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FOREWORD

vi

The book titled Modern Perspectives in the Study of Electronic Systems by Professor Saurabh Basu and
Dr. Sourav Chattopadhyay consists of a set of rather important topics that are at the heart of modern
Condensed Matter Physics. It presents a detailed and pedagogical analysis of several important sub-
jects, such as the Quantum Hall effect, Topology, and systems where interparticle interactions play an
important role, such as Magnetism and Superconductivity. The choice of topics and the discussions
therein seem perfect in bringing the key elements together that the students should learn amidst the
vast literature that exists in today’s world. The style of presentation is also very clear and should be
helpful for self-study by the students.

The book is expected to be useful for advanced undergraduate students and also the beginners in
graduate studies who aim to take up condensed matter for research in the future. The topics are lucidly
described and each chapter provides a basic introduction to the subject, which should be useful while
delving deeper into it during graduate study. There is always a thin gap that exists between undergrad-
uate training deployed in the classrooms and graduate programs in a university or research institute,
which the students have the responsibility to bridge on their own. I feel that this book will aid them in
achieving this task in a fluent and successful manner.

Opverall, I find this book to be a useful addition to the subject of Condensed Matter Physics and rec-
ommend it without hesitation to the advanced undergraduate and graduate students.

Sumanda Juoani

Dr. Sumanta Tewari

Professor

Department of Physics and Astronomy
Clemson University

Clemson, South Carolina, USA

AIP Publishing Books
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PREFACE

It is somewhat implicit that the readers are familiar with the first course on quantum mechanics, which
mainly deals with the properties of a single and non-relativistic particle in the presence of a given poten-
tial that usually has a simple form. We give a brief recap of some of these problems below. Readers are
encouraged to look at the classic texts on quantum physics. For example, the eigensolutions (€,,, ¥,,) of

a free particle confined in an infinite potential well are found to be €, ~ n?, and ¢, ~ sin 27*/cos “Z*

4 L
inT*/L (n being the quantum number for the problem). Whereas, a

or, in an infinite space, ¢, ~ e
parabolic potential (simple harmonic oscillator) yields an equidistant energy spectrum of the form,
€, =(n+ %)hw, and the eigenfunctions are denoted by a Gaussian (Ne_"z ) multiplied by a polyno-
mial (Hermite polynomial) which possesses an even or odd parity depending on whether # is even or
odd. Such an even-odd nature of the eigenfunctions is an artefact of the symmetric potential, which
allows both even and odd solutions. Hence, the Hilbert space gets fragmented into one half for even #,

and the other half for odd n. Further, in a three-dimensional case, which is more complicated than its

one dimensional counterpart, in the presence of a Coulomb potential, appropriate for a hydrogen (H)
atom which has only one electron, the energy spectrum of an electron takes a form, €, = —% eV,

where n denotes the principal quantum number.

Furthermore, the barrier transmission problems in quantum mechanics may find potential applica-
tions in the transport properties of semiconducting heterostructures. There are a variety of barriers,
such as a finite step, finite well, or an infinite potential discontinuity (§-function) etc. where the formu-
lae of finding the reflection and the transmission coefficients are prescribed by matching the boundary
conditions of the wavefunctions and their derivatives across the boundary. Interesting consequences
occur when the energy of the particle is less than the barrier height, etc. An infinite sequence of poten-
tial profiles results in the Kronig-Penny model for solids, which describes the behavior of the electrons
in a crystalline solid, and yields the band structure which is indispensable for describing the electronic
properties of materials. Importantly, the results yield a classification of metals, semiconductors and
insulators.

¥S-LL:LL ¥20c Jequiedeq L0

In addition, the readers at the advanced level are encouraged to read the solution of the Dirac equation
both in the absence and in the presence of a variety of potential functions, for example, a Coulomb
potential, etc. In condensed matter physics, the relativistic nature of particles finds an application in
graphene, which shows a relativistic dispersion for the valence electrons close to the Fermi energy.
This gives rise to a vast field of two dimensional (and even three dimensional generalizations exist)
Dirac materials, where the electronic dispersion is linear in the wavevector, just like that of a photon.
However, the electrons have a much lower velocity (of the order of 10> — 10° m/s) than that of light, as
thus earns the name, pseudo relativistic dispersion. This linear dispersion has important ramifications
for the transport properties of Dirac materials.
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Technically speaking, physics deals only with one body and many body problems. Because a two body
problems reduces to a one body problem and a three body problems is unsolvable. However, physicists
and chemists routinely worry about ~10?* number of particles. With this many of them, the density
is such that the particles spend enough time within a few de Broglie wavelengths from one another,
and hence we need to go beyond the single particle description, that is, there is necessity to develop
a quantum many body theory. The basic idea behind this approach is that instead of keeping track of
a large number of strongly interacting particles, can we get away with a relatively smaller number of
weakly interacting particles, called the quasiparticles, or the elementary excitations.

The study of condensed matter physics and its applications to the physical properties of various mate-
rials has found a place in the undergraduate curricula for a century or even more. The perspective on
teaching of condensed matter has remained unchanged for most of this period. However, the develop-
ments in condensed matter over the last few decades require a new perspective of teaching and learning
of the subject. Quantum Hall effect is one such discovery that has influenced the way condensed matter
physics is taught to undergraduate students. The role of topology in condensed matter systems and the
fashion in which it is interwoven with physical observables needs to be understood by a student for a
deeper appreciation of the subject. However, the role of inter-particle interactions in shaping up the
properties of materials cannot be ignored. Thus, to make a quintessential presentation for the under-
graduate students, in this book, we have addressed selected topics that comprehensively contribute to
the learning of condensed matter physics that emerged in not-so-distant past, as well as those topics
that have firmly laid the foundation of conventional condensed matter physics.

A slight elucidation of the content will aid to a better understanding of the spirit of this text. In Chap. 1
a follow-up of material properties is taken up in the form of studying magnetism. Different types of
magnetic order and materials were introduced to the students. The upshot of the discussion is that the
electronic interactions drive the magnetic order, and hence they need to be incorporated for a compre-
hensive understanding of magnetic properties. In this connection, we introduce spin models, such as
the Ising model, the XY model, Heisenberg model, etc. We solve these via controlled approximations.
Furthermore, magnetism is shown to originate from itinerate electronic models, such as the Hubbard
model. A self-consistent Hartree-Fock solution of the Hamiltonian yields a reasonable description for
both the ferromagnetic and antiferromagnetic correlations.

Next, in Chap. 2, we embark on the transport properties of 2D electronic systems and focus solely on
the role of a constant magnetic field therein. This brings us to the topic of the quantum Hall effect which
is one of the main verticals of the book. The origin of the Landau levels and the passage of the Hall
current through edge modes are discussed. The latter establishes a quantum Hall sample to be the first
example of a topological insulator. Having discussed 2D electron gas, it is of topical interest to discuss
the corresponding scenario in graphene. Thereafter, a crisp introduction of the fractional quantum
Hall effect is included. It comprises a discussion of the Laughlin states, composite fermions, and the
hierarchy scenario which will benefit the students in understanding the role of electronic interactions
resulting in fractionally quantized Hall plateaus.

¥S-LL:LL ¥20c Jequiedeq L0
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Our subsequent focus in Chap. 3 is the subject topology and its application to condensed matter
physics. Introducing the subject from a formal standpoint, we discuss the band structure and topo-
logical invariants in 1D and 2D. In particular, we talk about the SSH and Kitaev models, which, apart
from being a possible realization for a polyacetylene chain, have emerged as a paradigmatic tool to
study topology in 1D. In 2D, the usual hobbyhorse, namely, graphene, is taken. We dwell upon the
possibility pointed out by Haldane, whether graphene can become a topological insulator. Addition of
the spin of electrons to the ongoing discussion emerged as a unique possibility to yield another version
of the topological insulator, namely, the quantum spin Hall insulator, which may lie at the heart if the
next generation spintronic devices.

We go on to discuss superconductivity in Chap. 4. We sequentially follow the historical developments
of the field, phenomenological understanding of different phases, magnetic properties of supercon-
ductors, etc. Importantly, we present the BCS theory, in as much detail as possible, in an effort to
provide a microscopic description of the thermodynamics and the electromagnetic phenomena. The
finite momentum pairing and the FFLO states are hence described to compare and contrast between
these and the BCS superconductors. Ginzburg-Landau theory, a phenomenological description of a
superconductor to a metal transition, has been introduced in a nutshell. We finally wind up with a
description of the experiments that determine the superconducting energy gap, and a very brief note
of unconventional cuprate superconductors, and the pnictides or the chalcogenides. Finally, we focus
on the application aspects and discuss Josephson junctions and SQUIDs.

All the while during the course of the book, we have included rigorous mathematical derivations wher-
ever required, presented experimental details to connect with the ongoing discussions and tried to be
as lucid as possible in our presentation of topics and concepts. A whole lot of schematic diagrams are
presented for clarity as well. We hope that the students gain from the essence of this book, and it aids
their understanding of both the topical and the traditional condensed matter physics. We shall be avail-
able and happy to answer queries, clarifications by students and researchers, and welcome comments
for improvement.

¥S-LL:LL ¥20c Jequiedeq L0

Dr. Saurabh Basu
Department of Physics,
IIT Guwahati

Dr. Sourav Chattopadhyay
Department of Physics,
ICFAI University Tripura
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CHAPTER

1 MAGNETISM

1.1 INTRODUCTION

Magnetic phenomena were first observed in lodestones in ancient times. A lodestone is a naturally
magnetized magnetite, namely, Ferric Oxide. The earliest mention of a lodestone attracting a nee-
dle was found in the first century AD in China. In fact, the Greek philosophers have also discussed
the magnetic properties of materials during the period 600-500 BC. Even Indian medical texts, such
as Sushruta Sambhita, had prescribed magnetized materials to remove metallic objects from human
bodies.

A large variety of metals, insulators, and even superconductors demonstrate magnetic properties. The
importance of the magnetic phenomena gets enhanced due to the vast technological applications,
which include equipment in our surroundings on a daily basis. Some of them are transformers, storage
in computers, permanent magnets in motors, etc.

In the last couple of decades or so, magnetic materials have inroads into several intriguing discover-
ies, such as dilute magnetic semiconductors, iron-based superconductors, very large resistance in the
presence of magnetic fields [colossal magnetoresistance (CMR) and giant magnetoresistance (GMR)],
and more interestingly, applications in the field of spintronics, where the spin degrees of freedom (as
opposed to the charge) are employed to carry information.

¥G-LL:LL Y202 Jequiedeq L0

In the first course on solid state physics, we have seen that independent electron approximation is
suitable for understanding certain properties of materials, such as metallicity. Even the insulating prop-
erties are well explained by the free electrons subjected to an effective potential due to the presence of
ionic cores (remember the Kronig Penny model learned in the first course on solid state physics) via
computation of the band structure within certain approximations, the most familiar of them is the tight
binding model. Thus, within an independent electron approximation, it is possible to conceptually
understand the energy spectrum resulting from an effective potential, phonons, etc.

However, there are more interesting phenomena, such as magnetic phenomena in solids, specifically
ferromagnetism and antiferromagnetism where the many-electron aspects show up in a way that neces-
sitates going beyond the single-particle picture. For example, consider spin waves, where the spin of
one electron is flipped, while all the (valance) electrons take part, resulting in a collective behavior.
The collective and the local aspects of the electron correlations are intertwined in a complicated way
in giving rise to magnetic correlations. The most familiar type of magnetism that is widely discussed

https://doi.org/10.1063/9780735422537_001  1-1
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Group

Magnetic element

Ferromagnetic

Non magnetic

FIG. 1.1
The periodic table showing different magnetic elements.

in the literature is the ferromagnetism in 3d metals, such as Fe, Co, Nij, etc., where the exchange inter-
action between the largely delocalized 3d electrons facilitates ferromagnetism (see Fig. 1.1). However,
in the 4f transition metals and their compounds (the Lanthanides) require a localized description.
Even explanation of the antiferromagnetic arrangement of spins requires the exchange interaction to
be invoked among the localized electrons.

Before we start discussing magnetic phenomena in solids, let us list only a few known magnetic
materials, and their molar susceptibilities, x ,, defined by

M
Xm = KV =K; (1.1)

(V: molar volume, M: Molar mass, p: mass density) where « is the volume susceptibility which
appears in the proportionality of M (magnetization) and B (magnetic field) as M = « H. The magnetic
susceptibilities of a few common magnetic elements are listed in Table 1.1.

Modern Perspectives in the Study of Electronic Systems
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Table 1.1
Magnetic susceptibility of some common magnetic elements.

Xm Xm

Name (x10=cm®/mol)  Name (x10~6cm?®/mol)

Aluminum (Al) +16.5 Nickel (Ni) Ferro

Antimony (Sb) -37.0 Molybdenum (Mo) +72.0

Bismuth (Bi) —280.1 Phosphorus, Black (P) —26.6

Boron (B) —6.7 Platinum (Pt) +201.9

Calcium (Ca) +40.0 Potassium (K) +20.8

Carbon (C) —6.0 Rhodium (Rh) +117.0

Cesium (Cs) +29.0 Rubidium (Ru) +17.0

Chromium (Cr) +16.7 Selenium (Se) —25.0

Copper (Cu) —5.46 Silicon (Si) -39

Cobalt (Co) Ferro Silver (Ag) —19.5

Gallium (Ga) —21.6 Strontium (Sr) +92.0

Gold (Au) 28 Sulfur  (S) 155 3
Indium (In) —64.0 Sodium (Na) +16.0 §
Iridium (Tr) +32.1 Tantalum (Ta) +154.0 g
Iron (Fe) Ferro Thorium (Th) +132.0 R
Lanthanum (La) +118.0 Thallium (TT) —50.0 g
Lead (Pb) —23.0 Tin Gray (Sn) —37.0 &
Lithium (Li) +14.2 Titanium (Ti) +1515

Manganese-a (Mn) +529.0 Tungsten (W) +59.0

Molybdenum (Mo) —96.5 Vanadium (V) +255.0

Niobium (Nb) +195.0 Zinc (Zn) —114

1.2 DIAMAGNETISM AND PARAMAGNETISM

To begin with, we shall review atomic magnetism with a view to understanding magnetic phenomena
in insulators. It may be noted that these properties can quantitatively be understood by the independent
electron approximation. In the following, we discuss how the atomic susceptibilities are computed. In
the presence of an external magnetic field B, the kinetic energy operator assumes the form Ashcroft
and Mermin (1976),

_ b A2
K=o Z(pl eA)) (12)

Magnetism  1-3




where A; is the local vector potential derivable from the magnetic field B. Choosing a symmetric gauge
A= % (r; X B), one gets,

1 e 2
K=— (~——r-xB)
2m -~ Pi— ot

2
- [P,z + e—(l‘i x B)? — E{Pi - (r; x B) 4+ (r; x B) 'Pi}i| . (1.3)
2m - 4 2

One can split the above expression as
2
e
K=Ky+ %BZ Xl: [712 — 2ep; - (r; X B)] (1.4)

where K is the kinetic energy without an external field. Using the vector identity,
a-(bxc)=b-(cxa)=c-(axDb).

That is, writing,
Zp,--(r,-xB):ZB~(r;xpi)=ZB-Li=B-L (1.5)
i i i

where L (= ), L;) is the total electronic orbital angular momentum. Thus, the kinetic energy (and
also the Hamiltonian ) (adding the spin of the electrons) becomes,

2
(4
H=K=Ko+usL-B+ %BZ Xi:(x,? + 5. (1.6)

Treating the last two terms on the right hand side (RHS) as perturbation, that is, treating H = Ho + H/,
we have for H/,

2
e
H = up(L+gS)-B+ %322@% + %) (1.7)

where up = % is the Bohr magneton with a value 0.579 x 1078 eV/G and the landé g factor is given
by g ~ 2. The energy correction can be computed via a perturbation theory using the unperturbed
states of the Hamiltonian H,.

It is instructive to note that the magnetization, M is defined as the first derivative of the free energy,
F with respect to the fixed B. That is,
1 oF
M=———, (1.8)
V 0B
where V denotes the volume.
Thus, the magnetic susceptibility, x is obtained from the magnetization as
oM
= lim -— 1.9
X B—0 9B (1.9)
thereby implying that the susceptibility is the second derivative of the free energy with respect

to B. Therefore, we need to evaluate both the terms in H’ up to second order in B, that is, B%.

Modern Perspectives in the Study of Electronic Systems
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Hence, performing a second-order perturbation theory one gets (Ashcroft and Mermin, 1976),

[(@aliisB - (L +gS)lgm)
Abn =2 Ey— Em

B (¢] Z(x + D) 6n). (1.10)
n#m

1.3 MAGNETIC PROPERTIES OF FILLED AND PARTIALLY
FILLED SHELL MATERIALS

Here, we shall discuss the magnetic properties of insulating materials, that is, in which all the valence
electronic shells are filled. Hence, the total orbital and spin angular momentum is zero, that is the only
surviving term is given by

2
AE, = ;—mBz<¢n| Z(x% + 32 ). (1.11)

Let us evaluate the change in the ground state energy (we call the ground state wavefunction as |¢y)),

2
e 3
Ao = B0l ) +yD) o) S
2\ €& i %
— 2 2 Q
= (5) o B (00l 2_(Dlg0) :
1 -
e 3
= —32 (ol Z(r )Ibo)- (112) &
This should suffice to calculate the susceptibility of a material using,
N 0*(AE)
V2 B2
N
== (%l Z(r )Ibo)
2 2
- _< 2 1.13
6m"(¢0|2i:(7’,)|¢0> (1.13)

where N denotes the number of ions and n (= %/) is the density. The negative sign in front of the above
expression indicates diamagnetic properties, where the moment is induced opposite to the applied
field. x in the above equation is known as the Larmor diamagnetic susceptibility. One may note that
in the sum, electrons in the outermost shells contribute maximally owing to their large mean square
distance from the nucleus. Consider Z,,; to be the number of electrons in the outermost shell and 7,
to be the corresponding distances, then the largest term in the sum yields the susceptibility to having

a form,
&2
X = _anzoutrgu[ (1.14)

Magnetism  1-5
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Above formula [Eq. (1.14)] correctly explains the magnetic behavior of the alkali halides, such as
He, Ne, Ar, Kr, Xe and their ionic configurations.

Exploration of the magnetic properties of materials with partially filled shells is easier and often taught
in the first course on statistical mechanics (Pathria and Beale, 2011). A brief recap is presented in the
following.

Consider N identical non-interacting spin-S particles in presence of an external magnetic field B. The
corresponding Zeeman Hamiltonian can be written as

H = —upS - B. (1.15)

It may be noted that electronic degrees of freedom are not important for this discussion. The canonical
partition function is written as

+S
Z=) S = N hussh (1.16)
{S} [S|==§
where it is assumed that the lowest (25 + 1) states (—S to +S) are thermally excited at a temperature,
T with appreciable probability. The above sum in Eq. (1.16) is computed in the form of a geometric
progression (GP) series,

PUBB(S+3) _ o—BuBB(S+))

—BH _
¢ T T ePusB/z _ g PusBlz (1.17)
As earlier, the magnetization, M can be calculated using,
oF
M= 3B uBSBs (B1SB) (1.18)
Bs(x) is called the Brillouin function, and is defined by
28+1 28+1 1 1
Bs(x) = 35 coth( 25 x) ~ 55 coth <£x> (1.19)

where x = upB/kgT. The Brillouin function Bg(x) as a function of x for a number of S values are shown
in Fig. 1.2,

As can be seen from the plot, for x > 1, that is, ugB > kg T, Bs(x) — 1. Thus, at lower temperatures
and large values of external fields, the magnetization reaches its saturation value. While in the other
limit, that is for 1gB < kpT, one may do a small x-expansion which yields,

1 1
coth(x) ~ — + gx + O@E>). (1.20)
x
Thus,
S+1
Bs(x) ~ %x + 0. (1.21)
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FIG. 1.2

Plot of different Brillouin functions Bs(x) for different spin S values.
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Hence, the susceptibility is computed as
_npSS+D G
3 kgT T

This is called Curie’s law. We may denote the above expression by xcurie [that is, replace x by xcurie

(1.22)

in Eq. (1.22)] and Cy is called the Curie constant. Thus, the susceptibility to behaving inversely with
temperature is a feature of ‘paramagnetic solids’ whose ordering of the magnetic moments is facilitated
by a magnetic field, which, however may be hindered by thermal effects. The law is found to be valid at
high temperatures, even when considerable magnetic interactions exist among the magnetic moments
(Fig. 1.3).

The magnetic properties of the rare earth materials, such as La, Lu, Nd, Ce, Dy, etc. are adequately
described by Curie’s law. However, in transition metals, such as Fe, Zn, Cr, etc., there are additional
phenomena, such as crystal field splitting which are dominant for partially filled d-shells. In order to
understand the crystal field splitting in partially filled shells (say d shells) one needs to understand the
Russel-Saunders (RS) coupling and Hund’s rules (three of them). We postpone their discussion here
and include them in the appendix.’

1 Classic texts such as Ashcroft-Mermin, Kittel, etc. exist which treat these topics quite elaborately, and second, the focus of this
text is to understand the magnetic properties from an electronic perspective.
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FIG. 1.3
Xcurie (in red) and its inverse (in blue) are plotted as a function of temperature (T) and 1/T respectively. The slope of the
linear plot yields Co.

Having discussed Curie’s law, one should be aware that there is another type of paramagnetic phe-
nomenon applicable to metals, namely, Pauli paramagnetism which refers to the magnetic moments
of conduction electrons. These electrons behave in a way that is distinct with respect to the localized
electrons in partially filled ionic shells. Standard techniques of statistical mechanics can be applied (for
example, see Pathria and Beale, 2011) to obtain the magnetic susceptibility, xpayi Which is a constant
(as opposed to having an inverse temperature dependence as that in xcyrie). In fact, the expression is

XPauli = KEN(EF), (1.23)

where N(eF) refers to the density of states (DOS) at the Fermi level. Thus, the susceptibility, x of
free electrons (Pauli) is a constant (independent of temperature), while for electrons bound to atoms,
x depends inversely on temperature (Curie).

A deeper introspection reveals that the Pauli susceptibility can be cast into Curie’s law with the tem-
perature, T replaced with TF, the Fermi temperature. Since Tr & 50 000 K for typical metals, xpauli is
typically three orders of magnitude lower than xcurie €ven at room temperature.
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1.4

Furthermore, there is a finite magnetization of the conduction electrons that is diamagnetic in nature,
giving rise to a phenomenon called Landau diamagnetism. The susceptibility, let us call it x1andau»
which can be shown to be (Pathria and Beale, 2011)

1
XLandau = — 5 XPauli- (1.24)
Thus, the total susceptibility is a combination of the Pauli term, Landau susceptibility, Larmor suscep-
tibility, etc. It is prudent to say that it is quite complicated to extricate a particular contribution from a

combination of these effects.

FERROMAGNETISM AND ANTIFERROMAGNETISM

From the discussion that we had so far, it is clear that electronic interactions cannot be neglected
in order to explain certain types of magnetic ordering, such as ferromagnetism and antiferromag-
netism. Without such interactions (which are called magnetic interactions; however, the origin is
electronic in nature), thermal effects would have randomized the magnetic moments (or the spins
of the electrons) resulting in the absence of any sort of magnetic order. Even in antiferromagnetic
materials where there is no net magnetization, there is still antiparallel order among the neighboring
spins.

Before we bring about the electronic interactions to explain magnetism, let us discuss how one may get
the magnetic Hamiltonian involving only the spins (or the magnetic moments) of the charge carriers.
From a classical perspective, it is natural to expect that the dipolar force between moments, m; and
m; separated by a distance |r| described by a potential of the form,

¥G-LL:LL Y202 Jequiedeq L0

1-my — 3(my - F)(my - F)

V) = 2 (1.25)

)
will be operative. However, putting m; to be of the order of atomic moments, that is the Bohr mag-
neton (up), and |r| to be of the order of Bohr radius,” ag, V comes in the range 10~* eV, which is far
smaller than the typical atomic energies and hence cannot account for magnetic ordering, that typi-
cally involves an energy scale of the order of an eV. Thus, quantum mechanical exchange is really the
dominant player, and dipolar interactions can safely be ignored.

An immediate motive is to arrive at a Heisenberg-like model’, although here we restrict ourselves to
an Ising-like Hamiltonian. To keep the matter even simpler, let us talk about two Ising-like spins [spins
only have discrete degrees of freedom, for example, two degrees of freedom, pointing up (1) and down
(1)]. Consider S; and S; both have values s = 1/2, which means that the spins will have two possible
orientations where they can either be pointing up or down. Now consider the addition of these two
s= % particles,

S=8+8S,. (1.26)

2 In quantum mechanical systems, a length scale is usually taken as the Bohr radius.
3 Heisenberg model is discussed later.
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Writing the problem in the (s, m;) basis [$? has the eigenvalue s(s + 1) and S, has the eigenvalue m;,
with & = 1], the direct product space (s, m5,) ® (s2, ms,) becomes four dimensional. Now m; = :l:%h
denote the |1)-spin and the || )-spin states with eigenvalues —i—% and —%:L respectively. Thus, the basis
states are spanned by [11), [14), |1 1) and |} }). These are eigenstates of S2, S%, Siz and Sy,. The eigen-
values for the total spin, S, that is, s (= s; + s2) are 0 and 1. For the total z-component of the spin, S,
that is, m; (= my, + my,) are 1, 0, 0, —1. One can check that,

Sty =hitt) SAtl) =0

Sy =—=hlll) SAtl) =0. (1.27)
Thus, we can take a linear combination of the above basis states to write the wavefunctions as
1
= — — : s = 0singlet 1.28
X00 ﬁHN) 1] g (1.28)
1
X1 = 7 [1TM)]
1
x10 = —=[I14) + [4D)] :s=1triplets. (1.29)

V2

mA=§#um

The first one denotes a singlet wavefunction, y s, while the last three denote triplet states, x ;. The singlet
state is odd (changes sign) under the exchange of spins, while the triplet states are even (no change in
sign). These are the eigenstates of the total spin operators, namely, S?> and S,. It can be checked that
the S? operator has an eigenvalue 0 for the singlet state, and 1 for the triplet states. Also, the total spin,
S satisfies

=1+ =S+8+25 -5,
3 3
= th+ Zh2+281 -8
3

ZE#+ﬁy&. (1.30)

Thus, for the singlet state, the operator S; - S; has an eigenvalue —%hz, and %hz for the triplet states.
Denoting these eigenvalues by Es and E; respectively, we can write down a spin-only Hamiltonian,
namely (here we have assumed A = 1),

1
H= Z(Es + 3E;) — (Es — E))S1 - . (1.31)

Readers can check whether the Hamiltonian has energies E; for the singlet state and E; for the triplet
states by operating the Hamiltonian in Eq. (1.31) on the states in Egs. (1.28) and (1.29). We may ignore
the constant term, (%) (or re-define the zero energy which is common to all states), and re-write
the Hamiltonian as

H=-JS1 -5, (1.32)

where ] = E; — E;. If ] is positive, the system favors parallel alignment of spins and if ] is negative, it
favors antiparallel alignment.
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One may wish to extend the above scenario to an array of spins with full spin-rotational symmetry and

interacting via nearest neighbor exchange coupling to arrive at the Heisenberg model,

H=—T) Si-Siss (133)
i,

where § refers to the neighbors of site i. This model was solved exactly by Bethe (1931) and later on by

the others in one dimension.

Now, if one includes the orbital wavefunctions, in addition to the spin states, one can write the total
eigenfunction as

V1,2(r1,12) = Ysym(r1,12) X5(1,2)

= ¢antisym(rl> r2) x:(1,2), (1.34)
where v sym and ¥ gnsisym denote the symmetric and antisymmetric states which are respectively, even
and odd under exchange of r; and r,. This takes care of the total fermionic wavefunction being
antisymmetric. Furthermore, the total Hamiltonian can be written as

H =Hi+ H + Hizs (1.35)

where H; and H; are the single-particle Hamiltonians, and 7, denotes the potential energy term due
to the exchange interaction obtained above. These can be written as the stationary state wavefunctions,
¢(r;) centered at the lattice points, r; where the particles are located, via

]Z//¢>1k(1‘1)¢§(1'2)7112(1‘1,1‘2)¢2(l‘1)¢1(1'2)d31‘1d31‘2- (1.36)

The exchange interaction is very strong and can be of the order of a fraction of an eV, which is equiv-
alent to several hundreds of Kelvin. Thus, the exchange interaction is sufficient to align the spins even
at room temperature. However, it decays exponentially with distance.

¥G-LL:LL Y202 Jequiedeq L0

Let us discuss the exchange interaction, Hi, in some more details. It is the Coulomb interaction
between the particles and, for the simplest case, corresponding to two one-electron atoms [such as
two hydrogen (H) atoms],

2 62 62 eZ

+ — —
[rp — 12| Ry —Ra| |1 —Ry| |z — Ry
where r} , refer to the coordinates of the electrons and R; » denote the nuclei of the two atoms. Here,
the true ground state is the Heitler-London (HL) state, namely,
1
YL = Vs = 7 (Y1) P2 (r2) + Y1 (r2) 2 (r1)] (1.38)

Y, is the singlet state associated with xgg. Of course, the HL state applies well to the atoms that are

Hi(ry, 1) = (1.37)

physically separated, however for atoms in a real solid, the magnetic interaction is severely complex,
and may not be restricted to a 4 x 4 Hilbert space (that is a simple two-body term) which we have
discussed earlier. Still in cases, where the magnetic atoms (or ions) are well separated, one can extend
the two-spin interaction picture for the entire system.

Magnetism  1-11
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FIG. 1.4
A perfectly ordered (left) and a completely disordered (right) phase in a one-dimensional spin chain.

The prospect of ordering also depends on the dimensionality of the lattice. For example, one-
dimensional spin systems really do not order at any finite temperature. The reason for this can be
stated through the following illustration of Ising spins.

Assuming a nearest neighbor spin-only Hamiltonian, as in Eq. (1.33), left and right in Fig. 1.4 denotes
two different phases, where the left denotes a perfectly ordered phase with an energy —NJ (N being
the number of spins), while the right denotes a perfectly disordered phase with an energy —(N — 1)J
with only one bond is broken. Thus, the relative energy difference between the phases in them, that
is, % ~ # which vanishes in the limit of large N. Such a vanishingly small energy difference cannot
stabilize an ordered state. Thus, dimensions higher than “one” are crucially required for magnetic

ordering to exist.

In the following, let us describe a couple of different methods for solving the Heisenberg model using
certain approximations. The methods are

i. Mean field theory (MFT),
ii. Holstein-Primakoft (HP) transformation and linear spin wave theory.

MEAN FIELD THEORY

1-12

In the mean field approximation, each spin “feels” an average field due to all the other spins of the
system. The approximation is valid in any dimension; however, it is more accurate as the dimension-
ality grows larger (the fluctuations of the mean field state compared to the exact one diminishes with
increase in the number of nearest neighbors or the dimensionality). In order to implement the mean
field theory (MFT), one decouples S; from 7 in Eq. (1.33) which makes it a single site Hamiltonian
(that is, at a given site i) of the form,

Hue(i) = —Si. (] Z<sf+5>> — gBBext - ) Si (1.39)
8 i

where, as one can notice that we have included an additional applied magnetic field By, and the second
term denotes coupling with B,,;. Since the bracketed expression in the first term above is just a constant
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(being summed over nearest neighbors), the above Hamiltonian in Eq. (1.39) becomes a single spin
Hamiltonian in an effective field, B namely,

Hmrp(i) = — i - Beg, (1.40)

where Beg = Beyr — gﬁ > s Sits. Here g is the landé g factor, and up denotes the Bohr magneton. In
fact Siys can be replaced by its thermal average (S;1s), so that

]
Boy = Bew — 283<si+5>

= Byt — zLM, (1.41)
SHUB

where M = (Siy5) is the magnetization and z denotes the coordination number.

Thus, essentially, we have a non-interacting system, and the thermal average can be calculated as if
one particular spin is in a bath of an effective magnetic field. In this scenario, the standard approach to
calculate the magnetization is by computing the free energy, F = kgT In Z, where Z is the canonical
partition function. The method used is detailed in Sec. 3.1. For convenience, the results are quoted
again. The partition function is written as

Z = Z e BHMF _ Z e BHeg — Ze_ﬂ)’SBeﬁ’

BYBef(S+3) _ =By Beg(S+3)

¥G-LL:LL Y202 Jequiedeq L0

PrBeg/2 _ ;~BrBg/2 (1.42)
where y = gup. Hence, the magnetization is computed using M = %. Thus, one arrives at,
zJ?
M = ySBs(SBy Beyr) = ySBs | SBy (B — v M) (1.43)

Bs(x) being the Brillouin function discussed earlier, and

o~ (o (n-2)

The above equation is non-linear, and can be solved for the magnetization, M for given values of
Band T (remember g = kBLT)' Assuming positive values of ], the transition from a paramagnet to
a ferromagnetic state is indicated by the appearance of spontaneous magnetization, (finite value of M)
in the zero magnetic field limits (B — 0) below a certain critical temperature, T. Thus, in the limit
H — 0, Bs(x) can be expanded for small x,

S+1
M~ —ps(3H1) (1.44)
38 ykpT,
Solving for the transition temperature, T¢,
SS+1
T = %z]. (1.45)
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M Thus, the critical temperature scale with the exchange interaction, J,
implying that T, is large for large J. Furthermore, the magnitude of the
S spin S and the coordination number z (which means dimensionality) play
roles in deciding the value of T..
In order to see how M varies with T below T, Eq. (1.43) has to be solved
numerically. The solution is shown schematically in Fig. 1.5. Analytic
- results exist at the extreme limits, that is, for (i) T < T and (ii) T — T,
T, below. Let us demonstrate how to get these.
i. At TK T, B is large, so the Brillouin function, Bs(x) has to be
FIG. 1.5 examined for large x, which yields,
Plot of magnetization as a func- 28 +1 28+ 1 1 X
tion of temperature. The magneti- Bs(x) =1+ exp <— S x) T P (_g)
zation vanishes as (T — T;)'/2. ) X
=1+ 3 ((28 + 1) exp(—2x) — 1) exp <§)
1 X
=1 cexp (—5). (1.46)
Thus,
JzM
M = ySBs(x) = yS—exp| —
J/kBT
3 T,
=yS— - . 1.47
4 exP( S—i—lkaT) (147)

1-14

In the limit of T — 0 (thatis, T < T), the second term (the exponential term) is small. Thus, one
gets M >~ yS.

i. For T close to T, (from below), we need to expand Bg(x) for small x, where,

S+1 S+DQS*+25+1) 4
X — X .
3 9083
This yields,

o STLSM S+ 1282 + 25+ 1) ()3 M?*

Bs(x) = (1.48)

3 kgT 908? vksT
To.. 328 +25+1) <£)3M3
T 10y382(S+1)2 \ T '
Since M # 0, one can solve for M?,
M LS+ (1 - 1) . (1.50)
3282 + 2S5+ 1)y3 \ T,
Thus, M(T) ~ (T — T.)Y?for T approaching T, below, that is, from the ordered regime. The expo-

nent 1/2 is the signature of the mean field theory. The temperature dependence of the magnetization
is schematically shown in Fig. 1.5. It falls slowly from a value y S at T = 0, However, there is a rapid

(1.49)

decline in the vicinity of T = T..
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1.6 LINEAR SPIN WAVE THEORY

To continue our discussion on ferromagnets, let us again consider the Heisenberg model given by
Eq. (1.33) in a magnetic field B was applied in the z-direction. For positive ], the system minimizes
its energy by having all the spins aligned in the z-direction at zero temperature. At small, but finite
temperatures, investigating elementary excitations of a spin system is difficult to determine owing to
the non-commutativity of the components of the spin operator. However, such an endeavor would
still be possible if we can transform the spin operators to bosonic operators via a canonical transfor-
mation,” known as the Holstein-Primakoff (HP) transformation (Holstein and Primakoff, 1940). The
spin operators at a site i are denoted as

b\
S =S +iSy = /28 ( - z_s> bi (1.51)
1/2
§ | o, binY
S; = Six —iSiy = v28b; [ 1 — o5 , (1.52)
where Sii are the spin raising and the lowering operators and b,T(b,-) are the bosonic creation (annihi- §
lation) operators. It is easy to verify that the components of the spin operator obey the commutation El
relation, ;
[Sx.Sy] =S, (A=1), (153) 3

where the bosonic operators obey [b, b'] = 1 at each lattice site i. Furthermore, $? and S, commute
with the Hamiltonian H in Eq. (1.33). Some essential mathematical steps include writing down

S =81+5+5.
Thus, S = 8% — §; — S} Using §* = S, % iS,

1
$2=8"— E(S+S_ +878T) Vi (1.54)
$2 and S, acting on the common eigenfunction of $? and S, yield, S(S + 1) and S,. Using the spin-boson
transformation relations [Egs. (1.51) and Eq. (1.52)], one gets

S, =S—0b'b. (1.55)

Assuming translational invariance of the system, we can do a Fourier transform,

1 .
b = — —ikrip, 1.56
j m;e k (1.56)

Note that the Fourier-transformed operators obey,

[bx, bl ] = Sk

4 Such transformations always preserve the commutation relations of both the spin and the boson operators.

Magnetism  1-15




1-16

M=\ \ N7}

Plot showing spin wave excitation. Each spin is slightly rotated with respect to its neighbor. A complete cycle of the
rotation is shown. These spin wave excitations are called “magnons® (analogous to phonons denoting lattice excitations).

A priori, by and bi, which denotes the annihilation and the creation of a quasiparticle, respectively,
are called magnons or spin wave excitations. The spin wave excitations can be denoted by a small
rotation of one spin with respect to its preceding neighbor, starting with a perfectly aligned con-
figuration for the first spin. Thus, it is a long wavelength excitation and requires several lattice sites
(where the atoms and the ions are localized) for the spins to come back to their original orientation
(see Fig. 1.6).

In view of this slow variation (refer to Fig. 1.6), the expansion of the square root in the HP transforma-
tion may converge quickly. The reason being b} b;, which denotes a spin deviation at site i has a slow
variation. Thus, expanding the square roots,

bibib;
S~ N2S|bi— =+ . (1.57)
48
Fourier transforming the RHS,
25\ | kR, 1 (k=K —K") Ri )t
Sl+ = <ﬁ> Ze_’ - ’bk —_ @ 61( —k k7). ’bkbk’bk” + .. (158)
|« k'
Similarly,
25\ | kRt L ik —K") Rty t
— ik.R; i —k").R;
S = <ﬁ> Db - Y e bbb + - (1.59)
k kK K"

ST and S~ are called magnon operators. Also, without employing any approximation, the z-component
of the spin can be written as

1 i(k—K).R:
Sie=S—blbi=5— > O Riplpy. (1.60)
kK
Summing over all the spins along the z-axis that is along the direction of the magnetic field,
(1.61)

$O="S. =NS—) bl
i k

Modern Perspectives in the Study of Electronic Systems

¥G-LL:LL Y202 Jequiedeq L0




‘ scitation.org/books

where ), elk=K)-Ri — g 1 is used. Neglecting the terms cubic in magnon operators, namely, SF and
S; , the Hamiltonian [Eq. (1.33)] in k-space can be written as

S : Np. i s i(k—k').R; ik'.8;
M= ]_ Z [e,(k—k)_R,ezk 'S’bkb;tr 4 k=) -Ri ik _beltbk,
k.k',8;
3 ei(k*k/)'R"b,Zbkf _ ei(k/,k/),R,-ei(kfk’)ﬁibibk,]

MBB S~ iRyt 1 2
- — ‘b by + —JNZS 1.62
~ %e iy + o) (1.62)
LK,

8 connects to the neighbors, and z is the coordination number. Using the definitions of the §-function
one can write

_ + + . usB i 1 @
M= ]zSXk: [ 7bjbs+ vkl — 20]be | + = Xk: blbe + SINZS?, (1.63)
where y, = % s ¢*3, and thus y; = ¥ _¢.” The Hamiltonian can further be simplified to arrive at
1
H = [-2Jz8(1 — ) + upB] b by + E]stz, (1.64)
k

where N denotes the total number of spins. Importantly, H is diagonalized with the first term being
quadratic on the basis of magnon operators (bibk denotes a number operator for magnons) and the
second term is merely a constant. Thus, the energy eigenvalue for the magnon Hamiltonian is

o = —2JSz(1 — yx) + upB. (1.65)

Hence, the magnons (or spin waves) disperse according to this relation. The long wavelength behavior,
say, in a square lattice is parabolic, that is, goes as ~k? (k being inverse of the wavelength) and owing
to the 1 — y factor, it vanishes as k — 0. This vanishing of wy is in accordance with the Goldstone
theorem (Goldstone, 1961) and the zero energy mode is called the Goldstone mode, which arises due
to the spontaneous breaking of the symmetry.
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1.6.1 Quantum XY model

The Heisenberg Hamiltonian, in one dimension was exactly solved by H. Bethe in 1931 (Bethe, 1931).
In spite of the solution being quite elegant, it still does not enlighten us much about the basic proper-
ties, such as long range order. Rather, a simple and more intuitive picture of interacting s = % particles
emerge from the similarity between the spin and the fermion operators. This similarity was originally
exploited by Jordan and Wigner (Jordan and Wigner, 1928) who had converted an interacting problem
of s = % particles to that of spinless fermions via a canonical transformation, which, for obvious rea-
sons is known as Jordan-Wigner transformation. It is applicable to a simpler variant of the Heisenberg
Hamiltonian, where the coupling between the z-component of the spins is switched off. However, quite
fortunately, it captures the low energy properties of the antiferromagnetic Heisenberg model.

> For example, y; = %(cos kxa + cos kya) for a two-dimensional square lattice.
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The model is described by the Hamiltonian,
H =T (SixSitix+ SiySit1y)- (1.66)
i

The interaction Hamiltonian is restricted to the x and y components of spins among the nearest
neighbors in a one-dimensional chain. The components of the spins obey usual commutation relations,

(8¢, 8] = iy 8S] (1.67)

where i = 1 and € are the Levi-Civita tensor. The interaction does not include the z-component of
the spin, and hence the name XY model. Defining raising and lowering operators,

S& = Six £ iSiy. (1.68)

In terms of S*, the Hamiltonian takes the form,

H= % D ST+ STSh . (1.69)
i

Now, since §; = %0,- and Sii = crii, o being the Pauli matrices, the Hamiltonian can be written as

H= % > (oo + he, (1.70)
i

where h.c. denotes the Hermitian conjugate. Owing to the 2 x 2 structure of the Pauli matrices, the
vector space is two-dimensional. Now we can derive a fermionic Hamiltonian in terms of ¢, ¢’ by
defining,

o = (Marof) o = (Mjcrof) o7 (1.71)

Again, these transformations preserve the commutation relations for the fermions and the spin-1/2
particles. From the commutation relation of the Pauli matrices, one can check for the fermionic
anticommutation relations for ¢, ¢'. The reader is advised to go through a few steps of algebra to derive

of =1-2c¢ (1.72)
or,
of = (=D'cl¢ (1.73)

such that O’iz can take the values &1 for n = 0, 1. Also, the O’ii are defined by
i—1

ai+ = c: exp —niz C]TCJ'
j=1

i—1
o =exp —m’ZcJch Ci. (1.74)
j=1
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One can check that,

- o+
{Gi »0; }

{CthT} = =1

T R g 7T
H]’.:i (=1¢; cjl'I]'.,zl(—l)J ¢

+

Also, one can show that, cjc,' =o0; o] .

(1.75)

A special mention is required for the commutation relations. ¢ operators at the same site obey anti-

commutation relations, while at different sites obey commutation relations (similar to bosons), such

that the unitary rotations obey neither bosonic nor fermionic relations.

Going back to Eq. (1.70), for 1 <i < (N — 1),

i1

-1

0i
j=1

i—1

+ ; (P BN | —ri T
O;11 = €Xp —JTIZC]-C] CiCi1 €Xp JTIZC]-C]

=1
i—1

i—1 ]
=cjexp | —mi ceile —Ti clei | cf
= i exp i | XP i 6| Cit1
j=1 i

i—1

: T T oy
=cjexp | —mi E GG | Ciy1 = ci(1 — 2¢; c,')ci+1

=t

= C;‘r Ci.
Similarly, the conjugate is written as

- T
0,,10; = C;Cit1.

j=1

(1.76)
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(1.77)
+

Thus, after expressing the ‘boundary particle’ operators oy o, + 0y on in terms of the fermion

operators ¢; and cj one gets,

i—1
] J <
H = 2 Z (cj_Hci + c;rc,'_H) -3 Z (CICN + c;r\,c]) exp | —mi Z c;-rcj +1 . (1.78)
i j=1

1

The first term on the RHS is quadratic in ¢ operators and describes free fermions in a closed chain.
The effect of the boundary enters through the second term can be neglected for large N, as it merely
denotes a 1/N correction to the first term. Thus, the Hamiltonian becomes,

J T +
H~ > Z (c,-ci+1 + c,-_Hc,-) .

1

(1.79)

This finally yields a quadratic term, and hence a non-interacting fermionic Hamiltonian in one dimen-
sion which can be solved exactly. The Hamiltonian in Eq. (1.79) commutes with the number operator,
N = c:-r ¢i, that is, [H, A] = 0. Furthermore, the z-component of the spin operator can be written as

(1.80)

and §* = Y, §¢. Thus, each spinless fermion created by c' carries §* = 1.
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Furthermore, Fourier transforming the fermionic operators using,

1 ikRi
= — E e ie (1.81)
N4
one arrives at a tight binding form,

H= ZGkC;tCk = ]Zcos ka c;ick, (1.82)
k k

where k € [—m, ], and a is the lattice constant which, without any loss of generality, can be taken to be
unity. Thus, from an interacting spin problem, we arrived at a non-interacting fermionic problem. The
spectrum is gapless, that is, there may be gapless excitations, which implies that one extra fermion can
be added to the system without any additional cost of energy at the Fermi level. However, the gapless
situation will vanish if a nearest neighbor interaction term among the z-components, that is, J,S;S7, |
is included.

Finally, the z-component of the spin, 7 yields,

N
St = chc; = Zc,tck -5 (1.83)
i k
If we split the above sum into k < 0 and k > 0 (including k = 0)
N
=) 1—cle) — — 1.84
chck + Z( crek) 5 (1.84)
k>0 k<0
which can also be written as
N
§7 = T 1——. 1.85
Xk: sgn(ex)cpcr + % 5 (1.85)
<

Thus, excitations with |k| < 5 carry §° = +1 while those with k| > 7 carry §* = —1. Thus, the
z-component of the total spin of the ground state equals zero, and hence, it is non-degenerate. The
same result holds for the unrestricted (that includes interaction between the z-component of the spins)
antiferromagnetic Heisenberg model. In fact, the ground state energy and the excitation spectrum is
identical to the antiferromagnetic case where the ground state is non-degenerate. However, this is very
unlike the ferromagnetic Heisenberg model, where the ground state is hugely degenerate and it carries

a value for the z-component of the spin, namely, S, = %

Just to put things into perspective, here we have discussed a magnetic Hamiltonian in one dimension
which has an exact solution. The solution yields a magnetic metal with gapless excitations. In the event
one additionally includes a z component of the spin interaction, the spectrum becomes gapped, and
hence corresponds to an insulating scenario.
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1.7 ISING MODEL OF FERROMAGNETISM: TRANSFER
MATRIX

Consider a spin-only model interacting via the nearest neighbor exchange interaction in the presence
of an external magnetic field, B. In order to solve the problem, we shall use a transfer matrix technique.
Again, we consider s = % particles, which can assume two different orientations, namely, 1 and | . The
Hamiltonian of such a system is written as

‘H = gusB Z S, — Z]ijs,- -, (1.86)
i (if)

where g and pp are the landé g factor and Bohr magneton, respectively. Because of the discrete
possibilities of the spin orientation, the Hamiltonian can be written in a scalar form as

H=gusBy S —Y J;SS;. (1.87)
i (ij)
Writing m; = §7,
H= g,uBBZ m; — Z]l]m,m] (1.88) §
i (ij) %
A further variable transform, o; = 2m; yields ;
N IN
upB J 3
H = g 2 ZO{,‘- EZO{,'O(H_L (1.89) =
i i=1 g

We can assume a periodic boundary condition denoted by a1 = o1 (N being the number of spins
in the chain). Thus, the last spin is connected to the first one, and the system is in the shape of a closed
loop with no free edge. The canonical partition function for the above Hamiltonian is written as

1
Z = E e BEnlai} _ § e—ﬁH{O{i}) where B = et (1.90)
B
{ai} {ni}

By expanding the partition function, one gets (Chandler et al., 1987),
Z = Z Z Z K(oy,02)K(ap, a3) ... K(an, o) (1.91)

aj=%1lary==%1 any==%1

where
K(ay,02) = exp |:—

Writing K for o; = %1,

ﬁngLBB (o1 +ap) + %Oﬂaz] . (1.92)

e(fora) e 4
K= [ a e<x+“)]’ (1.93)
where x = ‘gll:;g anda = ﬁ. Thus, the partition function becomes,
Z = Tr(KM). (1.94)
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In order to obtain the partition function in the closed form, please note that K being a 2 x 2 matrix,
has two eigenvalues. Let us call them A; and X, which yields

A N
Z =Tr(KN)y = AV 425 =2V [1 + <,\_2> } . (1.95)
1

We assume one of them to be greater than the other, that is, A; > X,. Since the partition function
involves terms raised to the power N and with N being large, one can write (neglecting second term
inside the bracket),

Z =, (1.96)
where A 5 are given by

A1a = e*[coshx & (sinh? x 4 e~#)1/2]. (1.97)
Keeping the relevant one® for computing the partition function,

A1 = e*[coshx + (sinh? x + e~4%)1/2]. (1.98)
The free energy is written as

F=—kgTInZ = —NkzTlnA;. (1.99)

One can hence compute the magnetization, M using,

oF NguB inh B/2kgT
M = lim — == = lim ~2& { . Zmu(jg“B [2ksT) } (1.100)
B—~0 0B B—0 2 [sinh (‘ng) + e~ 2/ksT]1/2
which yields,
No2 2 o/ksT
M=|2HEE__ |p (1.101)
4kg T
The magnetic susceptibility is given by
i M o /keT

= lim — = 1.102
X=5509B T (1102
Finally, one can derive Curie’s law,
L ket
X

=TQA—-]J/kgT+...)

=T —J/kg. (1.103)
Rewriting the above relation in a more familiar form,

C

_ ’ 1.104

X=1—p (1.104)

6 The other one will vanish in the limit of large N.
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where 6 is a characteristic temperature called the Curie
temperature (0 = J/kg) at which ferromagnetic order-
ing takes place (see Fig. 1.7). Thus, the system is para-
magnetic above a temperature T =6 where the spins
are randomly oriented owing thermal effects, while they

x|~
@)

align below 6. This is the simplest discussion of ferromag-

r-6 netism in a model Hamiltonian, which arises out of the

exchange interaction among the neighboring spins in the

presence of a magnetic field. The known ferromagnets,

T such as Fe and Ni have Curie temperatures 1093 K and
650 K, respectively.

FIG. 1.7 It is worthwhile to point out that the above model has

1/ is schematically shown as a function of tempera- no spontaneous magnetization, which means that as the

I 16 IREIIEASSEI Y S external magnetic field is switched off, the magnetization
vanishes.

1.8 QUANTUM ANTIFERROMAGNET

Antiferromagnetism requires at least two sublattices, say A and B, inter-penetrating with each other to
explain their structures and properties. Considering the Heisenberg model,

H=—])_SiS (1.105)
(i)

¥G-LL:LL Y202 Jequiedeq L0

now with J < 0, such the energy is minimized when spins in one sublattice point in the +z-direction
(up spin), with those in the other sublattice point in the —z-direction (down spin). This state with
alternate up and the down spins is referred to as the classical Neél state. The lattice called the bipartite
lattice. In such a bipartite lattice, one can define a staggered magnetization, Ms = Y _;(—1)'M;, where
M; = (S;). Because of the pre-factor (—1)/, it takes a value +1 for the sites on the A sublattice, while
it takes —1 for those in the B sublattice, or vice versa. Thus, Mg assume a value NS (N being the total
number of spins).

One can also define a sublattice magnetization pertaining to each of the two sublattices which takes
values NS/2 for the Neél state. However, the true ground state is far from classical, which is espe-
cially true at low dimensions owing to the presence of quantum fluctuations. These fluctuations lower
the saturation value (Neél) of the magnetization. Let us illustrate this in the following by employing
a Holstein-Primakoft transformation to an antiferromagnetic Heisenberg model, where one has to
separately deal with the sublattices A and B in a bipartite lattice.
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The transformations for the A sublattice can now be written as

i\ 12
ala;
S =S +iSy, = V28 (1 - é_sl) a; (1.106)
and,
1/2
A— _ A _ oA aTai
Si~ =Sk —iSj, =2 Sa) 5 (1.107)

where, af (ai) denote bosonic creation (annihilation) operators for the A sublattice. Repeating the same
for the B sublattice,

bib;
ST =Sk +iS) =28 (1 - X) b; (1.108)
and,
B— _ B _ ;B — /o5p! b bi
SP =Sh —isp b] o (1.109)

where b; (bi) again denote bosonic creation (annihilation) operators for the B sublattice. The
z-component of the spin operators is written as

= (S—ala), SB=—(S—blby. (1.110)

Now, as earlier done for a ferromagnet we introduce the Fourier-transformed operators,

Za elkR, Zb ezk R;

zeA zeB
—ikR; — kR,
of = Za’f kRi gl = Zb* i (1.111)
zeA zeB

Recognizing that the periodicity of the sublattice is twice that of the crystal lattice, the effective Brillouin
zone (over which the momentum index k runs) is half. Also oy and By correspond to excitation of
magnons in A and B sublattices. Expanding the spin operators up to linear order for the A sublattice
in oy and By,

At 25\ [ i

Ay N Ze o+
L &

A+ (28 12 ikR;

st (% > M+ (1.112)
L &

Similarly for the B sublattice,

B+ 25\ [ —ikR;
St~ > Ze B4
| %
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A+ 28\ ikR
~ (22 ikR; .
S _<N) Xk:e B+ .| (1.113)
The z-components yield the exact expressions,
1 i(k—k )R
sz =S5— NZe;( ) oz;:akr
kK
1 i(k—K')R
Sh=- S—Nzeﬁ( pipe |- (1.114)
kK

Inserting these into the Heisenberg Hamiltonian, the Hamiltonian becomes quadratic and it reads as

H o~ —NeJS? 4752 [yk(a;ﬂ,j + B + (e + B ﬂk)] , (1.115)
k
where,
1 iks
= — 1.116
Ve =~ age (1.116)

where nn denotes the number of nearest neighbors. Although the Hamiltonian is bilinear in ok and
Bt unlike the ferromagnetic case, it is not readily diagonalizable. Another canonical transformation”
involves linear combinations of oy and By as

Mk = ukak — kBl Gk = B — vier]
= uke) — B & = ukBy — viak. (1.117)

¥G-LL:LL Y202 Jequiedeq L0

To have the bosonic commutation relations intact for 1y and ¢, we demand that the coefficients 1
and vy are related by

up —vi = 1. (1.118)

This allows us to choose (though not uniquely), ux = cosh 6y and vy = sinh 6. For each k, one can
put the anomalous terms (the ones which diagonalizing the Hamiltonian) to zero, which yields the
following condition,

tanh 20, = —yx. (1.119)

Thus, the Heisenberg Hamiltonian becomes,

H ~ —NzJS> + NJSz 3 (n;nk + oo+ 1) (1.120)
k

where the dispersion, Ej is given by

Ex = NJSz\/1 — y. (1.121)

7 These are called Bogoliubov or Bogoliubov-Valatin transformation and will be used in the chapter on superconductivity
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A comparison with the ferromagnetic case (which yields Ex ~ 1 — y,), the antiferromagnetic disper-

sionis /1 — ykz. Thus, here we get a linear behavior, that is, E ~ k as opposed to parabolic (Ex ~ k?)

for ferromagnets. Additionally, there are two degenerate modes for each k in the Brillouin zone owing
to two sublattice structure of the lattice.

At zero temperature, there are no magnons (or excitations of the spin wave). Thus, (’72 Nk) or (;,:r Ck)
vanishes and we obtain the ground state energy as

Egs = —NJzS(S+1) + ) Ex. (1.122)
k

Introducing a constant «, the expression for Egs can be re-written as

2 K
Egs = —NJz§ (1 + E) , (1.123)
where « is given by

K = (%) Z [1-a -y, (1.124)

k
Thus, Egs can be obtained for a crystal lattice.

The spin wave excitations lower the value of the sublattice magnetization compared to its saturation
value. It is possible to have a quantitative estimate for a given lattice. For either of the sublattices (A
sublattice is considered here for concreteness), the average value of the z-component of the spin is
written as

(51 =5 -+ Y lafen) (1.125)
k

Using the Bogoliubov transformation,

1
(S =5- N Z((ukmi + Vi) (wenie + vieg))
k

1
= 8= DR + Vit + )
k

=8—6Sa (say). (1.126)

Clearly, the second term denotes the departure from the saturation values and hence denotes as fluc-
tuations. The averages (7]}; nk) and (;,j k) yield the Bose distribution function at finite temperatures,

fe(wk) (= ﬁ) such that it yields the number of bosons (spin waves) when summed over all k in
the Brillouin zone.
e = (njnk) = (&} &) = fa(wp). (1.127)
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1.9

The coefficients uj and vy satisty,
1

ui%—vi = cosh 20, = ——. (1.128)
/ 2
1 —y
Thus, the magnitude of the fluctuations, §S4 can be written as
(1.129)

1 1 1
884 = N Z(I’lk + E)—I >
k VA e*

Thus, 5S4 can be computed at a given temperature and a crystal lattice.

ITINERANT ELECTRON MAGNETISM

It is by and large true that identifying the magnetic order present in the system is far easier than under-
standing the origin of the order. There are competing ways of studying magnetic order, which are
exchange interactions between the localized electrons, and those between the itinerant electrons. Even
though we feel that conceptualizing magnetic order arising either from a local or an itinerant view
should not be viewed as a regimented criterion, and is often perceived as a convenience of descrip-
tion. We have seen so far how model Hamiltonians arising out of the exchange interaction between the
localized moments, so it is instructive to discuss the role of itinerant electrons in producing magnetic
effects in materials.

¥G-LL:LL Y202 Jequiedeq L0

One simple way to consider the role of itinerant electrons resulting in magnetic effects is via a magnetic
impurity in a free electron model or in the presence of bands. Such a scenario can indeed be realized
in dilute magnetic semiconductors. The localized magnetic impurity causes an oscillation in the sus-
ceptibility at large distances away from the scatterer (the magnetic impurity). In a slightly different
context, if a spin-polarized electron gas is either ferromagnetically or antiferromagnetically coupled to
an impurity, a particular kind of exchange interaction ensue, and is known as the RKKY interaction
(Ruderman and Kittel, 1954).

An alternative route to magnetic phenomena in itinerant systems arises from the competition between
the kinetic and the potential energies. While we describe this scenario later, a priori it can be under-
stood via a population imbalance of one kind of spin with respect to the other, thereby causing a
decrease in the potential energy and an increase in kinetic energy. If such an interplay can lower the
total energy, such that it becomes favorable for the bands to split and give rise to a net magnetization.
The necessary conditions for such a scenario to occur are determined by the density of states at the
Fermi level and the energy scale associated with the Coulomb interaction.”

In a physical situation, it is impossible to extricate the contributions arising out of the localized elec-
trons from the itinerant ones. For example, magnetism in light actinides (where partially extended

8 It will be introduced as the Stoner criterion.
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5f orbitals are involved), is potentially different from the heavy actinides (or the lanthanides) where
the 5f orbitals are strongly hybridized with the 6d and the 7s bands, thereby making the itinerant
description to be more suited in the former, while a localized description is preferred for the latter.
The same is true for the heavy fermion compounds,” such as CeAls, UPt; etc, where the localized f
electrons strongly hybridize with the conduction band electrons, creating a significantly complicated
scenario.

Kiibler (2000) first attempted to explain magnetic correlations in materials via local density functional
approximation (LDA). The method incorporates electronic correlations and indicates the importance
of the electronic structure in understanding magnetic properties. Specifically, the itinerant electron
picture makes concrete contributions to the exploration of half-metallic ferromagnets, GMR observed
in multi-layered systems, etc.

In the previous discussion, we have seen ferromagnetism in the presence of a spin exchange interaction.
It is worthwhile to investigate the ordering scenario in detail in an itinerant electron model, such as the
Hubbard model. Since this discussion may be new to readers, we include an introduction of the model
and emphasize on its properties. We apprise the readers that elementary knowledge of band theory
and the second quantization is essential to understand the subsequent discussions.

A brief introduction to an interacting electronic model in terms of creation and annihilation operators
is as follows:

H= > it o+ Y. Ugichcoch ¢o (1.130)
ii'o,0" ii',j,f 00"

where i, 7, j, j refer to site indices and o, o’ denote the spins. The Hamiltonian includes a single-
particle term (the kinetic energy), and a two-particle interaction term. There could be the presence of
interaction effects involving larger number of particles, however they are mostly weaker (other than
being unsolvable), as compared to the two-particle term, thereby making two-particle interactions to
be good enough for describing most of the interacting systems. It may be noted that we have considered
the most general forms for both the terms in the Hamiltonian, however, either of them, or both may
not depend upon the spin indices as shown in Eq. (1.130).

1.10 MAGNETIC SUSCEPTIBILITY: KUBO FORMULA

1-28

Here, we shall show the calculation of the magnetic susceptibility using linear response theory. We
shall be deriving the Kubo formula, which is essential in a variety of systems. For example, calculation
of resistivity for an electron gas in the presence of an external magnetic field (for example, the quan-
tum Hall effect), or the polarizability of a dielectric in the presence of an electric field, etc. We give a
thorough derivation of the Kubo formula in Chap. 2.

9 The effective mass of the fermions is several times larger than the corresponding bare mass.
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Consider an applied magnetic field B(r, t). It is useful to assume it to be function of both r and ¢ for
reasons that will be clear later. Assume ' denotes the coupling between the spin and the magnetic

field and is given by

H = —fB(r,t)~S(r) dr (1.131)
where S(r) = ) ; 8(r — r;)S;. S; denotes the spin vectors at a given site i written in the Heisenberg
representation. Also, here we have dropped the Bohr magneton, up = —%, by taking up = 1. We
shall compute the magnetization defined by (S(r, ¢)) induced by the magnetic field B via,

(S(r, 1)) = (Yo (DIS@) Yo (D)) (1.132)

where |o(#)) denotes the ground state at time ¢. Using the results of linear response theory, at the first
order in B in a translationally invariant system,

O0(t—t)=1 fort>"1
=0 fort<t. (1.135)

(8i(r,0)p = (Si(r,0)=0 + ) / dt’ / dr' yij(r — v’ t — t)Bj(r,t) (1.133)

J
where yi(r, t) is a retarded two-particle propagator and denotes the susceptibility tensor. The
susceptibility tensor is the same as the spin-spin correlation function defined by §
Xij(l'—l'/,t— t/) =i0(f — H)([Si(l‘, t),Sj(l'/, t/)]> (1134) %
where, %

In order to proceed further, we shall Fourier transform the spin operators,

S(r) =) _€I7S(q), (1.136)
q

where the time variable (¢) is withheld for brevity. S(q) can be written in terms of the fermion operators
as

S(q) = Z cﬂqa“ﬁcf. (1.137)
ka,B

The components of S, or the linear combinations thereof allow us to write the spin raising and lowering
operators,

1
§t = S S i8y), (1.138)

where,

SHCED DL BLNT
q k
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and,

0= Y
q k

Now, we can write down the transverse and the longitudinal susceptibilities x =" and x, using the
raising, lowering and z-component of the spin operators,

x Ta—=r,t—1t) =0 —t){S( 1,8, D] (1.139)
and

Xzt =1t — 1) = i0(t — ) {[S:(r, 1), S,(¥, D)]). (1.140)
The equation of motion for x ~ can now be written as (with 7 = 1),'"

i%)(**(k, 31) = =8(D)([cfy 4, k1> STO,0]) + 0B ([l o, ckps H], ST (0, 00]). (1.141)

Here, the initial time ¢ is set to zero and the derivative of 6(¢) is 8(¢). Substituting the Hubbard
Hamiltonian, H above,

[C}quleT’ H] = _(€k+q - ek)C]tJrqleT
U
T T
N 2 gy a1 g K
k/,q/

i T
= oyt K L Gy g—qr | K1) (1.142)
Now, the quartic operators in the second term of RHS can be dealt within a Hartree-Fock approxima-

tion, and the combinations, such as (c'c) can be retained.'' At finite temperatures, the average values
are written as

(c} ko) = S dootfio (1.143)

where fi, denotes the distribution function for fermions with spin o and momentum k and has a form,

1
fka

= 1.144
ePles—1) 4 1 ( )
where €}, denotes the band energies. Thus, the second term in the above commutator is written as

U
N Z(fkT —fk+qL)C£+k/+q¢Ck+k/¢ + (fry = fit) gl Skt -
k/

Going back to the equation of motion (EOM), the term,

(lepyq ekt STOD) =D (lef 4, ks Sy gy ki 1)
k.q

10 A time dependent external magnetic field was taken earlier precisely for this reason so that a time derivative can be taken.
11 A (cP ety or (ce) is relevant for studying superconducting correlations.
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can be simplified to yield (fi+q, — fkt)- Thus, the EOM for the transverse susceptibility, x ~* can be
written as
d ~ -
[IE + (€k+qt — 6k¢):| x Tk g t) = =8 (frqy — fir)
U 4.0
— (frrql —fit) g DX T (Kog.0) (1.145)
k/

where the renormalized band energies €, = € — %Z fro. Thus, the one particle energies are
modified by the interaction term as shown here.

The dynamical susceptibility, x (w), are calculated by doing a Fourier transform,

o
x(w) = / dtx(t)e'. (1.146)
—00
Thus,
- 1+ Y%y * o
x (ks gy ) = i —f k+q¢)~( NX @.») , (1.147)
@+ €ktqt ~ €Ky o
where x "T(q,w) = > x T (k, g, w), one can write the expression for susceptibility as g
3
—+ E S
—+ X() (qa Cl)) ]
x (go) = ————F—— (1.148) ]
1—-Uy, +(q, ) §
where ;
- 1 Jer —Jfi ®
6 @e) =3 1oty (1.149)
k

 — (€k) — €kyqp) +in

is the free susceptibility tensor. The +in is added in the denominator as is usually done for a propagator
(Mahan, 2000), with the positive sign referring to the retarded propagator. The divergence of x "
denotes instability in the system, and hence, signals a phase transition. This instability is indicated by
the divergence of the x ~T (g, ), which happens when,

1- Uy g o) =0 (1.150)

is satisfied. In particular, at @ = 0, that is when the external magnetic field is time independent, the
system is lossless. Thus, Imx ~ 7 (q, w = 0) = 0. In such a static situation, any instability in the system
is a signature of the ground state instability. Furthermore, the energies of the low-lying excited states
begin to merge with those of the ground state. Hence, we can rephrase the instability criterion as

Ux, T(g,0) =1 (1.151)
where,

_ 1 k — Jk
xo T(g,0) = —ZM (1.152)

N o €ktq — €k
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Thus, at any arbitrary value of g, the instability condition is associated with a critical value of the
interaction U,
1
%o (9:0)

In order to relate x, T (g, 0) to something physical, we may note that the terms functions frerqand €xyg
can be expanded in a Taylor series in the large wavelength limit, namely, ¢ — 0,

dex Ofk

(1.153)

~ . Ik 9k 1.154

Jirqg * fr+q 3% et (1.154)
de

€hiqg X €k +q- a—]f (1.155)

. _ 1 A 1

1 T(gq,0) = — ——= ) == & — 1.156

lim %~ (q.0) N;( aek) N; (€ — &) (1.156)

where we have replaced the derivative of the Fermi function with a §-function which is valid at zero
temperature. Moreover,

1
K];S(e —€x) = N(e)

N(e) is the density of states (DOS). This finally yields us the Stoner criterion that we are familiar with,
namely,

UN(efr) = 1. (1.157)

Thus, instability corresponding to g =0 leads to a tendency for the system to acquire a finite
magnetization.

