized counterparts in the continuity 
equation (6.11) results in the following form of the equation 

. 
∂ V1 
∂x1 

∗ V1C 
L1C 

+ 
∂ V2 
∂ x2 

∗ V2C 
L2C 

= 0 (6.38) 

Rearranging various factors, we arrive at 

. 
∂ V1 
∂ x1 

∗ 
+ 

∂ V2 
∂ x2 

∗ V2C 
V1C 

L1C 

L2C 
= 0 (6.39) 

The first term on the LHS in (6.39) has its order-of-magnitude unity. Further, since 
the RHS of (6.39) is zero and there are only two terms on the LHS, the order of 
magnitude of the second term on the LHS must also be unity. 

.O ∂ V2 
∂ x2 

∗ V2C 
V1C 

L1C 

L2C 
= 1 (6.40) 

Since the order of magnitude of the . ∂ V2 
∂ x2 

∗ 
itself is unity, (6.40) leads to the 

following conclusion 

.O V2C 
V1C 

L1C 

L2C 
= 1 (6.41) 
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This, in turn, gives us a cue to choose .V2C . 

.V2C = V1C 
L2C 

L1C 
(6.42) 

Thus, even though the order-of-magnitude analysis of the continuity equation does 
not provide any justification to simplify the equation any further, it has provided a 
justification based on which we now have a characteristic value of the variable . V2 
in terms .V1C , .L2C and .L1C . 

6.3.2 The . V1 Equation 

We now substitute the raw variables by their normalized counterparts in the governing 
equation of . V1 (6.13) 

. V1 
∗ V1C 

∂ V1 
∂ x1 

∗ V1C 
L1C 

V2 
∗V2C 

∂ V1 
∂ x2 

∗ V1C 
L2C 

= 

− 
1 

ρ 
∂ p 

∂ x1 
+ ν 

∂2 V1 
∂ x1∂ x1 

∗ 
V1C 
L2 
1C 

+ ν 
∂2 V1 
∂x2∂ x2 

∗ 
V1C 
L2 
2C 

− 1 

ρ 

⎛ 

⎝ 
∂ ρV1V1 

∂ x1 

⎞ 

⎠ 

∗ 
ρa2V 2 1C 
L1C 

− 
1 

ρ 

⎛ 

⎝ 
∂ ρV1V2 

∂ x2 

⎞ 

⎠ 

∗ 
ρa2V 2 1C 
L2C 

(6.43) 

Using (6.42) to substitute .V2C in terms of .V1C , .L2C and .L1C in (6.43) leads to the 
following form of the equation. 

. 
V 2 1C 
L1C 

V1 
∗ ∂ V1 

∂ x1 

∗ 
+ V2 ∗ ∂ V1 

∂ x2 

∗ 
= 

− 
1 

ρ 
∂ p 

∂ x1 
+ 

∂2 V1 
∂ x1∂x1 

∗ 
νV1C 
L2 
1C 

+ 
∂2 V1 
∂ x2∂ x2 

∗ 
νV1C 
L2 
2C 

− 1 

ρ 

⎛ 

⎝ 
∂ ρV1V1 

∂ x1 

⎞ 

⎠ 

∗ 
ρa2V 2 1C 
L1C 

− 
1 

ρ 

⎛ 

⎝ 
∂ ρV1V2 

∂x2 

⎞ 

⎠ 

∗ 
ρa2V 2 1C 
L2C 

(6.44) 

The LHS of (6.44) is the stream-wise component of the mean acceleration of a fluid 
particle within the boundary layer. The expression within the square parentheses 
represents the normalized form of this acceleration. Clearly, the order of magnitude 
(OM) of this normalized form is unity. Thus, the quantity.V 2 1C /L1C (the factor outside 
the square parentheses) can be deemed as the characteristic value of the stream-wise 
component of the mean stream-wise acceleration, itself. Similarly, on the RHS, the 
quantities.νV1C /L2 

1C and.νV1C /L2 
2C are the characteristic values of the two viscous 

force (per unit mass) terms acting on a typical fluid element inside the boundary 
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layer. Thus, we conclude that the OM of two terms involving the Reynolds stress 
components are .a2V 2 1C /L1C and .a2V 2 1C /L2C , respectively. 

Dividing (6.44) throughout by the factor . 
V 2 1C 
L1C 

and further re-arranging the terms, 
we arrive at the following form of the equation 

. V1 
∗ ∂ V1 

∂x1 

∗ 
+ V2 ∗ ∂ V1 

∂ x2 

∗ 
= 

∂2 V1 
∂ x1∂ x1 

∗
ν 

V1C L1C 

+ 
∂2V1 

∂ x2∂x2 

∗
ν 

V1C L1C 

L1C 

L2C 

2 

− 
∂ p 

∂x1 

L1C 

ρV 2 1C 

− 

⎛ 

⎝ 
∂ ρV1V1 

∂x1 

⎞ 

⎠ 

∗ 

a2 − 

⎛ 

⎝ 
∂ ρV1V2 

∂ x2 

⎞ 

⎠ 

∗ 
a2L1C 

L2C 
(6.45) 

The LHS of (6.45) of the equation is the fully normalized form of the mean stream-
wise acceleration, with its OM being unity. The RHS of (6.45) represents the sum of 
the ratios of various forces (per unit mass, along the.ê1 direction) to the characteristic 
value of the mean stream-wise acceleration of a fluid particle (.V 2 1C /L1C ). If any of 
these terms on the RHS has its order of magnitude. 1, then we can conclude that the 
particular force is not significant in contributing toward the stream-wise acceleration 
of the fluid particle. Thus, that term can be neglected in the equation. 

The first two terms on the RHS of (6.45) are the respective ratios of the two viscous 
force terms to the characteristic value of mean stream-wise acceleration. Both these 
terms have a common non-dimensional factor involving. ν, .V1C , and.L1C . We define 
the inverse of this factor as the Reynolds number of the governing equation of the 
stream-wise velocity component. We represent this quantity by the symbol . Re1 

.Re1 = 
V1C L1C 

ν 
(6.46) 

Based on this new symbol, the order of magnitude of the first term on the RHS of 
(6.45) can be expressed as: 

.O ∂2 V1 
∂ x1∂ x1 

∗
ν 

V1C L1C 
= O ν 

V1C L1C 
= O 1 

Re1 
(6.47) 

since .O ∂2 V1 
∂ x1∂ x1 

∗ = 1. The quantity .Re1 is interpreted as the ratio of the char-
acteristic value of the mean stream-wise mean acceleration (.V 2 1C /L1C ) of a typical 
fluid particle inside the boundary layer to the characteristic value of the mean vis-
cous force (per unit mass), along the .ê1 direction. For a turbulent boundary layer, 
.Re1 1. Accordingly, the first term on the RHS of (6.45) can be neglected. 

The factor .Re1 appears in the denominator of the second viscous term of (6.45), 
as well. However, unlike the first viscous term, the order of magnitude of the second 
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term is not controlled by.Re1 alone but also by the ratio of two relevant length-scales 
.L1C and .L2C . 

. O ∂2 V1 
∂ x2∂ x2 

∗
ν 

V1C L1C 

L1C 

L2C 

2 

= O ν 
V1C L1C 

L1C 

L2C 

2 

, 

= O 1 

Re1 

L1C 

L2C 

2 

(6.48) 

Since the mean flow inside the boundary layer is indeed affected by viscous forces 
and further given the fact that at .Re1 1, the first viscous term on the RHS of 
(6.45) is anyway negligible, the second and the only surviving viscous term must be 
of significance in the evolution equation of . V1 . Thus, we conclude that the order 
of magnitude in (6.48) must itself be unity (same as the order of magnitude of the 
term included in (6.45) 

.O 1 

Re1 

L1C 

L2C 

2 

= 1 (6.49) 

This in turn allows estimating .L2C in terms of other known parameters (.L1C and 
.Re1) 

.O L2C 

L1C 
= O 1√

Re1 
(6.50) 

Combining (6.50) with our anticipations in (6.37) we have  

.O δ(x1) 
x1 

= O 1√
Re1 

(6.51) 

Equation (6.51) suggests that the boundary layer thickness tends to grow as we 
move more downstream over the plate. Further, since.Re1 1, (6.51) also suggests 
that the local boundary layer thickness is a small quantity compared to . x1. 

The third term on the RHS of (6.45) represents the ratio of the pressure gradient 
force (per unit mass, along the .ê1 direction) to the characteristic value of stream-
wise acceleration. Since, at this point, we do not have any reasonable estimate of the 
characteristic value or the order of magnitude of the pressure gradient term itself, we 
simply retain this term in the .V1 equation. 

The non-dimensional coefficients in the fourth and the fifth terms in (6.44) are. a2 

and .a2L1C /L2C . Using the estimate of (6.51), it is evident that 

.O a2L1C /L2C = O a2 Rex1 O a2 (6.52) 
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when .Rex1 1. Thus, we can make the approximation 

. − 

⎛ 

⎝ 
∂ ρV1V1 

∂ x1 

⎞ 

⎠ 

∗ 

a2 − 

⎛ 

⎝ 
∂ ρV1V2 

∂ x2 

⎞ 

⎠ 

∗ 
a2L1C 

L2C 
≈ 

− 

⎛ 

⎝ 
∂ ρV1V2 

∂ x2 

⎞ 

⎠ 

∗ 
a2L1C 

L2C 
(6.53) 

Since .L2C /L1C 1 at .Rex1 1 (6.50), it is evident that the fifth term in (6.45) is  
much greater than the fourth term, leaving the former as the only representative of 
the Reynolds stress tensor in the governing equation of. V1 . Since we do expect the 
Reynolds stress tensor to have some influence on . V1 within a turbulent boundary 
layer after all, we retain this term even in the simplified form of (6.45). 

In summary, the order-of-magnitude analysis of the . V1 equation inside the 
boundary layer over a flat plate has led to the following conclusions: 

1. At .Re1 1, the viscous term arising due to the gradient of the stream-wise 
velocity component with respect to the stream-wise direction can be neglected. 

2. If.Re1 1, the Reynolds stress term with a gradient along the stream-wise direc-
tion is negligible compared to other Reynolds stress term which appear with a 
gradient along the wall-normal direction. These approximations simplify (6.13) 
to 

. V1 
∂ V1 
∂ x1 

+ V2 
∂ V1 
∂x2 

≈ −  
1 

ρ 
∂ p 
∂ x1 

+ ν 
∂2 V1 
∂x2∂x2 

− 
∂ ρV1V2 

∂ x2 
. (6.54) 

6.3.3 The . V2 Equation 

We substitute the raw variables by their normalized counterparts in the governing 
equation of . V2 (6.15) 

. V1 
∗ V1C 

∂ V2 
∂x1 

∗ V2C 
L1C 

+ V2 ∗ V2C 
∂ V2 
∂ x2 

∗ V2C 
L2C 

= 

− 1 

ρ 
∂ p 

∂ x2 
+ ν 

∂2 V2 
∂ x1∂ x1 

∗ 
V2C 
L2 
1C 

+ ν 
∂2 V2 
∂ x2∂x2 

∗ 
V2C 
L2 
2C 

− 
1 

ρ 

⎛ 

⎝ 
∂ ρV1V2 

∂ x1 

⎞ 

⎠ 

∗ 
ρa2V 2 1C 
L1C 

− 
1 

ρ 

⎛ 

⎝ 
∂ ρV2V2 

∂ x2 

⎞ 

⎠ 

∗ 
ρa2V 2 1C 
L2C 

(6.55) 
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We use (6.42) to substitute.V2C in terms of.V1C ,.L2C , and.L1C in (6.55), which leads 
to the following form of the equation: 

. 
V 2 1C 
L1C 

L2C 

L1C 
V1 

∗ ∂ V2 
∂ x1 

∗ 
+ V2 ∗ ∂ V2 

∂ x2 

∗ 
= 

ν 
∂2 V2 
∂x1∂x1 

∗ 
V1C 
L2 
1C 

L2C 

L1C 
+ ν 

∂2 V2 
∂ x2∂x2 

∗ 
V1C 
L2 
2C 

L2C 

L1C 
− 

1 

ρ 
∂ p 

∂ x2 

− 
1 

ρ 

⎛ 

⎝ 
∂ ρV1V2 

∂ x1 

⎞ 

⎠ 

∗ 
ρa2V 2 1C 
L1C 

− 
1 

ρ 

⎛ 

⎝ 
∂ ρV2V2 

∂ x2 

⎞ 

⎠ 

∗ 
ρa2V 2 1C 
L2C 

(6.56) 

The LHS of (6.56) is the wall-normal component of the acceleration of a typical 
fluid particle within the boundary layer. The expression within the square parentheses 
represents the normalized form of this acceleration. Clearly, the OM of this normal-
ized form is unity. Thus, the quantity . V 2 1C /L1C (L2C /L1C ) (the factor outside the 
square parentheses) is the characteristic value of the wall-normal acceleration com-
ponent. Since the characteristic value of stream-wise acceleration is already known 
to be.V 2 1C /L1C , the LHS of (6.56) implies that the characteristic value of wall-normal 
component of the acceleration vector is .L2C /L1C times the characteristic value of 
stream-wise acceleration. The discussion of the previous section has already demon-
strated that at .Re1 1, .L2C /L1C is quite small (6.51). Thus, the net acceleration 
vector of a typical fluid particle inside the boundary layer is oriented almost in 
the stream-wise direction, allowing us to neglect the acceleration term in the . V2 
equation and approximate the rest of the equation as a mere force balance in the 
wall-normal direction. 

Further, even within the scope of this approximate force balance, we wish to 
examine if all the forces (the two viscous terms, the pressure gradient terms, and the 
Reynolds stress terms) are individually significant or not. For this analysis, we first 
divide (6.56) throughout by .V 2 1C /L1C and arrive at the following form of the . V2 
equation. 

. V1 
∗ ∂ V2 

∂ x1 

∗ 
+ V2 ∗ ∂ V2 

∂ x2 

∗ L2C 

L1C 

= ∂2 V2 
∂ x1∂x1 

∗ 
1 

Re1 

L2C 

L1C 
+ 

∂2 V2 
∂ x2∂ x2 

∗ 
1 

Re1 

L1C 

L2C 
− 

1 

ρ 
∂ p 

∂x2 

L1C 

V 2 1C 

− 

⎛ 

⎝ 
∂ V1V2 

∂ x1 

⎞ 

⎠ 

∗ 

a2 − 

⎛ 

⎝ 
∂ ρV2V2 

∂x2 

⎞ 

⎠ 

∗ 
a2L1C 

L2C 
(6.57) 

At .Re1 1, the order of magnitude of the first term on the rhs is, 

.O ∂2 V2 
∂ x1∂ x1 

∗ 
1 

Re1 

L2C 

L1C 
= O 1 

Re1 

L2C 

L1C 
= O 1 

Re3/2 1 

(6.58) 
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which is much less than unity at .Re1 1. Thus, this represents a force component 
(per unit mass), which is much smaller than the stream-wise acceleration of a typical 
fluid particle inside the boundary layer. 

Further, the order of magnitude of the second term on the RHS of (6.57) is esti-
mated as, 

.O ∂2 V2 
∂ x2∂x2 

∗ 
1 

Re1 

L1C 

L2C 
= O 1 

Re1 
Re1/2 1 = O 1 

Re1/2 1 

(6.59) 

which, again, is much smaller than unity at high.Re1. Thus, this too represents a force 
(per unit mass), which is much smaller than the stream-wise acceleration of a typical 
fluid particle inside the boundary layer. The third term on the RHS of (6.57) is the 
ratio of the net pressure force (per unit mass) acting on a particle in the wall-normal 
direction to the characteristic value of stream-wise acceleration. Since, at this point, 
we do not have any reasonable estimate of the order of magnitude/ characteristic 
value of the pressure gradient term itself, we simply retain this term in the equation. 

The non-dimensional coefficients in the fourth and the fifth terms on the RHS of 
(6.57) are .a2 and .a2L1C /L2C . Using the estimate in (6.51), it is evident that 

.O a2L1C /L2C = O a2 Rex1 O a2 (6.60) 

when .Re1 1. Thus, we can make the approximation 

. − 

⎛ 

⎝ 
∂ ρV1V1 

∂ x1 

⎞ 

⎠ 

∗ 

a2 − 

⎛ 

⎝ 
∂ ρV1V2 

∂ x2 

⎞ 

⎠ 

∗ 
a2L1C 

L2C 
≈ 

− 

⎛ 

⎝ 
∂ ρV1V2 

∂ x2 

⎞ 

⎠ 

∗ 
a2L1C 

L2C 
(6.61) 

This approximation will leave the fifth term in (6.45) as the only significant repre-
sentative of the Reynolds stress tensor in the governing equation of . V2 . Without 
any further cues available, we retain this term in the simplified form of (6.57). 

In summary, the order-of-magnitude analysis of the.V2 equation inside the bound-
ary layer flow over a flat plate has led to the following conclusions. At .Re1 1, 
the wall-normal acceleration is negligible compared to the stream-wise acceleration. 
Thus, the . V2 equation reduces merely to a balance of forces acting on a fluid par-
ticle in the wall-normal direction. Further, all the viscous forces arising due to the 
gradients of the wall-normal velocity component are inconsequential in this force 
balance, leading to a mere balance between the pressure force and the Reynolds 
stress term, which has a gradient in the wall-normal direction. 

. 
∂ p 

∂ x2 
≈ 

∂ ρV2V2 

∂ x2 
(6.62) 
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We finally assemble the simplified set of governing equations for the mean tur-
bulent flow past a flat plate with .Re1 1. This set consists of Eqs. (6.11), (6.54), 
and (6.62). 

. 
∂ V1 
∂ x1 

+ 
∂ V2 
∂x2 

= 0, 

V1 
∂ V1 
∂x1 

+ V2 
∂ V1 
∂x2 

= −  
1 

ρ 
∂ p 

∂ x1 
+ ν 

∂2 V1 
∂ x2∂x2 

− 
∂ ρV1V2 

∂x2 
, 

∂ p 
∂ x2 

= −  
∂ ρV2V2 

∂ x2 
(6.63) 

This is a set of three partial differential equations (PDE) with the primary dependent 
variables being. V1 ,. V2 , and. p inside the boundary layer. There are two secondary 

unknowns appearing in this equation set: . −ρV1V2 and . −ρV2V2 . This equation 

set is called the Prandtl boundary layer equation set for a turbulent flow (PBLET). 
The last equation of (6.63) can be integrated along . x2: between the edge of the 

boundary layer (denoted by the superscript “edge”) and an arbitrary location (with 
coordinates .x1, x2, x3) inside the boundary layer to arrive at 

. 

edge 

x2 

∂ p 

∂ x2 
dx2 = −  

edge 

x2 

∂ ρV2V2 
∂ x2 

dx2, 

. p = p edge + ρV2V2 
edge − ρV2V2 (6.64) 

Figure (6.2) shows that . ρV2V2 
edge ≈ 0. Thus, (6.70) simplifies to 

. p = p edge − ρV2V2 (6.65) 

Further, Fig. 6.2 shows that. ρV2V2 is restricted to a small fraction of the dynamic 

pressure of the free stream. Specifically, we observe that the maximum value of 

. V2V2 is .0.04V 
2 
o . Thus, at the given stream-wise station in the referred boundary 

layer [ 3] 

. ρV2V2 max 
≈ 2 × (0.002) 

ρV 2 o 
2 

(6.66) 

Further, if we have the known condition that the free stream dynamic pressure itself 
is much smaller than . p edge 

. 
ρV 2 o /2 

p edge
1 (6.67) 
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Thus, referring to (6.65), it is plausible to conclude that pressure within the boundary 
layer at a given stream-wise station (. x1) does not vary significantly with the wall-
normal distance (. x2), and its value equals the pressure at the edge of the boundary 
layer at that stream-wise station. 

