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FOREWORD

The book titled Modern Perspectives in the Study of Electronic Systems by Professor Saurabh Basu and

Dr. Sourav Chattopadhyay consists of a set of rather important topics that are at the heart of modern

Condensed Matter Physics. It presents a detailed and pedagogical analysis of several important sub-

jects, such as the Quantum Hall e�ect, Topology, and systems where interparticle interactions play an

important role, such as Magnetism and Superconductivity. The choice of topics and the discussions

therein seem perfect in bringing the key elements together that the students should learn amidst the

vast literature that exists in today’s world. The style of presentation is also very clear and should be

helpful for self-study by the students.

The book is expected to be useful for advanced undergraduate students and also the beginners in

graduate studies who aim to take up condensedmatter for research in the future. The topics are lucidly

described and each chapter provides a basic introduction to the subject, which should be useful while

delving deeper into it during graduate study. There is always a thin gap that exists between undergrad-

uate training deployed in the classrooms and graduate programs in a university or research institute,

which the students have the responsibility to bridge on their own. I feel that this book will aid them in

achieving this task in a �uent and successful manner.

Overall, I �nd this book to be a useful addition to the subject of Condensed Matter Physics and rec-

ommend it without hesitation to the advanced undergraduate and graduate students.

Dr. Sumanta Tewari

Professor

Department of Physics and Astronomy

Clemson University

Clemson, South Carolina, USA

vi AIP Publishing Books
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PREFACE

It is somewhat implicit that the readers are familiar with the �rst course on quantummechanics, which

mainly dealswith the properties of a single andnon-relativistic particle in the presence of a given poten-

tial that usually has a simple form. We give a brief recap of some of these problems below. Readers are

encouraged to look at the classic texts on quantum physics. For example, the eigensolutions (εn,ψn) of

a free particle con�ned in an in�nite potential well are found to be εn ∼ n2, and φn ∼ sin nπx
L /cos

nπx
L

or, in an in�nite space, φn ∼ einπx/L (n being the quantum number for the problem). Whereas, a

parabolic potential (simple harmonic oscillator) yields an equidistant energy spectrum of the form,

εn = (n +
1
2 )~ω, and the eigenfunctions are denoted by a Gaussian (∼e−x2) multiplied by a polyno-

mial (Hermite polynomial) which possesses an even or odd parity depending on whether n is even or

odd. Such an even-odd nature of the eigenfunctions is an artefact of the symmetric potential, which

allows both even and odd solutions. Hence, the Hilbert space gets fragmented into one half for even n,

and the other half for odd n. Further, in a three-dimensional case, which is more complicated than its

one dimensional counterpart, in the presence of a Coulomb potential, appropriate for a hydrogen (H)

atom which has only one electron, the energy spectrum of an electron takes a form, εn = −
13.6
n2

eV,

where n denotes the principal quantum number.

Furthermore, the barrier transmission problems in quantum mechanics may �nd potential applica-

tions in the transport properties of semiconducting heterostructures. There are a variety of barriers,

such as a �nite step, �nite well, or an in�nite potential discontinuity (δ-function) etc. where the formu-

lae of �nding the re�ection and the transmission coe�cients are prescribed by matching the boundary

conditions of the wavefunctions and their derivatives across the boundary. Interesting consequences

occur when the energy of the particle is less than the barrier height, etc. An in�nite sequence of poten-

tial pro�les results in the Kronig-Pennymodel for solids, which describes the behavior of the electrons

in a crystalline solid, and yields the band structure which is indispensable for describing the electronic

properties of materials. Importantly, the results yield a classi�cation of metals, semiconductors and

insulators.

In addition, the readers at the advanced level are encouraged to read the solution of the Dirac equation

both in the absence and in the presence of a variety of potential functions, for example, a Coulomb

potential, etc. In condensed matter physics, the relativistic nature of particles �nds an application in

graphene, which shows a relativistic dispersion for the valence electrons close to the Fermi energy.

This gives rise to a vast �eld of two dimensional (and even three dimensional generalizations exist)

Dirac materials, where the electronic dispersion is linear in the wavevector, just like that of a photon.

However, the electrons have a much lower velocity (of the order of 105 − 106m/s) than that of light, as

thus earns the name, pseudo relativistic dispersion. This linear dispersion has important rami�cations

for the transport properties of Dirac materials.

Modern Perspectives in the Study of Electronic Systems vii
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Technically speaking, physics deals only with one body and many body problems. Because a two body

problems reduces to a one body problem and a three body problems is unsolvable. However, physicists

and chemists routinely worry about ∼1023 number of particles. With this many of them, the density

is such that the particles spend enough time within a few de Broglie wavelengths from one another,

and hence we need to go beyond the single particle description, that is, there is necessity to develop

a quantum many body theory. The basic idea behind this approach is that instead of keeping track of

a large number of strongly interacting particles, can we get away with a relatively smaller number of

weakly interacting particles, called the quasiparticles, or the elementary excitations.

The study of condensed matter physics and its applications to the physical properties of various mate-

rials has found a place in the undergraduate curricula for a century or even more. The perspective on

teaching of condensed matter has remained unchanged for most of this period. However, the develop-

ments in condensedmatter over the last few decades require a new perspective of teaching and learning

of the subject. QuantumHall e�ect is one such discovery that has in�uenced the way condensedmatter

physics is taught to undergraduate students. The role of topology in condensedmatter systems and the

fashion in which it is interwoven with physical observables needs to be understood by a student for a

deeper appreciation of the subject. However, the role of inter-particle interactions in shaping up the

properties of materials cannot be ignored. Thus, to make a quintessential presentation for the under-

graduate students, in this book, we have addressed selected topics that comprehensively contribute to

the learning of condensed matter physics that emerged in not-so-distant past, as well as those topics

that have �rmly laid the foundation of conventional condensed matter physics.

A slight elucidation of the content will aid to a better understanding of the spirit of this text. In Chap. 1

a follow-up of material properties is taken up in the form of studying magnetism. Di�erent types of

magnetic order and materials were introduced to the students. The upshot of the discussion is that the

electronic interactions drive themagnetic order, and hence they need to be incorporated for a compre-

hensive understanding of magnetic properties. In this connection, we introduce spin models, such as

the Ising model, the XY model, Heisenberg model, etc. We solve these via controlled approximations.

Furthermore, magnetism is shown to originate from itinerate electronic models, such as the Hubbard

model. A self-consistent Hartree-Fock solution of the Hamiltonian yields a reasonable description for

both the ferromagnetic and antiferromagnetic correlations.

Next, in Chap. 2, we embark on the transport properties of 2D electronic systems and focus solely on

the role of a constantmagnetic �eld therein. This brings us to the topic of the quantumHall e�ect which

is one of the main verticals of the book. The origin of the Landau levels and the passage of the Hall

current through edge modes are discussed. The latter establishes a quantumHall sample to be the �rst

example of a topological insulator. Having discussed 2D electron gas, it is of topical interest to discuss

the corresponding scenario in graphene. Thereafter, a crisp introduction of the fractional quantum

Hall e�ect is included. It comprises a discussion of the Laughlin states, composite fermions, and the

hierarchy scenario which will bene�t the students in understanding the role of electronic interactions

resulting in fractionally quantized Hall plateaus.

viii AIP Publishing Books
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Our subsequent focus in Chap. 3 is the subject topology and its application to condensed matter

physics. Introducing the subject from a formal standpoint, we discuss the band structure and topo-

logical invariants in 1D and 2D. In particular, we talk about the SSH and Kitaev models, which, apart

from being a possible realization for a polyacetylene chain, have emerged as a paradigmatic tool to

study topology in 1D. In 2D, the usual hobbyhorse, namely, graphene, is taken. We dwell upon the

possibility pointed out by Haldane, whether graphene can become a topological insulator. Addition of

the spin of electrons to the ongoing discussion emerged as a unique possibility to yield another version

of the topological insulator, namely, the quantum spin Hall insulator, which may lie at the heart if the

next generation spintronic devices.

We go on to discuss superconductivity in Chap. 4. We sequentially follow the historical developments

of the �eld, phenomenological understanding of di�erent phases, magnetic properties of supercon-

ductors, etc. Importantly, we present the BCS theory, in as much detail as possible, in an e�ort to

provide a microscopic description of the thermodynamics and the electromagnetic phenomena. The

�nite momentum pairing and the FFLO states are hence described to compare and contrast between

these and the BCS superconductors. Ginzburg-Landau theory, a phenomenological description of a

superconductor to a metal transition, has been introduced in a nutshell. We �nally wind up with a

description of the experiments that determine the superconducting energy gap, and a very brief note

of unconventional cuprate superconductors, and the pnictides or the chalcogenides. Finally, we focus

on the application aspects and discuss Josephson junctions and SQUIDs.

All the while during the course of the book, we have included rigorousmathematical derivations wher-

ever required, presented experimental details to connect with the ongoing discussions and tried to be

as lucid as possible in our presentation of topics and concepts. A whole lot of schematic diagrams are

presented for clarity as well. We hope that the students gain from the essence of this book, and it aids

their understanding of both the topical and the traditional condensedmatter physics.We shall be avail-

able and happy to answer queries, clari�cations by students and researchers, and welcome comments

for improvement.

Dr. Saurabh Basu

Department of Physics,

IIT Guwahati

Dr. Sourav Chattopadhyay

Department of Physics,

ICFAI University Tripura

Modern Perspectives in the Study of Electronic Systems ix
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CHAPTER

1 MAGNETISM

1.1 INTRODUCTION

Magnetic phenomena were �rst observed in lodestones in ancient times. A lodestone is a naturally

magnetized magnetite, namely, Ferric Oxide. The earliest mention of a lodestone attracting a nee-

dle was found in the �rst century AD in China. In fact, the Greek philosophers have also discussed

the magnetic properties of materials during the period 600–500 BC. Even Indian medical texts, such

as Sushruta Samhita, had prescribed magnetized materials to remove metallic objects from human

bodies.

A large variety of metals, insulators, and even superconductors demonstrate magnetic properties. The

importance of the magnetic phenomena gets enhanced due to the vast technological applications,

which include equipment in our surroundings on a daily basis. Some of them are transformers, storage

in computers, permanent magnets in motors, etc.

In the last couple of decades or so, magnetic materials have inroads into several intriguing discover-

ies, such as dilute magnetic semiconductors, iron-based superconductors, very large resistance in the

presence of magnetic �elds [colossal magnetoresistance (CMR) and giant magnetoresistance (GMR)],

and more interestingly, applications in the �eld of spintronics, where the spin degrees of freedom (as

opposed to the charge) are employed to carry information.

In the �rst course on solid state physics, we have seen that independent electron approximation is

suitable for understanding certain properties ofmaterials, such asmetallicity. Even the insulating prop-

erties are well explained by the free electrons subjected to an e�ective potential due to the presence of

ionic cores (remember the Kronig Penny model learned in the �rst course on solid state physics) via

computation of the band structure within certain approximations, themost familiar of them is the tight

binding model. Thus, within an independent electron approximation, it is possible to conceptually

understand the energy spectrum resulting from an e�ective potential, phonons, etc.

However, there are more interesting phenomena, such as magnetic phenomena in solids, speci�cally

ferromagnetismand antiferromagnetismwhere themany-electron aspects showup in away that neces-

sitates going beyond the single-particle picture. For example, consider spin waves, where the spin of

one electron is �ipped, while all the (valance) electrons take part, resulting in a collective behavior.

The collective and the local aspects of the electron correlations are intertwined in a complicated way

in giving rise to magnetic correlations. The most familiar type of magnetism that is widely discussed

https://doi.org/10.1063/9780735422537_001 1-1
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FIG. 1.1
The periodic table showing different magnetic elements.

in the literature is the ferromagnetism in 3d metals, such as Fe, Co, Ni, etc., where the exchange inter-

action between the largely delocalized 3d electrons facilitates ferromagnetism (see Fig. 1.1). However,

in the 4f transition metals and their compounds (the Lanthanides) require a localized description.

Even explanation of the antiferromagnetic arrangement of spins requires the exchange interaction to

be invoked among the localized electrons.

Before we start discussing magnetic phenomena in solids, let us list only a few known magnetic

materials, and their molar susceptibilities, χm de�ned by

χm = κVm = κ
M

ρ
(1.1)

(Vm: molar volume, M: Molar mass, ρ: mass density) where κ is the volume susceptibility which

appears in the proportionality of M (magnetization) and B (magnetic �eld) asM = κH. The magnetic

susceptibilities of a few common magnetic elements are listed in Table 1.1.

1-2 Modern Perspectives in the Study of Electronic Systems
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Table 1.1
Magnetic susceptibility of some common magnetic elements.

χm χm

Name (×10−6cm3/mol) Name (×10−6cm3/mol)

Aluminum (Al) +16.5 Nickel (Ni) Ferro

Antimony (Sb) −37.0 Molybdenum (Mo) +72.0

Bismuth (Bi) −280.1 Phosphorus, Black (P) −26.6

Boron (B) −6.7 Platinum (Pt) +201.9

Calcium (Ca) +40.0 Potassium (K) +20.8

Carbon (C) −6.0 Rhodium (Rh) +117.0

Cesium (Cs) +29.0 Rubidium (Ru) +17.0

Chromium (Cr) +16.7 Selenium (Se) −25.0

Copper (Cu) −5.46 Silicon (Si) −3.9

Cobalt (Co) Ferro Silver (Ag) −19.5

Gallium (Ga) −21.6 Strontium (Sr) +92.0

Gold (Au) −28 Sulfur α (S) −15.5

Indium (In) −64.0 Sodium (Na) +16.0

Iridium (Tr) +32.1 Tantalum (Ta) +154.0

Iron (Fe) Ferro Thorium (Th) +132.0

Lanthanum (La) +118.0 Thallium (Tl) −50.0

Lead (Pb) −23.0 Tin Gray (Sn) −37.0

Lithium (Li) +14.2 Titanium (Ti) +151.5

Manganese-α (Mn) +529.0 Tungsten (W) +59.0

Molybdenum (Mo) −96.5 Vanadium (V) +255.0

Niobium (Nb) +195.0 Zinc (Zn) −11.4

1.2 DIAMAGNETISM AND PARAMAGNETISM

To begin with, we shall review atomic magnetism with a view to understanding magnetic phenomena

in insulators. Itmay be noted that these properties can quantitatively be understood by the independent

electron approximation. In the following, we discuss how the atomic susceptibilities are computed. In

the presence of an external magnetic �eld B, the kinetic energy operator assumes the form Ashcroft

and Mermin (1976),

K =
1

2m

∑

i

(pi − eAi)
2 (1.2)

Magnetism 1-3
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whereAi is the local vector potential derivable from themagnetic �eldB. Choosing a symmetric gauge

Ai =
1
2 (ri × B), one gets,

K =
1

2m

∑

i

(
pi −

e

2
ri × B

)2

=
1

2m

∑

i

[
p2i +

e2

4
(ri × B)2 −

e

2
{pi · (ri × B)+ (ri × B) · pi}

]
. (1.3)

One can split the above expression as

K = K0 +
e2

8m
B2
∑

i

[
r2i − 2epi · (ri × B)

]
(1.4)

whereK0 is the kinetic energy without an external �eld. Using the vector identity,

a · (b × c) = b · (c × a) = c · (a × b).

That is, writing,
∑

i

pi · (ri × B) =

∑

i

B · (ri × pi) =

∑

i

B · Li = B · L (1.5)

where L (=
∑

i Li) is the total electronic orbital angular momentum. Thus, the kinetic energy (and

also the HamiltonianH) (adding the spin of the electrons) becomes,

H = K = K0 + µBL · B +
e2

8m
B2
∑

i

(x2i + y2i ). (1.6)

Treating the last two terms on the right hand side (RHS) as perturbation, that is, treatingH = H0 + H′,

we have forH′,

H
′
= µB(L + gS) · B +

e2

8m
B2
∑

i

(x2i + y2i ) (1.7)

where µB =
eh
2m is the Bohr magneton with a value 0.579 × 10−8 eV/G and the landé g factor is given

by g ≈ 2. The energy correction can be computed via a perturbation theory using the unperturbed

states of the HamiltonianH0.

It is instructive to note that the magnetization, M is de�ned as the �rst derivative of the free energy,

F with respect to the �xed B. That is,

M = −
1

V

∂F

∂B
, (1.8)

where V denotes the volume.

Thus, the magnetic susceptibility, χ is obtained from the magnetization as

χ = limB→0
∂M

∂B
(1.9)

thereby implying that the susceptibility is the second derivative of the free energy with respect

to B. Therefore, we need to evaluate both the terms in H′ up to second order in B, that is, B2.
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Hence, performing a second-order perturbation theory one gets (Ashcroft and Mermin, 1976),

1En =

∑

n 6=m

|〈φn|µBB · (L + gS)|φm〉|
2

En − Em
+

e2

8m
B2

〈φn|

∑

i

(x2i + y2i )|φn〉. (1.10)

1.3 MAGNETIC PROPERTIES OF FILLED AND PARTIALLY
FILLED SHELL MATERIALS

Here, we shall discuss the magnetic properties of insulating materials, that is, in which all the valence

electronic shells are �lled. Hence, the total orbital and spin angular momentum is zero, that is the only

surviving term is given by

1En =
e2

8m
B2

〈φn|

∑

i

(x2i + y2i )|φn〉. (1.11)

Let us evaluate the change in the ground state energy (we call the ground state wavefunction as |φ0〉),

1E0 =
e2

8m
B2

〈φ0|
∑

i

(x2i + y2i )|φ0〉

=

(
2

3

)
e2

8m
B2

〈φ0|
∑

i

(r2i )|φ0〉

=
e2

12m
B2

〈φ0|
∑

i

(r2i )|φ0〉. (1.12)

This should su�ce to calculate the susceptibility of a material using,

χ = −
N

V

∂2(1E0)

∂B2

= −
e2

6m

N

V
〈φ0|

∑

i

(r2i )|φ0〉

= −
e2

6m
n〈φ0|

∑

i

(r2i )|φ0〉 (1.13)

whereN denotes the number of ions and n (= N
V
) is the density. The negative sign in front of the above

expression indicates diamagnetic properties, where the moment is induced opposite to the applied

�eld. χ in the above equation is known as the Larmor diamagnetic susceptibility. One may note that

in the sum, electrons in the outermost shells contribute maximally owing to their large mean square

distance from the nucleus. Consider Zout to be the number of electrons in the outermost shell and rout

to be the corresponding distances, then the largest term in the sum yields the susceptibility to having

a form,

χ = −
e2

6m
nZoutr

2
out . (1.14)
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Above formula [Eq. (1.14)] correctly explains the magnetic behavior of the alkali halides, such as

He, Ne, Ar, Kr, Xe and their ionic con�gurations.

Exploration of the magnetic properties of materials with partially �lled shells is easier and often taught

in the �rst course on statistical mechanics (Pathria and Beale, 2011). A brief recap is presented in the

following.

ConsiderN identical non-interacting spin-S particles in presence of an external magnetic �eld B. The

corresponding Zeeman Hamiltonian can be written as

H = −µBS · B. (1.15)

It may be noted that electronic degrees of freedom are not important for this discussion. The canonical

partition function is written as

Z =

∑

{S}

e−βH{S}
=

+S∑

|S|=−S

e−βµBSB (1.16)

where it is assumed that the lowest (2S + 1) states (−S to +S) are thermally excited at a temperature,

T with appreciable probability. The above sum in Eq. (1.16) is computed in the form of a geometric

progression (GP) series,

e−βH
=

eβµBB(S+ 1
2 ) − e−βµBB(S+ 1

2 )

eβµBB/2 − e−βµBB/2
. (1.17)

As earlier, the magnetization, M can be calculated using,

M = −
∂F

∂B
= µBSBS (βµBSB) (1.18)

BS(x) is called the Brillouin function, and is de�ned by

BS(x) =
2S + 1

2S
coth

(
2S + 1

2S
x

)
−

1

2S
coth

(
1

2S
x

)
(1.19)

where x = µBB/kBT. The Brillouin functionBS(x) as a function of x for a number of S values are shown

in Fig. 1.2.

As can be seen from the plot, for x � 1, that is, µBB � kBT, BS(x) → 1. Thus, at lower temperatures

and large values of external �elds, the magnetization reaches its saturation value. While in the other

limit, that is for µBB � kBT, one may do a small x-expansion which yields,

coth(x) ≈
1

x
+

1

3
x + O(x3). (1.20)

Thus,

BS(x) ≈
S + 1

3S
x + O(x3). (1.21)
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FIG. 1.2
Plot of different Brillouin functions BS(x) for different spin S values.

Hence, the susceptibility is computed as

χ =
µ2

B

3

S(S + 1)

kBT
=

C0

T
. (1.22)

This is called Curie’s law. We may denote the above expression by χCurie [that is, replace χ by χCurie
in Eq. (1.22)] and C0 is called the Curie constant. Thus, the susceptibility to behaving inversely with

temperature is a feature of ‘paramagnetic solids’ whose ordering of themagneticmoments is facilitated

by a magnetic �eld, which, however may be hindered by thermal e�ects. The law is found to be valid at

high temperatures, even when considerable magnetic interactions exist among the magnetic moments

(Fig. 1.3).

The magnetic properties of the rare earth materials, such as La, Lu, Nd, Ce, Dy, etc. are adequately

described by Curie’s law. However, in transition metals, such as Fe, Zn, Cr, etc., there are additional

phenomena, such as crystal �eld splitting which are dominant for partially �lled d-shells. In order to

understand the crystal �eld splitting in partially �lled shells (say d shells) one needs to understand the

Russel–Saunders (RS) coupling and Hund’s rules (three of them). We postpone their discussion here

and include them in the appendix.1

1 Classic texts such as Ashcroft-Mermin, Kittel, etc. exist which treat these topics quite elaborately, and second, the focus of this

text is to understand the magnetic properties from an electronic perspective.
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FIG. 1.3
χCurie (in red) and its inverse (in blue) are plotted as a function of temperature (T) and 1/T respectively. The slope of the

linear plot yields C0.

Having discussed Curie’s law, one should be aware that there is another type of paramagnetic phe-

nomenon applicable to metals, namely, Pauli paramagnetism which refers to the magnetic moments

of conduction electrons. These electrons behave in a way that is distinct with respect to the localized

electrons in partially �lled ionic shells. Standard techniques of statistical mechanics can be applied (for

example, see Pathria and Beale, 2011) to obtain the magnetic susceptibility, χPauli which is a constant

(as opposed to having an inverse temperature dependence as that in χCurie). In fact, the expression is

χPauli = µ2
BN(εF), (1.23)

where N(εF) refers to the density of states (DOS) at the Fermi level. Thus, the susceptibility, χ of

free electrons (Pauli) is a constant (independent of temperature), while for electrons bound to atoms,

χ depends inversely on temperature (Curie).

A deeper introspection reveals that the Pauli susceptibility can be cast into Curie’s law with the tem-

perature, T replaced with TF, the Fermi temperature. Since TF ≈ 50 000 K for typical metals, χPauli is

typically three orders of magnitude lower than χCurie even at room temperature.
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Furthermore, there is a �nite magnetization of the conduction electrons that is diamagnetic in nature,

giving rise to a phenomenon called Landau diamagnetism. The susceptibility, let us call it χLandau,

which can be shown to be (Pathria and Beale, 2011)

χLandau = −
1

3
χPauli. (1.24)

Thus, the total susceptibility is a combination of the Pauli term, Landau susceptibility, Larmor suscep-

tibility, etc. It is prudent to say that it is quite complicated to extricate a particular contribution from a

combination of these e�ects.

1.4 FERROMAGNETISM AND ANTIFERROMAGNETISM

From the discussion that we had so far, it is clear that electronic interactions cannot be neglected

in order to explain certain types of magnetic ordering, such as ferromagnetism and antiferromag-

netism. Without such interactions (which are called magnetic interactions; however, the origin is

electronic in nature), thermal e�ects would have randomized the magnetic moments (or the spins

of the electrons) resulting in the absence of any sort of magnetic order. Even in antiferromagnetic

materials where there is no net magnetization, there is still antiparallel order among the neighboring

spins.

Before we bring about the electronic interactions to explainmagnetism, let us discuss how onemay get

the magnetic Hamiltonian involving only the spins (or the magnetic moments) of the charge carriers.

From a classical perspective, it is natural to expect that the dipolar force between moments, m1 and

m2 separated by a distance |r| described by a potential of the form,

V(r) =
m1 · m2 − 3(m1 · r̂)(m2 · r̂)

r3
(1.25)

will be operative. However, putting mi to be of the order of atomic moments, that is the Bohr mag-

neton (µB), and |r| to be of the order of Bohr radius,2 a0, V comes in the range 10−4 eV, which is far

smaller than the typical atomic energies and hence cannot account for magnetic ordering, that typi-

cally involves an energy scale of the order of an eV. Thus, quantum mechanical exchange is really the

dominant player, and dipolar interactions can safely be ignored.

An immediate motive is to arrive at a Heisenberg-like model3, although here we restrict ourselves to

an Ising-like Hamiltonian. To keep thematter even simpler, let us talk about two Ising-like spins [spins

only have discrete degrees of freedom, for example, two degrees of freedom, pointing up (↑) and down

(↓)]. Consider S1 and S2 both have values s = 1/2, which means that the spins will have two possible

orientations where they can either be pointing up or down. Now consider the addition of these two

s =
1
2 particles,

S = S1 + S2. (1.26)

2 In quantum mechanical systems, a length scale is usually taken as the Bohr radius.
3 Heisenberg model is discussed later.
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Writing the problem in the (s,ms) basis [S
2 has the eigenvalue s(s + 1) and Sz has the eigenvalue ms,

with ~ = 1], the direct product space (s1,ms1)⊗ (s2,ms2) becomes four dimensional. Now ms = ±
1
2~

denote the |↑〉-spin and the |↓〉-spin states with eigenvalues +
~

2 and −
~

2 respectively. Thus, the basis

states are spanned by |↑↑〉, |↑↓〉, |↓↑〉 and |↓↓〉. These are eigenstates of S21, S22, S1z and S2z. The eigen-

values for the total spin, S, that is, s (= s1 + s2) are 0 and 1. For the total z-component of the spin, Sz,

that is, ms (= ms1 + ms2) are 1, 0, 0, −1. One can check that,

Sz|↑↑〉 = ~|↑↑〉; Sz|↑↓〉 = 0

Sz|↓↓〉 = −~|↓↓〉; Sz|↑↓〉 = 0. (1.27)

Thus, we can take a linear combination of the above basis states to write the wavefunctions as

χ00 =
1

√
2
[|↑↓〉 − |↓↑〉] : s = 0 singlet (1.28)

χ11 =
1

√
2
[|↑↑〉]

χ10 =
1

√
2
[|↑↓〉 + |↓↑〉]

χ1−1 =
1

√
2
[|↓↓〉]





: s = 1 triplets . (1.29)

The �rst one denotes a singlet wavefunction,χ s, while the last three denote triplet states,χ t. The singlet

state is odd (changes sign) under the exchange of spins, while the triplet states are even (no change in

sign). These are the eigenstates of the total spin operators, namely, S2 and Sz. It can be checked that

the S2 operator has an eigenvalue 0 for the singlet state, and 1 for the triplet states. Also, the total spin,

S satis�es

S2 = (S1 + S2)
2

= S21 + S22 + 2S1 · S2

=
3

4
~
2
+

3

4
~
2
+ 2S1 · S2

=
3

2
~
2
+ 2S1 · S2. (1.30)

Thus, for the singlet state, the operator S1 · S2 has an eigenvalue −
3
4~

2, and 1
4~

2 for the triplet states.

Denoting these eigenvalues by Es and Et respectively, we can write down a spin-only Hamiltonian,

namely (here we have assumed ~ = 1),

H =
1

4
(Es + 3Et)− (Es − Et)S1 · S2. (1.31)

Readers can check whether the Hamiltonian has energies Es for the singlet state and Et for the triplet

states by operating the Hamiltonian in Eq. (1.31) on the states in Eqs. (1.28) and (1.29). Wemay ignore

the constant term, (Es+3Et
4 ) (or re-de�ne the zero energy which is common to all states), and re-write

the Hamiltonian as

H = −JS1 · S2, (1.32)

where J = Es − Et. If J is positive, the system favors parallel alignment of spins and if J is negative, it

favors antiparallel alignment.
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Onemay wish to extend the above scenario to an array of spins with full spin-rotational symmetry and

interacting via nearest neighbor exchange coupling to arrive at the Heisenberg model,

H = −J
∑

i,δ

Si · Si+δ , (1.33)

where δ refers to the neighbors of site i. This model was solved exactly by Bethe (1931) and later on by

the others in one dimension.

Now, if one includes the orbital wavefunctions, in addition to the spin states, one can write the total

eigenfunction as

ψ1,2(r1, r2) = ψsym(r1, r2)χs(1, 2)

= ψantisym(r1, r2)χt(1, 2), (1.34)

where ψ sym and ψantisym denote the symmetric and antisymmetric states which are respectively, even

and odd under exchange of r1 and r2. This takes care of the total fermionic wavefunction being

antisymmetric. Furthermore, the total Hamiltonian can be written as

H = H1 + H2 + H12, (1.35)

whereH1 andH2 are the single-particle Hamiltonians, andH12 denotes the potential energy term due

to the exchange interaction obtained above. These can be written as the stationary state wavefunctions,

φ(ri) centered at the lattice points, ri where the particles are located, via

J =

∫ ∫
φ∗

1 (r1)φ
∗

2 (r2)H12(r1, r2)φ2(r1)φ1(r2)d
3r1d3r2. (1.36)

The exchange interaction is very strong and can be of the order of a fraction of an eV, which is equiv-

alent to several hundreds of Kelvin. Thus, the exchange interaction is su�cient to align the spins even

at room temperature. However, it decays exponentially with distance.

Let us discuss the exchange interaction, H12 in some more details. It is the Coulomb interaction

between the particles and, for the simplest case, corresponding to two one-electron atoms [such as

two hydrogen (H) atoms],

H12(r1, r2) =
e2

|r1 − r2|
+

e2

|R1 − R2|
−

e2

|r1 − R1|
−

e2

|r2 − R2|
(1.37)

where r1,2 refer to the coordinates of the electrons and R1,2 denote the nuclei of the two atoms. Here,

the true ground state is the Heitler–London (HL) state, namely,

ψHL = ψs =
1

√
2
[ψ1(r1)ψ2(r2)+ ψ1(r2)ψ2(r1)] (1.38)

ψ s is the singlet state associated with χ00. Of course, the HL state applies well to the atoms that are

physically separated, however for atoms in a real solid, the magnetic interaction is severely complex,

and may not be restricted to a 4 × 4 Hilbert space (that is a simple two-body term) which we have

discussed earlier. Still in cases, where the magnetic atoms (or ions) are well separated, one can extend

the two-spin interaction picture for the entire system.
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FIG. 1.4
A perfectly ordered (left) and a completely disordered (right) phase in a one-dimensional spin chain.

The prospect of ordering also depends on the dimensionality of the lattice. For example, one-

dimensional spin systems really do not order at any �nite temperature. The reason for this can be

stated through the following illustration of Ising spins.

Assuming a nearest neighbor spin-only Hamiltonian, as in Eq. (1.33), left and right in Fig. 1.4 denotes

two di�erent phases, where the left denotes a perfectly ordered phase with an energy −NJ (N being

the number of spins), while the right denotes a perfectly disordered phase with an energy −(N − 1)J

with only one bond is broken. Thus, the relative energy di�erence between the phases in them, that

is, 1E
E ∼

1
N which vanishes in the limit of large N. Such a vanishingly small energy di�erence cannot

stabilize an ordered state. Thus, dimensions higher than “one” are crucially required for magnetic

ordering to exist.

In the following, let us describe a couple of di�erent methods for solving the Heisenberg model using

certain approximations. The methods are

i. Mean �eld theory (MFT),

ii. Holstein–Primako� (HP) transformation and linear spin wave theory.

1.5 MEAN FIELD THEORY

In the mean �eld approximation, each spin “feels” an average �eld due to all the other spins of the

system. The approximation is valid in any dimension; however, it is more accurate as the dimension-

ality grows larger (the �uctuations of the mean �eld state compared to the exact one diminishes with

increase in the number of nearest neighbors or the dimensionality). In order to implement the mean

�eld theory (MFT), one decouples Si from H in Eq. (1.33) which makes it a single site Hamiltonian

(that is, at a given site i) of the form,

HMF(i) = −Si.

(
J
∑

δ

〈Si+δ〉

)
− gµBBext ·

∑

i

Si, (1.39)

where, as one can notice thatwe have included an additional appliedmagnetic �eldBext, and the second

termdenotes couplingwithBext. Since the bracketed expression in the �rst term above is just a constant
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(being summed over nearest neighbors), the above Hamiltonian in Eq. (1.39) becomes a single spin

Hamiltonian in an e�ective �eld, Be�, namely,

HMF(i) = −µi · Be� , (1.40)

where Be� = Bext −
J

gµB

∑
δ Si+δ . Here g is the landé g factor, and µB denotes the Bohr magneton. In

fact Si+δ can be replaced by its thermal average 〈Si+δ〉, so that

Be� = Bext −
J

gµB

∑

δ

〈Si+δ〉

= Bext − z
J

gµB
M, (1.41)

where M = 〈Si+δ〉 is the magnetization and z denotes the coordination number.

Thus, essentially, we have a non-interacting system, and the thermal average can be calculated as if

one particular spin is in a bath of an e�ective magnetic �eld. In this scenario, the standard approach to

calculate the magnetization is by computing the free energy, F = kBT lnZ , where Z is the canonical

partition function. The method used is detailed in Sec. 3.1. For convenience, the results are quoted

again. The partition function is written as

Z =

∑
e−βHMF =

∑
e−βHe� =

∑
e−βγ SBe�

=
eβγBe� (S+

1
2 ) − e−βγBe� (S+

1
2 )

eβγBe� /2 − e−βγBe� /2
, (1.42)

where γ = gµB. Hence, the magnetization is computed using M =
∂F
∂Be�

. Thus, one arrives at,

M = γ SBS(SβγBe� ) = γ SBS

(
Sβγ (B −

zJ

γ

2

M)

)
(1.43)

BS(x) being the Brillouin function discussed earlier, and

x =

(
Sβγ

(
B −

zJ

γ

2

M

))
.

The above equation is non-linear, and can be solved for the magnetization, M for given values of

B and T (remember β =
1

kBT ). Assuming positive values of J, the transition from a paramagnet to

a ferromagnetic state is indicated by the appearance of spontaneous magnetization, (�nite value of M)

in the zero magnetic �eld limits (B → 0) below a certain critical temperature, Tc. Thus, in the limit

H → 0, BS(x) can be expanded for small x,

M ' −γ S

(
S + 1

3S

)
zJ

γ kBTc
M. (1.44)

Solving for the transition temperature, Tc,

Tc =
S(S + 1)

3
zJ. (1.45)
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T

FIG. 1.5
Plot of magnetization as a func-

tion of temperature. The magneti-

zation vanishes as (T − Tc)
1/2.

Thus, the critical temperature scale with the exchange interaction, J,

implying that Tc is large for large J. Furthermore, the magnitude of the

spin S and the coordination number z (which means dimensionality) play

roles in deciding the value of Tc.

In order to see how M varies with T below Tc, Eq. (1.43) has to be solved

numerically. The solution is shown schematically in Fig. 1.5. Analytic

results exist at the extreme limits, that is, for (i) T � Tc and (ii) T → Tc

below. Let us demonstrate how to get these.

i. At T � Tc, β is large, so the Brillouin function, BS(x) has to be

examined for large x, which yields,

BS(x) ' = 1 +
2S + 1

S
exp

(
−
2S + 1

S
x

)
−

1

S
exp

(
−

x

S

)

= 1 +
1

S

(
(2S + 1) exp(−2x)− 1

)
exp

(x

S

)

= 1 −
1

S
exp

(
−

x

S

)
. (1.46)

Thus,

M = γ SBS(x) = γ S − exp

(
−

JzM

γ kBT

)

= γ S − exp

(
−

3

S + 1

Tc

γ kBT

)
. (1.47)

In the limit of T → 0 (that is, T � Tc), the second term (the exponential term) is small. Thus, one

gets M ' γ S.

ii. For T close to Tc (from below), we need to expand BS(x) for small x, where,

BS(x) =
S + 1

3S
x −

(S + 1)(2S2 + 2S + 1)

90S3
x3. (1.48)

This yields,

M '
S + 1

3

SM

kBT
−
(S + 1)(2S2 + 2S + 1)

90S3
(zJ)3S3M2

γ kBT

3

=
Tc

T
M −

3(2S2 + 2S + 1)

10γ 3S2(S + 1)2

(
Tc

T

)3

M3. (1.49)

Since M 6= 0, one can solve for M2,

M2
'

10S2(S + 1)2

3(2S2 + 2S + 1)γ 3

(
T

Tc
− 1

)
. (1.50)

Thus, M(T) ∼ (T − Tc)
1/2 for T approaching Tc below, that is, from the ordered regime. The expo-

nent 1/2 is the signature of themean �eld theory. The temperature dependence of themagnetization

is schematically shown in Fig. 1.5. It falls slowly from a value γ S at T = 0, However, there is a rapid

decline in the vicinity of T = Tc.
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1.6 LINEAR SPIN WAVE THEORY

To continue our discussion on ferromagnets, let us again consider the Heisenberg model given by

Eq. (1.33) in a magnetic �eld B was applied in the z-direction. For positive J, the system minimizes

its energy by having all the spins aligned in the z-direction at zero temperature. At small, but �nite

temperatures, investigating elementary excitations of a spin system is di�cult to determine owing to

the non-commutativity of the components of the spin operator. However, such an endeavor would

still be possible if we can transform the spin operators to bosonic operators via a canonical transfor-

mation,4 known as the Holstein–Primako� (HP) transformation (Holstein and Primako�, 1940). The

spin operators at a site i are denoted as

S+

i = Six + iSiy =

√

2S

(
1 −

b†i bi

2S

)1/2

bi (1.51)

S−

i = Six − iSiy =

√

2Sb†i

(
1 −

b†i bi

2S

)1/2

, (1.52)

where S±

i are the spin raising and the lowering operators and b†i (bi) are the bosonic creation (annihi-

lation) operators. It is easy to verify that the components of the spin operator obey the commutation

relation,
[
Sx, Sy

]
= iSz, (~ = 1), (1.53)

where the bosonic operators obey [b, b†] = 1 at each lattice site i. Furthermore, S2 and Sz commute

with the HamiltonianH in Eq. (1.33). Some essential mathematical steps include writing down

S2 = S2x + S2y + S2z .

Thus, S2z = S2 − S2x − S2y . Using S±
= Sx ± iSy

S2z = S2 −
1

2
(S+S−

+ S−S+) ∀i (1.54)

S2 and Sz acting on the common eigenfunction of S2 and Sz yield, S(S + 1) and Sz. Using the spin-boson

transformation relations [Eqs. (1.51) and Eq. (1.52)], one gets

Sz = S − b†b. (1.55)

Assuming translational invariance of the system, we can do a Fourier transform,

bi =
1

√
N

∑

k

e−ik.ri bk. (1.56)

Note that the Fourier-transformed operators obey,

[bk, b
†
k′] = δk,k′ .

4 Such transformations always preserve the commutation relations of both the spin and the boson operators.
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FIG. 1.6
Plot showing spin wave excitation. Each spin is slightly rotated with respect to its neighbor. A complete cycle of the

rotation is shown. These spin wave excitations are called “magnons“ (analogous to phonons denoting lattice excitations).

A priori, bk and b†k, which denotes the annihilation and the creation of a quasiparticle, respectively,

are called magnons or spin wave excitations. The spin wave excitations can be denoted by a small

rotation of one spin with respect to its preceding neighbor, starting with a perfectly aligned con-

�guration for the �rst spin. Thus, it is a long wavelength excitation and requires several lattice sites

(where the atoms and the ions are localized) for the spins to come back to their original orientation

(see Fig. 1.6).

In view of this slow variation (refer to Fig. 1.6), the expansion of the square root in the HP transforma-

tion may converge quickly. The reason being b†i bi, which denotes a spin deviation at site i has a slow

variation. Thus, expanding the square roots,

S+

i '

√

2S

[
bi −

b†i bibi

4S
+ · · · .

]
. (1.57)

Fourier transforming the RHS,

S+

i =

(
2S

N

)1/2

∑

k

e−ik.Ri bk −
1

4SN

∑

k,k′,k′′

ei(k−k′
−k′′).Ri b†kbk′bk′′ + · · · .


 . (1.58)

Similarly,

S−

i =

(
2S

N

)1/2

∑

k

eik.Ri b†k −
1

4SN

∑

k,k′,k′′

ei(k+k′
−k′′).Ri b†kb†k′bk′′ + · · · .


 (1.59)

S+ and S− are calledmagnon operators. Also, without employing any approximation, the z-component

of the spin can be written as

Siz = S − b†i bi = S −
1

N

∑

k,k′

ei(k−k′).Ri b†kbk′ . (1.60)

Summing over all the spins along the z-axis that is along the direction of the magnetic �eld,

Stot =

∑

i

Siz = NS −

∑

k

b†kbk (1.61)

1-16 Modern Perspectives in the Study of Electronic Systems

 07 D
ecem

ber 2024 17:11:54



scitation.org/books

where
∑

i ei(k−k′).Ri = δk,k′ is used. Neglecting the terms cubic in magnon operators, namely, S+

i and

S−

i , the Hamiltonian [Eq. (1.33)] in k-space can be written as

H =
JS

N

∑

k,k′,δi

[ei(k−k′).Ri eik′.δi bkb†k′ + ei(k−k′).Ri eik′.δi b†kbk′

− ei(k−k′).Ri b†kbk′ − ei(k′
−k′).Ri ei(k−k′).δi b†kbk′]

−
µBB

N

∑

i,k,k′

ei(k−k′).Ri b†kbk′ +
1

2
JNZS2 (1.62)

δ connects to the neighbors, and z is the coordination number. Using the de�nitions of the δ-function

one can write

H = JzS
∑

k

[
γkb†kbk + γ−kb†kbk − 2b†kbk

]
+
µBB

N

∑

k

b†kbk +
1

2
JNzS2, (1.63)

where γk =
1
z

∑
δ eik.δ , and thus γ k = γ−k.

5 The Hamiltonian can further be simpli�ed to arrive at

H =

∑

k

[−2JzS(1 − γk)+ µBB] b†kbk +
1

2
JNzS2, (1.64)

where N denotes the total number of spins. Importantly, H is diagonalized with the �rst term being

quadratic on the basis of magnon operators (b†kbk denotes a number operator for magnons) and the

second term is merely a constant. Thus, the energy eigenvalue for the magnon Hamiltonian is

ωk = −2JSz(1 − γk)+ µBB. (1.65)

Hence, themagnons (or spin waves) disperse according to this relation. The long wavelength behavior,

say, in a square lattice is parabolic, that is, goes as ∼k2 (k being inverse of the wavelength) and owing

to the 1 − γ k factor, it vanishes as k → 0. This vanishing of ωk is in accordance with the Goldstone

theorem (Goldstone, 1961) and the zero energy mode is called the Goldstone mode, which arises due

to the spontaneous breaking of the symmetry.

1.6.1 Quantum XY model

The Heisenberg Hamiltonian, in one dimension was exactly solved by H. Bethe in 1931 (Bethe, 1931).

In spite of the solution being quite elegant, it still does not enlighten us much about the basic proper-

ties, such as long range order. Rather, a simple and more intuitive picture of interacting s =
1
2 particles

emerge from the similarity between the spin and the fermion operators. This similarity was originally

exploited by Jordan andWigner (Jordan andWigner, 1928) who had converted an interacting problem

of s =
1
2 particles to that of spinless fermions via a canonical transformation, which, for obvious rea-

sons is known as Jordan-Wigner transformation. It is applicable to a simpler variant of the Heisenberg

Hamiltonian, where the coupling between the z-component of the spins is switched o�. However, quite

fortunately, it captures the low energy properties of the antiferromagnetic Heisenberg model.

5 For example, γk =
1
4 (cos kxa + cos kya) for a two-dimensional square lattice.
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The model is described by the Hamiltonian,

H = J
∑

i

(Si,xSi+1,x + Si,ySi+1,y). (1.66)

The interaction Hamiltonian is restricted to the x and y components of spins among the nearest

neighbors in a one-dimensional chain. The components of the spins obey usual commutation relations,

[Sαi , S
β
j ] = iεαβγ δijS

γ
i (1.67)

where ~ = 1 and εijk are the Levi-Civita tensor. The interaction does not include the z-component of

the spin, and hence the name XY model. De�ning raising and lowering operators,

S±

i = Si,x ± iSi,y. (1.68)

In terms of S±, the Hamiltonian takes the form,

H =
J

2

∑

i

(S+

i S−

i+1 + S−

i S+

i+1). (1.69)

Now, since Si =
1
2σi and S±

i = σ±

i , σ being the Pauli matrices, the Hamiltonian can be written as

H =
J

2

∑

i

(σ+

i σ
−

i+1 + h.c.), (1.70)

where h.c. denotes the Hermitian conjugate. Owing to the 2 × 2 structure of the Pauli matrices, the

vector space is two-dimensional. Now we can derive a fermionic Hamiltonian in terms of c, c† by

de�ning,

c†i =

(
5j<1σ

z
j

)
σ+

i , ci =

(
5j<1σ

z
j

)
σ−

i . (1.71)

Again, these transformations preserve the commutation relations for the fermions and the spin-1/2

particles. From the commutation relation of the Pauli matrices, one can check for the fermionic

anticommutation relations for c, c†. The reader is advised to go through a few steps of algebra to derive

σ z
i = 1 − 2c†i ci (1.72)

or,

σ z
i = (−1)ic†i ci (1.73)

such that σ z
i can take the values ±1 for n = 0, 1. Also, the σ±

i are de�ned by

σ+

i = c†i exp


−π i

i−1∑

j=1

c†j cj




σ−

i = exp


−π i

i−1∑

j=1

c†j cj


 ci. (1.74)
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One can check that,

{ci, c
†
i } =

{σ−

i , σ+

i }

5i−1
j=i (−1)jc†j cj5

i−1
j′=1(−1)j

′

c†j′cj′
= 1. (1.75)

Also, one can show that, c†i ci = σ−

i σ
+

i .

A special mention is required for the commutation relations. c operators at the same site obey anti-

commutation relations, while at di�erent sites obey commutation relations (similar to bosons), such

that the unitary rotations obey neither bosonic nor fermionic relations.

Going back to Eq. (1.70), for 1 ≤ i ≤ (N − 1),

σ−1
i σ+

i+1 = exp


−π i

i−1∑

j=1

c†j cj


 cic

†
i+1 exp


−π i

i−1∑

j=1

c†j cj




= ci exp


−π i

i−1∑

j=1

c†j cj


 exp


−π i

i−1∑

j=1

c†j cj


 c†i+1

= ci exp


−π i

i−1∑

j=1

c†j cj


 c†i+1 = ci(1 − 2c†i ci)c

†
i+1

= c†i ci. (1.76)

Similarly, the conjugate is written as

σ−

i+1σ
+

i = c†i ci+1. (1.77)

Thus, after expressing the ‘boundary particle’ operators σ−

N σ
+

1 + σ−

1 σ
+

N in terms of the fermion

operators ci and c†i one gets,

H =
J

2

∑

i

(
c†i+1ci + c†i ci+1

)
−

J

2

∑

i

(
c†1cN + c†Nc1

)

exp


−π i

i−1∑

j=1

c†j cj + 1




 . (1.78)

The �rst term on the RHS is quadratic in c operators and describes free fermions in a closed chain.

The e�ect of the boundary enters through the second term can be neglected for large N, as it merely

denotes a 1/N correction to the �rst term. Thus, the Hamiltonian becomes,

H '
J

2

∑

i

(
cic

†
i+1 + ci+1c†i

)
. (1.79)

This �nally yields a quadratic term, and hence a non-interacting fermionic Hamiltonian in one dimen-

sion which can be solved exactly. The Hamiltonian in Eq. (1.79) commutes with the number operator,

N = c†i ci, that is, [H,N ] = 0. Furthermore, the z-component of the spin operator can be written as

Sz
i =

1

2

[
σ †

i , σ
−

i

]
= c†i ci −

1

2
(1.80)

and Sz
=
∑

i Sz
i . Thus, each spinless fermion created by c† carries Sz

= 1.
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Furthermore, Fourier transforming the fermionic operators using,

ci =
1

√
N

∑

k

eik.Ri ck (1.81)

one arrives at a tight binding form,

H =

∑

k

εkc†kck = J
∑

k

cos ka c†kck, (1.82)

where k ∈ [−π ,π], and a is the lattice constant which, without any loss of generality, can be taken to be

unity. Thus, from an interacting spin problem, we arrived at a non-interacting fermionic problem. The

spectrum is gapless, that is, there may be gapless excitations, which implies that one extra fermion can

be added to the system without any additional cost of energy at the Fermi level. However, the gapless

situation will vanish if a nearest neighbor interaction term among the z-components, that is, JzSz
i Sz

i+1

is included.

Finally, the z-component of the spin, Sz yields,

Sz
=

∑

i

c†i ci =

∑

k

c†kck −
N

2
. (1.83)

If we split the above sum into k < 0 and k > 0 (including k = 0)

Sz
=

∑

k>0

c†kck +

∑

k<0

(1 − c†kck)−
N

2
(1.84)

which can also be written as

Sz
=

∑

k

sgn(εk)c
†
kck +

∑

k<0

1 −
N

2
. (1.85)

Thus, excitations with |k| < π
2 carry Sz

= +1 while those with |k| > π
2 carry Sz

= −1. Thus, the

z-component of the total spin of the ground state equals zero, and hence, it is non-degenerate. The

same result holds for the unrestricted (that includes interaction between the z-component of the spins)

antiferromagnetic Heisenberg model. In fact, the ground state energy and the excitation spectrum is

identical to the antiferromagnetic case where the ground state is non-degenerate. However, this is very

unlike the ferromagnetic Heisenberg model, where the ground state is hugely degenerate and it carries

a value for the z-component of the spin, namely, Sz =
N
2 .

Just to put things into perspective, here we have discussed a magnetic Hamiltonian in one dimension

which has an exact solution. The solution yields a magnetic metal with gapless excitations. In the event

one additionally includes a z component of the spin interaction, the spectrum becomes gapped, and

hence corresponds to an insulating scenario.
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1.7 ISING MODEL OF FERROMAGNETISM: TRANSFER
MATRIX

Consider a spin-only model interacting via the nearest neighbor exchange interaction in the presence

of an external magnetic �eld, B. In order to solve the problem, we shall use a transfer matrix technique.

Again, we consider s =
1
2 particles, which can assume two di�erent orientations, namely, ↑ and ↓. The

Hamiltonian of such a system is written as

H = gµBB
∑

i

Si −

∑

〈ij〉

JijSi · Sj, (1.86)

where g and µB are the landé g factor and Bohr magneton, respectively. Because of the discrete

possibilities of the spin orientation, the Hamiltonian can be written in a scalar form as

H = gµBB
∑

i

Sz
i −

∑

〈ij〉

JijS
z
i Sz

j . (1.87)

Writing mi = Sz
i ,

H = gµBB
∑

i

mi −

∑

〈ij〉

Jijmimj. (1.88)

A further variable transform, αi = 2mi yields

H =
gµBB

2

∑

i

αi −
J

2

N∑

i=1

αiαi+1. (1.89)

We can assume a periodic boundary condition denoted by αN+1 = α1 (N being the number of spins

in the chain). Thus, the last spin is connected to the �rst one, and the system is in the shape of a closed

loop with no free edge. The canonical partition function for the above Hamiltonian is written as

Z =

∑

{αi}

e−βEn{αi} =

∑

{ni}

e−βH{αi}, where β =
1

kBT
. (1.90)

By expanding the partition function, one gets (Chandler et al., 1987),

Z =

∑

α1=±1

∑

α2=±1

. . .
∑

αN=±1

K(α1,α2)K(α2,α3) . . .K(αN ,α1) (1.91)

where

K(α1,α2) = exp

[
−
βgµBB

2
(α1 + α2)+

βJ

2
α1α2

]
. (1.92)

Writing K for αi = ±1,

K =

[
e(−x+a) e−a

e−a e(x+a)

]
, (1.93)

where x =
gµBB
2kBT and a =

J
2kBT . Thus, the partition function becomes,

Z = Tr(KN). (1.94)
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In order to obtain the partition function in the closed form, please note that K being a 2 × 2 matrix,

has two eigenvalues. Let us call them λ1 and λ2 which yields

Z = Tr(KN) = λN
1 + λN

2 = λN
1

[
1 +

(
λ2

λ1

)N
]
. (1.95)

We assume one of them to be greater than the other, that is, λ1 > λ2. Since the partition function

involves terms raised to the power N and with N being large, one can write (neglecting second term

inside the bracket),

Z = λN
1 , (1.96)

where λ1,2 are given by

λ1,2 = ea[cosh x ± (sinh2 x + e−4a)1/2]. (1.97)

Keeping the relevant one6 for computing the partition function,

λ1 = ea[cosh x + (sinh2 x + e−4a)1/2]. (1.98)

The free energy is written as

F = −kBT lnZ = −NkBT ln λ1. (1.99)

One can hence compute the magnetization, M using,

M = lim
B→0

−
∂F

∂B
= lim

B→0

NgµB

2

{
sinh(gµBB/2kBT)

[sinh2(
gµBB
2kBT )+ e−2J/kBT]1/2

}
, (1.100)

which yields,

M =

[
Ng2µ2

B

4kB

eJ/kBT

T

]
B. (1.101)

The magnetic susceptibility is given by

χ = lim
B→0

∂M

∂B
=

eJ/kBT

T
. (1.102)

Finally, one can derive Curie’s law,

1

χ
= Te−J/kBT

= T(1 − J/kBT + . . .)

= T − J/kB. (1.103)

Rewriting the above relation in a more familiar form,

χ =
C

T − θ
, (1.104)

6 The other one will vanish in the limit of large N.
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C

T

T = θ

T – θ

1

χ
χ =

FIG. 1.7
1/χ is schematically shown as a function of tempera-

ture, T. It vanishes at T = θ .

where θ is a characteristic temperature called the Curie

temperature (θ = J/kB) at which ferromagnetic order-

ing takes place (see Fig. 1.7). Thus, the system is para-

magnetic above a temperature T = θ where the spins

are randomly oriented owing thermal e�ects, while they

align below θ . This is the simplest discussion of ferromag-

netism in a model Hamiltonian, which arises out of the

exchange interaction among the neighboring spins in the

presence of a magnetic �eld. The known ferromagnets,

such as Fe and Ni have Curie temperatures 1093 K and

650 K, respectively.

It is worthwhile to point out that the above model has

no spontaneous magnetization, which means that as the

external magnetic �eld is switched o�, the magnetization

vanishes.

1.8 QUANTUM ANTIFERROMAGNET

Antiferromagnetism requires at least two sublattices, say A and B, inter-penetrating with each other to

explain their structures and properties. Considering the Heisenberg model,

H = −J
∑

〈ij〉

Si.Sj (1.105)

now with J < 0, such the energy is minimized when spins in one sublattice point in the +z-direction

(up spin), with those in the other sublattice point in the −z-direction (down spin). This state with

alternate up and the down spins is referred to as the classical Neél state. The lattice called the bipartite

lattice. In such a bipartite lattice, one can de�ne a staggered magnetization, MS =
∑

i(−1)iMi, where

Mi = 〈Si〉. Because of the pre-factor (−1)i, it takes a value +1 for the sites on the A sublattice, while

it takes −1 for those in the B sublattice, or vice versa. Thus, MS assume a value NS (N being the total

number of spins).

One can also de�ne a sublattice magnetization pertaining to each of the two sublattices which takes

values NS/2 for the Neél state. However, the true ground state is far from classical, which is espe-

cially true at low dimensions owing to the presence of quantum �uctuations. These �uctuations lower

the saturation value (Neél) of the magnetization. Let us illustrate this in the following by employing

a Holstein–Primako� transformation to an antiferromagnetic Heisenberg model, where one has to

separately deal with the sublattices A and B in a bipartite lattice.
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The transformations for the A sublattice can now be written as

SA+

i = SA
ix + iSA

iy =

√

2S

(
1 −

a†i ai

2S

)1/2

ai (1.106)

and,

SA−

i = SA
ix − iSA

iy =

√

2Sa†i

(
1 −

a†i ai

2S

)1/2

(1.107)

where, a†i (ai) denote bosonic creation (annihilation) operators for theA sublattice. Repeating the same

for the B sublattice,

SB+

i = SB
ix + iSB

iy =

√

2S

(
1 −

b†i bi

2S

)1/2

bi (1.108)

and,

SB−

i = SB
ix − iSB

iy =

√

2Sb†i

(
1 −

b†i bi

2S

)1/2

(1.109)

where b†i (bi) again denote bosonic creation (annihilation) operators for the B sublattice. The

z-component of the spin operators is written as

SA
iz = (S − a†i ai), SB

iz = −(S − b†i bi). (1.110)

Now, as earlier done for a ferromagnet, we introduce the Fourier-transformed operators,

αk =
1

√
N

∑

i∈A

aie
ik.Ri , βk =

1
√

N

∑

i∈B

bie
ik.Ri

α†k =
1

√
N

∑

i∈A

a†i e−ikRi , β†k =
1

√
N

∑

i∈B

b†i e−ikRi . (1.111)

Recognizing that the periodicity of the sublattice is twice that of the crystal lattice, the e�ective Brillouin

zone (over which the momentum index k runs) is half. Also αk and βk correspond to excitation of

magnons in A and B sublattices. Expanding the spin operators up to linear order for the A sublattice

in αk and βk,

SA+

i '

(
2S

N

)1/2
[
∑

k

e−ikRiαk + · · · .

]

SA+

i '

(
2S

N

)1/2
[
∑

k

eikRiαk + · · · .

]
. (1.112)

Similarly for the B sublattice,

SB+

i '

(
2S

N

)1/2
[
∑

k

e−ikRiβk + · · · .

]
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SA+

i '

(
2S

N

)1/2
[
∑

k

eikRiβk + · · · .

]
. (1.113)

The z-components yield the exact expressions,

SA
iz = S −

1

N

∑

k,k′

e
i(k−k′)R
i α†kαk′

SB
iz = −


S −

1

N

∑

k,k′

e
i(k−k′)R
i β†kβk′


 . (1.114)

Inserting these into the Heisenberg Hamiltonian, the Hamiltonian becomes quadratic and it reads as

H ' −NzJS2 + JSz
∑

k

[
γk(α

†
kβ

†
k + αkβk)+ (α†kαk + β†kβk)

]
, (1.115)

where,

γk =
1

z

∑

δ∈nn

eikδ (1.116)

where nn denotes the number of nearest neighbors. Although the Hamiltonian is bilinear in αk and

βk, unlike the ferromagnetic case, it is not readily diagonalizable. Another canonical transformation7

involves linear combinations of αk and βk as

ηk = ukαk − vkβ
†
k ; ζk = ukβk − vkα

†
k

η†k = ukα
†
k − vkβk; ζ †k = ukβ

†
k − vkαk. (1.117)

To have the bosonic commutation relations intact for ηk and ζ k, we demand that the coe�cients uk

and vk are related by

u2
k − v2k = 1. (1.118)

This allows us to choose (though not uniquely), uk = cosh θk and vk = sinh θk. For each k, one can

put the anomalous terms (the ones which diagonalizing the Hamiltonian) to zero, which yields the

following condition,

tanh 2θk = −γk. (1.119)

Thus, the Heisenberg Hamiltonian becomes,

H ' −NzJS2 + NJSz
∑

k

Ek

(
η†kηk + ζ †k ζk + 1

)
(1.120)

where the dispersion, Ek is given by

Ek = NJSz
√
1 − γ 2

k . (1.121)

7 These are called Bogoliubov or Bogoliubov-Valatin transformation and will be used in the chapter on superconductivity
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A comparison with the ferromagnetic case (which yields Ek ∼ 1 − γk), the antiferromagnetic disper-

sion is
√
1 − γ 2

k . Thus, here we get a linear behavior, that is, Ek ∼ k as opposed to parabolic (Ek ∼ k2)

for ferromagnets. Additionally, there are two degenerate modes for each k in the Brillouin zone owing

to two sublattice structure of the lattice.

At zero temperature, there are no magnons (or excitations of the spin wave). Thus, 〈η†kηk〉 or 〈ζ †k ζk〉

vanishes and we obtain the ground state energy as

EGS = −NJzS(S + 1)+

∑

k

Ek. (1.122)

Introducing a constant κ , the expression for EGS can be re-written as

EGS = −NJzS2
(
1 +

κ

S

)
, (1.123)

where κ is given by

κ =

(
2

N

)∑

k

[
1 − (1 − γ 2

k )
1/2
]
. (1.124)

Thus, EGS can be obtained for a crystal lattice.

The spin wave excitations lower the value of the sublattice magnetization compared to its saturation

value. It is possible to have a quantitative estimate for a given lattice. For either of the sublattices (A

sublattice is considered here for concreteness), the average value of the z-component of the spin is

written as

〈SA
z 〉 = S −

1

N

∑

k

〈α†kαk〉. (1.125)

Using the Bogoliubov transformation,

〈SA
z 〉 = S −

1

N

∑

k

〈(ukη
†
k + vkζk)(ukηk + vkζ

†
k )〉

= S −
1

N

∑

k

(u2
k〈η

†
kηk〉 + v2k〈ζ

†
k ζk〉 + v2k)

= S − δSA (say). (1.126)

Clearly, the second term denotes the departure from the saturation values and hence denotes as �uc-

tuations. The averages 〈η†kηk〉 and 〈ζ †k ζk〉 yield the Bose distribution function at �nite temperatures,

fB(ωk) (=
1

eβωk −1
) such that it yields the number of bosons (spin waves) when summed over all k in

the Brillouin zone.

nk = 〈η†kηk〉 = 〈ζ †k ζk〉 = fB(ωk). (1.127)
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The coe�cients uk and vk satisfy,

u2
k + v2k = cosh 2θk =

1√
1 − γ 2

k

. (1.128)

Thus, the magnitude of the �uctuations, δSA can be written as

δSA =
1

N

∑

k

(nk +
1

2
)

1√
1 − γ 2

k

. (1.129)

Thus, δSA can be computed at a given temperature and a crystal lattice.

1.9 ITINERANT ELECTRON MAGNETISM

It is by and large true that identifying themagnetic order present in the system is far easier than under-

standing the origin of the order. There are competing ways of studying magnetic order, which are

exchange interactions between the localized electrons, and those between the itinerant electrons. Even

though we feel that conceptualizing magnetic order arising either from a local or an itinerant view

should not be viewed as a regimented criterion, and is often perceived as a convenience of descrip-

tion.We have seen so far howmodel Hamiltonians arising out of the exchange interaction between the

localized moments, so it is instructive to discuss the role of itinerant electrons in producing magnetic

e�ects in materials.

One simple way to consider the role of itinerant electrons resulting inmagnetic e�ects is via amagnetic

impurity in a free electron model or in the presence of bands. Such a scenario can indeed be realized

in dilute magnetic semiconductors. The localized magnetic impurity causes an oscillation in the sus-

ceptibility at large distances away from the scatterer (the magnetic impurity). In a slightly di�erent

context, if a spin-polarized electron gas is either ferromagnetically or antiferromagnetically coupled to

an impurity, a particular kind of exchange interaction ensue, and is known as the RKKY interaction

(Ruderman and Kittel, 1954).

An alternative route to magnetic phenomena in itinerant systems arises from the competition between

the kinetic and the potential energies. While we describe this scenario later, a priori it can be under-

stood via a population imbalance of one kind of spin with respect to the other, thereby causing a

decrease in the potential energy and an increase in kinetic energy. If such an interplay can lower the

total energy, such that it becomes favorable for the bands to split and give rise to a net magnetization.

The necessary conditions for such a scenario to occur are determined by the density of states at the

Fermi level and the energy scale associated with the Coulomb interaction.8

In a physical situation, it is impossible to extricate the contributions arising out of the localized elec-

trons from the itinerant ones. For example, magnetism in light actinides (where partially extended

8 It will be introduced as the Stoner criterion.
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5f orbitals are involved), is potentially di�erent from the heavy actinides (or the lanthanides) where

the 5f orbitals are strongly hybridized with the 6d and the 7s bands, thereby making the itinerant

description to be more suited in the former, while a localized description is preferred for the latter.

The same is true for the heavy fermion compounds,9 such as CeAl3, UPt3 etc, where the localized f

electrons strongly hybridize with the conduction band electrons, creating a signi�cantly complicated

scenario.

Kübler (2000) �rst attempted to explain magnetic correlations in materials via local density functional

approximation (LDA). The method incorporates electronic correlations and indicates the importance

of the electronic structure in understanding magnetic properties. Speci�cally, the itinerant electron

picture makes concrete contributions to the exploration of half-metallic ferromagnets, GMR observed

in multi-layered systems, etc.

In the previous discussion, we have seen ferromagnetism in the presence of a spin exchange interaction.

It is worthwhile to investigate the ordering scenario in detail in an itinerant electronmodel, such as the

Hubbard model. Since this discussion may be new to readers, we include an introduction of the model

and emphasize on its properties. We apprise the readers that elementary knowledge of band theory

and the second quantization is essential to understand the subsequent discussions.

A brief introduction to an interacting electronic model in terms of creation and annihilation operators

is as follows:

H =

∑

i,i′,σ ,σ ′

c†iσ tσ ,σ
′

ii′ ci′σ ′ +

∑

i,i′,j,j′,σ ,σ ′

Uii′jj′c
†
iσ cjσ c†i′σ ′cj′σ ′ , (1.130)

where i, i′, j, j′ refer to site indices and σ , σ ′ denote the spins. The Hamiltonian includes a single-

particle term (the kinetic energy), and a two-particle interaction term. There could be the presence of

interaction e�ects involving larger number of particles, however they are mostly weaker (other than

being unsolvable), as compared to the two-particle term, thereby making two-particle interactions to

be good enough for describingmost of the interacting systems. Itmay be noted that we have considered

the most general forms for both the terms in the Hamiltonian, however, either of them, or both may

not depend upon the spin indices as shown in Eq. (1.130).

1.10 MAGNETIC SUSCEPTIBILITY: KUBO FORMULA

Here, we shall show the calculation of the magnetic susceptibility using linear response theory. We

shall be deriving the Kubo formula, which is essential in a variety of systems. For example, calculation

of resistivity for an electron gas in the presence of an external magnetic �eld (for example, the quan-

tum Hall e�ect), or the polarizability of a dielectric in the presence of an electric �eld, etc. We give a

thorough derivation of the Kubo formula in Chap. 2.