However, instability may occur even at finite values of g. To remind ourselves, the spin arrangement
in antiferromagnets has an ordering wave vector g = (%, %, Z) such that € changes sign as one
goes from one lattice site to its neighbor. In this case, the Fermi surface for the half-filled band (one
electron per lattice site) coincides with the Brillouin zone. Thus, as opposed to a ferromagnet, infinites-
imal interaction strength, U may cause instability in a system with one conduction electron per atom,

inducing a transition from a metal to an insulating antiferromagnet.

1.11 JELLIUM MODEL

1-32

The electronic description of metals due to Bloch, Bethe and others in the 1930s neglects the electron—
electron interaction, and in a vast number of cases, such a simplified description works. Even the
distinction between a metal and an insulator can reliably be done by band - filling calculations, that
is, without invoking the electron-electron interaction. Nevertheless, the band gaps in semiconductors
and insulators are somewhat difficult to calculate quantitatively. However, modifications of the single-
particle band structure, in the form Hartree-Fock corrections are computed, which is equivalent to
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computing the average energy shift in the single-particle energies in the presence of an average density
due to all other electrons have been known. This yields the essence of the mean field theory. Such a
description has, by and large, been successful in explaining a host of material properties. Yet, there are
reasons for one to deliberate upon, including the electron-electron interaction in studying the physics
of materials. The salient ones are as follows:

i. the average inter-electron distance in a typical metal (which goes as n~1/%, n being the density) is
about 1 nm. For a small interparticle distance, the inclusion of interaction effects is indispensable.

ii. There are physical examples, such as complex materials where significant deviations from the
single-particle band theory are noted. Familiar examples are transition metal oxides, cuprate
superconductors, etc.

An extension of the free electron gas can be thought of via a jellium model where the electrons inter-
act via the Coulomb potential, and the overall charge neutrality of the system is maintained by a
homogeneous positively charged background. We shall mainly concentrate on obtaining the dielec-
tric function via standard many body approaches, such as Hartree and Hartree-Fock approximations,
random phase approximation (RPA) . In the following, we consider an electron liquid (because of the
involvement of interparticle interactions, we do not call it an electron gas anymore) in 3D at T = 0, the
so-called jellium model. Jellium is a prototype model for metals, which is a uniform electron gas with
a positively charged background. Since the many-electron wavefunction can be solved using computa-
tional techniques, it is considered to be a convenient model for testing the characteristics of the density
functionals.

¥G-LL:LL Y202 Jequiedeq L0

1.11.1 The Hamiltonian

The Hamiltonian consists of terms that correspond to the kinetic energy of the electrons (Hgiy),
Coulomb interaction among the electrons (H,.—.), the interaction between the electrons and the
background positive charge (H,—j) which originates from the electrons interacting with the lattice
vibrations, and finally background energy (Hp_p) which is basically the Coulomb interaction between
the positive (background) charges. An enumeration of different terms in the second quantized notation
can be written as (Fetter and Walecka, 1971; Ziman, 1972; and Mahan, 2000)

Hiin = Z‘Skﬁia Cko

k,o

1
He,e = _V Z V(q)cltaclt’—i-qa’ck/ /Ck+qg

kKk'.q
p=e /d3rd3 i nw
4ne0|r— r|
(r)
=& | Peadry L 1.158
Ho—p = / 47‘[60|1‘ —r| ( )

H - Hkin + He—e + He—b + Hb—b)
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where V is the volume, ¢ (CIT() are the single-particle annihilation (creation) operators corresponding
to momentum, k, £x = €x — i, 1 being the chemical potential, the factor % takes into double counting,
and n(r) is the density term whose Fourier transform is defined as

1 4
ng = — | d’re '%n(r)
=5l
1 t
= — 3¢ e (1.159)
W%: ko “k+q

It is somewhat odd to write some of the terms of the Hamiltonian H in Eq. (1.158) in real space, and
others in momentum space. But with the Fourier transformation for the density term shown above,
'H can be fully written in the momentum space (by which we also implicitly assume that the electron
liquid is homogeneous, and hence translational invariance holds). However, this will not hinder the
discussion that is going to follow.

There is a subtle point that deserves a mention. Strictly speaking, a Fourier transform of the Coulomb
potential cannot be performed owing to a divergence of the integral.'” However, a screening term

—Ar
(which is also physically relevant owing to the screening effect from all other charges) of the form, 367

kills the divergence and yields V(q) = % in the limit of zero screening (A — 0).

1.11.2 Hartree-Fock approximation

It may be noticed that all other terms except the H,_. are quadratic in ¢ operators and hence can be
diagonalized in the single-particle basis, however H,_. is quartic in ¢ and hence needs an approxima-
tion to be at par with other terms for arriving at the solution. In a mean field approximation,'” the
quartic term is decoupled as a sum of all possible quadratic terms, namely,

;cs — (c;cs)c;cr + (c;cs)c;cr + (c;cr)c;cs

where the signs are governed by anticommutation relation of the fermions. The above decoupling
scheme replaces the interaction term H,_. by

c;c;crcs ~ —(c;cr)c

1
HF t t t i
R = E Z [_<deck0’)ck/+qafck+q0 - (Ck/+qofck+qo)ckgck’a’
kk',q
il T il il 1.160
F (G Chtq0 ) G4 g/ 0"+ (O g7 K07 ) s Cetgor | - (1.160)

The above Eq. (1.160) can be split into two terms, one for q =0 and the other for q# 0,
namely,

HE, =M (q=0)+H,(q#0) (1.161)

N
2y = % 3 19T is a divergent integral.
13 This type of mean field decoupling was introduced by Weiss, who replaced the magnetic exchange interaction of the form

Si - Sj by (8i)Sj + (5))Si — (S:i)(S;).
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where,

HE@=0=V(@=0 D (q, 0%y Ko’
kKoo’

Hf—Fe(q #0) = Z [V(q)nk—qa] .

k.,qo

The third and the fourth terms can be written as
Hep = —V(q # OnN

V
Hpp = EV(q # 0)n’

(1.162)

(1.163)

where n = '%[ is the electron density. It may be noted that V(q = 0) diverges since V(q) ~ 1/g%, and
because of which, both H,_j and H_;, will diverge. However, that is not too much of a concern, as
the charge neutrality implies that various infinities would cancel each other to ensure the finiteness of
the total energy. Let us combine H,_j and H_p, which yields,

%
Hep = Hep + Hp—p = V(g =0) [Enz - ﬂ/\/}

Va=0N? _ & A2
% 2 7 222 V

(1.164)

o
Thus, H,p, vanishes in the thermodynamic limit owing the presence of V' in the denominator. There is 3
another interesting cancelation that is shown below. %
Let us explicitly calculate the energy due to the background Hamiltonian, Hj_j, (it is implicitly assumed ®
that the eigenstates are known so that we can compute the energies), that is, ;
e 2 3.3, 1 —Ar—r/| i
Ey p=—n" | &rd’r ———e . (1.165)
2 [r—1r|
Let us assume r — 1’ = z, which upon substituting yields,
2 2 —iz 2
e 1 e e e 47
Epp=—n / Pzdr—e M = Zn?Y f Pr— = —n?V—. (1.166)
2 |z| 2 z 2 A2
Thus, the energy per particle is,
Ey_p, €*4m
—_— = = 1.167
N 2R (1.167)
A similar calculation for the E,_j, yields the form,
E._p 541
= —e" —n 1.168
N A2 (1.168)
Also the q = 0 term of the H,_, term yields,"*
Eeo(q=0) e*4m
Fec4=0 _etr, (1.169)
N 2 A2

14 This is called as the Hartree term or the direct term (because of q = 0) in the electron-electron interaction.
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Thus, we have,

E,_ E._ E._e(q=0
b—b + e—b + e—e(q ) —0. (1.170)
N N N
Hence, we are left with only the q # 0 in the electron-electron interaction term, which is called the
Fock term or the exchange term (as opposed to the direct interaction, called as the Hartree term), apart

from the kinetic energy of the electrons.

Thus, we get a Hartree-Fock Hamiltonian, Hpr (since both the direct and the exchange terms are
included) which can be written as

h2k?
Hur = Z (— + EHF(k)> Chor ko (1.171)
ko

where ¥ gr(k) the ‘self-energy’ at the HF level and is written as
Sup(K) = — Y 1_go V(@) (1.172)

This is the only term that is relevant to us as it provides a momentum shift, that is, a k-dependent
correction to the non-interacting energy.

Here, we have computed the self-energy at the HF level. The self-energy is in general a complex quan-
tity, where the real part of it contributes to the total energy, while the imaginary part denotes the life
time of the quasiparticles. Once the self-energy (¥) is computed, the total energy can be written as

Er = € + ReX (k). (1.173)

In general (k) may include contributions from the exchange, correlation, disorder, electron-phonon
scattering, etc., we have only restricted ourselves to the exchange energy.

1.11.3 Hartree-Fock energy

Next, we have to solve the Hartree-Fock (HF) Hamiltonian and obtain its eigensolutions. For this pur-
pose, let us write down the Hamiltonian and the corresponding Schrédinger equation in real space
with (¢;(r), €;), namely,

h—vzx/f(z)——zf &

In the absence of a better estimate for the wavefunction, we assume a plane wave solution of the form,
Y = 1 ¥, where a box normalization of the plane wave is assumed in the volume V. Plugging this

Vi) Yi(r) = €9i(r). (1.174)

plane wave solution in the above equation (let us only concentrate on the interaction term as the kinetic
2172
energy term will trivially yield hz_r]:l ),
—l(k] k,) r 1

3/ = ikr
ZVZ/ Tl W
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Replace r — ¥’ = z, which allows us to write,
e—i(kj—ki).z 1

e
s d3 - ik.r‘
2v Z/ A

This confirms that the plane wave states indeed are the solutions of the HF Hamiltonian as just a
coefficient consisting of
e—i(kj—ki).z

e 3

— B

o K

is multiplied with the plane wave states. This allows us to solve for the energy, € as

h2k2 e —l(k —kj).z
wE o et
- " _ 2
Z |k k/|2

=+ Eex(k). (1.175)

Thus, the single-particle energies are getting renormalized by the second term, which can now be
solved by converting the sum into an integral,

T (k) = — Ak dme & ko k/zdk//“ d(cos )
(277:)3) |k - k/|2 T 0 1 k2 + k/2 _ zkk/ COS@
ekr |: 1—a?
1+

_n 20
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> (ke k+K
=—— | KaKi
7k Jo "i—x

where kg is the Fermi wave vector and o = % F(a) contains the wavevector dependence of the self-
energy. Here

14+«
l—«

ZkF

] = ——F@ (1.176)

ln‘

2

—o 1+

l1—a|

In

1
Fla) =1+

We plot F(a) as a function of « in Fig. 1.8. As k approaches kr, F(«) decreases indicating an increase
in the value of the self-energy, £ for electrons near the Fermi level.

Hence, the ground state energy per particle is obtained after a straightforward calculation as

ex __ ex _ (eklzi/n)z ! 3 esz
1.11.4 Magnetic properties

It is known that magnetism does not arise from the interaction between the magnetic moments, but
from the exchange part of the Coulomb interaction. In fact, the exchange interaction (Heitler-London
type) led us to the spin-only Heisenberg model or the itinerant Hubbard model, which yields a good
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2 semi-quantitative basis for describing fer-
romagnetism in rare earth compounds.
18t However, to describe the itinerant ferromag-
netism in the transition metals, it is appro-
priate to resort to the electron liquid, that is,
_ L6y the carriers are moving in the background
§ of positively charged ions, or the jellium
14 model. In the non-interacting version of it,
the kinetic energy of the carriers competes
121 with the ordering energy, which is needed
to align (or anti-align) the spins in the pres-
1 . . . . ence of an external field. This results in a
0 0.2 0.4 0.6 0.8 1 net effect which is weak and vanishes in the
o limit of zero external fields. Such a scenario
where the magnetic phenomena are absent
FIG. 1.8 is referred to as a non-magnetic or a Pauli
F(e) is plotted as a function of . As k — ke, F(a) smoothly paramagnetic behavior of the electron liquid. 3
decreases. 3
Now when the electron-electron interaction g
isincluded, the spin alignment is mediated by %
the exchange interaction and can even be strong enough to sustain the order without any external 3
magnetic field. To remind ourselves, the HF energy per electron (without taking into spins) is fn
E 30.1 12.5 i
— = eV — eVv. (1.178)
(N>HF (rs/ao)? (rs/a0)
To discuss magnetic behavior, we need to invoke the role of spins. A straightforward and efficient way
to do this is writing down the HF energy in terms of the spin-dependent particle densities. Introducing
the total density, n (= %/) explicitly in the above expression,
2/3 1/3
(£> =N |:78.2 <JX> / eV —20.1 (JX) / eV:| (1.179)
N J 4k 1% 1%
where we used
Ts 3 (V13
i ()]
Introducing the number of 1- (NV}) and |- (V) spins,
E E E
(%), 4= (), 0+ (50),,
N; 2/3 N, 2/3 Ni 1/3 N, 2/3
= |:78.26V (7> + <7> ] - |:20.leV <7) + <7>
(1.180)
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AE

with the condition that N} + N} = N It is customary to introduce the spin polarization operator,

namely,
Ny — N,
p— 1.181
G (1.181)
which allows us to write the number of spin-polarized particles as
N N
Ny = 7(1+P); N, = 7(1—P). (1.182)

This facilitates writing down the HF energy in terms of P as

(£> =N l{(1+1))5/3+<1—P)5/3}—1(1)1/3{(1+P)4/3+(1—P)‘*“}. (1.183)
N ur 2 8 \N

Let us now explore non-zero polarization (P # 0), or in other words non-vanishing spontaneous mag-
netization. Such a scenario will depend upon the sign of E(N, P) — E(N,0) (say =AE). If AE < 0,
then spontaneous magnetization exists, and hence a ferromagnetic state is stabilized. Thus,

AEP) 1 5/3 /3y L 4/3 /3y <_é>}
NG —2[{(1+P) + (1 —-P)"} 8/3{(1+P) +1-P)"} N1 2 (1.184)

where f is related to the inverse of density, via, 8 plotted as a function of P is shown
below (see Fig. 1.9 for a few values of 8 which shows a change in sign at a critical density given by
B = %(1 + /2) 2~ 0.9. This value of B,
translates to a density that corresponds to
rslag > 5.5. Clearly, this number is related
to the density of the electron liquid (or
rather the inverse of it) and hence the
critical density for ferromagnetic order to

— (%)1/3 AE(P)

0.1
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0.051

or occur should be low enough such that the
Wigner-Seitz radii (r;) should at least be
-0.05 ¢ ~5.5 ag. However, as we shall see that this
is too stringent a criterion, and is only
-0.1f successfully cleared by Cesium (Cs). Even
the best known ferromagnets, such as Fe,

015 ) ) ) Ni and Co, do not meet the criterion.

-1 -0.5 0 0.5 1
P Evidently, the premises on which these
inferences are based on, that is, the
HF approximation, is disconnected from
FIG.1.9

reality. In fact, the maximum density at
The change in energy per particle is shown as a function of the polariza- Y Y

tion, P. The magnetic state stabilizes for large 8. which ferromagnetism can occur given

by ri/ap > 5.5 is short by one order of
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magnitude. It has been found by Zhong et al. (2002) that the upper limit of density corresponds to
rs/ap 2 50. The reason for such a large discrepancy lies in the jellium model itself. While the jellium
model correctly assesses that completely free electrons (as in metals) can not result in ferromagnetic
correlations, however, on the other hand, fails to account for the best known ferromagnets, such as Fe,
Ni and Co to have ferromagnetic ordering. A very important fact that the jellium model misses is the
combination of the band structure effects along with the exchange interaction.

To make the ongoing discussion more concrete, let us consider a crystal lattice, and more importantly,
a specific form of the interaction in this case, the interaction is between the electrons at the same lattice
site, and obeys the Pauli exclusion principle. In particular, we wish to talk about the Hubbard model,
study its properties, and wish to explore its utility for studying the magnetic properties of solids.

1.12 THE HUBBARD MODEL: AN INTRODUCTION

1-40

In a real solid there are atoms or ions which are periodically placed and the electrons are usually free
to move through such an array. The atoms or ions have very complex energy levels (or orbitals). The
Hubbard model (Hubbard, 1963; Doniach and Sondheimer, 1974) simplifies the description of the
constituent atoms with a periodic array of sites with a single energy level. This serves as an approximate
description for materials where one energy band is in the vicinity of the Fermi surface, and hence only
one orbital is important. With such a postulate, the Hilbert space of the model is restricted to four
choices, which are, [0), 1), [{),|1{). When the electron density is sufficiently large in such a scenario,
the electrons can interact pairwise via a screened Coulomb potential, with the largest interaction being
between the two electrons residing on the same site, that is, for a ‘doublet’ state, |1 ). Thus, all the other
three states are approximated in a manner as if they are experiencing no potential. The Hubbard model
enunciates interaction energy, U, if a particular site is doubly occupied (needless to say that by opposite
spins to conform to the Pauli exclusion principle). At a site 7, this simplified model is represented by an
interaction energy of the form Unj;n;,. Any term such as Vnj; nj;, where i # j are excluded here and
are included in the extended version of the Hubbard model.

Thus, putting these ideas together, the Hubbard Hamiltonian in the grand canonical ensemble is
written as

H=—t Z(c:&,cjg +hc)—pn an + UZ”iT”ii- (1.185)
(ij),0 i,0 i

The first term is the kinetic energy, which illustrates the hopping of electrons from a lattice site j to
a site i with an energy scale t that could be determined by the overlap of orbitals for the neighboring
atoms (c, ¢' being the fermion annihilation and creation operators). The second term is the chemical
potential, which fixes the electron density and the last term is the most ‘simplified’ The Hubbard
(onsite) interaction term that we have discussed earlier. It says that a doubly occupied site, such as
|14 ) will have an energy U. Thus, if U is large (see discussion below), it will cost large energy to form
a doubly occupied site, and would correspond to an insulator, known as a Mott insulator.
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1.13 SYMMETRIES OF THE HUBBARD MODEL

Exploring symmetries in a model Hamiltonian can be quite helpful in understanding the concepts
that govern various physical phenomena. If the onsite interaction, U, is uniform at all lattice sites (the
most commonly made assumption), then the U-term is invariant under all symmetry operations of
the lattice. Additionally, the spin-rotational invariance and the particle-hole symmetry are important
ingredients for understanding magnetism and the electronic properties.

1.13.1 Spin-rotational invariance

The kinetic energy of the model describe the hopping of electrons for both spins from one lattice site
to another. Since this term has got nothing to do with spins, it is invariant under the rotation of spins.
Now, let us consider the interaction term, n;; n; .
niph, = clTTc,-Tch,-i = c}}cm(l — Cilca)

= nip = cheinciyel) = nip = clecine)

=nip — S S; . (1.186)

Here, we have introduced the relation between the spin and the electron operators as

I =Y cholcip. (1.187)
B
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Here, for once, we use @, 8 to denote 1 and |, spins. Since 0¥ denote (0, 0, 0 ;) , are the components
of the Pauli matrix. We can also write, following the above, for the LHS,

nipni, = nj| — S;S?, (1.188)

owing to the exclusion principle, n2,

squaring S = %(niT — n;), one gets,

= njs (which is the property of an idempotent matrix) and

1
(S?)z = Z(niT + nj, — 2njpn;y). (1.189)

Thus, the interaction term takes the form,

UN 2U
Hint e T - ? Siz. (1190)

i
It is clearly seen that this term has spin-rotational invariance as S;* has the eigenvalues given by
3
Sit=7 forIthll)
=0 for|0),|T)).

If one notices the second term in Eq. (1.190) for a moment, it is large for uncompensated configura-

(1.191)

tions, such as |1) and || ). Thus, the Hubbard term seeks for such configurations, compared with the
other two.
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1.13.2 Particle-hole symmetry

We can write down the interaction term in a symmetrized form as

Hint = UZ (”iT - %) (nw - %) . (1.192)

We are going to show particle-hole symmetry of the Hamiltonian, which is important since it pro-
vides useful mappings between the repulsive (positive U) and the attractive (negative U) Hubbard
Hamiltonians.

It is important to introduce the concept of a bipartite lattice in this context. The entire lattice here splits
into two sublattices of the types A and B (which may or may not mean same type of atoms or ions),
where A-atoms have neighbors as B-atoms, and vice versa. A square lattice and a honeycomb lattice
are examples of bipartite lattices.

Under a particle-hole transformation, the c¢;; and c;rd operators transform into a different set of
operators via,

dl = (~ici. (1.193)

The (—1)' takes a value +1 in one sublattice and —1 in the other sublattice. The nomenclature of
particle-hole transformation is aptly justified since,

dl dio =1—c} cio. (1.194)

It can be easily checked that the particle and hole occupations n = lera cic = 0,1areinterchanged under
this transformation. The kinetic energy of course is an invariant under particle-hole transformation,
that is,

o = (=D)Mdipdl, = df, dig (1.195)
where we have used the fermionic anticommutation relation, and in a bipartite lattice (—1)"*/ = —1.

Now let us look at the interaction term, namely, U(nip — %)(ni = %). It is easy to check that,

1 1 U U
Ul nip — 2 ni, — > = Unjpni, — 5(1’1,‘T +n;) + 7 (1.196)

with the last two terms being constants, the first term on the RHS represents the familiar Hubbard
interaction. One can trivially show that the form is preserved under the particle-hole transformation,
and one gets the same form for the Hubbard Hamiltonian in terms of the d (hole)-operators. The
readers are encouraged to complete a few steps of algebra to convince themselves.

1.13.3 Extreme limits of the Hubbard model

Itis instructive to explore the two opposite limits of the Hubbard model. They are non-interacting limit,
(U = 0) and the opposite of that, which is, t = 0, when the system splits into a collection of individual
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atoms. The two limits are more familiarly categorized as U/t — 0 and U/t — oo respectively. In the
non-interacting or the band limit, one gets the tight binding Hamiltonian,

H=) (ex— Wnke = ) Extiko (1.197)
ko k

with & = (ex — ). Now let us make the case more concrete by taking a two-dimensional square
lattice, for which the band energies are given by

ek = —2t(cos kya + cos kya) (1.198)

a is the lattice constant. Changing ismoothly from —4t to +4t (4t denote the band edges, resulting
in a bandwidth of 8¢), n changes from 0 to 2. Of course, in the absence of the interaction, the Hamil-
tonian in Eq. (1.197) endorses a metallic state, which can further be confirmed from the calculation of
the compressibility, « = (327]25)_1 at T = 0 which is proportional to the density of states. ¥ # 0 points
toward a metallic behavior.

Furthermore, the band energies given in Eq. (1.198) is shown in the surface plots in Fig. 1.10 where we
have takent = land a = 1.

On the other hand, in the extreme strong coupling limit or the atomic limit (t = 0), the Hubbard
Hamiltonian is

H=> Unyni, (1.199)
i

where the chemical potential or the atomic energy has been set to zero. The ground state of this model

¥G-LL:LL Y202 Jequiedeq L0

is tremendously degenerate. For N sites at half filling (number of electrons is also N) the spin degen-
eracy alone is 2V, Thus, the degeneracy corresponding to U — 00 is exponentially large. However, an
effective spin Hamiltonian can be obtained, which is also useful for the study of magnetism. At half
filling, in the limit U/t — 00, one can derive the Heisenberg model from the Hubbard model. Here we
sketch the derivation pictorially for two sites i and j (see Fig. 1.11). Thus, the energy costis Ey | = — %
The factor 2 in the right arises because of hopping can occur from left to right or right to left. Thus, a
state with two spins in a singlet configuration can gain kinetic energy by tunneling to doubly occupied

states. Whereas, there will be no hopping corresponding to

§-rue

owing to the Pauli principle. This leads to an effective Heisenberg Hamiltonian valid for two spins,
HHeisenberg =J5-5 (1.200)

2 2
where ] = % In fact, in a d-dimensional hypercubic lattice with z neighbors, ] = % If we extend the
case for two site problem to an array of sites with full spin rotational symmetry (over a unit sphere) for
the spin angular momentum, we obtain the familiar Heisenberg model,

H=]) SiS; (1.201)
(i)
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-n/a 0 n/a
n/at n/a
3
2
1
) 0 0 0
-1
-2
-3
_nt/akb \{-n/a
-nt/a 0 n/a

FIG. 1.10
Contour plot of the dispersion surface e, = —2t(cos k.a + cos k,a). The shapes shown here, for example, blue circle
at the center (corresponding to low filling), green rhombus (half filling), etc., demonstrate constant energy surfaces.

We wish to make it clear that we shall study the magnetic phenomena via an electronic model, for
example, the fermionic Hubbard model. Except in d = 1, where the model can be solved exactly using
Bethe ansatz, in higher dimensions, there are no exact solutions. We shall mostly concentrate on
d = 2, and hence use controlled approximations to solve the Hubbard Hamiltonian. The reader should
be careful and clear in mind about the inadequacies of the approximation used, and the extent of their
validity.

Consider a generic Hamiltonian of the form,

H=Ho+ M. (1.202)
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because of large U

Both have
equal probabilities

FIG. 1.11
Second order in t (think of perturbation theory with an energy denominator).

Usually, the eigensolutions of H are completely known. Furthermore, it can be assumed that the eigen-
values of Hj are bunched into different groups. The energy eigenvalues in each group are located in
close vicinity to each other, however the levels belonging to different groups are separated far apart.
Let us label the groups by «, B - - - etc., while the energy levels in each group are denoted by p, g, etc.
For example, Ep, denotes the p™ energy level in the group .
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Without any further conditions imposed, H’ should have matrix elements involving eigenstates from
different groups. Mathematically, stated, this is equivalent to {«, p|H'|B,q) # 0 for & # B. However,
if H' is weak, that is, it can be used as a perturbation term, then we can do a unitary transformation
on H’, and hence obtain an effective Hamiltonian, H,5. Thus H,g does not contain matrix elements
between different groups and only the elements involving states within a group. The matrix elements
of Hg upto second order in ' are written as Cohen-Tonnoudji et al. (1977),

(, pIHegr|B, @) = Eadpg + (pralH'at, q)

1 1 1
+ = o, pIH'|B, k) (B, kIH |o, [ + } (1.203)
2ﬁ§a< PIHIB R ) | g

Heg thus yields matrix elements involving a particular group, say «, and hence is diagonal.

We shall apply the above calculations to the Hubbard Hamiltonian [Eq. (1.185)] and aim to formally
arrive at a super-exchange Hamiltonian (as depicted earlier pictorially) in the following. Being one of
the simplest cases, let us consider two sites, namely, 1 and 2, and two electrons with spins 1 and |.. The
kinetic energy, t can be taken as the perturbation, that is, ¢ <« U. There are six states corresponding to
the extreme strong coupling limit, that is, ¢ = 0. They are,
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i. both are 1-spin particles and hence belong to different sites (Pauli’s exclusion principle), that is,
1) = CITCEHO), with energy, E=0
ii. both are | -spin particles and hence belong to different sites (Pauli’s exclusion principle), that is,
[2) = c;¢c;¢|0), with energy, E=0
iii. 1-spin particle in site 1, | -spin particle in site 2, that is,
13) = CJ{TCEUO), with energy, E=0
iv. | -spin particle in site 1, 1-spin particle in site 2, that is,
|4) = chc;T|0), with energy, E=0
v. 1-spin particle in site 1, | -spin particle in site 1, that is,
|5) = ChCIT |0), with energy, E=U
vi. 1-spin particle in site 2, | -spin particle in site 2, that is,
|6) = Czich |0), with energy, E="U.

The purpose of writing down the effective Hamiltonian is to eliminate the last two states, that is, (v)
and (vi) with large energy (of magnitude U).

We can now switch to a small hopping term, ¢, so that the Hamiltonian can be written as H = Ho + H/,
where,

Ho = U(niypnyy + napnyy)

H =—t (CITCET +f e+, + cgich) . (1.204)
Let us evaluate a non-zero matrix element, for example,

(61H'13) = —t{0lcayeap (] eay + ] 2y + hpery + e ery)eh €14)]0).

There are 4 terms here, and they can be shown to have the following values, namely,
t<0|cucmcj¢cmc§lc{¢)|o>|o> =0

t<0|cucmchcuc§¢c{¢)|o>|o> =0.
t<0|cZ¢cZTc§Tc1Tc§¢c{T)|o>|o> = —t.
—t<0|cul:2¢c§¢cuc§¢c{¢)|o>|o> =0.
(5IH'|3) = —t.

(6|H'|4) = —t.

(5|H'|4) =t.

ISR

@R - 0

Now, up to the second order in t, using Eq. (1.203), one gets,

212
(BHeg13) = - = (4| H14)
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E=0; D 75 o
(I DD 10y = 22 = ptpis

(LIHeg|1) = (1 Heg|2) = (2[Heg[1)
= (2[Heg|2) = 0. (1.205)
12 Thus, Heg connects the states |3) and |4) only up

to order % Thus on the basis of |3) and |4), One
gets the following form for H g, namely,

_w 2
2 _ U U

E=— 425 {3 (I1) - 1)} Hey = [ 21 _ﬁ]- (1.206)
U U

i = — 4
FIG. 1.12 The eigenvalues are E=0 and E= —77. We

The energy levels and the corresponding states are shown upto show the energies and the corresponding states
order #/U. schematically in Fig. 1.12. Thus, we get an effective

superexchange Hamiltonian of the form,

_ 4t
Heg =JS1-82, with] = o (1.207)

1.14 FERROMAGNETISM IN THE HUBBARD MODEL:
STONER CRITERION

¥G-LL:LL Y202 Jequiedeq L0

To explore ferromagnetism in the Hubbard model, we write the Hamiltonian once again on a lattice,
H=—t) cco+UY nyny. (1.208)
(ij).o i

The model can be solved within a mean field approximation, which decouples the quartic term (in
terms of the fermionic operator) into quadratic ones. This is known as the Hartree-Fock approxima-
tion, which allows,

UZI’I,’N’I@ — UZ(I’I,’T)?IQ + UZ(?I,’¢>I1,’T. (1.209)
i i i

Let us provide a physical feel for the mean field approximation and its validity. Suppose a student is
sitting in the class and, he (she) has friends who are sitting right beside him (her) and there are some
friends who are sitting very far away, so that no communication (or interaction) is possible while the
class is going on. However, the students who are sitting in the vicinity, can interact with that particular
student. The situation is similar to a many body system, where the charge carriers interact strongly with
other carriers that are in the vicinity, and lesser interaction ensues with the ones that are far off, and
even lesser interaction with those which are farther off. However, one can reduce the complexity of the
problem by making an approximation that an average field is acting on the charge carrier (that is, one

Magnetism  1-47




particular electron) due to the presence of all other carriers (just
like an average effect on a particular student due to all other
students in the class). This reduces the complicated many body
phenomenon to a single particle problem (and hence solvable)
at the expense of ignoring fluctuations which arise out of a dif-
ferential nature of the interaction between charge carriers in the
vicinity with those which are further away. This allows us to
replace the operators n; with their expectation values, thereby

€
making the quartic operators at each lattice site to a quadratic

ones.

Coming back to the context, in a ferromagnet, in one species of
spin, that is, say 1-spin outnumbers the other one, that is, |, -spin
(see Fig. 1.13), we can assume,

(nig) > (niy). (1.210)

Thus, magnetization, m at a given lattice site defined by m; =
(niy) — (ni}) = m can be computed via,

cF &F
m =/ deNy(e) —/ deN\ (). (1.211)
N £B

FIG. 1.13 here N (&) d he densitv of for spi d d

The bands for 1 and |-spins are shown. where N, (¢) denotes the density of states for spin-o and €4 an
The Fermi energy () is marked by a hori- € g denote the bottom of the bands for 1 and | -spins, respectively.
zontal line, while the dashed horizontal line We may choose a level symmetrically between the bottom of the
denotes a reference, which is at separated 1 and | -spin bands denoted by the dashed horizontal line in the

by an energy A from the bottom of the 4
and | -spin bands. The shaded area denotes
filled energy levels.
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figure. Let us assume that the energy gap between this line and
€4, 1s denoted by A one may write the integral as

m:/ FdsN(8+A)—/ FdsN(s—A). (1.212)
—A A

Here, the 1 and | -spin density of states are denoted by N(¢ & A). Assuming A to be small, one can
perform a Taylor expansion of the density of states,

dN
3
N
N(E - A) = d—(—A) where A = % (1.214)
de 2

Since the Fermi energy er is much larger than A, one can set the lower limit to be zero and combine
the integrals,

e dN

m= ZA/ —de (1.215)
A(=0) de

= 2AN(er) = mUN(¢eF). (1.216)
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m Canceling m from both sides, we arrive at a
condition,
1

N(ep) = —. 1.217

() =5 (1.217)

This is known as the Stoner criterion, which yields
a very stringent condition on the occurrence of fer-

Para Ferro romagnetism. From the figure, it is clear that the
interaction term multiplied by the density of states
at the Fermi level must be necessarily greater than

v unity and the boundary between the paramagnetic
and ferromagnetic phases is indicated by the curved
FIG. 1.14 line (Fig. 1.14).
m as a function of Hubbard U. The plot emphasizes Stoner
criterion and shows the boundary separating the paramag- It is important to note that only Fe, Ni and Co pass
netic and ferromagnetic phases. the Stoner criterion. As a toy model, if we consider

a two-dimensional square lattice whose density of
states diverges at the half filling, that is one particle per site (n = 1), U — 0 which says that the system
is unstable against a ferromagnetic ordering even at a negligible interparticle interaction.

1.15 ANTIFERROMAGNETISM IN THE HUBBARD MODEL

¥G-LL:LL Y202 Jequiedeq L0

Having discussed ferromagnetism in an itinerant electronic model, we shall discuss antiferromag-
netism. For concreteness, we consider a two-dimensional square lattice, consisting of two sublattices,
namely A and B sublattices. A sublattice contains predominantly 1-spin particles (the 1-spin density
being large, with a small | -spin density). Similarly, the other sublattice, namely, the B sublattice con-
tains predominantly | -spin density (along with a small 4-spin density). It may be noted a perfect Neél
order hasn’t been assumed and a small density of the other type is essential for our purpose. Further-
more, every A sublattice site has 4 neighbors which are that of B sublattice and vice versa. Thus, there
an antiferromagnetic ordering with a wave vector g = (i, ) (Singh and Tesanovi¢, 1990).

Once again, we take the Hubbard Hamiltonian and do an unrestricted Hartree-Fock approximation
(with of course ignoring terms, such as (c'c") and cc) on the interaction term, which yields,

HEF = U Z[ CipCit ) ¢Cz¢ +{c ic,¢)cch,T —CITC,¢< Lc,T) llc,-T(chcu)] (1.218)

where we have neglected a constant term of the form, U(CITG c,-gr)(cja,c,-a). Rewriting the decoupled
interaction term,

Hi = UZ [(mig)miy + (ni)nip |- (1.219)
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This implies that an 1-spin particle feels a potential U(n;;) and a | -spin Hamiltonian feels a potential
U(n;y ), with the constraint that

() 4 (1) = 1. (1220)
Also, the sublattice magnetization m is defined by
(AP (AP (1.221)

with m being replaced by (—1)'m implying a change in sign as one goes from A sublattice to a B
sublattice. Thus, in terms of U and m, the potential experienced by 1-spin and |-spin particles are
given by

. U Um ;
Vi) = Ulnyy) = 5 T(_l)
U U .

Vi) = Ulnn) = - + 7’"(-1)’. (1.222)

Defining, A = % (—1)* (distinguish it from the definition of A used in ferromagnets), one may write,

U
ViieA)=— ~A=V(ieB)

U
ViieB)=—+A=V(icA). (1.223)
Thus, the mean field Hamiltonians for each spin say 4-spin is written as
Hil) = —t Y clcip + Y Vaimip (1.224)
(ij) icA,B

where njy = c}}cm. Assuming translational invariance, one can Fourier transform the above
Hamiltonian,

A [ A B
Hyt) =Y exclichy + D[ (Mt o + Al o] (1.225)
k Q
Writing H4 (k) in the sublattice basis renders a 2 x 2 form,
2 ]| « ]
Hy (k) = [Sk A] [Cf,n_ : (1.226)

Diagonalizing, one gets the eigenvalues as

Epr = £,/ A2 + £2. (1.227)
1 k

The energy spectrum is plotted for a given value of U in Fig. 1.15. There is clearly a spectral gap that
scales with U. Similarly, for the | -spin,

H, (k) = LAk f"A] (1.228)

Again, one gets, Ex, = &,/ A% + 8]% = Ey, that is the same as the 1-spin.
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a
d
¥ Hole (empty band)

A
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g > DOos
A
4
f | Particle (filled band)
2
b, g
S
i
Ep
DOS — >
FIG. 1.15

Density of states (DOS) along x-axis is shown as a function of energy (E) shown along y-axis. (a) The lower (light
yellow) and the upper (light blue) Hubbard bands are shown. The band gap scales with the Hubbard interaction, U.
(b) The lower and upper Hubbard bands merge in the limit U — 0.
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The eigenvectors corresponding to the filled band (negative eigenvalue) for the 1-spin are,

[“"T}z V1= i . (1.229)

€k
Prr (Exr—A)+e2

The magnetization, m can now be computed using,
! 2 2
m=ny —ny =N_/2 Z (“kT_O‘u) (1.230)
ke LHB

where LHB denotes the lower (filled) Hubbard band. Also, % arises because we are summing the num-
ber of unit cells, which are N/2 numbers corresponding to N sites. This yields a self-consistent value
of m,

2 A 1 mU
me N2 _1gmY (1.231)

N Ex N E;

k k

where, mU = 2A (ignoring the sign that it picks up in going from one lattice to the next). This further
can be simplified to,

| — 1 U
N P Ex
1 1 1
— == —. (1.232)
U N Ej
keLHB

The above equation can be considered as a self-consistent equation for calculating magnetization, and
requires a numerical solution for A (= mU). Instead of resorting to the discussion of the numerical
solution, let us consider different limits to explore the behavior of the magnetization.

1.15.1 Strong coupling limit

Here, we consider U > t or equivalently U — oo (that is greater than any other energy scale of the
problem) where it is energetically unfavorable for electrons of opposite spins to occupy the same lattice
site. Thus, A = mTU is very large and B4 in Eq. (1.229) takes the form,

€k €k

= - 0~ ~ 1.233
Pt = B —aysel 2a (1:233)
Thus, agy ~ 1 (since agp = /1 — ,BIfT). Hence, the magnetization becomes,
2 2 N
= — l=—x—=1 1.234
"EN Xk: N2 (1.234)

where weused ) ", 1 = N.
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The same inference can also be obtained from the self-consistent equation,
1 1 1

— = _ i (1.235)
U N P 2A

2A = U implies m = 1. Thus, in the strong coupling limit, the sublattice magnetization attains its
saturation value, namely, equal to 1. Quantum fluctuations reduce this value. For example, the magne-
tization obtained from quantum Monte Carlo calculations is 0.6 for a two-dimensional square lattice
(Sorella et al., 1989).

Now consider the opposite limit, that is, U/t — 0 or equivalently, A/t — 0, then one gets for the self-
consistent equation,

1 1

==— . 1.236
U~ 2N Xk: o (1.236)
Converting the sum into an integral,

1 1

— = /N(a)—de. (1.237)
U 3

As a particular case in two dimensions (2D), the DOS has a divergence, that is,
1

N(e) ~In (—) (van Hove singularity)
€

Thus, one gets,

1 2
% ~ lim an ~ |:ln <l)i| . (1.238)

e—0 & &
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One can take a tiny cut off § to satisfy the divergence of the RHS, which renders,

2
% - [ln (%)} (1.239)
yielding,
t/U ~ [In(t/8))?

Thus, one gets, A/t ~ ¢~*/U, implying that the magnetization
takes a form,

t 1

m~ —e U ~ eV, (1.240)
U U

Thus, as U — 0, m — 0, but in a complex fashion, that is,
1

mo~ —e VU,

A schematic plot of magnetization is shown in Fig. 1.16. Thus,

it 116 , : at low interaction strengths, the magnetization vanishes as
Magnetization as a function of U in strong and 1 —1/U while. for obvi ¢ lue 1
weak couples regimes. Te , while, for obvious reasons, 1t saturates at a value

for large U. Hence, even without a self-consistent numerical
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solution, we get an idea about the behavior of magnetization as a function of the Hubbard interaction
parameter. While it is difficult to guess the exact form at low interaction strengths, it is still possible to
reconcile that magnetization vanishes as ¢ > U.

1.15.2 Summary and outlook

In this chapter, we have given an overview of different magnetic orders in solids. What follows after-
ward is a brief discussion of magnetism in materials with atoms having filled and partially filled
shells. Pauli paramagnetism, Curie’s law and Landau diamagnetism are hence discussed. We have
underscored the role of electron-electron interactions in explaining ferromagnetism and antiferromag-
netism. The mean field theory of ferromagnetism is introduced. As an extension, spin wave theory is
applied to ferromagnets using Holstein-Primakoft transformation. A simplified version of the Heisen-
berg model, that is, without the interaction between the z-component of the spins at neighboring sites,
namely, the quantum XY model is solved. Furthermore, antiferromagnetism is studied within a sim-
ilar formalism. Yet another technique is employed, namely, the transfer matrix approach to study the
critical properties of a ferromagnet to a paramagnet phase transition. The magnetic susceptibility is
hence studied within a linear response theory. To wind up our discussion, we have introduced an itin-
erant electronic model to study the properties of materials, namely, the Hubbard model and discuss
its properties. The weak and the strong coupling limits of the model are studied. The model is hence
solved using Hartree-Fock approximation. The magnetic properties of both ferromagnets and antifer-
romagnets are studied, where the magnetization is solved self-consistently as a function of interparticle
(Hubbard) interaction.

Summarizing, apart from studying diamagnetism and paramagnetism, which can be comprehen-
sively understood without invoking the electron-electron interaction, we have presented interacting
models involving spins and electronic degrees of freedom and computed the key magnetic property,
that is, magnetization (or equivalently, the magnetic susceptibility) as a function of the interparticle
interaction parameter.

1.16 APPENDIX

1-54

The electronic configuration of elements can be understood by adding one electron at a time to the
available energy levels of the atoms. Each electron can be added adhering to the Pauli exclusion prin-
ciple, and Hund’s rule (discussed later). There are a number of factors that decide the energy of an
electron in an orbital. They are, respectively, the mass number, (that is number of protons), average
distance of the orbital from the nucleus, and last, but not the least, screening effects. The last one needs
a special mention, particularly for many-electron atoms, where the positive charge of the nucleus is
partially screened to an electron in the outer shells owing to the presence of intervening electrons. The
screening is not uniform for all the orbitals of a given energy level. The orbitals of an atom overlap
the region surrounding the nucleus. The more an orbital penetrates onto the negative cloud of the
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screening electrons, the more strongly the electron is pulled by the nucleus, and consequently
the corresponding energy will be lower. For example, corresponding to the same energy level (same
value of the principle quantum number, #), the smaller the value of the orbital quantum number, /,
the larger the probability of finding the electron near the nucleus. Thus, an s-electron (I = 0) for any
n is more penetrating than the p-electron (I = 1). Thus, for a given n, the energies are arranged as
Es < Ey, < Eg < Ef... (d corresponds to I = 2 and f corresponds to [ = 3).

Even the above classification is not free of loopholes. For instance, the 4s orbital (n = 4, I = 0) may
have a lower energy than a 3d orbital (n = 3, [ = 2). Here is where the Aufbau ordering, and Hund’s
rule come into picture for deriving the correct electronic configuration of atoms. We shall discuss them
below.

1.17 RS COUPLING

In a many-electron system, the combination of the orbital and the spin degrees of freedom is quite
complicated, owing to the presence of spin—spin, orbit-orbit, and spin-orbit couplings. In the Russel-
Saunders’s (RS) scheme, it is generally assumed that the strength of the spin-orbit coupling is the
weakest, followed by the orbit-orbit coupling and the spin-spin coupling, respectively. This gives rise
to two principle coupling schemes, namely, RS coupling (same as LS coupling) and jj coupling. The
above hierarchy of the coupling strengths is found to be valid for the first row transition series, where
the coupling of the spin and orbit can be ignored. However, for larger elements (mostly with the ones
with atomic number greater than thirty), the spin-orbit coupling becomes increasingly important, and
the jj coupling scheme should be used.

¥S-LL:LL ¥20c Jequiedeq L0

The coupling schemes are best described by the selection rules that govern the transition probabilities
between different atomic energy levels. Not all possible transitions actually occur. These are the con-
straints imposed by the selection rules. As a particular case, consider the electric dipole transitions.
Assuming LS coupling, the selection rules can be stated as in the following.

i. Only one electron makes a transition at a time.

ii. The I-value will only alter by one unit, that is, A = %1.
This ensures that the parity of the wavefunction must change in an electric dipole transition. To
remind the readers, the parity of the wavefunction is denoted by the factor (—1)!, which implies
that if I is even, the wavefunction has even parity'” while if / is odd, it has odd parity. Since the
electric dipole moment (p = er) involves a Hamiltonian of the form H’ ~ r, which itself has odd
parity, the transition matrix elements (f|7{’|i) must have even parity. That dictates that the above
matrix elements will be non-zero only when the eigenstates (|i) and |f)) have opposite parity.

iii. The quantum numbers for the whole atom must charge as follows. As =0, Al =0, 1, A] =0,
+1 (with the restriction that ] = 0 to J = 0 is prohibited), and finally AM; = 0, &1 (again M; =0
to Mj = 0 is not allowed if A] = 0)

Bysrndsnm—0,p—>n+¢
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1.18 jj COUPLING

In a situation (may be for large atoms) where there is a strong coupling between /; and s; is large, one has
to apply the jj coupling scheme. Both /; and s; discontinue becoming good quantum numbers, while
they combine to yield a total angular momentum quantum number, j; to be a good quantum number.
The individual j;’s are loosely coupled. Thus, there is no definite L or S, making room for J (=L + §)
to provide a valid description of the system.

In this case, the selection rules are stated as

i. Only one electron makes a transition at a given time.
ii. The value of I must change by '1’, thatis A = £1. More fundamentally, the parity of the initial and
final states should be opposite.
iii. Aj=0,+1
iv. For the entire atom, AJ] =0, £1 (with J =0 to J =0 is forbidden), AM; =0, £1, (however,
M;j = 0to My = 0 is forbidden for A] = 0).

1.19 HUND’S RULE

1-56

The Aufbau scheme discusses how the electrons fill the energy levels stating with the lowest orbitals.
They move to the higher orbitals only when the lower orbitals are filled up. For example, 1s orbitals
are filled up ahead of the 2s orbitals. However, the question remains, in what order do the different 2p
orbitals get filled up. The answer to this involves Hund’s rule.

Hund’s rule can be stated as the following:

i. Every orbital is first filled up with a single electron, before any double occupancy occurs.
ii. All the electrons in the singly occupied orbitals have only one type of spin. This maximizes the total
spin.

The essence of the first rule is, while assigning electrons to orbitals, an electron first attempts to fill the
degenerate orbitals, that is, the ones with the same energy, before pairing with another electron in the
half-filled orbital. Atoms, in their ground states, tend to have as many unpaired electrons as possible. In
fact, all the electrons repel each other and try to get as far as possible, before they pair up. The electrons
tend to minimize repulsion by occupying their own orbital, rather than sharing an orbital with another
electron. The singly occupied orbitals are less efficiently screened from the nuclear charge.

According to the second rule, the unpaired electrons in the singly occupied orbitals have the same
spin. Assume the electron which is placed first in an orbital has a spin-1, the spins of all of the other
electrons get fixed, which means the unpaired electrons are all spin-1.

Modern Perspectives in the Study of Electronic Systems
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As an example, consider the carbon (C) atom which has 6 electrons and has an electronic configuration
15% 25% 2p?. The two 2s electrons will occupy the same orbital, while the two 2p electrons will be placed
in different orbital and will be aligned in the same direction (say, all spin-1) according to Hund’s rule.

Similarly, the next atom, namely, Nitrogen (z = 7) has the configuration 1s* 2s*> 2p>. The 1s and the
2s orbitals get completely filled up, which leaves three (unpaired) electrons. Again, according to the
Hund’s rule, the remaining electrons will fill all the empty orbitals.

Finally, consider Oxygen, which has z = 8 and the corresponding configuration is written as 1s* 25
2p*. The 1s and 2s orbitals get paired up electrons, which leaves 4 electrons to be accommodated in the
2p orbitals. According to Hund’s rule, again all the orbitals will be singly occupied before at least one
(which is the case here) of the 2p orbitals gets doubly occupied. Thus, 2p will have one paired, and the
other two unpaired levels comprise the same spin.
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CHAPTER

2 QUANTUM HALL EFFECT

2.1 INTRODUCTION

The date of discovery of the quantum Hall effect (QHE) is known pretty accurately. It occurred in
the night between 4th and 5th February, 1980 at 2:00 AM in the morning at the high magnetic lab
in Grenoble, France (see Fig. 2.1). There is ongoing research on the transport properties of silicon
field-effect transistors (FET). The main motive was to improve the mobility of these FET devices.
They were provided by Dorda and Pepper, which allowed direct measurement of the resistivity tensor.
The system is a highly degenerate two-dimensional electron gas contained in the inversion layer of a
metal-oxide semiconductor field-effect transistor (MOSFET) operated at low temperatures and strong
magnetic fields. The original notes appear in Fig. 2.1, where it is clearly stated that the Hall resis-
tivity involves universal constants and hence signals toward the involvement of a very fundamental
phenomenon.

In the classical version of the phenomenon discovered by E. Hall in 1879, just over a hundred years
before the discovery of its quantum analog, one may consider a sample with a planar geometry so
as to restrict the carriers to move in a two-dimensional (2D) plane. Next, turn on a bias voltage so
that current flows in one of the longitudinal directions and a strong magnetic field perpendicular to
the plane of the gas (see Fig. 2.2). Because of the Lorentz force, the carriers drift toward a direction
transverse to the direction of the current flowing in the sample. At equilibrium, a voltage that develops
in the transverse direction, which is known as the Hall voltage. The Hall resistivity, R defined as the
Hall voltage divided by the longitudinal current, is found to depend linearly on the magnetic field, B
and inversely on the carrier density, n through R = n% (g is the charge). A related and possibly more
familiar quantity is the Hall coefficient, denoted by Ry = R/B which, via its sign, yields information
on the type of the majority carriers, that is, whether they are electrons or holes.

¥G-LL:LL Y202 Jequiedeq L0

At very low temperature, or at very high values of the magnetic field (or at both), the resistivity of the
sample assumes quantized values of the form, oy, = % Initially n was found to be an integer with
extraordinary precession (one part in ~108). This is shown in Fig. 2.3. The quantization of the Hall
resistivity yields the name “quantum” (or quantized) Hall effect, which we refer to as QHE throughout
this chapter.

Klaus von Klitzing and his co-workers Klitzing et al. (1980); and Landwehr (1986) while measuring
the electrical transport properties of planar systems formed at the interface of two different semicon-
ducting samples in the strong magnetic field facility at Grenoble, France, noted that the Hall resistivity
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FIG. 2.1
Copy of the original notes by Professor K.v. Klitzing on the discovery of the quantum Hall effect. It documents that the
Hall resistance ( H) involves a fundamental constant h/e?.

is quantized in units of h/e? as a function of the external magnetic field. The flatness of the plateaus
occurring at integer or fractional values of h/e? has an unprecedented precession and is independent of
the geometry of the sample (as long as it is two dimensional), the density of the charge carriers and its
purity. The accuracy of the quantization aids in fixing the unit of resistance, namely, h/e* = 25.813 K,
also known as the Klitzing constant. Thus, among other significant properties of QHE that we shall
be discussing in due course of time, an experiment performed at a macroscopic scale can be used for
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metrology or yields the values for the fundamental constants
used in quantum physics is truly amazing and hence calls

j

¢ for an intense scrutiny. The effect occurs when the density of
the carriers, n are such that they are encoded in the integers

I (that come as proportionality constants to the Hall resistiv-
] ﬂ %_v y ity in terms of h/e?) as if the charges locked their separation

2 at some particular values. The phenomenon remains resilient

A
z

J U to changing the carrier density by a small amount, however
=
BZ

changing it by a large amount does destroy the effect.
~_ |

The Hall resistivity (in red) in Fig. 2.3 becomes constant
] for certain ranges of the external magnetic fields, which are
called plateaus. Further the longitudinal resistivity (in green)
in the same plot vanishes everywhere. Although it shows
peaks wherever there is a jump in the Hall resistivity from
one plateau to another. Later on it was found that v is not

FIG. 2.2
Typical Hall experiment set up showing direction
of the current, /; and the magnetic field B,. V,

denotes the Hall voltage. only restricted to integer values, but also takes values which 3
are rational fractions, such as v = é, %, %, %, %,g etc. There g
@
3
g
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FIG. 2.3
Schematic plot of integer quantum Hall effect (IQHE) as a function of the applied magnetic field. The plot in red denotes
the Hall resistivity and the one in green shows the longitudinal resistivity (or the magnetoresistivity).
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FIG. 2.4
The plot shows fractional quantum Hall effect (FQHE). The plateaus are shown at fractional values in units of h/e?.
Taken from Tsui et al. (1982).

are about 100 fractions (including the improper ones) that have been noted in experiments so far. The
corresponding plot appears in Fig. 2.4.

2.1.1 General Perspectives

The charge carriers being confined in 2D wells have a longer history. Since 1966, it is known that the
electrons accumulated at the surface of a silicon single crystal induced by a positive gate voltage form a
2D electron gas (2DEG). The energy of the electrons corresponding to a motion perpendicular to the
surface is quantized (box quantization) and on top of it, the free motion of the electrons in 2D becomes
quantized when a strong magnetic field is applied perpendicular to the plane (Landau quantization).
Thus, QHE has both the quantization phenomena built into it.

An important recent development in the study of semiconductors is the achievement of structures
in which the electrons are restricted to move essentially in 2D. This immediately says that the carriers
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S G D are prohibited from moving along the direction trans-
[ Ve V,(V,20)  verse to the plane. Hence, the motion is quantized.
|

UN

Such 2D behavior of the carriers can be found in
metal-oxide-semiconductor (MOS) structures, quan-

tum wells and superlattices. An excellent prototype is

SiO

7 I Al 2 lV N /"l :he me;talili.n;ulaml.r—semiconlductor (MIS) la?'ered struc-
LJ LJ ure of which the insulator is usually an oxide, such as
Al O3 (thereby making it a MOS structure). In Fig. 2.5
we show a typical MOS device where the substrate is a
doped p-type silicon (Si) which is grounded and is called
a base (shown by B in Fig. 2.5). On the top, there is a
metallic layer (shown by the hatched regime) followed

p-Si

by an insulating layer formed by SiO,. The metallic layer
_i_B is called the gate, denoted by G, which is biased by a
voltage V. The source (grounded) and the drains are

FIG. 2.5 denoted by S and D respectively, which in Fig. 2.5 consist

MOSFET structure showing base (B), gate (G), source of n-type materials. The gate voltage causes the carriers ;
(S) and drain (D). The substrate is a p-type Si. SiO, beneath the gate electrode to drift between the source &
denotes the insulating oxide layer. and the drain. The layer of charge carriers below the g
oxide layer forms the 2DEG, which is central to our %

discussion. The energy dispersion in this case reads g

212 h2k2 g

En(ky, ky) = fmi" + Zm_*y (2.1)
XX vy

where m}, and mj, are the components of the effective mass tensor defined by the inverse of the
curvature of the band structure, namely,

92E(k) \
* 32

The physical properties of all systems are governed by their density of states (DOS) which plays a
crucial role in deciding the dependence of the temperature, density of carriers, etc. In 2D systems with
a parabolic dispersion, as elaborated above in Eq. (2.1), the DOS is a constant and assumes the form,

*

g(B) = gap(E) = — (2.3)

Th?
The energy independent DOS is very special to 2D and is in sharp contrast to three dimensions (3D)
where it goes as E'/2, and in one dimension (1D) where it goes as E~/2. In a general sense, and not
restricted to the discussion on the Hall effect, the DOS enters while calculating the average quantities,
such as the average energy or the average number of particles. For example, the average of a physical

Quantum Hall Effect ~ 2-5




2-6

observable, O, of a fermionic system, is computed using

"
(0) = /0 Of (E)g(E)dE, (2.4)

where f(E) is the Fermi distribution function given by

fE) = BE-W) {1

with g = kBLT and u denotes the chemical potential. In general, this integral is quite challenging to
compute analytically because of the Fermi distribution function (f(E)) present in the integrand.

Meanwhile, there is a wonderful simplification where f(E) assumes a value unity at all temperatures for
which the experiments are performed. Only at temperatures close to the Fermi temperature, Tr defined
via, €r = kpTF (e being the Fermi energy), f(E) starts deviating from unity and its exact form needs
to be incorporated in the integral. However, TF is usually of the order of tens of thousands of Kelvin for
typical metals (such as Cu, Al, etc.) which is too high for them to appear in experimental situations.
Moreover, the DOS only depends on energy and is independent of the temperature to a very good
approximation. Thus, computation of Eq. (2.4) becomes trivial as the integrand becomes independent
of temperature or weakly dependent on temperature (Kittel, 2004; and Ashcroft and Mermin, 1976).

In the following, we mention that there is something interesting about the transport properties of
two-dimensional systems. In the linear response regime, Ohm’s law is valid and says that

Vo = Ryplp

where Ry g denotes the resistivity tensor, and «,  denote spatial variables, x, y etc. One can equivalently
invert this equation to write, I, = Gy Vg, where G, represents the conductivity tensor with G = R™!.
Equivalent relations in terms of the components of the electric field (E) and current density (j) read as

Ey = papjp and jy = oupEg (2.5)

where p and o denote the resistivity and the conductivity tensors, respectively.

An interesting (and useful too) artifact of 2D physics is an accidental similarity that exists in decoding
some of the key features of the transport properties. For example, the resistivity, p (or the conductiv-
ity, o) is a quantity that is independent of the system geometry, and hence is useful for a theoretical
analysis. Whereas in experiments, one measures the resistance of a sample, R (or the conductance, G).
For a sample in the shape of a hypercube of sides, L, the resistance and the resistivity are related by

R=pLl* ¥, (2.6)

where d denotes the dimensionality. Only for d = 2 the resistance is a scale invariant quantity. This
puts the experimentalists and the theorists on the same page, as the geometry of the sample does not
explicitly enter the analysis of its transport properties.

As we dig more into the details of the transport properties of 2DEG in the presence of a magnetic
field, further useful information emerges. The off-diagonal elements of both the conductivity and the

Modern Perspectives in the Study of Electronic Systems
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resistivity tensors are antisymmetric with regard to the direction of the applied field, B. Consider a
planar sample with the dimensions L, x L,. The conductivity tensor is of the form,

o= (“"x %) : (2.7)
Oyx Oy

Let us try to understand the nature of the tensor, o in the presence of a magnetic field. A conductor in

an external magnetic field obeys,

Jo = 0upEp. 28)

Onsager’s reciprocity principle does not hold in the presence of a magnetic field, B, which implies

(Onsager, 1931).

0ap(B) # 0pa(B). (2.9)

Instead, one has 0,5(B) = 0 g (—B) to make sure that the time reversal holds only if B changes sign.
Let us write the conductivity tensor as the sum of a symmetric and antisymmetric tensors (note that
this is always possible for a rank 2 tensor). Thus,

0up = Sup + Aup (2.10)

where S and A are symmetric and the antisymmetric tensors which obey the following relations, g
Sap (B) = Spo(—B) = Sas(—B) ey i
Aup(B) = Ape(=B) = —Aup(—B) S
such that the components of Sy g are even functions of B, while those of A,g are odd functions of B. 3
Putting in Eq. (2.8), @
Ja = SapEpg + AapEg. (2.12)

But owing to the antisymmetry,

Agp = €papAy = —€qypAy. (2.13)

Putting it in Eq. (2.12),
Ja = SapEp — €apy ApEy

= SupEg — (A x E)q

= SapEg + (E X A)gy. (2.14)
Assuming that we can expand o (B) in powers of B," such that the antisymmetric part contains odd
powers of B, then we can write,

Ay = nepBp (2.15)
and S,5(B) consists of even powers of B,
Se¢ = (00)ap + LapysBy Bs. (2.16)

1 1t should be valid for weak magnetic fields, and is not exactly true for quantum Hall effect, but nevertheless it serves our
purpose.
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The first term is the zero field conductivity tensor. Thus, putting things together up to terms linear
in B,

Jo = SapEp + (E X A)g. (2.17)

The second term denotes the Hall effect, which is linear in B. This implies that the Hall current is
perpendicular to the electric field, E and is proportional to E and B. Thus, an antisymmetric tensor
is relevant to the study of the Hall effect, which is why the conductivity and the resistivity tensors are
antisymmetric. This is an important result which deviates from the corresponding scenario that arises
in the absence of an external magnetic field.

2.1.2 Translationally Invariant system: Classical limit of QHE

It is quite an irony that the extreme universal signature of the transport properties of a 2DEG character-
ized by the flatness of the plateaus, that not only occurs, but survives even in the presence of disorder,
impurity and imperfection. In the absence of the magnetic field, Anderson localization would have
governed the transport signatures of non-interacting electrons which says that in any dimension less
than three, all eigenstates of a system are exponentially localized even for an infinitesimal disorder
strength. Only in three dimensions, there is a critical disorder at which a metal-insulation transition
occurs. However, the scenario is strongly altered by the presence of the magnetic field, which yields, as
we shall shortly see, a series of unique phase transitions from a perfect conductor to a perfect insulator.
No other system demonstrates re-occurrence of the same phases over and over again as the magnetic
field is gradually ramped up.

To begin with, we shall consider the case which is free from disorder, or equivalently, a translationally
(Lorentz) invariant system that possesses no preferred frame of reference. Thus, we can think of a
reference frame that is moving with a velocity —v with respect to the lab frame, where the current
density is given by j = —nev (n: areal electron density, e: electronic charge). In this frame, the electric
and the magnetic fields are given by”

E=-vxB; and B =Bz (2.18)

The above transformation ensures that an electric field must exist to balance the Lorentz force —ev x B
in order to conduct without deflection. For the electric field, this yields,

1
E=—J xB. (2.19)
ne

This is equivalent to the tensor equation,

B = o) (2.20)

2 Remember that E = 0 in the lab frame, though B remains unchanged.
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Modern Perspectives in the Study of Electronic Systems



‘ scitation.org/books

with the resistivity tensor given by

B/o 1
= — . 2.21
P ne (—1 0) ( )
By inverting the tensor equation, one can obtain,
j* = ouE’ (2.22)
where the conductivity tensor, o, is defined via,
ne (0 —1
= — . 2.23
o ="p (1 0 > (2.23)

There is an interesting paradox which states that, 0 xx = pxx = 0 (see above) which is of course contra-
dictory. However, we reserve this rather interesting topic for a discussion immediately afterwards. Here
we wish to point out that we get the results for a classical Hall effect, that is, 0y, = % (or pxy = %).
It is important to realize that the result is an artefact of Lorentz invariance, where the characteristics
of the sample or the 2DEG enter only through the carrier density, » for a translationally invariant
system. Thus, in the absence of defect, disorder and impurity, the Hall effect is concerned with the
carrier density of the sample and nothing else. Hall resistivity depends linearly on the magnetic field.
The quantum Hall effect, which is much more versatile (than merely depending on the density) where
disorder, that jeopardizes the translational invariance, plays an indispensable part in causing plateaus
in the conductivity (or the resistivity) to occur and survive. We show a schematic plot in Fig. 2.6 to
emphasize the difference between the classical and the quantum Hall effects. Both the Hall and the
longitudinal resistivities are significantly different in these two cases.

¥G-LL:LL Y202 Jequiedeq L0

Writing the equation of motion (EOM) for a charge particle of mass m, moving with a velocity, v (= %)
in the presence of a longitudinal electric field, E and a perpendicular magnetic field, B,

d
& _ —eE — eR X B — B. (2.24)
dt m

T
a b
Classical Quantum
P,y
Q Q
& &
= =
pXX
Magnetic field B Magnetic field B
FIG. 2.6

Schematic plot showing Hall and magnetoresistivities for both classical (a) and quantum (b) Hall effects.
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The last term is the resistive force arising from electron-impurity scattering with t being the relaxation
time. Using the current density, j = —nep/m and the cyclotron frequency, wp = eB/m, at the steady
state (% = 0),

ne*t

—E+wptjx2+j=0. (2.25)
m

Assuming the motion of carriers along the x-direction, that is, j = jX, casting it in the form, j = o E, o

assumes the form,

_ ne’t/m < 1 —a)Br) (2.26)

o =
1+ wpt? \w.t 1

This yields the Drude conductivity, which can be written as
%0

[ 2.27
1+ wpt? 227)

Oxx =

where o = ne’t/m. In the absence of any scattering by the impurities, the relaxation time, 7 is
infinitely large, which yields o xx — 0. This induces Ohm’s law to assume the form (now writing in
terms of the resistivity),

B (Ex) _ ( 0 pxy) Gx) _ ( Payly > (2.28)
Ey —Pxy 0 ly —Pxylx

Hence, the electric field E is perpendicular to the current density, j, which says that j - E = 0. The
physical significance of j - E is the work done that accelerates the charges, which being zero in this
case implies that a steady current flow in the sample without requiring any work, and hence causes no
dissipation. Thus, o x, = 0 implies that no current flows in the longitudinal direction, which is actually
a signature of a perfectly insulating state. Since the components of the resistivity and the conductivity
tensors are related by

P Pxx P —Pxy
XX — T 5 [ o> Xy — T 5 | o
Pt P3y PRt P3y

Let us examine the possible scenarios:

(2.29)

i. If pxy = 0, one gets oy = i and o, = 0 which is a familiar scenario.
ii. If pxy # 0, 0xx and o, both exist.

iii. Now consider pxx = 0, 0xx = 0, if px, # 0. This is truly interesting, since if p., = 0, it implies a
perfect conductor, and at the same time o, = 0 implies a perfect insulator. This is surprising, but
truly occurs in the presence of an external magnetic field. This is reflected in the plots presented
in Figs. 2.3 and 2.4. We shall return for a more thorough discussion later.