Since the edge of the boundary layer is actually one of the boundaries of the 
boundary layer domain described by the PBLET set, the variation of pressure at the 
edge of the boundary layer can be deemed as a boundary condition of (6.63). Pressure 
is no longer a variable of the PBLET set (6.69). Accordingly, the pressure gradient 
term appearing in the . V1 equation can be expressed as 

. p = p edge , (6.68) 

where . p edge is a function of .x1 alone. The PBLET equation set (6.63) can now be 
expressed more simply as 

. 
∂ V1 
∂ x1 

+ 
∂ V2 
∂ x2 

= 0, 

V1 
∂ V1 
∂ x1 

+ V2 
∂ V1 
∂x2 

= −  
1 

ρ 
d p edge 

dx1 
+ ν 

∂2 V1 
∂x2∂x2 

− 
∂ ρV1V2 

∂x2 
(6.69) 

The flow domain over a wide flat plate can be perceived to be comprised of two 
regions which are separated by the curve that describes the edge of the boundary layer 
.δ(x1) (Fig. 6.3). The region bounded by the solid plate and the boundary layer edge 
is indeed the boundary layer region, wherein, by definition, the viscous forces are 
significant enough to influence the acceleration of a typical fluid particle therein. This 
demarcation itself implies that the region outside the boundary layer has a negligible 
influence of viscous forces on the acceleration of the fluid particles. Further, DNS-
based evidence (such as Fig. 6.2), suggests that the Reynolds stress components also 
tend to vanish outside the boundary layer. In this outer region, the flow is not only 
laminar but also approximately inviscid. Therefore, that region of the flow field must 
be governed by the steady Euler equation, with the velocity field being 2D and 
2C. Further, since the velocity field in the far-upstream region is uniform and lacks 
any vorticity, the velocity field outside the boundary layer may be approximated to 

Fig. 6.3 Two regions of the 
flow field past a flat plate 
demarcated by the edge of 
the boundary layer (BL) 
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be potential (explanation available in [ 1]). This, in turn, implies that the generalized 
Bernoulli equation [ 1] can be applied between any two locations in the region outside 
the boundary layer. Choosing location .A to be on the .x1ê1 axis in the far-upstream 
region where both the velocity (.Voê1) and pressure (.po) are known, and choosing. B 
to be located at the edge of the boundary layer at station . x1, we have the following 
relationship: 

. p edge (x1,δ(x1)) = po + 
ρV 2 0 
2 

− 
ρ 
2 

V 2 (x1,δ(x1)) (6.70) 

where. p edge (x1,δ(x1)) and. V 2 (x1,δ(x1)) are the pressure and the square of the magnitude 

of local velocity at the edge of the boundary layer at station.x1 (Fig. 6.3), respectively. 
The symbol.po denotes pressure in the far-upstream region of the flow field (Fig. 6.1) 

At the edge of the boundary layer, we have, 

. V 2 (x1,δ(x1)) = V1 2 (x1,δ(x1)) + V2 2 (x1,δ(x1)) (6.71) 

However, based on the OM analysis, we are aware that at .Re1 1 (Eqs. 6.42 and 
6.50), we have 

.O V2 
V1 

= O V2C 
V1C 

= O L2C 

L1C 
= O 1√

Re1 
1 (6.72) 

Thus, we approximate (6.71) to  

. V 2 (x1,δ(x1)) ≈ V1 2 (x1,δ(x1)) (6.73) 

Further, by using the definition of .δ(x1) to express .V1 at the edge of the boundary 
layer in terms of .Vo, Eq. (6.73) is expressed as 

. V 2 (x1,δ(x1)) ≈ (0.99Vo)2 (6.74) 

Thus, (6.70) is expressed as 

. p edge (x1,δ(x1)) ≈ po + 
0.02ρ(Vo)2 

2 
(6.75) 

where the RHS is no more a function of . x1. Thus, for a flat plate boundary layer at 
. Re1 1 

. 
dpedge 

dx1 
≈ 0 (6.76) 

Accordingly, the PBLET equation set (6.69) is further simplified to 

. 
∂ V1 
∂x1 

+ 
∂ V2 
∂x2 

= 0, 

V1 
∂ V1 
∂ x1 

+ V2 
∂ V1 
∂ x2 

= ν 
∂2 V1 
∂ x2∂ x2 

− 
1 

ρ 

∂ ρV1V2 

∂ x2 
(6.77) 
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The LHS of the. V1 -equation (6.77) represents the mean stream-wise acceleration 
of the local fluid particle. The RHS shows the contribution of various external forces 
(per unit mass) acting on that fluid particle. The first term represents the viscous 
force per unit mass, and the second term represents the force arising due to the 
Reynolds stress tensor. Our observation of Fig. 6.2 shows that mean stream-wise 
velocity monotonically increases as the wall-normal distance increases. Further, we 
observe that the slope of the mean stream-wise velocity curve decreases with the 
wall-normal distance. These observations imply that the second derivative of the 
mean stream-wise velocity in wall-normal distance must be negative. In turn, this 
means that the net viscous force on the local particle is retarding in nature. This 
is expected. On the other hand, Fig. 6.2 shows that the wall-normal gradient of the 

Reynolds stress component . −ρV1V2 is positive in the region very close to the 

wall, and subsequently, at larger wall-normal distances the wall-normal gradient is 
negative. These observations, in conjugation with the RHS of the . V1 equation, 
suggest that in the region close to the wall the force arising due to the Reynolds 
stress tensor in the mean flow of a flat plate boundary layer causes the local fluid 
particle to accelerate. However, at larger wall-normal distances, this force changes 
its nature and causes retardation of a local fluid particle. 

6.4 Anatomy of a Flat Plate Turbulent Boundary Layer 

The variation of various flow statistics shown in Fig. 6.2 has been plotted against the 
wall-normal distance, which is normalized by the boundary layer thickness (defined 
in (6.8)). If measurements are made at different stream-wise stations, the profiles of 
various expected values included in Fig. 6.2 may show similar trends, but quantita-
tively they may still differ. However, when these measured expected values as well 
as the wall-normal distance are appropriately normalized, the consequent profiles of 
some of these statistics (at different stream-wise stations) tend to collapse and show 
behavior which seems independent of the stream-wise station of measurement. 

The normalization strategy of the wall-normal distance is based on Prandtl’s work 
[ 4], according to which we define a normalized version (.y+) of the variable .x2 as 

.y+ = x2 
δviscous 

(6.78) 

where .δviscous has dimensions of length and is defined as 

.δviscous = ν 
ρ 
τw 

(6.79) 

where.τw = σ mean 
12 at.x2 = 0 at a given. x1. This quantity (.τw) is called the wall shear 

stress at a chosen .x1 station on the flat plate. 
According to (5.20), the mean shear stress (.σ mean 

12 ) in any turbulent flow field is 

.σ mean 
12 = τ12 −ρV1V2 (6.80) 
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Here for a Newtonian flow, 

. τ12 2μ S12 (6.81) 

Since at .Re1 1, it follows from (6.31) and (6.50) 

. 
∂ V2 
∂ x1 

∂ V1 
∂ x2 

(6.82) 

Thus, . τ12 (6.81) simplifies to 

. τ12 μ 
∂ V1 
∂ x2 

. (6.83) 

At .x2 = 0 or, equivalently, at .y+ = 0, 

. τw = σ mean 
12 |x2=0 = τ12 x2=0 + −ρV1V2 |x2=0 

= τ12 x2=0 + 0 (6.84) 

≈ μ 
∂ V1 
∂ x2 x2=0 

(6.85) 

Due to the no-slip and the no-penetration boundary conditions at the wall, we have 

. −ρV1V2 
x2=0 

(6.86) 

Further, the mean stream-wise velocity is normalized to the following form 
(denoted by .u+) 

.u+ = 
V1 
uτ 

(6.87) 

where.uτ is a quantity having the dimensions same as that of velocity and is defined 
as 

.uτ = 
τw 
ρ 

(6.88) 

The quantity .uτ is called the friction velocity at the given stream-wise station (. x1). 
To better understand the behavior of various flow statistics inside a turbulent layer, 

we refer to a DNS database described in Schlatter and Örlu [ 3] (this database itself 
has been downloaded from the webpage https://www.mech.kth.se/~pschlatt/DATA/ 
in accordance with the permission provided therein). This downloaded DNS database 
has been used to generate Figs. 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 6.10 of this chapter). 

In Fig. 6.4 three representative curves are included corresponding to different 
stream-wise stations (. xa , . xb, and . xc), such that the Reynolds number based on the 
local momentum thickness at these three locations is .2000, .3030, and .3970. Both 
the horizontal and the vertical axes are logarithmic. 

https://www.mech.kth.se/~pschlatt/DATA/
https://www.mech.kth.se/~pschlatt/DATA/
https://www.mech.kth.se/~pschlatt/DATA/
https://www.mech.kth.se/~pschlatt/DATA/
https://www.mech.kth.se/~pschlatt/DATA/
https://www.mech.kth.se/~pschlatt/DATA/
https://www.mech.kth.se/~pschlatt/DATA/
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Fig. 6.4 Variation of. u+ 

versus.y+. Different curves 
correspond to profiles 
obtained at different 
stream-wise stations. xa , .xB , 
and. xC 

Fig. 6.5 Variation of. f 
(6.91) with.y+ at three 
different stream-wise 
stations 

Fig. 6.6 Variation of. σ mean 
12 

(6.91) with.y+ at three 
different stream-wise 
stations. All curves coincide 
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Fig. 6.7 Variation of 

. V1V1 
+ 
with.y+ at three 

different stream-wise 
stations 

Fig. 6.8 Variation of 

. V2V2 
+ 
with.y+ at three 

different stream-wise 
stations 

Fig. 6.9 Variation of 

. V3V3 
+ 
with.y+ at three 

different stream-wise 
stations 
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Fig. 6.10 Variation of 

.− V1V2 
+ 
with.y+ at three 

different stream-wise 
stations 

In the range of .y+ < 5, at all stream-wise stations, the variation of data seems to 
follow the curve fit 

.u+ = y+ (6.89) 

This region of the boundary layer is called the viscous sublayer. In the region. y+ > 30 
but.y < 0.2δ(x1), data from different stream-wise stations collapse on a single curve 
fit 

.u+ = 
1 

κ 
lny+ + B (6.90) 

where.κ = 0.41 and.B = 5. This region of the boundary layer wherein the curve fit of 
(6.90) describes the variation of .u+ with.y+ is called the log layer. The relationship 
(6.90) itself is called the law of the wall of the turbulent boundary layer. The region 
between the log layer and the viscous sublayer (.5 < y+ < 30) is called the buffer 
layer and here the data seem to collapse on a curve which merges smoothly with 
(6.89) on one hand and (6.90) on the other hand. Unlike the viscous sublayer, the 
buffer layer, or the log layer, beyond .y > 0.2δ, the data from different stream-wise 
stations do not collapse on any common curve. This region of the boundary layer is 
called the outer layer. 

Next, we define a quantity. f with which we intend to measure the relative impor-
tance of the individual contributions from the mean shear viscous stress and the 
Reynolds shear stress to .σ mean 

12 . 

. f = τ12 

τ12 −ρV1V2 
(6.91) 

We have defined this quantity such that when . f approaches unity, it implies an 
increased contribution of the viscous stress to .σ mean 

12 . On the other hand, if . f tends 
to zero, it implies a greater contribution of the Reynolds stress to .σ mean 

12 . Figure 6.5 
shows the variation in. f with.y+ inside the boundary layer at three different stream-
wise stations. We observe that in the viscous sublayer (.y+ < 5), . f is almost unity, 
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suggesting that here the Reynolds stress contribution to .σ mean 
12 is negligible, and the 

entire .σ mean 
12 is attributable to the mean viscous stress. On the other hand, . f almost 

vanishes in the log layer and beyond, .y+ > 30 suggesting that the contribution of 
the mean viscous stress to .σ mean 

12 is negligible, and the entire .σ mean 
12 is due to the 

Reynolds stress itself. Identical trends are observed at all three stream-wise stations. 
In between, in the buffer layer, . f lies in the range of.[0, 1] and suggests that there in 
that layer both the viscous stress and the Reynolds stress contributions to .σ mean 

12 are 
significant. 

In Fig. 6.6 we present the variation of.σ mean 
12 /τw versus.y+ at three different stream-

wise stations. We observe that .σ mean 
12 approximately equals the wall stress (.τw) over 

an extended region of the boundary layer, which includes the entire viscous sublayer, 
the entire buffer layer, and a substantial part of the log layer, as well. 

Figures 6.4 and 6.6 provide strong evidence about universality in the near-wall 
region (viscous sublayer, buffer layer, and a substantial part of the log layer) of a 
turbulent boundary layer at high .Re1. In Chap. 8, we discuss how such universality 
has been leveraged in turbulence modeling. 

6.5 Near-Wall Asymptotic Behavior of the Fluctuating Velocity 
Vector 

Indeed, the no-slip and the no-penetration boundary conditions ensure that all 
three Cartesian components of the instantaneous velocity vector vanish at the wall 
(.x2 = 0). However, as soon as one steps away from the wall, along the wall-normal 
direction, the instantaneous velocity vector in a turbulent boundary layer becomes 
three componential. At this point, our interest is to examine, specifically, what is 
called the near-wall asymptotic behavior of various velocity components. The near-
wall asymptotic behavior entails estimating the nature of the dependence of these 
velocity components on the wall-normal distance (. x2) within the innermost layer (the 
viscous sublayer) of the boundary layer. For example, with Fig. 6.4 we are already 
aware that 

.u+ = y+ (6.92) 

which, using (6.78) and (6.87), is recast in terms of . V1 as 

. V1 
τw 
ρ 

x2 (6.93) 

which demonstrates that at a fixed stream-wise station, within the viscous sublayer, 
. V1 increases linearly with .x2 as one moves away from the wall. 

In Fig. 6.7 we present the variation of . V1V1 
+ 
with .y+ versus .y+, where 

. V1V1 
+ = 

V1V1 

u2 τ 
. (6.94) 
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We observe that in the viscous sublayer (.y+ < 5), data from different stream-wise 
stations collapse on the curve fit 

. V1V1 
+ = 0.16(y+)2 (6.95) 

which when cast in terms of un-normalized variables result into the following rela-
tionship 

. V1V1 = 0.16 
τw 
νρ 

2 

x2 2 (6.96) 

Equation 6.96 shows that at a fixed stream-wise station, within the viscous sublayer, 

. V1V1 increases with .x2 2 as one moves away from the wall. 

In Fig. 6.8 we present the variation of . V2V2 
+ 
with .y+, where 

. V2V2 
+ = 

V2V2 

u2 τ 
(6.97) 

We observe that in the viscous sublayer (.y+ < 5), data from different stream-wise 
stations collapse to the curve fit 

. V2V2 
+ = 0.000065(y+)4 (6.98) 

which when cast in terms of un-normalized variables result into the following rela-
tionship 

. V2V2 = 0.000065 
τ 3 w 

ν4ρ3 x4 2 (6.99) 

Equation 6.99 shows that at a fixed stream-wise station, within the viscous sublayer, 

. V2V2 increases with .x4 2 as one moves away from the wall. 

In Fig. 6.9 we present the variation of . V3V3 
+ 
with .y+, where 

. V3V3 
+ = 

V3V3 

u2 τ 
(6.100) 

We observe that in the viscous sublayer (.y+ < 5), data from different stream-wise 
stations collapse to the curve fit 

. V3V3 
+ = 0.055(y+)2 (6.101) 
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which when cast in terms of un-normalized variables result into the following rela-
tionship 

. V3V3 = 0.055 
τw 
νρ 

2 

x2 2 (6.102) 

Equation (6.102) shows that at a fixed stream-wise station, within the viscous sub-

layer, . V3V3 increases with .x2 2 as one moves away from the wall. 

In Fig. 6.10 we present the variation of .− V1V2 
+ 
with .y+, where 

. V1V2 
+ = 

V1V2 

u2 τ 
(6.103) 

We observe that in the viscous sublayer (.y+ < 5), data from different stream-wise 
stations collapse to the curve fit 

. − V1V2 
+ = 0.0012(y+)3 (6.104) 

which when cast in terms of un-normalized variables result into the following rela-
tionship 

. − V1V2 = 0.0012 
τw 
ρ 

5 
2 x3 2 

ν3
(6.105) 

Equation (6.105) shows that at a fixed stream-wise station, within the viscous sub-

layer, . V1V2 increases with .x
3 
2 as one moves away from the wall. In Chap. 8, we  

will highlight how such a knowledge of the near-wall asymptotic behavior of the 
individual velocity components can possibly be leveraged in modeling the Reynolds 
stress tensor to achieve closure of the RANS equation set (5.10). 



7Understanding Multiplicity 
of Length-Scales in Turbulent Flows 

In this chapter, we focus on a simple turbulent flow field called decaying turbulence. 
It is a special case of a statistically homogeneous flow field, and it has zero mean 
velocity at all locations and at all times. Since the mean velocity vector is identical 
at all locations, the entire mean velocity gradient tensor, too, is zero at all locations. 

.∇ V 0 (7.1) 

This implies that the mean continuity equation (5.2) is trivially satisfied at all loca-
tions and at all time instants. Further, the mean momentum equation (5.8) simplifies 
to 

. 
∂ Vi 

∂t 
= −  

1 

ρ 
∂ p 

∂xi 
(7.2) 

which merely underlines, the necessary condition that the mean pressure gradient 
tensor must be zero at all locations and at all times to ensure that . Vi remains zero 
at all locations and at all times. Thus in decaying turbulence 

. 
∂ p 

∂xi 
+ 

∂ p 

∂xi 
= 

∂ p 

∂xi 
(7.3) 

Further, in this flow field, the RSTE equation (5.43) simplifies to 

. 
∂ Ri j  

∂t 
= i j  − i j (7.4) 

Since the flow is statistically homogeneous, the spatial gradients of all flow statistics 
(5.43) vanish. Furthermore, the partial time derivative of.Ri j  may simply be expressed 
as a total derivative because .Ri j  does not depend on . X . 
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. 
d Ri j  

dt 
= i j  − i j (7.5) 

The transport equation of the turbulence kinetic energy 

. 
dk 

dt 
= − (7.6) 

Equation (7.5) shows that in decaying turbulence, the Reynolds stress tensor evolves 
under the influence of merely two processes, the dissipation-rate tensor (. ) and the 
pressure-strain correlation tensor (. ). The production, molecular diffusion, and the. T 
tensor do not play any role, since all these involve the gradient of the mean velocity 
vector or the gradient of the expected values of the products of some fluctuating 
quantities. 

Equation (7.6) shows that turbulence kinetic energy evolves under the sole influ-
ence of the dissipation-rate tensor. Since. can never be a negative quantity,. k decays 
monotonically in decaying turbulence. 

Our primary intent behind examining decaying turbulence is to study the process 
by which eddies of disparate time and length-scales are generated in a turbulent flow 
field. The decaying turbulence flow field is apt for such an investigation because it 
naturally eliminates the influence of the production as well as that of the influence 
of the inhomogeneous processes of the Reynolds stress tensor (5.41). This makes it 
easier to develop some deeper insights into the essential energetics: how turbulence 
kinetic energy is converted into heat. Further, this investigation helps us understand 
the generation of smaller scales of motion in a turbulent flow field. 

The initial state of a decaying turbulent flow field is primarily characterized by 
its initial Reynolds number (.Reλ), which is defined as 

.Reλ = λVrms/ν (7.7) 

where .Vrms is the root mean squared (rms) of the magnitude of velocity fluctuation 
in the initial flow field, 

.Vrms = 
Vi Vi 

3
= 

2k 

3 
(7.8) 

and . k is turbulence kinetic energy per unit mass (5.53). The characteristic length-
scale (. λ) used in the definition of the Reynolds number (7.7) is called the Taylor 
microscale, and is defined [ 5] as  

.λ = V 2 
rms 

(∂V1/∂x1)2
(7.9) 

A detailed examination of a decaying turbulent flow and the influence of the 
length-scales on the energetics of the flow field requires the availability of the instan-
taneous velocity field at several time instants and locations. In experiments, one sets 
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up such a decaying turbulent flow field in a wind tunnel wherein the initial turbu-
lence is generated by subjecting a uniform flow to a wire mesh or a grid. The wire 
mesh generates turbulence kinetic energy in the flow field, which then undergoes a 
decay process within the central portion considerably distant from the test section 
walls, such that the influence of the walls of the test section on the decay process 
is negligible. Such a turbulent flow created using a wire grid inside the test section 
of a wind tunnel is also called grid turbulence. For further details on the experi-
mental methodology, measurement techniques, and computations of flow statistics 
of grid turbulence, the reader is referred to [ 6]. In the rest of this chapter, instead, we 
focus on the details of numerically simulating decaying turbulence (direct numeri-
cal simulation). Direct numerical simulation of decaying turbulence is performed by 
solving the instantaneous Navier-Stokes equation set (3.10) and (3.11) over a cubical 
domain. Each side of the computational domain is of length .2π. Periodic boundary 
conditions are imposed on the opposite faces of the domain for the pressure and 
velocity variables. The instantaneous pressure field is initialized such that it follows 
the Laplacian equation. 