9 The e�ective mass of the fermions is several times larger than the corresponding bare mass.
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Consider an applied magnetic �eld B(r, t). It is useful to assume it to be function of both r and t for

reasons that will be clear later. Assume H′ denotes the coupling between the spin and the magnetic

�eld and is given by

H
′
= −

∫
B(r, t) · S(r) dr (1.131)

where S(r) =
∑

i δ(r − ri)Si. Si denotes the spin vectors at a given site i written in the Heisenberg

representation. Also, here we have dropped the Bohr magneton, µB = −
e~
2m , by taking µB = 1. We

shall compute the magnetization de�ned by 〈S(r, t)〉 induced by the magnetic �eld B via,

〈S(r, t)〉 = 〈ψ0(t)|S(r)|ψ0(t)〉 (1.132)

where |ψ0(t)〉 denotes the ground state at time t. Using the results of linear response theory, at the �rst

order in B in a translationally invariant system,

〈Si(r, t)〉B = 〈Si(r, t)〉B=0 +

∑

j

∫
dt′
∫

dr′χij(r − r′, t − t′)Bj(r, t
′) (1.133)

where χ ij(r, t) is a retarded two-particle propagator and denotes the susceptibility tensor. The

susceptibility tensor is the same as the spin–spin correlation function de�ned by

χij(r − r′, t − t′) = iθ(t − t′)〈[Si(r, t), Sj(r
′, t′)]〉 (1.134)

where,

θ(t − t′) = 1 for t > t′

= 0 for t < t′. (1.135)

In order to proceed further, we shall Fourier transform the spin operators,

S(r) =

∑

q

eiq·rS(q), (1.136)

where the time variable (t) is withheld for brevity. S(q) can be written in terms of the fermion operators

as

S(q) =

∑

k,α,β

cα†k+qσ
αβc

β

k . (1.137)

The components of S, or the linear combinations thereof allow us towrite the spin raising and lowering

operators,

S±
=

1

2
(Sx ± iSy), (1.138)

where,

S+(r) =

∑

q

eiq·r
∑

k

a†k+q↑ak↓.

Magnetism 1-29

 07 D
ecem

ber 2024 17:11:54



Principles

and,

S−(r) =

∑

q

e−iq·r
∑

k

a†k+q↓ak↑

Now, we can write down the transverse and the longitudinal susceptibilities χ−+ and χ zz using the

raising, lowering and z-component of the spin operators,

χ−+(r − r′, t − t′) = iθ(t − t′)〈[S(r, t), S†(r′, t)]〉 (1.139)

and

χzz(r − r′, t − t′) = iθ(t − t′)〈[Sz(r, t), Sz(r
′, t)]〉. (1.140)

The equation of motion for χ−+ can now be written as (with ~ = 1),10

i
∂

∂t
χ−+(k, q, t) = −δ(t)〈[c†k+q↓

ck↑, S
+(0, 0)]〉 + iθ(t)〈[[c†k+q↓

ck↑,H], S+(0, 0)]〉. (1.141)

Here, the initial time t′ is set to zero and the derivative of θ(t) is δ(t). Substituting the Hubbard

Hamiltonian,H above,

[c†k+q↓
ck↑,H] = −(εk+q − εk)c

†
k+q↓

ck↑

+
U

N

∑

k′,q′

(c†k+q↓
ck−q′↑c†k′−q′↓

ck′↑

− c†k′+q′↑
ck′↓c†k+q−q′↓

ck↑). (1.142)

Now, the quartic operators in the second term of RHS can be dealt within a Hartree-Fock approxima-

tion, and the combinations, such as 〈c†c〉 can be retained.11 At �nite temperatures, the average values

are written as

〈c†kσ ck′σ ′〉 = δkk′δσσ ′ fkσ (1.143)

where fkσ denotes the distribution function for fermions with spin σ andmomentum k and has a form,

fkσ =
1

eβ(εkσ−µ) + 1
(1.144)

where εkσ denotes the band energies. Thus, the second term in the above commutator is written as

U

N

∑

k′

(fk↑ − fk+q↓)c
†
k+k′+q↓

ck+k′↑ + (fk′↓ − fk′↑)ck+q↓ck↑.

Going back to the equation of motion (EOM), the term,

〈[c†k+q↓
ck↑, S

+(0)]〉 =

∑

k,q

〈[c†k+q↓
ck↑, c

†
k+q↑

ck↓]〉

10 A time dependent external magnetic �eld was taken earlier precisely for this reason so that a time derivative can be taken.
11 A 〈c†c†〉 or 〈cc〉 is relevant for studying superconducting correlations.

1-30 Modern Perspectives in the Study of Electronic Systems

 07 D
ecem

ber 2024 17:11:54



scitation.org/books

can be simpli�ed to yield (fk+q↓ − fk↑). Thus, the EOM for the transverse susceptibility, χ−+ can be

written as[
i

d

dt
+ (̃εk+q↑ − ε̃k↓)

]
χ−+(k, q, t) = −δ(t)(fk+q↓ − fk↑)

− (fk+q↓ − fk↑)
U

N

∑

k′

χ−+(k′, q, t) (1.145)

where the renormalized band energies ε̃kσ = εk −
U
N

∑
fkσ . Thus, the one particle energies are

modi�ed by the interaction term as shown here.

The dynamical susceptibility, χ(ω), are calculated by doing a Fourier transform,

χ(ω) =

∫
∞

−∞

dtχ(t)eiωt . (1.146)

Thus,

χ(k, q,ω) =
(fk↑ − fk+q↓)

(
1 +

U
Nχ

−+(q,ω)
)

ω + ε̃k+q↑ − ε̃k↓
, (1.147)

where χ−+(q,ω) =
∑

k χ
−+(k, q,ω), one can write the expression for susceptibility as

χ−+(q,ω) =
χ−+

0 (q,ω)

1 − Uχ−+

0 (q,ω)
(1.148)

where

χ−+

0 (q,ω) =
1

N

∑

k

fk↑ − fk+q↓

ω − (̃εk↓ − ε̃k+q↑)+ iη
(1.149)

is the free susceptibility tensor. The+iη is added in the denominator as is usually done for a propagator

(Mahan, 2000), with the positive sign referring to the retarded propagator. The divergence of χ−+

denotes instability in the system, and hence, signals a phase transition. This instability is indicated by

the divergence of the χ−+(q, ω), which happens when,

1 − Uχ−+

0 (q,ω) = 0 (1.150)

is satis�ed. In particular, at ω = 0, that is when the external magnetic �eld is time independent, the

system is lossless. Thus, Imχ−+(q,ω = 0) = 0. In such a static situation, any instability in the system

is a signature of the ground state instability. Furthermore, the energies of the low-lying excited states

begin to merge with those of the ground state. Hence, we can rephrase the instability criterion as

Uχ−+

0 (q, 0) = 1 (1.151)

where,

χ−+

0 (q, 0) =
1

N

∑

k

fk − fk+q

εk+q − εk
. (1.152)
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Thus, at any arbitrary value of q, the instability condition is associated with a critical value of the

interaction U,

Uc =
1

χ−+

0 (q, 0)
. (1.153)

In order to relate χ−+

0 (q, 0) to something physical, wemay note that the terms functions fk+q and εk+q

can be expanded in a Taylor series in the large wavelength limit, namely, q → 0,

fk+q ≈ fk + q ·
∂εk

∂k

∂fk

∂εk
(1.154)

εk+q ≈ εk + q ·
∂εk

∂k
(1.155)

lim
q→0

χ−+(q, 0) =
1

N

∑

k

(
−
∂fk

∂εk

)
=

1

N

∑

k

δ(ε − εk) (1.156)

where we have replaced the derivative of the Fermi function with a δ-function which is valid at zero

temperature. Moreover,

1

N

∑

k

δ(ε − εk) = N(ε)

N(ε) is the density of states (DOS). This �nally yields us the Stoner criterion that we are familiar with,

namely,

UN(εF) = 1. (1.157)

Thus, instability corresponding to q = 0 leads to a tendency for the system to acquire a �nite

magnetization.

However, instability may occur even at �nite values of q. To remind ourselves, the spin arrangement

in antiferromagnets has an ordering wave vector q = (πa ,
π
a ,

π
a ) such that eiq·r changes sign as one

goes from one lattice site to its neighbor. In this case, the Fermi surface for the half-�lled band (one

electron per lattice site) coincides with the Brillouin zone. Thus, as opposed to a ferromagnet, in�nites-

imal interaction strength, U may cause instability in a system with one conduction electron per atom,

inducing a transition from a metal to an insulating antiferromagnet.

1.11 JELLIUM MODEL

The electronic description of metals due to Bloch, Bethe and others in the 1930s neglects the electron–

electron interaction, and in a vast number of cases, such a simpli�ed description works. Even the

distinction between a metal and an insulator can reliably be done by band - �lling calculations, that

is, without invoking the electron-electron interaction. Nevertheless, the band gaps in semiconductors

and insulators are somewhat di�cult to calculate quantitatively. However, modi�cations of the single-

particle band structure, in the form Hartree-Fock corrections are computed, which is equivalent to
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computing the average energy shift in the single-particle energies in the presence of an average density

due to all other electrons have been known. This yields the essence of the mean �eld theory. Such a

description has, by and large, been successful in explaining a host of material properties. Yet, there are

reasons for one to deliberate upon, including the electron-electron interaction in studying the physics

of materials. The salient ones are as follows:

i. the average inter-electron distance in a typical metal (which goes as n−1/6, n being the density) is

about 1 nm. For a small interparticle distance, the inclusion of interaction e�ects is indispensable.

ii. There are physical examples, such as complex materials where signi�cant deviations from the

single-particle band theory are noted. Familiar examples are transition metal oxides, cuprate

superconductors, etc.

An extension of the free electron gas can be thought of via a jellium model where the electrons inter-

act via the Coulomb potential, and the overall charge neutrality of the system is maintained by a

homogeneous positively charged background. We shall mainly concentrate on obtaining the dielec-

tric function via standard many body approaches, such as Hartree and Hartree-Fock approximations,

random phase approximation (RPA) . In the following, we consider an electron liquid (because of the

involvement of interparticle interactions, we do not call it an electron gas anymore) in 3D at T = 0, the

so-called jellium model. Jellium is a prototype model for metals, which is a uniform electron gas with

a positively charged background. Since themany-electron wavefunction can be solved using computa-

tional techniques, it is considered to be a convenient model for testing the characteristics of the density

functionals.

1.11.1 The Hamiltonian

The Hamiltonian consists of terms that correspond to the kinetic energy of the electrons (Hkin),

Coulomb interaction among the electrons (He−e), the interaction between the electrons and the

background positive charge (He−b) which originates from the electrons interacting with the lattice

vibrations, and �nally background energy (Hb−b) which is basically the Coulomb interaction between

the positive (background) charges. An enumeration of di�erent terms in the second quantized notation

can be written as (Fetter and Walecka, 1971; Ziman, 1972; and Mahan, 2000)

Hkin =

∑

k,σ

ξkc†kσ ckσ

He−e =
1

2V

∑

k,k′,q

V(q)c†kσ c†
k′+qσ ′ck′σ ′ck+qσ

He−b = e2
∫

d3rd3r′
n(r)

4πε0|r − r′|

Hb−b =
e2

2

∫
d3rd3r′

n2(r)

4πε0|r − r′|
(1.158)

H = Hkin + He−e + He−b + Hb−b,
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where V is the volume, ck (c
†
k) are the single-particle annihilation (creation) operators corresponding

tomomentum, k, ξk = εk − µ,µ being the chemical potential, the factor 1
2 takes into double counting,

and n(r) is the density term whose Fourier transform is de�ned as

nq =
1

√

V

∫
d3re−iq.rn(r)

=
1

√

V

∑

kσ

c†kσ ck+qσ . (1.159)

It is somewhat odd to write some of the terms of the HamiltonianH in Eq. (1.158) in real space, and

others in momentum space. But with the Fourier transformation for the density term shown above,

H can be fully written in the momentum space (by which we also implicitly assume that the electron

liquid is homogeneous, and hence translational invariance holds). However, this will not hinder the

discussion that is going to follow.

There is a subtle point that deserves a mention. Strictly speaking, a Fourier transform of the Coulomb

potential cannot be performed owing to a divergence of the integral.12 However, a screening term

(which is also physically relevant owing to the screening e�ect from all other charges) of the form, e−λr

ε0r

kills the divergence and yields V(q) =
e2

ε0q2
in the limit of zero screening (λ→ 0).

1.11.2 Hartree-Fock approximation

It may be noticed that all other terms except the He−e are quadratic in c operators and hence can be

diagonalized in the single-particle basis, howeverHe−e is quartic in c and hence needs an approxima-

tion to be at par with other terms for arriving at the solution. In a mean �eld approximation,13 the

quartic term is decoupled as a sum of all possible quadratic terms, namely,

c†pc†qcrcs ' −〈c†pcr〉c
†
qcs − 〈c†qcs〉c

†
pcr + 〈c†pcs〉c

†
qcr + 〈c†qcr〉c

†
pcs

where the signs are governed by anticommutation relation of the fermions. The above decoupling

scheme replaces the interaction termHe−e by

H
HF
e−e =

1

2V

∑

k,k′,q

[−〈c†kσ ckσ ′〉c†
k′+qσ ′ck+qσ − 〈c†

k′+qσ ′ck+qσ 〉c†kσ ck′σ ′

+ 〈 c†kσ ck+qσ 〉c†
k′+qσ ′ck′σ ′ + 〈c†

k′+qσ ′ck′σ ′〉c†kσ ck+qσ

]
. (1.160)

The above Eq. (1.160) can be split into two terms, one for q = 0 and the other for q 6= 0,

namely,

H
HF
e−e = H

HF
e−e(q = 0)+ H

HF
e−e(q 6= 0) (1.161)

12 V(q) =
e2

ε0

∫
∞

0
1
r eiq·r is a divergent integral.

13 This type of mean �eld decoupling was introduced by Weiss, who replaced the magnetic exchange interaction of the form

Si · Sj by 〈Si〉Sj + 〈Sj〉Si − 〈Si〉〈Sj〉.

1-34 Modern Perspectives in the Study of Electronic Systems

 07 D
ecem

ber 2024 17:11:54



scitation.org/books

where,

H
HF
e−e(q = 0) = V(q = 0)

∑

k,k′σσ ′

〈c†kσ ckσ 〉c†
k′σ ′ck′σ ′

H
HF
e−e(q 6= 0) =

∑

k,qσ

[
V(q)nk−qσ

]
. (1.162)

The third and the fourth terms can be written as

He−b = −V(q 6= 0)nN

Hb−b =
V

2
V(q 6= 0)n2 (1.163)

where n =
N
V

is the electron density. It may be noted that V(q = 0) diverges since V(q) ∼ 1/q2, and

because of which, both He−b and Hb−b will diverge. However, that is not too much of a concern, as

the charge neutrality implies that various in�nities would cancel each other to ensure the �niteness of

the total energy. Let us combineHe−b andHb−b, which yields,

Heb = He−b + Hb−b = V(q = 0)

[
V

2
n2 − nN

]
=

V(q = 0)

V

N 2

2
=

e2

2λ2ε0

N 2

V
. (1.164)

Thus,Heb vanishes in the thermodynamic limit owing the presence of V in the denominator. There is

another interesting cancelation that is shown below.

Let us explicitly calculate the energy due to the backgroundHamiltonian,Hb−b (it is implicitly assumed

that the eigenstates are known so that we can compute the energies), that is,

Eb−b =
e2

2
n2
∫

d3rd3r′
1

|r − r′|
e−λ|r−r′|. (1.165)

Let us assume r − r
′
= z, which upon substituting yields,

Eb−b =
e2

2
n2
∫

d3zd3r
1

|z|
e−λ|z|

=
e2

2
n2V

∫
d3z

e−λz

z
=

e2

2
n2V

4π

λ2
. (1.166)

Thus, the energy per particle is,

Eb−b

N
=

e2

2

4π

λ2
n. (1.167)

A similar calculation for the Ee−b yields the form,

Ee−b

N
= −e2

4π

λ2
n. (1.168)

Also the q = 0 term of theHe−e term yields,14

Ee−e(q = 0)

N
=

e2

2

4π

λ2
n. (1.169)

14 This is called as theHartree term or the direct term (because of q = 0) in the electron-electron interaction.
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Thus, we have,

Eb−b

N
+

Ee−b

N
+

Ee−e(q = 0)

N
= 0. (1.170)

Hence, we are left with only the q 6= 0 in the electron-electron interaction term, which is called the

Fock term or the exchange term (as opposed to the direct interaction, called as the Hartree term), apart

from the kinetic energy of the electrons.

Thus, we get a Hartree-Fock Hamiltonian, HHF (since both the direct and the exchange terms are

included) which can be written as

HHF =

∑

kσ

(
~
2k2

2m
+6HF(k)

)
c†kσ ckσ (1.171)

where6HF(k) the ‘self-energy’ at the HF level and is written as

6HF(k) = −

∑

q

nk−qσV(q). (1.172)

This is the only term that is relevant to us as it provides a momentum shift, that is, a k-dependent

correction to the non-interacting energy.

Here, we have computed the self-energy at the HF level. The self-energy is in general a complex quan-

tity, where the real part of it contributes to the total energy, while the imaginary part denotes the life

time of the quasiparticles. Once the self-energy (6) is computed, the total energy can be written as

Ek = εk + Re6(k). (1.173)

In general6(k) may include contributions from the exchange, correlation, disorder, electron–phonon

scattering, etc., we have only restricted ourselves to the exchange energy.

1.11.3 Hartree-Fock energy

Next, we have to solve the Hartree-Fock (HF) Hamiltonian and obtain its eigensolutions. For this pur-

pose, let us write down the Hamiltonian and the corresponding Schrödinger equation in real space

with (ψ i(r), εi), namely,

~
2

2m
∇

2ψ(ri)−
e2

2V

∑

j

∫
d3r′

1

|r − r′|
ψ∗

j (r
′)ψi(r)ψj(r) = εiψi(r). (1.174)

In the absence of a better estimate for the wavefunction, we assume a plane wave solution of the form,

ψi =
1

√

V
eik.r, where a box normalization of the plane wave is assumed in the volume V . Plugging this

planewave solution in the above equation (let us only concentrate on the interaction term as the kinetic

energy term will trivially yield ~2k2

2m ),

e2

2V

∑

kj

∫
d3r′

e−i(kj−ki).r
′

|r − r′|

1
√

V
eik.r.
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Replace r − r′ = z, which allows us to write,

e2

2V

∑

kj

∫
d3z

e−i(kj−ki).z

|z|

1
√

V
eik.r.

This con�rms that the plane wave states indeed are the solutions of the HF Hamiltonian as just a

coe�cient consisting of

e2

2V

∑

kj

∫
d3z

e−i(kj−ki).z

|z|

is multiplied with the plane wave states. This allows us to solve for the energy, εk as

εk =
~
2k2

2m
−

e2

V

∑

kj

∫
d3z

e−i(kj−ki).z

|z|

=
~
2k2

2m
− e2

∑

k′<kF

4π

|k − k′|2

= ε0k +6ex(k). (1.175)

Thus, the single-particle energies are getting renormalized by the second term, which can now be

solved by converting the sum into an integral,

6ex(k) = −

∫
d3k

(2π)3)

4πe2

|k − k′|2
= −

e2

π

∫ kF

0
k′2dk′

∫
+1

−1

d(cos θ)

k2 + k′2 − 2kk′ cos θ

= −
e2

πk

∫ kF

0
k′dk′ln

∣∣∣∣
k + k′

k − k′

∣∣∣∣ = −
e2kF

π

[
1 +

1 − α2

2α
ln

∣∣∣∣
1 + α

1 − α

∣∣∣∣
]

= −
e2kF

π
F(α) (1.176)

where kF is the Fermi wave vector and α =
k

kF
. F(α) contains the wavevector dependence of the self-

energy. Here

F(α) = 1 +
1 − α2

2α
ln

∣∣∣∣
1 + α

1 − α

∣∣∣∣ .

We plot F(α) as a function of α in Fig. 1.8. As k approaches kF, F(α) decreases indicating an increase

in the value of the self-energy,6ex for electrons near the Fermi level.

Hence, the ground state energy per particle is obtained after a straightforward calculation as

Eex
g =

∑

k

nk6
ex(k) =

(
ek2F/π

)2

2π

∫ 1

0
F(α)dα = −

3

4

e2kF

π
. (1.177)

1.11.4 Magnetic properties

It is known that magnetism does not arise from the interaction between the magnetic moments, but

from the exchange part of the Coulomb interaction. In fact, the exchange interaction (Heitler–London

type) led us to the spin-only Heisenberg model or the itinerant Hubbard model, which yields a good
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FIG. 1.8
F(α) is plotted as a function of α. As k → kF, F(α) smoothly

decreases.

semi-quantitative basis for describing fer-

romagnetism in rare earth compounds.

However, to describe the itinerant ferromag-

netism in the transition metals, it is appro-

priate to resort to the electron liquid, that is,

the carriers are moving in the background

of positively charged ions, or the jellium

model. In the non-interacting version of it,

the kinetic energy of the carriers competes

with the ordering energy, which is needed

to align (or anti-align) the spins in the pres-

ence of an external �eld. This results in a

net e�ect which is weak and vanishes in the

limit of zero external �elds. Such a scenario

where the magnetic phenomena are absent

is referred to as a non-magnetic or a Pauli

paramagnetic behavior of the electron liquid.

Now when the electron-electron interaction

is included, the spin alignment ismediated by

the exchange interaction and can even be strong enough to sustain the order without any external

magnetic �eld. To remind ourselves, the HF energy per electron (without taking into spins) is
(

E

N

)

HF

=
30.1

(rs/a0)2
eV −

12.5

(rs/a0)
eV. (1.178)

To discuss magnetic behavior, we need to invoke the role of spins. A straightforward and e�cient way

to do this is writing down theHF energy in terms of the spin-dependent particle densities. Introducing

the total density, n (= N
V
) explicitly in the above expression,

(
E

N

)

HF

= N

[
78.2

(
N

V

)2/3

eV − 20.1

(
N

V

)1/3

eV

]
(1.179)

where we used

rs

a0
=

[
3

4π

(
V

N

)]1/3

Introducing the number of ↑- (N↑) and ↓- (N↓) spins,(
E

N

)

HF

(N↑,N↓) =

(
E

N

)

HF

N↑ +

(
E

N

)

HF

N↓

=

[
78.2eV

(
N↑

V

)2/3

+

(
N↓

V

)2/3
]

−

[
20.1eV

(
N↑

V

)1/3

+

(
N↓

V

)2/3
]

(1.180)
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with the condition that N↑ + N↓ = N . It is customary to introduce the spin polarization operator,

namely,

P =
N↑ − N↓

N
(1.181)

which allows us to write the number of spin-polarized particles as

N↑ =
N

2
(1 + P); N↓ =

N

2
(1 − P). (1.182)

This facilitates writing down the HF energy in terms of P as
(

E

N

)

HF

= N

[
1

2
{(1 + P)5/3 + (1 − P)5/3} −

1

8

(
V

N

)1/3

{(1 + P)4/3 + (1 − P)4/3}

]
. (1.183)

Let us now explore non-zero polarization (P 6= 0), or in other words non-vanishing spontaneous mag-

netization. Such a scenario will depend upon the sign of E(N ,P)− E(N , 0) (say =1E). If 1E < 0,

then spontaneous magnetization exists, and hence a ferromagnetic state is stabilized. Thus,

1E(P)

N
=

1

2

[
{(1 + P)5/3 + (1 − P)5/3} −

1

8
β{(1 + P)4/3 + (1 − P)4/3} − N

(
1 −

β

4

)]
(1.184)

where β is related to the inverse of density, via, β = ( V
N
)1/3. 1E(P)

N
plotted as a function of P is shown

below (see Fig. 1.9 for a few values of β which shows a change in sign at a critical density given by

–1 –0.5
–0.15

–0.1

–0.05

0

0.05

0.1

0

P

0.5 1

D
E

β = 0.8

β = 0.9

β = 0.95

β = 1.1

FIG. 1.9
The change in energy per particle is shown as a function of the polariza-

tion, P. The magnetic state stabilizes for large β .

βc =
2
5 (1 +

3
√
2) ' 0.9. This value of βc

translates to a density that corresponds to

rs/a0 ≥ 5.5. Clearly, this number is related

to the density of the electron liquid (or

rather the inverse of it) and hence the

critical density for ferromagnetic order to

occur should be low enough such that the

Wigner–Seitz radii (rs) should at least be

∼5.5 a0. However, as we shall see that this

is too stringent a criterion, and is only

successfully cleared by Cesium (Cs). Even

the best known ferromagnets, such as Fe,

Ni and Co, do not meet the criterion.

Evidently, the premises on which these

inferences are based on, that is, the

HF approximation, is disconnected from

reality. In fact, the maximum density at

which ferromagnetism can occur given

by rs/a0 ≥ 5.5 is short by one order of
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magnitude. It has been found by Zhong et al. (2002) that the upper limit of density corresponds to

rs/a0 ' 50. The reason for such a large discrepancy lies in the jellium model itself. While the jellium

model correctly assesses that completely free electrons (as in metals) can not result in ferromagnetic

correlations, however, on the other hand, fails to account for the best known ferromagnets, such as Fe,

Ni and Co to have ferromagnetic ordering. A very important fact that the jellium model misses is the

combination of the band structure e�ects along with the exchange interaction.

To make the ongoing discussion more concrete, let us consider a crystal lattice, and more importantly,

a speci�c form of the interaction in this case, the interaction is between the electrons at the same lattice

site, and obeys the Pauli exclusion principle. In particular, we wish to talk about the Hubbard model,

study its properties, and wish to explore its utility for studying the magnetic properties of solids.

1.12 THE HUBBARD MODEL: AN INTRODUCTION

In a real solid there are atoms or ions which are periodically placed and the electrons are usually free

to move through such an array. The atoms or ions have very complex energy levels (or orbitals). The

Hubbard model (Hubbard, 1963; Doniach and Sondheimer, 1974) simpli�es the description of the

constituent atomswith a periodic array of sites with a single energy level. This serves as an approximate

description for materials where one energy band is in the vicinity of the Fermi surface, and hence only

one orbital is important. With such a postulate, the Hilbert space of the model is restricted to four

choices, which are, |0〉, |↑〉, |↓〉, |↑↓〉. When the electron density is su�ciently large in such a scenario,

the electrons can interact pairwise via a screened Coulomb potential, with the largest interaction being

between the two electrons residing on the same site, that is, for a ‘doublet’ state, |↑↓〉. Thus, all the other

three states are approximated in amanner as if they are experiencing no potential. TheHubbardmodel

enunciates interaction energy,U, if a particular site is doubly occupied (needless to say that by opposite

spins to conform to the Pauli exclusion principle). At a site i, this simpli�ed model is represented by an

interaction energy of the form Uni↑nj↓. Any term such as Vniσnjσ , where i 6= j are excluded here and

are included in the extended version of the Hubbard model.

Thus, putting these ideas together, the Hubbard Hamiltonian in the grand canonical ensemble is

written as

H = −t
∑

〈ij〉,σ

(c†iσ cjσ + h.c.)− µ
∑

i,σ

ni,σ + U
∑

i

ni↑ni↓. (1.185)

The �rst term is the kinetic energy, which illustrates the hopping of electrons from a lattice site j to

a site i with an energy scale t that could be determined by the overlap of orbitals for the neighboring

atoms (c, c† being the fermion annihilation and creation operators). The second term is the chemical

potential, which �xes the electron density and the last term is the most ‘simpli�ed’ The Hubbard

(onsite) interaction term that we have discussed earlier. It says that a doubly occupied site, such as

|↑↓〉 will have an energy U. Thus, if U is large (see discussion below), it will cost large energy to form

a doubly occupied site, and would correspond to an insulator, known as a Mott insulator.
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1.13 SYMMETRIES OF THE HUBBARD MODEL

Exploring symmetries in a model Hamiltonian can be quite helpful in understanding the concepts

that govern various physical phenomena. If the onsite interaction, U, is uniform at all lattice sites (the

most commonly made assumption), then the U-term is invariant under all symmetry operations of

the lattice. Additionally, the spin-rotational invariance and the particle-hole symmetry are important

ingredients for understanding magnetism and the electronic properties.

1.13.1 Spin-rotational invariance

The kinetic energy of the model describe the hopping of electrons for both spins from one lattice site

to another. Since this term has got nothing to do with spins, it is invariant under the rotation of spins.

Now, let us consider the interaction term, ni↑ni↓.

ni↑ni↓ = c†i↑ci↑c†i↓ci↓ = c†i↑ci↑(1 − ci↓c†i↓)

= ni↑ − c†i↑ci↑ci↓c†i↓ = ni↑ − c†i↑ci↓ci↑c†i↓

= ni↑ − S+

i S−

i . (1.186)

Here, we have introduced the relation between the spin and the electron operators as

S
γ
i =

∑

α,β

c†iασ
γ

αβciβ . (1.187)

Here, for once, we use α, β to denote ↑ and ↓ spins. Since σ γ denote (σ x, σ y, σ z) , are the components

of the Pauli matrix. We can also write, following the above, for the LHS,

ni↑ni↓ = ni↓ − S−

i S+

i , (1.188)

owing to the exclusion principle, n2iσ = niσ (which is the property of an idempotent matrix) and

squaring Sz
i =

1
2 (ni↑ − ni↓), one gets,

(Sz
i )
2

=
1

4
(ni↑ + ni↓ − 2ni↑ni↓). (1.189)

Thus, the interaction term takes the form,

Hint =
UN

2
−

2U

3

∑

i

Si
2. (1.190)

It is clearly seen that this term has spin-rotational invariance as Si
2 has the eigenvalues given by

Si
2

=
3

4
for |↑〉, |↓〉

= 0 for |0〉, |↑↓〉.
. (1.191)

If one notices the second term in Eq. (1.190) for a moment, it is large for uncompensated con�gura-

tions, such as |↑〉 and |↓〉. Thus, the Hubbard term seeks for such con�gurations, compared with the

other two.
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1.13.2 Particle-hole symmetry

We can write down the interaction term in a symmetrized form as

Hint = U
∑

i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
. (1.192)

We are going to show particle-hole symmetry of the Hamiltonian, which is important since it pro-

vides useful mappings between the repulsive (positive U) and the attractive (negative U) Hubbard

Hamiltonians.

It is important to introduce the concept of a bipartite lattice in this context. The entire lattice here splits

into two sublattices of the types A and B (which may or may not mean same type of atoms or ions),

where A-atoms have neighbors as B-atoms, and vice versa. A square lattice and a honeycomb lattice

are examples of bipartite lattices.

Under a particle-hole transformation, the ciσ and c†iσ operators transform into a di�erent set of

operators via,

d†iσ = (−1)iciσ . (1.193)

The (−1)i takes a value +1 in one sublattice and −1 in the other sublattice. The nomenclature of

particle-hole transformation is aptly justi�ed since,

d†iσdiσ = 1 − c†iσ ciσ . (1.194)

It can be easily checked that the particle and hole occupations n = c†iσ ciσ = 0, 1 are interchanged under

this transformation. The kinetic energy of course is an invariant under particle-hole transformation,

that is,

c†iσ cjσ → (−1)i+jdiσd†jσ = d†jσdiσ (1.195)

where we have used the fermionic anticommutation relation, and in a bipartite lattice (−1)i+j
= −1.

Now let us look at the interaction term, namely, U(ni↑ −
1
2 )(ni↓ −

1
2 ). It is easy to check that,

U

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
= Uni↑ni↓ −

U

2
(ni↑ + ni↓)+

U

4
(1.196)

with the last two terms being constants, the �rst term on the RHS represents the familiar Hubbard

interaction. One can trivially show that the form is preserved under the particle-hole transformation,

and one gets the same form for the Hubbard Hamiltonian in terms of the d (hole)-operators. The

readers are encouraged to complete a few steps of algebra to convince themselves.

1.13.3 Extreme limits of the Hubbard model

It is instructive to explore the two opposite limits of theHubbardmodel. They are non-interacting limit,

(U = 0) and the opposite of that, which is, t = 0, when the system splits into a collection of individual
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atoms. The two limits are more familiarly categorized as U/t → 0 and U/t → ∞ respectively. In the

non-interacting or the band limit, one gets the tight binding Hamiltonian,

H =

∑

k,σ

(εk − µ)nkσ =

∑

k

ξknkσ (1.197)

with ξ k = (εk − µ). Now let us make the case more concrete by taking a two-dimensional square

lattice, for which the band energies are given by

εk = −2t(cos kxa + cos kya) (1.198)

a is the lattice constant. Changing µsmoothly from −4t to +4t (±4t denote the band edges, resulting

in a bandwidth of 8t), n changes from 0 to 2. Of course, in the absence of the interaction, the Hamil-

tonian in Eq. (1.197) endorses a metallic state, which can further be con�rmed from the calculation of

the compressibility, κ = ( ∂
2E
∂n2
)−1 at T = 0 which is proportional to the density of states. κ 6= 0 points

toward a metallic behavior.

Furthermore, the band energies given in Eq. (1.198) is shown in the surface plots in Fig. 1.10 where we

have taken t = 1 and a = 1.

On the other hand, in the extreme strong coupling limit or the atomic limit (t = 0), the Hubbard

Hamiltonian is

H =

∑

i

Uni↑ni↓, (1.199)

where the chemical potential or the atomic energy has been set to zero. The ground state of this model

is tremendously degenerate. For N sites at half �lling (number of electrons is also N) the spin degen-

eracy alone is 2N. Thus, the degeneracy corresponding to U → ∞ is exponentially large. However, an

e�ective spin Hamiltonian can be obtained, which is also useful for the study of magnetism. At half

�lling, in the limit U/t → ∞, one can derive the Heisenberg model from the Hubbardmodel. Here we

sketch the derivation pictorially for two sites i and j (see Fig. 1.11). Thus, the energy cost is E↑↓ = −
2t2

U .

The factor 2 in the right arises because of hopping can occur from left to right or right to left. Thus, a

state with two spins in a singlet con�guration can gain kinetic energy by tunneling to doubly occupied

states. Whereas, there will be no hopping corresponding to

· E = 0

owing to the Pauli principle. This leads to an e�ective Heisenberg Hamiltonian valid for two spins,

HHeisenberg = JS1 · S2 (1.200)

where J =
2t2

U . In fact, in a d-dimensional hypercubic lattice with z neighbors, J =
zt2

U . If we extend the

case for two site problem to an array of sites with full spin rotational symmetry (over a unit sphere) for

the spin angular momentum, we obtain the familiar Heisenberg model,

H = J
∑

〈ij〉

Si · Sj. (1.201)

Magnetism 1-43

 07 D
ecem

ber 2024 17:11:54



Principles

0

0k y

kx

0–p/a

–p/a

p/a p/a

p/a

–p/a

–p/a

p/a

-

0

–3

–2

–1

0

1

2

3

FIG. 1.10
Contour plot of the dispersion surface εk = −2t(cos kxa + cos kya). The shapes shown here, for example, blue circle

at the center (corresponding to low filling), green rhombus (half filling), etc., demonstrate constant energy surfaces.

We wish to make it clear that we shall study the magnetic phenomena via an electronic model, for

example, the fermionic Hubbard model. Except in d = 1, where the model can be solved exactly using

Bethe ansatz, in higher dimensions, there are no exact solutions. We shall mostly concentrate on

d = 2, and hence use controlled approximations to solve the HubbardHamiltonian. The reader should

be careful and clear in mind about the inadequacies of the approximation used, and the extent of their

validity.

Consider a generic Hamiltonian of the form,

H = H0 + H
′. (1.202)
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FIG. 1.11
Second order in t (think of perturbation theory with an energy denominator).

Usually, the eigensolutions ofH0 are completely known. Furthermore, it can be assumed that the eigen-

values of H0 are bunched into di�erent groups. The energy eigenvalues in each group are located in

close vicinity to each other, however the levels belonging to di�erent groups are separated far apart.

Let us label the groups by α, β · · · etc., while the energy levels in each group are denoted by p, q, etc.

For example, Epα denotes the pth energy level in the group α.

Without any further conditions imposed,H′ should have matrix elements involving eigenstates from

di�erent groups. Mathematically, stated, this is equivalent to 〈α, p|H′
|β , q〉 6= 0 for α 6= β . However,

if H′ is weak, that is, it can be used as a perturbation term, then we can do a unitary transformation

on H′, and hence obtain an e�ective Hamiltonian,He� . Thus He� does not contain matrix elements

between di�erent groups and only the elements involving states within a group. The matrix elements

ofHe� upto second order inH′ are written as Cohen-Tonnoudji et al. (1977),

〈α, p|He� |β , q〉 = Eαδp,q + 〈p,α|H
′α, q〉

+
1

2

∑

β ,k6=α

〈α, p|H
′
|β , k〉〈β , k|H′

|α, q〉

[
1

Eα,p − Eβ ,k
+

1

Eα,q − Eβ ,k

]
(1.203)

He� thus yields matrix elements involving a particular group, say α, and hence is diagonal.

We shall apply the above calculations to the Hubbard Hamiltonian [Eq. (1.185)] and aim to formally

arrive at a super-exchange Hamiltonian (as depicted earlier pictorially) in the following. Being one of

the simplest cases, let us consider two sites, namely, 1 and 2, and two electrons with spins ↑ and ↓. The

kinetic energy, t can be taken as the perturbation, that is, t � U. There are six states corresponding to

the extreme strong coupling limit, that is, t = 0. They are,
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i. both are ↑-spin particles and hence belong to di�erent sites (Pauli’s exclusion principle), that is,

|1〉 = c†1↑c†2↑|0〉, with energy, E = 0

ii. both are ↓-spin particles and hence belong to di�erent sites (Pauli’s exclusion principle), that is,

|2〉 = c†2↓c†2↓|0〉, with energy, E = 0

iii. ↑-spin particle in site 1, ↓-spin particle in site 2, that is,

|3〉 = c†1↑c†2↓|0〉, with energy, E = 0

iv. ↓-spin particle in site 1, ↑-spin particle in site 2, that is,

|4〉 = c†1↓c†2↑|0〉, with energy, E = 0

v. ↑-spin particle in site 1, ↓-spin particle in site 1, that is,

|5〉 = c†1↓c†1↑|0〉, with energy, E = U

vi. ↑-spin particle in site 2, ↓-spin particle in site 2, that is,

|6〉 = c†2↓c†2↑|0〉, with energy, E = U.

The purpose of writing down the e�ective Hamiltonian is to eliminate the last two states, that is, (v)

and (vi) with large energy (of magnitude U).

We can now switch to a small hopping term, t, so that theHamiltonian can bewritten asH = H0 + H′,

where,

H0 = U(n1↑n1↓ + n2↑n2↓)

H
′
= −t

(
c†1↑c†2↑ + c†1↓c†2↓ + c†2↑c†1↑ + c†2↓c†1↓

)
. (1.204)

Let us evaluate a non-zero matrix element, for example,

〈6|H′
|3〉 = −t〈0|c2↓c2↑(c

†
1↑c2↑ + c†1↓c2↓ + c†2↑c1↑ + c†2↓c1↓)c

†
2↓c†1↑)|0〉.

There are 4 terms here, and they can be shown to have the following values, namely,

a. −t〈0|c2↓c2↑c†1↑c2↑c†2↓c†1↑)|0〉|0〉 = 0.

b. −t〈0|c2↓c2↑c†1↓c2↓c†2↓c†1↑)|0〉|0〉 = 0.

c. −t〈0|c2↓c2↑c†2↑c1↑c†2↓c†1↑)|0〉|0〉 = −t.

d. −t〈0|c2↓c2↑c†2↓c1↓c†2↓c†1↑)|0〉|0〉 = 0.

e. 〈5|H′
|3〉 = −t.

f. 〈6|H′
|4〉 = −t.

g. 〈5|H′
|4〉 = t.

Now, up to the second order in t, using Eq. (1.203), one gets,

〈3|He� |3〉 = −
2t2

U
= 〈4|He� |4〉
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FIG. 1.12
The energy levels and the corresponding states are shown upto

order t2/U.

〈3|He� |4〉 =
2t2

U
= 〈4|He� |3〉

〈1|He� |1〉 = 〈1|He� |2〉 = 〈2|He� |1〉

= 〈2|He� |2〉 = 0. (1.205)

Thus,He� connects the states |3〉 and |4〉 only up

to order t2

U . Thus on the basis of |3〉 and |4〉, One

gets the following form forHe� , namely,

He� =

[
−

2t2

U
2t2

U

2t2

U −
2t2

U

]
. (1.206)

The eigenvalues are E = 0 and E = −
4t2

U . We

show the energies and the corresponding states

schematically in Fig. 1.12. Thus, we get an e�ective

superexchange Hamiltonian of the form,

He� = JS1 · S2, with J =
4t2

U
. (1.207)

1.14 FERROMAGNETISM IN THE HUBBARD MODEL:
STONER CRITERION

To explore ferromagnetism in the Hubbard model, we write the Hamiltonian once again on a lattice,

H = −t
∑

〈ij〉,σ

c†iσ cjσ + U
∑

i

ni↑ni↓. (1.208)

The model can be solved within a mean �eld approximation, which decouples the quartic term (in

terms of the fermionic operator) into quadratic ones. This is known as the Hartree-Fock approxima-

tion, which allows,

U
∑

i

ni↑ni↓ → U
∑

i

〈ni↑〉ni↓ + U
∑

i

〈ni↓〉ni↑. (1.209)

Let us provide a physical feel for the mean �eld approximation and its validity. Suppose a student is

sitting in the class and, he (she) has friends who are sitting right beside him (her) and there are some

friends who are sitting very far away, so that no communication (or interaction) is possible while the

class is going on. However, the students who are sitting in the vicinity, can interact with that particular

student. The situation is similar to amany body system, where the charge carriers interact strongly with

other carriers that are in the vicinity, and lesser interaction ensues with the ones that are far o�, and

even lesser interaction with those which are farther o�. However, one can reduce the complexity of the

problem by making an approximation that an average �eld is acting on the charge carrier (that is, one
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FIG. 1.13
The bands for ↑ and ↓-spins are shown.

The Fermi energy (εF) is marked by a hori-

zontal line, while the dashed horizontal line

denotes a reference, which is at separated

by an energy 1 from the bottom of the ↑

and ↓-spin bands. The shaded area denotes

filled energy levels.

particular electron) due to the presence of all other carriers (just

like an average e�ect on a particular student due to all other

students in the class). This reduces the complicated many body

phenomenon to a single particle problem (and hence solvable)

at the expense of ignoring �uctuations which arise out of a dif-

ferential nature of the interaction between charge carriers in the

vicinity with those which are further away. This allows us to

replace the operators ni with their expectation values, thereby

making the quartic operators at each lattice site to a quadratic

ones.

Coming back to the context, in a ferromagnet, in one species of

spin, that is, say ↑-spin outnumbers the other one, that is, ↓-spin

(see Fig. 1.13), we can assume,

〈ni↑〉 � 〈ni↓〉. (1.210)

Thus, magnetization, m at a given lattice site de�ned by mi =

〈ni↑〉 − 〈ni↓〉 = m can be computed via,

m =

∫ εF

εA

dεN↑(ε)−

∫ εF

εB

dεN↓(ε). (1.211)

where Nσ (ε) denotes the density of states for spin-σ and εA and

εB denote the bottomof the bands for↑ and↓-spins, respectively.

We may choose a level symmetrically between the bottom of the

↑ and ↓-spin bands denoted by the dashed horizontal line in the

�gure. Let us assume that the energy gap between this line and

εA,B is denoted by1 one may write the integral as

m =

∫ εF

−1

dεN(ε +1)−

∫ εF

1

dεN(ε −1). (1.212)

Here, the ↑ and ↓-spin density of states are denoted by N(ε ± 1). Assuming 1 to be small, one can

perform a Taylor expansion of the density of states,

N(ε +1) =
dN

dε
1 (1.213)

N(ε −1) =
dN

dε
(−1) where1 =

Um

2
. (1.214)

Since the Fermi energy εF is much larger than 1, one can set the lower limit to be zero and combine

the integrals,

m = 21

∫ εF

1(=0)

dN

dε
dε (1.215)

= 21N(εF) = mUN(εF). (1.216)
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FIG. 1.14
m as a function of Hubbard U. The plot emphasizes Stoner

criterion and shows the boundary separating the paramag-

netic and ferromagnetic phases.

Canceling m from both sides, we arrive at a

condition,

N(εF) =
1

U
. (1.217)

This is known as the Stoner criterion, which yields

a very stringent condition on the occurrence of fer-

romagnetism. From the �gure, it is clear that the

interaction term multiplied by the density of states

at the Fermi level must be necessarily greater than

unity and the boundary between the paramagnetic

and ferromagnetic phases is indicated by the curved

line (Fig. 1.14).

It is important to note that only Fe, Ni and Co pass

the Stoner criterion. As a toy model, if we consider

a two-dimensional square lattice whose density of

states diverges at the half �lling, that is one particle per site (n = 1), Uc → 0 which says that the system

is unstable against a ferromagnetic ordering even at a negligible interparticle interaction.

1.15 ANTIFERROMAGNETISM IN THE HUBBARD MODEL

Having discussed ferromagnetism in an itinerant electronic model, we shall discuss antiferromag-

netism. For concreteness, we consider a two-dimensional square lattice, consisting of two sublattices,

namely A and B sublattices. A sublattice contains predominantly ↑-spin particles (the ↑-spin density

being large, with a small ↓-spin density). Similarly, the other sublattice, namely, the B sublattice con-

tains predominantly ↓-spin density (along with a small ↑-spin density). It may be noted a perfect Neél

order hasn’t been assumed and a small density of the other type is essential for our purpose. Further-

more, every A sublattice site has 4 neighbors which are that of B sublattice and vice versa. Thus, there

an antiferromagnetic ordering with a wave vector q = (π , π) (Singh and Tesanović, 1990).

Once again, we take the Hubbard Hamiltonian and do an unrestricted Hartree-Fock approximation

(with of course ignoring terms, such as 〈c†c†〉 and cc) on the interaction term, which yields,

H
HF
int = U

∑

i

[
〈c†i↑ci↑〉c†i↓ci↓ + 〈c†i↓ci↓〉c†i↑ci↑ − c†i↑ci↓〈c†i↓ci↑〉 − c†i↓ci↑〈c†i↑ci↓〉

]
(1.218)

where we have neglected a constant term of the form, U〈c†iσ ciσ ′〉〈c†iσ ′ciσ 〉. Rewriting the decoupled

interaction term,

H
HF
int = U

∑

i

[
〈ni↑〉ni↓ + 〈ni↓〉ni↑

]
. (1.219)
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This implies that an ↑-spin particle feels a potential U〈ni↓〉 and a ↓-spin Hamiltonian feels a potential

U〈ni↑〉, with the constraint that

〈n
i(A/B)
↑

〉 + 〈n
i(A/B)
↓

〉 = 1. (1.220)

Also, the sublattice magnetization m is de�ned by

〈n
i(A/B)
↑

〉 − 〈n
i(A/B)
↓

〉 = ±m (1.221)

with m being replaced by (−1)im implying a change in sign as one goes from A sublattice to a B

sublattice. Thus, in terms of U and m, the potential experienced by ↑-spin and ↓-spin particles are

given by

V↑(i) = U〈ni↓〉 =
U

2
−

Um

2
(−1)i

V↓(i) = U〈ni↑〉 =
U

2
+

Um

2
(−1)i. (1.222)

De�ning,1 =
Um
2 (−1)i (distinguish it from the de�nition of1 used in ferromagnets), onemay write,

V↑(i ∈ A) =
U

2
−1 = V↓(i ∈ B)

V↑(i ∈ B) =
U

2
+1 = V↓(i ∈ A). (1.223)

Thus, the mean �eld Hamiltonians for each spin say ↑-spin is written as

H↑(i) = −t
∑

〈ij〉

c†i↑cj↑ +

∑

i∈A,B

V↑(i)ni↑ (1.224)

where ni↑ = c†i↑ci↑. Assuming translational invariance, one can Fourier transform the above

Hamiltonian,

H↑(k) =

∑

k

εkc†A
k↑cB

k↑ +

∑

Q

[
(−1)c†A

k↑cA
k−Q↑

+1c†B
k↑cB

k−Q↑

]
. (1.225)

WritingH↑(k) in the sublattice basis renders a 2 × 2 form,

H↑(k) =

[
−1 εk

εk 1

][
cA

k↑

cB
k−q↑

]
. (1.226)

Diagonalizing, one gets the eigenvalues as

Ek↑ = ±

√
12 + ε2k . (1.227)

The energy spectrum is plotted for a given value of U in Fig. 1.15. There is clearly a spectral gap that

scales with U. Similarly, for the ↓-spin,

H↓(k) =

[
1 εk

εk −1

]
. (1.228)

Again, one gets, Ek↓ = ±

√
12 + ε2k = Ek↑, that is the same as the ↑-spin.
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FIG. 1.15
Density of states (DOS) along x-axis is shown as a function of energy (E) shown along y-axis. (a) The lower (light

yellow) and the upper (light blue) Hubbard bands are shown. The band gap scales with the Hubbard interaction, U.

(b) The lower and upper Hubbard bands merge in the limit U → 0.

Magnetism 1-51

 07 D
ecem

ber 2024 17:11:54



Principles

The eigenvectors corresponding to the �lled band (negative eigenvalue) for the ↑-spin are,

[
αk↑

βk↑

]
=



√
1 − β2k↑
εk

(Ek↑−1)2+ε2k


 . (1.229)

The magnetization, m can now be computed using,

m = n↑ − n↓ =
1

N/2

∑

k∈ LHB

(α2k↑ − α2k↓) (1.230)

where LHB denotes the lower (�lled) Hubbard band. Also, N
2 arises because we are summing the num-

ber of unit cells, which are N/2 numbers corresponding to N sites. This yields a self-consistent value

of m,

m =
2

N

∑

k

1

Ek
=

1

N

∑

k

mU

Ek
(1.231)

where, mU = 21 (ignoring the sign that it picks up in going from one lattice to the next). This further

can be simpli�ed to,

1 =
1

N

∑

k

U

Ek

1

U
=

1

N

∑

k∈LHB

1

Ek
. (1.232)

The above equation can be considered as a self-consistent equation for calculating magnetization, and

requires a numerical solution for 1 (= mU). Instead of resorting to the discussion of the numerical

solution, let us consider di�erent limits to explore the behavior of the magnetization.

1.15.1 Strong coupling limit

Here, we consider U � t or equivalently U → ∞ (that is greater than any other energy scale of the

problem) where it is energetically unfavorable for electrons of opposite spins to occupy the same lattice

site. Thus,1 =
mU
2 is very large and βk↑ in Eq. (1.229) takes the form,

βk↑ =
εk

(Ek↑ −1)2 + ε2k

'
εk

21
' 0. (1.233)

Thus, αk↑ ≈ 1 (since αk↑ =

√
1 − β2k↑). Hence, the magnetization becomes,

m =
2

N

∑

k

1 =
2

N
×

N

2
' 1 (1.234)

where we used
∑

k 1 = N.
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The same inference can also be obtained from the self-consistent equation,

1

U
=

1

N

∑

k

1

21
(1.235)

21 = U implies m = 1. Thus, in the strong coupling limit, the sublattice magnetization attains its

saturation value, namely, equal to 1. Quantum �uctuations reduce this value. For example, the magne-

tization obtained from quantum Monte Carlo calculations is 0.6 for a two-dimensional square lattice

(Sorella et al., 1989).

Now consider the opposite limit, that is, U/t → 0 or equivalently,1/t → 0, then one gets for the self-

consistent equation,

1

U
=

1

2N

∑

k

εk. (1.236)

Converting the sum into an integral,

1

U
=

∫
N(ε)

1

ε
dε. (1.237)

As a particular case in two dimensions (2D), the DOS has a divergence, that is,

N(ε) ∼ ln

(
1

ε

)
(van Hove singularity)

Thus, one gets,

1

U
' lim
ε→0

ln

(
1
ε

)

ε
'

[
ln

(
1

ε

)]2
. (1.238)

One can take a tiny cut o� δ to satisfy the divergence of the RHS, which renders,

m

U

U
e–1/U1

FIG. 1.16
Magnetization as a function of U in strong and

weak couples regimes.

1

U
∼

[
ln

(
1

δ

)]2
(1.239)

yielding,

t/U ∼ [ln(t/δ)]2

Thus, one gets,1/t ∼ e−t/U, implying that the magnetization

takes a form,

m ∼
t

U
e−t/U

∼
1

U
e−1/U . (1.240)

Thus, as U → 0, m → 0, but in a complex fashion, that is,

m '
1

U
e−1/U .

A schematic plot of magnetization is shown in Fig. 1.16. Thus,

at low interaction strengths, the magnetization vanishes as
1
U e−1/U , while, for obvious reasons, it saturates at a value 1

for large U. Hence, even without a self-consistent numerical
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solution, we get an idea about the behavior of magnetization as a function of the Hubbard interaction

parameter. While it is di�cult to guess the exact form at low interaction strengths, it is still possible to

reconcile that magnetization vanishes as t � U.

1.15.2 Summary and outlook

In this chapter, we have given an overview of di�erent magnetic orders in solids. What follows after-

ward is a brief discussion of magnetism in materials with atoms having �lled and partially �lled

shells. Pauli paramagnetism, Curie’s law and Landau diamagnetism are hence discussed. We have

underscored the role of electron-electron interactions in explaining ferromagnetism and antiferromag-

netism. The mean �eld theory of ferromagnetism is introduced. As an extension, spin wave theory is

applied to ferromagnets using Holstein–Primako� transformation. A simpli�ed version of the Heisen-

berg model, that is, without the interaction between the z-component of the spins at neighboring sites,

namely, the quantum XY model is solved. Furthermore, antiferromagnetism is studied within a sim-

ilar formalism. Yet another technique is employed, namely, the transfer matrix approach to study the

critical properties of a ferromagnet to a paramagnet phase transition. The magnetic susceptibility is

hence studied within a linear response theory. To wind up our discussion, we have introduced an itin-

erant electronic model to study the properties of materials, namely, the Hubbard model and discuss

its properties. The weak and the strong coupling limits of the model are studied. The model is hence

solved using Hartree-Fock approximation. The magnetic properties of both ferromagnets and antifer-

romagnets are studied, where themagnetization is solved self-consistently as a function of interparticle

(Hubbard) interaction.

Summarizing, apart from studying diamagnetism and paramagnetism, which can be comprehen-

sively understood without invoking the electron-electron interaction, we have presented interacting

models involving spins and electronic degrees of freedom and computed the key magnetic property,

that is, magnetization (or equivalently, the magnetic susceptibility) as a function of the interparticle

interaction parameter.

1.16 APPENDIX

The electronic con�guration of elements can be understood by adding one electron at a time to the

available energy levels of the atoms. Each electron can be added adhering to the Pauli exclusion prin-

ciple, and Hund’s rule (discussed later). There are a number of factors that decide the energy of an

electron in an orbital. They are, respectively, the mass number, (that is number of protons), average

distance of the orbital from the nucleus, and last, but not the least, screening e�ects. The last one needs

a special mention, particularly for many-electron atoms, where the positive charge of the nucleus is

partially screened to an electron in the outer shells owing to the presence of intervening electrons. The

screening is not uniform for all the orbitals of a given energy level. The orbitals of an atom overlap

the region surrounding the nucleus. The more an orbital penetrates onto the negative cloud of the
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screening electrons, the more strongly the electron is pulled by the nucleus, and consequently

the corresponding energy will be lower. For example, corresponding to the same energy level (same

value of the principle quantum number, n), the smaller the value of the orbital quantum number, l,

the larger the probability of �nding the electron near the nucleus. Thus, an s-electron (l = 0) for any

n is more penetrating than the p-electron (l = 1). Thus, for a given n, the energies are arranged as

Es < Ep < Ed < Ef . . . (d corresponds to l = 2 and f corresponds to l = 3).

Even the above classi�cation is not free of loopholes. For instance, the 4s orbital (n = 4, l = 0) may

have a lower energy than a 3d orbital (n = 3, l = 2). Here is where the Au�au ordering, and Hund’s

rule come into picture for deriving the correct electronic con�guration of atoms.We shall discuss them

below.

1.17 RS COUPLING

In a many-electron system, the combination of the orbital and the spin degrees of freedom is quite

complicated, owing to the presence of spin–spin, orbit–orbit, and spin–orbit couplings. In the Russel–

Saunders’s (RS) scheme, it is generally assumed that the strength of the spin–orbit coupling is the

weakest, followed by the orbit–orbit coupling and the spin–spin coupling, respectively. This gives rise

to two principle coupling schemes, namely, RS coupling (same as LS coupling) and jj coupling. The

above hierarchy of the coupling strengths is found to be valid for the �rst row transition series, where

the coupling of the spin and orbit can be ignored. However, for larger elements (mostly with the ones

with atomic number greater than thirty), the spin–orbit coupling becomes increasingly important, and

the jj coupling scheme should be used.

The coupling schemes are best described by the selection rules that govern the transition probabilities

between di�erent atomic energy levels. Not all possible transitions actually occur. These are the con-

straints imposed by the selection rules. As a particular case, consider the electric dipole transitions.

Assuming LS coupling, the selection rules can be stated as in the following.

i. Only one electron makes a transition at a time.

ii. The l-value will only alter by one unit, that is,1 = ±1.

This ensures that the parity of the wavefunction must change in an electric dipole transition. To

remind the readers, the parity of the wavefunction is denoted by the factor (−1)l, which implies

that if l is even, the wavefunction has even parity15 while if l is odd, it has odd parity. Since the

electric dipole moment (p = er) involves a Hamiltonian of the formH′
∼ r, which itself has odd

parity, the transition matrix elements 〈f |H′
|i〉 must have even parity. That dictates that the above

matrix elements will be non-zero only when the eigenstates (|i〉 and |f 〉) have opposite parity.

iii. The quantum numbers for the whole atom must charge as follows. 1s = 0, 1l = 0, ±1, 1J = 0,

±1 (with the restriction that J = 0 to J = 0 is prohibited), and �nally1MJ = 0, ±1 (again MJ = 0

to MJ = 0 is not allowed if1J = 0)

15 r → r, θ → π − θ , φ → π + φ
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1.18 jj COUPLING

In a situation (may be for large atoms) where there is a strong coupling between li and si is large, one has

to apply the jj coupling scheme. Both li and si discontinue becoming good quantum numbers, while

they combine to yield a total angular momentum quantum number, ji to be a good quantum number.

The individual ji’s are loosely coupled. Thus, there is no de�nite L or S, making room for J (= L + S)

to provide a valid description of the system.

In this case, the selection rules are stated as

i. Only one electron makes a transition at a given time.

ii. The value of l must change by ′1′, that is1 = ±1. More fundamentally, the parity of the initial and

�nal states should be opposite.

iii. 1j = 0, ±1

iv. For the entire atom, 1J = 0, ±1 (with J = 0 to J = 0 is forbidden), 1MJ = 0, ±1, (however,

MJ = 0 to MJ = 0 is forbidden for1J = 0).

1.19 HUND’S RULE

The Au�au scheme discusses how the electrons �ll the energy levels stating with the lowest orbitals.

They move to the higher orbitals only when the lower orbitals are �lled up. For example, 1s orbitals

are �lled up ahead of the 2s orbitals. However, the question remains, in what order do the di�erent 2p

orbitals get �lled up. The answer to this involves Hund’s rule.

Hund’s rule can be stated as the following:

i. Every orbital is �rst �lled up with a single electron, before any double occupancy occurs.

ii. All the electrons in the singly occupied orbitals have only one type of spin. This maximizes the total

spin.

The essence of the �rst rule is, while assigning electrons to orbitals, an electron �rst attempts to �ll the

degenerate orbitals, that is, the ones with the same energy, before pairing with another electron in the

half-�lled orbital. Atoms, in their ground states, tend to have asmany unpaired electrons as possible. In

fact, all the electrons repel each other and try to get as far as possible, before they pair up. The electrons

tend tominimize repulsion by occupying their own orbital, rather than sharing an orbital with another

electron. The singly occupied orbitals are less e�ciently screened from the nuclear charge.

According to the second rule, the unpaired electrons in the singly occupied orbitals have the same

spin. Assume the electron which is placed �rst in an orbital has a spin-↑, the spins of all of the other

electrons get �xed, which means the unpaired electrons are all spin-↑.
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As an example, consider the carbon (C) atomwhich has 6 electrons and has an electronic con�guration

1s2 2s2 2p2. The two 2s electrons will occupy the same orbital, while the two 2p electrons will be placed

in di�erent orbital and will be aligned in the same direction (say, all spin-↑) according to Hund’s rule.

Similarly, the next atom, namely, Nitrogen (z = 7) has the con�guration 1s2 2s2 2p3. The 1s and the

2s orbitals get completely �lled up, which leaves three (unpaired) electrons. Again, according to the

Hund’s rule, the remaining electrons will �ll all the empty orbitals.

Finally, consider Oxygen, which has z = 8 and the corresponding con�guration is written as 1s2 2s2

2p4. The 1s and 2s orbitals get paired up electrons, which leaves 4 electrons to be accommodated in the

2p orbitals. According to Hund’s rule, again all the orbitals will be singly occupied before at least one

(which is the case here) of the 2p orbitals gets doubly occupied. Thus, 2p will have one paired, and the

other two unpaired levels comprise the same spin.
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CHAPTER

2 QUANTUM HALL EFFECT

2.1 INTRODUCTION

The date of discovery of the quantum Hall e�ect (QHE) is known pretty accurately. It occurred in

the night between 4th and 5th February, 1980 at 2:00 AM in the morning at the high magnetic lab

in Grenoble, France (see Fig. 2.1). There is ongoing research on the transport properties of silicon

�eld-e�ect transistors (FET). The main motive was to improve the mobility of these FET devices.

They were provided by Dorda and Pepper, which allowed direct measurement of the resistivity tensor.

The system is a highly degenerate two-dimensional electron gas contained in the inversion layer of a

metal-oxide semiconductor �eld-e�ect transistor (MOSFET) operated at low temperatures and strong

magnetic �elds. The original notes appear in Fig. 2.1, where it is clearly stated that the Hall resis-

tivity involves universal constants and hence signals toward the involvement of a very fundamental

phenomenon.

In the classical version of the phenomenon discovered by E. Hall in 1879, just over a hundred years

before the discovery of its quantum analog, one may consider a sample with a planar geometry so

as to restrict the carriers to move in a two-dimensional (2D) plane. Next, turn on a bias voltage so

that current �ows in one of the longitudinal directions and a strong magnetic �eld perpendicular to

the plane of the gas (see Fig. 2.2). Because of the Lorentz force, the carriers drift toward a direction

transverse to the direction of the current �owing in the sample. At equilibrium, a voltage that develops

in the transverse direction, which is known as the Hall voltage. The Hall resistivity, R de�ned as the

Hall voltage divided by the longitudinal current, is found to depend linearly on the magnetic �eld, B

and inversely on the carrier density, n through R =
B
nq (q is the charge). A related and possibly more

familiar quantity is the Hall coe�cient, denoted by RH = R/B which, via its sign, yields information

on the type of the majority carriers, that is, whether they are electrons or holes.

At very low temperature, or at very high values of the magnetic �eld (or at both), the resistivity of the

sample assumes quantized values of the form, ρxy =
h

ne2
. Initially n was found to be an integer with

extraordinary precession (one part in ∼108). This is shown in Fig. 2.3. The quantization of the Hall

resistivity yields the name “quantum” (or quantized) Hall e�ect, which we refer to as QHE throughout

this chapter.

Klaus von Klitzing and his co-workers Klitzing et al. (1980); and Landwehr (1986) while measuring

the electrical transport properties of planar systems formed at the interface of two di�erent semicon-

ducting samples in the strong magnetic �eld facility at Grenoble, France, noted that the Hall resistivity

https://doi.org/10.1063/9780735422537_002 2-1
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FIG. 2.1
Copy of the original notes by Professor K.v. Klitzing on the discovery of the quantum Hall effect. It documents that the

Hall resistance (
UH
I
) involves a fundamental constant h/e2.

is quantized in units of h/e2 as a function of the external magnetic �eld. The �atness of the plateaus

occurring at integer or fractional values of h/e2 has an unprecedented precession and is independent of

the geometry of the sample (as long as it is two dimensional), the density of the charge carriers and its

purity. The accuracy of the quantization aids in �xing the unit of resistance, namely, h/e2 = 25.813 K�,

also known as the Klitzing constant. Thus, among other signi�cant properties of QHE that we shall

be discussing in due course of time, an experiment performed at a macroscopic scale can be used for
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FIG. 2.2
Typical Hall experiment set up showing direction

of the current, Ix and the magnetic field Bz. Vy

denotes the Hall voltage.

metrology or yields the values for the fundamental constants

used in quantum physics is truly amazing and hence calls

for an intense scrutiny. The e�ect occurs when the density of

the carriers, n are such that they are encoded in the integers

(that come as proportionality constants to the Hall resistiv-

ity in terms of h/e2) as if the charges locked their separation

at some particular values. The phenomenon remains resilient

to changing the carrier density by a small amount, however

changing it by a large amount does destroy the e�ect.

The Hall resistivity (in red) in Fig. 2.3 becomes constant

for certain ranges of the external magnetic �elds, which are

called plateaus. Further the longitudinal resistivity (in green)

in the same plot vanishes everywhere. Although it shows

peaks wherever there is a jump in the Hall resistivity from

one plateau to another. Later on it was found that ν is not

only restricted to integer values, but also takes values which

are rational fractions, such as ν =
1
5 ,

2
5 ,

3
5 ,

3
7 ,

4
9 ,

5
9 etc. There

0
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FIG. 2.3
Schematic plot of integer quantum Hall effect (IQHE) as a function of the applied magnetic field. The plot in red denotes

the Hall resistivity and the one in green shows the longitudinal resistivity (or the magnetoresistivity).
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FIG. 2.4
The plot shows fractional quantum Hall effect (FQHE). The plateaus are shown at fractional values in units of h/e2.

Taken from Tsui et al. (1982).

are about 100 fractions (including the improper ones) that have been noted in experiments so far. The

corresponding plot appears in Fig. 2.4.

2.1.1 General Perspectives

The charge carriers being con�ned in 2D wells have a longer history. Since 1966, it is known that the

electrons accumulated at the surface of a silicon single crystal induced by a positive gate voltage form a

2D electron gas (2DEG). The energy of the electrons corresponding to a motion perpendicular to the

surface is quantized (box quantization) and on top of it, the freemotion of the electrons in 2D becomes

quantized when a strong magnetic �eld is applied perpendicular to the plane (Landau quantization).

Thus, QHE has both the quantization phenomena built into it.

An important recent development in the study of semiconductors is the achievement of structures

in which the electrons are restricted to move essentially in 2D. This immediately says that the carriers
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FIG. 2.5
MOSFET structure showing base (B), gate (G), source

(S) and drain (D). The substrate is a p-type Si. SiO2

denotes the insulating oxide layer.

are prohibited from moving along the direction trans-

verse to the plane. Hence, the motion is quantized.