2.1.3 Charge particles in a magnetic field: Landau levels

Let us examine the fate of the electrons confined in a 2D plane in the presence of a magnetic field.
Consider non-interacting spinless electrons in an external field, B and write down the Schrédinger

Modern Perspectives in the Study of Electronic Systems
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equation to solve for the eigenvalues and eigenfunctions. The canonical momentum can now be writ-
ten as p — p — gqA = p + eA (Goldstein et al., 2002) where g = —e is the electronic charge and
A is the vector potential corresponding to the field, B. B and A are related via, V x A = B. The
time-independent Schrédinger equation becomes,

1
-+ eA)? Y (r) = Ey(v). (2.30)
m

In order to solve this, we need to fix a gauge or a choice of the vector potential. Note that the choice of the
gauge will not alter the solution of the equation, which in other words can be stated as the Schrodinger
equation being gauge invariant. However, a particular choice is essential for us to go ahead.

Corresponding to a magnetic field, B in the z-direction, such that B = BZ (just as the case of a 2DEG
subjected to a perpendicular magnetic field), the vector potential can be chosen as

Ay=—By, Ay=A,=0. (2.31)

This is known as the Landau gauge. It also allows us to assume A, = Bx and Ax = A, = 0.” In the
Landau gauge, the Schrédinger equation becomes,

Pz

tom } Y (r) = ey (n). (2.32)

2y
[—(px —eBy)” +
2
Clearly, in the z-direction, the particle behaves like a free particle with energy, €, = g—fn with the eigen-
function same as that of particle in a box in the z-direction. Thus, in the x — y plane, the above equation
becomes,

¥G-LL:LL Y202 Jequiedeq L0

. ﬁ 3
[%(px eBy)” + 2m]g(x,y)—Eg(x,y)

H(x, y)g(x,y) = €g(x,y) (2.33)

where for the 2D case, ¥ (r) becomes g(x, y) and E = € + €. It is easy to see that p, commutes with
H(x, y), that is,

[H(x,»),px] = 0. (2.34)
Hence, py is a constant of motion. Thus, for a p, given by p, = M ny, one can write Eq. (2.33) as
2 4 Z - — = 2.35
[2m+2m(m) =y [fO) =€f) (2.35)
where yp = — = kyI2 = kI3 (say), and f(y) is only a function of y. yo has the dimension of length, and

hence Ip is denoted as the magnetic length, which is an important quantity in all subsequent discus-
sions. Moreover, f(y) is the eigenfunction corresponding to the one-dimensional Hamiltonian written
above.

3 A combination of the two yields a “symmetric” gauge which we shall introduce and employ later.
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Interestingly, the left-hand side of Eq. (2.35) denotes the Hamilto-

nian for a simple harmonic oscillator (SHO) which oscillates in the

. . " . ¢B
y-direction about a mean position yo with a frequency, w. = %’ w,

is known as the cyclotron frequency. Taking results from the SHO
problem in quantum mechanics, the energy eigenvalues can be
found as

1 1 eB

The energy levels in Eq. (2.36) are referred to as the Landau levels. The

FIG. 2.7 levels are schematically shown in Fig. 2.7. They are equidistant for a
Schematic plot showing the Landau given value of the magnetic field, however their separation increases
levels. Each of these levels has a large with the increase in B. Each of these levels has a large degeneracy

degeneracy.

2-12

(see below).

Further, the eigenfunction, g(x, ¥) in Eq. (2.33) corresponding to an oscillatory motion (as an SHO) in
the y-direction and a free motion (like a particle in the absence of any potential) in x-direction assumes
the form,

gx,y) = ieik""Ane%ﬁO)2 H, <M> (2.37)

Ly h

where H,(§) with& = EB(yT_yO) denote the Hermite polynomials that are familiar in the context of SHO
and A, denote the normalization constants. Thus, the trajectory of the particle is similar to that of a
simple harmonic oscillator centered about a certain value of y (instead of the origin), namely, yo and
freely propagates along the x-direction. y is controlled by the strength of the magnetic field B, and is
inversely proportional to it.

2.1.4 Degeneracy of the Landau levels

The Landau levels given by Eq. (2.36) are hugely degenerate. Since p, is a constant of motion, the energy
is independent of p,. Thus, all possible values of the quantum numbers corresponding to the motion in
the x-direction, namely, n, that are defined by ky = ZL—an, (Lx denotes the length of the sample in the
x-direction and ny =0, 1,2 - - - .) will make the levels degenerate. The degree of degeneracy is limited
only by the length of the sample in the y-direction, namely, L,. For the magnetic length, yo = kI =
k(%) for which the simple harmonic motion occurs should not exceed the length L, of the sample,
the maximum degeneracy of the Landau levels can be found by substituting yo = L, = (%)nx, and
hence using the maximum possible value of #,, that is,
eBL,L, eBA

o h
where A = LyL, is the area of the sample in the x — y plane. This yields the degeneracy, g to be
identified as the flux, ¢ (=B.A) threading the planar sample, via, g = ®/®( where &y = h/e."

(Nx)max = g = (2.38)

4 The value of ¢g ~ 4.13 x 107> Wb-m?.
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A few comments are in order:

i. The degeneracy, g, is independent of the effective mass of the carriers, and hence independent of
the material.

ii. The degeneracy is proportional to the area of the sample and the value of the magnetic field. Thus,
the degeneracy can be controlled by the applied magnetic field.

To remind ourselves, we have solved for the properties of a single electron confined in a plane in the
presence of a perpendicular magnetic field. These energies are called the Landau levels, and these levels
are highly degenerate. The scenario is a prototype of what happens in a Hall effect experiment where
the external magnetic field is varied and the resistivities (both Hall and the longitudinal) are measured.
The Hall resistivity shows plateaus in multiples of h/ne* whenever the filling fraction, v of the Landau
levels (defined below) is close to an integer n. Consider # is the density of charge carriers of the sample,

then v is defined using, v = g% = %' v denotes the filling fraction, which is also defined as

number of electrons
VvV =

flux quantum
As and when v assumes a value near an integer, n (or a rational fraction as in the case of fractional
quantum Hall effect) as the magnetic field is tuned, one observes a plateau in the Hall resistivity, py;.
Something else happens at the same time that is equally interesting. The longitudinal resistivity, pxx
drops to zero whenever py, acquires a plateau. The vanishing of p,, makes the system dissipation-
less. However, the diagonal conductivity (o ) also vanishes, which makes the system insulating. This
paradox is explained in detail elsewhere.
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2.1.5 Conductivity of the Landau levels: Role of the edge modes

Here, we discuss some of the key properties of the Landau levels. Let us now calculate the current
carried by the Landau levels. The expression for the current can be found using (J) = e(v) where the
expectation value must be computed within the Landau states.

J) = —e{Ylvivn) = —%(WHP + eAl V). (2.39)

The longitudinal current in the x-direction carried by the Landau levels is obtained via,

— € d
(]x)——mf y e

The integrand has an even function (the first one) and an odd function (the second one). Thus, the

integral vanishes. We can get the average velocity, (v) = %% = 0 as € does not depend upon k. Thus,

the Landau wavefunctions carry no current by themselves. They only carry current in the presence of

~ 2 0=y
577" (hk — eBy) = 0. (2.40)

an electric field in the x-direction as shown below.

2.1.6 Spin and the electric field

So far we have been talking about spinless fermions. It is in general a worthwhile exercise to include the
spin of the electrons and explore if there is any significant development to the quantization phenomena
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discussed above. The spin degrees of freedom placed in an external magnetic field introduce a Zeeman
energy scale owing to a coupling between the spin and the magnetic field. The Zeeman term is written
as Az = gupB, where up = eh/2m is the Bohr magneton and g = 2. Now the splitting between the
Landau levels originating from the orbital effect (p — p — eA) is A = hwp = ? = Ag(say). Ap is
the so-called cyclotron energy. But for electrons, this precisely coincides with the Zeeman splitting A
= gup B between the 1 and the | -spins. Thus, it looks that the spin-1 particles in a Landau level with
index, n, have exactly the same energy as the spin-|, particles in the next higher Landau level index,
thatis, n + 1. However, in real materials this does not occur. For example, in GaAs, the Zeeman energy

is typically about 70 times smaller than the cyclotron energy.

Now consider an external electric field, E, applied in the x-direction. This creates an electric potential

of the form, ¢ = —Ex. Thus, the resulting Hamiltonian, including external electric and magnetic fields,
can be written as
H=—- [p% + (py + eBx)*] + eEx. (2.41)

It is important to note that we have considered a different choice of the gauge here, namely, A, = Bx.
Instead of a rigorous derivation, we can complete square in the expression for energy of the particles,
1 eE 1 E?
Epx=h ) —eE(Kj+—5 ) +-m—. 2.42
mk @B <n+2) ¢ ( B+ma)§>+2m32 (242)
The resultant spectrum is plotted in Fig. 2.8. The levels are dispersive because of the k-dependent
middle term in Eq. (2.42). This is interesting because the degeneracy of the Landau level has now been
lifted. The energy in each level now depends linearly on k as shown, which was earlier independent of
k. The eigensolution is simply that of a harmonic oscillator shifted from the origin and displaced along
the x-axis by an amount mE/eB* and is written as

E
W(X’)’) = an,k (x + %,y) . (2.43)

Among the other properties, the group velocity is given by

10E,x e,
= — >~ = —EI5. 2.44
WS R Tok T B (244

Putting Ip =,/ eﬂB (as said earlier, I is an important length scale of the problem, which we shall see
throughout the discussion),

eE h E (2.45)
Vy = —_— . e = —. )
»7\h) \eB) B
Thus, the energy has three terms in the Eq. (2.42),

i. the first one is that of a harmonic oscillator,
ii. the second one is the potential energy, of a wave packet localized at x = (—kl% — em?}; ,
B

iii. and finally, the last one denotes the kinetic energy of the particle, namely, %mv§

Modern Perspectives in the Study of Electronic Systems
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FIG. 2.8
Schematic plot showing the Landau levels (n = 1, 2, 3, 4) in the presence of an electric field. The levels are tilted
because of the electric field.
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2.1.7 Laughlin’s argument: Corbino ring

Laughlin intuitively considered the phenomenon of QHE as a quantum
pump. Consider a ring (see Fig. 2.9) where the vacant region admits a mag-
netic field and hence a flux ¢. For this argument to be valid, the geometry
of the ring is important. Here, in addition to the background magnetic field
B that threads the sample, we can thread an additional flux & through the
center of the ring. This ® can affect the quantum state of the electrons.
In addition, the temperature is low such that the thermal effects can be
neglected.

Corbino disk

Let us first see what this flux ® has got to do with the Hall conductivity.
Suppose we slowly increase ® from 0 to ®g(= %), that is within a time

FIG. 2.9 to > wiB. This induces an emf around the annular region ¢ = % = %fo.
Schematic plot showing Corbino The purpose of this emf is to transport “n” electrons from the inner cir-
ring. cumference to the outer circumference. This would result in a current in
the radial direction, I, = —ne/ty. Thus, the Hall resistivity is
pxy=?=—$-t—°=ﬁz'l. (246)
r o (—ne) e n
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The same arguments hold equally for the IQHE and FQHE, in the former # is an integer, while n
is a fraction for the latter. In FQHE, the interpretation is as follows: as we increase the flux from
® to Py, a charge of magnitude e/m is transported from the inner circumference to the outer one
when the flux is increased by ®¢ units. The resultant Hall conductivity (or equivalently the resistivity)

becomes,
2
e 1
Oy =3 (2.47)

Thus, a whole electron is transferred only when the flux is increased by m® units.

2.1.8 Edge modes and the conductivity of the single Landau level

When a particle is restricted to move only in one direction, the motion is said to be chiral where
backscattering is prohibited. Thus, the particles propagate in one direction at one edge of the sample
and move in the other direction at the other end of the sample. Let us understand how the edge modes
appear.

An edge can be modeled by a potential V(x) in the y-direction which rises steeply, as shown in Fig. 2.10.
Let us continue working on the Landau gauge, such that the Hamiltonian is given by

H = —I[p2 + (p, + eBx)*] + V(). (2.48)

1
2m
In the absence of the potential V(x), the (lowest) wavefunction is a Gaussian of width Iz (: \/ % .
If we assume that V(x) is smooth over a distance Ig, and hence assume that the center of each
Gaussian to be localized at x = xp, we can Taylor expand the potential V(x) about x in the following

fashion,

v
Vi(x) = V(xo) + a(x —x0) + -+ . (2.49)

V(x)

FIG. 2.10
Schematic plot showing the potential seen by the charge due to edge of the quantum Hall sample.
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Dropping terms after the second one and assuming the constant term (first term) to be zero, the second
term looks like the potential due to the electric field. So the particle acquires a drift velocity in the
y-direction,

19V (250)
Vy=———. .
4 eB dx
Each wavefunction labeled by momentum, k is located at different x-positions, namely, x = —k/2, and

thus has a different drift velocity. Additionally, the slopes of the two edges drawn above has different
slopes, so % has different signs at the edges. Thus, v, at the left edge has a different sign with respect
to the right edge. Further, because of the drift in y-direction, there will be a current I, which is known
as the Hall current and is calculated as

dk
Iy = —e Evy(k)

1dv h

= 62 fdx——; usingl2 = —

2l eB dx eB

&2

= — 2.51
5o VH (2.51)
Vp is the Hall voltage. Now, oy, = ‘% = % = %, which is indeed the expected conductivity for a

single Landau level.

The above schematic diagram (Fig. 2.11) shows that the current

is entirely carried by the edge states, since the bulk Landau level

\\ // E is absolutely flat (having no k dependence) and hence does not
F' carry any current. The argument is also elegant, as it does not

depend upon the form of the potential V(x).

¥G-LL:LL Y202 Jequiedeq L0

Everything that we have discussed so far holds for a single Lan-

FIG. 2'_” . dau level, however the argument is equally valid for a large
Schematic plot showing the appearance of . Lo
st T number of Landau levels, as long as the Fermi energy lies in

between the filled and the unfilled Landau levels. Also, the chi-

ral edge modes are robust to any impurity or disorder as there is
no phase space available for scattering. If a left moving electron is to scatter over onto a right moving
electron, it has to cross the entire sample edge, which is not allowed as the probability of scattering
would be infinitesimally small owing to the macroscopic physical dimension of the sample. Thus, the
Hall plateaus are robust to disorder, defects and impurities.

A supremely important issue stands out: how do the plateaus exist in the first place? To see this, let
us fix the electron density, n. Then, we shall only have filled Landau levels when the magnetic field is
exactly B = 2@, (with &y = %) for some integer v. But what happens when B # £ @y, that is, when
the Landau levels are partially filled? Also on top of that, there is also a (small) electric field. In the par-
tially filled last Landau level, the longitudinal conductivity will be non-zero, while the Hall conductivity
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will not be quantized. So how do the plateaus appear and the longitudinal conductivities vanish? The
disorder comes to the rescue. This gives a finite width to the Landau levels. So, even if the B # £ @y,
there is a finite regime over which the Hall conductivity, o , remains constant and hence the plateaus
form so that the Hall resistivity, px, freezes at that value, until the magnetic field is increased further.

2.1.9 Incompressibility and the QH states

The key feature of the QH states is that the states are incompressible. The compressibility, « is

defined by
1 0A
A 9QPIN

where A, Pand N are the area, pressure and the number of particles, respectively. The system is said to
be incompressible when « = 0, that is, when the area is insensitive to the pressure applied. The pressure
is defined as the change of energy as a result of change of area, that is,

dE
P=——.
A
Thus, the inverse of the compressibility is defined as
. dP 9’E
K= —A| =as|
dAIN A% IN

Since the energy is an extensive quantity, that is, it depends on the number of particles and hence can
be written as

E = Ne(n)

where € is the energy per particle, and # is the particle density, such that the total number of particles
is defined by N = An. Hence,

1 d de(n)

el 2
nd(;) d(3)
de(n) d%e(n)
2
= 2
" ( dn o dn?
d%(ne)
2
=n FroR (2.53)
Also, the chemical potential is given by
0E d(ne)
= —| = . 2.54
H oNlv dn (2.54)
Thus, comparing Egs. (2.53) and (2.54),
— (2.55)
dn

The system is incompressible (k = 0) when the chemical potential x increases discontinuously as a
function of density, that is, g—; = 0.

Modern Perspectives in the Study of Electronic Systems
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2.2 DERIVATION OF THE HALL RESISTANCE

Before we go on to derive the conductivity (or the resistivity) using the Kubo formula, let us present a
simpler derivation. Consider a length “I” of the sample. The electric current carried by each charge in
this length is given by —ev/, where v denotes the group velocity, and e is the magnitude of the electronic
charge. Now the total number of electrons between the momentum range p and p + dp can be found by
multiplying the current carried per unit charge (=—ev/l) and (I/h)dp where h is the Planck’s constant.
Thus, the elemental current is given by

dl = —(ev/l) x <£> dp = —%Vdp.

Thus, the arbitrary length, I gets canceled. Replacing the velocity by v = ‘ji—ﬁ, the elemental current

becomes
e dE

dl = —— —db. 2.56
nap’? (2.56)

Hence, the total current can be obtained by integrating Eq. (2.56) from p; to p, denote arbitrary mag-

nitudes of the momenta corresponding to the top (TE) and the bottom (BE) edges’, respectively of a §
typical Hall sample (see Fig. 2.2). Thus, the total current is given by 3
P2 e\ (dE e N

I= —— )| —)dp=—-[V(BE) — V(TE 2.57 S
/pl<h><dp>p FLV(BE) — V(TE) e §

where V denotes the potential energies at the two edges. Thus, the current is driven by the potential
energy difference between the BE and the TE, which of course arises out of the potential difference that
exists between them. Thus,

I= —2 [(—eV2) — (—eV)] (2.58)

where V; and V) denote the voltages at the BE and TE, respectively. This yields a familiar form for the

current, that is,
&2
I= Z(Vz - Vi). (2.59)

This is the Hall current, which is independent of the dimensions of the sample. The resistance, or more
precisely the Hall resistance, is given by
Voa-Vi  h
I e
which is precisely the Hall resistivity for the filling fraction, v = 1. For an arbitrary filling fraction v,
the number of electrons will be v times what it is for v = 1, where the Hall resistance can be written as
h

ve2

Ry =

Ry = (2.60)

5 The top and the bottom edges are perpendicular to the direction of the applied electric field.
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The important question at this stage is what protects the plateaus in the Hall conductivity (or the resis-
tivity)? Why are they so flat and robust at the integer values (or at certain rational fractions)? Remember
the system does not have either translational invariance (because of the presence of disorder) or time
reversal invariance (because of the presence of a magnetic field). Thus, two known symmetries are
lost and still the plateaus persist.” We shall now show that the Hall conductivity assumes oy, = ”Tez

(or equivalently py, = %) under these conditions.

To compute the conductivity, we resort to the Kubo formula, which arises from a more generalized con-
cept, known as the “linear response theory.” We shall derive the Kubo formula under a few conditions
for the sake of simplicity. They are,

i. Before the fields are applied, at t = —o0, the system is in a non-interacting many-particle state
which obeys Ho|¥m) = Em|¥m), where {Ep,, ¥} are the eigensolutions of H.

ii. Even if we actually apply a constant electric field, E, it is helpful to consider an alternating field with
frequency, w of the form, E(t) = Ee~! and at the end of the calculation, take the zero frequency
limit, that is, @ — 0.

iii. Consider a gauge in which the transverse components of the vector potential are zero, that is,
A; = 0. In other words, E = —% with no V¢ term, ¢ being the scalar potential. Equivalently,
one can assume that ¢ = constant.

Now let us write the full Hamiltonian as

H=Ho+H (2.61)
where H is the non-interacting Hamiltonian whose exact solutions are known (as described earlier)
and H' is the interaction term due to the coupling of the electrons to the external field. Thus, H’

involves the current due to the motion of the electrons coupling with the vector potential arising due
to the presence of a magnetic field. Thus,

H=-]J-A (2.62)
where J and A denote the electric current density and the vector potential, respectively. J is related to
the mechanical momentum p + eA. By using E = — %—’?, one can write
E .
A=—e (2.63)
iw

The aim is to compute the expectation value of the current density and find out how it depends on the
applied electric field, such that the proportionality constant yields the conductivity. In particular, we
are interested in computing the Hall conductivity, 0.

6 In fact, naively it seems is ironical that a broken time reversal symmetry is solely responsible for quantization of the Hall
plateaus.
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Here we shall consider the interaction picture where the time evolution of an arbitrary operator O is
written as

O(t) = eMot/nO ()~ Hot/ 1, (2.64)

Here O can be any operator, such as J or . Further, the eigenstates in the interaction picture evolve
with time according to,

[ () = U(t, to) [ (t0)), (2.65)

where t; refers to an earlier time when the interaction is switched on and t denotes a later time. The
time evolution operator, U(t, ty) is a unitary operator having a form,

T
Ul(t, tg) = Texp (—% H’(t’)dt/) (2.66)

to
T denotes time ordering in the above equation (Mahan, 2000). If the interval [t : t] is split into several
time steps, T keeps the earliest time to the right. Now let us consider that as tp — —o0, that is, before
the perturbation is switched on, the system is in the ground state |1o(t)). Hence, the time evolution
operator can be written as

et

U(t, tg = —00) = Texp (—% / H’(t’)dt’) = U(t) say. (2.67)
—00

The ground state expectation value of the current operator is given by

JB) = Wo(&) T8 [¥o(8)
= (WU OJOU® [o)
= (ol [TeF SO gy 1o Lo O ), (2.68)
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An expansion of the exponentials (assuming the interaction term to be weak) and retaining terms up
to first order in H’ yields,

_ o
J(@®) ~ (Wol | 1) + %/- dt’[H’(t’)J(t)]] Vo). (2.69)

The second term inside the bracket of RHS involves a commutator of H’ and J. It is to be kept in

mind that the commutator does not vanish at two arbitrary times t and ¢. Using A(t) = %e""‘” and

H'(t) = —J - A, the (J(t)) takes the form,

i ! E _. .
J®) =~ (o [I(t) + %/ ar'[=J(t) - Ze*"”t ,I(t)]} Vo) (2.70)

The first term inside the bracket in RHS is the current due to the absence of an external electric
field, which can safely be ignored in this study. So only the second term survives. Thus, writing for
components o, B (o, B € x, ¥, 2)

1 [t o
Ua (D) = +— / dat' (Yol Up(t'), Ju ()] [Yo) Ege ™" (2.71)

where J - E is written as JgEg.
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Since the system is invariant under time translation, the above correlation depends on ¢t — ¢ and not
on t and ¢ individually. Introducing a new variable t — t' = 7,

1 o N .
Ju (@) = %( /0 dte (Yro| [J5(0), Jo ()] |WO))Eﬁelwt (2.72)

where the term inside the bracket in RHS can be written as 0o gEg g~ it
the conductivity tensor. Note that the time ¢ dependence is outside the integral and appears as e~

Thus, in the linear response regime, if an electric field of frequency, w is applied, the current responds

, 0 o being the components of
iwt

to the external field by oscillating with the same frequency as the external field.

The Hall conductivity is the off-diagonal component and can be computed using,

oy (@) = % fooo dte™ (o] [J,(0), J(H)] [¥0) (2.73)
J(t) can be written as

J(t) = TPy (0 Tt/ (2.74)
in the above expression, and using the complete relation of the states, namely, [} (¢, | = 1, one
obtains

1 o[> . ,
() =+ /0 dt ey " (ol Iy 1Y) (ol T [ho) e En—E 1T
— (ol T [¥r) (Wl T, |$ro) e E0—Ewt/ I (2.75)

Now, we shall perform the integral over time, t. Let us write E—rg = wy and introduce w — w + i€
where € is the infinitesimal quantity considered for the convergence of the integral. Then, the Hall
conductivity is obtained as

ny(w) _ Z |:(W0|Iy|¢n Wrt|]x|¢0) (WO']x|Wn)(¢n|Iy|w0):|

2.76
hw + E, — Ey hw + Ey — E, ( )

EﬁéEo

Finally, we shall take the limit @ — 0 to account for the constant field. For that, let us expand the
denominator as follows:

1 1 how
ho +Ey—By  Ey—Eo  (En—Eo)?

1 N 1 ho
ho+E—Ey  Ey—En  (Ey—En)?*
The first term looks divergent and such divergence is responsible for the peak in the longitudinal con-

+ 0(0?)

(2.77)

ductivity, which, by now we are familiar with. Moreover, o ,,(w) should not contain a term which is
independent of w. This is the DC conductivity (w = 0) which is absent in a translationally invarjant
system. Thus, finally one arrives at,

(WolJy 1) (il J ) = (ol ) (Wl Jy 1)
@) =ih 3 & P -

(2.78)
n#0
This is the Kubo formula for the Hall conductivity.
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FIG. 2.12

The schematic plot shows a disc threaded by a flux
perpendicular to the plane and another one in the
plane of the disc.

To proceed further, let us assume that a specific case of per-
turbing a system below (Tong, 2016). Consider a quantum
Hall sample in the form of a torus (or a donut). Let us thread
two fluxes ®, and @, (instead of one) as shown in Fig. 2.12.
Owing to this, the gauge potentials can be written as

®
Ax = _x)
Ly
®
Ay =2 4+ Bx. (2.79)
L)’

It is clear that the states of the quantum system are sensitive
to non-integer values of ®;/®q (i = x, y) where, &g = ’f
Specifically, if we increase either ® or @, from 0 to ®¢ then
the spectrum of the quantum system must remain invariant.
Hence, writing the perturbation Hamiltonian in terms of the
fluxes,

Ji®;

i

H =—
i€l,2

(2.80)

To the first order corresponding to this perturbation term,
the modified ground state becomes,

ol H'
v =t + Y Ly, (281)
O
En?éEO
Thus, writing,
ol H
Aly) =) —1vo) = Y WW. (2.82)
e
En#Eo

Considering infinitesimal changes in ®; we can write,

IAY\ 1 Wallilvo)
ad>i>_ L,-Z L "

(2.83)

Terms like those in the RHS of the above equation appeared in the Hall conductivity. Let us write the
total Hall conductivity including the area factor LyLy of the sample, which can be written as

—— Z (Wol Iy 1¥rn) (Wl Jx Iéw_—é;/;(;m [V¥n) (¥l Ty [¥0)
Yo "
En#Eo
—if [<% Al > - < Al %H (2.84)
I, | | 9D, I« | |90,
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3o 9
aq>x>_ 9D, <¢°

)] (2.85)

—in| -2 [y
~ e\ 90,

(WO ‘ % > will be canceled from both the terms.

2.3.1 Hall conductivity and the Chern number

Remember that the spectrum of the Hamiltonian depends upon ®; mod ®,.” If there is a remain-
der, then the division does not yield an integer, and if there is none, then ®;/®( = integer. ®; being
parameters of H’, ®;’s are periodic functions. To emphasize the periodicity, we shall introduce angular
variables, 6; such that,

2 D;
0; =

@

As 0; increases from 0 to 27, ®; increases from 0 — ®;. Now rewrite 3%){ as 8%{ and introduce a
quantity called Berry connection, which is defined on the surface of the torus as

where 0; € [0,27]. (2.86)

) 0
Ai(®) = —i{ihol 7 Vo). (2.87)
1
Further, we define a quantity called the Berry curvature (analogous to the magnetic field),
A,  0A, |: il < Yo d Yo
Y706, 06, 06, \" |96, | 96, \""| 6,

Note that the last term in Eq. (2.88) is the Hall conductivity, which is formally written in terms of the
Berry curvature as

eZ

Oy = =+ Foy. (2.89)
We are still left with the task of understanding the quantization of o', which is central to the discussion
on quantum Hall effect. We can now integrate over the surface of the torus to get the total conductivity,
2 2
e d-o
Oxy = —— —— Fay- (2.90)
Y h Jiorus (270)? K

The quantity C = % [d*0 F, is called the first Chern number. Thus, if we average over the fluxes the

conductivity assumes a form,

2

Oy = —%c (2.91)

C is necessarily an integer. It is also referred to as the TKNN originates after Thouless et al. (1982).

Here, we provide an argument that the Chern number, which is the integral over the Berry curvature,
is indeed an integer. For simplicity, let us assume a translationally invariant system in which the eigen-
states can be represented by the Bloch functions. That is, |1/ ) appearing above can be written as ue%k

7 ®; mod ® refers to the remainder when ®; is divided by ®.
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where uy captures the periodicity of the lattice. Since the Berry connection requires a derivative to be
taken, namely, (Y| % |0), which would be equivalent to,

9 ‘
— (ue*) ~ Vigy.. (2.92)
Ik
Now, when one takes an integral over the Brillouin zone (which is equivalent to the surface of the torus
in real space), then (Vi¢y) - dk over a closed surface is zero.

f Vidrdk = 0. (2.93)
This says that the measurable quantity, e® obeys,"
0 _ o Q2m) (2.94)
Thus,
@ (0) — p(2m)| = 2 x (some integer)
=2nC. (2.95)
Thus, the integral over the curvature,
d*k 21C
F— = % Vigrdk = o = C. (2.96)
2 2w

Thus, Chern number is an integer and hence we get the Hall conductivity to be quantized in units of
e?/h. The above calculations are of course applicable to IQHE.
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QUANTUM HALL EFFECT IN GRAPHENE

Having studied the quantized Hall effect in a 2DEG in detail, we focus on another system which is of
topical interest, namely, graphene. Apart from reviewing the basic electronic properties of graphene,
we discuss the properties of the Landau levels. The unequal spacing between the successive Landau
levels is a feature that shows up in many experiments. We discuss some of them.

Graphene is made of a single layer of carbon (C) atoms arranged in a honeycomb lattice structure.
Each C atom has six electrons with an electronic configuration 1s>2s22p?. Four electrons in the 2s
and the 2p orbitals create a hybridized sp? bonding orbital. The orbital connects to the three nearest
neighbors in the plane of the crystal lattice, while the fourth electron occupies a 7 orbital that projects
out above and below the plane. This 7 orbital has a significant overlap with those from the neigh-
boring C atoms. This is responsible for rendering excellent mobility of graphene, while the o bonds
that connect a C atom to its three neighbors yield the stability of the crystal structure. The discovery of
such one-atom thick planar material (graphene is a perfect example of a two-dimensional (2D) material

8 Tt should be remembered that ¢ is not a measurable quantity, while ¢/ is a measurable quantity.
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realized so far) earned a Nobel prize to A. Geim and K. Novoselov, both from the University of Manch-
ester in the UK in 2010. Before we embark on the Hall effect in graphene, let us review its electronic
properties.

2.4.1 Basic electronic properties of graphene

Owing to the large mobility of 7 electrons in graphene, a nearest neighbor tight-binding Hamiltonian
of the following form is most suitable, namely,

H=—t) (a],bjo +hc) (2.97)

(ij)o

where a'(b) denote creation (annihilation) operators for electrons at the A(B) sublattice sites. o denotes
the spin of the electrons, however that will be suppressed in the next step onwards owing to the active
role played by the spin either in the band structure or in QHE. We shall make the spin degrees of
freedom apparent only when it is needed. Here t 2~ 2.7 eV which is considerably large and allows us
to ignore the electron-electron interaction. The vectors connecting the nearest neighbors, §;, direct, a;
and the reciprocal b; lattice vectors, are written as

8 = g(mm; 8 = g(—m +7); 83 = —ak
a = g(«/§5c+ 39); ap= g(—«/gfﬂ- 39)
2 A A 2 A A
b= (Vi k)i by = To(—3k + 3k, (2.98)

with the lattice constant, a = 1.42A (see Fig. 2.13).
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FIG. 2.13
Plot showing §;, direct, a; and the reciprocal b; lattice vectors for graphene.
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Using the nearest neighbor vectors, §;, we explicitly write the tight-binding Hamiltonian as
H=—t) [bI(R+8)a(R) +a' RBR+3))]. (2.99)
R,$

The lattice vector R at an arbitrary site is given by

R =mna; + ma, n,meN. (2.100)
The Fourier transforms for these operators are performed using,
1 —ikR
aK = — e a(R). (2.101)
Py
This yields the Hamiltonian in the momentum space as follows,
3
H= N Z Z Z e k—aR [e’(q_k)'Re’q"s’bjlak + e'(k_q)'Re_'q"s’agbk] . (2.102)
kq R i=l

Using the following definition of the Kronecker delta,
_ Ly ik-gr
dq =1 XR: e (2.103)

one gets,

H=—t 33 [ obfa+ o Haf]
k

i=1

: ot 0 g~ ikdi ak
= —t? Z (ak bk) (eik-&' 0 ) (bk>

i=1

. N CAALL (:1;) (2.104)

k i=1

¥G-LL:LL Y202 Jequiedeq L0

where h(k) is the Hamiltonian matrix defined by
0 eik~81 eik'32 eik~53
h() = —t | _acs, | —iks , ,—iks ( - ) .
(e 4 gmikd2 4 omikds) 0
Since the difference between two nearest neighbor lattice vectors, §; and §; must yield a lattice vector,
R, we can do a transformation,

(2.105)

ax — eik‘53ak, and a;f( — e_"k"%a;r(.

The above transformation yields a new Hamiltonian matrix,

0 (eik-(81—33) 4 k283 o 1))

h(k) = —t ((e_ik_(al_ss) + e—ik~(82—83) + 1) 0 (2106)
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Using the definitions of §;, one gets,

. 0 — (e 4 ka1
R = —t (_ (o 1 gmiem 4 1) ( i )),

One can check that h(k) obeys h(k) = h(k + G), where G is the reciprocal lattice vector, defined as
G = pb; + gby, with p and g being integers. Thus,

A 0 fl
h(k)_—t(/*(k) 0) (2.108)

(2.107)

where
. ) k,/3
fk) = —t (e’k"“ + 2642 o5 <_y\2/_a>> .

The tight-binding energy is obtained by diagonalizing l;(k) which yields,

€ = it\/ If o2 = :i:t\/ 3 + 2 cos(v/3aky) + 4 cos(v/3ak,/2) cos(3aky/2). (2.109)

The two bands described by the “+” and the “—” signs in the above dispersion touch at six points in
the Brillouin zone. Since graphene has one accessible electron per C atom, one can assume a half-filled
system where the lower band is completely filled. Further, we wish to discuss the low-lying excitations
just above the ground state of the system.

This necessitates exploring the low-energy theory of graphene. To achieve that we have to identify the
band touching points which can be obtained from the condition, f (k) = 0. Separately, putting the real
and the imaginary parts equal to zero yield,

cos(kya) + 2 cos(kya/2) cos(\/gkya/Z) =0

— sin(kya) + 2 sin(kya/2) cos(«/gkya/Z) =0. (2.110)
Eq. (2.110) can be manipulated as follows,

sin(kya/2) [—cos(kxa/Z) + cos(kya«/§/2)] =0. (2.111)
Thus, one is left with two options, namely,

either (i) sin(kya/2) = 0; which means cos(kya/2) = +1;

or, (i) cos(kya/2) = cos(«/gkya/Z).

Option (i) gives us,

1+ 2cos(ky\/§a/2) =0

which yields the points (0, £ %) (plus or minus the reciprocal lattice vector, G). Whereas, option (ii)
can be written as

cos(kya\/g) + 2 cos® (kya\/§/2) =0.
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FIG. 2.14
Plot showing the two tight-binding bands of graphene in the first BZ. The two bands touch at six points. In the vicinity
of those points, the bands are linearly dispersing bearing signatures of (pseudo-)relativistic physics.

Thus, we get four more points, which are, :|:23—’;(1, \/Lg), and :|:23—’;(1, —%) (again plus or minus the
reciprocal lattice vector, G). The electronic dispersion of graphene is shown in Fig. 2.14. The six points
where the two bands touch are clearly visible.

A closer inspection yields all the six points are not independent. For example, the set of vectors, namely,
_4n ) 27 _ L e (1 L i inati

(0, + 3 ﬁ), S (1, ﬁ) and 3 ( 1, ﬁ) can be connected to each other via the combination of

the reciprocal lattice vectors, b and b,. For example,

(0 4_”>+b _2_”<1 _L)

,3\/§a 2 = 3a > \/g

(0 4—”>—b =2—”(—1 —i) (2.112)
’3,\/§a 1 3a > ﬁ . .

The same is true for the other vectors,

(m) w5) R 0%)
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Thus, only two of them were found to be independent. Traditionally, they are called K and K’ and can
be written as

K 21 I 1 IK 21 I 1
- > ——= ], an - T T~ )
3a V3 3a J3

Any other independent pair is also a valid choice for K and K'.

It may be kept in mind that the two bands touch at these points and the gap between the conduction
and the valence bands closes. Thus, there are two branches of low-energy excitations, namely one of
them with momentum close to K and the other close to K'. Since f(k) becomes zero at k = K. By
defining q = k — K, one can expand f (k) near K in Taylor series about q = 0,

/ 9f ) 9f (k) 3at _
= ky — K - k, — = )
f (q) ok, (kx—Kx)( X %) + 8ky (ky—Ky)( y y) 2 (Qx + lq}/)
Thus, the energy spectrum assumes the form,
ex(qQ) = hvp(gx + iqy) (2.113)

where vp is the Fermi velocity defined by vp = 32—‘;{ ~ 10®ms~1. Similarly, if we expand around K/,

one gets,

e (@) = hvr(gx — iqy). (2.114)
Thus, in a general notation, we can write,

exx = hvrq- o (2.115)

where q is a planar vector (qx, gy) and o is the Pauli matrix vector (o, o). The electrons close to the K
and K’ points are called massless Dirac fermions, as they obey the Dirac equation without the “mass”
term”. It may be noted that,

exr (q) = ex(q). (2.116)
This implies that (as will be seen later) that the “helicity” of the electrons is opposite at K’ with respect
to K.

To sum up our preliminary discussion on graphene, we note that the low-energy properties are
governed by the dispersion,

€(q) = tvrlq| (2.117)

which implies that the eigenvalues are only functions of the magnitude of the wave vector q, and do not
depend upon its direction in the 2D plane. Also, the Hamiltonian on a formal note denotes that of a
massless s = 1/2 particle, such as a neutrino, however the velocity of the particles is reduced by a factor
of 300 compared to the speed of light. Further, the handedness (or the helicity) feature of neutrinos is
inbuilt, where the electrons behave similarly to the “left handed” neutrino at the Dirac point K and as
a “right handed” neutrino at K’ or vice versa.

9 The Dirac equation is written in conventional notations as H = ce - p + Smc? where « and 8 are Hermitian operators which
do not operate on the space and time variables. In the case of graphene, the second term is absent.
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2.4.2 Experimental confirmation of the Dirac spectrum

When a beam of monochromatic photons with an energy larger than the work function of a particular
material interacts with the constituent charges (electrons) by incidenting on the surface of the sam-
ple, the electrons absorb the photons and thus possess sufficient energy to escape from the sample. By
measuring the energy and the momentum of the photoelectrons and using energy-momentum conser-
vation laws, one can derive the properties of the electrons prior to their being incident on the surface
and relate them with those getting scattered. The angle resolved photoemission spectroscopy (ARPES)
can be a direct probe to resolve the momentum-dependent band structure and the topology of the
Fermi surface. In ARPES, a photon is employed to eject an electron from the surface of the graphene
layer. The intensity of the ARPES is proportional to the transition probability from an initial Bloch state
with crystal momentum, k and energy, E to a final state, k’. The method conclusively establishes the
existence of Dirac fermions seen via linearly dispersing bands in the vicinity of the Dirac points. The
experimental setup, ARPES data and the hexagonal Brillouin zone (which we have discussed before)
are shown in Fig. 2.15.

A-1 <
a k, (A=) o
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 8
g
S
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3
-
z
<9
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|
m
b
0 E-E, =-0.675¢V
§= & 3rd cone
3
8
=
=

FIG. 2.15
Plot showing the experimental setup for ARPES (left), the two linearly dispersing bands (middle) and the Dirac points
are shown on the hexagonal BZ of graphene (right). Taken from Sprinkle et al. (2009).

Quantum Hall Effect  2-31




2-32

2.4.3 Hofstadter Butterfly

The fate of an electron gas or graphene described by a tight-binding model subjected to an external
magnetic field is to show quantized plateaus of the Hall resistance. Consequently, the band energies of
the electrons transform into discrete Landau levels. The presence of a periodic crystal potential adds
further exciting features to the spectrum. The Hamiltonian of such a system is given by

(p — eA)?
2m
where V(r) = V(r + a) is the periodic potential with lattice periodicity a. The electrons are described

H= + V() (2.118)

by the Bloch states leading to the formation of bands. In the presence of the vector potential, A, each
Bloch band gets further divided into sub-bands, and the resultant energy spectra as a function of the
flux give rise to a fractal structure known as the Hofstadter butterfly. These rather complex energy
spectra arise owing to a delicate interplay between the two length scales, namely, a and Ip that are
associated with two different quantization phenomena. In fact, the Hofstadter butterfly arises when
the ratio of these two lengths is a rational fraction. An even more interesting scenario emerges when
the ratio is not a rational fraction, however, we shall not discuss it here.

The fractal nature of the spectrum was observed by Hofstadter (1976) which he obtained by solving
Harper’s equation (Azbel, 1964), and demonstrated that for commensurate values of the magnetic flux
such as ®/P¢ = p/g, where the single-particle Bloch bands split into g sub-bands, which themselves are
p-fold degenerate (p and q being co-prime integers). Each of these p sub-bands further split, yielding
a continued fraction as a function of the magnetic flux. The distance between the levels, sub-levels,
etc., and the width of each of the "superstructures” oscillates with a variation of the magnetic field flux
with a period that is universal and is independent of the form of the quasiparticle dispersion relation.
Consequently, one observes a quasi-continuous distribution of incommensurate quantum states that
form a self-similar recursive structure, like that of a butterfly. Schlésser et al. (1996) have realized the
Hofstadter spectrum for the first time in semiconductor superlattice structures. It was later observed
for a number of systems, such as cold atomic systems in optical lattices. In continuation of our present
discussion, we shall discuss the Hofstadter butterfly in graphene.

In order to demonstrate the Hofstadter butterfly (Hofstadter, 1976) we have taken a semi-infinite rib-
bon of graphene. The ribbon geometry is such that it has zigzag edges, as in Fig. 2.16. In tight-binding
approximation, the external magnetic field enters through the hopping integral, which is replaced by
the Peierls substitution, namely,

ie [J j
exp (% f A dr) tij = exp <i(27‘[/<b0)/ A- dr> tij (2.119)

where, t;; is the hopping integral between the sites i and j with no field present. The flux is denoted
in terms of flux quantum ®, = h/e. To include the magnetic field, we have taken B = Bz such that
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FIG. 2.16
Geometry of a zigzag graphene nanoribbon is shown. The white and the red circles represent A and B sublattices
respectively. (m, n) denote the unit cell index in x and y) directions.

the vector potential (A) in the Landau gauge takes the form A = Bxy. With this modification, the
tight-binding Hamiltonian for graphene introduced in Fig. 2.16 can be written as

D i D
H— Z [tem G naIn,nbm,n 1o g na;rn,nbm_l’" + tlain’nbm,n_l + h.c.]. (2.120)
m,n
Here, afn’n, b represent electron creation and annihilation operators of sublattice A and B, respec-

tively, at site index (m, n). Since the ribbon is infinite in x direction, one can use the Fourier
decomposition of the operators for the index m giving the following equation (Castro Neto et al.,
2009).

D D X
H=-)" [te’” %"l ben+te 20 eMal b, +tal beao1 + h.c.i| (2.121)
k.n
Assuming the eigenfunction to be [ (k)) = D", [atkn |a, k, 1) + Biu |, k, n)], the eigenvalue equation
of Hamiltonian (2.121) gives the following two Harper (Harper, 1955) equations.

- d k
Exag, = — |:e’k“/22tcos (nan - ;) Bin + tlﬁk,n—1i| (2.122)
0
, P k
ExBin = — |:ezka/22tcos (nan — ?a) Uk + t]ak)n+1} (2.123)
0
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In order to get the spectra for the Haldane and semi-Dirac Haldane model, equations (2.122) and
(2.123) together with the following two characteristic equations of NNN hopping are used.

. k , k
Exag, = —t |:elku/2 cos (?a + q)) Q.nt1 + cos(ka — P)ag, + e—ka/2 oo <7" + ¢> Olk,n—1]
(2.124)

) k . k
ExBin = —t2 [e’k“/ % cos (; - ¢> Bini1 + cos(ka + @) Brn + e %2 cos (; + ¢> ﬁk,n_l}
(2.125)

Using these equations, we have numerically calculated the Hofstadter butterfly spectrum for the semi-
infinite nanoribbons with g = 200. The fractal spectra are depicted in Fig. 2.17 for graphene (Rammal,
1985). Energies are taken in units of ¢. The fractal spectra result from the competition of magnetic
field and lattice effects. For each effective flux f = ¢/¢¢ = p/q there are 2q number of sub-bands. The
spectrum is periodic in f with periodicity 3+/3Ba?/2¢o.

0.0 0.2 0.4 0.6 0.8 1.0
O/D

FIG. 2.17
The Hofstadter butterfly is shown for graphene. The fractal structure as a function of the external flux (scaled by the
flux quantum), that is, ®/®, can be seen.
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2.4.4 Landau levels in Graphene

In order to proceed, we can write the Hamiltonian in a unified way that includes the description of
both the Dirac points (valleys) K and K’. So for each valley, we have one two-dimensional spinor
Hamiltonian. Thus, augmenting the Hilbert space, we can write the eigenfunctions as

v =Wk ve)”
and the Hamiltonian is given by
—o* -k 0 —o*-p 0

=h = . 2.126
(0 )= (0T ) a1z
Now we shall discuss the motion of the massless relativistic electrons in a magnetic field. In a stan-
dard 2D electron gas, the Landau quantization produces equidistant levels [see Eq. (2.36)], which is an
artifact of the non-relativistic parabolic dispersion of the free carriers. We need to ascertain how the
quantization formula is modified for the case of graphene.

As earlier we do the Peierls substitution, p — p + eA. Thus, the Hamiltonian becomes,

0 —(px + ipy) 0 0 S
—(px — ipy) 0 0 0 g
Hxx =V, b4 . 8
KK = YF 0 0 0 (px — ipy) :
0 0 (px+ip) 0 S
The wavefunction has now 4-components, namely, Z
N &
_ |8
v = % (2.127)
U
s

where ¢ , are the wavefunctions for an electron at momentum values corresponding to the valley K
at the two sublattice sites A and B. Similar notations carry on for the other valley K’.

For a perpendicular magnetic field, B = BZ, one can choose a Landau gauge, A =(—By, 0, 0). Since
with this choice, the Hamiltonian is independent of the spatial variable, x. So [H, px] = 0 and hence
px continues to be a good quantum number.

Further the Hamiltonian in Eq. (2.127) is valley decoupled, that is, there are no matrix elements that
connect the two valleys, namely, K and K’. Thus, it allows us to look at the solutions at each valley
separately. For the K point, we have a coupled equation for the wavefunctions, ¢* and ¢?

epx = vi(px — ipy) by (2.128)
epy = vE(px + ipy) P (2.129)
One can insert Eq. (2.128) in Egs. (2.129) and (2.129) in Eq. (2.128) to obtain,

€2¢§ = th%:(Px —ipy)(px + lpy)¢§ (2.130)
o = DPVE(px + ipy) (px — ipy) 5. (2.131)
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Inserting the Landau gauge such that p, — py + eBy,
K (ot eBy + ipy)(p 4+ eBy — ipy)dX
FLZV%; B = (Px Y T 1Py) (Px Y — 1py)Pp

= [(Px + eBy)? — i[(px + eBy), p,] + pﬁ] oy (2.132)
Since [px, py] = 0 and [y, py] = ih, one gets,
2
€
—— 6K = [(px + eBy)* + ehB + pl1p. (2.133)
h2vg y
Thus, we arrive at,
€? -
(W -~ ehB) ¢p = (Px +D))¢n (2.134)
F
where p2 = (py + eBy)? and f); = pﬁ. Dividing both sides by 2m,
1 (€ pi+Dy 1- jis
— (= _cnB) oK = Y oK = [ Zk(y — po)? + 22 | X 2.1
m <h2V12; e >¢B ( m ¢B Zk()’ )/0) + om ¢B ( 35)

g 22
withk = £ 71: Y0 = g—g. Thus, the RHS is identified as the Hamiltonian for a particle executing an SHM
in two dimensions about a coordinate point (0, yo). Thus, it is obvious that the energy spectrum is given

bye, = (n+ %)hwg with wp = %. Hence,

2nhwp

1
——2=2(n+z> hwp + hwpg = wheren =0,1,2,.... (2.136)

Eq. (2.136) allows positive and negative roots for €. So we can obtain the energy spectrum as

(2heB)Y/?

€= sgn(n)ﬁ VE (2.137)

Let us define another quantity @ = vr (2%ieB)'/?, so as to formally write the energy expression as that
of a harmonic oscillator. We rewrite the above expression as

€= hd)sgn(n)\/m. (2.138)
Thus, as opposed to the familiar harmonic oscillators when # can take positive integer values (includ-
ing zero), however, here in graphene, all integers, that is, both positive and negative numbers are
allowed. The positive integers denote particles (or electrons) in the conduction band and the nega-
tive ones denote holes in the valence band. Furthermore, unlike the 2DEG, here, the Landau levels are
not equidistant (see Fig. 2.18). The largest separation occurs between the lowest Landau level (n = 0)
and the first one (n = £1). This large gap essentially facilitates observation of QHE in graphene at high

temperatures, which is even true for room temperature.'’

10 The title of the paper by Geim and Novoselov is “Room temperature quantum Hall effect in Graphene.” See Novoselov et al.
(2007)
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FIC. 2.18
Plot showing the Landau levels in graphene for different indices, n.

So far we have been discussing spinless particles. Including the spin, there is be an additional two-fold
degeneracy of the Landau levels owing to Zeeman spitting. A hierarchy of energy scales needs to be
ascertained here. Let us compare the energy gap between the two lowest Landau levels and the Zeeman
splitting corresponding to a typical magnetic field, B, for example, B= 10 T.

hwp/2
AE L = (for the successive Landau levels) (2.139)
VF\/eh_B
AE, = ~/ehB (for the Zeeman term). (2.140)
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FIG. 2.19

Plot showing the Landau levels for different indices, n as a function of

B(T)

the magnetic field, B. The Landau levels vary as +/n.

For typical vr 2~ ¢/300 (c: speed of light),
AL e
AEp;

Thus, the Zeeman energy scale is much
larger than the Landau-level splitting, which
makes it imperative to include spin degen-
eracy. Thus, including the Zeeman term,
the energy can be written as,

&2
—2=2heB(n+l) n=0,1,...
VF

(2.141)

(2.142)

where the additional term in the RHS
(denoted by 2heB) accounts for the spin.
The spacing between the consecutive Lan-
dau levels are shown in Fig. 2.19. The
energy level € =0 is not present in the
spectrum, even for n = 0. This lowest Lan-
dau level is somewhat special in the follow-
ing sense. The n = 0 level receives a contri-
bution from only one sublattice at each of
the Dirac points. For example, “A” sublat-

tice contributes to the wave function at the Dirac point K, and the “B” sublattice contribute to K'.
However, the n # 0 Landau levels have non-zero amplitudes at both the A and the B sublattice.

Finally, the wavefunctions corresponding to an arbitrary Landau-level index at the two Dirac points,
corresponding to the gauge we have chosen are,

0
K Cn _ikx 0
= ——¢ .
Vink VL sgn(n) (—i)Pjn—1,k
Dinlk
and
¢\n|,k
WK = Cn_ ik sgn(n) (=) Pjn|—1,k
n,k \/Z 0
0
with
cu(x)=1 forn=0
1
=— forn#0.
V2
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Further,
sgn(n) =0 forn=20
. forn #0 (2.146)
n|

with
1 (y — ki3)? (y — kI2)

Puk = exp[——yTB]H,, [y—B] (2.147)
2 I Ig

Ip is the magnetic length (= ,/ EEB) as defined before, and H,(x) are the Hermite polynomials. ¢, k
denotes the eigenfunctions of an electron in the presence of a magnetic field. n refers to the Landau-
level index. The Landau levels for different values of the flux, ¢ are shown in Fig. 2.20 as a function
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FIG. 2.20

Plot showing the Landau levels in graphene for different values of flux, ¢. The values of the fluxes are ¢ = % (for left

upper panel), ¢ = %% (for right upper panel), ¢ = %% (for left lower panel) and ¢ = 1‘:3’—0% (for right lower panel). Here

@, = 1 is the flux quantum.
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FIG. 2.21

Plot showing the variation of Hall conductivity as a function of the bias voltage for a particular value of the magnetic
field, such as B = 30T and 50T. The plateaus in the Hall conductivity are clearly visible. The longitudinal conductivity
(0 xx) is shown for a specific value, namely, B = 50T.

of one of the wavevectors, ky. As the magnitude of the flux is decreased, the width of the flat band
appearing at the Fermi energy (at E/t = 0) decreases. Furthermore, the flat bands become dissipa-
tive in the bulk, corresponding to larger values of the Landau-level index, n and lower values of the
flux ¢. For a weak magnetic field, such that, ®/®¢ = 1/1600, the energy bands of the bulk regain their
Dirac-like structure similar to the single-particle energy levels, while the zero mode flat band continues
to exist.

We have included numeric computation of the Hall conductivity as a function of the Fermi energy
at comparable values (to those in experiments) of the magnetic field, namely, B = 30T and 50T using
the Kubo formula in Fig. 2.21. The quantization of the Hall conductivity is clearly visible. Further, the
longitudinal conductivity, o x, is shown for one of them, namely, 50T. o shows vanishingly small
values corresponding to the plateaus of the Hall conductivities, while it shows spikes when the Hall
conductivity jumps from one plateau to another.

2.4.5 Experimental observation of the Landau levels in graphene

There are primarily two experimental techniques for observing the existence of Landau levels. They
are (i) the infra-red (IR) spectroscopy (Deacon et al., 2007) and (ii) scanning tunneling microscopy
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(STM) (Li et al., 2009) experiments. In the following we include a brief discussion on each of them and
their utilities in observing the non-equidistant Landau levels in graphene.

In IR spectroscopy, the optical transitions from one Landau level to another are studied by measuring
the cyclotron frequencies. The Landau levels are proportional to /5 (n: Landau level index), all the
frequencies of the optical transitions are distinct as the energy spacing between each pair of Landau
levels is different than the other pairs. These optical transitions are of two types which correspond to
transitions between the electron or the hole states in the conduction or the valence bands (intra-band
transition), or the transitions between the electron and the hole states pertaining to the valence and
conduction bands (inter-band transition) respectively. The photoconductive response and the resistive
voltage show the existence of differently spaced Landau levels in graphene at particular values of the
magnetic field, longitudinal current and the IR frequency. The photoconductive intensity as a function
of the carrier density, n (not to be confused with the Landau level index) shows distinct peaks which
are proportional to the energy absorbed from the incident IR radiation.

In the STM experiment, the specific energy levels can be identified by varying the bias voltage between
the tip and the surface of the sample, and the tunneling current generated is proportional to the local
density of states. In graphene, the Landau levels are directly observed via the peaks in the tunneling
spectrum. From the positions of the peaks as a function of the sample bias (shown in Fig. 2.22), the
energies of the Landau levels can be extracted.

Let us add a bit more details on the experimental results presented in Fig. 2.22. The differential conduc-
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tance, ;—‘I/ is plotted as a function of the bias voltage (in mV) in (a). Within a proportionality constant,
it yields the local DOS, which is seen to vanish at zero bias, while it remains finite for graphite. The
latter clearly implies the opening of a gap at the Dirac points as a single-layer graphene is coupled to the
substrate for the latter. Figure 2.22(b) shows the surface map of the low-energy tunneling conductance
for two regions, one of which corresponds to single-layer graphene (darker region marked by “A”),
while the other (lighter region marked by “B”) denotes that of graphite. In (c) the tunneling spectra
is shown as a function of the bias voltage for different values of the external field. These peaks corre-
spond to the positions of the Landau levels. Finally, the massless nature of the Dirac fermions, and the
Landau-level spacing varying as /7 are shown via plotting the energy, E as a function of 4/|n|B which
allows the collapse of the data onto a single straight line shown in Fig. 2.22(d). The corresponding slope
yields a fairly good estimate of the velocity of the Dirac fermions (~0.8 x 10® ms~!). Such a collapse
is obviously absent for graphite.

Now we shall wrap up the discussion of the quantum Hall effect in graphene and give an introduction
to the fractional quantum Hall effect (FQHE) in our subsequent discussion.
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Plot of the scanning tunneling spectra (j—",) for graphene. (a) shows spectra at zero field taken in the regions “A” and
“‘B” marked by squares in (b). A single-layer graphene is shown by the black curve, which vanishes at zero voltage.
The spectra for graphite is shown for comparison. (b) shows the map of % at energy as marked by arrows in (a).
% vanishes in the dark region, but is finite in the bright region. (c) shows the field dependence of the tunneling spectra
in the region “A.” The peaks are labeled with LL index n. In (d) the energies of the Landau levels showing a square-root
dependence on the level index, n (that is, </n) and for a few distinct field values. The symbols correspond to the peaks
in (c). The figure is taken from Li et al. (2009).

2.5 FRACTIONAL QUANTUM HALL EFFECT

2-42

The fractional quantum Hall effect (FQHE) was discovered by Tsui, Stormer and Gossard in 1982 at
Bell labs.!' They observed that at very high magnetic fields, a 2DEG shows fractional quantization of
the Hall conductance. In particular they got a quantized Hall plateau of magnitude o, = 2—;’ which
is accompanied by the vanishing of the longitudinal conductivity, pxx at low temperature (T < 5K)
in GaAs and AlGaAs samples. As opposed to the IQHE, where an integer number of Landau levels

11 AE is called as the activation energy in the original paper by Novoselov et al. (2007).
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are occupied, here in FQHE the Landau levels are partially occupied. If one makes the magnetic field
large enough, the lowest Landau level will be partially filled. We can expect that the system will form
some kind of a lattice, for example, a Wigner crystal or a charge density wave. Thus, it naively seems
reasonable that the system would like to minimize its potential energy, since there is no kinetic energy
left in the system corresponding to the lowest Landau level, and only trivial zero point energy is present
in the system. Thus, the ions should tend to stay away from each other and thus would form something
similar to a crystal lattice. However, surprisingly that does not happen, and instead the system becomes
an incompressible quantum liquid, which has gaps in the energy spectrum at filling 1/m (m: odd, or a
rational fraction of the form n/m). So it is inevitable that the system minimizes its energy by having gaps
at fractional values of filling. The reason is that, owing to the presence of a large number of electrons
(macroscopically degenerate in any of the Landau levels), a many-body interaction is induced which
in fact makes the excitations above this incompressible ground state fractional. So in essence, the Hall
current carries a fractional charge. In fact, the excitations are called abelian anions, which are neither
fermions, nor bosons, if they are taken twice around a complete circle, they will pick up a phase which
is either 0 or . The phenomenology is put forward by Jain (2007) in terms of composite fermions,
which we shall describe later.

One important thing that becomes apparent from the preceding discussion is that FQHE is impossible
to explain by invoking the interaction between the electrons that eventually split the degeneracy of
these enormously degenerate Landau levels, leading to the opening of a gap. The gap is in principle
similar to the cyclotron gap, fiw, seen earlier in IQHE. However, this introduces another energy scale,
leading to a hierarchy of energy scales, for example, the Coulomb energy scale, namely, e*/eaq (the

¥S-LL:LL ¥20c Jequiedeq L0

length scale in the denominator is taken as the Bohr radius) and the cyclotron energy. However, the
kinetic degrees of freedom of the electrons are frozen and hence get eliminated from the problem.
As said earlier, while the expectation is that of a trivial-insulating state, but at fractional fillings (less
than 1), something more interesting happens.

Now consider the effect of the Coulomb interaction between the electrons,

62

V=—— (2.148)
Iri — 1

This interaction should lift the degeneracy of the ground states. A degenerate perturbation theory

seems may be an answer to this. However, degenerate perturbation theory problems are only solv-

able if the degree of degeneracy is such that it is analytically or numerically tractable. But here we are

stuck with extraordinarily large matrices to diagonalize. Even numerically, with the best computational

resources available nowadays, one cannot diagonalize for more than a few particles.

In the absence of these interactions, we have sharply defined Landau levels. In the presence of interac-
tions, the degeneracy goes away and the Landau-level broadens, resulting in a spectrum of states width
~Ecoulomp- Now the experimental data would be nicely explained, if a (tiny) gap exists for a filling frac-
tionv = % (v= % is just an example), and the gap can exist at any of the rational fractions for which
FQHE is seen. Of course, more prominent the plateau in the FQHE plot shown in Fig. 2.4, larger is the
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gap. So we include some disorders that introduce localized states within the gap, which then give rise
to plateaus in p,y (and p,y = 0). The whole description requires a hierarchy of energy scales, namely,

hwg >> Ecoulomb >> Vdisorder (2.149)

2.5.1 Electrons in the symmetric gauge

The vector potential A in the mixed gauge can be written as (again yields B = Bz),
1 1
A= —E(rx B) = E(—Byi+Bx§r) (2.150)

The choice of the symmetric gauge breaks the translation symmetry in both x and y-directions. How-
ever, it preserves rotational symmetry about the origin. This of course means that angular momentum
is a good quantum number. This is the most convenient gauge to study the fractional quantum Hall
effect (FQHE). Furthermore, we can write down the non-canonical momentum as

T =p+eA =mr. (2.151)

This is gauge invariant but non-canonical. One can use this to form the raising and lowering operators,

=L - imy) = [ L (e — i)
a_\/ﬁnx iny) =\ 75 O — iy

(2.152)
al = il (7T + imy)
“VheB CTTV
h Bh
where 2eiB = 2e5-B = . Now,
T . . . .
[a,a' ] =aa" —a'a= (@) (rx — imy) (7 + iy) — (Tx + imy) (0 — i7Ty)
b4
= (elTh> [ni + imymy — imy Ty + n; - 71,? + Ty — Ty Ty — nf]
21
= (E) [7Tx7Ty - 7Ty7Tx]
i
= <%> [T[x, 7Ty] (2153)

7 is not the canonical momenta in the sense, [x;, 7] # 8;; and [, ;] = 8. However, they are gauge
invariant. The numerical value of = does not depend upon the choice of gauge. This can be proved
from the commutation relations,

0A;  0A;
{pi +eAipj+eAj} = —e (W — @) = —eé;jkBk. (2.154)
Thus, [a,a] = (ﬁ)(—iehB) =1

To explore whether the Landau levels yield the expected degeneracy, we can introduce another
momentum variable, namely,

T =m—eA
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7 is not gauge invariant, and depends on the gauge potential chosen. The vector potential, A enjoys
the gauge freedom, that is,

A =A-Vy

where y is an arbitrary scalar. This yields

7'=p —e(A—Vyx)=p —eA' +eVy.

The commutation relation for 77’ are,

(7., ﬁy’] = iehB (2.155)

which differ only by a sign with respect to the 7 momenta. This is also an advantage of this new
momenta in that they obey,

[, 7] = 0.
Finally, the Hamiltonian is written in terms of the a and af operators as
1 1
H = hws (aTa + 5) = hwp (n + 5) (2.156)
where n =0, 1, ... and denote the indices of the Landau levels.

Now, as a matter of exercise, in order to explore the degeneracy of the Landau levels, we introduce a
second pair of raising and lowering operators, namely,
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be (7 + i) (2.157)

+/2ehB
1

~/2ehB
They also obey [b, b'] = 1. These b, b" will yield the degeneracy of the Landau levels, as shown in the

b =

(Fx — ifEy). (2.158)

following. Thus, a general state in the Hilbert space |n, m) is defined by
@
B nlm!

where a |0,0) =b0,0) =0and H = ﬁn ST = ﬁ(p—i—eA)z.

|n, m) |0, 0) (2.159)

Let’s now construct the wavefunction in the symmetric gauge. We are going to focus on the lowest Lan-
dau level, n = 0 as it is of primary interest for discussing FQHE. The trick is to convert the definition
of a into a differential equation,

1 ) 1 ) .
a= %(nx —imy) = m[px —ipy + e(Ax —iA,)] (2.160)
1 |:—ih <i — 13) + é(— - ix)] (2.161)
"~ J2¢hB dx Ay 27 '
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using z = x — iy and Z = x + iy. Remember this is not usually how we define z and z* (or z), however,
we shall stick to this definition. Also, define,

1/0 ol

0==|—+i— (2.162)
2\dx  dy

and,

~ 1

0== 9 ii (2.163)
2\dx 0y

which obey 3z = 9z = 1 and 82 = 9z = 0.

ar= L (L 10 ( ’)—1(1+1)—1
2—2 % lay X zy—2 =1

So a and a' in terms of the coordinates z can be written as

a=—iv2 i+ =-); at=—iv2(1zi—2). (2.164)
4lp 4lp

Now, the lowest Landau level is found by the one which is annihilated by the operator a.

al0,m) =0
—iv2 (135 + i) 10,m) =0
4lp

|0, m) is called Y¥r111.(2, Z), where LLL stands for lowest Landau level.
VitLmeo = ¢ /4%

The ground state is known to be a Gaussian for a linear harmonic oscillator.”

One can construct the higher Landau level wavefunctions by employing b' successively to the m = 0
state. This yields,

m
VYLLLm <IE> eI /40, (2.165)
B
It is straightforward to ascertain that ¥y, are eigenfunctions of J,, defined by
J. = h(zd — 20) (2.166)

and obey, .YLLL,m = mAYLLL m.

Let us explore the degeneracy associated with the Landau levels ¥ 11, ,,, which is obtained by noting
that the wavefunction with angular momentum, m is peaked on a circular ring of radius, r = Ig+/2m.
The number of states in an area, A = mR? is N = mR?/mr? ~ eBA /2w hwhich is a result we have seen
earlier.

12 (y+ %)u(y) =0,or 37“ = —ydy. The solution is u = 2,
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A quick recap on the ongoing discussion reveals that for a constant magnetic field B, the vector potential
can be obtained as

1 B A

Writing down the free particle Hamiltonian H = ﬁ (p + eA)? in the above gauge,

1 a y 2 0 x\?
=—|(-i—-2% —i— 4+ | 2.168
H 21%[( i 2) +<18y+2):| ( )

It is convenient to introduce the complex variables z and z* via,
z=x—iy=re ¥, Z*=x+4iy=re?
The derivatives can be written as'”

0 0 a 0 0 d
~ = + s =W — —

ox 0z 0z* Oy dz  o0z*

In terms of z and z*, the Hamiltonian reads as

11 92 9 9
H=—|-]z|> -4 —z— 4z — . 2.169
2B [4|Z| dzoz oz ' C 82*] (2169)

The Hamiltonian has few similarities with that of the harmonic oscillator, especially because of the
mixed second derivative and the two first derivatives. In order to solve the Hamiltonian, a set of ladder
operators can be introduced, namely,

bzi(i+23> b’f:i(f_zi>

J2\ 2 9z)’ V2 \2 dz*

i L (E n 2i> R <f _ 23) (2.170)
V2 \2  Taz )’ V2 \2 0z

These operators obey
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[a,a"] = [b,bT] =1 (2.171)

with all other commutators vanish. This facilitates writing the Hamiltonian in a familiar form,
P

H=a a—i—z. (2.172)

The eigenvalue of a’a denotes the Landau level index n.

