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Preface

Many flows of engineering interest are turbulent in nature, and thus it is important
that students of Aerospace, Mechanical, Chemical, Civil and other allied branches
of engineering must be given an opportunity to have at least one-semester long
course on the fundamentals of turbulence and its modeling. Some educational insti-
tutes in India do offer such a course on turbulent flows and the enrolled students
often look for an easy-to understand book on this otherwise difficult subject of
study.

Indeed there are some excellent books, written by some renowned authors,
already available on this topic. The book First Course in Turbulence
by H. Tennekes and J. L. Lumley is legendary: it has trained a generation of engi-
neers and researchers worldwide on the subject. In recent years, the book Turbulent
Flows by S. B. Pope has gained immense popularity owing to the mathematical
rigor and the wide range of topics that it covers. With its focus especially on turbu-
lence closure models and their implementations, the book Turbulence Modeling for
CFD by D. C. Wilcox has been an equally popular book for reference. While these
books are indeed extensive in terms of their contents and they do include both fun-
damental and advanced topics of the subject, it may still be quite challenging for
teachers and students to cover most of the contents of any of these books during a
single semester-long course. While we all do try to pick-and-choose topics based
on their significance, it is often a struggling process for the teacher and the stu-
dents alike to ascertain what all to cover and with what degree to detail within the
time constraints of a semester.

The purpose of this new book is to cover the most essential aspects of turbu-
lence and its modeling such that the included contents can be taught at a pace
and in a sequence that it becomes easier for students to learn the matter over a
semester-long duration. The author believes that the sequence of contents, the vol-
ume of contents and the style of presentation included in this book are unique
and apt so that students can make a very smooth transition from their already
completed essential training in basic fluid mechanics to their next pursuit of learn-
ing advanced, complex but extremely useful concepts related to turbulence and
its modeling. This book can ideally be used as the text book to teach turbulence
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viii Preface

and its modeling over a semester of 12—14 weeks to the final year under-graduate/
post-graduate students of Aerospace, Mechanical, Chemical, Civil and other allied
branches of engineering. This book, by no means, is being presented or claimed as
a substitute to any of the excellent existing books on the topic. However, this book
can prove to be a useful stepping stone preparing a student to reach a stage where
reading and comprehending other advanced texts and research papers related to
this field of study would become easier.

This book is based on my lecture notes that I have used to teach the course
Turbulence and Its Modeling several times at Indian Institute of Technology Delhi.
In fact, my decision to invest effort and time to convert those notes into a book is
based on the persistent encouraging feedback from my students about the choice of
contents and the organization of the course that I have offered in the past semesters.

I would like to thank my current and former students Shishir Srivastava, Deep
Shikha, Sagar Saroha and Farooq Ahmad Bhat for their generous efforts in helping
me gather data, prepare figures and for providing constructive feedback at various
stages of writing this book. Special thanks are due to Shishir for creating the cover
picture for this book.

New Delhi, India Sawan S. Sinha
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Tensors

A tensor of order n (€ {0, 1, 2, 3, ...}) in three-dimensional space is defined as a
mathematical entity consisting of 3" components. The numerical values of these
components can vary depending on the coordinate system used to represent the ten-
sor. These 3" numbers are called the scalar components of the tensor within the
chosen coordinate system. Although these scalar components generally depend on
the chosen coordinate system for their representation, the tensor itself—as a mathe-
matical entity and as a representation of a physical quantity—remains independent
of the coordinate system used. In other words, the tensor itself is invariant to the
choice of the coordinate system used to express it. This property of invariance is
ensured by a set of relationships between the 3" components of the tensor in one
coordinate system and the corresponding set of 3" components in another coordinate
system. These relationships ensure that despite the different scalar representations,
the tensor remains consistent across all coordinate systems. Such a relationship is
called the transformation rule of all tensors of order n. A tensor of order zero is
a special case wherein the transformation rule is trivial. Such a tensor is described
by one (3°) number, which is independent of the choice of the working coordinate
system.

In our study of fluid mechanics and turbulence, we come across tensors of various
orders of fluid. Some examples of tensors are fluid density, velocity of a fluid particle
and stress at a point. Density is a tensor of order 0. It is completely described by 3° = 1
component. The velocity of a particle is a tensor of order 1 (n = 1). When expressed
in a coordinate system of our choice, velocity has 3! = 3 scalar components. Stress
at a point is a tensor of order 2. Thus, when expressed using a coordinate system,
it has 3% = 9 scalar components. A tensor of order zero is also called a scalar, and
that of order 1 is also called a vector.
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2 1 Tensors

1.1 Expressing a First-Order Tensor Using a Cartesian
Coordinate System

Letus have a Cartesian coordinate system Oxj(€e1)x2(é2)x3(é3), where O is the origin
of the coordinate system (Fig. 1.1). The symbols é;, ¢, and é3 are three mutually
perpendicular unit vectors. The symbols x1, x5 and, x3 denote the coordinates of an
arbitrary location (say P, Fig. 1.1). If T is a tensor of order one, we express the tensor
in this coordinate system as:

T =Tie) + They + Tses. (1.1)
The symbols T1, T, and T3 are called the scalar components of the tensor 7 along

the unit vectors ¢1, €, and é3, respectively. Note that in this book, we represent all
tensors (except scalars) using an underlined alphabetical symbol.

1.2 Transformation Rule: First-Order Tensors

Let us now consider another Cartesian coordinate system Ox; (é;)x;(é;)xé(é;)
(Fig.1.2). The same tensor T (1.1) can alternatively be expressed in this coordi-
nate system as:

T =T\é, + Thé, + Tyé5. (1.2)

In general, Tl/ # Ty, Tz/ # T, and T3/ # T3. By definition, the tensor 7" must be
invariant to the choice of the coordinate system used to express it, the components

Fig.1.1 A Cartesian Xg(ég)

coordinate system. P

represents an arbitrary *P(x,, X, , X))
location with coordinates xi,

X2, X3

Fig. 1.2 Two different x (é‘ )
; . 1At (€6
Cartesian coordinate systems x,(€)



1.2 Transformation Rule: First-Order Tensors 3

of the tensor in these two coordinate systems must be related. To derive this trans-
formation rule, we first express the unit vectors of the second coordinate system in
terms of the unit vectors of the first coordinate system:

3
é, = aneél +ané +aizé; = Zauéi,
i=1
3
ey = a2181 +anér + axés = Zaziéi,
i=1
3
é; = az1é| +axnéy +azzé; = 2613;51‘, (1.3)
i—1

where the symbol

i=1
represents the sum of three relevant terms that would be generated by allowing the

index i to assume values 1, 2, and 3. The coefficients a;;’s appearing on the right-hand
side (RHS) of (1.3) are the direction cosines between the unit vectors:

aij =¢é; - ¢j, (1.4)

where i € {1,2,3}and j € {1, 2, 3}. Substituting the equations of unit vectors of the
second coordinate system from (1.3) in (1.2) leads to the following equation:

3 3 3

T=T Y auéi+Ty ) axé + T,y aéi. (15)

Regrouping various terms on the RHS of (1.5) as coefficients of é1, >, and é3 leads
to:

3 3 3
T = ZTiail e+ ZTiaiz e+ ZT,'CZB és. (1.6)
i=1 i=1 i=1
Comparing (1.6) with (1.1), we arrive at the following set of relationships between
the scalar components of the tensor 7 in the two coordinate systems:

3 3 3
T =2Tiai1, T2=2Tiai2, and T3=ZT,-ai3- (.7
i=1 i=1 i=1
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This set of three equations is called the transformation rule of the tensor of order
one. These three relationships can be expressed in a more compact manner as:

3
Ty =Y T a (1.8)
i=1

where j € {1, 2, 3} and 7} is the jth scalar component of the tensor T in the working
coordinate system Oxy(e1)xz(e2)x3(€3).

1.3  Expressing a Second-Order Tensor Using a Cartesian
Coordinate System

Now let us consider a second-order tensor S. In a working coordinate system, it will
have 9 scalar components. In the Cartesian coordinate system, Ox;(€})x2(é2)x3(€3)
this tensor is expressed as:

S = S11€181 + Saéiéa + Si13é163 + S216281 + 5226287 + 5236283
303
+ S31831 + S328382 + S338363 = Z Z Sijeie;, (1.9)
i1 j=1

where §;; is the (ij)th scalar component of the tensor S in the working coordinate
system Oxj(e1)xa(e2)x3(e3). The new mathematical entities é¢e1, €1é2, €13, €21,
ey, ee3, exeél, ezeéy, and ezes appearing in (1.9) are called dyads. Each dyad
is an ordered combination of two of the original coordinate system’s unit vectors
(equivalently, two mutually perpendicular directions). Note that é1e, # éé1, é2e3 #
€383, andéze; # e1é3. The quantity S;; is called the (ij)th component of the tensor S
along the dyad ¢;¢é;. Using the summation symbol, S can be expressed equivalently
in two ways.

3 3 3

: 3
S=) ) Sijeei=y Y Sjiéé (1.10)

i=1 j=I i=1 j=I

Equation (1.10) shows that simultaneous changes in the order of the indices of the
dyad on the one hand and that of the indices appearing with the scalar components,
on the other hand, keep the tensor unchanged.

The transpose of a second-order tensor S is defined as:

3.3 3 03
ST=3" Y spie; =) Y Sijéjei, (1.11)

i=1 j=1I i=1 j=1

where the symbol S7 is the transpose of S. In general, ST # S.
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If a second-order tensor S is such that ST = §, it is called a symmetric tensor. In
contrast, a second-order tensor S is called an antisymmetric tensor if ST = —S. For
a symmetric tensor

Sij = Sji,ifi # j. (1.12)

For an antisymmetric tensor
S12 = =81, 823 = — 832, S31 = =813, and §11 = S = §33 = 0. (1.13)

Any second-order tensor (A) can be expressed as the sum of a symmetric tensor
(ASYMMEicy and an antisymmetric tensor (Antsymmetricy.

A — Asymmetric + Aamisymmetric’ (1.14)
where
T T
Asymmetric _ A +2A and Aantisymmetric _ % (1.15)

A second-order tensor (A) can be split into two parts: the isotropic part (Alsotropicy
and the anisotropic part (A*MS°UPI¢) These parts are defined as

Aisotropic — Trace(é)l a 16)
A — 1L .
and
Aanisotropic —A— Trace(A) I (1.17)
A A 3 1 .
The Trace of a second-order tensor is defined as
Trace(A) = A1 + Axn + Aszs (1.18)

where the working coordinate system is a Cartesian coordinate system ((Oxj(é;)
x2(€2)x3(e3)), Fig. 1.1). The tensor [ represents the identity tensor of order two. In
the Cartesian coordinate system.

I =e¢ie; +erer + e3e3 (1.19)
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1.4 Transformation Rule: Second-Order Tensors

We wish to derive the transformation rule of a second-order tensor (S). Referring to
the two coordinate systems of Fig. 1.2, we start with the expression of the tensor S
in Ox/1 (é/l )x/2 (é/z)xé (é5) coordinate system:

S= ZZS,TJ.@;@;. (1.20)

We use (1.3) to substitute the unit vectors of the second coordinate system in terms
of the unit vectors of the first coordinate system. Subsequently, we separate the
coefficients of the nine dyads, leading to the following expression of S:

3 3 3 3

S=Y"3UD2D s aipai, | ey (1.21)

p=1q=1 \i=I1 j=I

Earlier, we expressed tensor S directly in the first coordinate system (1.10), with
summation implied over the indices i and j. However, the same tensor be expressed
with summations over indices p and ¢:

3
S=Y"3 " Splpéq. (1.22)

p=lg=1

Now comparing (1.21) with (1.22) and matching the coefficients of ¢,¢é, in the two
equations, we arrive at the following expression:

3 3

Spg =D 3 Sidipajq; where p,q € (1,2,3). (1.23)
i=1 j=1

The set of nine equations represented by (1.23) is the transformation rule for the
second-order tensors.

1.5  Expressing Higher-Order Tensors Using a Cartesian
Coordinate System

The manner of expressing the first-order and second-order tensors discussed in pre-
vious sections may be extended to higher-order tensors, as well. For an nth-order
tensor with 3" scalar components, we will require 3" “dyad-like” members con-
structed with the three mutually perpendicular unit vectors of the chosen coordinate
system (e, €2, and é3). For example, a third-order tensor Q is expressed as:
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3 3

Q=33 Qikéiéjé, (1.24)

i=1 j=1k=1
where Q;j is the (ijk)th scalar component of the tensor Q in the given Cartesian
coordinate system.

1.6 Einstein’s Summation Rule

So far, we have been expressing tensors using one or more summation signs (Z)
While it is indeed a compact way of writing the tensors compared to writing all the 3"
terms explicitly, now onward, we wish to make the expression even more compact.
We follow what is called Einstein’s summation rule. According to this rule, the mere
appearance of an index two times in a term by itself implies summation over that
index. However, care must be taken that an index must not appear more than two
times in any term. Following Einstein’s summation rule, the final expressions of
various Eqgs. (1.5)—(1.24) can be expressed as shown in (1.25)—(1.30).

An index appearing two times in a term is called a dummy index. In a term,
the choice of an alphabet to represent a pair of dummy indices is not unique. Any
symbol can be used as long as a dummy index does not appear more than two times.
It is conventional to use the lowercase Latin alphabet to denote these indices. This
is illustrated in some examples included in (1.25)—(1.30). In all these examples,
every index is repeated exactly two times. The order of the tensor being expressed
must be inferred based on the number of unit vectors that sequentially appear in
the expression. The number of such unit vectors appearing in the sequence defines
the order of the tensor. In some cases, the number of pairs of dummy indices may
coincidentally match the order of the tensor, but this is not generally true. Example 6
(1.30) represents the dot product of two vectors A and B, which is a tensor of order
zero (a scalar, no unit vectors appearing therein). However, the number of pairs of
dummy indices is still one.

Example 1.

3
T =Te +Ther+ Tze; = Z Tie;.
i=1
The equivalent expression using Einstein’s summation rule is
T =T = Tjéj. (1.25)

Example 2.

3
A/ ~
€ = E alié;.
i=1
The equivalent expression using Einstein’s summation rule is

/

€, = a1;é; = axék. (1.26)
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Example 3.

3 3
$=2.0 Siéi;.
i=1 j=1
The equivalent expression using Einstein’s summation rule is

S = Sij6i6) = Sigity = Spytpéy. (1.27)

Example 4.

3 3
ST =3"%"sj88;.
i=1 j=1

The equivalent expression using Einstein’s summation rule is

ST =868 (1.28)
Example 5.
3 3 3
=2 D Qinéiéjér.
i=1 j=1k=1
The equivalent expression using Einstein’s summation rule is

Q= Qijréiejex = Qijréiejer = Qqjréqéjér. (1.29)
Example 6.

3
¢ = AB) + AyBr + A3B3 = ZAjB,-.
Jj=1
The equivalent expression using Einstein’s summation rule is
¢ =A;B;. (1.30)

Einstein’s summation rule can also be used to express individual scalar compo-
nents of a tensor. In (1.31) and (1.32), we include such examples (Examples 7 and 8).
Note that there are already one or more pairs of dummy indices in all these expres-
sions. Further, in each expression, there is one or more non-repeated index. Such a
non-repeated index is called a free index. The number of free indices in an expres-
sion always matches the order of the original tensor to which this scalar component
belongs. These free indices may be assigned values 1, 2 or 3 to express various
components of the tensor.

Example 7.

3
’
Tj = ZTial‘j'
i=1

The equivalent expression using Einstein’s summation rule is
Tj =Tia,'j. (1.31)
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Example 8.

303
’
Spg = Zzsij“ipajq-
i=1j=1

The equivalent expression using Einstein’s summation rule is

Spg = S;jaipajq- (1.32)

In an equation, if there are free indices, all terms of the equation must have the same
number of free indices, and further, those free indices must be identical in all the
terms on either side of the equation. For example, in the equation

Spg = ngaipaqu (1.33)

the term on the left-hand side (LHS) and that on the RHS have exactly two free
indices. Moreover, these free indices are p and g in each term. This manner of
expressing tensors in a Cartesian coordinate system using free and dummy indices
is called the index notation.

1.7  Tensor Operations

In this section, we define some tensor operations relevant to our study of fluid mechan-
ics.

1.7.1 Dot Product of Two Tensors

Let us consider two tensors 7 (of order + > 1) and N (of order n > 1). We define
two types of dot product between two tensors: 7 - N and N - T'. In general, these two
dot products result in two different tensors. However, in the special case when both
these tensors are of order one, then, T - N = N - T. The execution of a dot product
always results in a tensor with an order that is two less than the sum of the orders of
the two participating tensors.

To illustrate the algebraic implementation of a dot product, we consider the dot
product of a second-order tensor with a first-order tensor. We perform this illustration
using the Cartesian coordinate system of Fig. 1.1 as our working coordinate system.
We first express the two participating tensors in a Cartesian coordinate system and
subsequently simplify the algebra as much as possible.

T-N= [Tiié1é1 + Tizé1és + Ti3é163 + Tr18281 + Taérés + T236283

+ T31838) + Txésér + T338383] - [N1é) + Naéy + N3és]. (1.34)
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The right-hand side of Eq. (1.35) results into 27 individual terms.

T-N=

+ 4+ + + + + +

+

Tié16
Ty 281
T3163¢
Tié18
T2
T313¢)
Tie1e
Ty1e28

T31é3¢€]

- Niey + Tpereéy -
-N1é1 + Tnéres
- Niey + Tseser -
- Naéx + Tipé1en
- Naéx + Tnézer
- Naey + Txezer
- N3es + Tipeer -
- N33 + Tnézer
- N3e3 + Txeszer -

Niey + Tizeqes -
- Nié1 + Thzérés
Niey + Ts3eses -
- Naés + Tizeres
- Naés + Tpzezes -
- Naéy + Ts3e3es - Noe
N3es + Tizepes -
- N3e3
Nses.

- N3é3 + 1236283
N3é3 + Tzzezes -

Nie;

- Nieé

Nié;

- Naéy

Noér

N3é3

(1.35)

The rule by which the dot product operates is that in an expression like T12¢1¢; - Niéj
of (1.35), the rightmost unit vector from the expression appearing on the left side
of the dot operator should dot with the leftmost unit vector from the expression
appearing on the right-hand side of the dot operator. In other words, the “nearest”
two unit vectors must dot with each other. Thus,

Ti2é182 - Niéy = TiaNyéy (é2 - é1) = TiaN1é; (0) = 0. (1.36)
Since the three unit vectors (¢1, €2, and ¢3) are mutually perpendicular to each other,
out of the 27 individual dot products of (1.35), only those survive which involve the
dot products of the same unit vectors (¢; - €1, € - €3 and €3 - €3). Accordingly, there
are nine such surviving terms.

T -N =T Nié) + TiaN2é1 + TizNzéy + T Niéz

+ TooNyey + TrsN3éy + T3 Nye3 + TspNaes + Ta3Nzes.  (1.37)
Using Einstein’s summation rule, this dot product is written as:
T -N=T;N;é. (1.38)

Now let us consider the dot product N - T'. This can be expressed as:

N -T = [Nié1 + Naéy 4 N3és| - [Tuéiér + Tinéréz + Tizé1é3
Tr1exe1 + Troérer + Thzeres + Tx1e3eq + Txnezenr + T33égé3] . (1.39)

Following the same rule (the nearest two unit vectors dot with each other), we arrive
at:

N -T = NiTi1é1 + N1Ti2és + NiTizé3 + NoTré1 + NoTnés

+ NoTr3é3 + N3T31€1 + N3Ts8p + N3Tz3é3.  (1.40)
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Using Einstein’s summation rule (1.40) is written as:
N-T =N;Tji¢; =T;jiNjé;. (1.41)

In the expressions of both 7 - N and N - T we have only one unit vector appearing
on the RHS of (1.38) and (1.41). This means that both T - N and N - T are vectors
(tensors of order one). Now, for the two vectors to be identical, we must compare the
ith components of the two vectors. The ith component of a vector is the coefficient of
é; in its expression (1.38 or 1.41). The ith components of T - N in (1.38) and that of
N -Tin(1.41)are T;; Nj and Tj; N, respectively. Since T;; Nj (= T;1 N1 + Tio N +
Ti3N3) # TjiNj(= T(;N1 + T2 N2 + T5;N3), we conclude that T - N # N - T.

At this point, we introduce a new symbol called the Kronecker delta (§). This
symbol has two indices as subscripts, with which we define

8ij= & -éj, (1.42)

where ¢; and é; are the ith and jth unit vectors of our Cartesian coordinate system.
Clearly, (1.42) leads to:

0 ifi #j. (143)

Note that following the definition of §;; and simultaneously using Einstein’s sum-
mation rule

{1 if (i, j) =, 1),0r (2,2),0r(3,3)
ij =

8ii = 811 + 022 + 833 = 3. (1.44)

The specific purpose of introducing the Kronecker delta symbol here is to sym-
bolically represent the dot product between the two unit vectors of the working
Cartesian coordinate system. With this definition, one can avoid dealing with the
expanded forms of various tensors (like what we had to do in (1.35) and (1.39)). We
illustrate this by revisiting the dot product of (1.34).

T -N= (Tijéiéj) : (Npép) = Tiijéiéj 'ép = Tiijéi‘Sjp- (1.45)

Once a Kronecker delta symbol appears in a term (J;, in this particular example),
we perform the following two simplifying steps: (1) remove the Kronecker delta
symbol, and (2) replace either the remaining j by p or replace the remaining p by j
in the term. By performing these two steps, we achieve (i) the removal of all those
dot products wherein two different unit vectors participate and consequently vanish
and (ii) retaining all those dot products wherein identical unit vectors participate.
Employing these two steps, (1.45) readily simplifies as:

Z'ﬂ:Tiijéi(Sjp:Tiijéi- (1.46)
Alternatively,

Z'ﬂzTiijéiajp =Tipréi» (1.47)
which leads to the same outcome as what we obtained in (1.38).
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1.7.2 Double Dot Product of Two Tensors

The double-dot product is defined for two tensors T and N of orders ¢ and n, if
t > 2 and n > 2. The resulting tensor is of order t + n — 4. The double dot product
operation is defined by performing two successive dot products between the right-
most unit vector of the tensor on the left and the left-most unit vector of the tensor
on the right. We illustrate the double-dot operation using an example wherein two
second-order tensors are participating:

T:N= (Tijéiéj) : (Npqépéq) =TijNpqéie;j : epeq,

= T;jNpqdjpei - eq = TijNjqéi - ¢q = TijNjqSiq.
— T,N;i, (1.48)

which is a scalar (because no unit vector appears in the final expression).

1.7.3 Cross Product of Two Vectors

The cross-product is defined for two vectors. The resulting quantity is also a vector.
The cross product between vector A and B is defined as

A x B = ¢&jxAiBjeéy, (1.49)
where the symbol ¢ is called the permutation symbol such that,

+1 ifi # j #kand (i, j, k) follows a cyclic order
(1,2,3)or (2,3, 1) or (3, 1, 2),
gijk =1—1 ifi # j #kand (i, j, k) follows the reversed cyclic order
(1,3,2)or (3,2, 1) or (2, 1, 3),
0 otherwise.
(1.50)
Based on this definition, it follows that only when i # j # k, &;jx # 0. It can be
verified that in case i # j # k, the swapping of the positions of a pair of indices
changes the sign of &;

gijk = —€jik = —(—€jki) = & jki- (1.51)

It can be verified that the permutation symbol (1.50) leads to the following relation-
ships

é1 x ey = ée3, ey xe3=ey, ez x e1 = é,

A oA A A o A ~ (1.52)
ey X e = —e3, ez X e = —eq, el X ez = —en.

The RHS of (1.49) does lead to the following familiar expanded form of the cross
product of two vectors

A X B=(AyBs — A3By)é| + (A3B1 — A1B3)éex + (A1By — Ay By) e3. (1.53)
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1.8  Thee-6 Identity

It can be verified that the following relationship exists between the permutation
symbol (¢) and the Kronecker delta (§) symbols.

Eijk€imn = 8jm5kn - Sjn(skm- (1.54)

Equation (1.54) is called the €-§ identity and often proves useful while performing
algebraic manipulations of expressions involving multiple cross products. Note that
the first index of the two permutation symbols on the LHS of (1.54) are identical.

1.9  Spatial Derivatives of Tensors

In later sections, when we derive the governing equations of fluid motion, we come
across spatial derivatives of various kinematic and force-related quantities. Thus, we
must define an operator (V) with the help of which various derivatives of space-
dependent tensors can be expressed and algebraically manipulated. We refer to this
operator as the nabla operator. Using the Cartesian coordinate system of Fig. 1.1, V
is expressed as:

0

9 9 5
— O —— ) —, O V = e -, 155
Y T P T P LT (1.55)

V =

Q>

where 9/0x,, is the partial derivative operator with respect to the spatial coordinate
xm where m € {1, 2, 3}. In the context of this book, there are five specific operations
of the nabla operator which we need to understand. These are the gradient of a
tensor, the divergence of a tensor, the advection operator, the curl of a vector and
the Laplacian of a tensor,

The gradient of a tensor of order ¢ (where ¢ > 0) results in a tensor of order # + 1.
We illustrate this operation using an example where ¢ = 2.

VT = (ém%) (T,'jé,'éj) = ém%éiéj = %éméiéj. (1.56)
Since the unit vectors ey, €2, and é3 do not depend on the spatial coordinates (x1, x2,
and x3), the spatial derivatives of these unit vectors do not appear in (1.56). The final
expression in (1.56) has an ordered sequence of three unit vectors, which clearly
shows that the resulting tensor is a third-order tensor.

The divergence of a tensor of order ¢ is defined if # > 1. The resulting tensor is
of order (r — 1). We illustrate this operation using an example where t = 2.

. 0 A olij . .. 0T
V-T= (em—axm> (Tijéiés) = 8x:: em - eiej = —3XZ Smiej,
i (1.57)
= e, .
axl‘ J

which is a first-order tensor (only one unit vector appears on the RHS of (1.57)).



14 1 Tensors

The Laplacian operator (V?) is defined as:
Vi=(V-V). (1.58)

The Laplacian operator can act on a tensor of any order. The resulting tensor has the
same order as the tensor on which the operator acted. In the Cartesian coordinate
system, the Laplacian operator is expressed as:

Vo (v.V)= ¢ I R 5 32
= . = ep—— byp—— =€y - Cp——— = —_—,
- " 0X;, " 0xy, m"een 02Xy, 0Xy, m 0X;, 0%y,
32
= . 1.59
00X, 0 X, ( )
We illustrate the effect of this operator on a second-order tensor (7):
82 82Ti .
V2T =(V-V)T = Tjiéié; = !_¢ié;. 1.60
- (_ _)_ 00X, 0%y, jeie] 00X, 0%y, €€ ( )

The right-most expression in (1.60) has an ordered pair of unit vectors (¢;¢ 7), which
implies the resulting tensor is a second-order tensor, like 7', itself. However, sz *
T.

The advection operator is defined as:
(v v), (1.61)

where V is a vector. The advection operator can act on a tensor of any order. The
resulting tensor is of the same order as the original tensor on which the advection
operator acts. Let us consider an example wherein the advection operator acts on a
vector B.

. . 0 N 0 .
(K : 2) B = (Vmem : en87> quq = Vmamnaneqs

n

n n

9 . 0B, .
= Vng quq = Vn W@q. (162)

The parentheses appearing on the LHS of (1.62) imply that the dot product operation
must first be performed between V and V, and subsequently, the resulting operator
actson B.

The curl of a vector is defined as the cross product between the nabla operator
and a vector:

vV x V. (1.63)

Expressing both the nabla operator and the vector V using our Cartesian coordinate
system and (1.49), (1.63) is expressed as

. 0 . N . dVp v, .
VxV=e, x Vpep, = ey x epa = smpnaen. (1.64)

B
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1.10 Index Notation and Tensor Identities

In previous sections, we introduced the index notation, primarily to enable us to
express a tensor in the Cartesian coordinate system in a compact manner. Addi-
tionally, the index notation also proves useful in demonstrating the proofs of various
tensor identities. Since tensors themselves remain invariant to the choice of the work-
ing coordinate system, so are the tensor identities. Thus, it is adequate to prove a
tensor identity using any one working coordinate system of our choice. Our Cartesian
coordinate system, for which we use the index notation for brevity, is indeed an apt
choice to demonstrate the proofs of tensor identities. For this purpose, we first use
index notation to express one side (the LHS or the RHS) of the identity in the Carte-
sian coordinate system. Subsequently, various rules of the index notation, along with
the relevant properties of the permutation symbol and the Kronecker delta symbol,
are employed to simplify (and sometimes expand) the algebraic terms. Finally, these
modified algebraic terms are converted back to the form which is independent of
the choice of the working coordinate system. This process is illustrated using the
following examples.

Example 1. Prove that V x (V¢) = 0.

2
V x (V¢) =V x <émaa—¢> = 8imki (%> e = Eimkiék-

Xm ax; \ 0xp, 0x;0Xp,

Now, we carefully change all i’s to m’s and all m’s to i’s in the last expression. The
resulting tensor must remain unchanged because both i and m are dummy indices.
Thus,

1o G
Eimk 57—k = Emik 5 ¢k
1 0x;0x,, m 02X, 0X;

However, merely interchanging the positions of i and k in the permutation symbol
on the RHS must reverse the sign of the tensor

8¢ 8¢
imk ———€) = —&; ex . 1.65
Eimk 9% 9%, €k Eimk 3% 07 €k ( )
Since Jjgx‘ = %, the LHS and the RHS of (1.65) are identical except for the
negative sign. For this to be true, both LHS and RHS must be zero. Thus,
1¢ .
Eimk er=0=V x (qu) =0. (1.66)

0X; 00X,
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Example 2. Prove that V - (V x V) = 0.

V- (YxV) en" (- xv,e
- ’"axm ”ax,, a=a

.9 vy . PV, ..
em8—~ 81,,,,@@ Epgr ———C€m * €r,

Xm = Spar 0xm0xp
CRAA 3%V,
= — 1 = — 7 1.67
Epar 0x,0x) mr = Epgm 0X,, 0% ( )

Now, we carefully change all p’s to m’s and all m’s to p’s in the last expression. The
resulting tensor must remain unchanged. Thus,

3V, 3%V,

— = _— 1.68
Epam 0x,0xp Emap 0xp0xy, ( )

However, merely interchanging the positions of m and p in the permutation symbol
on the RHS must reverse the sign of the tensor leading to

3%V, 3%V,

—_— = r—— 1.69
Epam 0xp, 0xp Epam 0xp0xy, ( )

We observe that the LHS and the RHS of (1.69) are identical except for the negative
sign. For this to be true, both LHS and RHS must be zero.

3%V,

——=0=V.-(VxV)=0. 1.70
0xp0xy, =Y (_X_) ( )

Epgm
Example 3. Prove that

Yx(@xV)=(V-V)o-(V-o)V+(¥ V)o-(@T)V.

. 9 .
Vx(wxV)=V x (sjcwiViek) = €pr — (€ijkwi V) é,

xp
dw; aV;
= 5pkr€ijkﬁvjér+8pkr8ijk_jwiér' (L.71)
0xp oxp

Both the terms in the RHS of the last expression in (1.71) have two permutation
symbols with one common index. The ¢ — ¢ identity (1.54) can be applied here.
However, before we do so, we must re-arrange the indices of both the permutation
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symbols such that the common index appears as the first index of each of these
symbols.

8V
V e+ Epkréijk wter

€k€k
pkré&ij
dxp

oxp !

av;
= (—&kpr)(— 8th) Ver+( Ekpr) (— Ek/z) a)zeh

Xp
dw; Vi, + A A
= 18kprgka— jer 8kpr8kjl—wzer,
0xp 0xp
dw; n ow; A
= Spjarl 8)( Vjer - 81,[8 8 V [

av; 8V]
+ | 8pjbri o, wler—ﬁp,(SJa wiér |,

0 0 aV,
= |:Vp wrér— wPVr ] I:—a)rer—a)pa réri|,

ax Xp

[ Do (@ 0y

VI+[(¥-V)e-(e-V)V].

=Vx(@xV)=V-Vo-(V-0)V+(V-V)o-(0-V)V. (172

Example 4. Prove that V x (V. x V) =3V (V- V) - (V.- V)V

A X X av; .
Vx(VxV)=V,e, x Gig = X Viej | = Vyep x | €iji o ok )
l L
av; . av;
= epkr Vptijh 5 b = (=eipr) Vp (—eii) 57
l

3)6,'
aV; . av; .
= 8kpr8kjivp Eer = (Spjgri - apisrj) Vp ax €r,
i Xi
8V aV;
=8,,j8,ivp SI,Z(SUVP Er,
0X; 0Xx;
(SVaV/A s VaV VanA VanA
— 5.V — V. 6 —V: é:,
T T Tox ' loax
L1 (VVy) oV,
=€z i ej’
2 axi 3)6,'
V.-V
=z[(— —)}—(v v,
2
v(v.-V
=>Vx(y><v)=—(—2 —)—(z-z)z. (1.73)
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Example 5. Prove that [(V¢) - V] V¢ = 1V [(V6) - (V6)].

. 0 . 0. 9¢
[(29) 9190 = (tng0) oz, | e
~ . 09 0 (A a¢> o  9%p .

=€m-en e,— | = 8,,, —

mn e
dxm 0x, \ 7 8x, dxpm dxp0x,

. A 3% L 09 0 [ 09
ep— =ep—— | — ).
X 0X,0Xp 0xp 0xp \ 0xpy

iy (3t ) = 9 1(90) - (%9)].

epia 0Xy Xy,

= [(V¢) - V] Ve

SV [(%9) - (va)]. (1.74)

Example 6. Prove that S : W = 0 where S and W represent a symmetric and an
antisymmetric second order tensor, respectively.

S: W= Sijéiéj : Winemen = Sijéi : Wmnajmén’
= Sijei - Wjnen, = SijWinbin = SijWiji. (1.75)

The quantity on the RHS of (1.75) must remain unchanged if all i’s are made j’s,
and all j’s are made i’s. Thus,

S W=_5;W; =8;W;j. (1.76)

Since § is a symmetric tensor Sj; = S;;. Thus,

SiiWij = SijWij. (L.77)
Since W is an antisymmetric tensor W;; = —W};. Thus,
Sl’jWij = —S,’joi. (1.78)

Now equating the RHS of (1.78) directly to the right-most term of (1.75), we conclude
=SiiWii = S8;jWji. (1.79)

Equation (1.79) has both sides identical except for the negative sign. This implies,
SijWji=0=S8§: W =0. (1.80)

In the subsequent chapters of this book, we frequently refer to these useful identities
(Examples 1-6) while deriving the governing equations of turbulent flows.
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Description of Fluid Kinematics

2.1 The Continuum Description

In this book, we describe fluid motion using the continuum description. The contin-
uum description does not track the motion of individual molecules but describes the
motion of individual fluid particles. A fluid particle is assumed to be a point mass
in the continuum description and is characterized by its velocity, acceleration (with
respect to an inertial reference frame in context), density, pressure, and temperature.
We refer to these quantities as the properties of the fluid particle. Ascertaining the
values of these properties for each fluid particle in a domain of interest culminates
in completely describing the motion of the fluid in that domain.