Such 2D behavior of the carriers can be found in

metal-oxide-semiconductor (MOS) structures, quan-

tum wells and superlattices. An excellent prototype is

themetal-insulator-semiconductor (MIS) layered struc-

ture of which the insulator is usually an oxide, such as

Al2O3 (thereby making it a MOS structure). In Fig. 2.5

we show a typical MOS device where the substrate is a

doped p-type silicon (Si) which is grounded and is called

a base (shown by B in Fig. 2.5). On the top, there is a

metallic layer (shown by the hatched regime) followed

by an insulating layer formed by SiO2. Themetallic layer

is called the gate, denoted by G, which is biased by a

voltage VG. The source (grounded) and the drains are

denoted by S andD respectively, which in Fig. 2.5 consist

of n-type materials. The gate voltage causes the carriers

beneath the gate electrode to drift between the source

and the drain. The layer of charge carriers below the

oxide layer forms the 2DEG, which is central to our

discussion. The energy dispersion in this case reads

En(kx, ky) =
~
2k2x

2m∗
xx

+

~
2k2y

2m∗
yy

, (2.1)

where m∗
xx and m∗

yy are the components of the e�ective mass tensor de�ned by the inverse of the

curvature of the band structure, namely,

m∗

αβ = ~
2

(
∂2E(k)

∂kα∂kβ

)−1

. (2.2)

The physical properties of all systems are governed by their density of states (DOS) which plays a

crucial role in deciding the dependence of the temperature, density of carriers, etc. In 2D systems with

a parabolic dispersion, as elaborated above in Eq. (2.1), the DOS is a constant and assumes the form,

g(E) = g2D(E) =
m∗

π~2
. (2.3)

The energy independent DOS is very special to 2D and is in sharp contrast to three dimensions (3D)

where it goes as E1/2, and in one dimension (1D) where it goes as E−1/2. In a general sense, and not

restricted to the discussion on the Hall e�ect, the DOS enters while calculating the average quantities,

such as the average energy or the average number of particles. For example, the average of a physical

Quantum Hall Effect 2-5
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observable, O, of a fermionic system, is computed using

〈O〉 =

∫ µ

0
Of (E)g(E)dE, (2.4)

where f (E) is the Fermi distribution function given by

f (E) =
1

eβ(E−µ) + 1

with β =
1

kBT and µ denotes the chemical potential. In general, this integral is quite challenging to

compute analytically because of the Fermi distribution function (f (E)) present in the integrand.

Meanwhile, there is a wonderful simpli�cation where f (E) assumes a value unity at all temperatures for

which the experiments are performed.Only at temperatures close to the Fermi temperature,TF de�ned

via, εF = kBTF (εF being the Fermi energy), f (E) starts deviating from unity and its exact form needs

to be incorporated in the integral. However, TF is usually of the order of tens of thousands of Kelvin for

typical metals (such as Cu, Al, etc.) which is too high for them to appear in experimental situations.

Moreover, the DOS only depends on energy and is independent of the temperature to a very good

approximation. Thus, computation of Eq. (2.4) becomes trivial as the integrand becomes independent

of temperature or weakly dependent on temperature (Kittel, 2004; and Ashcroft and Mermin, 1976).

In the following, we mention that there is something interesting about the transport properties of

two-dimensional systems. In the linear response regime, Ohm’s law is valid and says that

Vα = Rαβ Iβ

whereRαβ denotes the resistivity tensor, andα,β denote spatial variables, x, y etc. One can equivalently

invert this equation towrite, Iα = GαβVβ , whereGαβ represents the conductivity tensorwithG = R−1.

Equivalent relations in terms of the components of the electric �eld (E) and current density (j) read as

Eα = ραβ jβ and jα = σαβEβ (2.5)

where ρ and σ denote the resistivity and the conductivity tensors, respectively.

An interesting (and useful too) artifact of 2D physics is an accidental similarity that exists in decoding

some of the key features of the transport properties. For example, the resistivity, ρ (or the conductiv-

ity, σ ) is a quantity that is independent of the system geometry, and hence is useful for a theoretical

analysis. Whereas in experiments, one measures the resistance of a sample, R (or the conductance, G).

For a sample in the shape of a hypercube of sides, L, the resistance and the resistivity are related by

R = ρL2−d, (2.6)

where d denotes the dimensionality. Only for d = 2 the resistance is a scale invariant quantity. This

puts the experimentalists and the theorists on the same page, as the geometry of the sample does not

explicitly enter the analysis of its transport properties.

As we dig more into the details of the transport properties of 2DEG in the presence of a magnetic

�eld, further useful information emerges. The o�-diagonal elements of both the conductivity and the
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resistivity tensors are antisymmetric with regard to the direction of the applied �eld, B. Consider a

planar sample with the dimensions Lx × Ly. The conductivity tensor is of the form,

σ =

(
σxx σxy

σyx σyy

)
. (2.7)

Let us try to understand the nature of the tensor, σ in the presence of a magnetic �eld. A conductor in

an external magnetic �eld obeys,

jα = σαβEβ . (2.8)

Onsager’s reciprocity principle does not hold in the presence of a magnetic �eld, B, which implies

(Onsager, 1931).

σαβ(B) 6= σβα(B). (2.9)

Instead, one has σαβ(B) = σ βα(−B) to make sure that the time reversal holds only if B changes sign.

Let us write the conductivity tensor as the sum of a symmetric and antisymmetric tensors (note that

this is always possible for a rank 2 tensor). Thus,

σαβ = Sαβ + Aαβ (2.10)

where S and A are symmetric and the antisymmetric tensors which obey the following relations,

Sαβ(B) = Sβα(−B) = Sαβ(−B)

Aαβ(B) = Aβα(−B) = −Aαβ(−B)
(2.11)

such that the components of Sαβ are even functions of B, while those of Aαβ are odd functions of B.

Putting in Eq. (2.8),

jα = SαβEβ + AαβEβ . (2.12)

But owing to the antisymmetry,

Aαβ = εγαβAγ = −εαγβAγ . (2.13)

Putting it in Eq. (2.12),

jα = SαβEβ − εαβγAβEγ

= SαβEβ − (A × E)α

= SαβEβ + (E × A)α . (2.14)

Assuming that we can expand σ (B) in powers of B,1 such that the antisymmetric part contains odd

powers of B, then we can write,

Aα = ηαβBβ (2.15)

and Sαβ(B) consists of even powers of B,

Sα = (σ0)αβ + ζαβγ δBγBδ . (2.16)

1 It should be valid for weak magnetic �elds, and is not exactly true for quantum Hall e�ect, but nevertheless it serves our

purpose.

Quantum Hall Effect 2-7
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The �rst term is the zero �eld conductivity tensor. Thus, putting things together up to terms linear

in B,

jα = SαβEβ + (E × A)α . (2.17)

The second term denotes the Hall e�ect, which is linear in B. This implies that the Hall current is

perpendicular to the electric �eld, E and is proportional to E and B. Thus, an antisymmetric tensor

is relevant to the study of the Hall e�ect, which is why the conductivity and the resistivity tensors are

antisymmetric. This is an important result which deviates from the corresponding scenario that arises

in the absence of an external magnetic �eld.

2.1.2 Translationally Invariant system: Classical limit of QHE

It is quite an irony that the extreme universal signature of the transport properties of a 2DEG character-

ized by the �atness of the plateaus, that not only occurs, but survives even in the presence of disorder,

impurity and imperfection. In the absence of the magnetic �eld, Anderson localization would have

governed the transport signatures of non-interacting electrons which says that in any dimension less

than three, all eigenstates of a system are exponentially localized even for an in�nitesimal disorder

strength. Only in three dimensions, there is a critical disorder at which a metal-insulation transition

occurs. However, the scenario is strongly altered by the presence of the magnetic �eld, which yields, as

we shall shortly see, a series of unique phase transitions from a perfect conductor to a perfect insulator.

No other system demonstrates re-occurrence of the same phases over and over again as the magnetic

�eld is gradually ramped up.

To begin with, we shall consider the case which is free from disorder, or equivalently, a translationally

(Lorentz) invariant system that possesses no preferred frame of reference. Thus, we can think of a

reference frame that is moving with a velocity −v with respect to the lab frame, where the current

density is given by j = −nev (n: areal electron density, e: electronic charge). In this frame, the electric

and the magnetic �elds are given by2

E = −v × B; and B = Bẑ. (2.18)

The above transformation ensures that an electric �eldmust exist to balance the Lorentz force−ev × B

in order to conduct without de�ection. For the electric �eld, this yields,

E =
1

ne
J × B. (2.19)

This is equivalent to the tensor equation,

Eµ = ρµν jν (2.20)

2 Remember that E = 0 in the lab frame, though B remains unchanged.
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with the resistivity tensor given by

ρµν =
B

ne

(
0 1

−1 0

)
. (2.21)

By inverting the tensor equation, one can obtain,

jµ = σµνEν (2.22)

where the conductivity tensor, σµν is de�ned via,

σµν =
ne

B

(
0 −1

1 0

)
. (2.23)

There is an interesting paradox which states that, σ xx = ρxx = 0 (see above) which is of course contra-

dictory. However, we reserve this rather interesting topic for a discussion immediately afterwards. Here

we wish to point out that we get the results for a classical Hall e�ect, that is, σxy =
ne
B (or ρxy =

B
ne ).

It is important to realize that the result is an artefact of Lorentz invariance, where the characteristics

of the sample or the 2DEG enter only through the carrier density, n for a translationally invariant

system. Thus, in the absence of defect, disorder and impurity, the Hall e�ect is concerned with the

carrier density of the sample and nothing else. Hall resistivity depends linearly on the magnetic �eld.

The quantumHall e�ect, which is much more versatile (than merely depending on the density) where

disorder, that jeopardizes the translational invariance, plays an indispensable part in causing plateaus

in the conductivity (or the resistivity) to occur and survive. We show a schematic plot in Fig. 2.6 to

emphasize the di�erence between the classical and the quantum Hall e�ects. Both the Hall and the

longitudinal resistivities are signi�cantly di�erent in these two cases.

Writing the equation of motion (EOM) for a charge particle of mass m, moving with a velocity, v (=
p
m )

in the presence of a longitudinal electric �eld, E and a perpendicular magnetic �eld, B,

dp

dt
= −eE − e

p

m
× B −

p

τ
. (2.24)
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FIG. 2.6
Schematic plot showing Hall and magnetoresistivities for both classical (a) and quantum (b) Hall effects.
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The last term is the resistive force arising from electron-impurity scattering with τ being the relaxation

time. Using the current density, j = −nep/m and the cyclotron frequency, ωB = eB/m, at the steady

state (
dp
dt = 0),

ne2τ

m
E + ωBτ j × ẑ + j = 0. (2.25)

Assuming the motion of carriers along the x-direction, that is, j = jx̂, casting it in the form, j = σE, σ

assumes the form,

σ =
ne2τ/m

1 + ωBτ 2

(
1 −ωBτ

ωcτ 1

)
. (2.26)

This yields the Drude conductivity, which can be written as

σxx =
σ0

1 + ωBτ 2
(2.27)

where σ 0 = ne2τ /m. In the absence of any scattering by the impurities, the relaxation time, τ is

in�nitely large, which yields σ xx → 0. This induces Ohm’s law to assume the form (now writing in

terms of the resistivity),

E =

(
Ex

Ey

)
=

(
0 ρxy

−ρxy 0

)(
jx
jy

)
=

(
ρxyjy

−ρxyjx

)
. (2.28)

Hence, the electric �eld E is perpendicular to the current density, j, which says that j · E = 0. The

physical signi�cance of j · E is the work done that accelerates the charges, which being zero in this

case implies that a steady current �ow in the sample without requiring any work, and hence causes no

dissipation. Thus, σ xx = 0 implies that no current �ows in the longitudinal direction, which is actually

a signature of a perfectly insulating state. Since the components of the resistivity and the conductivity

tensors are related by

σxx =
ρxx

ρ2xx + ρ2xy

; σxy =
−ρxy

ρ2xx + ρ2xy

. (2.29)

Let us examine the possible scenarios:

i. If ρxy = 0, one gets σxx =
1
ρxx

and σ xy = 0 which is a familiar scenario.

ii. If ρxy 6= 0, σ xx and σ xy both exist.

iii. Now consider ρxx = 0, σ xx = 0, if ρxy 6= 0. This is truly interesting, since if ρxx = 0, it implies a

perfect conductor, and at the same time σ xx = 0 implies a perfect insulator. This is surprising, but

truly occurs in the presence of an external magnetic �eld. This is re�ected in the plots presented

in Figs. 2.3 and 2.4. We shall return for a more thorough discussion later.

2.1.3 Charge particles in a magnetic field: Landau levels

Let us examine the fate of the electrons con�ned in a 2D plane in the presence of a magnetic �eld.

Consider non-interacting spinless electrons in an external �eld, B and write down the Schrödinger
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 07 D
ecem

ber 2024 17:11:54



scitation.org/books

equation to solve for the eigenvalues and eigenfunctions. The canonical momentum can now be writ-

ten as p → p − qA = p + eA (Goldstein et al., 2002) where q = −e is the electronic charge and

A is the vector potential corresponding to the �eld, B. B and A are related via, ∇ × A = B. The

time-independent Schrödinger equation becomes,

1

2m
(p + eA)2ψ(r) = Eψ(r). (2.30)

In order to solve this, we need to �x a gauge or a choice of the vector potential.Note that the choice of the

gauge will not alter the solution of the equation, which in other words can be stated as the Schrödinger

equation being gauge invariant. However, a particular choice is essential for us to go ahead.

Corresponding to a magnetic �eld, B in the z-direction, such that B = Bẑ (just as the case of a 2DEG

subjected to a perpendicular magnetic �eld), the vector potential can be chosen as

Ax = −By, Ay = Az = 0. (2.31)

This is known as the Landau gauge. It also allows us to assume Ay = Bx and Ax = Az = 0.3 In the

Landau gauge, the Schrödinger equation becomes,
[

1

2m
(px − eBy)2 +

p2y

2m
+

p2z
2m

]
ψ(r) = εψ(r). (2.32)

Clearly, in the z-direction, the particle behaves like a free particle with energy, εz =
p2z
2m with the eigen-

function same as that of particle in a box in the z-direction. Thus, in the x − y plane, the above equation

becomes,[
1

2m
(px − eBy)2 +

p2y

2m

]
g(x, y) = εg(x, y)

H(x, y)g(x, y) = εg(x, y) (2.33)

where for the 2D case, ψ(r) becomes g(x, y) and E = ε + εz. It is easy to see that px commutes with

H(x, y), that is,

[H(x, y), px] = 0. (2.34)

Hence, px is a constant of motion. Thus, for a px given by px =
2π~

Lx
nx, one can write Eq. (2.33) as

[
p2y

2m
+

1

2
m

(
eB

m

)2

(y − y0)
2

]
f (y) = εf (y) (2.35)

where y0 =
px

eB = kxl2B = kl2B (say), and f (y) is only a function of y. y0 has the dimension of length, and

hence lB is denoted as the magnetic length, which is an important quantity in all subsequent discus-

sions. Moreover, f (y) is the eigenfunction corresponding to the one-dimensional Hamiltonian written

above.

3 A combination of the two yields a “symmetric” gauge which we shall introduce and employ later.
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FIG. 2.7
Schematic plot showing the Landau

levels. Each of these levels has a large

degeneracy.

Interestingly, the left-hand side of Eq. (2.35) denotes the Hamilto-

nian for a simple harmonic oscillator (SHO) which oscillates in the

y-direction about a mean position y0 with a frequency, ωc =
eB
m . ωc

is known as the cyclotron frequency. Taking results from the SHO

problem in quantum mechanics, the energy eigenvalues can be

found as

εn =

(
n +

1

2

)
~ωc =

(
n +

1

2

)
~

eB

m
. (2.36)

The energy levels in Eq. (2.36) are referred to as the Landau levels. The

levels are schematically shown in Fig. 2.7. They are equidistant for a

given value of the magnetic �eld, however their separation increases

with the increase in B. Each of these levels has a large degeneracy

(see below).

Further, the eigenfunction, g(x, y) in Eq. (2.33) corresponding to an oscillatory motion (as an SHO) in

the y-direction and a freemotion (like a particle in the absence of any potential) in x-direction assumes

the form,

g(x, y) =
1

Lx
eikxxAne

−eB(y−y0)
2

~ Hn

(
eB(y − y0)

~

)
(2.37)

whereHn(ξ ) with ξ =
eB(y−y0)

~
denote theHermite polynomials that are familiar in the context of SHO

and An denote the normalization constants. Thus, the trajectory of the particle is similar to that of a

simple harmonic oscillator centered about a certain value of y (instead of the origin), namely, y0 and

freely propagates along the x-direction. y0 is controlled by the strength of the magnetic �eld B, and is

inversely proportional to it.

2.1.4 Degeneracy of the Landau levels

The Landau levels given by Eq. (2.36) are hugely degenerate. Since px is a constant ofmotion, the energy

is independent of px. Thus, all possible values of the quantumnumbers corresponding to themotion in

the x-direction, namely, nx that are de�ned by kx =
2π
Lx

nx, (Lx denotes the length of the sample in the

x-direction and nx = 0, 1, 2 · · · .) will make the levels degenerate. The degree of degeneracy is limited

only by the length of the sample in the y-direction, namely, Ly. For the magnetic length, y0 = kl2B =

k( ~

eB ) for which the simple harmonic motion occurs should not exceed the length Ly of the sample,

the maximum degeneracy of the Landau levels can be found by substituting y0 = Ly = ( ~

eBLx
)nx, and

hence using the maximum possible value of nx, that is,

(nx)max = g =
eBLxLy

h
=

eBA

h
(2.38)

where A = LxLy is the area of the sample in the x − y plane. This yields the degeneracy, g to be

identi�ed as the �ux, φ (=BA) threading the planar sample, via, g = 8/80 where80 = h/e.4

4 The value of φ0 ' 4.13 × 10−15 Wb-m2.
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A few comments are in order:

i. The degeneracy, g, is independent of the e�ective mass of the carriers, and hence independent of

the material.

ii. The degeneracy is proportional to the area of the sample and the value of the magnetic �eld. Thus,

the degeneracy can be controlled by the applied magnetic �eld.

To remind ourselves, we have solved for the properties of a single electron con�ned in a plane in the

presence of a perpendicularmagnetic �eld. These energies are called the Landau levels, and these levels

are highly degenerate. The scenario is a prototype of what happens in a Hall e�ect experiment where

the external magnetic �eld is varied and the resistivities (bothHall and the longitudinal) are measured.

The Hall resistivity shows plateaus in multiples of h/ne2 whenever the �lling fraction, ν of the Landau

levels (de�ned below) is close to an integer n. Consider n0 is the density of charge carriers of the sample,

then ν is de�ned using, ν =
n0

g/A =
n0h
eB . ν denotes the �lling fraction, which is also de�ned as

ν =
number of electrons

�ux quantum

As and when ν assumes a value near an integer, n (or a rational fraction as in the case of fractional

quantum Hall e�ect) as the magnetic �eld is tuned, one observes a plateau in the Hall resistivity, ρxy.

Something else happens at the same time that is equally interesting. The longitudinal resistivity, ρxx

drops to zero whenever ρxy acquires a plateau. The vanishing of ρxx makes the system dissipation-

less. However, the diagonal conductivity (σ xx) also vanishes, which makes the system insulating. This

paradox is explained in detail elsewhere.

2.1.5 Conductivity of the Landau levels: Role of the edge modes

Here, we discuss some of the key properties of the Landau levels. Let us now calculate the current

carried by the Landau levels. The expression for the current can be found using 〈J〉 = e〈v〉 where the

expectation value must be computed within the Landau states.

〈J〉 = −e〈ψk|v|ψk〉 = −
e

m
〈ψk|p + eA|ψk〉. (2.39)

The longitudinal current in the x-direction carried by the Landau levels is obtained via,

〈Jx〉 = −
e

mlB
√
π

∫
dy e

−
1

l2B

(y−y0)
2

(~k − eBy) = 0. (2.40)

The integrand has an even function (the �rst one) and an odd function (the second one). Thus, the

integral vanishes. We can get the average velocity, 〈v〉 =
1
~

∂εk
∂k = 0 as ε does not depend upon k. Thus,

the Landau wavefunctions carry no current by themselves. They only carry current in the presence of

an electric �eld in the x-direction as shown below.

2.1.6 Spin and the electric field

So far we have been talking about spinless fermions. It is in general a worthwhile exercise to include the

spin of the electrons and explore if there is any signi�cant development to the quantization phenomena
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discussed above. The spin degrees of freedom placed in an external magnetic �eld introduce a Zeeman

energy scale owing to a coupling between the spin and the magnetic �eld. The Zeeman term is written

as 1Z = gµBB, where µB = e~/2m is the Bohr magneton and g = 2. Now the splitting between the

Landau levels originating from the orbital e�ect (p → p − eA) is 1 = ~ωB =
e~B
m = 1B(say). 1B is

the so-called cyclotron energy. But for electrons, this precisely coincides with the Zeeman splitting1

= gµB B between the ↑ and the ↓-spins. Thus, it looks that the spin-↑ particles in a Landau level with

index, n, have exactly the same energy as the spin-↓ particles in the next higher Landau level index,

that is, n + 1. However, in real materials this does not occur. For example, in GaAs, the Zeeman energy

is typically about 70 times smaller than the cyclotron energy.

Now consider an external electric �eld, E, applied in the x-direction. This creates an electric potential

of the form,φ = −Ex. Thus, the resultingHamiltonian, including external electric andmagnetic �elds,

can be written as

H =
1

2m

[
p2x + (py + eBx)2

]
+ eEx. (2.41)

It is important to note that we have considered a di�erent choice of the gauge here, namely, Ay = Bx.

Instead of a rigorous derivation, we can complete square in the expression for energy of the particles,

En,k = ~ωB

(
n +

1

2

)
− eE

(
kl2B +

eE

mω2
B

)
+

1

2
m

E2

B2
. (2.42)

The resultant spectrum is plotted in Fig. 2.8. The levels are dispersive because of the k-dependent

middle term in Eq. (2.42). This is interesting because the degeneracy of the Landau level has now been

lifted. The energy in each level now depends linearly on k as shown, which was earlier independent of

k. The eigensolution is simply that of a harmonic oscillator shifted from the origin and displaced along

the x-axis by an amount mE/eB2 and is written as

ψ(x, y) = ψn,k

(
x +

mE

eB2
, y

)
. (2.43)

Among the other properties, the group velocity is given by

vy =
1

~

∂En,k

∂k
=

e

~
El2B. (2.44)

Putting lB =

√
~

eB (as said earlier, lB is an important length scale of the problem, which we shall see

throughout the discussion),

vy =

(
eE

~

)
·

(
~

eB

)
=

E

B
. (2.45)

Thus, the energy has three terms in the Eq. (2.42),

i. the �rst one is that of a harmonic oscillator,

ii. the second one is the potential energy, of a wave packet localized at x = (−kl2B −
mE
eω2

B
),

iii. and �nally, the last one denotes the kinetic energy of the particle, namely, 12mv2y .
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FIG. 2.8
Schematic plot showing the Landau levels (n = 1, 2, 3, 4) in the presence of an electric field. The levels are tilted

because of the electric field.

2.1.7 Laughlin’s argument: Corbino ring

Corbino disk

Flux

F(t)

E

I

FIG. 2.9
Schematic plot showing Corbino

ring.

Laughlin intuitively considered the phenomenon of QHE as a quantum

pump. Consider a ring (see Fig. 2.9) where the vacant region admits a mag-

netic �eld and hence a �ux φ. For this argument to be valid, the geometry

of the ring is important. Here, in addition to the backgroundmagnetic �eld

B that threads the sample, we can thread an additional �ux 8 through the

center of the ring. This 8 can a�ect the quantum state of the electrons.

In addition, the temperature is low such that the thermal e�ects can be

neglected.

Let us �rst see what this �ux 8 has got to do with the Hall conductivity.

Suppose we slowly increase 8 from 0 to 80(=
h
e ), that is within a time

t0 �
1
ωB

. This induces an emf around the annular region ε =
∂8
∂t =

−80
t0

.

The purpose of this emf is to transport “n” electrons from the inner cir-

cumference to the outer circumference. This would result in a current in

the radial direction, Ir = −ne/t0. Thus, the Hall resistivity is

ρxy =
ε

Ir
= −

80

t0
·

t0

(−ne)
=

h

e2
·
1

n
. (2.46)
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The same arguments hold equally for the IQHE and FQHE, in the former n is an integer, while n

is a fraction for the latter. In FQHE, the interpretation is as follows: as we increase the �ux from

8 to 80, a charge of magnitude e/m is transported from the inner circumference to the outer one

when the �ux is increased by80 units. The resultant Hall conductivity (or equivalently the resistivity)

becomes,

σxy =
e2

h
·
1

m
. (2.47)

Thus, a whole electron is transferred only when the �ux is increased by m80 units.

2.1.8 Edge modes and the conductivity of the single Landau level

When a particle is restricted to move only in one direction, the motion is said to be chiral where

backscattering is prohibited. Thus, the particles propagate in one direction at one edge of the sample

and move in the other direction at the other end of the sample. Let us understand how the edge modes

appear.

An edge can bemodeled by a potentialV(x) in the y-directionwhich rises steeply, as shown in Fig. 2.10.

Let us continue working on the Landau gauge, such that the Hamiltonian is given by

H =
1

2m
[p2x + (py + eBx)2] + V(x). (2.48)

In the absence of the potential V(x), the (lowest) wavefunction is a Gaussian of width lB

(
=

√
~

eB

)
.

If we assume that V(x) is smooth over a distance lB, and hence assume that the center of each

Gaussian to be localized at x = x0, we can Taylor expand the potential V(x) about x0 in the following

fashion,

V(x) = V(x0)+
∂V

∂x
(x − x0)+ · · · . (2.49)

V(x)

x

FIG. 2.10
Schematic plot showing the potential seen by the charge due to edge of the quantum Hall sample.

2-16 Modern Perspectives in the Study of Electronic Systems

 07 D
ecem

ber 2024 17:11:54



scitation.org/books

Dropping terms after the second one and assuming the constant term (�rst term) to be zero, the second

term looks like the potential due to the electric �eld. So the particle acquires a drift velocity in the

y-direction,

vy = −
1

eB

∂V

∂x
. (2.50)

Each wavefunction labeled by momentum, k is located at di�erent x-positions, namely, x = −kl2B, and

thus has a di�erent drift velocity. Additionally, the slopes of the two edges drawn above has di�erent

slopes, so ∂V
∂x has di�erent signs at the edges. Thus, vy at the left edge has a di�erent sign with respect

to the right edge. Further, because of the drift in y-direction, there will be a current Iy which is known

as the Hall current and is calculated as

Iy = −e

∫
dk

2π
vy(k)

=
e

2π l2B

∫
dx

1

eB

dV

dx
; using l2B =

~

eB

=
e2

2π~
VH (2.51)

VH is the Hall voltage. Now, σxy =
Iy

VH
=

e2

2π~
=

e2

h , which is indeed the expected conductivity for a

single Landau level.

E
F

FIG. 2.11
Schematic plot showing the appearance of

edge modes.

The above schematic diagram (Fig. 2.11) shows that the current

is entirely carried by the edge states, since the bulk Landau level

is absolutely �at (having no k dependence) and hence does not

carry any current. The argument is also elegant, as it does not

depend upon the form of the potential V(x).

Everything that we have discussed so far holds for a single Lan-

dau level, however the argument is equally valid for a large

number of Landau levels, as long as the Fermi energy lies in

between the �lled and the un�lled Landau levels. Also, the chi-

ral edge modes are robust to any impurity or disorder as there is

no phase space available for scattering. If a left moving electron is to scatter over onto a right moving

electron, it has to cross the entire sample edge, which is not allowed as the probability of scattering

would be in�nitesimally small owing to the macroscopic physical dimension of the sample. Thus, the

Hall plateaus are robust to disorder, defects and impurities.

A supremely important issue stands out: how do the plateaus exist in the �rst place? To see this, let

us �x the electron density, n. Then, we shall only have �lled Landau levels when the magnetic �eld is

exactly B =
n
ν
80

(
with 80 =

h
e

)
for some integer ν. But what happens when B 6=

n
ν
80, that is, when

the Landau levels are partially �lled? Also on top of that, there is also a (small) electric �eld. In the par-

tially �lled last Landau level, the longitudinal conductivity will be non-zero, while theHall conductivity
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will not be quantized. So how do the plateaus appear and the longitudinal conductivities vanish? The

disorder comes to the rescue. This gives a �nite width to the Landau levels. So, even if the B 6=
n
ν
80,

there is a �nite regime over which the Hall conductivity, σ xy remains constant and hence the plateaus

form so that the Hall resistivity, ρxy freezes at that value, until the magnetic �eld is increased further.

2.1.9 Incompressibility and the QH states

The key feature of the QH states is that the states are incompressible. The compressibility, κ is

de�ned by

κ = −
1

A

∂A

∂P

∣∣∣
N

(2.52)

where A, P and N are the area, pressure and the number of particles, respectively. The system is said to

be incompressible when κ = 0, that is, when the area is insensitive to the pressure applied. The pressure

is de�ned as the change of energy as a result of change of area, that is,

P = −
∂E

∂A
.

Thus, the inverse of the compressibility is de�ned as

κ−1
= −A

∂P

∂A

∣∣∣
N

= A
∂2E

∂A2

∣∣∣
N
.

Since the energy is an extensive quantity, that is, it depends on the number of particles and hence can

be written as

E = Nε(n)

where ε is the energy per particle, and n is the particle density, such that the total number of particles

is de�ned by N = An. Hence,

κ−1
=

1

n

d

d( 1n )

dε(n)

d( 1n )

= n2
(
2

dε(n)

dn
+ n

d2ε(n)

dn2

)

= n2
d2(nε)

dn2
. (2.53)

Also, the chemical potential is given by

µ =
∂E

∂N

∣∣∣
V

=
d(nε)

dn
. (2.54)

Thus, comparing Eqs. (2.53) and (2.54),

κ−1
= n2

dµ

dn
. (2.55)

The system is incompressible (κ = 0) when the chemical potential µ increases discontinuously as a

function of density, that is, ∂n
∂µ

= 0.
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2.2 DERIVATION OF THE HALL RESISTANCE

Before we go on to derive the conductivity (or the resistivity) using the Kubo formula, let us present a

simpler derivation. Consider a length “l” of the sample. The electric current carried by each charge in

this length is given by−ev/l, where v denotes the group velocity, and e is themagnitude of the electronic

charge. Now the total number of electrons between themomentum range p and p + dp can be found by

multiplying the current carried per unit charge (=−ev/l) and (l/h)dp where h is the Planck’s constant.

Thus, the elemental current is given by

dI = −(ev/l)×

(
l

h

)
dp = −

ev

h
dp.

Thus, the arbitrary length, l gets canceled. Replacing the velocity by v =
dE
dp , the elemental current

becomes

dI = −
e

h

dE

dp
dp. (2.56)

Hence, the total current can be obtained by integrating Eq. (2.56) from p1 to p2 denote arbitrary mag-

nitudes of the momenta corresponding to the top (TE) and the bottom (BE) edges5, respectively of a

typical Hall sample (see Fig. 2.2). Thus, the total current is given by

I =

∫ p2

p1

(
−

e

h

)(dE

dp

)
dp = −

e

h
[V(BE)− V(TE)] (2.57)

where V denotes the potential energies at the two edges. Thus, the current is driven by the potential

energy di�erence between the BE and the TE, which of course arises out of the potential di�erence that

exists between them. Thus,

I = −
e

h
[(−eV2)− (−eV1)] (2.58)

where V2 and V1 denote the voltages at the BE and TE, respectively. This yields a familiar form for the

current, that is,

I =
e2

h
(V2 − V1). (2.59)

This is the Hall current, which is independent of the dimensions of the sample. The resistance, or more

precisely the Hall resistance, is given by

RH =
V2 − V1

I
=

h

e2

which is precisely the Hall resistivity for the �lling fraction, ν = 1. For an arbitrary �lling fraction ν,

the number of electrons will be ν times what it is for ν = 1, where the Hall resistance can be written as

RH =
h

νe2
(2.60)

5 The top and the bottom edges are perpendicular to the direction of the applied electric �eld.
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2.3 KUBO FORMULA AND THE HALL CONDUCTIVITY

The important question at this stage is what protects the plateaus in the Hall conductivity (or the resis-

tivity)?Why are they so �at and robust at the integer values (or at certain rational fractions)? Remember

the system does not have either translational invariance (because of the presence of disorder) or time

reversal invariance (because of the presence of a magnetic �eld). Thus, two known symmetries are

lost and still the plateaus persist.6 We shall now show that the Hall conductivity assumes σxy =
νe2

h

(or equivalently ρxy =
h
νe2

) under these conditions.

To compute the conductivity, we resort to theKubo formula, which arises from amore generalized con-

cept, known as the “linear response theory.” We shall derive the Kubo formula under a few conditions

for the sake of simplicity. They are,

i. Before the �elds are applied, at t = −∞, the system is in a non-interacting many-particle state

which obeysH0|ψm〉 = Em|ψm〉, where {Em, ψm} are the eigensolutions ofH0.

ii. Even if we actually apply a constant electric �eld, E, it is helpful to consider an alternating �eld with

frequency, ω of the form, E(t) = Ee−iωt and at the end of the calculation, take the zero frequency

limit, that is, ω → 0.

iii. Consider a gauge in which the transverse components of the vector potential are zero, that is,

At = 0. In other words, E = −
∂A
∂t with no ∇φ term, φ being the scalar potential. Equivalently,

one can assume that φ = constant.

Now let us write the full Hamiltonian as

H = H0 + H
′ (2.61)

whereH0 is the non-interacting Hamiltonian whose exact solutions are known (as described earlier)

and H′ is the interaction term due to the coupling of the electrons to the external �eld. Thus, H′

involves the current due to the motion of the electrons coupling with the vector potential arising due

to the presence of a magnetic �eld. Thus,

H
′
= −J · A (2.62)

where J and A denote the electric current density and the vector potential, respectively. J is related to

the mechanical momentum p + eA. By using E = −
∂A
∂t , one can write

A =
E

iω
e−iωt . (2.63)

The aim is to compute the expectation value of the current density and �nd out how it depends on the

applied electric �eld, such that the proportionality constant yields the conductivity. In particular, we

are interested in computing the Hall conductivity, σ xy.

6 In fact, naively it seems is ironical that a broken time reversal symmetry is solely responsible for quantization of the Hall

plateaus.
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Here we shall consider the interaction picture where the time evolution of an arbitrary operator Ô is

written as

Ô(t) = eiH0t/~Ô(0)e−iH0t/~. (2.64)

Here Ô can be any operator, such as J orH′. Further, the eigenstates in the interaction picture evolve

with time according to,

|ψ(t)〉 = U(t, t0) |ψ(t0)〉, (2.65)

where t0 refers to an earlier time when the interaction is switched on and t denotes a later time. The

time evolution operator, U(t, t0) is a unitary operator having a form,

U(t, t0) = T exp

(
−

i

~

∫ t

t0

H
′(t′)dt′

)
(2.66)

T denotes time ordering in the above equation (Mahan, 2000). If the interval [t : t0] is split into several

time steps, T keeps the earliest time to the right. Now let us consider that as t0 → −∞, that is, before

the perturbation is switched on, the system is in the ground state |ψ0(t)〉. Hence, the time evolution

operator can be written as

U(t, t0 = −∞) = T exp

(
−

i

~

∫ t

−∞

H
′(t′)dt′

)
= U(t) say. (2.67)

The ground state expectation value of the current operator is given by

〈J(t)〉 = 〈ψ0(t)| J(t) |ψ0(t)〉

= 〈ψ0|U
−1(t)J(t)U(t) |ψ0〉

= 〈ψ0|

[
Te

i
~

∫ t
−∞

H′(t′)dt′
J(t)Te−

i
~

∫ t
−∞

H′(t′)dt′
]
|ψ0〉. (2.68)

An expansion of the exponentials (assuming the interaction term to be weak) and retaining terms up

to �rst order inH′ yields,

〈J(t)〉 ≈ 〈ψ0|

[
J(t)+

i

~

∫ t

−∞

dt′[H′(t′), J(t)]

]
|ψ0〉. (2.69)

The second term inside the bracket of RHS involves a commutator of H′ and J. It is to be kept in

mind that the commutator does not vanish at two arbitrary times t and t′. Using A(t) =
E
iω e−iωt and

H′(t) = −J · A, the 〈J(t)〉 takes the form,

〈J(t)〉 ≈ 〈ψ0|

[
J(t)+

i

~

∫ t

−∞

dt′[−J(t′) ·
E

iω
e−iωt′ , J(t)]

]
|ψ0〉. (2.70)

The �rst term inside the bracket in RHS is the current due to the absence of an external electric

�eld, which can safely be ignored in this study. So only the second term survives. Thus, writing for

components α, β (α, β ∈ x, y, z)

〈Jα(t)〉 =
1

~ω

∫ t

−∞

dt′〈ψ0| [Jβ(t
′), Jα(t)] |ψ0〉Eβe−iωt′ (2.71)

where J · E is written as JβEβ .
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Since the system is invariant under time translation, the above correlation depends on t − t′ and not

on t and t′ individually. Introducing a new variable t − t′ = t̃,

〈Jα(t)〉 =
1

~ω

(∫
∞

0
dt̃eiωt̃

〈ψ0| [Jβ(0), Jα(t̃)] |ψ0〉

)
Eβe−iωt (2.72)

where the term inside the bracket in RHS can be written as σαβEβe−iωt, σαβ being the components of

the conductivity tensor. Note that the time t dependence is outside the integral and appears as e−iωt.

Thus, in the linear response regime, if an electric �eld of frequency, ω is applied, the current responds

to the external �eld by oscillating with the same frequency as the external �eld.

The Hall conductivity is the o�-diagonal component and can be computed using,

σxy(ω) =
1

~ω

∫
∞

0
dteiωt

〈ψ0| [Jy(0), Jx(t)] |ψ0〉 (2.73)

Jx(t) can be written as

Jx(t) = eiH0t/~Jx(0)e
−iH0t/~ (2.74)

in the above expression, and using the complete relation of the states, namely, |ψn〉〈ψn | = 1, one

obtains

σxy(ω) =
1

~ω

∫
∞

0
dt eiωt

∑

n

〈ψ0| Jy |ψn〉〈ψn| Jx |ψ0〉e
i(En−E0)t/~

− 〈ψ0| Jx |ψn〉〈ψn| Jy |ψ0〉e
i(E0−En)t/~. (2.75)

Now, we shall perform the integral over time, t. Let us write En
~

= ωn and introduce ω → ω + iε

where ε is the in�nitesimal quantity considered for the convergence of the integral. Then, the Hall

conductivity is obtained as

σxy(ω) = −
i

ω

∑

En 6=E0

[
〈ψ0| Jy |ψn〉〈ψn| Jx |ψ0〉

~ω + En − E0
−

〈ψ0| Jx |ψn〉〈ψn| Jy |ψ0〉

~ω + E0 − En

]
. (2.76)

Finally, we shall take the limit ω → 0 to account for the constant �eld. For that, let us expand the

denominator as follows:
1

~ω + En − E0
≈

1

En − E0
−

~ω

(En − E0)2
+ O(ω2)

1

~ω + E0 − En
≈

1

E0 − En
−

~ω

(E0 − En)2
.

(2.77)

The �rst term looks divergent and such divergence is responsible for the peak in the longitudinal con-

ductivity, which, by now we are familiar with. Moreover, σ xy(ω) should not contain a term which is

independent of ω. This is the DC conductivity (ω = 0) which is absent in a translationally invariant

system. Thus, �nally one arrives at,

σxy(ω) = i~
∑

n 6=0

〈ψ0| Jy |ψn〉〈ψn| Jx |ψ0〉 − 〈ψ0| Jx |ψn〉〈ψn| Jy |ψ0〉

(En − E0)2
. (2.78)

This is the Kubo formula for the Hall conductivity.
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FIG. 2.12
The schematic plot shows a disc threaded by a flux

perpendicular to the plane and another one in the

plane of the disc.

To proceed further, let us assume that a speci�c case of per-

turbing a system below (Tong, 2016). Consider a quantum

Hall sample in the form of a torus (or a donut). Let us thread

two �uxes8x and8y (instead of one) as shown in Fig. 2.12.

Owing to this, the gauge potentials can be written as

Ax =
8x

Lx
,

Ay =
8y

Ly
+ Bx. (2.79)

It is clear that the states of the quantum system are sensitive

to non-integer values of 8i/80 (i = x, y) where, 80 =
h
e .

Speci�cally, if we increase either8x or8y from 0 to80 then

the spectrum of the quantum systemmust remain invariant.

Hence, writing the perturbationHamiltonian in terms of the

�uxes,

H
′
= −

∑

i∈1,2

Ji8i

Li
. (2.80)

To the �rst order corresponding to this perturbation term,

the modi�ed ground state becomes,

|ψ ′

0〉 = |ψ0〉 +

∑

ψn 6=ψ0
En 6=E0

〈ψn| H′
|ψ0〉

En − E0
|ψn〉. (2.81)

Thus, writing,

1 |ψ〉 = |ψ ′

0〉 − |ψ0〉 =

∑

ψn 6=ψ0
En 6=E0

〈ψn| H′
|ψ0〉

En − E0
|ψn〉. (2.82)

Considering in�nitesimal changes in8i we can write,
∣∣∣∣
∂1ψ

∂8i

〉
= −

1

Li

∑

n

〈ψn| Ji |ψ0〉

En − E0
|ψn〉. (2.83)

Terms like those in the RHS of the above equation appeared in the Hall conductivity. Let us write the

total Hall conductivity including the area factor LxLy of the sample, which can be written as

σxy = i~LxLy

∑

ψn 6=ψ0
En 6=E0

〈ψ0| Jy |ψn〉〈ψn| Jx |ψ0〉 − 〈ψ0| Jx |ψn〉〈ψn| Jy |ψ0〉

(En − E0)2

= i~

[〈
∂ψ0

∂8y

∣∣∣∣
∣∣∣∣
∂ψ0

∂8x

〉
−

〈
∂ψ0

∂8x

∣∣∣∣
∣∣∣∣
∂ψ0

∂8y

〉]
(2.84)
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= i~

[
∂

∂8y

〈
ψ0

∣∣∣∣
∂ψ0

∂8x

〉
−

∂

∂8x

〈
ψ0

∣∣∣∣
∂ψ0

∂8y

〉]
(2.85)

〈
ψ0

∣∣∣ ∂ψ0
∂8x∂8y

〉
will be canceled from both the terms.

2.3.1 Hall conductivity and the Chern number

Remember that the spectrum of the Hamiltonian depends upon 8i mod 80.
7 If there is a remain-

der, then the division does not yield an integer, and if there is none, then 8i/80 = integer. 8i being

parameters ofH′,8i’s are periodic functions. To emphasize the periodicity, we shall introduce angular

variables, θ i such that,

θi =
2π8i

80
where θi ∈ [0, 2π]. (2.86)

As θ i increases from 0 to 2π , 8i increases from 0 → 80. Now rewrite ∂
∂8i

as ∂
∂θi

and introduce a

quantity called Berry connection, which is de�ned on the surface of the torus as

Ai(8) = −i〈ψ0|
∂

∂θi
|ψ0〉. (2.87)

Further, we de�ne a quantity called the Berry curvature (analogous to the magnetic �eld),

Fxy =
∂Ax

∂θy
−
∂Ay

∂θx
= (∇θ × A) = −i

[
∂

∂θy

〈
ψ0

∣∣∣∣
∂ψ0

∂θx

〉
−

∂

∂θx

〈
ψ0

∣∣∣∣
∂ψ0

∂θy

〉]
. (2.88)

Note that the last term in Eq. (2.88) is the Hall conductivity, which is formally written in terms of the

Berry curvature as

σxy = −
e2

h
Fxy. (2.89)

We are still left with the task of understanding the quantization of σ xy which is central to the discussion

on quantumHall e�ect.We can now integrate over the surface of the torus to get the total conductivity,

σxy = −
e2

h

∫

torus

d2θ

(2π)2
Fxy. (2.90)

The quantity C =
1
2π

∫
d2θFxy is called the �rst Chern number. Thus, if we average over the �uxes the

conductivity assumes a form,

σxy = −
e2

h
C (2.91)

C is necessarily an integer. It is also referred to as the TKNN originates after Thouless et al. (1982).

Here, we provide an argument that the Chern number, which is the integral over the Berry curvature,

is indeed an integer. For simplicity, let us assume a translationally invariant system in which the eigen-

states can be represented by the Bloch functions. That is, |ψ〉0 appearing above can be written as ukeiφk

7 8i mod80 refers to the remainder when8i is divided by80.

2-24 Modern Perspectives in the Study of Electronic Systems

 07 D
ecem

ber 2024 17:11:54



scitation.org/books

where uk captures the periodicity of the lattice. Since the Berry connection requires a derivative to be

taken, namely, 〈ψ0|
∂
∂θ

|ψ0〉, which would be equivalent to,

∂

∂φk
(ukeiφk) ≈ ∇kφk. (2.92)

Now, when one takes an integral over the Brillouin zone (which is equivalent to the surface of the torus

in real space), then (∇kφk) · dk over a closed surface is zero.∮
∇kφkdk = 0. (2.93)

This says that the measurable quantity, eiφ obeys,8

eiφ(0)
= eiφ(2π). (2.94)

Thus,

|φ(0)− φ(2π)| = 2π × (some integer)

= 2πC. (2.95)

Thus, the integral over the curvature,
∮

F
d2k

2π
=

∮
∇kφkdk =

2πC

2π
= C. (2.96)

Thus, Chern number is an integer and hence we get the Hall conductivity to be quantized in units of

e2/h. The above calculations are of course applicable to IQHE.

2.4 QUANTUM HALL EFFECT IN GRAPHENE

Having studied the quantized Hall e�ect in a 2DEG in detail, we focus on another system which is of

topical interest, namely, graphene. Apart from reviewing the basic electronic properties of graphene,

we discuss the properties of the Landau levels. The unequal spacing between the successive Landau

levels is a feature that shows up in many experiments. We discuss some of them.

Graphene is made of a single layer of carbon (C) atoms arranged in a honeycomb lattice structure.

Each C atom has six electrons with an electronic con�guration 1s22s22p2. Four electrons in the 2s

and the 2p orbitals create a hybridized sp2 bonding orbital. The orbital connects to the three nearest

neighbors in the plane of the crystal lattice, while the fourth electron occupies a π orbital that projects

out above and below the plane. This π orbital has a signi�cant overlap with those from the neigh-

boring C atoms. This is responsible for rendering excellent mobility of graphene, while the σ bonds

that connect a C atom to its three neighbors yield the stability of the crystal structure. The discovery of

such one-atom thick planarmaterial (graphene is a perfect example of a two-dimensional (2D)material

8 It should be remembered that φ is not a measurable quantity, while eiφ is a measurable quantity.
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realized so far) earned a Nobel prize to A. Geim and K. Novoselov, both from the University ofManch-

ester in the UK in 2010. Before we embark on the Hall e�ect in graphene, let us review its electronic

properties.

2.4.1 Basic electronic properties of graphene

Owing to the large mobility of π electrons in graphene, a nearest neighbor tight-binding Hamiltonian

of the following form is most suitable, namely,

H = −t
∑

〈ij〉,σ

(a†iσ bjσ + h.c.) (2.97)

where a†(b) denote creation (annihilation) operators for electrons at theA(B) sublattice sites.σ denotes

the spin of the electrons, however that will be suppressed in the next step onwards owing to the active

role played by the spin either in the band structure or in QHE. We shall make the spin degrees of

freedom apparent only when it is needed. Here t ' 2.7 eV which is considerably large and allows us

to ignore the electron-electron interaction. The vectors connecting the nearest neighbors, δi, direct, ai

and the reciprocal bi lattice vectors, are written as

δ1 =
a

2

(√
3x̂ + ŷ

)
; δ2 =

a

2

(
−

√

3x̂ + ŷ
)
; δ3 = −ax̂

a1 =
a

2

(√
3x̂ + 3ŷ

)
; a2 =

a

2

(
−

√

3x̂ + 3ŷ
)

b1 =
2π

3a

(√
3k̂x + k̂y

)
; b2 =

2π

3a

(
−

√

3k̂x + 3k̂y

)
, (2.98)

with the lattice constant, a = 1.42Å (see Fig. 2.13).

BA

δ
3

a
1

b
1

b
2

K¢

M

K

ky

kx

a
2

δ
1

é

δ
2

FIG. 2.13
Plot showing δ i, direct, ai and the reciprocal bi lattice vectors for graphene.
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Using the nearest neighbor vectors, δi, we explicitly write the tight-binding Hamiltonian as

H = −t
∑

R,δ

[
b†(R + δi)a(R)+ a†(R)b(R + δi)

]
. (2.99)

The lattice vector R at an arbitrary site is given by

R = na1 + ma2 n,m ∈ N. (2.100)

The Fourier transforms for these operators are performed using,

ak =
1

√
N

∑

R

e−ik·Ra(R). (2.101)

This yields the Hamiltonian in the momentum space as follows,

H = −
t

N

∑

k,q

∑

R

3∑

i=1

ei(k−q)·R
[

ei(q−k)·Reiq·δi b†qak + ei(k−q)·Re−iq·δi a†qbk

]
. (2.102)

Using the following de�nition of the Kronecker delta,

δk.q =
1

N

∑

R

ei(k−q)·R (2.103)

one gets,

H = −t
∑

k

3∑

i=1

[
e−ik·δi b†kak + eik·δi a†kbk

]

= −t
∑

k

3∑

i=1

(
a†k b†k

)( 0 e−ik·δi

eik·δi 0

)(
ak
bk

)

= −t
∑

k

3∑

i=1

(
a†k b†k

)
h(k)

(
ak
bk

)
(2.104)

where h(k) is the Hamiltonian matrix de�ned by

h(k) = −t

(
0

(
eik·δ1 + eik·δ2 + eik·δ3

)
(
e−ik·δ1 + e−ik·δ2 + e−ik·δ3

)
0

)
. (2.105)

Since the di�erence between two nearest neighbor lattice vectors, δi and δj must yield a lattice vector,

R, we can do a transformation,

ak → eik·δ3ak, and a†k → e−ik·δ3a†k.

The above transformation yields a new Hamiltonian matrix,

h̃(k) = −t

(
0

(
eik·(δ1−δ3) + eik·(δ2−δ3) + 1

)
(
e−ik·(δ1−δ3) + e−ik·(δ2−δ3) + 1

)
0

)
. (2.106)
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Using the de�nitions of δi, one gets,

h̃(k) = −t

(
0 −

(
eik·a1 + eik·a2 + 1

)

−
(
e−ik·a1 + e−ik·a2 + 1

)
0

)
. (2.107)

One can check that h̃(k) obeys h̃(k) = h̃(k + G), where G is the reciprocal lattice vector, de�ned as

G = pb1 + qb2, with p and q being integers. Thus,

h̃(k) = −t

(
0 f (k)

f ∗(k) 0

)
(2.108)

where

f (k) = −t

(
e−ikxa

+ 2eikxa/2 cos

(
ky

√
3a

2

))
.

The tight-binding energy is obtained by diagonalizing h̃(k) which yields,

εk = ±t

√
|f (k)|2 = ±t

√
3 + 2 cos(

√

3aky)+ 4 cos(
√

3aky/2) cos(3akx/2). (2.109)

The two bands described by the “+” and the “−” signs in the above dispersion touch at six points in

the Brillouin zone. Since graphene has one accessible electron per C atom, one can assume a half-�lled

system where the lower band is completely �lled. Further, we wish to discuss the low-lying excitations

just above the ground state of the system.

This necessitates exploring the low-energy theory of graphene. To achieve that we have to identify the

band touching points which can be obtained from the condition, f (k) = 0. Separately, putting the real

and the imaginary parts equal to zero yield,

cos(kxa)+ 2 cos(kxa/2) cos(
√

3kya/2) = 0

− sin(kxa)+ 2 sin(kxa/2) cos(
√

3kya/2) = 0. (2.110)

Eq. (2.110) can be manipulated as follows,

sin(kxa/2)
[
−cos(kxa/2)+ cos(kya

√

3/2)
]

= 0. (2.111)

Thus, one is left with two options, namely,

either (i) sin(kxa/2) = 0; which means cos(kxa/2) = ±1;

or, (ii) cos(kxa/2) = cos(
√

3kya/2).

Option (i) gives us,

1 + 2 cos(ky

√

3a/2) = 0

which yields the points (0,± 4π
3
√
3a
) (plus or minus the reciprocal lattice vector,G).Whereas, option (ii)

can be written as

cos(kya
√

3)+ 2 cos2(kya
√

3/2) = 0.
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FIG. 2.14
Plot showing the two tight-binding bands of graphene in the first BZ. The two bands touch at six points. In the vicinity

of those points, the bands are linearly dispersing bearing signatures of (pseudo-)relativistic physics.

Thus, we get four more points, which are, ± 2π
3a (1,

1
√
3
), and ±

2π
3a (1,−

1
√
3
) (again plus or minus the

reciprocal lattice vector,G). The electronic dispersion of graphene is shown in Fig. 2.14. The six points

where the two bands touch are clearly visible.

A closer inspection yields all the six points are not independent. For example, the set of vectors, namely,(
0,± 4π

3
√
3a

)
, 2π3a

(
1,− 1

√
3

)
and 2π

3a

(
−1,− 1

√
3

)
can be connected to each other via the combination of

the reciprocal lattice vectors, b1 and b2. For example,
(
0,

4π

3
√
3a

)
+ b2 =

2π

3a

(
1,−

1
√
3

)

(
0,

4π

3
√
3a

)
− b1 =

2π

3a

(
−1,−

1
√
3

)
. (2.112)

The same is true for the other vectors,(
0,

4π

3
√
3a

)
,

2π

3a

(
−1,

1
√
3

)
,
2π

3a

(
1,

1
√
3

)
.
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Thus, only two of them were found to be independent. Traditionally, they are called K and K′ and can

be written as

K =
2π

3a

(
1,

1
√
3

)
, and K′

=
2π

3a

(
1,−

1
√
3

)
.

Any other independent pair is also a valid choice for K and K′.

It may be kept in mind that the two bands touch at these points and the gap between the conduction

and the valence bands closes. Thus, there are two branches of low-energy excitations, namely one of

them with momentum close to K and the other close to K′. Since f (k) becomes zero at k = K. By

de�ning q = k − K, one can expand f (k) near K in Taylor series about q = 0,

f ′(q) =
∂f (k)

∂kx

∣∣∣
(kx−Kx)

(kx − Kx)+
∂f (k)

∂ky

∣∣∣
(ky−Ky)

(ky − Ky) =
3at

2
(qx + iqy).

Thus, the energy spectrum assumes the form,

εK(q) = ~vF(qx + iqy) (2.113)

where vF is the Fermi velocity de�ned by vF =
3at
2~

' 106ms−1. Similarly, if we expand around K′,

one gets,

εK′(q) = ~vF(qx − iqy). (2.114)

Thus, in a general notation, we can write,

εK,K′ = ~vFq · σ (2.115)

where q is a planar vector (qx, qy) and σ is the Pauli matrix vector (σ x, σ y). The electrons close to theK

and K′ points are called massless Dirac fermions, as they obey the Dirac equation without the “mass”

term9. It may be noted that,

εK′(q) = ε∗K(q). (2.116)

This implies that (as will be seen later) that the “helicity” of the electrons is opposite atK′ with respect

to K.

To sum up our preliminary discussion on graphene, we note that the low-energy properties are

governed by the dispersion,

ε(q) = ±vF|q| (2.117)

which implies that the eigenvalues are only functions of themagnitude of the wave vector q, and do not

depend upon its direction in the 2D plane. Also, the Hamiltonian on a formal note denotes that of a

massless s = 1/2 particle, such as a neutrino, however the velocity of the particles is reduced by a factor

of 300 compared to the speed of light. Further, the handedness (or the helicity) feature of neutrinos is

inbuilt, where the electrons behave similarly to the “left handed” neutrino at the Dirac point K and as

a “right handed” neutrino at K′ or vice versa.

9 TheDirac equation is written in conventional notations asH = cα · p + βmc2 where α and β areHermitian operators which

do not operate on the space and time variables. In the case of graphene, the second term is absent.
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2.4.2 Experimental confirmation of the Dirac spectrum

When a beam of monochromatic photons with an energy larger than the work function of a particular

material interacts with the constituent charges (electrons) by incidenting on the surface of the sam-

ple, the electrons absorb the photons and thus possess su�cient energy to escape from the sample. By

measuring the energy and themomentumof the photoelectrons and using energy-momentum conser-

vation laws, one can derive the properties of the electrons prior to their being incident on the surface

and relate themwith those getting scattered. The angle resolved photoemission spectroscopy (ARPES)

can be a direct probe to resolve the momentum-dependent band structure and the topology of the

Fermi surface. In ARPES, a photon is employed to eject an electron from the surface of the graphene

layer. The intensity of theARPES is proportional to the transition probability from an initial Bloch state

with crystal momentum, k and energy, E to a �nal state, k′. The method conclusively establishes the

existence of Dirac fermions seen via linearly dispersing bands in the vicinity of the Dirac points. The

experimental setup, ARPES data and the hexagonal Brillouin zone (which we have discussed before)

are shown in Fig. 2.15.
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FIG. 2.15
Plot showing the experimental setup for ARPES (left), the two linearly dispersing bands (middle) and the Dirac points

are shown on the hexagonal BZ of graphene (right). Taken from Sprinkle et al. (2009).
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2.4.3 Hofstadter Butterfly

The fate of an electron gas or graphene described by a tight-binding model subjected to an external

magnetic �eld is to show quantized plateaus of the Hall resistance. Consequently, the band energies of

the electrons transform into discrete Landau levels. The presence of a periodic crystal potential adds

further exciting features to the spectrum. The Hamiltonian of such a system is given by

H =
(p − eA)2

2m
+ V(r) (2.118)

where V(r) = V(r + a) is the periodic potential with lattice periodicity a. The electrons are described

by the Bloch states leading to the formation of bands. In the presence of the vector potential, A, each

Bloch band gets further divided into sub-bands, and the resultant energy spectra as a function of the

�ux give rise to a fractal structure known as the Hofstadter butter�y. These rather complex energy

spectra arise owing to a delicate interplay between the two length scales, namely, a and lB that are

associated with two di�erent quantization phenomena. In fact, the Hofstadter butter�y arises when

the ratio of these two lengths is a rational fraction. An even more interesting scenario emerges when

the ratio is not a rational fraction, however, we shall not discuss it here.

The fractal nature of the spectrum was observed by Hofstadter (1976) which he obtained by solving

Harper’s equation (Azbel, 1964), and demonstrated that for commensurate values of the magnetic �ux

such as8/80 = p/q, where the single-particle Bloch bands split into q sub-bands, which themselves are

p-fold degenerate (p and q being co-prime integers). Each of these p sub-bands further split, yielding

a continued fraction as a function of the magnetic �ux. The distance between the levels, sub-levels,

etc., and the width of each of the ”superstructures” oscillates with a variation of the magnetic �eld �ux

with a period that is universal and is independent of the form of the quasiparticle dispersion relation.

Consequently, one observes a quasi-continuous distribution of incommensurate quantum states that

form a self-similar recursive structure, like that of a butter�y. Schlösser et al. (1996) have realized the

Hofstadter spectrum for the �rst time in semiconductor superlattice structures. It was later observed

for a number of systems, such as cold atomic systems in optical lattices. In continuation of our present

discussion, we shall discuss the Hofstadter butter�y in graphene.

In order to demonstrate the Hofstadter butter�y (Hofstadter, 1976) we have taken a semi-in�nite rib-

bon of graphene. The ribbon geometry is such that it has zigzag edges, as in Fig. 2.16. In tight-binding

approximation, the external magnetic �eld enters through the hopping integral, which is replaced by

the Peierls substitution, namely,

exp

(
ie

h

∫ j

i
A · dr

)
tij = exp

(
i(2π/80)

∫ j

i
A · dr

)
tij (2.119)

where, tij is the hopping integral between the sites i and j with no �eld present. The �ux is denoted

in terms of �ux quantum 80 = h/e. To include the magnetic �eld, we have taken B = Bẑ such that
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FIG. 2.16
Geometry of a zigzag graphene nanoribbon is shown. The white and the red circles represent A and B sublattices

respectively. (m, n) denote the unit cell index in x and y) directions.

the vector potential (A) in the Landau gauge takes the form A = Bxŷ. With this modi�cation, the

tight-binding Hamiltonian for graphene introduced in Fig. 2.16 can be written as

H = −

∑

m,n

[
te

iπ 8
80

n
a†m,nbm,n + te

−iπ 8
80

n
a†m,nbm−1,n + t1a†m,nbm,n−1 + h.c.

]
. (2.120)

Here, a†m,n, bm,n represent electron creation and annihilation operators of sublattice A and B, respec-

tively, at site index (m, n). Since the ribbon is in�nite in x direction, one can use the Fourier

decomposition of the operators for the index m giving the following equation (Castro Neto et al.,

2009).

H = −

∑

k,n

[
te

iπ 8
80

n
a†k,nbk,n + te

−iπ 8
80

n
eikaa†k,nbk,n + t1a†k,nbk,n−1 + h.c.

]
(2.121)

Assuming the eigenfunction to be |ψ(k)〉 =
∑

n[αk,n |a, k, n〉 + βk,n |b, k, n〉], the eigenvalue equation

of Hamiltonian (2.121) gives the following two Harper (Harper, 1955) equations.

Ekαk,n = −

[
eika/22t cos

(
π
8

80
n −

ka

2

)
βk,n + t1βk,n−1

]
(2.122)

Ekβk,n = −

[
e−ika/22t cos

(
π
8

80
n −

ka

2

)
αk,n + t1αk,n+1

]
(2.123)
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In order to get the spectra for the Haldane and semi-Dirac Haldane model, equations (2.122) and

(2.123) together with the following two characteristic equations of NNN hopping are used.

Ekαk,n = −t2

[
eika/2 cos

(
ka

2
+ φ

)
αk,n+1 + cos(ka − φ)αk,n + e−ika/2 cos

(
ka

2
+ φ

)
αk,n−1

]

(2.124)

Ekβk,n = −t2

[
eika/2 cos

(
ka

2
− φ

)
βk,n+1 + cos(ka + φ)βk,n + e−ika/2 cos

(
ka

2
+ φ

)
βk,n−1

]

(2.125)

Using these equations, we have numerically calculated the Hofstadter butter�y spectrum for the semi-

in�nite nanoribbons with q = 200. The fractal spectra are depicted in Fig. 2.17 for graphene (Rammal,

1985). Energies are taken in units of t. The fractal spectra result from the competition of magnetic

�eld and lattice e�ects. For each e�ective �ux f = φ/φ0 = p/q there are 2q number of sub-bands. The

spectrum is periodic in f with periodicity 3
√
3Ba2/2φ0.

1.00.80.60.4

F/F
0

0.20.0

–3

–2

–1

0E/t

1

2

3

FIG. 2.17
The Hofstadter butterfly is shown for graphene. The fractal structure as a function of the external flux (scaled by the

flux quantum), that is,8/80 can be seen.
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2.4.4 Landau levels in Graphene

In order to proceed, we can write the Hamiltonian in a uni�ed way that includes the description of

both the Dirac points (valleys) K and K′. So for each valley, we have one two-dimensional spinor

Hamiltonian. Thus, augmenting the Hilbert space, we can write the eigenfunctions as

ψ = (ψK′ ,ψK)
T

and the Hamiltonian is given by

H = ~vF

(
−σ ∗

· k 0

0 σ · k

)
= vF

(
−σ ∗

· p 0

0 σ · p

)
. (2.126)

Now we shall discuss the motion of the massless relativistic electrons in a magnetic �eld. In a stan-

dard 2D electron gas, the Landau quantization produces equidistant levels [see Eq. (2.36)], which is an

artifact of the non-relativistic parabolic dispersion of the free carriers. We need to ascertain how the

quantization formula is modi�ed for the case of graphene.

As earlier we do the Peierls substitution, p → p + eA. Thus, the Hamiltonian becomes,

HK,K′ = vF




0 −(px + ipy) 0 0

−(px − ipy) 0 0 0

0 0 0 (px − ipy)

0 0 (px + ipy) 0


 .

The wavefunction has now 4-components, namely,

ψ =




φK
′

A

φK
′

B

φKA
φKB


 (2.127)

where φKA,B are the wavefunctions for an electron at momentum values corresponding to the valley K

at the two sublattice sites A and B. Similar notations carry on for the other valley K′.

For a perpendicular magnetic �eld, B = Bẑ, one can choose a Landau gauge, A =(−By, 0, 0). Since

with this choice, the Hamiltonian is independent of the spatial variable, x. So [H, px] = 0 and hence

px continues to be a good quantum number.

Further the Hamiltonian in Eq. (2.127) is valley decoupled, that is, there are no matrix elements that

connect the two valleys, namely, K and K′. Thus, it allows us to look at the solutions at each valley

separately. For the K point, we have a coupled equation for the wavefunctions, φA and φB

εφKA = vF(px − ipy)φ
K
B (2.128)

εφKB = vF(px + ipy)φ
K
A . (2.129)

One can insert Eq. (2.128) in Eqs. (2.129) and (2.129) in Eq. (2.128) to obtain,

ε2φKA = ~
2v2F(px − ipy)(px + ipy)φ

K
A (2.130)

ε2φKB = ~
2v2F(px + ipy)(px − ipy)φ

K
B . (2.131)
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Inserting the Landau gauge such that px → px + eBy,

ε2

~2v2F
φKB = (px + eBy + ipy)(px + eBy − ipy)φ

K
B

=

[
(px + eBy)2 − i[(px + eBy), py] + p2y

]
φKB . (2.132)

Since [px, py] = 0 and [y, py] = i~, one gets,

ε2

~2v2F
φKB = [(px + eBy)2 + e~B + p2y]φ

K
B . (2.133)

Thus, we arrive at,
(
ε2

~2v2F
− e~B

)
φKB = (p̃2x + p̃2y)φ

K
B (2.134)

where p̃2x = (px + eBy)2 and p̃2y = p2y . Dividing both sides by 2m,

1

2m

(
ε2

~2v2F
− e~B

)
φKB =

(
p̃2x + p̃2y

2m

)
φKB =

(
1

2
k̃(y − y0)

2
+

p̃2y

2m

)
φKB (2.135)

with k̃ =
e2B2

m , y0 =
px

eB . Thus, the RHS is identi�ed as theHamiltonian for a particle executing an SHM

in two dimensions about a coordinate point (0, y0). Thus, it is obvious that the energy spectrum is given

by εn = (n +
1
2 )~ωB with ωB =

eB
m . Hence,

1

m

ε2

~2v2F
= 2

(
n +

1

2

)
~ωB + ~ωB =

2n~ωB

m
where n = 0, 1, 2, . . . . (2.136)

Eq. (2.136) allows positive and negative roots for ε. So we can obtain the energy spectrum as

ε = sgn(n)
√

n vF
(2~eB)1/2

m
. (2.137)

Let us de�ne another quantity ω̃ = vF (2~eB)1/2, so as to formally write the energy expression as that

of a harmonic oscillator. We rewrite the above expression as

ε = ~ω̃sgn(n)
√

|n|. (2.138)

Thus, as opposed to the familiar harmonic oscillators when n can take positive integer values (includ-

ing zero), however, here in graphene, all integers, that is, both positive and negative numbers are

allowed. The positive integers denote particles (or electrons) in the conduction band and the nega-

tive ones denote holes in the valence band. Furthermore, unlike the 2DEG, here, the Landau levels are

not equidistant (see Fig. 2.18). The largest separation occurs between the lowest Landau level (n = 0)

and the �rst one (n = ±1). This large gap essentially facilitates observation of QHE in graphene at high

temperatures, which is even true for room temperature.10

10 The title of the paper by Geim and Novoselov is “Room temperature quantum Hall e�ect in Graphene.” See Novoselov et al.

(2007)
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FIG. 2.18
Plot showing the Landau levels in graphene for different indices, n.

So far we have been discussing spinless particles. Including the spin, there is be an additional two-fold

degeneracy of the Landau levels owing to Zeeman spitting. A hierarchy of energy scales needs to be

ascertained here. Let us compare the energy gap between the two lowest Landau levels and the Zeeman

splitting corresponding to a typical magnetic �eld, B, for example, B = 10 T.