. 
∂2 p 

∂xi ∂xi 
= −ρ 

∂Vi 

∂x j 

∂Vj 

∂xi 
(7.10) 

The instantaneous Navier-Stokes equation set (3.10 and 3.11) is discretized over an 
appropriately fine computational grid, and time marching is performed with ade-
quately small time steps in order to accurately resolve all scales of motion of the 
turbulent flow field. 

To analyze the initial conditions as well as the evolution of a decaying turbulent 
flow field at later times, we choose to express the velocity and the pressure field in 
terms of the Fourier modes and the Fourier amplitudes. Such expressions also help 
us better understand the evolution of multiple scales in the flow field. In the next 
section, we present the mathematical foundation which proves useful in expressing 
a periodic function using its Fourier description. 

7.1 Fourier Description of a Spatially Periodic Function 

If . φ is an Eulerian flow variable which is periodic in each of the three Cartesian 
directions with its periodicity over length . L , then that variable can be expressed in 
the corresponding complex Fourier description as 

.φ X , t = 
K 

φ K , t ei K ·X (7.11) 

where.i = 
√−1. The symbol .K represents an arbitrary wavenumber vector defined 

as 

.K = 
2π 
L 

(n1e1 + n2e2 + n3e3) (7.12) 
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where . n1, .n2 and .n3 are arbitrary integers, and 

.ei K ·X = cos K · X + isin K · X (7.13) 

The complex quantity.ei K ·X in (7.11) is called the Fourier mode corresponding to the 
wavenumber vector . K , and .φ K , t is called the Fourier amplitude corresponding 
to the wavenumber vector . K . More simply, .φ(K , t) is called as the amplitude of the 
mode .ei K ·X . The summation on the right-hand side of (7.11) is over all possible. K ’s 
that can be generated by all possible integer values of . n1, .n2 and .n3 in accordance 
with (7.12). 

In a flow field which has a periodic spatial distribution of. φ, potentially, all possible 
modes (as governed by 7.12) can co-exist. However, whether a particular mode 
is present or not in the flow field depends entirely on the corresponding Fourier 
amplitude. If for a chosen . K , .φ(K , t) = 0, it means that the mode .ei K ·X is absent 
in the flow field. Since the possible wavenumber vectors are generated by discrete 
values of. n1,. n2, and. n3, the set of.K vectors is also a discrete set. On the other hand, 
.φ K , t is a continuous function of time. 

The existence of a mode .ei K ·X in the field .φ(X) can be associated with the 
existence of a length-scale (denoted by the symbol . lK ) such that 

.lK = 
2π 
K 

(7.14) 

where the symbol .K denotes the magnitude of the wavenumber vector . K . 

.K = |K | (7.15) 

The association of this length-scale .lK to .K is illustrated in Fig. 7.1. 
In this figure, a particular wavenumber vector has been chosen for the purpose of 

illustration: 

.K = 
2π 
L 

(3e1 + 2e2) (7.16) 

Correspondingly shaded contours of the quantity.cos(K · X) have been plotted with 
the two axes representing the Cartesian axes.x1(e1) and.x2(e2) in physical space. We 
observe that the variation of .cos(K · X ) represents a wave in the direction perpen-
dicular to the direction of the chosen wavenumber vector (7.16). It can be verified 
that the contour pattern repeats itself over a length. lK , which can be computed using 
(7.14). This length (. lK ) is alternatively referred to as the wavelength associated with 
the wavenumber vector . K . Based on the general understanding that emerges from 
the illustration of Fig. 7.1, we infer: the existence of a mode .ei K ·X in the field . φ(X ) 
implies the existence of a corresponding length-scale .lK (7.14) in the field of .φ(X). 

Since the length-scale itself is a scalar quantity, it is quite possible that two 
wavenumber vectors have different orientations and still have the same magnitude 
(. K ). Both such wavenumber vectors are indeed associated with the same length-scale 
.lK (7.14). 
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Fig. 7.1 Variation of.cos(K · X) in the physical space with.K = 2π 
L (3e1 + 2e2), and. L = 1 

In Chap. 2, we discussed how the presence of multiple eddies with different time 
and length-scales introduces those time and length-scales in the expression of the 
velocity of a fluid particle in the flow field. Since in a periodic flow field (2.35), 
the presence of various Fourier modes is also related to the introduction of new 
length-scales (Fig. 7.1), in turbulence literature, a phenomenological correspondence 
(without necessarily referring to a mathematically rigorous connection) is often made 
between the length-scale associated with a Fourier mode (7.14) to the presence of 
eddies of the diameter of that length-scale in the velocity field. Thus, if a mode with 
wavenumber vector .K exists in the flow field, we say that eddies of characteristic 
length-scale .leddy exist in the flow field such that 

.O(leddy) = O 2π 
K 

(7.17) 

where .K denotes the magnitude of the wavenumber vector. 
We can prove that, in general, 

.φ K = 
1 

L3 

L 

0 

L 

0 

L 

0 
φ x e−i K ·X dx1dx2dx3 = φ x e−i K ·X 

V (7.18) 

where the argument. t has been omitted merely for algebraic brevity. The symbols. x1, 
. x2, and .x3 denote the Cartesian coordinates of the position vector .X of an arbitrary 
location within the cubical domain with each edge length being . L . 

.X = xi ei (7.19) 
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The symbols .dx1, .dx2, and .dx3 are the dimensions of a Cartesian infinitesimal 
control volume with its centroid at (. x1,. x2,. x3). Equation (7.18) indeed represents the 
weighted volume average of the flow variable. φ over the entire cubical domain. The 
weighting factor in this integration is the complex conjugate of the mode function 
.ei K ·X . For algebraic brevity, we use the following symbol to denote the volume-
averaging procedure. 

. ( ... ) V = 
1 

L3 

L 

0 

L 

0 

L 

0 
( ... ) dx1dx2dx3 (7.20) 

We will demonstrate the proof of (7.18). However, before we can do that, we need 
some useful algebraic properties of the volume-averaging operator (7.20). It is easy 
to show that 

. 
1 

L 

L 

0 
e 

i2πn1x1 
L dx1 = 1 if  n1 = 0 (7.21) 

On the other hand, if .n1 0, 

. 
1 

L 

L 

0 
e 

i2πn1x1 
L dx1 = 

1 

L 

L 

0 
cos 

2πn1x1 
L

+ isin 
2πn1x1 

L 
dx1 

= 
1 

2πn1L 
sin 

2πn1x1 
L

− isin 
2πn1x1 

L 

L 

0 

= 
1 

2πn1 
{(sin(2πn1) − sin(0)) − i(cos(2πn1) − cos(0))} 

= 1 

2πn1 
{(0 − 0) − i (1 − 1)} 

= 0 (7.22) 

Using (7.21) and (7.22) we now simplify the following expression 

. ψ = 
1 

L3 

L 

0 

L 

0 

L 

0 
ei K ·X e−i K  ·X dx1dx2dx3 

where 

. K = Ki ei = (n1e1 + n2e2 + n3e3) 
2π 
L 

K = Ki ei = n1e1 + n2e2 + n3e3 
2π 
L 

(7.23) 
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where . n1, . n2, . n3, and . n1, . n2, .n3 are arbitrary integers. 

. ψ = 
1 

L3 

L 

0 

L 

0 

L 

0 
ei K ·X e−i K  ·X dx1dx2dx3 

= 
1 

L3 

L 

0 

L 

0 

L 

0 
ei (K−K )·X dx1dx2dx3 

= 
1 

L3 

L 

0 

L 

0 

L 

0 
ei (K1−K1)x1ei(K2−K2)x2ei (K3−K3)x3dx1dx2dx3 

= 
1 

L 

L 

0 
ei (K1−K1)x1dx1 

1 

L 

L 

0 
ei(K2−K2)x2dx2 

1 

L 

L 

0 
ei (K3−K3)x3dx3 

= 1 

L 

L 

0 
ei 2π 

L (n1−n1)x1dx1 
1 

L 

L 

0 
ei 2π 

L (n2−n2)x2dx2 × 

1 

L 

L 

0 
ei 2π 

L (n3−n3)x3dx3 (7.24) 

Clearly, if .K = K (which means .n1 = n1, .n2 = n2, .n3 = n3), we use (7.21) in  
(7.24) to conclude 

. 
1 

L3 

L 

0 

L 

0 

L 

0 
ei K ·X e−i K  ·X dx1dx2dx3 = 1 (7.25) 

On the other hand, if .K K (which means at least one of the following three 
inequalities .n1 = n1, .n2 n2, .n3 n3 holds good), we use (7.22) in (7.24) to con-
clude 

. 
1 

L3 

L 

0 

L 

0 

L 

0 
ei K ·X e−i K  ·X dx1dx2dx3 = 0 (7.26) 

The identities (7.25) and (7.26) are expressed in a more compact manner as 

. ei K ·X e−i K  ·X 

V = 1 if  K = K 

0 if  K K 
(7.27) 

where the symbol defined in (7.20) for the volume-averaging operation has been 
employed. 

Further, we define a new symbol .δK ,K to express (7.27) as  

. ei K ·X e−i K  ·X 

V = δK ,K (7.28) 

where 

.δK ,K = 1 if  K = K 

0 if  K K 
(7.29) 
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We are now in a position to present the proof of (7.18). We start with the expression 
of (7.11). 

.φ X , t = 
K 

φ K , t ei K ·X (7.30) 

We multiply both sides by .e−i K  ·X of (7.30) leads to 

.φ X , t e−i K  ·X = 
K 

φ K , t ei K ·X e−i K  ·X (7.31) 

We now subject both sides of (7.31) to volume averaging 

. φ X , t e−i K  ·X 

V = 
K 

φ K , t ei K ·X e−i K  ·X 

V 
= 

K 

φ K , t ei K ·X e−i K  ·X 

V (7.32) 

Using (7.29) in (7.32) leads to 

. φ X , t e−i K  ·X 

V = 
K 

φ K , t ei K ·X e−i K  ·X 

V = 
K 

φ K , t δK ,K (7.33) 

The RHS of (7.33) is a summation over all possible modes. However, in that sum-
mation, all terms, except the one for which .K = K , vanish. Thus, (7.33) simplifies 
to 

. φ X , t e−i K  ·X 

V = φ K , t 

which is identical to the relationship we listed in (7.18). 
Since in this chapter, we will be employing the Fourier expression of various 

flow variables quite extensively, for algebraic brevity, we introduce a new symbolic 
operator .FK , which we define as 

.FK φ X = φ K (7.34) 

Further, we list some of the useful properties of the .FK operator, which we will 
employ in this chapter. 

1. .FK φ1(X ) + φ2(X ) = φ1(K ) + φ2(K ) where .φ1(X) and .φ2(X) are two 
real-valued functions. 

Proof: 

. FK φ1(X) + φ2(X) = (φ1(X) + φ2(X ))e−i K ·X 

V 
= {φ1(X)e−i K ·X + φ2(X )e−i K ·X } V (7.35) 
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Since the volume-averaging procedure (7.20) is essentially an integration process, it 
naturally distributes over the sum of the two functions in (7.35), leading to 

. FK φ1(X) + φ2(X ) = {φ1(X) + φ2(X)}e−i K ·X 

V 
= φ1(X)e−i K ·X 

V + φ2(X )e−i K ·X 

V (7.36) 

Using (7.18) in (7.36) leads to 

.FK φ1(X ) + φ2(X) = φ1(K ) + φ2(K ). (7.37) 

2. . FK 
∂φ(X ) 
∂xi 

= i Ki φ K 

Proof: 

. FK 
∂φ(X) 
∂xi 

= ∂φ 
∂xi 

e−i K ·X 

V 
= ∂ 

∂xi 

⎡ 

⎢⎣
K 

φ K ei K  ·X 

⎤ 

⎥⎦ e−i K ·X 

V 

= 
K 

φ K 
∂ 

∂xi 
ei K  ·X e−i K ·X 

V 

= 
K 

φ K 
∂ 

∂xi 
ei Km xm e−i K ·X 

V 

= 
K 

φ K ei Km xm i K p 
∂x p 

∂xi 
e−i K ·X 

V 

= 
K 

φ K ei Km xm i K p δpi e−i K ·X 

V 

= 
K 

φ K ei K  ·X i Ki e−i K ·X 

V 
= 

K 

φ K (i Ki ) ei K  ·X e−i K ·X 

V 

= 
K 

φ K (i Ki )δK K = i Ki φ K (7.38) 

where . 
∂x p 
∂xi 

= δpi has been employed. 



114 7 Understanding Multiplicity of Length-Scales in Turbulent Flows 

Using (7.11) in (7.38) leads to the following conclusion, 

.FK 
∂φ(X ) 
∂xi 

= i Ki φ K . (7.39) 

3. . FK 
∂φ(X ) 

∂t = dφ(K ) 
dt 

Proof: 

. FK 
∂φ(X ) 

∂t
= 

∂φ 
∂t 

e−i K ·X 

V 
= 

∂ 
∂t 

⎡ 

⎢⎣
K 

φ K , t ei K  ·X 

⎤ 

⎥⎦ e−i K ·X 

V 

= 
K 

⎡ 

⎣∂φ K 

∂t 
ei K  ·X 

⎤ 

⎦ e−i K ·X 

V 

= 
K 

⎡ 

⎣∂φ K 

∂t 
ei K  ·X e−i K ·X 

V 

⎤ 

⎦ 

= 
K 

⎡ 

⎣∂φ K 

∂t 
δK ,K 

⎤ 

⎦ 

= 
∂φ K 

∂t 

The wavenumber vector (. K ) appearing as in the argument of .Vi (K ) is merely a 
discrete tag and, thus .Vi (K ) is actually a continuous function of time alone. Thus 
we can express the partial derivative with time as a total derivative. 

.FK 
∂φ(X ) 

∂t
= 

d ̂φ(K , t) 
dt 

(7.40) 

4. .φ(K ) = φ∗(−K ) where.φ∗(K ) is the complex conjugate of .φ(K ) and.φ(X ) is 
a real-valued function. 

Proof: 

.φ(K ) = φ(X)e−i K ·X 

V (7.41) 



7.1 Fourier Description of a Spatially Periodic Function 115 

We take the complex conjugate of both sides of (7.41) 

. φ∗(K ) = φ(X )e−i K ·X 
∗ 

V 
= φ(X ) ∗ 

e−i K ·X 
∗ 

V 
= φ(X ) ei (K )·X 

V (7.42) 

Setting .K = −K , (7.42) is expressed as 

.φ∗(−K ) = φ(X )e−i K  ·X 

V = φ(K ) (7.43) 

which can be equivalently expressed as 

.φ∗(−K ) = φ(X )e−i K  ·X 

V = φ(K ) (7.44) 

without any loss of generality at this stage, we substitute .K by . K . 

.φ∗(−K ) = φ(K ) (7.45) 

5. 

. φ1(X )φ2(X ) V = 
K 

φ1(K )φ∗
2(K ) (7.46) 

where .φ1(X ) and .φ2(X ) are two real-valued functions. 

Proof: We start with the product of the two functions .φ1(X) and . φ2(X ) 

. φ1(X)φ2(X) = 

⎡ 

⎢⎣
K 

φ1(K )ei K  ·X 

⎤ 

⎥⎦ 

⎡ 

⎢⎣
K 

φ2(K )ei K  ·X 

⎤ 

⎥⎦ 

= 
K K 

φ1(K )φ2(K )ei K  ·X ei K  ·X (7.47) 

subjecting both sides of (7.47) to volume averaging leads to 

. φ1(X)φ2(X) V = 
K K 

φ1(K )φ2(K )ei K  ·X ei K  ·X 

V 
= 

K K 

φ1(K )φ2(K ) ei K  ·X ei K  ·X 

V (7.48) 
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Using (7.28) in (7.48) leads to 

. φ1(X)φ2(X ) V = 
K K 

φ1(K )φ2(K )δK ,−K (7.49) 

The appearance of the Kronecker delta symbol in (7.49) implies that the expression 
can be simplified by (a) discarding the summation operation over .K from the RHS 
of (7.49) and then (b) substituting.K by.−K in the remaining part of the expression 

. φ1(X)φ2(X ) V = 
K 

φ1(K )φ2(−K ) (7.50) 

Further using in (7.44) in (7.50) leads to 

. φ1(X)φ2(X ) V = 
K 

φ1(K )φ∗
2(K ) (7.51) 

which can equivalently be expressed as 

. φ1(X )φ2(X ) V = 
K 

φ1(K )φ∗
2(K ) (7.52) 

Equation (7.52) is called the Parseval’s theorem. 

7.2 Spectral Density Functions of Turbulence Kinetic Energy 
and Its Dissipation Rate 

In a direct numerical simulation of decaying turbulence, the imposed boundary con-
ditions on the opposite faces of the cubical domain are periodic. Further, such a sim-
ulation is initiated with a periodic velocity field with the periodicity being . L = 2π 
in each of the three Cartesian directions. Under these conditions, the velocity and 
the pressure fields continue to be periodic at all later times. However, with time, the 
composition of the velocity and the pressure field changes in terms of the existence 
of various Fourier modes of these variables. 

A decaying turbulent flow field is an example of a statistically homogeneous flow 
field. Thus, volume averaging of flow variables or their functions can be leveraged 
to estimate their expected values (4.62, Chap. 5). A direct numerical simulation of 
decaying turbulence provides extensive data on various flow variables at all grid 
points in the cubical domain and at every discrete (but small) time step of the sim-
ulation. This database can be employed to estimate the mean velocity and pressure 
fields at any chosen instant, as 

. V V V and p p V (7.53) 
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where . V is the cubical domain with each edge being of length .2π and . φ V is the 
volume averaged value of . φ over the cubical domain (see Eq. 4.62). Similarly, the 
turbulence kinetic at any time instant in the flow field is estimated as 

. k = 
1 

2 
(Vi Vi V )(Vi Vi V ) V 

DNS databases of decaying turbulence do show that 

. 
| V | 
k1/2 

≈ 0 (7.54) 

where .| V | is the magnitude of the mean velocity vector. Thus, in a decaying 
turbulent flow field 

.Vi V Vi ≈ Vi (7.55) 

Thus, 

.Vi (K ) = FK Vi = FK {Vi } . (7.56) 

Since the individual velocity components are periodic at all time instants in all three 
Cartesian directions, using (7.52) and (7.56), we express the instantaneous turbulence 
kinetic energy (. k) as a summation of appropriate Fourier amplitudes over the space 
of wavenumber vectors: 

. k = 
1 

2 
Vi Vi V = 

1 

2 
V1V1 + V2V2 + V3V3 V 

= 
1 

2 
K 

V1(K )V ∗
1 (K ) + 

1 

2 
K 

V2(K )V ∗
2 (K ) + 

1 

2 
K 

V3(K )V ∗
3 (K ) 

= 
1 

2 
K 

Vi (K )V ∗
i (K ) (7.57) 

Based on the relationship (7.57), we define the spectral density function of . k, 
(.E(K )) as  

.E(K ) = lim 
K→0 

1 

K 

1 

2 
K 

Vi (K )V ∗
i (K ) (7.58) 

where the summation on the RHS of (7.58) is over all those wavenumber vectors. K 
such that 

.K ≤ |K | < K + K (7.59) 

Here .K is a scalar quantity (.≥ 0) and . K is a small independent increment in 
the value of . K . It follows from the definition of E(K) that 

. 

∞ 

0 
E(K )d K  = k. (7.60) 
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Fig. 7.2 The spectral or the 
Fourier space..K is an 
arbitrary wavenumber vector 

The function .E(K ) is also called the energy spectrum function. 
Since the wavenumber vectors themselves are independent quantities (7.12), we 

can visualize a three-dimensional space wherein the Cartesian axes represent the 
three scalar components of an arbitrarily chosen wavenumber vector (Fig. 7.2). 

.K1 = 
2π 
L 

n1, K2 = 
2π 
L 

n2 and K3 = 
2π 
L 

n3 (7.61) 

Such a three-dimensional space is called the Fourier space or the spectral space. In  
such a space, the set of all possible wavenumber vectors, .K , which satisfy (7.59) 
are the position vectors of various locations, all of which lie within a thin shell of 
thickness . K and radius . K . Thus, it follows from (7.59) and (7.60), the quantity 
.E(K K represents the part of turbulence kinetic energy (. k) which is present inside 
this thin shell in the Fourier space. Based on our earlier discussion in Sect. 7.1, an  
independently chosen value of.K can be interpreted as a length-scale of the flow that 
exists in the cubical domain. Thus, the quantity.E(K K (7.58) is often interpreted 
as the part of turbulence kinetic energy (. k) which is associated with a length-scale 
.lK = 2π 

K or with an eddy of characteristic length . lK . The spectral density function 
(7.58) provides us with a mathematical tool which can quantify the contribution of 
various length-scales to the turbulence kinetic energy per unit mass (. k) that is present 
in the flow domain. 