To quantify the deformation process of a fluid medium, we invoke the idea of a fluid
element. A fluid element is a small but finite-sized chunk of mass comprised of several
fluid particles. We identify a fluid element at a reference time (¢), then examine how
it subsequently deforms over an infinitesimal time duration A¢. Figure2.1 shows
a cuboidal fluid element identified at time 7. Our working coordinate system is a
frame-fixed Cartesian coordinate system Ox(€1)xz(€2)x3(€3). At the current time
t, this fluid element has a cuboidal shape with its vertices being ABCDEFGH and
its edge lengths are small but finite: Ax;, Axy and Ax3 along the directions ¢y, e,
and e3, respectively. At the current time instant, the coordinates of the six vertices
are:

Vertex A : (x1, X2, X3),

Vertex B : (x1 + Axy, x2, x3),
Vertex C : (x1 + Axy, x2 + Axp, x3),
Vertex D @ (x1, x2 + Axp, x3),

Vertex E : (x1, x2, x3 + Ax3),
Vertex F : (x1 + Axy, x3, x3 + Ax3),
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Fig.2.1 A fluid element D Ax, ¢
ABCDEFGH

Fig.2.2 The shape of the D
fluid element ABCDEFGH H
att + At. The shape of the c
same fluid element was a
cuboid at time ¢ (Fig.2.1)
E B
x(8,)
A F

X,(€5)

Vertex G : (x1 + Axy, xp + Axp, x3 + Ax3),
Vertex H : (x1, xo + Axy, x3 + Ax3). 2.1)

Figure 2.2 shows the same fluid element at an infinitesimal time (At) later at (+ + At).
In general, the six vertices have their coordinates changed compared to what they
were at ¢. Individual vertices of the fluid element indeed translates with the local,
instantaneous fluid velocity vector.

2.2 The Lagrangian Description of Fluid Continuum

The Lagrangian description chooses time (¢) and the individual identity of a fluid
particle to be the independent variables. Since the identity of a fluid particle is
an independent variable, the Lagrangian description must devise a distinct way to
name every particle in the flow domain. Even though there can be many creative
ways to name individual particles, the conventional way of naming them is by the
position vector of the location where a chosen fluid particle was at a fixed reference
time in the past. Let us denote this reference time as ff, and let ¥ denote the
position vector of the chosen particle at ¢t = #.r. The fluid particle, which was at
this location at the reference time, is then referred/identified by this position vector
Y at all later time instants (¢, see Fig.2.3). The velocity of this fluid particle (a
dependent variable) at the current time (¢) is represented symbolically as V¥ (¢, ).
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Fig.2.3 The symbols r p,
and Y represent the position
vectors of the same particle P
at t and f,ef, respectively

Frame F

Similarly, the density, temperature, and pressure associated with this fluid particle at
the current time instant are represented as p (¢, Y), T*(t,Y), and p* (¢, Y). Itis a
common practice to use the superscript + with all dependent variables while using
the Lagrangian description. With Y representing the position vector of a chosen fluid
particle at tef, and ¢ representing the current time instant at which we wish to have the
flow description, the symbols V' (¢, Y), p* (¢, Y), T*(t,Y),and p* (¢, Y) represent
the velocity, density, temperature, and pressure fields of the fluid domain. The symbol
Y represents a continuous spatial variable. We call V*(¢, Y) as the instantaneous
(at time t) Lagrangian velocity field. Similarly, p*(t,Y), T*(¢,Y), and p™ (¢, Y)
are called the instantaneous Lagrangian fields of density, temperature and pressure
respectively.

While describing fluid motion, it is of interest to inquire about the rate of change
of a dependent variable of a fluid particle with time. Let us examine the partial
derivative of the dependent variables of the Lagrangian description with respect to
time. At time ¢, the partial derivative of a Lagrangian dependent variable ¢ (¢, Y)
with respect to time is:

2.2
ot At—0 At 2.2)

On the right-hand side, two observations of the dependent variable are being used.
Since the derivative of the dependent variable is partial with respectto ¢, by definition,
both observations have the same value of Y within the parentheses. In other words,
the two observations have been made on the same fluid particle but at two different

time instants: ¢ and ¢ 4+ At. Thus, % precisely represents the current rate (at
time ¢) of change in the quantity ¢ following that fluid particle which was at location
Y at the reference time (ff).

Replacing ¢ (¢, Y) by the velocity vector (VT (¢, Y) in (2.2) gives us the expres-
sion for the instantaneous acceleration of the fluid particle which was at location Y
at the reference time tf:

V@Y
att,y) = 20D (2.3)
ot
Similarly, the partial derivatives dp +a(zt L) , dp +3(ZI’D ,and aTt,(tt’D represent the instan-

taneous rates of change in density, pressure and temperature of that fluid particle
which was located at Y at tf.
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In the Lagrangian description, the current location of an independently chosen
fluid particle (which had its location at Y at tf) is a dependent variable. This is
represented as X7 (¢, ¥). Indeed, this quantity is related to the time integral of the
velocity vector:

t
Xt v)=Y+ / Vi, yydr, (2.4)

Tref

!
where tef <t <.

2.3  The Eulerian Description of Fluid Continuum

In the Eulerian description of a flow field, time (¢) and an independently chosen
position vector X (see Fig.2.4) are treated as the set of independent variables. Con-
sequently, the velocity vector V (X, t), density p(X, t), temperature 7 (X, t), and
pressure p(X, t) of the fluid particle located at X at the current time ¢ are the depen-
dent variables. It is conventional that, unlike the Lagrangian dependent variables,
the dependent variables of the Eulerian description do not have 4 as a superscript.
A further distinction is made by the order in which the independent variables appear
as arguments of the dependent variables. While the Lagrangian description had the
time variable appearing first and the spatial variable (Y) appearing second, the Eule-
rian description had the spatial variable (X) appearing first and the time variable
appearing second. The symbol X represents a continuous spatial variable. The func-
tions V(X, 1), p(X, 1), T(X, 1), and p(X,t) are called the instantaneous Eulerian
velocity, density, temperature, and pressure fields.

Determining the rate of change of a flow variable (such as velocity, density,
temperature, and pressure) following a fluid particle is not as straightforward in
the Eulerian description as it is in the Lagrangian description. In the Lagrangian
approach, simply taking a partial derivative of a flow variable was sufficient (see
Eq.2.2). However, in the Eulerian description, the expression for the rate of change
of ¢ (t, x1, x2, x3) following the fluid particle located at X at time ¢ is as follows:

Xt AN —9(X, 1) B9 ¢ ¢ 3¢
1 =—4+Vi—+Vo,— 4+ V53—, 2.5
Ao Al or T T 2 T B 2:5)

Fig.2.4 The Eulerian VX HAat
description of fluid motion )

Frame F
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where the symbol X ' represents the position vector at time ¢ + At of the fluid particle
which was located at X at time 7. The detailed derivation of (2.5) is available in [1].
The RHS of (2.5) involves not only the partial derivative of the Eulerian variable ¢
with respect to time but also the partial derivatives of the dependent variable with
respect to three spatial coordinates x1, x2, x3. Referring back to (1.62), (2.5) can be
expressed in a form which is independent of the choice of the working coordinate
system:

X+ AN —¢(X. ) BP(X. 1)
m = +

A At S (L Y) o),
= (% +V- z) o) 2.6)

In the study of fluid mechanics, the operator % + (Z . 2) is denoted by the symbol
D%, and is called the material derivative operator. It can act upon any dependent
variable of the Eulerian description of a flow field. Here, the significance of the word
“material” is that it represents the rate of change of the variable in context following
the same fluid particle or material, which is at location X at time ¢.

The material derivative operator is applied on the Eulerian velocity field to arrive
at the acceleration of the local fluid particle a(X, 7):

D
a(X,1) = D—tK(L 1. 2.7

A spatially varying Eulerian velocity field is called a non-uniform velocity field,
whereas a time-dependent Eulerian velocity field is called an unsteady velocity field.
In contrast, the Eulerian velocity field is described as steady if it has no time depen-
dence. Similarly, if an Eulerian velocity field has no dependence on space, it is called
a uniform Eulerian velocity field.

Consider an Eulerian velocity field that is expressed using a coordinate system
Ox1(e1)xz(ex)x3(e3) (Fig. 1.1). If one particular scalar component of the velocity
field is zero at all locations, then such a velocity field is called a two-component
or a 2C velocity field. Similarly, a /-component or a 1C velocity field exists when
two particular scalar components are identically zero at all locations. If an Eulerian
velocity field depends only on two coordinates of the working coordinate system, it
is called a two-dimensional or a 2D velocity field. Similarly, a one-dimensional (or
1D) velocity field is one in which the velocity field depends only on one coordinate.
In general, a velocity field may depend on all three coordinates; thus, a velocity field
is, in general, three-dimensional or 3D.

The Lagrangian and the Eulerian descriptions of a continuum flow field offer their
own individual advantages. The Lagrangian approach appears to be more intuitive
in light of our fundamental training in classical particle mechanics, wherein, indeed,
the governing equations of motion are directly written for independently chosen
particles (rather than spatial locations). The particle’s current location of interest
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is calculated as a dependent variable after determining its momentum. The mathe-
matical process of finding the rate of change of properties associated with a chosen
fluid particle too is mathematically simpler in the Lagrangian description (merely,
the partial derivative with time is required) compared to the Eulerian description,
which involves computation of both the time and the spatial derivatives (2.6). Still,
the Eulerian description has been the more popular way of describing fluid motion.
This preference is attributable to the fact that for most engineering problems, our
focus is indeed to measure and understand the behavior of fluid at independently
chosen locations/regions rather than the behavior of specific fluid particles. Further,
the expression of the forces exerted on a given fluid particle due to the interaction
of the neighboring fluid particles (pressure forces and viscous forces, involves spa-
tial gradients of the dependent variables. The Eulerian description, with the spatial
location being an independent variable, simplifies the algebraic expression and the
manipulation of these gradients. In the rest of this book, we describe fluid turbulence
using only the Eulerian description. Further, we restrict ourselves only to those flow
fields in which density and temperature are constants and the velocity vector and
pressure are the only dependent field variables.

24  Kinematics of a Fluid Element in a 3C, 3D Velocity Field

To understand the deformations and rotations associated with a fluid element, we
refer back to the fluid element of Fig.2.1. Figure 2.2 shows its deformed state at
t + At. In a general 3C velocity field, every constituent fluid particle of the fluid
element would have its displacement vector, in general, with non-zero projections
along all the three axes of the coordinate system. In general, the vertices A, B, C,
and D would no longer be lying in a plane parallel to the xj(é;) — x2(é2) plane.
Similarly, the vertices, E, F, G, and H, would no more be confined to a plane parallel
to the x1(€1) — x2(e2) plane. In Fig.2.5, we have shown projections of edges AB,
AD and AE of the fluid element on three orthogonal planes at time ¢ + At. These
segments themselves have not been shown in the figure to avoid clutter on the figure.
The projections of the segments AB and AD on the x;(¢1) — x2(é2) plane are AB’
and AD’, respectively. Similarly, the projections of segments AD and AE on the
x2(e2) — x3(e3) plane are AD” and AE”, respectively. The projections of segments
AE and AB on the x3(e3) — x1(ey) plane are AE"" and AB"", respectively. Further,
on these figures, we have shown various small angles that these projections make
with the three axes: x;(€1), x2(€2), and x3(e3). The curved arrows indicate the sense
in which these individual angles assume positive values. With Fig. 2.5 the reference,
we can derive the various rates of geometric changes associated with the fluid element
(more details available in [1]).

1. The rate of fractional change in the length AB is derived as:

im 1 (AB)iyar — (AB); _ Vi
AI—0 At (AB); T oaxg

(2.8)



2.4 Kinematics of a Fluid Element in a 3C, 3D Velocity Field 25

Fig.2.5 Different projections of the edges AB, AD and AE of the fluid element ABCDEFGH on
the three planes of the working coordinate system at time # + Atz. Relevant small angles and their
directions are also marked on the figure. The same fluid element was a cuboid at time ¢ (Fig.2.1)

2. The rate of fractional change in the length AD is derived as:

1 (AD)iyar = (AD); 9V

im = —=. 2.9)
At—0 At (AD); 9x2
3. The rate of fractional change in the length AE is derived as:
1 (AE — (AE v
1 (AE)irar — (AE), _ V3 2.10)

m = .
Ar—0 At (AE); 0x3

4. The rate of fractional change in the volume (dilatation rate) of the fluid element
ABCDEFGH is derived as:
1 voli4ar — vol; A% A%} A%

Iim ——MMM——— = .
At—0 At vol; 0x] dx2 0x3

(2.11)
5. The rate at which the projections AB' and AD’ on the x1(e1) — x2(e2) plane tend
to align with each other is derived as:

Aas+ABs  9Vy OV
lim 208 0Va OV

(2.12)
At—0 At dx] RBY)

6. The rate at which the projections of AD' and AE  on the x2(82) — x3(&3) plane
tend to align with each other is derived as:

Aai+ABL V3 |V
lim 2T AR 0V 0V

= . (2.13)
At—0 At dx2 0x3
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7. The rate at which the projections AE "and AB’ on the x3(e3) — x1(e1) plane tend
to align with each other is derived as

A A aV aV-
lim 202+ B ]

= — . (2.14)
At—0 At 0x3 X1

8. The component of the averaged angular velocity vector along the unit vector €3 is
derived as

Aoz — Afs _ 1 (% _ ﬂ) (2.15)

Q3= lim ——— = —
At—0 2At 2 \ dx; R %)

9. The component of the averaged angular velocity vector along the unit vector € is

derived as
Aap — A 1 /aV: aV;
Q= lim 2= AL _ 1 (0Vs 9V2) (2.16)
Ar—0 2At 2 \ 0xo 0x3
10. The component of the averaged angular velocity vector along the unit vector ¢; is
derived as
Aay — A 1 /aV V.
Q= lim 22— A2 _ L oVi 9Vs) 2.17)
At—0 2At 2 \ dx3 ax1

With its three scalar components (21, €27, and €23) the averaged angular velocity
vector itself is expressed as = Qjé; + Q26> + Q3é3. It can be easily verified that
this quantity is related to the curl of the velocity field as:

1
Q:E(yxz). (2.18)

In fluid mechanics, the quantity V. x V is also called the vorticity vector.

Further, the Cartesian components of the angular velocity vector are also related
to the Cartesian components of the so-called rotation-rate tensor (R). R is a second-
order tensor and is the antisymmetric part of the velocity gradient tensor (V V):

ASERCASE

R=
- 2

(2.19)
and

R = Q3e1ey — Qpe1e3 — Q3epe1 + Qiéxez + Qeze; — QLeser. (2.20)
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On the other hand, the symmetric part of the velocity gradient tensor is called the
strain-rate tensor (denoted by symbol S):

ASESVALY

S =
- 2

(2.21)
In a Cartesian coordinate system, the strain-rate tensor is expressed as:

S = S11€1é1 + Siaéiéa + Si3é163 + Sr1281 + S22285 + 5236283
+ S316361 + S32€362 + S338363.  (2.22)

It can be verified that the various scalar components of the tensor are:

G o, L (V2 Y G L[y v
= axy’ 2= 2 \ 0x; axy )’ 3= 2 \ dx; 0x3

1 /0V; EA%) A%} 1 /0V3 A%}
S=- (bt 22), Sp=—2, Spy=- (o242,
172 (E)xz + 3x1> 27 90 ) (axz t s

1 /0V, Vs 1 /0V, 0V3 V3
Sy == (L4252, Spp=-—=+—2, Si3 = —=. 2.23
=3 (ax3 + 8x1> 273 <3x3 o 3T (2.23)

The components S11, S22, and S33 are called the normal strain-rate components,
whereas the other six scalar components are called the shear strain-rate components.
Clearly, the normal strain-rate components are identical to the expressions obtained
in (2.8)—(2.10). Thus, the normal components S11, S22, and S33 individually represent
the rates of fractional change of the edges AB, AD, and AE, respectively. Further, we
observe that the sum of the normal strain-rate components (S;; = S11 + S22 + S33)
equals the dilatation rate of the fluid element ABCDEFGH (2.11). A comparison of
the RHS of (2.12) with the expression of S7 in (2.23) shows that the shear strain-rate
component S1, equals half the rate at which the projections of AB’ and AD’ tend to
align with each other (Fig.2.5). Similarly, the shear strain-rate component S>3 equals
half the rate at which the projections of AD” and AE” tend to align with each other.
The shear strain-rate component S3; equals half the rate at which the projections of
AE" and AB" tend to align with each other.

2.5 A Vortexin a Flow Field

A vortex (plural, vortices) can be described as a visually discernible coherent struc-
ture that includes a set of fluid particles moving along trajectories which curve around
a common, identifiable axis. This axis may be stationary or may even be translating
with respect to the reference frame in context. Further, this axis may be a straight
line or a curve in the three-dimensional space of the fluid domain.

A simple and familiar example of a vortex is a free vortex, which exists in a
potential flow field. The flow field of a free vortex is one of the basic solutions of
the governing equation of an incompressible potential flow field [1]. In Fig.2.6 we
present some streamlines associated with a free vortex with its centre coinciding
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Fig.2.6 Streamlines X,(8,)
associated with a free vortex
in a potential flow field

with the origin of the working coordinate system. In this case, the axis of this vortex
is a straight line normal to the plane of the paper, and this axis remains stationary
with respect to the reference frame in context. In a free vortex, all streamlines not
only curve around this common axis but are also closed streamlines. Further, these
streamlines are concentric circles, with the origin being their common centre. Further,
in a free vortex, all the fluid particles, except the one located at the center of the
vortex have zero vorticity associated with them. Even though a free vortex is a
legitimate example of a vortex, we must keep in mind that, the vortices found in
viscous flows (non-potential flow) may not necessarily have circular streamlines or
may not even have closed streamlines. Instead, the streamlines may be spiralling
around the common axis, and this common axis may not even be a straight line.
Further, typically, the fluid particles that make a vortex in a viscous flow field have
non-zero vorticity associated with them.

One obvious advantage of identifying vortices in a flow field is that it helps in flow
visualization. Further, identifying vortices and their mutual interactions prove useful
in gaining meaningful insights into the flow field leading to plausible explanations of
various complex flow phenomena. Further, they help in identifying the presence of
various length-scales and time-scales in the velocity field of a turbulent flow. These
quantities are described in more detail Sect.2.6. In the context of turbulent flows, a
vortex is often called an eddy (plural, eddies).

2.6 Characteristic Length and Time-Scales Associated
with an Eddy

Before we can describe the length scales and the time-scales associated with eddies,
we adopt, for our discussion, a working definition of the order-of-magnitude (OM)
of anumber (¢). We say that the OM of ¢ is oM (symbolically expressed as O (¢) =
10M or ¢ ~ 10M), if

]OM70.5 < |;| < ]OM+0'5, (224)
where M is an integer. For example, consider the case when ¢ = 1.5. Since 10005 <
1.5 < 10°403 following the definition (2.24), we conclude O (1.5) = 10° = 1. If

¢ = 15, we find that 101795 < 15 < 10'+93_ and we conclude that O (15) = 10!
10.
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Closely related to the idea of the OM of a number is the characteristic value of
an Eulerian field variable (¢). We say that ¢ is the characteristic value (a specific
chosen number) of the variable ¢ over a domain of interest, if

0 [i] =10 =1, (2.25)
¢c

over most (if not all) of the domain of interest.
Using ¢¢, we now define a normalized version of the variable
¢*(x1, x2, X3)

¢F = —. (2.26)
Equation (2.25) implies that if ¢¢ has been chosen aptly then
Ol¢*] =1, (2.27)

over most of the domain of interest.

The characteristic length scale of an eddy (leqdy) is a number such that its order-
of-magnitude is the same as the order-of-magnitude of the perceived diameter of that
eddy. The characteristic time scale of an eddy (#eqdy) is defined as a number that has
the same order-of-magnitude as that of the time it takes for a typical fluid particle
located on the periphery of the eddy to spiral/revolve around the axis of the eddy (as
observed by an observer who is translating with the axis of the eddy). Based on leddy
and feddy, the characteristic velocity (veddy) of the eddy is defined as

l eddy
Teddy

Veddy = (2.28)

The order-of-magnitude of veqdy is the same as the OM of the velocity of a fluid
particle located on the periphery of the eddy (as observed by an observer who is
translating with the axis of the eddy).

2.7 An Idealized Superposition of Eddies

Let us consider a flow field wherein we have an idealized superposition of multiple
eddies. For illustration purposes, we consider three such eddies (Fig. 2.7). These three
eddies have their characteristic length scales (diameters) as /1 (= 2ry), [o(= 2rp) and
I3(= 2r3). The characteristic time scales of three eddies are 71, #; and 73, respectively.
The superposition is idealized in the way that:

1. C1, C2 and C3 are particles located at the respective centres of the three eddies.

2. The centre of the second eddy (particle C2) is located on the periphery of the
first eddy. Similarly, the center of the third eddy (particle C2) is located on the
periphery of the second eddy.
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1 x265)

Fig.2.7 An idealized superposition of three eddies in a flow field

3. Each eddy is assumed to behave like a rigid body. These rigid bodies (1, 2 and 3)
can equivalently be treated as three different reference frames (1, 2 and 3).

4. Particle C2 is a common particle belonging both to body 1 and body 2. Particle
C3 is a common particle belonging both to body 2 and body 3.

5. We assume the flow field to be planar and all three eddies have their axes along
¢3. Our working coordinate system is the Cartesian system Ox1(e1)x2(€2)x3(€3),
which is fixed to the inertial reference frame (ground).

6. In Fig.2.7, the fluid particle P is a part of the rigid body 3.

Here our goal is to derive the expression of the velocity of the fluid particle P, at the
current instant, with respect to the ground frame using the kinematic and geometric
features of the three eddies. We denote this velocity vector by Vp|g. This symbol
follows the notation that V ,, means the velocity of an arbitrary fluid particle Q
with respect to the reference frame « [2].

With an idealized superposition of vortices as shown in Fig. 2.7, the angular veloc-
ities of the three rigid bodies can be related to the characteristic time scales of the
three eddies.

2,
QHG = 733
2,
2,
Q3|2 = Ze& (2.29)

where the symbol 2, g represents the angular velocity of frame « relative to frame .
The symbol G represents the inertial ground frame. Using the expressions in (2.29),
angular velocities of the three frames relative to the ground frame are expressed as
(see [2] for the full derivation of these relationships)

316 = Q3p + 1 + 2416
256 = + 6 (2.30)
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To find Vp|G, we employ the velocity transfer relationship [1,2].

s,
Vric =Yes6 + 236 % Sen (2.31)

Further, successively employing the velocity transfer relationship, we arrive at the
following equations.

L,
Yesi6 = Yoo + 8296 % Sér (2.32)

Iy,
Yere =Yene + 26 % 7 (2.33)

Using (2.32), (2.33) in (2.31) leads to the following expression of ZP|G'

I . b, I3,
Y=Y+ L6 % Eel + 826 X Eel + 8236 % Eel. (2.34)

Further, using the expressions of the angular velocities of various reference frames
relative to the ground itself from (2.30) in (2.34) leads to the following expression
of V p ¢ at the current time instant

T N T A~ VN
Yee=Ycic+ E(ll +hL+1h)eéer+ g(b +1h)er + gl362 (2.35)

Equation (2.35) is the exact expression of the velocity of the particle P with respect
to the ground frame at the current instant in the context of the idealized superposition
of eddies considered in this section. The expression on the RHS of (2.35) clearly
shows the characteristic length and time-scales of the existing eddies do influence
the velocity of the particle P with respect to the ground frame. We will learn in the
next chapter that every turbulent flow shows eddies of multiple time and length scales
present therein. Even though all the assumptions made for our idealized superposition
of eddies may not hold good in a typical turbulent flow, the kinematic expression
derived in (2.35) does provide us, at least, a qualitative insight how the characteristic
length and time scales of the constituent eddies in a turbulent flow field can possibly
influence the velocity of fluid particles. Accordingly, a velocity field with the presence
of eddies of disparate characteristic length and time scales is said to have multiple
time and length scales.
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Nature of Turbulent Flows

The nature of turbulent flows is often described in contrast to that of laminar flows.
A laminar flow field may be steady or unsteady, whereas, a turbulent flow field is
always unsteady. The velocity field in a laminar flow may be 1C, 2C or 3C, whereas
the velocity field in a turbulent flow is always 3C. The velocity and the pressure
fields in a laminar flow may be 1D, 2D or 3D, whereas in a turbulent flow field, the
velocity as well as the pressure fields are always 3D. The vorticity field in a laminar
may be zero or non-zero. A turbulent flow always always has a highly non-uniform
and time-varying vorticity field.

A laminar flow may or may not have the presence of vortices. Even if some vor-
tices are present in a laminar flow, there is a negligible disparity in the length and
the time-scales of those resident vortices. Typically, these vortices can be described
by a common characteristic length scale and a common characteristic time-scale.
Furthermore, the order of the magnitude of the characteristic length scale and the
characteristic time-scale are determined by the kinematic and geometric boundary
conditions of the laminar flow field. For example, in the unsteady laminar flow field
past a circular cylinder (of diameter D) with the velocity field in the far upstream
region being uniform (V,,), vortices may periodically be shed in the wake. These vor-
tices have a common characteristic length scale (leqqy) and a common characteristic
timescale (fedqy), which follows

O(leddy) = O(D) (3.1
D
O(teady) = O (7) (3.2)

In contrast, a turbulent flow field is always perceived to have a superposition of
multiple eddies, with diverse length and time-scales. We have demonstrated earlier
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in Chap. 2 (2.35) that an idealized superposition of multiple eddies in the flow
field tends to introduce multiple time- and length-scales in the velocity field. The
presence of multiple eddies in a turbulent flow is expected to introduce a multitude
of length-scales and time-scales in the velocity field. While the characteristic length
scale (Nlargest-eddy) and the characteristic timescale (fargest-eddy) Of the largest eddies
in a turbulent flow field are still observed to depend on the geometric and kinetic
boundary conditions the flow field, (a) the ratio of the characteristic length scale of
the smallest eddies to that of the largest eddies and (b) the ratio of the characteristic
timescale of the smallest eddies to that of the largest eddies seem to be governed by
the Reynolds number (Rey ) of the flow field. For illustration, let us again consider
the flow past a circular cylinder (with D being the diameter) and the far-upstream
velocity being uniform (V). When the flow is turbulent in the wake of the cylinder.
Like in the laminar flow past the cylinder, the length scale and the timescale of the
largest eddies are still determined by the boundary and initial conditions.

@ (llargest-eddies) =0 (D) (3.3)
and
D
@ (tlargesl-eddies) =0 (7) . 3.4)

While the symbols / and # denote characteristic length and time scales, the subscript
(“largest-eddies” or the “smallest eddies”) denote the category of eddies in the flow
field.

On the other hand, the characteristic timescale and the characteristic length scale
of the smallest eddies have the following dependence:

@<@ﬂﬁﬂ@>zo<&ﬁ> (3.5)

) largest-eddies

and

O(@@@ﬁ@>=o<Mj> (3.6)

Nargest-eddies

where the definition of Re; itself is defined as

_p Volargest-eddy
m

Rey (3.7

The symbols p and pu represent density and the coefficient of dynamic viscosity of
the fluid. The estimates of the orders-of-magnitude listed in (3.6) and (3.7) are based
on the so-called Kolmogorov hypotheses. This will be our topic of detailed discussion
later in Chap. 9.

Turbulent flows show chaos-like behavior. Small changes in the initial/boundary
conditions associated with a turbulent flow may result into significant changes in the
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flow variables (V (X, t) and p(X, 1)) at later times. This leads to unpredictability in
the outcome when a turbulent flow experiment is performed next time in a laboratory.

To further explain the meaning of the word unpredictability, we consider an
experimental set-up of a flow, with the initial and boundary conditions being specified
according to a given set of measurement devices. Once the experiment starts, the flow
variables may change, both in time and space. These evolving flow variables are also
recorded by the same measurement devices. Consider an experiment being performed
twice (or being realized twice) ensuring that all initial and boundary conditions are
identical (as recorded by our measurement devices). Subsequently, if the recorded
values of the evolved flow variables at all locations and at all subsequent time instants
are found to be correspondingly identical in the two realizations of the experiment,
then we say that the outcome of the experiment is predictable and the experiment
itself is repeatable. Otherwise, we say the outcome of the experiment is unpredictable
and the experiment itself is not repeatable. For such a flow field, the outcomes of an
experiment V (X, r) and p(X, t) must be treated as random variables at every X and
t. If a turbulent flow experiment starts at r = 0, at each location X, which is within
the flow domain of interest and at each time instant 7 (> 0), we are dealing with four
scalar random variables: V1 (X, t), Vo(X, t), V3(X, ) and p(X, t), where V1, V> and
V3 are the three scalar Cartesian components of the local Velocity vector (V (X, 1)).

We must acknowledge, from a practical viewpoint, that the accuracy of any mea-
surement device is always limited up to a finite number of decimal places, and some
perturbations beyond those decimal places in the boundary and initial conditions
are naturally always present in the environment. These facts always introduce some
small differences in the initial and boundary conditions across multiple realizations
of a flow experiment. Since turbulent flows show chaos-like behavior these small
differences (which are not sensed by our measurement devices) across different real-
izations of the experiments can be amplified to the extent that the measured outcomes
from these different realizations of the experiment are significantly different from
each other. Thus, at local time instant from a practical viewpoint, a turbulent flow
experiment is apparently random. Accordingly, we must treat the velocity and the
pressure variables measured in a turbulent flow experiment as random variables. If
one could build perfect measurement devices with which the initial and boundary
conditions of a turbulent flow experiment can be specified exactly, and the conse-
quent outcomes can be measured exactly, then the experiment would be repeatable,
and the flow variables need not be treated as random variables. However, such perfect
measurement devices do not exist.

On the other hand, a typical laminar flow does not show any chaos-like behavior.
This ensures that small differences in the initial and boundary conditions (naturally
existing across multiple realizations of an experiment) remain small during the sub-
sequent evolution of the flow variables such that our measurement devices do record
identical values of the flow variables in various realizations of the experiment. Thus,
we do not treat the variables in a laminar flow field as random variables.
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3.1 Governing Equations of Turbulent Flows

Even though several differences exist between laminar and turbulent flows, both
laminar and turbulent flow fields are governed by the same set of governing equations.
For a constant density flow with no heat transfer, both turbulent flows and laminar
flows, when observed with respect to an inertial reference frame are governed by the
Navier Stokes equation set, which is expressed (in its coordinate system independent
form) as:

V.V =0, (3.8)

(3.9)

v 1 )
—+ V)V = ——Vp+vVV,
ot 0
where V and p represent the local instantaneous velocity and pressure. The symbol
v(= u/p) denotes the kinematic viscosity of the fluid and is assumed to be a constant
in this book.

Equation (3.8) is a statement of mass conservation, and is commonly called the
continuity equation. Equation (3.9) is a statement of Euler’s first axiom. We refer to
this equation as the momentum equation. The reference frame in context is an inertial
reference frame. The first term on the left-hand side (LHS) of (3.9) is the unsteady
term, while the second term is the advection term. On the right-hand side, the two
terms represent the pressure gradient force (per unit mass) of the fluid, and the net
viscous force (per unit mass). The influence of any body force has been ignored in
our discussion (assumed to be of negligible importance).

If we use a Cartesian coordinate system (Fig. 1.1), which is fixed to the inertial
reference frame in context, as our working coordinate system, the continuity equation
is expressed as

Vi

8)C,' -

0, (3.10)

where a repeated index implies summation (following Einstein’s summation rule dis-
cussed earlier in Chap. 1). The momentum equation (3.9) is accordingly represented
in the Cartesian coordinate system as

ovi Vi 1dp 9%V

= Y
or  Mox T pox | ox2

(3.11)

Equations (3.10) and (3.11) form a set of four partial different equations (PDE) in
as many unknowns (V1, V2, V3 and p). Thus, the governing equation set is mathemat-
ically closed. While the continuity equation is a linear partial differential equation
(PDE), the momentum equation (3.11) is a non-linear PDE. This non-linearity arises
because of the advection term in the momentum equation.

Since the governing equation set of a turbulent flow (3.10-3.11) is mathematically
closed, these partial differential equations can be solved numerically on computers
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using the techniques and practices of computational fluid dynamics. Typically, a
method adopted by CFD discretizes the computational domain into small volumes
(or cells) to convert the partial differential equations into approximate algebraic
equations. Further, since all turbulent flows are always unsteady, the CFD procedure
also requires time marching, for which the temporal domain is also discretized into
small timesteps. The dimensions of these cells and the size of the timesteps must
be small enough to accurately resolve the smallest length and time scales of the
turbulent flow field.

Since at high Reynolds numbers, the smallest time scales and length scales of
motion that exist in a turbulent flow tend to become exponentially small (3.7 and
3.6), numerically simulating a turbulent flow field requires numerous small cells
and numerous small time steps to arrive at a reasonably accurate solution of the
evolving flow field. Thus, the computational effort required to solve the Navier-
Stokes equation for turbulent flows with adequate accuracy becomes computationally
very expensive as the Reynolds number of the flow field increases. A numerical
simulation adequately resolving the entire spectrum of length and time scales that
existin a turbulent flow field at the given Reynolds number is called a direct numerical
simulation (DNS). Even with the massive advancement of computing technology
achieved in recent decades, performing direct numerical simulations is still not a
viable option for many turbulent flows of engineering interest which occur at high
Reynolds numbers.

The numerically computed instantaneous flow field, V (X, t) and p(X, t), from a
direct numerical simulation, even if available, is at best, only one possible realization
of the corresponding random experiment. This is so because, like our measurement
devices, the accuracy with which the initial and boundary conditions can be spec-
ified on a computer to initiate a direct numerical simulation is also finite. Due to
the perturbations existing in nature, these computer-specified initial and boundary
conditions may still be different from those that would exist in nature. These small
differences combined with the chaos-like tendency of the turbulent flows are potent
enough to drive the outcome of the actual experiment away from the DNS-computed
solution. Thus, the instantaneous flow field of a DNS solution has no predictive value.
However, there are still other motivations to perform accurate direct numerical sim-
ulations of turbulent flows. Some of these motivations are presented and discussed
in later chapters of this book (Chaps. 5 and 8).

For many flows of practical interest, it is the Reynolds number which determines
whether the flow field remains laminar or turns turbulent. For illustration, let us
consider the flow of water through a pipe of diameter D. It is observed that for a pipe
with a reasonably smooth internal wall, the flow of water through the pipe is laminar
if the Reynolds number (Rep) is below 2300, where Rep is defined as

Rep =UD/v (3.12)

where U is expressed in terms of the volumetric flow rate (Q) through any arbitrary
cross-section of the pipe,
4
Y

=7 (3.13)
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The particular value of the Reynolds number below which the pipe flow is laminar is
called the critical Reynolds number of the flow through a pipe. Similarly, other types
of flows have their own critical Reynolds number. The critical Reynolds number
for the boundary layer flow over a flat plate is 5.0 x 107, approximately, where the
relevant Reynolds number for the flat plate boundary layer is defined as

Voxi

Rex = (314)

Vv

where V, is the magnitude of the uniform velocity field in the far-upstream region,
and x; denotes the stream-wise (along the length of the plate) distance of a location
measured from the nose of the flat plate.

Even though it is observed that the laminar flow regime ceases to exist at a
Reynolds number just above the respective critical value, the flow does not neces-
sarily become turbulent rightaway. For many flows of practical interest, there exists
another value of the Reynolds number (let us call it Rer, which has a value higher
than that of the critical Reynolds number) beyond which the flow becomes turbulent
(exhibiting the traits described earlier in this chapter). The flow regime that exists at
a Reynolds number which is larger than the critical Reynolds number of that type of
flow field but is still lower than Rer is called a transitional flow. Transitional flows,
too, are always unsteady, but they do not exhibit the wide ranges of length and time
scales that are observed in turbulent flows (3.7 and 3.6).