1ELL =
~ωB/2

vF

√

e~B
(for the successive Landau levels) (2.139)

1Ez =

√

e~B (for the Zeeman term). (2.140)
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FIG. 2.19
Plot showing the Landau levels for different indices, n as a function of

the magnetic field, B. The Landau levels vary as
√
n.

For typical vF ' c/300 (c: speed of light),

1Ez

1ELL
' 102. (2.141)

Thus, the Zeeman energy scale is much

larger than the Landau-level splitting,which

makes it imperative to include spin degen-

eracy. Thus, including the Zeeman term,

the energy can be written as,

ε2

v2F
= 2~eB(n + 1) n = 0, 1, . . . (2.142)

where the additional term in the RHS

(denoted by 2~eB) accounts for the spin.

The spacing between the consecutive Lan-

dau levels are shown in Fig. 2.19. The

energy level ε = 0 is not present in the

spectrum, even for n = 0. This lowest Lan-

dau level is somewhat special in the follow-

ing sense. The n = 0 level receives a contri-

bution from only one sublattice at each of

the Dirac points. For example, “A” sublat-

tice contributes to the wave function at the Dirac point K, and the “B” sublattice contribute to K′.

However, the n 6= 0 Landau levels have non-zero amplitudes at both the A and the B sublattice.

Finally, the wavefunctions corresponding to an arbitrary Landau-level index at the two Dirac points,

corresponding to the gauge we have chosen are,

ψK
n,k =

cn
√

L
e−ikx




0

0

sgn(n)(−i)φ|n|−1,k

φ|n|,k


 (2.143)

and

ψK′

n,k =
cn
√

L
e−ikx




φ|n|,k

sgn(n)(−i)φ|n|−1,k

0

0


 (2.144)

with

cn(x) = 1 for n = 0

=
1

√
2

for n 6= 0.
(2.145)
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Further,

sgn(n) = 0 for n = 0

=
n

|n|
for n 6= 0

(2.146)

with

φn,k = exp

[
−
1

2

(y − kl2B)
2

l2B

]
Hn

[
(y − kl2B)

lB

]
(2.147)

lB is the magnetic length (=
√

~

eB ) as de�ned before, and Hn(x) are the Hermite polynomials. φn,k

denotes the eigenfunctions of an electron in the presence of a magnetic �eld. n refers to the Landau-

level index. The Landau levels for di�erent values of the �ux, φ are shown in Fig. 2.20 as a function
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FIG. 2.20
Plot showing the Landau levels in graphene for different values of flux, φ. The values of the fluxes are φ =

80
100

(for left

upper panel), φ =
80
200

(for right upper panel), φ =
80
500

(for left lower panel) and φ =
80
1600

(for right lower panel). Here

80 =
h
e
is the flux quantum.
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FIG. 2.21
Plot showing the variation of Hall conductivity as a function of the bias voltage for a particular value of the magnetic

field, such as B = 30T and 50T. The plateaus in the Hall conductivity are clearly visible. The longitudinal conductivity

(σ xx) is shown for a specific value, namely, B = 50T.

of one of the wavevectors, kx. As the magnitude of the �ux is decreased, the width of the �at band

appearing at the Fermi energy (at E/t = 0) decreases. Furthermore, the �at bands become dissipa-

tive in the bulk, corresponding to larger values of the Landau-level index, n and lower values of the

�ux φ. For a weak magnetic �eld, such that,8/80 = 1/1600, the energy bands of the bulk regain their

Dirac-like structure similar to the single-particle energy levels, while the zeromode �at band continues

to exist.

We have included numeric computation of the Hall conductivity as a function of the Fermi energy

at comparable values (to those in experiments) of the magnetic �eld, namely, B = 30T and 50T using

the Kubo formula in Fig. 2.21. The quantization of the Hall conductivity is clearly visible. Further, the

longitudinal conductivity, σ xx is shown for one of them, namely, 50T. σ xx shows vanishingly small

values corresponding to the plateaus of the Hall conductivities, while it shows spikes when the Hall

conductivity jumps from one plateau to another.

2.4.5 Experimental observation of the Landau levels in graphene

There are primarily two experimental techniques for observing the existence of Landau levels. They

are (i) the infra-red (IR) spectroscopy (Deacon et al., 2007) and (ii) scanning tunneling microscopy
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(STM) (Li et al., 2009) experiments. In the following we include a brief discussion on each of them and

their utilities in observing the non-equidistant Landau levels in graphene.

In IR spectroscopy, the optical transitions from one Landau level to another are studied by measuring

the cyclotron frequencies. The Landau levels are proportional to
√

n (n: Landau level index), all the

frequencies of the optical transitions are distinct as the energy spacing between each pair of Landau

levels is di�erent than the other pairs. These optical transitions are of two types which correspond to

transitions between the electron or the hole states in the conduction or the valence bands (intra-band

transition), or the transitions between the electron and the hole states pertaining to the valence and

conduction bands (inter-band transition) respectively. The photoconductive response and the resistive

voltage show the existence of di�erently spaced Landau levels in graphene at particular values of the

magnetic �eld, longitudinal current and the IR frequency. The photoconductive intensity as a function

of the carrier density, n (not to be confused with the Landau level index) shows distinct peaks which

are proportional to the energy absorbed from the incident IR radiation.

In the STM experiment, the speci�c energy levels can be identi�ed by varying the bias voltage between

the tip and the surface of the sample, and the tunneling current generated is proportional to the local

density of states. In graphene, the Landau levels are directly observed via the peaks in the tunneling

spectrum. From the positions of the peaks as a function of the sample bias (shown in Fig. 2.22), the

energies of the Landau levels can be extracted.

Let us add a bitmore details on the experimental results presented in Fig. 2.22. The di�erential conduc-

tance, dI
dV is plotted as a function of the bias voltage (in mV) in (a). Within a proportionality constant,

it yields the local DOS, which is seen to vanish at zero bias, while it remains �nite for graphite. The

latter clearly implies the opening of a gap at the Dirac points as a single-layer graphene is coupled to the

substrate for the latter. Figure 2.22(b) shows the surface map of the low-energy tunneling conductance

for two regions, one of which corresponds to single-layer graphene (darker region marked by “A”),

while the other (lighter region marked by “B”) denotes that of graphite. In (c) the tunneling spectra

is shown as a function of the bias voltage for di�erent values of the external �eld. These peaks corre-

spond to the positions of the Landau levels. Finally, the massless nature of the Dirac fermions, and the

Landau-level spacing varying as
√

n are shown via plotting the energy, E as a function of
√

|n|B which

allows the collapse of the data onto a single straight line shown in Fig. 2.22(d). The corresponding slope

yields a fairly good estimate of the velocity of the Dirac fermions (∼0.8 × 106 ms−1). Such a collapse

is obviously absent for graphite.

Now we shall wrap up the discussion of the quantum Hall e�ect in graphene and give an introduction

to the fractional quantum Hall e�ect (FQHE) in our subsequent discussion.
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FIG. 2.22
Plot of the scanning tunneling spectra ( dI

dV
) for graphene. (a) shows spectra at zero field taken in the regions “A” and

“B” marked by squares in (b). A single-layer graphene is shown by the black curve, which vanishes at zero voltage.

The spectra for graphite is shown for comparison. (b) shows the map of dI
dV

at energy as marked by arrows in (a).
dI
dV

vanishes in the dark region, but is finite in the bright region. (c) shows the field dependence of the tunneling spectra

in the region “A.” The peaks are labeled with LL index n. In (d) the energies of the Landau levels showing a square-root

dependence on the level index, n (that is,
√
n) and for a few distinct field values. The symbols correspond to the peaks

in (c). The figure is taken from Li et al. (2009).

2.5 FRACTIONAL QUANTUM HALL EFFECT

The fractional quantum Hall e�ect (FQHE) was discovered by Tsui, Stormer and Gossard in 1982 at

Bell labs.11 They observed that at very high magnetic �elds, a 2DEG shows fractional quantization of

the Hall conductance. In particular they got a quantized Hall plateau of magnitude ρxy =
3h
e2

which

is accompanied by the vanishing of the longitudinal conductivity, ρxx at low temperature (T < 5K)

in GaAs and AlGaAs samples. As opposed to the IQHE, where an integer number of Landau levels

11 1E is called as the activation energy in the original paper by Novoselov et al. (2007).
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are occupied, here in FQHE the Landau levels are partially occupied. If one makes the magnetic �eld

large enough, the lowest Landau level will be partially �lled. We can expect that the system will form

some kind of a lattice, for example, a Wigner crystal or a charge density wave. Thus, it naively seems

reasonable that the system would like to minimize its potential energy, since there is no kinetic energy

left in the system corresponding to the lowest Landau level, and only trivial zero point energy is present

in the system. Thus, the ions should tend to stay away from each other and thus would form something

similar to a crystal lattice. However, surprisingly that does not happen, and instead the system becomes

an incompressible quantum liquid, which has gaps in the energy spectrum at �lling 1/m (m: odd, or a

rational fraction of the formn/m). So it is inevitable that the systemminimizes its energy by having gaps

at fractional values of �lling. The reason is that, owing to the presence of a large number of electrons

(macroscopically degenerate in any of the Landau levels), a many-body interaction is induced which

in fact makes the excitations above this incompressible ground state fractional. So in essence, the Hall

current carries a fractional charge. In fact, the excitations are called abelian anions, which are neither

fermions, nor bosons, if they are taken twice around a complete circle, they will pick up a phase which

is either 0 or π . The phenomenology is put forward by Jain (2007) in terms of composite fermions,

which we shall describe later.

One important thing that becomes apparent from the preceding discussion is that FQHE is impossible

to explain by invoking the interaction between the electrons that eventually split the degeneracy of

these enormously degenerate Landau levels, leading to the opening of a gap. The gap is in principle

similar to the cyclotron gap, ~ωc seen earlier in IQHE. However, this introduces another energy scale,

leading to a hierarchy of energy scales, for example, the Coulomb energy scale, namely, e2/εa0 (the

length scale in the denominator is taken as the Bohr radius) and the cyclotron energy. However, the

kinetic degrees of freedom of the electrons are frozen and hence get eliminated from the problem.

As said earlier, while the expectation is that of a trivial-insulating state, but at fractional �llings (less

than 1), something more interesting happens.

Now consider the e�ect of the Coulomb interaction between the electrons,

V =
e2

|ri − rj|
(2.148)

This interaction should lift the degeneracy of the ground states. A degenerate perturbation theory

seems may be an answer to this. However, degenerate perturbation theory problems are only solv-

able if the degree of degeneracy is such that it is analytically or numerically tractable. But here we are

stuck with extraordinarily largematrices to diagonalize. Even numerically, with the best computational

resources available nowadays, one cannot diagonalize for more than a few particles.

In the absence of these interactions, we have sharply de�ned Landau levels. In the presence of interac-

tions, the degeneracy goes away and the Landau-level broadens, resulting in a spectrum of states width

∼ECoulomb. Now the experimental data would be nicely explained, if a (tiny) gap exists for a �lling frac-

tion ν =
1
3 (ν =

1
3 is just an example), and the gap can exist at any of the rational fractions for which

FQHE is seen. Of course, more prominent the plateau in the FQHE plot shown in Fig. 2.4, larger is the
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gap. So we include some disorders that introduce localized states within the gap, which then give rise

to plateaus in ρxy (and ρxy = 0). The whole description requires a hierarchy of energy scales, namely,

~ωB � ECoulomb � Vdisorder (2.149)

2.5.1 Electrons in the symmetric gauge

The vector potential A in the mixed gauge can be written as (again yields B = Bẑ),

A = −
1

2
(r × B) =

1

2
(−Byx̂ + Bxŷ) (2.150)

The choice of the symmetric gauge breaks the translation symmetry in both x and y-directions. How-

ever, it preserves rotational symmetry about the origin. This of course means that angular momentum

is a good quantum number. This is the most convenient gauge to study the fractional quantum Hall

e�ect (FQHE). Furthermore, we can write down the non-canonical momentum as

π = p + eA = mṙ. (2.151)

This is gauge invariant but non-canonical. One can use this to form the raising and lowering operators,

a =
1√
eBh
π

(πx − iπy) =

√
π

heB
(πx − iπy)

a† =

√
π

heB
(πx + iπy)

(2.152)

where 2e~B = 2e h
2π B =

eBh
π
. Now,

[a, a†] = aa† − a†a =

( π

heB

)
(πx − iπy)(πx + iπy)− (πx + iπy)(πx − iπy)

=

( π

eBh

)
[π2

x + iπxπy − iπyπx + π2
y − π2

x + iπxπy − iπyπx − π2
y ]

=

(
2π i

eBh

)
[πxπy − πyπx]

=

(
i

eB~

)
[πx,πy] (2.153)

π is not the canonical momenta in the sense, [xi, π j] 6= δij and [π i, π j] = δij. However, they are gauge

invariant. The numerical value of π does not depend upon the choice of gauge. This can be proved

from the commutation relations,

{pi + eAi, pj + eAj} = −e

(
∂Aj

∂xi
−
∂Ai

∂xj

)
= −eεijkBk. (2.154)

Thus, [a, a†] = ( i
eB~
)(−ie~B) = 1

To explore whether the Landau levels yield the expected degeneracy, we can introduce another

momentum variable, namely,

π̃ = π − eA
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π̃ is not gauge invariant, and depends on the gauge potential chosen. The vector potential, A enjoys

the gauge freedom, that is,

A′
= A − ∇χ

where χ is an arbitrary scalar. This yields

π̃ ′
= p′

− e(A′
− ∇χ) = p′

− eA′
+ e∇χ .

The commutation relation for π̃ ′ are,

[π̃ ′

x, π̃
′

y] = ie~B (2.155)

which di�er only by a sign with respect to the π momenta. This is also an advantage of this new

momenta in that they obey,

[π̃i, π̃j] = 0.

Finally, the Hamiltonian is written in terms of the a and a† operators as

H = ~ωB

(
a†a +

1

2

)
= ~ωB

(
n +

1

2

)
(2.156)

where n = 0, 1, . . . and denote the indices of the Landau levels.

Now, as a matter of exercise, in order to explore the degeneracy of the Landau levels, we introduce a

second pair of raising and lowering operators, namely,

b =
1

√

2e~B
(π̃x + iπ̃y) (2.157)

b† =
1

√

2e~B
(π̃x − iπ̃y). (2.158)

They also obey [b, b†] = 1. These b, b† will yield the degeneracy of the Landau levels, as shown in the

following. Thus, a general state in the Hilbert space |n, m〉 is de�ned by

|n,m〉 =
(a†)n(b†)m

√
n!m!

|0, 0〉 (2.159)

where a |0, 0〉 = b |0, 0〉 = 0 andH =
1
2mπ · π =

1
2m (p + eA)2.

Let’s now construct the wavefunction in the symmetric gauge.We are going to focus on the lowest Lan-

dau level, n = 0 as it is of primary interest for discussing FQHE. The trick is to convert the de�nition

of a into a di�erential equation,

a =
1

√

2e~B
(πx − iπy) =

1
√

2e~B
[px − ipy + e(Ax − iAy)] (2.160)

=
1

√

2e~B

[
−i~

(
∂

∂x
− i

∂

∂y

)
+

eB

2
(−y − ix)

]
(2.161)
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using z = x − iy and z̃ = x + iy. Remember this is not usually how we de�ne z and z∗ (or z̃), however,

we shall stick to this de�nition. Also, de�ne,

∂ =
1

2

(
∂

∂x
+ i

∂

∂y

)
(2.162)

and,

∂̃ =
1

2

(
∂

∂x
− i

∂

∂y

)
(2.163)

which obey ∂z = ∂̃ z̃ = 1 and ∂ z̃ = ∂̃z = 0.

∂z =
1

2

(
∂

∂x
+ i

∂

∂y

)
(x − iy) =

1

2
(1 + 1) = 1.

So a and a† in terms of the coordinates z can be written as

a = −i
√

2

(
lB∂̃ +

z

4lB

)
; a† = −i

√

2

(
lB∂̃ −

z̃

4lB

)
. (2.164)

Now, the lowest Landau level is found by the one which is annihilated by the operator a.

a |0,m〉 = 0

−i
√

2

(
lB∂̃ +

z

4lB

)
|0,m〉 = 0

|0, m〉 is called ψLLL(z, z̃), where LLL stands for lowest Landau level.

ψLLL,m=0 ' e−|z|2/4l2B

The ground state is known to be a Gaussian for a linear harmonic oscillator.12

One can construct the higher Landau level wavefunctions by employing b† successively to the m = 0

state. This yields,

ψLLL,m '

(
z

lB

)m

e−|z|2/4l2B . (2.165)

It is straightforward to ascertain that ψLLL,m are eigenfunctions of Jz, de�ned by

Jz = ~(z∂ − z̃∂̃) (2.166)

and obey, JzψLLL,m = m~ψLLL,m.

Let us explore the degeneracy associated with the Landau levels ψLLL,m, which is obtained by noting

that the wavefunction with angular momentum, m is peaked on a circular ring of radius, r = lB
√
2m.

The number of states in an area, A = πR2 isN = πR2/πr2 ' eBA/2π~which is a result we have seen

earlier.

12 (y +
∂
∂y )u(y) = 0, or ∂u

u = −ydy. The solution is u = e−y2/2.
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Aquick recap on the ongoing discussion reveals that for a constantmagnetic �eldB, the vector potential

can be obtained as

A =
1

2
(r × B) =

B

2
(−yx̂, xŷ, 0). (2.167)

Writing down the free particle HamiltonianH =
1
2m (p + eA)2 in the above gauge,

H =
1

2l2B

[(
−i

∂

∂x
−

y

2

)2

+

(
−i
∂

∂y
+

x

2

)2
]
. (2.168)

It is convenient to introduce the complex variables z and z∗ via,

z = x − iy = re−iθ , z∗
= x + iy = reiθ

The derivatives can be written as13

∂

∂x
=
∂

∂z
+

∂

∂z∗
,
∂

∂y
= −i

(
∂

∂z
−

∂

∂z∗

)

In terms of z and z∗, the Hamiltonian reads as

H =
1

2l2B

[
1

4
|z|2 − 4

∂2

∂z∂z∗
− z

∂

∂z
+ z∗

∂

∂z∗

]
. (2.169)

The Hamiltonian has few similarities with that of the harmonic oscillator, especially because of the

mixed second derivative and the two �rst derivatives. In order to solve the Hamiltonian, a set of ladder

operators can be introduced, namely,

b =
1

√
2

(
z∗

2
+ 2

∂

∂z

)
, b† =

1
√
2

(
z

2
− 2

∂

∂z∗

)

a =
1

√
2

(
z

2
+ 2

∂

∂z∗

)
, a† =

1
√
2

(
z∗

2
− 2

∂

∂z

)
. (2.170)

These operators obey

[a, a†] = [b, b†] = 1 (2.171)

with all other commutators vanish. This facilitates writing the Hamiltonian in a familiar form,

H = a†a +
1

2
. (2.172)

The eigenvalue of a†a denotes the Landau level index n.

Let us now concentrate on the b-operators. They play a role to play in writing down the z-component

of the angular momentum, namely, Jz, where

Jz = −i~
∂

∂φ
= −~

(
z
∂

∂z
− z∗

∂

∂z∗

)
= a†a − b†b (2.173)

13 Somewhat non-trivial de�nitions of z and z∗ are adopted to make sure of the analyticity of the wavefunction in z.
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The eigenvalue of Jz is−m~where m takes values from−n to+n, n being the Landau level (LL) index.

b†(b) increases (decreases) the value ofm by one unit, while keeping the LL index unchanged.However,

a†(a) increases (decreases) n and decreases (increases) m by one unit.

Clearly, the harmonic oscillator problem here has two indices, namely, n and m, which is apparent

through,

H|n,m〉 = En |n,m〉 (2.174)

where

|n,m〉 =
(b†)n+m

√
(n + m)!

(a†)n
√

n!
|0, 0〉

where |0, 0〉 denotes a Gaussian,

|0, 0〉 =
1

√
2π

e−|z|2/4l2B

and obeys,

a |0, 0〉 = 0 = b |0, 0〉.

One can generate the family of the lowest Landau levels by successively operating b† on |0, 0〉, that is,

(b†)m |0, 0〉 = |0,m〉 =
zme−|z|2/4l2B
√
2π2mm!

√
2π2mm! appears the normalization constant and zm is a polynomial in z, where each z appears due

to acting b† on |0, 0〉 each time.

It can be checked that |0, m〉 is an analytic function of z, since

∂

∂z∗
|0,m〉 = 0,

which is evident from the de�nition of ∂
∂z∗ (=

1
2 (

∂
∂x − i ∂

∂y )) as the Cauchy-Riemann condition is

satis�ed.

Now getting a Landau level with arbitrary indices, namely, |n, m〉, we need to simultaneously act a†

n times and b† (n + m) times. This is necessary because a† reduces the m index by one unit each time.

Thus,

|n,m〉 =
1

2π2m+2nn!(n + m)!

(
a†
)n (

b†
)n+m

e−|z|2/4l2B

=
1

2π2m+2nn!(n + m)!

(
z∗

− 2
∂

∂z∗

)n (
z − 2

∂

∂z

)m+n

e−|z|2/4l2B . (2.175)

It has a somewhat complicated form, but at least denotes an expression which can be evaluated for a

given value of n and m.
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Let us more closely discuss the physics of these fractional quantum Hall states. The �rst approach

to the fractional quantum Hall states was due to Laughlin, who described the �lling fractions given

by ν = 1/m, (m is an odd integer). Since the resultant matrix was too di�cult to diagonalize, so

Laughlin wrote down the answer in the following sense. He wrote down the wavefunction by intuition

that preserves the physical properties and the symmetries of the system. To understand the Laugh-

lin wavefunction, let us consider only two particles at the lowest Landau level. Consider a potential,

V = V(|r1 − r2|). For such a potential, the wavefunction is an eigenstate of the angular momentum

(recall theH-atomproblem). In order for the angularmomentumbasis to be used,weneed a symmetric

gauge, namely,

A = −
1

2
(r × B) = −

By

2
x̂ +

Bx

2
ŷ. (2.176)

The choice of the gauge breaks the translation symmetry in both the x and the y direction, how-

ever it preserves rotational symmetry about the origin. This means that angular momentum is a good

quantum number and hence justi�es using the angular momentum basis.

2.5.2 The lowest Landau level (LLL)

The (unnormalized) single-particle wave function in the lowest Landau level takes the form,

ψm = zme−|z|2/4l2B (2.177)

with z = x − iy. These states are located on a ring of radius r = lB
√
2m. The exponent m labels

the angular momentum. The largest value of m for which the state falls inside the ring is given by

m = R2/2l2B,R being the corresponding value of the radius of the ring.m nowdenotes the total number

of eigenstates in the lowest Landau level that falls inside the ring. That is, 0 ≤ m ≤ N8, whereN8 =
A
80

is the number of �ux quantum. Hence, the degeneracy per unit area is given by 1
2π l2B

=
eB
h =

B
h/e . As

long as we neglect mixing between the successive Landau levels, a condition that should be valid for

V � ~ωB then a two particle eigenstate takes its form,

ψ = (z1 + z2)
M(z1 − z2)

me−(|z1|
2
+|z2|

2)/4l2B (2.178)

where M is the center of mass angular momentum, m is the relative angular momentum. M and m are

non-negative integers (see discussion below), which make the pre-factor a polynomial in z1 + z2 and

z1 − z2. Hence, a state formed out of the linear combinations of ψm in Eq. (2.178), and hence lies in

the lowest Landau level. Of course, m must be odd to yield an antisymmetric wavefunction.

Now we can write down the wavefunction without explicitly solving the Schrödinger equation for

any general potential of the form V(r) (in principle, it should be an unsolvable problem). We remind

ourselves that we are in the lowest Landau level that allows us to perform the above form of the

wavefunction. For N-particles, the many-body state can be written as

ψ(z1, z2, . . . , zN) = f (z1, z2, . . . , zN)e
−
∑N

i=1 |zi|
2/4l2B (2.179)

where f (z) is a polynomial in zi and contains the maximum power of any zi occurring in N8. It also

takes care of the statistics, that is, for interchanging zi ↔ zj, f (z) picks up a negative sign.
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With all the points discussed above, Laughlin made a suggestion for the ground state wavefunction

(Laughlin, 1983) as

ψ(z1, z2, z3 · · · zN) =

∏

i<j

(zi − zj)
me−

∑N
i=1 |zi|

2/4l2B . (2.180)

So the symmetry function is �xed as (zi − zj)
m. The above form makes sense as it keeps the electrons

apart and thus reduces the Coulomb interaction (or the potential energy, as discussed earlier). This is

the celebrated Laughlin wavefunction of FQHE. This can be proved easily by writing,

Jz |ψm〉 = i~

(
x
∂

∂y
− y

∂

∂x

)
|ψm〉 = m~ |ψm〉 (2.181)

If m is an odd integer, for example, 1, 3, 5 etc. then f is an antisymmetric function.

The pre-factor vanishes of order m if two electrons happen to come close. Meanwhile, the exponential

factor vanishes as i and j get far away from the origin. The angularmomentum of these states ism~. For

the lowest Landau level, there is only one state for a given value of m, and it should only be a positive

value of m. The exclusion of the negative values is an artefact of the chirality created by the presence

of the magnetic �eld.

It isworth comparing thiswith the scenario corresponding to the Landau gauge,which haddiscrete lev-

els as the basis states. However, physical properties, such as the density of states (per unit area) should

be independent of the choice of the gauge. It can be tested by taking themod square of Eq. (2.177). The

maximum value of this probability density occurs at R =

√
2ml2B. Thus, the area of a circle given by

πR2(= 2mπ l2B) contains m �ux quanta, which yields the familiar result of one state per Landau level

per �ux quantum piercing the quantum Hall sample.

Let us show that this wavefunction has the desired �lling fraction, which is an important aspect of the

Laughlin state. The exponent m is not arbitrary and is related to the �lling fraction. For this purpose,

let us focus on the wavefunction for a single-particle coordinate, say, z1. The terms that depend upon

z1 in the pre-factor can be written as

∏

i<j

(zi − zj)
m

∼

N∏

i=2

(z1 − zi)
m (2.182)

= (z1 − z2)
m(z1 − z3)

m
· · · (z1 − zN)

m (2.183)

Thus, there are m(N − 1) powers of z1. Hence, the maximum angular momentum of the �rst particle

is m(N − 1). So the maximum extent of the wavefunction is given by the radius, R ≈
√
2mNlB, where

(N − 1) is approximated by N for large N. Correspondingly, the area over which it spans is given by

πR2
≈ 2πmNl2B.

Now, recall that the number of states in the �lled landau level is AB/80 ≈ A/2π l2B where B/80 is

the inverse of the area. Thus putting A = πR2
= 2πmNl2B, lB =

√
~

eB , the total number of states is
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given by

2πmNl2B
2π l2B

= mN (2.184)

Since the total number of states is mN, the �lling fraction is 1
m (m: odd) as we have discussed earlier.

An exact diagonalization of the Hamiltonian matrix for a small number of particles shows that the

Laughlin wavefunction is extremely accurate.

Let us revisit the above discussion in a slightly di�erent language. The total angular momentum is the

sum of the angular momentum of individual electrons. So the total angular momentum carried by the

Laughlin state is as follows.

A typical term in the Laughlin wave function is

z01zm
2 z2m

3 · · · z
(N−1)m
N e−

∑N
i=1 |z2i |

where N denotes the number of electrons. Since the above state has angular momentum m~ for the

individual electrons, so the total angular momentum is

|Jtot| = m~

N−1∑

n=0

n =
(N − 1)Nm

2
~

All other contributions will yield the same angular momentum.

On the other hand, the maximum angular momentum, namely, nmax~ that an electron can have is

given by the maximum power of the variable z in the wavefunction. Here,

nmax = (N − 1)m.

Consider the form of the lowest Landau level.

ψm = zme−|z|2/4l2B

The probability of �nding the electron at a given z is given by |ψ(z)|2 (or |ψ(r)|2). This quantity has a

sharp peak at r = rm.

rm =

√

2mlB

Thus, the area over which the Landau levels are located is given by

A = πr2max = 2πnmaxl2B
= 2πm(N − 1)l2B (2.185)

Thus, the Laughlin state is realized at the �lling fraction

ν =
N1A

A
=

N

m(N − 1)
=

1

m

for large N.
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Another important feature of the Laughlin wavefunction is that the argument of the Gaussian can be

written as

exp

(
−

∑

i

z2i

)
= exp


−

∑

i 6=j

|zi − zj|
2
+

∑

i

z2i


 .

By writing z̃2 =
∑

i z2i , we note that z̃ is the coordinate of the center of mass. Thus, apart from this

trivial factor in the exponent, the wavefunction depends on the relative (complex) coordinates, namely,

|zi − zj|, which implies that the wavefunction is uncorrelated and similar to the wavefunction seen for

the integer version of the QHE.

This brings us to the most potential issue: whether the much talked about Laughlin wavefunction

yields the Hall conductivity quantized as ν e2

h with ν =
1
m , m is an odd integer? Furthermore, what

does a fractional coe�cient of e2

h exactly mean in terms of fractionalizing the unit of charge?

2.5.3 Fractional charge and the Hall conductivity

The existence of the fractional electron charge is surprising, as electrons are indivisible objects. Also,

and probably more importantly, how does the Laughlin wavefunction produce the Hall conductivity

with plateaus at rational fractions? Consider the Corbino disc argument applicable to the IQHE (see

Fig. 2.12). In order to introduce a connection between the Corbino disc model and the Laughlin wave-

function written above, we consider enhancing the magnetic �eld B in a controlled manner so as to

introduce one �ux quantum,80 in any region of the disc. The questions are that: how does that modify

the Laughlin wave function? Recall that the pre-factor of the Gaussian in the Laughlin wavefunction

is given by zm (see Eq. (2.177)), where the index m counts the number of �ux quantum. Thus, with

the above modi�cation, “m” increases “m + 1,” which makes the maximum power of zi increase from

mmax = Nm to Nm + 1. The situation to the Laughlin wavefunction is incorporated by introducing,

ψ ′
=
[
5N

i=1zi

]
ψ0(z1, z2 · · · zN) (2.186)

where ψ0(z1, z2 · · · zN) is the usual Laughlin state. The above wavefunction ψ ′ dismisses the origin

to be a special point about which the original Laughlin state was centered (or equivalently, the single-

particle density had a peak at the origin). Since the origin, (z0 is the origin) does not play an important

role, we are allowed to write

ψ ′(z0) =
[
5N

i=1(zi − z0)
]
ψ0(z1, z2 · · · zN), (2.187)

assuming z0 is not within a distance lB from the edge of the disc, so that the single particle density

remains uniform up to a distance lB relative to the edge of the disc. In e�ect, the probability of �nding

an electron at the origin is missing and its density within an area l2B about the origin is reduced. In

the basic language of solid state physics, a missing electron is equivalent to the appearance of a “hole”

which is what precisely happens here.
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Now the magnetic �eld B is increased such that m �ux quanta are added in the process and m holes

are created. This yields the Laughlin state to assume the form,

ψm = 5N
i=1(zi − z0)

mψ0(z1, z2 · · · zN) = 5N+1
i=1 (zi − z0)

m exp

(
−

N+1∑

i=1

z2i
4l2B

)
(2.188)

The above form precisely coincides with the case of N + 1 electrons and consequently corresponds

to m(N + 1) �ux quanta. Thus, the addition of an extra electron compensates for the m added holes.

Hence, the charge of the hole is

eh = −
e

m
. (2.189)

This accounts for the fractional charge. But at the same time, this means that the probability of �nding

an electron near the origin is reduced by 1/m. This probability helps us to reconcile the very idea of

the Corbino disc, that is transfer the “fractional” charge from the center to the edge of the disc.

We rerun the same argument as done for the IQHE. For this argument to be valid, the geometry of the

ring is important. Here, in addition to the background magnetic �eld B that threads the sample, we

can thread an additional �ux8 through the center of the ring. This8 can a�ect the quantum state of

the electrons.

Let us �rst see what this �ux 8 has got to do with the Hall conductivity. Suppose we slowly increase

8 from 0 to 80(=
h
e ) i.e., within a time t0 �

1
ωB

. This induces an emf around the annular region

ε = −
∂8
∂t =

−80
t0

. The purpose of this emf is to transport “n” electrons from the inner circumference

to the outer circumference. This would result in a current in the radial direction, Ir = −ne/t0. Thus,

the Hall resistivity is

ρxy =
ε

Ir
= −

80

t0
·

t0

(−ne)
=

h

e2
·
1

n
(2.190)

The same arguments hold equally for the IQHE and FQHE, in the former n is an integer, while n is a

fraction for the latter. In FQHE, the interpretation is as follows: as we increase the �ux from8 to80, a

charge of e/m is transported from the inner circumference to the outer one when the �ux is increased

by80 units. The resultant Hall conductivity (or equivalently the resistivity) becomes,

σxy =
e2

h
·
1

m
. (2.191)

Thus, a whole electron is transferred only when the �ux is increased by m80 units.

Shot noise measures of the fractional plateaus indeed con�rm the existence of fractional charge. In the

experimental setup (Glattli et al., 2000), the two energy modes at opposite edges of the Hall sample are

coupled by a quantum point contact, which facilitates a �ow of current between the two edge channels.

The random transfer of charges yields �uctuations (noise) in the current. In the weak coupling regime,

the noise intensity is proportional to the backscattered current and the (fractional) charge. Thus, the

intensity of the shot noise experiments detect fractional electronic charges.
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2.5.4 Fractional Hall fluid and the plasma

The variational wavefunction corresponding to the lowest Landau level can be written as

ψm(z1 · · · zN) = 5N
j<k(zj − zk)

me
−
∑

j |zj|
2/4l2B (2.192)

The wavefunction is applicable to a �lling fraction ν =
1
m , (m is an odd integer) such as ν =

1
3 (for

m = 3). However, if only 1/m fractions were found in experiments, life would have been simpler.

Unfortunately, many other fractions were found, including the improper ones.

Let us enumerate a few properties of the wavefunctions.

i. It is antisymmetric with respect to the swapping of coordinates of the fermions (zj ↔ zk),

ψm(z1 . . . . zj, zk . . . . zN) = −ψm(z1 . . . . zk, zj . . . . zN)

In order for this to be valid, the index m must be odd.

ii. A surprising fact is revealed when the unnormalized probability density of the Laughlin states is

computed. That is,

|ψm(z)|
2

= |5N
j<k(zj − zk)

me
−
∑

j |zj|
2/4l2B |

2.

The two terms (the Jastrow factor and the Gaussian) in the RHS behave di�erently. That is, pre-

factor (of the Gaussian) or the Jastrow factor tries to keep the fermions away, and it grows larger as

they move further away. However, the exponential term shrinks as the fermions spread out. Under

this competing scenario, can it ensure a uniform density?

There is an answer to the rather complicated problem, and again it is due to Laughlin, via an analogy

with classical plasma, albeit the Hall �uid is at a very low temperature. The norm of the wavefunction

is written as

|ψm(z)|
2

= e−βVplasma , (2.193)

where

Vplasma = 2m2
∑

j<k

ln|zj − zk| +
m

2l2B

∑

j

|zj|
2. (2.194)

β is identi�ed as 1/m. So Eq. (2.193) yields the density of the plasma. It should be remembered that it is

only an analogy where a classical plasma constitutes of particles with charge m in a uniform (neutral)

background. The existence of a plasma-like state at a very low temperature should be contradictory to

each other, and thus suggests of a liquid phase of fermions. It would have been a crystalline state (for

example, a Wigner crystal) at large values of the charge “m.” It is indeed a new state of matter, and is

often denoted as the Laughlin state.

In order to understand the potentialVplasma, it can be noted that the electric �eld,E(r) and the potential,

φ(r) due to a point charge q are given by

E(r) =
qr

r2
, and φ(r) = −qln(r) (2.195)
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These yield the Laplace’s equation in 2D as

∇ · E = −∇
2φ(r) = 2πqδ2(r), (2.196)

where δ2(r) is the two-dimensional Dirac delta function. The �rst term in Eq. (2.194) is explained by

the logarithmic dependence of the potential, which yields

V
(1)
plasma = m2

∑

j<k

(
−ln |zj − zk|

)
. (2.197)

We are missing a factor of “2” here, but that can be absorbed in the de�nition of β (β can be rede�ned

as 2/m). The second term can be understood by noting that,

∇
2 |z|2

4
=

1

l2B
, or, ρ = −

1

2π l2B
, (2.198)

where the charge density ρ satis�es the Poisson equation with a potential,

V(2)plasma =
|z|2

4
. (2.199)

This term denotes the energy of “m” charges interacting with the negative charge density. It is obvious

that 2π l2B is the area that contains one quantumof �ux (80 = h/e), whichmakes the background charge

density to be B/80, which also denotes the density of �ux in the unit of the �ux quantum.

While the Laughlin wavefunction demonstrates a lot of merit, one pertinent question remains. How

good is the wavefunction in practical cases? To enumerate its success, the overlap between the Laughlin

state and the exact state (obtained via exact diagonalization) for 3 particles, and a few representa-

tive (odd) values of m and corresponding to a few di�erent forms of the potential V(r) (for example,

V(r) = 1/r,−ln r, e−r2/2 etc) are obtained. The overlap between the two results is very close to 100%,

and thus ensures that the proposed wavefunction is indeed a good one (Laughlin, 1983).

2.5.5 Fractional statistics

The occurrence of quantization of the Hall plateaus at fractional �lling in the expression bears a tes-

timony for the quantization of the fractional charge. Ironically, the fractionally charged quasiparticles

being localized at the quantum Hall plateaus, do not conduct and the contribution to the Hall current

is due to the background (neutral) state, which is incompressible and does not contain any quasiparti-

cles. Nevertheless, the fractional charge requires particle statistics just as the integral (including zero)

charge particles. It should be kept in mind that the particle statistics show up in the form of collective

phenomena, such as the formation of a Bose Einstein condensate, or a degenerate Fermi gas.

In this context, wemay recall that we have been exposed to the concept of identical particles, which are

either Bosons or Fermions and obey the properties of symmetry or antisymmetry, respectively, under

the exchange of particles pairwise. That is, for the two particles,

ψ(r1, r2) = ±ψ(r2, r1), (2.200)
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where the + sign refers to Bosons and the − sign is applicable to Fermions. However, it is also true

that probabilities are the same, namely,

|ψ(r1, r2)|
2

= |ψ(r2, r1)|
2 . (2.201)

Such that the wave functions, upon exchange of particles, at most pick up a phase,

ψ(r1, r2) = eiπαψ(r2, r1). (2.202)

Repeating the exchange brings back the same state, which implies e2π iα
= 1 where α = 0 for Bosons

and α = 1 for Fermions. There is a subtle point here, which is not explicitly stated. In 3 dimensions,

a rotation by 2π brings us back to the original state which should be equivalent to changing a pair

of particles twice. Such exchanges (or equivalently a rotation by 2π) are continuously, also known as

world lines, connected and do not cross each other’s path. However, in two dimensions, there is a

big di�erence where such paths cross and wind around each other. For example, there is a distinction

between a clockwise and an anti-clockwise exchange of particles, though in either case, their paths get

tangled and form braids. A braid describes a pattern formed by the interaction of two or more strands

of wire (or hair). Thus, a clockwise braid is distinct from an anti-clockwise braid and are said to belong

to di�erent topological sectors. A tangled path implies an arbitrary phase involved in the exchange of

particles because the paths cross, there arises an ambiguity in the phase and hence α can assume any

value in the interval [0 : 1]. More concretely, say, for an anti-clockwise exchange,

ψ(r1, r2) = eiπαψ(r2, r1). (2.203)

A clockwise exchange results in

ψ(r1, r2) = e−iπαψ(r2, r1). (2.204)

These particles are known as anyons owing to their allegiance to “any” statistics that interpolates

between bosons and fermions. “Any” statistics here refers to fractional statistics and apply to the quasi-

particles (or more aptly called as the quasiholes). The charge of the quasiparticles or the anyons is

fractional.

Without going into elaborate calculations, we refer to published works by D. Arovas, J. Schrie�er and

F. Wilczek (Phys. Rev. Lett. 53, 772 (1984)) and D. Tong in “The Quantum Hall E�ect” (TIFR Infosys

lectures), the Berry phase around a closed loop for those quasiparticles can be obtained as

8B =
e8

mh
=

8

m80
(m : odd) (2.205)

where 8 is the �ux enclosed by a quasiparticle around a closed contour and 80 = the �ux quantum

(h/e). It also has the interpretation that

8B =
e∗8

h
, (2.206)

where e∗ refers to a fractional charge.
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2.6 COMPOSITE FERMIONS

To understand the concept of composite fermions, let us review the concept of vortices. In a reason-

ably di�erent sense than the supercomputers (where magnetic �ux lines puncturing a superconductor

creates a vortex in a type-II material where gradient in the phase of a condensate wave function pro-

duces circulating current that is detectable in experiments), vortices in FQHE can be understood as

follows. A complex number, z (= reiθ ) has a vortex at the origin, implying that a complete circle around

the origin creates a phase change of 2π . Similarly, the FQHE wave function contains (z − z0)
2p which

implies particle “1” sees 2p vortices to be carried by particle “2” and vice versa. Thus, every particle can

be imagined to carry an even number of vortices. The particles carrying the vortices are certainly not

real. There are no real magnetic �ux quanta attached to them. However, the intuitive picture leads us

to the concept of composite Fermions (CF) (Jain, 2007) and their relevance to the fractional statistics

(Leinaas et al., 1977; and Wilczek, 1982).

A composite fermion is de�ned as the bound state of a fermion and an even number of vortices or

equivalently �ux quanta (remember the equivalence of �ux quantum and vortices come from the fun-

damental fact they are topologically similar in the sense they both result in phase change of 2π upon

circling about a closed path around it). The picture portrayed above is only for convenience of the visu-

alization of a physical scenario, however in reality, there are no bound states of fermions and vortices

(see Fig. 2.23).

Thus a two-dimensional systems in presence of a magnetic �eld yields a scenario where as if the elec-

trons capture a signi�cant fraction of the external �eld, thereby the “original” electrons transform

into the CF. Several experiments, such as thermopower (Zeitler et al., 1993; and Ying et al., 1994),

Shubnikov-de Haas (SdH) oscillations and their cyclotron orbits (Leadley et al., 1994), the observa-

tion of a Fermi sea (Halperin et al., 1993). Importantly, the formalism of CF was capable of explaining

the physics associated with the quantumHall plateau observed at fractional �lling of the Landau levels.

The role of interaction in the context of FQHE has been illustrated earlier and interestingly, it is the

only energy scale left in the problem (the kinetic energy of the electrons become an irrelevant constant).

B

6CF4CF2CF

FIG. 2.23
Electrons capture 2, 4 and 6 flux quanta and the composite particles are known as composite Fermions (CF).
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These strongly interacting electrons in the presence of a magnetic �eld, B transforms into such weakly

interacting composite particles (CF) in a much weaker �eld, B∗ where B∗ is reduced from B (being

absorbed by the electrons) by 2pφ0ρ, namely,14

B∗
= B − 2pφ0ρ





2p : an integer

φ0 : �ux quantum

ρ : density

(2.207)

The situation is analogous to a �lling fraction ν∗ for the CF that corresponds to a fraction ν of the

original electrons, and they are related to each other by

1 =
ν∗

ν
− 2pν∗

1 = ν∗

(
1

ν
− 2p

)
(2.208)

ν = ν∗(1 − 2pν). (2.209)

Equivalently, one can write,

1

ν∗
= ±

(
1

ν
− 2p

)
(2.210)

Not only is the fundamental property of the fermions obeyed, for example the exchange of fermions

involves a negative sign, the Aharonov–Bohm phase associated with the cyclic variation of the wave

function around a closed path is unity.15

However, there is an important development that has occurred here. The highly degenerate many par-

ticle ground state for fractional �lling (ν < 1) in the absence of interaction transforms into the ground

state of theCFwith drastically reduced degeneracy corresponding to a �lling ν∗ > 1. For integral values

of ν∗, the situation yields a non-degenerate ground state. The loss of degeneracy makes the interaction

among the CF to be vanishingly small. Thus, the FQHE of the original electrons transforms into IQHE

of the CF and should yield a great simpli�cation to a rather complex problem. The wavefunction for

the CF can be obtained from the same variational state written down by Laughlin as in the following,

ψν =

∏

j<k

(zj − zk)
2pφν∗ (2.211)

where φν∗ denotes the wavefunction for the non-interacting electrons a �lling ν∗ and (zj − zk)
2p is the

similar Jastrow factor that was present in the Laughlin’s proposal, which ensures keeping the CF apart,

and no two of them come close to one another.16

14 To arrive at the expression, consider the AB phase of a particle executing a circular motion of area A (disregarding themotion

of all other particles) in an e�ective �eld B∗ which is a result of 2πAB∗/φ0 ≡ 2πAB/φ0 − 2π(2p)ρA, where the last term

denotes the �ux due to 2p vortices.
15 a phase, e2πφ/φ0 with φ = 2pφ0 yields, e2π(2p)

= 1.
16 The CF function vanishes as ν2(2p+1) instead of ν2 that is familiar for electrons obeying Pauli principle.
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The success of the composite fermion picture can be tested by plotting the magneto (longitudinal)

resistivities as a function of the inverse �lling fraction 1
ν∗ which is proportional to B∗. A comparison

between the IQHE and FQHE resistivities demonstrates the dips in the resistivity (see Figs. 2.3 and 2.4)

correspond to integer �lling fractions, while the ones in the lower panel correspond to the fractional

�llings, but are related by

ν =
ν∗

2ν∗ + 1
(2.212)

which can be obtained by putting p = 1 in Eq. (2.210). Thus, the IQHE of CF occurs at �lling frac-

tions ν∗
= n where n is an integer. The �lling fractions, despite being very di�erent, look quite similar.

This similarity re-emphasizes the dynamics of the interacting electrons that resembles that of the

non-interacting CF very closely at a reduced magnetic �eld B∗.

Many of the observed fractional values for the quantum Hall plateaus can be obtained by putting

p = 1, 2, 3 etc in Eq. (2.210) which can be viewed potentially as in Fig. 2.23.

Other fractions can be obtained by putting a negative sign in the following equation:

1

ν∗
= ±

(
1

ν
− 2p

)
, (2.213)

Table 2.1
A few representative

p values and the cor-

responding ν values

are shown.

p ν =
ν
∗

2pν∗
+1

1 1
3
, 2
5
, 3
7
· · ·

−1 2
3
, 3
5
, 5
7
· · ·

2 1
5
, 2
9
· · ·

−2 2
7
, 3
11

· · ·

where, negative sign denotes aB∗ that is directed antiparallel toB. A fewobserved fractions

and the corresponding (even) number of �ux quanta (vortices) are tabulated in Table 2.1.

Direct numerical solution of the Schrödinger equation for 10-15 particles in the presence

of a pairwise Coulomb potential of the form,

H =
1

4πε0

∑

j 6=k

e2

|rj − rk|
(2.214)

has been solved exactly.17 Corresponding to ν∗ equal to an integer (say, n) one expects

a gap in the spectrum. At such values of �lling, the Coulomb interaction lowers the

enormous degeneracy of the lowest Landau level by a great extent, so as to produce a

non-degenerate ground state. This state notionally denotes ν∗(= n) �lled with Landau

levels of CF. For the electrons, the �lling fraction is of course ν which denotes a fraction (with odd

denominator). Further, the wavefunctions of this CF has an excellent overlap with the wavefunctions

stated in Eq. (2.179).18

In order to recover Laughlin’s wavefunction, consider ν∗
= 1 which denotes ν =

1
2p+1 . The wavefunc-

tion corresponding to the �lling ν is

17 Since the Coulomb potential is the only energy scale left in the problem, we have represented it by the Hamiltonian,H.
18 For an excellent discussion on the subject see Jain (2007).

Quantum Hall Effect 2-59

 07 D
ecem

ber 2024 17:11:54



Principles

ψν= 1
2p+1

=

∏

j<k

(zj − zk)
2p8ν∗=1

=

∏

j<k

(zj − zk)
2p


∏

j<k

(zj − zk) e
−

1

4l2B

∑
l|zl|

2




=

∏

j<k

(zj − zk)
2p+1 e

−
1

4l2B

∑
l|zl|

2

(2.215)

This is exactly Laughlin’s wavefunction if one identi�es m = 2p + 1.

Thus far, we have identi�ed that the challenges of FQHE are too many, and most importantly it has to

do with the absence of any “small” parameter of the problem. The carriers are frozen, and hence there

is no kinetic energy, leaving the interparticle interaction to be the only energy scale of the problem.

This impedes known methods of solution to be applicable. Furthermore, the enormous degeneracy of

the Landau levels (without invoking the Coulomb interaction) aggravates this problem. The third, and

quite a crucial one, is the unavailability of a so-called “normal state,” that is, there is no known state

which becomes unstable in favor of a fractional quantum Hall state by turning on a weak interparticle

interaction.Hence, there is no small expansion parameter, humongously large number of ground states

that are degenerate in the absence of interaction, and the non-existence of a normal �uid state put

together narrate about an enormously complicated problem.

However, this enormously complicated problem is intuitively solved by writing a wavefunction (all

credits to Laughlin), whichwehave denoted by |ψ(ν)〉. Using thiswavefunction, the energy eigenvalues

for the problem can be written as

〈H〉 = Eν = 〈ψν |
∑

j<k

1

|rj − rk|
|ψν〉 + Ve−b + Vb−b, (2.216)

where the �rst term on the RHS of Eq. (2.216) is the Coulomb energy, and the last two denote the

interaction energy of the electron-background and between the background entities, such as ions etc.

Importantly for us, the LLL index ν is given by

ν =
ν∗

2pν∗ ± 1
, (2.217)

where the index ν∗ is de�ned for the functions of the non-interacting electrons, namely, φν∗ . Thus,

a strongly interacting problem in the presence of an external magnetic �eld B is reduced to a non-

interacting one in an e�ective �eld given by

B∗
= B − 2pν80. (2.218)

Thus, B∗ can be zero if B is exactly canceled by the second term in Eq. (2.218), thereby leading to a non-

degenerate state (since the degeneracy is proportional to B), or even be negative, where the vortices

carried by composite particles point opposite to the applied �eld. Further,ψν contains a Jastrow factor,

namely,5j<k (zj − zk)
2p which projects the wavefunction onto the LLL.

2-60 Modern Perspectives in the Study of Electronic Systems

 07 D
ecem

ber 2024 17:11:54



scitation.org/books

ν  = 
3

7
ν*

= 3

FIG. 2.24
The schematic plots show the integer quantum Hall effect for ν∗

= 3 (right) and the fractional quantum Hall effect for

ν =
3
7
(left).

Let us consider the following example. A correspondence between the integer quantum Hall ground

state with ν∗
= 3, that is, three �lled levels and the corresponding fermion picture with ν =

ν∗

2pν∗+1 is

shown schematically in Fig. 2.24.

The above discussion yields an intuitive picture of composite fermions which are “bound states” of

fermions and 2p “vortices” (p is an integer). By absorbing the “vortices” or the �ux quanta, the electrons

minimize the interparticle interaction energies. As these composite structures (particles + vortices)

propagate in a quantum Hall �uid, they create irreducible phases, which (partially or fully) cancel the

phase due to the external magnetic �eld.

The composite fermions truly are new entities, and not seen before. Since a vortex has a quantum

mechanical origin, the composite fermions are quantum objects (owing to the quantum mechanical

phases associated with the vortices) as well. However, in a �uid they behave as free particles. Cooper

pairs, which are bound states of two electrons formed in the presence of lattice excitations, that is,

phonons, bring up a close analogy, but are distinct in many ways as well. In fact, the topological

quantization of the vorticity is directly linked with the quantization of the Hall plateaus.

We prefer to stop here on the topic of composite fermions and suggest more specialized articles and

books on the subject. Particularly, the book by Jain (2007) has given an extensive account of com-

posite fermions and, in general, on the theory of the fractional quantum Hall e�ect in a fairly lucid

manner.
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2.7 HIERARCHY APPROACH TO FQHE

We have so far discussed the Laughlin wavefunction and a composite fermion scenario to understand

the physics of the fractional quantum Hall �uid. There are signi�cant merits in both approaches. The

Laughlin wavefunction is similar to the Jastrow function earlier employed to the super�uids, such

as 4He. A number of fractions that are experimentally observed could be explained by the Laughlin

states, while a very large number of them remained elusive. On the other hand, the composite fermion

ideas were motivated by considering FQHE to be analogous to IQHE, which eliminates the e�ects of

strong interaction among the fermions by absorbing 2p �ux quanta. Several experiments corroborate

the composite fermion picture.

The non-Laughlin fractions still needed an explanation. Besides, we have a ground state wavefunc-

tion in some form, and thus, a natural expectation is to obtain information on the excited states. This

forms the foundation of the hierarchy scenario, which assumes the Laughlin wavefunction as the start-

ing point. The construction of a hierarchical wavefunction was put forward by Haldane (1983) and

Halperin (1984) to provide justi�cation to the non-Laughlin fractions, that is those ones that are not

of the form 1/m. The idea is to create “Laughlin-like daughter states” from a given “parent state.” Addi-

tional states with new fractions are iteratively generated from the Laughlin fractions. Thus, all the

odd-denominator fractions are reproduced. The fractions at any level of the hierarchical scheme are

represented as continuous fractions.

A physical picture relevant to the hierarchy description may be enunciated as follows. At the centers

of the quantum Hall plateau, which corresponds to an incompressible �uid with uniform density. As

the magnetic �eld is ramped up, localized quasiparticles or quasiholes develop corresponding to an

excess or de�cit of densities that are initially pinned to the impurity centers. However, as the external

�eld becomes larger, the excitations split from the impurities and become mobile, leading to a loss of

the quantizedHall response. These quasiparticles (or the quasiholes) being chargedmay be considered

to condense into Laughlin-like states on top of the original quantum Hall �uid. The scenario can be

iterated which will lead to arbitrary �lling fractions (basically the non-Laughlin fractions) with odd

denominators.

To understand how the continued fractions arise, it is useful to review the excited states of the quantum

Hall �uid, that is the quasiparticles and the quasiholes. The quasiparticles denote excitations, each of

which carries a charge−
e
m , while the quasiholes denote those with charge e

m . These excitations behave

as individual particles, that are non-interacting, each with a fractional charge, however the total charge

adds up to an integer, as it should be.

Halperin (1984) modi�ed the Laughlin wavefunction and made an ansatz for including the quasipar-

ticle and the quasihole excitations as

ψ = P(zk)Q(zk)e
−
∑

j |zj|
2/4l2B (2.219)
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where Q(zk) accounts for the quasiparticle and the quasihole excitations and is given by

Q(zk) = 5N
j<k(zj − zk)

±1/m (2.220)

and P(zk) is the ubiquitous Jastrow factor given by

P(zk) = 5N
j<k(zj − zk)

2p (2.221)

Thus,

ψ = 5N
j<k(zj − zk)

2p±1/me
−
∑

j |zj|
2/4l2B (2.222)

with m still being an odd integer.

Put together P(zk) and Q(zk) give rise to an interchange that is more distinct than that of the anti-

symmetric exchange of fermions. It is further evident that the maximum angular momentum of the

state is

|Jmax| = N

(
2p ±

1

m

)
.

The �lling fraction can be obtained by noting that the area A to be given by

A = N

(
2p ±

1

m

)
(2πml2B).

This yields the number of states within an area A, which is given by

N =
BA

80
=
8

80
=

(
2p ±

1

m

)
m2N.

Hence, the �lling fraction is

ν =
1

2pm2 ± m
. (2.223)

1

–

– –

+

+ +

3

5
2

7
3

11
3

5
13

7
2

5
17

FIG. 2.25
Schematic plot showing the hierarchy scheme

for m = 3 and pj = 1. At the third level, one

obtains non-Laughlin fractions, such as 5/17,

5/13, 11/3, and 7/3.

The above expression allows all fractions and not only the

Laughlin (1/m) types. At the third level of the hierarchy, the

�lling fractions are denoted by

ν =
1

m ±
1

2p1±
1

2p2±··· .

(2.224)

For example, for pj = 1 and m = 3, at the third level one gets,

ν =
1

3 ±
1

2± 1
2±··· .

(2.225)

For the +-branch one gets, 5/17 and 5/13, and the −-branch,

the fractions are 11/3 and 7/3. Schematically, the hierarchy at

this level is expressed via Fig. 2.25.
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2.8 SUMMARY AND OUTLOOK

We begin with a historical overview of the quantum Hall e�ect. The experiment and the physical sys-

tems are described with an emphasis on the two-dimensional nature of the ‘dirty’ electronic system in

the presence of a strong perpendicularmagnetic �eld at low temperature. TheHall resistivity as a func-

tion of the �eld shows quantized plateaus in the unit of h/e2 with an accuracy of one part in more than

a billion. Very surprisingly, the longitudinal resistivity synergetically vanishes at the positions of the

plateaus for the Hall resistivity. This indicates the emergence of a phase with an inherent ambiguous-

ness of being a perfect conductor and a perfect insulator at the same time. However, such an ambiguity

can only be reconciled for an electron gas con�ned in a plane in the presence of a magnetic �eld.

Quite intriguingly, the presence of a perpendicular magnetic �eld introduces “another” quantization,

which replaces the band structure (energy as a function of the wavevector) of the electronic system.

This quantization was shown by solving the Schrödinger equation in the presence of a Landau gauge.

The resultant energy levels of this problem are the in�nitely degenerate Landau levels, which slightly

broaden due to the presence of impurity and disorder, but remain distinct and cause quantization of the

Hall conductivity as the magnetic �eld is ramped up gradually. Further, this quantization is visioned as

a quantum pump by Laughlin, where an electron gas in a planar disk geometry subjected to amagnetic

�eld shows a transfer of one unit of charge from the inner to the outer edge of the disk as the magnetic

�ux changes by one quantum (= h
e ). Further, we have studied the same problem in the circular gauge,

which is relevant to the study of the fractional quantum Hall e�ect.

The quantum Hall state is the �rst realization of a topological insulator, where the transmission of

charges occurs through the edges of the electronic system, while the bulk remains insulating. The

quantization of the Hall conductivity19 is shown to be a topological invariant called the Chern num-

ber, which can only assume integer values. We further derived the Kubo formula to compute the Hall

conductivity.

Hence, to compare and contrast between the e�ects of an externalmagnetic �eld in systems other than a

two-dimensional electron gas, we have chosen graphene as another candidate, which is often the hobby

horse to demonstrate the occurrence of the quantum Hall e�ect and other topological phenomena.

The choice of graphene stems from the fact that the energy scale of the problem allows the quantum

Hall e�ect to be realizable at temperatures as high as the room temperature, or even larger than that.

The Landau levels of graphene are computed and are shown to be distinct than those for the two-

dimensional electron gas. Lastly, the experimental demonstration and observation of the quantum

Hall e�ect in graphene are discussed.

Finally, we have discussed the fractional quantum Hall e�ect that occurs in cleaner systems where

the interparticle interaction becomes dominant and constitutes the only energy scale of the problem.

19 It is more appropriate to talk about conductivity, rather than the resistivity.
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To deal with the overwhelming complexity, Laughlin wrote down a variational wavefunction for the

ground state, which, other than a ubiquitous Gaussian term, contains a Jastrow factor that keeps

two fermions away from each other, thereby enforcing Pauli’s exclusion principle. The wavefunc-

tion corresponds to a �lling fraction of 1/m, m being an odd integer and denotes the eigenvalue of

the z-component of the angular momentum for that state. The Laughlin wavefunction is validated

against the exact diagonalization of a system of a few electrons, and is found to have a near perfect

overlap between the two. One shortcoming of the Laughlin formalism that continued to bother theo-

rists working in the �eld is the experimental realization of several other values of the fraction (other

than 1/m) at which plateaus are observed. A hierarchy approach is proposed which yields several non-

Laughlin fractions encoded via a ‘parent-daughter’ relationship starting with a (“parent”) Laughlin

fraction. However, such a scenario su�ers from all ‘daughter’ to appear with equal weightage, which is

not an experimental reality. Another intuitive solution was proposed by Jain that enunciates an e�ec-

tivemedium comprising each fermion trapping an even number of �ux quanta. Such a scenario greatly

reduces the e�ective �eld that the system is subjected to, and transforms the fractionally quantizedHall

system of interacting fermions to an e�ectively non-interacting system showing integer quantumHall

e�ect.
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CHAPTER

3 SYMMETRY AND TOPOLOGY

3.1 INTRODUCTION

“Point set topology is a disease from which the human race will soon recover” - H. Poincaré (1908)

The Poincaré conjecture was the �rst conjecture made on topology, which asserts that a 3D manifold

is equivalent to a sphere in 3D subject to the ful�llment of a certain algebraic condition of the form

f (x, y, z) = 0, where x, y, and z are complex numbers. G. Perelman (arguably) solved this conjecture in

2006 Perelman (2006). However, on practical aspects, just the reverse of what Poincaré had predicted,

happened. Topology and its relevance to condensed matter physics has emerged in a big way in the

recent times. The 2016 Nobel prize awarded to D. J. Thouless, J. M. Kosterlitz, F. D. M. Haldane and

C. L. Kane and E.Mele getting the Breakthrough Prize for contributions to fundamental physics in 2019

bear testimony to that.

Topology and geometry are related, but they have a profound di�erence. Geometry can di�erentiate

between a square from a circle, or between a triangle and a rhombus, however, topology cannot dis-

tinguish between them. All it can say is that, individually all these shapes are connected by continuous

lines, and hence are identical. However, topology indeed refers to the study of geometric shapes, where

the focus is on how properties of objects change under continuous deformation, such as stretching and

bending, however tearing or puncturing is not allowed. The objective is to determine whether such a

continuous deformation can lead to a change from one geometric shape to another. The connection to

the problem of deformation of geometrical shapes in condensed matter physics may be established if

the Hamiltonian for a particular system can be continuously transformed via tuning of one (or more)

of the parameter(s) that the Hamiltonian, depends on. Should there be no change in the number of

energy modes below the Fermi energy during the process of transformation, then the two systems

(that is, before and after the transformation) belong to the same topology class. In the process “some-

thing” remains invariant. If that something does not remain invariant, then there occurs a topological

phase transition. This phase transition can occur from one topological phase to another, or from a

topological phase to a trivial phase.

In the following, we present the geometric aspects of topology and relate the integral of the geometric

properties to closed surfaces to the topological invariants. It turns out that the “geometric property”

and the “closed surface” have smooth connections to physical observables. As we shall see soon that in

1982 Thouless et al. (1982) linked the topological invariant to the quantized Hall conductivity.

https://doi.org/10.1063/9780735422537_003 3-1
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To test many of the concepts that we are going to discuss in this chapter, we choose two prototype

systems, one each in one (1D), and two dimensions (2D). In 1D, we consider a tight binding model,

with dimerized hopping, and in 2D, we consider graphene, which has been a hobby horse even for

several years before its experimental discovery. The theme is to discuss the interplay of symmetry and

the topological properties. Particularly, in 2D, an important highlight in this direction is put forward by

Haldane (1988) who had proposed a non-trivial topological phase by breaking one of the fundamental

symmetries, namely, the time reversal symmetry. Finally, after the experimental discovery of graphene,

yet another distinct topological state of matter was discovered by Kane and Mele (2005) which has

culminated into an emerging �eld of spintronics.

In Chap. 3 we saw that the Hall conductivity (or the resistivity) is quantized in the unit of e2/h (or h/e2)

within a splendid precision, so much so, that the quantity h/e2 can de�ne the standard of resistance

(= 25.5 k�). Clearly the quantization is independent of the details of theHamiltonian, for example, the

nature of the sample, the strength of the magnetic �eld, and disorder present in the system. It is real-

ized later that the universality of the phenomenon arises due to “topological” protection of the energy

modes that exist at the edges of a quantum Hall sample, which possess completely di�erent character

as compared to the ones that exist in the bulk of the sample. Thus, an understanding emerges, that

says that a physical observable (which is either the resistivity or the conductivity) can be represented

mathematically by a topological invariant. This invariant does not change even when the Hamiltonian

changes (for example, when the strength of the magnetic �eld is varied), until and unless a phase tran-

sition occurs, which will show up via an abrupt change in the value of the topological invariant. There

is an elegant explanation of the physics involved with such a universal phenomenon, which brings us

to the subject of topology.

Topology in its usual sense deals with the geometry of the objects; in the same spirit, here we shall study

the geometrical properties of the Hilbert space for the system under consideration. The idea is best

demonstrated for a quantumHall system, which undergoes a series of transitions from a conducting to

an insulating state as a function of the external magnetic �eld. In the process, the topological invariant,

for example, the Chern number in this case (we shall discuss this later) jumps from one integral value

to another. Thus, the system repeatedly undergoes through a series of topological phase transitions. In

the following we describe this topological phase transition in more general terms.

Consider two Hamiltonians,H1 andH2, both of which are functions of a tunable parameter, say, β . If

the corresponding energy spectra ε1(β) and ε2(β) are such that the number of energy levels below the

zero energy (zero energy is usually the Fermi energy) always remain the same for all values of β , then

the Hamiltonians can be continuously transformed (or deformed as we see the analogy of a cup and

donut later), and there is no phase transition. Now, consider either H1 or H2. If, for either of them,

the spectrum is such that the number of energy levels varies as a function of β , that is, if any (or more)

levels cross the zero energy, then the “invariant” changes (from one integer value to another), and one

encounters that the system is going from one topological phase to another. A quantum Hall system

shows a similar transition, where the Hall conductivity changes from ne2/h to (n + 1)e2/h, where n is

strictly an integer.
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FIG. 3.1
A mug can be transformed smoothly into a donut. The handle of the mug remains invariant and emerges as “hole” of

the donut. Thus, the mug and the donut belong to the same universality class.

Thus, the study of topology deals with objects (or Hamiltonians) that can be continuously transformed

(or deformed) from one to another without puncturing or tearing the object (or without even closing

the energy gap for the quantum system). For geometrical objects, being able to continuously transform

depends on the number of “holes” or “genus” that are preserved during the course of the transforma-

tion. For example, a soccer ball can be deformed smoothly into a wine glass since both of them have

no holes (zero genus), while a mug (as shown in Fig. 3.1) can be transformed smoothly into a donut

with one hole (genus equal to 1). The �rst case with zero hole is called topologically trivial, and the

second with a �nite number of holes (one in this case) is termed as topologically non-trivial.

3.1.1 Gauss-Bonnet theorem

Gauss-Bonnet theorem in di�erential geometry that is about the evaluation of the surface integral of

a Gaussian surface. Here we state the theorem without proof. In the most general form, for a closed

polyhedral surface, the theorem can be stated as
∫

∂R
kg(s)ds +

∫∫

R
KdA = 2πχ(R) (3.1)

where R denotes a regular region with the boundary ∂R of R, K is the Gaussian curvature, s denotes the

arc length of the curves,Ci and the integral is overCi. Further χ(R) is called the Euler-Poincare charac-

teristic. The �rst term on the left is the integral of the Gaussian curvature over the surface, the second

Symmetry and Topology 3-3

 07 D
ecem

ber 2024 17:11:54



Principles

one is the integral of the geodesic curvature of the boundary of the surface. Thus, the Gauss-Bonnet

theorem simply states that the total curvature of R plus the total geodesic curvature of ∂R is a constant.