Further, we define the spectral density function of . . In (7.52), we set 

.φ1 = 
∂Vi 

∂xk 
and φ2 = 

∂Vi 

∂xk 
(7.62) 

This leads to 

. 
∂Vi 

∂xk 

∂Vi 

∂xk V 
= 

K 

FK 
∂Vi 

∂xk 
F∗

K 
∂Vi 

∂xk 
(7.63) 
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Using (7.39) on the RHS of (7.63) leads to 

. 
∂Vi 

∂xk 

∂Vi 

∂xk V 
= 

K 

FK 
∂Vi 

∂xk 
F∗

K 
∂Vi 

∂xk 

= 
K 

i Kk Vi (K ) i Kk Vi (K ) ∗ 

= 
K 

−i2Kk Vi (K )Kk Vi (K )∗ 

= 
K 

Kk Kk Vi (K )Vi 
∗
(K ) 

= 
K 

K 2Vi (K )Vi 
∗
(K ) (7.64) 

where .K 2 = Kq Kq is the square of the magnitude of the wavenumber vector . K . 
Multiplying both sides by . ν and using the fact that in homogeneous turbulence, 
volume averaging leads to an estimate of the expected value of a random quantity of 
interest, we are led to the following expression for the dissipation rate (. ) 

. = ν 
∂Vi 

∂xk 

∂Vi 

∂xk V 
= ν 

K 

K 2Vi (K )Vi 
∗
(K ) (7.65) 

Accordingly, we define the spectral density function of . as 

.D(K ) = lim 
K→0 

ν 
K 

K 2Vi (K )V ∗
i (K ) (7.66) 

where the summation of the RHS of (7.58) is over all those wavenumber vectors . K 
such that 

.K ≤ |K | < K + K (7.67) 

The function .D(K ) is also the dissipation-rate spectrum function. It follows from 
the definition of E(K) that 

. 

∞ 

0 
D(K )d K  = (7.68) 

The quantity.D(K K (7.66) can be interpreted as the part of the dissipation rate (. ) 
which is associated with a length-scale.lK = 2π 

K . The spectral density function (7.66) 
provides us with a mathematical tool which can quantify the contribution of various 
length-scales to the dissipation rate of turbulence kinetic energy per unit mass (. ) 
that is present in the flow field. 
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7.3 Evolution of Energy and Dissipation Spectra in Decaying 
Turbulence: DNS-Based Observations 

To examine how the spectra of turbulence kinetic energy and its dissipation rate 
evolve in time, we refer to the DNS database of incompressible decaying turbulence. 
This simulation has been performed over a cubical domain, with the initial Reynolds 
number based on the Taylor microscale being.40. The initial velocity field is generated 
such that its spectral density function is described by the function 

.E(K ) = A0K 4e(−2 K 2/K 2 
0 ) (7.69) 

where .A0 and .K0(= 1) are constants. This initial spectral density function of . k is 
plotted in Fig. 7.3. More details about such a simulation are available in [ 7]. The 
horizontal axis is for the quantity .K (wavenumber vector magnitude). The curve of 
.E(K ) shows that initially . k is concentrated in a narrow neighborhood of wavenum-
ber vectors with magnitude .K = 1. In other words, the turbulence kinetic energy is 
concentrated in a narrow neighborhood of the length-scale .lK = 2π). As time pro-
gresses, the turbulent flow field evolves. We list some important observations based 
on the results of this DNS simulation. 

1. The temporal variation in. k and. is shown in Fig. 7.4. In this figure, the horizontal 
axis represents normalized time . t . 

.t = t/τ where τ = λ 
Vrms 

(7.70) 

The symbols. λ and.Vrms are defined in (7.9) and (7.8), respectively. The quantity. τ 
is called the eddy turnover time of the simulation. Evidently, the turbulence kinetic 
energy does decay monotonically. However, the variation in. is non-monotonous. 
. first rapidly increases, reaches a peak value, and subsequently reduces. 

Fig. 7.3 Spectral density 
function of. k at different 
time instants in a simulation 
of decaying turbulence 
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Fig. 7.4 Temporal evolution 
of. k and. in decaying 
turbulence. The symbols. ko 
and. o represent the initial 
values of. k and. 

2. To understand the corresponding evolution of length-scales in the same flow field, 
in Fig. 7.3 we present the spectral density function (.E(K )) of  . k at three more 
representative time instants. These normalized time instants are .t = 0.7 (before 
the peak event of. in Fig. 7.4),.t = 1.3 (close to the peak event) and.t = 2.6 (after 
the peak event) As time progresses, it is evident that the energy spectrum spreads 
to larger values of . K . In other words, as time progresses, smaller-length-scales 
are generated, and those scales also have some contribution to . k. This process of 
the spread of turbulence kinetic energy to smaller length-scales is also called the 
cascade of turbulence kinetic energy or simply as the energy cascade process. 
These new smaller scales of motion can be related to the appearance of eddies of 
smaller diameters in the flow domain. 

3. There seems to be an upper limit on.K beyond which.E(K ) does not spread further 
(assuming .E(K ) <  10−4 to be of negligible significance in Fig. 7.3). We denote 
this value of .K by .Kmax. Thus, 

.k = 
∞ 

0 
E(K )d K  ≈ 

Kmax 

0 
E(K )d K (7.71) 

4. To quantify the distribution of energy over the new length-scales that have been 
generated in the flow field, define a new quantity . fk : 

. fk = 
3K0 
0 E(K )d K  

k 
(7.72) 

where .K0 is the magnitude of the wave number vector in the neighborhood of 
which all the initial. k were concentrated. The quantity. fk represents the fraction of 
instantaneous turbulence kinetic energy that is associated with those length-scales 
(. lK ) such that, 

.lK > 
2π 
3K0 

(7.73) 

This range does represent the largest length-scales present in the flow field. In 
Table 7.1, we present computed values of. fk at different time instants in the same 
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DNS simulation. We observe that at time .t = 0, . fk ≈ 1.0, which simply means 
that all initial turbulence kinetic energy was associated with the largest length-
scales. We observe that as time progresses, . fk reduces. However, evidently, at all 
three representative time instants (pre-occurrence of/close to/post-occurrence of 
the peak event) . fk ≥ 0.7. Thus, the bulk of turbulence kinetic energy continues 
to be concentrated at large scales .(lK > 2π 

3K0 
) during the entire decay process. 

5. To quantify the distribution of dissipation rate (. ) over the new length-scales that 
have been generated in the flow field, we define a new quantity: . f 

. f = 
3K0 
0 D(K )d K  

(7.74) 

The quantity . f represents the fraction of instantaneous dissipation rate that is 
associated with those length-scales (. lK ) such that, 

.lK > 
2π 
3K0 

(7.75) 

In Table 7.1, we have included the computed values of . f , as well, from the same 
DNS simulation at the same three time instants where we earlier examined . fk . 
We observe that at time.t = 0,. f , too, is quite high (.≈ 0.9). This is so because the 
length-scales in the range included in (7.69) were the only length-scales present in 
the flow field. However, we observe that as time progresses, . f decreases rapidly 
and tends to reach a significantly smaller value.(0.4) compared to what. fk attains 
at the corresponding instants. Thus, we conclude that the bulk of dissipation tends 
to move to newly created smaller scales in the flow field. In other words, the bulk of 
. tends to be associated with the smaller eddies of the flow domain. This behavior 
is in contrast with what we observed for . k, the bulk of which tends to remain 
associated with the largest length-scales. A simple mathematical explanation of 
this contrasting behavior emerges if we compare the expressions of .E(K ) (7.58) 
and.D(K ) (7.66). Since. is proportional to the spatial gradients of the fluctuations, 
the expression of.D(K ) has the square of the magnitude of the wavenumber vector 
(.K 2) as an amplifying factor. 

.D(K ) = 2νK 2E(K ) (7.76) 

As kinetic energy spreads to larger . K ’s during the cascade process, .D(K ) gets 
more amplified by large values of .K 2 resulting into enhanced contribution to . 
from large . K ’s (small length-scales). 

Table 7.1 Variation in . fk and. f at different time instants of a simulation of decaying turbulence 
with initial. Reλ = 40

.t = 0 .t = 0.7 .t = 1.3 . t = 2.6 
. fk 1.0 0.8 0.8 0.8 

. f 0.9 0.5 0.4 0.4 
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6. It is observed that in simulations with higher initial .Reλ, . f tends to become 
smaller compared to its value in simulations with smaller initial .Reλ. Following 
this trend, it is expected that as .Reλ increases, a higher contribution to . would 
come from the smallest scales in the flow field. 

7.4 Explanation of Energy Cascade: Fourier Description 
of Navier-Stokes Equation 

With the motivation to develop insights into the processes that cause the generation 
of new, smaller length-scales in a turbulent flow field, in this section, we wish to 
specifically derive and examine the evolution equation of the quantity.Vi (K ). Such an 
equation can possibly help us understand how a particular mode of the velocity field, 
which has been nonexistent initially in a turbulent flow field, comes into existence 
at a later time. 

As the first step toward deriving the evolution equation of the quantity.Vi (K ), we  
subject the continuity (3.10) and the momentum equations (3.11) to the.FK operator 
of (7.34). Like the previous sections of this chapter, our focus is on a decaying 

turbulent flow field wherein .Vi = Vi and .FK {Vi } = FK Vi (K ) = Vi (K ). Even  

though all Fourier amplitudes are, in general, functions of time, for algebraic brevity, 
we do not include the variable . t as an argument of these quantities: it is implied. 

The continuity equation, when subjected to the .FK operator (7.34), transforms 
as: 

. FK 
∂Vq 

∂xq 
= FK {0} 

i Kq Vq (K ) = 0 
Kq Vq (K ) = 0 (7.77) 

The final form of (7.77) is the constraint that the continuity equation (3.10) imposes on 
the vector.V (K ). Equation (7.77) implies that the vector. ˆV (K ) must be perpendicular 
to the corresponding wavenumber vector (. K ) at all time instants. 

Next, we subject the momentum equation (3.11) to the Fourier operator. 

.FK 
∂Vj 

∂t 
+ Vk 

∂Vj 

∂xk 
= FK − 

1 

ρ 
∂ p 

∂x j 
+ ν 

∂2Vj 

∂xk∂xk 
(7.78) 

Since .Vk = Vk (7.55) and . 
∂ p 
∂xi 

= ∂ p 
∂xi 

(7.3), 

.FK 
∂Vj 

∂t 
+ Vk 

∂Vj 

∂xk 
= FK − 

1 

ρ 
∂ p 

∂x j 
+ ν 

∂2Vj 

∂xk∂xk 
(7.79) 
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Using (7.35) in (7.79) leads to 

.FK 
∂Vj 

∂t 

I 

+FK Vk 

∂Vj 

∂xk 

I I  

= FK − 
1 

ρ 
∂ p 

∂x j 

I I I  

+FK ν 
∂2Vj 

∂xk∂xk 

I V  

(7.80) 

Using (7.40) for the term involving a time derivative and (7.39) for the terms involving 
spatial derivatives, (7.81) is expressed as 

. 
dVj (K ) 

dt 
+ G j (K ) = −i K j p(K ) − νK 2Vj (K ) (7.81) 

where 

.p(K ) = FK 
p (X ) 

ρ 
(7.82) 

and 

.G j (K ) = FK G j (X ) and G j = Vk 

∂Vj 

∂xk 
(7.83) 

The exact expression of .G(K ) can be obtained in terms of the Fourier amplitudes 
of various velocity components. Employing the continuity equation (3.10), we first 
express .G j in an alternate form 

.G j (X) = Vq 

∂Vj 

∂xq 
= 

∂(Vj Vq ) 
∂xq 

(7.84) 

Subsequently, we subject (7.84) to the .FK operator. 

.G j (K ) = FK G j (X ) = FK 
∂(Vj Vq ) 

∂xq 

= i KqFK (Vq Vj ) 

= i KqFK 

⎧⎪⎨ 

⎪⎩ 

⎛ 

⎜⎝
K 

Vj (K )ei K  ·X 

⎞ 

⎟⎠ 

⎛ 

⎜⎝
K 

Vq (K )ei K  ·X 

⎞ 

⎟⎠ 

⎫⎪⎬ 

⎪⎭ 

= i Kq 

⎛ 

⎜⎝
K 

Vj (K )ei K  ·X 

⎞ 

⎟⎠ 

⎛ 

⎜⎝
K 

Vq (K )ei K  ·X 

⎞ 

⎟⎠ e−i K ·X 

V 
= i Kq 

K K 

Vj (K )Vq (K ) ei K  ·X ei K  ·X e−i K ·X 

V 

= i Kq 

K K 

Vj (K )Vq (K )δK +K ", K 
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= i Kq 

K 

Vj (K )Vq (K − K ) (7.85) 

Thus, the Fourier amplitude of the function.G j (X ) corresponding to the wavenumber 
vector .K involves a summation of the product of Fourier amplitudes of relevant 
velocity components over all possible wavenumber vectors (represented by .K in 
the summation appearing on the RHS of 7.85). 

Using (7.85), (7.81) is now expressed as 

. 
dVj (K ) 

dt 
= −i Kq 

K 

Vj (K )Vq (K − K ) − i K j p(K ) − νK 2Vj (K ) (7.86) 

Further, simplification of (7.86) can be achieved by finding an expression for 
.K j p(K ) appearing on the RHS of (7.86) in terms of.G j . This particular relationship 
is derived by first contracting (7.86) with the wavenumber vector (. K ). 

. K j 
dVj (K ) 

dt 
= −K j i Kq 

K 

Vj (K )Vq (K − K ) 

− i K j K j p(K ) − ν K j K
2Vj (K ), or 

d(K j Vj (K )) 
dt

= −K j i Kq 

K 

Vj (K )Vq (K − K ) 

− i K 2 p(K ) − ν K 2K j Vj (K ) (7.87) 

where .K 2 = K j K j is the square of the magnitude of the wavelength vector . K . 
Now using the constraint (7.77), (7.87) simplifies to 

.0 = −K j i Kq 

K 

Vj (K )Vq (K − K ) − i K 2 p(K ) (7.88) 

Using the expression of (7.85), (7.88) is expressed in a more compact manner as 

.i K j p(K ) = −K j 
Km Gm (K ) 

K 2 (7.89) 

We can now employ (7.89) to express (7.86) in the following form 

. 
dVj (K ) 

dt 
= −  δ jm − 

K j Km 

K 2 Gm (K ) − ν K 2Vj (K ) (7.90) 

which is the evolution equation of .Vj (K ) in its most simplified form. 
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Fig. 7.5 Geometric 
decomposition of the vector 
. Ĝ(K ) 

We can show that the first term on the RHS (7.90) is the projection of.G(K ) along 
the wavenumber vector . K . Like any other vector, we can split the vector .G(K ) into 
two components, 

.G(K ) = G||
(K ) + G⊥

(K ) (7.91) 

where.G
||
(K ) and.G

⊥
(K ) are the projections of the vector.G(K ) along and perpen-

dicular to the vector . K . Figure 7.5 we show this decomposition (7.91). In the figure, 

the vector .AC and .AB equal .G
||
(K ) and .G

⊥
(K ), respectively. 

We can show that 

.G|| 
j (K ) = 

K j Km Gm 

K 2 (7.92) 

and thus, according to (7.91), 

.G⊥
j (K ) = G j (K ) − 

K j Km Ĝm (K ) 
K 2 = δ jm − 

K j Km 

K 2 Gm (K ). (7.93) 

Thus, (7.90) can alternatively be expressed as 

. 
dVj (K ) 

dt 
= −G⊥

j (K ) 

I 

−ν K 2Vj (K ) 
I I  

(7.94) 

Equation (7.94) shows that .Vi (K ) evolves due to the action of two processes. 
Process. I is the one that originated from the vector. G (7.83), which represents the non-
linear advection process in the physical space. The second process (.I I  ) represents a 
viscous process. Indeed, the viscous process equals.Vj (K ) with a negative sign and a 
multiplication factor which is positive-definite (.νK 2). Thus, the process.I I  of (7.94) 
must cause a monotonic decay of the quantity .Vj (K ) with time. This monotonic 
decaying action is eventually responsible for converting the kinetic energy associated 
with the wavenumber .K to the internal energy of the fluid. The presence of .K 2 as a 
multiplication factor in.I I  suggests that the process of converting the kinetic energy 
associated with velocity fluctuations is magnified at wavenumber vectors which 
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have large magnitudes. Based on this insight, we conclude the dissipation process 
(conversion of turbulence kinetic energy to heat) must predominantly happen at 
small length-scales (in modes with large values of. K ). This insight is in line with the 
observations in Table 7.1. 

The viscous process of .Vj (K ) (7.90) is a  local process in the Fourier space, 
because it involves the Fourier amplitude of velocity corresponding to the same 
wavenumber vector .K which appears in the quantity .Vj (K ) on the LHS of (7.90). 
Clearly, such a local process can never distribute energy to other length-scales. Thus, 
this process cannot be held responsible for the generation of newer length-scales in 
a turbulent flow field. 

In contrast, process. I is non-local in Fourier space. This is evident by its algebraic 
form itself. 

. −G⊥
j (K ) 

I 

= 

⎡ 

⎢⎣ δmj  − 
Km K j 

K 2 i Kq 

K 

Vm (K )Vq (K − K ) 

⎤ 

⎥⎦ 

(7.95) 

First, the process . I has a summation involving Fourier amplitudes of velocity over 
all possible wavenumber vectors (.K ). Further, in every term in this summation 
two additional kinds of Fourier amplitudes are involved: .Vi (K ), and . Vi (K − K ) 
along with the presence of the components of the wavenumber vector . K , itself. 
Owing to this involvement of three different wavenumber vectors in each term of the 
summation, Process I is also called a triadic process. Indeed, this interaction of the 
Fourier amplitudes at two different wavenumber vectors, .Vi (K ), and . Vi (K − K ) 
contributing to the evolution of a different Fourier amplitude.Vi (K ) gives this process 
the ability to generate newer length-scales in the flow field. 

In summary, the derivation and the subsequent examination of the evolution equa-
tion of .Vi (K ) (7.94) have provided us with new insights on the role of the advection 
and viscous processes. While the advection process tends to create newer scales of 
motion, the viscous process converts the kinetic energy present in the fluctuating 
velocity field to heat. Since this converting action of the viscous process is amplified 
by the square of the magnitude of the wavenumber vector, the viscous dissipative 
action is expected to be more prominent in those modes which have large values of 
.K (small length-scales). 

Any further mathematical analysis of various processes of (7.94) is deemed out-
side the scope of this book. The reader is referred to [ 8] and other cited works therein 
to have a more advanced analysis and discussion on these processes. 

7.5 Kolmogorov’s Hypotheses 

Russian mathematician Andrey Kolmogorov (1903–1987) put forward a set of 
hypotheses which when interpreted using arguments involving dimensions of various 
statistical quantities and their orders of magnitude leads to some insightful conclu-
sions about the cascade process in turbulent flows. These hypotheses were proposed 



128 7 Understanding Multiplicity of Length-Scales in Turbulent Flows 

Fig. 7.6 Schematic diagram of the cascade process (Not to scale).. P represents the production rate 
of turbulence kinetic energy 

during an era when the computational fluid dynamics (CFD) tools and computing 
hardware were not available to perform direct numerical simulations of turbulent 
flow fields. 

There is no mathematical proof available for these hypotheses. Nonetheless, these 
hypotheses have been employed as the cornerstones based on which our understand-
ing of turbulent flows has evolved. Various cues emerging from these hypotheses 
have also been leveraged for turbulence modeling (some such aspects are discussed 
in Chap. 8). With the advent of more advanced computing hardware, several direct 
numerical simulations of turbulent flow fields have been performed in recent years, 
at increasingly high Reynolds numbers. Such numerical simulations are providing 
new opportunities to further examine these hypotheses. 