Let us now concentrate on the b-operators. They play a role to play in writing down the z-component
of the angular momentum, namely, ], where

0 d il
]Z = —lh% =—h (Z& - Z*ﬁ) = aTa - bTb (2173)

13 Somewhat non-trivial definitions of z and z* are adopted to make sure of the analyticity of the wavefunction in z.
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The eigenvalue of J, is —mh where m takes values from —# to 4+, n being the Landau level (LL) index.
b (b) increases (decreases) the value of m by one unit, while keeping the LL index unchanged. However,
at(a) increases (decreases) n and decreases (increases) m by one unit.

Clearly, the harmonic oscillator problem here has two indices, namely, #n and m, which is apparent

through,
‘H|n,m) = E,, |n, m) (2.174)
where
b‘r n-+m Tyn
1, m) = (") (a") 10,0)

Vin+m)! /nl
where |0, 0) denotes a Gaussian,

1 242
10,0) = —=—=¢ /4

V2T

and obeys,
al0,0) = 0 = b|0,0).
One can generate the family of the lowest Landau levels by successively operating b" on |0, 0), that is,
Zme—|z|2/4l§

A 2 2" m!

/272" m! appears the normalization constant and z™ is a polynomial in z, where each z appears due
to acting b' on |0, 0) each time.

(b")™10,0) = |0, m) =

It can be checked that |0, m) is an analytic function of z, since
ad

—10,m) =0,

az*

which is evident from the definition of 33?(: %(% — i%)) as the Cauchy-Riemann condition is
satisfied.

Now getting a Landau level with arbitrary indices, namely, |n, m), we need to simultaneously act a’
ntimes and b' (n + m) times. This is necessary because a* reduces the m index by one unit each time.
Thus,

1

T\ (T T 12l /40
272200l (n + m)! (a) (1) e

1 3 \" 9\t
-2 z—2— e~ 121%/4l5 (2.175)
2w 2m+2ny) (n 4 m)! dz* 9z ' '

It has a somewhat complicated form, but at least denotes an expression which can be evaluated for a
given value of n and m.

|n,m) =
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Let us more closely discuss the physics of these fractional quantum Hall states. The first approach
to the fractional quantum Hall states was due to Laughlin, who described the filling fractions given
by v =1/m, (m is an odd integer). Since the resultant matrix was too difficult to diagonalize, so
Laughlin wrote down the answer in the following sense. He wrote down the wavefunction by intuition
that preserves the physical properties and the symmetries of the system. To understand the Laugh-
lin wavefunction, let us consider only two particles at the lowest Landau level. Consider a potential,
V = V(|r1 — r2]). For such a potential, the wavefunction is an eigenstate of the angular momentum
(recall the H-atom problem). In order for the angular momentum basis to be used, we need a symmetric
gauge, namely,

A= —l(rx B) = —B—yf(+%§f. (2.176)

2 2 2

The choice of the gauge breaks the translation symmetry in both the x and the y direction, how-
ever it preserves rotational symmetry about the origin. This means that angular momentum is a good
quantum number and hence justifies using the angular momentum basis.

2.5.2 The lowest Landau level (LLL)
The (unnormalized) single-particle wave function in the lowest Landau level takes the form,
Y = 2™ /45 (2.177)

with z = x — iy. These states are located on a ring of radius r = Ig+/2m. The exponent m labels
the angular momentum. The largest value of m for which the state falls inside the ring is given by
m = R?/2[2, Rbeing the corresponding value of the radius of the ring. m now denotes the total number
of eigenstates in the lowest Landau level that falls inside the ring. Thatis, 0 < m < Ng, where Ny = (%0
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is the number of flux quantum. Hence, the degeneracy per unit area is given by ﬁ = % = hi}e. As

long as we neglect mixing between the successive Landau levels, a condition that should be valid for
V « hwp then a two particle eigenstate takes its form,

U = (21 + 2)M (21 — z5)"me (a1l Hzl) 45 (2.178)

where M is the center of mass angular momentum, m is the relative angular momentum. M and m are
non-negative integers (see discussion below), which make the pre-factor a polynomial in z; + z; and
z1 — z. Hence, a state formed out of the linear combinations of ¥, in Eq. (2.178), and hence lies in
the lowest Landau level. Of course, m must be odd to yield an antisymmetric wavefunction.

Now we can write down the wavefunction without explicitly solving the Schrodinger equation for
any general potential of the form V(r) (in principle, it should be an unsolvable problem). We remind
ourselves that we are in the lowest Landau level that allows us to perform the above form of the
wavefunction. For N-particles, the many-body state can be written as

N
V(21,225 2N) = (21,200 - . . 2N)e it [/ (2.179)

where f(z) is a polynomial in z; and contains the maximum power of any z; occurring in Ng. It also
takes care of the statistics, that is, for interchanging z; <> zj, f(z) picks up a negative sign.
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With all the points discussed above, Laughlin made a suggestion for the ground state wavefunction
(Laughlin, 1983) as

N
VY(z1,22,23 - 2N) = l_[(zi —z)"e” Xim [ail*/45, (2.180)
i<j
So the symmetry function is fixed as (z; — z;)". The above form makes sense as it keeps the electrons

apart and thus reduces the Coulomb interaction (or the potential energy, as discussed earlier). This is
the celebrated Laughlin wavefunction of FQHE. This can be proved easily by writing,

Je [¥m) = ih i i
m) = ih | x— —y—
‘ ay yax

If m is an odd integer, for example, 1, 3, 5 etc. then f is an antisymmetric function.

) |Vm) = mh |Ym) (2.181)

The pre-factor vanishes of order m if two electrons happen to come close. Meanwhile, the exponential
factor vanishes as i and j get far away from the origin. The angular momentum of these states is mh. For
the lowest Landau level, there is only one state for a given value of m, and it should only be a positive
value of m. The exclusion of the negative values is an artefact of the chirality created by the presence
of the magnetic field.

It is worth comparing this with the scenario corresponding to the Landau gauge, which had discrete lev-
els as the basis states. However, physical properties, such as the density of states (per unit area) should
be independent of the choice of the gauge. It can be tested by taking the mod square of Eq. (2.177). The

maximum value of this probability density occurs at R = ,/2ml3. Thus, the area of a circle given by

7 R?(= 2mm[3) contains m flux quanta, which yields the familiar result of one state per Landau level
per flux quantum piercing the quantum Hall sample.

Let us show that this wavefunction has the desired filling fraction, which is an important aspect of the
Laughlin state. The exponent m is not arbitrary and is related to the filling fraction. For this purpose,
let us focus on the wavefunction for a single-particle coordinate, say, z;. The terms that depend upon
21 in the pre-factor can be written as

N
[[@—-2"~]]@ —z)" (2.182)
i<j i=2

=@ —2)"z1—z)" (21 —z2n)" (2.183)

Thus, there are m(N — 1) powers of z;. Hence, the maximum angular momentum of the first particle
is m(N — 1). So the maximum extent of the wavefunction is given by the radius, R & +/2mNIg, where
(N — 1) is approximated by N for large N. Correspondingly, the area over which it spans is given by
nR? ~ 2rmNI.

Now, recall that the number of states in the filled landau level is AB/®q ~ A/27[% where B/® is

the inverse of the area. Thus putting A = 7R* = 2 mNI3, Iy = %, the total number of states is
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given by
2rmNI%

= mN 2.184
2712 (2.184)

Since the total number of states is mN, the filling fraction is % (m: odd) as we have discussed earlier.
An exact diagonalization of the Hamiltonian matrix for a small number of particles shows that the
Laughlin wavefunction is extremely accurate.

Let us revisit the above discussion in a slightly different language. The total angular momentum is the
sum of the angular momentum of individual electrons. So the total angular momentum carried by the
Laughlin state is as follows.

A typical term in the Laughlin wave function is

0_m_2m (N l)m — 22|
ZIZZ Z3 Zz 1

where N denotes the number of electrons. Since the above state has angular momentum m# for the
individual electrons, so the total angular momentum is

1)Nm
Diot] = mh Z —

All other contr1but1ons will yield the same angular momentum.

On the other hand, the maximum angular momentum, namely, #,,4,/ that an electron can have is
given by the maximum power of the variable z in the wavefunction. Here,

¥G-LL:LL Y202 Jequiedeq L0

Nmax = (N — 1)m.
Consider the form of the lowest Landau level.
Iﬂ _ Zme—\z\ /4l

The probability of finding the electron at a given z is given by |1/(2)|? (or | (r)|?). This quantity has a
sharp peak at r = ry,.

rm = ~2mlip

Thus, the area over which the Landau levels are located is given by

A= nrﬁmx = Znnmaxllz;
=2rm(N — DI (2.185)
Thus, the Laughlin state is realized at the filling fraction
NAA N 1
"TTA T mN-D m
for large N.
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Another important feature of the Laughlin wavefunction is that the argument of the Gaussian can be
written as

2 2 2
eXp(_Z Zi) = exp —Z lzi — z|” + Zzi
i i i
By writing > = )", 27, we note that Z is the coordinate of the center of mass. Thus, apart from this
trivial factor in the exponent, the wavefunction depends on the relative (complex) coordinates, namely,
|zi — zj|, which implies that the wavefunction is uncorrelated and similar to the wavefunction seen for

the integer version of the QHE.

This brings us to the most potential issue: whether the much talked about Laughlin wavefunction
2
yields the Hall conductivity quantized as v4 with v = 1, m is an odd integer? Furthermore, what

2
does a fractional coefficient of 3- exactly mean in terms of fractionalizing the unit of charge?

2.5.3 Fractional charge and the Hall conductivity

The existence of the fractional electron charge is surprising, as electrons are indivisible objects. Also,
and probably more importantly, how does the Laughlin wavefunction produce the Hall conductivity
with plateaus at rational fractions? Consider the Corbino disc argument applicable to the IQHE (see
Fig. 2.12). In order to introduce a connection between the Corbino disc model and the Laughlin wave-
function written above, we consider enhancing the magnetic field B in a controlled manner so as to
introduce one flux quantum, @, in any region of the disc. The questions are that: how does that modify
the Laughlin wave function? Recall that the pre-factor of the Gaussian in the Laughlin wavefunction
is given by 2z (see Eq. (2.177)), where the index m counts the number of flux quantum. Thus, with
the above modification, “m” increases “m + 1,” which makes the maximum power of z; increase from
Mmax = Nm to Nm + 1. The situation to the Laughlin wavefunction is incorporated by introducing,

v =[N 2] Yoz, 22+ - 2n) (2.186)

where ¥o(z1, 2 - - - zN) is the usual Laughlin state. The above wavefunction v/’ dismisses the origin
to be a special point about which the original Laughlin state was centered (or equivalently, the single-
particle density had a peak at the origin). Since the origin, (2 is the origin) does not play an important
role, we are allowed to write

V' (z0) = [T, (zi — 20)] Yo (21,22 - - 2N)s (2.187)

assuming zy is not within a distance /g from the edge of the disc, so that the single particle density
remains uniform up to a distance Ip relative to the edge of the disc. In effect, the probability of finding
an electron at the origin is missing and its density within an area I3 about the origin is reduced. In
the basic language of solid state physics, a missing electron is equivalent to the appearance of a “hole”
which is what precisely happens here.
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Now the magnetic field B is increased such that m flux quanta are added in the process and m holes
are created. This yields the Laughlin state to assume the form,

N+1 o
z:
Ym =TI (zi — 20) ™Yo (21,22 -+ 2n) = T} (2 — 20)™ exp <— > E) (2.188)
i=1 B
The above form precisely coincides with the case of N + 1 electrons and consequently corresponds
to m(N + 1) flux quanta. Thus, the addition of an extra electron compensates for the m added holes.
Hence, the charge of the hole is
e
ep=——. (2.189)
m
This accounts for the fractional charge. But at the same time, this means that the probability of finding
an electron near the origin is reduced by 1/m. This probability helps us to reconcile the very idea of

the Corbino disc, that is transfer the “fractional” charge from the center to the edge of the disc.

We rerun the same argument as done for the IQHE. For this argument to be valid, the geometry of the
ring is important. Here, in addition to the background magnetic field B that threads the sample, we

can thread an additional flux ¢ through the center of the ring. This ¢ can affect the quantum state of S
o
the electrons. g
3
Let us first see what this flux ® has got to do with the Hall conductivity. Suppose we slowly increase N
o
® from 0 to ®y(= ’g) i.e., within a time ty > wiB. This induces an emf around the annular region ®
& =— % = %f;o. The purpose of this emf is to transport “n” electrons from the inner circumference 2
o
to the outer circumference. This would result in a current in the radial direction, I, = —ne/tq. Thus, =
the Hall resistivity is
£ d to h 1
= o= —=2. = .= (2.190)
I, to (—ne) e n

The same arguments hold equally for the IQHE and FQHE, in the former # is an integer, while nis a
fraction for the latter. In FQHE, the interpretation is as follows: as we increase the flux from ® to ®g, a
charge of e/m is transported from the inner circumference to the outer one when the flux is increased
by ®¢ units. The resultant Hall conductivity (or equivalently the resistivity) becomes,

e 1
Gy =" (2.191)

Thus, a whole electron is transferred only when the flux is increased by m® units.

Shot noise measures of the fractional plateaus indeed confirm the existence of fractional charge. In the
experimental setup (Glattli et al., 2000), the two energy modes at opposite edges of the Hall sample are
coupled by a quantum point contact, which facilitates a flow of current between the two edge channels.
The random transfer of charges yields fluctuations (noise) in the current. In the weak coupling regime,
the noise intensity is proportional to the backscattered current and the (fractional) charge. Thus, the
intensity of the shot noise experiments detect fractional electronic charges.
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2.5.4 Fractional Hall fluid and the plasma

The variational wavefunction corresponding to the lowest Landau level can be written as
N2 a2
Vm(zr - 2n) = [y (g — z)™e” 2019/ (2.192)

The wavefunction is applicable to a filling fraction v = %, (m is an odd integer) such as v = % (for
m = 3). However, if only 1/m fractions were found in experiments, life would have been simpler.
Unfortunately, many other fractions were found, including the improper ones.

Let us enumerate a few properties of the wavefunctions.
i. Itis antisymmetric with respect to the swapping of coordinates of the fermions (z; <> z),

Ym(z1 ... 22k ... 2N) = —Ym(z1 ... 2k, Zj - - . - 2ZN)

In order for this to be valid, the index m must be odd.
ii. A surprising fact is revealed when the unnormalized probability density of the Laughlin states is
computed. That is,

_ ]2 lZ
[Um@P = MY (g — zo)™e 211904012,
The two terms (the Jastrow factor and the Gaussian) in the RHS behave differently. That is, pre-
factor (of the Gaussian) or the Jastrow factor tries to keep the fermions away, and it grows larger as

they move further away. However, the exponential term shrinks as the fermions spread out. Under
this competing scenario, can it ensure a uniform density?

There is an answer to the rather complicated problem, and again it is due to Laughlin, via an analogy
with classical plasma, albeit the Hall fluid is at a very low temperature. The norm of the wavefunction
is written as

[Yrm(2)|* = e FVrlasma, (2.193)
where
m
Viplasma = 2m* Y _ Inlzj — z| + 7 PET (2.194)
j<k B

B isidentified as 1/m. So Eq. (2.193) yields the density of the plasma. It should be remembered that it is
only an analogy where a classical plasma constitutes of particles with charge m in a uniform (neutral)
background. The existence of a plasma-like state at a very low temperature should be contradictory to
each other, and thus suggests of a liquid phase of fermions. It would have been a crystalline state (for
example, a Wigner crystal) at large values of the charge “m.” It is indeed a new state of matter, and is
often denoted as the Laughlin state.

In order to understand the potential Vjjasmas, it can be noted that the electric field, E(r) and the potential,
¢(r) due to a point charge g are given by

E(r) = %, and ¢ (r) = —qin(r) (2.195)
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These yield the Laplace’s equation in 2D as
V-E=—V2p(r) = 27¢5%(v), (2.196)
where §2(r) is the two-dimensional Dirac delta function. The first term in Eq. (2.194) is explained by
the logarithmic dependence of the potential, which yields
éllzsma = m? Z —lIn|zj — Zk| (2.197)
j<k

We are missing a factor of “2” here, but that can be absorbed in the definition of B (8 can be redefined
as 2/m). The second term can be understood by noting that,

2
z 1 1
Zl = 7’ or, 10 = ——2, (2198)
4 Iz 2l
where the charge density p satisfies the Poisson equation with a potential,
2
V(z)plasma — % (2199)

This term denotes the energy of “m” charges interacting with the negative charge density. It is obvious
that 27712 is the area that contains one quantum of flux (®o = h/e), which makes the background charge
density to be B/®y, which also denotes the density of flux in the unit of the flux quantum.

While the Laughlin wavefunction demonstrates a lot of merit, one pertinent question remains. How
good is the wavefunction in practical cases? To enumerate its success, the overlap between the Laughlin

¥G-LL:LL Y202 Jequiedeq L0

state and the exact state (obtained via exact diagonalization) for 3 particles, and a few representa-
tive (odd) values of m and corresponding to a few different forms of the potential V(r) (for example,
V(ir)=1/r,—Inr, e 2 etc) are obtained. The overlap between the two results is very close to 100%,
and thus ensures that the proposed wavefunction is indeed a good one (Laughlin, 1983).

2.5.5 Fractional statistics

The occurrence of quantization of the Hall plateaus at fractional filling in the expression bears a tes-
timony for the quantization of the fractional charge. Ironically, the fractionally charged quasiparticles
being localized at the quantum Hall plateaus, do not conduct and the contribution to the Hall current
is due to the background (neutral) state, which is incompressible and does not contain any quasiparti-
cles. Nevertheless, the fractional charge requires particle statistics just as the integral (including zero)
charge particles. It should be kept in mind that the particle statistics show up in the form of collective
phenomena, such as the formation of a Bose Einstein condensate, or a degenerate Fermi gas.

In this context, we may recall that we have been exposed to the concept of identical particles, which are
either Bosons or Fermions and obey the properties of symmetry or antisymmetry, respectively, under
the exchange of particles pairwise. That is, for the two particles,

w(rl)rZ) = :tl//(rZ’rl)) (2200)
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where the + sign refers to Bosons and the — sign is applicable to Fermions. However, it is also true
that probabilities are the same, namely,

¥ (e, 12)|* = (¥ (1,0 2. (2.201)
Such that the wave functions, upon exchange of particles, at most pick up a phase,
Y (1) = ™Y (1, 1). (2.202)

2mie. — 1 where o = 0 for Bosons

Repeating the exchange brings back the same state, which implies e
and o = 1 for Fermions. There is a subtle point here, which is not explicitly stated. In 3 dimensions,
a rotation by 27 brings us back to the original state which should be equivalent to changing a pair
of particles twice. Such exchanges (or equivalently a rotation by 277) are continuously, also known as
world lines, connected and do not cross each other’s path. However, in two dimensions, there is a
big difference where such paths cross and wind around each other. For example, there is a distinction
between a clockwise and an anti-clockwise exchange of particles, though in either case, their paths get
tangled and form braids. A braid describes a pattern formed by the interaction of two or more strands
of wire (or hair). Thus, a clockwise braid is distinct from an anti-clockwise braid and are said to belong
to different topological sectors. A tangled path implies an arbitrary phase involved in the exchange of
particles because the paths cross, there arises an ambiguity in the phase and hence « can assume any
value in the interval [0 : 1]. More concretely, say, for an anti-clockwise exchange,

Y(rLr) = ¢y (1) (2.203)
A clockwise exchange results in
Y (r,12) = e TP (1)) (2.204)

These particles are known as anyons owing to their allegiance to “any” statistics that interpolates
between bosons and fermions. “Any” statistics here refers to fractional statistics and apply to the quasi-
particles (or more aptly called as the quasiholes). The charge of the quasiparticles or the anyons is
fractional.

Without going into elaborate calculations, we refer to published works by D. Arovas, J. Schrieffer and
E Wilczek (Phys. Rev. Lett. 53, 772 (1984)) and D. Tong in “The Quantum Hall Effect” (TIFR Infosys

lectures), the Berry phase around a closed loop for those quasiparticles can be obtained as
ed P
Pp=—=—— :odd 2.205
5= mh mdg (m : 0dd) ( )
where & is the flux enclosed by a quasiparticle around a closed contour and ®¢ = the flux quantum
(h/e). It also has the interpretation that

dp= 2, (2.206)

where e* refers to a fractional charge.
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2.6 COMPOSITE FERMIONS

To understand the concept of composite fermions, let us review the concept of vortices. In a reason-
ably different sense than the supercomputers (where magnetic flux lines puncturing a superconductor
creates a vortex in a type-II material where gradient in the phase of a condensate wave function pro-
duces circulating current that is detectable in experiments), vortices in FQHE can be understood as
follows. A complex number, z (= re'”) has a vortex at the origin, implying that a complete circle around
the origin creates a phase change of 2. Similarly, the FQHE wave function contains (z — 20)% which
implies particle “1” sees 2p vortices to be carried by particle “2” and vice versa. Thus, every particle can
be imagined to carry an even number of vortices. The particles carrying the vortices are certainly not
real. There are no real magnetic flux quanta attached to them. However, the intuitive picture leads us
to the concept of composite Fermions (CF) (Jain, 2007) and their relevance to the fractional statistics
(Leinaas et al., 1977; and Wilczek, 1982).

A composite fermion is defined as the bound state of a fermion and an even number of vortices or
equivalently flux quanta (remember the equivalence of flux quantum and vortices come from the fun-
damental fact they are topologically similar in the sense they both result in phase change of 27 upon
circling about a closed path around it). The picture portrayed above is only for convenience of the visu-
alization of a physical scenario, however in reality, there are no bound states of fermions and vortices
(see Fig. 2.23).

Thus a two-dimensional systems in presence of a magnetic field yields a scenario where as if the elec-
trons capture a significant fraction of the external field, thereby the “original” electrons transform
into the CE. Several experiments, such as thermopower (Zeitler et al., 1993; and Ying et al., 1994),
Shubnikov-de Haas (SdH) oscillations and their cyclotron orbits (Leadley et al., 1994), the observa-
tion of a Fermi sea (Halperin et al., 1993). Importantly, the formalism of CF was capable of explaining
the physics associated with the quantum Hall plateau observed at fractional filling of the Landau levels.

¥G-LL:LL Y202 Jequiedeq L0

The role of interaction in the context of FQHE has been illustrated earlier and interestingly, it is the
only energy scale left in the problem (the kinetic energy of the electrons become an irrelevant constant).

@ w @ |
2CF 4CF 6CF
FIC. 2.23

Electrons capture 2, 4 and 6 flux quanta and the composite particles are known as composite Fermions (CF).
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These strongly interacting electrons in the presence of a magnetic field, B transforms into such weakly
interacting composite particles (CF) in a much weaker field, B* where B* is reduced from B (being
absorbed by the electrons) by 2p¢ p, namely,'*

2p :aninteger
B* = B —2pgop ¢o : flux quantum (2.207)
p  :density

The situation is analogous to a filling fraction v* for the CF that corresponds to a fraction v of the

original electrons, and they are related to each other by
*

1= — —2pv*

v
| = (% - Zp) (2.208)
v =v*(1 —2pv). (2.209)

Equivalently, one can write,

L* _ (l _ 2p> (2.210)
v vV

Not only is the fundamental property of the fermions obeyed, for example the exchange of fermions
involves a negative sign, the Aharonov-Bohm phase associated with the cyclic variation of the wave
function around a closed path is unity.'”

However, there is an important development that has occurred here. The highly degenerate many par-
ticle ground state for fractional filling (v < 1) in the absence of interaction transforms into the ground
state of the CF with drastically reduced degeneracy corresponding to a filling v* > 1. For integral values
of v*, the situation yields a non-degenerate ground state. The loss of degeneracy makes the interaction
among the CF to be vanishingly small. Thus, the FQHE of the original electrons transforms into IQHE
of the CF and should yield a great simplification to a rather complex problem. The wavefunction for
the CF can be obtained from the same variational state written down by Laughlin as in the following,

v =[[G@ - 207w (2.211)

j<k
where ¢,+ denotes the wavefunction for the non-interacting electrons a filling v* and (z; — z)? is the

similar Jastrow factor that was present in the Laughlin’s proposal, which ensures keeping the CF apart,

and no two of them come close to one another.'®

14 To arrive at the expression, consider the AB phase of a particle executing a circular motion of area A (disregarding the motion
of all other particles) in an effective field B* which is a result of 27 AB*/¢g = 2w AB/¢pg — 27t (2p) pA, where the last term
denotes the flux due to 2p vortices.

15 3 phase, e27¢/%0 with ¢ = 2pgy yields, 27 (2P =1,

16 The CF function vanishes as v22P+1) instead of v? that is familiar for electrons obeying Pauli principle.
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The success of the composite fermion picture can be tested by plotting the magneto (longitudinal)
resistivities as a function of the inverse filling fractlon = which is proportional to B*. A comparison
between the IQHE and FQHE resistivities demonstrates the dips in the resistivity (see Figs. 2.3 and 2.4)
correspond to integer filling fractions, while the ones in the lower panel correspond to the fractional
fillings, but are related by

V*

2v* + 1
which can be obtained by putting p = 1 in Eq. (2.210). Thus, the IQHE of CF occurs at filling frac-
tions v* = n where n is an integer. The filling fractions, despite being very different, look quite similar.
This similarity re-emphasizes the dynamics of the interacting electrons that resembles that of the
non-interacting CF very closely at a reduced magnetic field B*.

(2.212)

Many of the observed fractional values for the quantum Hall plateaus can be obtained by putting
p=1,2,3 etcin Eq. (2.210) which can be viewed potentially as in Fig. 2.23

Other fractions can be obtained by putting a negative sign in the following equation:

1 1 2
—=x-—-2p]), 2.213 o
p* ( v p ) ( ) §
g
Table 2.1 where, negative sign denotes a B* that is directed antiparallel to B. A few observed fractions N
Afewrepresentative  and the corresponding (even) number of flux quanta (vortices) are tabulated in Table 2.1. R
p values and the cor- 3
responding v values ~ Direct numerical solution of the Schrédinger equation for 10-15 particles in the presence Z
iy
are shown. of a pairwise Coulomb potential of the form,
v 1 e
p y = W H — o Ir ” | (2214)
123 0 j— Tk
357 i#k
=1 % % % : has been solved exactly.” Corresponding to v* equal to an integer (say, n) one expects
2 RS a gap in the spectrum. At such values of filling, the Coulomb interaction lowers the
-2 22 enormous degeneracy of the lowest Landau level by a great extent, so as to produce a

non-degenerate ground state. This state notionally denotes v*(= #) filled with Landau
levels of CE For the electrons, the filling fraction is of course v which denotes a fraction (with odd
denominator). Further, the wavefunctions of this CF has an excellent overlap with the wavefunctions
stated in Eq. (2.179).""

In order to recover Laughlin’s wavefunction, consider v* = 1 which denotes v = 5~ , +1 The wavefunc-
tion corresponding to the filling v is

17 Since the Coulomb potential is the only energy scale left in the problem, we have represented it by the Hamiltonian, .
18 For an excellent discussion on the subject see Jain (2007).
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Voot = [ 1@ =207 @0
j<k
1 2
-z 2ilal
=[]@ -2 |[]@-ze %~
j<k j<k
1 2
-z 2ilal
=[] -2 e aig =1 (2.215)
j<k

This is exactly Laughlin’s wavefunction if one identifies m = 2p + 1.

Thus far, we have identified that the challenges of FQHE are too many, and most importantly it has to
do with the absence of any “small” parameter of the problem. The carriers are frozen, and hence there
is no kinetic energy, leaving the interparticle interaction to be the only energy scale of the problem.
This impedes known methods of solution to be applicable. Furthermore, the enormous degeneracy of
the Landau levels (without invoking the Coulomb interaction) aggravates this problem. The third, and
quite a crucial one, is the unavailability of a so-called “normal state,” that is, there is no known state
which becomes unstable in favor of a fractional quantum Hall state by turning on a weak interparticle
interaction. Hence, there is no small expansion parameter, humongously large number of ground states
that are degenerate in the absence of interaction, and the non-existence of a normal fluid state put
together narrate about an enormously complicated problem.

However, this enormously complicated problem is intuitively solved by writing a wavefunction (all
credits to Laughlin), which we have denoted by [ (v)). Using this wavefunction, the energy eigenvalues
for the problem can be written as

(H) = E—%IZ

where the first term on the RHS of Eq. (2.216) is the Coulomb energy, and the last two denote the
interaction energy of the electron-background and between the background entities, such as ions etc.
Importantly for us, the LLL index v is given by

|r |1/fv + Veep + Vs, (2.216)
j

U*

T 2pvr 1]
where the index v* is defined for the functions of the non-interacting electrons, namely, ¢,+. Thus,
a strongly interacting problem in the presence of an external magnetic field B is reduced to a non-
interacting one in an effective field given by

B* = B — 2pv®. (2.218)

(2.217)

Thus, B* can be zero if B is exactly canceled by the second term in Eq. (2.218), thereby leading to a non-
degenerate state (since the degeneracy is proportional to B), or even be negative, where the vortices
carried by composite particles point opposite to the applied field. Further, ¥, contains a Jastrow factor,
namely, ITj ¢ (zj — zx)* which projects the wavefunction onto the LLL.
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FIG. 2.24
The schematic plots show the integer quantum Hall effect for v* = 3 (right) and the fractional quantum Hall effect for
v =2 (left).

7

Let us consider the following example. A correspondence between the integer quantum Hall ground
state with v* = 3, that is, three filled levels and the corresponding fermion picture with v = me‘J)T*—H is
shown schematically in Fig. 2.24.

The above discussion yields an intuitive picture of composite fermions which are “bound states” of

¥G-LL:LL Y202 Jequiedeq L0

fermions and 2p “vortices” (p is an integer). By absorbing the “vortices” or the flux quanta, the electrons
minimize the interparticle interaction energies. As these composite structures (particles + vortices)
propagate in a quantum Hall fluid, they create irreducible phases, which (partially or fully) cancel the
phase due to the external magnetic field.

The composite fermions truly are new entities, and not seen before. Since a vortex has a quantum
mechanical origin, the composite fermions are quantum objects (owing to the quantum mechanical
phases associated with the vortices) as well. However, in a fluid they behave as free particles. Cooper
pairs, which are bound states of two electrons formed in the presence of lattice excitations, that is,
phonons, bring up a close analogy, but are distinct in many ways as well. In fact, the topological
quantization of the vorticity is directly linked with the quantization of the Hall plateaus.

We prefer to stop here on the topic of composite fermions and suggest more specialized articles and
books on the subject. Particularly, the book by Jain (2007) has given an extensive account of com-
posite fermions and, in general, on the theory of the fractional quantum Hall effect in a fairly lucid
manner.
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We have so far discussed the Laughlin wavefunction and a composite fermion scenario to understand
the physics of the fractional quantum Hall fluid. There are significant merits in both approaches. The
Laughlin wavefunction is similar to the Jastrow function earlier employed to the superfluids, such
as “He. A number of fractions that are experimentally observed could be explained by the Laughlin
states, while a very large number of them remained elusive. On the other hand, the composite fermion
ideas were motivated by considering FQHE to be analogous to IQHE, which eliminates the effects of
strong interaction among the fermions by absorbing 2p flux quanta. Several experiments corroborate
the composite fermion picture.

The non-Laughlin fractions still needed an explanation. Besides, we have a ground state wavefunc-
tion in some form, and thus, a natural expectation is to obtain information on the excited states. This
forms the foundation of the hierarchy scenario, which assumes the Laughlin wavefunction as the start-
ing point. The construction of a hierarchical wavefunction was put forward by Haldane (1983) and
Halperin (1984) to provide justification to the non-Laughlin fractions, that is those ones that are not
of the form 1/m. The idea is to create “Laughlin-like daughter states” from a given “parent state.” Addi-
tional states with new fractions are iteratively generated from the Laughlin fractions. Thus, all the
odd-denominator fractions are reproduced. The fractions at any level of the hierarchical scheme are
represented as continuous fractions.

A physical picture relevant to the hierarchy description may be enunciated as follows. At the centers
of the quantum Hall plateau, which corresponds to an incompressible fluid with uniform density. As
the magnetic field is ramped up, localized quasiparticles or quasiholes develop corresponding to an
excess or deficit of densities that are initially pinned to the impurity centers. However, as the external
field becomes larger, the excitations split from the impurities and become mobile, leading to a loss of
the quantized Hall response. These quasiparticles (or the quasiholes) being charged may be considered
to condense into Laughlin-like states on top of the original quantum Hall fluid. The scenario can be
iterated which will lead to arbitrary filling fractions (basically the non-Laughlin fractions) with odd
denominators.

To understand how the continued fractions arise, it is useful to review the excited states of the quantum
Hall fluid, that is the quasiparticles and the quasiholes. The quasiparticles denote excitations, each of
which carries a charge — £, while the quasiholes denote those with charge Z. These excitations behave
as individual particles, that are non-interacting, each with a fractional charge, however the total charge
adds up to an integer, as it should be.

Halperin (1984) modified the Laughlin wavefunction and made an ansatz for including the quasipar-
ticle and the quasihole excitations as

¥ = P(z)Q(zx)e” 2 51 /40 (2.219)
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where Q(zx) accounts for the quasiparticle and the quasihole excitations and is given by

Qzk) = T (z — zp) /™ (2.220)
and P(zy) is the ubiquitous Jastrow factor given by

P(z) = M} (z — 20 (2.221)
Thus,

=1, (5 — z0#H e X I5%/415 (2.222)

with m still being an odd integer.

Put together P(z;) and Q(z) give rise to an interchange that is more distinct than that of the anti-
symmetric exchange of fermions. It is further evident that the maximum angular momentum of the
state is

1
|]mux| =N <2P + ;) .

The filling fraction can be obtained by noting that the area A to be given by

1 ) 2
A=N (Zp + E) (27TmlB) %
This yields the number of states within an area A, which is given by %
BA @ 1 3
N=—=—=[(2p+— | m’N. 2
q)o (D() m g
Hence, the filling fraction is
1
= (2.223)
2pm? £+ m

The above expression allows all fractions and not only the
Laughlin (1/m) types. At the third level of the hierarchy, the
filling fractions are denoted by

1

1
Pty

For example, for pi=1 and m = 3, at the third level one gets,

1

FIG. 2.25 V=TT (2.225)
Schematic plot showing the hierarchy scheme 24—

for m= 3 and py = 1. At.the third level, one For the +-branch one gets, 5/17 and 5/13, and the —-branch,

obtains non-Laughlin fractions, such as 5/17, he fracti 11/3 and 7/3. Sch callv the hi h

5/13, 11/3, and 7/3. the fractions are an . Schematically, the hierarchy at
this level is expressed via Fig. 2.25.
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We begin with a historical overview of the quantum Hall effect. The experiment and the physical sys-
tems are described with an emphasis on the two-dimensional nature of the ‘dirty’ electronic system in
the presence of a strong perpendicular magnetic field at low temperature. The Hall resistivity as a func-
tion of the field shows quantized plateaus in the unit of h/e* with an accuracy of one part in more than
a billion. Very surprisingly, the longitudinal resistivity synergetically vanishes at the positions of the
plateaus for the Hall resistivity. This indicates the emergence of a phase with an inherent ambiguous-
ness of being a perfect conductor and a perfect insulator at the same time. However, such an ambiguity
can only be reconciled for an electron gas confined in a plane in the presence of a magnetic field.

Quite intriguingly, the presence of a perpendicular magnetic field introduces “another” quantization,
which replaces the band structure (energy as a function of the wavevector) of the electronic system.
This quantization was shown by solving the Schrodinger equation in the presence of a Landau gauge.
The resultant energy levels of this problem are the infinitely degenerate Landau levels, which slightly
broaden due to the presence of impurity and disorder, but remain distinct and cause quantization of the
Hall conductivity as the magnetic field is ramped up gradually. Further, this quantization is visioned as
a quantum pump by Laughlin, where an electron gas in a planar disk geometry subjected to a magnetic
field shows a transfer of one unit of charge from the inner to the outer edge of the disk as the magnetic
flux changes by one quantum (= %). Further, we have studied the same problem in the circular gauge,
which is relevant to the study of the fractional quantum Hall effect.

The quantum Hall state is the first realization of a topological insulator, where the transmission of
charges occurs through the edges of the electronic system, while the bulk remains insulating. The
quantization of the Hall conductivity'’ is shown to be a topological invariant called the Chern num-
ber, which can only assume integer values. We further derived the Kubo formula to compute the Hall
conductivity.

Hence, to compare and contrast between the effects of an external magnetic field in systems other than a
two-dimensional electron gas, we have chosen graphene as another candidate, which is often the hobby
horse to demonstrate the occurrence of the quantum Hall effect and other topological phenomena.
The choice of graphene stems from the fact that the energy scale of the problem allows the quantum
Hall effect to be realizable at temperatures as high as the room temperature, or even larger than that.
The Landau levels of graphene are computed and are shown to be distinct than those for the two-
dimensional electron gas. Lastly, the experimental demonstration and observation of the quantum
Hall effect in graphene are discussed.

Finally, we have discussed the fractional quantum Hall effect that occurs in cleaner systems where
the interparticle interaction becomes dominant and constitutes the only energy scale of the problem.

19 Tt is more appropriate to talk about conductivity, rather than the resistivity.
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To deal with the overwhelming complexity, Laughlin wrote down a variational wavefunction for the
ground state, which, other than a ubiquitous Gaussian term, contains a Jastrow factor that keeps
two fermions away from each other, thereby enforcing Pauli’s exclusion principle. The wavefunc-
tion corresponds to a filling fraction of 1/m, m being an odd integer and denotes the eigenvalue of
the z-component of the angular momentum for that state. The Laughlin wavefunction is validated
against the exact diagonalization of a system of a few electrons, and is found to have a near perfect
overlap between the two. One shortcoming of the Laughlin formalism that continued to bother theo-
rists working in the field is the experimental realization of several other values of the fraction (other
than 1/m) at which plateaus are observed. A hierarchy approach is proposed which yields several non-
Laughlin fractions encoded via a ‘parent-daughter’ relationship starting with a (“parent”) Laughlin
fraction. However, such a scenario suffers from all ‘daughter’ to appear with equal weightage, which is
not an experimental reality. Another intuitive solution was proposed by Jain that enunciates an effec-
tive medium comprising each fermion trapping an even number of flux quanta. Such a scenario greatly
reduces the effective field that the system is subjected to, and transforms the fractionally quantized Hall
system of interacting fermions to an effectively non-interacting system showing integer quantum Hall
effect.
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CHAPTER

3 SYMMETRY AND TOPOLOGY

3.1 INTRODUCTION

“Point set topology is a disease from which the human race will soon recover” - H. Poincaré (1908)

The Poincaré conjecture was the first conjecture made on topology, which asserts that a 3D manifold
is equivalent to a sphere in 3D subject to the fulfillment of a certain algebraic condition of the form
f(x, y,z) = 0, where x, y, and z are complex numbers. G. Perelman (arguably) solved this conjecture in
2006 Perelman (2006). However, on practical aspects, just the reverse of what Poincaré had predicted,
happened. Topology and its relevance to condensed matter physics has emerged in a big way in the
recent times. The 2016 Nobel prize awarded to D. J. Thouless, J. M. Kosterlitz, F. D. M. Haldane and
C. L. Kane and E. Mele getting the Breakthrough Prize for contributions to fundamental physics in 2019
bear testimony to that.

Topology and geometry are related, but they have a profound difference. Geometry can differentiate
between a square from a circle, or between a triangle and a rhombus, however, topology cannot dis-
tinguish between them. All it can say is that, individually all these shapes are connected by continuous
lines, and hence are identical. However, topology indeed refers to the study of geometric shapes, where
the focus is on how properties of objects change under continuous deformation, such as stretching and
bending, however tearing or puncturing is not allowed. The objective is to determine whether such a
continuous deformation can lead to a change from one geometric shape to another. The connection to
the problem of deformation of geometrical shapes in condensed matter physics may be established if
the Hamiltonian for a particular system can be continuously transformed via tuning of one (or more)
of the parameter(s) that the Hamiltonian, depends on. Should there be no change in the number of
energy modes below the Fermi energy during the process of transformation, then the two systems
(that is, before and after the transformation) belong to the same topology class. In the process “some-
thing” remains invariant. If that something does not remain invariant, then there occurs a topological
phase transition. This phase transition can occur from one topological phase to another, or from a
topological phase to a trivial phase.

¥G-LL:LL Y202 Jequiedeq L0

In the following, we present the geometric aspects of topology and relate the integral of the geometric
properties to closed surfaces to the topological invariants. It turns out that the “geometric property”
and the “closed surface” have smooth connections to physical observables. As we shall see soon that in
1982 Thouless et al. (1982) linked the topological invariant to the quantized Hall conductivity.
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To test many of the concepts that we are going to discuss in this chapter, we choose two prototype
systems, one each in one (1D), and two dimensions (2D). In 1D, we consider a tight binding model,
with dimerized hopping, and in 2D, we consider graphene, which has been a hobby horse even for
several years before its experimental discovery. The theme is to discuss the interplay of symmetry and
the topological properties. Particularly, in 2D, an important highlight in this direction is put forward by
Haldane (1988) who had proposed a non-trivial topological phase by breaking one of the fundamental
symmetries, namely, the time reversal symmetry. Finally, after the experimental discovery of graphene,
yet another distinct topological state of matter was discovered by Kane and Mele (2005) which has
culminated into an emerging field of spintronics.

In Chap. 3 we saw that the Hall conductivity (or the resistivity) is quantized in the unit of e%/h (or h/e?)
within a splendid precision, so much so, that the quantity h/e? can define the standard of resistance
(=25.5 kQ). Clearly the quantization is independent of the details of the Hamiltonian, for example, the
nature of the sample, the strength of the magnetic field, and disorder present in the system. It is real-
ized later that the universality of the phenomenon arises due to “topological” protection of the energy
modes that exist at the edges of a quantum Hall sample, which possess completely different character
as compared to the ones that exist in the bulk of the sample. Thus, an understanding emerges, that
says that a physical observable (which is either the resistivity or the conductivity) can be represented
mathematically by a topological invariant. This invariant does not change even when the Hamiltonian
changes (for example, when the strength of the magnetic field is varied), until and unless a phase tran-
sition occurs, which will show up via an abrupt change in the value of the topological invariant. There
is an elegant explanation of the physics involved with such a universal phenomenon, which brings us
to the subject of topology.

Topology in its usual sense deals with the geometry of the objects; in the same spirit, here we shall study
the geometrical properties of the Hilbert space for the system under consideration. The idea is best
demonstrated for a quantum Hall system, which undergoes a series of transitions from a conducting to
an insulating state as a function of the external magnetic field. In the process, the topological invariant,
for example, the Chern number in this case (we shall discuss this later) jumps from one integral value
to another. Thus, the system repeatedly undergoes through a series of topological phase transitions. In
the following we describe this topological phase transition in more general terms.

Consider two Hamiltonians, 7 and H;, both of which are functions of a tunable parameter, say, 8. If
the corresponding energy spectra €1(f) and €,(8) are such that the number of energy levels below the
zero energy (zero energy is usually the Fermi energy) always remain the same for all values of 8, then
the Hamiltonians can be continuously transformed (or deformed as we see the analogy of a cup and
donut later), and there is no phase transition. Now, consider either H; or H,. If, for either of them,
the spectrum is such that the number of energy levels varies as a function of 8, that is, if any (or more)
levels cross the zero energy, then the “invariant” changes (from one integer value to another), and one
encounters that the system is going from one topological phase to another. A quantum Hall system
shows a similar transition, where the Hall conductivity changes from ne?/h to (n + 1)e?/h, where n is
strictly an integer.

Modern Perspectives in the Study of Electronic Systems
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FIG. 3.1
A mug can be transformed smoothly into a donut. The handle of the mug remains invariant and emerges as “hole” of
the donut. Thus, the mug and the donut belong to the same universality class.

Thus, the study of topology deals with objects (or Hamiltonians) that can be continuously transformed
(or deformed) from one to another without puncturing or tearing the object (or without even closing
the energy gap for the quantum system). For geometrical objects, being able to continuously transform
depends on the number of “holes” or “genus” that are preserved during the course of the transforma-
tion. For example, a soccer ball can be deformed smoothly into a wine glass since both of them have
no holes (zero genus), while a mug (as shown in Fig. 3.1) can be transformed smoothly into a donut
with one hole (genus equal to 1). The first case with zero hole is called topologically trivial, and the
second with a finite number of holes (one in this case) is termed as topologically non-trivial.

¥G-LL:LL Y202 Jequiedeq L0

3.1.1 Gauss-Bonnet theorem

Gauss-Bonnet theorem in differential geometry that is about the evaluation of the surface integral of
a Gaussian surface. Here we state the theorem without proof. In the most general form, for a closed
polyhedral surface, the theorem can be stated as

/ kg(s)ds + // KdA =27 x(R) (3.1)
aR R

where R denotes a regular region with the boundary dR of R, K is the Gaussian curvature, s denotes the
arc length of the curves, C; and the integral is over C;. Further x (R) is called the Euler-Poincare charac-
teristic. The first term on the left is the integral of the Gaussian curvature over the surface, the second
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one is the integral of the geodesic curvature of the boundary of the surface. Thus, the Gauss-Bonnet
theorem simply states that the total curvature of R plus the total geodesic curvature of dR is a constant.

As an example, we consider the simplest case, that is a sphere of radius R. The Gaussian curvature is
1/r*! and the corresponding area is,

1

/f KdA = K x Area = = x dmr? = 4. (3.2)
R T

Again,

// KdA =27 x(R). (3.3)
R

Thus,

x(®) =2

Thus, the Euler-Poincare characteristic of a sphere is 2 although the genus is equal to zero (see
Fig. 3.2). Suppose we wish to extend this argument to other closed, however not necessarily convex

FIG. 3.2
A sphere with no hole (or genus). It represents a trivial phase.

1 For a geometry with two different radii of curvature, such as a convex lens, the Gaussian curvature is ﬁ
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surfaces in a three-dimensional space. For that,

consider the polar cap of unit radius (see Fig. 3.3).
The area is given by
6
S= / 27 sin0dO = 27w (1 — cos ). (3.4)
0
0 Thus,
5 sin O
/ KdA =1 x (Area of S) = 2 (1 — cosf).
R
g The geodesic curvature K is 1/tan 6. Thus,
1
K,ds = K, x length(S) = ——. 3.5
/s g g gth(S) ano (3.5)
Hence,
/Kgds + f KdA =27 (1 — cosf) + 27 cosf
s R
=2 =27 x(R) S
thereby yielding, g
3
xR =1, :
FIG. 3'3, i L . In fact, an alternate form for the Gauss-Bonnet =
A sphere with a polar cap. The figure will aid in calculating the h . ful £ hich X
area S of the polar cap. theorem is more useful for our purpose, whic 2

states that, for a closed convex surface, the

integral over the Gaussian curvature can be
expressed in terms of the number of holes or the genus of the surface. Thus, a simplified (and more
relatable for us) version reads

ff KdA =27 (2 —2g) (3.6)

Since a sphere has no holes (g = 0), the integral of the curvature yields

/ / KdA = 47 (3.7)

a result that we have seen earlier. Let us look at a case where the genus is non-zero (g # 0), such as a
torus which is topologically equivalent to a mug, as we have seen earlier.

For a torus, the Euler-Poincare characteristic has a value of zero. This implies that, irrespective of how
we bend or deform it, the integrated curvature vanishes. Refer to Fig. 3.4 (left panel) where there is a
positive curvature on the outer surface, and negative curvature on the inner surface, thereby result-
ing in zero total curvature. This is consistent with the Gauss-Bonnet theorem which states that the
integral of the Gaussian curvature is 27 (2 — 2g). Since g = 1 here, the integral is zero and so is the

Symmetry and Topology ~ 3-5




FIG. 3.4
(Left) A donut with genus (or a hole) equal to 1. (Right) A two-hole object has genus equal to 2.

Euler-Poincare characteristic x (R)(= 2 — 2g) is zero as well. Similarly, a two-holed donut (see right
panel of Fig. 3.4) will have x (R) = —2, and hence negative integrated Gaussian curvature.

Based on the preceding discussion, a sketchy idea emerges on the relationship between topology, and
properties of quantum systems. However, it remains unclear how these ideas can relate to the properties
of materials. At this moment, let us talk about crystalline solids for which the electron wavefunction
is given by Bloch’s theorem, namely,

¥ (r) = e* Ty (r) (3.8)

where the periodicity of the crystal potential, that is V(r) = V(r + R) is captured by the amplitude
function uy(r), such that

ug (r + R) = uy(v), (3.9)

where k denotes the crystal momentum, and is distinct than the usual momentum (= —ihV) (Kittel,
1986). The crystal momentum is restricted within the first Brillouin zone (BZ), where the latter is a
region in the k-space with periodic boundaries. As the crystal momentum is varied, we map out the
energy bands, and one obtains the band structure. The BZ plays the role of the surface over which the
integral of the Gaussian curvature is taken, which we have discussed earlier.

Now that brings us to the question: what is the analog of the Gaussian curvature for a crystalline solid?
To understand this, consider the (non-degenerate) ground state of a Hamiltonian, which depends upon
anumber of parameters that are time dependent. The adiabatic theorem states that if the Hamiltonian is
now changed slowly” with respect to the parameters, the system remains in its time-dependent ground
state. However, there is something more to it. As the ground state is evolved in time, in addition to
the trivial dynamical phase, there may emerge an irreducible geometric phase that comes into play,
namely, the Berry phase put forward by Berry (1984). In the following, we discuss the origin of the

2 The time scale for change is larger than the inverse level spacing (level spacing implies difference between subsequent energy
levels) of the system.
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Berry phase, and the Berry curvature, which is analogous to the Gaussian curvature. The integral of the
Berry curvature over the BZ is shown to yield a constant (or more appropriately an invariant) known
as the Chern number, which is analogous to the RHS of Eq. (3.6) or the Euler-Poincare characteristic.

3.1.2 Berry phase

Consider that a particle is in the ground state of a box of length L. Suppose the box slowly expands,
such that L(t) is a slow function of time. The adiabatic principle says that, if the expansion is slow, then
the particle always remains in the ground state at any time ¢. This is true for any state of the system.
More generally, consider a Hamiltonian 7 (A(t)) where A is a parameter which changes slowly. Now
the adiabatic principle says that if the particle starts out in the nth eigenstate of 7 (1(0)), it will land
nth instantaneous eigenstate of H(A(#)) at a time ¢.

The question is, what is the solution of the Schrédinger equation in this approximation? A reasonable
guess is

[¥ (1)) = exp <—}%/8n(f/)df/> |dn(£)), (3.10)
where
H®) 19u(®) = en(®) P (D). (3.11)

If H does not vary with time, then the phase is clearly correct. However, it is not so in the case H
depends on time.

¥G-LL:LL Y202 Jequiedeq L0

To see what is missing in the above ansatz, let us modify it slightly.
i t
[V (£)) = C(t) exp [—7—1/ 8n(t/)dt/:| [P (D). (3.12)
0

In Eq. (3.10), C(t) = 1. Applying the Schrédinger equation (ih% — H) to Eq. (3.12) and simplifying,
for the time dependence of C, one gets

. d
Ct) = =CO(Sn (O] 1dn (). (3.13)
This yields a solution of the form,
t d .
C(t) = C(0) exp [—/0 (¢n(t/)|E|¢n(t/))dt/:| = C(0)e”, (3.14)
iy
where
! d

y = if (%(l“)l;lqbn(t/))dt’- (3.15)

0 t

This extra phase is called the Berry phase or the geometric phase. It is also called the Berry-
Panchratnam phase, and is quite a familiar quantity in the field of optics.
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In general, phases do not give rise to measurable consequences since the eigenstates are defined only
up to a phase factor. Even here, it may be thought that we can define new Berry states to absorb the
phase, namely,

6, (D) = ™ g (D)) (3.16)
then,
i /(t)lil 2 (D) = i{ (l‘)lil ®) - ax (3.17)
HOn (D15 19n (D) = HOn ()1 10n dt’ '
Now suppose the parameter x (t) changes the Hamiltonian in such a manner that after a complex cycle,
HO)=Ht=T)
The end result is,

d d
i 0L0151010) = i § (900 1820) = (D) = x(0). (.18)

The last term on the RHS is an irreducible phase that does not cancel under the redefinition of the
Berry states. Remember, x arises from y, which we denote as the Berry phase. Single valuedness of x
demands

x(T) — x(0) = 2wn, where nis an integer

The surface integral of the Berry curvature is called the Chern number. This is analogous to Gauss
Bonnet theorem which connects the surface integral of radii of curvature. In the Gauss-Bonnet the-
orem, just like an object with a genus “1” can not be smoothly transformed into another with genus
“zero” or “2” (unless, of course, something drastic, that is, tearing or puncturing is done to the object),
a system with a non-zero Chern number cannot be transformed into that with zero Chern number.

In a quantum Hall system, the Hall conductivity is given by
Oxy = Ce?/h = ne*/h, where C = Chern number.

It can be argued that the Chern number is always an integer. Further, the Berry curvature, 7 is defined
as the curl of the Berry connection, namely,

F=VxA (3.19)

F is analogous to the magnetic field. The Chern number is defined as the surface integral of the Berry
curvature over a surface enclosed.

SYMMETRIES AND TOPOLOGY

3-8

To elucidate more on the topological invariance in materials, we discuss a few discrete symmetries of
the Hamiltonian, and how they interplay with the topological properties. In this context, we wish to
discuss three symmetries, namely, the inversion symmetry (also known as sublattice symmetry), and
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the time reversal symmetry. A third symmetry that we shall talk about is the contribution of the above
two, and is known as the particle-hole symmetry. We shall not worry about the third one here, since,
it is not relevant for the present discussion, and it has been discussed in the context of the Hubbard
model (see Chap. 2).

3.2.1 Inversion symmetry

Let us consider an eigenstate in the position based on |/ (r)), so that

r |y () = [r| [{(r)). (3.20)

Now we define the inversion symmetry or the parity operator P such that

Py (@) =¥ (—)). (3.21)

Now,

Py @) =r|y(—r) = —[r| [¥(-1)). (3.22)

If we act PT on both sides (remembering pt=p-1=p)

PrePly @) = =[P [y (=0) = —[r|P [Y(—1) = —|r] [¥ (1)) = —r[¥(x)). (3.23) g
Thus, §
PeP = r. G2y %
This yields §
Plr=—rP (325
or, {P,r} =0. (3.26)

Hence, the parity operator anticommutes with the position operator.

Let us now explore the analogous scenario for the momentum operator. For this purpose, it is conve-
nient to introduce the transformation operator T(a) that translates a state | (r)) to |y (r + a)), where
a denotes a fixed length, for example, a can be the lattice constant. That is,

T@) |y () = [¥(r+a))

: (3.27)
P'T@P ¢ (r)) = T(—a) [ (1)),
which yields
P T(a) P = T(—a). (3.28)
This demands that the translation operator is of the form,
T(a) = ¢' k2. (3.29)
Expanding for infinitesimal translations,
PipP=—p. (3.30)

3 Distinguish between T/(a) for the translation operator, and 7 for the time reversal operator.
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Thus, similar to the position operator, the momentum operator also anticommutes with the parity
operator.

Since, both r and p anticommute, the angular momentum, L (=r x p) commutes with P. In a 3D
orthogonal coordinate system, one can invert it about any of the axes. For example, in a Cartesian
coordinate system,

i. an inversion about the z-axis is denoted as o, (xy).
ii. about the y-axis it is 0, (xz) and
iii. 0,(yz) denotes the inversion about x-axis.

Here o denotes an inversion operation, and has got nothing to do with the Pauli matrices. Under these
operations, the position and the angular momentum variable transform as

Loplxy):x—>xy—>yz—> —2z
Ly —> —Ly,Ly— —L,, L, —> L,

i. oy(x2):x > %y —> —y,z2—>z
Ly — =Ly, Ly > Ly, L; > —L,

ili. oy(y2):x = —x%,y—>y,z—z
Ly —> Ly, Ly —> —Ly, L > —L,

3.2.2 Time reversal symmetry

Now we shall discuss time reversal symmetry. It is obvious that under time reversal, the time variable,
t changes to —t. This makes the position (r(t)) and the momentum variable (p(t)) transform under time
reversal as r(—t) and —p(¢) respectively. The angular momentum L(#)(= r x p) thus also becomes,
—L(—1t) under time reversal. Similar outcomes are expected when r(t), p(t) and L(¢) are quantum
mechanical operators. Additional inputs to the ongoing discussion can be received from the behavior
of the electric field, E(r, t) and the magnetic field B(r, t) vectors under time reversal. E(r, t) does not
change sign under time reversal (refer to the Maxwell’s equations, V - E = £ where charge density
p(r) does not change sign), however B(r, t) changes sign (owing to, V x B = o], where J(r, t) is the
current density and it changes sign under time reversal).

Now, consider a quantum state v () that obeys Schrodinger equation,
oY (r, 1)
ot
In the following, we suppress the r dependence of v, and simply write ¥/ (t) which upon the application

of the time reversal operator yields y'(—t). Mathematically,

it = H (x, b). (3.31)

Ty (@) = ¥ (—1)). (3.32)
In order to find ¥'(—t), let us look at the solution of Eq. (3.31),
W () = e TPy (0)). (3.33)
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For t = 0, apply the time reversal operator, that is, 7 |y (0)). Now, let it evolve forward in time, which
means we get a state,

e AT 1y (0)).

For the Hamiltonian to be invariant under time reversal, this state should be the same as 7 ¥ (—t)
which is equivalent to,

7"y (0)).

Thus,

T 1y (0) = e Ty (0).

For small time §¢, we can expand the exponential and write,

TiH = —iHT. (3.34)

A natural intuition (albeit wrong as shown later) is to cancel the “i” from both sides of Eq. (3.34). This
yields

TH =—-HT (3.35)
which implies,
TH+HT =0 o, {7,H}=0. (3.36)

But that cannot be correct, since we have assumed that the time reversal operation to be a valid sym-
metry operation. This means that canceling the “/” from both sides in Eq. (3.34) was not a legitimate
step.

¥G-LL:LL Y202 Jequiedeq L0

Reconciliation is possible if we understand that time reversal, unlike most other operations in quan-
tum mechanics, is an antiunitary operation. To remind ourselves that a unitary operation U satisfies
UU' = 1 or a unitary operator acting on a state & |/) yields

Ul [¥) = aU¥). (3.37)
This is also a property of a linear operator. However, for an anti-linear operator, A one gets
Al [y) = a™AlY), (3.38)

which means that the anti-linear operator involves a complex conjugation. This resolves the dilemma
caused by the naive cancelation of “/” in Eq. (3.34). Thus, the factor “i” on the LHS of Eq. (3.34) is
complex conjugated when encounters 7 on the way pulling it. This yields an extra minus sign which
cancels with the one on the RHS yielding

[7,H] =0. (3.39)

This is familiar with the notion that 7 is a time reversal invariant (we have to deliberately break the
time reversal invariance of the Hamiltonian, either via an external magnetic field or some other means)
and hence, the Hamiltonian should commute with the time reversal operator.

Symmetry and Topology ~ 3-11
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Any antiunitary operator can be written as a product of a unitary operator, U multiplied by a complex
conjugation operator, K such that,

T = UK.

A special case in this regard deserves a mention, that is, the case fora § = % particle. Spin being an
angular momentum, it is odd under time reversal, that is,

ToT ! = —0. (3.40)

This implies, KoxK™! = oy, ICJJ,/C’I = —o, and Ko,K! =0, which is reasonable as oy
contains imaginary entries. Thus, for the unitary operator, UosU ™! = —oy, Uo,U ! =0, and
Uo,U"! = —o,. Thus, the unitary operator, U commutes with oy, but anticommutes with o'y and o ;.

Finally, the form of the time reversal operator for a Hamiltonian corresponding to a § = % system is
given by (without proof, readers are encouraged to try using 7 = Ke™ 7o/,

T = —io K. (3.41)

Further for spinless particles (or integer spin), 72 = 1, while for S = % particles, 72 = —1.

SSH MODEL

3-12

3.3.1 Introduction

To make our concepts clear on the topological phase, and whether a model involves a topological phase
transition, we apply it to the simplest model available in the literature. The Su-Schrieffer-Heeger (SSH)
model denotes a paradigmatic one-dimensional (1D) model which hosts a topological phase. It also
possesses a physical realization of polyacetylene, which is a long chain organic polymer (polymeriza-
tion of acetylene) with the formula [C;H3], (shown in Fig. 3.5). The C-C bond lengths are measured
by NMR spectroscopy technique and are found to be 1.36 A and 1.44 A for the double, and the single
bonds, respectively. The chain consists of a number of methyne (= CH—) groups covalently bonded
to yield a 1D structure with each C-atom having a 7 electron. This renders the connectivity to the
polymer chain.

Possibly intrigued by this bond length asymmetry, one can write down a tight binding Hamiltonian of
such a system with two different hopping parameters for spinless fermions hopping along the single,
and the double bonds. These staggered hopping amplitudes are represented by t; and t,. Let us consider
that the chain consists of N unit cells with two sites (that is, two C atoms) per unit cell, and denote
these two sites as A and B. The hopping between A and B sites in a cell is denoted by ¢1, while that from
B to A across the cell is denoted by ;. Because of the presence of a single 7 electron at each of the C
atoms, the interparticle interaction effects are completely neglected. We shall show that the staggered
hopping or the dimerization has got serious consequences on the topological properties of even such
a simple model.

Modern Perspectives in the Study of Electronic Systems
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b B
tl t2
A
FIG. 3.5
(a) A polyacetylene chain with formula (C,Hy), is shown. (b) The SSH model as a paradigmatic model for Polyacetylene
with dimerized hopping. .
P
3.4 THE SSH HAMILTONIAN g
The above considerations yield the following Hamiltonian, g
N N-1 g
H=—-1 Z(CI‘)ACH,B +he)—1H Z(CII,BC,,_H,A + h.c). (3.42)
n=1 n=1

For simplicity and concreteness t; and ¢, are assumed to be real and non-negative and c;rm (cne) denotes
electron creation (annihilation) operator at site n belonging to the o sublattice (« € A, B).

It is clear that N denotes the total number of cells, which implies M = 2N where M represents the
total number of sites. Thus, for an open chain with M atoms, we have t); = 0. On the site basis, the
Hamiltonian can be explicitly written as

0O t o0 . . 0 c
1
tT 0 b o
0 & 0
H=(ld,....clp 2 (3.43)
(.) L 0 .

If M is an even number, then t),_; = t;, otherwise, ty—1 = ;.

We shall show in the following that a staggered hopping is responsible for opening of a gap in the dis-
persion, and subject to the fulfillment of a particular condition, the nature of the gap can be topological.

Symmetry and Topology ~ 3-13
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To see that, let us study the band structure. We can Fourier transform the electron operators using,

co (k) = Z e*c,. (@ € A,B). (3.44)
n

This yields a tight binding Hamiltonian in the sublattice basis, namely, (cka, ckp) as

H=> clhapk)crg (3.45)
k

where,
_ 0 t + tze_ik _ 0 f(k)

o (k) = (tl + tyelk 0 ) - Q*(k) 0/ (3.46)

The 2 x 2 structure of the matrix hypg(k) allows us to write,

hog(k) =d(k) - o (3.47)

where d(k) is a vector given by
d(k) = (dx(k), dy(k),d-(k)) = (f1 + 2 cosk, £ sin k, 0) (3.48)

and o = (040, 0;) denote the Pauli matrices. The energy dispersion is given by

E(k) = £1d(R)| = £/t + £ cos b)? + £ sin® k. (3.49)

A slight manipulation of the terms inside the square root yields,

k
E(k) = i\/(tl — 1p)? + 4111, cos? > (3.50)

where k is contained in the BZ, that is, —7 < k < 4. The corresponding normalized eigenvectors
are given by

—ig (k)
W) = — (ie > (3.51)

V2 1
where,
_ tp sink
k)=tan' [ ——
(k) = tan <t1+t2cosk)

We shall explore a few representative cases to make our ongoing discussion clear, namely,

i. t; = 0: Extreme dimerized limit (see upper panel of Fig. 3.6).

ii. #; > tp: Intra-cell hopping is larger than the inter-cell hopping.
iii. t; = tp: Intra-cell hopping is the same as the inter-cell hopping (see lower panel of Fig. 3.6).
iv. t; < ty: Intra-cell hopping is smaller than the inter-cell hopping.

v. t; = 0: Extreme dimerized limit (however, different than (i)).

We plot the band structure and the components of the d-vector as a function of the crystal momentum
k (see Figs. 3.9-3.13). The purpose here is to define a bulk winding number, which is the topological

Modern Perspectives in the Study of Electronic Systems
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®

FIG. 3.6
The extreme dimerized limit for the trivial (upper panel), and the topological (lower panel) phases of the SSH model are
shown.

invariant here. The plot dy vs d, for k in the BZ defines a surface (except for the critical case, t; = t).
Whether the surface encloses the origin is decided on its topological properties. Furthermore, the unit
vector, d defines the direction of the d vector via, d = d/|d|. At half filling, the lower band is filled.
The two bands are gapped by an amount 28¢, where §t = |t; — t;] at k = %r. This is also an insulating
phase. However, as we shall see that this phase is distinct from the case (ii).

3.4.1 Topological properties

The SSH chain hosts both the bulk and edge states. The distinction between the bulk and the edge can
be understood from the real space analysis. The plot for the energy spectrum as a function of the ratio
ty/t1 (see Fig. 3.7) shows that the zero modes start to appear just beyond the critical point. Prior to that,
for 0 < t/t; < 1, the system behaves like a trivial insulator with a bulk band gap. The gap closes at t;
= 1, and eventually for t; > t;, the bulk gap opens again, however a pair of zero modes appear in the

¥G-LL:LL Y202 Jequiedeq L0

spectrum. These zero modes yield a topological characteristic of the phase. They originate from the
two solitary C atoms that reside at the two edges of the chain. The fact that these zero modes indeed
arise out of the edges is shown in Fig. 3.8 by plotting the probability densities, |1/;|? at all sites of the
chain. The amplitudes at the left and the right edges are shown by red and blue colors, respectively and
they vanish everywhere in the bulk of the chain.

Further to emphasize the robustness of the edge modes, we show the inverse participation ratio (IPR)
defined by

L
IPR = |yil* (3.52)
i=1

IPR = 0 or 1 denotes the extended or the localized phases. However, these extreme values (namely,
0 and 1) can only be obtained in the thermodynamic limit (L — c0). Here we denote the edge modes
coming from the two edges of the system by red in Fig. 3.7. In this figure, red denotes a finite value of
the IPR. Evidently, the zero modes are seen to be localized.