It is possible to calculate the critical Reynolds number for many flow fields
employing the linear stability theory. However, an estimation of the Reynolds number
beyond which a flow becomes turbulent is not amenable to any simple mathematical
analysis. Indeed, even today, this topic is a subject of active research. Any further
discussion on the estimation of the critical Reynolds number, estimation of Rer or
the behavior of transitional flows is deemed to be outside the scope of this book. In
the rest of the text, we focus entirely on flows which have already become turbulent.
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Random Variables and Their
Characterization

In the last chapter, we discussed that despite the governing equations of a turbulent
flow being known, due to the extreme dependence of the flow field on the small
differences in the initial/boundary conditions, we are forced to treat turbulent flows
as apparently random, and we must treat the flow variables of a turbulent flow as
random variables. In this chapter, we review the essential aspects of the probability
theory so that these flow variables can be aptly characterized. In an incompressible
turbulent flow, at every time instant and at every location, there are four associated
random variables: V1, V,, V3 and p. While Vi, V, and V3 denote the three scalar
cartesian components of the local instantaneous velocity vector and p is the local
instantaneous pressure.

At any chosen time instant, say 7,, the symbol p(X, #,) denotes a set of random
variables due to the continuously varying independent variable X. This set of random
variables is collectively referred to as the random pressure field existing at time t,.
Similarly, at any chosen spatial location, say X, the symbol p(X,, t) denotes a set
of random variables due to the continuously varying independent variable ¢). This set
of random variables is collectively called as the random pressure process existing at
the location X ,. Similarly, V; (X, t,) and V; (X, t) denote the random field of the ith
velocity component at time #, and the random process of the ith velocity component
at location X .

4.1 An Event

We begin the review of the theory of probability in the context of a single random
variable ¢. This variable is an outcome of a random experiment, say ¢. The next
time the experiment ¢ is performed, we can not predict the value of ¢ with certainty.
The value that the random variable ¢ actually assumes next time the experiment ¢ is
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performed is called the next realization of the random variable ¢. The sample space
of the random variable ¢ is defined as the set of all possible numerical values that ¢
can take. The entire line of real numbers is taken to be the sample space of ¢. In the
context of a random experiment, an event is defined such that the random variable
¢ takes a value which is an element of a specific subset of the sample space. For
example, an event (say Event A) is defined as

Event A : {p< — 5} 4.1)

If the next realization of ¢ (when the experiment ¢ is performed next time) is such
that ¢ < —5, we say that event A has occurred. Similarly, we can define many other
events related to our random experiment ¢:

Event B : {3 < ¢ < —5} “4.2)

We can also define events more generally: in terms of an independent variable .
This variable, ¥ can be assigned any arbitrarily chosen value from the line of real
numbers. For example,

Event C : {¢p<y} 4.3)

4.2 Probability of an Event

The probability of an event is the likelihood of the occurrence of that event when the
random experiment is performed next time. If B denotes an event, P (B) denotes the
probability of that event. By definition,

1 if B is a certain event,
P(B) = {0 if Bisan impossible event, “4.4)

p where, 0<p<I1 in general.

For two events A and B, if P(A) > P(B), we say that event A is more likely to
happen than B when the random experiment is performed next time. Examples:

P(A) = 1 where Event A : {¢p< — oo} 4.5)
P(B) = 0 where Event B : {¢>o00} 4.6)

Here event A is a certain event, whereas event B is an impossible event.
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4.3 Cumulative Distribution Function of a Random Variable

The cumulative distribution function (CDF) of a random variable ¢ is defined as

Fy(y) = Plo<y} 4.7)

where P{¢ < 1/} represents the probability of the event ¢ < v, and Fy () is the
CDF of the random variable ¢, and v is an independent variable that can be assigned
any arbitrarily chosen value from the real line to define a specific event. The variable
Y is called the phase space variable of the random variable ¢.

It follows from the definition of CDF (4.7)

P{ya < < ¥} = Plp < ¥p} — P{p < Ya}
=Fy(Y =) — Fp (Y = ¥a)
= Fy(Yp) — Fp (Vo) (4.8)

where 1, and v, are two numbers on the real line (1, < ). Further, one can prove
that the CDF has the following properties.

o If Y, > 9, then it implies that Fy (V) — Fp(¥q) = 0. Thus, F () is a non-
decreasing function.

o Fy(y =00)=1.

L4 F¢(1/f = —o00) =0.

4.4 Probability Density Function of a Random Variable

If the CDF of a random variable is differentiable, the probability density function
(PDF) of the random variable ¢ is defined as

dFs(¥) _ . Fob +AY) — Fo(¥)
Ay Ay—0 AY

Jo(¥) = (4.9)

where Ay is a small independent change in the phase-space variable. Following the
definition of PDF (4.9), fy(y) can be expressed in terms of the probability of an
event.

fo) = lim LW HAD =Py P =9 <+ AV}
Ay—0 Ay Ay —0 A
(4.10)

Further, one can prove that the PDF has the following properties.

e Since Fy(v) is anon-decreasing function, (4.9) implies that f3 () > 0, wherever
it is defined.
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o [J fo(0)dy = [}’ dFy = Fy(P) — Fy(Ya) = P{tha < ¢ < b}, where ¥
and v, are two arbitrarily chosen values on the real number line with ¥, < .

o [ fs()dy = Fy(00) — Fy(—o0) =1 —0=1.

4,5 Some Examples of Known PDFs
We present some examples of random variables with known forms of their PDFs.

Example 1. A random variable ¢ is called a Gaussian random variable, if its PDF
has the following form,

fo() =

_ 2
exp <—M> 4.11)

1
o2n 202
where o and p are constants. In the special case if 4 = 0 and o = 1, the random
variable ¢ is called a normal random variable. The PDF of the Gaussian random
variable is plotted in Fig.4.1.

Example 2. A random variable ¢ is called a uniformly distributed random variable
between two chosen numbers a and b (a < b), if its PDF has the following form,

1 fora <y <b

fo(h) = {b_“

) (4.12)
0 , otherwise,

where b and a are constants. The PDF of a uniformly distributed random variable is
plotted in Fig.4.2.

Fig.4.1 PDF of the normal
random variable

-4 -3 -2 -1 0 1 2 3 4
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Fig.4.2 PDF of a uniformly 1.004
distributed random variable
witha =1and b =2

fo(w)

4.6 Joint CDF of Multiple Random Variables

The joint CDF of a set of N random variables ¢, ¢; ... ¢ is defined as

F¢1¢2.‘.¢N('¢/17 I/f27 ceey I//N) = P{¢1 < 1/’1» ¢2 < 1/f27 ceey ¢N < 1/fN} (413)

where Y1, ¥, ..., ¥y represent the respective phase space variables of the N random
variables. The symbol {¢1 < ¥, $2 < V2, ..., pn < ¥y} denotes an event when all
the individual inequalities mentioned therein hold good simultaneously. The string
appearing as the subscript of F must clearly show all the random variables jointly
described by the CDF. Accordingly, in general, the CDF will be a function of the set
of corresponding phase-space variables of those random variables. In particular, the
joint CDF of two random variables ¢ and ¢ is defined as Fy, ¢, (1, ¥2) such that

Foipo (Y1, ¥2) = P{¢1 < Y1, ¢2 < Y2} (4.14)

Based on the definition (4.14), it follows that

® Fpp(—00,Y2) = P{¢1 < —o0 and ¢ < v2} = 0.
® Fy4,(00,Y2) = P{p1 < 0oand ¢y < Yo} = P{go < Y2} = Fp, (Y2).

In context of two random variables, Fy, (y) is also called the marginal CDF
of ¢,. If the joint CDF is known, then the marginal CFD of either of the random
variables can be determined. However, in general, we can not ascertain the joint CDF
even when the individual marginal CDFs of the random variables are known.
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4.7  Joint PDF of Multiple Random Variables

The joint PDF of a set of random variables is defined as

N Fp ..o (W1, V2, .o, UN)
0Y10v...0¢¥N

f¢1¢2-.,¢N(w17 1ﬂ27 ceey I/IN) = (415)

if such partial derivatives of the joint CDF exist. The symbols 11, ¥, ..., ¥y repre-
sent the respective phase space variables of the N random variables. The subscript of
f must clearly show all the random variables jointly described by the PDF. Accord-
ingly, in general, the PDF will be a function of the set of corresponding phase-space
variables of those random variables. In particular, the joint PDF of two random
variables ¢1 and ¢ is defined as fj,4, (Y1, ¥2) such that

3% Fp 00 (U1, ¥2)

4.16
10V, (4.16)

f¢1¢2 (wla ¢2) =

It can be proved that the joint PDF has the following properties (illustrated here for
a set of two random variables ¢; and ¢,).

L. fpi0o (Y1, ¥2) > 0, whenever it is defined.
2.

Y ¥
/ Jor160 (W1, Y2)dyidyrn =
Wm ‘//Za

(V1a < 1 < Vb, Y2u < 1 < Y2p) 4.17)

where Y1, and v1j are two arbitrarily chosen values on the real number line with
Y1a < Y1p. Similarly, ¥, and ), are two arbitrarily chosen values on the real
number line with ¥, < ¥p.

3.

/OO Tonga (W1, ¥2)dia = [, (Y1). (4.18)
4, -

/jo Jo16: (W1, ¥2)d = fo, (Y2). (4.19)
5. N

/o:o /O:O Jo160 (U1, Y2)dyridrn = 1 (4.20)

where fy, (Y1) and fy, (2) are the two marginal PDFs in context.
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4.8 Expected Value of a Function of Random Variables

If Q is a function of a set of random variables ¢1, ¢, ... ¢n, then the function Q, in
general, is also a random variable. The expected value of Q or simply the expectation
of Q (denoted by symbol (Q)) is defined as

(Q(91. ¢2. ...0n)) =/ / / QW Y2, ... ¥N)
Jortron W1, Y2, YN) dydips - - dyn (4.21)

where fg 6,0y (W1, V2, ..., ¥n) is the joint PDF of the N random variables. The
expected value of Q is also called the mean of Q.

The expected value of Q is no more a random quantity: it is a deterministic quan-
tity. Its value does not depend on any individual realization of the experiment. The
expected value of Q is a characterizing feature of the entire random experiment itself.
The right-hand side (RHS) of Eq. (4.21) shows that (Q) is indeed the weighted inte-
gral of various possible values that Q can take in a realization of the random experi-
ment, with the weight factor being the PDF function f,¢,..¢x (Y1, ¥2, ..., ¥n). The
values of random variable Q which are more probable do get more weightage in this
integration process. The expectation of Q is a useful quantity for engineers, who
can possibly attempt to design engineering systems based on this quantity rather
than considering numerous probable values of the otherwise random quantity Q.
However, the exact computation of the expected value of Q does require us to know
the joint PDF of the random variables, f4,4,..¢y (¥1, ¥2, ..., #n), in advance. In
this book, we collectively refer to the expected values of various random variables
and their functions as the szatistics of that random experiment which involves these
random variables and their functions.

For algebraic brevity, the expectation symbol () is often treated like a mathematical
operator that can act on various functions of one or multiple random variables. There
are some properties of the expectation operator which we will frequently refer to in
the later chapters of this book. Here, we list these properties along with their proofs.

4.8.1 Expectation of the Product of Q and a Non-random
Quantity a

(aQ) = a(Q) (4.22)

where Q denotes a function of N random variables (unless specified otherwise), and
a is a non-random quantity which may still be a function of time and space.
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Proof:
(aQ)
=/ / / aQW1, Vo, oo UN) f1 60w (W15 V2, ddn)dyid .. .y

—a/ / / QWi V2, ooos UN) fr1 000w (U1 V2, o ddN)d Y1 din .. YN
= a(Q) 4.23)

where a being a non-random quantity is not dependent on the phase-space variables
¥1, ¥, ..., ¥, and it has thus been taken out of the integration process in (4.23).

4.8.2 Expectation of the Expectation of O

((Q)) =(0). (4.24)
Proof:

o) 2/ / f (O) for¢n..on (W1, V2, o, YN)

dyridiyry - dyn.

Since (Q) is a non-random quantity, it can be pulled out of the integration process,
leading to

(Q(d1, 92, ..., 0N))) / / /_ Jordoy (U1, Y2, ..., ¥N)

xdyrdyrn --- dyn
=(0)

where (4.20) has been employed.

4.8.3 Expected Value of a Random Variable ¢;

When Q = ¢1, we call the corresponding expectation (4.21) as the expected value
of the random variable ¢ .

@1) = f b1 fo (U1)debr, 4.25)

where (@) is the expected value of ¢;.
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Example 1:
The expected value of a Gaussian random variable (PDF as described in (4.11)) is
determined as

(1) =/ Vi fe (Y1) din

o 1 (Y1 — w)?
= [ men (-5 ) an

(Y1 — M)z
6«/_/ Y1 ex p( o ) dyn
— (4.26)

Example 2:
The expected value of a uniformly distributed random variable (@ < b, PDF as
described in (4.12)) is determined as

(¢1) =K Y1 fo (W) din

a b 00

- / W fo (1) i + / U f (Y1) i + /b W fp, (01)
b 1

=0+/a wlb_

1 b
=m/; Y1 dyr
_ Y
T b—a 7 .
1 (b A
-—(3-%)

dyri +0
a

b+a
= 4.27)
4.8.4 Expected Value of a Sum of Random Variables
(1 +d2 + ... +on) = (P1) + (P2) + ...(dN). (4.28)

Proof:
We provide the proof for the sum of two random variables, ¢ and ¢,. This procedure
can be easily extended to the sum of any number of random variables. We first define

0(¢1, ¢2) = @1 + ¢2. Thus,
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(91 + ¢2) = (0)

f f Of o1, (W1, Yr2) dyry dijra

= /_Z /_Zom + ¥2) fg19, (Y1, ¥2) dby d
= [ vitantn v anav,
+/_o; /_Z V2 fg16, (W1, ¥2) di d
= /j: 12 [/_Z Jore (1, Wz)dwz] dyn
+/_Z v2 [/_Z T100 (Y1, WZ)dK/flj| dyn (4.29)
Using (4.18) and (4.19), (4.29) simplifies to

w~¢y=/ wnmmwm+/'wmwmwm
@1+ d2) = (1) + (62) 430)

4.8.5 Fluctuation in a Random Variable ¢;

The difference between the random variable ¢; and its expected value is called the
fluctuation in ¢, . It is denoted by the symbol ¢ .

¢ =1 — ($1) (4.31)

Like ¢1, qbll, too, is arandom variable. The expected value of the fluctuation is always
Zero.

(1) = 0. 432)

Proof:

(61) = (&1 — (¢1)) (4.33)
Using (4.30) in the RHS of (4.33) we arrive at

(@) = (d1) — ((d1)) (4.34)
Further, using (4.24), (4.34) simplifies to

(@) = (p1) — (¢1) = 0. (4.35)
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4.8.6 Expectation of the Product of Two Random Variables

(P12) = (1) (d2) + (B1002) (4.36)

Proof:
First, in accordance with (4.31), we substitute ¢| and ¢ in terms of the corresponding
expected values and fluctuations.

(B1e2) = (1) + ) (($2) + )
= (1) () + (B1)¢r + b, () + 16b2) (4.37)

Using (4.28) in (4.36) leads to

(p12) = (1) (b2)) + ((b1)b2)
+ () () + (¢16n) (4.38)

Further, using (4.23) and (4.35) simplifies (4.38) to

(@192) = (1) (P2) + (¢1)(¢/2) + (¢/1>(¢2)
+ ($1002) (4.39)

Finally using (4.32) in (4.39) leads to

(P12) = (1) (b2) + (B10n)

where (q);(b/z) is the expectation of the product of the fluctuations of the two ran-

dom variables ¢ and ¢,. In general, (¢>/1d>/2) # 0. If required, the expression of the
expectation of the product of a higher number of random variables can similarly be
derived.

4.8.7 Moments of a Random Variable

The nth-order raw moment of the random variable ¢, is defined as

(@1) =[ Toidyn. (4.40)

The nth-order central moment of the random variable ¢ is defined as

((¢1 — (1)") = / W — ()" fo dn. (4.41)
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If n = 2, then the corresponding central moment is called the variance of ¢, and
is denoted by var (¢1)

var(@1) = ((¢1 — (¢1)%) = (#10;) = ($7) (4.42)

The square-root of the variance of ¢ is called the standard deviation of the random
variable.

Example 1:
The variance of a Gaussian random variable (PDF as described in (4.11)) is deter-
mined as

(¢1¢)) = / (W1 — (1) foy (Y1) dy

= / (W1 — W fp, (Y1) dy

Y Ve (Y1 — w)?
_f_oo(l/fl w) —Umexp< 53 )dlp]

1 00 2
= f (W —u)zeXp< W=7 )dI/n

o2 20
= o2, 4.43)

Example 2:
The variance of a uniformly distributed random variable between those chosen num-
bers a and b (a < b with the PDF as described in (4.12)) is determined as

@8] = / W — (G f, (Y1)

a b
:[ (wl at ) For (1) 1

b
+/ (t/n ““’) Foor (Y1) ¥

+/ <¢1_ﬂ> for (Y1) dyn
b

b a-+b 1
:O+/ <df1 ) —b_adw1+0

_(b-ay
12

(4.44)
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For a set of two random variables, ¢p; and ¢;, we define covariance of ¢ and ¢,
(denoted by the symbol cov(¢1, ¢2)) as

cov(r, 42) = (Y1 — (P1) (W2 — ($2)) = (¢1y)
= f / W1 — (1) W2 — (B2) 16 (b1, Y2)drid oy (4.45)

The correlation coefficient of ¢1 and ¢, is defined as

Ppry = o) (4.46)
(] 1) (5 05)

4.9 Expectation of Derivatives of Random Processes
and Random Fields

Let ¢(X, t) denote a time-varying random field (and a random process). In the
Eulerian description, the spatial position vector (X) and time (¢) are independent
variables (Sect. 2.3).

The symbol (¢ (X, t)) denotes the expected value of that specific random variable
which is associated with the random field at an arbitrarily chosen location X and
at an arbitrarily chosen time instant 7. In general, (qﬁ (X, t)), which is a non-random
quantity, can still vary with time and space. The following relationships exist in the
context of expectations of the partial derivatives of the flow variables.

4.9.1 Partial Derivative with Respect to Time

0 9
<§¢ (X. f)> = (o (x.1)) (4.47)
Proof:
9 . X t+ AN —P(X, 1)
<§"> (X, ’)> = <A1,‘To At > (4.48)

where At is an arbitrary increment in ¢. The expectation operator involves integration
over the phase space variables, and thus time the position vectors are treated as
constants during this integration process. Thus using (4.28), (4.48) is expressed as

<3¢(L ¢)>_ po P14 AD) — (9. 1)

Jat At—0 At

a
3 (p(X,n) (4.49)
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4.9.2 Partial Derivative with Respect to Spatial Coordinates

0 0
<8—¢ (x1, x2, X3, l)> = — (¢ (x1, x2, X3, 1)) (4.50)
Xi 0x;

where x; is the ith spatial coordinate of the position vector X in a frame-fixed
Cartesian coordinate system Oxj(€1)x3(é3)x3(e3) (Fig. 1.1). Using this coordinate
system, we express

X =x1e1 + x282 + x3¢3 and ¢(X, 1) = ¢ (x1, X2, X3, 1). 4.51)

Here we provide the proof of (4.50) for the case x; = x1.

Proof:

0x1

0
<_¢(x19 X2, X3, t)> =

lim o (x1 + Axy, x2, X3, 1) — (X1, X2, X3, 1)
Ax1—0 AXxq

> (4.52)

where Axj is an arbitrary increment in x. Using (4.28), (4.52) is expressed as

0 . (o1 + Axy, x2, x3, 1)) — (@ (x1, X2, X3, 1))
—¢ (x1,x2,x3,¢)) = lim
x| Ax1—o0 Axq

d
= (@ (x1, x2, X3, 1)) (4.53)
X1

4,10 Categorization of Turbulent Flows Based
on Their Statistics

A turbulent flow is called statistically stationary if all statistics at every location in
the flow are independent of time. These statistics of the flow may still vary with
location. A turbulent flow is called statistically homogeneous, if all statistics at every
time instant are identical at all locations in the flow domain. These statistics of the
flow may still vary with time. A turbulent flow is called statistically homogeneous
along a specific line, if all statistics at every time instant are identical at all locations
on that line. These statistics of the flow may still vary with time. A turbulent flow
is called statistically homogeneous on a specific area, if all statistics at every time
instant are identical at all locations on that area. These statistics of the flow may still
vary with time.
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4.11 Expectation and Averaging

The expectation of a random variable or that of a function of a random variable(s)
is defined as (4.21). However, determination of the expected value of a quantity fol-
lowing this definition would require us to be aware of the PDF (or the joint PDF)
function appearing in the integral on the RHS of (4.21). In our study of turbulent
flows, however, such PDFs or the joint PDFs of the flow variables are rarely known in
advance. Thus, we cannot exactly calculate the expected values of the random vari-
ables by performing the integral on the RHS of (4.21). Therefore, we must explore
alternate ways to find, at least approximately, the expected values of random vari-
ables of interest. There are certain kinds of averaging processes with which one can
estimate these expected values. However, care must be taken in selecting the appro-
priate averaging procedure. Some of these averaging procedures can be employed
for estimating various expected values only for certain types of turbulent flows.

4.11.1 Ensemble Averaging

Consider the random variable at an arbitrarily chosen location (X ) and at an arbitrar-
ily chosen time instant (¢,). That random variable is represented as ¢ (X = X, t = 1,)
or simply as ¢(X, #,), where ¢ (X, t) is an Eulerian variable of interest (such as a
scalar component of the velocity vector or pressure). The ensemble average of the
random variable ¢ (X, #,) is defined as

1 &,
(X, t0)]y = 5 2.9 Xon 10) (4.54)
i=1

where !¢ (X,, t,) denotes the realized value of the random variable ¢ (X, #,) in the
ith realization of the experiment, and N denotes the total number of times the tur-
bulent flow experiment has been performed. The relationship between the ensemble
average and the expectation of the random variable ¢ (X ), #,) is

Jim {$(X,, 10))y = (X, 10)) (4.55)

The relationship (4.55) holds good without any restrictions to all types of turbulent
flows.

4.11.2 Time-Averaging
‘We construct a time-averaged quantity (denoted by the symbol (¢ X 0))7) associated

with the random process ¢ (X = X, ) where ¢ is the independent time variable and
X, represents an arbitrarily chosen location in the flow field.
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1 (-
X)) =7 : ¢ (X, 1)dt (4.56)
1

where T = T, — T1. The symbols 77 and 7, are the time instants at which the inte-
gration process starts and ends, respectively. If the turbulent flow field is known to be
statistically stationary over the time period T, then (d) (X 0)>T can be used to estimate
the expected value of ¢ (X, t) at any arbitrarily chosen location X , and at any time
t €Ty, T7].

lim (¢(X,)); = (#(X,. D) (4.57)

T—o00

4.11.3 Line Averaging

Let us identify a line (denoted by £ and having its length L) existing in the domain
of a turbulent flow. We construct a line-averaged quantity (denoted by the symbol
(¢ (2,)) ) at an arbitrarily chosen time instant, #,:

1
(o)l =1 /Lqﬁ(L to)dL (4.58)

where d L represents an infinitesimal segment on the line L. If the turbulent flow
field is known to be statistically homogeneous along L, then (¢ (t,)); can be used to
estimate the expected value of ¢ (X, t,) at any location on £ and at any arbitrarily
chosen time ¢,.

Jim (b (o)) 2 — (X, 1)) (4.59)

4.11.4 Area Averaging

Let us identify an area (denoted by .4 and having its magnitude A) existing in the
domain of a turbulent flow. We construct an area-averaged quantity (denoted by the
symbol (¢ (1,)) 4) at an arbitrarily chosen time instant, f,:

1
(Pt =~ /Ad)(L to))d A (4.60)

where d A represents an infinitesimal part of the area A. If the turbulent flow field is
known to be statistically homogeneous on A, then (¢ (#,)) 4 can be used to estimate
the expected value of ¢ (X, f,) at any location on A and at any arbitrarily chosen
time ?,,.

f}gnoo (D)) a4 — (DX, 10)) (4.61)
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4.11.5 Volume Averaging

To define volume averaging, let us identify a volume (denoted by V and having
its volume V') existing in the domain of a turbulent flow. We construct a volume-
averaged quantity (denoted by the symbol (¢(f,))y)) at an arbitrarily chosen time
instant, ,:

1
(Plto))y = <, /vd)(L fo)dV (4.62)

where d'V represents an infinitesimal part of the volume V. If the turbulent flow field
is known to be statistically homogeneous in ), then (¢ (t,))y, can be used to estimate
the expected value of ¢ (X, #,) at any location in the region V and at any arbitrarily
chosen time ¢,.

Vlim (@ (10))y — (¢(X, 15)) on volume V. (4.63)

Even though the ensemble-averaging is the most versatile type of averaging (it can
theoretically be applied to any type of turbulent flow field), it is often not employed to
estimate the expected values of flow variables or their functions. Ensemble averaging
would require repeating the turbulent flow experiment a very large number of times
(4.55), which is often quite impractical to implement. On the other hand, if the
flow field of interest is known to be statistically homogeneous/stationary, then we
can perform that experiment only once and record our measurements. Subsequently,
we can use the appropriate type of averaging (line/area/volume/time-averaging) to
approximately find the expected values of the quantities of interest. Indeed, this is a
common practice followed by experimentalists. The expected values of various flow
variables and functions can also be estimated by performing the appropriate type of
averaging (line/area/volume/time) of the database available from direct numerical
simulations, provided the flow field is known to be statistically homogeneous along
a line/area/volume or already known to be statistically stationary.
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Governing Equations of the Mean Flow
Field

In this chapter, we derive the governing equations of the mean pressure and velocity
fields. The governing equations of (K(K , t)) and < pX, t)) can possibly provide
us a direct way to compute these flow statistics without relying on any averaging
procedure (discussed in Sect. 4.11). Further, these equations can help us gain deeper
insights into what influences the evolution of the mean flow field in a turbulent flow.

To derive the governing equations (V (X, 1)) and (p(X, 1)) we begin with the gov-
erning equations of V (X, t) and p(X, ¢t) (3.8 and 3.9). To clearly distinguish them
from the equations that we plan to derive for the mean variables, we refer to (3.10) and
(3.11) as the instantaneous Navier-tokes equation set, and the variables V (X, t) and
p(X, t) appearing therein are called the instantaneous velocity vector and instanta-
neous pressure, respectively. As discussed in the last chapter, the instantaneous flow
variables are treated as random variables.

5.1  The Mean Continuity Equation

We first subject the continuity equation (3.10) to the mean operator

aV;
< l > = (0) or,
0x i
aV aV. aV-
ST A E) ) (5.1)
dx1 dx2 0x3
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 57

S. S. Sinha, Fundamentals of Turbulence and Its Modeling,
https://doi.org/10.1007/978-3-031-94016-3_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-94016-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-94016-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-94016-3_5
https://doi.org/10.1007/978-3-031-94016-3_5
https://doi.org/10.1007/978-3-031-94016-3_5
https://doi.org/10.1007/978-3-031-94016-3_5
https://doi.org/10.1007/978-3-031-94016-3_5
https://doi.org/10.1007/978-3-031-94016-3_5
https://doi.org/10.1007/978-3-031-94016-3_5
https://doi.org/10.1007/978-3-031-94016-3_5
https://doi.org/10.1007/978-3-031-94016-3_5
https://doi.org/10.1007/978-3-031-94016-3_5
https://doi.org/10.1007/978-3-031-94016-3_5

58 5 Governing Equations of the Mean Flow Field

Using (4.28) and subsequently (4.50), we arrive at the following equation

9 (V1) n 9 (V2) n 9 (V3)

=0,or
0x1 0x2 0x3
a{V;
Vi) _ 0 (5.2)
3x,‘

where a repeated index implies summation over the full range of the index (Ein-
stein’s summation rule). Equation (5.2) is called the mean continuity equation. The
dependent variables in this equation are the mean values of the velocity components,
(Vi). This equation describes the application of conservation of mass in the turbulent
flow field in the mean sense. Like the instantaneous continuity equation (3.10), the
mean continuity equation (5.2), too, is a linear partial differential equation (PDE).

5.2 The Mean Momentum Equation
Next, we subject the momentum equation (3.11) to the mean operator
pdV; Vi ap 8%V
Vi ={—— 53
< or T ° "axk> < ox; Moo (5-3)

Employing (4.50) and (4.48) to the terms that involve time or spatial derivatives leads
to

9 (Vi) Vi o(p) , 8 (Vi)
P=r T <p Vi Bxk> = "n T omon >4
Since p and p are constants, they commute across both the mean and the derivative
operators.
The second term on the RHS Eq. (5.4) is the mean of the advection term. Using

the instantaneous continuity equation (3.10), this terms is recast as

aV; 3 (pVi Vi oV 3 (pVi Vi 3 (pVi Vi
v Vi (pk,)_p kv = (PViVi)\ _ 3 {pVicVi) (5.5)
X Xy 0xy 0xy Xy
Using (4.36), (5.5) is expressed as
a(pv, v,
3 (pViV; ] Vi) (V; PV
(pViVi) _ 2 (Vi) (Vi) (pvivi) 56

Xk Xk 0xk

Further, employing the mean continuity equation (5.2), the RHS of (5.6) is simplified

3 (pVi Vi 3 (V; 3 (V) oV, v,
<ﬁ;k >:,0(Vk) ( )+p (k)(Vi>Jr < k >
Xk Xk Xk X
3 (pViVi AN AY
(o Vi Vi) = (Vi) (Vi) + < k > (5.7)

X Xy 0Xy
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Substituting (5.7) in (5.4) leads to

d (Vi) d o L e )
|4 =- - 5.8
at o (Vi) axy ox; ta 0xy0xy 0xx (5-8)

Equation (5.8) is called the mean momentum equation. The set of equations com-
prised of (5.2) and (5.8) is called the mean Navier-Stokes equation or the Reynolds-
averaged Navier-Stokes (RANS) equation set. The primary unknowns of the mean
Navier-Stokes equation set are the mean velocity components and mean pressure:
(Vi) and (p). Further, the process of subjecting the non-linear advection term to the
mean operator (5.5) has led to the emergence of six "new" or secondary unknowns
(vivi) (viva) (viva). (vava). (vavs) and (V5 V3). The six new unknowns on the
RHS of (5.8) are related to a symmetric second-order tensor which is called the
Reynolds stress tensor (R):

g:-@wwp@ (5.9)

Like the instantaneous momentum equations (3.11), the mean momentum equation
(5.8) is non-linear PDE. The non-linearity arises because of the advection term
(second term on the LHS of 5.8).

Equations (5.2) and (5.8) have been presented using a frame-fixed Cartesian coor-
dinate system as the working coordinate system. In its coordinate-system independent
form, the RANS equation set is expressed as

+
ke

<
<
=

I

~V(p) +uVAV)+ V- R (5.10)

53 The Turbulence Closure Problem

The instantaneous Navier-Stokes equation set (3.10)—(3.11) has four scalar PDEs
in four unknown scalars (V; and p). Thus, it is mathematically closed. The mean
Navier-Stokes equation set, too, has four scalar PDEs (5.10). However, it involves 10

unknown scalars ((V1), (Va). (Va), (p), (Vi Vi ). (Vi Vi), (Vi va). (v v3). (V5 v3) and

<V3/ V3/ > ). Thus, the mean Navier-Stokes equation set is mathematically unclosed.

This mismatch in the number of variables and the number of available equations
involving these variables is called the turbulence closure problem. Thus, the mean
Navier-Stokes set in its current form, even though being exact, is not complete enough
to lead us to any solution of the mean flow field. To make any further progress
towards obtaining a solution of the mean flow field with these equations, we must
have additional equations that describe the variation of the six components of the
Reynolds stress tensor that appear in (5.8).
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5.4 The Reynolds Stress Tensor

The SI units of the Reynolds stress tensor (5.9) are the same as the SI units of the
instantaneous stress tensor (Nm~2). Indeed, we can show that the Reynolds stress
arises due to the flux of fluctuating momentum vector caused by the fluctuating
velocity vector across an (imaginary) surface inside the bulk of the fluid.

We consider abulk of fluid, as shown in Fig. 5.1. Further, we consider an imaginary
plane perpendicular to the direction of the unit vector €; which passes through the
location P which has its coordinates as (x1, x2, x3) (Fig. 5.1). This plane divides the
fluid bulk into two parts. We focus on the left part and identify this mass of the fluid
as our system (Fig. 5.2). The outward normal unit vector for this exposed surface of
the left bulk of the fluid is ¢;. We focus our attention on a small area AA (shown
in Fig. 5.2) on this exposed surface, such that the centroid of this area coincides
with location P (x1, x2, x3). Over a unit time, the fluctuating velocity component Vl,

X2( é2) ‘ '
@_ %,(8) é,=0
[~
X4(&:)

A A
n— €1 e ,=-e,

Fig. 5.1 Two parts of the fluid bulk created by an imaginary plane which is perpendicular to é;.
The plane passes through location P. The two parts are shown separated and displaced only for the
purpose of illustration

Fig.5.2 Loss of fluctuating fluid momentum per unit time caused by the fluctuating velocity vector
component V;
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causes a certain amount of mass (Am) to leave (per unit time) the left part of the
fluid bulk through area AA.

Am = pVi AA (5.11)

where Vl/ is the fluctuating component of the velocity vector along ¢; at time # and at
the centroid of the small area A A. This leaving mass, in turn, causes, loss (per unit
time) of a certain amount of fluctuating momentum vector, as well. This transport
of the fluctuating momentum vector (denoted by AM with SI units as kgms~2) is
represented as

AM = Am (v{él + Vaés + v;é3)
= pVi'AA (V{él +Vyer + ‘/3'@3) (5.12)

The expected value of this momentum loss from the left bulk of the fluid per unit
time can equivalently be perceived as a net external force vector F acting along —é;
direction on the left part of the fluid bulk.

F= <—pv{AA (V{él Ve + v;é3)> (5.13)

In the limit of AA — 0, the corresponding force components per unit area tend to
match the definitions of the scalar components of the Reynolds stress tensor (5.9)

Fé] . <_pV1/AAV1,> ro
AdBo AL AlfllgO AA - <_’OV1 V1> = Ru (5.14)

. F 'éz . <_’0V1/AAV2/> o
Alflxrgo AL Alfllrg() T AA (—pV1 V2> = Rz (5.13)

F 'é:’, . <_’0V1/AAV3,> r_ !
Jim S = dm =) =R G

Similarly, we can demonstrate the origin of other scalar components of the Reynolds
stress tensor by dividing the fluid bulk at location P using planes with the appro-

priate unit normal vectors (&, or €3). The three components (— 0 Vl/ V{>, <— P Vz/ Vz/)
and <— 0 V3/ V3/> are also called the normal Reynolds stress components. In contrast,

the three components <—,0V1/ V2/>, (—,OV2/ V3/> and (—p V3/ Vl/ ) are called the shear
Reynolds stress components.