Kolmogorov’s hypotheses refer to the cascade process, about which some numer-
ical evidence and insights have already been provided in our previous sections. Based 
on this background, in Fig. 7.6, we present a schematic diagram of the cascade pro-
cess. This will help us in our upcoming discussion on Kolmogorov’s hypotheses. In 
Fig. 7.6, . lo represents the characteristic length-scale of the largest eddies in the flow 
field. On the other hand, . η represents the characteristic length-scale of the smallest 
eddies. The symbol . L represents the characteristic length-scale of the flow domain 
itself. The order of magnitude of . L is almost the same as the order of magnitude of 
. lo. We introduce two more length-scales in this diagram. The symbol .lE I  is defined 
such that the bulk of . k lies within the wavenumber .K < 2π 

L E I  
. The symbol .lDI  is 

defined such that the bulk of . lies beyond the wavenumber .K > 2π 
L E I  

. We call the 
range of length-scales between . L and .lDI  as the energy-containing range. 

In our DNS simulation cases of decaying turbulence discussed earlier in this 
chapter (Fig. 7.4), the turbulence kinetic energy was deliberately initiated in this range 
of scales, and was subsequently allowed to spread to smaller scales as determined 
by the governing equations of motion. The production process by itself is absent in 
decaying turbulence (statistically homogeneous flow field, Eq. 7.6). However, in a 
general flow field wherein the production process of the turbulence kinetic is non-
zero, turbulence kinetic energy is injected into the cascade process by the production 
mechanism (5.56). Mathematically, the production mechanism of the turbulence 
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kinetic energy (5.56) is the double-dot interaction between the Reynolds stress tensor 
and the mean velocity gradient tensor. 

Various components of the Reynolds stress tensor (.Ri j  ), which are the mean 
values of products of fluctuating components of the velocity field (like . k itself), are 
associated mainly with the largest eddies. Further, the mean velocity gradient scales 
as .Vo/L , where .Vo and .L represent the characteristic velocity associated with the 
boundary conditions and the length-scale associated with the geometry of the flow 
domain. The production process (depicted by .P in Fig. 7.6), even if it is non-zero, 
is predominantly a large-scale process. For such flow fields, the production rate of 
turbulence kinetic energy still happens in the same range of length-scales: (.lE I  , . L) 
as shown schematically in Fig. 7.6. 

On the other end of the Fig. 7.6, the range of length-scales between .lDI  and . η is 
called the dissipation range, and the range of length-scales between the.lE I  and.lDI  is 
called the inertial subrange. This hierarchy of length-scales is visualized as eddies of 
different diameters. At sufficiently high Reynolds numbers, the process of dissipation 
tends to happen predominantly in the dissipation range of scales (eddies). At such 
high Reynolds numbers, there may not be significant dissipation happening in the 
inertial subrange or the energy-containing scales. Thus we draw three inferences: 

1. The rate (.Jkg−1s−1) at which energy is transferred across the interfacing length-
scale .lDI  (we denote this rate by the symbol .TDI ) must be approximately the 
same as . , itself. 

2. The rate (.Jkg−1s−1) at which energy is transferred across the interfacing length-
scale .lE I  (we denote this rate by the symbol .TE I  ) must also be approximately to 
be the same as . , itself. 

3. The rate (.Jkg−1s−1) at which energy is transferred across any arbitrary length-
scale . l where .lE I  > l > lDI  (we denote this rate by the symbol . Tl ) must also be 
approximately the same as . , itself. 

The amount of kinetic energy that is dissipated per unit mass per unit time in the range 
of dissipative scales is sourced originally from the largest eddies and is successively 
transferred to smaller eddies. Finally, in the dissipative scales, this energy is converted 
to heat. In Fig. 7.6, the arrows depict the direction of flow of turbulence kinetic energy 
(. k) across various scales of motion. 

Using arguments based on dimensionality, we estimate the order of magnitude of 
the energy transfer rate from the largest eddies (.Jkg−1s−1) to the smaller ones is 

. 
u3 o 
lo 
. The symbols .uo and . lo denote the characteristic velocity and length-scale of the 

largest eddies in the flow field. Based on this estimate, we summarize the cascade 
process as described in the previous paragraph as, 

. 
u3 

o 

lo 
∼ TE I  ∼ Tl ∼ TDI ∼ (7.96) 

where the symbol .∼ means the equality in the orders of magnitude of the quantities 
on the left-hand and right-hand sides of the symbol. 
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7.5.1 Kolmogorov’s First Similarity Hypothesis 

Kolmogorov’s first similarity hypothesis states “In every turbulent flow at sufficiently 
high Reynolds number, the statistics of small-scale-motion have a universal form 
determined by. ν and . ” [ 6]. Here. ν and. denote the coefficient of kinematic viscosity 
of the fluid and the rate of dissipation of turbulence kinetic energy per unit mass 
(5.58), The Reynolds number (.Re) in the context is one based on the characteristic 
length (. lo) and velocity scale (. uo) of the largest eddies 

.Re = 
uolo 

ν 
(7.97) 

This hypothesis can be employed to estimate the orders of magnitude of the 
characteristic length, time and velocity scales of the smallest eddies in a turbulent 
flow field. We use the symbols . η, .uη and .τη to denote these quantities, respectively. 
Based on Kolmogorov’s first similarity hypothesis, we infer 

.η ∼ aνb (7.98) 

.uη ∼ cνd (7.99) 

.τη ∼ eν f (7.100) 

The symbols . a, . b, . c, . d, . e and . f are constants to be determined. 
Using the dimensions of . η (. m), .uη (.ms−1) and .τη (. s) on one hand and those 

of . (.Jkg−1s−1) and . ν (.m2s−1) on the other hand, leads to a system of six linear 
algebraic equations in six unknowns coefficients which are appearing as exponents 
in (7.98–7.100). Solving this set of equations leads to 

.(a, b, c, d, e, f , g) = −1 

4 
, 
3 

4 
, 
1 

4 
, 
1 

4 
, −1 

2 
, 
1 

2 
(7.101) 

Thus, Kolmogorov’s first similarity hypothesis leads to the following characteristic 
measures of the smallest eddies in a turbulent flow field. 

.η ∼ 
ν3

1/4 

(7.102) 

.uη ∼ ( )1/4 (7.103) 

.τη ∼ ν 1/2 
(7.104) 

If we define a Reynolds number specifically in the context of the smallest eddies, 
it can be verified that such a Reynolds number .(Reη) has its order of magnitude as 
unity. 

.Reη = 
uηη 
ν

∼ 1 (7.105) 
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The quantities. η,.uη and.τη are theKolmogorov length-scale, the Kolmogorov velocity 
scale and the Kolmogorov time scale, respectively. 

The order of magnitude estimates arrived in (7.102)–(7.104) can be further 
employed to find estimates of the ratios of the characteristic features of the largest 
to the smallest eddies in a turbulent flow field. Using the estimate included in (7.96), 
we first express the order of magnitude of . as 

. ∼ 
u3 

o 

lo 
(7.106) 

Next using this estimate of . along with the estimates of the Kolmogorov length, 
velocity, and time scales (7.102, 7.103, and 7.104), leads to the following relation-
ships 

. 
η 
lo 

∼ Re−3/4 (7.107) 

. 
uη 
uo 

∼ Re−1/4 (7.108) 

. 
τη 
τo 

∼ Re−1/2 (7.109) 

where . lo, . uo, and .τo are the characteristic length, velocity and times scales of the 
largest eddies, and 

.τo = 
lo 

uo 
. (7.110) 

These estimates (7.107–7.109) clearly show at a higher .Re, the disparity between 
the largest to the smallest length-scales, the disparity between the largest to the 
smallest velocity scales, and the disparity between the largest to the smallest time 
scales increase exponentially. Indeed, these are the estimates based on which we 
introduced the reader to the essential nature of turbulence earlier in Chap. 3 (3.6 and 
3.5). 

7.5.2 Kolmogorov’s Second Similarity Hypothesis 

Kolmogorov’s second similarity hypothesis states “In every turbulent flow at suf-
ficiently high Reynolds number, the statistics of the motion of length-scale . l in the 
range .lo l η have a universal form that is uniquely determined by . and is 
independent of . ν” [ 6]. Here. lo is the characteristic length-scale of the largest eddies 
existing in the turbulent flow field, and . η represents the Kolmogorov length-scale. 

This hypothesis can be used to estimate.u(l) and.τ (l), where. l represents a length-
scale chosen independently in the range .lo l η and the symbols .u(l) and .τ (l) 
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represent the characteristic velocity and time scales of the eddies having their char-
acteristic length-scales as . l. Following the second similarity hypothesis, we have 

.u(l) ∼ alb (7.111) 

.τ (l) ∼ cld (7.112) 

Using the dimensions of.u(l) (.ms−1) and. τl (. s) on one hand and those of. (.Jkg−1s−1) 
and . l (. m) on the other hand, leads to a system of four linear algebraic equations in 
four unknowns coefficients, which are appearing as exponents in Eqs. (7.111–7.112). 
Solving this set of equations leads to 

.(a, b, c, d) = 1 

3 
, 
1 

3 
, −1 

3 
, 
2 

3 
(7.113) 

Thus, Kolmogorov’s second similarity hypothesis leads to the following estimates for 
the eddies with their characteristic length-scales (. l) lying in the range .lo l η. 

.u(l) ∼ ( l)1/3 (7.114) 

.τ (l) ∼ 
l2

1/3 

. (7.115) 

Using (7.106), Eqs. (7.114) and (7.115) can alternatively be expressed in terms 
of the characteristic velocity (. uo) and the characteristic time scale (. τo) of the largest 
eddies 

.u(l) ∼ uo 
l 

lo 

1/3 

(7.116) 

.τ (l) ∼ τo 
l 

lo 

2/3 

(7.117) 

Since.l/lo < 1 (7.116) and (7.117) indicate that smaller eddies have smaller char-
acteristic time scales and smaller characteristic velocity scales compared to those of 
the larger eddies. The reduction in the characteristic time means that smaller eddies 
tend to rotate faster (higher angular velocities) as compared to the larger eddies. 
However, their characteristic tangential velocity, represented by.u(l), is smaller than 
that of the larger eddies. 

Kolmogorov’s second similarity hypothesis can be leveraged to estimate the form 
of the spectral density function of. k, as well, in the range.lo l η. Following the 
statement of the hypothesis, we make the following conjecture 

.E(K ) ∼ alb ∼ a 2π 
K 

b 

(7.118) 

We ignore the factor .2π in (7.120), and instead concentrate on seeking the values of 
the exponents,. a and. b. The SI units of the function.E(K ) are.Jmkg−1s−1. Matching 
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the dimensions of the two sides of (7.118) leads to a system of two linear equations 
in two unknown coefficients . a and . b. The solution of this system of equations is 

.(a, b) = 2 

3 
, 
−5 

3 
(7.119) 

Thus, (7.118) is expressed as 

.E(K ) ∼ 2/3K −5/3 (7.120) 

Thus, a plot of.lnE(K ) versus.lnK must be a straight line with its slope being.−5/3. 
A straightforward implication of (7.120) is  

.D(K ) = 2ν K 2E(K ) ∼ 2ν K 2 2/3K −5/3 ∼ 2 2/3K 1/3 (7.121) 

Thus, it is expected that at a high Reynolds number and in the range.lo l η, the 
slope of .lnD(K ) versus .lnK must be .1/3. 

7.5.3 Kolmogorov’s Hypothesis of Local Isotropy 

Kolmogorov’s hypothesis of local isotropy states that “at sufficiently high Reynolds 
number, the small-scale turbulent motions (at .l lo) are statistically isotropic” [ 6]. 
One plausible interpretation of this hypothesis is that the statistics of the orientational 
tendencies of the smallest eddies in a turbulent flow field are oblivious to the boundary 
conditions of the turbulent flow field. While the largest eddies in a turbulent flow field 
are oriented following the geometric constraints of the flow domain, at smaller scales, 
these constraints become less important, and consequently, the smallest eddies tend 
to lose any preferred orientational characteristics. 
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Turbulence models by definition are additional approximate equations so that the 
RANS equation set (5.10) can be mathematically closed. Every turbulence model 
involves some uncertainty. It can not be an exact representation of the flow physics. 
Notwithstanding this realization, the computational fluid dynamics (CFD) com-
munity does need turbulence models. At the same time, any arbitrary relationship 
between the secondary and the primary unknowns cannot be accepted by the com-
munity as a viable turbulence model. There are, after all, features based on which a 
turbulence model can be deemed acceptable. 

1. A turbulence model must predict the primary RANS variables (. Vi and. p ) with 
an acceptable level of accuracy in, at least, a few types of flow fields. 

2. A turbulence model is expected to provide reasonably accurate predictions for a 
wider variety of flow fields. 

3. A turbulence model must be proposed based on some essential physics of the 
flow field. 

4. A turbulence model is expected not to be algebraically too complex. 
5. A turbulence model is expected not to introduce any undesirable numerical issues 

to the overall procedure seeking a solution of the RANS equation set (5.10). 
6. A turbulence model is expected not to add too much additional computational 

overhead to the overall numerical scheme employed for solving the RANS equa-
tion set (5.10). 

In the century-long history of turbulence research, several turbulence models 
have been proposed, and employed for performing CFD simulations. Our goal in 
this chapter is not to build an exhaustive compendium of all these models. However, 
in the rest of the chapter, we focus on a particular category of turbulence models 
called the eddy viscosity closure models. 
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8.1 Eddy Viscosity Closure 

The eddy viscosity closure (also called the turbulent viscosity closure) is inspired by 
the Stokes constitutive equation for the viscous stress tensor in a Newtonian fluid. 
We recall that in a viscous fluid, the instantaneous viscous stress tensor (.τi j  ) is the 
anisotropic part of the instantaneous local stress tensor (.σi j  ) 

.τi j  = σi j  − σkk 
δi j  

3 
(8.1) 

where .σkk = −p (. p being the local pressure value). The Stokes constitutive rela-
tionship for .τi j  in a Newtonian fluid is (5.18) 

.τi j  = 2μSi j (8.2) 

where .Si j  represents the .(i j  )th component of the instantaneous strain-rate tensor, 
and . μ is a scalar which is called the coefficient of dynamic viscosity. 

The essential assumption made by this model is that the tensor . τ is aligned per-
fectly with the instantaneous strain-rate tensor. In the context of a symmetric second-
order tensor, the word “aligns” means that the principal coordinate system of the two 
tensors in context is identical. The Stokes hypothesis is a semi-empirical proposi-
tion. However, it is observed to be true for several common fluids like water and 
air. As temperature varies, the scalar . μ may undergo some variations in Newtonian 
fluids. However, . μ still does not any have dependence on the instantaneous velocity 
gradient field. 

The kinetic theory of gases postulates that the instantaneous velocity of a gas 
molecule within a fluid particle can be expressed as [ 9] 

. 
nU = V + nC (8.3) 

where. 
nU represents the velocity of the. nth molecule residing inside a fluid particle. 

On the continuum scale, a fluid particle is indeed a point mass. However, on the abso-
lute scale, it does have non-zero dimensions. In Fig. 8.1 the shown cube represents a 
magnified fluid particle. Various dots represent molecules which are currently inside 
the fluid particle. At this instant, the centre of mass of the fluid particle is located at 
point Q with the position vector . X . The symbol .V represents the velocity vector of 
the centre of mass of the shown fluid particle. In continuum description, this is called 
the velocity of the fluid particle itself. The symbol . nC represents the velocity of the 
. nth molecule relative to the centre of mass of the fluid particle. The velocity vector 
. 
nC is called the peculiar velocity of the . nth molecule. Following the assumptions 
of the kinetic theory of gases, the peculiar velocity vector is deemed to be random 
in nature, whereas .V (X), the velocity of the fluid particle itself is deemed to be a 
deterministic quantity. It can be shown that the instantaneous stress tensor (. σ ) aris-
ing in a continuum flow field of a gaseous medium is the ensemble-average of the 
moment.ci c j . Thus, it is the anisotropic part of the ensemble average, of .ci c j which 
is eventually modelled by the Stokes constitutive relationship (8.2). 
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Fig. 8.1 The instantaneous, 
the center-of-mass and the 
peculiar velocity vectors of 
the. nth molecule, which is 
currently inside the fluid 
particle 

Fig. 8.2 The instantaneous, 
the mean and the fluctuating 
velocity vectors of a fluid 
particle in a turbulent flow 
field 

Further, the kinetic theory of gases shows that the coefficient of dynamic viscosity 
equals 

.μ = DρVmolecularlmolecular (8.4) 

where .D is a dimensionless constant, . ρ is the gas density, .Vmolecular is the root-
mean-square of the peculiar velocity of all the molecules that are currently inside the 
fluid particle of Fig. 8.1. The symbol .lmolecular represents the mean free path of the 
molecules. The quantities.Vmolecular and.lmolecular can be viewed as the characteristic 
velocity and length scales of a transport mechanism that arises due to the random 
nature of the peculiar velocity of molecules. 

Now let us refer to Fig. 8.2, which shows a fluid particle in a turbulent flow field. 
The symbols. V ,. V and.V represent the instantaneous, the mean and the fluctuating 
velocity vector of the fluid particle which is currently located at X. 

In the mean description of the turbulent flow field, the fluctuating velocity vector 
(.V ) of a fluid particle is deemed to be of random nature, whereas . V , the mean 
velocity of the fluid particle is a deterministic quantity. Further, we have already 



138 8 Turbulence Modeling 

shown that the Reynolds stress tensor component arising in the mean description of 
a turbulent flow field is an ensemble average of the moment .Vi V j . 

The descriptions of quantities presented in Figs. 8.1 and 8.2 have some apparent 
similarities. 

1. In both the figures, a pertinent velocity vector is decomposed into a deterministic 
part and a random part. 

2. In both the scenarios, there is an unclosed tensor that arises due to the ensemble 
average (or mean) of a second-order moment of relevant random velocity vectors. 

The eddy viscosity closure draws inspiration from these apparent similarities in 
Figs. 8.1 and 8.2, and takes a bold step to propose a closure for the anisotropic part 
of the Reynolds stress tensor.(Ranisotropic) in accordance with the Stokes constitutive 
relationship (8.2). 

The anisotropic part of the Reynolds stress tensor .(Ranisotropic) is defined (1.17) 
as 

.Ranisotropic 
i j = Ri j  − Rkk 

δi j  

3 
= Ri j  + 2ρk 

δi j  

3 
. (8.5) 

Using (8.2) as the basis of an analogy, the eddy viscosity closure assumes that the 
anisotropic part of the Reynolds stress tensor is always perfectly aligned with the 
mean strain-rate tensor . S. 

.Ranisotropic 
i j = 2μT Si j (8.6) 

where. Si j  is the.(i j  )th component of the mean strain-rate tensor (. S ). The symbol 
.μT represents a new scalar. The quantity.μT is called the coefficient of dynamic eddy 
viscosity or the coefficient of dynamic turbulent viscosity. Equation (8.6) is a set of 
only five independent algebraic equations. 

Further, the next hint towards achieving the full closure of RANS equations while 
using the eddy viscosity closure can be extracted by extending the underlying physical 
meaning of . μ in the Stokes constitutive relationship. Like . μ, which depends on the 
characteristic velocity and characteristic length scale of the random transporting 
action of the peculiar velocity of molecules (8.4), .μT in (8.6) is modelled in the 
following form 

.μT = D ρVfluctuationlfluctuation (8.7) 

where .D is a dimensionless constant, . ρ is the density of the fluid medium and 
.Vfluctuation, and .lfluctuation represent the characteristic velocity and a characteristic 
length scale associated with the fluctuating flow field. These characteristic values 
can be interpreted as the characteristic velocity scale and the characteristic length 
scale of the eddies, which carry the bulk of turbulence kinetic energy with them. Thus, 
.Vfluctation and .lfluctation are modelled as the characteristic velocity scale and charac-
teristic length scale of the largest eddies present in the turbulent flow field. With 
this interpretation, we realize that while .μ characterizes the action of momentum 
transport caused by the random molecular motion (which is present in all instanta-
neous flow fields), .μT characterizes the action of momentum transport caused by 
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the fluctuating motion in the RANS description of a turbulent flow field. Since the 
fluctuating flow field is associated with eddying motions,.μT is called the coefficient 
of dynamic eddy viscosity. 

Even though the analogy with the molecular motion and the Stokes hypothesis 
has provided us with some bases to propose (8.6) and (8.7), we realize that we have 
now introduced two new scalar unknowns in our modeling procedure: .Vfluctation and 
.lfluctation. Even though there are physical interpretations of these quantities, they are 
unknowns, nonetheless. In general, we expect these quantities to be dependent on 
both space and time. 