Symmetry and Topology ~ 3-15




FIG. 3.7

The energy is plotted as a function of £,. A zero mode exists for &, > 1 (in unit of t;). A pair of zero modes is shown in
red color, which implies a finite value of IPR (see text).

o771 71 1
0.8 [ h

0.6 :

ly,|?

0.4 H i

0.2

0 20 40 60 80 100

FIG. 3.8
The probability amplitude is plotted as a function of the sites of the chain. Here we have taken the length, L = 100.
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Let us return to the behavior of the vector d(k). The components ((t; + t; cos k), t; sink, 0) in the BZ
defined by —m < k < +m of d(k) denote the eigenstates with the energy spectrum given by

E(k) = |d(k)]|

Corresponding to one of the cases, namely f, > t;, the vector d(k) winds about the origin, while for the
other, f < ty, it does not. The origin of the d, — d,, plane is d(k) = 0 and denotes the gapless (critical)
condition. Based on the above information, it is possible to define a winding number, v which would

tell us whether the trajectory of d(k) winds the origin, as k is varied over the BZ. Thus, the winding
number is capable of distinguishing the two seemingly equivalent (gapped) scenarios.

Mathematically, the winding number, v can be written down using the unit d vector defined via,

~_ dk)
d=——. (3.53)
(k)|
One can now define v using,
L[ (ax 2a) a (3.54)
= — X — : .
YT ), k),

Let us justify how the above expression on the RHS denotes the winding number. Writing it more
explicitly,
_ L [Tdb dddy 1T Al (1 dk) d(k)%m(kn)
21 J 5 |d(R)| - dk |[d(k)] 21 J 5 1d(K)] dk |d(k)| |d(k)[?
since d(k) x d(k) =0
B L/” dx %d(k)dk_ 1 (7 d(k) x 8d(k)
2m Jn ld(R)]? 2m ) 1dK)[?

d d
ﬁd(k) = ﬁ(do + kéd)
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v

where in the last line we have used a Taylor expansion of %d(k). From the definition of the cross
product, d(k) x 8d(k) is the angle (in radian) between d(k) and d + 8d. Thus, integrating this over the
BZ yields 27r, which when divided by 27 gives 1.

Another useful form for the winding number is given by

1 +

d
- — [ ik Zrogfik 355
V=o)L, deglosl® (3.55)

where, f(k) =t + tye~ k. Thus,
log f (k) = log(|f])e™s®).

Consequently, the winding number becomes,

1 +

d 1
= dk—1 k) = — T —1or0 3.56
Y= oni e dk 0g(f (k) 2 arg(f) = o (3:56)
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FIG. 3.9

The band structure and d-vectors are plotted corresponding to ty = 1, = 0.

depending on whether arg(f) falls in the region of integration, that is, it encloses the origin. The
winding number is 1 for the topological phase, and 0 for the trivial phase.

We correlate the band structure with the corresponding winding number calculated above and show
various cases as mentioned above. In the extreme dimerized limit, namely, t, = 0 and #; = 1, we get
two flat bands at E = %1, and the d-vector is simply shown by an arrow in Fig. 3.9. For #; > 1, the
spectrum is gapped, and corresponds to a trivial insulator because of the absence of winding of the
d-vector as shown in Fig. 3.10. Furthermore, the undimerized tight binding chain (¢; = f,) is shown
in Fig. 3.11 where the gap closes, and the tip of the d-vector which executes a circle (shown by red
colour) in the d, — d, plane, just touches the origin at the left, but does not wind it. The fourth case,
namely, t; < t; again shows a spectral gap, but it is topological in nature as shown by the winding of
the d-vector in Fig. 3.12. Finally, the other dimerized case, that is, #; = 0 and #, = 1 (see Fig. 3.13)
again shows two flat bands at E = £1, however the trajectory of the d-vector shown by the red circle
in the right panel of Fig. 3.13 winds the origin, and hence denotes a topological scenario.

One can also define a Zak phase, ®z (another geometric phase, similar to the Berry phase) defined

via,

¢z = iyg<w|vk|w>dk. (3.57)

4 Usually geometric phases that characterize the topological properties of the band structure play a crucial role in the band
theory of solids. See Zak (1988).
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The band structure and d-vectors are plotted corresponding to t; = 1, &, = 0.5. °
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FIG. 3.11
The band structure and d-vectors are plotted corresponding to t; = 1, t, = 1, that is a simple tight binding chain.

Using

V) =

—ip(K)
(ie 1 ) (3.58)

Sil-
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FIG. 3.12
The band structure and d-vectors are plotted correspondingto ty = 1, &, = 2.
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FIG. 3.13

The band structure and d-vectors are plotted correspondingto ty =0, &, = 1.

¢z = % ?§ d%¢(k)dk =7 or0, (3.59)

which are the values respectively for t, > t; and t; < .
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Please note that we have obtained this result without plugging in the explicit form of ¢ (k) since the
result should be independent of the form of ¢ (k). However, if we consider the explicit form of ¢(k),
namely,

_ ) sink
k) =tan™! [ ——
(k) = tan <t1 + 6 cosk)

it throws some subtlety that we need to take care of. If we are in the trivial phase, then the inverse
tangent function is present in the first and fourth quadrants because of #; > f,. Here, the function
does not acquire any extra factor, because of which ¢z = 0. For the topological phase (¢, > t;), that is,
when the inverse tangent function is in the second quadrant, it picks up a phase 7 — tan~! x, while in
the third quadrant, the corresponding value is 7 + tan~! x. This can be seen from the sharp change
of ¢(k) twice in BZ, as seen from Fig. 3.14. This means that the inverse tangent function acquires an
extra phase of 27r. This yields ¢ = —m. Frankly, the negative sign does not mean anything specific. It
arises because we have chosen a positive sign for the wavefunction. Here, the winding number, and the
Zak phase are related to v = —¢z/m. Think about d(k) and ¢z, both of which are obtained from the
bulk of the material, yet give information about the edges of the system. This is traditionally referred

to as the bulk-boundary correspondence (we shall discuss more about it later). It may also be noted that 3
the behavior of ¢ (k) is smooth over the BZ, corresponding to the trivial case (see Fig. 3.15). g
3
t,=1,t=15 S
15 =
g

1.0

0.5

= 0

<

-0.5

-1.0

-1.5

-3 -2 -1 0 1 2 3
k

FIG. 3.14
¢ is plotted as a function of k for the topological phase. There are abrupt jumps in the behavior of ¢.
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t=1,6,=05 From the preceding discussion it is clear

that the two apparently similar insulating
phases are topologically different. We have
0.4 shown that the winding numbers are dif-
ferent (finite in the topological phase and
0.2 zero in the trivial one) and so are the Zak
phases. However, what does it physically

ST entail having different values of the wind-
he ing number or the Zak phase? Suppose we
02 smoothly deform the Hamiltonian corre-
sponding to the SSH chain via tuning the
hopping parameters, t; and t, we shall
~04 get two insulating phases for #; > t;, and
ty < t; all the while keeping the symme-
-3 -2 -1 0 1 2 3 tries preserved and the band gap around
k E =0 is finite. In tuning from one limit
to the other, we need to cross the origin §
FIG. 3.15 in the d, — d, plane (note that d, =0). §
¢ is plotted as a function of  for the trivial phase. It smoothly varies from This implies that at the intermediate stage, %
—m to +7. one would obtain the eigensolutions cor- S
responding to the trajectory of d(k) in the 3
dx — dy plane through the origin. Thus, a smooth transition from one insulating phase to another g
is impossible without closing the gap, or satisfying the metallic condition, #; = t,. Hence, quite
apparently, there is a topological phase transition occurring here.
It is clear that the above discussion will be invalid if there is a z-component of the d(k) (or a term
proportional to o ;) is present in the system. A simple way to incorporate such a term is through the
inclusion of an onsite potential. The onsite potential will destroy the zero modes, thereby making it
meaningless to talk about the topological properties of the system. However, a disorder in the oft-
diagonal (hopping) term would retain the zero modes, and hence, the system should have a transition
from a topological to a trivial phase. The reason for such a distinction between the diagonal and the
off-diagonal terms arises because of certain fundamental symmetries that the system possesses. We
shall discuss them below.
3.4.2 Chiral symmetry
In standard quantum mechanics, the symmetry of a Hamiltonian, H is represented by
UHU" = H, or UH = HU, or [H,U] =0, (3.60)
where U denotes a unitary operator. This implies that U and H have the same eigenstates and hence
can be diagonalized simultaneously. However, in general for topological insulators, such usual unitary
3-22  Modern Perspectives in the Study of Electronic Systems
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symmetries do not have interesting consequences. The reason is that it is mostly possible to make the
Hamiltonian block diagonal, thereby reducing the problem to be confined to a single block. In the
case of massless Dirac problems, one usually runs out of unitary symmetries, and is left with an irre-
ducible block Hamiltonian which cannot be diagonalized. Thus, for the SSH model, there is a different
symmetry, that is called the chiral symmetry, which is operative here.” Here H obeys,

IHI" = —H, or 'H = HT', or {H,T'} = 0. (3.61)
Here I' is a unitary operator corresponding to the chiral symmetry. Instead of commuting, it anticom-
mutes with the Hamiltonian. Furthermore, I' is unitary and Hermitian, implying,

r=rf, or I'r=r?=1 (3.62)
where 1 denotes the identity matrix. The above requirement raises the possibility that I' = ¢’ where ¢
is an arbitrary phase. However, this possibility can be eliminated by redefining I' — ['e™*¢/2, The sec-
ond requirement is that I' be a local operator. Thus, the matrix elements of I survive only within each
unit cell, and between the cells they vanish. Hence, for the SSH model, the chiral symmetry is equivalent

to the sublattice symmetry, which can be expressed through the projectors P and Py corresponding
to the A and B sublattices, namely,

1 1
Py = E(l +TI); Pg= 5(1 —I). (3.63)
It can be checked that
Py +Pg=1, and Py -Pg=0.
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It is also possible to show that
PA'HPs = PgHPg = 0. (3.64)

The consequence of the chiral symmetry results in a symmetric energy spectrum. That is, corre-
sponding to an energy, E, there is a chiral partner with energy, —E. This fact can be seen from the
following:

Hly) =EY)
HT |) = -I"H |y) = —TE|y) = —ET [¢).

Of course, the above argument is true for E # 0. Since the SSH model hosts zero modes, one of them
is a partner of the other. Besides, for all E # 0, |) and I'|) correspond to distinct and orthogonal
eigenstates, which suggests that every non-zero eigenstate of H derives an equal contribution from
both the sublattices, that is,

(3.65)

(WIC[y) = (Y|PalY) — (Y |PelY) = 0. (3.66)
Whereas, for E = 0, H ) = 0. Thus,
HPaml¥) =HIY)+TIy)]=0. (3.67)

5 In condensed matter physics, bipartite systems with nearest neighbour hopping, that is when hopping connects sites with
opposite sublattices, obey chiral symmetry.
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Thus, the zero energy eigenstates are eigenstates of I', and hence are chiral symmetric partners of
themselves. It is also due to the robustness of the chiral symmetry, the zero modes are robust.

One can also define operators for the sublattice symmetry, namely,
Y, = Py — Pp. (3.68)

It can be shown that ¥,HX, = —H which is similar to the symmetry relation stated earlier,
["HT = —H. Thus, the chiral symmetry of the SSH model is a re-statement of the sublattice symmetry
of the Hamiltonian.

In simple language, the chiral symmetry operator, I is actually the z-component of the Pauli matrix,
o, which yields,

o, Ho, = —H. (3.69)

A direct multiplication of the three matrices on the LHS can be performed for the proof. We have
presented above a crisp description of the SSH model, which even being simple enough, possesses
both trivial and topological phases where the latter shows up via the presence of robust” zero energy
edge modes, along with a finite value of the winding number. Further, the band structure shows that a
phase transition occurs from a trivial to a topological phase (or vice versa) through a gap closing point,
where the staggered hopping amplitudes are equal (t; = t,).

KITAEV MODEL

3-24

3.5.1 Introduction

In a one-dimensional dimerized chain comprising two atoms per unit cell within a tight binding
approximation, which is known as the Su-Schrieffer-Heeger (SSH) model, there are localized zero
energy modes. These modes are robust to adiabatic deformation of the Hamiltonian. Thus, inclusion
of disorder (or defect) that respects the chiral symmetry does not harm these zero modes. However, it
is difficult to satisfy such a chiral symmetry in real physical systems.

In an analogous model, however, with additional ingredients, the so-called Kitaev model in 1D the
symmetry that protects the topological features is much more physical than the chiral symmetry. In
fact, it is the particle-hole symmetry that plays a crucial role here, is also inherent to the mean field
description of superconductors. Thus, the Kitaev chain is a more realistic model to access the robust
zero energy edge modes, the so-called Majorana zero modes. A brief description will be included at the
end of this chapter to discuss their physical realizability in experiments, and their possible applications
in using the degenerate quantum states at zero energy for storing quantum information.

6 The edge modes are robust as long as the chiral symmetry is intact. These mean field solutions correspond to the Bogoliubov-
de Gennes equations which yield an equivalent description as the BCS theory for conventional superconductors.
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The system comprises a 1D p-wave superconductor introduced by Kitaev (2003) where the super-
conducting correlations occur between spinless (or spin-polarized) fermions at neighboring sites in
the chain, as opposed to the onsite pairing discussed in the context of the more familiar BCS (s-wave)
superconductors. In this model, the Majorana fermions (MF) which arise as real solutions to the Dirac
equation and are their own antiparticles, emerge in a simple and intuitive fashion. The search for Majo-
rana particles remained inconclusive as they have never been observed in nature. Thus, the Kitaev
model also serves as a platform for realizing Majorana particles in condensed matter systems. In the
following, let us begin with the description of a two-site system which essentially contains all the
information that we need.

3.5.2 Two-site Kitaev chain

In this section, we shall study the edge and the bulk properties of a two-site Kitaev chain with a view to
exploring the topological properties of the excitation spectrum. At each site, there is a single spinless
fermion which is coupled to a p-wave superconductor. It may be noted that by virtue of the fermions
being spinless (or spin polarized), a conventional s-wave pairing for fermions belonging to the same
site is not possible. The Hamiltonian for such a system is written as

Hasite = —MCICI — uczcz — t(cJ{cz +h.c) + A(c{c; + h.c.), (3.70)
where u denotes the chemical potential, ¢ is the hopping term among the neighboring sites, and A is
the p-wave-superconducting order parameter. We assume that all of these energy scales are real and

positive. In fact, A is usually a complex quantity with an amplitude and a phase. However, taking it
either real or complex does not have much consequence in our discussion.
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The Hamiltonian can be written on the basis spanned by {CI, c1, b, ¢2}. Explicitly write it in this basis,

we get,
—u 0 —t A 1
0 " —A c
_ (T T 1
Hosite = (c] a1 ¢ ©) S~ oolla (3.71)

A t 0 22 cg
In the Dirac notation, we can use the particle-hole representation at each site by writing, CJ{ = |le),
c1 = (1h|, c;r = |2e) and ¢, = (2h| where 1 and 2 refer to the sites and e and A refer to the electron (par-

ticle) and the hole states, respectively. The electron-hole description that is natural to a superconductor
becomes apparent on this basis, and the Hamiltonian can be written as

Hoasite = —(|1e)(le| + [1h) (1h| + |2e)(2e| + [2h) (2h])
— t(|1e)(2e| — |1h)(2h| + h.c.) + A(|1e)(2h] — [2€)(1h] + h.c.). (3.72)

The diagonalization of the above 4 x 4 Hamiltonian yields the eigensolutions. The eigenvalues are
given by

E=({t+V(A2+pu?), t — (A2 +pu?), —(t—V(A2+pu?), —(t+/(A2+pu?).  (3.73)
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The corresponding eigenvectors are

(tF/(A24u2)  (utD) (t=a/(A24pu2))  (utb)
A A A A

1 1
) O+ ] @ty | = (A242)
A A A A
1 1
=t/ (A% 4u?) — (u—t) (—t=A/(A241?)  (u—b)
A A A A
! ! (3.74)
(ta/(A24p2) =t || ct=AL(A2402) =) | '
A A A A
1 1

Writing down the Hamiltonian in the form as it appears as in Eq. (3.72) has the advantage that it can
be trivially extended for a chain containing N sites and can be written as in the following:

H =7 [—pn(ne)inel + |nh)(n hl)

—t(n,e){(n+ 1,e| — |n,h)(n + 1,h| + h.c.)
+ A(In,e){n+1,h| — |[n+ 1,e){n, h| + h.c.)] (3.75)

= [—n(me)(nel + n h)(nh)
+ (—t+ A)(|n,e){(n+ 1,e| + h.c.)
+ (t — A) (In,h)(n+ 1,h| + h.c)]. (3.76)

The above form appears as a tight binding Hamiltonian with two atoms per unit cell. A Fourier
transform can be performed using

k= Zeiijj; o = Ze‘ikjc}, (3.77)
j j

where k is the wave vector defined within the Brillouin zone (BZ) [—x : +m]. Using the Fourier
transformed operators and noting that

—e_’kc;ch_k = +e_’kc;£CT_k
one gets in the {c, c,t} basis,

H = (—u — 2tcosk)o, — (2A sin ko)
=dk).o,

where o denotes the components of the Pauli matrix, and

d(k) = (0, —2A sink, —ju — 2t cos k)

(3.78)

The form is similar to a 2D massless Dirac Hamiltonian (similar to that of graphene). However, it
needs to be noted that the components of o do not represent spin degrees of freedom (recall that we
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are considering spinless fermions), and instead denotes particle-hole degrees of freedom. It is now easy
to diagonalize the 2 x 2 Hamiltonian whose eigensolution is given by

E = :E\/(—/,L — 2tcosk)? + 4A%sin’ k (3.79)

with the eigenvectors as

u(k) \/4t2 cos? k44t cos k+4A2 sin? k+iu? (u+2t cos k)i
= 2Asink = T 2Asink ;

v(k) 1
—\/4t2 cos? k+4put cos k+4A2 sin? k+iu?  (u42t cos k)i
2Asink 2Asink (3.80)
1

It may be noted that the eigenvectors are in the standard format of the mean field solution of a supercon-
ductor. Instead of solving the model for its topological characteristics, we shall discuss the symmetry
properties first in the following.

3.5.3 Particle-hole symmetry of the Kitaev model

Generally speaking, particle-hole symmetry implies that for a state defined by energy and momentum
(E, k), there is always a partner with (—E, —k). This is reflected in the symmetry of the diagonal ele-
ments as seen in the Hamiltonian written in the k-space, namely in Eq. (3.78) where the cosine term is
symmetric under the transformation of k — —k. This is also an artefact of the p-wave-superconducting
term written in the mean field form which ensures particle-hole symmetry of the model.
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Let us discuss the particle-hole symmetry of the Kitaev model in detail. The operator that tests the
particle-hole symmetry, which we denote by ¥ = 0K where o« is the x-component of the Pauli matrix
(that acts on the particle-hole degrees of freedom) and K is the complex conjugation operator, such
that ICikC = —i. X is an antiunitary operator which transforms the Hamiltonian in Eq. (3.78) as

THE = (0:K)YH(k) (0xK) = —H, (3.81)
where (0,K)? = 1. For closer introspection, let us consider a wavefunction, v at certain given values

of energy and momentum, (E, k). As per the discussion above, there will be a particle-hole partner ¥’
with energy and momentum as (—E, —k). Thus,

Y = o K. (3.82)
We can write,

(oxOYH (k)Y = Eo K. (3.83)
By inserting (0xK)(0xK) (= 1) between H (k) and v, one gets,

(0xK)YH (k) (0xK) (0xK) ¢ = Eox K. (3.84)
Substituting v’ from Eq. (3.82),

(0 KYH (k) (oK) = Ey'. (3.85)
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Table 3.1 Or,
Different choices for the parameter: ’
I Et), ean(;: OAC?; Oshofvigg a:iiﬁ?eferi oM (k)oxy’ = Ey. (3.86)
phases of the Kitaev model. Since o,y H*(k)o, = —H(=k),
/ /!
“ ¢ A H(—=k)y' = —Ey’. (3.87)
0 1 1 This proves the existence of a time reversed partner under the particle-hole
1 1 0 transformation.
1 0 1 It may be noted from above that corresponding to E > 0, the partners are
1 1 1 orthogonal, that is, (/|y} = 0 since they have different eigenvalues. How-
1 0.5 0  ever, for E = 0, the situation is more interesting. ¥ and y’ are now identical.
1 0.3 0  These are called the Majorana modes for which o,y = .
1 065 (1) For the sake of convenience and concreteness, we list the parameters u, ¢
and A in Table 3.1 for discussing the topological and the trivial cases.
Td Td This brings us to the notion of topology in the
’ ¢ Kitaev model that is familiar in systems where
the boundary behaves differently compared to the
— 4, — d, bulk of the system. This will become clear if we
\\/ look at the d(k) vector defined in the yz-plane
where the components are d, (k) = —2A sink and
d,(k) = —p — 2t cos k. The tip of the d vector may
FIG. 3.16 encircle the origin depending on the values of the
The d-vectors corresponding to the trivial and the topological parameter yielding an integer winding number.”

phases are plotted.
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There arises two situations governed by the value
of d;, namely, (i) d, = positive which results from
u > —2t, and (ii) d; to be negative for ; < —2t. Representations from each of the cases may be
taken as

a. #=0,t= A =1 (apriori, this is the topological limit),
b. u =1,t= A = 0 (this is the trivial phase).

Both are insulating phases, however it is easy to see that Fig. 3.16(a) corresponds to winding of the
d-vector in the yz-plane surrounding the origin, while for Fig. 3.16(b), d is a constant vector in the
trivial case, and hence cannot wind.

Furthermore, the energy band structure (E vs k) for various choices of the parameters, u, t, and A as
they appear in Table 3.1 are shown in Fig. 3.17. Both the top left panel and the bottom right panel of
Fig. 3.17 denote flat bands and finite spectral gap everywhere in the BZ; however, the former denotes
a topological gap, while the latter represents a trivial scenario. Dispersions corresponding to the other
parameter values are included for academic interest.

7 Winding number denotes how many times the origin is wound around by a vector.
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FIG. 3.17

The eigenvalues for a two-site Kitaev model are plotted. Different choices of parameters for all the plots are to be cor-
related with the values of w, t, and A given in Table 3.1. The top left and the bottom right correspond to the topological
and the trivial phases of the model. Other parameter values are for academic interest.
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3.5.4 Winding number

We have already discussed that the Kitaev model is invariant under particle-hole transformation, which
states that an eigenstate defined by energy and momentum (E, k) will always have a partner with
(—E, —k). We have not made another symmetry explicit earlier that there is also time reversal symme-
try, 7 defined by KC, which is simply the complex conjugation operator.” This means that the product
of the two, that is, the particle-hole and the time reversal operations, namely, X7, known as the chiral
symmetry, is a valid symmetry operation for the Kitaev model. Further, square of all of these sym-
metry operations, namely, £2 and 72 result in +1, and hence, according to the tenfold classification
introduced by Altland et al. and others, the symmetry belongs to the BDI class (Altland and Zirnbauer,
1997; and Ryu et al., 2010).

Possessing a chiral symmetry enables defining a topological invariant called the winding number (we
have seen this for the SSH model) which is written as

1 d
= — dk|—h(k)|, 3.88
y 2n/Bz | B (3.88)

8 In presence of spin degree of freedom, 7 has a more complicated form, namely, 7 = io}, K where o, denotes the real spin
degree of freedom.
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where

d 2tcosk
h(k) = tan_l <—Z> = '[an_1 (—M * .COS ) .
dy 2Asink

It can be easily checked that corresponding to the topological case, namely, t = A =1 and u =0,
the winding number, v is equal to 1, while for the trivial case u =1, t = A =0, v = 0. The same
inferences have already been drawn from the behavior of the d-vector, that is, it winds around the origin
for the topological case, and is merely a constant vector for the trivial case. A non-trivial topological
(non-zero v) phase is resilient against perturbations, such as disorder, defect, etc., that does not violate
the chiral symmetry of the Hamiltonian.

3.5.5 Majorana fermions in the Kitaev model

E. Majorana postulated their existence in 1937 (Majorana, 2008). It is conjectured that the neutrinos
denote an example of such an elementary particle whose antiparticles are thought to be the same as
these particles. However, no signature of these particles has been realized in experiments so far. On
the other hand, the research on Majorana fermions have gained momentum in the field of condensed
matter physics and in particular, topological superconductors, semiconductors, etc.

Before we discuss how Majorana fermions enter the Kitaev model, let us understand what Majorana
fermions are. One can write fermion operators, namely, ¢ and ¢’ in terms of two Majorana fermion
operators in the following way,

1 ) 1 )
i = 5(7/11‘ —iyy); o = 5()’11‘ + iy2i) (3.89)
where y; and y, are two Majaorana fermions defined at each site i. They are the conjugates of their
own, namely,
n=vs rn=v. (3.90)
The above properties can easily be verified by inverting the relations in Eq. (3.89). Thus, the Majorana
fermion operators represent them to be their own antiparticles. Because of this property, a single Majo-

rana mode is never “filled” (for example |1)) or “empty” (that is |0)), unlike the way we define usual
fermions. This will become clearer as we go along.

The other properties of the Majorana modes can be stated as in the following.

oyl = v1 =0 (3.91)
w=rs=1 (3.92)
for all sites i. As one can see, even though the anticommutation relations are similar to that of fermions,
they are quite distinct from the usual fermion operators and hence special. For example, the same
relationship for the fermion operators yield,

{1 =1 (3.93)
=" =o. (3.94)
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Besides these, there are two other properties which we wish to highlight. The complex conjugation of
the Majorana operators can be stated as

KyK=y; Ky'k=—-y" (3.95)

Next, we discuss the parity of the Majorana zero modes. A few details on these modes will be discussed
shortly afterwards. Consider a Kitaev chain that is sufficiently long, such that one can safely ignore
any overlap between the Majoranas that exist at the two ends of the chain. The energy spectrum has
two zero energy-bound states. The corresponding quasiparticle operators are, say, 1 and y». Let us
combine them to form a fermions operator, using

1
c= 5(1/1 +iya). (3.96)

Inverting the above relation yields

n=c+c; n= %(c —ch. (3.97)

Thus, the Majorana operators are a superposition of the fermion creation and annihilation operators.
The corresponding fermionic state can be occupied or unoccupied. The bound states have zero energy
and hence these are degenerate. These two states differ by fermion number parity. The Kitaev model,
being a mean field model for superconductors, does not conserve the particle number [U(1) gauge
symmetry]; however, the fermion number parity remains conserved since the pairing term (that is, A)
adds or removes particles in pairs. In a normal superconductor, the ground state always has even
parity for the fermion number. With an odd number of fermions, an unpaired electron results in an
energetically less favorable state.

¥S-LL:LL ¥20c Jequiedeq L0

The Kitaev chain is quite unlike a normal superconductor where the non-trivial phase hosts two ground
states, each with a different parity, namely an even fermion number parity and an odd fermion number
parity. We can define the fermion number parity operator as

Pr=2c—1=iyy (3.98)

which has eigenvalues %1 for the two zero energy modes.

For N such as Kitaev chains, there are 2N Majorana bound states. One can group them into N pairs,
where each pair of Majorana operators ¥2j—1 and y»;j can be combined into a fermion operator ¢j. The
ground state now has a degeneracy of 2. Among these 2V states, half of the them will have one parity
(say, even), and the other half will have the opposite parity (odd). Now, the fermion parity operator for
the N-chain system is the product of the operators ZCJTC]‘ — 1 for each of the pairs, such that

Pr=i"yyp.... YaN. (3.99)

Thus, one has %(ZN ) = 2N=! states of even and odd parity. This can be easily demonstrated in the
following way. One can compute the expectation value of the fermion number parity operator iy;y>
within the ground state |¢g), which yields,

(Bglivivaldg) =1 forcle=1
=—-1 forcfc=0. (3.100)
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Suppose we take a simple one-site Hamiltonian, H = sc’c. Writing in terms of the Majorana operators
yield, H = % 1 (1 + iy1y2). So this tells us that each fermionic site has to accommodate two Majorana
fermions, as opposed to one (or zero) fermion.

Let us extend our discussion to a two-site Kitaev chain. The Hamiltonian is,
H= _A(C,TCH—I + C:'r+1Ci + cicit1 + C,LrlCZr), (3.101)
where we have taken A = t and ; = 0. There are two eigenstates of even parity, and two states of odd
parity corresponding to the two eigenvalues A and — A respectively. For example, the eigensolutions,
|u®), A¢ with even parity,
1
luy) = —
+ \/E
Similarly, for the odd solutions, |u°), A°,
1
lui) = —
+ \/E
If we translate it into the language of Majorana fermions,

H = =2iAy2iy1,i+1- (3.104)

(£l o) forag =FA. (3.102)

(cF £ DI0);  for Ay = FA. (3.103)

These Majorana fermions can again be combined to write down the new fermion operators, namely,
the d-operators’ defined by

1 ; .
d; = ﬁ(yl’iﬂ +iv2i)s  iV2ivLivl =1 — d:di' (3.105)
This allows the Hamiltonian to be written in terms of these d-operators.

1 1
H=2tdd; —t =2t (djd,- - 5) =2t (djd,- - E) +0.a'a, (3.106)

where a = %(yz,l + iy1,n) which comprises the degrees of freedom that are ignored in the Hamilto-
nian. Note that the ground state is doubly degenerate, since the states with (a'a) = 0 and 1 have the
same energy. Suppose N is odd, the sate |0) has even parity, which means that it has even number
of a fermions. In the same way, the other ground state, namely, |1), has one fermion and is an odd-
parity state, Thus, these two states are quite intriguing, in the sense that they can be considered as the
superposition of two Majaorana fermions that reside at the two edges of the chain. The occurrence of
these Majorana zero modes and their degenerate nature are artefacts of the topological properties of
the model. Evidently, the Hamiltonian commutes with y;; and y5 ;¢1, that is,

,e_i’r’ro. 6_1. N10) = —ivi ; |u® 3.107
V1, |u+> = E(Ci + C,'_;,_l) [0); Y2,it+1 |”+) = E(CH-I +¢) [0) = —iyy,i |”+) (3. )
which says that the states are identical and differ only by a phase factor.

Let us now consider a chain of N sites (in Fig. 3.18 we show N = 5). At each site there is a fermion, and
hence there are two Majorana modes, namely, yj—1 and Y2j- These are called the domino tiles of the

9 The d-operators here will have to be distinguished from the d-vectors discussed earlier.
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FIG. 3.18
The dominoe model is sketched.

Majorana. There are 10 Majorana modes denoted by y; ... ... y10- The Kitaev Hamiltonian written in
terms of the Majorana fermions,'”
in & i N-1
H= -5 Z(l +iy1jy2,) — 1 Z [(A + Dy2jvijen + (A = DyLY2j] (3.108)
=1 j=1

This has a formal similarity with the two coupled SSH chains with an onsite energy, — %“, and hopping
terms as i(A + t) and i(A — t). However, we shall not explore this symmetry further.

One way of pairing the Majoranas is to pair them in the same block, and the other would be to pair
them across each block. In the first case, the Hamiltonian has only onsite energy that is, p for the
fermions. This yields a Hamiltonian,

¥G-LL:LL Y202 Jequiedeq L0

. N
i
H = -y E Y172, (3.109)
j=1

This situation clearly subscribes to the trivial case, where A =t = 0 and only p # 0. Thus, there are
no unpaired Majaorana and the spectrum is gapless with excitation energies & u. Correspondingly, it
has no edge modes and the system is a trivial insulator. However, the other scenario, which pairs two
Majoranas across the domino tiles, yields a Hamiltonian,
N-1
H=it ) vy (3.110)
j=1
Clearly, this leaves the two Majorana at the edges to be excluded in H. Also, we may recall that this
Hamiltonian corresponds to t = A = 1 and p = 0 which denotes the topological limit of the Kitaev
model.

The first case discussed here corresponds to the trivial topology (see upper panel of Fig. 3.19), where
the intra-cell pairing of the Majoranas yields no zero modes. However, the latter hosts Majorana zero
modes, and thus denotes a topological phase of the system (depicted in the lower panel of Fig. 3.19). It is
rewarding to realize that these two cases for the pairing of Majoranas in a domino model correspond
to zero modes in the Kitaev model that we have discussed earlier.

>

10 'We discontinue usage of the symbol “i” for denoting the site index because of the imaginary i being present in the Hamiltonian,

and use j instead.
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FIG. 3.19

The trivial and the topological dominoe model are demonstrated.

An intuitive way to arrive at the zero energy Majorana modes in the Kitaev chain can be seen by
exploring the Kitaev Hamiltonian. For that purpose, we shall write down the Kitaev Hamiltonian
once again in real space.'’ We begin with a small k version of the Hamiltonian, where the —2¢ cos k
in the diagonal term (see Eq. (10)) is replaced by 2¢ (this also necessitates the off-diagonal terms to
be written as 2iAk). Hence, we take a small deviation of the chemical potential, ; from its value
where the phase transition occurs from a topological to a trivial phase, namely, © = £2¢. As a specific
case, assume

w=—2t+m (3.111)
where m is a small and positive quantity. This yields the d-vector to has a form,

d(k) = (0,2Akoy, moy). (3.112)

We write k as % (the chain is placed along the x-direction) and assume m to be a smoothly vary-
ing quantity in x, that is, m(x) which changes sign across the transition. This allows us to write the
Hamiltonian as

0
H= 2iAUy£ + m(x)o,. (3.113)

The time independent Schrodinger equation corresponding to E = 0 for the Hamiltonian can be
written as

(21’A0y% + m(x)crz) ¢(x) =0 (3.114)

where ¢(x) is the eigenfunction. Solving the above equation, one gets, two solutions (corresponding
to the 2 x 2 structure of the Pauli matrices) as

¢+ (x) = exp (:l:/ %dx) ¢+ (0) (3.115)

11 This real space representation is distinct from the one written in Eq. (3.70), and is obtained by discretizing the momentum
operator on a chain. We have written it for two sites in Eq. (3.70).
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FIG. 3.20
The spatial dependence of the wavefunction is shown. It falls off exponentially on either side of x = 0, the left of which
denotes a topological phase, while the right represents a trivial phase.

where ¢4 (0) refers to the eigenfunction of o, that is,

o0 (/).

The +-sign yields an unphysical situation as it diverges at x = co. However, there is a solution corre-
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sponding to m(x) = 0. This says that the zero energy mode decays exponentially in either direction
with respect to x = 0. We can invoke any functional behavior of m(x), however, the behavior of the
zero mode remains unaltered. Suppose we assume m(x) to change the sign at x = 0 and flat otherwise
(see Fig. 3.20), the bound state, ¢_(x) assumes the form,

¢—(x) = exp (—|m|xoy) p—(0). (3.116)

3.5.6 Energy spectrum of N-site Kitaev model

In order to obtain the energy spectrum of the Kitaev model, we can use Eq. (3.79) which was originally
derived for a two-site Kitaev chain. However, for a N-site system, the same expression can still be used
with N modes, that is, N k-values equally spaced between —m and +7.

It is also possible to solve Egs. (3.109) and (3.110) on the basis of Majorana Fermions in real space.
For a chain consisting of N-sites, the Hamiltonian in Eq. (3.109) [or Eq. (3.110)] yields N eigenvalues
which can be mapped on to N distinct k-values that belong to the one-dimensional Brillouin zone. The
spectrum corresponding to the topological case [Eq. (3.110)] is plotted in Fig. 3.21 as a function of the
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FIG. 3.21
The spectrum for the Kitaev model is plotted for t = A = 1. The zero modes persist till .« = 2t, beyond which a trivial
band gap opens up.
3 T T T T T
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FIG. 3.22

The spectrum for the Kitaev model is plotted for t = A = 0. A band gap be seen for all values of .

chemical potential, . There are two degenerate zero modes which persist till © = 2¢, beyond which
these modes merge into the bulk. Hence, for ;& > 2t, one obtains a trivial phase. For the trivial case,
the spectrum is gapped for all values of i1 (see Fig. 3.22). The topological protection of the zero modes
is discussed below.
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3.6 TOPOLOGICAL PROPERTIES OF THE MAJORANA MODES

It may seem that the topological phase of the Kitaev chain is an artefact of setting the chemical potential,
W, equal to zero, thereby disconnecting the two Majorana modes at the two edges. So a natural question
is if we change u slightly from a value zero, do the Majorana modes disappear by coupling to the rest of
the chain? If this is true, then it results from a very carefully controlled model. In reality, this is not true.
If we increase u, it can be easily checked that till 1 < 2t, the zero modes (two of them) stay together, and
they only split for ;¢ > 2t. One can see the same behavior for negative values of the chemical potential,
that is, the zero modes stick together at E = 0 for ; > —2¢t. At 0 = +£2t, the system becomes critical
and the bulk gap closes, whence the system ceases to be topological. Thus, the Majorana modes are
protected as long as there is a gap in the bulk spectrum.

The Majorana modes are indeed protected by the particle-hole symmetry of the Hamiltonian. For
u =0 (and A =t # 0), there are an equal number of particle-like (corresponding to E < 0), and hole-
like states (for E > 0). Further, two states at zero energy which are inseparable, as if that is untrue, for
example, if they are separated, then that will cause an imbalance in the number of states below and
above E = 0 (Fermi energy). The only possibility is to couple the two unpaired Majorana modes to
each other, however such a coupling is impossible because of the large spatial distance between them.
The only way to facilitate a coupling is to close the bulk gap, which precisely happens for u = £2t¢,
where the zero modes disappear into the bulk.
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3.7 EXPERIMENTAL REALIZATION OF THE KITAEV CHAIN

From the discussion so far, it is clear that there are intriguing possibilities of topological features emerg-
ing, depending on parameters of the Hamiltonian. The zero energy mode in the topological regime is
a coherent superposition of the two Majoranas and has opposite fermion number parity. However,
this system may look rather unphysical. Most crucial hindrance is provided by freezing out the spin
degrees of freedom. How do we do that? For argument’s sake, we can include a strong magnetic field
that will polarize all the spins of the electrons in the same direction of the field. However, that brings
us to the conflict of superconductivity coexisting with a strong magnetic field. Furthermore, the avail-
ability of p-wave superconductors in nature is infrequent. Furthermore, not to forget that a mean field
theory of superconductivity is susceptible to large fluctuations in one dimension, which may prevent
the stabilization of the superconducting state.

Nevertheless, the seminal works of Fu and Kane (2008) and Fu and Kane (2009) have made it
abundantly clear that a Kitaev chain can be experimentally realized in a variety of systems. The
key ingredients are proximity-induced superconductivity, spin-orbit coupling (SOC) where the lat-
ter boosts the experimental search for exploring SOC in superconductors. From undergraduate level
quantum mechanics, it is known that the orbital angular momentum ceases to be a good quantum
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number in the presence of SOC, and thus it raises the possibility of p-wave superconductivity (as an
admixture to the s-wave pairing) which entails a spin-polarized pairing, and can possibly be induced
by proximity effects. For a more detailed discussion, may refer to the papers in Lutchyn et al. (2010)
and Oreg et al. (2010).

As discussed earlier that the Majorana bound states are the superposition of particle and hole excita-
tions at E = 0 which are trapped in the bulk gap. Thus, two Majorana bound states encode a non-local
qubit that is robust against local perturbations, such as decoherence and, thus, constitute essential ele-
ments for topological quantum computation. The Majorana bound states can be experimentally probed
by Andreev reflection. Suppose in an experiment with a semiconducting wire placed on a p-wave super-
conductor (or even an s-wave superconductor is deposited on the surface of a topological insulator
whose surface states are denoted by the likes of Dirac fermions), metallic lead couples to the Majorana
modes by tunneling of electrons. The Majorana fermions can induce resonant Andreev reflection'”
from the lead to the superconductor (Nilsson et al., 2008; and Law et al., 2009). Usual Andreev reflec-
tion converts an electron into a hole in the same lead, however a crossed Andreev reflection non-locally
converts electron excitation into hole excitation into different lead. Equivalently, it splits a Cooper pair
and distributes them into two leads, which happens at very low excitation energies.

3.8 TOPOLOGY IN 2D: GRAPHENE AS A TOPOLOGICAL
INSULATOR

3-38

Having studied a prototype model Hamiltonian in 1D, we turn our focus toward 2D, now with the lens
on graphene. Particularly, we shall explore whether graphene possesses the credibility of becoming a
topological insulator. That may happen, provided by some means, we are able to open a spectral gap
at the Dirac cones. Since a non-zero Berry phase can be a smoking gun for non-trivial properties, let
us first look at the Berry phase of graphene.

3.8.1 Berry phase
To compute the Berry phase, let us consider the low energy Hamiltonian of graphene given by'’
H = hwe(t,0xgx + Uy%}) (3.117)

where 7, denotes the valley degree of freedom, that is, 7, = 1 for K-point, while it is —1 for the
K’-point. As usual, o denotes the sublattice degree of freedom. The Berry connection was obtained as

A= VI]y-). (3.118)

12 Andreev reflection is briefly discussed in Chap. 7.
13 'We have discussed the electronic properties of graphene in Chap. 3.
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To remind ourselves, the Chern number is defined by integrating the Berry curvature over BZ.
1
n=— Fd*K = C (a notation we have used earlier)
2 Jpz

We rewrite the Dirac Hamiltonian as

h(q) = q-o (the velocity term is dropped). (3.119)
In the polar coordinates q and h(q) can be represented as
cos cos
q=q| (sin j;) =q (Sin;’j) (3.120)
and
_ 0 cos¢ —ising\ 0 ¢
@) =4q (coszb + isin¢ 0 ) =1 (eid’ 0o/ (3.121)

The normalized eigenvectors are,

__ i
|w_>=i< ¢ )and

VAN .
. o
W) = — (e_@) RIS
= — . . 3
VAN g
Next, we calculate the Berry connection A, and to remind ourselves that only filled bands are to be R
taken into account. So we shall consider |1/ _) in the definition of A. 3
A=i(Y_|Vgly). (3.123) =
The gradient operator, V, in the polar coordinate is given by
v—(awrlaé)) (3.124)
"= \og" " qo9”) |

Note that |/ _) does not depend upon g. If we now introduce a band index, #n, the Chern number
corresponding to a band index, n can be written as C,,. The total Chern number is obtained from the
contribution from all the bands, namely,

C= Z Cy
n
1
C,=— [ F.ds, (3.125)
27 S

where the S is the surface that encloses the loop. With A = %1, VxA=0.S0F =0,andhence C=0
which is not a surprise, as for time reversal invariant systems, the Chern number should vanish.

The Berry phase around the Dirac points (K and K') is nothing but the winding number multiplied
by 7, which is then either 41 or —1. This introduces a measure of the topological charge for the Dirac
points in the k-space which tells us how the wavefunctions wind around these singular points in k-space
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differently with respect to each other. The K point carries the topological charge +1 (a vortex) and the
K’ points carry a topological charge —1 (an anti-vortex). With the Dirac Fermion sitting at K carries a
Berry phase, ®X = 7, and the Dirac Fermion at K’ has a Berry phase, CDE, = —n. The overall Berry
phase, ®p is zero, that is, ®p = 0.

3.8.2 Symmetries of graphene

It is fairly well known to the readers by now that graphene is represented by the nearest neighbor tight
binding model on a honeycomb lattice with a two sublattice basis, namely, A and B sublattices. Carbon
(C) atoms occupy both the sublattices. The situation is slightly different in Boron Nitride, which, in
spite possessing the same crystal structure, the sublattice symmetry is broken by boron and nitrogen
occupying the A and the B sublattices. Thus, graphene is a prototype of a system possessing sublattice
symmetry which renders the Hamiltonian block off diagonal written on the sublattice basis. The low
energy physics of this model is denoted by the massless Dirac Hamiltonian that we have seen at length
earlier. Here, for the sake of completeness, we recall that the low energy Hamiltonian of graphene at
both the Dirac points, namely, K and K’ is written as

Ho(k) = hvp(kyoxtz + kyoy), (3.126)

where the pseudospins oy, o', denote sublattice degrees of freedom, and 7, (again the z-component of
the Pauli matrix) distinguishes the valleys at K and K'. Needless to say that here is that the Hamiltonian
is independent of the real spin, which will continue to be a valid description until spin-orbit coupling
is included. Now, consider the inversion (or the sublattice) symmetry, which, along with switching
the two sublattices, also changes the momentum k to —k (remember p = m%) which again implies
that the two valleys are switched under inversion. The corresponding operator which performs this
operation is given by

P = 0,1y

Under this inversion operator, the Hamiltonian transforms as

PHEK)P ™ = hvp oy 7x (keoyT; + kyoy) 0x7x = Ho(—K). (3.127)
The above relation can be proven by using product rules of the Pauli matrices, and it ensures inversion

symmetry of the Dirac Hamiltonian.

Now we shall discuss time reversal symmetry. In the case of graphene, time reversal symmetry
implies changing the momentum vector k to —k, followed by complex conjugation of the operator
(as explained earlier). Under the time reversal symmetry operation, one Dirac point (say, K) goes to
another one (say, K’), and thus, the two Dirac cones are exchanged. Thus, taking the time reversal oper-
ator, 7 to be a complex conjugation operator should have been sufficient. However, as discussed earlier,
the time reversal symmetry in graphene also implies a transformation from one valley to another, that
is K changing over to K'. This makes us settle for

T =1,/ (3.128)
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where 7, is the x-component of the Pauli matrix. Note that here 72 = 1 as we are dealing with spinless
fermions.'* To check for the invariance of the Hamiltonian under the operation of 7, one needs to
prove,

THo()T " = hvr T (koxTz + kyo) T = Ho(—k). (3.129)

The above relation ensures the invariance of the Dirac Hamiltonian under the time reversal operation.

It may also be mentioned that the above symmetries put together, that is, the product of the sublattice
(or inversion), and the time reversal symmetries yield further discrete symmetry, known as the charge-
conjugate symmetry, usually denoted by C. It can be checked that H is invariant under a combination
of these two symmetries.

To summarize, in the context of graphene, we have seen the emergence of three discrete symmetries,
namely, the sublattice symmetry (or, the inversion symmetry, denoted by P), the time reversal sym-
metry (denoted by 7), and finally, a combination of the two, that is, the charge-conjugation symmetry
(C). They indeed have different properties, such as P is a unitary operator and anticommutes with the
Hamiltonian, 7 is an antiunitary operator which commutes with the Hamiltonian, while the charge-
conjugation operator C is antiunitary (since it is a combination of P and 7)) which also anticommutes
with the Hamiltonian.

Having discussed the fundamental symmetries of graphene, let us return to its prospects of being
a topological insulator. In Haldane’s own submission (see https://topocondmat.org/w4_haldane/
haldane_model.html), there can be simple efforts to tweak the Hamiltonian to achieve topological
properties. Thus, the goal is to transform a sheet of graphene into a quantum Hall-like state with con-
ducting edges and insulating bulk. Furthermore, the edge modes have a chiral character, which means
that the current is carried in opposite directions at the two edges. There could be two ways of doing
this; either break the inversion symmetry, keeping the time reversal symmetry intact, or break the time
reversal symmetry, retaining the inversion symmetry. In the following, we show that, while the first
option does not yield a topological phase, the second one indeed does. Nevertheless, we shall discuss
both, which are, respectively known as the Semenoff insulator (obtained via breaking the inversion
symmetry), and a Haldane (or a Chern) insulator (obtained via breaking the time reversal symmetry).
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3.8.3 Semenoff insulator
In order to break the inversion symmetry, consider a staggered onsite potential of the form,

H =ea ) ch(radea(ra) + &5 Y ch(rs)ca(rs), (3.130)

A B
where €4 and ¢p are onsite potentials at the sites A and B, respectively. For €5 # ¢, the inversion
symmetry (or the sublattice symmetry) is broken, as is the case for the hexagonal boron nitride (h-BN),

14 For spin-full systems, 72 = —1.
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where the sites occupied by the C atoms in graphene are occupied by boron (B) and nitrogen (N) at
the A and B sublattice sites, thereby causing the onsite energies to be unequal. Thus, including a term
that has an equal and opposite magnitude at the two sublattices, the low energy Hamiltonian becomes,

H(q) = Ho(q) + mjo, (3.131)

where the m; term makes the massless Dirac particle massive. Here, m; = (¢a — €p)/2 can be called
the Semenoff mass. m; = 0 for £ = ¢g. Further o, anticommutes with H(k), that is,

{OZ) HO} = 0
The spectrum is given by

E(qQ) = +,/h?vig? + m]. (3.132)

In a compact notation, one may write it as

E, (@) = py I2viq? + m? (3.133)

where u = %1 and each sign refers to a valley index.

The spectrum is plotted in Fig. 3.23. Spectral
gaps open up of magnitude 2mj at each of
the Dirac points. This gap earned the name
Semenoft insulator. However, the nature of the
gap is a trivial one in the following sense. The
gap vanishes as m; — 0. Besides the wavefunc-

= tion plotted for a graphene nanoribbon of size

\ / LyL,."” There is no trace of the edge states

being present. Besides the Berry phase and the

ot | Chern number also vanish as we shall show

below, thereby certifying the trivial nature of

the energy gap in the spectrum. This eliminates

r K M K T the possibility of any topological properties of

k-space the model induced by the inclusion of m.

FIG. 3.23 To gain a bit of details on the Semenoff insula-

The energy band dispersion with a Semenoff mass, m;. A gap tor, let us complete the mandatory calculations.
opens up at the Dirac points of magnitude 2m. The eigenfunctions can be written as

_ 1+ mp/ER
WH(q) = 75 (umei‘gq)' (3.134)

15 This is called a semi-infinite ribbon. It is finite in y-direction and very large (taken to be infinitely large) along the x-direction
(Lx > Ly). We shall shortly discuss this below.
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The corresponding Berry curvature is
2

Qt = VETI - (3.135)
2u gt + g} + B2

which eventually gives the Berry connection as [see Eq. (3.118)],
T my éq

A =21 — ) 2. 3.136
2 ( e |Eu|> q (3139

Finally, the Berry phase is obtained as
® g
=7 — ).
B z |EX|

Thus, the Berry phase for a massless Dirac equation is thus renormalized by the Semenoff mass, m;.
One regains the corresponding result for graphene by putting, my = 0.

A further (and more robust) check on the trivial nature of the spectral gap can be achieved by com-
puting the dispersion for a graphene nanoribbon. A nanoribbon is a system which is infinite along
one direction (say, x-direction), and finite along the other direction (y-direction). Usually, graphene
ribbons are recognized by their edges along the x-axis, for example, with zigzag and armchair edges,
and are referred to as the zigzag graphene nanoribbons (abbreviated as ZGNR) and armchair graphene
nanoribbon (AGNR). There is an important difference between the two. ZGNR is always metallic with
gapless edge states, while AGNR is conditionally metallic in the following sense. AGNR has been con-
ducting edge states when N = 3M — 1, where N is the number of lattice sites in the y-direction, and
M is an integer.

¥G-LL:LL Y202 Jequiedeq L0

We have taken a ZGNR, as shown in Fig. 3.24, with the total number of lattice sites along the y-axis
as 256, that is, N = 256 (so number of unit cells is 128) along the y-direction and a width given by
(% — 1) a (a: lattice constant = 1.42A), which upon putting N = 256 yields 383a or 543.86 A. We
finally write down the equation of motion, that is solving the Schrédinger equation, Hvy = E for the
amplitudes at the A and B sublattice sites below,

Exagn = — [t {1 n eH)"”‘} bin + tbk,,,_l] + myag, (3.137)
Exby, = — [t {1 + e(_l)n+lik} Ak + mk,n+1] — mrby- (3.138)

Along the x-direction, the ribbon is infinite, which is implemented in our numeric computation
by assuming the momentum along the x-direction, that is, kx to be a good quantum number.
The above equations are numerically solved. We show the results in Fig. 3.25 which clearly
show the absence of zero modes, which precludes its prospects as a candidate for a topological
insulator.
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FIG. 3.24

A schematic diagram of a semi-infinite nanoribbon is show. We perform our numeric computation of the edge modes
on a geometry such as this.

0.0 F o oo B 1

E/t

FIG. 3.25
The energy dispersion for a Semenoff insulator in a semi-infinite nanoribbon. A (trivial) gap is visible in the spectrum.
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3.8.4 Haldane (Chern) insulator

The second option of breaking the time reversal invari-
ance is more subtle, and yields a success in obtaining a
topological state. The idea involves including an imag-
inary second neighbour hopping that assumes opposite
signs depending on the direction of hopping. For exam-
ple, if an anticlockwise hopping (shown by the blue arrow
in Fig. 3.26) is assumed with a positive sign, then the
clockwise hopping (shown by red in Fig. 3.26) acquires
a negative sign. A formal way of writing this term is via

FIG. 3.26 H =t ", (3.139)
Complex next nearest neighbour hopping in the (i)
Haldane model.

where the sum runs over the next nearest neighbor
(NNN) sites (double angular bracket ((ij)) imply NNN
sites). v;; denotes the chiral nature of the hopping term where v;; = —v;; depends on the direction
of the hopping. The convention is v;; = +1 for clockwise hopping between the NNN sites, while
vij = —1 for anticlockwise hopping (see Fig. 3.26). The phase ¢'? or e~ depends upon the direction of
the hopping. Such a complex direction-dependent hopping breaks the time reversal invariance, since
the time reversal flips the direction of hopping. Only the imaginary part of the phase, ¢ is interesting.
Thus, to set the real part to zero, we may choose ¢ = 7. This is known as the Haldane model (Haldane,
1988), which Haldane had prescribed for achieving an anomalous quantum Hall state. It is anomalous
in the sense that the Hall effect is realized without an external magnetic field, or equivalently, without
the Landau levels. As we have seen earlier, and again shall see shortly that broken time reversal symme-
try implies a finite Chern number, a reason why these insulators are known as Chern insulators. The

¥G-LL:LL Y202 Jequiedeq L0

complex phases can be realized by applying a staggered magnetic field pointing at opposite directions
at the center of the honeycomb lattice relative to that at the vertices.

Introducing the NNN vectors, b;, as earlier, where, by = §; — §3, by = 83 — 81, and b3 =8; — 6>
where §; denotes the vectors connecting NN sites, the Hamiltonian can be written as (the NN tight
binding term is also there, but not written here),

3
H =t |:ei¢ D chxa)eatra +by) + €7y " el (rp)ep(rp + b,-)} : (3.140)

i=1 rA rp

In the momentum space, the full tight-binding Hamiltonian reads

3 3

H' (k) =2t |:cos ) Z cos(k - b;)1 + sin¢ Z sin(k - bi)oz:| . (3.141)
i=1 i=1

Until this point, the full NNN Hamiltonian is dispersive, that is, it depends upon the k-vector. However,

the low energy Hamiltonian, that is near the K and K’ points, is independent of k at the leading order,
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where the Hamiltonian can be shown to assume the form,

Hix = my 1, 04, (3.142)
where we have combined the forms at the two Dirac points by using 7, where 7, = £1,

mp = —3+/3 1, sin ¢. (3.143)
The above form can be easily obtained by noting that

3 3

3 3J3
k-b)=—- d E ink -b;)) = F—,
; cos( ) 3 an 2 sin( )=F 5

where k - b; = K. The readers are encouraged to fill up a few steps of algebra.

Therefore, in the leading order H” is independent of the momen-

tum k. The last term in Eq. (3.142) breaks the time reversal
symmetry. o ; does not change sign, but 7, being the valley degree
of freedom does. Thus, the energy spectrum opens up a gap at the
Dirac points for specific values of the complex second neighbor
hopping #,. In fact, adding a small ¢, yields a situation similar to
adding a small a Semenoft mass, m. However, when t, exceeds
a value of £my;/3+/3, the energy closes at one of the two Dirac
points (either K or K’), and opens up at the other Dirac point for

20 one of the signs mentioned above, say t; = mp/3+/3. The reverse
3 happens for t, = —my/3+/3 where the gap closes at the former
[ K M K [ Dirac point, while it opens at the other. We show this in Fig. 3.27.
k-space
In order to elucidate the topological properties, we repeat the
calculations same as that of the Semenoff insulator. The eigen-
FIG. 3.27

functions for the Haldane model can be written as

The energy spectrum of the Haldane model.

3-46

1+ B/E*
Wi = — o | 144
(@ NG <M JT = BJERe (3.144)
where p = %1, with the energy spectrum given by
E* = Jvig2 +vig2 + B2
This further yields a Berry curvature which can be shown to have the form,
2
QL — VP ;. (3.145)
2p [V%q,% +vig2 + ,32] ’
The corresponding Berry connection is hence given by
T, B éq
F=—=11 — ) — 3.146
Al =2 ( R M) a (3.146)
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where 8 = 34/3t,. The Berry phase, ®p using

@BIfAM~dq

yields

O =m1, 1—1—)\i . (3.147)
|EH|

Finally, the Chern number can be obtained by integrating the Berry curvature over the BZ,
C= f QH(q)d*q.

For the topological phase, that is for, |t,| > m1r/3+/3, one obtains a non-zero Chern number. Owing to
a non-zero Chern number (C), the model has earned the name “Chern insulator.” The Chern number
is the topological invariant which distinguishes the Semenoff insulator from a Chern insulator. For the
Semenoft insulator, C = 0. We show the phase diagram in Fig. 3.28, where the topological phases are
shown via the red (C = 1) and the blue (C = —1) colors, respectively, while the trivial region (C = 0)
is shown with a white color.

How do we know that this gap is topological in nature, instead of a trivial one as seen for a Semenoff
insulator? This is a valid question since the nature of the gaps looks fairly the same in Figs. 3.25 and
3.27, except that the spectral gaps carry the energy scales proportional to their masses, that is, m; for
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-T -1/2 0 /2 T

FIG. 3.28
The Chern number phase diagram for the Haldane model. The red region corresponds to C = 1, while the blue one
denotes C = —1. The white region outside the lobes refers to a trivial insulator with C = 0.
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the Semenoff insulator, and mp for the Chern insulator. In the following, we check for the chiral edge

modes in a semi-infinite graphene nanoribbon.

In a similar fashion as discussed in the context of a Semenoff insulator, the equations of the motion for
the amplitudes at the A and B sublattice sites can now be written as

Exag, = — [t {1 4 oDk } by + tbk,,,_l]

n ik k
-2t [COS(k + Pag, + V"2 cos (E - ¢> {akn—1 + ak,n+1}:|

(3.148)

Ekbk,n = — [t{l + e(_l)n+1ik} Ay + mk’”+1]
i k (3.149)
-2t [cos(k — )ben+ eV cos (5 + ¢) {apn—1 + ak,nﬂ}} :

E/t

» vV

V'S

u

FIG. 3.29

The energy dispersion for a Chern insulator in a
semi-infinite nanoribbon. The edge states are shown
via the red lines that split from the bulk. In the yellow
panel below, we show the chiral edge currents that
flow in opposite directions along these edge modes.
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In Fig. 3.29 we show the appearance of the edge modes
as tp crosses +mpy/3+/3 which are absent at small val-
ues of t,. The appearance of the edge modes implies the
emergence of a topological phase in the model, and there
occurs a phase transition from a topological-insulating
phase to that of a band insulator. Thus, we get a quan-
tum Hall-like state, with conducting edge modes (and
insulating bulk), albeit without an external magnetic field.

3.8.5 Quantum anomalous Hall effect

Finally, we shall present the results of the Hall conductiv-
ity. Here, non-zero Berry curvature yields a finite conduc-
tance. To remind ourselves, the full tight binding Hamil-
tonian [including the NN term which we have excluded
earlier in Eq. (3.141)] is written as (Mondal and Basu,
2021)

3
H=—t |:cos(k -81) + Z cos(k - 8,-):| Oy

i=2

3
—t |:sin(k -81) + Z sin(k - 8,-):| oy

i=2

3 (3.150)
+ |:A — 21t sin ¢ Zsin(k- vi):| oy

i=1

3
+ |:2t2 cos ¢ Zcos(k- Vi) :|I

i=1
= hyoyx + hyoy + hy0, + hol,
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where hy, hy, and h; represent the coefficients of the Pauli matrices o ;. The low energy expansion of this
Hamiltonian is convenient for our purpose. In fact, the computation of the Berry curvature is much
easier for the low energy Hamiltonian, than it is for the full tight binding one. Arriving at the low
energy Hamiltonian involves expanding the sine and the cosine functions to their leading order in the
vicinity of the Dirac points. Applying these simplifications, one arrives at

H=d-o, (3.151)
where the components of the d differ from those of h, and up to linear in k and k, are given by

3 3
(ke ky) = Ske dy(ke k) = Jky and - da(he ky) = —33

The above form facilitates computation of the Hall conductivity using the following form for the Berry
connection (Xiao et al., 2010),

d od  ad
] Q(E) = — x— . 3.152
Loy ] QE =55 (akx aky> (3.152)
i Finally, the Hall conductivity is obtained via
0.8
: ezf & rEQE (3153) o
Oy =— | — , .
s osl V=0 | e F k g
o Ot where the integral is taken over the BZ, and f(Ey) is the Fermi g
» distribution function. Since our calculations were at zero tem- %
0.47 perature, we set f(Ey) = 1. The Hall conductivity as a function 3
E ] of the Fermi energy is plotted in Fig. 3.30. A plateau at e?/h &
021 7 is clearly visible, which enunciates the quantization of the Hall
-1 0 1 conductivity. Further, the presence of only one plateau is con-
E it firmed by the value of the Chern number being 1 (or —1), and
also that there is only a pair of gapless edge modes. Thus, an
anomalous version of the Hall conductivity is indeed distinct
FIG. 3.30

from the usual Hall effect (in presence of an external magnetic
field). However, there are experimental realizations of systems
with higher values of the Chern number, besides being backed
up by a library of theoretical proposals.

The anomalous Hall conductivity is shown as a
function of the Fermi energy. There is a distinct
plateau in the vicinity of the zero-Fermi energy.

3.9 QUANTUM SPIN HALL INSULATOR

Let us set aside the complex second neighbor hopping due to Haldane for a moment, the Dirac points in
graphene are protected by time reversal and the inversion symmetries. The complex second neighbor
hopping among sites of the same sublattice breaks the time reversal symmetry as we have seen in the
preceding section. Kane and Mele (2005) demonstrated that it is possible to restore the time reversal
symmetry in the Haldane model if we include (real) spin in the Hamiltonian, thereby making two
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copies of the Haldane model, one for each spin. The inclusion of the spin opens up the possibility of
a spin-orbit coupling, which however, does not violate any of the fundamental symmetries that we
have discussed above. Moreover, the resulting insulating phase is absolutely new, and is referred to as
the quantum spin Hall (QSH) phase. It should be clarified that spin-orbit coupling is not an essential
ingredient for the realization of the QSH phase. However, to achieve a spin-polarized transport in a
material, which shall aid its usage for spintronic applications, spin-orbit coupling is essential. We shall
return to this discussion shortly.

Similar to the quantum Hall phase, the QSH phase is distinct from the trivial insulators by the presence
of the conducting states at the edges, which are typically protected by the 2, topological invariant.
However, these edge states are non-chiral, unlike the quantum Hall states. In fact, they are called helical
edge states, in the sense that there are two counter propagating edge modes at each edge, one for each
spin (see Fig. 3.31). Such conducting modes are immune to the single particle back scattering from
defects, disorders, or impurities as they are protected by time reversal symmetry. Thus, as long as there

a m/t=0.1

E/t

0 T 2 0 T 21
\/gkxa \/gkxa
C
<€ r
< p

— — T— — —— E— —)S

FIG. 3.31
The helical edge modes for the Kane— Mele model on a nanoribbon showing (a) topological, and (b) trivial phases. The
yellow panel in (c) shows the spin-polarized helical modes carrying current.
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is no time reversal symmetry breaking term, such as a magnetic impurity, the helical edge states are
robust, and the QSH phase persists.

It was initially thought that graphene would host a QSH-like phase, however it is almost impossible to
realize such a phase owing to an extremely weak spin-orbit coupling (Min et al., 2006). However, a the-
oretical proposal of a QSH phase happened soon after when Bernevig, Bernevig et al. (2006) predicted
that quantum wells made of CdTe/HgTe/CdTe host a QSH phase for a certain critical width of the
HgTe layer where the band inversion occurs. The corresponding Hamiltonian is called the BHZ model
(after Bernevig, Hughes, and Zhang). Quite fortunately, immediately afterwards, Molenkamp and
co-workers (Konig, 2007) experimentally achieved such a scenario where an inverted band structure
occurs, followed by the realization of the helical (instead of chiral) edge states.

In the following, we shall describe the Kane-Mele model for graphene, which serves as a toy model for
a QSH phase that hosts counter propagating edge modes one for each spin at each of the edges. Further,
these modes are found to be robust in the presence of a special type of spin-orbit coupling, known as
the Rashba spin-orbit coupling (RSOC). Here, as we shall show below, owing to the restoration of the
time reversal symmetry, the Chern number is zero. However, the helical edge modes are still protected
by bulk Z, topological invariant, which is a consequence of the Kramer’s theorem applicable to band
properties of fermions in a time reversal invariant system.

3.9.1 Kane-Mele model

¥S-LL:LL ¥20c Jequiedeq L0

The Dirac points have been shown to be protected by the time reversal and the inversion symmetries.
Breaking any one of them opens a gap at the Dirac points by splitting the degeneracy. Throughout our
discussion on graphene thus far, the spin of the electron never played a role.'® Kane and Mele included
the spin, thereby writing two Haldane Hamiltonians, one for spin-1 fermions, and the other for spin-|,
fermions. This results in

H=—t Z C:»racj'a + ity Z vijc;-ra (S2)apcip
(ij).or (ii)),ep

where H) is the usual NN tight binding term, and Hxu is like the Haldane term, now summed over
the (real) spins. Traditionally, this term is called the intrinsic spin-orbit coupling. S is the z-component
of the spin of the electrons, and (¢, B) denote the spin indices. S; is indeed the z-component of the
Pauli matrices 0. However, to distinguish it from the sublattice and the valley indices, we have written
it with S,. The NNN hopping term (the second term) describes a spin-orbit coupling that couples the
chirality of the electrons, described by v;; with the z-component of spin (S, = £1). It is as if the orbital
angular momentum vector L is associated with the chirality in a familiar L - S term, thus justifying its
identification as the spin-orbit coupling.

16 Chern number which is again analogous to the RHS of the Gauss-Bonnet theorem, namely the Euler-Poincare characteristics.
Hall angle is the angle that the resultant of the applied electric field vector (Ey) and the Hall field (Efy) makes with Ey.
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The second term, even though it resembles the Haldane term, respects all the symmetries of graphene.
Time reversal flips the direction of hopping, that is, reversing the motion, but simultaneously it also
flips the spin, thereby yielding another negative sign. This term respects all the symmetries of graphene.
It may also be noted that the term does not involve spin flip, and hence, the two bands of the Haldane
model (one for each spin) behave distinctly. In a mathematical sense, it means that the Hamiltonian
retains a block diagonal form, and hence, is easy to deal with. The bands corresponding to the up-
spin electrons are identical to the Haldane model (Chern insulators) discussed earlier. That is, they
correspond to the phase of the complex NNN hopping to be ¢ = /2, and hence have opposite masses
at the K and the K’ (remember the term mpyt,0, in the low energy limit of the Haldane model).
Furthermore, it has a Chern number C4 = +1. Please note that we have brought in a spin index to the
Chern number. For the down-spin electrons for which ¢ = —m/2, there will be an extra negative sign,
which implies reversed signs for my; at the K and the K’ points as compared to the situation for the up
spin. This yields C; = —1. Thus, the total Chern number, ) C; = 0, which is a consequence of the
time reversal symmetry.