In an instantaneous turbulent flow field of a Newtonian fluid, the instantaneous
stress tensor, which is an Eulerian variable (denoted by o), consists of two parts: the
instantaneous pressure stress tensor and the instantaneous viscous stress tensor

o=-pl+z (5.17)
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where I denotes the identity tensor of order two, and
T=2us (5.18)

The symbol S denotes the instantaneous strain-rate tensor. In the absence of body
force, it is the instantaneous stress tensor which causes the instantaneous acceleration
of a fluid particle.

v

V- (YW)=V.o (5.19)

0

In contrast, in the mean description of a turbulent flow, the effective stress tensor
(we use the symbol ™" to denote this quantity) that causes a fluid particle to have
its mean acceleration is the sum of the mean of the instantaneous stress tensor and
the Reynolds stress tensor.

omean _ <g> +R=—(p)l+ <£> +R (5.20)

where
()= fous) = 2u5) = 2 D )"

where R is the Reynold stress tensor as defined in (5.9). Using the new symbol
proposed in (5.20), the mean momentum equation (5.10) can be expressed as

(5.21)

8(K> mean
p— tr()- VYY) =V.-o (5.22)

Note that ™" is not the same as (o).

5.5 Transport Equation of the Reynolds Stress Tensor

In Sect. 5.3, we identified the Reynolds stress tensor as the root cause of the tur-
bulence closure problem. Addressing the turbulence closure problem requires addi-
tional equations that can describe the evolution of the Reynolds stress tensor, ensuring
that the total number of unknowns matches the number of governing equations. Thus,
motivated by this requirement, we now wish to derive the exact governing equations
of the components of the Reynolds stress tensor. The instantaneous momentum equa-
tion (3.11), along with the mean momentum equation (5.8), provide the starting point
of this derivation.

We first express the velocity and pressure variables in terms of the corresponding
mean and fluctuating parts:

/

Vi=(V;)+V;,and p = (p)+p (5.23)
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Thus, the instantaneous momentum equation (3.11) is expressed as

AW ) <(Vi;t+ ) + (o +v) AUCRA0)] (Wa)x: ) _
_ la(<p>+p,) +v82 (MHV;) (5.24)
0 0x; 0x0xk

Further, subtracting the mean momentum equation (5.8) from (5.24) leads to the
governing equation of V; as follows:

v, v, AV V) 1ap GRAA
i <Vq) t=_Vq z_q(l)__p v 1
at 0xg 0xg 0xg p 0X; 0x40x4
(V%)
+ —— (5.25)
0xg

We multiply the scalar equation (5.25) by VJ/- resulting into the following equation

’

,av’ (V)av Y LA(V;) ,1ap
dt " ax, 7 9x, T 9x, T pax
, 92V, ,3<Vdi>
+V, +V, (5.26)

T 9xq40x4 I Bxg

Changing the indices i’s to j’s and j’s and i’s in (5.26) results into another equation,
which is independent of (5.26)

oV v, C AV BV 1 ap
R A
at 0xg4 0xg 0xy 0 0x;
, 92V, ,B(VJ'.Vq’>
+ vV, L4 (5.27)
0x40xg 0xg

Next, we add (5.26) and (5.27), subsequent similar terms from the two parent equa-
tions (Egs. (5.26) and (5.27)) are grouped together for further algebraic simplifica-
tions.

v’av}+v’a‘/i/ + v’(v)avf{+v’(v)avf/
ot 9t PV gy, TV B,

"1 9x, I 1 9x, "1 dxg I Qx,
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: : a(v’.v’> a<v.’v’>
19 19 , ,
+[—V—l—v.—i]+ A/

p dx I p ox; dxg dxg
A o, v PV, 5.28
Y faxqax,, M jaxqaxq (:28)

Next, we take the mean of the entire Eq. (5.28). Subsequently, using the distributive
property of the mean operator over a sum of random variables (4.28), we arrive at

’8V}+v/avi, - v/(v)avf/}v’(v)avi/
Par T e PV gy, IV gy,

1 11
) S 7 v e
=(-VV,—L-Vv,v, L)+ {-VV, <’>—vjvq )
x4 0x4 0xg 0xg
111 1V
/ a(v’v/) a(v.’v’>
;10 10 , /
Y QR VARG e iy (VA RS T VA W
o Ox T p 0x; 9xg T oxy
v Vi
, 0%V, .92V
+(vV; +vV, L (5.29)
0xq0x4 0xq0x4
VIl

Further, we simplify terms /-V I 1, individually. Various properties of the mean
operator (Eqgs. 4.22,4.28,4.47 and 4.50) are employed for the simplification process.

RRLAW LI _ () (5.30)
Y Tat | - |

at at

Term 11 simplifies to

= (Vq) M (5.31)
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Term 711 simplifies to

!’ ! Vj’ !’ /a‘/i/
—Vi Vq@ - ViV dx,

111

p(Vvive) v,
=(-————2+V,V (5.32)

Vg
0xg4 0xg4

To further simplify the last expression, we first subtract (5.2) from (3.10) and obtain
the fluctuating continuity equation

avq’
Y (5.33)
qu

Next, using (5.33) in (5.32), simplifies Term /71 to

C AV Y] 3(",-"’}"(}) 0,
S VA0 VAl R A VA N N (R S VA v Vi
I 1 9x, X X

4, ox, i,
111
B _a(\/ivjvq) __a(vivjvq> 53
N dxg B dxg ’

Term 1V simplifies to

"1 dxy 174 By,
1v
B (V) r o (Vi)
=) e~ Vv s, 39
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Term V is split into two different groups of terms (explanation to be provided later
in Chap. 9).

1%
() ey, () v,
={|l--——+—- | +|-"——+——
p  0xj p 0x; o 0x; p 0x;
13(1’ Vi) p v, 13(p V,-) p v
-{-—— 4+ —— )+ —
p  0xj p 0x; p  0Xx; p 0x;
(V) 1y e\ alPvi) 1,
=t —— )+ —
P 0x; p 0x; P 0x; p 0X;
(v eV g (v e
—= + + — — +—
1Y ax]' axl’ 1Y p 8x,' ax]'
Clalev) (V)Y 2, <16
_ ! AL} I .
o\ oy oxi p \P % (30

where s; ; Tepresents the (ij)th component of the fluctuating strain-rate tensor (2.21)

= 8V’/'+av"/ (5.37)
i =2\ o T oy '

The first term on the RHS of (5.36) can be altered using the Kronecker delta symbols
to cast Term V

s, +;< ’s,fj> (5.38)
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Term VI simplifies to

! ’

/8(V{Vq/>>

! v,
'Oy Y 9xg
VI
olvive) e (viv)
=(v) L (v} L =0, (539)
0xg x4

, 92V, , 92V , 0%V, 92V
vV, +vV; —)=v(|V +1|V; !
0x40x4 0x40x, 0xq0x4 0x40x4
v 3V, o [ov, ] avyav
e R V|- L
dxy dxg dxg | dx4 7 dxg 0x4
l 1

(5.40)
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Substituting (5.30), (5.31), (5.34), (5.35), (5.38), (5.39) and (5.40) in (5.29) and
multiplying the entire equation by p we arrive at the following equation

a(pv/v)) a(pv V)
v,
at +{Val dx,

2< .
APty 9x40x4

3<p/V[> 3<P,V}> d S sal
- ax]' B 8x,~ +E(_p qi j) ( )

Using the definition (5.9), Eq. (5.41) is cast as the transport equation of R;;.

aR IR A(V;) V) v, AV,
—_— V — = —R; — R 2 i ]
ot + V) 0xx " dx 4 0xg +as dxg 0x4
2( 7o > + 82R1]
—2(ps;;)+v
Y dxqdxg
8<p’vi/> 3(p/vjf> D i
+ ij + axi +E<pqi j> ( )
Symbolically (5.42) is expressed as
OR;; OR;;
-+ (Vg) L =Py +ej— i + T — T (5.43)
ot 0x4

where, P;;, €, I1;;, I';; and 7;; are the (i j)th components of the following tensors.

P=—(R- (Y (V) - (R (¥ (v)" (5.44)
€= zu<(zz’)T : (zz’)> (5.45)
n=2(ps) (5.46)

L =vV?(R) (5.47)
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’ ’ / ! T ’ 4 ’
T=-(v(pV)) - (V) —v- (v vV} 54
Accordingly, the corresponding coordinate system-independent form of (5.43) is

oR
— +((V) VR=P+e-N+L-T

= T (5.49)

In the literature of turbulent flows, a partial differential equation of the form

9
+W%£=ﬂ+h+m+m, (5.50)
a 0xy

oy
at

is called the mean transport equation of Y, and the terms Py, P, ... and Py appearing
on the RHS of (5.50) are called the processes that influence the evolution of ¥ in
the flow field. On the other side of the equation (the left-hand side), the first term is
called the unsteady term, and the second term is called the advection process. The
two partial differentiation operators on the LHS of (5.50) are often combined in the
following form.

0

3
% + (V)

— 5.51
T (5.51)

Physically, this combined operator represents the rate of change in ¢ (the quantity
on which it acts) following the local mean velocity <K(§ , t)). In other words, the
LHS of (5.50) represents the rate of change in the quantity i following the mean
motion of the local fluid particle. This operator is called the mean material derivative
operator. In accordance with (5.50), Eq. (5.49) is called the mean transport equation
of the Reynolds stress tensor. For brevity, we refer to this Eq. (5.49) simply by the
acronym RSTE.

Equation (5.49) shows that the rate of change of the Reynolds stress tensor fol-
lowing the mean velocity of the local fluid particle happens under the influence of
five processes: P, €, I1, I and 7. The tensor P is called the production process of the
Reynolds stress tensor. The tensor € is called the dissipation process of the Reynolds
stress tensor. The tensor IT is called the pressure-strain correlation process. The
tensor I" represents the molecular diffusion process of the Reynolds stress tensor in
the turbulent flow field. The tensor 7 involves gradients of the covariance of pres-
sure and velocity, along with the divergence of the triple correlation of fluctuating
velocity components.

5.6  Turbulence Kinetic Energy

Some additional physical insights into Eq. (5.49) and the involved processes can be
gained by focusing on the trace of this equation. The trace of (5.49) can be readily
obtained by setting j = i in (5.43).
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OR;;

N (V)

. = =Pi+ei — i+ Ty — T (5.52)
*q

The trace of the Reynolds stress tensor is related to furbulence kinetic energy per
unit mass of the fluid (denoted by symbol k, and quite often called, in a more simple
manner, as the turbulence kinetic energy):

<V./V./> R
[ S (5.53)
2 20

Indeed, the turbulence kinetic energy has a clear physical meaning. It represents the
mean of part of instantaneous kinetic energy contained in the fluctuating velocity
field. This is illustrated by the following relationship.

= k. 5.54
2 2 2 2 + (554

<ww> _ viv))  wm
The LHS represents the mean of kinetic energy per unit mass. The first term on the
RHS represents the kinetic energy per unit mean associated with the mean velocity
field, and the second term on the RHS of (5.54) represents the the turbulence kinetic
energy per unit mass.

Using (5.52) and (5.53), the transport equation of the turbulence kinetic energy
is expressed as

ok
ot

ok Pii €ii IT;; L Tii
q P P P 1Y 1Y

The full algebraic expression of this equation is

dk () ok <V/V/>a<vi) v, av, N 1< : >
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ot a dxg Y dx; dxg 0xg 0 P Sii
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—— —_—
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The first term on the RHS of (5.56) (1’ - <Vlf vj) %) is called the production
J

rate of k. It can be demonstrated that —7 ' appears in the mean transport equation
of the turbulence kinetic energy associated with mean velocity ((Vi) (Vi) /2). The
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transport equation of (Vi) (Vi) /2 can be readily obtained by multiplying (5.8) by
(Vi), and subsequently taking the trace of the resulting equation.

D (Vi) (V) D (V)
5( 2 )”V")E( 2 )

__lap V4 v 32 (Vi) (Vi) — 0 <<Vi’vl;><vi))

; 0x; 0Xi 0 Xk ' 0xp

+(v/v,) o V)
"PL dxy,

—_—
_r

(5.57)

The presence of the same process / "in Egs. (5.56) and (5.57) with opposite signs
shows that I is indeed the mechanism by which energy is exchanged between the
kinetic energy associated with the mean velocity ((V;) (V;) /2), and the kinetic energy

associated with the fluctuating field << Vi/ Vl/) / 2) of the same local fluid particle.
The second term on the RHS of (5.56) is called the dissipation rate of k. It is often

denoted by the symbol €
v, av,
e=v{—+— (5.58)

0xy 0xg4

Since € involves the mean of the sum of the square of all nine components of the
fluctuating velocity gradient tensor, € is a positive-definite quantity.

€>0. (5.59)

This realization leads to the conclusion, that the dissipation rate can never increase
the turbulence kinetic energy associated with a fluid particle. Whenever the gradient
of the fluctuating velocity field exists (¢ # 0), the dissipation rate decreases k.

Further, we can demonstrate that the dissipation rate process (€) appears with a
positive sign in the mean transport equation of the mean internal energy of the flow
field. This equation can be derived by taking the mean of the instantaneous governing
equation of the internal energy per unit mass (e), which is another Eulerian variable.
The instantaneous equation of e for a Newtonian fluid with constant density and
without any source term is [1]:

de n de WS S 4 k 9T
J— — =2V — s
at a 0x4 e P 0X) 0Xk

(5.60)

where S represents the instantaneous stain-rate tensor. The symbol «, represents
the thermal conductivity of the fluid medium. Taking the mean of (5.60) and using
relevant properties of the mean operator, results into the following equations.
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de de K 8T
+V, = (208 Smn + —

o Tox, P dxkdx
ae) de) , de b
7 + (Vq) E + an = 20 {Simn) (Smn) +2v <SmnSmn>
82 (T
K 9°(T) (5.61)
00X IXg
Substituting
.1 fav, oV,
S =_ m n 5.62
mne 9 (8x,, + me) ¢ )
in (5.61) leads to
d(e) d(e) , de k 9%(T)
” -|-< q) qu qaxq + V( mn)( mn) + P axkaxk
V. oV, v, v,
_n_'m 5.63
+ v< 0x, 0x, >+v<8xm 0xy, ( )
—

€

The simultaneous presence of € on the RHS of (5.56) and on the RHS of (5.63) with
opposite signs clearly shows that € is the mechanism by which the turbulence kinetic
energy is converted to the mean internal energy (heat) associated with the local fluid
particle.

The third term on the RHS of (5.56) involves the covariance of pressure and
strain-rate. The mean continuity equation (5.33) implies that there is no net effect of
the pressure-strain correlation process on the evolution of k.

%<p/Sii>=%< /S;1>+%< ’S;2>+%< 'si3)=0. (5.64)

However, it does not mean the three individual components %< p/S;1>, %< I’/S/zz)
and % < p/S/33>, are unimportant. These individual components, in general, can still
cause the individual Reynolds stress components <V1/ Vl/ >, <V2/ V2/> and <Vé V3/> to
decrease/increase. For example, if % < p/S/“> > 0 (causing an increase in (Vl, V1/> in

accordance with (5.43)) as well as % p/Sé2 > ( (causing an increase in <V2/ V2/> in
accordance with (5.43)), the constraint (5.64) guarantees that in such a situation:

%<p/5;3> == <%< /5/11) + %(P/Séz» <0 (5.65)
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. . . . /o
and correspondingly, the pressure strain-correlation must cause a decrease in <V3 V3>.

Thus, the apparent role of the pressure strain correlation tensor on & is to cause a
redistribution of the relative share of turbulence kinetic energy contributed by the
three orthogonal fluctuating velocity components.

Term IV on the RHS of (5.56) is the molecular diffusion process of k. In contrast
to the role of €, which causes a local conversion of turbulence kinetic energy into
heat, the molecular process causes a spatial redistribution of & in the flow field from
aregion where k is higher to those where k is lower.

It can be demonstrated (detailed derivation not included here) that the term

1 8<[;):/i ) is related to the expectation of the rate of work done per unit mass by the
ﬂuctuatfng pressure forces while the local fluid particle undergoes displacement due
to the fluctuating velocity vector (Z/).

To explain the physical meaning of Term V I ", we first define a quantity called the

fluctuating kinetic energy per unit mass. This is defined as Vq/ Vq/ /2. Next, we refer

to Fig.5.1. Over a unit time, the fluctuating velocity component Vl/ causes a certain
amount of mass (Am) to be transported across the small area AA.

Am = pVi AA (5.66)

Associated with this transported mass, the amount of fluctuating kinetic energy that
is transported is Am Vk, Vk, /2. Thus, the amount of fluctuating kinetic energy being
transported per unit area per unit time is p V; ' V,; Vk/ /2. We call this quantity the flux of
fluctuating kinetic energy caused by the fluctuating velocity component V],. Similarly,
if we consider a small area A A with unit normal along the ¢, direction (or along the
e3 direction), we get the corresponding flux of the fluctuating kinetic energy caused
by the VZ/ component (or the V3/ component) as p V2/ Vk/ Vk, /2 (or pV3/ Vk/ Vk/ /2). Thus,
we define the ith component of a relevant flux vector (Q) as

0; = pV L2 (5.67)

The Term VI  can now be expressed in terms of the Q vector.

9 | . V,V, _o1a(o,) 1
L ——
vI

Thus, Term VI’ represents the gradient of the flux of the fluctuating turbulence
kinetic energy caused by the transporting action of the fluctuating velocity vector
itself.

Earlier in Chap. 4 we defined a statistically homogeneous flow field, which has
the expected values of all variables and their moments spatially independent. There
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exists another class of turbulent flows wherein, even though the expected value of
the primary flow variables (velocity and pressure) may not be spatially independent,
however, the expected values of all the products of the fluctuating quantities are still
spatially independent

ﬂ@@ﬁ

-0, 5.69
ox; (5.69)

where (l)/], ¢>/2, etc. represent the fluctuating parts of various flow variables. Such a
turbulent flow is called homogeneous turbulence. In such a flow field, the following
processes appearing in the transport equation of the Reynolds stress tensor (5.41)
are zero:

a@WW)
(Vq)7=0
8xq
Vi)
0x40x4 -
Mﬁw> Mﬁ%> ) V, ViV =0 5.70
B 0xj B ox; +E<_pqij>_' (5.70)

Since these processes vanish in homogeneous turbulence, they are called inhomoge-
neous processes. Similarly, in the transport equation of k, the advection process on
the LHS of (5.56), and the processes marked as / V' and V' on the right-hand side
of the equation are called inhomogeneous processes of the transport equation of k.

5.7 The RSTE and the Turbulence Closure Problem

Earlier in Sect. 5.3, we discussed that addressing the turbulence closure problem
of the mean Navier-Stokes equation set (5.10) requires the inclusion of additional
equations describing the variation of the Reynolds stress tensor in the turbulent flow
field. Indeed, at the first glance, the derived transport equation of the Reynolds stress
tensor (5.43) appears to provide six additional scalar equations. These equations may
be added to the mean Navier-Stokes equation set (5.10), making the total number of
equations ten (10 = 1 + 3 4 6). Does this help us achieve mathematical closure?
We realize that the transport equation of the Reynolds stress tensor (5.49) has itself
introduced several new unknowns. These new unknowns are (i) the six independent
scalar components of the € tensor, (ii) the five independent scalar components of the

IT tensor, the three scalar components of the < plz/> vector and the ten independent

scalar components of the third-order tensor <Z/Z/X/>. We call these additional 24
scalar quantities as the fertiary unknowns. Thus, the equation set comprised of (5.10)
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and (5.43) now has 10 scalar equations but 34 scalar unknowns. These unknowns
are listed as:

04 Primary Unknowns: (V;) and (p)
06 Secondary unknowns: <— o Vi, VJ,>

24 Tertiary Unknowns: €;; , IT;; , <p/Vi/>, and <Vl~/ VJ,- Vk/)

Evidently, even with the inclusion of the exact transport equation of the Reynolds
stress tensor (5.49), the turbulence closure problem persists. In fact, any further
attempt to derive the exact governing equations for the tertiary unknowns would
invariably introduce newer unknowns. Thus, to address the turbulence closure prob-
lem, we must adopt an alternate approach. Instead of deriving further exact governing
equations for the new unknowns, we should approximately model them in terms of
the flow variables for which governing equations have already been included.

Historically, several such approximate models have been proposed. Many of these
closure models are phenomenological in nature. They have been proposed based on
our experimental or DNS-based observations of various quantities of interest in
some very simple flow fields such as a turbulent boundary layer, a homogeneous
shear flow, or a decaying turbulent flow. Despite their simplicity, an experimental or
DNS database of such flow fields does provide very useful information with which
we can possibly develop deeper insights into the variation of Reynolds stresses and
their relationship with the primary flow variables. Such accumulated information
and insights are often leveraged while attempting to develop new turbulence closure
models. With such motivation, in the next two chapters, we examine two such simple
flow fields: (i) turbulent boundary layer (Chap. 6), and (ii) decaying turbulence (Chap.
7). Subsequently, in Chap. 8, where we review a couple of popular turbulence closure
models, we will further highlight how some specific observations from such flow
fields have been employed to optimize the performance of these models.
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Turbulence Near a Solid Wall

In this chapter, we examine a turbulent boundary layer that develops over a thin
and wide flat plate (Fig.6.1). The flow field in the far-upstream conditions is Vypéy,
where V,, is a constant. The plate is fixed to the reference frame in context (the ground
frame). We employ a frame-fixed Cartesian coordinate system Oxj(e1)x2(€2)x3(€3).
The origin of the coordinate system is fixed at a location such that the boundary layer
is turbulent at all locations x; > 0.

The width of the plate in +é3 is very large, such that the influence of the plate
edges is negligible in the zone of interest. Like any other turbulent flows, the velocity
field V (X, t) and the pressure field p(X, t) are unsteady and three-dimensional (3D,
which means all flow variables vary with all three spatial coordinates, x1, x» and
x3). Further, generally, the velocity field has three components (3C). The flat plate
imposes, like in a laminar boundary layer, the no-slip and no-penetration boundary
condition on the velocity field at x = 0. Our intent in this chapter is to examine
the observed behavior of expectations of various variables of interest within the
turbulent boundary layer in the DNS database. Even though the boundary conditions
of this flow field are very simple, still the flow field offers an opportunity for us to
understand how the presence of a solid wall influences the expectations of various
flow variables of interest. Further, this study provides some cues which have helped
in the development of turbulence closure models.

6.1 Observed Behavior of the Mean Flow Field

Like any turbulent flow field, the instantaneous velocity and pressure fields are
unsteady and three-dimensional, and the velocity field is inherently 3C.

v ap
"= £0and — #£0 6.1
o # 0 an a1 #* (6.1
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o ¥
x,(€))

Fig.6.1 A flat plate placed in an otherwise uniform stream

9V 9
9% 2oand 22 £ (6.2)
0x; 0x;

wherei = 1,2 or 3.

However, the turbulent flow field over a thin and wide plate is known to be
statistically stationary and statistically homogeneous in the 4¢3 direction (Fig.6.1).
Thus, the time derivative and the spatial gradient along the ¢3 direction of all expected
values are zero at all locations and at all time instants.

0
— =0 (6.3)

and
d{()
% =0 (6.4)

Further, the velocity field in this flow is known to be statistically two componential
with

(V3) =0= (V)= (Vi)é1 + (W) & (6.5)
Like any other turbulent flow field, the fluctuating components of all flow variables

are unsteady and 3D.

/

az;éo P (6.6)
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= 20and £ 20 (6.7)
Bxi axi

Further, like any other turbulent flow field, the fluctuating velocity component is 3C
(In general, Vl/, VZ,, and V3, are all non-zero.)

The local boundary layer thickness §(x;) of a turbulent boundary layer is defined
to be the wall-normal distance (x,) where

(Vi(x1, x2 = 6(x1))) = 0.99V,. (6.8)

In Fig. 6.2 we present the mean values of various statistics computed using the
DNS database of Schlattr and Orlu [3]. The variations in various statistics have been
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Fig.6.2 Variation in mean 0.014 ‘ — 1
quantities along the
wall-normal direction at a 0.012 0.01 los
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shown along the wall-normal distance at a stream-wise (along the plate) station (x,)
where the Reynolds number based on the momentum thickness is 3970.

V,0
Rey, = 227 = 3970 (6.9)
7

where 6 represents the local momentum thickness.

The vertical axis on the right-hand side corresponds to the normalized mean
stream-wise velocity ({V1)), where the normalizing quantity is the far-upstream
velocity (represented by the symbol V,,). In the far-upstream locations, the veloc-
ity vector is purely stream-wise, and the flow field is laminar, with no fluctuations
present in any flow variable. The vertical axis, on the left-hand side, corresponds to

the other quantities: <V1/ Vl/ ), <V2/ V2,>, <V; V3, > and <V1/ Vz/) These quantities have been
normalized by VUZ. On the other hand, the horizontal axis represents the normalized

wall-normal distance from the plate, with the normalizing quantity being the local
boundary layer thickness (§(x,)). There are several pertinent observations.

1. At x =0, (V1) =0 due to the no-slip condition. As xp — &(x1) increases,
(V1) /V, monotonically increases and tends to reach its asymptotic value of
unity as xo — 8(xg).

2. The slope of the (V1) curve (or %) is observed to be the highest at the wall
(x2 = 0) and then subsequently decays monotonically to reach zero as x, —
8(xq).

3. In contrast to the variation in the mean stream-wise velocity, the variations in
<V1, V{> <V2/ V2/> <V3/ V3,> and <V1/ V2/> are non-monotonic (see the inset zoomed-in
view in Fig.6.2). The no-slip and the no-penetration conditions do ensure that
at xp = 0, all these quantities are zero. However, as one moves away from the
wall, there is a sharp increase observed in all these quantities. As the wall-normal
distance further increases, the quantities tend to decrease and eventually vanish
near the edge of the boundary layer.
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4. Closeto the wall, among the three components <V1/ V1, >, <V2/ V2,> and (Vé V3/ >, <V1/ Vl/ )
seems to have the highest magnitude and <V2/ VZ/ seems to have the smallest
magnitude. However, as one approaches the edge of the boundary layer, the
disparity in the magnitudes of <V1/ Vl/ ), <V2/ V2/> and <V3/ V3/> tends to disappear and
at locations x3/38(x,4) > 0.9, we observe

<WW%%%@%%%%> (6.10)

5. Even though at locations close to the wall, <V1, V1/>, <V2/ V2/> and <V3/ V3, > are not
equal, the order of magnitude of all three quantities is still deemed to be the same.
6. The quantity (V1, V2/>, too, shows non-monotonic variation with the wall-normal

distance. It is zero at the wall (at x, = 0) due to the no-slip and no-penetration
conditions. As x, increases, it first increases, reaches a peak value, and then
subsequently tends to vanish as one approaches the boundary layer edge. Further,

(Vl, V2/> < 0 at all locations in the boundary layer.

6.2 Simplified Governing Equations of the Mean Flow Field

To further understand the observations gathered from Fig. 6.2, we refer again to the
mean Navier-Stokes equations set (5.2 and 5.8). These equations in their current
forms represent the governing equations of a general constant-density turbulent flow
field of a Newtonian fluid. For the flow over the flat plate as described in Fig. 6.1,
however, this equation set can be subsequently simplified. The first set of simplifica-

tion invokes properties (6.3), (6.4) and (6.5). Employing (6.5), in the mean continuity
9(V3)
0x3

equation (5.2), vanishes, leading to the following simplified form of the mean
continuity equation
a(V, a (V.
( 1)_+ (V2)

0x1 0x2

=0 6.11)

Next, we examine the mean momentum equation along the ¢ direction

3 (V1) 3 (V1) 3 (V1) 3 (V1)
Vo) 2 4 p vy 22 4 p vy
Jat 0x] 0x2 0x3
_ A vy vy 02 (Vi)
- 0x1 0x10x] 0x20x7 0x30x3

alovivi) a(ovvi)  a(evivi)
- = = 6.12)
ax 9x2 9x3
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Using (6.3), (6.4) and (6.5), (6.12) simplifies to

a (V1) a (V1)
p (V1) + 0 (V2)
dx 0x2
_ 2 (Vi) 02 (Vy)
- 0x1 0x10x] “ax23x2
a(evivi) a(ovy)
— — (6.13)
3)61 a)C2
Next, we examine the mean momentum equation along the ¢, direction
a(V2) d(V2) d(V2) 9 (V2)
+ o (V1) +p(V2) + 0 (V3)
ot 0x1 0x2 0x3
__p)y v 92(Ve) 82 (Va)
0x) 0x10x] Maxzaxz M8x38x3
a(ovivs) alovava)  a(evivy)
- - - (6.14)
dx1 0x7 0x3
Using (6.3), (6.4) and (6.5), (6.14) simplifies to
9 (Va) 9 (V2)
p (V1) +p(V2)
0x1 0x2
_ ) 9% (Vo) | 0% (Va)
h 0x2 0x10x] Maxzaxz
a(ovivy) o (ovyvs)
- - (6.15)
0x1 dx2
Next, we examine the mean momentum equation along the ¢3 direction
9 (V3) d(V3) d(V3) 3 (V3)
+ 0 (V1) +p(V2) +p(V3)
ot ax1 0x7 0x3
__p) o 9%(vs) o 9%(Vs) 8% (Vs)
0x3 0x10x] 0Xx20x) 0x30x3
aovivy) alovava) o (pvivi)
— — — (6.16)
dx1 R %) 0x3

Using (6.3), (6.4) and (6.5), (6.16) simplifies to

a(ovivi) a(ovivi)
0=— = (6.17)
0x1 0x7
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The simplified form of (V3) involves merely the spatial gradients of the two
specific components of the Reynolds stress tensor: <— P V]/ V3/> and (— P Vzl V3/> Since

(V3) is already known to be zero for this flow field, we do not have any immediate
motivation to further analyze (6.17).

6.3  Order-of-Magnitude Analysis of the Governing Equations

Equations (6.11), (6.13), and (6.15) can be further simplified by performing an order-
of-magnitude (OM) analysis of these equations. This analysis is similar to the one
performed for a laminar boundary layer [1]. However, care must be taken to use
appropriate characteristic values for the mean velocity components and the relevant
Reynolds stress components.

We say that ¢ ¢ is the characteristic value of the mean of the variable ¢ (x1, x2, x3, t)
over a domain of interest, if

o [@} =100=1 (6.18)
oc

over most of the domains of interest. Using ¢¢c, we now define a normalized version
(denoted with a superscript *) of the mean variable

()
()" = — (6.19)
¢ éc
Equation (6.18) implies that if ¢¢ has been aptly chosen, then
o [(¢)*] =1 (6.20)

over most of the domains of interest.

In the context of the governing equations of the flow over a flat plate, if we
appropriately choose two numbers Vic and V¢ as the characteristic values of the
variables (V1) and (V>), then we can define the normalized version of these variables
as

e 2
(Viy* = Vie and (VL))" = Vac (6.21)

such that
(@) [(Vl)*] =1land O [(Vg)*] =1 (6.22)

over most of the domains of interest. Here, (V1 )* and (V,)* are still variables of x; and
X7, but they are not dependent on time (the flow being statistically stationary) or x3
(the flow being statistically homogeneous along the e3 direction). For the boundary
layer flow, we choose

Vie=YV, (6.23)
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To choose appropriate characteristic values of the Reynolds stress components,
we refer back to our observations in Fig. 6.2. Specifically, our observation included
in (6.10) suggests that pa’ V02 could be an apt choice of the characteristic value for
the normal Reynolds stress components, where a is an appropriately chosen positive
constant, such that,

Olal]=1anda < 1 (6.24)

Thus, the corresponding normalized forms of these stress components are defined

oV V> =
171 /OCIQVIZC
pV. V> =
2 pa*Vie
< vivi) <pv3’v3’> (6.25)
i) - .
3 pazvlzc
such that
At oI\ * it
(9<pv1 v]> —1, (9<,0V2V2> — land (9<pv3v3) =1 (6.26)
Equation (6.25) implies that
OJViV) = 0V ;) = O\/(V;v3) = O [aV,] (6.27)
Based on these observations, we conjecture
0 [(V{ vé)] < 0[a*V?] (6.28)

Thus, we normalize the shear stress Reynolds stress components, as well, using the
same characteristic value which has been used for normalizing the normal stress
components

o (oviva)
v} = e,
Prhl = P“2V12c
)k <pV3/V1/>
<,0V3V1> = (6.29)

pa? V12c
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such that

7o\ ¥ It It
(9<pV1V2> 51,0<pV2V3> 51and0<pV3V1> <1

(6.30)

Further, we define characteristic length-scales, L1c and Lyc, for the mean flow
inside the boundary layer such that with these length-scales, the gradients of various
scalar variables along the ¢; and é, directions are to normalized as

such that

(a<v1>>* ~ (a<V>>

0x1 0x1

( ) _( (V2)>L1C <3(V2>
0x1 Voe 9x7

8x1

,oV V ,oV V
2
panlc

pV V ,oV V
P“2V10

Lic (3(V1))* . (
Vie "\ 9x2

Lac
Vic’
Lac
Vac

0 (Vl))
0x2

d (V2)>
0x2

(6.31)

=1 (6.32)
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and
B ’ ’ *7] B ’ ’ *7
a(viv,) a(vv,)
o <10 <1
0x1 0x2
— o *: - o *:
a(v,vs) a(vvs)
(@) <10 <1
0x1 0x2
- o *: - o *:
a(vivy) a(vivy)
@ <1,0 <1 (6.33)
0x1 0x2

Further, using the characteristic values of the velocity components (Vi¢, Vac) and
the characteristic length-scales (L ¢, Lac), we define the normalized versions of the
second derivatives of the velocity components

P (Vi)\" _ [(2(V)\ Lic (9% (v)\ (8% (Vi) Lc
0x10x] - ax19x1) Vic ~ \ 8x20x2 o dx20x2 ) Vic '’

P (V)" (9P (V) Lie (2 (V) _ (9 (Va)) L3¢ 6.34)
0x10x1 B ax10x1 ) Vac © \ 0x20x2 B Ax20x2 ) Voc ’

such that
2 * 2 *
O[(a <v1>) }:LORB <v1>) }:1,
0x10x1 0x20x2
2 * 2 *
O[(a <v2>) }:1,0[(3 <v2>> }1 635
0x10x1 0x20x2

To perform the OM analysis of (6.11), (6.13), and (6.15), we implement the
following three steps separately for each of these three equations.

1. We substitute the dimensional variables and their derivatives by their non-
dimensional counterparts using (6.21), (6.31), and (6.34).

2. Using the anticipation (which is based on the appropriately chosen characteristic
values of the velocity components Vic and Va¢ and the length-scales Lic and
Lyc) that all normalized versions of the variables would have their orders of
magnitude unity over most of the domain of interest, we identify those terms (if
any) which have smaller orders of magnitude than the other additive terms of the
equation. These identified terms can then be discarded from the equation.

3. We substitute the normalized versions of the variables by their dimensional coun-
terparts using (6.21, (6.31), and (6.34) and arrive at a simplified version of the
governing equation.
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The order-of-magnitude analysis of the governing equations is performed at an arbi-
trary location (x1, x2, x3) and at an arbitrary time (¢) inside the turbulent boundary
layer region. In the neighborhood of such a location, we deem the following choices
of the length-scales to be appropriate

O[Lic]l =0Olx1],
O[Lyc] =018 (x1)] (6.36)

Accordingly, we choose,

Lic = x1and Loc = 8(x1) (6.37)
Further, we deem V,, to be an appropriate choice of Vjc. However, at this point,
we do not have any cues available to choose V5. Nonetheless, we do initiate our
OM analysis and move on to explore if any further cues emerge to choose V¢
appropriately.