To make any further progress towards full closure, we will have to add additional 
equations describing the variations of these quantities. Indeed, over the past century, 
several propositions have been made with their own strength and shortcomings, 
leading to different closure models. In Sects. 8.3 and 8.4 of this chapter, we discuss 
two such popular closure strategies. While the additional closure equations will add 
their own modeling assumptions to the closed set of governing equations, the use 
of (8.6) inevitably entails the key assumptions that (a) the anisotropic part of the 
Reynolds stress tensor is aligned perfectly with the mean strain-rate tensor, and 
(b) the coefficient of eddy viscosity is a flow variable, and it is interpreted to have 
dependence on the characteristic velocity and length scales of the largest eddies in a 
turbulent flow field. 

The Stokes constitutive equation (8.2) is verifiably quite accurate for Newtonian 
fluids. However, just because the eddy viscosity closure is mathematically analo-
gous to the otherwise accurate Stokes relationship, it does not guarantee that the 
eddy viscosity closure will also be equally accurate in all types of flow fields. Even 
though many popular turbulence closure models have been developed based on the 
eddy viscosity closure paradigm, there exist certain types of flow fields wherein the 
assumption of the perfect alignment between the anisotropic Reynolds stress tensor 
and the mean strain-rate tensor fails over extended regions in the flow field. The 
reader is referred to [ 10] for further details on such failures of the model that employ 
the eddy viscosity closure. 

Notwithstanding such failures in some specific kinds of flow fields, there is still 
a reasonably wide variety of engineering flow fields where the models based on 
the eddy viscosity closure have been used frequently with considerable success in 
predicting the mean flow variables. Owing to such success and popularity, in the rest 
of this chapter, we perform case studies on two such popular closure models: the. k-
model and the .k-ω model. 
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8.2 Modeling the Unclosed Terms: A Broad Outline 

These case studies are included here to help the reader gain deeper insight into the 
rationale followed by the respective turbulence modellers in getting the final forms 
of the.k − and the.k − ω models. Even though there is no community-wide, fully-
accepted general procedure or a template with which we can explain the rationale 
behind every turbulence model that exists today, nonetheless, we identify a list of 
common steps that the developers of these two models have followed. 

1. Step I: Some essential, relevant underlying physics of the mathematically unclosed 
term is invoked. The modeller’s awareness and personal insights about the rel-
evant physics of turbulent flows, as revealed in various experiment-based or 
direct-numerical simulation-based studies of even simple flow fields like the flat 
plate boundary layer flow or the decaying turbulent flow field may prove to be 
useful in this step of turbulence modeling. 

2. Step II: The exact unclosed mathematical form of the to-be-modelled term is 
discarded and some dimensionality-based arguments to construct its alternate 
mathematical form that can possibly mimic that identified essential physics in 
Step I are proposed. Here, it must be ensured that this alternate mathematical form 
is expressed in terms of the quantities for which the modeller already has, or for 
which the modeller is planning to have additional governing equations in the final 
set of closed equations. Further, in this step, the modeller may also introduce some 
dimensionless constants of proportionality (also called the closure coefficients of 
the model) to have superior control over the performance of the closure model. 

3. Step III Available experimental databases or direct numerical simulation databases 
of simple flow fields are employed to ascertain the best possible values of the 
closure coefficients of the model, which have been introduced in the previous 
step. This provides leverage to the modeller to have some fine-tuning on the per-
formance of the model. It is expected that the modeller himself/herself prescribes 
the most optimal set of these closure coefficients, which can be employed for 
performing RANS simulation for a wide variety of flow fields. These closure 
coefficients are not expected to be re-adjusted on the flow-to-flow basis or based 
merely on the whim and convenience of the end-user. 

Even though (a) the identification of the essential physics of the unclosed term 
and (b) the determination of the dimensionless constants are often done by modellers 
using an available experimental database or an available DNS database of some 
simple flow fields, the final form of the model thus proposed, are indeed expected to 
be employed in simulating more complex flows of engineering interest. This practice 
that a model which has been proposed based on our observations of some simple flow 
fields is then employed for more complex flow fields does lead to some modeling 
uncertainties. Nonetheless, in the absence of any better option, such models may 
still be considered acceptable as long as the performance of the model is found to be 
satisfactory by the CFD community in simulating their complex flows of interest. 
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8.3 The .k-. ω Model: A Case Study on Turbulence Modeling 

The description of the .k-. ω model presented in this section is based on the work of 
Wilcox [ 11]. To model.μT , the.k-ω model introduces some variations on the RHS of 
(8.7). Instead of using .lfluctuation in the expression, it employs another quantity with 
which we can characterize the largest eddies. This quantity is represented by the 
symbol . ω, which represents the characteristic angular velocity of the largest eddies 
(the SI unit being .s−1) 

.ω ∼ 
Vfluctuation 
lfluctation 

, (8.8) 

leading to the following form of .μT (8.7) 

.μT = ρ 
V 2 fluctuation 

ω 
(8.9) 

where .D has been dropped (modeller’s discretion). 
The .k-ω model further assumes that .Vfluctation can be estimated using the local 

instantaneous value of . k in the flow field, 

.Vfluctation = k1/2, (8.10) 

leading to the following form of . μT 

.μT = 
ρk 

ω 
(8.11) 

Thus, the two unclosed unknowns in our hands now are . k and . ω. In general, these 
quantities are expected to change with space and time. The .k-ω model proposes to 
add (to the existing set of four partial differential equations of 5.10), two additional 
partial differential equations describing the evolution of . k and . ω in the flow field. 

We have earlier derived the transport equation of . k (5.56). Even though this 
equation is exact, it is mathematically unclosed. The specific unclosed terms are 
highlighted here as . A, . B and . C . 

. 
∂k 

∂t 
+ Vq 

∂k 

∂xq 
= 

Ri j  

ρ 
∂ Vi 
∂x j 

+ ν 
∂2k 

∂xq ∂ xq 

− 
A 

− 
∂ 

∂xq 
Vq 

Vi Vi 
2 

B 

+ −  
1 

ρ 

∂ p Vi 

∂xi 

C 

(8.12) 

where . = ν ∂ Vi 
∂ xq 

∂Vi 
∂xq 

. 
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To model . , the relevant essential physics is that . also equals the rate of energy 
transfer from the largest eddies to the smaller ones (.TE I  , Fig. 7.6, Eq. 7.96). The. k-ω 
model estimates . in line with (7.96), as 

. ∼ 
V 3 fluctuation 
lfluctuation 

(8.13) 

where .lfluctuation is the characteristic length scale of the largest eddies present in the 
flow field. 

Using (8.8) and (8.10), in (8.9) we arrive at the following modeled equation for. 

. = β∗kω (8.14) 

where .β∗ is a dimensionless constant, which remains to be specified. 
To model Term .B in (8.12), we invoke what is generally called the gradient 

diffusion hypothesis. We first explain this hypothesis in detail in the context of an 
instantaneous flow field and subsequently leverage it to model Term. B, specifically. 

If .φ(X , t) represents an entity (such as energy, species mass, momentum) per 
unit mass of the background fluid, then, as per the gradient diffusion hypothesis, 
the amount (. φ Qi ) of that quantity transported per unit time per unit area across an 
imaginary surface having unit normal along the Cartesian unit vector .êi is assumed 
to be proportional to the gradient of . φ along . êi . 

. 
φ Qi ≈ −  φ 

∂φ 
∂ xi 

(8.15) 

where. φ is a scalar, and is called the coefficient of diffusion of. φ in that fluid medium. 
The quantity . 

φ Qi is called the . i th component of the flux vector, . φ Q of the entity in 
context. The negative sign on the RHS of (8.15) implies that the transport due to 
the gradient diffusion hypothesis is directed opposite to the gradient to . φ. Thus, the 
gradient diffusion hypothesis implies that the entity in context is transported from a 
region of higher concentration of. φ to a region of lower concentration of. φ. If with the 
course of time, the distribution of.φ(X , t) becomes uniform in space, then, according 
to the gradient diffusion hypothesis, the flux of the entity (. φ Q) must vanish. 

In an instantaneous flow field, the coefficient of diffusion, like .μ in (8.4), is 
the ensembled effect of the transporting action of the random peculiar velocity of 
molecules. Such a transport process is called the molecular diffusion process. Fick’s 
law of mass diffusion and the Fourier law of heat conduction are common examples 
of the constitutive equations which employ the gradient diffusion hypothesis in the 
context of instantaneous flow fields. 

We earlier discussed in Chap. 5 that Term. B on the RHS of (8.12) can be expressed 
as the gradient of a flux term, .Qm , which represents the expected value of the flux 
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of the fluctuating kinetic (.Vi Vi /2) energy caused by the fluctuating velocity vector 

component . Vm 

. 
∂ 

∂xq 
Vq 

Vi Vi 
2 

B 

= 
∂ Qm 

∂xm 
(8.16) 

where 

.Qm = Vm 
Vi Vi 
2 

(8.17) 

This insight that Term .B is the gradient of a flux is deemed as the relevant essen-
tial physics for modeling this term. Leveraging the gradient diffusion hypothesis 
(8.15), we replace the exact but the unclosed mathematical form of Term. B, with the 
following modelled form 

.Qm = Vm 
Vi Vi 
2

= − φ 
∂ 

∂xm 

Vi Vi 
2 

(8.18) 

where . φ is a scalar that is supposed to characterize the random transporting action 
associated with the fluctuating velocity field, or in other words, the random transport-
ing action associated with the largest eddies in the flow field. Since we have already 
chosen to employ the quantities . k and . ω to have the kinematic characterization of 
the largest eddies in the flow field (8.10 and 8.8), the .k-. ω model proposes to have 
. φ expressed in terms of . k and . ω 

. φ = σ ∗kaωb (8.19) 

where .σ ∗ is a dimensionless constant, which remains to be specified. The symbols 
. a and . b are constant coefficients. Equation (8.18) suggests that the SI units of . φ 
must be .m2s−1. Imposing this constraint on the two sides of (8.19), we find . a = 1 
and .b = −1. Thus, (8.18) is modified to the following form. 

. Qm = Vm 
Vi Vi 
2

= −σ ∗k 
ω 

∂ 
∂xq 

Vi Vi 
2

= −  
σ ∗k 
ω 

∂ 
∂ xq 

Vi Vi 
2 

= −  
σ ∗k 
ω 

∂k 

∂xq 
(8.20) 

With (8.20), finally, Term. B is assigned the following modelled form. 

. 
∂ 

∂ xq 
Vq 

Vi Vi 
2 

B 

= −  
∂ 

∂ xq 
σ ∗k 
ω 

∂k 

∂ xq 
(8.21) 
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Term. C is the next unclosed term in (8.12). Even though the underlying physics of 
this mathematical expression is known (highlighted in Chap. 5), the main modeling 
challenge posed by this term is the involvement of pressure fluctuations in it modeling 
such pressure-based physics in terms of the kinematic characteristics of the largest 
eddies (. k and. ω) is not straightforward. Thus, it is decided to drop this term altogether. 
In summary, the modelled form of the transport equation of . k for the .k-. ω closure is 

. 
∂k 

∂t 
+ Vq 

∂k 

∂xq 
= 

Ri j  

ρ 
∂ Vi 
∂x j 

+ ν 
∂2k 

∂ xq ∂xq 
− β∗kω + 

∂ 
∂ xq 

σ ∗k 
ω 

∂k 

∂xq 

= 
Ri j  

ρ 
∂ Vi 
∂x j 

I 

− β∗kω 
I I  

+ 
∂ 

∂ xq 
ν 

∂k 

∂ xq 
I I I  

+ 
∂ 

∂xq 
σ ∗νT 

∂k 

∂xq 

I V  

(8.22) 

where we have a new symbol .νT (which is called the coefficient of kinematic eddy 
viscosity). 

.νT = 
k 

ω 
= 

μT 

ρ 
. (8.23) 

Term .B is also called the eddy diffusion process in the governing equation of . k. 
Equation (8.22) is symbolically expressed as 

. 
∂k 

∂t 
+ Vq 

∂k 

∂xq 
= k PI − k PI I  + k PI I I  + k PI V (8.24) 

where the four individual processes on the RHS of this equation are identified as 

. Production process k PI = 
Ri j  

ρ 
∂ Vi 
∂ x j 
I 

Dissipation process k PI I  : β∗kω 
I I  

Molecular diffusion process k PI I I  : ∂ 
∂xq 

ν 
∂k 

∂ xq 
I I I  

Eddy diffusion process k PI V  : ∂ 
∂xq 

σ ∗νT 
∂k 

∂xq 

I V  

Like the transport equation of . k, the intention of the modellers of the .k-. ω model 
is to add a transport equation (a PDE) for . ω, too. However, one realizes that, unlike 
. k, to begin with, there is no exact equation of . ω available with us. Thus, a partial-
differential equation modeling the evolution of .ω needs to be entirely postulated. 
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For such a postulation, the modeller borrows some guidelines from the modelled 
equation of . k (8.77), itself. 

Like the modelled equation of . k, (8.22), it is proposed to have the presence of 
four essential processes in the evolution equation of. ω. These four processes are: the 
production rate of. ω (. ω PI ), the dissipation-rate of. ω (. ω PI I  ), the molecular diffusion 
rate of .ω (. ω PI I I  ), and eddy diffusion rate of .ω (. ω PIV  ). Thus, symbolically, the 
postulated transport equation of . ω is expressed as: 

. 
∂ω 
∂t 

+ Vq 
∂ω 
∂xq 

= ω PI − ω PI I  + ω PI I I  + ω PIV (8.25) 

Further, we assume (a modeling assumption) that the respective functional form 
of the processes of the . ω equation is the same as the corresponding processes of the 
. k equation such that 

. Production process: ω PI = 
αω 
k 

k PI = 
αω 
k 

Ri j  

ρ 
∂ Vi 
∂x j 

Dissipation process: ω PI I  = 
α ω 
k 

k PI I  = 
α ω 
k 

β∗kω 

= βω2 

Molecular diffusion process: ω PI I I  = 
∂ 

∂ xq 
ν 

∂ω 
∂ xq 

Eddy diffusion process: ω PIV  = 
∂ 

∂ xq 
σνT 

∂ω 
∂xq 

(8.26) 

where the factor .ω/k has been introduced merely with the motivation to ensure 
the dimensional consistency of the production and the dissipation-rate processes of 
the . ω equation. Further, new dimensionless constants (. α, . β and . σ ) have also been 
introduced to possibly have better control over the performance of the final closure 
model. Thus, the fully modelled transport equation of . ω is: 

. 
∂ω 
∂t 

+ Vq 
∂ω 
∂ xq 

= 
αω 
k 

Ri j  

ρ 
∂ Vi 
∂x j 

− βω2 + ∂ 
∂xq 

ν 
∂ω 
∂xq 

+ ∂ 
∂ xq 

σνT 
∂ω 
∂xq 

(8.27) 

In summary, (5.2), (5.8), (8.5), (8.6), (8.72), (8.22) and (8.27) form a mathemat-
ically closed set of .18 scalar equations (a combination of algebraic equations and 
partial differential equations) employing the .k-. ω closure. 
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. 
∂ Vi 
∂xi 

= 0 

∂ Vi 
∂t 

+ Vk 
∂ Vi 
∂xk 

= −  
1 

ρ 
∂ p 
∂xi 

+ ν 
∂2 Vi 
∂xk ∂xk 

+ 
1 

ρ 
∂ Rki 

∂ xk 

Ri j  = Ranisotropic 
i j − 

2 

3 
ρkδi j  

Ranisotropic 
i j = 2μT Si j  

μT = ρ 
k 

ω 
∂k 

∂t 
+ Vq 

∂k 

∂ xq 
= 

Ri j  

ρ 
∂ Vi 
∂x j 

− β∗kω + ∂ 
∂ xq 

ν + σ ∗νT 
∂k 

∂xq 
∂ω 
∂t 

+ Vq 
∂ω 
∂xq 

= 
αω 
k 

Ri j  

ρ 
∂ Vi 
∂x j 

− βω2 + ∂ 
∂xq 

(ν + σνT ) 
∂ω 
∂xq 

(8.28) 

The.18 unknowns appearing in this equation set are:.Vi (3 scalars),. p (1 scalar),.Ri j  (6 

scalars), .Ranisotropic 
i j (5 scalars), .μT (1 scalar), . k (1 scalar) and . ω (1 scalar). Further, 

there are five closure coefficients . α, .β∗, . β, .σ and .σ ∗ that need to be prescribed 
by the modeler. Since, for closure, the .k-. ω model has added two additional partial 
differential equations (PDEs) (those of . k and . ω) over and above the four PDEs that 
are the RANS continuity and the momentum equations (5.2, and 5.8), this kind of 
closure is also called a two-equation turbulence closure model. 

8.3.1 Selection of Closure Coefficients 

In Sect. 8.2 we discussed that turbulence modellers tend to employ available exper-
imental databases or direct numerical simulation databases of simple flow fields to 
select the best possible values of various closure coefficients. The specific choice 
of those simple flow fields depends on the modeller’s preference. To select appro-
priate values of the closure coefficients, the .k-. ω model employs experimental/DNS 
databases of two simple flow fields: decaying turbulence and the log-layer of a flat 
plate boundary layer. The detailed procedure for selecting the closure coefficients is 
explained in the next subsections. 

Decaying Turbulence 

For the .k-.ω model, we first employ the database of decaying turbulence to select 
an appropriate value of the ratio .β∗/β such that the model can reproduce some 
specific behavior as observed in a DNS/experimental database of such a flow field. 
In a decaying turbulence flow field (a statistically homogeneous flow field), spatial 
derivatives of all expected values vanish, leading to the following simplified forms 
of the modelled transport equations of . k and . ω (8.28). 
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. 
dk  

dt  
= −β∗kω (8.29) 

and 

. 
dω 
dt  

= −βω2 (8.30) 

where . 
∂ 
∂t has been replaced by . 

d 
dt  , because neither . k nor . ω varies spatially. 

The form of the. ω Eq. (8.29) allows us to integrate it between two time instants. to 
(a reference time in the past) and. t (the current time instant) leading to the following 
explicit expression of . ω in terms of . t . 

.ω(t) = ωo 

1 + ωoβ(t − to) 
(8.31) 

where .ωo = ω(t = to). 
Next, we use this explicit expression of .ω(t) in (8.29) leading to the following 

form of the . k equation. 

. 
dk  

dt  
= −β∗kω = −β∗kωo 

1 + ωoβ(t − to) 
(8.32) 

Integration of (8.32) between the same two-time instants .to and . t leads to the fol-
lowing expression. 

.k(t) = ko (1 + ωoβ(t − to))−β∗/β (8.33) 

where .ko = k(t = to). 
Having obtained explicit expressions for both .k(t) and .ω(t), we now focus on a 

sufficiently late stage of the evolution of the flow field such that.t to. At such time 
instants, the expression in (8.33) is simplified. 

. k(t) = ko (1 + ωoβ(t − to))−β∗/β ≈ ko (1 + ωoβt)
−β∗/β 

≈ ko (ωoβ)−β∗/β t−β∗/β (8.34) 

Investigations employing an experimental database of decaying turbulence (grid 
turbulence) show that turbulence kinetic energy decays as 

.k ∼ t−n (8.35) 

where. n is found to lie between.1.0 and.1.5 [ 6]. Comparing the expressions in (8.34) 
and (8.35), the modelers concluded 

. 
β∗ 

β 
= n. (8.36) 

Finally, the modelers selected .1.2 as the value of . n leading to 

. 
β∗ 

β 
= 1.2. (8.37) 
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Log Layer of a Flat Plate Boundary Layer 

Proceeding further, the.k-. ω model is taken to another simple flow field: the flat plate 
boundary layer. We have discussed earlier in Chap. 6 that at high .Re1, the mean 
continuity and the mean momentum equation of the RANS equation (8.28) set can 
be simplified to the following form (already included in (6.77)). 