As an example, we consider the simplest case, that is a sphere of radius R. The Gaussian curvature is

1/r21 and the corresponding area is,
∫∫

R
KdA = K × Area =

1

r2
× 4πr2 = 4π . (3.2)

Again,
∫∫

R
KdA = 2πχ(R). (3.3)

Thus,

χ(R) = 2

Thus, the Euler-Poincare characteristic of a sphere is 2 although the genus is equal to zero (see

Fig. 3.2). Suppose we wish to extend this argument to other closed, however not necessarily convex

FIG. 3.2
A sphere with no hole (or genus). It represents a trivial phase.

1 For a geometry with two di�erent radii of curvature, such as a convex lens, the Gaussian curvature is 1
r1r2

.
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S
sin θ

θ

θ

FIG. 3.3
A sphere with a polar cap. The figure will aid in calculating the

area S of the polar cap.

surfaces in a three-dimensional space. For that,

consider the polar cap of unit radius (see Fig. 3.3).

The area is given by

S =

∫ θ

0
2π sin θdθ = 2π(1 − cos θ). (3.4)

Thus,∫

R
KdA = 1 × (Area of S) = 2π(1 − cos θ).

The geodesic curvature K is 1/tan θ . Thus,
∫

s
Kgds = Kg × length(S) =

1

tan θ
. (3.5)

Hence,∫

s
Kgds +

∫

R
KdA = 2π(1 − cos θ)+ 2π cos θ

= 2π = 2πχ(R)

thereby yielding,

χ(R) = 1.

In fact, an alternate form for the Gauss-Bonnet

theorem is more useful for our purpose, which

states that, for a closed convex surface, the

integral over the Gaussian curvature can be

expressed in terms of the number of holes or the genus of the surface. Thus, a simpli�ed (and more

relatable for us) version reads
∫∫

KdA = 2π(2 − 2g) (3.6)

Since a sphere has no holes (g = 0), the integral of the curvature yields
∫∫

KdA = 4π (3.7)

a result that we have seen earlier. Let us look at a case where the genus is non-zero (g 6= 0), such as a

torus which is topologically equivalent to a mug, as we have seen earlier.

For a torus, the Euler-Poincare characteristic has a value of zero. This implies that, irrespective of how

we bend or deform it, the integrated curvature vanishes. Refer to Fig. 3.4 (left panel) where there is a

positive curvature on the outer surface, and negative curvature on the inner surface, thereby result-

ing in zero total curvature. This is consistent with the Gauss-Bonnet theorem which states that the

integral of the Gaussian curvature is 2π(2 − 2g). Since g = 1 here, the integral is zero and so is the

Symmetry and Topology 3-5
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FIG. 3.4
(Left) A donut with genus (or a hole) equal to 1. (Right) A two-hole object has genus equal to 2.

Euler-Poincare characteristic χ(R)(= 2 − 2g) is zero as well. Similarly, a two-holed donut (see right

panel of Fig. 3.4) will have χ(R) = −2, and hence negative integrated Gaussian curvature.

Based on the preceding discussion, a sketchy idea emerges on the relationship between topology, and

properties of quantum systems.However, it remains unclear how these ideas can relate to the properties

of materials. At this moment, let us talk about crystalline solids for which the electron wavefunction

is given by Bloch’s theorem, namely,

ψ(r) = eik·ruk(r) (3.8)

where the periodicity of the crystal potential, that is V(r) = V(r + R) is captured by the amplitude

function uk(r), such that

uk(r + R) = uk(r), (3.9)

where k denotes the crystal momentum, and is distinct than the usual momentum (= −i~∇) (Kittel,

1986). The crystal momentum is restricted within the �rst Brillouin zone (BZ), where the latter is a

region in the k-space with periodic boundaries. As the crystal momentum is varied, we map out the

energy bands, and one obtains the band structure. The BZ plays the role of the surface over which the

integral of the Gaussian curvature is taken, which we have discussed earlier.

Now that brings us to the question: what is the analog of the Gaussian curvature for a crystalline solid?

To understand this, consider the (non-degenerate) ground state of aHamiltonian, which depends upon

anumber of parameters that are time dependent. The adiabatic theorem states that if theHamiltonian is

now changed slowly2 with respect to the parameters, the system remains in its time-dependent ground

state. However, there is something more to it. As the ground state is evolved in time, in addition to

the trivial dynamical phase, there may emerge an irreducible geometric phase that comes into play,

namely, the Berry phase put forward by Berry (1984). In the following, we discuss the origin of the

2 The time scale for change is larger than the inverse level spacing (level spacing implies di�erence between subsequent energy

levels) of the system.
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Berry phase, and the Berry curvature, which is analogous to theGaussian curvature. The integral of the

Berry curvature over the BZ is shown to yield a constant (or more appropriately an invariant) known

as the Chern number, which is analogous to the RHS of Eq. (3.6) or the Euler-Poincare characteristic.

3.1.2 Berry phase

Consider that a particle is in the ground state of a box of length L. Suppose the box slowly expands,

such that L(t) is a slow function of time. The adiabatic principle says that, if the expansion is slow, then

the particle always remains in the ground state at any time t. This is true for any state of the system.

More generally, consider a Hamiltonian H(λ(t)) where λ is a parameter which changes slowly. Now

the adiabatic principle says that if the particle starts out in the nth eigenstate of H(λ(0)), it will land

nth instantaneous eigenstate ofH(λ(t)) at a time t.

The question is, what is the solution of the Schrödinger equation in this approximation? A reasonable

guess is

|ψ(t)〉 = exp

(
−

i

~

∫
εn(t

′)dt′
)

|φn(t)〉, (3.10)

where

H(t) |φn(t)〉 = εn(t) |φn(t)〉. (3.11)

If H does not vary with time, then the phase is clearly correct. However, it is not so in the case H

depends on time.

To see what is missing in the above ansatz, let us modify it slightly.

|ψ(t)〉 = C(t) exp

[
−

i

~

∫ t

0
εn(t

′)dt′
]

|φn(t)〉. (3.12)

In Eq. (3.10), C(t) = 1. Applying the Schrödinger equation (i~ ∂
∂t − H) to Eq. (3.12) and simplifying,

for the time dependence of C, one gets

Ċ(t) = −C(t)〈φn(t)|
d

dt
|φn(t)〉. (3.13)

This yields a solution of the form,

C(t) = C(0) exp

[
−

∫ t

0
〈φn(t

′)|
d

dt′
|φn(t

′)〉dt′
]

︸ ︷︷ ︸
eiγ

= C(0)eiγ , (3.14)

where

γ = i

∫ t

0
〈φn(t

′)|
d

dt′
|φn(t

′)〉dt′. (3.15)

This extra phase is called the Berry phase or the geometric phase. It is also called the Berry-

Panchratnam phase, and is quite a familiar quantity in the �eld of optics.
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In general, phases do not give rise to measurable consequences since the eigenstates are de�ned only

up to a phase factor. Even here, it may be thought that we can de�ne new Berry states to absorb the

phase, namely,

|φ′

n(t)〉 = eiχ(t)
|φn(t)〉 (3.16)

then,

i〈φ′

n(t)|
d

dt
|φ′

n(t)〉 = i〈φn(t)|
d

dt
|φn(t)〉 −

dχ

dt
. (3.17)

Now suppose the parameter χ(t) changes theHamiltonian in such amanner that after a complex cycle,

H(0) = H(t = T)

The end result is,

i

∮
〈φ′

n(t)|
d

dt
|φ′

n(t)〉 = i

∮
〈φn(t)|

d

dt
|φn(t)〉 − (χ(T)− χ(0)) . (3.18)

The last term on the RHS is an irreducible phase that does not cancel under the rede�nition of the

Berry states. Remember, χ arises from γ , which we denote as the Berry phase. Single valuedness of χ

demands

χ(T)− χ(0) = 2πn, where n is an integer

The surface integral of the Berry curvature is called the Chern number. This is analogous to Gauss

Bonnet theorem which connects the surface integral of radii of curvature. In the Gauss-Bonnet the-

orem, just like an object with a genus “1” can not be smoothly transformed into another with genus

“zero” or “2” (unless, of course, something drastic, that is, tearing or puncturing is done to the object),

a system with a non-zero Chern number cannot be transformed into that with zero Chern number.

In a quantum Hall system, the Hall conductivity is given by

σxy = Ce2/h = ne2/h, where C = Chern number.

It can be argued that the Chern number is always an integer. Further, the Berry curvature,F is de�ned

as the curl of the Berry connection, namely,

F = ∇ × A (3.19)

F is analogous to the magnetic �eld. The Chern number is de�ned as the surface integral of the Berry

curvature over a surface enclosed.

3.2 SYMMETRIES AND TOPOLOGY

To elucidate more on the topological invariance in materials, we discuss a few discrete symmetries of

the Hamiltonian, and how they interplay with the topological properties. In this context, we wish to

discuss three symmetries, namely, the inversion symmetry (also known as sublattice symmetry), and
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the time reversal symmetry. A third symmetry that we shall talk about is the contribution of the above

two, and is known as the particle-hole symmetry. We shall not worry about the third one here, since,

it is not relevant for the present discussion, and it has been discussed in the context of the Hubbard

model (see Chap. 2).

3.2.1 Inversion symmetry

Let us consider an eigenstate in the position based on |ψ(r)〉, so that

r |ψ(r)〉 = |r| |ψ(r)〉. (3.20)

Now we de�ne the inversion symmetry or the parity operator P such that

P |ψ(r)〉 = |ψ(−r)〉. (3.21)

Now,

rP |ψ(r)〉 = r |ψ(−r)〉 = −|r| |ψ(−r)〉. (3.22)

If we act P† on both sides (remembering P†
= P−1

= P)

P
† r P |ψ(r)〉 = −|r|P†

|ψ(−r)〉 = −|r|P |ψ(−r)〉 = −|r| |ψ(r)〉 = −r |ψ(r)〉. (3.23)

Thus,

P
† r P = −r. (3.24)

This yields

P
† r = −rP (3.25)

or, {P , r} = 0. (3.26)

Hence, the parity operator anticommutes with the position operator.

Let us now explore the analogous scenario for the momentum operator. For this purpose, it is conve-

nient to introduce the transformation operator T(a)3 that translates a state |ψ(r)〉 to |ψ(r + a)〉, where

a denotes a �xed length, for example, a can be the lattice constant. That is,

T(a) |ψ(r)〉 = |ψ(r + a)〉

P
†T(a)P |ψ(r)〉 = T(−a) |ψ(r)〉,

(3.27)

which yields

P
† T(a) P = T(−a). (3.28)

This demands that the translation operator is of the form,

T(a) = ei k·a. (3.29)

Expanding for in�nitesimal translations,

P
† p P = −p. (3.30)

3 Distinguish between T(a) for the translation operator, and T for the time reversal operator.
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Thus, similar to the position operator, the momentum operator also anticommutes with the parity

operator.

Since, both r and p anticommute, the angular momentum, L (= r × p) commutes with P . In a 3D

orthogonal coordinate system, one can invert it about any of the axes. For example, in a Cartesian

coordinate system,

i. an inversion about the z-axis is denoted as σ h(xy).

ii. about the y-axis it is σ v(xz) and

iii. σ v(yz) denotes the inversion about x-axis.

Here σ denotes an inversion operation, and has got nothing to do with the Pauli matrices. Under these

operations, the position and the angular momentum variable transform as

i. σ h(xy): x → x, y → y, z → −z

Lx → −Lx, Ly → −Ly, Lz → Lz

ii. σ v(xz): x → x, y → −y, z → z

Lx → −Lx, Ly → Ly, Lz → −Lz

iii. σ v(yz): x → −x, y → y, z → z

Lx → Lx, Ly → −Ly, Lz → −Lz

3.2.2 Time reversal symmetry

Now we shall discuss time reversal symmetry. It is obvious that under time reversal, the time variable,

t changes to−t. Thismakes the position (r(t)) and themomentumvariable (p(t)) transformunder time

reversal as r(−t) and −p(t) respectively. The angular momentum L(t)(= r × p) thus also becomes,

−L(−t) under time reversal. Similar outcomes are expected when r(t), p(t) and L(t) are quantum

mechanical operators. Additional inputs to the ongoing discussion can be received from the behavior

of the electric �eld, E(r, t) and the magnetic �eld B(r, t) vectors under time reversal. E(r, t) does not

change sign under time reversal (refer to the Maxwell’s equations, ∇ · E =
ρ
ε0

where charge density

ρ(r) does not change sign), however B(r, t) changes sign (owing to, ∇ × B = µ0J, where J(r, t) is the

current density and it changes sign under time reversal).

Now, consider a quantum state ψ(t) that obeys Schrödinger equation,

i~
∂ψ(r, t)

∂t
= Hψ(r, t). (3.31)

In the following, we suppress the r dependence ofψ , and simply writeψ(t) which upon the application

of the time reversal operator yields ψ ′(−t). Mathematically,

T |ψ(t)〉 = |ψ ′(−t)〉. (3.32)

In order to �nd ψ ′(−t), let us look at the solution of Eq. (3.31),

|ψ(t)〉 = e−iHt/~
|ψ(0)〉. (3.33)
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For t = 0, apply the time reversal operator, that is, T |ψ(0)〉. Now, let it evolve forward in time, which

means we get a state,

e−iHt/~
T |ψ(0)〉.

For the Hamiltonian to be invariant under time reversal, this state should be the same as T ψ(−t)

which is equivalent to,

TeiHt/~
|ψ(0)〉.

Thus,

TeiHt/~
|ψ(0)〉 = e−iHt/~

Tψ(0).

For small time δt, we can expand the exponential and write,

T iH = −iHT . (3.34)

A natural intuition (albeit wrong as shown later) is to cancel the “i” from both sides of Eq. (3.34). This

yields

TH = −HT (3.35)

which implies,

TH + HT = 0 or, {T ,H} = 0. (3.36)

But that cannot be correct, since we have assumed that the time reversal operation to be a valid sym-

metry operation. This means that canceling the “i” from both sides in Eq. (3.34) was not a legitimate

step.

Reconciliation is possible if we understand that time reversal, unlike most other operations in quan-

tum mechanics, is an antiunitary operation. To remind ourselves that a unitary operation U satis�es

UU†
= 1 or a unitary operator acting on a state α |ψ〉 yields

U(α |ψ〉) = αU |ψ〉. (3.37)

This is also a property of a linear operator. However, for an anti-linear operator, A one gets

A(α |ψ〉) = α∗A |ψ〉, (3.38)

which means that the anti-linear operator involves a complex conjugation. This resolves the dilemma

caused by the naive cancelation of “i” in Eq. (3.34). Thus, the factor “i” on the LHS of Eq. (3.34) is

complex conjugated when encounters T on the way pulling it. This yields an extra minus sign which

cancels with the one on the RHS yielding

[T ,H] = 0. (3.39)

This is familiar with the notion that H is a time reversal invariant (we have to deliberately break the

time reversal invariance of theHamiltonian, either via an externalmagnetic �eld or some othermeans)

and hence, the Hamiltonian should commute with the time reversal operator.
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Any antiunitary operator can be written as a product of a unitary operator, U multiplied by a complex

conjugation operator,K such that,

T = UK.

A special case in this regard deserves a mention, that is, the case for a S =
1
2 particle. Spin being an

angular momentum, it is odd under time reversal, that is,

TσT −1
= −σ . (3.40)

This implies, KσxK
−1

= σx, KσyK
−1

= −σy and KσzK
−1

= σz which is reasonable as σ y

contains imaginary entries. Thus, for the unitary operator, Uσ xU−1
= −σ x, Uσ yU−1

= σ y and

Uσ zU−1
= −σ z. Thus, the unitary operator, U commutes with σ y, but anticommutes with σ x and σ z.

Finally, the form of the time reversal operator for a Hamiltonian corresponding to a S =
1
2 system is

given by (without proof, readers are encouraged to try using T = Ke−
π
2 σy/~),

T = −iσyK. (3.41)

Further for spinless particles (or integer spin), T 2
= 1, while for S =

1
2 particles, T

2
= −1.

3.3 SSH MODEL

3.3.1 Introduction

Tomake our concepts clear on the topological phase, andwhether amodel involves a topological phase

transition, we apply it to the simplest model available in the literature. The Su-Schrie�er-Heeger (SSH)

model denotes a paradigmatic one-dimensional (1D) model which hosts a topological phase. It also

possesses a physical realization of polyacetylene, which is a long chain organic polymer (polymeriza-

tion of acetylene) with the formula [C2H2]n (shown in Fig. 3.5). The C-C bond lengths are measured

by NMR spectroscopy technique and are found to be 1.36 Å and 1.44 Å for the double, and the single

bonds, respectively. The chain consists of a number of methyne (= CH−) groups covalently bonded

to yield a 1D structure with each C-atom having a π electron. This renders the connectivity to the

polymer chain.

Possibly intrigued by this bond length asymmetry, one can write down a tight binding Hamiltonian of

such a system with two di�erent hopping parameters for spinless fermions hopping along the single,

and the double bonds. These staggered hopping amplitudes are represented by t1 and t2. Let us consider

that the chain consists of N unit cells with two sites (that is, two C atoms) per unit cell, and denote

these two sites as A and B. The hopping between A and B sites in a cell is denoted by t1, while that from

B to A across the cell is denoted by t2. Because of the presence of a single π electron at each of the C

atoms, the interparticle interaction e�ects are completely neglected. We shall show that the staggered

hopping or the dimerization has got serious consequences on the topological properties of even such

a simple model.
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FIG. 3.5
(a) A polyacetylene chain with formula (C2H2)n is shown. (b) The SSHmodel as a paradigmatic model for Polyacetylene

with dimerized hopping.

3.4 THE SSH HAMILTONIAN

The above considerations yield the following Hamiltonian,

H = −t1

N∑

n=1

(c†n,Acn,B + h.c.)− t2

N−1∑

n=1

(c†n,Bcn+1,A + h.c.). (3.42)

For simplicity and concreteness t1 and t2 are assumed to be real and non-negative and c†n,α(cn,α) denotes

electron creation (annihilation) operator at site n belonging to the α sublattice (α ∈ A, B).

It is clear that N denotes the total number of cells, which implies M = 2N where M represents the

total number of sites. Thus, for an open chain with M atoms, we have tM = 0. On the site basis, the

Hamiltonian can be explicitly written as

H = (c†1, c
†
2, . . . , c

†
M)




0 t1 0 . . 0

t∗1 0 t2 . . .

0 t∗2 0 . . .

. . . . . .

. . . . . .

0 . . . . 0







c1
c2
.

.

cM



. (3.43)

If M is an even number, then tM−1 = t1, otherwise, tM−1 = t2.

We shall show in the following that a staggered hopping is responsible for opening of a gap in the dis-

persion, and subject to the ful�llment of a particular condition, the nature of the gap can be topological.
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To see that, let us study the band structure. We can Fourier transform the electron operators using,

cα(k) =

∑

n

eikncnα (α ∈ A, B). (3.44)

This yields a tight binding Hamiltonian in the sublattice basis, namely, (ckA, ckB) as

H =

∑

k

c†kαhαβ(k)ckβ (3.45)

where,

hαβ(k) =

(
0 t1 + t2e−ik

t1 + t2eik 0

)
=

(
0 f (k)

f ∗(k) 0

)
. (3.46)

The 2 × 2 structure of the matrix hαβ(k) allows us to write,

hαβ(k) = d(k) · σ (3.47)

where d(k) is a vector given by

d(k) = (dx(k), dy(k), dz(k)) = (t1 + t2 cos k, t2 sin k, 0) (3.48)

and σ = (σ xσ y, σ z) denote the Pauli matrices. The energy dispersion is given by

E(k) = ±|d(k)| = ±

√
(t1 + t2 cos k)2 + t22 sin

2 k. (3.49)

A slight manipulation of the terms inside the square root yields,

E(k) = ±

√
(t1 − t2)2 + 4t1t2 cos2

k

2
(3.50)

where k is contained in the BZ, that is, −π ≤ k ≤ +π . The corresponding normalized eigenvectors

are given by

|ψ±〉 =
1

√
2

(
±e−iφ(k)

1

)
(3.51)

where,

φ(k) = tan−1

(
t2 sin k

t1 + t2 cos k

)

We shall explore a few representative cases to make our ongoing discussion clear, namely,

i. t2 = 0: Extreme dimerized limit (see upper panel of Fig. 3.6).

ii. t1 > t2: Intra-cell hopping is larger than the inter-cell hopping.

iii. t1 = t2: Intra-cell hopping is the same as the inter-cell hopping (see lower panel of Fig. 3.6).

iv. t1 < t2: Intra-cell hopping is smaller than the inter-cell hopping.

v. t1 = 0: Extreme dimerized limit (however, di�erent than (i)).

We plot the band structure and the components of the d-vector as a function of the crystal momentum

k (see Figs. 3.9–3.13). The purpose here is to de�ne a bulk winding number, which is the topological
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FIG. 3.6
The extreme dimerized limit for the trivial (upper panel), and the topological (lower panel) phases of the SSH model are

shown.

invariant here. The plot dx vs dy for k in the BZ de�nes a surface (except for the critical case, t1 = t2).

Whether the surface encloses the origin is decided on its topological properties. Furthermore, the unit

vector, d̂ de�nes the direction of the d vector via, d̂ = d/|d|. At half �lling, the lower band is �lled.

The two bands are gapped by an amount 2δt, where δt = |t1 − t2| at k = ±π . This is also an insulating

phase. However, as we shall see that this phase is distinct from the case (ii).

3.4.1 Topological properties

The SSH chain hosts both the bulk and edge states. The distinction between the bulk and the edge can

be understood from the real space analysis. The plot for the energy spectrum as a function of the ratio

t2/t1 (see Fig. 3.7) shows that the zeromodes start to appear just beyond the critical point. Prior to that,

for 0 ≤ t2/t1 ≤ 1, the system behaves like a trivial insulator with a bulk band gap. The gap closes at t1
= t2, and eventually for t2 > t1, the bulk gap opens again, however a pair of zero modes appear in the

spectrum. These zero modes yield a topological characteristic of the phase. They originate from the

two solitary C atoms that reside at the two edges of the chain. The fact that these zero modes indeed

arise out of the edges is shown in Fig. 3.8 by plotting the probability densities, |ψ i|
2 at all sites of the

chain. The amplitudes at the left and the right edges are shown by red and blue colors, respectively and

they vanish everywhere in the bulk of the chain.

Further to emphasize the robustness of the edge modes, we show the inverse participation ratio (IPR)

de�ned by

IPR =

L∑

i=1

|ψi|
4 (3.52)

IPR = 0 or 1 denotes the extended or the localized phases. However, these extreme values (namely,

0 and 1) can only be obtained in the thermodynamic limit (L → ∞). Here we denote the edge modes

coming from the two edges of the system by red in Fig. 3.7. In this �gure, red denotes a �nite value of

the IPR. Evidently, the zero modes are seen to be localized.
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FIG. 3.7
The energy is plotted as a function of t2. A zero mode exists for t2 ≥ 1 (in unit of t1). A pair of zero modes is shown in

red color, which implies a finite value of IPR (see text).
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FIG. 3.8
The probability amplitude is plotted as a function of the sites of the chain. Here we have taken the length, L = 100.
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Let us return to the behavior of the vector d(k). The components ((t1 + t2 cos k), t2 sin k, 0) in the BZ

de�ned by −π ≤ k ≤ +π of d(k) denote the eigenstates with the energy spectrum given by

E(k) = |d(k)|

Corresponding to one of the cases, namely t2 > t1, the vector d(k) winds about the origin, while for the

other, t2 < t1, it does not. The origin of the dx − dy plane is d(k) = 0 and denotes the gapless (critical)

condition. Based on the above information, it is possible to de�ne a winding number, ν which would

tell us whether the trajectory of d(k) winds the origin, as k is varied over the BZ. Thus, the winding

number is capable of distinguishing the two seemingly equivalent (gapped) scenarios.

Mathematically, the winding number, ν can be written down using the unit d̂ vector de�ned via,

d̂ =
d(k)

|d(k)|
. (3.53)

One can now de�ne ν using,

ν =
1

2π

∫
+π

−π

(
d̂ ×

d

dk
d̂

)

z

dk. (3.54)

Let us justify how the above expression on the RHS denotes the winding number. Writing it more

explicitly,

ν =
1

2π

∫ π

−π

d(k)

|d(k)|
×

d

dk

d(k)

|d(k)|
dk =

1

2π

∫ π

−π

d(k)

|d(k)|
×

(
d

dk

d(k)

|d(k)|
−

d(k) d
dk |d(k)|

|d(k)|2

)
dk

since d(k) × d(k) = 0

ν =
1

2π

∫ π

−π

d ×
d
dkd(k)

|d(k)|2
dk =

1

2π

∫ π

−π

d(k)× δd(k)

|d(k)|2
dk

d

dk
d(k) =

d

dk
(d0 + kδd)

where in the last line we have used a Taylor expansion of d
dkd(k). From the de�nition of the cross

product, d(k) × δd(k) is the angle (in radian) between d(k) and d + δd. Thus, integrating this over the

BZ yields 2π , which when divided by 2π gives 1.

Another useful form for the winding number is given by

ν =
1

2π i

∫
+π

−π

dk
d

dk
log f (k) (3.55)

where, f (k) = t1 + t2e−ik. Thus,

log f (k) = log(|f |)eiarg(f ).

Consequently, the winding number becomes,

ν =
1

2π i

∫
+π

−π

dk
d

dk
log(f (k)) =

1

2π
arg(f )+π

−π = 1 or 0 (3.56)
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FIG. 3.9
The band structure and d-vectors are plotted corresponding to t1 = 1, t2 = 0.

depending on whether arg(f ) falls in the region of integration, that is, it encloses the origin. The

winding number is 1 for the topological phase, and 0 for the trivial phase.

We correlate the band structure with the corresponding winding number calculated above and show

various cases as mentioned above. In the extreme dimerized limit, namely, t2 = 0 and t1 = 1, we get

two �at bands at E = ±1, and the d-vector is simply shown by an arrow in Fig. 3.9. For t1 > t2, the

spectrum is gapped, and corresponds to a trivial insulator because of the absence of winding of the

d-vector as shown in Fig. 3.10. Furthermore, the undimerized tight binding chain (t1 = t2) is shown

in Fig. 3.11 where the gap closes, and the tip of the d-vector which executes a circle (shown by red

colour) in the dx − dy plane, just touches the origin at the left, but does not wind it. The fourth case,

namely, t1 < t2 again shows a spectral gap, but it is topological in nature as shown by the winding of

the d-vector in Fig. 3.12. Finally, the other dimerized case, that is, t1 = 0 and t2 = 1 (see Fig. 3.13)

again shows two �at bands at E = ±1, however the trajectory of the d-vector shown by the red circle

in the right panel of Fig. 3.13 winds the origin, and hence denotes a topological scenario.

One can also de�ne a Zak phase, 8Z (another geometric phase, similar to the Berry phase) de�ned

via,4

8Z = i

∮
〈ψ |∇k|ψ〉dk. (3.57)

4 Usually geometric phases that characterize the topological properties of the band structure play a crucial role in the band

theory of solids. See Zak (1988).
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FIG. 3.10
The band structure and d-vectors are plotted corresponding to t1 = 1, t2 = 0.5.
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FIG. 3.11
The band structure and d-vectors are plotted corresponding to t1 = 1, t2 = 1, that is a simple tight binding chain.

Using

|ψ±〉 =
1

√
2

(
±e−iφ(k)

1

)
(3.58)
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FIG. 3.12
The band structure and d-vectors are plotted corresponding to t1 = 1, t2 = 2.
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FIG. 3.13
The band structure and d-vectors are plotted corresponding to t1 = 0, t2 = 1.

φZ =
1

2

∮
d

dk
φ(k)dk = ±π or 0, (3.59)

which are the values respectively for t2 > t1 and t2 < t1.

3-20 Modern Perspectives in the Study of Electronic Systems

 07 D
ecem

ber 2024 17:11:54



scitation.org/books

Please note that we have obtained this result without plugging in the explicit form of φ(k) since the

result should be independent of the form of φ(k). However, if we consider the explicit form of φ(k),

namely,

φ(k) = tan−1

(
t2 sin k

t1 + t2 cos k

)

it throws some subtlety that we need to take care of. If we are in the trivial phase, then the inverse

tangent function is present in the �rst and fourth quadrants because of t1 > t2. Here, the function

does not acquire any extra factor, because of which φZ = 0. For the topological phase (t2 > t1), that is,

when the inverse tangent function is in the second quadrant, it picks up a phase π − tan−1 x, while in

the third quadrant, the corresponding value is π + tan−1 x. This can be seen from the sharp change

of φ(k) twice in BZ, as seen from Fig. 3.14. This means that the inverse tangent function acquires an

extra phase of 2π . This yields φZ = −π . Frankly, the negative sign does not mean anything speci�c. It

arises because we have chosen a positive sign for the wavefunction. Here, the winding number, and the

Zak phase are related to ν = −φZ/π . Think about d(k) and φZ, both of which are obtained from the

bulk of the material, yet give information about the edges of the system. This is traditionally referred

to as the bulk-boundary correspondence (we shall discuss more about it later). It may also be noted that

the behavior of φ(k) is smooth over the BZ, corresponding to the trivial case (see Fig. 3.15).

–1–2–3 3210

k
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1.5

0.5

0

φ 
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)

–0.5

–1.0

–1.5

t
1
 = 1, t

2
 = 1.5

FIG. 3.14
φ is plotted as a function of k for the topological phase. There are abrupt jumps in the behavior of φ.
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FIG. 3.15
φ is plotted as a function of k for the trivial phase. It smoothly varies from

−π to +π .

From the preceding discussion it is clear

that the two apparently similar insulating

phases are topologically di�erent. We have

shown that the winding numbers are dif-

ferent (�nite in the topological phase and

zero in the trivial one) and so are the Zak

phases. However, what does it physically

entail having di�erent values of the wind-

ing number or the Zak phase? Suppose we

smoothly deform the Hamiltonian corre-

sponding to the SSH chain via tuning the

hopping parameters, t1 and t2, we shall

get two insulating phases for t2 > t1, and

t2 < t1 all the while keeping the symme-

tries preserved and the band gap around

E = 0 is �nite. In tuning from one limit

to the other, we need to cross the origin

in the dx − dy plane (note that dz ≡ 0).

This implies that at the intermediate stage,

one would obtain the eigensolutions cor-

responding to the trajectory of d(k) in the

dx − dy plane through the origin. Thus, a smooth transition from one insulating phase to another

is impossible without closing the gap, or satisfying the metallic condition, t1 = t2. Hence, quite

apparently, there is a topological phase transition occurring here.

It is clear that the above discussion will be invalid if there is a z-component of the d(k) (or a term

proportional to σ z) is present in the system. A simple way to incorporate such a term is through the

inclusion of an onsite potential. The onsite potential will destroy the zero modes, thereby making it

meaningless to talk about the topological properties of the system. However, a disorder in the o�-

diagonal (hopping) term would retain the zero modes, and hence, the system should have a transition

from a topological to a trivial phase. The reason for such a distinction between the diagonal and the

o�-diagonal terms arises because of certain fundamental symmetries that the system possesses. We

shall discuss them below.

3.4.2 Chiral symmetry

In standard quantum mechanics, the symmetry of a Hamiltonian,H is represented by

UHU†
= H, or UH = HU, or [H,U] = 0, (3.60)

where U denotes a unitary operator. This implies that U and H have the same eigenstates and hence

can be diagonalized simultaneously. However, in general for topological insulators, such usual unitary
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symmetries do not have interesting consequences. The reason is that it is mostly possible to make the

Hamiltonian block diagonal, thereby reducing the problem to be con�ned to a single block. In the

case of massless Dirac problems, one usually runs out of unitary symmetries, and is left with an irre-

ducible block Hamiltonian which cannot be diagonalized. Thus, for the SSHmodel, there is a di�erent

symmetry, that is called the chiral symmetry, which is operative here.5 HereH obeys,

0H0†
= −H, or 0H = H0, or {H,0} = 0. (3.61)

Here 0 is a unitary operator corresponding to the chiral symmetry. Instead of commuting, it anticom-

mutes with the Hamiltonian. Furthermore, 0 is unitary and Hermitian, implying,

0 = 0†, or 0†0 = 02
= 1 (3.62)

where 1 denotes the identity matrix. The above requirement raises the possibility that0 = eiφ where φ

is an arbitrary phase. However, this possibility can be eliminated by rede�ning 0 → 0e−iφ/2. The sec-

ond requirement is that 0 be a local operator. Thus, the matrix elements of 0 survive only within each

unit cell, and between the cells they vanish.Hence, for the SSHmodel, the chiral symmetry is equivalent

to the sublattice symmetry, which can be expressed through the projectors PA and PB corresponding

to the A and B sublattices, namely,

PA =
1

2
(1 + 0); PB =

1

2
(1 − 0). (3.63)

It can be checked that

PA + PB = 1, and PA · PB = 0.

It is also possible to show that

PAHPA = PBHPB = 0. (3.64)

The consequence of the chiral symmetry results in a symmetric energy spectrum. That is, corre-

sponding to an energy, E, there is a chiral partner with energy, −E. This fact can be seen from the

following:

H |ψ〉 = E |ψ〉

H0 |ψ〉 = −0H |ψ〉 = −0E |ψ〉 = −E0 |ψ〉.
(3.65)

Of course, the above argument is true for E 6= 0. Since the SSH model hosts zero modes, one of them

is a partner of the other. Besides, for all E 6= 0, |ψ〉 and 0|ψ〉 correspond to distinct and orthogonal

eigenstates, which suggests that every non-zero eigenstate of H derives an equal contribution from

both the sublattices, that is,

〈ψ |0|ψ〉 = 〈ψ |PA|ψ〉 − 〈ψ |PB|ψ〉 = 0. (3.66)

Whereas, for E = 0,H |ψ〉 = 0. Thus,

HPA/B |ψ〉 = H [|ψ〉 + 0 |ψ〉] = 0. (3.67)

5 In condensed matter physics, bipartite systems with nearest neighbour hopping, that is when hopping connects sites with

opposite sublattices, obey chiral symmetry.
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Thus, the zero energy eigenstates are eigenstates of 0, and hence are chiral symmetric partners of

themselves. It is also due to the robustness of the chiral symmetry, the zero modes are robust.

One can also de�ne operators for the sublattice symmetry, namely,

6z = PA − PB. (3.68)

It can be shown that 6zH6z = −H which is similar to the symmetry relation stated earlier,

0H0 = −H. Thus, the chiral symmetry of the SSHmodel is a re-statement of the sublattice symmetry

of the Hamiltonian.

In simple language, the chiral symmetry operator, 0 is actually the z-component of the Pauli matrix,

σ z which yields,

σzHσz = −H. (3.69)

A direct multiplication of the three matrices on the LHS can be performed for the proof. We have

presented above a crisp description of the SSH model, which even being simple enough, possesses

both trivial and topological phases where the latter shows up via the presence of robust6 zero energy

edge modes, along with a �nite value of the winding number. Further, the band structure shows that a

phase transition occurs from a trivial to a topological phase (or vice versa) through a gap closing point,

where the staggered hopping amplitudes are equal (t1 = t2).

3.5 KITAEV MODEL

3.5.1 Introduction

In a one-dimensional dimerized chain comprising two atoms per unit cell within a tight binding

approximation, which is known as the Su-Schrie�er-Heeger (SSH) model, there are localized zero

energy modes. These modes are robust to adiabatic deformation of the Hamiltonian. Thus, inclusion

of disorder (or defect) that respects the chiral symmetry does not harm these zero modes. However, it

is di�cult to satisfy such a chiral symmetry in real physical systems.

In an analogous model, however, with additional ingredients, the so-called Kitaev model in 1D the

symmetry that protects the topological features is much more physical than the chiral symmetry. In

fact, it is the particle-hole symmetry that plays a crucial role here, is also inherent to the mean �eld

description of superconductors. Thus, the Kitaev chain is a more realistic model to access the robust

zero energy edgemodes, the so-calledMajorana zeromodes. A brief description will be included at the

end of this chapter to discuss their physical realizability in experiments, and their possible applications

in using the degenerate quantum states at zero energy for storing quantum information.

6 The edgemodes are robust as long as the chiral symmetry is intact. Thesemean �eld solutions correspond to the Bogoliubov-

de Gennes equations which yield an equivalent description as the BCS theory for conventional superconductors.
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The system comprises a 1D p-wave superconductor introduced by Kitaev (2003) where the super-

conducting correlations occur between spinless (or spin-polarized) fermions at neighboring sites in

the chain, as opposed to the onsite pairing discussed in the context of the more familiar BCS (s-wave)

superconductors. In this model, theMajorana fermions (MF) which arise as real solutions to the Dirac

equation and are their own antiparticles, emerge in a simple and intuitive fashion. The search forMajo-

rana particles remained inconclusive as they have never been observed in nature. Thus, the Kitaev

model also serves as a platform for realizing Majorana particles in condensed matter systems. In the

following, let us begin with the description of a two-site system which essentially contains all the

information that we need.

3.5.2 Two-site Kitaev chain

In this section, we shall study the edge and the bulk properties of a two-site Kitaev chain with a view to

exploring the topological properties of the excitation spectrum. At each site, there is a single spinless

fermion which is coupled to a p-wave superconductor. It may be noted that by virtue of the fermions

being spinless (or spin polarized), a conventional s-wave pairing for fermions belonging to the same

site is not possible. The Hamiltonian for such a system is written as

H2site = −µc†1c1 − µc†2c2 − t(c†1c2 + h.c.)+1(c†1c†2 + h.c.), (3.70)

where µ denotes the chemical potential, t is the hopping term among the neighboring sites, and 1 is

the p-wave-superconducting order parameter. We assume that all of these energy scales are real and

positive. In fact, 1 is usually a complex quantity with an amplitude and a phase. However, taking it

either real or complex does not have much consequence in our discussion.

The Hamiltonian can be written on the basis spanned by {c†1, c1, c
†
2, c2}. Explicitly write it in this basis,

we get,

H2site =
(
c†1 c1 c†2 c2

)



−µ 0 −t 1

0 µ −1 t

−t −1 −µ 0

1 t 0 µ







c1
c†1
c2
c†2


 . (3.71)

In the Dirac notation, we can use the particle-hole representation at each site by writing, c†1 = |1e〉,

c1 = 〈1h|, c†2 = |2e〉 and c2 = 〈2h|where 1 and 2 refer to the sites and e and h refer to the electron (par-

ticle) and the hole states, respectively. The electron-hole description that is natural to a superconductor

becomes apparent on this basis, and the Hamiltonian can be written as

H2site = −µ(|1e〉〈1e| + |1h〉〈1h| + |2e〉〈2e| + |2h〉〈2h|)

− t(|1e〉〈2e| − |1h〉〈2h| + h.c.)+1(|1e〉〈2h| − |2e〉〈1h| + h.c.). (3.72)

The diagonalization of the above 4 × 4 Hamiltonian yields the eigensolutions. The eigenvalues are

given by

E = (t +

√
(12 + µ2)), (t −

√
(12 + µ2)), −(t −

√
(12 + µ2)), −(t +

√
(12 + µ2)). (3.73)
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The corresponding eigenvectors are



(t+
√
(12+µ2))

1
−

(µ+t)
1

1

(µ+t)
1

−
(t+

√
(12+µ2))

1

1



,




(t−
√
(12+µ2))

1
−

(µ+t)
1

1

(µ+t)
1

−
(t−

√
(12+µ2))

1

1



,




(−t+
√
(12+µ2))

1
−

(µ−t)
1

1
(−t+

√
(12+µ2))

1
−

(µ−t)
1

1



,




(−t−
√
(12+µ2))

1
−

(µ−t)
1

1
(−t−

√
(12+µ2))

1
−

(µ−t)
1

1



. (3.74)

Writing down the Hamiltonian in the form as it appears as in Eq. (3.72) has the advantage that it can

be trivially extended for a chain containing N sites and can be written as in the following:

H =

∑

n

[−µ (|n, e〉〈n, e| + |n, h〉〈n, h|)

− t (|n, e〉〈n + 1, e| − |n, h〉〈n + 1, h| + h.c.)

+1(|n, e〉〈n + 1, h| − |n + 1, e〉〈n, h| + h.c.)] (3.75)

=

∑

n

[−µ (|n, e〉〈n, e| + |n, h〉〈n, h|)

+ (−t +1) (|n, e〉〈n + 1, e| + h.c.)

+ (t −1) (|n, h〉〈n + 1, h| + h.c.)]. (3.76)

The above form appears as a tight binding Hamiltonian with two atoms per unit cell. A Fourier

transform can be performed using

ck =

∑

j

eikjcj; c†k =

∑

j

e−ikjc†j , (3.77)

where k is the wave vector de�ned within the Brillouin zone (BZ) [−π : +π]. Using the Fourier

transformed operators and noting that

−e−ikc†kc†
−k = +e−ikc†kc†

−k

one gets in the {ck, c
†
k} basis,

H = (−µ− 2t cos k)σz − (21 sin kσy)

= d(k).σ ,
(3.78)

where σ denotes the components of the Pauli matrix, and

d(k) = (0,−21 sin k,−µ− 2t cos k)

The form is similar to a 2D massless Dirac Hamiltonian (similar to that of graphene). However, it

needs to be noted that the components of σ do not represent spin degrees of freedom (recall that we

3-26 Modern Perspectives in the Study of Electronic Systems

 07 D
ecem

ber 2024 17:11:54



scitation.org/books

are considering spinless fermions), and instead denotes particle-hole degrees of freedom. It is now easy

to diagonalize the 2 × 2 Hamiltonian whose eigensolution is given by

Ek = ±

√
(−µ− 2t cos k)2 + 412 sin2 k (3.79)

with the eigenvectors as
(

u(k)

v(k)

)
=

(√
4t2 cos2 k+4µt cos k+412 sin2 k+iµ2

21 sin k −
(µ+2t cos k)i

21 sin k

1

)
;

(
−

√
4t2 cos2 k+4µt cos k+412 sin2 k+iµ2

21 sin k −
(µ+2t cos k)i

21 sin k

1

)
. (3.80)

Itmay be noted that the eigenvectors are in the standard format of themean�eld solution of a supercon-

ductor. Instead of solving the model for its topological characteristics, we shall discuss the symmetry

properties �rst in the following.

3.5.3 Particle-hole symmetry of the Kitaev model

Generally speaking, particle-hole symmetry implies that for a state de�ned by energy and momentum

(E, k), there is always a partner with (−E, −k). This is re�ected in the symmetry of the diagonal ele-

ments as seen in the Hamiltonian written in the k-space, namely in Eq. (3.78) where the cosine term is

symmetric under the transformation of k → −k. This is also an artefact of the p-wave-superconducting

term written in the mean �eld form which ensures particle-hole symmetry of the model.

Let us discuss the particle-hole symmetry of the Kitaev model in detail. The operator that tests the

particle-hole symmetry, whichwe denote by6 = σxKwhereσ x is the x-component of the Paulimatrix

(that acts on the particle-hole degrees of freedom) and K is the complex conjugation operator, such

thatKiK = −i.6 is an antiunitary operator which transforms the Hamiltonian in Eq. (3.78) as

6H6 = (σxK)H(k)(σxK) = −H, (3.81)

where (σxK)
2

= 1. For closer introspection, let us consider a wavefunction, ψ at certain given values

of energy and momentum, (E, k). As per the discussion above, there will be a particle-hole partner ψ ′

with energy and momentum as (−E, −k). Thus,

ψ ′
= σxKψ . (3.82)

We can write,

(σxK)H(k)ψ = EσxKψ . (3.83)

By inserting (σxK)(σxK) (= 1) betweenH(k) and ψ , one gets,

(σxK)H(k)(σxK)(σxK)ψ = EσxKψ . (3.84)

Substituting ψ ′ from Eq. (3.82),

(σxK)H(k)(σxK)ψ
′
= Eψ ′. (3.85)
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Table 3.1
Different choices for the parameters,

µ, t, and 1 for showing different

phases of the Kitaev model.

µ t 1

0 1 1

1 1 0

1 0 1

1 1 1

1 0.5 0

1 0.3 0

1 0.5 1

1 0 0

Or,

σxH
∗(k)σxψ

′
= Eψ ′. (3.86)

Since σxH
∗(k)σx = −H(−k),

H(−k)ψ ′
= −Eψ ′. (3.87)

This proves the existence of a time reversed partner under the particle-hole

transformation.

It may be noted from above that corresponding to E > 0, the partners are

orthogonal, that is, 〈ψ |ψ ′
〉 = 0 since they have di�erent eigenvalues. How-

ever, for E = 0, the situation is more interesting.ψ andψ ′ are now identical.

These are called the Majorana modes for which σxKψ = ψ .

For the sake of convenience and concreteness, we list the parameters µ, t

and1 in Table 3.1 for discussing the topological and the trivial cases.

dy

dz

dy

dz

FIG. 3.16
The d-vectors corresponding to the trivial and the topological

phases are plotted.

This brings us to the notion of topology in the

Kitaev model that is familiar in systems where

the boundary behaves di�erently compared to the

bulk of the system. This will become clear if we

look at the d(k) vector de�ned in the yz-plane

where the components are dy(k) = −21 sin k and

dz(k) = −µ − 2t cos k. The tip of the d vector may

encircle the origin depending on the values of the

parameter yielding an integer winding number.7

There arises two situations governed by the value

of dz, namely, (i) dz = positive which results from

µ > −2t, and (ii) dz to be negative for µ < −2t. Representations from each of the cases may be

taken as

a. µ = 0, t = 1 = 1 (a priori, this is the topological limit),

b. µ = 1, t = 1 = 0 (this is the trivial phase).

Both are insulating phases, however it is easy to see that Fig. 3.16(a) corresponds to winding of the

d-vector in the yz-plane surrounding the origin, while for Fig. 3.16(b), d is a constant vector in the

trivial case, and hence cannot wind.

Furthermore, the energy band structure (E vs k) for various choices of the parameters, µ, t, and 1 as

they appear in Table 3.1 are shown in Fig. 3.17. Both the top left panel and the bottom right panel of

Fig. 3.17 denote �at bands and �nite spectral gap everywhere in the BZ; however, the former denotes

a topological gap, while the latter represents a trivial scenario. Dispersions corresponding to the other

parameter values are included for academic interest.

7 Winding number denotes how many times the origin is wound around by a vector.
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FIG. 3.17
The eigenvalues for a two-site Kitaev model are plotted. Different choices of parameters for all the plots are to be cor-

related with the values ofµ, t, and1 given in Table 3.1. The top left and the bottom right correspond to the topological

and the trivial phases of the model. Other parameter values are for academic interest.

3.5.4 Winding number

Wehave already discussed that theKitaevmodel is invariant under particle-hole transformation, which

states that an eigenstate de�ned by energy and momentum (E, k) will always have a partner with

(−E, −k). We have not made another symmetry explicit earlier that there is also time reversal symme-

try, T de�ned by K, which is simply the complex conjugation operator.8 This means that the product

of the two, that is, the particle-hole and the time reversal operations, namely,6T , known as the chiral

symmetry, is a valid symmetry operation for the Kitaev model. Further, square of all of these sym-

metry operations, namely, 62 and T 2 result in +1, and hence, according to the tenfold classi�cation

introduced by Altland et al. and others, the symmetry belongs to the BDI class (Altland and Zirnbauer,

1997; and Ryu et al., 2010).

Possessing a chiral symmetry enables de�ning a topological invariant called the winding number (we

have seen this for the SSH model) which is written as

ν =
1

2π

∫

BZ
dk|

d

dk
h(k)|, (3.88)

8 In presence of spin degree of freedom, T has a more complicated form, namely, T = iσyK where σ y denotes the real spin

degree of freedom.
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where

h(k) = tan−1

(
dz

dy

)
= tan−1

(
µ+ 2t cos k

21 sin k

)
.

It can be easily checked that corresponding to the topological case, namely, t = 1 = 1 and µ = 0,

the winding number, ν is equal to 1, while for the trivial case µ = 1, t = 1 = 0, ν = 0. The same

inferences have already been drawn from the behavior of the d-vector, that is, it winds around the origin

for the topological case, and is merely a constant vector for the trivial case. A non-trivial topological

(non-zero ν) phase is resilient against perturbations, such as disorder, defect, etc., that does not violate

the chiral symmetry of the Hamiltonian.

3.5.5 Majorana fermions in the Kitaev model

E. Majorana postulated their existence in 1937 (Majorana, 2008). It is conjectured that the neutrinos

denote an example of such an elementary particle whose antiparticles are thought to be the same as

these particles. However, no signature of these particles has been realized in experiments so far. On

the other hand, the research on Majorana fermions have gained momentum in the �eld of condensed

matter physics and in particular, topological superconductors, semiconductors, etc.

Before we discuss how Majorana fermions enter the Kitaev model, let us understand what Majorana

fermions are. One can write fermion operators, namely, c and c† in terms of two Majorana fermion

operators in the following way,

ci =
1

2
(γ1i − iγ2i); c†i =

1

2
(γ1i + iγ2i) (3.89)

where γ1 and γ2 are two Majaorana fermions de�ned at each site i. They are the conjugates of their

own, namely,

γ1 = γ †
1 ; γ2 = γ †

2 . (3.90)

The above properties can easily be veri�ed by inverting the relations in Eq. (3.89). Thus, the Majorana

fermion operators represent them to be their own antiparticles. Because of this property, a singleMajo-

rana mode is never “�lled” (for example |1〉) or “empty” (that is |0〉), unlike the way we de�ne usual

fermions. This will become clearer as we go along.

The other properties of the Majorana modes can be stated as in the following.

{γ1, γ2} = {γ †
1 , γ

†
2 } = 0 (3.91)

γ 2
1 = γ 2

2 = 1 (3.92)

for all sites i. As one can see, even though the anticommutation relations are similar to that of fermions,

they are quite distinct from the usual fermion operators and hence special. For example, the same

relationship for the fermion operators yield,

{c, c†} = 1 (3.93)

c2 = (c†)2 = 0. (3.94)
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Besides these, there are two other properties which we wish to highlight. The complex conjugation of

the Majorana operators can be stated as

KγK = γ ; Kγ †
K = −γ †. (3.95)

Next, we discuss the parity of theMajorana zeromodes. A few details on these modes will be discussed

shortly afterwards. Consider a Kitaev chain that is su�ciently long, such that one can safely ignore

any overlap between the Majoranas that exist at the two ends of the chain. The energy spectrum has

two zero energy-bound states. The corresponding quasiparticle operators are, say, γ 1 and γ 2. Let us

combine them to form a fermions operator, using

c =
1

2
(γ1 + iγ2). (3.96)

Inverting the above relation yields

γ1 = (c + c†); γ2 =
1

i
(c − c†). (3.97)

Thus, the Majorana operators are a superposition of the fermion creation and annihilation operators.

The corresponding fermionic state can be occupied or unoccupied. The bound states have zero energy

and hence these are degenerate. These two states di�er by fermion number parity. The Kitaev model,

being a mean �eld model for superconductors, does not conserve the particle number [U(1) gauge

symmetry]; however, the fermion number parity remains conserved since the pairing term (that is,1)

adds or removes particles in pairs. In a normal superconductor, the ground state always has even

parity for the fermion number. With an odd number of fermions, an unpaired electron results in an

energetically less favorable state.

TheKitaev chain is quite unlike a normal superconductorwhere the non-trivial phase hosts two ground

states, each with a di�erent parity, namely an even fermion number parity and an odd fermion number

parity. We can de�ne the fermion number parity operator as

Pf = 2c†c − 1 = iγ1γ2 (3.98)

which has eigenvalues ±1 for the two zero energy modes.

For N such as Kitaev chains, there are 2N Majorana bound states. One can group them into N pairs,

where each pair of Majorana operators γ2j−1 and γ2j can be combined into a fermion operator cj. The

ground state now has a degeneracy of 2N. Among these 2N states, half of the them will have one parity

(say, even), and the other half will have the opposite parity (odd). Now, the fermion parity operator for

the N-chain system is the product of the operators 2c†j cj − 1 for each of the pairs, such that

Pf = iNγ1γ2 . . . . . . . . . .γ2N . (3.99)

Thus, one has 1
2 (2

N) = 2N−1 states of even and odd parity. This can be easily demonstrated in the

following way. One can compute the expectation value of the fermion number parity operator iγ1γ2
within the ground state |φg〉, which yields,

〈φg | iγ1γ2 |φg〉 = 1 for c†c = 1

= −1 for c†c = 0. (3.100)
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Suppose we take a simple one-site Hamiltonian,H = µc†c.Writing in terms of theMajorana operators

yield,H =
1
2µ(1 + iγ1γ2). So this tells us that each fermionic site has to accommodate two Majorana

fermions, as opposed to one (or zero) fermion.

Let us extend our discussion to a two-site Kitaev chain. The Hamiltonian is,

H = −1(c†i ci+1 + c†i+1ci + cici+1 + c†i+1c†i ), (3.101)

where we have taken1 = t and µ = 0. There are two eigenstates of even parity, and two states of odd

parity corresponding to the two eigenvalues1 and −1 respectively. For example, the eigensolutions,

|ue
〉, λe with even parity,

|ue
±
〉 =

1
√
2
(1 ± c†i+1c†i ) |0〉; for λe

±
= ∓1. (3.102)

Similarly, for the odd solutions, |uo
〉, λo,

|uo
±
〉 =

1
√
2
(c†i ± c†i+1)|0〉; for λo

±
= ∓1. (3.103)

If we translate it into the language of Majorana fermions,

H = −2i1γ2,iγ1,i+1. (3.104)

These Majorana fermions can again be combined to write down the new fermion operators, namely,

the d-operators9 de�ned by

di =
1

√
2
(γ1,i+1 + iγ2,i); iγ2,iγ1,i+1 = 1 − d†i di. (3.105)

This allows the Hamiltonian to be written in terms of these d-operators.

H = 2td†i di − t = 2t

(
d†i di −

1

2

)
= 2t

(
d†i di −

1

2

)
+ 0.a†a, (3.106)

where a =
1
2 (γ2,1 + iγ1,N) which comprises the degrees of freedom that are ignored in the Hamilto-

nian. Note that the ground state is doubly degenerate, since the states with 〈a†a〉 = 0 and 1 have the

same energy. Suppose N is odd, the sate |0〉 has even parity, which means that it has even number

of a fermions. In the same way, the other ground state, namely, |1〉, has one fermion and is an odd-

parity state, Thus, these two states are quite intriguing, in the sense that they can be considered as the

superposition of two Majaorana fermions that reside at the two edges of the chain. The occurrence of

these Majorana zero modes and their degenerate nature are artefacts of the topological properties of

the model. Evidently, the Hamiltonian commutes with γ1,i and γ2,i+1, that is,

γ1,i |u
e
+
〉 =

i

2
(c†i + c†i+1) |0〉; γ2,i+1 |ue

+
〉 =

1

2
(ci+1 + ci) |0〉 = −iγ1,i |u

e
+
〉 (3.107)

which says that the states are identical and di�er only by a phase factor.

Let us now consider a chain of N sites (in Fig. 3.18 we show N = 5). At each site there is a fermion, and

hence there are two Majorana modes, namely, γ2j−1 and γ2j. These are called the domino tiles of the

9 The d-operators here will have to be distinguished from the d-vectors discussed earlier.
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FIG. 3.18
The dominoe model is sketched.

Majorana. There are 10Majorana modes denoted by γ1 . . . . . . γ10. The Kitaev Hamiltonian written in

terms of the Majorana fermions,10

H = −
iµ

2

N∑

j=1

(1 + iγ1,jγ2,j)−
i

4

N−1∑

j=1

[
(1+ t)γ2,jγ1,j+1 + (1− t)γ1,jγ2,j+1

]
(3.108)

This has a formal similarity with the two coupled SSH chains with an onsite energy,− iµ
2 , and hopping

terms as i(1 + t) and i(1 − t). However, we shall not explore this symmetry further.

One way of pairing the Majoranas is to pair them in the same block, and the other would be to pair

them across each block. In the �rst case, the Hamiltonian has only onsite energy that is, µ for the

fermions. This yields a Hamiltonian,

H = −
iµ

2

N∑

j=1

γ1,jγ2,j. (3.109)

This situation clearly subscribes to the trivial case, where 1 = t = 0 and only µ 6= 0. Thus, there are

no unpaired Majaorana and the spectrum is gapless with excitation energies ±µ. Correspondingly, it

has no edge modes and the system is a trivial insulator. However, the other scenario, which pairs two

Majoranas across the domino tiles, yields a Hamiltonian,

H = it

N−1∑

j=1

γ2,jγ1,j+1. (3.110)

Clearly, this leaves the two Majorana at the edges to be excluded in H. Also, we may recall that this

Hamiltonian corresponds to t = 1 = 1 and µ = 0 which denotes the topological limit of the Kitaev

model.

The �rst case discussed here corresponds to the trivial topology (see upper panel of Fig. 3.19), where

the intra-cell pairing of the Majoranas yields no zero modes. However, the latter hosts Majorana zero

modes, and thus denotes a topological phase of the system (depicted in the lower panel of Fig. 3.19). It is

rewarding to realize that these two cases for the pairing of Majoranas in a domino model correspond

to zero modes in the Kitaev model that we have discussed earlier.

10 Wediscontinue usage of the symbol “i” for denoting the site index because of the imaginary i being present in theHamiltonian,

and use j instead.
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FIG. 3.19
The trivial and the topological dominoe model are demonstrated.

An intuitive way to arrive at the zero energy Majorana modes in the Kitaev chain can be seen by

exploring the Kitaev Hamiltonian. For that purpose, we shall write down the Kitaev Hamiltonian

once again in real space.11 We begin with a small k version of the Hamiltonian, where the −2t cos k

in the diagonal term (see Eq. (10)) is replaced by 2t (this also necessitates the o�-diagonal terms to

be written as 2i1k). Hence, we take a small deviation of the chemical potential, µ from its value

where the phase transition occurs from a topological to a trivial phase, namely, µ = ±2t. As a speci�c

case, assume

µ = −2t + m (3.111)

where m is a small and positive quantity. This yields the d-vector to has a form,

d(k) = (0, 21kσy,mσz). (3.112)

We write k as ∂
∂x (the chain is placed along the x-direction) and assume m to be a smoothly vary-

ing quantity in x, that is, m(x) which changes sign across the transition. This allows us to write the

Hamiltonian as

H = 2i1σy
∂

∂x
+ m(x)σz. (3.113)

The time independent Schrödinger equation corresponding to E = 0 for the Hamiltonian can be

written as(
2i1σy

∂

∂x
+ m(x)σz

)
φ(x) = 0 (3.114)

where φ(x) is the eigenfunction. Solving the above equation, one gets, two solutions (corresponding

to the 2 × 2 structure of the Pauli matrices) as

φ±(x) = exp

(
±

∫
m(x)

21
dx

)
φ±(0) (3.115)

11 This real space representation is distinct from the one written in Eq. (3.70), and is obtained by discretizing the momentum

operator on a chain. We have written it for two sites in Eq. (3.70).
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FIG. 3.20
The spatial dependence of the wavefunction is shown. It falls off exponentially on either side of x = 0, the left of which

denotes a topological phase, while the right represents a trivial phase.

where φ±(0) refers to the eigenfunction of σ x, that is,

φ±(0) =

(
1

±1

)
.

The ±-sign yields an unphysical situation as it diverges at x = ∞. However, there is a solution corre-

sponding to m(x) = 0. This says that the zero energy mode decays exponentially in either direction

with respect to x = 0. We can invoke any functional behavior of m(x), however, the behavior of the

zero mode remains unaltered. Suppose we assume m(x) to change the sign at x = 0 and �at otherwise

(see Fig. 3.20), the bound state, φ−(x) assumes the form,

φ−(x) = exp (−|m|xσx) φ−(0). (3.116)

3.5.6 Energy spectrum of N -site Kitaev model

In order to obtain the energy spectrum of the Kitaev model, we can use Eq. (3.79) which was originally

derived for a two-site Kitaev chain. However, for a N-site system, the same expression can still be used

with N modes, that is, N k-values equally spaced between −π and +π .

It is also possible to solve Eqs. (3.109) and (3.110) on the basis of Majorana Fermions in real space.

For a chain consisting of N-sites, the Hamiltonian in Eq. (3.109) [or Eq. (3.110)] yields N eigenvalues

which can bemapped on to N distinct k-values that belong to the one-dimensional Brillouin zone. The

spectrum corresponding to the topological case [Eq. (3.110)] is plotted in Fig. 3.21 as a function of the
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FIG. 3.21
The spectrum for the Kitaev model is plotted for t = 1 = 1. The zero modes persist till µ = 2t, beyond which a trivial

band gap opens up.
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FIG. 3.22
The spectrum for the Kitaev model is plotted for t = 1 = 0. A band gap be seen for all values of µ.

chemical potential, µ. There are two degenerate zero modes which persist till µ = 2t, beyond which

these modes merge into the bulk. Hence, for µ > 2t, one obtains a trivial phase. For the trivial case,

the spectrum is gapped for all values ofµ (see Fig. 3.22). The topological protection of the zero modes

is discussed below.
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3.6 TOPOLOGICAL PROPERTIES OF THE MAJORANA MODES

Itmay seem that the topological phase of theKitaev chain is an artefact of setting the chemical potential,

µ, equal to zero, thereby disconnecting the twoMajoranamodes at the two edges. So a natural question

is if we changeµ slightly from a value zero, do theMajoranamodes disappear by coupling to the rest of

the chain? If this is true, then it results from a very carefully controlledmodel. In reality, this is not true.

If we increaseµ, it can be easily checked that tillµ ≤ 2t, the zeromodes (two of them) stay together, and

they only split forµ > 2t. One can see the same behavior for negative values of the chemical potential,

that is, the zero modes stick together at E = 0 for µ ≥ −2t. At µ = ±2t, the system becomes critical

and the bulk gap closes, whence the system ceases to be topological. Thus, the Majorana modes are

protected as long as there is a gap in the bulk spectrum.

The Majorana modes are indeed protected by the particle-hole symmetry of the Hamiltonian. For

µ = 0 (and1 = t 6= 0), there are an equal number of particle-like (corresponding to E < 0), and hole-

like states (for E > 0). Further, two states at zero energy which are inseparable, as if that is untrue, for

example, if they are separated, then that will cause an imbalance in the number of states below and

above E = 0 (Fermi energy). The only possibility is to couple the two unpaired Majorana modes to

each other, however such a coupling is impossible because of the large spatial distance between them.

The only way to facilitate a coupling is to close the bulk gap, which precisely happens for µ = ±2t,

where the zero modes disappear into the bulk.

3.7 EXPERIMENTAL REALIZATION OF THE KITAEV CHAIN

From the discussion so far, it is clear that there are intriguing possibilities of topological features emerg-

ing, depending on parameters of the Hamiltonian. The zero energy mode in the topological regime is

a coherent superposition of the two Majoranas and has opposite fermion number parity. However,

this system may look rather unphysical. Most crucial hindrance is provided by freezing out the spin

degrees of freedom. How do we do that? For argument’s sake, we can include a strong magnetic �eld

that will polarize all the spins of the electrons in the same direction of the �eld. However, that brings

us to the con�ict of superconductivity coexisting with a strong magnetic �eld. Furthermore, the avail-

ability of p-wave superconductors in nature is infrequent. Furthermore, not to forget that a mean �eld

theory of superconductivity is susceptible to large �uctuations in one dimension, which may prevent

the stabilization of the superconducting state.

Nevertheless, the seminal works of Fu and Kane (2008) and Fu and Kane (2009) have made it

abundantly clear that a Kitaev chain can be experimentally realized in a variety of systems. The

key ingredients are proximity-induced superconductivity, spin-orbit coupling (SOC) where the lat-

ter boosts the experimental search for exploring SOC in superconductors. From undergraduate level

quantum mechanics, it is known that the orbital angular momentum ceases to be a good quantum
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number in the presence of SOC, and thus it raises the possibility of p-wave superconductivity (as an

admixture to the s-wave pairing) which entails a spin-polarized pairing, and can possibly be induced

by proximity e�ects. For a more detailed discussion, may refer to the papers in Lutchyn et al. (2010)

and Oreg et al. (2010).

As discussed earlier that the Majorana bound states are the superposition of particle and hole excita-

tions at E = 0 which are trapped in the bulk gap. Thus, twoMajorana bound states encode a non-local

qubit that is robust against local perturbations, such as decoherence and, thus, constitute essential ele-

ments for topological quantumcomputation. TheMajorana bound states can be experimentally probed

byAndreev re�ection. Suppose in an experimentwith a semiconductingwire placed on a p-wave super-

conductor (or even an s-wave superconductor is deposited on the surface of a topological insulator

whose surface states are denoted by the likes of Dirac fermions), metallic lead couples to the Majorana

modes by tunneling of electrons. The Majorana fermions can induce resonant Andreev re�ection12

from the lead to the superconductor (Nilsson et al., 2008; and Law et al., 2009). Usual Andreev re�ec-

tion converts an electron into a hole in the same lead, however a crossedAndreev re�ection non-locally

converts electron excitation into hole excitation into di�erent lead. Equivalently, it splits a Cooper pair

and distributes them into two leads, which happens at very low excitation energies.

3.8 TOPOLOGY IN 2D: GRAPHENE AS A TOPOLOGICAL
INSULATOR

Having studied a prototype model Hamiltonian in 1D, we turn our focus toward 2D, now with the lens

on graphene. Particularly, we shall explore whether graphene possesses the credibility of becoming a

topological insulator. That may happen, provided by some means, we are able to open a spectral gap

at the Dirac cones. Since a non-zero Berry phase can be a smoking gun for non-trivial properties, let

us �rst look at the Berry phase of graphene.

3.8.1 Berry phase

To compute the Berry phase, let us consider the low energy Hamiltonian of graphene given by13

H = ~vF(τzσxqx + σyqy) (3.117)

where τ z denotes the valley degree of freedom, that is, τ z = 1 for K-point, while it is −1 for the

K ′-point. As usual, σ denotes the sublattice degree of freedom. The Berry connection was obtained as

A = 〈ψ−| ∇ |ψ−〉. (3.118)

12 Andreev re�ection is brie�y discussed in Chap. 7.
13 We have discussed the electronic properties of graphene in Chap. 3.
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To remind ourselves, the Chern number is de�ned by integrating the Berry curvature over BZ.

n =
1

2π

∮

BZ
Fd2K = C (a notation we have used earlier)

We rewrite the Dirac Hamiltonian as

h(q) = q · σ (the velocity term is dropped). (3.119)

In the polar coordinates q and h(q) can be represented as

q = |q|

(
cosφ

sinφ

)
= q

(
cosφ

sinφ

)
(3.120)

and

h(q) = q

(
0 cosφ − i sinφ

cosφ + i sinφ 0

)
= q

(
0 e−iφ

eiφ 0

)
. (3.121)

The normalized eigenvectors are,

|ψ−〉 =
1

√
2

(
−e−iφ

1

)
and

|ψ+〉 =
1

√
2

(
e−iφ

1

)
. (3.122)

Next, we calculate the Berry connection A, and to remind ourselves that only �lled bands are to be

taken into account. So we shall consider |ψ−〉 in the de�nition ofA.