6.3.1 Continuity Equation

Substituting the raw variables by their normalized counterparts in the continuity
equation (6.11) results in the following form of the equation

<a<v1>) E+(3<V2>> Ve _ (6.38)

0x1 Lic 0x2 Lyc

Rearranging various factors, we arrive at

<a<v1>) +<8<V2>> Yac Lic _ (6.39)

0x1 dx2 Vic Lac

The first term on the LHS in (6.39) has its order-of-magnitude unity. Further, since
the RHS of (6.39) is zero and there are only two terms on the LHS, the order of
magnitude of the second term on the LHS must also be unity.

0[<8<V2>)*@£} _1 (6.40)

dx2 Vic Laoc

k
Since the order of magnitude of the (%—)‘?) itself is unity, (6.40) leads to the

following conclusion

Vac L
1@, [ﬂl] =1 (6.41)
Vic Lac
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This, in turn, gives us a cue to choose Vac.

Lyc
Voc = Vice— (6.42)
Lic

Thus, even though the order-of-magnitude analysis of the continuity equation does
not provide any justification to simplify the equation any further, it has provided a
justification based on which we now have a characteristic value of the variable (V3)
in terms Vic, Lyc and Lic.

6.3.2 The (V1) Equation

We now substitute the raw variables by their normalized counterparts in the governing
equation of (Vi) (6.13)

|:(V1)* Vlc(awl)) E+<V2>*V2C (8<V1>> E} =

0x1 Lic ax2 Lyc
Lo (PN Vie (2 ) Vie
p 09Xy 0x10x1 L%C 0x20x) L%C
! ’ * ! ’ *
1 a<pvl Vl> bV 1 a(pv1 V2> V2, o
P 0x1 Lic P ax7 Lyc

Using (6.42) to substitute V¢ in terms of Vic, Loc and Lic in (6.43) leads to the
following form of the equation.

Vie [ ye (2VD) (VDY
E[U/l) < dxy ) +iva) ( 9x2 ) j|_
_1dp) n (32 (V1)>* vV1c+ (32 (V1)>* vVice

o 0x1 0x10x1 L%C 0x20x2 L%C

’ ’ * I ’ *
1 ({9 <,0 Vi V1> pa*Vi. 1 9 <,0 Vi V2> pa’ Vi (6.44)
o 0x1 Lic 0 9xy Lac .

The LHS of (6.44) is the stream-wise component of the mean acceleration of a fluid
particle within the boundary layer. The expression within the square parentheses
represents the normalized form of this acceleration. Clearly, the order of magnitude
(OM) of this normalized form is unity. Thus, the quantity VIZC /L1c (the factor outside
the square parentheses) can be deemed as the characteristic value of the stream-wise
component of the mean stream-wise acceleration, itself. Similarly, on the RHS, the
quantities vVic/ L%C andvVic/ L%C are the characteristic values of the two viscous
force (per unit mass) terms acting on a typical fluid element inside the boundary
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layer. Thus, we conclude that the OM of two terms involving the Reynolds stress
components are a” V1 c/Lic anda V1 c/Lac, respectwely

Dividing (6.44) throughout by the factor IE and further re-arranging the terms,
we arrive at the following form of the equation

(Vi) \* IV (2 (Vi) v
(V1>*< { 1)) +(V2)*( { 1)) :< ( 1>)
0x1 0x2 0x10x] VicLic
+< 2%V ) v (g)z_ d(p) Lic
0Xx20x7 VicLic \ Lac dx1 ,OV12C
’ ’ * / ’ *
olevivi)Y L (Vi) @re

| — ) a - (6.45)
0x1 dx2 Loc

The LHS of (6.45) of the equation is the fully normalized form of the mean stream-
wise acceleration, with its OM being unity. The RHS of (6.45) represents the sum of
the ratios of various forces (per unit mass, along the ¢; direction) to the characteristic
value of the mean stream-wise acceleration of a fluid particle (V12C /Lic). If any of
these terms on the RHS has its order of magnitude < 1, then we can conclude that the
particular force is not significant in contributing toward the stream-wise acceleration
of the fluid particle. Thus, that term can be neglected in the equation.

The first two terms on the RHS of (6.45) are the respective ratios of the two viscous
force terms to the characteristic value of mean stream-wise acceleration. Both these
terms have a common non-dimensional factor involving v, Vi¢, and L|c. We define
the inverse of this factor as the Reynolds number of the governing equation of the
stream-wise velocity component. We represent this quantity by the symbol Re

VicLic

Based on this new symbol, the order of magnitude of the first term on the RHS of
(6.45) can be expressed as:

2 *
o (a (V1>> v =o[ v }zo[L} 647)
ox10x1 ) VicLic VicLic Req

%
since O [( (V‘>) ] = 1. The quantity Re; is interpreted as the ratio of the char-

0x10x]
acteristic value of the mean stream-wise mean acceleration (V12C /Lic) of a typical
fluid particle inside the boundary layer to the characteristic value of the mean vis-
cous force (per unit mass), along the ¢; direction. For a turbulent boundary layer,
Re1 > 1. Accordingly, the first term on the RHS of (6.45) can be neglected.
The factor Re; appears in the denominator of the second viscous term of (6.45),
as well. However, unlike the first viscous term, the order of magnitude of the second
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term is not controlled by Re; alone but also by the ratio of two relevant length-scales
Lic and L.

v\ Lic\? Lic\*
(o) iere () =0 (ere) () |
dx20x2 ) VicLic \ Lac VicLic ) \ Lac

1 (Lic)?
—o|— (=< (6.48)
Rej \ Lac
Since the mean flow inside the boundary layer is indeed affected by viscous forces
and further given the fact that at Re; > 1, the first viscous term on the RHS of
(6.45) is anyway negligible, the second and the only surviving viscous term must be

of significance in the evolution equation of (V7). Thus, we conclude that the order
of magnitude in (6.48) must itself be unity (same as the order of magnitude of the

term included in (6.45)
1 (Lic\’
o [_ <_‘C> } =1 (6.49)
Rey \ Lac

This in turn allows estimating Loc in terms of other known parameters (Li¢c and

Rey)
o] -0l 7]
O|—[|=0| — 6.50
|:L1C Rey ( )
Combining (6.50) with our anticipations in (6.37) we have
8(x1) 1
@) =0 6.51
[ X1 ] [\/Rel ] ©>D

Equation (6.51) suggests that the boundary layer thickness tends to grow as we
move more downstream over the plate. Further, since Re; > 1, (6.51) also suggests
that the local boundary layer thickness is a small quantity compared to x.

The third term on the RHS of (6.45) represents the ratio of the pressure gradient
force (per unit mass, along the ¢; direction) to the characteristic value of stream-
wise acceleration. Since, at this point, we do not have any reasonable estimate of the
characteristic value or the order of magnitude of the pressure gradient term itself, we
simply retain this term in the V; equation.

The non-dimensional coefficients in the fourth and the fifth terms in (6.44) are a
and a’Li¢ /L>c. Using the estimate of (6.51), it is evident that

2

O[a’Lic/Lac] = O [a*/Rey | » O[] (6.52)
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when Re,, > 1. Thus, we can make the approximation

o * ror *
olevivi)\ L (Vi) @rie
L W a” — ~

dx1 dx2 Lac

/ ! *
1(evivi)\ 221
1C
— 6.53
0x2 Lyc (653)

Since Lyc/Lic < 1 at Rey, > 1(6.50), it is evident that the fifth term in (6.45) is
much greater than the fourth term, leaving the former as the only representative of
the Reynolds stress tensor in the governing equation of (V7). Since we do expect the
Reynolds stress tensor to have some influence on (Vi) within a turbulent boundary
layer after all, we retain this term even in the simplified form of (6.45).

In summary, the order-of-magnitude analysis of the (V) equation inside the
boundary layer over a flat plate has led to the following conclusions:

1. At Re; > 1, the viscous term arising due to the gradient of the stream-wise
velocity component with respect to the stream-wise direction can be neglected.

2. If Re; > 1, the Reynolds stress term with a gradient along the stream-wise direc-
tion is negligible compared to other Reynolds stress term which appear with a
gradient along the wall-normal direction. These approximations simplify (6.13)
to

(Vv AV 19 2 (v AleViV;
V1) |y 200 10) | 2 ( > 654)
0x1 0x2 p 0xy 0x20x2 0x2

(V1)

6.3.3 The (V,) Equation

We substitute the raw variables by their normalized counterparts in the governing
equation of (V») (6.15)

3 (Va)\* Vac 3 (Va)\* Vac
Viy* v —_— Vo)* V. — =
(V1) 1c< ox, ) Lic + (V2)* Vac P Loc
a2\ Ve (92 (V)T Vac
p 0x2 0x10x1 L%C 0x20Xx) L%C
/ ’ * ! ’ *
8<,0VV> 202 8<,0VV> 202
1 172 aV 1 272 a‘V
_ paVic 1 paVic (6.55)

1Y dx1 Lic 1Y dx2 Lyc
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We use (6.42) to substitute Vo in terms of Vi¢, Ly, and Li¢ in (6.55), which leads
to the following form of the equation:

V2. (L 3 (Vo) \* aVa\*
Tie (Fac) Ty (Z020) gy (22 ] 2
LlC LlC 3)61 axz
y (32 <V2>)* Yie (L) ., (_32 <V2>>* e (Lacy 10
0x10x] L%C Lic 0x20x) L%C Lic p 0x2
! ! * / !’ *
1 8<iOV1V2> pa2V12C 1 8<pV2V2> panlzc

- - (6.56)
P 0x1 Lic P 0x2 Loc

The LHS of (6.56) is the wall-normal component of the acceleration of a typical
fluid particle within the boundary layer. The expression within the square parentheses
represents the normalized form of this acceleration. Clearly, the OM of this normal-
ized form is unity. Thus, the quantity (V12C /L 1c) (Lac/L1c) (the factor outside the
square parentheses) is the characteristic value of the wall-normal acceleration com-
ponent. Since the characteristic value of stream-wise acceleration is already known
tobe V12C /L1c,the LHS of (6.56) implies that the characteristic value of wall-normal
component of the acceleration vector is Lyc/L1c times the characteristic value of
stream-wise acceleration. The discussion of the previous section has already demon-
strated that at Re; > 1, Loc/L1c is quite small (6.51). Thus, the net acceleration
vector of a typical fluid particle inside the boundary layer is oriented almost in
the stream-wise direction, allowing us to neglect the acceleration term in the (V3)
equation and approximate the rest of the equation as a mere force balance in the
wall-normal direction.

Further, even within the scope of this approximate force balance, we wish to
examine if all the forces (the two viscous terms, the pressure gradient terms, and the
Reynolds stress terms) are individually significant or not. For this analysis, we first
divide (6.56) throughout by V12C /L1c and arrive at the following form of the (V3)
equation.

(V) \* (V)" (Lac
Vi)* Va)* —
|:( 1)<8x1>+(2)<8x2> Lic
_ (PN L (Lac) | (02T L (Lic) _13(p) Lic
“ \0x10x; ) Re; \Lic 9x20x2 ) Rey \ Lac p dx2 VZ.
’ ! * / / *
a(viv,) 1(pvVa)\ @rc

a’ — (6.57)
x1 0x7 Lyc

At Re; > 1, the order of magnitude of the first term on the rhs is,

2 *
O (3 (V2)> L (%) =0 [L <L£>i| =0 ! (6.58)
dx10x1 Re; \ Lic Re; \ Lic Re?/2
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which is much less than unity at Re; >> 1. Thus, this represents a force component
(per unit mass), which is much smaller than the stream-wise acceleration of a typical
fluid particle inside the boundary layer.

Further, the order of magnitude of the second term on the RHS of (6.57) is esti-
mated as,

2 *
0 <a Vo) ) L (Li> =0 [L (Re{/z)} ol | 659
0Xx20x) Rey \ Loc Req Rei/z

which, again, is much smaller than unity at high Rej. Thus, this too represents a force
(per unit mass), which is much smaller than the stream-wise acceleration of a typical
fluid particle inside the boundary layer. The third term on the RHS of (6.57) is the
ratio of the net pressure force (per unit mass) acting on a particle in the wall-normal
direction to the characteristic value of stream-wise acceleration. Since, at this point,
we do not have any reasonable estimate of the order of magnitude/ characteristic
value of the pressure gradient term itself, we simply retain this term in the equation.

The non-dimensional coefficients in the fourth and the fifth terms on the RHS of
(6.57) are a? and alec/L2c. Using the estimate in (6.51), it is evident that

O[a’Lic/Lac] = O[a*/Rey | » O[] (6.60)

when Rej > 1. Thus, we can make the approximation

’ ! * ’ ’ *
oevivi)Y L (Vi) @ric -
dx1 ¢ 9x2 L

’ / *
0 (pvl V2> alec 6.61)
0x2 Lac '

This approximation will leave the fifth term in (6.45) as the only significant repre-
sentative of the Reynolds stress tensor in the governing equation of (V;). Without
any further cues available, we retain this term in the simplified form of (6.57).

In summary, the order-of-magnitude analysis of the V, equation inside the bound-
ary layer flow over a flat plate has led to the following conclusions. At Re; > 1,
the wall-normal acceleration is negligible compared to the stream-wise acceleration.
Thus, the (V») equation reduces merely to a balance of forces acting on a fluid par-
ticle in the wall-normal direction. Further, all the viscous forces arising due to the
gradients of the wall-normal velocity component are inconsequential in this force
balance, leading to a mere balance between the pressure force and the Reynolds
stress term, which has a gradient in the wall-normal direction.

2t _ 2(evava)
0x2 0x2

(6.62)



6.3 Order-of-Magnitude Analysis of the Governing Equations 93

We finally assemble the simplified set of governing equations for the mean tur-
bulent flow past a flat plate with Re; > 1. This set consists of Eqgs. (6.11), (6.54),
and (6.62).

=0,
0x1 + 0x2
w20 2 18 p) 2wy opviva)
! dx1 2 9xo o0 0x1 9x20x2 oxy
alpv,Vv,
0 PV Vs
op _ _M (6.63)
0x2 0x2

This is a set of three partial differential equations (PDE) with the primary dependent
variables being (V1), (V»), and ( p) inside the boundary layer. There are two secondary
unknowns appearing in this equation set: (— 0 Vl/ V2/> and (— P Vz/ V2,> This equation
set is called the Prandtl boundary layer equation set for a turbulent flow (PBLET).

The last equation of (6.63) can be integrated along x»: between the edge of the
boundary layer (denoted by the superscript “edge”) and an arbitrary location (with
coordinates x1, x2, x3) inside the boundary layer to arrive at

(fmawu{__/mW@%%uﬂ
P v 9x} z

,>edge

(p) = (p)*'= + <pv2’ 1729 <pvz’ v2’> (6.64)

, ,\edge
Figure (6.2) shows that <,o v, V2> ~ 0. Thus, (6.70) simplifies to
(p) = (p)tee — <pV£V2’> (6.65)

Further, Fig. 6.2 shows that < P VZ/ V2/> is restricted to a small fraction of the dynamic
pressure of the free stream. Specifically, we observe that the maximum value of
<V2, V2,> is O.O4V02. Thus, at the given stream-wise station in the referred boundary
layer [3]

(pvavs)  ~2x 0.002) 2% (6.66)
max 2

Further, if we have the known condition that the free stream dynamic pressure itself
is much smaller than (p)°de®

PVy/2
(p)edee

<1 (6.67)
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Thus, referring to (6.65), it is plausible to conclude that pressure within the boundary
layer at a given stream-wise station (x1) does not vary significantly with the wall-
normal distance (x7), and its value equals the pressure at the edge of the boundary
layer at that stream-wise station.

Since the edge of the boundary layer is actually one of the boundaries of the
boundary layer domain described by the PBLET set, the variation of pressure at the
edge of the boundary layer can be deemed as a boundary condition of (6.63). Pressure
is no longer a variable of the PBLET set (6.69). Accordingly, the pressure gradient
term appearing in the (V) equation can be expressed as

(p) = (p)etee, (6.68)

where (p)%2° is a function of x; alone. The PBLET equation set (6.63) can now be

expressed more simply as

=0,
0x1 + 0x2

3 (V1) (V) Ld(p)e  32(vy)
1% 1% =
( 1> 8x1 +< 2> 8x2 1Y dx1 +U3xz8xz

o (v v3)
S (6.69)
3)62

The flow domain over a wide flat plate can be perceived to be comprised of two
regions which are separated by the curve that describes the edge of the boundary layer
8(x1) (Fig.6.3). The region bounded by the solid plate and the boundary layer edge
is indeed the boundary layer region, wherein, by definition, the viscous forces are
significant enough to influence the acceleration of a typical fluid particle therein. This
demarcation itself implies that the region outside the boundary layer has a negligible
influence of viscous forces on the acceleration of the fluid particles. Further, DNS-
based evidence (such as Fig. 6.2), suggests that the Reynolds stress components also
tend to vanish outside the boundary layer. In this outer region, the flow is not only
laminar but also approximately inviscid. Therefore, that region of the flow field must
be governed by the steady Euler equation, with the velocity field being 2D and
2C. Further, since the velocity field in the far-upstream region is uniform and lacks
any vorticity, the velocity field outside the boundary layer may be approximated to

Fig.6.3 Two regions of the X,(6,)  Outer Region
flow field past a flat plate
demarcated by the edge of
the boundary layer (BL)

BL Edge

BL Region

Q
N
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be potential (explanation available in [1]). This, in turn, implies that the generalized
Bernoulli equation [1] can be applied between any two locations in the region outside
the boundary layer. Choosing location A to be on the x;é; axis in the far-upstream
region where both the velocity (V,é;) and pressure (p,) are known, and choosing B
to be located at the edge of the boundary layer at station x1, we have the following
relationship:

2
edge IOVO 1Y 2
(Plsn =Pot = =5 VGsa) (6.70)

where ( p)?f?is @) and ( V)%Xl S(xp)) are the pressure and the square of the magnitude

of local velocity at the edge of the boundary layer at station x (Fig. 6.3), respectively.
The symbol p, denotes pressure in the far-upstream region of the flow field (Fig.6.1)
At the edge of the boundary layer, we have,

2 2 2
Vesan = VG say T V20 s (6.71)

However, based on the OM analysis, we are aware that at Re; > 1 (Egs.6.42 and
6.50), we have

(V2)> <Vzc) <L2c) < 1 )
Ol—)=0—)=01—)=0|—— | K1 (6.72)
((Vl) Vic Lic VRey

Thus, we approximate (6.71) to

2 ~ 2
Ve san = VG se) (6.73)

Further, by using the definition of é(x1) to express V] at the edge of the boundary
layer in terms of V,,, Eq. (6.73) is expressed as

V)T, 50y = (0.99V,)° (6.74)
Thus, (6.70) is expressed as
d 0.02p(V,)?
(P)xy 30y ~ Do+ — : (6.75)

where the RHS is no more a function of x. Thus, for a flat plate boundary layer at
Re;p > 1
d pedge
dxy
Accordingly, the PBLET equation set (6.69) is further simplified to

~0 (6.76)

(Vi)  3(W)
0x1 0x2

6.77)
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The LHS of the (V1)-equation (6.77) represents the mean stream-wise acceleration
of the local fluid particle. The RHS shows the contribution of various external forces
(per unit mass) acting on that fluid particle. The first term represents the viscous
force per unit mass, and the second term represents the force arising due to the
Reynolds stress tensor. Our observation of Fig.6.2 shows that mean stream-wise
velocity monotonically increases as the wall-normal distance increases. Further, we
observe that the slope of the mean stream-wise velocity curve decreases with the
wall-normal distance. These observations imply that the second derivative of the
mean stream-wise velocity in wall-normal distance must be negative. In turn, this
means that the net viscous force on the local particle is retarding in nature. This
is expected. On the other hand, Fig. 6.2 shows that the wall-normal gradient of the

Reynolds stress component <—,o Vl/ Vz/) is positive in the region very close to the

wall, and subsequently, at larger wall-normal distances the wall-normal gradient is
negative. These observations, in conjugation with the RHS of the (V1) equation,
suggest that in the region close to the wall the force arising due to the Reynolds
stress tensor in the mean flow of a flat plate boundary layer causes the local fluid
particle to accelerate. However, at larger wall-normal distances, this force changes
its nature and causes retardation of a local fluid particle.

6.4  Anatomy of a Flat Plate Turbulent Boundary Layer

The variation of various flow statistics shown in Fig. 6.2 has been plotted against the
wall-normal distance, which is normalized by the boundary layer thickness (defined
in (6.8)). If measurements are made at different stream-wise stations, the profiles of
various expected values included in Fig. 6.2 may show similar trends, but quantita-
tively they may still differ. However, when these measured expected values as well
as the wall-normal distance are appropriately normalized, the consequent profiles of
some of these statistics (at different stream-wise stations) tend to collapse and show
behavior which seems independent of the stream-wise station of measurement.

The normalization strategy of the wall-normal distance is based on Prandtl’s work
[4], according to which we define a normalized version (y*) of the variable x; as

yt= 22 (6.78)

Sviscous

where Jyiscous has dimensions of length and is defined as

L (6.79)

Tw

dviscous = V

where 1, = 05" at xo = 0 at a given x;. This quantity (t,,) is called the wall shear
stress at a chosen x| station on the flat plate.
mean

According to (5.20), the mean shear stress (o5°*") in any turbulent flow field is

o = (ri2) + -V Vs) (6.80)



6.4 Anatomy of a Flat Plate Turbulent Boundary Layer 97

Here for a Newtonian flow,
(t12) = 2 (S12) (6.81)
Since at Re; > 1, it follows from (6.31) and (6.50)

3(V2) < (V1)

6.82
8x1 3)C2 ( )
Thus, (t12) (6.81) simplifies to

a{Vy)
(T12) & . (6.83)

0x2

At xy = 0 or, equivalently, at yt =0,
T = 01320 = (712) =0 + =0V, V3) Lmo
= (112) lx,=0 + 0 (6.84)
I0%
ALY (6.85)
3)(2 X2=0

Due to the no-slip and the no-penetration boundary conditions at the wall, we have

<_ oV, v2/> (6.86)

x2=0
Further, the mean stream-wise velocity is normalized to the following form
(denoted by u™)
V
= Y (6.87)

Uz

where u; is a quantity having the dimensions same as that of velocity and is defined
as

up = |22 (6.88)
0
The quantity u, is called the friction velocity at the given stream-wise station (x1).
To better understand the behavior of various flow statistics inside a turbulent layer,
we refer to a DNS database described in Schlatter and Orlu [3] (this database itself
has been downloaded from the webpage https://www.mech.kth.se/~pschlatt/DATA/
in accordance with the permission provided therein). This downloaded DNS database
has been used to generate Figs. 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 6.10 of this chapter).
In Fig.6.4 three representative curves are included corresponding to different
stream-wise stations (x,, Xp, and x.), such that the Reynolds number based on the
local momentum thickness at these three locations is 2000, 3030, and 3970. Both
the horizontal and the vertical axes are logarithmic.


https://www.mech.kth.se/~pschlatt/DATA/
https://www.mech.kth.se/~pschlatt/DATA/
https://www.mech.kth.se/~pschlatt/DATA/
https://www.mech.kth.se/~pschlatt/DATA/
https://www.mech.kth.se/~pschlatt/DATA/
https://www.mech.kth.se/~pschlatt/DATA/
https://www.mech.kth.se/~pschlatt/DATA/
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Fig.6.4 Variation of u™
versus y . Different curves
correspond to profiles
obtained at different
stream-wise stations x,, xg,
and x¢

Fig.6.5 Variation of f
(6.91) with y™ at three
different stream-wise
stations

Fig.6.6 Variation of 03"
(6.91) with y* at three
different stream-wise
stations. All curves coincide
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Fig.6.7 Variation of
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Fig.6.8 Variation of
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Fig.6.10 Variation of 0.1
’ ’ +
— <V1 V2> with y* at three
different stream-wise 0.08+
stations
+
\;; 0.06 |
I3
| 0.04
0.02}

In the range of y* < 5, at all stream-wise stations, the variation of data seems to
follow the curve fit

ut =yt (6.89)

This region of the boundary layer is called the viscous sublayer. In the region y ™ > 30
but y < 0.2§(x1), data from different stream-wise stations collapse on a single curve
fit

1
ut =—Iny"+ B (6.90)
K

where k = 0.41 and B = 5. This region of the boundary layer wherein the curve fit of
(6.90) describes the variation of u™ with y™ is called the log layer. The relationship
(6.90) itself is called the law of the wall of the turbulent boundary layer. The region
between the log layer and the viscous sublayer (5 < y* < 30) is called the buffer
layer and here the data seem to collapse on a curve which merges smoothly with
(6.89) on one hand and (6.90) on the other hand. Unlike the viscous sublayer, the
buffer layer, or the log layer, beyond y > 0.26, the data from different stream-wise
stations do not collapse on any common curve. This region of the boundary layer is
called the outer layer.

Next, we define a quantity f with which we intend to measure the relative impor-
tance of the individual contributions from the mean shear viscous stress and the
Reynolds shear stress to o 5",

_ (T12)
(t12) + {=pV V)

(6.91)

We have defined this quantity such that when f approaches unity, it implies an
increased contribution of the viscous stress to o{3°*". On the other hand, if f tends
to zero, it implies a greater contribution of the Reynolds stress to 5" Figure 6.5
shows the variation in f with y inside the boundary layer at three different stream-
wise stations. We observe that in the viscous sublayer (yt <5), f is almost unity,
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suggesting that here the Reynolds stress contribution to (5" is negligible, and the

entire o{5°*" is attributable to the mean viscous stress. On the other hand, f almost
vanishes in the log layer and beyond, y™ > 30 suggesting that the contribution of
the mean viscous stress to 05" is negligible, and the entire 05" is due to the
Reynolds stress itself. Identical trends are observed at all three stream-wise stations.
In between, in the buffer layer, f lies in the range of [0, 1] and suggests that there in
that layer both the viscous stress and the Reynolds stress contributions to 05" are
significant.

InFig. 6.6 we present the variation of /5" /7, versus y* at three different stream-
wise stations. We observe that 05" approximately equals the wall stress (t,) over
an extended region of the boundary layer, which includes the entire viscous sublayer,
the entire buffer layer, and a substantial part of the log layer, as well.

Figures 6.4 and 6.6 provide strong evidence about universality in the near-wall
region (viscous sublayer, buffer layer, and a substantial part of the log layer) of a
turbulent boundary layer at high Re;. In Chap. 8, we discuss how such universality

has been leveraged in turbulence modeling.

6.5 Near-Wall Asymptotic Behavior of the Fluctuating Velocity
Vector

Indeed, the no-slip and the no-penetration boundary conditions ensure that all
three Cartesian components of the instantaneous velocity vector vanish at the wall
(x2 = 0). However, as soon as one steps away from the wall, along the wall-normal
direction, the instantaneous velocity vector in a turbulent boundary layer becomes
three componential. At this point, our interest is to examine, specifically, what is
called the near-wall asymptotic behavior of various velocity components. The near-
wall asymptotic behavior entails estimating the nature of the dependence of these
velocity components on the wall-normal distance (x;) within the innermost layer (the
viscous sublayer) of the boundary layer. For example, with Fig. 6.4 we are already
aware that

ut =yt (6.92)
which, using (6.78) and (6.87), is recast in terms of (V}) as

V1) = v x2 (6.93)
0

which demonstrates that at a fixed stream-wise station, within the viscous sublayer,
(V1) increases linearly with x, as one moves away from the wall.

’ !’ +
In Fig. 6.7 we present the variation of (V1 V1> with yT versus y*, where

S+ V1V1>
) =

6.94
2 (6.94)
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We observe that in the viscous sublayer (y* < 5), data from different stream-wise
stations collapse on the curve fit

(v{ v, >+ = 0.16(y")? (6.95)

which when cast in terms of un-normalized variables result into the following rela-
tionship

2
! ’ T
(vl V1> =0.16 (—w) 3 (6.96)
vp
Equation 6.96 shows that at a fixed stream-wise station, within the viscous sublayer,
<V1, V1,> increases with x% as one moves away from the wall.

’ ’ +
In Fig. 6.8 we present the variation of (V2 V2> with yT, where

(v2%)

(vivi) = (6.97)

2
uz

We observe that in the viscous sublayer (y™ < 5), data from different stream-wise
stations collapse to the curve fit

oo\t
<V2V2> — 0.000065(y™)* (6.98)

which when cast in terms of un-normalized variables result into the following rela-
tionship

<V/V/> = 0.000065 (i) x4 (6.99)
22— Y- U4,03 2 .

Equation 6.99 shows that at a fixed stream-wise station, within the viscous sublayer,

/ AW .
<V2 V2> increases with xg as one moves away from the wall.

’ ’ +
In Fig. 6.9 we present the variation of <V3 V3> with y*, where

(v2v)

<V§ V§>+ = (6.100)

2
uz

We observe that in the viscous sublayer (y* < 5), data from different stream-wise
stations collapse to the curve fit

/ ! +
(viva) =0.0550+) (6.101)
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which when cast in terms of un-normalized variables result into the following rela-
tionship

2
(vsva) = 0.055 (E—L) 2 (6.102)

Equation (6.102) shows that at a fixed stream-wise station, within the viscous sub-
layer, <V3/ V3/> increases with x% as one moves away from the wall.

s\t
In Fig. 6.10 we present the variation of — <V1 V2> with yT, where

(v{ v2/>+ - V;—zvz> (6.103)

T

We observe that in the viscous sublayer (y < 5), data from different stream-wise
stations collapse to the curve fit

! ’ +
—(viva) =0.0012()’ (6.104)

which when cast in terms of un-normalized variables result into the following rela-
tionship

5 03
o Tw 2x2
—(V,V,)=0.0012| — | = 6.105

() <p> v3 (©109

Equation (6.105) shows that at a fixed stream-wise station, within the viscous sub-
layer, <V1/ Vé) increases with xg’ as one moves away from the wall. In Chap. 8, we

will highlight how such a knowledge of the near-wall asymptotic behavior of the
individual velocity components can possibly be leveraged in modeling the Reynolds
stress tensor to achieve closure of the RANS equation set (5.10).
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Understanding Multiplicity
of Length-Scales in Turbulent Flows

In this chapter, we focus on a simple turbulent flow field called decaying turbulence.
It is a special case of a statistically homogeneous flow field, and it has zero mean
velocity at all locations and at all times. Since the mean velocity vector is identical
at all locations, the entire mean velocity gradient tensor, too, is zero at all locations.

Vy)=0 7.1

This implies that the mean continuity equation (5.2) is trivially satisfied at all loca-
tions and at all time instants. Further, the mean momentum equation (5.8) simplifies
to

o) 19(p)
ot p Ox;
which merely underlines, the necessary condition that the mean pressure gradient

tensor must be zero at all locations and at all times to ensure that (V;) remains zero
at all locations and at all times. Thus in decaying turbulence

(7.2)

0 op’ 0Op’
<p)+p D

= 7.3
5)6,’ 8x,~ 8)6,‘ ( )
Further, in this flow field, the RSTE equation (5.43) simplifies to
8R,~j
or = €jj — l_[ij (7.4)

Since the flow is statistically homogeneous, the spatial gradients of all flow statistics
(5.43) vanish. Furthermore, the partial time derivative of R;; may simply be expressed
as a total derivative because R;; does not depend on X.
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dR,'j
dt

= €jj — Hij (7.5)

The transport equation of the turbulence kinetic energy

dk
=€ (7.6)
Equation (7.5) shows that in decaying turbulence, the Reynolds stress tensor evolves
under the influence of merely two processes, the dissipation-rate tensor (¢) and the
pressure-strain correlation tensor (I1). The production, molecular diffusion, and the 7°
tensor do not play any role, since all these involve the gradient of the mean velocity
vector or the gradient of the expected values of the products of some fluctuating
quantities.

Equation (7.6) shows that turbulence kinetic energy evolves under the sole influ-
ence of the dissipation-rate tensor. Since € can never be a negative quantity, k decays
monotonically in decaying turbulence.

Our primary intent behind examining decaying turbulence is to study the process
by which eddies of disparate time and length-scales are generated in a turbulent flow
field. The decaying turbulence flow field is apt for such an investigation because it
naturally eliminates the influence of the production as well as that of the influence
of the inhomogeneous processes of the Reynolds stress tensor (5.41). This makes it
easier to develop some deeper insights into the essential energetics: how turbulence
kinetic energy is converted into heat. Further, this investigation helps us understand
the generation of smaller scales of motion in a turbulent flow field.

The initial state of a decaying turbulent flow field is primarily characterized by
its initial Reynolds number (Re)), which is defined as

Re) = AVims/V (1.7)

where Vi is the root mean squared (rms) of the magnitude of velocity fluctuation

in the initial flow field,
Vivi\ _ 2%
Vims = =5 (7.8)

3 3

and £ is turbulence kinetic energy per unit mass (5.53). The characteristic length-
scale (\) used in the definition of the Reynolds number (7.7) is called the Taylor
microscale, and is defined [5] as

Vr%ns
A=\ v 79)

A detailed examination of a decaying turbulent flow and the influence of the
length-scales on the energetics of the flow field requires the availability of the instan-
taneous velocity field at several time instants and locations. In experiments, one sets
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up such a decaying turbulent flow field in a wind tunnel wherein the initial turbu-
lence is generated by subjecting a uniform flow to a wire mesh or a grid. The wire
mesh generates turbulence kinetic energy in the flow field, which then undergoes a
decay process within the central portion considerably distant from the test section
walls, such that the influence of the walls of the test section on the decay process
is negligible. Such a turbulent flow created using a wire grid inside the test section
of a wind tunnel is also called grid turbulence. For further details on the experi-
mental methodology, measurement techniques, and computations of flow statistics
of grid turbulence, the reader is referred to [6]. In the rest of this chapter, instead, we
focus on the details of numerically simulating decaying turbulence (direct numeri-
cal simulation). Direct numerical simulation of decaying turbulence is performed by
solving the instantaneous Navier-Stokes equation set (3.10) and (3.11) over a cubical
domain. Each side of the computational domain is of length 27. Periodic boundary
conditions are imposed on the opposite faces of the domain for the pressure and
velocity variables. The instantaneous pressure field is initialized such that it follows
the Laplacian equation.

Fp VoV,
Ox;Ox; paxj Ox;

The instantaneous Navier-Stokes equation set (3.10 and 3.11) is discretized over an
appropriately fine computational grid, and time marching is performed with ade-
quately small time steps in order to accurately resolve all scales of motion of the
turbulent flow field.

To analyze the initial conditions as well as the evolution of a decaying turbulent
flow field at later times, we choose to express the velocity and the pressure field in
terms of the Fourier modes and the Fourier amplitudes. Such expressions also help
us better understand the evolution of multiple scales in the flow field. In the next
section, we present the mathematical foundation which proves useful in expressing
a periodic function using its Fourier description.

(7.10)

7.1 Fourier Description of a Spatially Periodic Function

If ¢ is an Eulerian flow variable which is periodic in each of the three Cartesian
directions with its periodicity over length L, then that variable can be expressed in
the corresponding complex Fourier description as

$(X.1) =) d(K.1)eEX (7.11)
K

where i = 4/—1. The symbol K represents an arbitrary wavenumber vector defined
as

2T ~ ~
K = T (nre1 + naey + nse3) (7.12)
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where n1, ny and n3 are arbitrary integers, and

KX = cos (5 . X) +isin (5 . X) (7.13)
The complex quantity ¢'5% in (7.11) is called the Fourier mode corresponding to the
wavenumber vector K, and ¢ (K , t) is called the Fourier amplitude corresponding
to the wavenumber vector K . More simply, 3(5 , 1) is called as the amplitude of the
mode ¢'£-X_ The summation on the right-hand side of (7.11) is over all possible K’s
that can be generated by all possible integer values of n1, ny and n3 in accordance
with (7.12).