. 
∂ V1 
∂ x1 

+ 
∂ V2 
∂x2 

= 0, 

V1 
∂ V1 
∂x1 

+ V2 
∂ V1 
∂x2 

= 
−1 

ρ 
∂ p 
∂x1 

+ ν 
∂2 V1 
∂x2∂x2 

− 
1 

ρ 

∂ ρV1V2 

∂x2 
(8.38) 

The . V1 equation in (8.38) can alternatively be expressed in terms of .σ mean 
12 as 

. V1 
∂ V1 
∂ x1 

+ V2 
∂ V1 
∂x2 

= 
1 

ρ 
∂(σ mean 

12 ) 
∂x2 

(8.39) 

where .σ mean is the total stress tensor in the mean flow field inside a boundary layer 
(6.80). The stress.σ mean 

12 is composed of two parts: the viscous stress and the Reynolds 
stress 

.σ mean 
12 = μ 

∂ V1 
∂x2 

+ −ρV1V2 = μ 
∂ V1 
∂x2 

+ R12 (8.40) 

Using the closure suggested by the .k-. ω model (8.28), .R12 is expressed as 

.R12 = −  ρV1V2 = 2μT S12 2μT 
∂ V1 
∂ x2 

+ 
∂ V2 
∂x1 

1 

2 
. (8.41) 

The order-of-magnitude analysis at .Re1 1 shows (6.31) that 

. 
∂ V1 
∂ x2 

∂ V2 
∂ x1 

(8.42) 

Thus, (8.41) simplifies to 

.R12 = −  ρV1V2 ≈ μT 
∂ V1 
∂x2 

. (8.43) 

Thus, inside a boundary layer, the total stress, .σ mean 
12 (8.40) is expressed as 

.σ mean 
12 = μ 

∂ V1 
∂x2 

+ −ρV1V2 = (μ + μT ) 
∂ V1 
∂x2 

(8.44) 
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Next, we refer to Fig. 6.5 (DNS database of a flat plate boundary layer) where we 
observe that inside the log layer 

.σ mean 
12 ≈ R12 (8.45) 

Further, as shown in Fig. 6.6, inside the log layer, 

.R12 ≈ τw( constant at a fixed axial station) (8.46) 

Thus, based on the expression of .σ mean 
12 in (8.44) and using these two specific obser-

vations (8.45 and 8.46), two conclusions are drawn for the flow inside the log layer: 

.μT μ (8.47) 

and 

. 
∂ 

∂x2 
μT 

∂ V1 
∂x2 

= 0. (8.48) 

The DNS-based observations listed in Eqs. (8.45) and (8.46) also imply that the 
entire RHS of (8.39) vanishes. This, in turn, leads us to the conclusion that the LHS 
of (8.39), which represents the advection process of the quantity . V1 , too, vanishes 
inside the log layer. 

. V1 
∂ V1 
∂x1 

+ V2 
∂ V1 
∂x2 

≈ 0 (8.49) 

We now turn our attention to the modelled equations of . k and. ω (8.28). Since the 
flow inside a boundary layer is (i) statistically stationary, (ii) statistical homogeneous 
in the .ê3 direction and (iii) the gradient of an expected value in the .ê2 direction is 
much larger than that in the .ê1 direction, these equations simplify to the following 
forms. 

. V1 
∂k 

∂x1 
+ V2 

∂k 

∂x2 
= 

R12 

ρ 
∂ V1 
∂x2 

− β∗kω + ∂ 
∂x2 

ν + σ ∗νT 
∂k 

∂ x2 
(8.50) 

. V1 
∂ω 
∂ x1 

+ V2 
∂ω 
∂ x2 

= 
αω R12 

ρk 

∂ V1 
∂ x2 

− βω2 + 
∂ 

∂ x2 
(ν + σνT ) 

∂ω 
∂x2 

(8.51) 

where using the conclusions of the order-of-magnitude analysis (6.31 and 6.34) 
performed earlier in Chap. 6, the mean velocity gradient has been approximated to 
the following form. 

.∇ V 
∂ V1 
∂x2 

ê2ê1. (8.52) 
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Next, we confine our discussion only to the log layer. Inside the log layer, we 
have .μT μ (8.47). The symbols .σ ∗ and . σ appearing in the eddy diffusion pro-
cesses of the two quantities are closure coefficients. Even though they have not been 
determined yet, we do expect them to have their orders of magnitude close to unity. 
With this anticipation, it is still plausible to neglect the viscous diffusion process in 
comparison to the eddy diffusion process in the two Eqs. (8.50 and 8.51). Thus, 

. (ν + σ ∗νT ) 
∂k 

∂ x2 
≈ σ ∗νT 

∂k 

∂x2 

(ν + σνT ) 
∂ω 
∂ x2 

≈ σνT 
∂ω 
∂ x2 

. (8.53) 

Accordingly, (8.50) and (8.51) are simplified further to the following forms. 

. V1 
∂k 

∂ x1 
+ V2 

∂k 

∂ x2 
= 

R12 

ρ 
∂ V1 
∂x2 

− β∗kω + 
∂ 

∂ x2 
σ ∗νT 

∂k 

∂ x2 
(8.54) 

. V1 
∂ω 
∂x1 

+ V2 
∂ω 
∂x2 

= 
αω R12 

ρk 

∂ V1 
∂x2 

− βω2 + 
∂ 

∂ x2 
σνT 

∂ω 
∂ x2 

(8.55) 

Earlier, DNS-based evidence led us to the conclusion that the advection process 
of the . V1 must vanish inside the log layer. Even though at this point, there is no 
such direct evidence available for drawing similar conclusions about the respective 
advection processes of (8.54) and (8.55), it is assumed [ 10] that in the log layer, 
the advection processes of (8.54) and (8.55), too are negligible. This leads to the 
following simplified forms of (8.54) and (8.55). 

. 0 = 
R12 

ρ 
∂ V1 
∂x2 

− β∗kω + ∂ 
∂ x2 

σ ∗νT 
∂k 

∂ x2 
(8.56) 

. 0 = 
αωR12 

ρk 

∂ V1 
∂x2 

− βω2 + ∂ 
∂x2 

σνT 
∂ω 
∂x2 

(8.57) 

Thus, the log-layer analyses of the . V1 , . k and . ω transport equations adopted by 
the .k-. ω model has led us to a system of three Eqs. (8.48), (8.56) and (8.57) which 
are summarized below. 
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. 
∂ 

∂x2 

k 

ω 
∂ V1 
∂ x2 

= 0 

k 

ω 
∂ V1 
∂x2 

2 

− β∗kω + ∂ 
∂x2 

σ ∗ k 

ω 
∂k 

∂x2 
= 0 

α 
∂ V1 
∂ x2 

2 

− βω2 + ∂ 
∂x2 

σ 
k 

ω 
∂ω 
∂x2 

= 0 

(8.58) 

where .R12 has been expressed in terms of .μT , and the quantity .μT , itself has been 
expressed in terms of . k and . ω (8.28). 

We observe (8.58) is a set of three equations in as many flow variables (. V1 ,. k and 
. ω). It can be verified that the following algebraic functions of these flow variables 
do satisfy (8.58) 

. V1 
τw 
ρ 

1 

κ 
ln  

x2 
ν 

τw 
ρ 

(8.59) 

.k = 
u2 τ√
β∗ (8.60) 

.ω = 
uτ√

β∗κx2 
(8.61) 

with an additional algebraic constraint on the closure coefficients (8.62), 

.α = 
β 
β∗ − 

σκ2 

√
β∗ (8.62) 

Algebraically, the constant . κ appearing in the solution set can be arbitrarily chosen. 
However, to ensure the consistency of the algebraic solution of . V1 (8.59) with the 
experimentally observed law of the wall, we must set it to be the same constant 
(.κ = 0.41) that appears in the experimental curve fit shown in Fig. 6.4. 

To leverage this solution set further for selecting closure coefficients of the .k-. ω 
model, we appeal an additional observation which is based on experimental data. An 
optimal curve fit in the log layer shows that [ 12] 

. 
τw 
ρk 

≈ 0.3 (8.63) 

which, with a minor rearrangement, is expressed as 

.k ≈ 
10 

3 
u2 τ (8.64) 

Comparing this experimentally-observed curve fit included in (8.64) with (8.60), we 
select 

.β∗ = 
9 

100 
. (8.65) 
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Subsequently, using (8.37), we select 

.β = 
5 

6 
and β∗ = 

3 

40 
. (8.66) 

It seems the values of the two closure coefficients .σ ∗ and . σ , which are used to 
model the eddy diffusion process in the . k and the . ω equations, respectively, have 
been selected by the modellers [ 11] following a trial-based approach rather than any 
plausible physics-based arguments. 

.σ ∗ = σ = 
1 

2 
. (8.67) 

The modeller justified these choices by comparing the performance of the .k-. ω with 
some experimentally observed behavior (no further details not available in [ 11], 
though. However, once these values have been selected, the constraint obtained from 
the log-layer analysis allows us to readily select a value of . α. 

.α = 
β 
β∗ − 

σκ2 

√
β∗ = 

5 

9 
(8.68) 

This step completes the selection of all closure coefficients, and the .k-. ω model is 
now summarized as: 

. 
∂ Vi 
∂xi 

= 0 

∂ Vi 
∂t 

+ Vk 
∂ Vi 
∂xk 

= −  
1 

ρ 
∂ p 
∂xi 

+ ν 
∂2 Vi 
∂xk ∂xk 

+ 
1 

ρ 
∂ Rki 

∂ xk 

Ri j  = Ranisotropic 
i j − 

2 

3 
ρkδi j  

Ranisotropic 
i j = 2μT Si j  

μT = ρ 
k 

ω 
∂k 

∂t 
+ Vq 

∂k 

∂ xq 
= 

Ri j  

ρ 
∂ Vi 
∂x j 

− β∗kω + ∂ 
∂ xq 

ν + σ ∗νT 
∂k 

∂xq 
∂ω 
∂t 

+ Vq 
∂ω 
∂xq 

= 
αω 
k 

Ri j  

ρ 
∂ Vi 
∂x j 

− βω2 + ∂ 
∂xq 

(ν + σνT ) 
∂ω 
∂xq 

β∗ = 
9 

100 
, β = 

3 

40 
, σ ∗ = 

1 

2 
, σ = 

1 

2 
, α = 

5 

9 
. 

(8.69) 

For more information about various computational aspects and performance bench-
marks related to the .k-. ω model, the reader is referred to [ 11]. 
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8.4 The .k-. Model: A Case Study on Turbulence Modeling 

The present form of the .k-. model is based on the work of Jones and Launder [ 13] 
and Launder and Sharma [ 14]. To model .μT (8.7), like the .k-. ω model, first the . k-
model chooses to estimate .Vfluctation using the local instantaneous value of . k in the 
flow field, 

.Vfluctation ∼ k1/2. (8.70) 

Further, the model introduces the dissipation rate (. ) to estimate .lfluctuation by using 
(7.96). 

. ∼ 
u3 o 
lo 

∼ k3/2 

lfluctuation 
⇒ lflctuation ∼ 

k3/2 
(8.71) 

Using (8.71) in (8.7), we arrive at the following modeled form of . μT 

.μT = Cμρ 
k2 

(8.72) 

where .Cμ is a dimensionless constant introduced by the modellers. Thus, the two 
unclosed unknowns in our hands are . k and . . In general, we expect them to change 
with space and time. The.k- model proposes to add (to the existing set of four partial 
differential equations, 5.10), two additional partial differential equations describing 
the evolution of . k and . in the flow field. 

We have earlier derived the transport equation of . k (5.56). The unclosed terms 
are highlighted in (8.12) as  . A, .B and . C , and these need to be modelled. Since 
the modellers are willing to add a transport equation for . , anyway, they leave the 
dissipation rate . as it is in Eq. (8.12). 

To model Term. B in (8.12), like the.k-. ω model, the gradient diffusion hypothesis 
is adopted (8.21), and Term. B is modelled in the following form. 

. 
∂ 

∂xq 
Vq 

Vi Vi 
2 

B 

= −  
∂ 

∂ xq 
γ k2 ∂k 

∂xq 
(8.73) 

where . γ is a dimensionless constant. 
Term. C is the next unclosed term in (8.12). The main modeling challenge posed 

by this term is the involvement of pressure fluctuations in it. Again like the .k-. ω 
model, it is decided to drop this term altogether, because it poses a challenge due to 
the presence of pressure fluctuations therein. In summary, the modelled form of the 
transport equation of . k for the .k-. model is as follows. 
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. 
∂k 

∂t 
+ Vq 

∂k 

∂ xq 
= 

Ri j  

ρ 
∂ Vi 
∂ x j 

+ ν 
∂2k 

∂ xq ∂xq 
− + ∂ 

∂xq 

Cμk2 

σk 

∂k 

∂ xq 

= 
Ri j  

ρ 
∂ Vi 
∂ x j 
I 

− 
I I  

+ 
∂ 

∂xq 
ν 

∂k 

∂ xq 
I I I  

+ 
∂ 

∂xq 

νT 

σk 

∂k 

∂xq 

I V  

(8.74) 

where .νT is the kinematic eddy viscosity, 

.νT = Cμ 
k2 

(8.75) 

The dimensionless constant . γ appearing in (8.73) has been combined with .Cμ to 
have a new closure coefficient .σk appearing in the eddy diffusion process, and this 
remains to be determined. Equation (8.22) is symbolically expressed as 

. 
∂k 

∂t 
+ Vq 

∂k 

∂xq 
= k PI − k PI I  + k PI I I  + k PI V (8.76) 

where the four individual processes on the RHS of this equation are identified as 

. Production process k PI = 
Ri j  

ρ 
∂ Vi 
∂ x j 
I 

Dissipation process k PI I  : 
I I  

Molecular diffusion process k PI I I  : ∂ 
∂xq 

ν 
∂k 

∂ xq 
I I I  

Eddy diffusion process k PI V  : ∂ 
∂xq 

νT 

σk 

∂k 

∂ xq 
I V  

Like the transport equation of . k, the intention of the modelers of the .k-. was to 
add a transport equation for. , too. The exact equation of. can be derived. However, 
the resulting equation (not included here) has multiple unclosed terms, which require 
modeling anyway. Thus, a partial-differential equation modeling the evolution of . 
is postulated in its entirety, and for such a postulation, we borrow some guidelines 
from the modelled equation of . k (8.76). 

Like the modelled equation of . k, (8.76), we propose to have the presence of four 
essential processes in the evolution equation of . . These four processes are: the 
production rate of . (. PI ), the dissipation-rate of . (. PI I  ), the molecular diffusion 
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rate of . (. PI I I  ), and the eddy diffusion rate of . (. PIV  ). Thus, symbolically, the 
transport equation of . is expressed as: 

. 
∂t 

+ Vq 
∂xq 

= PI − PI I  + PI I I  + PIV (8.77) 

Further, we assume (a modeling assumption) that the respective functional form 
of the processes of the. equation are the same as the corresponding processes of the 
. k Eq. (8.76) such that 

. Production process: PI = C 1 
k 

k PI 

= C 1 
k 

Ri j  

ρ 
∂ Vi 
∂ x j 

Dissipation process: PI I  = C 2 
k 

k PI I  = 
C 2 2 

k 

Molecular diffusion process: PI I I  = ∂ 
∂ xq 

ν 
∂ xq 

Eddy diffusion process: PIV  = ∂ 
∂ xq 

νT 

σ ∂xq 
(8.78) 

where the factor . k has been introduced merely with the motivation to ensure the 
dimensional consistency of the production and the dissipation-rate processes of the 
. equation. Further, new dimensionless constants (.C 1, .C 2 and . σ ) have also been 
introduced to possibly have better control over the performance of the final closure 
model. Thus, the final form of the fully modelled transport equation of . is: 

. 
∂t 

+ Vq 
∂xq 

= C 1 
k 

Ri j  

ρ 
∂ Vi 
∂ x j 

− C 2 
2 

k 
+ 

∂ 
∂xq 

ν 
∂xq 

+ 
∂ 

∂ xq 
νT 

σ ∂ xq 
(8.79) 

In summary, (5.2), (5.8), (8.5), (8.6), (8.72), (8.74) and (8.79) form a mathemat-
ically closed set of .18 scalar equations (a combination of algebraic equations and 
partial differential equations) employing the .k-. closure. 

. 
∂ Vi 
∂xi 

= 0 

∂ Vi 
∂t 

+ Vk 
∂ Vi 
∂ xk 

= −  
1 

ρ 
∂ p 
∂xi 

+ ν 
∂2 Vi 
∂xk ∂ xk 

+ 
1 

ρ 
∂ Rki 

∂ xk 

Ri j  = Ranisotropic 
i j − 

2 

3 
ρkδi j  
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Ranisotropic 
i j = 2μT Si j  

μT = Cμ 
ρk2 

∂k 

∂t 
+ Vq 

∂k 

∂ xq 
= 

Ri j  

ρ 
∂ Vi 
∂ x j 

− + ∂ 
∂xq 

ν + 
νT 

σk 

∂k 

∂ xq 

∂t 
+ Vq 

∂ xq 
= C 1 

k 

Ri j  

ρ 
∂ Vi 
∂x j 

− 
C 2 2 

k 
+ ∂ 

∂xq 
ν + 

νT 

σ ∂xq 
(8.80) 

The .18 unknowns of in this equation set are: .Vi (3 scalars), .p (1 scalar), .Ri j  (6 

scalars), .Ranisotropic 
i j (5 scalars), .μT (1 scalar), . k (1 scalar) and . (1 scalar). Further, 

there are five closure coefficients .Cμ, . σk , .C 1, .C 2 and .σ that need to be selected 
by the modeler. Since, for closure, the .k-. model has added two additional partial 
differential equations (PDEs) (those of . k and . ) over and above the four PDEs that 
are the RANS continuity and the momentum equations, like the .k-. ω model, this is 
another example of the two-equation turbulence closure models. 

8.4.1 Selection of Closure Coefficients 

To select appropriate values of the closure coefficients, the.k-. model employs exper-
imental/DNS databases of three simple flow fields: decaying turbulence, the log-layer 
of a flat plate boundary layer and homogeneous shear flows. The detailed procedure 
for selecting the closure coefficients is explained in the next subsections. 

Decaying Turbulence 

For the.k-. model, the modellers first employ the database of decaying turbulence to 
select an appropriate value of .C 2, such that the model can reproduce some specific 
behavior as observed in experimental databases of such a flow field. In this flow field 
(a statistically homogeneous flow field), spatial derivatives of all expected values 
vanish, leading to the following simplified forms of modelled transport equation of 
. k and . (8.80). 

. 
dk  

dt  
= − (8.81) 

and 

. 
d 

dt  
= −C 2 

2 

k 
(8.82) 

where . 
∂ 
∂t has been replaced by . 

d 
dt  because neither . k nor . varies spatially (decaying 

turbulence has a statistically homogeneous flow field). It can be verified that (8.81) 
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and (8.82) are simultaneously satisfied by the following functions of. k and. in terms 
of . t (time) 

.k(t) = 
ko 

α−n 
o 

t−n and t) = o 

α−n−1 
o 

t−n−1, (8.83) 

subject to the condition 

.C 2 = 
n + 1 
n 

(8.84) 

The symbols .ko and . o are the values of . k and . at a reference time. The symbol . αo 

is related to . n (a non-dimensional number) in the following manner. 

.n = 
αo o 

ko 
. (8.85) 

It is observed in experiments [ 6] on decaying turbulence, that indeed . k decays as 
.k ∼ t−n (in accordance with (8.83)) where. n is observed to lie within the range of. 1.0 
and .1.5 in experiments [ 6]. The .k-. modeler selected .n = 1.08. Thus, (8.84) leads 
to 

.C 2 = 1.92 (8.86) 

Log Layer of a Flat Plate Boundary Layer 

Proceeding further with the selection of the values of the closure coefficients, the.k-. 
model is taken to the log layer of the flat plate boundary layer. Following exactly the 
same arguments as presented in (8.38)–(8.46), in context of the .k-. ω model, we are 
again led to the same conclusions that in the log-layer, 

.μT μ (8.87) 

and 

. 
∂ 

∂x2 
μT 

∂ V1 
∂x2 

= 0, (8.88) 

which for the .k-. model (8.88) means 

. 
∂ 

∂ x2 
μT 

∂ V1 
∂ x2 

= 
∂ 

∂ x2 
ρCμk2 ∂ V1 

∂x2 
= 0, (8.89) 

where the expression of .μT has been used from (8.72). 
The DNS-based observations listed in Eqs. (8.45) and (8.46) also imply that the 

entire RHS of (8.39) vanishes. This, in turn, leads us to the conclusion that the LHS 
of (8.39), which represents the advection process of the quantity . V1 , too, vanishes 
inside the log layer. 

. V1 
∂ V1 
∂x1 

+ V2 
∂ V1 
∂x2 

≈ 0 (8.90) 
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We now turn our attention to the modelled equations of . k and. (8.80). Since the 
flow inside a boundary layer is (i) statistically stationary, (ii) statistical homogeneous 
in the .ê3 direction and (iii) the gradient of any expected value in the .ê2 direction is 
much larger than that in the .ê1 direction, these equations simplify to the following 
forms. 