A = i〈ψ−|∇q|ψ−〉. (3.123)

The gradient operator, ∇q in the polar coordinate is given by

∇q =

(
∂

∂q
q̂ +

1

q

∂

∂φ
φ̂

)
. (3.124)

Note that |ψ−〉 does not depend upon q. If we now introduce a band index, n, the Chern number

corresponding to a band index, n can be written as Cn. The total Chern number is obtained from the

contribution from all the bands, namely,

C =

∑

n

Cn

Cn =
1

2π

∫

S
FndS, (3.125)

where the S is the surface that encloses the loop.WithA =
1
2q ,∇ × A = 0. SoF = 0, and henceC = 0

which is not a surprise, as for time reversal invariant systems, the Chern number should vanish.

The Berry phase around the Dirac points (K and K′) is nothing but the winding number multiplied

by π , which is then either +1 or −1. This introduces a measure of the topological charge for the Dirac

points in the k-spacewhich tells us how thewavefunctionswind around these singular points in k-space
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di�erently with respect to each other. TheK point carries the topological charge+1 (a vortex) and the

K′ points carry a topological charge −1 (an anti-vortex). With the Dirac Fermion sitting at K carries a

Berry phase, 8K
B = π , and the Dirac Fermion at K′ has a Berry phase, 8K′

B = −π . The overall Berry

phase,8B is zero, that is,8B = 0.

3.8.2 Symmetries of graphene

It is fairly well known to the readers by now that graphene is represented by the nearest neighbor tight

bindingmodel on a honeycomb lattice with a two sublattice basis, namely, A and B sublattices. Carbon

(C) atoms occupy both the sublattices. The situation is slightly di�erent in Boron Nitride, which, in

spite possessing the same crystal structure, the sublattice symmetry is broken by boron and nitrogen

occupying the A and the B sublattices. Thus, graphene is a prototype of a system possessing sublattice

symmetry which renders the Hamiltonian block o� diagonal written on the sublattice basis. The low

energy physics of this model is denoted by the massless Dirac Hamiltonian that we have seen at length

earlier. Here, for the sake of completeness, we recall that the low energy Hamiltonian of graphene at

both the Dirac points, namely, K and K′ is written as

H0(k) = ~νF(kxσxτz + kyσy), (3.126)

where the pseudospins σ x, σ y denote sublattice degrees of freedom, and τ z (again the z-component of

the Pauli matrix) distinguishes the valleys atK andK′. Needless to say that here is that theHamiltonian

is independent of the real spin, which will continue to be a valid description until spin-orbit coupling

is included. Now, consider the inversion (or the sublattice) symmetry, which, along with switching

the two sublattices, also changes the momentum k to −k (remember p = m dr
dt ) which again implies

that the two valleys are switched under inversion. The corresponding operator which performs this

operation is given by

P = σxτx

Under this inversion operator, the Hamiltonian transforms as

PH(k)P−1
= ~νF σx τx (kxσxτz + kyσy) σxτx = H0(−k). (3.127)

The above relation can be proven by using product rules of the Pauli matrices, and it ensures inversion

symmetry of the Dirac Hamiltonian.

Now we shall discuss time reversal symmetry. In the case of graphene, time reversal symmetry

implies changing the momentum vector k to −k, followed by complex conjugation of the operator

(as explained earlier). Under the time reversal symmetry operation, one Dirac point (say, K) goes to

another one (say,K′), and thus, the twoDirac cones are exchanged. Thus, taking the time reversal oper-

ator, T to be a complex conjugation operator should have been su�cient. However, as discussed earlier,

the time reversal symmetry in graphene also implies a transformation from one valley to another, that

is K changing over to K′. This makes us settle for

T = τxK, (3.128)
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where τ x is the x-component of the Pauli matrix. Note that here T 2
= 1 as we are dealing with spinless

fermions.14 To check for the invariance of the Hamiltonian under the operation of T , one needs to

prove,

T H0(k)T
−1

= ~νF τx (kxσxτz + kyσ
∗

y )τx = H0(−k). (3.129)

The above relation ensures the invariance of the Dirac Hamiltonian under the time reversal operation.

It may also be mentioned that the above symmetries put together, that is, the product of the sublattice

(or inversion), and the time reversal symmetries yield further discrete symmetry, known as the charge-

conjugate symmetry, usually denoted by C. It can be checked thatH0 is invariant under a combination

of these two symmetries.

To summarize, in the context of graphene, we have seen the emergence of three discrete symmetries,

namely, the sublattice symmetry (or, the inversion symmetry, denoted by P), the time reversal sym-

metry (denoted by T ), and �nally, a combination of the two, that is, the charge-conjugation symmetry

(C). They indeed have di�erent properties, such as P is a unitary operator and anticommutes with the

Hamiltonian, T is an antiunitary operator which commutes with the Hamiltonian, while the charge-

conjugation operator C is antiunitary (since it is a combination of P and T ) which also anticommutes

with the Hamiltonian.

Having discussed the fundamental symmetries of graphene, let us return to its prospects of being

a topological insulator. In Haldane’s own submission (see https://topocondmat.org/w4_haldane/

haldane_model.html), there can be simple e�orts to tweak the Hamiltonian to achieve topological

properties. Thus, the goal is to transform a sheet of graphene into a quantum Hall-like state with con-

ducting edges and insulating bulk. Furthermore, the edge modes have a chiral character, which means

that the current is carried in opposite directions at the two edges. There could be two ways of doing

this; either break the inversion symmetry, keeping the time reversal symmetry intact, or break the time

reversal symmetry, retaining the inversion symmetry. In the following, we show that, while the �rst

option does not yield a topological phase, the second one indeed does. Nevertheless, we shall discuss

both, which are, respectively known as the Semeno� insulator (obtained via breaking the inversion

symmetry), and a Haldane (or a Chern) insulator (obtained via breaking the time reversal symmetry).

3.8.3 Semenoff insulator

In order to break the inversion symmetry, consider a staggered onsite potential of the form,

H
′
= εA

∑

rA

c†A(rA)cA(rA)+ εB
∑

rB

c†B(rB)cB(rB), (3.130)

where εA and εB are onsite potentials at the sites A and B, respectively. For εA 6= εB, the inversion

symmetry (or the sublattice symmetry) is broken, as is the case for the hexagonal boron nitride (h-BN),

14 For spin-full systems, T 2
= −1.
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where the sites occupied by the C atoms in graphene are occupied by boron (B) and nitrogen (N) at

the A and B sublattice sites, thereby causing the onsite energies to be unequal. Thus, including a term

that has an equal and opposite magnitude at the two sublattices, the low energy Hamiltonian becomes,

H(q) = H0(q)+ mIσz (3.131)

where the mI term makes the massless Dirac particle massive. Here, mI = (εA − εB)/2 can be called

the Semeno� mass. mI = 0 for εA = εB. Further σ z anticommutes withH0(k), that is,

{σz,H0} = 0.

The spectrum is given by

E(q) = ±

√
~2ν2Fq2 + m2

I . (3.132)

In a compact notation, one may write it as

Eµ(q) = µ

√
~2ν2Fq2 + m2

I (3.133)

where µ = ±1 and each sign refers to a valley index.

2

0

–2

E
/t 2mI

K M

k-space

K¢G G

FIG. 3.23
The energy band dispersion with a Semenoff mass, mI. A gap

opens up at the Dirac points of magnitude 2mI.

The spectrum is plotted in Fig. 3.23. Spectral

gaps open up of magnitude 2mI at each of

the Dirac points. This gap earned the name

Semeno� insulator. However, the nature of the

gap is a trivial one in the following sense. The

gap vanishes as mI → 0. Besides the wavefunc-

tion plotted for a graphene nanoribbon of size

LxLy.
15 There is no trace of the edge states

being present. Besides the Berry phase and the

Chern number also vanish as we shall show

below, thereby certifying the trivial nature of

the energy gap in the spectrum. This eliminates

the possibility of any topological properties of

the model induced by the inclusion of mI.

To gain a bit of details on the Semeno� insula-

tor, let us complete themandatory calculations.

The eigenfunctions can be written as

9µ(q) =
1

√
2

( √
1 + mI/Eµ

µ
√
1 − mI/Eµeiθq

)
. (3.134)

15 This is called a semi-in�nite ribbon. It is �nite in y-direction and very large (taken to be in�nitely large) along the x-direction

(Lx � Ly). We shall shortly discuss this below.
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The corresponding Berry curvature is

�µ =
v2FmI

2µ
[

v2Fq2x + v2Fq2y + β2
] 3
2

(3.135)

which eventually gives the Berry connection as [see Eq. (3.118)],

A
µ

=
τz

2

(
1 + µ

mI

|Eµ|

)
θ̂q

q
. (3.136)

Finally, the Berry phase is obtained as

8B = πτz

(
1 + λ

mI

|Eµ|

)
.

Thus, the Berry phase for a massless Dirac equation is thus renormalized by the Semeno� mass, mI.

One regains the corresponding result for graphene by putting, mI = 0.

A further (and more robust) check on the trivial nature of the spectral gap can be achieved by com-

puting the dispersion for a graphene nanoribbon. A nanoribbon is a system which is in�nite along

one direction (say, x-direction), and �nite along the other direction (y-direction). Usually, graphene

ribbons are recognized by their edges along the x-axis, for example, with zigzag and armchair edges,

and are referred to as the zigzag graphene nanoribbons (abbreviated as ZGNR) and armchair graphene

nanoribbon (AGNR). There is an important di�erence between the two. ZGNR is always metallic with

gapless edge states, while AGNR is conditionally metallic in the following sense. AGNR has been con-

ducting edge states when N = 3M − 1, where N is the number of lattice sites in the y-direction, and

M is an integer.

We have taken a ZGNR, as shown in Fig. 3.24, with the total number of lattice sites along the y-axis

as 256, that is, N = 256 (so number of unit cells is 128) along the y-direction and a width given by(
3N
2 − 1

)
a (a: lattice constant = 1.42Å), which upon putting N = 256 yields 383a or 543.86Å. We

�nally write down the equation of motion, that is solving the Schrödinger equation,Hψ = Eψ for the

amplitudes at the A and B sublattice sites below,

Ekak,n = −

[
t
{
1 + e(−1)nik

}
bk,n + tbk,n−1

]
+ mIak,n (3.137)

Ekbk,n = −

[
t
{
1 + e(−1)n+1ik

}
ak,n + tak,n+1

]
− mIbk,n. (3.138)

Along the x-direction, the ribbon is in�nite, which is implemented in our numeric computation

by assuming the momentum along the x-direction, that is, kx to be a good quantum number.

The above equations are numerically solved. We show the results in Fig. 3.25 which clearly

show the absence of zero modes, which precludes its prospects as a candidate for a topological

insulator.
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FIG. 3.24
A schematic diagram of a semi-infinite nanoribbon is show. We perform our numeric computation of the edge modes

on a geometry such as this.
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FIG. 3.25
The energy dispersion for a Semenoff insulator in a semi-infinite nanoribbon. A (trivial) gap is visible in the spectrum.
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3.8.4 Haldane (Chern) insulator

+it
2

–it
2

FIG. 3.26
Complex next nearest neighbour hopping in the

Haldane model.

The second option of breaking the time reversal invari-

ance is more subtle, and yields a success in obtaining a

topological state. The idea involves including an imag-

inary second neighbour hopping that assumes opposite

signs depending on the direction of hopping. For exam-

ple, if an anticlockwise hopping (shown by the blue arrow

in Fig. 3.26) is assumed with a positive sign, then the

clockwise hopping (shown by red in Fig. 3.26) acquires

a negative sign. A formal way of writing this term is via

H
′′

= t2
∑

〈〈ij〉〉

eiνijφc†i cj, (3.139)

where the sum runs over the next nearest neighbor

(NNN) sites (double angular bracket 〈〈ij〉〉 imply NNN

sites). νij denotes the chiral nature of the hopping term where νij = −νji depends on the direction

of the hopping. The convention is νij = +1 for clockwise hopping between the NNN sites, while

νij = −1 for anticlockwise hopping (see Fig. 3.26). The phase eiφ or e−iφ depends upon the direction of

the hopping. Such a complex direction-dependent hopping breaks the time reversal invariance, since

the time reversal �ips the direction of hopping. Only the imaginary part of the phase, φ is interesting.

Thus, to set the real part to zero, wemay choose φ =
π
2 . This is known as theHaldanemodel (Haldane,

1988), which Haldane had prescribed for achieving an anomalous quantumHall state. It is anomalous

in the sense that the Hall e�ect is realized without an external magnetic �eld, or equivalently, without

the Landau levels. As we have seen earlier, and again shall see shortly that broken time reversal symme-

try implies a �nite Chern number, a reason why these insulators are known as Chern insulators. The

complex phases can be realized by applying a staggered magnetic �eld pointing at opposite directions

at the center of the honeycomb lattice relative to that at the vertices.

Introducing the NNN vectors, bi, as earlier, where, b1 = δ2 − δ3, b2 = δ3 − δ1, and b3 = δ1 − δ2

where δi denotes the vectors connecting NN sites, the Hamiltonian can be written as (the NN tight

binding term is also there, but not written here),

H
′′

= t2

3∑

i=1

[
eiφ
∑

rA

c†A(rA)cA(rA + bi)+ e−iφ
∑

rB

c†B(rB)cB(rB + bi)

]
. (3.140)

In the momentum space, the full tight-binding Hamiltonian reads

H
′′(k) = 2t2

[
cosφ

3∑

i=1

cos(k · bi)1 + sinφ

3∑

i=1

sin(k · bi)σz

]
. (3.141)

Until this point, the full NNNHamiltonian is dispersive, that is, it depends upon the k-vector.However,

the low energy Hamiltonian, that is near theK andK′ points, is independent of k at the leading order,
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where the Hamiltonian can be shown to assume the form,

H
′′

±K = mH τz σz, (3.142)

where we have combined the forms at the two Dirac points by using τ z where τ z = ±1,

mH = −3
√

3 t2 sinφ. (3.143)

The above form can be easily obtained by noting that

3∑

i=1

cos(k · bi) = −
3

2
and

3∑

i=1

sin(k · bi) = ∓
3
√
3

2
,

where k · bi = K. The readers are encouraged to �ll up a few steps of algebra.

3

2

1

0 6
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/t 3t
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FIG. 3.27
The energy spectrum of the Haldane model.

Therefore, in the leading orderH′′ is independent of themomen-

tum k. The last term in Eq. (3.142) breaks the time reversal

symmetry.σ z does not change sign, but τ z being the valley degree

of freedomdoes. Thus, the energy spectrumopens up a gap at the

Dirac points for speci�c values of the complex second neighbor

hopping t2. In fact, adding a small t2 yields a situation similar to

adding a small a Semeno� mass, mI. However, when t2 exceeds

a value of ±mH/3
√
3, the energy closes at one of the two Dirac

points (eitherK orK′), and opens up at the other Dirac point for

one of the signsmentioned above, say t2 = mH/3
√
3. The reverse

happens for t2 = −mH/3
√
3 where the gap closes at the former

Dirac point, while it opens at the other.We show this in Fig. 3.27.

In order to elucidate the topological properties, we repeat the

calculations same as that of the Semeno� insulator. The eigen-

functions for the Haldane model can be written as

9µ(q) =
1

√
2

( √
1 + β/Eµ

µ
√
1 − β/Eµeiθq

)
, (3.144)

where µ = ±1, with the energy spectrum given by

Eµ = µ

√
v2Fq2x + v2Fq2y + β2.

This further yields a Berry curvature which can be shown to have the form,

�µ =
v2Fβ

2µ
[

v2Fq2x + v2Fq2y + β2
] 3
2

. (3.145)

The corresponding Berry connection is hence given by

A
µ

=
τz

2

(
1 + µ

β

|E|µ

)
θ̂q

q
(3.146)
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where β = 3
√
3t2. The Berry phase,8B using

8B =

∫
A
µ

· dq

yields

8B = πτz

(
1 + λ

β

|Eµ|

)
. (3.147)

Finally, the Chern number can be obtained by integrating the Berry curvature over the BZ,

C =

∮
�µ(q)d2q.

For the topological phase, that is for, |t2| > mH/3
√
3, one obtains a non-zero Chern number. Owing to

a non-zero Chern number (C), the model has earned the name “Chern insulator.” The Chern number

is the topological invariant which distinguishes the Semeno� insulator from a Chern insulator. For the

Semeno� insulator, C = 0. We show the phase diagram in Fig. 3.28, where the topological phases are

shown via the red (C = 1) and the blue (C = −1) colors, respectively, while the trivial region (C = 0)

is shown with a white color.

How do we know that this gap is topological in nature, instead of a trivial one as seen for a Semeno�

insulator? This is a valid question since the nature of the gaps looks fairly the same in Figs. 3.25 and

3.27, except that the spectral gaps carry the energy scales proportional to their masses, that is, mI for

6

3

0

m
I/t

2

–3

–6
–π –π/2 π/2

φ
π0

C = 0

C = 1C = –1

C = 0

FIG. 3.28
The Chern number phase diagram for the Haldane model. The red region corresponds to C = 1, while the blue one

denotes C = −1. The white region outside the lobes refers to a trivial insulator with C = 0.
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the Semeno� insulator, and mH for the Chern insulator. In the following, we check for the chiral edge

modes in a semi-in�nite graphene nanoribbon.

In a similar fashion as discussed in the context of a Semeno� insulator, the equations of the motion for

the amplitudes at the A and B sublattice sites can now be written as

Ekak,n = −

[
t
{
1 + e(−1)nik

}
bk,n + tbk,n−1

]

− 2t2

[
cos(k + φ)ak,n + e(−1)n ik

2 cos

(
k

2
− φ

)
{ak,n−1 + ak,n+1}

] (3.148)

Ekbk,n = −

[
t
{
1 + e(−1)n+1ik

}
ak,n + tak,n+1

]

− 2t2

[
cos(k − φ)bk,n + e(−1)n+1 ik

2 cos

(
k

2
+ φ

)
{ak,n−1 + ak,n+1}

]
.

(3.149)
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FIG. 3.29
The energy dispersion for a Chern insulator in a

semi-infinite nanoribbon. The edge states are shown

via the red lines that split from the bulk. In the yellow

panel below, we show the chiral edge currents that

flow in opposite directions along these edge modes.

In Fig. 3.29 we show the appearance of the edge modes

as t2 crosses ±mH/3
√
3 which are absent at small val-

ues of t2. The appearance of the edge modes implies the

emergence of a topological phase in the model, and there

occurs a phase transition from a topological-insulating

phase to that of a band insulator. Thus, we get a quan-

tum Hall-like state, with conducting edge modes (and

insulating bulk), albeit without an externalmagnetic �eld.

3.8.5 Quantum anomalous Hall effect

Finally, we shall present the results of the Hall conductiv-

ity. Here, non-zero Berry curvature yields a �nite conduc-

tance. To remind ourselves, the full tight binding Hamil-

tonian [including the NN term which we have excluded

earlier in Eq. (3.141)] is written as (Mondal and Basu,

2021)

H = −t

[
cos(k · δ1)+

3∑

i=2

cos(k · δi)

]
σx

− t

[
sin(k · δ1)+

3∑

i=2

sin(k · δi)

]
σy

+

[
1− 2 t2 sin φ

3∑

i=1

sin(k · νi)

]
σz

+

[
2t2 cos φ

3∑

i=1

cos(k · νi)

]
I

= hxσx + hyσy + hzσz + h0I,

(3.150)
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where hx, hy and hz represent the coe�cients of the Pauli matrices σ i. The low energy expansion of this

Hamiltonian is convenient for our purpose. In fact, the computation of the Berry curvature is much

easier for the low energy Hamiltonian, than it is for the full tight binding one. Arriving at the low

energy Hamiltonian involves expanding the sine and the cosine functions to their leading order in the

vicinity of the Dirac points. Applying these simpli�cations, one arrives at

H = d · σ , (3.151)

where the components of the d di�er from those of h, and up to linear in kx and ky are given by

dx(kx, ky) =
3

2
kx, dy(kx, ky) =

3

2
ky, and dz(kx, ky) = −3

√

3

The above form facilitates computation of the Hall conductivity using the following form for the Berry

connection (Xiao et al., 2010),

10–1

EF/t

1.0

0.8

0.6

0.4

0.2

σ x
y
/σ

0

FIG. 3.30
The anomalous Hall conductivity is shown as a

function of the Fermi energy. There is a distinct

plateau in the vicinity of the zero-Fermi energy.

�(Ek) =
d

2|d|3

(
∂d

∂kx
×
∂d

∂ky

)
. (3.152)

Finally, the Hall conductivity is obtained via

σxy =
e2

h

∫
dk

(2π)2
f (Ek)�(Ek), (3.153)

where the integral is taken over the BZ, and f (Ek) is the Fermi

distribution function. Since our calculations were at zero tem-

perature, we set f (Ek) = 1. The Hall conductivity as a function

of the Fermi energy is plotted in Fig. 3.30. A plateau at e2/h

is clearly visible, which enunciates the quantization of the Hall

conductivity. Further, the presence of only one plateau is con-

�rmed by the value of the Chern number being 1 (or −1), and

also that there is only a pair of gapless edge modes. Thus, an

anomalous version of the Hall conductivity is indeed distinct

from the usual Hall e�ect (in presence of an external magnetic

�eld). However, there are experimental realizations of systems

with higher values of the Chern number, besides being backed

up by a library of theoretical proposals.

3.9 QUANTUM SPIN HALL INSULATOR

Let us set aside the complex secondneighbor hopping due toHaldane for amoment, theDirac points in

graphene are protected by time reversal and the inversion symmetries. The complex second neighbor

hopping among sites of the same sublattice breaks the time reversal symmetry as we have seen in the

preceding section. Kane and Mele (2005) demonstrated that it is possible to restore the time reversal

symmetry in the Haldane model if we include (real) spin in the Hamiltonian, thereby making two
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copies of the Haldane model, one for each spin. The inclusion of the spin opens up the possibility of

a spin-orbit coupling, which however, does not violate any of the fundamental symmetries that we

have discussed above. Moreover, the resulting insulating phase is absolutely new, and is referred to as

the quantum spin Hall (QSH) phase. It should be clari�ed that spin-orbit coupling is not an essential

ingredient for the realization of the QSH phase. However, to achieve a spin-polarized transport in a

material, which shall aid its usage for spintronic applications, spin-orbit coupling is essential. We shall

return to this discussion shortly.

Similar to the quantumHall phase, the QSH phase is distinct from the trivial insulators by the presence

of the conducting states at the edges, which are typically protected by the Z2 topological invariant.

However, these edge states are non-chiral, unlike the quantumHall states. In fact, they are called helical

edge states, in the sense that there are two counter propagating edge modes at each edge, one for each

spin (see Fig. 3.31). Such conducting modes are immune to the single particle back scattering from

defects, disorders, or impurities as they are protected by time reversal symmetry. Thus, as long as there

m
I
/t = 0.1

1

a

c

b

0E
/t p s

q
r

p
s

q r

E
f

E
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–1
0 π 2π

m
I
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Ö3k
x
a

0 π 2π
Ö3k
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a

FIG. 3.31
The helical edge modes for the Kane– Mele model on a nanoribbon showing (a) topological, and (b) trivial phases. The

yellow panel in (c) shows the spin-polarized helical modes carrying current.
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is no time reversal symmetry breaking term, such as a magnetic impurity, the helical edge states are

robust, and the QSH phase persists.

It was initially thought that graphene would host a QSH-like phase, however it is almost impossible to

realize such a phase owing to an extremely weak spin-orbit coupling (Min et al., 2006). However, a the-

oretical proposal of a QSH phase happened soon after when Bernevig, Bernevig et al. (2006) predicted

that quantum wells made of CdTe/HgTe/CdTe host a QSH phase for a certain critical width of the

HgTe layer where the band inversion occurs. The corresponding Hamiltonian is called the BHZmodel

(after Bernevig, Hughes, and Zhang). Quite fortunately, immediately afterwards, Molenkamp and

co-workers (König, 2007) experimentally achieved such a scenario where an inverted band structure

occurs, followed by the realization of the helical (instead of chiral) edge states.

In the following, we shall describe the Kane–Mele model for graphene, which serves as a toy model for

aQSHphase that hosts counter propagating edgemodes one for each spin at each of the edges. Further,

these modes are found to be robust in the presence of a special type of spin-orbit coupling, known as

the Rashba spin-orbit coupling (RSOC). Here, as we shall show below, owing to the restoration of the

time reversal symmetry, the Chern number is zero. However, the helical edge modes are still protected

by bulk Z2 topological invariant, which is a consequence of the Kramer’s theorem applicable to band

properties of fermions in a time reversal invariant system.

3.9.1 Kane–Mele model

The Dirac points have been shown to be protected by the time reversal and the inversion symmetries.

Breaking any one of them opens a gap at the Dirac points by splitting the degeneracy. Throughout our

discussion on graphene thus far, the spin of the electron never played a role.16 Kane andMele included

the spin, thereby writing twoHaldane Hamiltonians, one for spin-↑ fermions, and the other for spin-↓

fermions. This results in

H = −t
∑

〈ij〉,α

c†iαcjα + it2
∑

〈〈ij〉〉,αβ

νijc
†
iα(Sz)αβcjβ

= H0 + HKM, (3.154)

where H0 is the usual NN tight binding term, and HKM is like the Haldane term, now summed over

the (real) spins. Traditionally, this term is called the intrinsic spin-orbit coupling. Sz is the z-component

of the spin of the electrons, and (α, β) denote the spin indices. Sz is indeed the z-component of the

Pauli matrices σ . However, to distinguish it from the sublattice and the valley indices, we have written

it with Sz. The NNN hopping term (the second term) describes a spin-orbit coupling that couples the

chirality of the electrons, described by νij with the z-component of spin (Sz = ±1). It is as if the orbital

angular momentum vector L is associated with the chirality in a familiar L · S term, thus justifying its

identi�cation as the spin-orbit coupling.

16 Chern number which is again analogous to the RHS of the Gauss-Bonnet theorem, namely the Euler-Poincare characteristics.

Hall angle is the angle that the resultant of the applied electric �eld vector (Ex) and the Hall �eld (EH) makes with Ex.
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The second term, even though it resembles the Haldane term, respects all the symmetries of graphene.

Time reversal �ips the direction of hopping, that is, reversing the motion, but simultaneously it also

�ips the spin, thereby yielding another negative sign. This term respects all the symmetries of graphene.

It may also be noted that the term does not involve spin �ip, and hence, the two bands of the Haldane

model (one for each spin) behave distinctly. In a mathematical sense, it means that the Hamiltonian

retains a block diagonal form, and hence, is easy to deal with. The bands corresponding to the up-

spin electrons are identical to the Haldane model (Chern insulators) discussed earlier. That is, they

correspond to the phase of the complex NNN hopping to be φ = π /2, and hence have opposite masses

at the K and the K′ (remember the term mHτ zσ z in the low energy limit of the Haldane model).

Furthermore, it has a Chern number C↑ = +1. Please note that we have brought in a spin index to the

Chern number. For the down-spin electrons for which φ = −π /2, there will be an extra negative sign,

which implies reversed signs for mH at theK and theK′ points as compared to the situation for the up

spin. This yields C↓ = −1. Thus, the total Chern number,
∑
σ Cσ = 0, which is a consequence of the

time reversal symmetry.

A simple way of seeing that the Kane–Mele model is two copies of the Haldane model is that

[HKM , Sz] = 0, (3.155)

which signi�es that HKM decouples into Hamiltonian one for each spin. This situation is similar

to a Haldane �ux φ =
π
2 for one type of spin, and φ = −

π
2 for the other. The low energy Kane–

Male Hamiltonian can be shown to have a form (readers are encouraged to complete the derivation),

written as

HKM = mHσzτzSz

where the amplitude mH = −3
√
3 t2 is the Haldane mass as stated earlier.

Let us convince ourselves that time reversal is indeed a valid symmetry operation for the Kane– Mele

model. For spinor particles, we have seen that the time reversal operator T is written as

T = iσyK

where K is a complex conjugation operator. Here we write it as

T = iSyK.

However, since the time reversal transformations from one valley to another, an operator that can be

implemented by incorporating a τ x, we can write,

T = τx iSyK.

It is fairly trivial to see thatHKM is even under time reversal. Please recall that the time reversal in�icts

complex conjugation, �ips the real spin, reverses the valley degree of freedom, and reverses the direc-

tion of the momentum k → −k. While the last one is not relevant, since the low energy Hamiltonian

is independent of k, the �rst two yields under the time reversal,

τ : τz → −τz, sz → −sz.
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However, σ z does not change the sign as it denotes the sublattice degree of freedom. Hence, two

negative signs cancel out and we getHKM to be even under T .

To remind ourselves on the other fundamental symmetry, that the inversion symmetryP , which yields

P : σz → −σz, τz → −τz, sz → sz.

Hence,HKM respects all symmetries of graphene as claimed earlier.

Let us look at the topological phase transition in a little more detail. For this, it is instructive to look at

only one spin at a time, for example, Sz = +1 (that is, up spin). TheHamiltonian, including a Semeno�

mass becomes,

HKM(k) = ~νF

(
kxσxτz + kyσy

)
+ (mI + mHτz)σz (3.156)

Explicitly writing the above Hamiltonian for the two valleys,

H
K
KM(k) = ~νF(kxσx + kyσy)+ (mI + mH)σz (3.157)

H
K′

KM(k) = ~νF(−kxσx + kyσy)+ (mI − mH)σz. (3.158)

Now consider two possibilities: (i) mI > mH and (ii) mH > mI. In the �rst case, consider the extreme

limits (for convenience), that is mI � mH where we have a trivial band insulator. Now consider the

other case where mH > mI: Nothing happens toH
K
KM(k) in Eq. (3.157), but forH

K′

KM(k) in Eq. (3.158),

the gap closes and reopens. Thus, the insulating phase with mH > mI is distinct from that of a band

insulator by a gap closing phase transition, which by de�nition is a topological phase transition.

The situation for Sz = −1 is identical, except that the sign of mH changes which results in a similar

phase transition at the other Dirac point, that is, at the K point. Now de�ning,

m̃ = mI − mH (3.159)

yields, corresponding to,

m̃ < 0, C = 1

and m̃ > 0, C = 0.
(3.160)

3.10 BULK-BOUNDARY CORRESPONDENCE

Bulk-boundary correspondence (BBC) yields a guide to the phenomenology of topological insulators.

The topological invariants computed from the bulk properties corresponding to a particular phase

of the system uniquely re�ect the conducting edge modes. Let us try to answer the question that we

have posed above, that is, how is m̃ < 0 fundamentally di�erent from that of m̃ > 0? Again, consider a

semi-in�nite nanoribbon, that is, in�nite in x-direction and �nite in the y-direction. The Schrödinger

equation with the Hamiltonian given earlier can now be solved for a semi-in�nite system, as we have

discussed earlier.
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Before we discuss the numerical solution for a nanoribbon, let us explore an analytic solution. We can

assume that the TheHamiltonian has an edge at y = 0, so that the system exists for y < 0 and a vacuum

for y > 0. In addition, let us assume a particular value of kx, namely, kx = 0 (remember kx is a good

quantum number owing to translational invariance in the x-direction). Hence, we can write down the

Hamiltonian,

H(y) = −ivFσy
∂

∂y
+ (mI − mH)σz, (3.161)

where, ~ = 1 and mI − mH = m̃(y). The RHS of Eq. (3.161) resembles y-dependent potential energy

in a 1D-free Hamiltonian. Further, let us insist on

m̃(y) < 0, for y < 0

m̃(y) > 0, for y > 0.
(3.162)

Thus, as if there is a physical boundary between the topological and trivial states. Let us look at the

zero energy solutions.

Now make an ansatz for the y-dependent wavefunction (like variational wavefunction)

ψ(y) = iσy ef (y) φ (3.163)

where φ is a 2-component spinor. Putting Eq. (3.163) in Eq. (3.161)
(

ivF
df

dy
+ m̃(y)σx

)
φ = 0 (using σyσz = iσx). (3.164)

The formal solution for f (y) is obtained as

f (y) = −
1

vF

∫ y

0
dy′ m̃(y′) (3.165)

where φ is assumed to be the eigenstate of σ x with eigenvalue +1.

Also, the e�ect of iσy = ei π2 σy is rotated by π around the y-axis.

ψ(y) = exp

(
−

1

vF

∫ y

0
m̃(y′)dy′

)
|σx = −1〉. (3.166)

The exp(− 1
vF

∫ y
0 m̃(y′)dy′) factor allows it to fall o� the inside of the sample. So ψ(y) the edge is

maximum at the edges. Also, it is an eigenstate of σ x as it has to mix the two sublattices by hopping

along the boundary. For the other Dirac point, the state traverses in the other direction. At larger

energies, ε(kx) = −vFkx, so that,

vF (or v) =
∂ε(kx)

∂x
= −v. (3.167)

For m̃ → −m̃, we have an electron traversing in the opposite direction at the other cone.
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Finally, we show the numeric computation of the edgemodes in the Kane–Mele nanoribbon by solving

the following sets of equations.

Ekak,n =

[
t
{
1 + e(−1)n+1ik

}
bk,n + tbk,n+1

]
s0 + mIak,ns0

+ 2t2

[
ak,n sin k + e(−1)n+1 ik

2 sin
k

2
{ak,n−1 + ak,n+1}

]
sz

+ iλR

[{
−
1

2

(
1 + e(−1)n+1ik

)
bk,n + bk,n+1

}
sy −

{
(−1)n

√
3

2

(
1 − e(−1)n+1ik

)
bk,n

}
sx

]

(3.168)

Ekbk,n =

[
t
{
1 + e(−1)nik

}
ak,n + tak,n−1

]
s0 − mIbk,ns0

+ 2t2

[
bk,n cos k + e(−1)n ik

2 cos
k

2
{ak,n−1 + ak,n+1}

]
sz

+ iλR

[{
1

2

(
1 + e(−1)nik

)
bk,n + bk,n−1

}
sy −

{
(−1)n+1

√
3

2

(
1 − e(−1)nik

)
ak,n

}
sx

]
.

(3.169)

Fig. 3.31(a) clearly shows the existence of spin-�ltered edge modes in the topological phase, while they

are absent in Fig. 3.31(b). The presence of the helical modes carrying spin resolved currents at each

edge are shown in the yellow panel below [in Fig. 3.31(c)]. Each of the conducting modes denotes a

channel for each spin. Thus, the model supports spin-polarized conduction via the edge modes, while

the bulk remains gapped. It must be kept in mind that the Chern number is identically equal to zero

in this case owing to the time reversal symmetry being intact. However, the topological invariant here

is the Z2 index, which is non-zero.

3.11 SPIN HALL CONDUCTIVITY

We have seen that even though the individual conducting edge states have a non-zero Chern number,

the total Chern number, C still vanishes owing to the time reversal symmetry being present. Thus, the

charge Hall conductivity vanishes, that is, σ xy = 0. However, the spin Hall conductivity survives.

In order to calculate the spin Hall conductivity, let us rewind the Corbino disc argument due to Laugh-

lin. When a quantum of �ux80 is added to the inner edge of the disc, an electron is transferred from

the inner to the outer edge of the disc. Say this happens for the up spin leading to a e2/h (charge) Hall

conductivity. For the down-spin sector, in the presence of80, an electron is transferred backward, that

is, from the outer edge to the inner one. Including both the spins, the total Hall conductivity is zero, as

demanded by the time reversal invariance. However, in the process, a net spin is transferred from the

inner to the outer edge. The corresponding spin Hall conductance is given by

Gs =
~

2e

(
e2

h
+

e2

h

)
=

e

2π
. (3.170)
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FIG. 3.32
The spin Hall conductivity as a function of the Fermi energy is

plotted. A quantization plateau in the vicinity of the zero-Fermi

energy is clearly visible.

Thus, Gs is quantized in the unit of e/2π .

The spin Hall conductance as a function of

the Fermi energy is presented for graphene in

Fig. 3.32. A plateau is in the vicinity of the

zero-Fermi energy (zero bias), a signature of the

quantized nature of the spin Hall conductivity,

is visible.

There is a subtle point about the intrinsic spin-

orbit coupling that deserves special mention,

namely, the second term in Eq. (3.155) KM

Hamiltonian commutes with the Hamiltonian,

that is [HKM , Sz] = 0. However, usually SOC

terms are spin non-conserving which means

they canmix di�erent spins. Thus, in addition to

the intrinsic SOC, other types of SOC can also

be present. One such SOC is the Rashba spin-

orbit coupling (RSOC), which, as we shall see

di�erent spin components.

3.11.1 Rashba spin-orbit coupling

In solids, free (or nearly free) electrons do not feel the strong attraction of the nucleus of their host

atoms. However, the electrons may still experience an electric �eld or a potential gradient due to inter-

nal e�ects. As we know, if the electrons experience a strong electric �eld of potential gradient, then

there is a possibility of emerging of a spin-orbit coupling. So if a potential gradient exists across the

interface due to the structural inversion asymmetry, there will be a spin-orbit coupling, and named

after its discoverer, E.I. Rashba, that is, Rashba spin-orbit coupling (RSOC) (Bychkov and Rashba,

1984). The importance of the RSOC lies in the fact that asymmetry in the con�nement potential can

be varied by electrostatics means, allowing one to tune the RSOC strength by an external gate volt-

age. The strength of the RSOC also depends on the crystal structure in quantum wells and is largest

for narrow gap III-V semiconductors, such as InAs and InGaAs. In the following subsection, we shall

describe the RSOC in a continuum model. Later on, we shall extend our discussion on graphene.

RSOC yields couples the wave vector with the spin degrees of freedom of the electrons. Further, it leads

to the orientation of spins which point perpendicular to the direction of the electron propagation wave

vector. The free particle Hamiltonian including RSOC is described by

HR = −µ · B = −µ ·
v × E

c2
=

eE

mc2
S · (v × ẑ) =

eE~
2

8π2m2c2
σ · (k × ẑ) = αR(ẑ × k) · σ , (3.171)
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where αR =
eE~2

8m2π2c2
E is the strength of the RSOC, σ is a vector of the Pauli spin matrix E = −∇V is

the electric �eld along ẑ direction. αR can be tuned using an external gate voltage. In the absence of any

Zeeman coupling, assuming elastic scattering and for n̂ = ẑ (as per convention), the total Hamiltonian

for the electron is given by

H =
p2

2m
+ α(p × σ) · ẑ =

p2

2m
+ α(σxpy − σypx). (3.172)

This Hamiltonian yields the following energy spectrum,

E(k) =
~
2k2

2m
± α ~|k|, (3.173)

where |k| is themodulus of electronmomentumwith the plus and theminus signs denote two possible

spin directions. The associated wave functions are given by

9±(x, y) = ei(kxx+kyy) 1
√
2

(
1

±ie−iθ

)
, (3.174)

where θ = tan−1(ky/kx). It is easily understood that the spin states are always perpendicular to the

direction of motion [Eq. (3.174)]. If an electron moves along the x-direction, the spinor part of the

eigenvector becomes (1, ±i), that is, the spin up and the spin down are locked in y-direction. In con-

trast, if the electron moves along the y-direction, the eigenvectors become (1, ±1), that is, the spin up

and the spin down states are constrained in the x direction (see Fig. 3.33).

In Figs. 3.33(c)–3.33(e), the energy spectrum as a function of momentum, ky (keeping kx constant) for

a 2DEG are plotted corresponding to the following situations. Fig. 3.33(c) is related to a free electron

in 2DEG where the spin degeneracy is present. Figure 3.33(d) represents the energy spectrum for an

electron in the presence of amagnetic �eldB, the spin degeneracy is lifted by the Zeeman splitting, and

the gap-separating spin up and spin down bands is equal to gµBB where g is the Bohr magneton. Fig-

ure 3.33(e) presents a one-dimensional view of the energy spectrum for an electron in the presence of

RSOC. The spin degeneracy is lifted up, except for ky = 0. In this situation, the degeneracy is removed

without opening any gap. At ky = 0, the spin spectra are degenerate.

3.11.2 Rashba spin-orbit coupling in graphene

Writing the low energy Hamiltonian in the vicinity of the Dirac points for graphene

HR = λR(Sxqy − Syqx) (3.175)

which mixes up and down spins, which is why [HR, Sz] 6= 0. We prefer to call the strength as λR here,

instead of αR which was earlier used by us. The corresponding spectrum is given by

Eγ δ(q) = µ

√
q2 + (mH + δλR)2 + δλR, (3.176)

where the indices µ = ±1 and δ = ±1 yield the conduction and the valence band spectra at the

K and the K′ points. As we have already realized that the spectrum is gapped in the presence of
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FIG. 3.33
(a) Three-dimensional energy spectrum of the Hamiltonian H [Eq. (3.172)]. (b) Fermi energy contours for the Hamil-

tonianH. (c) Energy spectrum for a free electron. (d) Energy spectrum for an electron in the presence of a magnetic

field (Zeeman splitting). (e) Energy spectrum for an electron in the presence of Rashba spin-orbit coupling.

the intrinsic spin-orbit coupling (namely, the Haldane term) itself, and now when λR is included,

it will start competing with mH when δ = −1. Also, with increasing λR, the energy gap decreases.

At mH = λR, the spectrum consists of a Dirac cone with two gapped parabolic bands.

For the sake of completeness, we reiterate that the strength of RSOC is too weak to yield any observable

e�ects. For example, λR ∼ 10−3 K in graphene, while the kinetic energy is much larger. There are

techniques to enhance RSOC by using heavier adatoms, using an external gate voltage or bend the

graphene layer. The basic idea is to create a strong gradient of the electric potential.We shall not discuss

this any further and suggest more specialized reviews on the subject.
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3.11.3 Z2 Invariant

We have seen that the Kane–Mele model preserves the time reversal symmetry, and hence the Chern

number, which is a Z invariant, would be zero. This requires us to look for a new topological invari-

ant, namely, the Z2 invariant, which we shall discuss below. Now, on more general grounds, we need

to understand how the presence (or absence) of di�erent discrete symmetries a�ects the topological

invariant of a system. In the appendix, we include a discussion on the “ten fold” classi�cation scheme

that will aid us in decoding the nature of the topological invariant for a given system.

Since we shall include the Rashba SOC term in the KM Hamiltonian (see Eq. (3.154), and that it

respects all symmetries of graphene (for example, Chern number equal to zero), a new topological

invariant has to emerge. A priori, it is the Z2 invariant that we are talking about, however we refer to

the topological classi�cation by Altland and Zirnbauer in Altland and Zirnbauer (1997) and Ryu et al.

(2010).

Let us discuss the topological invariant relevant here, namely, theZ2 index that characterizes the topo-

logical properties of the system. We shall only talk about an inversion symmetric system. For the

calculation of the Z2 index, one may consider the Bloch wave functions, ui(ki) of the occupied bands

corresponding to a pair of points k1 and k2 in the Brillouin zone. These two points denote the loca-

tions of the band extrema (minima for the conduction band and maximum for the valence band) in

the BZ. The wave function at one of these points can be obtained by time reversing the wave func-

tion corresponding to the other one, that is, |ui(k1)〉 = T |ui(k2)〉, and vice versa where T denotes

the time reversal operator. Since the Hamiltonian is time reversal invariant, we can decompose the

Hamiltonian, H(k) and its corresponding occupied band wave functions, |ui(k)〉 into even and odd

subspaces. The even subspace has the property that T |ui(k)〉 is equivalent to |ui(k)〉 upto a U(2) rota-

tion.Whereas, the wave functions corresponding to the odd subspace have the property that the space

spanned by T |ui(k)〉 is orthogonal to that of |ui(k)〉. Now, the Z2 invariant can be calculated by con-

sidering themomentawhich belong to the odd subspace.We compute the expectation value of the time

reversal operator between |ui(k)〉 and |uj(k)〉, namely, 〈ui(k)| T |uj(k)〉. This yields a matrix which is

antisymmetric. Hence, we have

〈ui(k)|T |uj(k)〉 = εijP(k), (3.177)

where εij is the Levi-Civita symbol and P(k) is the Pfa�an of the matrix de�ned as

P(k) = Pf
[
〈ui(k)|2|uj(k)〉

]
. (3.178)

For a 2 × 2 antisymmetricmatrixAij, the Pfa�an picks up the o�-diagonal component. Now the abso-

lute value of this Pfa�an is unity in the even subspace, while it is zero in the odd subspace. Therefore,

we dissect the BZ into two halves, such that the points k1 and k2 lie in di�erent halves. Thus, the Z2

index can be computed by performing the integral,

Z2 =
1

2π i

∮

C
dk · ∇ log (P(k)+ iδ) , (3.179)
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FIG. 3.34
The phase diagram for the Kane–Mele model.The light blue

region corresponds to Z2 = 1, which denotes a quantum

spin Hall insulator. The white region outside the lobe refers

to a trivial insulator with Z2 = 0.

where δ is the convergence factor and the contour

C is the circumference of the halved BZ discussed

above.

The variation of the Z2 index is shown in the param-

eter plane de�ned by the Rashba coupling, λR and the

Semeno� mass, mI (both scaled by the NNN hop-

ping t2), which is shown to have a value 1 in the

light blue region, and vanishes outside in Fig. 3.34.

The region with non-zero Z2 invariant will host

spin �ltered chiral edge modes, and will denote a

quantum spin Hall insulator, and the region outside,

denotes a trivial insulator. Figure 3.34 denotes the

phase diagram of a quantum spin Hall insulator, in

the same spirit as Fig. 3.28 denotes the phase dia-

gram for a Chern insulator. To remind the readers,

the Chern number vanishes here due to the pres-

ence of the time reversal symmetry, thereby ruling

out the possibility of a quantumHall-like state. How-

ever, a new topological phase emerges, known as the

QSH phase.

3.12 SPIN HALL EFFECT

To shed light on possible applications, we give a brief description of the spin hall e�ect, and cursorily on

the subject of spintronics. The spin Hall e�ect (SHE) is the generation of the spin current perpendicu-

lar to the applied charge current. This leads to the accumulation of spins of opposite kinds at the edges

of the sample. The spin selection can be facilitated by a strong spin-orbit coupling (SOC). Strong SOC

may be intrinsic to doped semiconductors. The proposal has triggered intense investigation of the phe-

nomenon, and the lead has been taken by the �rst observation of SHE in n doped semiconductors (Kato

et al., 2004), and 2D hole gases (Wunderlich et al., 2005). Both the experiments measure directly the

spin accumulation induced at the edges of the sample through di�erent optical techniques. However,

more quantitative and accurate estimates can be obtained by measuring the Hall angle. An excellent

review of the family of the spin Hall e�ects, comprising of SHE (discussed brie�y above), inverse SHE

in which a pure spin current generates a charge current, and even an anomalous Hall e�ect (AHE) in

which a charge current generates a polarized transverse charge current in a ferromagnetic material can

be found in the review by Sinova et al. (2015).
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FIG. 3.35
Kerr rotation spectroscopy studies [taken from Stamm et al. (2017)] are shown. In (a) and (b), the Kerr rotation angles

θK as a function of y-scan (in µm) are shown for certain values of the current density, j (j in 10
6 A/cm2) corresponding

to thin films of Pt and W, respectively. (c) and (d) show the linear variation of θK with j for Pt and W. The slopes are

opposite in the two cases.

Let us brie�y look at the early experimental determination of SHE. In the magneto-optical detection

of SHE in thin �lms of platinum (Pt) and tungsten (W), the generation of spin currents from charge

currents in the presence of spin-orbit coupling is shown via Kerr rotation spectroscopy (Zhong and

Forukas, 2008) in Stamm et al. (2017). In Fig. 3.35, the measured Kerr rotation angles, θK as a function

of line scan (y) are shown for Pt andW samples of 10nm-15nm width at applied current densities in a
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particular range of values (see Stamm et al. (2017) for details). The Kerr rotation signals are discernible

for both samples, as shown in Figs. 3.35(a) and 3.35(b). Apart from the irregularities due to re�ection

from the edges, θK remains approximately constant with mutually opposite signs for Pt and W. In

Figs. 3.35(c) and 3.35(d), θK as average values of the line scan are shown to vary linearly with the

current density j. The results are conclusive in demonstrating SHE using Kerr rotation spectroscopy

studies via spatial evolution of the spin dynamics. Possibly, the corresponding data for extrinsic SHE

(in presence of an external �eld) should have a stronger signal, but the above results still con�rm the

possibility of realizing intrinsic SHE in experiments.

3.12.1 Spin current

Measuring the spin current is central to the study of SHE and hence to the emerging �eld of spintronics.

The spin current has to be contrasted with the charge current. The charge current density, jel(r, t) is

given by

jel(r, t) = Re
[
ψ†(r, t)(ev)ψ(r, t)

]
(3.180)

which further obeys a continuity equation of the form,

dρel

dt
+ ∇ · jel = 0 (3.181)

where v is the velocity of the electrons (charges), and ρel(r, t) = eψ†(r, t)ψ(r, t) is the charge density.

The continuity equation in Eq. (3.180) is the consequence of the invariance of charge. However, in

the case of spin current, there is an ambiguity that arises from the fact that the spin is not an invariant

quantity in spin transport owing to the presence of the spin-orbit coupling (Sun and Xie, 2005) Usually

the spin current is de�ned as 〈v · s〉which is a non-conserved quantity. However, in the classical sense,

just as the charge current density, the spin current density, js (the subscript s refers to the spin) can be

written as

js = Re
[
ψ†(r, t)(v · s)ψ(r, t)

]
. (3.182)

For a generic Hamiltonian with spin-orbit coupling, it can be shown that,

Re(ψ†vαsβψ) = Re(ψ†sαvβψ),

where α and β refer to the components in an orthogonal coordinate system. From js(r, t) one can get

the total spin current using,

Isα(t) =

∫
dAα̂ · js(r, t) =

∫
dA

[
ψ†(r, t)

1

2
(v · s + s · v)ψ(r, t)

]
, (3.183)

where dA is the elemental area and α̂ denotes a certain direction [that is, α̂ ∈ (x̂, ŷ, ẑ)].

This clearly tells us that the spin current density operator, js is an anticommutator of {sα , vβ}multiplied

by a factor of 1/2. In terms of the Pauli matrices,

j
αβ
s =

1

4
{sα , vβ} (~ = 1). (3.184)
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Quite strikingly, unlike the charge current, which is odd under time reversal, the spin current is

invariant under time reversal operation. However, Ohm’s law (j = σE) holds for both jel and js. Since

the electric �eld, E is even under time reversal, the charge conductivity, σ el is odd, while the spin

conductivity, σ s is even.

For concreteness, let us specialize in a particular case, where we choose α = z and β = y. The

y-component of the velocity is obtained from Hamilton’s equation of motion,

vy =
∂H

∂py
. (3.185)

Considering a Hamiltonian for a 2D electron gas with Rashba spin-orbit coupling,

H =
p2

2m
− λRσ · (ẑ × p) ~ = 1, (3.186)

which yields

vy =
py

m
+ λRσx. (3.187)

Finally, the spin current density assumes the form,

j
yz
s =

1

2m
σzpy. (3.188)

Just as an electric current induces a magnetic �eld, a pure spin current induces an electric �eld. The

magnetic moment due to the spin of the electron generates a current (Fisher, 1971) This can be under-

stood as follows. Since the motion of a single magnetic moment is equivalent to an electric dipole,

which creates an electric �eld in its vicinity, there will be an electric �eld due to the motion of a mag-

netic moment. An estimation of the electric �eld can be made as follows. Consider two equal and

opposite magnetic charges ±qm separated by a small distance d moving in opposite directions. Such

“moving”magnetic dipoleswhosemagneticmoments are given bym = (qmd)r̂ (r̂denotes the polariza-

tion direction) constitute a spin current. Each member of the group, that is a single magnetic moment

will generate a magnetic �eld. This magnetic �eld in turn generates an electric �eld, which is given by

E ∼
µ

4π

∫
dVjs ×

1

R3

(
r̂ −

3R(R · r̂)

R2

)
, (3.189)

where dV is an elemental volume. This electric �eld is quite tiny in magnitude, yet can produce

measurable e�ects (Shen, 2008)

Just as a current carryingwire experiences a force in amagnetic �eld (∼j × B), spin current experiences

a force∼js × E. In spite being small, it is able to control themotion of a spin, including zitterbewegung

(jittery motion) of the Dirac electrons. Thus, in semiconductors, where the spin-orbit coupling can be

fairly strong, or can even be enhanced by external means, electrons with opposite spins are de�ected

along the opposite edges of the sample. Thus, a spin unpolarized (paramagnetic) system can yield a

pure spin current perpendicular to the direction of the electric �eld.
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Over the last decade and a half, studies concerning the spin current and its application to spintronics

in terms of e�ciently generating, manipulating and detecting the spin accumulation phenomena have

received a plethora of attention. Some progress has also occurred from the device fabrication perspec-

tive, via techniques such as spin injection. A major advantage in dealing with the spin current lies in

the non-dissipative (or very less dissipation) nature which arises owing to the time reversal invari-

ance of the spin current. This property is in direct contrast with that of the charge current. A simple

way to understand the role of time reversal invariance in the phenomenon of dissipation that can be

understood with the aid of a damped harmonic oscillator, whose Hamiltonian may be written as

H =
p2

2m
+

1

2
kx2 + αẋ,

where the αẋ denotes the damping and breaks the time reversal symmetry. Without this term, the

time reversal invariance holds and the scenario is non-dissipative. Thus, a time reversal invariant sys-

tem presents a non-dissipative scenario, which is precisely the main advantage of the spin transport

phenomena.

3.13 APPENDIX

3.13.1 Periodic table of topological materials: Ten fold

classification

The ten fold symmetry classi�cation of topological matter involves categorizing topological insulators

and superconductors on the basis of the presence or absence of three discrete symmetries. These sym-

metries include time-reversal symmetry, particle-hole (or equivalently charge conjugation) symmetry

and chiral symmetry. In order to decide which class a material falls into, we investigate which of the

aforementioned symmetries, the material hosts.

It is important to understand the inherent physical meaning of these non-spatial symmetries in math-

ematical terms. We have done this earlier in Sec. 3.2, but wish to repeat here some of the essential

properties for the discussion to be self-su�cient in this appendix. The time reversal operator has the

e�ect of reversing themotion of a particle, i.e., it transforms k to−k. If the evolution of a system under

the action of the time reversal operator remains the same, the system is called time reversal symmet-

ric. Mathematically, the time reversal operator is represented by K (for spinless) or iσ y K (for spinor

systems). Here, K represents the complex conjugation operator and σ y is the y-component of the Pauli

matrix. The charge-conjugation operator, as the name suggests, physically represents replacing a par-

ticle with its conjugate within the system. If under such a replacement, the system remains invariant,

we call it to be particle-hole symmetric. Importantly, the time reversal symmetry and the particle-hole

symmetry are antiunitary symmetries which square to ±1. Lastly, there are systems which are nei-

ther symmetric under time reversal nor particle-hole symmetries. However, if the motion within the
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system is reversed and the particles are replaced by their conjugates simultaneously, invariance is re-

established. Such systems are purely chiral systems. Chiral symmetry is represented as the product of

the time reversal and the particle-hole symmetry. It is di�cult to understand the physical implications

of chiral symmetry. However, in models where a sublattice structure is apparent, we can associate chi-

ral symmetry with the sublattice symmetry. This means that if the two sublattices of the system are

interchanged, the physics remains invariant.

3.13.2 Mathematical representation of the symmetries

We consider a Hamiltonian H(k) in the k-space. Let us recall what various symmetries do

to the Hamiltonian, H. The time reversal symmetry implies that T H(k)T −1
= H(−k). For

a particle-hole symmetric system, CH(k)C−1
= −H(−k). Lastly, for a chiral symmetric system

SH(k)S−1
= −H(k). To understand the physical picture behind time reversal, it could be interest-

ing to study its e�ect on the time evolution operator eiHt ,H being the Hamiltonian for the system.We

know that time reversal has the e�ect of complex conjugation, on spinless systems, that is,

T iT −1
= −i. (3.190)

Hence, the time evolution operator looks like

T eiHt
T

−1
= e−iHt

= eiH(−t). (3.191)

From this expression, it is apparent why the time reversal operator has the name that it does. It changes

t to −t that result in the particle moving in the opposite direction. Another way to study the sym-

metry operators could be to talk in the language of second quantization, or more speci�cally, the

creation-annihilation operators. Charge-conjugation causes a creation operator to transform into a

superposition of annihilation operators and vice versa. Time reversal on the other hand only has the

e�ect of complex conjugation of the coe�cients.

T ψAT
−1

=

∑

B

(U∗

T )A,BψB

T ψ†
AT

−1
=

∑

B

(UT )B,AψB

CψAC
−1

=

∑

B

(U∗

C)A,Bψ
†
B

Cψ†
AC

−1
=

∑

B

(UC)B,AψB.

(3.192)

The classes are di�erentiated on the basis of whether the time reversal and charge-conjugation oper-

ator square to 1, −1 or 0. This gives a total of 9 separate classes. However, as previously discussed,

there is another class having only the chiral symmetry. This corresponds to purely chiral systems and

constitutes the tenth class in the classi�cation scheme. Two broad sub-groups are apparent from this

table. The �rst one is the purely chiral AIII group, which only hosts chiral systems. The second group

Symmetry and Topology 3-65

 07 D
ecem

ber 2024 17:11:54



Principles

Table 3.2
Table for ten fold symmetry classification. Different symmetry classes are

indicated in the bottom row (Ryu et al., 2010).

BDI CI AI BIII CII AII D C A AIII

T 1 1 1 −1 −1 −1 0 0 0 0

C 1 −1 0 1 −1 0 1 −1 0 0

S = T C 1 1 0 1 1 0 0 0 0 1

is the D group, which only has charge-conjugation symmetry. This group hosts systems which are

superconducting. Also, there are classes like BDIwhich hosts both chiral and superconducting systems.

Next, we venture upon understanding how this classi�cation originated and wherein lies its impor-

tance. The idea behind the tenfold classi�cation is entirely mathematical and was introduced by Elie

Cartan, way back in the 1920s. Cartan’s classi�cation of N × N Hermitian matrices into 10 di�erent

groups bears one-one correspondence with this 10-fold fermionic symmetry classi�cation. The form

of classi�cation that we use today was introduced by Altland and Zirnbauer (1997) The importance of

this classi�cation lies in the fact that corresponding to every class and pertaining to the dimension of

our system, we may or may not have a distinct topological invariant. This invariant is a signature of

the bulk-boundary correspondence and hints towards the presence of edge characteristics that make

our system topologically non-trivial, and hence interesting.

The Z type invariant refers to an integer classi�cation, whereas the Z2 invariant refers to a binary

classi�cation. A zero (0) at any position in the table refers to the fact that no topological insulator or

Table 3.3
Table for the topological inva-

riants in different symmetry

classes (Ryu et al., 2010).

AZ/d 1 2 3

A 0 Z 0

AIII Z 0 Z

AI 0 0 0

BDI Z 0 0

D Z2 Z 0

DIII Z2 Z2 Z

AII 0 Z2 Z2

CII Z 0 Z2

C 0 Z 0

CI 0 0 Z

superconductor can be found corresponding to that class and dimension. It

would be interesting to associate a few known examples with the given table of

invariants. A 2D system belonging to the class “A” resembles our well-known

integer quantum Hall system, thereby making the Chern number be a Z invari-

ant. From the table, we �nd that it has a Z type topological invariant. This, as

we know, is indeed true and the Z invariant can be directly associated with the

conductivity of the system. Another example would be the quantum spin Hall

system, which belongs to the class AII in 2D. It is characterized by a Z2 topolog-

ical invariant. Similarly, a 1D SSH chain belongs to the BDI class. A 1D spinless

Kitaev chain with p-wave superconducting correlations time reversal, chiral and

particle-hole (or charge conjugation) symmetries and hence belongs to the BDI

class as well with Z being the topological invariant.

The tenfold classi�cation of symmetry shows certain interesting trends when

studied carefully. In the given Table 3.4, we �nd that, corresponding to every

dimension, there are only 5 classeswhich host topologically non-trivialmaterials.

Furthermore, for every class, there exists a periodicity of 8. The invariants repeat
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Table 3.4
Periodic table of topological insulators and superconductors.

AZ/d 0 1 2 3 4 5 6 7 8 9

A Z 0 Z 0 Z 0 Z 0 Z ···

AIII 0 Z 0 Z 0 Z 0 Z 0 ···

AZ/d 0 1 2 3 4 5 6 7 8 9

AI Z 0 0 0 Z 0 Z2 Z2 Z ···

BDI Z2 Z 0 0 0 Z 0 Z2 Z2 ···

D Z2 Z2 Z 0 0 0 Z 0 Z2 ···

DIII 0 Z2 Z2 Z 0 0 0 Z 0 ···

AII Z 0 Z2 Z2 Z 0 0 0 Z ···

CII 0 Z 0 Z2 Z2 Z 0 0 0 ···

C 0 0 Z 0 Z2 Z2 Z 0 0 ···

CI 0 0 0 Z 0 Z2 Z2 Z 0 ···

themselves after every 8th dimension. Additionally we �nd that, if the topological invariant for a

particular class in the nth dimension is known, we know the invariant for the (n + 1)th dimension

in the successive class. The origin of the above periodicities can be understood from a discussion on

group theory.

3.13.3 Summary and outlook

QuantumHall states are the �rst examples of topological insulatorswhich demonstrate completely con-

trasting electronic behavior between the bulk and the edges of the sample. The bulk of the system is

insulating, while there exist conducting states at the edges.Moreover, theHall conductivity is quantized

in units of a universal constant, e2/h. It became clear later on that the quantization is actually related

to a topological invariant known as the Chern number. The geometric interpretation of this invariant

is provided by the Gauss-Bonnet theorem, which relates the integral of the Gaussian curvature over

a closed surface to a constant which simply counts the number of “genus” (or holes) of the object. In

solid state physics, the closed surface is the Brillouin zone and the Gaussian curvature is analogous to a

quantity known as the Berry curvature. This brings us to the study of Berry-o-logy where the topolog-

ical invariants are de�ned in terms of the Berry phase (a geometric phase picked by a particle during

a complete revolution), Berry connection (analogous to the vector potential in electrodynamics), and

the Berry curvature (similar to amagnetic �eld). Themachinery is applied to a simple case, in both one

and two dimensions, such as an SSH model and graphene. The topology in the SSH model is induced

by a dimerized hopping with two atoms per unit cell, and is stabilized by the chiral symmetry of the

Hamiltonian. As long as the chiral symmetry is intact, and when the intra-cell hopping amplitude is

greater than the inter-cell one, the model displays localized zero modes at the edges. The topological
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phase is further characterized by a �nite value of the winding number. A similar scenario is presented

by the Kitaev model, which involves spinless fermions coupled by p-wave-superconducting correla-

tions on a tight binding chain. The topological property of the model is protected by the particle-hole

symmetry that is inherent to superconductors. Further, similar to the SSHmodel, the topological phase

is characterized by zero modes at the edges of an open chain, and a �nite value for the winding num-

ber. Interestingly, the zero modes is two-fold degenerate, which are inseparable and di�er by fermion

parity. Moreover, these states have a formal similarity with the Majorana fermions which correspond

to their own antiparticles. Further, the symmetry aspects, such as the inversion symmetry (parity),

time reversal symmetry are discussed with a view to explore topological properties of graphene. The

bulk-boundary correspondence and the existence of the edge states in a nanoribbon geometry are

investigated, which serve as an acid test for the topological state. Eventually, following Haldane’s con-

jecture, a topological state emerges by breaking the time reversal symmetrywhere the system acquires a

topological gap at theDirac points. The presence of such a non-trivial gap is con�rmed via the presence

of chiral edge states in a ribbon. Further progress is reported in terms of the proposal of a scenario in

which the broken time reversal symmetry is revoked using two copies of the Haldane model for each

type of spin of the carriers. This is called the Kane–Mele model, which respects all the symmetries

that graphene has. Yet there is an important di�erence which can be brought about by adding the

Rashba spin-orbit coupling, which may be weak, but inherent to the two-dimensional systems. The

Rashba term leaves the time reversal symmetry intact. Thus, the Kane–Mele model in the presence

of the Rashba spin-orbit contribution yields yet another distinct topological state of matter, namely,

the quantum spin Hall phase. Owing to the time reversal symmetry is intact. the Chern number van-

ishes, although the system is characterized by a new topological invariant, known as the Z2 invariant,

which yields the spin Hall conductivity to be non-zero. The prospects of manipulating the spin degree

of freedom give birth to an emerging �eld known as spintronics. The fact that the spin current obeys

time reversal symmetry, one gets non-dissipative transport and thus holds the prospect of transmit-

ting information with no (or very little) decay. Thus, the spin transport mechanism does not have any

associated Joule heating phenomena. Finally, we have included a brief discussion on the classi�cation

of the topological materials according to the schemes introduced by Altland and Zirnbauer. This aid

us in identifying the class of the topological systems discussed in this chapter and the corresponding

topological invariants.
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CHAPTER

4 SUPERCONDUCTIVITY

4.1 INTRODUCTION

In solid state physics, many of the phenomena that we are familiar with occur because of the inter-

particle interactions among the charge carriers, thereby resulting in an ordered state. The e�ects of

such interactions are best perceptible at low temperature. With an increase in temperature, the ther-

mal motion of the carriers gains prominence, and out do the ordering process. Superconductivity

denotes one such ordered phase of matter which stabilizes at low temperature and vanishes when the

temperature is increased beyond a certain critical point.

In the year 1908, Kamerlingh Onnes (1911) at the low temperature lab in Leiden, Netherlands suc-

cessfully liqui�ed Helium (He). At normal atmospheric pressure, the boiling point of helium (He) was

found to be 4.2 K, thereby making the exploration of material properties feasible at low temperatures.

Studying the electronic conductivity (or resistivity) of metals seemed like a normal choice, as metals

are primarily characterized by their electrical resistance.Measurements performed at low temperatures

may yield the following possibilities:

i. the resistance vanishes gradually with decreasing temperature.

ii. It may result in a small but �nite value at a very low temperature.

iii. It may have a minimum at low temperature, and �nally show an upturn before diverging at very

low temperatures.

In particular, the last possibility receives support on physical grounds in the sense that at su�ciently

low temperature, the carriers are likely to be bound to their respective atoms. Thus, their ability to

move around and contribute to the conductivity vanishes.

K. Onnes realized the importance of studying the conductance characteristics of high-purity metals

at low temperatures. Initially, he started with gold (Au) and platinum (Pt), mainly because they are

noble metals and available in pure form. However, he shifted his attention towardmercury (Hg) which

can be obtained in a highly pure form via multiple distillations. Precisely at the boiling point of liquid

He, he found that the resistance of an ultra-clean Hg sample sharply vanishes, and at further lower

temperatures, the resistance becomes immeasurably small (see Fig. 4.1). The temperature at which

the resistance disappears is called the transition temperature, Tc. Below that, a new state of matter

emerges, which either completely expels themagnetic �eld or in some cases, trapsmagnetic �ux having

values that are in integer multiple of the �ux quantum,80 (80 = 2.07 × 10−15 Wb). This was indeed

https://doi.org/10.1063/9780735422537_004 4-1
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FIG. 4.1
The fall of the electrical resistance of Hg (in�) as a func-

tion of temperature is shown. Near 4.2 K, there is a sharp

fall in resistance, below which the resistance becomes

almost zero (After K. Onnes original experiment Kamer-

lingh Onnes, 1911).

a surprise, since laws of electromagnetic induction pre-

dict that ideal conductors retain, and not expel the

magnetic �eld that is trapped inside.

A complete theoretical understanding of the micro-

scopic phenomena had to wait for about half a century

until the theoretical derivation by Bardeen, Cooper and

Schrie�er (BCS) in 1957 came into existence, which

was awarded the Nobel prize in 1972. They realized

that at the transition point, the electrons pairwise con-

dense into a new phase, which is a coherentmatter wave

with a well-de�ned phase relationship among the pairs.