A simple way of seeing that the Kane-Mele model is two copies of the Haldane model is that

[HKM> SZ] =0, (3155)

which signifies that Hgy decouples into Hamiltonian one for each spin. This situation is similar
to a Haldane flux ¢ = 7 for one type of spin, and ¢ = —7 for the other. The low energy Kane-
Male Hamiltonian can be shown to have a form (readers are encouraged to complete the derivation),
written as

Hxm = myo,t,S;
where the amplitude my = —34/3 t, is the Haldane mass as stated earlier.

Let us convince ourselves that time reversal is indeed a valid symmetry operation for the Kane- Mele
model. For spinor particles, we have seen that the time reversal operator 7 is written as

T =ioyK

where K is a complex conjugation operator. Here we write it as

T = iS,K.

However, since the time reversal transformations from one valley to another, an operator that can be
implemented by incorporating a 7, we can write,

T =7 iS)K.

It is fairly trivial to see that H gy is even under time reversal. Please recall that the time reversal inflicts
complex conjugation, flips the real spin, reverses the valley degree of freedom, and reverses the direc-

tion of the momentum k — —k. While the last one is not relevant, since the low energy Hamiltonian
is independent of k, the first two yields under the time reversal,

T: T,—> —T; S;— —S$,.
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However, o, does not change the sign as it denotes the sublattice degree of freedom. Hence, two
negative signs cancel out and we get Hxxs to be even under 7.

To remind ourselves on the other fundamental symmetry, that the inversion symmetry P, which yields
P: o0,—> —0,; T;,—> —Tz; S;—> S
Hence, Hxar respects all symmetries of graphene as claimed earlier.

Let us look at the topological phase transition in a little more detail. For this, it is instructive to look at
only one spin at a time, for example, S, = +1 (that is, up spin). The Hamiltonian, including a Semenoff
mass becomes,

Him (k) = hop (keoxt, + kyoy) + (mp + myt,)o, (3.156)
Explicitly writing the above Hamiltonian for the two valleys,

HEMK) = hvp(keoy + kyoy) + (mp + mp)o, (3.157)
Hin () = hvp(—keoy + kyoy) + (m — mi)o. (3.158)

Now consider two possibilities: (i) my > my and (ii) my > my. In the first case, consider the extreme
limits (for convenience), that is mj >> my where we have a trivial band insulator. Now consider the
other case where my > my: Nothing happens to ’HEM (k) in Eq. (3.157), but for H%\/l (k) in Eq. (3.158),
the gap closes and reopens. Thus, the insulating phase with mp > my is distinct from that of a band
insulator by a gap closing phase transition, which by definition is a topological phase transition.

¥G-LL:LL Y202 Jequiedeq L0

The situation for S; = —1 is identical, except that the sign of my changes which results in a similar
phase transition at the other Dirac point, that is, at the K point. Now defining,

P = o — (3.159)
yields, corresponding to,

m<0 C=1

~ 3.160
and m>0, C=0. ( )

3.10 BULK-BOUNDARY CORRESPONDENCE

Bulk-boundary correspondence (BBC) yields a guide to the phenomenology of topological insulators.
The topological invariants computed from the bulk properties corresponding to a particular phase
of the system uniquely reflect the conducting edge modes. Let us try to answer the question that we
have posed above, that is, how is 11 < 0 fundamentally different from that of 777 > 0? Again, consider a
semi-infinite nanoribbon, that is, infinite in x-direction and finite in the y-direction. The Schrédinger
equation with the Hamiltonian given earlier can now be solved for a semi-infinite system, as we have
discussed earlier.
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Before we discuss the numerical solution for a nanoribbon, let us explore an analytic solution. We can
assume that the The Hamiltonian has an edge at y = 0, so that the system exists for y < 0 and a vacuum
for y > 0. In addition, let us assume a particular value of k,, namely, k, = 0 (remember ky is a good
quantum number owing to translational invariance in the x-direction). Hence, we can write down the
Hamiltonian,

d
Hy) = _iVFUy@ + (my — mp)oy, (3.161)
where, i = 1 and my — my = m(y). The RHS of Eq. (3.161) resembles y-dependent potential energy

in a 1D-free Hamiltonian. Further, let us insist on

m@y) <0, fory<0 (3.162)
m(y) >0, fory> 0. '

Thus, as if there is a physical boundary between the topological and trivial states. Let us look at the
zero energy solutions.

Now make an ansatz for the y-dependent wavefunction (like variational wavefunction)
Y (y) =ioy V) ¢ (3.163)
where ¢ is a 2-component spinor. Putting Eq. (3.163) in Eq. (3.161)

d
(ide—f + n~1(y)0x) ¢=0 (using o0y0, = ioy). (3.164)
Ly
The formal solution for f(y) is obtained as
1 (7 ~
f=-— / dy’ m(y) (3.165)
vr Jo

where ¢ is assumed to be the eigenstate of o, with eigenvalue +1.

Also, the effect of io, = ¢/7% is rotated by 7 around the y-axis.

1 4 ~ / /
Y (y) = exp (—;fo m(y )dy> lox = —1). (3.166)

The exp(—% Jo m(»)dy) factor allows it to fall off the inside of the sample. So ¥/ (y) the edge is

maximum at the edges. Also, it is an eigenstate of oy as it has to mix the two sublattices by hopping

along the boundary. For the other Dirac point, the state traverses in the other direction. At larger

energies, €(ky) = —vrky, so that,

de (kyx)
ax

For # — —m, we have an electron traversing in the opposite direction at the other cone.

vr (orv) = —. (3.167)
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Finally, we show the numeric computation of the edge modes in the Kane-Mele nanoribbon by solving
the following sets of equations.

_1\n+l;
Bxagn = [ {1+ eV % by + thinin | 5o + mragaso

. _1ynt+lik | k
+2h [ak,n sink + D" 2 sin 3 {akn—1 + ak,n+1}] Sz

. 1 ERNESE n\/§ _1m
+ AR [{—5 (1+e< D )bk,n+bk,n+1}sy— {(—1) 7(1_e< 0 )bk)n}sxj|

(3.168)
Ekbk,n = [t {1 + 6(_1)nik} agn + tak,n_l] S0 — mIbk,nS()
n i k
+ 2t [hk,n cosk +eD"% cos E{Qk,n—l + a1} | Sz
1 n; 3 n;
+ iAR [{5 (1 + eV ’k) by + bk,n—1} Sy — {(—1)”1\/7— (1 — e ’k) ak,n} Sx:| .
(3.169)

Fig. 3.31(a) clearly shows the existence of spin-filtered edge modes in the topological phase, while they
are absent in Fig. 3.31(b). The presence of the helical modes carrying spin resolved currents at each
edge are shown in the yellow panel below [in Fig. 3.31(c)]. Each of the conducting modes denotes a
channel for each spin. Thus, the model supports spin-polarized conduction via the edge modes, while
the bulk remains gapped. It must be kept in mind that the Chern number is identically equal to zero

¥G-LL:LL Y202 Jequiedeq L0

in this case owing to the time reversal symmetry being intact. However, the topological invariant here
is the Z, index, which is non-zero.

3.11 SPIN HALL CONDUCTIVITY

We have seen that even though the individual conducting edge states have a non-zero Chern number,
the total Chern number, C still vanishes owing to the time reversal symmetry being present. Thus, the
charge Hall conductivity vanishes, that is, o, = 0. However, the spin Hall conductivity survives.

In order to calculate the spin Hall conductivity, let us rewind the Corbino disc argument due to Laugh-
lin. When a quantum of flux @ is added to the inner edge of the disc, an electron is transferred from
the inner to the outer edge of the disc. Say this happens for the up spin leading to a e?/h (charge) Hall
conductivity. For the down-spin sector, in the presence of ®g, an electron is transferred backward, that
is, from the outer edge to the inner one. Including both the spins, the total Hall conductivity is zero, as
demanded by the time reversal invariance. However, in the process, a net spin is transferred from the
inner to the outer edge. The corresponding spin Hall conductance is given by

Go=l(C 82 (3.170)
*T2e\h  h) 27 '
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The spin Hall conductance as a function of
the Fermi energy is presented for graphene in
Fig. 3.32. A plateau is in the vicinity of the
zero-Fermi energy (zero bias), a signature of the
quantized nature of the spin Hall conductivity,
is visible.

There is a subtle point about the intrinsic spin-
orbit coupling that deserves special mention,

10F L deseseeeed ] namely, the second term in Eq. (3.155) KM
1.0 05 0.0 0.5 1.0 Hamiltonian commutes with the Hamiltonian,
that is [Hgkum, S;] = 0. However, usually SOC
terms are spin non-conserving which means
they can mix different spins. Thus, in addition to
FIG. 3.32 the intrinsic SOC, other types of SOC can also
The spin Hall conductivity as a function of the Fermi energy is be present. One such SOC is the Rashba spin-
plotted. A quantization plateau in the vicinity of the zero-Fermi orbit coupling (RSOC), which, as we shall see

energy is clearly visible. . .
2 y different spin components.

E/t

3.11.1 Rashba spin-orbit coupling

In solids, free (or nearly free) electrons do not feel the strong attraction of the nucleus of their host
atoms. However, the electrons may still experience an electric field or a potential gradient due to inter-
nal effects. As we know, if the electrons experience a strong electric field of potential gradient, then
there is a possibility of emerging of a spin-orbit coupling. So if a potential gradient exists across the
interface due to the structural inversion asymmetry, there will be a spin-orbit coupling, and named
after its discoverer, E.I. Rashba, that is, Rashba spin-orbit coupling (RSOC) (Bychkov and Rashba,
1984). The importance of the RSOC lies in the fact that asymmetry in the confinement potential can
be varied by electrostatics means, allowing one to tune the RSOC strength by an external gate volt-
age. The strength of the RSOC also depends on the crystal structure in quantum wells and is largest
for narrow gap III-V semiconductors, such as InAs and InGaAs. In the following subsection, we shall
describe the RSOC in a continuum model. Later on, we shall extend our discussion on graphene.

RSOC yields couples the wave vector with the spin degrees of freedom of the electrons. Further, it leads
to the orientation of spins which point perpendicular to the direction of the electron propagation wave
vector. The free particle Hamiltonian including RSOC is described by

vxE ¢eE eER?

=—S. (VX2) = ——
c? mc? ( ) 8m2m?c?

Hrp=—u-B=—u- o -(kxz)=oar(zxk)- o, (3.171)
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where ap = %E is the strength of the RSOC, o is a vector of the Pauli spin matrix E = —VV is
the electric field along Z direction. g can be tuned using an external gate voltage. In the absence of any
Zeeman coupling, assuming elastic scattering and for 7 = Z (as per convention), the total Hamiltonian
for the electron is given by

2 2

H= é’_m ta(pxo) i= f—m + a(0xpy — ypx)- (3.172)
This Hamiltonian yields the following energy spectrum,
h2k?
Ek) = —= + & hlkl, (3.173)
2m

where |k| is the modulus of electron momentum with the plus and the minus signs denote two possible
spin directions. The associated wave functions are given by

Uy (x,y) = e’(kx’““ky)’)% < iiel—"‘)) , (3.174)
where 6 = tan_l(k),/kx). It is easily understood that the spin states are always perpendicular to the
direction of motion [Eq. (3.174)]. If an electron moves along the x-direction, the spinor part of the
eigenvector becomes (1, £i), that is, the spin up and the spin down are locked in y-direction. In con-
trast, if the electron moves along the y-direction, the eigenvectors become (1, £1), that is, the spin up
and the spin down states are constrained in the x direction (see Fig. 3.33).

In Figs. 3.33(c)-3.33(e), the energy spectrum as a function of momentum, k, (keeping k constant) for
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a 2DEG are plotted corresponding to the following situations. Fig. 3.33(c) is related to a free electron
in 2DEG where the spin degeneracy is present. Figure 3.33(d) represents the energy spectrum for an
electron in the presence of a magnetic field B, the spin degeneracy is lifted by the Zeeman splitting, and
the gap-separating spin up and spin down bands is equal to gupB where g is the Bohr magneton. Fig-
ure 3.33(e) presents a one-dimensional view of the energy spectrum for an electron in the presence of
RSOC. The spin degeneracy is lifted up, except for k, = 0. In this situation, the degeneracy is removed
without opening any gap. At k, = 0, the spin spectra are degenerate.

3.11.2 Rashba spin-orbit coupling in graphene
Writing the low energy Hamiltonian in the vicinity of the Dirac points for graphene
Hr = Ar(Sxgy — Syqx) (3.175)

which mixes up and down spins, which is why [Hr, S;] # 0. We prefer to call the strength as Ar here,
instead of g which was earlier used by us. The corresponding spectrum is given by

Eys(q) = u\/ q* + (mpy + SAr)? + S2g, (3.176)

where the indices © = %1 and § = £1 yield the conduction and the valence band spectra at the
K and the K’ points. As we have already realized that the spectrum is gapped in the presence of
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FIG. 3.33

(a) Three-dimensional energy spectrum of the Hamiltonian H [Eq. (3.172)]. (b) Fermi energy contours for the Hamil-
tonian . (c) Energy spectrum for a free electron. (d) Energy spectrum for an electron in the presence of a magnetic
field (Zeeman splitting). (e) Energy spectrum for an electron in the presence of Rashba spin-orbit coupling.

the intrinsic spin-orbit coupling (namely, the Haldane term) itself, and now when A is included,
it will start competing with mg when § = —1. Also, with increasing Ag, the energy gap decreases.
At mpy = AR, the spectrum consists of a Dirac cone with two gapped parabolic bands.

For the sake of completeness, we reiterate that the strength of RSOC is too weak to yield any observable
effects. For example, Ag ~ 107> K in graphene, while the kinetic energy is much larger. There are
techniques to enhance RSOC by using heavier adatoms, using an external gate voltage or bend the
graphene layer. The basic idea is to create a strong gradient of the electric potential. We shall not discuss
this any further and suggest more specialized reviews on the subject.
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3.11.3 Z, Invariant

We have seen that the Kane-Mele model preserves the time reversal symmetry, and hence the Chern
number, which is a Z invariant, would be zero. This requires us to look for a new topological invari-
ant, namely, the Z; invariant, which we shall discuss below. Now, on more general grounds, we need
to understand how the presence (or absence) of different discrete symmetries affects the topological
invariant of a system. In the appendix, we include a discussion on the “ten fold” classification scheme
that will aid us in decoding the nature of the topological invariant for a given system.

Since we shall include the Rashba SOC term in the KM Hamiltonian (see Eq. (3.154), and that it
respects all symmetries of graphene (for example, Chern number equal to zero), a new topological
invariant has to emerge. A priori, it is the Z, invariant that we are talking about, however we refer to
the topological classification by Altland and Zirnbauer in Altland and Zirnbauer (1997) and Ryu et al.
(2010).

Let us discuss the topological invariant relevant here, namely, the Z, index that characterizes the topo-
logical properties of the system. We shall only talk about an inversion symmetric system. For the
calculation of the Z; index, one may consider the Bloch wave functions, u;(k;) of the occupied bands
corresponding to a pair of points k; and k; in the Brillouin zone. These two points denote the loca-
tions of the band extrema (minima for the conduction band and maximum for the valence band) in
the BZ. The wave function at one of these points can be obtained by time reversing the wave func-
tion corresponding to the other one, that is, |u;j(k;)) = 7 |u;(kz)), and vice versa where 7 denotes

¥S-LL:LL ¥20c Jequiedeq L0

the time reversal operator. Since the Hamiltonian is time reversal invariant, we can decompose the
Hamiltonian, H (k) and its corresponding occupied band wave functions, |u;(k)) into even and odd
subspaces. The even subspace has the property that 7 |u;(k)) is equivalent to |u;(k)) upto a U(2) rota-
tion. Whereas, the wave functions corresponding to the odd subspace have the property that the space
spanned by 7 |u;(k)) is orthogonal to that of |u;(k)). Now, the Z; invariant can be calculated by con-
sidering the momenta which belong to the odd subspace. We compute the expectation value of the time
reversal operator between |u;(k)) and |u;(k)), namely, (u;(k)| 7 |u;(k)). This yields a matrix which is
antisymmetric. Hence, we have

(ui(k)| 7 uj(k)) = €;P(k), (3.177)
where €; is the Levi-Civita symbol and P(k) is the Pfaffian of the matrix defined as
P(k) = Pf [(ui(k)|©|u;(k))]. (3.178)

Fora2 x 2 antisymmetric matrix A;;, the Pfaffian picks up the off-diagonal component. Now the abso-
lute value of this Pfaffian is unity in the even subspace, while it is zero in the odd subspace. Therefore,
we dissect the BZ into two halves, such that the points k; and k; lie in different halves. Thus, the Z,
index can be computed by performing the integral,

1

Z__
27 mi

f dk - V log (P(k) + i8) , (3.179)
C
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FIG. 3.34
The phase diagram for the Kane-Mele model. The light blue
region corresponds to Z, = 1, which denotes a quantum

where § is the convergence factor and the contour
C is the circumference of the halved BZ discussed
above.

P | The variation of the Z, index is shown in the param-

eter plane defined by the Rashba coupling, A and the
Semenoff mass, m (both scaled by the NNN hop-

0 ping t2), which is shown to have a value 1 in the

light blue region, and vanishes outside in Fig. 3.34.

ot | The region with non-zero Z, invariant will host

spin filtered chiral edge modes, and will denote a
quantum spin Hall insulator, and the region outside,

—4 1 1 denotes a trivial insulator. Figure 3.34 denotes the

. . . . phase diagram of a quantum spin Hall insulator, in
-5.0 =25 0.0 2.5 5.0 the same spirit as Fig. 3.28 denotes the phase dia-

ml/ t, gram for a Chern insulator. To remind the readers,
the Chern number vanishes here due to the pres-
ence of the time reversal symmetry, thereby ruling
out the possibility of a quantum Hall-like state. How-
ever, a new topological phase emerges, known as the

spin Hall insulator. The white region outside the lobe refers QSH phase.
to a trivial insulator with Z, = 0.

3.12 SPIN HALL EFFECT

3-60

To shed light on possible applications, we give a brief description of the spin hall effect, and cursorily on
the subject of spintronics. The spin Hall effect (SHE) is the generation of the spin current perpendicu-
lar to the applied charge current. This leads to the accumulation of spins of opposite kinds at the edges
of the sample. The spin selection can be facilitated by a strong spin-orbit coupling (SOC). Strong SOC
may be intrinsic to doped semiconductors. The proposal has triggered intense investigation of the phe-
nomenon, and the lead has been taken by the first observation of SHE in n doped semiconductors (Kato
et al., 2004), and 2D hole gases (Wunderlich et al., 2005). Both the experiments measure directly the
spin accumulation induced at the edges of the sample through different optical techniques. However,
more quantitative and accurate estimates can be obtained by measuring the Hall angle. An excellent
review of the family of the spin Hall effects, comprising of SHE (discussed briefly above), inverse SHE
in which a pure spin current generates a charge current, and even an anomalous Hall effect (AHE) in
which a charge current generates a polarized transverse charge current in a ferromagnetic material can
be found in the review by Sinova et al. (2015).
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FIG. 3.35

Kerr rotation spectroscopy studies [taken from Stamm et al. (2017)] are shown. In (a) and (b), the Kerr rotation angles
O as a function of y-scan (in .m) are shown for certain values of the current density, j (jin 10° A/cm?) corresponding
to thin films of Pt and W, respectively. (c) and (d) show the linear variation of 6« with j for Pt and W. The slopes are
opposite in the two cases.

Let us briefly look at the early experimental determination of SHE. In the magneto-optical detection
of SHE in thin films of platinum (Pt) and tungsten (W), the generation of spin currents from charge
currents in the presence of spin-orbit coupling is shown via Kerr rotation spectroscopy (Zhong and
Forukas, 2008) in Stamm et al. (2017). In Fig. 3.35, the measured Kerr rotation angles, 6k as a function
of line scan (y) are shown for Pt and W samples of 10nm-15nm width at applied current densities in a
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particular range of values (see Stamm et al. (2017) for details). The Kerr rotation signals are discernible
for both samples, as shown in Figs. 3.35(a) and 3.35(b). Apart from the irregularities due to reflection
from the edges, 6k remains approximately constant with mutually opposite signs for Pt and W. In
Figs. 3.35(c) and 3.35(d), 6k as average values of the line scan are shown to vary linearly with the
current density j. The results are conclusive in demonstrating SHE using Kerr rotation spectroscopy
studies via spatial evolution of the spin dynamics. Possibly, the corresponding data for extrinsic SHE
(in presence of an external field) should have a stronger signal, but the above results still confirm the
possibility of realizing intrinsic SHE in experiments.

3.12.1 Spin current

Measuring the spin current is central to the study of SHE and hence to the emerging field of spintronics.
The spin current has to be contrasted with the charge current. The charge current density, j(r, t) is
given by

jer(r, £) = Re [ (r, ) (V) ¥ (1, )] (3.180)
which further obeys a continuity equation of the form,
dpel
V.jg=0 3.181
g (3.181)

where v is the velocity of the electrons (charges), and pel(r, 1) = ey (r, DY (r, 1) is the charge density.
The continuity equation in Eq. (3.180) is the consequence of the invariance of charge. However, in
the case of spin current, there is an ambiguity that arises from the fact that the spin is not an invariant
quantity in spin transport owing to the presence of the spin-orbit coupling (Sun and Xie, 2005) Usually
the spin current is defined as (v - s) which is a non-conserved quantity. However, in the classical sense,
just as the charge current density, the spin current density, j; (the subscript s refers to the spin) can be
written as

js=Re[y @DV -9y 1)]. (3.182)

For a generic Hamiltonian with spin-orbit coupling, it can be shown that,

Re(V " vaspyr) = Re(¥ savp ),
where o and B refer to the components in an orthogonal coordinate system. From js(r, t) one can get
the total spin current using,

A . T 1
Lo() = | dAG -js(x,t) = [ dA| Y (x, t)E(V -S4+ s-VY(r,t) |, (3.183)
where dA is the elemental area and & denotes a certain direction [that is, & € (X,¥,Z)].

This clearly tells us that the spin current density operator, j; is an anticommutator of {s,, vg} multiplied
by a factor of 1/2. In terms of the Pauli matrices,

o 1
Jsﬁ=;l{sa,w} (h=1). (3.184)
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Quite strikingly, unlike the charge current, which is odd under time reversal, the spin current is
invariant under time reversal operation. However, Ohm’s law (j = o E) holds for both j,; and j;. Since
the electric field, E is even under time reversal, the charge conductivity, o is odd, while the spin
conductivity, o is even.

For concreteness, let us specialize in a particular case, where we choose @ =z and g =y. The
y-component of the velocity is obtained from Hamilton’s equation of motion,

oH

_ o 3.185
gt apy (3.185)
Considering a Hamiltonian for a 2D electron gas with Rashba spin-orbit coupling,
P
H= ——Jpo-(@Exp) h=1, (3.186)
2m
which yields
vy =2 =+ ARor. (3.187)

Flnally, the spin current density assumes the form,
. 1
w= -0%Py: (3.188)

Just as an electric current induces a magnetic field, a pure spin current induces an electric field. The
magnetic moment due to the spin of the electron generates a current (Fisher, 1971) This can be under-
stood as follows. Since the motion of a single magnetic moment is equivalent to an electric dipole,
which creates an electric field in its vicinity, there will be an electric field due to the motion of a mag-
netic moment. An estimation of the electric field can be made as follows. Consider two equal and
opposite magnetic charges £¢,, separated by a small distance d moving in opposite directions. Such
“moving” magnetic dipoles whose magnetic moments are given by m = (q,,d)t (t denotes the polariza-
tion direction) constitute a spin current. Each member of the group, that is a single magnetic moment

¥G-LL:LL Y202 Jequiedeq L0

will generate a magnetic field. This magnetic field in turn generates an electric field, which is given by

1 /. 3RR-
E~ —/dV]s —( (R2 ")>, (3.189)

where dV is an elemental volume. This electric field is quite tiny in magnitude, yet can produce
measurable effects (Shen, 2008)

Just as a current carrying wire experiences a force in a magnetic field (~j x B), spin current experiences
aforce ~js x E.In spite being small, it is able to control the motion of a spin, including zitterbewegung
(jittery motion) of the Dirac electrons. Thus, in semiconductors, where the spin-orbit coupling can be
fairly strong, or can even be enhanced by external means, electrons with opposite spins are deflected
along the opposite edges of the sample. Thus, a spin unpolarized (paramagnetic) system can yield a
pure spin current perpendicular to the direction of the electric field.
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Over the last decade and a half, studies concerning the spin current and its application to spintronics
in terms of efficiently generating, manipulating and detecting the spin accumulation phenomena have
received a plethora of attention. Some progress has also occurred from the device fabrication perspec-
tive, via techniques such as spin injection. A major advantage in dealing with the spin current lies in
the non-dissipative (or very less dissipation) nature which arises owing to the time reversal invari-
ance of the spin current. This property is in direct contrast with that of the charge current. A simple
way to understand the role of time reversal invariance in the phenomenon of dissipation that can be
understood with the aid of a damped harmonic oscillator, whose Hamiltonian may be written as
_r

2m
where the ax denotes the damping and breaks the time reversal symmetry. Without this term, the
time reversal invariance holds and the scenario is non-dissipative. Thus, a time reversal invariant sys-
tem presents a non-dissipative scenario, which is precisely the main advantage of the spin transport
phenomena.

1
H + Ekx2 + ax,

3.13 APPENDIX

3-64

3.13.1 Periodic table of topological materials: Ten fold
classification

The ten fold symmetry classification of topological matter involves categorizing topological insulators
and superconductors on the basis of the presence or absence of three discrete symmetries. These sym-
metries include time-reversal symmetry, particle-hole (or equivalently charge conjugation) symmetry
and chiral symmetry. In order to decide which class a material falls into, we investigate which of the
aforementioned symmetries, the material hosts.

It is important to understand the inherent physical meaning of these non-spatial symmetries in math-
ematical terms. We have done this earlier in Sec. 3.2, but wish to repeat here some of the essential
properties for the discussion to be self-sufficient in this appendix. The time reversal operator has the
effect of reversing the motion of a particle, i.e., it transforms k to —k. If the evolution of a system under
the action of the time reversal operator remains the same, the system is called time reversal symmet-
ric. Mathematically, the time reversal operator is represented by K (for spinless) or io'), K (for spinor
systems). Here, K represents the complex conjugation operator and o, is the y-component of the Pauli
matrix. The charge-conjugation operator, as the name suggests, physically represents replacing a par-
ticle with its conjugate within the system. If under such a replacement, the system remains invariant,
we call it to be particle-hole symmetric. Importantly, the time reversal symmetry and the particle-hole
symmetry are antiunitary symmetries which square to £1. Lastly, there are systems which are nei-
ther symmetric under time reversal nor particle-hole symmetries. However, if the motion within the
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system is reversed and the particles are replaced by their conjugates simultaneously, invariance is re-
established. Such systems are purely chiral systems. Chiral symmetry is represented as the product of
the time reversal and the particle-hole symmetry. It is difficult to understand the physical implications
of chiral symmetry. However, in models where a sublattice structure is apparent, we can associate chi-
ral symmetry with the sublattice symmetry. This means that if the two sublattices of the system are
interchanged, the physics remains invariant.

3.13.2 Mathematical representation of the symmetries

We consider a Hamiltonian H(k) in the k-space. Let us recall what various symmetries do
to the Hamiltonian, . The time reversal symmetry implies that 7H (k)7 ! = H(—k). For
a particle-hole symmetric system, CH(k)C~! = —H(—k). Lastly, for a chiral symmetric system
SH((k)S™! = —H(k). To understand the physical picture behind time reversal, it could be interest-
ing to study its effect on the time evolution operator 7!
know that time reversal has the effect of complex conjugation, on spinless systems, that is,

TiT ' = —i. (3.190)

, 'H being the Hamiltonian for the system. We

Hence, the time evolution operator looks like
Tl = o7t = (D, (3.191)

From this expression, it is apparent why the time reversal operator has the name that it does. It changes
t to —t that result in the particle moving in the opposite direction. Another way to study the sym-
metry operators could be to talk in the language of second quantization, or more specifically, the
creation-annihilation operators. Charge-conjugation causes a creation operator to transform into a
superposition of annihilation operators and vice versa. Time reversal on the other hand only has the
effect of complex conjugation of the coeflicients.

TyaT ' =) (Up)apvs
B
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Ty T =) (Ur)pavs

B
(3.192)
CYaC™' =) (Up)asyf
B
CyiCt =) (Uo)avs.
B

The classes are differentiated on the basis of whether the time reversal and charge-conjugation oper-
ator square to 1, —1 or 0. This gives a total of 9 separate classes. However, as previously discussed,
there is another class having only the chiral symmetry. This corresponds to purely chiral systems and
constitutes the tenth class in the classification scheme. Two broad sub-groups are apparent from this
table. The first one is the purely chiral AIII group, which only hosts chiral systems. The second group
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Table 3.2
Table for ten fold symmetry classification. Different symmetry classes are
indicated in the bottom row (Ryu et al., 2010).

BDI CI Al BWl Ci Al D C A Al
T 1 t 1 -1 -1 -1 0 0 0 0
C 1 -1 0 1 -1 1 -1 0 0
S=7C 1 10 1 1 0 0 0o 0 1

is the D group, which only has charge-conjugation symmetry. This group hosts systems which are
superconducting. Also, there are classes like BDI which hosts both chiral and superconducting systems.

Next, we venture upon understanding how this classification originated and wherein lies its impor-
tance. The idea behind the tenfold classification is entirely mathematical and was introduced by Elie
Cartan, way back in the 1920s. Cartan’s classification of N x N Hermitian matrices into 10 different
groups bears one-one correspondence with this 10-fold fermionic symmetry classification. The form
of classification that we use today was introduced by Altland and Zirnbauer (1997) The importance of
this classification lies in the fact that corresponding to every class and pertaining to the dimension of
our system, we may or may not have a distinct topological invariant. This invariant is a signature of
the bulk-boundary correspondence and hints towards the presence of edge characteristics that make
our system topologically non-trivial, and hence interesting.

The Z type invariant refers to an integer classification, whereas the Z, invariant refers to a binary
classification. A zero (0) at any position in the table refers to the fact that no topological insulator or

Table 3.3

Table for the topological inva-
riants in different symmetry
classes (Ryu et al., 2010).

superconductor can be found corresponding to that class and dimension. It
would be interesting to associate a few known examples with the given table of
invariants. A 2D system belonging to the class “A” resembles our well-known
integer quantum Hall system, thereby making the Chern number be a Z invari-
ant. From the table, we find that it has a Z type topological invariant. This, as

AZld ! 2 3 we know, is indeed true and the Z invariant can be directly associated with the
A 0 Z 0 conductivity of the system. Another example would be the quantum spin Hall
Al Z 0 Z  system, which belongs to the class AIl in 2D. It is characterized by a Z, topolog-
Al 0 0 0 ical invariant. Similarly, a 1D SSH chain belongs to the BDI class. A 1D spinless
BDI Z 0 0 Kitaev chain with p-wave superconducting correlations time reversal, chiral and
D Lo Z 0  particle-hole (or charge conjugation) symmetries and hence belongs to the BDI
DIll Ly Iy Z  class as well with Z being the topological invariant.

é:ll ; ZOZ Zz The tenfold classification of symmetry shows certain interesting trends when
c 0 7 0 studied carefully. In the given Table 3.4, we find that, corresponding to every
ol 0 0 7 dimension, there are only 5 classes which host topologically non-trivial materials.
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Furthermore, for every class, there exists a periodicity of 8. The invariants repeat
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Table 3.4

Periodic table of topological insulators and superconductors.

AZ/d 0 1 2 3 4 5 6 7 8 9
A Z 0 Z 0 Z 0 Z 0 Z

Alll 0 Z 0 Z 0 Z 0 Z 0

AZ/d 0 1 2 3 4 5 6 7 8 9
Al Z 0 0 0 Z 0 Zy Zy Z

BDI 7o 7 0 0 0 Z 0 Zs Zy

D Zs Zs Z 0 0 0 Z 0 7y

Dl 0 Zs Zs Z 0 0 0 Z 0

All VA 0 Zy Zy Z 0 0 0 Z

Cll 0 Z 0 Zy Zy Z 0 0 0

C 0 0 0 Zy Zy Z 0 0

Cl 0 0 0 0 Zy Zs Z 0

themselves after every 8th dimension. Additionally we find that, if the topological invariant for a
particular class in the nth dimension is known, we know the invariant for the (n + 1)th dimension
in the successive class. The origin of the above periodicities can be understood from a discussion on
group theory.

¥G-LL:LL Y202 Jequiedeq L0

3.13.3 Summary and outlook

Quantum Hall states are the first examples of topological insulators which demonstrate completely con-
trasting electronic behavior between the bulk and the edges of the sample. The bulk of the system is
insulating, while there exist conducting states at the edges. Moreover, the Hall conductivity is quantized
in units of a universal constant, ¢?/h. It became clear later on that the quantization is actually related
to a topological invariant known as the Chern number. The geometric interpretation of this invariant
is provided by the Gauss-Bonnet theorem, which relates the integral of the Gaussian curvature over
a closed surface to a constant which simply counts the number of “genus” (or holes) of the object. In
solid state physics, the closed surface is the Brillouin zone and the Gaussian curvature is analogous to a
quantity known as the Berry curvature. This brings us to the study of Berry-o-logy where the topolog-
ical invarijants are defined in terms of the Berry phase (a geometric phase picked by a particle during
a complete revolution), Berry connection (analogous to the vector potential in electrodynamics), and
the Berry curvature (similar to a magnetic field). The machinery is applied to a simple case, in both one
and two dimensions, such as an SSH model and graphene. The topology in the SSH model is induced
by a dimerized hopping with two atoms per unit cell, and is stabilized by the chiral symmetry of the
Hamiltonian. As long as the chiral symmetry is intact, and when the intra-cell hopping amplitude is
greater than the inter-cell one, the model displays localized zero modes at the edges. The topological
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phase is further characterized by a finite value of the winding number. A similar scenario is presented
by the Kitaev model, which involves spinless fermions coupled by p-wave-superconducting correla-
tions on a tight binding chain. The topological property of the model is protected by the particle-hole
symmetry that is inherent to superconductors. Further, similar to the SSH model, the topological phase
is characterized by zero modes at the edges of an open chain, and a finite value for the winding num-
ber. Interestingly, the zero modes is two-fold degenerate, which are inseparable and differ by fermion
parity. Moreover, these states have a formal similarity with the Majorana fermions which correspond
to their own antiparticles. Further, the symmetry aspects, such as the inversion symmetry (parity),
time reversal symmetry are discussed with a view to explore topological properties of graphene. The
bulk-boundary correspondence and the existence of the edge states in a nanoribbon geometry are
investigated, which serve as an acid test for the topological state. Eventually, following Haldane’s con-
jecture, a topological state emerges by breaking the time reversal symmetry where the system acquires a
topological gap at the Dirac points. The presence of such a non-trivial gap is confirmed via the presence
of chiral edge states in a ribbon. Further progress is reported in terms of the proposal of a scenario in
which the broken time reversal symmetry is revoked using two copies of the Haldane model for each
type of spin of the carriers. This is called the Kane-Mele model, which respects all the symmetries
that graphene has. Yet there is an important difference which can be brought about by adding the
Rashba spin-orbit coupling, which may be weak, but inherent to the two-dimensional systems. The
Rashba term leaves the time reversal symmetry intact. Thus, the Kane-Mele model in the presence
of the Rashba spin-orbit contribution yields yet another distinct topological state of matter, namely,
the quantum spin Hall phase. Owing to the time reversal symmetry is intact. the Chern number van-
ishes, although the system is characterized by a new topological invariant, known as the Z; invariant,
which yields the spin Hall conductivity to be non-zero. The prospects of manipulating the spin degree
of freedom give birth to an emerging field known as spintronics. The fact that the spin current obeys
time reversal symmetry, one gets non-dissipative transport and thus holds the prospect of transmit-
ting information with no (or very little) decay. Thus, the spin transport mechanism does not have any
associated Joule heating phenomena. Finally, we have included a brief discussion on the classification
of the topological materials according to the schemes introduced by Altland and Zirnbauer. This aid
us in identifying the class of the topological systems discussed in this chapter and the corresponding
topological invariants.
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CHAPTER

/A SUPERCONDUCTIVITY

4.1 INTRODUCTION

In solid state physics, many of the phenomena that we are familiar with occur because of the inter-
particle interactions among the charge carriers, thereby resulting in an ordered state. The effects of
such interactions are best perceptible at low temperature. With an increase in temperature, the ther-
mal motion of the carriers gains prominence, and out do the ordering process. Superconductivity
denotes one such ordered phase of matter which stabilizes at low temperature and vanishes when the
temperature is increased beyond a certain critical point.

In the year 1908, Kamerlingh Onnes (1911) at the low temperature lab in Leiden, Netherlands suc-
cessfully liquified Helium (He). At normal atmospheric pressure, the boiling point of helium (He) was
found to be 4.2 K, thereby making the exploration of material properties feasible at low temperatures.
Studying the electronic conductivity (or resistivity) of metals seemed like a normal choice, as metals
are primarily characterized by their electrical resistance. Measurements performed at low temperatures
may yield the following possibilities:

¥G-LL:LL Y202 Jequiedeq L0

i. the resistance vanishes gradually with decreasing temperature.
ii. It may result in a small but finite value at a very low temperature.
iii. It may have a minimum at low temperature, and finally show an upturn before diverging at very
low temperatures.

In particular, the last possibility receives support on physical grounds in the sense that at sufficiently
low temperature, the carriers are likely to be bound to their respective atoms. Thus, their ability to
move around and contribute to the conductivity vanishes.

K. Onnes realized the importance of studying the conductance characteristics of high-purity metals
at low temperatures. Initially, he started with gold (Au) and platinum (Pt), mainly because they are
noble metals and available in pure form. However, he shifted his attention toward mercury (Hg) which
can be obtained in a highly pure form via multiple distillations. Precisely at the boiling point of liquid
He, he found that the resistance of an ultra-clean Hg sample sharply vanishes, and at further lower
temperatures, the resistance becomes immeasurably small (see Fig. 4.1). The temperature at which
the resistance disappears is called the transition temperature, T,. Below that, a new state of matter
emerges, which either completely expels the magnetic field or in some cases, traps magnetic flux having
values that are in integer multiple of the flux quantum, ®( (®¢ = 2.07 x 10~> Wb). This was indeed
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Modern Perspectives in the Study of Electronic Systems, Saurabh Basu and Sourav Chattopadhyay
© 2022 AIP Publishing, published by AIP Publishing



0.150
0.125 / g
0.10 :
. 5
=t ' Hg
£ 0075 ;
3 :
~ '
0.05 :
0.025 ;
1075Q¢
099 5o 410 420 4.30 4.40
Temperature (K)
FIG. 4.1

The fall of the electrical resistance of Hg (in €2) as a func-
tion of temperature is shown. Near 4.2 K, there is a sharp
fall in resistance, below which the resistance becomes
almost zero (After K. Onnes original experiment Kamer-
lingh Onnes, 1911).

a surprise, since laws of electromagnetic induction pre-
dict that ideal conductors retain, and not expel the
magnetic field that is trapped inside.

A complete theoretical understanding of the micro-
scopic phenomena had to wait for about half a century
until the theoretical derivation by Bardeen, Cooper and
Schrieffer (BCS) in 1957 came into existence, which
was awarded the Nobel prize in 1972. They realized
that at the transition point, the electrons pairwise con-
dense into a new phase, which is a coherent matter wave
with a well-defined phase relationship among the pairs.
These electrons form pairs mediated via quantized lat-
tice vibrations, namely, the phonons.

For nearly eight decades after the experimental discov-
ery of superconductivity in High in 1908, it remained
low temperature phenomena until Bednorz and Miiller
discovered the onset of superconductivity in the copper
oxide planes at larger temperatures. As years passed by,
the discovery of a large number of copper oxide super-
conductors were made with larger and larger critical
temperatures, which were thought to have far-reaching
consequences in terms of their industrial applications.
There was moderate success on that front, however
there were many surprises, which arose as the experi-
mental data started coming in on the physical proper-
ties of these superconductors. Quite likely, the normal
state! of these copper oxide materials is very different

from those for conventional superconductors, that are completely understood within the BCS theory.
Since the beginning point of building up a theory, which in this case is the normal state, is missing, or to
the least, is unlike the conventional metallic state, a complete understanding of these superconductors

remained elusive.

4.1.1 Historical developments

Empirical rules have been suggested from time to time to enable the identification of possible new
superconducting materials. The rules proposed by Hulm and Matthias (1951) in the sixties are espe-
cially noteworthy. One of them is based on the number of valence electrons. It is found that the

1 The normal state refers to the metallic state which is expected as superconductivity is lost.
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The rise in the superconducting transition temperature, T, with time since the discovery is indicated in the schematic
plot.

materials with on an average 5 to 7 electrons per atom show relatively high T.s. For example, RuMo
with an average of 7 electrons show T, = 10.6 K, whereas, ruthenium (Ru) with an average of 8 elec-
trons show T, = 0.5 K, and molybdenum (Mo) with an average of 6 electrons show T. = 1 K. Later
on, a structural dependence is seen on T,. A-15 structure or the -tungsten shows high T.. V3Si and
NbsGe are examples of this structure and they show T, = 17.1 K and 23.2 K, respectively. For quite a
few years, this 23.2 K barrier has never been crossed. Among the organic materials, the intercalated
compounds of graphite (e.g. Cs K) become superconducting below 1 K, while K3Cgp has T, ~ 18 K.
Generally, alkali salts of Cgp have been found to be superconducting with T, ranging from 18—35K
(see Fig. 4.2). In Fig. 4.2, a steady rise of T, over a century has been depicted.

If we refer to the periodic table and consider the top row of the middle section of the periodic table, that
is, group IVB (Cr, Mn) to group VIII (Fe, Co, Ni), they have strong magnetic character. While along the
same row, Ge, As, Se, or some of the neighboring elements show superconductivity (see Fig. 4.3). Since
both the phenomena have electronic origin, and their physical properties are quite distinct, it forces
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FIG. 4.3

The superconducting elements are shown in the periodic table. The ones shown in blue demonstrate superconductivity
at ambient pressure, while those in green become superconducting at high pressure.

us to think about what could be the genesis of this difference. This probably lies in the extent of the
wavefunction of the electrons: for magnets, the wavefunction has a small spatial extent, that is spread
over a smaller number of atoms, while for superconductors, the spread is large, thereby promoting
pairing phenomena between the carriers.

4.1.2 Physical properties

Before we proceed to discussing the physical properties of superconductors, we wish to make the plans
clear for our upcoming discussion. We shall mainly mention the salient features of superconductors
that make them worthy of studies. However, most of the ideas and concepts are introduced with a
minimal amount of derivation. For a thorough understanding of some of the properties, one has to
wait for the BCS theory, a topic that we discuss somewhat elaborately afterwards.

Let us rewind the ongoing discussion for more detail. The resistance of a metal drops to zero very
sharply, within a temperature window of AT ~ 107> K below a certain critical temperature, T;.The
superconducting state is characterized by zero electrical resistance. In addition, there is no change in
the crystal structure, as verified by x-ray diffraction above and below the transition temperature. Thus,
to list out the properties, the state is characterized by

¥G-LL:LL Y202 Jequiedeq L0
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i. infinite electrical conductivity, that is, 0 — oo0.
ii. Finite current density, j = finite.

ili. The specific heat as a function of temperature shows a jump at T'= T, and thus the transition to
the superconducting state involves latent heat, and hence, the transition from the superconducting
state to the normal state is a second-order phase transition.

iv. Vanishing values of the electric field, E — 0 inside the superconducting sample.

v. Constant magnetic field, B — constant inside a superconductor.

Clearly, the last two statements defy the laws of classical electrodynamics. This can be understood in
the following way. Using In Ohm’s law, one can write, j = o'E for j having a finite value and ¢ — oo,
E must be zero. Hence, using Maxwell’s equation,

0B

VX E= _E or, B = constant.

4.1.3 Meissner effect

The complete and sudden vanishing of the electrical resistance below a certain temperature raised a
lot of questions. Some physical phenomena that were operative to render electrical resistance above
T, were suddenly becoming ineffective. Meissner and Ocshenfeld (1933) meanwhile discovered that a
superconductor completely excludes an external magnetic field. They measured the magnetic field dis-
tributed outside the superconducting materials [such as lead (Pb) or tin (Sn)] which are cooled below
their respective transition temperatures while the magnetic field is switched on. The corresponding

¥G-LL:LL Y202 Jequiedeq L0

results could not be explained by superconductors being just resistance-less metals.

Above a certain critical magnetic field (of the order of a few Oersted), there is no expulsion of the
magnetic flux, where superconductivity disappears and the material reverts to its normal resistive state
and the magnetic field fully penetrates through it. This also endorses a close link between magnetism
and superconductivity.

The exclusion of the magnetic field from a superconductor takes place regardless of whether the mate-
rial becomes superconducting before or after the external field is applied. At equilibrium, the external
field is canceled in its interior by screening fields produced by the skin current.

The total exclusion of the magnetic field from inside superconductors assigns a property known as
perfect diamagnetism. It can be understood as follows:

B = wo(Hext + M).
Since B = 0 inside a superconductor, the induced magnetization M cancels the external field, Hy;.
Thus, the magnetic susceptibility, x becomes,
M
Hext

Thus, no known material is more diamagnetic than a superconductor. The typical diamagnetic suscep-
tibility of metals is about 107> — 107, Thus a usual diamagnetic material only expels a small fraction

= -1

X:
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(about 107°) of the external field, while a superconductor does it completely. However, even if we claim
that the magnetic field is totally expelled from a superconductor, the fact is that it enters only up to a
certain distance, called the penetration depth.

4.1.4 Perfect conductors and superconductors

In order to differentiate a perfect conductor (which may show a gradual vanishing of the resistance as
T — 0), and a superconductor, we resort to field cooled (FC) and zero field cooled (ZFC) techniques
that are schematically shown in Figs. 4.4 and 4.5.

.

7
%

NN

o

Cooled l

b
@ Cooled

FIG. 4.4
The zero field cooled (left panel) and field cooled (right panel) cases for a perfect conductor are shown schematically.
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FIG. 4.5
The zero field cooled (left panel) and field cooled (right panel) cases for a superconductor conductor are shown
schematically.

If we consider cooling perfect conductors and superconductors in the absence of a magnetic field (left
panels of Figs. 4.4 and 4.5), they behave identically when an external magnetic field is applied. That is,
they expel the field by developing a surface current, which prohibits the field lines from penetrating
beyond a certain distance (discussed below). However, in the presence of an external field, the behavior
of a conductor and that of a superconductor are quite distinct. When a conductor is cooled to a perfect
conducting state in the presence of an external field, the flux lines get trapped inside, while that for
a superconductor, the flux lines are expelled. Upon the withdrawal of the field [panel (g) in Figs. 4.4
and 4.5], a superconductor is left with no memory, where for a perfect conductor, the flux lines form a
loop, and thus retains the field in its memory.

Superconductivity ~ 4-7
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4.1.5 Electrodynamics of superconductors: London theory

Before the discovery of the Meissner effect in superconductors, Becker et al. (1933) analyzed the elec-
trodynamic behavior of perfect conductors using a simple free electron model. According to this,
the electrons accelerate under the application of an electric field, E. The argument for resistance-less
motion is that whenever the electrons faced a resistance, the applied electric field would accelerate
them steadily according to Newton’s laws,
Lav

m E =
where m*, e* are the effective mass and the net charge, respectively. It was found later that e* = 2e and
m* = 2m which are subsequently called super-electrons or Cooper pairs. If there are n; numbers of
super-electrons moving with a mean local velocity v, then the super-current density is given by

¢“E (4.1)

Js = nee"vy = —ngle”|vg (4.2)

The minus sign signifies that the super-current moves in an opposite direction to that of the super-
electrons. Substituting Eq. (4.2) in Eq. (4.1) we get
01,
Lot
where, A = /Mnm—(*e*)z. Ar has the dimensions of length. Equation (4.3) is called the first London
equation. Taking the curl of both sides of Eq. (4.3),

Aza(Vx])—VxE——aB (4.4)
HOAL s v T ot '
Using the following Maxwell equation:

oA =E, (4.3)

JE
V x B = wo€o—— + 1ol

ot
we have
, 0 0B
M—(NVx(VxB)=——
ot ot (4.5)
122 B_B — B_B .
L at at’

This implies that the rate of the B field (or the B field itself) will fall off exponentially inside a super-
conductor to a trapped field By. This clearly contradicts the Meissner effect, that is, the magnetic field
inside the specimen is zero, irrespective of the initial condition.

Thus, the brothers London and London (1935) suggested that since the macroscopic theory of a perfect
conductor makes correct predictions about superconductor for the special case By = 0. Thus, it might
be reasonable to assume that the magnetic behavior of a superconductor may be correctly described
according to the Meissner effect not only to ‘fi—? but also to B itself, that is

}VB=B [V xB=pug

4.6
which implies, B = —uoA?V x Js. (4.6)
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By introducing a magnetic vector potential defined by V x A = B and choosing a proper gauge, such
as a transverse gauge, namely, V - A = 0, the current density can be written as

1
nys;
This is called the second London equation, and is reminiscent of Ohm’s law. This is of course true for
simply connected superconductors. The gauge condition demands

V-A=0 = A-n=0

]sz_

A [B=V x Al (4.7)

on the boundary surface of the superconductor, # being the unit drawn normally.

Now, using Maxwell’s equation,

B
VXE=——
ot
d
V x <E - MOA%%) =0 (4.8)
9Js
or, E—porf— =V
MoAT 97 ¢ c
¢ is a scalar. One important comment is due here. There is no component of V¢ in the direction of Js, g
that is, El
Vo-Js=0 (49) 3
asJs - E = 0 from first London Eq. (4.3). This is g
B correct as otherwise it would mean energy dis- 2
sipation in a constant magnetic field, which we
; know to be incorrect as it violates the conserva-
. tion of energy.
j 4.1.6 Penetration depth
: Let us prepare a setup to solve Eq. (4.5) for a
- superconductor. Refer to Fig. 4.6 where a semi-
. : infinite superconducting sample is placed along
v [ penctration Distance  the y-axis. We are interested in studying the
depth A variation of the magnetic field only in the x-
/ direction along which it has a finite width. The
axis is shown along with the figure.
: % gith the fi

In Fig. 4.6 the variation is expected to be
FIC. 4.6 along x-direction, we can convert it into a one-
Schematic demonstration of the behavior of an external magnetic dimensional equation, that is by assuming,
field is presented. The field strength falls by a factor 1/e inside the 9B 9B
superconductor, which is defined as the penetration depth. B_y = 8_z =

Superconductivity ~ 4-9
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which yields,

dB; 9% (dB,
— =0 .
dt dx? \ dt
Integrating over time yields,
82

Bx = Olex

B(x) = Bexte_x/)%

where an exponentially growing solution, even though mathematically admissible, is dropped, and

_ 52
a=A7

A1 is of the order of 500 A for commonly known superconductors. This is how the magnetic field varies
inside a superconducting sample. At x = 0, the value of the magnetic field just outside the surface is
Bext, which decays exponentially inside the sample.

4.1.7 Flux quantization

In the mid-1930s (London and London, 1935) it was realized that superconductivity is inherently a
quantum phenomenon that manifests at macroscopic scales. The description thus requires a wave-
function which can be written as

Y (r,t) = [yle” (4.10)

where 6 is a real scalar function representing the phase of the wavefunction and |y |> = ng, where
is the density of super-electrons. The canonical momentum for a particle of charge e* and mass m* in
a magnetic field is given by

p = m*vs + e"A. (4.11)
Putting p = iV and writing down the Schrodinger equation,

RVOY = (m*vs + e*A)yr (4.12)
yields,

h ).

V6 = poAfis + A, (4.13)

where A; = /MJ’;—*E*Z is the London penetration depth (described later), and j; is the super-current
S

density defined via, j; = nse*v;. Since A enjoys gauge freedom, the (local) phase of the wavefunction
can be changed in the following manner, so as to keep the velocity unchanged.

e*
0—0 =6+ —A.

It may be noted that Eq. (4.13) is consistent with Maxwell’s equation, which can be checked by taking
a curl of the equation, and noting that B = V x A. Now taking a derivative of Eq. (4.13) with respect
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to time, one gets,

Iy (3—9) = Molz% L oA (4.14)
et \ ot Lat * at’ '
Using the first of the London equations, namely,
djs E
at ;LOAIZ_
one arrives at
Mox,{% =E. (4.15)
Hence, with
E=-V¢— A
at
one gets,
I 36
il —¢. (4.16) )
Thus, the time variation of the local phase denotes a scalar potential ¢. g
There is a feature of superconductors that deserves special attention, %
which is quantization of the magnetic flux. Consider a multiply con- %
sC nected superconductor, and consider a closed loop C lying entirely 3
in the superconducting regime, and encircling the hole (marked in @
C Fig. 4.7). Thus, any open surface bounded by C contains regions that

are partially superconducting, and partially in a non-superconducting
(normal) region.

Applying Stoke’s theorem on Eq. (4.13) one obtains,

E* Vo - dl = d, +7§ wordjs - dl (4.17)
FIG. 4.7 e Jc c
A simply connected superconductor is ®d; is the magnetic flux defined by
shown with a “hole” within. C denotes
a contour of integration in Eq. (4.13). o, = fB - ds. (4.18)

The requirement that v is a single valued function at each point, that is,

¢ei0(r,t) — ¢ei{9(r,t)+2nn}
indicates that the LHS of Eq. (4.17) has the form,

h
—/ VO - dl = nd, n=0,+1,£2,... (4.19)
e* C
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where @y is called the flux quantum
_ 2nh
et

n = 0 corresponds to a simply connected superconductor.

0 =2.07 x 107> Wb (4.20)

Hence integrating over a closed loop C should be the same after one complete rotation from where one
has started, except for a phase of 277, or a multiple of 277. A flux quantum has this value for e* = 2e. So
the super-current is carried by a pair of electrons. In fact,

2
}ﬁve.cﬂ:znn=—§¢.

Thus, the magnetic flux penetrating through a superconductor can only appear in multiples of the
superconducting flux quantum &, which is often referred to as fluxoid (or fluxon). It may be noted that
the value of the fluxoid is extremely small. Experimentally, the flux quantization has been measured by
Deaver and Fairbank in 1961 (Deaver and Fairbank, 1961). Importantly, the involvement of Planck’s
constant () is a signature of quantum effects existing at the macroscopic scales.

On the right-hand side of Eq. (4.17), we can introduce a fluxoid &y,

o, = /B -ds + %Mo)»%js -dl (4.21)
N Cc
Thus, within approximation of the London theory,
P JoB
—L:/ L VXE]-ds=0, (4.22)
at s \ Ot

where the last step is obtained using Maxwell’s equation. Thus, the fluxoid @y, is constant with time.
It also does not depend upon the exact shape of the contour C, as long as it encompasses the hole, but
only once. If there is no hole, then the fluxoid is zero.

4.1.8 Non-local electrodynamics
The current density equation in electrodynamics, namely,
Js = nsevs

is alocal equation in the sense that it relates the current density to a point r to the velocity of the charge
carriers at that point. Thus, it clearly ignores the spatial structure of the electric field. An improvement
to this can be made by considering the current density at r due to the variation of the electric field
within a shell around the point r, with a finite radius. On similar grounds, Pippard argued that the
current density at a point r should depend on E(r’). Further, he conjectured that the wavefunction of
the electrons must have a characteristic dimension, namely, £ which is called the coherence length.
A simple uncertainty calculation may be sufficient to yield an estimate of the value of £ in typical
superconductors. We know that electrons within an energy range kpT. play a dominant role in the
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pairing phenomena. The momenta of these electrons have uncertainty given by
AE  kgT
Ap~ ==~ ZBC
VE VF
Thus, their position uncertainty, using Heisenberg’s uncertainty principle is
h hUF
X — .
A p k B TC
This yields
h\}F
kT,
a is usually of the order of unity. In particular, a = 0.8 in BCS theory (Tinkham, 1973).

Ax>~&=a

Hence, Pippard suggested that the simple equation for the current density written above should be
modified as

Js(r) = —(const)/ w{m”:dr’, (4.23)

where, R = r — ¥/, with r being the source point and t’ being the field point, or where the observation
is made.

4.2 MAGNETIC PHASE DIAGRAM OF SUPERCONDUCTORS

¥G-LL:LL Y202 Jequiedeq L0

When a superconductor is used to form a circuit with a battery, and a steady state is established,
all the currents passing through the superconductor are super-currents. Normal currents due to the
motion of charged particles contribute zero since no
voltage difference can be sustained in a homoge-
neous superconductor (because otherwise a current
HC

ext

will induce a B which is zero). Experiments show that

all super-currents flow near the type-I superconductor’s
HoH oy Normal surface within a thin layer characterized by the penetra-
tion depth. These surface super-currents run so that the

Superconducting B field is canceled in the interior of the conductor.

Thus, let us review the magnetic phase diagram of

superconductors. It is clear by now that the supercon-

T T ducting phase is a stable phase in a certain range of

magnetic field and temperatures. For higher fields and

temperatures, the normal metallic state becomes more

FIG. 4.8 table. The critical tic field (H.) b d which
The dependence of the critical field, Hc as a function of stable. .e criical maghetic e ¢ eyon W .1c.

temperature T is shown. the material cannot be superconducting even if it is

cooled below T (see Fig. 4.8). The value of H, depends
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c H ext ,LLOH ¢ ,IJOH

ext

FIG. 4.9
Magnetic phase diagrams for type-| superconductors are shown. There is a direct transition from the superconductor
to the normal phase in type-I superconductors.

on temperature, since it is easier to quench a superconductor at higher temperatures, than at lower
temperatures. An empirical relation for the same can be written as

T 2

H.=Hy|1-— (—> where, Hy = H,(T = 0). (4.24)
c

The corresponding M vs H phase diagrams are shown in Fig. 4.9. There is a sharp fall of the (negative)

magnetization (—M) as a function of the external field, and a sharp rise of the magnetic induction

denotes a phase transition from a superconducting to a normal phase.

In type-II superconductors, the phase diagram is more complex. When small magnetic fields are
applied, surface currents develop that screen the magnetic field from penetrating homogeneously into
the sample. This is termed as the Meissner state, which persists until a certain critical value, called the
first critical magnetic field, H.;. Beyond this value, the system enters a mixed state, where the mag-
netic flux lines, in the form of vortices, penetrate the superconducting sample. Thus, there is a partial
screening of the magnetic field.

Beyond H,;, more and more vortices appear insider the superconductor, and eventually when the exter-
nal field reaches a second critical value, namely, H, the material becomes a normal metal (Fig. 4.10).
The mixed phase is called the Abrikosov phase, where it is energetically favorable for the vortices to self
organize into a hexagonal array. The scanning tunneling microscopy (STM) measurements’ confirm

2 The working principle of STM is based on the measurement of electronic tunneling current that depends exponentially on
the distance between the tip and the sample. The position of a tip on top of a flat surface of the sample can be controlled with
subatomic resolution.
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FIG. 4.10

Magnetic phase diagrams for type-Il superconductors are shown.In type-Il materials, there is an intermediate phase
that interrupts a direct transition, where the flux lines penetrate.

the existence of such a vortex array, which minimizes energy by arranging into a hexagonal structure
in which the vortices line up. These structures are called Abrikosov lattices.

The magnetic susceptibility of a superconductor is —1 below H, and has a value 10~ above H,. This
is shown in the following figures.

From here we get a characteristic length called coherence length £. £ is defined as the length scale
over which the wavefunction or the order parameter does not vary much. The ratio of these two

¥G-LL:LL Y202 Jequiedeq L0

characteristic length scales is given by

K= —. (4.25)
§

For typical superconductors, A = 500 A, & &~ 5000 A. Thus, « < 1.

In 1957, Abrikosov found that for some classes of superconductors x > 1. This is used as a distinguish-
ing criterion for the type I and type II superconductors, in the following sense.

k < 1type I superconductors

k > 1 type II superconductors.

For type Il superconductors, the flux lines penetrate the sample until a certain threshold magnetic field.
A threshold value of « for which such flux penetration starts to occur is k = k. & «/LE At this value of
K, the flux penetration starting at a lower critical field H;; and reaching Bey; = Hexs at Hext = Heo.

Even experiments on the high-T, superconductors confirmed many of the features in the magnetic
phase diagram as discussed above. For example, the quantization of vortices ($g = %), Abrikosov
phase etc. are observed in experiments. In the type-II superconductors, the identification of the upper
critical field has been particularly controversial, quite unlike conventional superconductors, where the
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onset of strong diamagnetism and superconducting critical currents occur at the same H.,. Whereas,
in the high-T, superconductors, they are found to occur at quite different values. There are several
other features which are distinct, possibly because of a defect induced pinning mechanism, etc. We
shall not continue this discussion here any further and will briefly come back at the end of the chapter.
However, certain contrasting properties of these superconductors compared to the conventional ones,
will be mentioned during the course of the discussion.

4.2.1 Thermodynamics of superconductors

Thermodynamics route is usually the easiest route to understand the phase transition. Consider Gibbs
free energy of a superconductor. If its magnetization is M and magnetic induction H, then the work
done in bringing the superconductor into a region with magnetic induction H,,; from far away (where
Hex; = 0) is given by

Hext H2
W= —uo MdH = Mo%‘f (4.26)
0
as M = —H for superconductor.

This is the extra Gibbs free energy of a superconductor. Let us call this g, (per unit volume)

poHz
gs(T, Hext) = gs(T: 0) + th (4.27)
or,
BZ
&s(T, Bext) = g(T,0) + ﬂ; (4.28)
Normal

Gibbs free energy

Superconducting

In the normal state, the magnetization is very small value, thus the
magnetic work term is vanishingly small. Hence

i g1(T, Hext) = gn(T,0) (4.29)

gs(T, Hey) increases quadratically with H,y. For some Hey;, the
normal and superconducting states have the same free energy.
Beyond this critical value, the normal state is more stable.

FIG. 4.11
The Gibbs free energy is indicated
schematically as a function of the external

Equating Eqs. (4.27) and (4.29) at Hex, = H,, (see Fig. 4.11)
ext
H2
gn(T,0) = g(T,0) + % (4.30)

The RHS is positive, and hence a superconducting state is more
stable below H.. For example, H. = 0.08T for Pb at T =0

magnetic field. The energies for the super- (Ramakrishnan and Rao, 1999). Thus, at T = 0, the supercon-
conducting and the normal states intersect ducting state is stabilized by 4.25 x 1072° Joule/mole. This is a
at some value of the magnetic field, beyond really small amount, however, interestingly, this small number

which the normal state stabilizes.

4-16

stabilizes the superconducting state.
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4.2.2 Specific heat

The study of specific heat is in general interesting because it provides a good measure of the range
of applicability of phonon-mediated superconductivity. Above the transition temperature, the specific
heat, C, follows Debye’s theory. In general, for a normal metal, at temperatures T < 6p, the specific
heat consists of

i. Electronic contribution, y T.
ii. Phonon contribution, AT.
iii. Schottky contribution, a/T?.

Schottky contribution can mostly be neglected and hence,
Cp=yT+AT>. (4.31)
Thus, C,/T = y + AT?. C,/T versus T? thus denotes a linear plot.

At T = T,, the contribution of electronic and phonon specific heat is,

G 1 (41
C B\vy

<

g

where § is the ratio of the number of conduction electrons to that of atoms. From free electron theory, g
@

R g
A=234—. 5
§

Kittel (2004) Remember,

1274 [/ T\? T\?
Con = R{—) =234rR( —
5 Op Op

Whereas,
R

and,

()=o)
Co=-mR|— ) =493R|— ).

2 Tg Tr
Thus,
@ = (ﬁ . E) T2
c. \ B o)°°

B can be set to be of the order of 1. For most of the conventional superconductors, T. <« 6p So the
Ce > Cph-

If the conduction electrons have an effective mass, m*, which is defined by the inverse of the curvature
of the band structure, and that differs from bare mass m, then the conduction electron-specific heat is
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given by

m*
Yy = (-) Yo
m

where y is the bare electron counterpart of .
7?R
2T

m y _ 2yTr

m  yw  wR’

It is worth mentioning here that for a typical high temperature superconductor, TF is pretty low,
Tr ~ 4000 K, at least an order lower than conventional elemental superconductors, such as for Cu,
Tr ~ 80 000K. This discrepancy is probably due to the large values of the effective masses.

With C,s numerically obtained, we can integrate to find the change in internal energy U(T) as we
decrease temperature from T,. At T = T, it must be the same as the normal value U,, (0) + %y Tf. So

1 L
Ues(T) = Uen(0) + Eny - /T CesdT.

From the internal energy and entropy, we may compute the free energy using,
Fes(T) = Ues(T) — TSes(T).
The critical field is determined by
HZ(T)
2
where,

Mo = Fou(T) — Fos(T)

1
Fen(T) = Uen(0) — EVTZ'

The internal energy, U, and the free energy, F, are shown across a superconductor-normal metal
transition in Fig. 4.13. To compute the thermodynamic quantities, we explicitly consider the temper-
ature dependence of the specific heat of a superconductor and explore its behavior at the normal-
superconductor phase transition. There is a jump in the specific heat at T = T, as we have seen
earlier.

The Gibb’s free energy per unit volume for a superconductor in a magnetic field is written as
G=U-—TS—HM (4.32)
neglecting usual PV term. Since,

dU = TdS + HdM. (4.33)

Modern Perspectives in the Study of Electronic Systems

¥G-LL:LL Y202 Jequiedeq L0




‘ scitation.org/books

S C
T
VT, e c [llac
1 — es
Sen 1+
Ses Cen
I
0 1 T/T, 1 T/T,
FIG. 4.12

Schematic plots of entropy (S) and specific heat (C) scaled by y T¢ (v defined in text) are presented as a function of
reduced temperature, lc TIT, < 1 denotes the superconducting state, while T/T, > 1 depicts the normal state.
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FIG. 4.13

Schematic plots of internal energy (U) and Helmholtz-free energy (F) scaled by y T¢ (see definition of y in text) are
presented as a function of reduced temperature, lc TIT, < 1 denotes the superconducting state, while T/T; > 1
depicts the normal state.