. V1 
∂k 

∂ x1 
+ V2 

∂k 

∂ x2 
= 

R12 

ρ 
∂ V1 
∂x2 

− + ∂ 
∂x2 

ν + 
νT 

σk 

∂k 

∂x2 
(8.91) 

. V1 
∂ x1 

+ V2 
∂x2 

= 
C 1 R12 

ρk 

∂ V1 
∂ x2 

− 
C 2 2 

k 
+ ∂ 

∂x2 
ν + 

νT 

σ ∂x2 
(8.92) 

where using the conclusions of the order-of-magnitude analysis (6.31 and 6.34) 
performed earlier in Chap. 6, the mean velocity gradient has been approximated to 
the following form. 

.∇ V 
∂ V1 
∂x2 

ê2ê1. (8.93) 

Next, we confine our discussion to the log layer. Inside the log layer, we have 
.μT μ (8.47). Even though the closure coefficients.σk and.σ have not been deter-
mined yet, it is anticipated to have their orders of magnitude close to unity. With this 
anticipation, it is still plausible to neglect the viscous diffusion process in comparison 
to the eddy diffusion process in the two equations. Thus, 

. ν + 
νT 

σk 

∂k 

∂x2 
≈ νT 

σk 

∂k 

∂x2 

ν + 
νT 

σ ∂x2 
≈ νT 

σ ∂x2 
. (8.94) 

Accordingly, (8.94) further simplifies (8.91) and (8.92) to the following forms. 

. V1 
∂k 

∂ x1 
+ V2 

∂k 

∂x2 
= 

R12 

ρ 
∂ V1 
∂x2 

− + 
∂ 

∂ x2 
νT 

σk 

∂k 

∂ x2 
(8.95) 

. V1 
∂x1 

+ V2 
∂ x2 

= 
C 1 R12 

ρk 

∂ V1 
∂ x2 

− 
C 2 2 

k
+ 

∂ 
∂x2 

νT 

σ ∂x2 
(8.96) 
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Earlier, DNS-based evidence led us to the conclusion that the advection process 
of the . V1 must vanish inside the log layer. Even though at this point, there is no 
such direct evidence available for drawing such conclusions about (8.95) and (8.96), 
it is assumed [ 11] that in the log layer, the advection processes are negligible for . k 
and . , as well. This leads to the following simplified forms of the two Eqs. (8.95) 
and (8.96). 

. 0 = 
R12 

ρ 
∂ V1 
∂x2 

− + 
∂ 

∂ x2 
νT 

σk 

∂k 

∂ x2 
(8.97) 

. 0 = 
C 1 R12 

ρk 

∂ V1 
∂ x2 

− 
C 2 2 

k
+ ∂ 

∂ x2 
νT 

σ ∂ x2 
(8.98) 

Thus, the log-layer analyses of the. V1 , . k and. transport equations proposed by 
the .k-. model has led us to a system of three Eqs. (8.89), (8.97) and (8.98) which 
are summarized below. 

. 
∂ 

∂x2 

Cμk2 ∂ V1 
∂x2 

= 0 

Cμk2 ∂ V1 
∂ x2 

2 

− + ∂ 
∂ x2 

Cμk2 

k 

∂k 

∂x2 
= 0 

C 1Cμk 
∂ V1 
∂x2 

2 

− 
C 2 2 

k
+ 

∂ 
∂ x2 

Cμk2 

∂x2 
= 0 

(8.99) 

where .R12 has been expressed in terms of .μT , and the quantity .μT , itself has been 
expressed in terms of . k and . . 

We observe (8.99) is a set of three equations in as many flow variables (. V1 , . k 
and. ). It can be verified that the following algebraic functions of these flow variables 
do satisfy (8.99) 

. V1 
τw 
ρ 

1 

κ 
ln  

x2 
ν 

τw 
ρ 

(8.100) 

.k = 
u2 τ 
Cμ 

(8.101) 

. = 
u3 τ 
κ x2 

(8.102) 

with the following additional algebraic constraint on the closure coefficients, 

.κ2 = σ (C 2 − C 1) Cμ (8.103) 
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Fig. 8.3 Profile of. V1 in a 
homogeneous shear flow 

Algebraically, the constant. κ appearing in this solution set can be arbitrarily chosen. 
However, to ensure consistency of the algebraic solution of . V1 (8.100) with the 
experimentally observed law of the wall (6.90), we set that to be the same constant 
that appears in the experimental curve fit of the law of the wall (.κ = 0.41). 

To leverage this solution set further for selecting the closure coefficients of the 
.k-. model, we appeal to another observation made on some experimental data of a 
flat plate turbulent boundary layer. An optimal curve fit in the log layer shows that 
[ 12] 

. 
τw 
ρk 

≈ 0.3 (8.104) 

which, with a minor rearrangement, is expressed as 

.k ≈ 
10 

3 
u2 τ (8.105) 

Comparing this experimentally-observed curve fit with (8.101), we select 

.Cμ = 
9 

100 
. (8.106) 

Homogeneous Shear Flow 

The modellers of the .k-. model employ some known behavior of another kind of 
simple flow field—homogeneous shear flow—to select the closure coefficient . σ . 
Before we provide the details of this selection procedure, we briefly describe a 
homogeneous shear flow. 

A homogeneous shear flow is a turbulent flow field with the mean velocity gradient 
being of the following form. 

.∇ V = S ê2ê1 (8.107) 

where .S is a constant. In Fig. 8.3 we present a schematic of the mean velocity 
profile in a homogeneous shear flow. The slope of the velocity profile equals . S 
(8.107). Further, a homogeneous shear flow has homogeneous turbulence, which we 
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described earlier in Chap. 5 (5.69). A homogeneous shear flow can be set up in a direct 
numerical simulation [ 15] or in a wind tunnel experiment [ 16], and various statistics 
of interest can be computed or measured. The utility of the homogeneous shear flow 
is that it allows us to investigate the exact interaction between the production and 
the dissipation processes of the turbulence kinetic energy without the interfering 
effects of any inhomogeneous transport process (5.70). In a homogeneous shear 
flow, the exact transport equation of . k (5.56) simplifies (without making any further 
assumptions) to 

. 
dk  

dt  
= kP − (8.108) 

where 

. 
kP = 

R12 

ρ 
∂ V1 
∂ x2 

= 
R12S 

ρ 
(8.109) 

and 

. = ν 
∂ Vi 
∂ x j 

∂Vi 
∂ x j 

(8.110) 

Several DNS databases of homogeneous shear flow shows that at large normalized 
time instants,.St , both.k and. 

kP tend to attain time-dependent asymptotic values 
in these simulations. 

. 
d 

dt  

k ≈ 0 at  St 0 (8.111) 

and 

. 
d 

dt  

kP ≈ 0 and 
kP → 1.8 at  St 0 (8.112) 

We now turn our attention to the modelled. k and. Eq. (8.80). In a homogeneous 
shear flow, these equations are simplified (all inhomogeneous processes must vanish) 

. 
dk  

dt  
= kP − 

d 

dt  
= 

C 1 
k 

kP − 
C 2 2 

k 
(8.113) 

With these equations, we find the time derivative of .k . 

. 
d 

dt  

k = 
1 dk  

dt  
− 

k 
2 

d 

dt  

= 
kP − 1 − 

C 1 kP + C 2 (8.114) 
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This relationship is valid for the .k-. model at all times in a homogeneous shear 
flow. However, our interest is to focus on the asymptotic behavior when the LHS of 
(8.114) vanishes, leading to the following equation for . C 1 

.C 1 = (C 2 − 1) 
kP + 1 (8.115) 

Even though in direct numerical simulations, the asymptotic value is observed to be 

. 
kP = 1.8, the .k-. modeller employed . 

kP = 2.1 to arrive at 

.C 1 = 1.44. (8.116) 

Having selected the values of.Cμ (8.106),.C 2 (8.86) and.C 1 (8.116), we go back 
to the algebraic constraint that emerged from the log-layer analysis (8.103). This 
leads to arrive at a value of . σ 

.σ = κ2 

Cμ(C 2 − C 1) 
= 1.3 (8.117) 

where the modeller used .κ = 0.43. 
Lastly, the value of the closure coefficients . σk , which has been used to model the 

eddy diffusion process in the . k equation, has been chosen as (without any physics-
based justification) 

.σk = 1. (8.118) 

This step (8.118) completes the selection of all closure coefficients. Thus, the .k-. 
model, along with all closure coefficients, is now summarized as: 

. 
∂ Vi 
∂xi 

= 0 

∂ Vi 
∂t 

+ Vk 
∂ Vi 
∂ xk 

= −  
1 

ρ 
∂ p 
∂xi 

+ ν 
∂2 Vi 
∂xk ∂ xk 

+ 
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ρ 
∂ Rki 

∂ xk 

Ri j  = Ranisotropic 
i j − 

2 

3 
ρkδi j  

Ranisotropic 
i j = 2μT Si j  

μT = Cμ 
ρk2 

∂k 

∂t 
+ Vq 

∂k 

∂ xq 
= 

Ri j  

ρ 
∂ Vi 
∂ x j 

− + ∂ 
∂xq 

ν + 
νT 

σk 

∂k 

∂ xq 

∂t 
+ Vq 

∂ xq 
= C 1 

k 

Ri j  

ρ 
∂ Vi 
∂x j 

− 
C 2 2 

k 
+ ∂ 

∂xq 
ν + 

νT 

σ ∂xq 

Cμ = 
9 

100 
, σk = 1 ,  C 1 = 1.44 , C 2 = 1.92 , σ = 1.3 

(8.119) 
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One of the major drawbacks of the .k-. model is that the modelled transport 
equation of . does not correctly show the near-wall asymptotic behavior (discussed 
earlier in Chap. 6) in the viscous sublayer. Thus, this form of the transport equation 
of. cannot be integrated all the way to a solid wall inside a boundary layer. Over the 
years, many modified forms of the.k-. model have been proposed which can address 
this problem of the model presented in (8.119). To differentiate the model presented 
in (8.119) from those modified versions, the former is commonly referred to as the 
standard .k-. model. For further information about various computational aspects 
and the performance benchmarks related to the .k-. model, the reader is referred to 
[ 11]. 



9Scale-Resolving Simulations 
of Turbulent Flows 

In Chap. 5 we introduced the RANS equation set to attain the ability to seek solution 

of the set of primary variables of engineering interest: . Vi and . p . If we could 

attain this ability, this would have paved the way for finding the expected values 
of the velocity and the pressure fields without relying on any type of averaging. 
However, the RANS equation set (5.10) turned out to be mathematically unclosed 
due to the appearance of the Reynolds stress tensor in the mean momentum equation. 
Many turbulence closure models have been proposed to achieve this mathematical 
closure. However, these closure models are approximate by their very nature, and 
they invariably add uncertainty to the solution of the mean velocity and the mean 
pressure fields that emerge using these closure models. 

On the other hand, direct numerical simulations, which solve the exact governing 
equations of the velocity and the pressure fields (3.9), do not require any closure 
model, and thus they are free of any such modeling uncertainty. If applied to a 
statistically stationary or a flow field which has at least one direction of statistical 
homogeneity, the solution of the instantaneous flow field from a direct numerical 
simulation can be appropriately averaged to obtain the expected values of the velocity 
and the pressure fields. However, the main challenge posed by a direct numerical 
simulation is the requirement of having extremely fine resolution in temporal and 
spatial discretization. This makes it prohibitive to perform DNS of flows at high 
Reynolds numbers. 

The Kolmogorov hypotheses, which we discussed in Chap. 7, suggest that the 
small-scale motion in a turbulent flow field tends to be more isotropic and universal. 
In contrast, the large-scale motion tends to be more dependent on the boundary 
conditions of the flow field. Further, we also realize that it is the requirement of 
resolving the smallest scales of motion (the Kolmogorov length and time scales), 
rather than the larger scales of motion, which actually intensifies the computational 
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demand of performing a direct numerical simulation. These two realizations lead us 
to the idea of conceptually decomposing the velocity and the pressure fields based 
on a filter function. 

9.1 The Filtered Description of a Turbulent Flow Field 

In the filtered description, the instantaneous flow variables are subjected to a filter 
function which tends to retain the contributions of only those scales which are larger 
than a cutoff length-scale (say .Lcutoff) and discards the contribution of the scales 
smaller than .Lcutoff to the flow variable of interest. We symbolically denote such 
a filtering operation by . . f . Accordingly, the instantaneous velocity and pressure 
variables are decomposed as 

.Vi = Vi f + Vi and p = p f + p (9.1) 

The symbols .Vi and .p are called the residues of .Vi and . p subject to the filtering 
process. These residues, by definition, when added back to their filtered counterparts, 
recover the corresponding instantaneous variables. 

We anticipate that seeking numerical solutions of. Vi f and. p f would pose less 
stringent requirements of spatial and temporal resolution to the CFD methodology 
compared to resolving the instantaneous variables .Vi and . p themselves in a direct 
numerical simulation. Equation (9.1) forms the basis of what we call the scale-
resolving simulations. Strictly speaking, a direct numerical simulation is the most 
accurate scale-resolving simulation. However, in contemporary literature, the phrase 
scale-resolving simulations is typically used to refer to those numerical simulations 
which attempt to solve for the filtered velocity and pressure fields (. Vi f and. p f ). 

The decomposition (9.1) is apparently similar to the decomposition introduced in 
Chap. 5 wherein the instantaneous velocity and pressure variables were decomposed 
in terms of the means and the fluctuations. 

.Vi = Vi Vi and p = p + p (9.2) 

However, unlike the mean operator, . , with which 

. φ = 0 and φ = 0 (9.3) 

for the filtering operator, . f , in general, 

. φ f f 
= φ f and φi f 

= 0 (9.4) 

where . φ is an instantaneous variable of a turbulent flow field. 
Further, unlike . φ , which is a deterministic quantity, . φ f is still a random vari-

able. Thus, to extract any meaningful statistics of the random instantaneous flow 
variable (. φ), an appropriate averaging process of . φ f would still be required. 
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9.2 Governing Equations of a Filtered Flow Field 

The governing equations of the filtered flow field are the governing equations of 
our primary variables of interest in a scale-resolving simulation: . Vi f and . p f . 
These equations are derived from the instantaneous Navier-stocks equation set (3.10 
and 3.11). At this point, we assume the filter function . . f to have the following 
properties, 

. 
∂φ1 

∂t f 
= 

∂ φ1 f 

∂t 
, 

∂φ1 

∂xi f 
= 

∂ φ1 f 

∂xi 
, 

and φ1 + φ2 f = φ1 f + φ2 f (9.5) 

where .φ1 and .φ2 are two instantaneous flow variables of interest. 
We subject the instantaneous continuity equation (3.10) to the filtering operator. 

. 
∂ Vi 
∂ xi f 

= 0 f or, (9.6) 

subsequently, using the properties listed in (9.5) leads us to the following form of 
the filtered continuity equation 

. 
∂ Vi f 

∂xi 
= 0 (9.7) 

Next, we subject the instantaneous momentum equation (3.11) to the filtering 
operator 

. 
ρ∂ Vi 
∂t

+ ρVk 
∂Vi 
∂xk f 

= − 
∂ p 
∂ xi 

+ μ 
∂2Vi 

∂xk ∂xk f 
(9.8) 

Again, employing the properties listed in (9.5), the filtered momentum equation is 
expressed as 

. 
∂ ρVi f 

∂t
+ ρVk 

∂ Vi 
∂xk f 

= −∂ p f 
∂ xi 

+ μ 
∂2 Vi f 

∂xk ∂xk 
(9.9) 

Since .ρ is a constant, it commutes across both the filtering and the derivative 
operators. 

.ρ 
∂ Vi f 

∂t 
+ ρ Vk 

∂Vi 
∂xk f 

= −∂ p f 
∂ xi 

+ μ 
∂2 Vi f 

∂xk ∂xk 
(9.10) 



168 9 Scale-Resolving Simulations of Turbulent Flows 

The second term on the LHS Eq. (9.10) is the filtered value of the advection term. 
Using the instantaneous continuity equation (3.10), this term is expressed as 

. ρ Vk 
∂Vi 
∂ xk f 

= ρ 
∂ (Vi Vk ) 

∂ xk 
− Vi 

∂ Vk 
∂ xk f 

= ρ 
∂ (Vi Vk ) 

∂xk f 

= ρ 
∂ Vi Vk f 

∂xk 
(9.11) 

Further, using the decomposition scheme (9.2), we recast the filtered value of the 
product of velocity components as 

. Vi Vk f = ( Vi f + Vi )( Vk f + Vk ) f 

= Vi f Vk f + Vi Vk f + Vk Vi f + Vi Vk f 

= Vi f Vk f f + Vi Vk f + Vk Vi f 
f 

+ Vi Vk f f 
(9.12) 

All four terms on the RHS of (9.12) are, in general, non-zero. Further, all these 
quantities are deemed as secondary unknowns. 

It is conventional to club together all the terms on the RHS of (9.12) and express 
(9.12) as the product of the filtered velocity components . Vi f and . Vk f and addi-
tionally one single secondary unknown quantity .τ T ik : 

. Vi Vk f = Vi f Vk f + τ T ik (9.13) 

where .τ T ik  represents the .(ik)th component of the second order tensor .τ T , which is 
called the generalized central moment tensor of the velocity field [ 17]. Alternatively, 
it is also referred to as the .(ik)th component of the turbulent stress tensor. 

Substituting (9.13) in (9.10) leads to the following form of equation: 

. 
∂ Vi f 

∂t
+ 

∂ Vk f Vi f 

∂ xk 
= −  

1 

ρ 
∂ p f 
∂ xi 

+ ν 
∂2 Vi f 

∂ xk ∂xk 
− 

∂τ T ik  
∂ xk 

(9.14) 

Using the filtered continuity equation (9.7), the advection term in (9.14) can be 
further simplified and (9.14) is expressed as 

. 
∂ Vi f 

∂t 
+ Vk f 

∂ Vi f 

∂xk 
= −  

1 

ρ 
∂ p f 
∂ xi 

+ ν 
∂2 Vi f 

∂xk ∂ xk 
− 

∂τ T ik  
∂xk 

(9.15) 
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Equation (9.15) is called the filtered momentum equation. The set of equations 
comprised of (9.7) and (9.15) is called the filtered Navier-Stokes equation (summa-
rized below). 

. 
∂ Vi f 

∂xi 
= 0 

∂ Vi f 

∂t
+ Vk f 

∂ Vi f 

∂ xk 
= −  

1 

ρ 
∂ p f 
∂ xi 

+ ν 
∂2 Vi f 

∂ xk ∂xk 
− 

∂τ T ik  
∂ xk 

(9.16) 

The primary unknowns of the filtered Navier-Stokes equation set are the filtered 
velocity components and the filtered pressure variable: . Vi f and . p f . The tensor 
.τ T is deemed as a “new” quantity or secondary unknown tensor. This is a symmetric 
tensor and thus represents, in general, six secondary scalar unknowns. Like the 
instantaneous momentum equations (3.11), the mean momentum equations (9.15) 
represent three non-linear PDEs. The nonlinearity arises because of the advection 
term (second term on the LHS of 9.15). 

Like the RANS equation set (5.10), the filtered Navier-Stokes equation (9.16) 
is mathematically unclosed, and closure modeling is required for the .τ T tensor. 
However, if.Lcutoff is chosen to be small and close to the dissipative range of scales of 
motion, the required models are expected to be simpler and more widely applicable. 
This anticipation is based on the Kolmogorov hypotheses, which suggest that the 
statistics pertaining to the smallest scales of motion tend to be more isotropic and 
universal. 

The so-called large eddy simulation or LES methodology of turbulence compu-
tations sets the .Lcutoff to be somewhat larger than the dissipative length-scales and 
then uses simple algebraic closure models for the .τ T i j  components. Since the . Lcutoff 
is still larger than the smallest scale of motion (the Kolmogorov length-scale), an 
LES simulation can be performed on a grid coarser than what is required for a direct 
numerical simulation of the same flow field. This results into a considerable reduc-
tion in the requirement of computational resources. For more details about the LES 
methodology, the reader is referred to [ 6]. 

In recent years, some other scale-resolving methods have also been developed, 
which allow the user to choose .Lcutoff anywhere between the range 

.L E I  > Lcutoff > L DI (9.17) 

depending on the spatial resolution of the computational grid the user can afford 
to have. Such methods are, in general, called the bridging methods of turbulence 
computations. Even though bridging methods offer the freedom to the user to choose 
.Lcutoff commensurate to the available computational resource, the simple algebraic 
closure models (like the ones used for LES) may not work effectively, and more 
advanced models involving additional partial differential equations are required for 
improved predictions of flow statistics. For more details on bridging methods, the 
reader is referred to [ 18]. 
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