These electrons form pairs mediated via quantized lat-

tice vibrations, namely, the phonons.

For nearly eight decades after the experimental discov-

ery of superconductivity in High in 1908, it remained

low temperature phenomena until Bednorz andMüller

discovered the onset of superconductivity in the copper

oxide planes at larger temperatures. As years passed by,

the discovery of a large number of copper oxide super-

conductors were made with larger and larger critical

temperatures, which were thought to have far-reaching

consequences in terms of their industrial applications.

There was moderate success on that front, however

there were many surprises, which arose as the experi-

mental data started coming in on the physical proper-

ties of these superconductors. Quite likely, the normal

state1 of these copper oxide materials is very di�erent

from those for conventional superconductors, that are completely understood within the BCS theory.

Since the beginning point of building up a theory, which in this case is the normal state, ismissing, or to

the least, is unlike the conventional metallic state, a complete understanding of these superconductors

remained elusive.

4.1.1 Historical developments

Empirical rules have been suggested from time to time to enable the identi�cation of possible new

superconducting materials. The rules proposed by Hulm and Matthias (1951) in the sixties are espe-

cially noteworthy. One of them is based on the number of valence electrons. It is found that the

1 The normal state refers to the metallic state which is expected as superconductivity is lost.
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FIG. 4.2
The rise in the superconducting transition temperature, Tc with time since the discovery is indicated in the schematic

plot.

materials with on an average 5 to 7 electrons per atom show relatively high Tcs. For example, RuMo

with an average of 7 electrons show Tc = 10.6 K, whereas, ruthenium (Ru) with an average of 8 elec-

trons show Tc = 0.5 K, and molybdenum (Mo) with an average of 6 electrons show Tc = 1 K. Later

on, a structural dependence is seen on Tc. A-15 structure or the β-tungsten shows high Tc. V3Si and

Nb3Ge are examples of this structure and they show Tc = 17.1 K and 23.2 K, respectively. For quite a

few years, this 23.2 K barrier has never been crossed. Among the organic materials, the intercalated

compounds of graphite (e.g. C8 K) become superconducting below 1 K, while K3C60 has Tc ≈ 18 K.

Generally, alkali salts of C60 have been found to be superconducting with Tc ranging from 18−35 K

(see Fig. 4.2). In Fig. 4.2, a steady rise of Tc over a century has been depicted.

If we refer to the periodic table and consider the top row of themiddle section of the periodic table, that

is, group IVB (Cr,Mn) to groupVIII (Fe, Co, Ni), they have strongmagnetic character.While along the

same row, Ge, As, Se, or some of the neighboring elements show superconductivity (see Fig. 4.3). Since

both the phenomena have electronic origin, and their physical properties are quite distinct, it forces
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FIG. 4.3
The superconducting elements are shown in the periodic table. The ones shown in blue demonstrate superconductivity

at ambient pressure, while those in green become superconducting at high pressure.

us to think about what could be the genesis of this di�erence. This probably lies in the extent of the

wavefunction of the electrons: for magnets, the wavefunction has a small spatial extent, that is spread

over a smaller number of atoms, while for superconductors, the spread is large, thereby promoting

pairing phenomena between the carriers.

4.1.2 Physical properties

Before we proceed to discussing the physical properties of superconductors, we wish tomake the plans

clear for our upcoming discussion. We shall mainly mention the salient features of superconductors

that make them worthy of studies. However, most of the ideas and concepts are introduced with a

minimal amount of derivation. For a thorough understanding of some of the properties, one has to

wait for the BCS theory, a topic that we discuss somewhat elaborately afterwards.

Let us rewind the ongoing discussion for more detail. The resistance of a metal drops to zero very

sharply, within a temperature window of 1T ∼ 10−5 K below a certain critical temperature, Tc.The

superconducting state is characterized by zero electrical resistance. In addition, there is no change in

the crystal structure, as veri�ed by x-ray di�raction above and below the transition temperature. Thus,

to list out the properties, the state is characterized by
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i. in�nite electrical conductivity, that is, σ → ∞.

ii. Finite current density, j = �nite.

iii. The speci�c heat as a function of temperature shows a jump at T = Tc, and thus the transition to

the superconducting state involves latent heat, and hence, the transition from the superconducting

state to the normal state is a second-order phase transition.

iv. Vanishing values of the electric �eld, E → 0 inside the superconducting sample.

v. Constant magnetic �eld, B → constant inside a superconductor.

Clearly, the last two statements defy the laws of classical electrodynamics. This can be understood in

the following way. Using In Ohm’s law, one can write, j = σE for j having a �nite value and σ → ∞,

E must be zero. Hence, using Maxwell’s equation,

∇ × E = −
∂B

∂t
or, B = constant.

4.1.3 Meissner effect

The complete and sudden vanishing of the electrical resistance below a certain temperature raised a

lot of questions. Some physical phenomena that were operative to render electrical resistance above

Tc, were suddenly becoming ine�ective. Meissner and Ocshenfeld (1933) meanwhile discovered that a

superconductor completely excludes an external magnetic �eld. Theymeasured themagnetic �eld dis-

tributed outside the superconducting materials [such as lead (Pb) or tin (Sn)] which are cooled below

their respective transition temperatures while the magnetic �eld is switched on. The corresponding

results could not be explained by superconductors being just resistance-less metals.

Above a certain critical magnetic �eld (of the order of a few Oersted), there is no expulsion of the

magnetic �ux, where superconductivity disappears and thematerial reverts to its normal resistive state

and the magnetic �eld fully penetrates through it. This also endorses a close link between magnetism

and superconductivity.

The exclusion of the magnetic �eld from a superconductor takes place regardless of whether the mate-

rial becomes superconducting before or after the external �eld is applied. At equilibrium, the external

�eld is canceled in its interior by screening �elds produced by the skin current.

The total exclusion of the magnetic �eld from inside superconductors assigns a property known as

perfect diamagnetism. It can be understood as follows:

B = µ0(Hext + M).

Since B = 0 inside a superconductor, the induced magnetization M cancels the external �eld, Hext.

Thus, the magnetic susceptibility, χ becomes,

χ =
M

Hext
= −1.

Thus, no knownmaterial is more diamagnetic than a superconductor. The typical diamagnetic suscep-

tibility of metals is about 10−5
− 10−6. Thus a usual diamagnetic material only expels a small fraction
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(about 10−5) of the external �eld, while a superconductor does it completely. However, even if we claim

that the magnetic �eld is totally expelled from a superconductor, the fact is that it enters only up to a

certain distance, called the penetration depth.

4.1.4 Perfect conductors and superconductors

In order to di�erentiate a perfect conductor (which may show a gradual vanishing of the resistance as

T → 0), and a superconductor, we resort to �eld cooled (FC) and zero �eld cooled (ZFC) techniques

that are schematically shown in Figs. 4.4 and 4.5.

Cooled

a e

b

c

d g

f

Cooled

FIG. 4.4
The zero field cooled (left panel) and field cooled (right panel) cases for a perfect conductor are shown schematically.
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Cooled
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d g

f
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FIG. 4.5
The zero field cooled (left panel) and field cooled (right panel) cases for a superconductor conductor are shown

schematically.

If we consider cooling perfect conductors and superconductors in the absence of a magnetic �eld (left

panels of Figs. 4.4 and 4.5), they behave identically when an external magnetic �eld is applied. That is,

they expel the �eld by developing a surface current, which prohibits the �eld lines from penetrating

beyond a certain distance (discussed below). However, in the presence of an external �eld, the behavior

of a conductor and that of a superconductor are quite distinct. When a conductor is cooled to a perfect

conducting state in the presence of an external �eld, the �ux lines get trapped inside, while that for

a superconductor, the �ux lines are expelled. Upon the withdrawal of the �eld [panel (g) in Figs. 4.4

and 4.5], a superconductor is left with no memory, where for a perfect conductor, the �ux lines form a

loop, and thus retains the �eld in its memory.
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4.1.5 Electrodynamics of superconductors: London theory

Before the discovery of the Meissner e�ect in superconductors, Becker et al. (1933) analyzed the elec-

trodynamic behavior of perfect conductors using a simple free electron model. According to this,

the electrons accelerate under the application of an electric �eld, E. The argument for resistance-less

motion is that whenever the electrons faced a resistance, the applied electric �eld would accelerate

them steadily according to Newton’s laws,

m∗
dv

dt
= e∗E (4.1)

where m∗, e∗ are the e�ective mass and the net charge, respectively. It was found later that e∗
= 2e and

m∗
= 2m which are subsequently called super-electrons or Cooper pairs. If there are ns numbers of

super-electrons moving with a mean local velocity vs, then the super-current density is given by

Js = nse
∗vs = −ns|e

∗
|vs (4.2)

The minus sign signi�es that the super-current moves in an opposite direction to that of the super-

electrons. Substituting Eq. (4.2) in Eq. (4.1) we get

µ0λ
2
L

∂Js

∂t
= E, (4.3)

where, λL =

√
m∗

µ0ns(e∗)2
. λL has the dimensions of length. Equation (4.3) is called the �rst London

equation. Taking the curl of both sides of Eq. (4.3),

µ0λ
2
L

∂

∂t
(∇ × Js) = ∇ × E = −

∂B

∂t
. (4.4)

Using the following Maxwell equation:

∇ × B = µ0ε0
∂E

∂t
+ µ0J

we have

λ2L
∂

∂t
(∇ × (∇ × B)) = −

∂B

∂t

λ2L∇
2

(
∂B

∂t

)
=
∂B

∂t
.

(4.5)

This implies that the rate of the B �eld (or the B �eld itself) will fall o� exponentially inside a super-

conductor to a trapped �eld B0. This clearly contradicts the Meissner e�ect, that is, the magnetic �eld

inside the specimen is zero, irrespective of the initial condition.

Thus, the brothers London and London (1935) suggested that since themacroscopic theory of a perfect

conductor makes correct predictions about superconductor for the special case B0 = 0. Thus, it might

be reasonable to assume that the magnetic behavior of a superconductor may be correctly described

according to the Meissner e�ect not only to dB
dt but also to B itself, that is

λ2L∇
2B = B [∇ × B = µ0Js]

which implies, B = −µ0λ
2
L∇ × Js.

(4.6)
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By introducing a magnetic vector potential de�ned by ∇ × A = B and choosing a proper gauge, such

as a transverse gauge, namely, ∇ · A = 0, the current density can be written as

Js = −
1

µ0λ
2
L

A [B = ∇ × A]. (4.7)

This is called the second London equation, and is reminiscent of Ohm’s law. This is of course true for

simply connected superconductors. The gauge condition demands

∇ · A = 0 =⇒ A · n̂ = 0

on the boundary surface of the superconductor, n̂ being the unit drawn normally.

Now, using Maxwell’s equation,

∇ × E = −
∂B

∂t

∇ ×

(
E − µ0λ

2
L

∂Js

∂t

)
= 0

or, E − µ0λ
2
L

∂Js

∂t
= ∇φ

(4.8)

φ is a scalar. One important comment is due here. There is no component of∇φ in the direction of Js,

that is,

∇φ · Js = 0 (4.9)

Distancez y

B

x

Penetration
depth λ

FIG. 4.6
Schematic demonstration of the behavior of an external magnetic

field is presented. The field strength falls by a factor 1/e inside the

superconductor, which is defined as the penetration depth.

as Js · E = 0 from �rst London Eq. (4.3). This is

correct as otherwise it would mean energy dis-

sipation in a constant magnetic �eld, which we

know to be incorrect as it violates the conserva-

tion of energy.

4.1.6 Penetration depth

Let us prepare a setup to solve Eq. (4.5) for a

superconductor. Refer to Fig. 4.6 where a semi-

in�nite superconducting sample is placed along

the y-axis. We are interested in studying the

variation of the magnetic �eld only in the x-

direction along which it has a �nite width. The

axis is shown along with the �gure.

In Fig. 4.6 the variation is expected to be

along x-direction, we can convert it into a one-

dimensional equation, that is by assuming,

∂B

∂y
=
∂B

∂z
= 0
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which yields,

dBx

dt
= α

∂2

∂x2

(
dBx

dt

)
.

Integrating over time yields,

Bx = α
∂2

∂x2
Bx

B(x) = Bexte
−x/λL

where an exponentially growing solution, even though mathematically admissible, is dropped, and

α = λ2L

λL is of the order of 500Å for commonly known superconductors. This is how themagnetic �eld varies

inside a superconducting sample. At x = 0, the value of the magnetic �eld just outside the surface is

Bext, which decays exponentially inside the sample.

4.1.7 Flux quantization

In the mid-1930s (London and London, 1935) it was realized that superconductivity is inherently a

quantum phenomenon that manifests at macroscopic scales. The description thus requires a wave-

function which can be written as

ψ(r, t) = |ψ |eiθ (4.10)

where θ is a real scalar function representing the phase of the wavefunction and |ψ |
2
= ns, where ns

is the density of super-electrons. The canonical momentum for a particle of charge e∗ and mass m∗ in

a magnetic �eld is given by

p = m∗vs + e∗A. (4.11)

Putting p = i~∇ and writing down the Schrödinger equation,

~∇θψ = (m∗vs + e∗A)ψ (4.12)

yields,

~

e∗
∇θ = µ0λ

2
Ljs + A, (4.13)

where λL =

√
m∗

µ0nse∗2 is the London penetration depth (described later), and js is the super-current

density de�ned via, js = nse
∗vs. Since A enjoys gauge freedom, the (local) phase of the wavefunction

can be changed in the following manner, so as to keep the velocity unchanged.

θ → θ ′
= θ +

e∗

~
A.

It may be noted that Eq. (4.13) is consistent with Maxwell’s equation, which can be checked by taking

a curl of the equation, and noting that B = ∇ × A. Now taking a derivative of Eq. (4.13) with respect
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to time, one gets,

~

e∗
∇

(
∂θ

∂t

)
= µ0λ

2
L

∂js

∂t
+
∂A

∂t
. (4.14)

Using the �rst of the London equations, namely,

∂js

∂t
=

E

µ0λ
2
L

one arrives at

µ0λ
2
L

∂js

∂t
= E. (4.15)

Hence, with

E = −∇φ −
∂A

∂t
one gets,

~

e∗

∂θ

∂t
= −φ. (4.16)

Thus, the time variation of the local phase denotes a scalar potential φ.

Hole

SC

C

FIG. 4.7
A simply connected superconductor is

shown with a “hole” within. C denotes

a contour of integration in Eq. (4.13).

There is a feature of superconductors that deserves special attention,

which is quantization of the magnetic �ux. Consider a multiply con-

nected superconductor, and consider a closed loop C lying entirely

in the superconducting regime, and encircling the hole (marked in

Fig. 4.7). Thus, any open surface bounded by C contains regions that

are partially superconducting, and partially in a non-superconducting

(normal) region.

Applying Stoke’s theorem on Eq. (4.13) one obtains,

~

e∗

∮

C
∇θ · dl = 8s +

∮

C
µ0λ

2
Ljs · dl (4.17)

8s is the magnetic �ux de�ned by

8s =

∮
B · ds. (4.18)

The requirement that ψ is a single valued function at each point, that is,

φeiθ(r,t)
= φei{θ(r,t)+2nπ}

indicates that the LHS of Eq. (4.17) has the form,

~

e∗

∫

C
∇θ · dl = n80 n = 0,±1,±2, . . . (4.19)

Superconductivity 4-11

 07 D
ecem

ber 2024 17:11:54



Principles

where80 is called the �ux quantum

80 =
2π~

|e∗|
= 2.07 × 10−15 Wb (4.20)

n = 0 corresponds to a simply connected superconductor.

Hence integrating over a closed loop C should be the same after one complete rotation fromwhere one

has started, except for a phase of 2π , or a multiple of 2π . A �ux quantum has this value for e∗
= 2e. So

the super-current is carried by a pair of electrons. In fact,
∮

∇θ · dl = 2πn = −
2e

~
8.

Thus, the magnetic �ux penetrating through a superconductor can only appear in multiples of the

superconducting �ux quantum80, which is often referred to as �uxoid (or �uxon). Itmay be noted that

the value of the �uxoid is extremely small. Experimentally, the �ux quantization has beenmeasured by

Deaver and Fairbank in 1961 (Deaver and Fairbank, 1961). Importantly, the involvement of Planck’s

constant (~) is a signature of quantum e�ects existing at the macroscopic scales.

On the right-hand side of Eq. (4.17), we can introduce a �uxoid8L,

8L =

∫

s
B · ds +

∮

c
µ0λ

2
Ljs · dl (4.21)

Thus, within approximation of the London theory,

∂8L

∂t
=

∫

s

(
∂B

∂t
+ ∇ × E

)
· ds = 0, (4.22)

where the last step is obtained using Maxwell’s equation. Thus, the �uxoid 8L is constant with time.

It also does not depend upon the exact shape of the contour C, as long as it encompasses the hole, but

only once. If there is no hole, then the �uxoid is zero.

4.1.8 Non-local electrodynamics

The current density equation in electrodynamics, namely,

Js = nsevs

is a local equation in the sense that it relates the current density to a point r to the velocity of the charge

carriers at that point. Thus, it clearly ignores the spatial structure of the electric �eld. An improvement

to this can be made by considering the current density at r due to the variation of the electric �eld

within a shell around the point r, with a �nite radius. On similar grounds, Pippard argued that the

current density at a point r should depend on E(r′). Further, he conjectured that the wavefunction of

the electrons must have a characteristic dimension, namely, ξ which is called the coherence length.

A simple uncertainty calculation may be su�cient to yield an estimate of the value of ξ in typical

superconductors. We know that electrons within an energy range kBTc play a dominant role in the
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pairing phenomena. The momenta of these electrons have uncertainty given by

1p '
1E

νF
'

kBTc

νF
.

Thus, their position uncertainty, using Heisenberg’s uncertainty principle is

1x '
~

1p
'

~νF

kBTc
.

This yields

1x ' ξ = a
~νF

kBTc

a is usually of the order of unity. In particular, a = 0.8 in BCS theory (Tinkham, 1973).

Hence, Pippard suggested that the simple equation for the current density written above should be

modi�ed as

Js(r) = −(const)

∫
R[R · A(r′)]

R4
e−R/ξdr′, (4.23)

where, R = r − r′, with r being the source point and r′ being the �eld point, or where the observation

is made.

4.2 MAGNETIC PHASE DIAGRAM OF SUPERCONDUCTORS

When a superconductor is used to form a circuit with a battery, and a steady state is established,

all the currents passing through the superconductor are super-currents. Normal currents due to the

Normal

Superconducting

Tc

H c
ext

Hµ0 ext

T

FIG. 4.8
The dependence of the critical field, HC as a function of

temperature T is shown.

motion of charged particles contribute zero since no

voltage di�erence can be sustained in a homoge-

neous superconductor (because otherwise a current

will induce a B which is zero). Experiments show that

all super-currents �ownear the type-I superconductor’s

surfacewithin a thin layer characterized by the penetra-

tion depth. These surface super-currents run so that the

B �eld is canceled in the interior of the conductor.

Thus, let us review the magnetic phase diagram of

superconductors. It is clear by now that the supercon-

ducting phase is a stable phase in a certain range of

magnetic �eld and temperatures. For higher �elds and

temperatures, the normal metallic state becomes more

stable. The critical magnetic �eld (Hc) beyond which

the material cannot be superconducting even if it is

cooled below Tc (see Fig. 4.8). The value of Hc depends
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−M

B

Hc µ0Hc µ0Hext
Hext

FIG. 4.9
Magnetic phase diagrams for type-I superconductors are shown. There is a direct transition from the superconductor

to the normal phase in type-I superconductors.

on temperature, since it is easier to quench a superconductor at higher temperatures, than at lower

temperatures. An empirical relation for the same can be written as

Hc = H0

[
1 −

(
T

Tc

)2
]

where, H0 = Hext(T = 0). (4.24)

The corresponding M vs H phase diagrams are shown in Fig. 4.9. There is a sharp fall of the (negative)

magnetization (−M) as a function of the external �eld, and a sharp rise of the magnetic induction

denotes a phase transition from a superconducting to a normal phase.

In type-II superconductors, the phase diagram is more complex. When small magnetic �elds are

applied, surface currents develop that screen the magnetic �eld from penetrating homogeneously into

the sample. This is termed as the Meissner state, which persists until a certain critical value, called the

�rst critical magnetic �eld, Hc1. Beyond this value, the system enters a mixed state, where the mag-

netic �ux lines, in the form of vortices, penetrate the superconducting sample. Thus, there is a partial

screening of the magnetic �eld.

BeyondHc1,more andmore vortices appear insider the superconductor, and eventuallywhen the exter-

nal �eld reaches a second critical value, namely, Hc2 the material becomes a normal metal (Fig. 4.10).

Themixed phase is called the Abrikosov phase, where it is energetically favorable for the vortices to self

organize into a hexagonal array. The scanning tunneling microscopy (STM) measurements2 con�rm

2 The working principle of STM is based on the measurement of electronic tunneling current that depends exponentially on

the distance between the tip and the sample. The position of a tip on top of a �at surface of the sample can be controlled with

subatomic resolution.
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FIG. 4.10
Magnetic phase diagrams for type-II superconductors are shown.In type-II materials, there is an intermediate phase

that interrupts a direct transition, where the flux lines penetrate.

the existence of such a vortex array, which minimizes energy by arranging into a hexagonal structure

in which the vortices line up. These structures are called Abrikosov lattices.

The magnetic susceptibility of a superconductor is −1 below Hc and has a value 10−5 above Hc. This

is shown in the following �gures.

From here we get a characteristic length called coherence length ξ . ξ is de�ned as the length scale

over which the wavefunction or the order parameter does not vary much. The ratio of these two

characteristic length scales is given by

κ =
λ

ξ
. (4.25)

For typical superconductors, λ = 500Å, ξ ≈ 5000Å. Thus, κ < 1.

In 1957, Abrikosov found that for some classes of superconductors κ > 1. This is used as a distinguish-

ing criterion for the type I and type II superconductors, in the following sense.

κ < 1 type I superconductors

κ > 1 type II superconductors.

For type II superconductors, the �ux lines penetrate the sample until a certain thresholdmagnetic �eld.

A threshold value of κ for which such �ux penetration starts to occur is κ = κc ≈
1

√
2
. At this value of

κ , the �ux penetration starting at a lower critical �eld Hc1 and reaching Bext = Hext at Hext = Hc2.

Even experiments on the high-Tc superconductors con�rmed many of the features in the magnetic

phase diagram as discussed above. For example, the quantization of vortices (80 =
h
2e ), Abrikosov

phase etc. are observed in experiments. In the type-II superconductors, the identi�cation of the upper

critical �eld has been particularly controversial, quite unlike conventional superconductors, where the
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onset of strong diamagnetism and superconducting critical currents occur at the same Hc2. Whereas,

in the high-Tc superconductors, they are found to occur at quite di�erent values. There are several

other features which are distinct, possibly because of a defect induced pinning mechanism, etc. We

shall not continue this discussion here any further and will brie�y come back at the end of the chapter.

However, certain contrasting properties of these superconductors compared to the conventional ones,

will be mentioned during the course of the discussion.

4.2.1 Thermodynamics of superconductors

Thermodynamics route is usually the easiest route to understand the phase transition. Consider Gibbs

free energy of a superconductor. If its magnetization is M and magnetic induction H, then the work

done in bringing the superconductor into a region with magnetic induction Hext from far away (where

Hext = 0) is given by

W = −µ0

∫ Hext

0
MdH = µ0

H2
ext

2
(4.26)

as M = −H for superconductor.

This is the extra Gibbs free energy of a superconductor. Let us call this gs (per unit volume)

gs(T,Hext) = gs(T, 0)+
µ0H2

ext

2
(4.27)

Normal
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FIG. 4.11
The Gibbs free energy is indicated

schematically as a function of the external

magnetic field. The energies for the super-

conducting and the normal states intersect

at some value of the magnetic field, beyond

which the normal state stabilizes.

or,

gs(T,Bext) = gs(T, 0)+
B2

ext

2µ0
(4.28)

In the normal state, themagnetization is very small value, thus the

magnetic work term is vanishingly small. Hence

gn(T,Hext) = gn(T, 0) (4.29)

gs(T, Hext) increases quadratically with Hext. For some Hext, the

normal and superconducting states have the same free energy.

Beyond this critical value, the normal state is more stable.

Equating Eqs. (4.27) and (4.29) at Hext = Hc, (see Fig. 4.11)

gn(T, 0) = gs(T, 0)+
µ0H2

c

2
. (4.30)

The RHS is positive, and hence a superconducting state is more

stable below Hc. For example, Hc = 0.08T for Pb at T = 0

(Ramakrishnan and Rao, 1999). Thus, at T = 0, the supercon-

ducting state is stabilized by 4.25 × 10−25 Joule/mole. This is a

really small amount, however, interestingly, this small number

stabilizes the superconducting state.
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4.2.2 Specific heat

The study of speci�c heat is in general interesting because it provides a good measure of the range

of applicability of phonon-mediated superconductivity. Above the transition temperature, the speci�c

heat, Cn follows Debye’s theory. In general, for a normal metal, at temperatures T < θD, the speci�c

heat consists of

i. Electronic contribution, γT.

ii. Phonon contribution, AT3.

iii. Schottky contribution, a/T2.

Schottky contribution can mostly be neglected and hence,

Cn = γT + AT3. (4.31)

Thus, Cn/T = γ + AT2. Cn/T versus T2 thus denotes a linear plot.

At T = Tc, the contribution of electronic and phonon speci�c heat is,

Cph

Ce
=

1

β

(
AT2

c

γ

)

where β is the ratio of the number of conduction electrons to that of atoms. From free electron theory,

A = 234
R

θ3D
.

Kittel (2004) Remember,

Cph =
12π4

5
R

(
T

θD

)3

= 234R

(
T

θD

)3

Whereas,

γ = 4.93
R

TF

and,

Ce =
1

2
π2R

(
T

TF

)
= 4.93R

(
T

TF

)
.

Thus,

Cph

Ce
=

(
47.5

β
·

TF

θ3D

)
T2

c

β can be set to be of the order of 1. For most of the conventional superconductors, Tc � θD So the

Ce � Cph.

If the conduction electrons have an e�ective mass, m∗, which is de�ned by the inverse of the curvature

of the band structure, and that di�ers from bare mass m, then the conduction electron-speci�c heat is
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given by

γ =

(
m∗

m

)
γ0

where γ 0 is the bare electron counterpart of γ .

γ0 =
π2R

2TF
.

Thus

m∗

m
=
γ

γ0
=

2γTF

π2R
.

It is worth mentioning here that for a typical high temperature superconductor, TF is pretty low,

TF ∼ 4000 K, at least an order lower than conventional elemental superconductors, such as for Cu,

TF ∼ 80 000K. This discrepancy is probably due to the large values of the e�ective masses.

With Ces numerically obtained, we can integrate to �nd the change in internal energy U(T) as we

decrease temperature from Tc. At T = Tc it must be the same as the normal value Uen(0)+
1
2γT2

c . So

Ues(T) = Uen(0)+
1

2
γT2

c −

∫ Tc

T
CesdT.

From the internal energy and entropy, we may compute the free energy using,

Fes(T) = Ues(T)− TSes(T).

The critical �eld is determined by

µ0
H2

c (T)

2
= Fen(T)− Fes(T)

where,

Fen(T) = Uen(0)−
1

2
γT2.

The internal energy, U, and the free energy, F, are shown across a superconductor-normal metal

transition in Fig. 4.13. To compute the thermodynamic quantities, we explicitly consider the temper-

ature dependence of the speci�c heat of a superconductor and explore its behavior at the normal-

superconductor phase transition. There is a jump in the speci�c heat at T = Tc as we have seen

earlier.

The Gibb’s free energy per unit volume for a superconductor in a magnetic �eld is written as

G = U − TS − HM (4.32)

neglecting usual PV term. Since,

dU = TdS + HdM. (4.33)
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FIG. 4.12
Schematic plots of entropy (S) and specific heat (C) scaled by γ TC (γ defined in text) are presented as a function of

reduced temperature, T
Tc
. T /Tc < 1 denotes the superconducting state, while T /Tc > 1 depicts the normal state.

1 T/Tc

Fes

Uen

Ues

Fen

T/Tc
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gTc
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gTc

2 µ
0
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2
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0
1

FIG. 4.13
Schematic plots of internal energy (U) and Helmholtz-free energy (F) scaled by γ TC (see definition of γ in text) are

presented as a function of reduced temperature, T
Tc
. T /Tc < 1 denotes the superconducting state, while T /Tc > 1

depicts the normal state.

This is the change in internal energy in the presence of a magnetic �eld, from (4.32) and (4.33),

dG = −SdT − MdH. (4.34)

Thus, integrating (4.34),

Gs(H) = Gs(0)+
H2

2
. (4.35)

Along the critical curve where the SC and the normal metal are in equilibrium,

Gn = Gs(0)+
H2

2
. (4.36)
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LaSrCuO

YBaCuO Cu

Pb

T/θD

C

R
´ 10–3

FIG. 4.14
The behaviour of the specific heat is schematically shown

as a function of the reduced temperature T /θD for both

conventional (Cu and Pb) and unconventional (cuprate)

superconductors.

where Gs and Gn are the Gibb’s free energy for

the superconducting and the normal states. From

Eq. (4.34)
(
∂G

∂T

)

H

= −S. (4.37)

Thus, at equilibrium,

Sn − Ss = −Hc
dHc

dT
. (4.38)

Ss denotes the entropy of a SC in a zero �eld. Since
dHc
dT is always negative, the entropy of the normal

state is always greater than that of the superconduct-

ing state. Makes sense. Thus,

1C = Cs − Cn = −T
d

dT
(Ss − Sn)

= THc
d2Hc

dT2
+ T

(
dHc

dT

)2

. (4.39)

At T → Tc, Hc → 0,

1C = Tc

(
dHc

dT

)2

. (4.40)

From (4.38) at T = Tc, Hc = 0, there is no latent heat of transition1S = 0 (see left panel of Fig. 4.12),

but according to (4.40) 1C = �nite (see right panel of Fig. 4.12). So the transition is second order

(at T = Tc). However, away from Tc, the phase transition has a latent heat and is a �rst-order phase

transition.

However, this is not true for high temperature superconductors. In fact for (La0.9Sr0.1CuO4−δ) and

(YBa2Cu3O7−δ), AT3
c � γ , so the phonon term dominates at T = Tc (see Fig. 4.14).

4.2.3 Density of states

The Bogoliubov quasiparticle spectrum, Ek is easily seen to have a minimum of 1k for ξ k = 0 (ξ k is

positive de�nite including zero). Thus, in addition to playing the role of the order parameter1k is also

the energy gap in the single particle spectrum. To see this explicitly, we can make a change of variables

from ξ k (for the normal state energies) to Ek (denoted as the quasiparticle energies), namely,

N(E)dE → Nn(ξ)dξ

Since, the density of states should remain conserved, as the number of carriers remain conserved,

N(E)dE = Nn(ξ)dξ . (4.41)
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Since, the gap 1 is much smaller than the energy range (1� E) over which the normal state DOS

varies, we can replace,

Nn(ξ) ≈ Nn(0) = N0 (4.42)

The quasiparticle energies are given by

E2
k = 12

+ ξ 2k . (4.43)

Dropping the subscripts,

E2
= 12

+ ξ 2

2EdE = 2ξdξ

dξ

dE
=

E

ξ
=

E
√

E2 −12
.

Here,

N(E)dE = N0dξ

N(E)

N0
=

dξ

dE
.

Thus,

N(E)

N(0)
=

{
E

√

E2−12
for E > 1

0 for E < 1.

Superconducting

Normal

1

N(E)

N(ε
F
)

E/D

FIG. 4.15
The density of states (DOS) as a function of the scaled

energy, E/1 is shown. The right of the bold line denotes

the superconducting phase, while on the left, it is the

normal state.

Excitations with all momenta k, even those whose ξ k

fall in the gap have their energies increased above 1.

Moreover, we obtain a divergentDOS forE → 1 above.

Considering that across the phase transition, the den-

sity of states remains constant, i.e.

Ns(E)dE = Nn(ξ)dξ .

Since we are interested in an energy range of a few

meV from the Fermi energy, we take Nn(ξ ) = N(εF) =

a constant.

Ns(E)

N(εF)
=

dξ

dE
=

E
√

E2 −12
for E > 1.

The behavior of theDOS is plotted in Fig. 4.15. It is zero

for E < 1, and falls o� as E becomes larger than the

gap, 1. Furthermore, the behavior of the quasiparticle

energy, Ek as a function of the single particle energy, ξk

is shown in Fig. 4.16, where a superconducting gap of

magnitude1 is indicated in the �gure.

Superconductivity 4-21

 07 D
ecem

ber 2024 17:11:54



Principles

Ek

Eks

|ξk| = Ekn

ξk

ξk/D

D

ξ k
 =

 |ξ k
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 E k n

D

FIG. 4.16
The scaled quasiparticle energy, E/1 is plotted as function of scaled single particle energy, ξ k/1. The region above

the parabola is superconducting (SC) and the region below the dotted lines denote metallic phases.

4.3 BCS THEORY

4.3.1 Introduction

Even though a lot of experimental progress has occurred in the �eld of superconductivity, a complete

understanding of the pairing phenomena and consequently the formation of the superconducting state

is lacking. In the following, we describe a microscopic theory that addresses all of these concerns. The

The BCS theory of superconductivity was devised by Bardeen Cooper and Schrie�er in 1957. This

accurately describes many of the properties of weak - coupling superconductors. The word “weakly

coupled” refers to the strength of the electron phonon coupling that is considered as the origin of pair-

ing in this class of superconductors, as we shall see below. The basic idea of the BCS theory is that the

electrons in metal form bound pairs below a certain critical temperature called the transition temper-

ature. Not all the electrons take part in this pairing process, only the ones that reside close to the Fermi

surface, and within a distance of the debye energy, ωD. The paired state of all of these electrons needs

a much body description.

4.3.2 Isotope effect

Fröhlich (1950) realized that the electrons could interact by exchanging phonons, and in such a process,

the interaction could be attractive. That was the �rst proposal that superconductivity can originate

from electron-phonon interactions. But how do the phonons come into the picture? The dependence
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on phonon parameters was experimentally demonstrated by the fact that the transition temperature,Tc

is a function of the ionic mass for di�erent isotopes of the samemetal (that becomes a superconductor

at lower temperatures). The e�ect of Tc is shown to have the form,

1Tc/Tc = −
1

2

(
1M

M

)
(4.44)

where M denotes the ionic mass, and 1M is the di�erence in masses between the isotopes. This is

called the isotope e�ect. It played a signi�cant role in unraveling the issue concerning the attractive

interaction among the charge carriers that eventually leads to superconductivity. Thus, we shall see,

the contribution of the lattice excitations or the phonons is central to the formation of bound pairs. It

will be shown later that physical quantities, such as the energy of the bound pairs, Tc involve phonon

frequencies, and thus should display an isotope e�ect.

The isotope e�ect is more conveniently represented in terms of the isotope coe�cient, α via the

relation,

Tc ∼ M−α (4.45)

where α is given by

α = −
M

1M

1Tc

Tc
. (4.46)

In general, α has a value 0.5; however, it may vary from one material to another.

4.3.3 Origin of attractive interaction

We consider the interaction between two electrons, one with (k, ↑) and the other (−k, ↓). One may

consider a spin independent interaction, but since it is not relevant to the context, we can neglect the

spin indices for future discussions. There are two mechanisms by which two electrons can interact:

they can interact directly or via a third party, which in this case are phonons. We shall explore these

two cases in the following.

4.3.3.1 Case I

One obvious process is a direct electron-electron interaction mediated via the Coulomb forces. Let us

consider the initial state as |i〉 (before scattering) and the �nal state |f 〉 after scattering. Let us denote

this interaction term as Hdir
e−e. The matrix elements of such a term between the states can be written as

〈i|Hdir
e−e|f 〉 =

∫
eik·rUc(r)e

−ik′
·rd3r. (4.47)

We assume that both |i〉 and |f 〉 are plane wave states. This term cannot yield a negative contribution

and hence does not contribute to the formation of a bound state. The energies involved in this case can

be enumerated as

i. Initial: εi = 2ξk ξk =
~2k2

2m − µ.

ii. Final: εf = 2ξk′ k′
= k + q
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4.3.3.2 Case II

Now let us consider an indirect process. Consider the scattering of two electrons via the exchange of a

phonon. Thus, there is an intermediate process involved, and hence, it is a second-order process. There

are two ways that such a second-order process can occur.

i. Electron 1withmomentumk emits a phonon, of frequencyωq which is later re-absorbed by electron

2 with momentum −k (see left panel of Fig. 4.17).

ii. Electron 2 with momentum −k emits a phonon with frequency ωq which is later re-absorbed by

electron 1 with momentum k (see the right panel of Fig. 4.17).

Since both these processes are equally probable, they need to be incorporated with equal weight. The

corresponding energies involved in the second case are,

i. Initial state (before scattering): εi = 2ξk′ .

ii. Final state (after scattering): εf = 2ξk′ .

Even if the initial and the �nal states are the same as in case I, the intermediate state is di�erent.

However, the corresponding energies are still the same, namely,

ε
(i)
int = ξk′ + ξk + ~ωq

ε
(ii)
int = ξk + ξk′ + ~ωq.

Now, the matrix element of Hindirect
e−e can be calculated as

〈i|Hindirect
e−e |f 〉 =

∑

int

〈i|Hindirect
e−e |int〉〈int|Hindirect

e−e |f 〉

(Ei,f − Eint)2

=

∑

int

〈i|Hindirect
e−e |int〉

1

2

[
1

Ef − Eint
−

1

Ei − Eint

]
〈int|Hindirect

e−e |f 〉, (4.48)

k + q –k – q

k

–q
–k

k + q –k – q

k

T
im

e

T
im

e

q

–k

FIG. 4.17
Feynman diagrams show for the electron-electron interaction mediated via phonons. The left panel shows electron 1

emits a phonon, which is captured by electron 2 later. The right panel shows electron 2 emits a phonon which is captured

by electron 1 later.
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O A B

V (q, ω)

ω

FIG. 4.18
A schematic plot of the interaction energy

V(q, ω) plotted as a function of the electron

energy ω. The region between A and B is

where the interaction becomes attractive.

where the summation is over the intermediate states. Note that

the energy denominators can be written as,

1

Ef − Eint
=

1

2ξk′ − ξk − ξk′ − ~ωq

1

Ei − Eint
=

1

2ξk − ξk′ − ξk − ~ωq

(4.49)

where, ξk′ − ξk = ~ω. Thus,

〈i|Hindirect
e−e |f 〉 =

1

ω − ωq
−

1

ω + ωq
|Ṽc(q)|

2
=

2ωq

ω2 − ω2
q

|Ṽc(q)|
2.

(4.50)

The matrix elements are positive de�nite, so we are interested to

know the sign of the energy denominator. For ω < ωq, it is neg-

ative, and hence attractive. This is known as Cooper’s instability.

In real physical situations, the Coulomb term gets weakened by screening, which eventually takes the

form,

V(q,ω) =
4πe2

q2 + k20
+

4πe2

q2 + k20

ωq

ω2 − ω2
q

. (4.51)

A schematic plot of the interaction term as a function of the electron energy,ω is plotted in Fig. 4.18. In

a small region, between the points A and B marked in Fig. 4.18, V(q, ω) becomes negative and hence

attractive.

4.3.4 The BCS ground state

The ground states of a free Fermi gas correspond to the �lled states with energy ε below εF and all

states empty beyond ε > εF. This Fermi gas of electrons becomes unstable against the formation of

at least one bound pair, regardless of how weak the interaction is, so long as it is attractive (Cooper,

1956).

It is well known that the binding does not ordinarily occur in a two body problem in two or three

dimensions, until the strength of the potential exceeds a �nite threshold value (Sakurai andNapolitano,

2011). So, in order to see how this binding comes about, we consider a simple model of two electrons

added to the Fermi sea at T = 0. The restriction imposed here is that these two electrons interact with

each other, but not with those inside the Fermi sea, except, of course due to the exclusion principle.

Thus, we seek a two-particle wavefunction for our purpose. Bloch argued that the lowest energy state

for a two-particle system has zero total momentum. Thus, the two electrons have equal and opposite

momenta. This means that the orbital wavefunction, ψ0(r1, r2) should be of the form,

ψ0(r1, r2) =

∑

k

gkeik·r1e−ik·r2 . (4.52)
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Considering the asymmetry of the total wavefunction with respect to the exchange of two electrons,

ψ0 contains even functions, such as cos[k · (r1 − r2)] with an antisymmetric spin part of the form,

[|↑↓〉 − |↓↑〉], or a sum of products of sin[k · (r1 − r2)] with a symmetric triplet function of the form,

[|↑↑〉, |↓↓〉] and [|↑↓〉 + |↓↑〉]. In a two-particle system, we expect that the singlet to have a lower

energy because the cosinusoidal dependence of the orbital wavefunction r1 − r2 gives a larger proba-

bility of the electrons to are near each other. Thus, we zero in on a two electron singlet wavefunction

of the form,

ψ0(r1, r2) =


∑

k>kF

gk cos[k · (r1 − r2)]


 [|↑↓〉 − |↓↑〉] . (4.53)

This can be plugged into the Schrödinger equation to yield,

(E − 2εk)gk =

∑

k′>kF

Vkk′gk′ . (4.54)

The above equation is true for any value of k. εk are the single particle energies (of the plane wave type),

and Vkk′ are the matrix elements of the interaction potential,

Vkk′ =
1

V

∫
V(r)ei(k−k′)·rdr, (4.55)

where r denotes the spatial distance between the two electrons. Vkk′ describes the scattering of a pair

of electrons with momenta (k′

↑
,−k′

↓
) to (k↑, − k↓). We have to solve for the amplitude, gk such that

the total energy E < 2εF, such that a bound pair exists.

It is hard to carry out calculations for a general form of Vkk′ . Cooper introduced a notable simpli�ca-

tion,

Vkk′ = −V for εF < εk,k′ < εF + ~ωD

= 0 otherwise,
(4.56)

where V denotes the strength of the electron-electron interaction. This implies,

gk = V
∑

k′

gk′

2εk − E
(4.57)

summing over the momentum index k,

1

V
=

∑

k>kF

1

2εk − E
. (4.58)

Note that this summation over k is for k values that are larger than the Fermi wavevector. We replace

the summation with integration, by using the DOS at the Fermi level, namely, N(εF), which is constant

for a particular material, and hence, can be brought out of the integral. Hence,

1

V
= N(εF)

∫ εF+~ωD

εF

dε

2ε − E
=

1

2
N(εF) ln

(
2εF − E + 2~ωD

2εF − E

)
. (4.59)
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For conventional superconductors,

N(εF)V < 0.3.

This allows the applicability of the weak coupling approximation valid for N(εF)V � 1. This yields,

2

N(εF)V
= ln

(
2εF − E + 2~ωD

2εF − E

)

or,
2εF − E + 2~ωD

2εF − E
= e2/N(εF)V

2εF − E + 2~ωD = (2εF − E)e2/N(εF)V

E = 2εF − 2~ωDe−2/N(εF)V .

(4.60)

This is the expression for the total energy of the system of two electrons in the vicinity of the Fermi

sea. Thus, with respect to the Fermi surface of two electrons, the energy is negative, and hence it cor-

responds to a bound state. A bound state of two electrons is thus formed, even for an in�nitesimal

interaction strength. Also, the form says that the binding energy is not analytic at V = 0, so it cannot

be expanded in powers of V. Thus, any �nite order perturbation theory would not be able to yield this

result, and thus the theory is non-perturbative.

As for the wavefunction, it is dependent on the relative coordinate, r = r1 − r2, and is proportional to

∑

k>k′

cos(k · r)

2ξk + E′

where, ξk = εk − εF, and E′
= 2εF − E > 0. E′ can now be called the binding energy relative to 2εF.

A few comments are in order.

i. The amplitude of the wavefunction, namely, (2ξ k + E′)−1 has its maximum value 1/E′ when

ξ k = 0, that is, for electrons at the Fermi level. It falls o� at positive values of ξ k. Thus, it elucidates

the dominant role of the electrons at the Fermi energy in the pairing mechanism.

ii. The electronic states within an energy range E′ about εF are involved in the formation of the bound

state.

iii. Note that E′ < ~ωD for N(εF)V < 1, this makes sure that the detailed behavior of Vkk′ is not

important, and the assumption of the form in Eq. (4.56) will su�ce.

iv. Also, the small energy range allows estimation of the range of the Cooper pairs via the uncertainty

principle, namely, ξ0 =
a~vF
kTc

. Thus, the pairs are highly overlapping.

4.3.5 Statistical description of the BCS ground states

What we have learned so far is that the �lled Fermi sea becomes unstable to the formation of a bound

pair. In s-wave superconductivity, a large number of bound pairs form and a system condenses into the

ground state below the same transition temperature, Tc. Let us postulate a paired many body paired
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ground state of the form (since it is a ground state, we assume it to be a singlet state),

|ψ0〉 =

∑

k>kF

gkc†k↑c†
−k↓|0〉 (4.61)

where |0〉does not denote vacuum, rather it represents a �lled Fermi sea. Suppose there areM electrons,

and we have to involveN electrons of those to form N
2 pairs, the number of ways N

2 pairs can be formed

from M electrons is,

M!

(M −
N
2 )!(

N
2 )!

≈ (1020)20 for M = 1023. (4.62)

Thus, a solution of the problem demands that (1020)20 number of gk to be solved, which is certainly

an impossible task. Thus, a statistical description must be employed here. Further, since the number

of particles is large, no serious error will be done if one works with a grand canonical ensemble, where

only the average number of particles, that is, N is �xed.

To circumvent a signi�cantly di�cult problem, the BCS theory postulated a ground state of the form,

|ψG〉 =

∏

k=k1,k2,...kM

(uk + vkc†k↑c†
−k↓)|ψ0〉. (4.63)

The probability of a paired state (k↑, − k↓) is occupied is denoted by |vk|
2, while it is unoccupied is

given by |uk|
2 with the condition,

|uk|
2
+ |vk|

2
= 1 ∀ k. (4.64)

Take an example of two states k1 and k2, then the wave function amplitudes represent,

uk1, uk2 → 0 pair

uk1, vk2 → 1 pair in (k2,−k2)

vk1, vk2 → 2 pairs in (k1,−k1), (k2,−k2).

We can calculate the average number of particles in the following way:

N = 〈N̂OP〉 =

〈
∑

k,σ

n̂k,σ

〉
= 〈ψG|

∑

k

c†k↑ck↑ + c†k↓ck↓|ψG〉 = 2
∑

k

〈ψGc†k↑ck↑ψG〉

= 2
∑

k

〈ψ0|(u
∗

k + v∗

kc−k↓ck↑)c
†
k↑ck↑(uk + vkc†k↑c†

−k↓)
∏

l 6=k

(u∗

l + v∗

l c−l↓cl↑)(ul + vlc
†
l↑c†

−l↓)|ψ0〉.

In principle uk and vk are complex quantities. We have also used 〈Aφ|ψ〉 = 〈φ|A†
|ψ〉. Let us look at

various terms.

First, let us look at the term for l 6= k, namely,

|ul|
2
+ u∗

l vlc
†
l↑c†

−l↓ + v∗

l ulc−l↓cl↑ + |vl|
2c−l↓cl↑c†l↑c†

−l↓ (4.65)

where we have taken the expectation with |ψ0〉. The middle two terms (second and the third terms)

yield zero as they change the occupancy of the state with l-th pair (�rst term creates and the second
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term destroys). The last term only yields a normalization, because it creates and destroys a pair. Thus,

the l 6= k term yields,

|ul|
2
+ |vl|

2

which, by normalization, is equal to 1.

The same procedure, when applied to l = k term, we shall have two terms surviving with ukvk will

cancel out. Further,

|uk|
2c†k↑ck↑|φ0〉 = 0

since there are no states to annihilate for k > kF. Thus, we are left with only |vk|
2.

Thus, the average number of particles yields,

N = 2
∑

k

|vk|
2.

The factor 2 appears for the summation over spin. Furthermore, our assumption that this reinforces

|vk|
2 indeed denotes the probability of occupied states.

To calculate some more statistical quantities that may be of physical relevance, we estimate the RMS

�uctuations of N, we calculate

〈(N − N)2〉 = 〈N2
− 2NN + N

2
〉 = 〈N2

〉 − N
2

= 4
∑

k

u2
kv2k. (4.66)

This is a positive de�nite quantity. In fact, vk as a function of k goes from 1 to zero and uk goes from

0 → 1 in an energy range given by kBTc. Thus, the sum above is proportional to Tc
TF

N.

4.4 THE VARIATIONAL CALCULATION

We write down a generic Hamiltonian that encodes the kinetic energy and a two-particle interaction

term as in the following:

H =

∑

k,σ

ξkσ c†kσ ckσ +

∑

k,l

Vklc
†
k↑c†

−k↓c−l↓cl↑ = K̂ + V̂ , (4.67)

where K̂ and V̂ denote the kinetic and the interaction energies, and ξ k = εk − µ. k, l are the momenta

indices. As exact solutions are hard to arrive at, and perturbation theory will not be of relevance for

reasons discussed earlier, we shall resort to a variational calculation, that is, minimize the energy with

respect to the tunable parameters, which are the coe�cients uk and vk. That is,

δ


〈ψG|

∑

k,σ

ξknkσ +

∑

k,l

Vklc
†
k↑c†

−k↓c−l↓cl↑|ψG〉


 . (4.68)
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Let us look at the kinetic energy term. We have already computed it earlier, namely,

〈K̂〉 = 〈ψG|

∑

k,σ

ξknkσ |ψG〉 = 2
∑

k

|vk|
2ξk. (4.69)

Similarly, for the potential energy term,

〈V̂〉 =

∑

k,l

Vklu
∗

kv∗

l ulvk, (4.70)

where we have used the normalization constraint, that is, |uk|
2
+ |vk|

2
= 1 ∀ k.

Doing a variational calculation with two variables is a di�cult job, which, however, is simpli�ed owing

to the normalization condition. This yields an identi�cation of (uk, vk) with (sin θk, cos θk) which

facilitates the Hamiltonian to be dependent only on one parameter, namely, θk. In particular, we take

uk = sin θk, vk = cos θk. (4.71)

Thus, we can minimize energy with respect to θk, which implies

∂

∂θk


∑

k′

ξk′(1 + cos 2θk′)+
1

4

∑

k′,l

Vk′l sin 2θk′ sin 2θl


 = 0 (4.72)

2ξk sin 2θk +

∑

l

Vkl cos 2θk sin 2θl = 0. (4.73)

Now de�ne,

1k = −
1

2

∑

l

Vkl sin 2θl = −
1

2

∑

l

Vkl sin 2θl. (4.74)

Using this in the above equation can be written as

2ξk sin 2θk =
1

2

∑

l

Vkl cos 2θk sin 2θl = −21k cos 2θk. (4.75)

This yields

tan 2θk = −
1k

ξk
, implying that,

sin 2θk

cos 2θk
= −

1k

ξk
. (4.76)

Using the de�nitions,

2ukvk = sin 2θk =
1k√
ξ 2k +12

k

v2k − u2
k = cos 2θk = −

ξk√
ξ 2k +12

k

.
(4.77)

We have

v2k − u2
k = −

ξk

Ek
,
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where, Ek =

√
ξ 2k +12, and, of course, the normalization condition, namely, u2

k + v2k = 1. Thus, the

de�nition for the coherence factors can be written as

v2k =
1

2

(
1 −

ξk

Ek

)
=

1

2


1 −

ξk√
12 + ξ 2k




u2
k =

1

2

(
1 +

ξk

Ek

)
= 1 − v2k.

(4.78)

This is a choice which seems to �t all de�nitions.

v 2
k

kBTC

–ħω
D x

k
ħω

D–D
0

1

0

D

FIG. 4.19
The behaviour of v2k (probability of states occu-

pied by a pair of momentum k and −k) is

shown as a function of ξ k (= εk − µ).

There is a close resemblance between the v2k for the BCS ground

state at T = 0, and the free Fermi distribution at T = TF (see

Fig. 4.19). Also, v2k falls o� as 1/ξ 2k for ξ k � 1. If one remem-

bers, g2k falls o� in a similar fashion in the simple treatment of

a single Cooper pair presented earlier. Also, we have chosen

cos 2θk with a negative sign, because if ξ k is large (that is,

εk � µ) vk should go to zero.

Hence,1k assumes the form,

1k = −
1

2

∑

l

Vkl sin 2θl

1k = −
1

2

∑

l

Vkl

12
l√

12
l + ξ 2l

.
(4.79)

A trivial solution of the above equation is 1 = 0. This implies, 2ukvk = 0, and v2k − u2
k = −1. Since,

u2
k + v2k = 1, it implies that v2k = 0, which, in turn, means a normal state and hence, there are no pairs.

The above discussion clearly indicates that 1k can be used as an order parameter for the supercon-

ducting transition, which when �nite implies a superconducting state, and 1k = 0 denotes a normal

state.

Let us recall Cooper’s original assumption on the nature of the interaction, that is,

Vkl = −V if |ξk − ξl| < ~ωD.

Hence, putting it in Eq. (4.74),

1k =
1

2
V
∑

l

sin 2θl for |ξk − ξl| < ~ωD = 0 otherwise. (4.80)

From the above equation, it is clear that the order parameter, 1 is independent of the momentum

index, k. Substituting sin 2θ l from Eq. (4.77), one may cancel1 from both sides to get

1 =
V

2

∑

l

1√
12 + ξ 2l
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1

V
=

∫
~ωD

0

N(εF)dξ

2
√
12 + ξ 2

2

N(εF)V
=

∫
~ωD

0

dξ√
12 + ξ 2

. (4.81)

Integrating and solving for1,

2 sinh−1

(
ξ

1

)~ωD

0

=
2

N (εF)V

2 sinh−1

(
~ωD

1

)
=

2

N (εF)V
.

(4.82)

Reorganizing,

1 =
~ω

sinh(1/N(εF)V)
. (4.83)

For a weak coupling superconductor, N(εF)V � 1, one arrives at

1 = 2~ωDe−1/N(εF)V . (4.84)

This is the expression for the energy di�erence between the superconducting state and the normal state.

Thus, this much energy has to be supplied in order to break a superconducting state and achieve a nor-

mal (metallic) state. Suppose a thermal excitation facilitates such a transition, which yields1 ∼ kBTc;

A priori, from BCS theory one gets (will be shown immediately afterwards)

kBTc ≈ 1.13 ~ωD exp[−1/N(εF)V], (4.85)

which only changes the factor “2” in Eq. (4.84) to 1.13 in Eq. (4.85). Having found1, we may simply

compute the coe�cients uk and vk which should specify the optimal BCS wavefunction.

4.4.1 Temperature dependence of the gap

We have introduced that the energy gap (which also acts as the order parameter) in a superconductor

is de�ned by

1k = −

∑

k′

Vkk′〈c−k′↓ck′↑〉 (4.86)

1k allows us to write the mean �eld BCS Hamiltonian,

H =

σ∑

k

ξkc†kσ ckσ −

∑

k

(1kc†k↑c†
−k↓ +1∗

kc−k↓ck↑). (4.87)

A constant term is dropped from the above equation. This Hamiltonian can be diagonalized by Bogoli-

ubov Valatin transformation, where the creation and the annihilation operators are expressed in terms

of the quasiparticle operators as

ck↑ = u∗

kγk0 + vkγ
∗

k1
(4.88)

c†−k↓ = −v∗

kγk0 + ukγ
∗

k1
. (4.89)
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Being a linear combination of ck and c†k, γ k obeys fermionic anticommutator relations and thus the

relationships are canonical. This along with the normalization condition yields

H =

∑

k

ξk

[
(|uk|

2
− |vk|

2)(γ †
k0
γk0 + γ †

k1
γk1)+ 2|vk|

2
+ 2u∗

kv∗

kγk1γk0 + 2ukvkγ
†
k1
γ †

k0

]

+

∑

k

(1kukv∗

k +1∗

ku∗

kvk)(γ
†
k0
γk0 + γ †

k1
γk1 − 1)+ (1kv∗2

k −1∗

ku∗2
k )γk1γk0

+ (1∗

kv2k −1ku2
k)γ

†
k0
γ †

k1
.

(4.90)

Finally, one gets

H =

∑

k

Ek(γ
†
k0
γk0 + γ †

k1
γk1)+

∑

k

(ξk − Ek + |1k|
2) (4.91)

where Ek =

√
ξ 2k + |1|2. The second term is just a constant. So, the Hamiltonian is diagonal on the

basis of the quasiparticle operators.3

For the gap function,1, in terms of the quasiparticle operators after a little bit of algebra yields

1k = −

∑

k′

Vkk′u∗

k′vk′〈1 − γ †
k′

0
γk′

0
− γ †

k′

1
γk′

1
〉. (4.92)

At zero temperature, 〈γ †
k0
γk0〉 = 1; however, at non-zero temperatures,

〈γ †
k0
γk0〉 = f (Ek) =

1

eβEk + 1

where f (Ek) denotes the Fermi distribution function for the quasiparticles. Since the expectation value

of each of the number operators yields a Fermi function, we get,

〈1 − γ †
k0
γk0 − γ †

k1
γk1〉 = 1 − 2f (Ek).

Thus, for the gap function,

1k = −

∑

k′

Vkk′u∗

k′vk′(1 − 2f (Ek)) = −

∑

k′

Vkk′

1k′

2Ek′

tanh

(
βEk′

2

)
.

With Vkk′ = −V ,

1

V
=

1

2

∑

k

tanh(βEk/2)

Ek
. (4.93)

The above equation holds a clue to the temperature dependence of the energy gap,1(T). Converting

the sum into an integral by introducing the DOS,

1

N(εF)V
=

∫ βc~ωD/2

0

tanh x

x
dx, where, x =

βEk

2∫ βc~ωD/2

0

tanh x

x
dx = ln

(
2eγ

π
βc~ωD

) (4.94)

3 In order for the quasiparticle operators (γ ) to diagonalize the idea is to make coe�cients of γ γ or γ †γ † equal to zero and

retain γ †γ . This happens when 2ξkukvk +1∗

k
v2

k
−1ku2

k
= 0.
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where γ denotes the Euler constant, which has a value, γ = 0.577 · · · and thus 2eγ

π
' 1.14. This yields

an expression for the transition temperature, Tc above which superconductivity vanishes,

kBTc = 1.13~ωce−1/N(εF)V . (4.95)

One may recall that earlier we have obtained an expression for the energy gap, namely,

1 = 2~ωDe−1/N(εF)V

which was subsequently equated to kBTc. Also, a relationship between the energy gap at zero temper-

ature to that of Tc is obtained as

1(0)

kBTc
=

2

1.13
= 1.764. (4.96)

Thus, the gap at T = 0 is indeed comparable to the magnitude of kBTc. The numerical factor has been

tested in many experiments and found to be reasonable. The value of 21(0) varies between 3kBTc and

4.5kBTc for the conventional (that is, BCS) superconductors, and is mostly clustered around the BCS

value 3.5kBTc.

Finally, to arrive at an explicit temperature dependence of the gap function, we consider the integral

form of the gap equation, namely,

1

N(εF)V
=

∫
~ωD

0

tanh
[
1
2β(ξ

2
+12)1/2

]

(ξ 2 +12)1/2
dξ . (4.97)

Now1(T) needs to be computed numerically by self-consistently solving the above equation. Forweak

coupling superconductors, for which ~ωD � kBTc,1(T)/1(0) is a universal function of (T/Tc) which

decreases monotonically from 1 at T = 0 to zero at T = Tc. With1(T) determined, the quasiparticle

energies can be written as

Ek =

√
ξ 2k +12(T).

In the vicinity of T = 0, the temperature variation is exponentially slow because of e−1/kBT
≈ 0

(see Fig. 4.20). Hence, the tan hyperbolic term is insensitive to T and stays very close to 1. Physi-

cally speaking,1 remains nearly a constant until a signi�cant number of quasiparticles are thermally

excited.

On the other hand, for T ∼ Tc,1(T) vanishes with a vertical slope approximately as

1(T)

1(0)
≈ 1.74

[
1 −

(
T

Tc

)]1/2
for T → Tc from below.

This square root dependence of the1 onT is a hallmark feature of all mean �eld theories. For example,

the magnetization vanishes in a similar fashion to temperature in molecular �eld theory of ferromag-

netism. The dependence of 1(T) presented in Fig. 4.20 closely matches with the experimental data

on the elemental superconductors, such as Tin (Sn), Tantalum (Ta), and Niobium (Nb) presented in

Fig. 4.21.
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T/T
c

D
(
T

)
/D

(
0)

1

1

FIG. 4.20
The scaled gap function 1(T)/1(0) is numerically

obtained and plotted as a function of the reduced temper-

ature, T /Tc. The area enclosed by the curve denotes the

superconducting phase.

Tin

Tantalum

Niobium

D
(
T

)
/D

(
0)

T/T
c

FIG. 4.21
The scaled energy gap is shown as a function of reduced

temperature, T /Tc for Tin, Tantalum and Niobium. The fig-

ure is taken from Blatt (1992). The continuous lines depict

the result of BCS theory.

4.4.2 Thermodynamics from BCS theory

The energy of a superconductor is obtained by explicitly solving the BCS Hamiltonian, which yields

E = 2
∑

k>kF

ξkv2k + 2
∑

k<kF

|ξk|u
2
k +

∑

kk′

Vkk′ukvkuk′vk′ (4.98)

where,

v2k =
1

2


1 −

ξk√
ξ 2k +12

k




with ξ k = εk − µ, and1k = −
∑

k′ Vkk′uk′vk′ . Furthermore, the form of the attractive interaction is

Vkk′ =

{
V for both |ξk| and |ξk′ | < ~ωD

0 otherwise.

Also, we have obtained that

1 ' 2~ωD exp[−1/N(εF)V].
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Thus, the energy di�erence between the superconducting and the normal states is given by

Es − En = −
1

2
N(εF)1

2

[
1 − exp

(
−2

N(εF)V

)]
, (4.99)

which in the weak coupling limit assumes the form,

Es − En = −
1

2
N(εF)1

2

To enumerate the jump in the speci�c heat from BCS theory, we consider the entropy for the SC state

given by Reif (1965)

Ss = −2kB

∑

k

[
(1 − fk) ln(1 − fk)+ fk ln fk

]
. (4.100)

Furthermore, in terms of the probability of a microstate being occupied, the entropy has a form,

S = −kB

∑
pi ln pi. (4.101)

Following which the speci�c heat can be determined by

Ces = T
dSs

dT
= T

dSs

dβ
·

dβ

dT
= T

dSs

dβ
·

(
−

1

kBT2

)
= −β

dSs

dβ

now,

Cs = 2βkB

∑

k

∂fk

∂β
ln

fk

1 − fk
= −2β2kB

∑

k

Ek
∂fk

∂β
= −2β2kB

∑

k

Ek
dfk

d(βEk)

(
Ek + β

dEk

dβ

)

= −2βkB

∑

k

(
dfk

dEk

)(
E2

k +
1

2
β

d12

dβ

)
. (4.102)

The �rst term is the contribution of the quasiparticles to the speci�c heat, while the second term is due

to the temperature-dependent gap function. The features of this speci�c heat are as follows:

i. Ces is exponentially small at T � Tc, where the excitation energy1 is much greater than kBT. This

explains the exponential dependence at low temperatures, namely, Cs ∼ Tce−T/TC .

ii. Near Tc, the gap,1(T) → 0, when one can replace Ek by |ξ k|, the �rst term reduces to

Cs(T) = γT =
2π2

3
N(εF)k

2
BT,

which is continuous at T = Tc.

iii. The second term is �nite below Tc, where
d12

dT is large but is zero above Tc, thereby giving rise to

a discontinuity, 1C in the electronic speci�c heat at Tc. This discontinuity is characteristic of a

second-order phase transition.

The jump in the speci�c heat is enumerated as

1C = (Cs − Cn) |T=Tc = N(εF)kBβ
2 d(12)

dβ

∫
∞

−∞

(
df

d|ξ |

)
dξ = N(εF)

(
−

d12

dT

)

T=Tc

. (4.103)
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Here,
df

d|ξ |
=

df
dξ as f is an even function of ξ . Furthermore, using4

1(T) = 1.741(0)

(
1 −

T

Tc

)1/2

the magnitude1C can be computed to yield

1C = 9.4N(εF)k
2
BTc,

where1(0) = 1.76 kBTc. The normalized discontinuity, usually measured in experiments, is given by

1C

Cen
=

9.4

2π2/3
≈ 1.43

Ces(T) can be found numerically from the parent expression [Eq. (4.102)]. Ces(T) can be integrated to

obtain Ues(T). The clue is that at T = Tc, Ues(T) must be same as the normal value Uen(0)+
1
2γT2

c .

4.5 ELECTROMAGNETIC CONSIDERATIONS

Let us consider a system of N electrons subjected to a magnetic �eld, B which is described by a vec-

tor potential. The momentum for each of these particles described by i = 1, . . . ,N under an external

vector potential, A(r, t) can be replaced by

pi → pi + eA(r).

This yields a Hamiltonian,

H =
1

2m

N∑

i=1

(pi − eA(ri))
2
+ V̂ = H0 + H

′, (4.104)

where, H0 is the many body Hamiltonian with H0 =
∑

i
p2i
2m . For the linear order in A, the coupling

to the external probe can be written as

H
′
= −

e

2m

N∑

i=1

[pi · A(ri)+ A(ri) · pi] . (4.105)

With the choice of a transverse gauge, that is, ∇ · A = 0, both the terms yield the same contribution.

Hence, we can write,

H
′
= −

e

m

N∑

i=1

pi · A(ri). (4.106)

This greatly simpli�es the analysis, as will be clear in the following discussion.

4 This is the numerical solution of the gap function,1(T) shown in Fig. 4.20.
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The total current operator can be written as

j(r) =
e

2

N∑

i=1

(viδ(r − ri)+ δ(r − ri)vi) (4.107)

with the velocity operator given by

vi =
1

m
(pi −

e

c
A(ri)) (4.108)

and the δ-functions denote the positions of the particles. The above form for current can be split into

j(r) = jp(r)+ jd(r), (4.109)

where jp and jd denote the paramagnetic and diamagnetic current densities, and are given by the

following:

jp(r) =
e

2m

N∑

i=1

(piδ(r − ri)+ δ(r − ri)pi) . (4.110)

In terms of the fermionic operators,

jp(q) =
e~

m

∑

k,σ

(k + q/2)c†kσ ck+q,σ , (4.111)

where k and q denote momentum indices. Next, the diamagnetic current density is written as

jd(r) = −
e2

m
A(r)

N∑

i=1

δ(r − ri), (4.112)

which again in terms of the fermionic operators can be expressed via

jd(q) = −
e2

m
Aq

∑

k,σ

c†kσ ckσ = −
ne2

m
Aq. (4.113)

Using these de�nitions, the coupling to the vector potential is expressed as

H
′
= −

1

�

∫
dr jp(r) · A(r) = −

1

�

∑

q

jp(−q) · A(q), (4.114)

where� denotes the volume and can be set to unity for convenience. It may be noted that the external

probe A couples only to the paramagnetic current jp in the Hamiltonian,H′. jd is already linear in A.