In aflow field which has a periodic spatial distribution of ¢, potentially, all possible
modes (as governed by 7.12) can co-exist. However, whether a particular mode
is present or not in the flow field depends entirely on the corresponding Fourier
amplitude. If for a chosen K, 3(1{ ,1) = 0, it means that the mode /XX is absent
in the flow field. Since the possible wavenumber vectors are generated by discrete
y\alues of ny, ny, and n3, the set of K vectors is also a discrete set. On the other hand,
¢ (K, t) is a continuous function of time.

The existence of a mode ¢/£X in the field ¢(X) can be associated with the
existence of a length-scale (denoted by the symbol /) such that

I (7.14)

K= % .
where the symbol K denotes the magnitude of the wavenumber vector K.

K = K| (7.15)

The association of this length-scale /g to K is illustrated in Fig.7.1.
In this figure, a particular wavenumber vector has been chosen for the purpose of
illustration:

2r .
K= f(3e1 + 2e3) (7.16)

Correspondingly shaded contours of the quantity cos (K - X) have been plotted with
the two axes representing the Cartesian axes x| (¢1) and x,(e3) in physical space. We
observe that the variation of cos(K - X) represents a wave in the direction perpen-
dicular to the direction of the chosen wavenumber vector (7.16). It can be verified
that the contour pattern repeats itself over a length [k, which can be computed using
(7.14). This length (/g ) is alternatively referred to as the wavelength associated with
the wavenumber vector K. Based on the general understanding that emerges from
the illustration of Fig. 7.1, we infer: the existence of a mode ¢!£X in the field #(X)
implies the existence of a corresponding length-scale [ (7.14) in the field of ¢(X).

Since the length-scale itself is a scalar quantity, it is quite possible that two
wavenumber vectors have different orientations and still have the same magnitude
(K). Both such wavenumber vectors are indeed associated with the same length-scale
Ik (7.14).



7.1 Fourier Description of a Spatially Periodic Function 109

\

1

0.8

1
0.8
0.6
0.4
10.2
0
0.2
-0.4
0.2 -0.6
0.8

Fig.7.1 Variation of cos(K - X) in the physical space with K = 2T"(3’e\1 +2e),and L =1

0 0.2 0.4 0.6 0.8 1

xl(el)

In Chap. 2, we discussed how the presence of multiple eddies with different time
and length-scales introduces those time and length-scales in the expression of the
velocity of a fluid particle in the flow field. Since in a periodic flow field (2.35),
the presence of various Fourier modes is also related to the introduction of new
length-scales (Fig. 7.1), in turbulence literature, a phenomenological correspondence
(without necessarily referring to a mathematically rigorous connection) is often made
between the length-scale associated with a Fourier mode (7.14) to the presence of
eddies of the diameter of that length-scale in the velocity field. Thus, if a mode with
wavenumber vector K exists in the flow field, we say that eddies of characteristic
length-scale /.44y exist in the flow field such that

2
Oeady) = O (%) (7.17)

where K denotes the magnitude of the wavenumber vector.
We can prove that, in general,

?(K) = % /O ’ /0 ’ /0 L¢(£)e—"££dx1dx2dx3 - <¢ (x) e—"K‘K)v (7.18)

where the argument ¢ has been omitted merely for algebraic brevity. The symbols x1,
X2, and x3 denote the Cartesian coordinates of the position vector X of an arbitrary
location within the cubical domain with each edge length being L.

X = xio (7.19)
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The symbols dxi, dxp, and dx3 are the dimensions of a Cartesian infinitesimal
control volume with its centroid at (x1, x2, x3). Equation (7.18) indeed represents the
weighted volume average of the flow variable ¢ over the entire cubical domain. The
weighting factor in this integration is the complex conjugate of the mode function
¢'&X_ For algebraic brevity, we use the following symbol to denote the volume-
averaging procedure.

1 L L L
“'"”VZF/o /0 /0 (...)dx1dxodxs (7.20)

We will demonstrate the proof of (7.18). However, before we can do that, we need
some useful algebraic properties of the volume-averaging operator (7.20). It is easy
to show that

1 i2mnyx
—/ e T dx; =1ifn; =0 (7.21)
L Jo

On the other hand, if n; # 0,

1 L i2mnyxg 1 L 2mn1x, L. 2mnixy
— e L dx; — cos +isin dx
L Jy L Jy L L
1 . 2mnixg L 2mnixy L
= sin —isin
2mn L L L 0
1

{(sin(27n) — sin(0)) — i(cos(2mwny) — cos(0))}

i

{(0-0)—i(1 =D}

2mn
0 (7.22)

Using (7.21) and (7.22) we now simplify the following expression

1 (L L oL o
P = F/ / / KX =K X gy dxrdxs
0 0 0

where

R - . . 2m
K = Kje; = (nje| + nyez + nze3) <f)

o N N N 2
K =Kje; = <n1€1 + nyep +n363> (%) (7.23)
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where n1, na, n3, and n', n),, n} are arbitrary integers.

| rL L oL -
P = F/ / / XK X gy dxrdxs
0 0 0

1 (L L Lo ,
= ﬁ/ f / el(ﬁfﬁ)ldxldxzd)g
0 0 0

1 L L L , . ’ . ’
- L / / f o K1=K 1 i (Ko =Ko i (Ks =KD g1 oo s
L2 Jo Jo Jo

L , 1 L , 1 L ,
/ el(Kl—Kl)dexli| _/ el(Kz—Kz)dex2:| |:_/ el(K3_K3)x3dX3i|
0 L Jo L Jo

SIE

L T I I Y e E T
— el T (MDA g - T v g |
0 1LL Jo

=~

L - 21 /
/ T (TN gy (7.24)
0

T
S~ =

Clearly, if K/ = K (which means n; = ”/1’ ny = n/2, n3 = n;), we use (7.21) in
(7.24) to conclude

1 (L pL oL o
V5 / / / XK X gy dxsdxs = 1 (7.25)
0 0 0

On the other hand, if K / 7# K (which means at least one of the following three
inequalities ny # n|, ny # n,, n3 # n; holds good), we use (7.22) in (7.24) to con-
clude

1 (L L oL o
V5 / f / XK X gy dxsdx; =0 (7.26)
0 0 0

The identities (7.25) and (7.26) are expressed in a more compact manner as

(eiﬁ'geiiﬁ/'&> _ 1 ifK =
Vv 0 ifK #

where the symbol defined in (7.20) for the volume-averaging operation has been
employed.
Further, we define a new symbol 6, .+ to express (7.27) as

(7.27)

>~ 1=

<ei£~£e*i£ -&>v =g g (7.28)
where

1 ifK=K
5, = =73 7.29
XK { 0 HEZE (7.29)
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We are now in a position to present the proof of (7.18). We start with the expression
of (7.11).

=) o (K.1)e KX (7.30)
K

We multiply both sides by e_iﬁ/ X of (7.30) leads to

6 (X, 1) e KX = S (K, 1) KKK X (7.31)
K

‘We now subject both sides of (7.31) to volume averaging

= YO (k) [EEe ) (7.32)
K

Using (7.29) in (7.32) leads to

/

<¢(X 1) e K X> Z¢> (K.1) < iKX, "K'X>V=Z$(5,t)5££, (7.33)
K

The RHS of (7.33) is a summation over all possible modes. However, in that sum-
mation, all terms, except the one for which K = K, vanish. Thus, (7.33) simplifies
to

e 2], <5
which is identical to the relationship we listed in (7.18).
Since in this chapter, we will be employing the Fourier expression of various
flow variables quite extensively, for algebraic brevity, we introduce a new symbolic
operator Fg , which we define as

Fr {6 (X)) = (K) (7.34)

Further, we list some of the useful properties of the Fg operator, which we will
employ in this chapter. R R

L Fx {¢1(X) + 02X} = 61(K) + $2(K) where ¢1(X) and ¢2(X) are two
real-valued functions.

Proof:

Fi {6150 + 020} = (610 + d2(0)e EX)

= (10100 EX + g0 EX)) - (7.35)
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Since the volume-averaging procedure (7.20) is essentially an integration process, it
naturally distributes over the sum of the two functions in (7.35), leading to

Fi (6150 + 020} = ({610 + d2(0)eEX)
= (01X )+ {6200e7 ) - (736)
Using (7.18) in (7.36) leads to
Fr {610 + 02X} = 61(K) + da(K). (7.37)
2. 7 | %52} = ikid (k)

Proof:
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(iK/)§ﬂ/] =iKi$ (K) (7.38)

where % = 0,; has been employed.
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Using (7.11) in (7.38) leads to the following conclusion,

Fx { aq;g) } =iKio(K). (7.39)

3.7k | 250 ) = 4600
Proof:
]—'K{%a(tl)} _ <‘9_(fei1<~x>v _ <g ;g(K t) JK X ezKX>
£ v
= <Z % (etK z) —iK x>
X v
(90(K) |

The wavenumber vector (K) appearing as in the argument of V;(K ) is merely a
discrete tag and, thus V;(K) is actually a continuous function of time alone. Thus
we can express the partial derivative with time as a total derivative.

aM)} _do(K. 1) (7.40)

}k{ ot dt

4. 5(5) = %*(—5) where 5* (K) is the complex conjugate ofa(ﬁ) and ¢(X) is
a real-valued function.

Proof:

BEK) = (p0eEX) (7.41)
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We take the complex conjugate of both sides of (7.41)

5K = (o0 KX}
= {foc] [~ %],
= ([oc0] [ X))

Setting K, = —K, (7.42) is expressed as

-~

5K = (o00e K %) =K

which can be equivalently expressed as

/

5K = (o00e K%)= 3K)

without any loss of generality at this stage, we substitute K’ by K.

0*(—K) = p(K)

(61062 (0), = > 1(K)P3(K)
K

where ¢1(X) and ¢, (X) are two real-valued functions.

Proof: We start with the product of the two functions ¢ (X) and ¢, (X)

XX = | Y BE)EE X | | 3Gkl E X

K K

= Z [;51 (K)Ez(g/)eig%iﬁul]
k' K’

!

subjecting both sides of (7.47) to volume averaging leads to

([01(X0d2(0),, = <Z S [1K oK 1ol K XK K]

K’ K”

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

= Z Z [?151 (K)o (K") <ei£/ Lo l>v] (7.48)
k' K"
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Using (7.28) in (7.48) leads to

(6100620), = Y 3 [S1K 2K oy o] (7.49)

’ "
K

The appearance of the Kronecker delta symbol in (7.49) implies that the expression
can be simplified by (a) discarding the summation operation over K from the RHS
of (7.49) and then (b) substituting K ! by —K "in the remaining part of the expression

(61006200}, = Y [$1(K)d2(—K))] (7.50)

/

K

Further using in (7.44) in (7.50) leads to

(610620), = Y [1K)35K)] 7.51)

K

which can equivalently be expressed as

(61X}, = D [$1(K) (K] (7.52)
K

Equation (7.52) is called the Parseval’s theorem.

7.2  Spectral Density Functions of Turbulence Kinetic Energy
and Its Dissipation Rate

In a direct numerical simulation of decaying turbulence, the imposed boundary con-
ditions on the opposite faces of the cubical domain are periodic. Further, such a sim-
ulation is initiated with a periodic velocity field with the periodicity being L = 27
in each of the three Cartesian directions. Under these conditions, the velocity and
the pressure fields continue to be periodic at all later times. However, with time, the
composition of the velocity and the pressure field changes in terms of the existence
of various Fourier modes of these variables.

A decaying turbulent flow field is an example of a statistically homogeneous flow
field. Thus, volume averaging of flow variables or their functions can be leveraged
to estimate their expected values (4.62, Chap.5). A direct numerical simulation of
decaying turbulence provides extensive data on various flow variables at all grid
points in the cubical domain and at every discrete (but small) time step of the sim-
ulation. This database can be employed to estimate the mean velocity and pressure
fields at any chosen instant, as

(V)= (V)y and (p) = (p)y (7.53)
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where V is the cubical domain with each edge being of length 27 and (¢)y is the
volume averaged value of ¢ over the cubical domain (see Eq. 4.62). Similarly, the
turbulence kinetic at any time instant in the flow field is estimated as

1
=5 (Vi = (Vi) (Vi = (Vi)v))y
DNS databases of decaying turbulence do show that

(V)1

7 0 (7.54)

where |( >| is the magnitude of the mean velocity vector. Thus, in a decaying
turbulent flow field

Vi=(V)+V/ =V (7.55)
Thus,
Vi) = F {Vi} = Fe v (7.56)

Since the individual velocity components are periodic at all time instants in all three
Cartesian directions, using (7.52) and (7.56), we express the instantaneous turbulence
kinetic energy (k) as a summation of appropriate Fourier amplitudes over the space
of wavenumber vectors:

1 1 ’ / ’ ’ ! ’
k= §<VV> E<V1V1+V2V2+V3V3>v
1 1 ~ ~ 1 ~ ~
=52 MWW+ 52 [ VEE]+ 5 [ V&)
K K K
1
= 5; V(K VH(K)] (7.57)

Based on the relationship (7.57), we define the spectral density function of k,
(E(K)) as

E(K) = Alémo NS Z Vi(KHVAK) (7.58)

where the summation on the RHS of (7.58) is over all those wavenumber vectors K '
such that

K <|K|<K+AK (7.59)

Here K is a scalar quantity (> 0) and AK is a small independent increment in
the value of K. It follows from the definition of E(K) that

/OO E(K)dK =k. (7.60)
0
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Fig.7.2 The spectral or the K3(é3)
Fourier space. K is an
arbitrary wavenumber vector

K",W. Q (Kl: KZ’ K3 )
> Kz(é)

-
-

Ki(é1)

The function E (K) is also called the energy spectrum function.

Since the wavenumber vectors themselves are independent quantities (7.12), we
can visualize a three-dimensional space wherein the Cartesian axes represent the
three scalar components of an arbitrarily chosen wavenumber vector (Fig.7.2).

K= 2n Ky =2 aK =", (7.61)
= —nq, = —ny an = — .
1 I 1 2 [I’lz 3 L3

Such a three-dimensional space is called the Fourier space or the spectral space. In
such a space, the set of all possible wavenumber vectors, K /, which satisfy (7.59)
are the position vectors of various locations, all of which lie within a thin shell of
thickness AK and radius K. Thus, it follows from (7.59) and (7.60), the quantity
E(K)AK represents the part of turbulence kinetic energy (k) which is present inside
this thin shell in the Fourier space. Based on our earlier discussion in Sect.7.1, an
independently chosen value of K can be interpreted as a length-scale of the flow that
exists in the cubical domain. Thus, the quantity E(K)AK (7.58) is often interpreted
as the part of turbulence kinetic energy (k) which is associated with a length-scale
Ik = 27” or with an eddy of characteristic length /x. The spectral density function
(7.58) provides us with a mathematical tool which can quantify the contribution of
various length-scales to the turbulence kinetic energy per unit mass (k) that is present
in the flow domain.
Further, we define the spectral density function of €. In (7.52), we set

v, ,
¢1 = - and ¢ = — (7.62)
X, X

This leads to

OV, 0V, => |7 oV, Fi oV, (7.63)
8)(]( 3xk V_ % K 3xk K axk ’
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Using (7.39) on the RHS of (7.63) leads to

oV, V; vz Wi | . | OV:
Oxy Oxy V_ K Oxk K] oxx

K

ik Hik )|

[—i* Ki Vi (K) Ki Vi (K)*]

[ KeKi V(50 V(K0 |

=™ |><P”1 =[] =

(K200 1)) (7.64)

where K? = K, K, is the square of the magnitude of the wavenumber vector K.
Multiplying both sides by v and using the fact that in homogeneous turbulence,
volume averaging leads to an estimate of the expected value of a random quantity of
interest, we are led to the following expression for the dissipation rate (¢)

8Vi/ 3‘/1/ — 2% Sk
‘= ”<axk Oy >V - ”; [K Vi(K)Vi (E)] (7.65)

Accordingly, we define the spectral density function of e as

D(K)= lim v S KKV (7.66)
51

where the summation of the RHS of (7.58) is over all those wavenumber vectors K '
such that

K <|K'| <K+ AK (7.67)

The function D(K) is also the dissipation-rate spectrum function. It follows from
the definition of E(K) that

/ D(K)dK = ¢ (7.68)
0

The quantity D(K)AK (7.66) can be interpreted as the part of the dissipation rate (¢)
which is associated with a length-scale [x = 27” The spectral density function (7.66)
provides us with a mathematical tool which can quantify the contribution of various
length-scales to the dissipation rate of turbulence kinetic energy per unit mass (¢)
that is present in the flow field.
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7.3  Evolution of Energy and Dissipation Spectra in Decaying
Turbulence: DNS-Based Observations

To examine how the spectra of turbulence kinetic energy and its dissipation rate
evolve in time, we refer to the DNS database of incompressible decaying turbulence.
This simulation has been performed over a cubical domain, with the initial Reynolds
number based on the Taylor microscale being 40. The initial velocity field is generated
such that its spectral density function is described by the function

E(K) = AgK 42K /KD (7.69)

where Ag and Ko(= 1) are constants. This initial spectral density function of k is
plotted in Fig.7.3. More details about such a simulation are available in [7]. The
horizontal axis is for the quantity K (wavenumber vector magnitude). The curve of
E (K) shows that initially & is concentrated in a narrow neighborhood of wavenum-
ber vectors with magnitude K = 1. In other words, the turbulence kinetic energy is
concentrated in a narrow neighborhood of the length-scale /[y = 27). As time pro-
gresses, the turbulent flow field evolves. We list some important observations based
on the results of this DNS simulation.

1. The temporal variation in k and € is shown in Fig. 7.4. In this figure, the horizontal
axis represents normalized time ¢ .

t{ =t/7 where T = (7.70)

rms

The symbols A and Vi are defined in (7.9) and (7.8), respectively. The quantity 7
is called the eddy turnover time of the simulation. Evidently, the turbulence kinetic
energy does decay monotonically. However, the variation in € is non-monotonous.
¢ first rapidly increases, reaches a peak value, and subsequently reduces.

Fig.7.3 Spectral density
function of k at different
time instants in a simulation
of decaying turbulence

—t =
—o—t =0.7 1
—=—{ =13

—{ =26
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Fig.7.4 Temporal evolution
of k and ¢ in decaying
turbulence. The symbols &,
and ¢, represent the initial
values of k and €
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2. To understand the corresponding evolution of length-scales in the same flow field,

in Fig.7.3 we present the spectral density function (E(K)) of k at three more
representative time instants. These normalized time instants are ¢ = 0.7 (before
the peak event of e in Fig. 7.4), ¢ = 1.3 (close to the peak event) and ¢ =2.6(after
the peak event) As time progresses, it is evident that the energy spectrum spreads
to larger values of K. In other words, as time progresses, smaller-length-scales
are generated, and those scales also have some contribution to k. This process of
the spread of turbulence kinetic energy to smaller length-scales is also called the
cascade of turbulence kinetic energy or simply as the energy cascade process.
These new smaller scales of motion can be related to the appearance of eddies of
smaller diameters in the flow domain.

3. There seems to be an upper limit on K beyond which E (K') does not spread further

(assuming E(K) < 10™* to be of negligible significance in Fig. 7.3). We denote
this value of K by Kpyax. Thus,

oo Kmax
k :/ E(K)dK av,/ E(K)dK (71.71)
0 0

4. To quantify the distribution of energy over the new length-scales that have been

generated in the flow field, define a new quantity fi:

JoKEK)dK

Je= — (7.72)

where K is the magnitude of the wave number vector in the neighborhood of
which all the initial k were concentrated. The quantity f; represents the fraction of
instantaneous turbulence kinetic energy that is associated with those length-scales
(Ix) such that,

l — 7.73
K > 3Ko (7.73)

This range does represent the largest length-scales present in the flow field. In
Table 7.1, we present computed values of fj at different time instants in the same
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DNS simulation. We observe that at time t = 0, f; ~ 1.0, which simply means
that all initial turbulence kinetic energy was associated with the largest length-
scales. We observe that as time progresses, fi reduces. However, evidently, at all
three representative time instants (pre-occurrence of/close to/post-occurrence of
the peak event) fi > 0.7. Thus, the bulk of turbulence kinetic energy continues
to be concentrated at large scales (Ix > 327”0) during the entire decay process.

5. To quantify the distribution of dissipation rate (e) over the new length-scales that

have been generated in the flow field, we define a new quantity: f,

JoK D(K)dK

€

fe= (7.74)
The quantity f, represents the fraction of instantaneous dissipation rate that is
associated with those length-scales (/) such that,

) — 7.75
K > 3Ko (7.75)

In Table 7.1, we have included the computed values of f¢, as well, from the same
DNS simulation at the same three time instants where we earlier examined f.
We observe that at time r = 0, fe, too, is quite high (= 0.9). This is so because the
length-scales in the range included in (7.69) were the only length-scales present in
the flow field. However, we observe that as time progresses, f. decreases rapidly
and tends to reach a significantly smaller value (0.4) compared to what f} attains
at the corresponding instants. Thus, we conclude that the bulk of dissipation tends
to move to newly created smaller scales in the flow field. In other words, the bulk of
€ tends to be associated with the smaller eddies of the flow domain. This behavior
is in contrast with what we observed for k, the bulk of which tends to remain
associated with the largest length-scales. A simple mathematical explanation of
this contrasting behavior emerges if we compare the expressions of E(K) (7.58)
and D(K) (7.66). Since € is proportional to the spatial gradients of the fluctuations,
the expression of D(K) has the square of the magnitude of the wavenumber vector
(K?) as an amplifying factor.

D(K) = 2vK?E(K) (7.76)

As kinetic energy spreads to larger K’s during the cascade process, D(K) gets
more amplified by large values of K resulting into enhanced contribution to €
from large K’s (small length-scales).

Table 7.1 Variation in f; and f, at different time instants of a simulation of decaying turbulence
with initial Re) = 40

£ =0 =07 { =13 =26
fe 1.0 0.8 0.8 0.8
f. 0.9 0.5 0.4 0.4




74 Explanation of Energy Cascade: Fourier Description of Navier-Stokes Equation 123

6. It is observed that in simulations with higher initial Re), f tends to become
smaller compared to its value in simulations with smaller initial Re). Following
this trend, it is expected that as Re) increases, a higher contribution to ¢ would
come from the smallest scales in the flow field.

7.4  Explanation of Energy Cascade: Fourier Description
of Navier-Stokes Equation

With the motivation to develop insights into the processes that cause the generation
of new, smaller length-scales in a turbulent flow field, in this section, we wish to
specifically derive and examine the evolution equation of the quantity f/\l (K).Suchan
equation can possibly help us understand how a particular mode of the velocity field,
which has been nonexistent initially in a turbulent flow field, comes into existence
at a later time.

As the first step toward deriving the evolution equation of the quantity f/\l (K), we
subject the continuity (3.10) and the momentum equations (3.11) to the Fx operator
of (7.34). Like the previous sections of this chapter, our focus is on a decaying
turbulent flow field wherein V; = Vi/ and Fx {Vi} = Fx {Vl/ (K)} = /\7[(5). Even
though all Fourier amplitudes are, in general, functions of time, for algebraic brevity,
we do not include the variable ¢ as an argument of these quantities: it is implied.

The continuity equation, when subjected to the Fx operator (7.34), transforms
as:

v,
Fk { 3 } Fk {0}
Xq
iK,Vy(K)=0
K,Vy(K) =0 (7.77)

The final form of (7.77) is the constraint that the continuity equatlon (3.10) imposes on
the vector V V(K).Equation (7.77) implies that the vector V (K ) must be perpendicular
to the corresponding wavenumber vector (K) at all time instants.

Next, we subject the momentum equation (3.11) to the Fourier operator.

ov; ov; 10 5V,
Fx + Vi—1t = Fg p J
ot Oxk

pOx; + Vaxkaxk

(7.78)

Since V; = V/ (7.55) and 8—1’ = m L (7.3),

ov! ov! 19p 82\/’
RV | P 7.7
fK{aﬂLk k} f"{ o, T oo 779
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Using (7.35) in (7.79) leads to

PO A e il O BT OO il e
Vo [T o [T K{‘;ax,.}+ N oo [ B0
—_— —
1 11 111 v

Using (7.40) for the term involving a time derivative and (7.39) for the terms involving
spatial derivatives, (7.81) is expressed as

AViK) |~ e
5=+ Gi(K) = ~iK;p(K) ~ vK*Vi(K) (7.81)
where
P(K) = Fk {p/(p&} (7.82)
and
Gi(K)=Fx [G;(X)} and G; :V"/aT,f (7.83)

The exact expression of G (K) can be obtained in terms of the Fourier amplitudes
of various velocity components. Employing the continuity equation (3.10), we first
express G ; in an alternate form

ov: oIV
GJ(X) — V/ J J 4

—_— = 7.84
1 x4 dxg (7.84)

Subsequently, we subject (7.84) to the Fg operator.

a(vjfvc;)}

Gj(K)=Fx [G;(X)) = Fk { -
q

= iKyFx(V)V))
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=ik, 3 | VKOV (K — K] (7.85)
K/

Thus, the Fourier amplitude of the function G ; (X) corresponding to the wavenumber
vector K involves a summation of the product of Fourier amplitudes of relevant
velocity components over all possible wavenumber vectors (represented by K "in
the summation appearing on the RHS of 7.85).

Using (7.85), (7.81) is now expressed as

dV;(K) , P , S _
o = K LMK E - KD - PO KV K (7.86)

K

Further, simplification of (7.86) can be achieved by finding an expression for
K j p(K) appearing on the RHS of (7.86) in terms of G ;. This particular relationship
is derived by first contracting (7.86) with the wavenumber vector (K).

dV;(K) . oD /
K= = ik UV, & — )
K
— iK;K;p(K) — vK,;K*V;(K), or
d(K;V;(K)) . o o /
TR = KKy Y|V K — K|
K/
— iK*p(K) — vK*K;V;(K) (7.87)

where K% = K ;K is the square of the magnitude of the wavelength vector K.
Now using the constraint (7.77), (7.87) simplifies to

0= —KjiKy Y [V (KD, (K - K))] = iK*p(K) (7.88)
K/

Using the expression of (7.85), (7.88) is expressed in a more compact manner as

KinGm(K
iK;pK) = —Kj%(—) (7.89)
We can now employ (7.89) to express (7.86) in the following form
dV;(K) KiKpy\ ~ ~
== (5,-m — 2”’) Gu(K) — vK*Vi(K) (7.90)

which is the evolution equation of f/\j (K) in its most simplified form.
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Fig.7.5 Geometric K3(é3)
decomposition of the vector
G(K)

A

/ K2(é;)
K1(é1)

1

We can show that the first term on the RHS (7.90) is the projection of Q/(\K ) along
the wavenumber vector K. Like any other vector, we can split the vector G (K) into
two components,

G(K)=G"K) +G (k) (7.91)

where Q” (K) and QL (K) are the projections of the vector Q( K) along and perpen-
dicular to the vector K. Figure 7.5 we show this decomposition (7.91). In the figure,
the vector AC and AB equal QH (K) and Ql (K), respectively.
We can show that
. K;iKnG
G)(k) = —5"

5 (7.92)

and thus, according to (7.91),

N ~ K KpGm(K KK
GHK) = G (k) — KiKnTn ) _ (5,-m - =

e sz) Gu(K).  (1.93)

Thus, (7.90) can alternatively be expressed as

dvVi(K)

= —GH(K) —vK*V;(K) (7.94)
t —_— ———
1 11

Equation (7.94) shows that /V\i(ﬁ ) evolves due to the action of two processes.
Process I is the one that originated from the vector G (7.83), which represents the non-
linear advection process in the physical space. The second process (I I) represents a
viscous process. Indeed, the viscous process equals \7] (K) with a negative sign and a
multiplication factor which is positive-definite (v K 2). Thus, the process I of (7.94)
must cause a monotonic decay of the quantity V}(E ) with time. This monotonic
decaying action is eventually responsible for converting the kinetic energy associated
with the wavenumber K to the internal energy of the fluid. The presence of K2 as a
multiplication factor in /I suggests that the process of converting the kinetic energy
associated with velocity fluctuations is magnified at wavenumber vectors which
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have large magnitudes. Based on this insight, we conclude the dissipation process
(conversion of turbulence kinetic energy to heat) must predominantly happen at
small length-scales (in modes with large values of K). This insight is in line with the
observations in Table7.1.

The viscous process of f/\j(ﬁ ) (7.90) is a local process in the Fourier space,
because it involves the Fourier amplitude of velocity corresponding to the same
wavenumber vector K which appears in the quantity ’\7] (K) on the LHS of (7.90).
Clearly, such a local process can never distribute energy to other length-scales. Thus,
this process cannot be held responsible for the generation of newer length-scales in
a turbulent flow field.

In contrast, process I is non-local in Fourier space. This is evident by its algebraic
form itself.

-~ -~ KmK . ~ o~ /
~GHE) = (%-—T’)quZ[Vm@Vq(K—K)]
—_— K/

1 5

(7.95)

First, the process I has a summation involving Fourier amplitudes of velocity over
all possible wavenumber vectors (K ). Further, in every term in this summation
two additional kinds of Fourier amplitudes are involved: \//;(5 /), and \//\,-(5 - K /)
along with the presence of the components of the wavenumber vector K, itself.
Owing to this involvement of three different wavenumber vectors in each term of the
summation, Process I is also called a triadic process. Indeed, this interaction of the
Fourier amplitudes at two different wavenumber vectors, f/: (K /), and V, (K—-—K /)
contributing to the evolution of a different Fourier amplitude {/\, (K) gives this process
the ability to generate newer length-scales in the flow field.

In summary, the derivation and the subsequent examination of the evolution equa-
tion of f/\, (K) (7.94) have provided us with new insights on the role of the advection
and viscous processes. While the advection process tends to create newer scales of
motion, the viscous process converts the kinetic energy present in the fluctuating
velocity field to heat. Since this converting action of the viscous process is amplified
by the square of the magnitude of the wavenumber vector, the viscous dissipative
action is expected to be more prominent in those modes which have large values of
K (small length-scales).

Any further mathematical analysis of various processes of (7.94) is deemed out-
side the scope of this book. The reader is referred to [8] and other cited works therein
to have a more advanced analysis and discussion on these processes.

7.5 Kolmogorov’s Hypotheses

Russian mathematician Andrey Kolmogorov (1903-1987) put forward a set of
hypotheses which when interpreted using arguments involving dimensions of various
statistical quantities and their orders of magnitude leads to some insightful conclu-
sions about the cascade process in turbulent flows. These hypotheses were proposed
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Fig.7.6 Schematic diagram of the cascade process (Not to scale). P represents the production rate
of turbulence kinetic energy

during an era when the computational fluid dynamics (CFD) tools and computing
hardware were not available to perform direct numerical simulations of turbulent
flow fields.

There is no mathematical proof available for these hypotheses. Nonetheless, these
hypotheses have been employed as the cornerstones based on which our understand-
ing of turbulent flows has evolved. Various cues emerging from these hypotheses
have also been leveraged for turbulence modeling (some such aspects are discussed
in Chap. 8). With the advent of more advanced computing hardware, several direct
numerical simulations of turbulent flow fields have been performed in recent years,
at increasingly high Reynolds numbers. Such numerical simulations are providing
new opportunities to further examine these hypotheses.

Kolmogorov’s hypotheses refer to the cascade process, about which some numer-
ical evidence and insights have already been provided in our previous sections. Based
on this background, in Fig. 7.6, we present a schematic diagram of the cascade pro-
cess. This will help us in our upcoming discussion on Kolmogorov’s hypotheses. In
Fig.7.6, [, represents the characteristic length-scale of the largest eddies in the flow
field. On the other hand, n represents the characteristic length-scale of the smallest
eddies. The symbol L represents the characteristic length-scale of the flow domain
itself. The order of magnitude of L is almost the same as the order of magnitude of
l,. We introduce two more length-scales in this diagram. Thg symbol /gy is defined

™

such that the bulk of k lies within the wavenumber K < Tor The symbol Ip; is
27

defined such that the bulk of ¢ lies beyond the wavenumber K > Teor We call the
range of length-scales between L and I/p; as the energy-containing range.

In our DNS simulation cases of decaying turbulence discussed earlier in this
chapter (Fig. 7.4), the turbulence kinetic energy was deliberately initiated in this range
of scales, and was subsequently allowed to spread to smaller scales as determined
by the governing equations of motion. The production process by itself is absent in
decaying turbulence (statistically homogeneous flow field, Eq.7.6). However, in a
general flow field wherein the production process of the turbulence kinetic is non-
zero, turbulence kinetic energy is injected into the cascade process by the production
mechanism (5.56). Mathematically, the production mechanism of the turbulence
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kinetic energy (5.56) is the double-dot interaction between the Reynolds stress tensor
and the mean velocity gradient tensor.

Various components of the Reynolds stress tensor (R;;), which are the mean
values of products of fluctuating components of the velocity field (like k itself), are
associated mainly with the largest eddies. Further, the mean velocity gradient scales
as V,/L, where V, and L represent the characteristic velocity associated with the
boundary conditions and the length-scale associated with the geometry of the flow
domain. The production process (depicted by P in Fig.7.6), even if it is non-zero,
is predominantly a large-scale process. For such flow fields, the production rate of
turbulence kinetic energy still happens in the same range of length-scales: (Igy, L)
as shown schematically in Fig.7.6.

On the other end of the Fig. 7.6, the range of length-scales between /p; and 7 is
called the dissipation range, and the range of length-scales between the /gy and [ p; is
called the inertial subrange. This hierarchy of length-scales is visualized as eddies of
different diameters. At sufficiently high Reynolds numbers, the process of dissipation
tends to happen predominantly in the dissipation range of scales (eddies). At such
high Reynolds numbers, there may not be significant dissipation happening in the
inertial subrange or the energy-containing scales. Thus we draw three inferences:

1. The rate (Jkg~'s~!) at which energy is transferred across the interfacing length-
scale /p; (we denote this rate by the symbol Tp;) must be approximately the
same as e, itself.

2. The rate (Jkg~'s~!) at which energy is transferred across the interfacing length-
scale [g; (we denote this rate by the symbol Tr;) must also be approximately to
be the same as e, itself.

3. The rate (Jkg~'s~!) at which energy is transferred across any arbitrary length-
scale [ where [g; > [ > [p; (we denote this rate by the symbol 7;) must also be
approximately the same as e, itself.

The amount of kinetic energy that is dissipated per unit mass per unit time in the range
of dissipative scales is sourced originally from the largest eddies and is successively
transferred to smaller eddies. Finally, in the dissipative scales, this energy is converted
to heat. In Fig. 7.6, the arrows depict the direction of flow of turbulence kinetic energy
(k) across various scales of motion.