This is the change in internal energy in the presence of a magnetic field, from (4.32) and (4.33),

dG = —SdT — MdH. (4.34)
Thus, integrating (4.34),
H2
Gs(H) = G:(0) + —-. (4.35)
Along the critical curve where the SC and the normal metal are in equilibrium,
H2
Gn = G5(0) + TR (4.36)
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LaSrCu0 where G; and G, are the Gibb’s free energy for
103 WD the superconducting and the normal states. From
— X
Eq. (4.34)
9G =-S (4.37)
YBaCuO /Cu 3T ) = . .
Thus, at equilibrium,
dH,
T Sp— S = —Hcd—Tf. (4.38)
Pb Ss denotes the entropy of a SC in a zero field. Since
/6, 'iiHva is always negative, the entropy of the normal
state is always greater than that of the superconduct-
ing state. Makes sense. Thus,
FIG. 4.14 J
The behaviour of the specific heat is schematically shown AC=Cs—Cp=—-T—(S; — S,)
as a function of the reduced temperature T/6p for both ) ar 5
conventional (Cu and Pb) and unconventional (cuprate) _ d“H, dH,
superconductors. = TH, arz? +T dT ’ (4.39)
AtT— T, H.— 0,
dH:\*
AC=T, . 4.40
() wso

From (4.38) at T = T, H; = 0, there is no latent heat of transition AS = 0 (see left panel of Fig. 4.12),
but according to (4.40) AC = finite (see right panel of Fig. 4.12). So the transition is second order
(at T = T.). However, away from T, the phase transition has a latent heat and is a first-order phase
transition.

However, this is not true for high temperature superconductors. In fact for (Lag 9Srg 1 CuO4—_s) and
(YBa,CuzO7_s), ATC3 > y, so the phonon term dominates at T = T, (see Fig. 4.14).

4.2.3 Density of states

The Bogoliubov quasiparticle spectrum, Ej is easily seen to have a minimum of Ay for £ = 0 (§i is
positive definite including zero). Thus, in addition to playing the role of the order parameter Ay is also
the energy gap in the single particle spectrum. To see this explicitly, we can make a change of variables
from & (for the normal state energies) to Ex (denoted as the quasiparticle energies), namely,

N(E)dJE — N, (§)d&
Since, the density of states should remain conserved, as the number of carriers remain conserved,

N(E)dE = N, (£)dE. (4.41)
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Since, the gap A is much smaller than the energy range (A < E) over which the normal state DOS
varies, we can replace,

Nn(é) ~ Ny(0) = No (4-42)
The quasiparticle energies are given by
2 — A2 +§1?- (4.43)
Dropping the subscripts,
B =A24g2
2EdE = 2£d¢
dé E_ E
dE & JEP - AY
Here,
N(E)dE = Nyd&
N(E) d&
Ny  dE’ 5
9
Thus, g
E )
N(E)= «/}52——7 forE > A é
N(0) 0 forE < A. 2
Excitations with all momenta k, even those whose & fn
N(E) . fall in the gap have their energies increased above A. N
NE) | Moreover, we obtain a divergent DOS for E — A above.
F 1
| Considering that across the phase transition, the den-
i sity of states remains constant, i.e.
i Superconducting Ni(E)dE = Ny(£)de.
i Since we are interested in an energy range of a few
| meV from the Fermi energy, we take N,,(§) = N(¢ep) =
| a constant.
= =
' > Ni(E d E
) E/A S()z—é::— for E > A.
N(ep) dE F2 — A2
The behavior of the DOS is plotted in Fig. 4.15. It is zero
FIG. 4.15 for E < A, and falls off as E becomes larger than the
The density of states (DOS) as a function of the scaled gap, A. Furthermore, the behavior of the quasiparticle

energy, E/A is shown. The right of the bold line denotes
the superconducting phase, while on the left, it is the
normal state.

energy, Ey as a function of the single particle energy, &«
is shown in Fig. 4.16, where a superconducting gap of
magnitude A is indicated in the figure.
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FIG. 4.16
The scaled quasiparticle energy, E/A is plotted as function of scaled single particle energy, &/A. The region above
the parabola is superconducting (SC) and the region below the dotted lines denote metallic phases.

4.3 BCS THEORY

4-22

4.3.1 Introduction

Even though a lot of experimental progress has occurred in the field of superconductivity, a complete
understanding of the pairing phenomena and consequently the formation of the superconducting state
is lacking. In the following, we describe a microscopic theory that addresses all of these concerns. The
The BCS theory of superconductivity was devised by Bardeen Cooper and Schrieffer in 1957. This
accurately describes many of the properties of weak - coupling superconductors. The word “weakly
coupled” refers to the strength of the electron phonon coupling that is considered as the origin of pair-
ing in this class of superconductors, as we shall see below. The basic idea of the BCS theory is that the
electrons in metal form bound pairs below a certain critical temperature called the transition temper-
ature. Not all the electrons take part in this pairing process, only the ones that reside close to the Fermi
surface, and within a distance of the debye energy, wp. The paired state of all of these electrons needs
a much body description.

4.3.2 Isotope effect

Frohlich (1950) realized that the electrons could interact by exchanging phonons, and in such a process,
the interaction could be attractive. That was the first proposal that superconductivity can originate
from electron-phonon interactions. But how do the phonons come into the picture? The dependence
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on phonon parameters was experimentally demonstrated by the fact that the transition temperature, T
is a function of the ionic mass for different isotopes of the same metal (that becomes a superconductor
at lower temperatures). The effect of T, is shown to have the form,

AT T, = — L (AM (4.44)
C/ C__E (7) .

where M denotes the ionic mass, and AM is the difference in masses between the isotopes. This is
called the isotope effect. It played a significant role in unraveling the issue concerning the attractive
interaction among the charge carriers that eventually leads to superconductivity. Thus, we shall see,
the contribution of the lattice excitations or the phonons is central to the formation of bound pairs. It
will be shown later that physical quantities, such as the energy of the bound pairs, T, involve phonon
frequencies, and thus should display an isotope effect.

The isotope effect is more conveniently represented in terms of the isotope coefficient, o via the
relation,

T, ~M™ (4.45)
where « is given by
M AT,
@=—-——"—°. (4.46)
AM T,

In general, « has a value 0.5; however, it may vary from one material to another.

¥G-LL:LL Y202 Jequiedeq L0

4.3.3 Origin of attractive interaction

We consider the interaction between two electrons, one with (k, 1) and the other (—k, |). One may
consider a spin independent interaction, but since it is not relevant to the context, we can neglect the
spin indices for future discussions. There are two mechanisms by which two electrons can interact:
they can interact directly or via a third party, which in this case are phonons. We shall explore these
two cases in the following.

4.3.3.1 Case |

One obvious process is a direct electron-electron interaction mediated via the Coulomb forces. Let us
consider the initial state as |i) (before scattering) and the final state |f) after scattering. Let us denote
this interaction term as H",. The matrix elements of such a term between the states can be written as

([HY |fy = / XU (r)e X T P, (4.47)

We assume that both |i) and |f) are plane wave states. This term cannot yield a negative contribution
and hence does not contribute to the formation of a bound state. The energies involved in this case can
be enumerated as

i, Initial: e; = 28, & = 2K _ 4

2m

ii. Final:ef =28 K =k+q
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4.3.3.2 Case ll

Now let us consider an indirect process. Consider the scattering of two electrons via the exchange of a
phonon. Thus, there is an intermediate process involved, and hence, it is a second-order process. There
are two ways that such a second-order process can occur.

i. Electron 1 with momentum k emits a phonon, of frequency w, which is later re-absorbed by electron
2 with momentum —k (see left panel of Fig. 4.17).

ii. Electron 2 with momentum —k emits a phonon with frequency wy which is later re-absorbed by
electron 1 with momentum k (see the right panel of Fig. 4.17).

Since both these processes are equally probable, they need to be incorporated with equal weight. The
corresponding energies involved in the second case are,

i. Initial state (before scattering): €; = 2.
ii. Final state (after scattering): € = 2&p.

Even if the initial and the final states are the same as in case I, the intermediate state is different.
However, the corresponding energies are still the same, namely,

e = Eiw + & + haog
,(,Illt) k + & + haog.
Hindirect

Now, the matrix element of can be calculated as

(i |Hmd1rect - Z (lledzrect|mt)(intlHérE,ieirect )
(Eif - Eint)z

int

_ Z Hmdzrect t) 1 1 mt|Hmdzrectlf (4.48)
Ef Eint Ei — Eint .

int

Time
Time

FIG. 4.17

Feynman diagrams show for the electron-electron interaction mediated via phonons. The left panel shows electron 1
emits a phonon, which is captured by electron 2 later. The right panel shows electron 2 emits a phonon which is captured
by electron 1 later.
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V(q o) where the summation is over the intermediate states. Note that
the energy denominators can be written as,

1 1

Ef — By 260 — & — & — I
o N B/\ f1 t 28k -‘Ekl&k wgq (4.49)

Ei — Eim 26k — &0 — &k — hog
where, & — & = hw. Thus,

indi 1 1 ~ 2w ~
i Hmdzrect — _ Vv 2 _ q Vv 2.
FIG. 418 W) = o T aray O = V@
A schematic plot of the interaction energy (4.50)
V(q, w) plotted as a function of the electron
energy w. The region between A and B is The matrix elements are positive definite, so we are interested to
where the interaction becomes attractive. know the sign of the energy denominator. For w < wy, it is neg-

ative, and hence attractive. This is known as Cooper’s instability.
In real physical situations, the Coulomb term gets weakened by screening, which eventually takes the

form,

472 4re

+ .
¢k gtk et — o
A schematic plot of the interaction term as a function of the electron energy, w is plotted in Fig. 4.18. In

a small region, between the points A and B marked in Fig. 4.18, V(q, ) becomes negative and hence

2
@q

Viq,w) = (4.51)

attractive.
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4.3.4 The BCS ground state

The ground states of a free Fermi gas correspond to the filled states with energy € below €f and all
states empty beyond € > €. This Fermi gas of electrons becomes unstable against the formation of
at least one bound pair, regardless of how weak the interaction is, so long as it is attractive (Cooper,
1956).

It is well known that the binding does not ordinarily occur in a two body problem in two or three
dimensions, until the strength of the potential exceeds a finite threshold value (Sakurai and Napolitano,
2011). So, in order to see how this binding comes about, we consider a simple model of two electrons
added to the Fermi sea at T = 0. The restriction imposed here is that these two electrons interact with
each other, but not with those inside the Fermi sea, except, of course due to the exclusion principle.

Thus, we seek a two-particle wavefunction for our purpose. Bloch argued that the lowest energy state
for a two-particle system has zero total momentum. Thus, the two electrons have equal and opposite
momenta. This means that the orbital wavefunction, ¥ ((ry, rz) should be of the form,

Yo(ry, 1) = ngeik'rl e~ kr, (4.52)
k
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Considering the asymmetry of the total wavefunction with respect to the exchange of two electrons,
Yo contains even functions, such as cos[k - (r; — rz)] with an antisymmetric spin part of the form,
[114) — I 1)], or asum of products of sin[k - (r; — r)] with a symmetric triplet function of the form,
(1) 44y and [11)) + [{1)]. In a two-particle system, we expect that the singlet to have a lower
energy because the cosinusoidal dependence of the orbital wavefunction r; — r, gives a larger proba-
bility of the electrons to are near each other. Thus, we zero in on a two electron singlet wavefunction
of the form,

Yo(ri, 1) = Z gecos[k - (rp —r)] [ [I11) — M. (4.53)

k>kp
This can be plugged into the Schrédinger equation to yield,
(E—260gk = ) Viagk- (4.54)
k'>kp
The above equation is true for any value of k. €}, are the single particle energies (of the plane wave type),
and Vi are the matrix elements of the interaction potential,

1 N
Vide = v / V(r)e' &K T gy, (4.55)

where r denotes the spatial distance between the two electrons. Vi describes the scattering of a pair
of electrons with momenta (k/T, —kl) to (ky, — k). We have to solve for the amplitude, gj such that
the total energy E < 2¢p, such that a bound pair exists.

It is hard to carry out calculations for a general form of Vig. Cooper introduced a notable simplifica-

tion,
Viw = =V forep < e < €r + ho

kk F < €k F + hop (4.56)

=0 otherwise,
where V denotes the strength of the electron-electron interaction. This implies,
8K
=V 4.57
8k 2¢x — E ( )
k/

summing over the momentum index k,

1 1

== . 4.58
14 Z 2¢x — E ( )

k>kp

Note that this summation over k is for k values that are larger than the Fermi wavevector. We replace
the summation with integration, by using the DOS at the Fermi level, namely, N(¢ ), which is constant
for a particular material, and hence, can be brought out of the integral. Hence,

1 erthop g 1 2¢p — E+ 2R
2 = N(ep) / € IN(ep)n (ZEE 220D (4.59)
% o 2—E 2 2¢r — E
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For conventional superconductors,
N(ep)V < 0.3.

This allows the applicability of the weak coupling approximation valid for N(er)V < 1. This yields,

2 _ 2¢g — E 4+ 2hwp
NepV n( 2er—E )
2¢r — E 4+ 2hwp _ 2INEp)V
26F —E
2ep — E + 2hwp = (2ep — E)e?/NEDV
E = 2¢p — 2hwpe  /NEDV,

or, (4.60)

This is the expression for the total energy of the system of two electrons in the vicinity of the Fermi
sea. Thus, with respect to the Fermi surface of two electrons, the energy is negative, and hence it cor-
responds to a bound state. A bound state of two electrons is thus formed, even for an infinitesimal
interaction strength. Also, the form says that the binding energy is not analytic at V = 0, so it cannot
be expanded in powers of V. Thus, any finite order perturbation theory would not be able to yield this

result, and thus the theory is non-perturbative. 3
o

@

As for the wavefunction, it is dependent on the relative coordinate, r = r; — r», and is proportional to 8
Z cos(k - r) g
—_— o

/ R

o Bkt E 3
§

where, £ = € — €p, and E' = 2ep — E > 0. E' can now be called the binding energy relative to 2¢p.
A few comments are in order.

i. The amplitude of the wavefunction, namely, (26 + E’)~! has its maximum value 1/E’ when
& = 0, that is, for electrons at the Fermi level. It falls off at positive values of . Thus, it elucidates
the dominant role of the electrons at the Fermi energy in the pairing mechanism.

ii. The electronic states within an energy range E’ about € are involved in the formation of the bound
state.

iii. Note that E' < hwp for N(eg)V < 1, this makes sure that the detailed behavior of Vi is not
important, and the assumption of the form in Eq. (4.56) will suffice.

iv. Also, the small energy range allows estimation of the range of the Cooper pairs via the uncertainty

ahvp

principle, namely, & = kT, Thus, the pairs are highly overlapping.

4.3.5 Statistical description of the BCS ground states

What we have learned so far is that the filled Fermi sea becomes unstable to the formation of a bound
pair. In s-wave superconductivity, a large number of bound pairs form and a system condenses into the
ground state below the same transition temperature, T.. Let us postulate a paired many body paired
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ground state of the form (since it is a ground state, we assume it to be a singlet state),
Vo) = D gkeppcl,10) (4.61)
k>kp

where |0) does not denote vacuum, rather it represents afilled Fermi sea. Suppose there are M electrons,
and we have to involve N electrons of those to form & 7 pairs, the number of ways pairs can be formed
from M electrons is,

M!
——— ~ (10°)*  for M =10". (4.62)
TR STIeSY

Thus, a solution of the problem demands that (102°)2° number of g to be solved, which is certainly
an impossible task. Thus, a statistical description must be employed here. Further, since the number
of particles is large, no serious error will be done if one works with a grand canonical ensemble, where
only the average number of particles, that is, N is fixed.

To circumvent a significantly difficult problem, the BCS theory postulated a ground state of the form,
We) = [ G+ wepeel Dl (4.63)

k=kp k;,..km

The probability of a paired state (ky, — k) is occupied is denoted by |vk|?, while it is unoccupied is
given by |ux|? with the condition,

lug)> + v’ =1 Vk (4.64)
Take an example of two states k; and k, then the wave function amplitudes represent,

U, Uk, —> 0 pair
Ukp Vk, — 1 pairin (ky, —ka)
Vip Vk, — 2 pairs in (ky, —kp), (kz, —kz).

We can calculate the average number of particles in the following way:

= (Nop) = <Z nka> = (Y6l ) clyerr + e ekl IV6) =2 ) (Waci cryva)
k k
=2 (ol (uf + vic iy erp)efp e (ui 4 vick el ) [ [ @ + ey + vic el Do)
k Ik

In principle ux and v, are complex quantities. We have also used (A¢|vr) = (¢|AT|v/). Let us look at
various terms.

First, let us look at the term for / # k, namely,
lug)? + u;‘vlc;rTcT_u + viue_ e + Ivllzc_ucch;rTcT_u (4.65)

where we have taken the expectation with |1). The middle two terms (second and the third terms)
yield zero as they change the occupancy of the state with I-th pair (first term creates and the second
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term destroys). The last term only yields a normalization, because it creates and destroys a pair. Thus,
the I # k term yields,

2 2
™ + (il
which, by normalization, is equal to 1.

The same procedure, when applied to I = k term, we shall have two terms surviving with uvg will
cancel out. Further,

2
|ul>ci ckpldo) = 0
since there are no states to annihilate for k > kg. Thus, we are left with only |vy|2.
Thus, the average number of particles yields,
N=2) nl

k

The factor 2 appears for the summation over spin. Furthermore, our assumption that this reinforces
|vk|? indeed denotes the probability of occupied states.

To calculate some more statistical quantities that may be of physical relevance, we estimate the RMS
fluctuations of N, we calculate

(N-N)?) = (N> 2NN+ N') = (N)) - N" =4 > _ulsl. (4.66)
k
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This is a positive definite quantity. In fact, v as a function of k goes from 1 to zero and uy goes from
. . . . T —
0 — 1in an energy range given by kgT. Thus, the sum above is proportional to 7£N.

4.4 THE VARIATIONAL CALCULATION

We write down a generic Hamiltonian that encodes the kinetic energy and a two-particle interaction
term as in the following:

H= Z EkoC,Tkaa + Z Vle;ZTCT_MC—uCzT =K+, (4.67)
k,o k,l

where K and V denote the kinetic and the interaction energies, and £ = €x — . k, [ are the momenta
indices. As exact solutions are hard to arrive at, and perturbation theory will not be of relevance for
reasons discussed earlier, we shall resort to a variational calculation, that is, minimize the energy with
respect to the tunable parameters, which are the coefficients uy and v¢. That is,

8| (Wal D Emo + Y Vicpacl p cnenlvra) |- (4.68)

ko k.l
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Let us look at the kinetic energy term. We have already computed it earlier, namely,
(K) = (Y6l Y _ &xnkolVa) =2 |vil .
ko k
Similarly, for the potential energy term,
(V)= Z Viaugvi upv,
kI

where we have used the normalization constraint, that is, |ug|? + |vi|* = 1 V k.

(4.69)

(4.70)

Doing a variational calculation with two variables is a difficult job, which, however, is simplified owing
to the normalization condition. This yields an identification of (ug, vx) with (sin 6, cos 8x) which
facilitates the Hamiltonian to be dependent only on one parameter, namely, 6. In particular, we take

Uy = sin Oy, vk = cos b.

Thus, we can minimize energy with respect to 6, which implies

3 1
W > &1+ cos20p) + : > Virsin 20 sin26; | =0
14 k1
26 sin 20 + ) Vi cos 26 sin 26) = 0.
1
Now define,

1 , 1 .
Ak — _5 ; Vkl 51n291 = _E ; Vklsm201.

Using this in the above equation can be written as

1
2§k sin 20, = 3 Z Vg cos 26 sin 20) = —2 Ay cos 26y.
)

This yields
A sin 26, A
tan 20, = ——k, implying that, k_ ——k,
&k cos 20 &
Using the definitions,
. Ak
2upvg = sin 20y = ———
Vi ol
b &k

Vi — ui = c0s 20 = —

VEF+ A7

We have
k
T B3
Ex
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(4.72)

(4.73)

(4.74)

(4.75)

(4.76)

(4.77)
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where, Ex = ,/& ,f + A2, and, of course, the normalization condition, namely, ui + vi = 1. Thus, the
definition for the coherence factors can be written as

Vi:l<1_$_k):l 1_5—]‘
2 B2 JA2+ € (4.78)

This is a choice which seems to fit all definitions.

2 There is a close resemblance between the vi for the BCS ground

A1 state at T = 0, and the free Fermi distribution at T = Tf (see

Fig. 4.19). Also, vi falls off as l/f;‘,f for & > A. If one remem-

bers, glf falls off in a similar fashion in the simple treatment of

a single Cooper pair presented earlier. Also, we have chosen

o =T cos 20 with a negative sign, because if &j is large (that is,

. Blc,

“Thay, o o X hay, , €k > 1) vk should go to zero. S
9
Hence, A assumes the form, §
1 g
FIG. 4.1.9 ) Ap=—= Z V) sin 26; N
The behaviour of v2 (probability of states occu- 2 R
pied by a pair of momentum k and —k) is (4.79) 3
shown as a function of &, (= ex — ). — 2
>

——Zsz
,/A2+El

A trivial solution of the above equation is A = 0. This implies, 2uxvi = 0, and vi — ui = —1. Since,
ui + vi = 1, it implies that vi = 0, which, in turn, means a normal state and hence, there are no pairs.
The above discussion clearly indicates that A can be used as an order parameter for the supercon-
ducting transition, which when finite implies a superconducting state, and Aj = 0 denotes a normal
state.

Let us recall Cooper’s original assumption on the nature of the interaction, that is,

Vi = —Vif|§ — & < hewp.

Hence, putting it in Eq. (4.74),

1
A = EVZ sin260; for |& — &| < hwp = 0  otherwise. (4.80)
1

From the above equation, it is clear that the order parameter, A is independent of the momentum
index, k. Substituting sin 26; from Eq. (4.77), one may cancel A from both sides to get
Vv 1

1= — [
221:,/A2+sf
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1 [ N(ep)ds

/0 2/AT+ €2
2 fher g
NenV —Jo /ATy

Integrating and solving for A,
hwp
2
2 (5) = vy
Ay N(ep) V

2sinh™! (th) = 2 .
A N(p)V
Reorganizing,
_ hw
~ sinh(1/N(ep) V)’
For a weak coupling superconductor, N(¢r)V « 1, one arrives at

A = 2hwpe V/NERDV, (4.84)

(4.81)

(4.82)

(4.83)

This is the expression for the energy difference between the superconducting state and the normal state.
Thus, this much energy has to be supplied in order to break a superconducting state and achieve a nor-
mal (metallic) state. Suppose a thermal excitation facilitates such a transition, which yields A ~ kpT;
A priori, from BCS theory one gets (will be shown immediately afterwards)

kBTC ~ 1.13 hwp exp[—l/N(ep)V], (4.85)

which only changes the factor “2” in Eq. (4.84) to 1.13 in Eq. (4.85). Having found A, we may simply
compute the coefficients 1y and vx which should specify the optimal BCS wavefunction.

4.4.1 Temperature dependence of the gap

We have introduced that the energy gap (which also acts as the order parameter) in a superconductor

is defined by
Ap=— Z Vi (¢~ | cr'1) (4.86)
k/
Ay allows us to write the mean field BCS Hamiltonian,
o
H= Z %'kC;;UCkJ — Z(AkCItTCT—ki + Azc—kickT)' (4.87)
k k

A constant term is dropped from the above equation. This Hamiltonian can be diagonalized by Bogoli-
ubov Valatin transformation, where the creation and the annihilation operators are expressed in terms
of the quasiparticle operators as

Chp = UpVky T VKV, (4.88)
=k} = —ViVko + uky,;"l. (4.89)
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Being a linear combination of ¢ and c}t, ¥k obeys fermionic anticommutator relations and thus the
relationships are canonical. This along with the normalization condition yields

H=> & [(|“k|2 — PV vio + Y Vi) + 20+ 205V v v + ZukaJ/,jl)/;;]
k

+ Z(AkukVZ + ARV vk + 7 v — D+ (A — Mg Vi Vi (4.90)
k
+ (sz,zC — Akui)y,;y]jl.
Finally, one gets

H=> By vio + v ve) + DG — B+ 1A (4.91)
k k

where E;, = | /E,? + |AJ2. The second term is just a constant. So, the Hamiltonian is diagonal on the

basis of the quasiparticle operators.’

For the gap function, A, in terms of the quasiparticle operators after a little bit of algebra yields

Ap=—Y Vigupve(l - sz Vi, — )’,j/l Vi) (4.92)
k/

At zero temperature, (ylj0 J/ko) = 1; however, at non-zero temperatures,

T _ _
()/koyko) =f(Ey) = m

where f(Ex) denotes the Fermi distribution function for the quasiparticles. Since the expectation value
of each of the number operators yields a Fermi function, we get,

¥G-LL:LL Y202 Jequiedeq L0

(1= ¥ vk = Vi via) = 1= 2 (Ep).
Thus, for the gap function,

Ay BEy
A== Vigupvik(1 —2f(Ex)) = — ) Vig——tanh [ — ).
k ; ki g vie (1 — 2f (Ex)) ; b o, 1N ( 5 )
With Vi = -V,
1 lztanh(ﬁEk/2)

= A (4.93)

Vv 2
k
The above equation holds a clue to the temperature dependence of the energy gap, A(T). Converting

the sum into an integral by introducing the DOS,

1 Pehop/2 tanh x BEx
NV = dx, where, x = ~
€F 0 X
4,94
Pehop/2 tanh x 2eY ( )
dx =In | — B hwp
0 X T

3 In order for the quasiparticle operators (y) to diagonalize the idea is to make coefficients of yy or yiyt equal to zero and
retain y Ty. This happens when 2&, uvy + szi - Ak”i =0.
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where y denotes the Euler constant, which has a value, y = 0.577 - - - and thus % =~ 1.14. This yields
an expression for the transition temperature, T, above which superconductivity vanishes,

kpT, = 1.13hwe” V/NERV, (4.95)
One may recall that earlier we have obtained an expression for the energy gap, namely,
A = 2hwpe /NERV

which was subsequently equated to kgT,. Also, a relationship between the energy gap at zero temper-

ature to that of T, is obtained as

A0 2
©_ 2 76 (4.96)

kpT, 1.13

Thus, the gap at T = 0 is indeed comparable to the magnitude of kg T,. The numerical factor has been

tested in many experiments and found to be reasonable. The value of 2A(0) varies between 3kpT, and
4.5kpT, for the conventional (that is, BCS) superconductors, and is mostly clustered around the BCS
value 3.5kgT..

Finally, to arrive at an explicit temperature dependence of the gap function, we consider the integral
form of the gap equation, namely,

1 hop tanh [%IB(EZ + AZ)I/Z]
N@Ep)V /0 €2+ A1/
Now A(T) needs to be computed numerically by self-consistently solving the above equation. For weak
coupling superconductors, for which hwp > kT, A(T)/A(0) is a universal function of (T/T,) which
decreases monotonically from 1 at T = 0 to zero at T = T,. With A(T) determined, the quasiparticle
energies can be written as

Ei = /& + AX(T).

In the vicinity of T = 0, the temperature variation is exponentially slow because of e~2/*8T ~ 0
(see Fig. 4.20). Hence, the tan hyperbolic term is insensitive to T and stays very close to 1. Physi-
cally speaking, A remains nearly a constant until a significant number of quasiparticles are thermally
excited.

dE. (4.97)

On the other hand, for T ~ T, A(T) vanishes with a vertical slope approximately as

A(T T\7"2
L ~174|11— [ = for T — T, from below.
A(0) T

c
This square root dependence of the A on T is a hallmark feature of all mean field theories. For example,
the magnetization vanishes in a similar fashion to temperature in molecular field theory of ferromag-
netism. The dependence of A(T) presented in Fig. 4.20 closely matches with the experimental data
on the elemental superconductors, such as Tin (Sn), Tantalum (Ta), and Niobium (Nb) presented in
Fig. 4.21.
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—

A(T)/A(0)

FIG. 4.20

The scaled gap function A(T)/A(0) is numerically
obtained and plotted as a function of the reduced temper-
ature, T/T;. The area enclosed by the curve denotes the
superconducting phase.

T/T

~~

e

< A Tin

=T b
~

N

<

o

Tantalum

O Niobium

FIG. 4.21

The scaled energy gap is shown as a function of reduced
temperature, T/T, for Tin, Tantalum and Niobium. The fig-
ure is taken from Blatt (1992). The continuous lines depict
the result of BCS theory.

4.4.2 Thermodynamics from BCS theory

The energy of a superconductor is obtained by explicitly solving the BCS Hamiltonian, which yields

E=2)Y &vi+2 ) |&luf+ ) Viewveueve (4.98)
k>kF k<kF kk'
where,
1
JEE+ AL
with & = ex — p, and Ap = — ) 1 Vi ug vi. Furthermore, the form of the attractive interaction is
V  for both |&] and |&x| < hwp
Vi = .
0  otherwise.
Also, we have obtained that
A >~ 2hwp exp[—1/N(ep) V].
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Thus, the energy difference between the superconducting and the normal states is given by
E,—E NG a? |1 2 (4.99)
—E,=—=N(e —ex , .
R PAN@Env

which in the weak coupling limit assumes the form,

1 2
Es—E, = _EN(gF)A

To enumerate the jump in the specific heat from BCS theory, we consider the entropy for the SC state
given by Reif (1965)

S, = —2kg Z [(1 = foIn(1 = fi) + filnfi] - (4.100)
k

Furthermore, in terms of the probability of a microstate being occupied, the entropy has a form,

S= —kB Zp, lnp,-. (4.101)
Following which the specific heat can be determined by
dss dSs dp dss 1 ds;
Cos=T—=T—" =T— - |-—— —
“ dr dg dT dp ( kBT2> —F dp

now,
8 ) d dE
k

_ B\ (g2 15987
= —Zﬁkg; (dEk> ( Zﬁ i ) (4.102)

The first term is the contribution of the quasiparticles to the specific heat, while the second term is due

to the temperature-dependent gap function. The features of this specific heat are as follows:

i. Cgs is exponentially small at T < T, where the excitation energy A is much greater than kg T. This
explains the exponential dependence at low temperatures, namely, C; ~ T.e~/T¢,

ii. Near T¢, the gap, A(T) — 0, when one can replace Ey by |£k/|, the first term reduces to

2 2
CT) =y T = Z-N(pKT,

which is continuous at T = T.

iii. The second term is finite below T, where 92~ dT is large but is zero above T, thereby giving rise to
a discontinuity, AC in the electronic specific heat at T,. This discontinuity is characteristic of a
second-order phase transition.

The jump in the specific heat is enumerated as

2 e} 2
C=(C;—Cy)lr=r, = B 2 (A7) < af >d$ = N(e F)( da ) . (4.103)

dp d|&| dTr
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4.5

Here, % = % as f is an even function of . Furthermore, using”

T,
the magnitude AC can be computed to yield
AC = 94N(ep)k3T,,

T\ 1/2
A(T) = 1.74A(0) (1 - —>

where A(0) = 1.76 kgT,. The normalized discontinuity, usually measured in experiments, is given by
AC 94
Cen  27%/3
Ces(T) can be found numerically from the parent expression [Eq. (4.102)]. C,s(T) can be integrated to
obtain U,(T). The clue is that at T = T, U,(T) must be same as the normal value U,, (0) + %y TCZ.

1.43

ELECTROMAGNETIC CONSIDERATIONS

Let us consider a system of N electrons subjected to a magnetic field, B which is described by a vec- ;
tor potential. The momentum for each of these particles described by i = 1, ..., N under an external 8
vector potential, A(r, ¢) can be replaced by %
pi — Pi + eA(r). 3
This yields a Hamiltonian, &
N
H=-—> (pi—eA(r;)’ +V=Ho+H, (4.104)
2m

i=1

2
where, Hy is the many body Hamiltonian with Ho = ), 5—;'1 For the linear order in A, the coupling
to the external probe can be written as

N
r__ ¢ o A(v N
H = 2m;[p, A(r) + Ar) - pil. (4.105)

With the choice of a transverse gauge, that is, V - A = 0, both the terms yield the same contribution.
Hence, we can write,

N
H = —% > pi- A, (4.106)
i=1

This greatly simplifies the analysis, as will be clear in the following discussion.

4 This is the numerical solution of the gap function, A(T) shown in Fig. 4.20.
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The total current operator can be written as

N
. e
jm = le Vid(r — 1)) +3(r = r))Vy) (4.107)
=
with the velocity operator given by
1 e
vi = —(pi — -A(ri) (4.108)
m c
and the §-functions denote the positions of the particles. The above form for current can be split into

j(®) =jp(¥) +ja(o), (4.109)

where j, and j; denote the paramagnetic and diamagnetic current densities, and are given by the
following:

N
e
o) = 21: (Pid(r— 1) +8(r —1)py). (4.110)
1=
In terms of the fermionic operators,
eh
jp(@ = — Z(k +a/2)¢] ki g (4.111)
" k,o

where k and q denote momentum indices. Next, the diamagnetic current density is written as

o) N
. e
Ja() = ——A() Y 8 — 1), (4.112)
i=1
which again in terms of the fermionic operators can be expressed via
2 2
. e i ne
ja(@ = ——Aq kZ Goho = =~ Aq. (4.113)
{08

Using these definitions, the coupling to the vector potential is expressed as
1 . 1 .
H = -5 / drjp(r) - A(r) = 9 ;;I,(—q) -A(q), (4.114)

where 2 denotes the volume and can be set to unity for convenience. It may be noted that the external
probe A couples only to the paramagnetic current j, in the Hamiltonian, 7'. j, is already linear in A.
So it is only needed to evaluate j, at the linear response level, and hence add to j to get the total current
response, such that,

() = {p) + Ga)- (4.115)

According to linear response theory, one can write

2
(]'a)((l’ w) = Xap (9 w)A,B (qw) — % <Z Cio Ck<7> Au(q, ), (4.116)
ko
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where @ denotes the frequency and the current-current response function is given by

Xap = Xy, (@ @)

with the density appearing in the second term,

_ +
n= <Z CkaCka> .
ko

To obtain the Meissner effect, we are interested in the zero momentum (long wavelength) and zero
frequency (static) response of x g, that is, for = 0, ¢ — 0. One finally gets the current density,

2
() (@ = 0,0 = 0) = xas(q = 0,0 = 0)As(q = 0,0 = 0) — —Ay(q = O,w=0).  (4.117)
m

To compute conductivity, we have to consider the finite frequency limit (w # 0).” Consider the electric
field (the scalar potential is set to zero because of the gauge condition),

0A |
E=—— = iwA. (4.118)
ot
Thus, -
(ja) = 0upEp = iwougAp, (4.119) g
3
which subsequently yields, g
! (q=0,0) ne s (4.120) :
(o = =Vw) — — > . ~
af i Xap\q m af :
here, i
04 = Re oug + Im oyp. (4.121)

Finally, at the linear response level, the Kubo formula for the conductivity tensor is written as

1 ne’
Oap (@) = - | Xjpajpp(q = 0, @) = — dap | - (4.122)

4.5.1 Meissner effect

We demonstrate the expulsion of the magnetic field or the Meissner effect in the following.

. eh
o= — D K+ a/2)(Cy kgt + Ly coihrg)): (4.123)
k

The creation and the annihilation operators are expressed in terms of the quasiparticle operators via
al = ukhey + VkJ/kl

T T (4.124)
€k = VRVt + UV,

5 For the dc conductivity, we can take w — 0.
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where uy and vy are the coherence factors. These relationships are canonical, since they preserve the
fermionic anticommutation relations. This allows the paramagnetic current to be written as

s eh / / T T
Jp=— D G+ @/ + W) Viergt — ¥y vk
k (4.125)
+ (uv/ - W/)()/;:T)/i(kﬂ)l — Y-kl yk+q?)],
where the momentum indices are dropped by redefining,
u=up v=vii =gV = Visq

Now in the linear regime, the current-current response function is written as

—Bwm o n B . o
xap@o=0 =3 % . (G5 @) mnGip (=) e

m,n

(4.126)

Wnm
One can import the contribution of j, from Eq. (4.125). In particular, we look at different terms below.
i. Ty term with o = 4

D fu K +q/2)% (k= a/2) (mlyvieqln) (nly{ vi—qlm)
kK

b
Wnm

where f(u, v) is the coherence factor determined later. The only |n) that contributes is given by
In) = ¥, yk—qlm). Thus,

k’+q=k, and, wun = 0, — oy =Ek_Ek—q~
This yields the above contribution to having the form,

Y fww) (k—q/2)% (k- q/2)°
k

Ex—Ex—q

7:30)711

e

=> ~ (mly_ v vi—glm) = (" kg = v ¥0) = fieg (1 = fo. (4.127)
m

The above is the thermal average, we get the Fermi distribution function, f in the above expression.
Finally, the coherence factor, f(u, v) is

= (up U +q + Vi Vie +q) (UklUk—q + ViVk—g)

= (uitg—q + vkvk_q)z, since k'=k-—q.

One may shift the dummy index, k — k + q which makes the complex conjugate equal to the term
calculated above. This yields the term y Ty for 1-spin as

_ 26212 (' + ) (1 —f)

2 /A
mk E —E

(k+q/2)%(k+ q/2)F.
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ii. Combination of yTy witho = |
Same as (i) except for a negative sign in front of yf Y, comes in ( — 1)?in x andk — k + qin s,
V's, f's and E's. This yields for the y Ty term corresponding to |,-spin,

_ 2% K2 (uu' +wW) (1 —f)

k+q/2)%(k+ q/2)".
L @ (k+q/2)%(k+49/2)
Subtracting (ii) from (i), that are contributions from spin-1 and spin-|,
2ezﬁ2 =

Z(k +q/2)% (k + q/2)P (ud’ + ) =5
iii. and (iv) The combination of the y Ty T and y y terms
This comes with a coherence factor (ugvktq — Vktikt4) — 0as g — 0 so they will not contribute,
however, we shall retain them for considering the finite q response. They can be written as

E + Exiq B E+F

_ _ T T
S T oy ) s iy 2 = Tt 0)
o 7 k 7 —(k+q) q Oum —E; — Ek+q E+FE
The negative sign, that is, -1 is the only difference between the ¥ 'y and the yy terms. The other §
one is El
o N
_ DGt VeV Vo) (DA =L —f) S
i

Here, the coherence factor is written as
W — v YWy —vVu) = —(w/ —vi)2.

Adding contributions of (iii) and (iv)

_ /
_(1 f+0 (v —v)? x 2.
E+F
The current-current response function is written as
XaB (qs w = O)
26212 ) 1—f—f
Z(k+ q/2)% (k + q/2)’3 [(uu + vy )2 = f + (wv — ) %} . (4.128)

Now c0n51der special cases of this general formula, that is, @ — 0 response, which yields
w' —vi) >0 (w/ +vw)—> L

In which case,

26212 ok
. 0,0=0 kek 4129
Xep(@ = 0,0 =0) = — Z ,s( 95 ) (4.129)

The same result can be obtalned in a more direct manner Tinkham (1973).
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In the large wavelength limit, namely, q = 0
. eh t T
=" ;k (ykT Yt — Vg kal)
eh
=— > klfir —fr)-
k

We must keep track of how the quasiparticle spectrum, E4 changes under the influence of the external
Hamiltonian,

1 eh
H === i1 A@ = —— > (k- Ay vl — V-kiV-kl)s (4.131)
q k

(4.130)

where the ¢ = 0 term is retained in the last step of the equation. This yields an energy spectrum that
is reminiscent of spin splitting in a magnetic field. The energies are modified as

Eur = Er — kA
% —_— — .
Kt ko 0
Similarly,
eh
E ) = E_ 4 +—k-Ag
mc

where Ay is the vector potential for g = 0. Now,

L () 2R
Jia =Jk < k) ) AO( 3fk). (4.132)

8Ek mc
p(@=0)) =
Since, by symmetry (j, (q = 0) is parallel to Ay. Also,

2
fd—g(k Ag)? = ’; as (cos®0) = 1/3.

Therefore, Ay is the unit vector along A,
2 ezh of
0 K (—=2) A
(1p(0) = - §k ( 8E>
. of of
§ 2 ~
Slnce, _ k (_a_Ek> kF N(O) / dé ( aEk) >

where N(0) is the density of states at the Fermi level. Moreover, the pre-factor of [ d§ is given by

(4.133)

2 e, 3n né

T3 m2 P 4ep m
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Hence, the average paramagnetic current is given by

(ip(g=0)) = — f déy (—%) A,. (4.134)

The normal state can be obtained by putting A = 0 in the expression for quasiparticle energies, that

are given by E = \/§2 + AZ2. This yield,

_ el Also, /ds (—%):1.

Finally, one gets

. ne*
(p(g=0)) = - A,. (4.135)

Hence, the paramagnetic response, (j,) and the diamagnetic response (j;) exactly cancel each other,
thereby yielding the total induced current, (j) = 0. Consequently, no circulating currents are induced
in a normal metal in equilibrium conditions, and, thus, the external magnetic field H is not shielded.

One can ignore the weak Landau diamagnetic effects, which arise from the fact that,

. ne? 2
(ip(q — 0)) = (; —aq ) A(g) (4.136)

where one can write,

ne*
Atotal = (; — 05612> A@Q).

The total current density now becomes

¥G-LL:LL Y202 Jequiedeq L0

(i@ 0) = —aq’ Apa (@ >0), (4.137)
where « is a positive quantity, and A;,,4 obeys the wave equation,
ia_z V2 A, = :

<c2 Y2 ) ind = Ho(j)- (4.138)
In a static situation, the contribution of the term —2 W = 0. Then,

4 Aind = =10 X 4" Asotal- (4.139)
Using self-consistent fields,

Avotal = Aind + Acxt
o, Ay = Aext(q) (@ > 0). (4.140)
1+ poa

Hence, the total vector potential derives a contribution from the external field and A;,,4. Taking curl to
obtain the magnetic field,

| |Hext|

Hiptall = T+ (4.141)
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where 7 is a positive quantity, such that Hy,;) < Hexr which means that the magnetic field is somewhat
screened, and the system shows weak diamagnetism.

Let us now discuss the superconducting state, which is characterized by A # 0 and the cancelation of
the paramagnetic response (j,) and the diamagnetic response (jg) are not valid any longer. In fact, as
we shall see, at T = 0, (j,) = 0 and therefore, only the diamagnetic response (j;) contributes.

To this effect, let us define the ratio of the density of normal electrons to that of the total density, namely,
. This quantity will vanish in the superconducting state, or as T — T, that is, when T approaches
T below.

Ny o0 _B_fk B o E _ﬁ
7‘/,00 ds"( as)‘z A dE«/iEz—Az( aE) 1)
_i/oodg sech? <—V$2+A2(T)> =Y(D), .

0

T 2T 2T

where Y(T) is known as the Yosida function. The Yosida function characterizes the response of quan-
tities to which other pairs do not contribute, and thus represents the response of the normal fluid. Let
us explore the following limits, namely, T <« T,and T — T .

i. For T <« T., Y(T) behaves as Y(T) ~ e~ 2O/T,
ii. For T — T, Y(T) ~ 1 —2%0,

The g =0 components of the paramagnetic and the diamagnetic contributions are, respectively,

written as
. ne* /n
(plg=0 = — (—") Ay (4.143)
m \n
. ne
(jd)g=0 = —— Ao. (4.144)
m
Thus,
. . ne’ 1y nse
() = Gip +ja) = —— (1 - —) Ag = ——— Ao, (4.145)
m n m
where one can define the super-electron density, that is, <
R
o o
So,
nse
Gy =— A. (4.146)
m

Thus, the super-electron density can be described in terms of the Yoshida function as

@=1—Y(T).
n
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FIG. 4.22
The behaviour of the superfluid density scaled by the total density, %T) is shown as a function of reduced temperature,

TIT. The behavior of the superfluid density close to T = T; is given by (1 — T—Z).

o

Hence, the London penetration depth (or the inverse of it) is expressed as %
1 4t ny(T)e? S
1 ns(De” _ (- Y(T)). (4147) 3
A3 (T) m A7(0) 2
g

Thus, the temperature dependence of the penetration depth is expressed by the temperature variation
of the Yoshida function, Y(T) (see Fig. 4.22).

4.5.2 Electromagnetic response in the transverse gauge

An externally applied vector potential, A (r, t), induces current in the system (j(r, t)), which in turn
generates an electromagnetic field. Using Maxwell’s equation, we have

1 92 ) .
(c_zﬁ -V )Aind(ra 1) = po(j(r, 1)) (4.148)

which follows from
oA )
E=——"andV x (V xA)=-V?A
in a gauge where V - A = 0. Therefore, Fourier transforming one obtains
2
2_ @ .
(q - C—2> Aind(q ) = o(j(q ®)). (4.149)

The total vector potential is written as

Atot = Aext + Aind
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and for the current density,

. r ne nge? 1
(J((L w)=|x" — ? Aot = — m Aext = __zAtot- (4.150)

Now,
B = po(H + 47 M)

also B =V x At (4.151)

1
and H = V x A thatis, M= —V x Ajq.
H“o

In the static limit, that is, w = 0,
4 1
Aind = — — (j(q0))
¢ q
—1/A1(T)

¢+ 1/2{ (D)
Thus, the susceptibility can be written as

(4.152)
or, Ajnd =

ext-

1
oM 22(T)
X = —-—— —----—
2 1
OH ¢+ 55 (4.153)

thatis, lim y = —1.
q—0

The above equation implies the conditions for perfect diamagnetism. Superconductors are perfect
diamagnets. It may be noted that the diamagnetic susceptibility of metals is usually of the order of
107°—10"°.

GINZBURG-LANDAU (GL) THEORY

4-46

In 1937 Ginzburg and Landau (1950) developed a model to describe second-order phase transition,”
that is, those transitions which involve latent heat. It is physically meaningful to state that the quantum
many body states, Y (something similar to what we have seen in BCS theory) should be a function that
minimizes the free energy, F; of the superconducting state. Ginzburg and Landau considered F; to be a
functional of the wavefunction ¥/, and hence use a variational principle to minimize F, with respect to
¥, and obtain a set of differential equations for v that govern the physical properties of the supercon-
ductor in equilibrium conditions. To this end, a concept of the order parameter has been developed,
which smoothly vanishes at a temperature T > T, while it is non-zero for T < T.. The identification
of the order parameter is often obvious from the properties of second-order phase transitions. For
example, for a ferromagnetic to a paramagnetic transition, the order parameter is the magnetization,

6 Tt may be mentioned here that we have introduced the Ginzburg Landau theory very briefly. In no way should it be considered
as complete. For a detailed discussion, see Theory of type-II superconductors in Fetter and Hohenberg (1969).
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which is finite below the magnetic transition temperature, T, and goes to zero above T.. Whereas, a
superconducting state has an energy gap that separates the ground state and the first excited state, as
the order parameter assumes non-zero values below the superconducting transition temperature, T,
which, however, vanishes above T,.

Since the order parameter evolves continuously from zero below T, it is natural to expand the free
energy as a power series in the order parameter. The free energy is a scalar, but the order parameter,
may in general be a vector, or even a complex quantity. We shall study GL theory by constructing the
free energy for the superconductor in terms of the wavefunction for the “super-electrons” as the order
parameter (instead of the energy gap between the ground and the excited states), ¥ (r), the density of
the super-electrons is n; = | (r)|%.

Consider a homogeneous superconductor at zero external magnetic field, that is, H = 0. Also, ¥ (r)
is independent of r. Let us expand the free energy near the transition from a normal metal to a
superconductor, that is, near T,

B

Fo=FEy+alyl’+ 2yl (4.154)
where F; denotes the free energy density of the superconductor, and F,, is the free energy density of §
the normal state. Furthermore, o, 8 are the phenomenological expansion coeflicients characterizing El
the material, and they depend on temperature. The minimum of F; is obtained by minimizing F with ;
respect to the order parameter, ®
dF, 2
— =0. (4.155) Sy
dly|? i
The minimization implies that (writing the equilibrium value of ¥ and o),
[Vol* = —e/2B.
Recall that |1/¢|? is the density of the super-electrons that minimizes F;. Now,
dF.
d—l; =20y +2BY° =2y [a + ByY2]. (4.156)
Thus, the difference in energies between the normal and the superconducting states is obtained from
2 2 2 2
F,,—F5=a<g>—é<g> _r_r 2 (4.157)
B 2\8 g 28 2B

The temperature dependence of « and § can be deciphered as follows. At the first order in temperature,
that is, when T is close to T, let us postulate a linear behavior of the form,

oa~a(T—T,) (4.158)
where a is independent of the temperature. This implies

a=0at(T =T,

(4.159)
a <0at(T < T,).
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Thus, the order parameter assumes a form,
[y =0for T > T,

_ 1/2 4.160
Y| = [W} for T < T, ( )

o changes sign across the phase transition, and hence # should not change sign and remains constant,
at least for small deviations in temperature from the transition point.

Next, consider a superconductor in an external magnetic field, Hext. The electrons interact with the
external field via their momenta transforming as

p— p—eAwhereB, =V x A

4.161
which implies, V — V —ieA. ( )
Thus, the free energies have to be written as

, 1 . R ie 2 5
Fo=Fy+alyl?+3BI0I + || V= =A@ | v®)| +poHz () (4.162)

where Hyt (r) = V X A(r). The free energy is a functional of

{¥ (0, ¥* (@), Vi (1), VY™ (1), H(r)}

and each one of these is a function of the spatial variable r. Minimizing with respect to ¢ *(r) yields

hz . 2
8F; = {—% (V - %A(l‘)> V() +ay(r) + ,BIw(r)IZW(r)} SY*(r)

2

+— (v - i—eA(r)> U (X)8Y* (). (4.163)
2m h

The last term can be written as woH?, or wo(V x A)2. Furthermore, variation with respect to ¥

yields the complex conjugate of this equation. Putting § F; = 0 for an arbitrary variation of the order
parameter, namely, 5y *(r), we get the first GL equation,

K2 ' 2
o (V - %A(r)) Y (@) +ay ) + By @) =0 (4.164)

where we have neglected the magnetic energy density due to the external field, that is, the last term.
Now minimize it with respect to A(r) yields Ampere’s law,

V x H(r) = poj(r) (4.165)
where,

. ieh - . e

i) = 5 [V*OVY @) — ¢y @OVY* )] - Ell/fl A(r). (4.166)

This is the second GL equation. These two GL equations in Eqs. (4.164) and (4.166) are the main
triumphs of GL theory. They enunciate the variation of the order parameter, v (r), and the current
density, j(r).
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4.6.1 Coherence length and the Penetration depth

Using the GL equations obtained above, we wish to derive expressions for some physical observables
that are measured in experiments, such as the coherence length and the penetration depth. Let us first
talk about the coherence length.

Consider an inhomogeneous order parameter for a system generated by the presence of the boundary
in the absence of an external magnetic field.” The superconducting (SC) region is denoted by x > 0.
Thus, the order parameter is zero for the interface. For deriving expression for the coherence length,
putting A = 0 in the first GL equation Eq. (4.164),

R d*y 5
-7 =0. 4.167
T a2 + o] + By ( )
It may be noted that « is negative in the superconducting state, which allows us to set, « = —|«|. Now
defining the coherence length as
hZ
£2 = . (4.168)
2m|o|
Also writing (B8/|a|)¥? = f2, we can write Eq. (4.167) as 3
—E —f4+f =0 (4.169) %
Multiply both sides by f” to get %
d 2072 1 1 _i
d—[‘%‘zf”zf“]:" :
o ) ) (4.170) ®
or, — EZ% — Ef2 + Zf4 = constant.

Far from the boundary, f’ (or ') should be zero, and f2 = 1. Hence, |y |> = % Equation (4.170) now
becomes

EX(f)? = %(1 - (4.171)

The solution of the above equation is given by

f = tanh (%)

Hence,

r=(5) e ()
=|— anh | —
B V2
This yields that £ is the measure of the distance over which the order parameter responds to a per-

turbation. Also, since & = a(T — T.), the temperature dependence of the coherence length can be

7 To derive the coherence length, presence of magnetic field is not essential
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obtained as

72 T —1/2 T —1/2
§(T) = <1——> =$o<1——> . (4.172)

2maT, T, T,
Thus, £(T) diverges as (T — T,)~'/? as T — T, below. Also, the temperature independent length, £,
is given by
hZ
- 2maT,’

A little manipulation of the above formula yields,

%_2 _ hz €F 2
0= 2mep \kgT./)

Thus & is larger than (%) , which is of the order of interparticle spacing, by a factor of (e p/kp T, )2,
Remember, €F is usually of the order of a few eV (typically, 5-6 eV), and kg T, for superconductors is
of the order of a few meV. Thus, & is usually of the order of a few thousand lattice spacings.

&o

1/2

Next, in order to arrive at an expression for the penetration depth, we examine the current expression
from the second GL equation, that is Eq. (4.166). If we neglect the first term in comparison to the
second term, then one obtains the London equation (discussed earlier), namely,

1
i@ = po—=zA(), (4.173)
AL
where,
2o _me
dme?|yr|?
Again, the temperature dependence of the penetration depth is obtained as
2 T\ /2
=P V(- L (4.174)
4meraT, T,
Az has a similar divergence as that of £(T). Also, a ratio of the two can be found as
1/2
mc (B
=A =—|— . 4.175
K =xr/§ o (271) ( )

As discussed earlier, the value of k¥ demarcates between various types of superconductors, namely, the
type-I and type-II superconductors, which have very different magnetic properties.

COOPER PAIRS WITH FINITE MOMENTUM

4-50

In BCS theory, we have seen that the pairing occurs between electrons of opposite spins and equal and
opposite momentum, namely, (k1, —kJ ), such that it results in the total momentum to is zero for the
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pair. The spectral gap of the order parameters is uniform as well. However, there are other supercon-
ductors which can accommodate pairs having non-zero total momentum, and a non-uniform order
parameter. Such superconducting properties were predicted independently by Fulde and Ferrell (1964)
and Larkin and Ovchinnikov (1964) and were shown to arise in the presence of large magnetic fields.
These superconducting states are called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, where the
superconductivity is destroyed by “Pauli pair breaking” mechanism, rather than by orbital pair break-
ing that occurs in BCS superconductors. Quasi-2D heavy fermion superconductors, such as CeColns
etc are potential candidates for the formation of FFLO states.

One basic way where such finite momentum pairing can be realized is when the populations of the
participating species are unequal. A possible way of creating an imbalance in the densities of spin-1
and spin-|, electrons is using a magnetic field which makes the Fermi surfaces (corresponding to 1
and |-spin states) shift away with respect to each other. However, such population imbalances can
be detrimental to pairing. This can be understood as follows. The breakdown of superconductivity
by such population imbalance of the participating species can be realized by the fact that deep in the
Fermi sea, particles cannot form a pair or even scatter off one another because their motion is “frozen”
by the exclusion principle. Pairing requires partially empty energy states that can only be found near
the Fermi surface. But if the populations of the two different spin components are different, the two
Fermi surfaces no longer match up in momentum space, that is, there are no partially occupied states
in which both species have opposite momenta and can form a zero-momentum pair. This makes the
pairing energetically less favorable and eventually causes superfluidity to break down. However, there is
one way that superconductivity can stabilize, which will happen when the pairing between the Zeeman
splitted parts of the Fermi surface give rise to an unconventional pairing state, namely, (kt, —k + ql),
comprising pairs having a finite center of mass momentum, q.

¥S-LL:LL ¥20c Jequiedeq L0

The origin of such unconventional pairing phenomena goes back to as early as the 1960s when Maki
and Tsuento (1964) motivated by the unusual dependence of the critical temperature as a function
of the magnetic field along with the existence of the Clogston-Chandrasekhar limit (Chandrasekhar,
1962; and Clogston, 1962), which showed that the critical field in a certain class of superconductors
was set by Pauli paramagnetism. The inference drawn from the above studies was that the second-
order phase transition which exists between superconducting and normal phases becomes a first-order
transition at a critical value of temperature and magnetic field, making the critical value a tri-critical
point.

4.7.1 The FFLO phase

The study of superconductivity in the presence of a magnetic field commenced nearly half a century
ago with the works of Clogston (1962) and Chandrasekhar (1962). In their work, they had considered
pair breaking only by the Paulli paramagnetic effect and the orbital component was assumed to be
negligibly small. Later, it was observed that the uniform state with population imbalance is unstable as
the magnetic field is increased (until H = j—%, where H is the magnetic field and A is the supercon-
ducting order parameter) at zero temperature which was confirmed by comparing the free energies of
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the normal and superconducting phases. Thus, there is an indication of phase separation of the two
spin species at H > j—%. The subject was intermittently revived to discuss the bounds on the upper
critical field and its effect on the phase boundary where the paramagnetic effect governs the physics.
More abounding implications of the presence of an external magnetic field are elucidated by Fulde and
Ferrell (1964) and by Larkin and Ovchinnikov (1964) where possibilities of a finite momentum pairing

between the different participation species of electrons are explored.

The relevant discussion on the effect of the magnetic field on superconductivity is as follows. The Fermi
surfaces of the spin-1 and | electrons split when an external magnetic field is turned on, resulting
in an imbalance between the two electron species. Under such circumstances, along with the con-
ventional BCS state, the spin-polarized state (normal state) and possibly more states compete for the
ground state. The imbalance of the two electron species in turn leads to the breaking of a fraction of
the Cooper pairs. If the number of broken pairs is small, then the energy gap, A is not affected. It
may be noted that energy of 2H (where H is the strength of the magnetic field) is gained from the new
spin orientation at a cost of 2A¢ in breaking a Cooper pair, while attaining a spin-polarized state. A
continuous increase in the number of broken Cooper pairs demand H to be greater than A in order
to make the spin polarized state eventually energetically more favored over the BCS state. But the spin-
polarized state has a lower energy when H = 1/+/2A¢ which is known as the “Pauli limit”’Clogston
(1962) and Chandrasekhar (1962). Thus, the BCS state with a large number of broken Cooper pairs
becomes unstable, and an alternative solution exists for the ground state. This unusual phase is known
as the FFLO phase which is stabilized by a large Zeeman splitting between the 1 and the | -spin elec-
trons which form pairs across the Fermi surface and subsequently condense to give a state which has
lower free energy than the normal spin-polarized state. These pairs have non-zero total momentum
(29 = k4 — k) as opposed to the traditional zero momentum pairs in the conventional BCS state
(refer to Fig. 4.23) since the paired electrons have different momenta (k4 and k). Interestingly,
finite momentu m pairing results in a spatially oscillating superconducting order parameter with a

b
2 [ KT
|} 9
,//, —k #+ qJ/ ,/'
k ¢————® 11 o~ | o
7 q //
‘ ,//’ .
-kl
K+ qd

FIC. 4.23
Schematic view of pairing states. (a) BCS pairing state, (b) FFLO pairing state. The inner and outer circles represent
the Fermi surface of the spin down and up bounds respectively (Matsuda and Shimahara, 2007).
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wavelength of the order of superconducting coherence length, £. The FFLO phase thus breaks spon-
taneously translational symmetry and resembles the unconventional superconductivity in strongly
correlated systems, where the order parameter changes sign in the momentum space.

The orbital (diamagnetic) pair breaking is a crucial mechanism that limits the realization of the FFLO
state. It is a dominating pair breaking mechanism that destroys superconductivity for magnetic fields
much weaker than the Clogston-Chandrasekhar limit (H,). The significance of the diamagnetic pair
breaking is usually described in terms of the Maki parameter o = ~/2H%?/H,, where HYY b is the
upper critical field calculated without the Zeeman splitting. Thus, the paramagnetic effect (due to the
exchange field) responsible for FFLO has to dominate over a competing orbital effect which annihilates
superconductivity due to the formation of screen currents arising from vortices. The above require-
ment demands few stringent conditions which must be satisfied for the realization of the FFLO phase,
such as ultra-clean type Il superconductor, such that the pairing correlations survive at a finite magnetic

field and the electronic mean free path, I 3> & where £ is the superconducting coherence length.

In spite of a robust theoretical possibility for the existence of FFLO, the experimental scenario remained
bleak mainly due to the lack of phase space available for pairing to occur. Thus, FFLO occupies a very
small space in the phase diagram. There exist two general possibilities to reduce the destructive role
of the orbital pair breaking. In the layered superconductors, the formation of Landau orbits should be
suppressed with magnetic fields applied parallel to the layers. This may explain the possible observa-
tions of the FFLO state in some organic superconductors. The role of the orbital pair breaking should
also be limited to systems with narrow energy bands. It is worthwhile to mention at this stage that the
FFLO phase is possible in the case of condensation (mass polarized) quarks (color superconductivity).
Astrophysical objects, for example, neutron stars or pulsars, can be a good candidate for realizing such
a phenomenon. A good introduction to the subject is obtained in reviews by Casalbouni and Narduli
(2004) and by Buzdin (2005).
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4.7.2 Experimental signatures of the FFLO phase

The experimental studies of FFLO in heavy fermion compounds, for example, Ce and U based mate-
rials, started in the early nineties as some of the prerequisite conditions for observing FFLO is met
in these systems. Notable of them is CeRu, which is usually obtained in a metallurgically clean state.
Among the heavy Fermion systems, the most explored one is CeColns which receives strong support
as a candidate with an FFLO phase. These are essentially quasi two-dimensional structures and the
magnetic field is applied parallel to the ab plane. The experiments on CeColns, have shown the heat
capacity to undergo two phase transitions, a second order one within the superconducting (SC) state
at low field values and a higher field first-order transition at H,, (Radovan et al., 2003), the intervening
regime acquiring a nonuniform nature. With the external magnetic field acquiring an angle with the
ab-plane, the orbital effect starts playing a role and the large field transition goes away, rendering an
absence of the nonuniform or the FFLO state. The enhancement of the penetration depth (as a func-
tion of magnetic field) (Martin et al., 2005), anomalous thermal and magneto-thermal conductivity
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(a discontinuous jump) in the vicinity of the upper critical field (Capan et al., 2004) and a structural
transformation with vortices appearing in the flux line lattice observed via ultrasound measurements
(Watanabe et al., 2004) have provided reasonable, though not robust, support for CeColns in hosting
a FFLO phase.

Other experiments, such as anisotropic magneto-thermal measurements (Capan et al., 2004) ultra-
sound velocity measurements (Watanabe et al., 2004) etc. provide only indirect and cursory evidence
supporting the presence of the FFLO state.

More recently, !'3In NMR studies on CeColns with the applied field parallel to ab plane revealed dra-
matic asymmetry in the NMR spectrum for a field greater than the upper critical field when compared
with the one less than that (Kakuyanagi et al., 2005). Furthermore, an unusual temperature dependence
of the knight shift of 1°In is noted in the latter case. These facts are correlated with direct evidence of
the FFLO phase and a simulation of the NMR spectrum with a spatially modulated gap function seems
to satisfactorily explain the experimental findings (Kumagai et al., 2006). These results were challenged
in the light of other NMR studies (Mitrovi¢ et al., 2006).

The main factors that act in favor of organic superconductors as possible candidates for observation
FFLO is that their layered structures (with the magnetic field parallel to the layers) thereby making the
orbital H,, extremely high and hence, the Pauli paramagnetic effect becomes supremely important.
The reduced dimensionality or the planar structure of these materials is conjectured to be a facilitator
for observing the FFLO phase. Recent critical field measurements (Nam et al., 1999) in the quasi-
two-dimensional organic superconductor k — (BEDT-TTF),Cu(NCS), strongly suggest that a state
of the FFLO type exists in this material. The agreement between this experiment and existing theories
has been successfully verified (Manalo and Klein, 2000) both in view of both the angle-dependence
(Shimahara and Rainer, 1997) and the temperature dependence Singleton et al. (2000) of the upper
critical field. In Manalo and Klein (2000), a comparison between the experimental (Nam ef al., 1999)
temperature dependence of the plane parallel upper critical field with the theoretical results for « —
(BEDT-TTF),Cu(NCS); has been reported. This is the first time since the original predictions of the
FFLO phase that quantitative agreement between theory and experiment with regard to the FFLO
phase boundary has been established.

An increase in the critical field at low temperatures with positive d°H./dT? was observed in
(TMTSF),PF¢ (Lee et al., 1997). Such behavior of the critical field behavior is very similar to the behav-
ior that is theoretically obtained in low-dimensional FFLO superconductors (Shimahara, 1994; and
Dupuis, 1995). This might suggest the possibility of the FFLO state in this material or similar organic
compounds, although this is not conclusive evidence for the existence of the FFLO phase.

4.7.3 Theoretical developments

A theoretical analysis of the FFLO state requires, in general, a self-consistent calculation of the
amplitude of the spatially varying order parameter. Such calculations are within the reach of present
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computation capacities, but were not possible in the early years of discovery of the FFLO phase. Early
theoretical works on this problem were mostly centered around studying the region near the second-
order phase transition to the normal state or studied the Fulde-Ferrell state characterized by a spatially
modulating order parameter (Takada and Izuyama, 1969),

A(r) = Ag €97 (4.176)

Although analytical solutions to both the problems exist, they fail to provide a complete description of
the spin imbalanced inhomogeneous phase. For example, the Fulde-Ferrell (FF) state is not the correct
minimum energy state, as shown by Larkin and Ovchinnikov (LO) who considered the order parame-
ter to be of the form A = Ag cos(q - r). It may be noted that the amplitude of the order parameter is no
longer a constant in real space in the LO phase. Various studies have been performed with decreasing
magnetic field which have shown that the LO phase evolves into a state with a set of domain walls.
This has been shown in one (Machida and Nakanishi, 1984), two (Burkhardt and Rainer, 1994), three
(Matsuo et al., 1998) dimensions, and also for d-wave superconductors (Vorontsov ef al., 2005). In
the limit of small population imbalance, the order parameter is constant in real space with the value
being equal to that in the state with no population difference, excepting near the domain walls. These
are the locations where the magnetization concentrates and the phase of the order parameter changes
by = when the walls are crossed. The physics of these domain walls is closely related to that of the =
junctions in superconductor-ferromagnet-superconductor junctions (Buzdin, 2005).

A detailed study of the effect of dimensionality on the exotic FFLO phase was also conducted. In
one dimension, it was argued that the ground state of the homogeneous attractive Fermi gases with
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unequal spin populations is the one-dimensional analog of the FFLO phase (Yang, 2001). A simi-
lar study of the scenario in two-dimensional systems has yielded many intriguing results (Zhu et al.,
1995; and Pieri et al., 2007). In particular, a quasi-classical analysis in Combescot and Mora (2005)
using a Ginzburg-Landau expansion of the free energy in the Fourier components of the supercon-
ducting order parameter, had shown that the FFLO transition in two dimensions is continuous at low
temperatures.

Various studies have shown that the system must be in the ultra-clean limit where the quasiparticle
mean free path [ is much longer than the coherence length & for the realization of the FFLO phase.
This, in turn, demands that the Ginzburg Landau parameter, k must be much larger than unity. These
conditions are readily met in d-wave superconductors like high- T, superconductors and organic super-
conductors e.g. k — (ET), salts and A — (ET); salts (Nam et al., 1999). Thus, the discovery of these
new classes of superconductors has triggered an extensive search of the FFLO state in d-wave super-
conductors (Vorontsov and Graf, 2006). In this regard, some of the theoretical studies have predicted
that the stability of the FFLO state in two dimensional d-wave superconductors is much more than
in three-dimensional s-wave superconductors (Shimahara, 1998; and Yang and Sondhi, 1998). Some
other studies have been performed to investigate the effect of disorder on the FFLO state in d-wave
superconductors. For example, Vorontsov and coworkers (Vrontosov et al., 2008), have investigated
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the stability of the FFLO state in dirty d-wave superconductors using the quasi-classical theory based
on the self-consistent t-matrix approximation for impurities. Their results are counter-intuitive as it
shows the FFLO state to be robust in “dirty” d-wave superconductors. In a separate study by Yanase
(2009), the spatial structure of the superconducting order parameter and the magnetic properties in
the disordered FFLO state are investigated using the Bogoliubov de Gennes method. The results show
that the nature of the superconducting order parameter is strongly dependent on the kind of disorder
taken into consideration.