Using arguments based on dimensionality, we estimate the order of magnitude of
the energy transfer rate from the largest eddies (Jkg~'s~!) to the smaller ones is

+2. The symbols u, and /, denote the characteristic velocity and length-scale of the
largest eddies in the flow field. Based on this estimate, we summarize the cascade
process as described in the previous paragraph as,

3
?NTEI’\/TVZNTDINE (796)

o

where the symbol ~ means the equality in the orders of magnitude of the quantities
on the left-hand and right-hand sides of the symbol.
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7.5.1 Kolmogorov’s First Similarity Hypothesis

Kolmogorov’s first similarity hypothesis states “In every turbulent flow at sufficiently
high Reynolds number, the statistics of small-scale-motion have a universal form
determined by v and €” [6]. Here v and € denote the coefficient of kinematic viscosity
of the fluid and the rate of dissipation of turbulence kinetic energy per unit mass
(5.58), The Reynolds number (Re) in the context is one based on the characteristic
length (/,) and velocity scale (u,) of the largest eddies

(7.97)

This hypothesis can be employed to estimate the orders of magnitude of the
characteristic length, time and velocity scales of the smallest eddies in a turbulent
flow field. We use the symbols 7, u,, and 7, to denote these quantities, respectively.
Based on Kolmogorov’s first similarity hypothesis, we infer

n~ P (7.98)
Uy ~ el (7.99)
Ty ~ ev! (7.100)

The symbols a, b, ¢, d, e and f are constants to be determined.

Using the dimensions of 1 (m), u; (ms~!) and T, (s) on one hand and those
of € (Jkg='s™1) and v (m2s~') on the other hand, leads to a system of six linear
algebraic equations in six unknowns coefficients which are appearing as exponents
in (7.98-7.100). Solving this set of equations leads to

1 311 11
9b7 7d1 3 3 = R T R R S 7.101
@b.c.de f 8 ( 4448 2 2) (7.101)

Thus, Kolmogorov’s first similarity hypothesis leads to the following characteristic
measures of the smallest eddies in a turbulent flow field.

N
n~ <?) (7.102)
uy ~ (ev)!* (7.103)
v\ 12
T~ (Z) (7.104)

If we define a Reynolds number specifically in the context of the smallest eddies,
it can be verified that such a Reynolds number (Re;)) has its order of magnitude as
unity.

unmn

Re,= - ~1 (7.105)
12



7.5 Kolmogorov's Hypotheses 131

The quantities 7, u,, and 7, are the Kolmogorov length-scale, the Kolmogorov velocity
scale and the Kolmogorov time scale, respectively.

The order of magnitude estimates arrived in (7.102)—(7.104) can be further
employed to find estimates of the ratios of the characteristic features of the largest
to the smallest eddies in a turbulent flow field. Using the estimate included in (7.96),
we first express the order of magnitude of € as

<
S W

e
2
|

(7.106)

~

o

Next using this estimate of € along with the estimates of the Kolmogorov length,
velocity, and time scales (7.102, 7.103, and 7.104), leads to the following relation-
ships

1 Re34 (7.107)
lo
Un _ Re—1/4 (7.108)
Up
1 Re~112 (7.109)
To

where [,, u,, and 7, are the characteristic length, velocity and times scales of the
largest eddies, and

To = —. (7.110)
Uo

These estimates (7.107-7.109) clearly show at a higher Re, the disparity between
the largest to the smallest length-scales, the disparity between the largest to the
smallest velocity scales, and the disparity between the largest to the smallest time
scales increase exponentially. Indeed, these are the estimates based on which we
introduced the reader to the essential nature of turbulence earlier in Chap. 3 (3.6 and
3.9).

7.5.2 Kolmogorov’s Second Similarity Hypothesis

Kolmogorov’s second similarity hypothesis states “In every turbulent flow at suf-
ficiently high Reynolds number, the statistics of the motion of length-scale | in the
range l, >> | >> n have a universal form that is uniquely determined by € and is
independent of v” [6]. Here I, is the characteristic length-scale of the largest eddies
existing in the turbulent flow field, and n represents the Kolmogorov length-scale.
This hypothesis can be used to estimate u (/) and 7(I), where [ represents a length-
scale chosen independently in the range /, >> [ > 7 and the symbols u (/) and 7(/)
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represent the characteristic velocity and time scales of the eddies having their char-
acteristic length-scales as /. Following the second similarity hypothesis, we have

u(l) ~ 1P (7.111)
() ~ 14 (7.112)

Using the dimensions of u (/) (ms~")and 7; (s) on one hand and those of e (Jkg~'s™1)
and / (m) on the other hand, leads to a system of four linear algebraic equations in
four unknowns coefficients, which are appearing as exponents in Eqs. (7.111-7.112).
Solving this set of equations leads to

(a,b,c,d) = b1 12 (7.113)
a’ ,C, - 3’31 353 .

Thus, Kolmogorov’s second similarity hypothesis leads to the following estimates for
the eddies with their characteristic length-scales (/) lying in the range [, > [ > 7.

u(l) ~ (e))'3 (7.114)
o\ 1/3

(l) ~ (’—) . (7.115)
€

Using (7.106), Egs. (7.114) and (7.115) can alternatively be expressed in terms
of the characteristic velocity (u,) and the characteristic time scale (7,) of the largest

eddies
I\ 1/3
u(l) ~ u, (Z_) (7.116)
0o
1\ 2/3
T ~ 10 <—) (7.117)
lo

Sincel/l, < 1(7.116) and (7.117) indicate that smaller eddies have smaller char-
acteristic time scales and smaller characteristic velocity scales compared to those of
the larger eddies. The reduction in the characteristic time means that smaller eddies
tend to rotate faster (higher angular velocities) as compared to the larger eddies.
However, their characteristic tangential velocity, represented by u([), is smaller than
that of the larger eddies.

Kolmogorov’s second similarity hypothesis can be leveraged to estimate the form
of the spectral density function of k, as well, in the range [, > [ > 7). Following the
statement of the hypothesis, we make the following conjecture

2 b
E(K) ~ 1P ~ ¢ (%) (7.118)

We ignore the factor 27 in (7.120), and instead concentrate on seeking the values of
the exponents, a and b. The SI units of the function E(K) are Jmkg~'s~!. Matching
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the dimensions of the two sides of (7.118) leads to a system of two linear equations
in two unknown coefficients a and b. The solution of this system of equations is

a, b N ; l 19
Ihus’ (‘ '1 18) 18 explessed as

E(K) ~ Bk (7.120)

Thus, a plot of /In E(K) versus /n K must be a straight line with its slope being —5/3.
A straightforward implication of (7.120) is

D(K) = 2vK?E(K) ~ K2R K3 ~ 0Bk 1/3 (7.121)

Thus, it is expected that at a high Reynolds number and in the range [, >> [ > 7, the
slope of InD(K) versus InK must be 1/3.

7.5.3 Kolmogorov’s Hypothesis of Local Isotropy

Kolmogorov’s hypothesis of local isotropy states that “at sufficiently high Reynolds
number, the small-scale turbulent motions (at | < l,) are statistically isotropic” [6].
One plausible interpretation of this hypothesis is that the statistics of the orientational
tendencies of the smallest eddies in a turbulent flow field are oblivious to the boundary
conditions of the turbulent flow field. While the largest eddies in a turbulent flow field
are oriented following the geometric constraints of the flow domain, at smaller scales,
these constraints become less important, and consequently, the smallest eddies tend
to lose any preferred orientational characteristics.
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Turbulence Modeling

Turbulence models by definition are additional approximate equations so that the
RANS equation set (5.10) can be mathematically closed. Every turbulence model
involves some uncertainty. It can not be an exact representation of the flow physics.
Notwithstanding this realization, the computational fluid dynamics (CFD) com-
munity does need turbulence models. At the same time, any arbitrary relationship
between the secondary and the primary unknowns cannot be accepted by the com-
munity as a viable turbulence model. There are, after all, features based on which a
turbulence model can be deemed acceptable.

1. A turbulence model must predict the primary RANS variables ({V;) and (p)) with
an acceptable level of accuracy in, at least, a few types of flow fields.

2. A turbulence model is expected to provide reasonably accurate predictions for a
wider variety of flow fields.

3. A turbulence model must be proposed based on some essential physics of the
flow field.

4. A turbulence model is expected not to be algebraically too complex.

5. A turbulence model is expected not to introduce any undesirable numerical issues
to the overall procedure seeking a solution of the RANS equation set (5.10).

6. A turbulence model is expected not to add too much additional computational
overhead to the overall numerical scheme employed for solving the RANS equa-
tion set (5.10).

In the century-long history of turbulence research, several turbulence models
have been proposed, and employed for performing CFD simulations. Our goal in
this chapter is not to build an exhaustive compendium of all these models. However,
in the rest of the chapter, we focus on a particular category of turbulence models
called the eddy viscosity closure models.
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8.1 Eddy Viscosity Closure

The eddy viscosity closure (also called the turbulent viscosity closure) is inspired by
the Stokes constitutive equation for the viscous stress tensor in a Newtonian fluid.
We recall that in a viscous fluid, the instantaneous viscous stress tensor (z;;) is the
anisotropic part of the instantaneous local stress tensor (o;;)

Tij = 0ij ~ Okk =" 8.1
where oy = —p (p being the local pressure value). The Stokes constitutive rela-
tionship for 7;; in a Newtonian fluid is (5.18)

Tij = 2/,LS,']' (82)

where §;; represents the (ij)th component of the instantaneous strain-rate tensor,
and p is a scalar which is called the coefficient of dynamic viscosity.

The essential assumption made by this model is that the tensor t is aligned per-
fectly with the instantaneous strain-rate tensor. In the context of a symmetric second-
order tensor, the word “aligns” means that the principal coordinate system of the two
tensors in context is identical. The Stokes hypothesis is a semi-empirical proposi-
tion. However, it is observed to be true for several common fluids like water and
air. As temperature varies, the scalar u may undergo some variations in Newtonian
fluids. However, w still does not any have dependence on the instantaneous velocity
gradient field.

The kinetic theory of gases postulates that the instantaneous velocity of a gas
molecule within a fluid particle can be expressed as [9]

"U=VvV+"C (8.3)

where "U represents the velocity of the nth molecule residing inside a fluid particle.
On the continuum scale, a fluid particle is indeed a point mass. However, on the abso-
lute scale, it does have non-zero dimensions. In Fig. 8.1 the shown cube represents a
magnified fluid particle. Various dots represent molecules which are currently inside
the fluid particle. At this instant, the centre of mass of the fluid particle is located at
point Q with the position vector X. The symbol V represents the velocity vector of
the centre of mass of the shown fluid particle. In continuum description, this is called
the velocity of the fluid particle itself. The symbol ” C represents the velocity of the
nth molecule relative to the centre of mass of the fluid particle. The velocity vector
"C is called the peculiar velocity of the nth molecule. Following the assumptions
of the kinetic theory of gases, the peculiar velocity vector is deemed to be random
in nature, whereas V (X), the velocity of the fluid particle itself is deemed to be a
deterministic quantity. It can be shown that the instantaneous stress tensor (o) aris-
ing in a continuum flow field of a gaseous medium is the ensemble-average of the
moment c;c;. Thus, it is the anisotropic part of the ensemble average, of ¢;c; which
is eventually modelled by the Stokes constitutive relationship (8.2).
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Fig.8.1 The instantaneous, U
)4 =4

the center-of-mass and the f
peculiar velocity vectors of x3(é3) 7
the nth molecule, which is . ‘V c
currently inside the fluid ¢ o
particle e

Q (%1, X2, x3])

. o

(]
x2(é2)
x1(é1)

Fig.8.2 The instantaneous,
the mean and the fluctuating

velocity vectors of a fluid X3 (é3)
particle in a turbulent flow
field A
> x2(é)
x1(é1)

Further, the kinetic theory of gases shows that the coefficient of dynamic viscosity
equals

1 = D pVmolecular/molecular 84)

where D is a dimensionless constant, p is the gas density, Violecular 1S the root-
mean-square of the peculiar velocity of all the molecules that are currently inside the
fluid particle of Fig.8.1. The symbol /nlecular T€presents the mean free path of the
molecules. The quantities Violecular and Imolecular Can be viewed as the characteristic
velocity and length scales of a transport mechanism that arises due to the random
nature of the peculiar velocity of molecules.

Now let us refer to Fig. 8.2, which shows a fluid particle in a turbulent flow field.
The symbols V, (Z) and V' represent the instantaneous, the mean and the fluctuating
velocity vector of the fluid particle which is currently located at X.

In the mean description of the turbulent flow field, the fluctuating velocity vector
(K/) of a fluid particle is deemed to be of random nature, whereas <K> the mean
velocity of the fluid particle is a deterministic quantity. Further, we have already
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shown that the Reynolds stress tensor component arising in the mean description of
a turbulent flow field is an ensemble average of the moment Vi/ V..

The descriptions of quantities presented in Figs. 8.1 and 8.2 have some apparent
similarities.

1. In both the figures, a pertinent velocity vector is decomposed into a deterministic
part and a random part.

2. In both the scenarios, there is an unclosed tensor that arises due to the ensemble
average (or mean) of a second-order moment of relevant random velocity vectors.

The eddy viscosity closure draws inspiration from these apparent similarities in
Figs. 8.1 and 8.2, and takes a bold step to propose a closure for the anisotropic part
of the Reynolds stress tensor (R2™S°U°Pi¢) in accordance with the Stokes constitutive
relationship (8.2).

The anisotropic part of the Reynolds stress tensor (R*5°°Pic) jg defined (1.17)
as
%
3
Using (8.2) as the basis of an analogy, the eddy viscosity closure assumes that the
anisotropic part of the Reynolds stress tensor is always perfectly aligned with the
mean strain-rate tensor S.

) } S:
Rialplsotroplc =Ri; — Rkk% = Rij +2pk (8.5)

R;i]pisotropic —2ur <Sij) (8.6)

where (Si j> is the (ij)th component of the mean strain-rate tensor ({S)). The symbol
wr represents a new scalar. The quantity pr is called the coefficient of dynamic eddy
viscosity or the coefficient of dynamic turbulent viscosity. Equation (8.6) is a set of
only five independent algebraic equations.

Further, the next hint towards achieving the full closure of RANS equations while
using the eddy viscosity closure can be extracted by extending the underlying physical
meaning of u in the Stokes constitutive relationship. Like p, which depends on the
characteristic velocity and characteristic length scale of the random transporting
action of the peculiar velocity of molecules (8.4), w7 in (8.6) is modelled in the
following form

ur = D' pViyewation/fluctuation 8.7

where D’ is a dimensionless constant, p is the density of the fluid medium and
Viuctuations and Iaucwation represent the characteristic velocity and a characteristic
length scale associated with the fluctuating flow field. These characteristic values
can be interpreted as the characteristic velocity scale and the characteristic length
scale of the eddies, which carry the bulk of turbulence kinetic energy with them. Thus,
Viuctation and Ifuctation are modelled as the characteristic velocity scale and charac-
teristic length scale of the largest eddies present in the turbulent flow field. With
this interpretation, we realize that while w characterizes the action of momentum
transport caused by the random molecular motion (which is present in all instanta-
neous flow fields), w7 characterizes the action of momentum transport caused by
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the fluctuating motion in the RANS description of a turbulent flow field. Since the
fluctuating flow field is associated with eddying motions, pr is called the coefficient
of dynamic eddy viscosity.

Even though the analogy with the molecular motion and the Stokes hypothesis
has provided us with some bases to propose (8.6) and (8.7), we realize that we have
now introduced two new scalar unknowns in our modeling procedure: Viyctation and
lfiuctation- Even though there are physical interpretations of these quantities, they are
unknowns, nonetheless. In general, we expect these quantities to be dependent on
both space and time.

To make any further progress towards full closure, we will have to add additional
equations describing the variations of these quantities. Indeed, over the past century,
several propositions have been made with their own strength and shortcomings,
leading to different closure models. In Sects. 8.3 and 8.4 of this chapter, we discuss
two such popular closure strategies. While the additional closure equations will add
their own modeling assumptions to the closed set of governing equations, the use
of (8.6) inevitably entails the key assumptions that (a) the anisotropic part of the
Reynolds stress tensor is aligned perfectly with the mean strain-rate tensor, and
(b) the coefficient of eddy viscosity is a flow variable, and it is interpreted to have
dependence on the characteristic velocity and length scales of the largest eddies in a
turbulent flow field.

The Stokes constitutive equation (8.2) is verifiably quite accurate for Newtonian
fluids. However, just because the eddy viscosity closure is mathematically analo-
gous to the otherwise accurate Stokes relationship, it does not guarantee that the
eddy viscosity closure will also be equally accurate in all types of flow fields. Even
though many popular turbulence closure models have been developed based on the
eddy viscosity closure paradigm, there exist certain types of flow fields wherein the
assumption of the perfect alignment between the anisotropic Reynolds stress tensor
and the mean strain-rate tensor fails over extended regions in the flow field. The
reader is referred to [10] for further details on such failures of the model that employ
the eddy viscosity closure.

Notwithstanding such failures in some specific kinds of flow fields, there is still
a reasonably wide variety of engineering flow fields where the models based on
the eddy viscosity closure have been used frequently with considerable success in
predicting the mean flow variables. Owing to such success and popularity, in the rest
of this chapter, we perform case studies on two such popular closure models: the k-¢
model and the k-w model.
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8.2 Modeling the Unclosed Terms: A Broad Outline

These case studies are included here to help the reader gain deeper insight into the
rationale followed by the respective turbulence modellers in getting the final forms
of the k — € and the k — w models. Even though there is no community-wide, fully-
accepted general procedure or a template with which we can explain the rationale
behind every turbulence model that exists today, nonetheless, we identify a list of
common steps that the developers of these two models have followed.

1. Step I: Some essential, relevant underlying physics of the mathematically unclosed
term is invoked. The modeller’s awareness and personal insights about the rel-
evant physics of turbulent flows, as revealed in various experiment-based or
direct-numerical simulation-based studies of even simple flow fields like the flat
plate boundary layer flow or the decaying turbulent flow field may prove to be
useful in this step of turbulence modeling.

2. Step II: The exact unclosed mathematical form of the to-be-modelled term is
discarded and some dimensionality-based arguments to construct its alternate
mathematical form that can possibly mimic that identified essential physics in
Step I are proposed. Here, it must be ensured that this alternate mathematical form
is expressed in terms of the quantities for which the modeller already has, or for
which the modeller is planning to have additional governing equations in the final
set of closed equations. Further, in this step, the modeller may also introduce some
dimensionless constants of proportionality (also called the closure coefficients of
the model) to have superior control over the performance of the closure model.

3. Step III Available experimental databases or direct numerical simulation databases
of simple flow fields are employed to ascertain the best possible values of the
closure coefficients of the model, which have been introduced in the previous
step. This provides leverage to the modeller to have some fine-tuning on the per-
formance of the model. It is expected that the modeller himself/herself prescribes
the most optimal set of these closure coefficients, which can be employed for
performing RANS simulation for a wide variety of flow fields. These closure
coefficients are not expected to be re-adjusted on the flow-to-flow basis or based
merely on the whim and convenience of the end-user.

Even though (a) the identification of the essential physics of the unclosed term
and (b) the determination of the dimensionless constants are often done by modellers
using an available experimental database or an available DNS database of some
simple flow fields, the final form of the model thus proposed, are indeed expected to
be employed in simulating more complex flows of engineering interest. This practice
that a model which has been proposed based on our observations of some simple flow
fields is then employed for more complex flow fields does lead to some modeling
uncertainties. Nonetheless, in the absence of any better option, such models may
still be considered acceptable as long as the performance of the model is found to be
satisfactory by the CFD community in simulating their complex flows of interest.
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8.3 The k-w Model: A Case Study on Turbulence Modeling

The description of the k- model presented in this section is based on the work of
Wilcox [11]. To model w7, the k- model introduces some variations on the RHS of
(8.7). Instead of using /fycration in the expression, it employs another quantity with
which we can characterize the largest eddies. This quantity is represented by the
symbol w, which represents the characteristic angular velocity of the largest eddies
(the ST unit being s 1)

Viuctuation

0~ —, (8.8)

l fluctation

leading to the following form of wr (8.7)

2
Viuctuation (8.9)
w

Ur =p

where D’ has been dropped (modeller’s discretion).
The k-w model further assumes that Vgycaton can be estimated using the local
instantaneous value of k in the flow field,

VHuctation = k1/2’ (8.10)
leading to the following form of 7

k
ur == 8.11)
w

Thus, the two unclosed unknowns in our hands now are k and w. In general, these
quantities are expected to change with space and time. The k- model proposes to
add (to the existing set of four partial differential equations of 5.10), two additional
partial differential equations describing the evolution of k and w in the flow field.

We have earlier derived the transport equation of k (5.56). Even though this
equation is exact, it is mathematically unclosed. The specific unclosed terms are
highlighted here as A, B and C.

dk ok Ri; oV 3%k
o g =2
Jt 0xg p  0xj 0x40x,
i v’V"/V", - 18<pVi> (8.12)
i—/ oxg \ 42 b ox '
B C

- /: /
av,.ovl.>

where € = v < Tx, Ox,
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To model e, the relevant essential physics is that € also equals the rate of energy
transfer from the largest eddies to the smaller ones (Tg;, Fig. 7.6, Eq. 7.96). The k-w
model estimates € in line with (7.96), as

3
¢ ~ Viucuation (8.13)

lﬂuctuation

where lqucation 15 the characteristic length scale of the largest eddies present in the
flow field.
Using (8.8) and (8.10), in (8.9) we arrive at the following modeled equation for €

€ = ko (8.14)

where 8* is a dimensionless constant, which remains to be specified.

To model Term B in (8.12), we invoke what is generally called the gradient
diffusion hypothesis. We first explain this hypothesis in detail in the context of an
instantaneous flow field and subsequently leverage it to model Term B, specifically.

If (X, t) represents an entity (such as energy, species mass, momentum) per
unit mass of the background fluid, then, as per the gradient diffusion hypothesis,
the amount (? Q;) of that quantity transported per unit time per unit area across an
imaginary surface having unit normal along the Cartesian unit vector ¢; is assumed
to be proportional to the gradient of ¢ along é;.

9
40, ~ Ty <£> (8.15)

where I'y is a scalar, and is called the coefficient of diffusion of ¢ in that fluid medium.
The quantity ? Q; is called the ith component of the flux vector, ¢ Q of the entity in
context. The negative sign on the RHS of (8.15) implies that the transport due to
the gradient diffusion hypothesis is directed opposite to the gradient to ¢. Thus, the
gradient diffusion hypothesis implies that the entity in context is transported from a
region of higher concentration of ¢ to a region of lower concentration of ¢. If with the
course of time, the distribution of ¢ (X, #) becomes uniform in space, then, according
to the gradient diffusion hypothesis, the flux of the entity (¢ Q) must vanish.

In an instantaneous flow field, the coefficient of diffusion, like uin (8.4), is
the ensembled effect of the transporting action of the random peculiar velocity of
molecules. Such a transport process is called the molecular diffusion process. Fick’s
law of mass diffusion and the Fourier law of heat conduction are common examples
of the constitutive equations which employ the gradient diffusion hypothesis in the
context of instantaneous flow fields.

We earlier discussed in Chap. 5 that Term B on the RHS of (8.12) can be expressed
as the gradient of a flux term, Q,,, which represents the expected value of the flux



8.3 The k-w Model: A Case Study on Turbulence Modeling 143

of the fluctuating kinetic (Vi/ Vi/ /2) energy caused by the fluctuating velocity vector
component Vn/1

a [ vV 3
(v ) = Om (8.16)
0xg 2 0Xy,
—_——
B
where
VIV
Om=\{V, ’2’ (8.17)

This insight that Term B is the gradient of a flux is deemed as the relevant essen-
tial physics for modeling this term. Leveraging the gradient diffusion hypothesis
(8.15), we replace the exact but the unclosed mathematical form of Term B, with the
following modelled form

On={V, AW ry— A7 (8.18)
"N TN o, \ 2 ‘

where Iy is a scalar that is supposed to characterize the random transporting action
associated with the fluctuating velocity field, or in other words, the random transport-
ing action associated with the largest eddies in the flow field. Since we have already
chosen to employ the quantities k£ and  to have the kinematic characterization of
the largest eddies in the flow field (8.10 and 8.8), the k- model proposes to have
'y expressed in terms of k and w

Iy = o*k? (8.19)

where o * is a dimensionless constant, which remains to be specified. The symbols
a and b are constant coefficients. Equation (8.18) suggests that the SI units of I'y
must be m2s~!. Imposing this constraint on the two sides of (8.19), we find a = 1
and b = —1. Thus, (8.18) is modified to the following form.

on v vivi\ [ ok a (VIV\\ _ ok 8 [VV,
AT o2 [T o x4 2 C w oax, )\ 2

*k 0k
_ gk ok (8.20)
w 0xg4
With (8.20), finally, Term B is assigned the following modelled form.
o [ VvV 3 *k ok
Sy ity % <G —) (8.21)
axg \ 1 2 xg \ w x4

[ —
B
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Term C is the next unclosed term in (8.12). Even though the underlying physics of
this mathematical expression is known (highlighted in Chap. 5), the main modeling
challenge posed by this term is the involvement of pressure fluctuations in it modeling
such pressure-based physics in terms of the kinematic characteristics of the largest
eddies (k and ) is not straightforward. Thus, it is decided to drop this term altogether.
In summary, the modelled form of the transport equation of k for the k-w closure is

ok ok R 0(V;) 8%k 9 [(o*k ok
=) — =L +v — Bk + — —
at 0x4 0 Bx]~ 0x40x,4 0xg \ @ 0dx4
R;j 0 a ok a ok
0 8x/ R/—/ axq 0xq 0xq x4
—_— 1
1 111 1V

(8.22)

where we have a new symbol vy (which is called the coefficient of kinematic eddy
VIScosity).

k
vp = = =BT (8.23)
o p
Term B is also called the eddy diffusion process in the governing equation of k.
Equation (8.22) is symbolically expressed as

ok ok
_+<Vq>_:kpl—kpll + 5P+ 5Py (8.24)
ot x4

where the four individual processes on the RHS of this equation are identified as

Rij 0(V;
Production process ¥ Py = Rij 3 Vi)
/Y 3)(]'

Dissipation process kP : ko

ok

Molecular diffusion process k Py o — |:v—:|
e X . Ok

Eddy diffusion process “Pjy : — |o v —

Like the transport equation of k, the intention of the modellers of the k-« model
is to add a transport equation (a PDE) for w, too. However, one realizes that, unlike
k, to begin with, there is no exact equation of w available with us. Thus, a partial-
differential equation modeling the evolution of w needs to be entirely postulated.
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For such a postulation, the modeller borrows some guidelines from the modelled
equation of k (8.77), itself.

Like the modelled equation of k, (8.22), it is proposed to have the presence of
four essential processes in the evolution equation of w. These four processes are: the
production rate of w (“ Py), the dissipation-rate of @ (“ Pry), the molecular diffusion
rate of w (?Pyyy), and eddy diffusion rate of @ (“P;y). Thus, symbolically, the
postulated transport equation of w is expressed as:

dw
+(Vg) =— =“Pr —“Pi; +“Pri1 +“Prv (8.25)
1 0xg

ow
ot

Further, we assume (a modeling assumption) that the respective functional form
of the processes of the w equation is the same as the corresponding processes of the
k equation such that

ow
Production process: “ Py = (—) kP] =

k k o 0x;
Dissipation process: “Pj; = (%) kp,, = (%) (B kw)
= ﬂa)2

. . d w
Molecular diffusion process: “Prjy = — (v—
0x4 0xg

. . d ow

Eddy diffusion process: “Pry = — | ovp—

0xy 0xg4

(8.26)

where the factor w/k has been introduced merely with the motivation to ensure
the dimensional consistency of the production and the dissipation-rate processes of
the w equation. Further, new dimensionless constants («, 8 and o) have also been
introduced to possibly have better control over the performance of the final closure
model. Thus, the fully modelled transport equation of w is:

w dw aw\ R;j 0 (V; ad Jw
Vg = (B2 LI gt L (122
ot 0xg4 k P 0x;j 0xg4 0xg4

0 o
- _— 8.27
+ 0xq (UUT qu> ( )

In summary, (5.2), (5.8), (8.5), (8.6), (8.72), (8.22) and (8.27) form a mathemat-
ically closed set of 18 scalar equations (a combination of algebraic equations and
partial differential equations) employing the k-w closure.
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(Vi) _0
3xi
(v 9V 19 92 (V; 1 9Ry;
(Vi) v (Vi) __1a(p) ; (Vi) | 10R
ot 0x 0 0X; oxroxy p 0xg

Rij — R;l;nsotroplc _ gpkfsij

R??isotropic _ ZHT ( Sij)
k
Ur = p—
w
Ak ok  Ri; 9(V;)

ok ok Bk 4 vy 2K
o+ ) g = Bkt~ |:(v+avT) }

P 0x;j Xq 0xy

ow dw aw\ Rij o (V;) 2 d dw
- vy — — (ZZ) 2 _ e gl
3 T q>axq <k) o ax, P e (YT

(8.28)

The 18 unknowns appearing in this equation set are: V; (3 scalars), p (1 scalar), R;; (6
scalars), R?;“SOHOPIC (5 scalars), w7 (1 scalar), k (1 scalar) and w (1 scalar). Further,
there are five closure coefficients «, 8*, B, o and o* that need to be prescribed
by the modeler. Since, for closure, the k- model has added two additional partial
differential equations (PDEs) (those of k and w) over and above the four PDEs that
are the RANS continuity and the momentum equations (5.2, and 5.8), this kind of

closure is also called a two-equation turbulence closure model.

8.3.1 Selection of Closure Coefficients

In Sect. 8.2 we discussed that turbulence modellers tend to employ available exper-
imental databases or direct numerical simulation databases of simple flow fields to
select the best possible values of various closure coefficients. The specific choice
of those simple flow fields depends on the modeller’s preference. To select appro-
priate values of the closure coefficients, the k-w model employs experimental/DNS
databases of two simple flow fields: decaying turbulence and the log-layer of a flat
plate boundary layer. The detailed procedure for selecting the closure coefficients is
explained in the next subsections.

Decaying Turbulence

For the k-w model, we first employ the database of decaying turbulence to select
an appropriate value of the ratio 8*/8 such that the model can reproduce some
specific behavior as observed in a DNS/experimental database of such a flow field.
In a decaying turbulence flow field (a statistically homogeneous flow field), spatial
derivatives of all expected values vanish, leading to the following simplified forms
of the modelled transport equations of k and w (8.28).
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dk
and
dw 5
I = —Bw (8.30)

where % has been replaced by j—t, because neither k£ nor w varies spatially.

The form of the w Eq. (8.29) allows us to integrate it between two time instants z,
(areference time in the past) and ¢ (the current time instant) leading to the following
explicit expression of w in terms of 7.

Wy

where w, = w(t =1t,).
Next, we use this explicit expression of w(¢) in (8.29) leading to the following
form of the k equation.

dk
dr

—B kw,

= Trobi—1) 2

—B*kw
Integration of (8.32) between the same two-time instants #, and ¢ leads to the fol-
lowing expression.

k(1) = ko (14 woB(t — 1,))F/P (8.33)
where k, = k(t = 1t,).

Having obtained explicit expressions for both k(¢) and w(#), we now focus on a
sufficiently late stage of the evolution of the flow field such that > #,. At such time
instants, the expression in (8.33) is simplified.

k(1) = ko (1 + 0oB(t — 1) 1P~ ky (1 + 0, )PP
~k, [(woﬂ)—ﬂ*/ﬂ] (BB (8.34)

Investigations employing an experimental database of decaying turbulence (grid
turbulence) show that turbulence kinetic energy decays as

K ~ " (8.35)

where n is found to lie between 1.0 and 1.5 [6]. Comparing the expressions in (8.34)
and (8.35), the modelers concluded

*k
F =n. (8.36)
B
Finally, the modelers selected 1.2 as the value of n leading to
*
Foia (8.37)

B
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Log Layer of a Flat Plate Boundary Layer

Proceeding further, the k-w model is taken to another simple flow field: the flat plate
boundary layer. We have discussed earlier in Chap. 6 that at high Re;, the mean
continuity and the mean momentum equation of the RANS equation (8.28) set can
be simplified to the following form (already included in (6.77)).

:0,
0x1 + 0x2

3 (V1) (Vi)  —1a(p) 92 (W) 13<pV1Vz>
(Vi) +(Va) S AT A -

0x1 dx2 p 0xy 0x20x3 P 0x2

(8.38)

The (V1) equation in (8.38) can alternatively be expressed in terms of o{3°*" as

a (V1) +(Va) a (V1) _ la(gln%ean

v
V) 0x1 0x2 L 0x2

(8.39)

where ™" is the total stress tensor in the mean flow field inside a boundary layer
(6.80). The stress o5°*" is composed of two parts: the viscous stress and the Reynolds

stress
3 (V1) ;o a (V)
mean
o2 12 9% pV1Va M 3

+ Ri2 (8.40)
X2

Using the closure suggested by the k-w model (8.28), Ry» is expressed as

;o (Vi)  9(W)\1
R =—<VV)=2 Sip) =2 - 8.41
12 ViV, ur (S12) MT( P ox1 )2 (8.41)
The order-of-magnitude analysis at Re; 3> 1 shows (6.31) that
(Vv 0 (V.
(V1) (V2) (8.42)
0x2 0x1
Thus, (8.41) simplifies to
/ / 8 (V])
Rip = _<pvl v2> ~ ur , (8.43)
0x2
Thus, inside a boundary layer, the total stress, 05" (8.40) is expressed as
. o (V1) ' a (V1)
ot = ==L (—pV V) = (u+ ) (8.4)
0x) 0x2
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Next, we refer to Fig. 6.5 (DNS database of a flat plate boundary layer) where we
observe that inside the log layer

o ~ Rio (8.45)
Further, as shown in Fig. 6.6, inside the log layer,
Ri» =~ 1, ( constant at a fixed axial station) (8.46)

Thus, based on the expression of o{3°" in (8.44) and using these two specific obser-
vations (8.45 and 8.46), two conclusions are drawn for the flow inside the log layer:

ur > 1 (8.47)
and
0 a (V1)
| pr =0. (8.48)
0x2 dx2

The DNS-based observations listed in Eqs. (8.45) and (8.46) also imply that the
entire RHS of (8.39) vanishes. This, in turn, leads us to the conclusion that the LHS
of (8.39), which represents the advection process of the quantity (V7), too, vanishes
inside the log layer.

vy SOy 20 (8.49)
0x1 0x2

We now turn our attention to the modelled equations of k£ and w (8.28). Since the
flow inside a boundary layer is (i) statistically stationary, (ii) statistical homogeneous
in the ez direction and (iii) the gradient of an expected value in the ¢, direction is
much larger than that in the ¢; direction, these equations simplify to the following
forms.

ok ok Ri2 0 (V1) N 0 ok

Vi) — Vo) — = — — B*k — * —

Vi) 0x1 + ) 0x2 p  0x2 ko + 0x2 (v to UT) 0x2
(8.50)

Vi) w V) w awRiy 0 (V) 8 2, 0 W+ )8a)

— — = — Bw — | (v+ovp)—

! 0x1 2 0x) pk 0x2 0x) T 0x)

(8.51)

where using the conclusions of the order-of-magnitude analysis (6.31 and 6.34)
performed earlier in Chap. 6, the mean velocity gradient has been approximated to
the following form.

erel. (8.52)
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Next, we confine our discussion only to the log layer. Inside the log layer, we
have ur > w (8.47). The symbols o* and o appearing in the eddy diffusion pro-
cesses of the two quantities are closure coefficients. Even though they have not been
determined yet, we do expect them to have their orders of magnitude close to unity.
With this anticipation, it is still plausible to neglect the viscous diffusion process in
comparison to the eddy diffusion process in the two Eqgs. (8.50 and 8.51). Thus,

w0t oom ] [y 2
— |~ |ocTvr—
0x2 0x2

w

dw
|:(v + avT)—i| ~ |:0vT—i| . (8.53)
0X2 0x2

Accordingly, (8.50) and (8.51) are simplified further to the following forms.