The modulating superconducting order parameter, which yields direct evidence of the presence of the
FFLO phase, is very difficult to observe in experiments. In this context, the quasiparticle local density
of states (LDOS) is very useful as it can be directly detected using scanning tunneling microscopy
(STM). The LDOS for a two dimensional d-wave superconductor has been computed by Vorontsov
et al. (2005) by solving quasi-classical Eilenberger equations. Wang et al. (2006) have also investigated
LDOS for both s and d-wave superconductors, along with the superconducting order parameter which
is found to be stripe-like for s-wave superconductors and a square lattice for d-wave superconductors.

Most of the theoretical studies of the FFLO state are based on the mean field approach, which is coun-
terintuitive as one expects the quantum and thermal fluctuation effects to play a significant role in
the FFLO phase than in conventional BCS superconductors, as the FFLO phase breaks the transla-
tional symmetry. In this regard, Yang (2001) has studied the FFLO phase in quasi-one dimensional
superconductors using bosonization for an exact treatment of the intra-chain quantum fluctuations
and has shown that the transition from the FFLO phase to BCS is a continuous transition of the
commensurate-incommensurate type. The effect of thermal fluctuations has been discussed by Mat-
suda and Shimahara (2007) which reveals that the mean field FFLO state is destabilized by the
enhanced fluctuation effects. In all these studies for treating phase fluctuations for an FFLO supercon-
ductor, the most common method is to incorporate a fluctuation in the phase of the order parameter
and hence construct a generalized Ginzburg-Landau (GL) action for the phase variable (Shimahara,
1999; and Dalidovich and Yang, 2004). Spatial correlations of the phase variable indicate a rapid sup-
pression of the long-range order (LRO). Furthermore, the fluctuation-driven transition from normal
to FFLO is found to be first order that corroborates the experimental evidence in CeColn5, however
contradicts the mean field results (Dalidovich and Yang, 2004).

The experimental realization of the phase has been illusive mainly because its occurrence requires
several stringent conditions to be met simultaneously. In most type-II superconductors, destruction
of superconductivity occurs through the orbital pair breaking effect, leading to the emergence of the
vortex state. However, such an orbital effect is always detrimental to the FFLO state. Hence, for the
FFLO state to occur, the orbital pair breaking effect must be weak relative to the Pauli paramagnetic
effect. Moreover, the system needs to be clean, since the FFLO state is readily destroyed by impurities.
The cleanliness condition is met when the coherence length, £ is very small as compared to the mean
free path, A. Thus, the superconducting materials fulfilling these necessary conditions are few. Some
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of these conditions are satisfied in heavy fermion superconductors with large orbital-limiting fields
(Gloos et al., 1993; and Huxley et al., 1993).

An alternative route to achieve the supremacy of paramagnetic effect is to use a layered structure in
a strong magnetic field applied parallel to the layers, thereby undermining the orbital pair breaking
effect further and augmenting the parameter space where FFLO can exist (Barzykin and Gorkov, 2002).
The organic superconductors strongly fit into these requirements and hence are considered as ideal
candidates for the FFLO phase (Shimahara, 1994). Apart from these compounds, signatures of FFLO
phases are also observed in neutron stars (Alford et al., 2000).

4.8 EXPERIMENTAL DETERMINATION OF THE ENERGY GAP

The existence of a forbidden energy regime in superconductors has given us a simple way to under-
stand the fact that below certain excitation energies, the bound state of the electrons is robust and they
cannot dissociate into single particles. Thus, the current in the superconducting state is mediated via
the cooper pairs (also referred to as the super-electrons), and the normal current carried by the electrons
is zero. More precisely, there are no unpaired electrons in the superconducting state. Here we describe
a few of the early experimental methods below to determine the energy gap. We shall mainly focus on
three methods that have been widely used in obtaining the magnitude and the pairing symmetry of
gaps in the early days of the discovery of superconductors. They are

i. Absorption of electromagnetic radiation.
ii. Ultrasound absorption.
iii. Tunneling experiments.
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4.8.1 Absorption of electromagnetic radiation

This technique of exploring the energy gap was reported in 1957 by Tinkham and Glover (1958). They

observed infrared transmission in thin-superconducting films. It was earlier proposed that electro-

magnetic (EM) waves of appropriate frequencies can break the ordered state of a superconductor.
Table 4.1 Assuming a cooper pair has a binding energy given by Eg ~ 10~2 eV, one needs
2 and T, are reported for @ radiation frequency v ~ Ep/h = 2.4 x 10 Hz or 240 GHz. The wavelength of
afew conventional supercon- ~ the waves is about 1 mm, for which neither generation of such frequencies, or
ductors. The gap is of the detection methods were available in 1930s. Only two decades later, such em waves
order of a few meV. could be produced. Typical transition temperatures and the magnitude of the
superconducting gaps for a few superconductors are indicated in Table 4.1.

T.  2A (meV)
NbsSn 18 6.55 In the experimental method, EM radiation is guided through a small cavity made
MgB, 40 10 into a superconducting material. Within the cavity, the radiation is reflected sev-
RbyCe 30 12 eral times before it emerges through the cavity, and hence is detected. The stronger
ErRhB, 9 3 the absorption of the radiation from the walls of the cavity, lower = the out-

put power. At a fixed temperature, T < T, that is, when the material is in the
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superconducting state, let the power in the supercon-
ducting and the normal states be I; and I,, respec-
tively. ISI_I” is plotted as a function of frequency of

the EM waves in Fig. 4.24.

At small frequencies, we see a distinct difference
between the detected power in the superconduct-
ing and the normal states, with the absorption
| being larger for the superconducting state. At certain

FIG. 4.24

10 x 1011 Hz  threshold frequencies, the difference drops abruptly
to zero. At even larger frequencies, the relative dif-
ference in the detected power stays at values that are

The absorption of electromagnetic radiation is shown as a vanishingly small. The abrupt drop sets in as soon as
function of frequency. The frequency at which the intensity the quantum energy of the radiation is large enough
almost vanishes yields the superconducting gap 2A. to break the cooper pairs. Thus, there is an absorption

edge at the point C in Fig. 4.24. Similar absorption

edges are also seen for semiconductors; however, the scale of the energy gap is much higher there,
e.g., ~0.8 eV in Ge. As an example, for hv > 2A, the energy gap practically vanishes and so does the
absorption spectrum. This aids us in obtaining 2A, which is proportional to T,.. Some typical values
for superconductors, and their transition temperatures are tabulated below.

4.8.2 Ultrasound absorption

Sound waves denote the propagation of phonons in a material. Most measurements with sound waves
are carried out with typical frequencies of the order of 10 MHz. These frequencies correspond to

Absorption

L pr,

FIG. 4.25

Schematic depiction of the ultrasound
absorption intensity is presented as a
function of T/T.. The absorption is low
in the superconducting phase owing to
the absence of unpaired electrons.
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energies that are much smaller than the superconducting gap. Only
very close to T., where the energy gap A approaches zero, sound
energies at the MHz frequency range become comparable to the
gap. Unpaired electrons below T, interact with the lattice excita-
tions leading to damping. Below T, as the temperature is decreased,
the number of unpaired electrons decreases rapidly, thereby caus-
ing reduced damping of the sound intensity. A schematic plot
of the ultrasound absorption spectra (in arbitrary units) is pre-
sented as a function of the reduced temperature, T/T.. As T tends
to T, from below, the cooper pairs start dissociating yielding an
increasingly large number of unpaired electrons in the system.
These electrons absorb the sound waves leading to an enhance-
ment in the absorption intensity (see Fig. 4.25). Since at a given
temperature, the number of unpaired electrons depends on the
energy gap, the latter can be determined from such absorption
experiments.
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4.8.3 Tunneling experiments

In 1961, Giaever (1961) pointed out the possibility of determining the energy gap by means of tunneling
experiments. The experiments involve the observation of tunneling current across a metal-insulator-
semiconductor (MIS) junction. The metal and the insulating materials are usually taken as Al and
Al O3 respectively. Al,O3 is known to be a good insulator which can be fabricated nearly perfectly
with a thickness of only a few nanometers.

One can understand the tunneling effect without a detailed calculation. Consider a particle that inci-
dents on a barrier with energy lower than the barrier height. While a classical particle is unable to travel
to the other side of the barrier, it is possible for a quantum mechanical particle (because of its wave
nature) to do so. Considering the wave character of the particle, when a wave is incident on the surface
separating two media into which it cannot enter, the wave must be completely reflected. We understand
intuitively that being a wave, it can penetrate up to a small distance into the forbidden region with its
amplitude decreasing exponentially. The decrease is faster and complete within the barrier if the width
and height of the barrier are large. However, for a sufficiently thin barrier, there is a finite possibility
that the wave can penetrate into the barrier (of the order of de Broglie wavelength) and propagate into

o
the medium (lead) on the other side. §
&
If a superconductor is introduced on one or both sides of the barrier, the current as a function of the g
biasing voltage (I — V) characteristic is bound to be different. This happens because an energy gap 8
appears in the superconducting state. So no tunneling current can flow below a certain critical voltage, ‘5
given by V. = A/e. From the above plot (Fig. 4.26) it is clear that from V,, the value of A can be 2
N
determined.
Tunneling -
current
(1) N-N junction
(2) N-Sjunction at T=0
(3) N-Sjunctionat0< T< T,
/}/ V.=Ayle
Biasing voltage (V)
FIC. 4.26

The current-voltage characteristics are shown schematically for N-N and N-S junctionsat T=0and0 < T < T,.
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k, ko k, However, at the normal-superconductor junc-
T k, tion there is an additional phenomenon
E which contributes to the tunneling current.
Here especially we are interested in a situ-
ation in which the biasing voltage is much
h e smaller compared to the energy gap, A in a
- - superconductor. Thus, in the usual circum-
stances, no tunneling can occur. Thus, for an
electron arriving at the interface of a normal-
N superconductor junction, two possible pro-
cesses can take place (See Fig. 4.27), namely,
¢ i. anormal reflection in which an electron is
simply reflected back, giving rise to no net
FIC. 4'2,7 . . . . current.
A schematic diagram of the dispersion E vs k corresponding to the . . S
Andreev reflection at the normal-superconductor (N-S) junction is ii. Andreev reflection which is an anomalous
shown. A cooper pair is created at the boundary, which can prop- reflection of an electron. What actually ¢
agate at low bias inside a superconductor. The electron is specularly happens here is the following. An electron g
reflected as a hole on the metallic side. comes at the interface, instead of undergo- 3
ing a reflection é
a. a cooper pair is added to the superconducting region, it has an energy A. R
b. the incident electron is annihilated. ;
c. ahole is reflected back along the original path of the electron. &
This is known as Andreev reflection. The incident, and the reflected quasi-particles have approximately
equal wave vectors, which are given by
ke = kg + <
th (4.177)
k' =kp — —
hl)p
but have opposite directions of motion, as appears from the sign of the group velocity %Lg—,i. The
momentum is conserved up to the order,
Bkt — k") < /g
where § = 7’?—?0, which is the coherence length.
Energy is also conserved in the process. The minimum energy of a cooper pair has the value 2¢F, the
incident electron has energy €r + €, and that of the reflected hole is € — €. In the process, a charge
2e is transferred from the normal to the superconducting side of the barrier, which is equivalent to a
cooper pair being injected into the superconductor.
We can understand the tunneling problem in the following manner. The number of electrons tun-
neling per unit time with an energy E from the left (say, a metal) to the right (a superconductor) is
4-60  Modern Perspectives in the Study of Electronic Systems
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proportional to the number of occupied states on the left, namely, N (E)f(E), and that to the unoccu-
pied states on the right, N2 (E')(1 — f(E)). N1(E) and N2(E’) denote densities of states for the metallic
and the superconducting regions, respectively. In the presence of the biasing voltage, V, the energies are
given by

E =E+eV

Thus, the unoccupied states on the right are denoted by

Ny (E+eV)(1 —f(E+eV)) (4.178)

The tunneling current is proportional to both these independent processes, which can be written as
oo
L, x / Ni1(e)f(e)Na(e +eV)(1 — f(e +€V)) de (4.179)
—00
This tunneling current is a measurable quantity in experiments.

For a normal metal-superconductor junction, the current, Iy_,s can be obtained by replacing
N1 — Ny N; — Ngs. A schematic plot of the tunneling current for the junctions, namely, and metal-
metal (N — N) and metal-superconductor
(N —S) both at T=0 and for T < T, as a
function of the bias voltage, are presented
in Fig. 4.26. The threshold potential yields
the energy gap. A differential conductance,
;—‘I,, which is proportional to the density of
states at the Fermi level, is often obtained in

experiments.
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4.8.4 Unconventional
superconductivity
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There are several superconductors, that have
been discovered over the last few decades,
o1 il iied it 4. which challenge the well-established paradigm
10! 102 103 104 of conventional superconductivity. Quite a few

T of them, including the high-T, cuprates, pose

anomalies owing to features that are unfamil-

FIG. 4.28 iar in the context of Fermi liquid theory. As
Uemura plot showing the superconducting transition tempera- a first signature, Uemura presented a plot of

ture, T, vs the Fermi temperature, Tr (both in log scale). The T.vs Tr (both in log scale) that yields a straight
positions of different superconductors are shown. The conven-
tional (BCS) superconductors lie far away from unconventional
superconductors.

line, while the conventional superconductors
are far away from this line. This is called the
Uemura plot and is presented in Fig. 4.28.
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4.9 HIGH-T. CUPRATES

In 1986, 75 years after the discovery of superconductivity, G. Bednorz and K. Muller at IBM, Zurich
demonstrated superconductivity in perovskite structured lanthanum (La) based copper oxide material,
which registered a T, of about 39 K for which the Nobel prize was awarded in 1987. It was a remarkable
discovery, as it later allowed chemical substitution in perovskite cuprates to push the T well beyond the
liquid nitrogen temperature (77 K), which is a much cheaper and easily accessible quantity than liquid
Helium. Later in 1987, La was substituted with yttrium (Y) in the form of YBa,_,Cu3zOy_, which
showed a T, of about 92 K. The materials show highest T, when they are slightly oxygen deficient,
that is, when x ~~ 0.15. Superconductivity disappears at larger values of x, which is also accompanied
by a structural phase transition when YBCO changes from an orthorhombic structure to a tetragonal
structure. Subsequently, thallium (Th) and mercury (Hg) based superconductors show even higher
transition temperatures. These superconductors are generally type-II superconductors which show a
gradual change in temperature as a function of the external magnetic field.

A large volume of research has taken place since its dis-
covery Varma (2020), however, owing to its ill-understood
normal state, a comprehensive understanding of the micro-
scopic phenomena remained elusive. A simple and intuitive
way to understand the complexity in the physical properties
demonstrated by the cuprates is to look at the photograph of
the Bismuth-based superconductor in Fig. 4.29. The highlight
of the figure is that it despite being a ceramic superconductor,
it appears black and without any luster. Conventional ceramic
compounds possess a glow which is visibly absent here. It
probably indicates toward the lack of a conventional metal-
lic state too, as will be reflected in the discussion that follows

below.
FIG. 4.29 The electronic pairing mechanism is itself questionable and
A cube of sides 1 mm of the Bismuth Strontium possibly other pairing symmetries, other then the conven-
Calcium Copper Oxide (BSCCO) is shown. tional s-wave (the latter discussed in the context of BCS

theory) play crucial roles. Even after several decades of active
research, several anomalies that questioned the established paradigm of superconductivity, were left
without the necessary clarification. We discuss some of them below.

4.10 PHYSICAL PROPERTIES

The discovery of the high-T, superconductors gave an intense push to the research on superconduc-
tivity in the direction of achieving larger and larger transition temperatures (T,). Over the last three
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decades, the maximum T, has increased by 140 K and there is a
lingering hope of realizing even larger values of T,. Much of the
difficulties in understanding both the normal and the supercon-
ducting states in cuprates involves a complex multi-layered crystal
structure with a large anisotropy along the c-axis. Besides, there
are difficulties in obtaining good quality single crystals. In the fol-
lowing, we shall discuss a few key properties of the cuprates that
should serve as an introduction to a beginner and set the platform
for building up the knowledge on this class of materials with rather
curious properties.

Several families of thermodynamically stable cuprate supercon-
ductors are experimentally realized. The fundamental block is
the CuO, plane where Cu ions in 3d’ configuration form a
square lattice. Each such Cu ion is connected to another through
the oxygen ions. Depending upon the class of materials, the
unit cell may contain one, two, or more CuO, layers. A typical
unit cell of Yttrium Barium Copper Oxide (YBa,CuzO7_s), with
8 ~ 0.1 — 0.3, known by the more familiar name YBCO with a

FIG. 4.30
Unit cell of Yttrium Barium Copper Oxide

(YBCO) is shown. The lattice parameters . o o
are indicated. lattice parametersarea = 3.82 A, b = 3.89 A, c >~ 11.7 A. Tt is gen-

erally believed that T¢ scales with the number of CuO, layers.

T, ~ 90 K) is shown in Fig. 4.30. The planar and the interplanar

¥S-LL:LL ¥20c Jequiedeq L0

Many of the unusual properties are attributed to the large volume of the unit cell and the interplanar
anisotropy.

The compounds that are of special interest are the Bi,CaSr,Cu;Og (called as Bi-2122 compounds)
and T1l,CaBa,Cu,Og (called as T1-2122 compounds). Because of their large T, (>100 K), they have
different numbers of cuprate layers and are denoted by a general formula A,Ca,Y,;Cu,;O,4+4 with
A =Bi, Tl; and Y = Sr, Ba; etc. The ones with Bi and Sr are more widely studied and are described
by the formula Bi,Sr,Ca;,—1CuyO2y44+5 where n =1 — 3 and § denotes the oxygen doping. These
are called BSCCO (pronounced as BISKO).n = 1,n = 2and n = 3 havea T, of 33 K, 96 K, and 108 K
respectively. Similarly, for the Tl family (denoted by TIBa,Ca,—1Cu,O2443) n = 1, 2 and 3 correspond
to T, ~ 14 K, ~80 K and ~120 K, respectively.

There are numerous examples of anomalies noted in various experiments on cuprate superconductors.
For example, consider ultrasound attenuation measurements. In conventional (BCS) superconduc-
tors, the ultrasound attenuates exponentially due to the loss of unpaired electrons (in favor of forming
cooper pairs). The coefficient of attenuation « is proportional to e~2/KsT
conducting energy gap. The scenario is not too different in the cuprate family. However, the ultrasonic
attenuation below T is found to be lower than that of the BCS superconductors, possibly owing to the

where A denotes the super-
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formation of pseudogap. However, the longitudinal sound velocity and the elastic moduli show dis-
continuities in most of the cuprate superconductors (except for the Tl-based family). The discontinuity
points toward a structural change and “lattice softening/hardening” at the superconducting transition.
The anomaly in the elastic modulus points toward a collective ordering of the oxygen atoms in the
CuO;, layers. There are many such examples which show significant digression compared to the behav-
ior observed for conventional superconductors. Apart from being beyond the scope of the present
discussion, there is a volume of good reviews on the subject, and interested readers are encouraged to
look at some of these. In the following we review the most significant feature of the cuprates which
eluded a microscopic theory so far, namely, the formation of a pseudogap phase.

411 THE PSEUDOGAP PHASE

4-64

The nature of the spectral gap in superconductors and how it vanishes (or changes) across a transition
can be detected by angle-resolved photoemission spectroscopy (ARPES) experiments. In the context
of high T, superconductors, high energy photons from a synchrotron source with an energy ~20 eV
made to incident on the surface of a single crystal. As a result, a photoelectron is ejected at an angle
0 normal to the surface of the crystal. The kinetic energy of the ejected electron is measured via an
electron spectrometer whose energy resolution is of the order of a few meV. The ARPES data for high
T, cuprates are thoroughly analyzed and reviewed in Shen et al. (1993) and Randeria and Campuzano
(1997).

The parallel component of the momentum (k) is balanced by the momentum of the excitations created
inside the sample. By varying the detecting angle 6 between the normal and the position of the detec-
tor, it is possible to map out the momentum dependence of the filled states of the crystal. Thus, the
intensity of the photoelectron distribution will demonstrate a sharp peak corresponding to the parallel
component of the momentum with an energy w which is given by

Ik, w) = Iy (K)f (@) Ak, w), (4.180)

where the energy is measured with respect to the Fermi-level (Randeria and Campuzano, 1997) and
A(k, ) denotes the spectral function of the excitations that corresponds to the hole that is left behind.
Io(k) is the arbitrary intensity factor that preserves the dimensionality of the equation and f(w) is the

Fermi distribution function, f(w) = h =1 and B being the inverse temperature.

1

ePlo—) 41’
The important quantity in the above Eq. (4.180) is the spectral function which contains the information
about the electron-electron interaction present in the material via the self-energy ¥ (k, w), which is in

general a complex quantity. The spectral function A(k, w) is expressed in terms X (k, w) as (Fetter and
Walecka, 1971)

>k, w)
(@ — e — 2/ (k,w))? + 2"k, w)’
where ¥’ and X" represent the real and the imaginary parts of the self-energy and € denotes the single

Ak, w) = (4.181)

particle energies.
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The ARPES spectra measure A(k, w) and its shows a broad background as a function of w that extends
to lower energies and yields the energy loss of the photoelectrons within the crystal. For a recent review,
see Yu et al. (2020). However, as a result of strong interparticle interactions, which dominate in these
cuprate superconductors, this broad background is attributed to the electronic correlations. The energy
of the emergent photoelectrons yields a sharp coherent peak at the single particle energies given by €
broadens rapidly for state below the Fermi level as the detection angle 6 is varied. As said earlier, the
loss of coherence is due to the presence of strong electronic correlations (Timusk and Statt, 1999) and
hints toward the breakdown of the Fermi liquid picture (see appendix). The optical conductivity data
support the loss of coherence as well. The sharp peak at the Fermi level as a function of the detection
angle 6 maps out the Fermi surface as it yields the information on the momentum (and hence the
energy) of the emitted photoelectron. The same experiment can be repeated at various doping levels.
Mostly in cuprates, at optimal doping and at the overdoped regime, the presence of the sharp peak in
the ARPES spectrum confirms the Fermi liquid picture to be valid. However, a noticeable broadening
is noted in the underdoped regime at the Fermi level and that implies the breakdown of the Fermi
liquid theory (FLT).

Both at T < T, (superconducting state) and T > T, (normal state), there are deviations from the FLT
which are attributed to the formation of pseudogap in cuprates. The pseudogap is most likely related to
and has the same symmetry as the superconducting gap. (believed to be d-wave like). However, unlike
a conventional superconducting gap, the magnitude of the pseudogap is temperature independent.
ARPES and other experiments indicate that the magnitude of the gap does not change significantly as
the temperature is lowered through T.. Thus, in case of the cuprates, unlike a conventional supercon-
ducting gap, the gap starts as a pseudogap in the normal state and evolves into the superconducting
gap below T¢. In other words, A(T) does not go to zero at T = T.

¥S-LL:LL ¥20c Jequiedeq L0

The pseudogap appears in the underdoped regime of the phase diagram and weakens toward opti-
mal doping. A weak pseudogap is still present at optimal doping,” but rapidly disappears thereafter.
The spectral gap is purely superconducting in the overdoped region. This is illustrated in the phase
diagram shown in Fig. 4.31 where T* approaches T just into the overdoped region. T* is temper-
ature dependent in the underdoped regime. Well into the overdoped region, the pseudogap merges
with the superconducting gap, which means that T* merges with T¢, and there remains no trace of the
pseudogap in the normal state.

To wind up the discussion, we note down a few salient features. They are,

i. the pseudogap is different from the superconducting gap in the underdoped phase of cuprates, and
gradually evolves into the superconducting gap at larger doping levels.
ii. Both the pseudogap and superconducting gaps are believed to have d-wave symmetry.
iii. The crossover temperature T* (shown in Fig. 4.31) merges with T in the overdoped region of the
phase diagram.

8 Optimal doping corresponds to highest T¢.
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FIG. 4.31
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Generic phase diagram showing temperature vs hole doping (per copper atom) for cuprate superconductors. The dif-
ferent phases are shown. The superconducting dome extends upto a doping of 0.3. In the underdoped regime, at high
temperatures, one gets a “strange” metallic phase, which cannot be explained by the Fermi liquid theory, whereas the
overdoped regime shows more familiar metallic features.

Table 4.2
T,s of some typical cuprate
superconductors are shown.

T
La,_,Ba,CuQ4 30K
Lay_xSr,CuO4 39K
YBa,Cu;07 92K
Bi,Sr,CayCus040 110K
TezBazCazCu3O10 125K
H9832C32CU303 134 K

The cuprate superconductors have a generic phase diagram (see Fig. 4.31) which
itself poses a bunch of surprises. The proximity of the Mott-insulating state and
the superconducting phase, a pseudogap phase in the underdoped phase, are
among the few. There is a superconducting dome (shown in light green color
in Fig. 4.31) which extends from a (hole) doping per Cu atom of about 0.08 to
about 0.3. The maximum T, occurs at a doping < 0.2. Below this is known as
the underdoped regime, while above it is denoted as the overdoped phase. The
high temperature phase of the underdoped regime is not a “normal” metal and
shows significant deviations from the FLT, quite likely due to the presence of the
pseudogap phase. The overdoped regime is “well behaved” Fermi liquid metal. The
transition temperatures of a few commonly known high-T, cuprates are shown in
Table 4.2.

We shall not prolong the discussion here, and rather motivate the readers to look at the review men-
tioned in the footnote and the references therein. A few of the CuO; superconductors are listed here
along with their transition temperatures.

4.12 IRON BASED SUPERCONDUCTORS

The discovery of the iron (Fe) based superconductors defied the occurrence of superconductivity in
compounds with strong magnetic correlations. Further, the discovery of superconductivity in cuprates
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created a bias in the community that copper oxide planes are indispensable for achieving higher T, in
materials. However, the Fe-based superconductors do not contain copper oxide planes, and even do
not contain oxygen in certain situations. Instead, they have electrons from Fe whose density changes
unusually rapidly under doping, thereby showing an interplay between the magnetic phenomenon
and superconductivity. Similar to the high-T, cuprates, the normal state in Fe-based supercon-
ductors is unconventional, and thus the mechanism behind the superconducting pairing remains
elusive.

The excitement in the study of these Fe-based superconductors started with iron oxypnictides
(LaFeAsO; _xFex) which shows a superconducting transition at T, = 26 K (Kamihara et al., 2008). It
may not constitute the first discovery reported for the family of superconductors, but in all others, such
as ThyFe; (T, = 1.8 K) (Mathias et al., 1961), UgFe (T, = 3.9 K) (Chandrasekhar and Hulm, 1958).
etc. In fact, Fe itself (T, = 1.8 K) is superconducting under the application of pressure (~20 GPa)
(Shimuzu et al., 2001). However, much higher T, is observed in fluorine (F) doped LaFeAsO, and the
subsequent discoveries, such as Th doped GdFeAsO (Wang, 2008) and many others have portrayed
a growth of T, similar to that in cuprates. This has led to the emergence of a new class of high tem-
perature superconductors known by the name Fe pnictides, (Fe-Pn) and Fe chalcogenides, (Fe-Ch).”
There is literally an outburst in the number of members in the family of these superconductors and
about 150 of them have been realized so far only belonging to the LaFeAsO (called the “1111” struc-
ture) family. Then there is the “122” family corresponding to MFe;As, (M: Sc, V, Cr), “111” family
corresponding MFeAs, “11” family corresponding to FeSe, and many others. For an extensive review,
see Stewart (2011).

¥S-LL:LL ¥20c Jequiedeq L0

The existence of the isotope effect (although the pairing mechanism is primarily not phonon medi-
ated) leaves room for further questions. Spin or orbital fluctuations play a crucial role in pushing the
normal state toward a superconducting phase. Furthermore, the symmetry of the superconducting gap
function is not an isotropic s-wave type, and instead contains nodal lines with possibilities of gapless
excitations. Also, the specific heat discontinuity AC (see discussion in Sec. 4.4.2) instead of scaling
linearly with T, (which is a hallmark signature of conventional superconductors), it scales very differ-
ently in Fe-Pn/Ch superconductors. For example, AC ~ T2, along with a normal state-specific heat
behaving as C ~ T is observed.

4.12.1 Properties of Fe-based superconductors

The crystal structures of these Fe-based superconductors possess square lattice as the building blocks,
corners of which are occupied by the Fe?* ions. The Pn/Ch are located at the apical sites of a tetra-
hedron (see Fig. 4.32). The nearest neighbor Fe-Fe distance is approximately 2.8 A. These Fe-Pn and the

9 The fifth group elements in the periodic table are called as pnictides (Pn), which are N, P, As, Sb, Bi, etc. and the sixth group
elements are called as chalcogenides, which are O, S, Se, Te, Po, etc.
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Fe-Ch layers are arranged alternately with other interlayers,
thereby making a sandwich-type layered structure.

It is practically an uphill task to depict the crystal structures
of all the members of the family of Fe-based superconductors,
owing to a huge library of resources available. It is also an ardu-
ous task to enumerate the properties of all these materials and
hence, it is beyond the scope of this book. Interested readers
may consult the review in Stewart (2011). What we shall aim
in the following is to provide the readers with useful informa-
tion on only one class of Fe-based superconductors, namely,
the 1111 family, for which the crystal structure is shown here
(see Fig. 4.32). In the following, we shall focus on the depen-
dence of T, on doping, pressure, and the external magnetic field.
We shall also include brief discussions on a couple of key ther-
modynamic and transport properties, such as the specific heat,
resistivity, and susceptibility.

FIG. 4.32 Fe plays a key role in the superconducting properties of

The crystal structure of 1111 LaFeAsO (from
Kamihara et al. (2008)).
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Fe-based compounds as the parent undoped compounds pos-
sess five 3d orbitals at the Fermi surface. This scenario is in
contrast with the cuprates which have only one 3d orbital (due
to Cu) at the Fermi level. Further, the Fermi surfaces of the Fe-based materials contain several hole- and
electron-like cylinders, thereby forming quite a complex band structure. The transition temperature
T, can be increased via oxygen deficiency induced by doping with fluorine (F) as shown by Kamihara
in the 1111 Fe-Pn compounds. The transition temperature T, can be increased via oxygen deficiency
induced by doping with fluorine (F) as shown by Kamihara in the 1111 Fe-Pn compounds (Kamihara
et al., 2008). The usage of smaller Lanthanide elements in LnFeAsO (Ln=La, Dy, Tb, Gd, Sm, Nd,
etc) has been derived from the above discovery when 11% F doping was carried out at the oxygen sites
in LnFeAsO;_F, that ramped up the T, from 26 K to 43 K under pressure (Takahashi et al., 2008).
We show the temperature vs doping (by F) for CeFeAsO;_,Fy in Fig. 4.33, where at low doping, an
antiferromagnetic metallic (AFM) phase is realized. A superconducting phase is obtained at about 5%
doping. The result was supplemented by Eisaki et al. (2008) where it was shown that T is independent
of the nature of the Lanthanide elements (Ln), but depends on the planar lattice parameter.

Furthermore, T, was found to increase with pressure. In the F-doped LnFeAsO_,F,, % = 2 K/GPa
for x = 0.05 (Takahashi et al., 2008) in the limit of zero pressure. However, for the optimally doped
compound (x 2 0.11), T, goes up to 43 K at 4 GPa pressure with a slope ‘Z} = 3 K/GPa, and hence

steadily decreases to 9 K. T, vs pressure phase diagram thus generated (Takahashi et al., 2008) seems

not so generic to other members of the family. For example, (Lorenz et al., 2008) measured the pres-
sure response of SmFeAsO;_,F, upto a pressure of 1.7 GPa and found a different behaviour from its
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FIG. 4.33

The phase diagram of of 1111 CeFeAsO4_F, vs F doping (from Zhao et al. (2008)) An antiferromagnetic metallic
(AFM) phase is realized at low doping. At about 5% doping the material becomes superconducting. The structural
phase transition is denoted by the red dots. For more details, see Zhao et al. (2008).
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La counterpart in the sense that T, increases with pressure for the undoped material (SmFeAsO), how-
ever it decreases for the doped material in the overdosed regime. The 1111 family of superconductors
belong to the type-II variety and record very high upper critical magnetic fields, H,. Using dc fields
up to 45 T, H, (T = 0) was reported to be 60T for an optimally doped LaFeAsOg g9F.11 (Jarozynski

. . . dH,
et al., 2008). Furthermore, there observed anisotropies have in the slope of —7*|rr, along the planar
and out-of-plane directions.

To shed light on the transport properties of Fe-based compounds, Kamihara et al. (2008) in their pio-
neering discovery of LaFeAsO;_,F, found that the resistivity of the undoped compound (LaFeAsO)
has a temperature independent resistivity with a value 5 m2-cm at low temperature. However, it shows
an anomaly at ~150 K with an upturn in its magnitude at 100 K. At optimal doping (x =~ 0.11), the
resistivity is metallic at room temperature and falls steadily at lower temperatures. The same group
(Kamihara et al., 2008) has also reported data on the magnetic susceptibility. The undoped compound
reports a value 0.4 memu/mole and again independent of temperature below 300 K, except for an
anomaly at 150 K, and an upturn in its behavior below ~25 K.

Superconductivity ~ 4-69




4-70

We have cursorily talked about the thermodynamic properties earlier, where the behavior of the specific
heat at the transition point (T.) was discussed. To remind ourselves of the context, in the study of solid
state physics, C/ T is usually plotted vs T as T — 0'" where C/T is found to be temperature independent
and is represented by y. y depends on the material properties via the density of states at the Fermi level
(N(eF)), and the effective mass (m™) of the carriers. Importantly, C/T shows a discontinuity at T = T,
signaling a second-order phase transition from a metal to a superconductor. In fact, the discontinuity
is often considered as the hallmark feature of the onset of superconductivity. However, for the 1111
family of materials, possibly owing to high values of T,, C/T is not temperature independent, and
hence the value of y cannot be ascertained. Although, y is much better known for other families of
Fe-based superconductors. A general consensus is that AC/T, behaves as T? in most of these materials,
which is at least true in the underdoped regime, and most probably are signatures of a non-Fermi liquid
metallic state' at higher temperatures. Possibly the Fe-Pn/Ch superconductors are weak Fermi liquids
with strong pair breaking mechanism in place.

4.12.2 Pairing symmetry

The pairing symmetry of the superconducting state is not beyond doubt and has generated a lot of
debate for Fe-based superconductors. The electron-phonon interaction is the pairing glue, and is hence
a key element to conventional (BCS) superconductors. However, it is found to be insufficient, and pos-
sibly cannot give rise to such high values of T, found in experiments conducted on the pnictides or
the chalcogenides. Orbital or spin fluctuations may play a role in the pairing mechanism. Theoreti-
cal studies suggest an extended-s wave (cos ky + cos k) pairing symmetry owing to the multi-orbital
nature (Kuroki et al., 2009). In addition, s,2 _,? Symmetry has been predicted by Parish et al. (2008),
and d-wave in some 122 Fe-As compounds (Reid ef al., 2012). Further, there are hints of the presence of
two superconducting gaps which are inferred from two different values of 2A/kg T,,'* one with a larger
value % =~ 7, and the other corresponds to a smaller gap, that is, % < 3. Pairing correlations with
two different gaps indeed indicates an unconventional origin of superconductivity.

Thus, to summarize various features that have made studies of the Fe-based superconductors exciting
across the last decade and a half, we enumerate some of them below.

i. There is a prejudice against Fe for it to be detrimental to superconducting pairing.
ii. The interplay of magnetism, superconductivity and orbital degrees of freedom is observed.
iii. The specific heat scales very differently with temperature compared to the conventional supercon-
ductors.
iv. The d-electrons of Fe have a complicated band structure that changes drastically upon doping.
v. There are two pairing gaps.

10 Tn the limit T — 0, the phonon contribution is suppressed, leaving only the electronic contribution to the specific heat.

11 A brief introduction to the main results of the Fermi liquid theory is presented in the appendix.
12 2A

T = 3.52 for BCS superconductors.
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vi. There is an isotope effect of Fe, as opposed to the oxygen isotopes observed in conventional super-
conductors. Despite the observed isotope effect, electron-phonon coupling is not a dominant player
in the pairing phenomena.

With this collection of facts, we hope to have provided a platform for the beginners.

We next move on to the potential applications of superconductors, which have constantly enriched the
field of superconductivity throughout a period spanning over the last century.

4.13 APPLICATIONS OF SUPERCONDUCTORS

The chief applications of superconductivity lie in the large scale production of high intensity magnetic
fields needed for the functioning of magnetic resonance imaging (MRI) and nuclear magnetic reso-
nance (NMR). Superconducting rails are used to the magnetic levitation principle, which capitalizes
on the lack of contact between the vehicle and the rails, and hence there will be no wear and friction,
besides aiding to attain far larger velocities compared to ordinary trains. The magnetic levitation tech-
nology is quite advanced, but at its core, it uses the phenomenon of the Meissner effect, that is, the
expulsion of the magnetic flux from a superconducting sample, as we have seen before.

There is another application of superconductors that we should be concerned about in this text is
the Josephson effect. The Josephson effect is a manifestation of long-range quantum coherence in
superconductors. The effect is discovered by B.D. Josephson in 1962'° when he was a PhD student
at Cambridge (UK). In mathematical terms, the effect describes the relationship between the cur-
rent and the voltage across a link in a superconductor-insulator-superconductor junction. Thus, a

¥G-LL:LL Y202 Jequiedeq L0

Josephson junction (J]) is formed by placing two superconducting materials with an intervening non-
superconducting material, where the Cooper pair can tunnel from one superconductor to another
through the barrier. Extensive reviews of the Josephson effects can be found in Makhlin et al. (2001)
and Golubov et al. (2004).

4.14 JOSEPHSON EFFECT

In the following, we show different types of JJ with two bulk superconductors connected via a weak
link, that is, regions that allow the passage of electrons in a restricted sense (see Fig. 4.34).

To understand the physical phenomenon, consider two isolated superconductors with the supercon-
ducting order parameters v, and ¥, (Y1 # ¥2), which further can be expressed in terms of the
amplitudes (|11 2|) and phases (¢12) as Y1 = |1 |e! and ¥, = |1]€/%2. In the absence of any inter-
action between the superconductors, the phases ¢; and ¢, are in general different. If these two regions
are strongly coupled, the two phases may be equal (¢; = ¢>), which demands that all the Cooper pairs

13 In 1973, Josephson was awarded Nobel prize for this work.
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FIG. 4.34

Different types of Josephson junctions, namely, (a) Tunnel junction, superconductor-insulator-superconductor (SIS)
junction, (b) Proximity junction, superconductor-normal-superconductor (SNS) junction, (c) Constriction (Microbridge),
(d) Point-contact junction.

are in the same state. However, in case of a weak coupling, the phases will differ, and it is possible to
maintain this difference by passing a small current through the JJ. This is precisely the Josephson effect.

4.14.1 AC and DC Josephson effects

Josephson predicted that the current and voltage have dependencies given by

I =1I.sin Agp (4.182)
dpp=2Y (4.183)
a- " Rm’ '

where the A¢ is the phase difference A¢p = ¢; — @2, ¢ is the phase of the order parameter for the
superconductor on the left, while ¢, is the phase of the order parameter for the one on the right,
and V is the voltage across the junction. Equation (4.182) implies the presence of a dissipationless
sinusoidal current with a phase difference A¢. For a DC voltage V applied across the junction, the
current oscillates as [from Eq. (4.183)],

I(t) = I. sin (26—}?) . (4.184)

This is called the AC Josephson effect.

Actually it is rather difficult to generate a constant DC voltage across a junction, and thus a more
conventional situation is to talk about a constant current, namely,

I(t) = I = constant. (4.185)
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ForI < I,

I
A¢ = constant = sin™ ! (I_)

c

which yields from Eq. (4.183) for V =0 (as ddA—t‘P = 0). This is called the DC Josephson effect.

It is possible to discuss the Josephson effect and the related phenomena in terms of flux quantization.
Consider a contour C as shown by dotted lines in Fig. 4.35. Assume that the self-inductance effect
of the ring is small, that is, LI, < @y, L is the self-inductance of the coil, I, is the critical current, ®g
is the flux quantum (= %). For the magnetic field to be zero in the ring (defined by the contour C),
the thickness of the ring is required to be larger than the penetration depth of the superconducting
sample. The magnetic field should completely die out. Thus, no flux can be present along the contour
C (see Fig. 4.35). From the equation of the electric current density (refer to London equation), namely,

2eA
(1) o Vo (r) — 200 (4.156)
for j(r) = 0, which is true for superconductors,
2eA S
Vo) = = h(r). 4187) o
Now integrate both sides along the contour C, %
2e 2e 2ed P S
Vo -dl=— PpA-dl=— [B-ds= — =2mr—. 4.188 =
?g poA=5 7§ 7 f R @188 5
Thus, the phase difference is given by
Tunnel )
junction Ap =27 —, (4.189)
@
where A¢ denotes the difference between the
phases of the cooper pairs at the points A and B in
Fig. 4.35. This is a fundamental relationship for a
JJ. Now taking a derivative of Eq. (4.188) and using
Faraday’s law,
d 2eV ()
- = 4.190
dt I ( )
The wavefunction at the superconducting elec-
trode is given by
FIG. 4.35 Vet = Yoe T, (4.191)

Schematic diagram of a typical tunnel junction is shown. C is

an imaginary contour in the superconducting region. where V(#) is the emf developed around the ring,

which can be interpreted as a voltage drop across
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the junction. where 0(t) = % is the phase of the wavefunction. Since the current is continuous, it

must thread through the insulating barrier. This is not classically allowed, but the super-electrons can
tunnel through the insulating barrier with a zero voltage drops and resulting in a Josephson current.

Let us perform a simple analysis of the above scenario by assuming a rectangular potential barrier of
height Vy and width 2a for the insulating region of J] [see the schematic diagram in Fig. 4.36(a)]. The
corresponding Schrodinger equation is written as

G 1
iha(r’ t= 2_*(—ihV — e AL D) Y (5, 1) + e p (L, DY (xr,t) + V(X)U (x, b), (4.192)
m
where the energy of the super-electrons is €. Let us ignore the electromagnetic field for now,
h2
VI = (6 = Vo)¥(x) for|x| <a. (4.193)
2m*
Thus, in the insulating region, the solution can be written as
¥ (x) = Cy cosh <§) + Gz sinh <§) (4.194)
where

B2
&= m- (4.195)

The scenario is depicted in Fig. 4.36(b). Now, let us recall the expression for the current,

2e* h e*h
Jo = —Re(y*=Vy) = Im(C{Cy). (4.196)
m* i m*&
At the boundaries, by matching the wavefunctions, one gets
—a) = J/nie”
v p (4.197)
Y(a) = /nye™?.
a b
A V(x)
Vo
80 (//1 = \/Zeiﬂl 6 (//2 = \/Zeiﬂz
— — -
—a +a —a +a

FIG. 4.36

(a) Potential experienced by the super-electrons because of the presence of the insulating barrier. A particle of energy
€9 approaches the barrier from the left. (b) Fall off of the wave functions inside the barrier. & denotes the distance over
which the wavefunction falls off by a factor 1e of the value at the surface.
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The coeflicients C; and C, can be computed as

o _ e + e
1 = >
2 cosh (?)
. . 4.198
c \/n_lelﬁ _ ﬁelez ( )
2= .
2sinh (g)
Using the definition of the super current density, J;,
Js =Jcsin(6r — 62) =Jesin(@); ¢ =61 — 06, (4.199)
where the critical J, is given by
eh./niny
Jel = ——————. (4.200)
mé& sinh(2a/&)
Now, including the electromagnetic field, one gets
2 2
b=0,—6,— = f A1) - dl. (4.201)
@9 /1 S
The rate of change in this phase is g
3
0 3, 30, 2md [? g
_¢=_1__2__”_/ A(r, 1) - dl. (4.202) N
at ot at Py at Sy R
The current and the voltage across an SIS junction can be represented as 3
I, =Ising .
v Dy dop (4.203)
S 2modt’

The corresponding work done is given by

fo fo Do dep/ (¢ Dol [?

W]=/ Ith:/ I, sin ¢’ () —2 LACNNS 0‘/ sin @’ (H)de’ (1)
0 0 27 dt 27 0

@

zjtlc (1 — cos ). (4.204)

Thus, the current and the work done lag in phase, which is shown in Fig. 4.37.

Let us discuss the alternating current (AC) Josephson effect with a DC voltage bias. Consider V = Vj
(see Fig. 4.38), such that,

B = 6(0) + 2Vt
¢()_¢()+¢To 0

I, = Isin (2—” Vot + ¢(0)> (4.205)
0

Iy = Icsin (27fjt + ¢(0)) .
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FIG. 4.37
Is — ¢ curve (Bold line) and W, — ¢ curve (Dotted line).

FIC. 4.38
(a) Schematic representation of the DC voltage bias setup. (b) Schematic representation of the AC voltage bias setup.

The Josephson frequency is given by

Vi 2
fi= =2 = 2y =484 x 102V, (H). (4.206)
Dy h
Thus, a DC voltage of 10 £V causes an oscillation of about 5 GHz. This is the principle behind the
Josephson microwave oscillator. The oscillator delivers a small power of the order of 10 nW for a typical

I. =1 mA.

The rapid oscillations are due to quantum interference between the two junctions. The period is deter-
mined by the magnetic field that is required to generate one flux quantum in the loop. So the critical
current maximum occurs at ®/®y = 0, =1, 2, ..... &n. The observations of these oscillations are
analogous to the double slit experiment in optics.

Modern Perspectives in the Study of Electronic Systems
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Let us look at the case of AC voltage bias. Consider an AC source (see Fig. 4.38),
V(t) = Vo + Vs cos wst

27 2V . (4.207)
¢o(t) =¢(0) + — Vot + sin wyt.
q)() d>oa)5
The current is given by
. 2 2wV |
I, =I.sin| ¢(0) + — Vot + sin wst | . (4.208)
00 Dows
Hence, a constant current will occur when
27 f; = nws (4.209)
which yields,
0]
Vo=n (_o@) . (4.210)
2

Thus, an AC voltage of 1 GHz frequency applied across the junction will provide a DC current at
Vo = 0, and at integral multiples of 2 uV.

4.15 SQUID

A superconducting quantum interference device (SQUID) measures the magnetic flux and the output
voltage signal, which is a periodic function of the flux threading the superconducting loop. The flux
variation that SQUID can measure is 107> ®g with ®y = 2.07 x 10~!> Wb. Interested readers may
consult the review article by Greenberg (1998).

¥G-LL:LL Y202 Jequiedeq L0

The SQUID uses the Josephson effect phenomenon to measure extremely small variation of magnetic
flux. Typically, a SQUID is a ring of superconductors interrupted by one or more Josephson junctions.
There are usually two kinds of SQUIDs that are used, namely, a one junction device called the RF
SQUID, and a device comprising two junctions which is called the DC SQUID.

A bias current I, (for RF SQUID) or 2I;, (for DC SQUID) is applied, putting the operational point
midway between the superconducting and the resistive behaviors. Shunt resistors are used to prevent
hysteresis behavior in the I — V curve shown in Fig. 4.39(a). A schematic view of the SQUID set up is
shown in Fig. 4.39(b).

By fixing the current such that I, > I, when an external magnetic flux, ®¢xs = By - A, is threaded
through the Josephson loop, the voltage drop across the Josephson junction will change. As the external
flux increases or decreases, the voltage will change in a periodic manner with a period in multiples of
flux quantum P (see Fig. 4.40). Monitoring the change in voltage allows us to determine the magnetic
flux that has been coupled to the SQUID loop. By using an external circuit, it is possible to "lock” the
SQUID at a particular point in the V' — @ curve (say at the point P in Fig. 4.40). The feedback current
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(@) I — V characteristic curve. (b) A typical SQUID setup is shown with an input coil (left) and a feedback coil (right).

Voltage

FIG. 4.40
V — B,y characteristic curve.

ext

measured by the feedback loop [in Fig. 4.39(b)]
is a measure of the externally applied flux. A
SQUID is normally operated at the steepest part
ofthe V. — @ curve to have g% maximum. Thus,
SQUIDs have been a key factor in the devel-
opment and commercialization of ultrasensi-
tive electric and magnetic measurement systems.
In many cases, SQUIDs offer the possibility
of measuring very small changes in magnetic
flux, where no other methodology is available.
Hence, SQUIDs have a wide range of sensing
applications.

One disadvantage of using the SQUID is that the area of the detection coil is small (hence, it can
thread only a small flux) and so is the associated self-inductance (~10710 H). Increasing the area of
the loop increases the self-inductance effects and hence introduces a hysteresis effect in the I — V
characteristics. Using a flux transformer coil, as shown in Fig. 4.41 aids in threading larger flux values.
Thus, measurement of larger flux is also possible using a SQUID.

To complete our discussion, let us discuss the DC and RF SQUIDs. A DC SQUID differs from the RF
SQUID with regard to two key elements, namely, with regard to biasing the Josephson junction and
the number of Josephson junctions being two connected in parallel instead of one, as is the case for RF

SQUID.
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FIG. 4.41
(@) SQUID loop. (b) Flux transformer coil.
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FIG. 4.42
A schematic setup for DC SQUID is shown.

Since there are two junctions which need to be matched within a few percentages, a job achieved
by shunt resistors, it may be possible to operate a SQUID with mismatched junctions. But this per-
formance will be sufficiently degraded. Similar to the RF SQUID, the input, the feedback, and the
modulation coils are not wound around the SQUID loop, but inductively coupled to it (see Fig. 4.42).
It is biased with a DC current approximately twice that of I, and thus develops a DC voltage across the
junction and the shunt resistors. A change in magnetic flux applied through the SQUID loop induces
a phase change of the condensate wave-function that enhances the current through one Josephson
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FIG. 4.43

DC SQUID setup with two junctions and a fux,
® threading the device due to a magnetic field
B is shown.

junction (Ines = I + I), and reduces the current through
the other (I = I, — Ip). As the external flux increases or
decreases, the voltage will change periodically with a &g
period. The current in the feedback circuit is the direct mea-
sure of flux change applied in the SQUID.

Commercially DC SQUIDs are mostly used. Besides sen-
sors, SQUIDs have large applications in magnetoencephalog-
raphy (MEG). Tumors or pathological tissues are detected
by the change in the magnetic field by the neurons.
For example, the magnetic field due to a single neuron
can be estimated using the familiar Biot-Savart law in
electromagnetics,

B— o Qxr
4T 3
Healthy tissues produce |B| about 20 PT at 10 pm, whereas

|B| & 100 PT is produced by the pathological tissues (that are

(4.211)

affected by tumours). Thus, it involves a charge |Q| = 20 fA - m for the former and 100 fA - m for

the latter.

The DC SQUID setup is shown in Fig. 4.43. Let us assume for simplicity that the two junctions are

identical. Also, the condensates are considered same on both sides of the junction. The total current is

given by

I=15L+1, =1Isin¢; + I.sin¢p, = 21 cos

The corresponding phase difference around the loop is

ygV@-d1=(93—9A)+(9D—9c)+(9c—93)+(9A—9D)=27Tn-

From the definition, one may obtain the phases at the points A, B, C, and D (see Fig. 4.43) as

2 B
93—9A=—¢1——”f A-dL
Do Ja

2 D
9D—9c=¢2——n/ A-dl
@9 Jc

b1 — P2 sin 1 +¢2. (4212)
2 2

(4.213)

(4.214)

(4.215)

Introducing the supercurrent via the London equation, the phase differences may be written as

C C
ec—eBzf V6~dl=—AL/ Js
B B

A A
eA—esz V9~dl=—AL/ Jo-dl—=— | A-dl
b @

D
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il (4.217)
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where Af, is the penetration depth given by A, = ;. Adding Eqgs. (4.214)-(4.217) and putting in
Eq. (4.213) one gets,

2T C A
¢2—¢1=2nn+—¢A~dl+)\Lf ]5~dl+)»Lf Js - dL (4.218)
N B D
Thus, the phase difference between the condensate wavefunction is given by
2 d
¢2—¢1=27T”+F+)»L/]s~dl. (4.219)
0 c

If the contour falls within the London penetration depth for a given superconducting sample, then the
last term will vanish. Hence,
[
¢ — 1 =2nn+ 2w —. (4.220)
o)
So the total current is given by

I=2I LA é1 + e (4.221)
= 2I.cos | — | sin — . .
c CD() 1 q>0
The flux piercing through the contour becomes S
o
D = Dy + Liiy (4.222) §
where, I is the circulating current = % and L is the self-inductance of the coil. The total flux thus %
can be written as g
Y EL Td 2
O =Py + LI;sin| — Jcos|{ oy + — . (4.223) £
@y Dy

For a given external flux, there is a range between I and & that satisfies these equations. One needs to
know the maximum I that can be made to pass through the SQUID and still have zero voltage (critical
current). Figure 4.44(a) describes the variation of the flux (&) in the circuit as a function of the external
flux, ®,,;. Furthermore, the sinusoidal variation of the maximum current as a function of the external
flux is depicted in Fig. 4.44(b).

Next, for simplicity, let us consider the self-inductance of the coil to be zero (L = 0). Hence, ® = &y,
which yields the following expression for the current,

axd ad
I =2I,cos = ) sin é1 + i (4.224)
b P
The extremum occurs when d‘% = 0, that is, when
T7d
cos (¢1 + e’“) =0 (4.225)
Dy
or,
Td
sin (¢1 + —‘”‘t) —_— (4.226)
Dy
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FIG. 4.44

DC SQUID without self inductance. (a) ® vs @y curve. (b) I vs @y curve.

This yields the maximum current as

(77 Dyt )
CoS .
Dy

The current has a maximum of 21, for & = n®d, with n being an integer. Also, a minimum value of 0
occurs for ® = (n + 1/2)®y.

Lnax = 2I¢

(4.227)

Next, generalize it for the case with self-inductance (L # 0, refer to Fig. 4.45). The two junctions
are connected in parallel on a superconducting loop of inductance L. In this SQUID one applies

a constant bias current I > 2Iy. The voltage across
O the SQUID oscillates with a period & as one alters
A the external magnetic flux, ®. There are two conden-
sate pair wave functions which (weakly) interfere with
the junction. If a magnetic flux passes through the
loop, it changes the relationship between the phase
difference across the junction. As a result, the criti-
R v cal current of the SQUID changes. The total current
has a sinusoidal variation with the external flux in the

argument of the variation.

Finally, let us discuss the RF SQUID. The RF SQUID
y utilizes a single Josephson junction and flux is induc-

O tively coupled into the SQUID loop via an input coil

which connects the SQUID to the experimental setup

FIG. 4.45 and an “RF” coil that is part of a high- Q resonant tank
DC SQUID with self inductance. circuit, to note down the changes of the current in the

4-82

SQUID loop. See Fig. 4.46. The tank circuit is driven
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FIG. 4.46
(a) RF SQUID setup. (b) Output current vs input flux for RF SQUID (saw-tooth like pattern).

by an RF current, while the SQUID loop is inductively coupled to the inductance Lt of the LC tank
circuit. The resulting RF voltage is periodic in the flux applied to the SQUID with period ®. The
output vs the input current and the output flux variations are shown in Fig. 4.46.

RF as a SQUID is actually a misnomer as no interference takes place. One could make a junction by
pressing together two pieces of oxidized niobium Nb wire at right angles to each other.
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4.16 APPENDIX

4.16.1 Fermi liquid theory

One last thing we wish to pursue very briefly is the essence of the Fermi liquid theory (FLT). The
subject demands more attention than what it gets here. Since the motivation is to provide the readers
with a bird’s eye view of the topic, we introduce the basic concepts here. The mathematical derivations
are beyond the purview of the presented discussion here.

The success of the single electron picture of metals rests on the FLT theory by Landau (1965).
In the FLT, the weakly interacting electrons in a metal form quasiparticles that follow the usual
fermionic properties. The FL theory is remarkably successful, despite a few failures, especially where
the interactions between electrons are quite strong and hence cannot be ignored.

In order to understand the conditions of applicability of FLT, we can define the mean electronic
separation, rs and density p, via

4
pexgnrszl.
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The average Coulomb interaction per electron is given by

1 &
(PE) ~ - .
2 4mepts
Furthermore, the mean kinetic energy is
(KE) R 1
2m r?
PE e 2mr? me? r.
(PE) LI o= (4.228)
(KE)  8meors h? 47 egh? ag

Thus, the ratio of the mean potential to the mean kinetic energies is of the order of electron-electron
separation, which further can be measured in units of the Bohr radius, ag. Some typical values are

rs/ap = 1.9 for Be
=5.6 forCs.

Thus, the ratio r/ay is large, and for Wigner crystals, rs/ap > 20. This means that the mean electronic
separation is larger than the Bohr radius, which in turn, advocates that FLT will provide an appropriate
description of electronic systems.

The need for a Fermi liquid theory in the first place comes from the fact that the specific heat of elec-
trons, according to the classical (and non-interacting) theory, should be 3kg/2; however, one usually
gets a value much lower than this. Also, the susceptibility, x of the free moments deviates significantly
from the classical behavior, namely, x ~ % Thus, the non-interacting theory is found to be insufficient
in a variety of cases.

These puzzles are solved by the FLT, which says that only a small fraction of the electrons near the
Fermi surface takes part in contributing to the physical observable, such as the specific heat or the
susceptibility etc. These electrons are promoted from just inside the Fermi surface to just outside, and
such a phenomenon is known as particle-hole excitations. The same formalism as that of the non-
interacting systems will continue to be valid, except for the bare electronic mass, m is to be replaced
by the effective mass, m*. Only the electrons within kg T of the Fermi energy contribute to the specific
heat so that the specific heat is proportional to T and is small. Also, the electrons within an energy slice
wpB of the Fermi surface can be magnetized with a moment, ;g leading to a temperature independent
Pauli susceptibility. These dependencies were matched with experiments on metals and were found to
have good support.

However, though FLT solved these riddles, there remain questions that are yet to be answered, such
as how does a non-interacting theory explain the behavior of systems where the interaction effects
are important. The answer provided by Landau rests on the concept of “adiabatic continuity.” The
adiabatic continuity indicates that the labels associated with eigenstates are more robust against pertur-
bation than the eigenstates themselves. To have clarity in understanding, consider a one-dimensional
box whose eigenstates are given by sinusoidal functions. More importantly it is expressible in terms
of the number of nodes (that is the number of zeros), that is how many zeros it has (see left panel
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of Fig. 4.47). The larger the energy, greater the
number of nodes. Now, if we perturb the system
by a small harmonic oscillation potential, V(x) =
%ex2 (e is small). The new eigenstates of the sys-

tem will no longer remain simple sine waves, but
involve a mixing of all the eigenstates of the orig-
inal unperturbed problem. However, the number
of nodes remains a good indicator to describe
the eigenstates of this more complex (interacting)
problem. The correspondence is shown schemati-
cally in Fig. 4.47.

Landau applied this idea to the interacting gas
of electrons. He imagined that a turning on the

interaction effects slowly, and observed how the

eigenstates of the system behave. He postulated

that there will be a one-to-one mapping of the low 3
G i energy states of that of the interacting system with g
The one-to-one correspondence between the states of a tbat (,)fthe non-interacting Fermi gas. The assgmp i %
particle in an infinite potential and a particle subjected to tion is that the good quantum numbers associated S
a harmonic potential is shown. The arrows denote the corres- ~ with  the excitations of the non-interacting sys- 3
ponding energy states for which the number of nodes tems will remain valid, even after the interactions 2
remains fixed. are turned on. Just as Pauli’s exclusion principle N

holds for the non-interacting electrons, this would
remain so even in the presence of interactions. We can therefore retain the picture of the excitation of
particles and holes, with them carrying the same quantum numbers as their electronic counterparts of
the free Fermi gas. These excitations are called quasiparticles, whose wavefunctions and the energies
are different from those of the corresponding electrons in the non-interacting problem. These quasi-
particles are core to the understanding of FLT, and account for the observed temperature dependencies
of the specific heat and susceptibility, with the only requirement of having a Fermi surface.

The energies of the quasiparticles are not the same as those of the non-interacting electrons. In Lan-
dau’s theory, the modified energy appears through two terms. Their origin can be understood as
follows.

i. First, when a quasiparticle moves, there will be a backflow in the filled Fermi sea (due to momentum
conservation), as the quasiparticles “push” the ground state out of the way. This modifies the inertial
mass of the quasiparticles, m is replaced by m™*.

ii. Second, the quasiparticle energy must depend on the distribution of other quasiparticles, which
Landau had included via some “f” function, where the total energy of the interacting system can be
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expanded as a functional of variation in density, namely,

PF 1
E= 2. %(ﬁk — PF)dnkes + 5k,gg/fka,k’a/ank,oank/,a/)
where pr denotes the Fermi momentum, and 6y, (§ny /) denotes the change in the Fermi dis-
tribution function. We skip a detailed discussion of the above and encourage the readers to look at
more specialized articles (Kinza, 2018). Also, for a short review, see Neilson (1996).

Let us look at the additional constraints on the validity of Landau FLT. The quasiparticles must be long
lived in the vicinity of the Fermi sphere. In fact, the inverse of the QP lifetime, 7, can be evaluated by
using Fermi’s golden rule,

1 21

— =2 |ValPS(e — &), (4.229)
g h 7

Assuming Vj to be a constant and independent of the energy transfer &, one can convert the above
sum into an integral, and hence, integrate over the final (continuum) states. This goes as

1
—_— 82'
Tel
Also, 7, is found to have the temperature dependence of the form,

1
— ~ T2
Tel

This decay rate is important in transport properties of metals, as it yields a T2 resistivity.

Here we present a few examples, which from a theoretical perspective generate non-Fermiliquid (NFL)
characteristics in interacting electronic systems. These are

i. metals close to the quantum critical point, where a phase transition occurs close to T = 0, the
quasiparticles scatter so strongly that they cease to follow the usual results of FLT.
ii. Metals in one dimension called Luttinger liquid. In 1D, electrons are unstable and decay into two
separate particles (spinons and holons) that carry the spin and charge, respectively.
iii. Disordered Kondo metals. Here, the scattering from the magnetic impurities is too strong to allow
for stable quasiparticles to form.

4.17 SUMMARY AND OUTLOOK
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Let us include a brief recap of the topics discussed. First, and foremost, both the semiconductors and
the superconductors possess a spectral gap in their electronic band structure. The question is how
are these two gaps distinguished? Evidently, the values differ by three orders of magnitude, that is, a
semiconducting gap is usually of the order of an eV, while the superconducting gap typically lies in the
regime of a few meV. There is a more important difference, where the ground state of a superconductor

Modern Perspectives in the Study of Electronic Systems

¥G-LL:LL Y202 Jequiedeq L0




‘ scitation.org/books

is a coherent state, and devoid of any unpaired electron, where all the (Cooper) pairs have amplitude
and phase coherence. The valence band of a semiconductor has no such feature and comprises energy
levels that disperse differently across the Brillouin zone.

By and large, we have confined ourselves to the study of conventional superconductors. We have high-
lighted several distinguishing properties of superconductors, such as the Meissner effect, the isotope
effect, distinction between perfect conductors and superconductors, flux quantization, penetration
depth, and the coherence length, type-I and type-II superconductors, etc. Hence, we have discussed the
magnetic and thermodynamic properties of superconductors, where the former shows a phase diagram
as a function of the external magnetic field that encodes a phase transition, either directly from a super-
conductor to a metal, or the same intervened by a mixed phase that admits the magnetic flux lines (in
unit of a constant flux quantum) to penetrate the sample. Most of the well-known conventional super-
conductors are of the latter variety. The thermodynamic properties, such as the specific heat shows a
jump of fixed magnitude at the transition point and are a generic feature of a superconducting phase
transition.

Hence, we have embarked on the famous BCS theory, where we have discussed Cooper’s instability
that leads to the formation of bound pairs of electrons mediated via phonons and is known to provide
the microscopic origin of the pairing phenomena. This is followed by a detailed description which
yields an appropriate estimation of the temperature dependence of the spectral gap, and hence the
transition temperature, where the latter provides an enumeration of different superconductors. Among
the crucial properties, we have outlined the calculation of the specific heat, computed the behavior of
the specific heat and the jump therein at the transition temperature and discussed the Meissner effect.

¥S-LL:LL ¥20c Jequiedeq L0

We have also included a brief recap of the Ginzburg-Landau (GL) theory, which is a phenomenolog-
ical theory of superconductivity proposed by Ginzburg and Landau in the early 1940s and is broadly
applicable to all second-order phase transitions. Apart from the discussion of the two GL equations, we
have estimated two important length scales that characterize a superconductor, namely, the coherence
length and the penetration depth. By no means, the above discussion is complete and the readers are
encouraged to look up more detailed notes of the subject.

We have also described in brief a few experimental methods for estimating the magnitude of the energy
gap in superconductors. These are electromagnetic, ultrasound absorption experiments, and measur-
ing the tunneling spectra in junction systems, involving a normal metal and a superconductor (NS
junction), or a metal between two superconductors (SNS junction), etc.

To wind down our discussion on superconductors, we have mentioned very briefly the unconventional
superconductivity that has been discovered over the last two and a half decades. In particular, we have
touched upon the cuprate superconductors which have created enormous excitement owing to several
unconventional features. The lack of a well defined starting point for a microscopic theory to be devel-
oped, at least in the underdoped regime, eluded a conclusive understanding of the pairing phenomena
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and the superconducting state. About two decades later, Fe-based superconductors were discovered
with moderately high transition temperatures (although not as high as the cuprates), whose normal
phase again hinted toward a non-Fermi liquid state. Furthermore, their physical properties differ from
conventional superconductors on a number of counts. Thus, there remained several issues that necessi-
tate going beyond the conventional (BCS) paradigm. Once again the readers are encouraged to look at
literature, including some excellent review articles on the subject of unconventional superconductivity
that transcends beyond the cuprates and Fe-based pnictides or chalcogenides.

For completeness, we discuss the applications of superconductivity. In this connection, different types
of superconducting junctions are illustrated, which eventually leads us to the topic of the Josephson
effect. The AC and DC Josephson effects are described along with a derivation of the current voltage
relationships. Practical examples of the Josephson junctions are denoted by the SQUIDs. Different
types of SQUIDs and a brief discussion is made on their utility in detecting extremely small values of
magnetic flux.

Further, in the appendix, we have included a crisp introduction to the Fermi liquid theory. The
main inferences of the theory are clearly violated for the cases of both the Fe-based and cuprate
superconductors owing to strong electronic correlations.
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