Vi) ok 4 (W) ok Ry 0 (Vy) Bk + 0 . 0k

— —_— = — w+ — |ocFvp—

! 0x1 2 0X2 p  0x3 dx2 T8x2
(8.54)

w ow awRi 0 (V) 5 ow

Vi) — Vo) — = — — —

M TV 90 = T, P T am |7 o
(8.55)

Earlier, DNS-based evidence led us to the conclusion that the advection process
of the (V) must vanish inside the log layer. Even though at this point, there is no
such direct evidence available for drawing similar conclusions about the respective
advection processes of (8.54) and (8.55), it is assumed [10] that in the log layer,
the advection processes of (8.54) and (8.55), too are negligible. This leads to the
following simplified forms of (8.54) and (8.55).

Ri2 d(V; 3 ok
0=-12 V1) —,B*ka)+—|:a*vr—:|
dx2

p  0x2 0x2
(8.56)
Rz 3 (V d d
0= @RIV g, 9 f 0@
ok dxp dxp 0x2
(8.57)

Thus, the log-layer analyses of the (V), k and w transport equations adopted by
the k-w model has led us to a system of three Egs. (8.48), (8.56) and (8.57) which
are summarized below.
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0 (ko _,

dx2 \w 0x2 o
kTov)7? 3 k ok

L AT SR PSS
o | 9x 9x2  0x2
3 (V)12 3 ko

o (V1) S PPN AL
ax3 dx2 | wdxz

(8.58)

where Ry has been expressed in terms of w7, and the quantity w7, itself has been
expressed in terms of k and w (8.28).

We observe (8.58) is a set of three equations in as many flow variables ((V1), k and
). It can be verified that the following algebraic functions of these flow variables

do satisfy (8.58)
1
(Vi) = /T—“’—ln{x—2 T—“’} (8.59)
pik vyop

uz
k= (8.60)
/ﬂ*
W= (8.61)
VBFKx2
with an additional algebraic constraint on the closure coefficients (8.62),
B oK?
o= — — (8.62)
B* VB

Algebraically, the constant « appearing in the solution set can be arbitrarily chosen.
However, to ensure the consistency of the algebraic solution of (V1) (8.59) with the
experimentally observed law of the wall, we must set it to be the same constant
(k = 0.41) that appears in the experimental curve fit shown in Fig. 6.4.

To leverage this solution set further for selecting closure coefficients of the k-w
model, we appeal an additional observation which is based on experimental data. An
optimal curve fit in the log layer shows that [12]

Tw

i 0.3 (8.63)

which, with a minor rearrangement, is expressed as

10
k ~ ?u% (8.64)
Comparing this experimentally-observed curve fit included in (8.64) with (8.60), we
select
9

= —. 8.65
100 (865)

ﬂ*
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Subsequently, using (8.37), we select

5 3
p=gandp” =5 (8.66)

It seems the values of the two closure coefficients o* and o, which are used to
model the eddy diffusion process in the k and the w equations, respectively, have

been selected by the modellers [11] following a trial-based approach rather than any
plausible physics-based arguments.

o =0 = l (8.67)
2
The modeller justified these choices by comparing the performance of the k- with
some experimentally observed behavior (no further details not available in [11],
though. However, once these values have been selected, the constraint obtained from
the log-layer analysis allows us to readily select a value of «.

B oK? 5
= E — W =5 (8.68)

This step completes the selection of all closure coefficients, and the k- model is
now summarized as:

(Vi) _0
Bxi
AV AV 19 92 (V; 1 9Ry;
<z>+<Vk) (Vi) __1a(p) ; (Vi) | 10R
at oxy 0 0X; oxroxxy p 0xg
RJ — Ram%otroplc _% k8

R?;nsotroplc — ZH«T <Sij>

k

nr=p-

ok ok Rij 0 (Vi) 5 ok
~4lv — i — B*k —_

o q>8x o ax, P w+axq [(”+a VT)axJ

Jw aw R,/ 0 5 d
— +{V,) b
3 V) axq - (% ) o ax, Pt 5, [(”+0”T)axq}

P 3 1

5
00 f=%7=27=2%=5

(8.69)

For more information about various computational aspects and performance bench-
marks related to the k-w model, the reader is referred to [11].
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8.4  The k-e¢ Model: A Case Study on Turbulence Modeling

The present form of the k-e model is based on the work of Jones and Launder [13]
and Launder and Sharma [14]. To model wr (8.7), like the k-w model, first the k-¢
model chooses to estimate Vyctation Using the local instantaneous value of k in the
flow field,

VHuctation ~ kl/z- (8.70)

Further, the model introduces the dissipation rate (¢) to estimate Igyctyation DY using
(7.96).
u?, %372 %372
€~ — ~ ——— = Ilctuation ~ 6 (8.71)

lo l fluctuation

Using (8.71) in (8.7), we arrive at the following modeled form of ur

k2
ur = Cup— (8.72)

where C,, is a dimensionless constant introduced by the modellers. Thus, the two
unclosed unknowns in our hands are k and €. In general, we expect them to change
with space and time. The k-e model proposes to add (to the existing set of four partial
differential equations, 5.10), two additional partial differential equations describing
the evolution of k and € in the flow field.

We have earlier derived the transport equation of k (5.56). The unclosed terms
are highlighted in (8.12) as A, B and C, and these need to be modelled. Since
the modellers are willing to add a transport equation for €, anyway, they leave the
dissipation rate € as it is in Eq. (8.12).

To model Term B in (8.12), like the k-w model, the gradient diffusion hypothesis
is adopted (8.21), and Term B is modelled in the following form.

G A 3 [yk* ok
— (v, = (=== (8.73)
0x4 2 0xg \ € x4

—_——
B

where y is a dimensionless constant.

Term C is the next unclosed term in (8.12). The main modeling challenge posed
by this term is the involvement of pressure fluctuations in it. Again like the k-w
model, it is decided to drop this term altogether, because it poses a challenge due to
the presence of pressure fluctuations therein. In summary, the modelled form of the
transport equation of k for the k-¢ model is as follows.
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ok 3k Rij (Vi) 9%k 3 (Cuk> 3k
St e = B T ey (2R
at 0x4 P 0x; 0x40x, 0xy \ ore 0x4
ST R A
P 0x; —— x4 | 0x4 0xg4 | o x4
——— 11
I 11 v
(8.74)
where vr is the kinematic eddy viscosity,
k2
vy =Cp— (8.75)
€

The dimensionless constant y appearing in (8.73) has been combined with C, to
have a new closure coefficient o} appearing in the eddy diffusion process, and this
remains to be determined. Equation (8.22) is symbolically expressed as

ok

0k
5"'( a)

— =kp kP kP Py (8.76)
0xq

where the four individual processes on the RHS of this equation are identified as

Production process kp, = 2271

Dissipation process kprr o e

Molecular diffusion process k P i — |:v —]

ok
Eddy diffusion process Py : — |:U_T_}
0xg | ok 0x4

1V

Like the transport equation of k, the intention of the modelers of the k-€ was to
add a transport equation for €, too. The exact equation of € can be derived. However,
the resulting equation (not included here) has multiple unclosed terms, which require
modeling anyway. Thus, a partial-differential equation modeling the evolution of €
is postulated in its entirety, and for such a postulation, we borrow some guidelines
from the modelled equation of k (8.76).

Like the modelled equation of k, (8.76), we propose to have the presence of four
essential processes in the evolution equation of €. These four processes are: the
production rate of € (¢ Py), the dissipation-rate of € (¢ P;;), the molecular diffusion
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rate of € (° Prry), and the eddy diffusion rate of € (¢ P;y). Thus, symbolically, the
transport equation of € is expressed as:

de de € € € €
+(Vy) =— =Pr —“Pr1 +Pri +“Pry (8.77)
ot 0xy

Further, we assume (a modeling assumption) that the respective functional form
of the processes of the € equation are the same as the corresponding processes of the
k Eq. (8.76) such that

~

Ceie
Production process: € P; = ( €l )kp

k
_ Cere &a“/t)
k 1Y 3x]‘

Cere Cere?
Dissipation process: € Py = ( 22 )kP” = Eli

0 0
Molecular diffusion process: € Pjj; = — (v 8—€>
Xq

0 0
Eddy diffusion process: Py = — (V—T _e)
Oc 0xg4

(8.78)

where the factor € /k has been introduced merely with the motivation to ensure the
dimensional consistency of the production and the dissipation-rate processes of the
€ equation. Further, new dimensionless constants (Cc1, C¢2 and o) have also been
introduced to possibly have better control over the performance of the final closure
model. Thus, the final form of the fully modelled transport equation of € is:

9 9 C Ri;i 9 (V; 2 9 9
e ) 2 = (G Badl) g, D (0

x4 k p  0x;j k x4 x4
0 vr d€
+ ——— (8.79)
0xg \ 0c 0x4

In summary, (5.2), (5.8), (8.5), (8.6), (8.72), (8.74) and (8.79) form a mathemat-
ically closed set of 18 scalar equations (a combination of algebraic equations and
partial differential equations) employing the k-e closure.

V) _,
0x;

(Vi AV, 19 32 (V;)  13Ry
( l>+<Vk> ( 1) _ - (P) +v ( l> - ki
dat 0Xx p 0x; 0X 00Xk P 0xg

. . 2
anisotropic

Rij= ijl _gkaij
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R;\;lisotropic —2ur <Sij>

pk?
mr = CMT
ok ok R;i; 9 (V; a ok
_+<Vq>_:i (z>_€+_ v_"_V_T _
ot 0xg o 0x; Xq ox ) 0xq
3 3 C Rij (Vi) Ceae® 93 d
—6+<Vq>—6= el€ | Rij (1>_ €2€ + 2 V+V_T o€
at 0xg k p  0x;j k 0xg oc ) 0xg4

(8.80)

The 18 unknowns of in this equation set are: V; (3 scalars), p (1 scalar), R;; (6

scalars), R? misotropic (5 scalars), ur (1 scalar), k (1 scalar) and € (1 scalar). Further,

there are five closure coefficients C,,, oy, Cc1, Cez and o that need to be selected
by the modeler. Since, for closure, the k-¢ model has added two additional partial
differential equations (PDEs) (those of k£ and €) over and above the four PDEs that
are the RANS continuity and the momentum equations, like the k-w model, this is
another example of the two-equation turbulence closure models.

8.4.1 Selection of Closure Coefficients

To select appropriate values of the closure coefficients, the k- model employs exper-
imental/DNS databases of three simple flow fields: decaying turbulence, the log-layer
of a flat plate boundary layer and homogeneous shear flows. The detailed procedure
for selecting the closure coefficients is explained in the next subsections.

Decaying Turbulence

For the k-€ model, the modellers first employ the database of decaying turbulence to
select an appropriate value of Ce>, such that the model can reproduce some specific
behavior as observed in experimental databases of such a flow field. In this flow field
(a statistically homogeneous flow field), spatial derivatives of all expected values
vanish, leading to the following simplified forms of modelled transport equation of

k and € (8.80).
dk
— =— 8.81
dt ¢ ( )

and

de _ _c,€ (8.82)

e~k '
where % has been replaced by % because neither k nor € varies spatially (decaying
turbulence has a statistically homogeneous flow field). It can be verified that (8.81)
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and (8.82) are simultaneously satisfied by the following functions of k and € in terms
of ¢ (time)

k
k() = —2ot™" and e(r) = —2p 7, (8.83)
o (6 %)

subject to the condition
n+1
n

Cer = (8.84)

The symbols k, and €, are the values of k and € at a reference time. The symbol «,
is related to n (a non-dimensional number) in the following manner.

Qp€op

ko

(8.85)

n =

It is observed in experiments [6] on decaying turbulence, that indeed k decays as
k ~ t7" (in accordance with (8.83)) where n is observed to lie within the range of 1.0
and 1.5 in experiments [6]. The k-e modeler selected n = 1.08. Thus, (8.84) leads
to

Cer =1.92 (8.86)
Log Layer of a Flat Plate Boundary Layer

Proceeding further with the selection of the values of the closure coefficients, the k-¢
model is taken to the log layer of the flat plate boundary layer. Following exactly the
same arguments as presented in (8.38)—(8.46), in context of the k-w model, we are
again led to the same conclusions that in the log-layer,

uwr > 1 (8.87)
and
0 a (V1)
— | ur =0, (8.88)
0x2 0x2
which for the k-€ model (8.88) means
B] (Vv 9 C.k*> 3 (V
D (2 9 (pCkTB VI (8.89)
ax2 0x) 0x2 € x2

where the expression of p7 has been used from (8.72).

The DNS-based observations listed in Eqs. (8.45) and (8.46) also imply that the
entire RHS of (8.39) vanishes. This, in turn, leads us to the conclusion that the LHS
of (8.39), which represents the advection process of the quantity (V7), too, vanishes
inside the log layer.

a (V1) a (Vi)

(V1) o, + (V) % ~0 (8.90)
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We now turn our attention to the modelled equations of k£ and € (8.80). Since the
flow inside a boundary layer is (i) statistically stationary, (ii) statistical homogeneous
in the é3 direction and (iii) the gradient of any expected value in the ¢, direction is
much larger than that in the ¢; direction, these equations simplify to the following

forms.
vy 2Ky K _Redti) 9 [(u+ ”—T> %}

0x1 0x2 p  0x2 0x2 or ) 0xp
(8.91)
9 9 Cc1€R12 8 (V, Cae? 0 9
(V) 9 4y 96 _ CereRi Vi) _ Cae” | 9 () V1) 0
0x1 0x) pk 0x) k 0x2 o ) 0x2
(8.92)

where using the conclusions of the order-of-magnitude analysis (6.31 and 6.34)
performed earlier in Chap. 6, the mean velocity gradient has been approximated to
the following form.

(V1)

V(V) = Py,

eer. (8.93)

Next, we confine our discussion to the log layer. Inside the log layer, we have
ur > u (8.47). Even though the closure coefficients oy and o have not been deter-
mined yet, it is anticipated to have their orders of magnitude close to unity. With this
anticipation, it is still plausible to neglect the viscous diffusion process in comparison
to the eddy diffusion process in the two equations. Thus,

1% ok vr ok
vt — ) — |~ | ——
Ok 3X2 O 8x2
vr\ de vr de
vVt — | — || ——. (8.94)
oc ) Ixo Oc 0X2
Accordingly, (8.94) further simplifies (8.91) and (8.92) to the following forms.

Vi) — Vo) — = _—
(1>8x1+<2>8x2 p  0x2 ¢ 0x2

ok ok _ Rip 0 (V1) d0 [vr 0k
o 0x2
(8.95)

vy € 4w

de  CaeRp (Vi) Cae® 0 [vr e
0x1 dxy ok 0x) k 0x7

0 32
(8.96)
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Earlier, DNS-based evidence led us to the conclusion that the advection process
of the (V) must vanish inside the log layer. Even though at this point, there is no
such direct evidence available for drawing such conclusions about (8.95) and (8.96),
it is assumed [11] that in the log layer, the advection processes are negligible for k
and e, as well. This leads to the following simplified forms of the two Eqs. (8.95)
and (8.96).

o= RmIU 9 for k)
1% sz 3)62 Ok 8)62
(8.97)
oo CacRnd (i)  Coc® 8 [v_Ta_e}
pk 0x2 k 0xp | 0c 0xp
(8.98)

Thus, the log-layer analyses of the (V1), k and € transport equations proposed by
the k-e model has led us to a system of three Egs. (8.89), (8.97) and (8.98) which
are summarized below.

kB (Cukz 9 (V1)> _o

0x2 € 0x2
C, k2 Td (V) 7> 3 [C,k? dk
I (l) e+ = uh— Ok -0
€ 0x2 0x2 €0 0x2
AWV Coe® 8 [Cuk2 8
FORTo AL A L
X2 k 0xy | €oc 0xp

(8.99)

where Rp, has been expressed in terms of w7, and the quantity w7, itself has been
expressed in terms of k and €.

We observe (8.99) is a set of three equations in as many flow variables ((V1), k
and €). It can be verified that the following algebraic functions of these flow variables

do satisfy (8.99)
1
(V)) = /t—“’—zn{x—2 t—“’} (8.100)
pr |vyp

2
k= (8.101)
Cu
3
€= % (8.102)
KX2

with the following additional algebraic constraint on the closure coefficients,

K? =0, (Cer — Ce1) /C (8.103)
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Fig.8.3 Profile of (V;) ina A
homogeneous shear flow >,

A 4

<V >

Algebraically, the constant x appearing in this solution set can be arbitrarily chosen.
However, to ensure consistency of the algebraic solution of (V7) (8.100) with the
experimentally observed law of the wall (6.90), we set that to be the same constant
that appears in the experimental curve fit of the law of the wall (x = 0.41).

To leverage this solution set further for selecting the closure coefficients of the
k-e model, we appeal to another observation made on some experimental data of a
flat plate turbulent boundary layer. An optimal curve fit in the log layer shows that
[12]

T o~03 (8.104)
pk

which, with a minor rearrangement, is expressed as
k ~ —u? (8.105)

Comparing this experimentally-observed curve fit with (8.101), we select

9

=—. 8.106
Cu 100 ( )

Homogeneous Shear Flow

The modellers of the k- model employ some known behavior of another kind of
simple flow field—homogeneous shear flow—to select the closure coefficient o.
Before we provide the details of this selection procedure, we briefly describe a
homogeneous shear flow.

A homogeneous shear flow is a turbulent flow field with the mean velocity gradient
being of the following form.

V (V)= Séé (8.107)

where S is a constant. In Fig.8.3 we present a schematic of the mean velocity
profile in a homogeneous shear flow. The slope of the velocity profile equals S
(8.107). Further, a homogeneous shear flow has homogeneous turbulence, which we
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described earlier in Chap. 5 (5.69). A homogeneous shear flow can be set up in a direct
numerical simulation [15] or in a wind tunnel experiment [16], and various statistics
of interest can be computed or measured. The utility of the homogeneous shear flow
is that it allows us to investigate the exact interaction between the production and
the dissipation processes of the turbulence kinetic energy without the interfering
effects of any inhomogeneous transport process (5.70). In a homogeneous shear
flow, the exact transport equation of k (5.56) simplifies (without making any further
assumptions) to

dk kp (8.108)
_— = — € .
dt
where
Ri2 d(V RS
tp - R di) _ Ri (8.109)
P 0x2 P
and
v, av,
e=v(—L L (8.110)
8)6]' 3)6]'

Several DNS databases of homogeneous shear flow shows that at large normalized
time instants, St, both k /€ and ¥P /€ tend to attain time-dependent asymptotic values
in these simulations.

d (k
— (—) ~0atSt >0 (8.111)
dr \ e
and
d k k
— <—P> ~ (0 and <—P) — 1.8atSr> 0 (8.112)
dt \ € €

We now turn our attention to the modelled k and € Eq. (8.80). In a homogeneous
shear flow, these equations are simplified (all inhomogeneous processes must vanish)

dk

= _kp

dt €

de Cer€\ & Cer€?

— = — - 8.113
dt < k ) P k ( )

With these equations, we find the time derivative of k/e.
d (k 1dk k de
dt edt €2dt
€

€

= — —1-=
€

+ Ce (8.114)
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This relationship is valid for the k-e model at all times in a homogeneous shear
flow. However, our interest is to focus on the asymptotic behavior when the LHS of
(8.114) vanishes, leading to the following equation for C¢|

€
Ce1 = (Ceaa — 1)5 +1 (8.115)

Even though in direct numerical simulations, the asymptotic value is observed to be

kTP = 1.8, the k-¢ modeller employed kTP = 2.1 to arrive at

Ce = 1.44. (8.116)

Having selected the values of C,, (8.106), Cc2 (8.86) and C (8.116), we go back
to the algebraic constraint that emerged from the log-layer analysis (8.103). This
leads to arrive at a value of o,

K2
O —m ———— —
7 JCu(Cer — Ce)

where the modeller used x = 0.43.

Lastly, the value of the closure coefficients oy, which has been used to model the
eddy diffusion process in the k equation, has been chosen as (without any physics-
based justification)

1.3 (8.117)

This step (8.118) completes the selection of all closure coefficients. Thus, the k-¢
model, along with all closure coefficients, is now summarized as:

a (Vi) _0
3xi
a(V; 3V 19 9% (V; 1 ORy;
<l>+<vk> (Vi) __1a(p) ) (Vi) | 10R
Jt Xy p 0x; oxxoxy p 0xg
otropic 2
Rl'j — R?jplsotroplc _ gpk(S”

Rgpisotropic = 2ur <Sij>

i

2

pk

=C,—

“r I c
ak

ok Rii 0 (V; 0 v ok
_+<Vq>_:l ('>—6+— v+_T -
ot 0xg P 0xj 0x4 o) 9xg4

9 9 C Rii 9 (Vi)  Cere? 9 9
_€+<Vq>_€ _ el€ ) Rij (Vi) _ Leae + 2 V—}-V—T o€
at 0x4 k o 0x; k 0xg oc ) 0xq4

9
Cﬂzm,akzl,Cel=1.44,C€2=1.92,a€=1.3

(8.119)
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One of the major drawbacks of the k-e¢ model is that the modelled transport
equation of € does not correctly show the near-wall asymptotic behavior (discussed
earlier in Chap. 6) in the viscous sublayer. Thus, this form of the transport equation
of € cannot be integrated all the way to a solid wall inside a boundary layer. Over the
years, many modified forms of the k-e model have been proposed which can address
this problem of the model presented in (8.119). To differentiate the model presented
in (8.119) from those modified versions, the former is commonly referred to as the
standard k-e model. For further information about various computational aspects
and the performance benchmarks related to the k-€ model, the reader is referred to
[11].
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Scale-Resolving Simulations
of Turbulent Flows

In Chap. 5 we introduced the RANS equation set to attain the ability to seek solution
of the set of primary variables of engineering interest: (&) and < E)' If we could

attain this ability, this would have paved the way for finding the expected values
of the velocity and the pressure fields without relying on any type of averaging.
However, the RANS equation set (5.10) turned out to be mathematically unclosed
due to the appearance of the Reynolds stress tensor in the mean momentum equation.
Many turbulence closure models have been proposed to achieve this mathematical
closure. However, these closure models are approximate by their very nature, and
they invariably add uncertainty to the solution of the mean velocity and the mean
pressure fields that emerge using these closure models.

On the other hand, direct numerical simulations, which solve the exact governing
equations of the velocity and the pressure fields (3.9), do not require any closure
model, and thus they are free of any such modeling uncertainty. If applied to a
statistically stationary or a flow field which has at least one direction of statistical
homogeneity, the solution of the instantaneous flow field from a direct numerical
simulation can be appropriately averaged to obtain the expected values of the velocity
and the pressure fields. However, the main challenge posed by a direct numerical
simulation is the requirement of having extremely fine resolution in temporal and
spatial discretization. This makes it prohibitive to perform DNS of flows at high
Reynolds numbers.

The Kolmogorov hypotheses, which we discussed in Chap. 7, suggest that the
small-scale motion in a turbulent flow field tends to be more isotropic and universal.
In contrast, the large-scale motion tends to be more dependent on the boundary
conditions of the flow field. Further, we also realize that it is the requirement of
resolving the smallest scales of motion (the Kolmogorov length and time scales),
rather than the larger scales of motion, which actually intensifies the computational
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demand of performing a direct numerical simulation. These two realizations lead us
to the idea of conceptually decomposing the velocity and the pressure fields based
on a filter function.

9.1 The Filtered Description of a Turbulent Flow Field

In the filtered description, the instantaneous flow variables are subjected to a filter
function which tends to retain the contributions of only those scales which are larger
than a cutoff length-scale (say Lcyiwofr) and discards the contribution of the scales
smaller than L¢yof to the flow variable of interest. We symbolically denote such
a filtering operation by (.) . Accordingly, the instantaneous velocity and pressure
variables are decomposed as

Vi=(Vidy+V, andp=(p);+p ©.1

The symbols Vi” and p” are called the residues of V; and p subject to the filtering
process. These residues, by definition, when added back to their filtered counterparts,
recover the corresponding instantaneous variables.

We anticipate that seeking numerical solutions of (V;) r and (p) ; would pose less
stringent requirements of spatial and temporal resolution to the CFD methodology
compared to resolving the instantaneous variables V; and p themselves in a direct
numerical simulation. Equation (9.1) forms the basis of what we call the scale-
resolving simulations. Strictly speaking, a direct numerical simulation is the most
accurate scale-resolving simulation. However, in contemporary literature, the phrase
scale-resolving simulations is typically used to refer to those numerical simulations
which attempt to solve for the filtered velocity and pressure fields ((V;)  and (p) ;).

The decomposition (9.1) is apparently similar to the decomposition introduced in
Chap. 5 wherein the instantaneous velocity and pressure variables were decomposed
in terms of the means and the fluctuations.

’

Vi=(Vi)+V; and p = (p) + p ©.2)

However, unlike the mean operator, (), with which

(@) =0and (¢) =0 9.3)

for the filtering operator, () Iz in general,

(@), # (@) and (¢]) [ #0 9.4)

where ¢ is an instantaneous variable of a turbulent flow field.

Further, unlike (¢), which is a deterministic quantity, (¢) ! is still a random vari-
able. Thus, to extract any meaningful statistics of the random instantaneous flow
variable (¢), an appropriate averaging process of (¢)  would still be required.
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9.2 Governing Equations of a Filtered Flow Field

The governing equations of the filtered flow field are the governing equations of
our primary variables of interest in a scale-resolving simulation: (V;) » and (p) .
These equations are derived from the instantaneous Navier-stocks equation set (3.10
and 3.11). At this point, we assume the filter function (.) s to have the following
properties,

’

<2%£> _a)y
f

ot at
<8¢>1> )y
Bxi f_ axi ’
and (p1 +¢2) ; = (d1) f + (¢2) (9.5)

where ¢1 and ¢, are two instantaneous flow variables of interest.
We subject the instantaneous continuity equation (3.10) to the filtering operator.

avi\
<8x,' >f = (0); or, 9.6)

subsequently, using the properties listed in (9.5) leads us to the following form of
the filtered continuity equation

a(V;
Wi _g 9.7)
ax,-
Next, we subject the instantaneous momentum equation (3.11) to the filtering
operator
av; v 3 3%V
P Vi) ={—L ©8)
Jt Xy, ¥ 0x; Xy 0X) ¥

Again, employing the properties listed in (9.5), the filtered momentum equation is
expressed as

dt

3 (pV; Vi 3 32 (V;
(o l>f+<,0Vk_’> __ (P)f+u (Vids 9.9)
Oxk [ ¢ ax; Xk 0 Xk

Since p is a constant, it commutes across both the filtering and the derivative
operators.

I(Vi)y Vi Hp)y 9 (Vi)s
Vi) = 9.10
ot <k8xk>f PR T, ©.10)
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The second term on the LHS Eq. (9.10) is the filtered value of the advection term.
Using the instantaneous continuity equation (3.10), this term is expressed as

Vi a (Vi Vi) Vi d (Vi Vi)
p\Vig -] =P —Vie—) =p
X/ g X Xy f X ¥
3 (ViVi) s

= p— 57 9.11
Jo ™ (9.11)

Further, using the decomposition scheme (9.2), we recast the filtered value of the
product of velocity components as

Vi) = (@ + V) + V),

= (Vi 0+ VW Vi 4 V),

(Vv )+ (v )+ (W ),

+ (v v,;’)f>f ©.12)

All four terms on the RHS of (9.12) are, in general, non-zero. Further, all these
quantities are deemed as secondary unknowns.

It is conventional to club together all the terms on the RHS of (9.12) and express
(9.12) as the product of the filtered velocity components (V;) ; and (Vi) ; and addi-
tionally one single secondary unknown quantity sz

(ViVidp = (Vi) p (Vi) 7 + 7 (9.13)

where rl{ represents the (ik)th component of the second order tensor 7, which is

called the generalized central moment tensor of the velocity field [17]. Alternatively,

it is also referred to as the (ik)th component of the turbulent stress tensor.
Substituting (9.13) in (9.10) leads to the following form of equation:

o Wiy 0 (Vs (Vidy) — 13(p)y +v82<v,->f i
Jat 0Xy - P 0Xx; 0X 00Xk 0Xy

(9.14)

Using the filtered continuity equation (9.7), the advection term in (9.14) can be
further simplified and (9.14) is expressed as

a(V; d(V; 190 32 (V; atl
( 1>f+<vk>f (t>f=__ (P>f+v <t>f__lk
ot Xy o 0x; 0X 0 X 0Xy

(9.15)
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Equation (9.15) is called the filtered momentum equation. The set of equations
comprised of (9.7) and (9.15) is called the filtered Navier-Stokes equation (summa-
rized below).

a(Vidy
Bx,- h
(Vi) s IVy 13y (Vi) ath
Vi) ¢ =—— - = 9.16
ot +{ k)f 0Xy P 0x; Tty 0Xp Xk 0Xy ( )

The primary unknowns of the filtered Navier-Stokes equation set are the filtered
velocity components and the filtered pressure variable: (V;) r and (p) ;. The tensor

77 is deemed as a “new” quantity or secondary unknown tensor. This is a symmetric
tensor and thus represents, in general, six secondary scalar unknowns. Like the
instantaneous momentum equations (3.11), the mean momentum equations (9.15)
represent three non-linear PDEs. The nonlinearity arises because of the advection
term (second term on the LHS of 9.15).

Like the RANS equation set (5.10), the filtered Navier-Stokes equation (9.16)
is mathematically unclosed, and closure modeling is required for the t7 tensor.
However, if Lcytoff is chosen to be small and close to the dissipative range of scales of
motion, the required models are expected to be simpler and more widely applicable.
This anticipation is based on the Kolmogorov hypotheses, which suggest that the
statistics pertaining to the smallest scales of motion tend to be more isotropic and
universal.

The so-called large eddy simulation or LES methodology of turbulence compu-
tations sets the Lcyroff to be somewhat larger than the dissipative length-scales and
then uses simple algebraic closure models for the riT. components. Since the Lcyoff
is still larger than the smallest scale of motion (the Kolmogorov length-scale), an
LES simulation can be performed on a grid coarser than what is required for a direct
numerical simulation of the same flow field. This results into a considerable reduc-
tion in the requirement of computational resources. For more details about the LES
methodology, the reader is referred to [6].

In recent years, some other scale-resolving methods have also been developed,
which allow the user to choose Lyioff anywhere between the range

Lg; > Leutott > Lpy (9.17)

depending on the spatial resolution of the computational grid the user can afford
to have. Such methods are, in general, called the bridging methods of turbulence
computations. Even though bridging methods offer the freedom to the user to choose
Lcuoff commensurate to the available computational resource, the simple algebraic
closure models (like the ones used for LES) may not work effectively, and more
advanced models involving additional partial differential equations are required for
improved predictions of flow statistics. For more details on bridging methods, the
reader is referred to [18].
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Index

A dissipation range, 129
advection operator, 14 divergence of a tensor, 13
anisotropic part, 5, 136 dot product of two tensors, 9
antisymmetric tensor, 5 double dot product of two tensors, 12
area averaging, 54 dummy index, 7
averaged angular velocity vector, 26 dyads, 4
dynamic eddy viscosity, 138
B
Bernoulli equation, 95 E
boundary layer thickness, 78 €-4 identity, 13
bridging methods, 169 eddy, 28
buffer layer, 100 eddy turnover time, 120
eddy viscosity closure, 136
C Einstein’s summation rule, 7
central moment, 50 energy cascade, 121
chaos, 37 energy-containing range, 128
characteristic length scale of an eddy, 29 energy spectrum function, 118
characteristic time scale of an eddy, 29 ensemble averaging, 53
characteristic value, 82 Eulerian description, 22
closure coefficients, 140 event, 39
coefficient of diffusion, 142 expected value, 45
continuum description, 19
covariance, 51 F
critical Reynolds number, 38 filtered continuity equation, 168
cumulative distribution function (CDF), filtered momentum equation, 168
41 filter function, 166
curl of a vector, 14 fluctuating kinetic energy per unit mass,
73
D fluctuation, 48
decaying turbulence, 105, 156 fluid element, 19
direct numerical simulation, 37 fluid particle, 19
dissipation process, 69 Fourier amplitudes, 107
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Index

Fourier description, 107
Fourier modes, 107
Fourier space, 118

free index, 8

free vortex, 27

friction velocity, 97
spectral space, 118

Gaussian random variable, 42
generalized central moment, 168
gradient diffusion hypothesis, 142
gradient of a tensor, 13

grid turbulence, 107

H
homogeneous shear flow, 160
homogeneous turbulence, 160
homogenous turbulence, 74

index notation, 9

inertial reference frame, 36
inertial subrange, 129
inhomogeneous processes, 74
instantaneous flow field, 37
isotropic part, 5

J
joint CDF, 43
joint PDF, 44

K

coefficient of kinematic eddy viscosity,
144

k-w model, 141

Kolmogorov length-scale, 131

Kolmogorov’s first similarity hypothesis,
130

Kolmogorov’s hypotheses, 127

Kolmogorov’s  hypothesis of local
isotropy, 133

Kolmogorov’s second similarity hypothe-
sis, 131

Kolmogorov time scale, 131

Kolmogorov velocity scale, 131

Kronecker delta, 11, 116

L
Lagrangian description, 21
Laplacian operator, 14
large eddy simulation, 169
law of the wall, 100, 157

line averaging, 54
log layer, 100, 157

M
material derivative, 23
mean, 45
mean continuity equation, 57
mean material derivative, 69
mean momentum equation, 58
mean transport equation, 69
molecular diffusion process, 69, 142
moments of a random variable, 49

Navier Stokes equation set, 36
near-wall asymptotic behavior, 101
non-uniform velocity field, 23
normal strain-rate components, 27

(0]
outer layer, 100

P
Parseval’s theorem, 116
peculiar velocity, 136
permutation symbol, 12
Prandtl boundary layer equation set, 93
pressure-strain correlation process, 69
probability density function (PDF), 41
probability of an event, 40
probability theory, 39
production process, 69

random field, 39

random process, 39

random variables, 35

raw moment, 49

realization, 40

Reynolds number, 34, 88, 106
Reynolds stress tensor, 59
rotation-rate tensor, 27

sample space, 40

scale-Resolving simulations, 165
shear strain-rate components, 27
spectral density function of €, 119
spectral density function of k, 117
standard deviation, 50

statistically homogeneous, 52
statistically homogeneous flow, 105
statistically stationary, 52
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steady velocity field, 23

Stokes constitutive equation, 136
strain-rate tensor, 27

symmetric tensor, 5

Taylor microscale, 106

tensor of order n, 1

time-averaging, 53

trace of a tensor, 5

transformation rule: first-order, 2

transformation rule of second-order ten-
sors, 6

transitional flow, 38

triadic process, 127

turbulence closure problem, 59

turbulence kinetic energy, 69

turbulent boundary layer, 77

two-component velocity field, 23

two-dimensional velocity field, 23

two-equation turbulence closure models,
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U
ut,97
uniformly distributed random variable, 43
unsteady velocity field, 23

A\
variance, 50
viscous sublayer, 100
volume averaging, 55, 116
vortex, 27
vorticity vector, 26

w
wall shear stress, 96
wavenumber vector, 108
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