So it is only needed to evaluate jp at the linear response level, and hence add to jd to get the total current

response, such that,

〈j〉 = 〈jp〉 + 〈jd〉. (4.115)

According to linear response theory, one can write

〈jα〉(q,ω) = χαβ(q,ω)Aβ(q,ω)−
e2

m

〈
∑

kσ

c†kσ ckσ

〉
Aα(q,ω), (4.116)
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where ω denotes the frequency and the current-current response function is given by

χαβ ≡ χ
p
jα jβ
(q,ω)

with the density appearing in the second term,

n ≡

〈
∑

kσ

c†kσ ckσ

〉
.

To obtain the Meissner e�ect, we are interested in the zero momentum (long wavelength) and zero

frequency (static) response of χαβ , that is, for ω = 0, q → 0. One �nally gets the current density,

〈jα〉(q → 0,ω = 0) = χαβ(q → 0,ω = 0)Aβ(q → 0,ω = 0)−
ne2

m
Aα(q → 0,ω = 0). (4.117)

To compute conductivity, we have to consider the �nite frequency limit (ω 6= 0).5 Consider the electric

�eld (the scalar potential is set to zero because of the gauge condition),

E = −
∂A

∂t
= iωA. (4.118)

Thus,

〈jα〉 = σαβEβ = iωσαβAβ , (4.119)

which subsequently yields,

σαβ =
1

iω

[
χαβ(q = 0,ω)−

ne2

m
δαβ

]
, (4.120)

here,

σαβ = Re σαβ + Im σαβ . (4.121)

Finally, at the linear response level, the Kubo formula for the conductivity tensor is written as

σαβ(ω) =
1

iω

[
χjpαjpβ(q = 0,ω)−

ne2

m
δαβ

]
. (4.122)

4.5.1 Meissner effect

We demonstrate the expulsion of the magnetic �eld or the Meissner e�ect in the following.

jp =
e~

m

∑

k

(k + q/2)(c†k↑ck+q↑ + c†
−k↓c−(k+q)↓). (4.123)

The creation and the annihilation operators are expressed in terms of the quasiparticle operators via

ck↑ = ukγk↑ + vkγ
†
k↓

c†
−k↓ = −vkγk↑ + ukγ

†
k↓

(4.124)

5 For the dc conductivity, we can take ω → 0.
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where uk and vk are the coherence factors. These relationships are canonical, since they preserve the

fermionic anticommutation relations. This allows the paramagnetic current to be written as

jp =
e~

m

∑

k

(k + q/2)[(uu′
+ vv′)(γ †

k↑γk+q↑ − γ †
−(k+q)↓γ−k↓)

+ (uv′
− vu′)(γ †

k↑γ
†
−(k+q)↓ − γ−k↓γk+q↑)],

(4.125)

where the momentum indices are dropped by rede�ning,

u = uk v = vk u′
= uk+q v′

= vk+q.

Now in the linear regime, the current-current response function is written as

χαβ(q,ω = 0) =

∑

m,n

e−βωm

Z

{
((jαp (q))m,n(j

β
p (−q))n,m

ωnm
+ c.c.

}
. (4.126)

One can import the contribution of jp from Eq. (4.125). In particular, we look at di�erent terms below.

i. γ †γ term with σ = ↑

∑

k,k′

f (u, v)(k′
+ q/2)α(k − q/2)β〈m|γ †

k′γk′+q|n〉〈n|γ †
k γk−q|m〉

1

ωnm
,

where f (u, v) is the coherence factor determined later. The only |n〉 that contributes is given by

|n〉 = γ †
k γk−q|m〉. Thus,

k′
+ q = k, and , ωnm ≡ ωn − ωm = Ek − Ek−q.

This yields the above contribution to having the form,
∑

k

f (u, v) (k − q/2)α(k − q/2)β

Ek−Ek−q

=

∑

m

e−βωm

Z
〈m|γ †

k−qγkγ
†
k γk−q|m〉 = 〈γ †

k−qγk−q(1 − γ †
k γk)〉 = fk−q(1 − fk). (4.127)

The above is the thermal average, we get the Fermi distribution function, fk in the above expression.

Finally, the coherence factor, f (u, v) is

= (uk′uk′+q + vk′vk′+q)(ukuk−q + vkvk−q)

= (ukuk−q + vkvk−q)
2, since k′

= k − q.

Onemay shift the dummy index, k → k + qwhichmakes the complex conjugate equal to the term

calculated above. This yields the term γ †γ for ↑-spin as

=
2e2~2

m2

∑

k

(uu′
+ vv′)2f (1 − f ′)

E′ − E
(k + q/2)α(k + q/2)β .
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ii. Combination of γ †γ with σ = ↓

Same as (i) except for a negative sign in front of γ †
↓
γ↓ comes in ( − 1)2 in χ and k → k + q in u′s,

v′s, f′s and E′s. This yields for the γ †γ term corresponding to ↓-spin,

=
2e2~2

m2

∑

k

(uu′
+ vv′)2f ′(1 − f )

E − E′
(k + q/2)α(k + q/2)β .

Subtracting (ii) from (i), that are contributions from spin-↑ and spin-↓,

=
2e2~2

m2

∑

k

(k + q/2)α(k + q/2)β(uu′
+ vv′)2

(f − f ′)

E − E′
.

iii. and (iv) The combination of the γ †γ † and γ γ terms

This comes with a coherence factor (ukvk+q − vkuk+q) → 0 as q → 0 so they will not contribute,

however, we shall retain them for considering the �nite q response. They can be written as

∑

m,n

e−βωm

Z
〈m|γ †

k γ
†
−(k+q)|n〉〈n|γ−(k+q)γk|m〉

(−1)

ωnm
=

(−1)〈γ †
k γkγ

†
−(k+q)γ−(k+q)〉

−Ek − Ek+q
=

� ′

E + E′
.

The negative sign, that is, -1 is the only di�erence between the γ †γ and the γ γ terms. The other

one is

=

(−1)〈γ−(k+q)γkγ
†
k γ

†
−(k+q)〉

Ek + Ek+q
=
(−1)(1 − f )(1 − f ′)

E + E′
.

Here, the coherence factor is written as

(uv′
− vu′)(u′v − v′u) = −(uv′

− vu′)2.

Adding contributions of (iii) and (iv)

=
(1 − f + f ′)

E + E′
(uv′

− vu′)2 × 2.

The current-current response function is written as

χαβ(q,ω = 0)

=
2e2~2

m2

∑

k

(k + q/2)α(k + q/2)β
[
(uu′

+ vv′)2
(f − f ′)

E − E′
+ (uv′

− vu′)2
(1 − f − f ′)

E + E′

]
. (4.128)

Now consider special cases of this general formula, that is, q → 0 response, which yields

(uv′
− vu′) → 0 (uu′

+ vv′) → 1.

In which case,

χαβ(q → 0,ω = 0) =
2e2~2

m2

∑

k

kαkβ

(
−
∂fk

∂Ek

)
. (4.129)

The same result can be obtained in a more direct manner Tinkham (1973).
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In the large wavelength limit, namely, q = 0

jp =
e~

m

∑

k

k
(
γ †

k↑γk↑ − γ †
−k↓γ−k↓

)

〈jp〉 =
e~

m

∑

k

k
(
fk↑ − f−k↓

)
.

(4.130)

Wemust keep track of how the quasiparticle spectrum, Ek↑ changes under the in�uence of the external

Hamiltonian,

H
′
= −

1

c

∑

q

j1(−q) · A(q) = −
e~

mc

∑

k

(k · A0)(γ
†
k↑γ

†
k↑ − γ−k↓γ−k↓), (4.131)

where the q = 0 term is retained in the last step of the equation. This yields an energy spectrum that

is reminiscent of spin splitting in a magnetic �eld. The energies are modi�ed as

Ek↑ → Ek↑ −
e~

mc
k · A0

Similarly,

E−k↓ → E−k↓ +
e~

mc
k · A0

where A0 is the vector potential for q = 0. Now,

fk↑ − f−k↓ ≈

(
−
∂fk

∂Ek

)
2e~

mc
k · A0

〈jp(q = 0)〉 =
2e2~2

m2c

∑

k

(k · A0) k

(
−
∂fk

∂Ek

)
.

(4.132)

Since, by symmetry 〈jp(q = 0) is parallel to A0. Also,
∫

d�

4π
(k · Â0)

2
=

k2

3
, as 〈cos2 θ〉 = 1/3.

Therefore, Â0 is the unit vector along A0,

〈jp(0)〉 =
2

3

e2~2

m2c

∑

k

k2
(

−
∂f

∂Ek

)
A0

Since,
∑

k

k2
(

−
∂f

∂Ek

)
≈ k2F N(0)

∫
dξk

(
−
∂f

∂Ek

)
,

(4.133)

where N(0) is the density of states at the Fermi level. Moreover, the pre-factor of
∫

dξk is given by

=
2

3

e2~2

m2
k2F

3n

4εF
=

ne2

m
.
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Hence, the average paramagnetic current is given by

〈jp(q = 0)〉 =
ne2

m

∫
dξk

(
−
∂f

∂Ek

)
A0. (4.134)

The normal state can be obtained by putting 1 = 0 in the expression for quasiparticle energies, that

are given by E =

√
ξ 2 +12. This yield,

E = |ξ | Also,

∫
dξ

(
−
∂f

∂ξ

)
= 1.

Finally, one gets

〈jp(q = 0)〉 =
ne2

m
A0. (4.135)

Hence, the paramagnetic response, 〈jp〉 and the diamagnetic response 〈jd〉 exactly cancel each other,

thereby yielding the total induced current, 〈j〉 = 0. Consequently, no circulating currents are induced

in a normal metal in equilibrium conditions, and, thus, the external magnetic �eldH is not shielded.

One can ignore the weak Landau diamagnetic e�ects, which arise from the fact that,

〈jp(q → 0)〉 =

(
ne2

m
− αq2

)
A(q) (4.136)

where one can write,

Atotal =

(
ne2

m
− αq2

)
A(q).

The total current density now becomes

〈j(q → 0)〉 = −αq2 Atotal (α > 0), (4.137)

where α is a positive quantity, and Aind obeys the wave equation,
(
1

c2
∂2

∂t2
− ∇

2

)
Aind = µ0〈j〉. (4.138)

In a static situation, the contribution of the term 1
c2
∂2

∂t2
= 0. Then,

q2Aind = −µ0 × q2 Atotal. (4.139)

Using self-consistent �elds,

Atotal = Aind + Aext

or, Atotal =
Aext(q)

1 + µ0α
(α > 0).

(4.140)

Hence, the total vector potential derives a contribution from the external �eld andAind. Taking curl to

obtain the magnetic �eld,

|Htotal| =
|Hext|

1 + η
, (4.141)
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where η is a positive quantity, such thatHtotal < Hext whichmeans that themagnetic �eld is somewhat

screened, and the system shows weak diamagnetism.

Let us now discuss the superconducting state, which is characterized by1 6= 0 and the cancelation of

the paramagnetic response 〈jp〉 and the diamagnetic response 〈jd〉 are not valid any longer. In fact, as

we shall see, at T = 0, 〈jp〉 = 0 and therefore, only the diamagnetic response 〈jd〉 contributes.

To this e�ect, let us de�ne the ratio of the density of normal electrons to that of the total density, namely,
nn
n . This quantity will vanish in the superconducting state, or as T → T−

c , that is, when T approaches

Tc below.

nn

n
=

∫
∞

−∞

dξk

(
−
∂fk

∂ξ

)
= 2

∫
∞

1

dE
E

√

E2 −12

(
−
∂f

∂E

)

=
1

2T

∫
∞

0
dξ sech2

(√
ξ 2 +12(T)

2T

)
= Y(T),

(4.142)

where Y(T) is known as the Yosida function. The Yosida function characterizes the response of quan-

tities to which other pairs do not contribute, and thus represents the response of the normal �uid. Let

us explore the following limits, namely, T � Tc and T → T−
c .

i. For T � Tc, Y(T) behaves as Y(T) ∼ e−1(0)/T.

ii. For T → T−
c , Y(T) ≈ 1 − 2 (Tc−T)

Tc
.

The q = 0 components of the paramagnetic and the diamagnetic contributions are, respectively,

written as

〈jp〉q=0 =
ne2

m

(nn

n

)
A0 (4.143)

〈jd〉q=0 = −
ne2

m
A0. (4.144)

Thus,

〈j〉 = 〈jp + jd〉 = −
ne2

m

(
1 −

nn

n

)
A0 ≡ −

nse
2

m
A0, (4.145)

where one can de�ne the super-electron density, that is, ns
n

ρs

ρ
= 1 −

ρn

ρ
.

So,

〈j〉 = −
nse

2

m
A. (4.146)

Thus, the super-electron density can be described in terms of the Yoshida function as

ns(T)

n
= 1 − Y(T).
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1

0
0 1

Exp.

T/Tc

Tc – T

Tc

~

ns(T)

n

FIG. 4.22
The behaviour of the superfluid density scaled by the total density, ns(T)

n
is shown as a function of reduced temperature,

T /Tc. The behavior of the superfluid density close to T = Tc is given by (1 −
T
Tc
).

Hence, the London penetration depth (or the inverse of it) is expressed as

1

λ2L(T)
=

4πns(T)e
2

m
=

1

λ2L(0)
(1 − Y(T)). (4.147)

Thus, the temperature dependence of the penetration depth is expressed by the temperature variation

of the Yoshida function, Y(T) (see Fig. 4.22).

4.5.2 Electromagnetic response in the transverse gauge

An externally applied vector potential, Aext(r, t), induces current in the system 〈j(r, t)〉, which in turn

generates an electromagnetic �eld. Using Maxwell’s equation, we have
(
1

c2
∂2

∂t2
− ∇

2

)
Aind(r, t) = µ0〈j(r, t)〉 (4.148)

which follows from

E = −
∂A

∂t
and ∇ × (∇ × A) = −∇

2A

in a gauge where ∇ · A = 0. Therefore, Fourier transforming one obtains
(

q2 −
ω2

c2

)
Aind(q,ω) = µ0〈j(q,ω)〉. (4.149)

The total vector potential is written as

Atot = Aext + Aind
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and for the current density,

〈j(q,ω)〉 =

(
χT

−
ne2

m

)
Atot = −

nse
2

m
Aext = −

1

λ2L
Atot. (4.150)

Now,

B = µ0(H + 4πM)

also B = ∇ × Atot

andH = ∇ × Aext that is, M =
1

µ0
∇ × Aind.

(4.151)

In the static limit, that is, ω = 0,

Aind =
4π

c

1

q2
〈j(q,ω)〉

or, Aind =
−1/λ2L(T)

q2 + 1/λ2L(T)
Aext.

(4.152)

Thus, the susceptibility can be written as

χ =
∂M

∂H
=

1
λ2L(T)

q2 +
1

λ2L(T)

that is, lim
q→0

χ = −1.

(4.153)

The above equation implies the conditions for perfect diamagnetism. Superconductors are perfect

diamagnets. It may be noted that the diamagnetic susceptibility of metals is usually of the order of

10−5
−10−6.

4.6 GINZBURG-LANDAU (GL) THEORY

In 1937 Ginzburg and Landau (1950) developed a model to describe second-order phase transition,6

that is, those transitions which involve latent heat. It is physically meaningful to state that the quantum

many body states,ψ (something similar to what we have seen in BCS theory) should be a function that

minimizes the free energy, Fs of the superconducting state. Ginzburg and Landau considered Fs to be a

functional of the wavefunctionψ , and hence use a variational principle to minimize Fs with respect to

ψ , and obtain a set of di�erential equations for ψ that govern the physical properties of the supercon-

ductor in equilibrium conditions. To this end, a concept of the order parameter has been developed,

which smoothly vanishes at a temperature T > Tc, while it is non-zero for T < Tc. The identi�cation

of the order parameter is often obvious from the properties of second-order phase transitions. For

example, for a ferromagnetic to a paramagnetic transition, the order parameter is the magnetization,

6 It may bementioned here that we have introduced the Ginzburg Landau theory very brie�y. In noway should it be considered

as complete. For a detailed discussion, see Theory of type-II superconductors in Fetter and Hohenberg (1969).
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which is �nite below the magnetic transition temperature, Tc and goes to zero above Tc. Whereas, a

superconducting state has an energy gap that separates the ground state and the �rst excited state, as

the order parameter assumes non-zero values below the superconducting transition temperature, Tc

which, however, vanishes above Tc.

Since the order parameter evolves continuously from zero below Tc, it is natural to expand the free

energy as a power series in the order parameter. The free energy is a scalar, but the order parameter,

may in general be a vector, or even a complex quantity. We shall study GL theory by constructing the

free energy for the superconductor in terms of the wavefunction for the “super-electrons” as the order

parameter (instead of the energy gap between the ground and the excited states), ψ(r), the density of

the super-electrons is ns = |ψ(r)|2.

Consider a homogeneous superconductor at zero external magnetic �eld, that is, H = 0. Also, ψ(r)

is independent of r. Let us expand the free energy near the transition from a normal metal to a

superconductor, that is, near Tc,

Fs = Fn + α|ψ |
2
+
β

2
|ψ |

4, (4.154)

where Fs denotes the free energy density of the superconductor, and Fn is the free energy density of

the normal state. Furthermore, α, β are the phenomenological expansion coe�cients characterizing

the material, and they depend on temperature. The minimum of Fs is obtained by minimizing F with

respect to the order parameter,

dFs

d|ψ |2
= 0. (4.155)

The minimization implies that (writing the equilibrium value of ψ and ψ0),

|ψ0|
2

= −α/2β .

Recall that |ψ0|
2 is the density of the super-electrons that minimizes Fs. Now,

dFs

dψ
= 2αψ + 2βψ3

= 2ψ[α + βψ2]. (4.156)

Thus, the di�erence in energies between the normal and the superconducting states is obtained from

Fn − Fs = α

(
α

β

)
−
β

2

(
α

β

)2

=
α2

β
−
α2

2β
=
α2

2β
. (4.157)

The temperature dependence of α and β can be deciphered as follows. At the �rst order in temperature,

that is, when T is close to Tc, let us postulate a linear behavior of the form,

α ' a(T − Tc) (4.158)

where a is independent of the temperature. This implies

α = 0 at (T = Tc)

α < 0 at (T < Tc).
(4.159)
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Thus, the order parameter assumes a form,

|ψ | = 0 for T > Tc

|ψ | =

[
a(T − Tc)

β

]1/2
for T < Tc

(4.160)

α changes sign across the phase transition, and hence β should not change sign and remains constant,

at least for small deviations in temperature from the transition point.

Next, consider a superconductor in an external magnetic �eld, Hext. The electrons interact with the

external �eld via their momenta transforming as

p → p − eA where Bext = ∇ × A

which implies, ∇ → ∇ − ieA.
(4.161)

Thus, the free energies have to be written as

Fs = Fn + α|ψ |
2
+

1

2
β|ψ |

4
+

~
2

2m

∣∣∣∣
[
∇ −

ie

~c
A(r)

]
ψ(r)

∣∣∣∣
2

+ µ0H2
ext(r) (4.162)

whereHext(r) = ∇ × A(r). The free energy is a functional of

{ψ(r),ψ∗(r),∇ψ(r),∇ψ∗(r),H(r)}

and each one of these is a function of the spatial variable r. Minimizing with respect to ψ∗(r) yields

δFs =

{
−

~
2

2m

(
∇ −

ie

~
A(r)

)2

ψ(r)+ αψ(r)+ β|ψ(r)|2ψ(r)

}
δψ∗(r)

+
~
2

2m

(
∇ −

ie

~
A(r)

)
ψ(r)δψ∗(r). (4.163)

The last term can be written as µ0H2, or µ0(∇ × A)2. Furthermore, variation with respect to ψ

yields the complex conjugate of this equation. Putting δFs = 0 for an arbitrary variation of the order

parameter, namely, δψ∗(r), we get the �rst GL equation,

−
~
2

2m

(
∇ −

ie

~
A(r)

)2

ψ(r)+ αψ(r)+ β|ψ(r)|2ψ(r) = 0 (4.164)

where we have neglected the magnetic energy density due to the external �eld, that is, the last term.

Now minimize it with respect to A(r) yields Ampere’s law,

∇ × H(r) = µ0j(r) (4.165)

where,

j(r) = −
ie~

2m

[
ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r)

]
−

e2

m
|ψ |

2A(r). (4.166)

This is the second GL equation. These two GL equations in Eqs. (4.164) and (4.166) are the main

triumphs of GL theory. They enunciate the variation of the order parameter, ψ(r), and the current

density, j(r).
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4.6.1 Coherence length and the Penetration depth

Using the GL equations obtained above, we wish to derive expressions for some physical observables

that are measured in experiments, such as the coherence length and the penetration depth. Let us �rst

talk about the coherence length.

Consider an inhomogeneous order parameter for a system generated by the presence of the boundary

in the absence of an external magnetic �eld.7 The superconducting (SC) region is denoted by x > 0.

Thus, the order parameter is zero for the interface. For deriving expression for the coherence length,

putting A = 0 in the �rst GL equation Eq. (4.164),

−
~
2

2m

d2ψ

dx2
+ α|ψ | + βψ3

= 0. (4.167)

It may be noted that α is negative in the superconducting state, which allows us to set, α = −|α|. Now

de�ning the coherence length as

ξ 2 =
~
2

2m|α|
. (4.168)

Also writing (β/|α|)ψ2
= f2, we can write Eq. (4.167) as

−ξ 2f ′′
− f + f 3 = 0. (4.169)

Multiply both sides by f ′ to get

d

dx

[
−
ξ 2f ′2

2
−

1

2
f 2 +

1

4
f 4
]

= 0

or, − ξ 2
f ′2

2
−

1

2
f 2 +

1

4
f 4 = constant.

(4.170)

Far from the boundary, f ′ (orψ ′) should be zero, and f2 = 1. Hence, |ψ |
2

=
|α|

β
. Equation (4.170) now

becomes

ξ 2(f ′)2 =
1

2
(1 − f 2)2. (4.171)

The solution of the above equation is given by

f = tanh

(
x

√
2

)
.

Hence,

ψ =

(
|α|

β

)1/2

tanh

(
x

√
2

)

This yields that ξ is the measure of the distance over which the order parameter responds to a per-

turbation. Also, since α = a(T − Tc), the temperature dependence of the coherence length can be

7 To derive the coherence length, presence of magnetic �eld is not essential
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obtained as

ξ(T) =
~
2

2maTc

(
1 −

T

Tc

)−1/2

= ξ0

(
1 −

T

Tc

)−1/2

. (4.172)

Thus, ξ (T) diverges as (T − Tc)
−1/2 as T → Tc below. Also, the temperature independent length, ξ 0

is given by

ξ0 =
~
2

2maTc
.

A little manipulation of the above formula yields,

ξ 20 =
~
2

2mεF

(
εF

kBTc

)2

.

Thus ξ 0 is larger than (
~2

2mεF
)1/2, which is of the order of interparticle spacing, by a factor of (εF/kBTc)

2.

Remember, εF is usually of the order of a few eV (typically, 5–6 eV), and kBTc for superconductors is

of the order of a few meV. Thus, ξ 0 is usually of the order of a few thousand lattice spacings.

Next, in order to arrive at an expression for the penetration depth, we examine the current expression

from the second GL equation, that is Eq. (4.166). If we neglect the �rst term in comparison to the

second term, then one obtains the London equation (discussed earlier), namely,

j(r) = µ0
1

λ2L
A(r), (4.173)

where,

λ2L =
mc2

4πe2|ψ |2

Again, the temperature dependence of the penetration depth is obtained as

λL =

(
mc2β

4πe2aTc

)(
1 −

T

Tc

)−1/2

(4.174)

λL has a similar divergence as that of ξ (T). Also, a ratio of the two can be found as

κ = λL/ξ =
mc

e~

(
β

2π

)1/2

. (4.175)

As discussed earlier, the value of κ demarcates between various types of superconductors, namely, the

type-I and type-II superconductors, which have very di�erent magnetic properties.

4.7 COOPER PAIRS WITH FINITE MOMENTUM

In BCS theory, we have seen that the pairing occurs between electrons of opposite spins and equal and

opposite momentum, namely, (k↑, −k↓), such that it results in the total momentum to is zero for the
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pair. The spectral gap of the order parameters is uniform as well. However, there are other supercon-

ductors which can accommodate pairs having non-zero total momentum, and a non-uniform order

parameter. Such superconducting properties were predicted independently by Fulde and Ferrell (1964)

and Larkin and Ovchinnikov (1964) and were shown to arise in the presence of large magnetic �elds.

These superconducting states are called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, where the

superconductivity is destroyed by “Pauli pair breaking” mechanism, rather than by orbital pair break-

ing that occurs in BCS superconductors. Quasi-2D heavy fermion superconductors, such as CeCoIn5
etc are potential candidates for the formation of FFLO states.

One basic way where such �nite momentum pairing can be realized is when the populations of the

participating species are unequal. A possible way of creating an imbalance in the densities of spin-↑

and spin-↓ electrons is using a magnetic �eld which makes the Fermi surfaces (corresponding to ↑

and ↓-spin states) shift away with respect to each other. However, such population imbalances can

be detrimental to pairing. This can be understood as follows. The breakdown of superconductivity

by such population imbalance of the participating species can be realized by the fact that deep in the

Fermi sea, particles cannot form a pair or even scatter o� one another because their motion is “frozen”

by the exclusion principle. Pairing requires partially empty energy states that can only be found near

the Fermi surface. But if the populations of the two di�erent spin components are di�erent, the two

Fermi surfaces no longer match up in momentum space, that is, there are no partially occupied states

in which both species have opposite momenta and can form a zero-momentum pair. This makes the

pairing energetically less favorable and eventually causes super�uidity to break down.However, there is

one way that superconductivity can stabilize, which will happen when the pairing between the Zeeman

splitted parts of the Fermi surface give rise to an unconventional pairing state, namely, (k↑, −k + q↓),

comprising pairs having a �nite center of mass momentum, q.

The origin of such unconventional pairing phenomena goes back to as early as the 1960s when Maki

and Tsuento (1964) motivated by the unusual dependence of the critical temperature as a function

of the magnetic �eld along with the existence of the Clogston-Chandrasekhar limit (Chandrasekhar,

1962; and Clogston, 1962), which showed that the critical �eld in a certain class of superconductors

was set by Pauli paramagnetism. The inference drawn from the above studies was that the second-

order phase transitionwhich exists between superconducting and normal phases becomes a �rst-order

transition at a critical value of temperature and magnetic �eld, making the critical value a tri-critical

point.

4.7.1 The FFLO phase

The study of superconductivity in the presence of a magnetic �eld commenced nearly half a century

ago with the works of Clogston (1962) and Chandrasekhar (1962). In their work, they had considered

pair breaking only by the Paulli paramagnetic e�ect and the orbital component was assumed to be

negligibly small. Later, it was observed that the uniform state with population imbalance is unstable as

the magnetic �eld is increased (until H =
10√
2
, where H is the magnetic �eld and 10 is the supercon-

ducting order parameter) at zero temperature which was con�rmed by comparing the free energies of
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the normal and superconducting phases. Thus, there is an indication of phase separation of the two

spin species at H >
10√
2
. The subject was intermittently revived to discuss the bounds on the upper

critical �eld and its e�ect on the phase boundary where the paramagnetic e�ect governs the physics.

More abounding implications of the presence of an external magnetic �eld are elucidated by Fulde and

Ferrell (1964) and by Larkin andOvchinnikov (1964) where possibilities of a �nite momentum pairing

between the di�erent participation species of electrons are explored.

The relevant discussion on the e�ect of themagnetic �eld on superconductivity is as follows. The Fermi

surfaces of the spin-↑ and ↓ electrons split when an external magnetic �eld is turned on, resulting

in an imbalance between the two electron species. Under such circumstances, along with the con-

ventional BCS state, the spin-polarized state (normal state) and possibly more states compete for the

ground state. The imbalance of the two electron species in turn leads to the breaking of a fraction of

the Cooper pairs. If the number of broken pairs is small, then the energy gap, 10 is not a�ected. It

may be noted that energy of 2H (where H is the strength of the magnetic �eld) is gained from the new

spin orientation at a cost of 210 in breaking a Cooper pair, while attaining a spin-polarized state. A

continuous increase in the number of broken Cooper pairs demand H to be greater than10 in order

to make the spin polarized state eventually energetically more favored over the BCS state. But the spin-

polarized state has a lower energy when H = 1/
√
210 which is known as the “Pauli limit”Clogston

(1962) and Chandrasekhar (1962). Thus, the BCS state with a large number of broken Cooper pairs

becomes unstable, and an alternative solution exists for the ground state. This unusual phase is known

as the FFLO phase which is stabilized by a large Zeeman splitting between the ↑ and the ↓-spin elec-

trons which form pairs across the Fermi surface and subsequently condense to give a state which has

lower free energy than the normal spin-polarized state. These pairs have non-zero total momentum

(2q = k↑ − k↓) as opposed to the traditional zero momentum pairs in the conventional BCS state

(refer to Fig. 4.23) since the paired electrons have di�erent momenta (k↑ and k↓). Interestingly,

�nite momentu m pairing results in a spatially oscillating superconducting order parameter with a

k¢­ k¢­

–k¢ + q¯

q
k­ k­–k¯

a b

–k¢¯

–k + q¯

FIG. 4.23
Schematic view of pairing states. (a) BCS pairing state, (b) FFLO pairing state. The inner and outer circles represent

the Fermi surface of the spin down and up bounds respectively (Matsuda and Shimahara, 2007).
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wavelength of the order of superconducting coherence length, ξ . The FFLO phase thus breaks spon-

taneously translational symmetry and resembles the unconventional superconductivity in strongly

correlated systems, where the order parameter changes sign in the momentum space.

The orbital (diamagnetic) pair breaking is a crucial mechanism that limits the realization of the FFLO

state. It is a dominating pair breaking mechanism that destroys superconductivity for magnetic �elds

much weaker than the Clogston-Chandrasekhar limit (Hc). The signi�cance of the diamagnetic pair

breaking is usually described in terms of the Maki parameter α =
√
2Horb

c2 /Hc, where Horb
c2

is the

upper critical �eld calculated without the Zeeman splitting. Thus, the paramagnetic e�ect (due to the

exchange �eld) responsible for FFLO has to dominate over a competing orbital e�ect which annihilates

superconductivity due to the formation of screen currents arising from vortices. The above require-

ment demands few stringent conditions which must be satis�ed for the realization of the FFLO phase,

such as ultra-clean type II superconductor, such that the pairing correlations survive at a �nitemagnetic

�eld and the electronic mean free path, l � ξ where ξ is the superconducting coherence length.

In spite of a robust theoretical possibility for the existence of FFLO, the experimental scenario remained

bleak mainly due to the lack of phase space available for pairing to occur. Thus, FFLO occupies a very

small space in the phase diagram. There exist two general possibilities to reduce the destructive role

of the orbital pair breaking. In the layered superconductors, the formation of Landau orbits should be

suppressed with magnetic �elds applied parallel to the layers. This may explain the possible observa-

tions of the FFLO state in some organic superconductors. The role of the orbital pair breaking should

also be limited to systems with narrow energy bands. It is worthwhile to mention at this stage that the

FFLO phase is possible in the case of condensation (mass polarized) quarks (color superconductivity).

Astrophysical objects, for example, neutron stars or pulsars, can be a good candidate for realizing such

a phenomenon. A good introduction to the subject is obtained in reviews by Casalbouni and Narduli

(2004) and by Buzdin (2005).

4.7.2 Experimental signatures of the FFLO phase

The experimental studies of FFLO in heavy fermion compounds, for example, Ce and U based mate-

rials, started in the early nineties as some of the prerequisite conditions for observing FFLO is met

in these systems. Notable of them is CeRu2 which is usually obtained in a metallurgically clean state.

Among the heavy Fermion systems, the most explored one is CeCoIn5 which receives strong support

as a candidate with an FFLO phase. These are essentially quasi two-dimensional structures and the

magnetic �eld is applied parallel to the ab plane. The experiments on CeCoIn5, have shown the heat

capacity to undergo two phase transitions, a second order one within the superconducting (SC) state

at low �eld values and a higher �eld �rst-order transition at Hc2 (Radovan et al., 2003), the intervening

regime acquiring a nonuniform nature. With the external magnetic �eld acquiring an angle with the

ab-plane, the orbital e�ect starts playing a role and the large �eld transition goes away, rendering an

absence of the nonuniform or the FFLO state. The enhancement of the penetration depth (as a func-

tion of magnetic �eld) (Martin et al., 2005), anomalous thermal and magneto-thermal conductivity
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(a discontinuous jump) in the vicinity of the upper critical �eld (Capan et al., 2004) and a structural

transformation with vortices appearing in the �ux line lattice observed via ultrasound measurements

(Watanabe et al., 2004) have provided reasonable, though not robust, support for CeCoIn5 in hosting

a FFLO phase.

Other experiments, such as anisotropic magneto-thermal measurements (Capan et al., 2004) ultra-

sound velocity measurements (Watanabe et al., 2004) etc. provide only indirect and cursory evidence

supporting the presence of the FFLO state.

More recently, 115In NMR studies on CeCoIn5 with the applied �eld parallel to ab plane revealed dra-

matic asymmetry in the NMR spectrum for a �eld greater than the upper critical �eld when compared

with the one less than that (Kakuyanagi et al., 2005). Furthermore, an unusual temperature dependence

of the knight shift of 115In is noted in the latter case. These facts are correlated with direct evidence of

the FFLO phase and a simulation of the NMR spectrumwith a spatially modulated gap function seems

to satisfactorily explain the experimental �ndings (Kumagai et al., 2006). These results were challenged

in the light of other NMR studies (Mitrović et al., 2006).

The main factors that act in favor of organic superconductors as possible candidates for observation

FFLO is that their layered structures (with the magnetic �eld parallel to the layers) thereby making the

orbital Hc2 extremely high and hence, the Pauli paramagnetic e�ect becomes supremely important.

The reduced dimensionality or the planar structure of these materials is conjectured to be a facilitator

for observing the FFLO phase. Recent critical �eld measurements (Nam et al., 1999) in the quasi-

two-dimensional organic superconductor κ − (BEDT-TTF)2Cu(NCS)2 strongly suggest that a state

of the FFLO type exists in this material. The agreement between this experiment and existing theories

has been successfully veri�ed (Manalo and Klein, 2000) both in view of both the angle-dependence

(Shimahara and Rainer, 1997) and the temperature dependence Singleton et al. (2000) of the upper

critical �eld. In Manalo and Klein (2000), a comparison between the experimental (Nam et al., 1999)

temperature dependence of the plane parallel upper critical �eld with the theoretical results for κ −

(BEDT-TTF)2Cu(NCS)2 has been reported. This is the �rst time since the original predictions of the

FFLO phase that quantitative agreement between theory and experiment with regard to the FFLO

phase boundary has been established.

An increase in the critical �eld at low temperatures with positive d2Hc/dT2 was observed in

(TMTSF)2PF6 (Lee et al., 1997). Such behavior of the critical �eld behavior is very similar to the behav-

ior that is theoretically obtained in low-dimensional FFLO superconductors (Shimahara, 1994; and

Dupuis, 1995). This might suggest the possibility of the FFLO state in this material or similar organic

compounds, although this is not conclusive evidence for the existence of the FFLO phase.

4.7.3 Theoretical developments

A theoretical analysis of the FFLO state requires, in general, a self-consistent calculation of the

amplitude of the spatially varying order parameter. Such calculations are within the reach of present
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computation capacities, but were not possible in the early years of discovery of the FFLO phase. Early

theoretical works on this problem were mostly centered around studying the region near the second-

order phase transition to the normal state or studied the Fulde-Ferrell state characterized by a spatially

modulating order parameter (Takada and Izuyama, 1969),

1(r) = 10 eiq·r (4.176)

Although analytical solutions to both the problems exist, they fail to provide a complete description of

the spin imbalanced inhomogeneous phase. For example, the Fulde-Ferrell (FF) state is not the correct

minimum energy state, as shown by Larkin and Ovchinnikov (LO) who considered the order parame-

ter to be of the form1 = 10 cos(q · r). It may be noted that the amplitude of the order parameter is no

longer a constant in real space in the LO phase. Various studies have been performed with decreasing

magnetic �eld which have shown that the LO phase evolves into a state with a set of domain walls.

This has been shown in one (Machida and Nakanishi, 1984), two (Burkhardt and Rainer, 1994), three

(Matsuo et al., 1998) dimensions, and also for d-wave superconductors (Vorontsov et al., 2005). In

the limit of small population imbalance, the order parameter is constant in real space with the value

being equal to that in the state with no population di�erence, excepting near the domain walls. These

are the locations where the magnetization concentrates and the phase of the order parameter changes

by π when the walls are crossed. The physics of these domain walls is closely related to that of the π

junctions in superconductor-ferromagnet-superconductor junctions (Buzdin, 2005).

A detailed study of the e�ect of dimensionality on the exotic FFLO phase was also conducted. In

one dimension, it was argued that the ground state of the homogeneous attractive Fermi gases with

unequal spin populations is the one-dimensional analog of the FFLO phase (Yang, 2001). A simi-

lar study of the scenario in two-dimensional systems has yielded many intriguing results (Zhu et al.,

1995; and Pieri et al., 2007). In particular, a quasi-classical analysis in Combescot and Mora (2005)

using a Ginzburg-Landau expansion of the free energy in the Fourier components of the supercon-

ducting order parameter, had shown that the FFLO transition in two dimensions is continuous at low

temperatures.

Various studies have shown that the system must be in the ultra-clean limit where the quasiparticle

mean free path l is much longer than the coherence length ξ for the realization of the FFLO phase.

This, in turn, demands that the Ginzburg Landau parameter, κ must be much larger than unity. These

conditions are readilymet in d-wave superconductors like high-Tc superconductors and organic super-

conductors e.g. κ − (ET)2 salts and λ − (ET)2 salts (Nam et al., 1999). Thus, the discovery of these

new classes of superconductors has triggered an extensive search of the FFLO state in d-wave super-

conductors (Vorontsov and Graf, 2006). In this regard, some of the theoretical studies have predicted

that the stability of the FFLO state in two dimensional d-wave superconductors is much more than

in three-dimensional s-wave superconductors (Shimahara, 1998; and Yang and Sondhi, 1998). Some

other studies have been performed to investigate the e�ect of disorder on the FFLO state in d-wave

superconductors. For example, Vorontsov and coworkers (Vrontosov et al., 2008), have investigated
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the stability of the FFLO state in dirty d-wave superconductors using the quasi-classical theory based

on the self-consistent t-matrix approximation for impurities. Their results are counter-intuitive as it

shows the FFLO state to be robust in “dirty” d-wave superconductors. In a separate study by Yanase

(2009), the spatial structure of the superconducting order parameter and the magnetic properties in

the disordered FFLO state are investigated using the Bogoliubov de Gennes method. The results show

that the nature of the superconducting order parameter is strongly dependent on the kind of disorder

taken into consideration.

The modulating superconducting order parameter, which yields direct evidence of the presence of the

FFLO phase, is very di�cult to observe in experiments. In this context, the quasiparticle local density

of states (LDOS) is very useful as it can be directly detected using scanning tunneling microscopy

(STM). The LDOS for a two dimensional d-wave superconductor has been computed by Vorontsov

et al. (2005) by solving quasi-classical Eilenberger equations. Wang et al. (2006) have also investigated

LDOS for both s and d-wave superconductors, along with the superconducting order parameter which

is found to be stripe-like for s-wave superconductors and a square lattice for d-wave superconductors.

Most of the theoretical studies of the FFLO state are based on the mean �eld approach, which is coun-

terintuitive as one expects the quantum and thermal �uctuation e�ects to play a signi�cant role in

the FFLO phase than in conventional BCS superconductors, as the FFLO phase breaks the transla-

tional symmetry. In this regard, Yang (2001) has studied the FFLO phase in quasi-one dimensional

superconductors using bosonization for an exact treatment of the intra-chain quantum �uctuations

and has shown that the transition from the FFLO phase to BCS is a continuous transition of the

commensurate-incommensurate type. The e�ect of thermal �uctuations has been discussed by Mat-

suda and Shimahara (2007) which reveals that the mean �eld FFLO state is destabilized by the

enhanced �uctuation e�ects. In all these studies for treating phase �uctuations for an FFLO supercon-

ductor, the most common method is to incorporate a �uctuation in the phase of the order parameter

and hence construct a generalized Ginzburg-Landau (GL) action for the phase variable (Shimahara,

1999; and Dalidovich and Yang, 2004). Spatial correlations of the phase variable indicate a rapid sup-

pression of the long-range order (LRO). Furthermore, the �uctuation-driven transition from normal

to FFLO is found to be �rst order that corroborates the experimental evidence in CeCoIn5, however

contradicts the mean �eld results (Dalidovich and Yang, 2004).

The experimental realization of the phase has been illusive mainly because its occurrence requires

several stringent conditions to be met simultaneously. In most type-II superconductors, destruction

of superconductivity occurs through the orbital pair breaking e�ect, leading to the emergence of the

vortex state. However, such an orbital e�ect is always detrimental to the FFLO state. Hence, for the

FFLO state to occur, the orbital pair breaking e�ect must be weak relative to the Pauli paramagnetic

e�ect. Moreover, the system needs to be clean, since the FFLO state is readily destroyed by impurities.

The cleanliness condition is met when the coherence length, ξ is very small as compared to the mean

free path, λ. Thus, the superconducting materials ful�lling these necessary conditions are few. Some
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of these conditions are satis�ed in heavy fermion superconductors with large orbital-limiting �elds

(Gloos et al., 1993; and Huxley et al., 1993).

An alternative route to achieve the supremacy of paramagnetic e�ect is to use a layered structure in

a strong magnetic �eld applied parallel to the layers, thereby undermining the orbital pair breaking

e�ect further and augmenting the parameter spacewhere FFLO can exist (Barzykin andGorkov, 2002).

The organic superconductors strongly �t into these requirements and hence are considered as ideal

candidates for the FFLO phase (Shimahara, 1994). Apart from these compounds, signatures of FFLO

phases are also observed in neutron stars (Alford et al., 2000).

4.8 EXPERIMENTAL DETERMINATION OF THE ENERGY GAP

The existence of a forbidden energy regime in superconductors has given us a simple way to under-

stand the fact that below certain excitation energies, the bound state of the electrons is robust and they

cannot dissociate into single particles. Thus, the current in the superconducting state is mediated via

the cooper pairs (also referred to as the super-electrons), and the normal current carried by the electrons

is zero. More precisely, there are no unpaired electrons in the superconducting state. Here we describe

a few of the early experimental methods below to determine the energy gap. We shall mainly focus on

three methods that have been widely used in obtaining the magnitude and the pairing symmetry of

gaps in the early days of the discovery of superconductors. They are

i. Absorption of electromagnetic radiation.

ii. Ultrasound absorption.

iii. Tunneling experiments.

4.8.1 Absorption of electromagnetic radiation

This technique of exploring the energy gap was reported in 1957 by Tinkham and Glover (1958). They

observed infrared transmission in thin-superconducting �lms. It was earlier proposed that electro-

magnetic (EM) waves of appropriate frequencies can break the ordered state of a superconductor.

Table 4.1
21 and Tc are reported for

a few conventional supercon-

ductors. The gap is of the

order of a few meV.

Tc 21 (meV)

Nb3Sn 18 6.55

MgB2 40 10

Rb3C60 30 12

ErRh4B4 9 3

Assuming a cooper pair has a binding energy given by EB ∼ 10−3 eV, one needs

a radiation frequency ν ∼ EB/h = 2.4 × 1011 Hz or 240 GHz. The wavelength of

the waves is about 1 mm, for which neither generation of such frequencies, or

detection methods were available in 1930s. Only two decades later, such em waves

could be produced. Typical transition temperatures and the magnitude of the

superconducting gaps for a few superconductors are indicated in Table 4.1.

In the experimental method, EM radiation is guided through a small cavity made

into a superconducting material. Within the cavity, the radiation is re�ected sev-

eral times before it emerges through the cavity, and hence is detected. The stronger

the absorption of the radiation from the walls of the cavity, lower = the out-

put power. At a �xed temperature, T < Tc, that is, when the material is in the
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FIG. 4.24
The absorption of electromagnetic radiation is shown as a

function of frequency. The frequency at which the intensity

almost vanishes yields the superconducting gap 21.

superconducting state, let the power in the supercon-

ducting and the normal states be Is and In respec-

tively. Is−In
In

is plotted as a function of frequency of

the EM waves in Fig. 4.24.

At small frequencies, we see a distinct di�erence

between the detected power in the superconduct-

ing and the normal states, with the absorption

being larger for the superconducting state. At certain

threshold frequencies, the di�erence drops abruptly

to zero. At even larger frequencies, the relative dif-

ference in the detected power stays at values that are

vanishingly small. The abrupt drop sets in as soon as

the quantum energy of the radiation is large enough

to break the cooper pairs. Thus, there is an absorption

edge at the point C in Fig. 4.24. Similar absorption

edges are also seen for semiconductors; however, the scale of the energy gap is much higher there,

e.g., ∼0.8 eV in Ge. As an example, for hν > 210, the energy gap practically vanishes and so does the

absorption spectrum. This aids us in obtaining 210, which is proportional to Tc. Some typical values

for superconductors, and their transition temperatures are tabulated below.

4.8.2 Ultrasound absorption

Sound waves denote the propagation of phonons in a material. Most measurements with sound waves

are carried out with typical frequencies of the order of 10 MHz. These frequencies correspond to

A
bs

or
pt

io
n

1 T/T
c

FIG. 4.25
Schematic depiction of the ultrasound

absorption intensity is presented as a

function of T /Tc. The absorption is low

in the superconducting phase owing to

the absence of unpaired electrons.

energies that are much smaller than the superconducting gap. Only

very close to Tc, where the energy gap 1 approaches zero, sound

energies at the MHz frequency range become comparable to the

gap. Unpaired electrons below Tc interact with the lattice excita-

tions leading to damping. Below Tc, as the temperature is decreased,

the number of unpaired electrons decreases rapidly, thereby caus-

ing reduced damping of the sound intensity. A schematic plot

of the ultrasound absorption spectra (in arbitrary units) is pre-

sented as a function of the reduced temperature, T/Tc. As T tends

to Tc from below, the cooper pairs start dissociating yielding an

increasingly large number of unpaired electrons in the system.

These electrons absorb the sound waves leading to an enhance-

ment in the absorption intensity (see Fig. 4.25). Since at a given

temperature, the number of unpaired electrons depends on the

energy gap, the latter can be determined from such absorption

experiments.
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4.8.3 Tunneling experiments

In 1961,Giaever (1961) pointed out the possibility of determining the energy gap bymeans of tunneling

experiments. The experiments involve the observation of tunneling current across a metal-insulator-

semiconductor (MIS) junction. The metal and the insulating materials are usually taken as Al and

Al2O3 respectively. Al2O3 is known to be a good insulator which can be fabricated nearly perfectly

with a thickness of only a few nanometers.

One can understand the tunneling e�ect without a detailed calculation. Consider a particle that inci-

dents on a barrier with energy lower than the barrier height.While a classical particle is unable to travel

to the other side of the barrier, it is possible for a quantum mechanical particle (because of its wave

nature) to do so. Considering the wave character of the particle, when a wave is incident on the surface

separating twomedia intowhich it cannot enter, the wavemust be completely re�ected.We understand

intuitively that being a wave, it can penetrate up to a small distance into the forbidden region with its

amplitude decreasing exponentially. The decrease is faster and complete within the barrier if the width

and height of the barrier are large. However, for a su�ciently thin barrier, there is a �nite possibility

that the wave can penetrate into the barrier (of the order of de Broglie wavelength) and propagate into

the medium (lead) on the other side.

If a superconductor is introduced on one or both sides of the barrier, the current as a function of the

biasing voltage (I − V) characteristic is bound to be di�erent. This happens because an energy gap

appears in the superconducting state. So no tunneling current can �ow below a certain critical voltage,

given by Vc = 1/e. From the above plot (Fig. 4.26) it is clear that from Vc, the value of 10 can be

determined.

Tunneling
current (1)

(3)

(2)

Vc  = D0/e

Biasing voltage (V)

(1) N-N junction

(3) N-S junction at 0 < T < Tc

(2) N-S junction at T = 0

FIG. 4.26
The current-voltage characteristics are shown schematically for N-N and N-S junctions at T = 0 and 0 < T < Tc.
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FIG. 4.27
A schematic diagram of the dispersion E vs k corresponding to the

Andreev reflection at the normal-superconductor (N-S) junction is

shown. A cooper pair is created at the boundary, which can prop-

agate at low bias inside a superconductor. The electron is specularly

reflected as a hole on the metallic side.

However, at the normal-superconductor junc-

tion there is an additional phenomenon

which contributes to the tunneling current.

Here especially we are interested in a situ-

ation in which the biasing voltage is much

smaller compared to the energy gap, 1 in a

superconductor. Thus, in the usual circum-

stances, no tunneling can occur. Thus, for an

electron arriving at the interface of a normal-

superconductor junction, two possible pro-

cesses can take place (See Fig. 4.27), namely,

i. a normal re�ection in which an electron is

simply re�ected back, giving rise to no net

current.

ii. Andreev re�ection which is an anomalous

re�ection of an electron. What actually

happens here is the following. An electron

comes at the interface, instead of undergo-

ing a re�ection

a. a cooper pair is added to the superconducting region, it has an energy1.

b. the incident electron is annihilated.

c. a hole is re�ected back along the original path of the electron.

This is known asAndreev re�ection. The incident, and the re�ected quasi-particles have approximately

equal wave vectors, which are given by

kel
= kF +

ε

~νF

kn
= kF −

ε

~νF

(4.177)

but have opposite directions of motion, as appears from the sign of the group velocity 1
~

∂ε
∂k . The

momentum is conserved up to the order,

~ |kel
− kn

| ≤ ~/ξ

where ξ =
~νF
π10

, which is the coherence length.

Energy is also conserved in the process. The minimum energy of a cooper pair has the value 2εF, the

incident electron has energy εF + ε, and that of the re�ected hole is εF − ε. In the process, a charge

2e is transferred from the normal to the superconducting side of the barrier, which is equivalent to a

cooper pair being injected into the superconductor.

We can understand the tunneling problem in the following manner. The number of electrons tun-

neling per unit time with an energy E from the left (say, a metal) to the right (a superconductor) is
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proportional to the number of occupied states on the left, namely, N1(E)f (E), and that to the unoccu-

pied states on the right, N2(E
′)(1 − f (E′)). N1(E) and N2(E

′) denote densities of states for the metallic

and the superconducting regions, respectively. In the presence of the biasing voltage,V, the energies are

given by

E′
= E + eV

Thus, the unoccupied states on the right are denoted by

N2(E + eV)(1 − f (E + eV)) (4.178)

The tunneling current is proportional to both these independent processes, which can be written as

I1→2 ∝

∫
∞

−∞

N1(ε)f (ε)N2(ε + eV)(1 − f (ε + eV)) dε (4.179)

This tunneling current is a measurable quantity in experiments.

For a normal metal-superconductor junction, the current, IN→S can be obtained by replacing

N1 → NN N2 → NS. A schematic plot of the tunneling current for the junctions, namely, and metal-
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FIG. 4.28
Uemura plot showing the superconducting transition tempera-

ture, Tc vs the Fermi temperature, TF (both in log scale). The

positions of different superconductors are shown. The conven-

tional (BCS) superconductors lie far away from unconventional

superconductors.

metal (N − N) and metal-superconductor

(N − S) both at T = 0 and for T < Tc as a

function of the bias voltage, are presented

in Fig. 4.26. The threshold potential yields

the energy gap. A di�erential conductance,
dI
dV , which is proportional to the density of

states at the Fermi level, is often obtained in

experiments.

4.8.4 Unconventional

superconductivity

There are several superconductors, that have

been discovered over the last few decades,

which challenge the well-established paradigm

of conventional superconductivity. Quite a few

of them, including the high-Tc cuprates, pose

anomalies owing to features that are unfamil-

iar in the context of Fermi liquid theory. As

a �rst signature, Uemura presented a plot of

Tc vsTF (both in log scale) that yields a straight

line, while the conventional superconductors

are far away from this line. This is called the

Uemura plot and is presented in Fig. 4.28.
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4.9 HIGH-TC CUPRATES

In 1986, 75 years after the discovery of superconductivity, G. Bednorz and K. Muller at IBM, Zurich

demonstrated superconductivity in perovskite structured lanthanum (La) based copper oxidematerial,

which registered aTc of about 39 K for which the Nobel prize was awarded in 1987. It was a remarkable

discovery, as it later allowed chemical substitution in perovskite cuprates to push theTc well beyond the

liquid nitrogen temperature (77 K), which is a much cheaper and easily accessible quantity than liquid

Helium. Later in 1987, La was substituted with yttrium (Y) in the form of YBa2−xCu3O7−x which

showed a Tc of about 92 K. The materials show highest Tc when they are slightly oxygen de�cient,

that is, when x ' 0.15. Superconductivity disappears at larger values of x, which is also accompanied

by a structural phase transition when YBCO changes from an orthorhombic structure to a tetragonal

structure. Subsequently, thallium (Th) and mercury (Hg) based superconductors show even higher

transition temperatures. These superconductors are generally type-II superconductors which show a

gradual change in temperature as a function of the external magnetic �eld.

FIG. 4.29
A cube of sides 1 mm of the Bismuth Strontium

Calcium Copper Oxide (BSCCO) is shown.

A large volume of research has taken place since its dis-

covery Varma (2020), however, owing to its ill-understood

normal state, a comprehensive understanding of the micro-

scopic phenomena remained elusive. A simple and intuitive

way to understand the complexity in the physical properties

demonstrated by the cuprates is to look at the photograph of

the Bismuth-based superconductor in Fig. 4.29. The highlight

of the �gure is that it despite being a ceramic superconductor,

it appears black andwithout any luster. Conventional ceramic

compounds possess a glow which is visibly absent here. It

probably indicates toward the lack of a conventional metal-

lic state too, as will be re�ected in the discussion that follows

below.

The electronic pairing mechanism is itself questionable and

possibly other pairing symmetries, other then the conven-

tional s-wave (the latter discussed in the context of BCS

theory) play crucial roles. Even after several decades of active

research, several anomalies that questioned the established paradigm of superconductivity, were left

without the necessary clari�cation. We discuss some of them below.

4.10 PHYSICAL PROPERTIES

The discovery of the high-Tc superconductors gave an intense push to the research on superconduc-

tivity in the direction of achieving larger and larger transition temperatures (Tc). Over the last three
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FIG. 4.30
Unit cell of Yttrium Barium Copper Oxide

(YBCO) is shown. The lattice parameters

are indicated.

decades, the maximum Tc has increased by 140 K and there is a

lingering hope of realizing even larger values of Tc. Much of the

di�culties in understanding both the normal and the supercon-

ducting states in cuprates involves a complex multi-layered crystal

structure with a large anisotropy along the c-axis. Besides, there

are di�culties in obtaining good quality single crystals. In the fol-

lowing, we shall discuss a few key properties of the cuprates that

should serve as an introduction to a beginner and set the platform

for building up the knowledge on this class of materials with rather

curious properties.

Several families of thermodynamically stable cuprate supercon-

ductors are experimentally realized. The fundamental block is

the CuO2 plane where Cu ions in 3d9 con�guration form a

square lattice. Each such Cu ion is connected to another through

the oxygen ions. Depending upon the class of materials, the

unit cell may contain one, two, or more CuO2 layers. A typical

unit cell of Yttrium Barium Copper Oxide (YBa2Cu3O7−δ), with

δ ≈ 0.1 − 0.3, known by the more familiar name YBCO with a

Tc ≈ 90 K) is shown in Fig. 4.30. The planar and the interplanar

lattice parameters are a = 3.82Å, b = 3.89Å, c ' 11.7Å. It is gen-

erally believed that TC scales with the number of CuO2 layers.

Many of the unusual properties are attributed to the large volume of the unit cell and the interplanar

anisotropy.

The compounds that are of special interest are the Bi2CaSr2Cu2O8 (called as Bi-2122 compounds)

and Tl2CaBa2Cu2O8 (called as Tl-2122 compounds). Because of their large Tc (>100 K), they have

di�erent numbers of cuprate layers and are denoted by a general formula A2CanY2CunO2n+4 with

A=Bi, Tl; and Y= Sr, Ba; etc. The ones with Bi and Sr are more widely studied and are described

by the formula Bi2Sr2Can−1CunO2n+4+δ where n = 1 → 3 and δ denotes the oxygen doping. These

are called BSCCO (pronounced as BISKO). n = 1, n = 2 and n = 3 have a Tc of 33 K, 96 K, and 108 K

respectively. Similarly, for the Tl family (denoted by TlBa2Can−1CunO2n+3) n = 1, 2 and 3 correspond

to Tc ∼ 14 K, ∼80 K and ∼120 K, respectively.

There are numerous examples of anomalies noted in various experiments on cuprate superconductors.

For example, consider ultrasound attenuation measurements. In conventional (BCS) superconduc-

tors, the ultrasound attenuates exponentially due to the loss of unpaired electrons (in favor of forming

cooper pairs). The coe�cient of attenuation α is proportional to e−1/KBT where1 denotes the super-

conducting energy gap. The scenario is not too di�erent in the cuprate family. However, the ultrasonic

attenuation below Tc is found to be lower than that of the BCS superconductors, possibly owing to the
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formation of pseudogap. However, the longitudinal sound velocity and the elastic moduli show dis-

continuities inmost of the cuprate superconductors (except for the Tl-based family). The discontinuity

points toward a structural change and “lattice softening/hardening” at the superconducting transition.

The anomaly in the elastic modulus points toward a collective ordering of the oxygen atoms in the

CuO2 layers. There aremany such examples which show signi�cant digression compared to the behav-

ior observed for conventional superconductors. Apart from being beyond the scope of the present

discussion, there is a volume of good reviews on the subject, and interested readers are encouraged to

look at some of these. In the following we review the most signi�cant feature of the cuprates which

eluded a microscopic theory so far, namely, the formation of a pseudogap phase.

4.11 THE PSEUDOGAP PHASE

The nature of the spectral gap in superconductors and how it vanishes (or changes) across a transition

can be detected by angle-resolved photoemission spectroscopy (ARPES) experiments. In the context

of high Tc superconductors, high energy photons from a synchrotron source with an energy ≈20 eV

made to incident on the surface of a single crystal. As a result, a photoelectron is ejected at an angle

θ normal to the surface of the crystal. The kinetic energy of the ejected electron is measured via an

electron spectrometer whose energy resolution is of the order of a few meV. The ARPES data for high

Tc cuprates are thoroughly analyzed and reviewed in Shen et al. (1993) and Randeria and Campuzano

(1997).

The parallel component of themomentum (k) is balanced by themomentum of the excitations created

inside the sample. By varying the detecting angle θ between the normal and the position of the detec-

tor, it is possible to map out the momentum dependence of the �lled states of the crystal. Thus, the

intensity of the photoelectron distribution will demonstrate a sharp peak corresponding to the parallel

component of the momentum with an energy ω which is given by

I(k,ω) = I0(k)f (ω)A(k,ω), (4.180)

where the energy is measured with respect to the Fermi-level (Randeria and Campuzano, 1997) and

A(k, ω) denotes the spectral function of the excitations that corresponds to the hole that is left behind.

I0(k) is the arbitrary intensity factor that preserves the dimensionality of the equation and f (ω) is the

Fermi distribution function, f (ω) =
1

eβ(ω−µ)+1
, ~ = 1 and β being the inverse temperature.

The important quantity in the above Eq. (4.180) is the spectral functionwhich contains the information

about the electron-electron interaction present in the material via the self-energy6(k, ω), which is in

general a complex quantity. The spectral function A(k, ω) is expressed in terms6(k, ω) as (Fetter and

Walecka, 1971)

A(k,ω) =
6′′(k,ω)

(ω − εk −6′(k,ω))2 +6′′(k,ω)
, (4.181)

where6′ and6′′ represent the real and the imaginary parts of the self-energy and εk denotes the single

particle energies.
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The ARPES spectra measure A(k, ω) and its shows a broad background as a function of ω that extends

to lower energies and yields the energy loss of the photoelectronswithin the crystal. For a recent review,

see Yu et al. (2020). However, as a result of strong interparticle interactions, which dominate in these

cuprate superconductors, this broad background is attributed to the electronic correlations. The energy

of the emergent photoelectrons yields a sharp coherent peak at the single particle energies given by εk

broadens rapidly for state below the Fermi level as the detection angle θ is varied. As said earlier, the

loss of coherence is due to the presence of strong electronic correlations (Timusk and Statt, 1999) and

hints toward the breakdown of the Fermi liquid picture (see appendix). The optical conductivity data

support the loss of coherence as well. The sharp peak at the Fermi level as a function of the detection

angle θ maps out the Fermi surface as it yields the information on the momentum (and hence the

energy) of the emitted photoelectron. The same experiment can be repeated at various doping levels.

Mostly in cuprates, at optimal doping and at the overdoped regime, the presence of the sharp peak in

the ARPES spectrum con�rms the Fermi liquid picture to be valid. However, a noticeable broadening

is noted in the underdoped regime at the Fermi level and that implies the breakdown of the Fermi

liquid theory (FLT).

Both at T < Tc (superconducting state) and T > Tc (normal state), there are deviations from the FLT

which are attributed to the formation of pseudogap in cuprates. The pseudogap is most likely related to

and has the same symmetry as the superconducting gap. (believed to be d-wave like). However, unlike

a conventional superconducting gap, the magnitude of the pseudogap is temperature independent.

ARPES and other experiments indicate that the magnitude of the gap does not change signi�cantly as

the temperature is lowered through Tc. Thus, in case of the cuprates, unlike a conventional supercon-

ducting gap, the gap starts as a pseudogap in the normal state and evolves into the superconducting

gap below Tc. In other words,1(T) does not go to zero at T = Tc.

The pseudogap appears in the underdoped regime of the phase diagram and weakens toward opti-

mal doping. A weak pseudogap is still present at optimal doping,8 but rapidly disappears thereafter.

The spectral gap is purely superconducting in the overdoped region. This is illustrated in the phase

diagram shown in Fig. 4.31 where T∗ approaches Tc just into the overdoped region. T∗ is temper-

ature dependent in the underdoped regime. Well into the overdoped region, the pseudogap merges

with the superconducting gap, which means that T∗ merges with Tc, and there remains no trace of the

pseudogap in the normal state.

To wind up the discussion, we note down a few salient features. They are,

i. the pseudogap is di�erent from the superconducting gap in the underdoped phase of cuprates, and

gradually evolves into the superconducting gap at larger doping levels.

ii. Both the pseudogap and superconducting gaps are believed to have d-wave symmetry.

iii. The crossover temperature T∗ (shown in Fig. 4.31) merges with Tc in the overdoped region of the

phase diagram.

8 Optimal doping corresponds to highest Tc.
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FIG. 4.31
Generic phase diagram showing temperature vs hole doping (per copper atom) for cuprate superconductors. The dif-

ferent phases are shown. The superconducting dome extends upto a doping of 0.3. In the underdoped regime, at high

temperatures, one gets a “strange” metallic phase, which cannot be explained by the Fermi liquid theory, whereas the

overdoped regime shows more familiar metallic features.

Table 4.2
Tcs of some typical cuprate

superconductors are shown.

Tc

La2−xBaxCuO4 30 K

La2−xSrxCuO4 39 K

YBa2Cu3O7 92 K

Bi2Sr2Ca2Cu3O10 110 K

Te2Ba2Ca2Cu3O10 125 K

HgBa2Ca2Cu3O8 134 K

The cuprate superconductors have a generic phase diagram (see Fig. 4.31) which

itself poses a bunch of surprises. The proximity of the Mott-insulating state and

the superconducting phase, a pseudogap phase in the underdoped phase, are

among the few. There is a superconducting dome (shown in light green color

in Fig. 4.31) which extends from a (hole) doping per Cu atom of about 0.08 to

about 0.3. The maximum Tc occurs at a doping . 0.2. Below this is known as

the underdoped regime, while above it is denoted as the overdoped phase. The

high temperature phase of the underdoped regime is not a “normal” metal and

shows signi�cant deviations from the FLT, quite likely due to the presence of the

pseudogap phase. The overdoped regime is “well behaved” Fermi liquid metal. The

transition temperatures of a few commonly known high-Tc cuprates are shown in

Table 4.2.

We shall not prolong the discussion here, and rather motivate the readers to look at the review men-

tioned in the footnote and the references therein. A few of the CuO2 superconductors are listed here

along with their transition temperatures.

4.12 IRON BASED SUPERCONDUCTORS

The discovery of the iron (Fe) based superconductors de�ed the occurrence of superconductivity in

compounds with strongmagnetic correlations. Further, the discovery of superconductivity in cuprates

4-66 Modern Perspectives in the Study of Electronic Systems

 07 D
ecem

ber 2024 17:11:54



scitation.org/books

created a bias in the community that copper oxide planes are indispensable for achieving higher Tc in

materials. However, the Fe-based superconductors do not contain copper oxide planes, and even do

not contain oxygen in certain situations. Instead, they have electrons from Fe whose density changes

unusually rapidly under doping, thereby showing an interplay between the magnetic phenomenon

and superconductivity. Similar to the high-Tc cuprates, the normal state in Fe-based supercon-

ductors is unconventional, and thus the mechanism behind the superconducting pairing remains

elusive.

The excitement in the study of these Fe-based superconductors started with iron oxypnictides

(LaFeAsO1−xFex) which shows a superconducting transition at Tc = 26 K (Kamihara et al., 2008). It

may not constitute the �rst discovery reported for the family of superconductors, but in all others, such

as Th7Fe3 (Tc = 1.8 K) (Mathias et al., 1961), U6Fe (Tc = 3.9 K) (Chandrasekhar and Hulm, 1958).

etc. In fact, Fe itself (Tc = 1.8 K) is superconducting under the application of pressure (∼20 GPa)

(Shimuzu et al., 2001). However, much higher Tc is observed in �uorine (F) doped LaFeAsO, and the

subsequent discoveries, such as Th doped GdFeAsO (Wang, 2008) and many others have portrayed

a growth of Tc similar to that in cuprates. This has led to the emergence of a new class of high tem-

perature superconductors known by the name Fe pnictides, (Fe-Pn) and Fe chalcogenides, (Fe-Ch).9

There is literally an outburst in the number of members in the family of these superconductors and

about 150 of them have been realized so far only belonging to the LaFeAsO (called the “1111” struc-

ture) family. Then there is the “122” family corresponding to MFe2As2 (M: Sc, V, Cr), “111” family

corresponding MFeAs, “11” family corresponding to FeSe, and many others. For an extensive review,

see Stewart (2011).

The existence of the isotope e�ect (although the pairing mechanism is primarily not phonon medi-

ated) leaves room for further questions. Spin or orbital �uctuations play a crucial role in pushing the

normal state toward a superconducting phase. Furthermore, the symmetry of the superconducting gap

function is not an isotropic s-wave type, and instead contains nodal lines with possibilities of gapless

excitations. Also, the speci�c heat discontinuity 1C (see discussion in Sec. 4.4.2) instead of scaling

linearly with Tc (which is a hallmark signature of conventional superconductors), it scales very di�er-

ently in Fe-Pn/Ch superconductors. For example, 1C ∼ T3
c , along with a normal state-speci�c heat

behaving as C ∼ T3 is observed.

4.12.1 Properties of Fe-based superconductors

The crystal structures of these Fe-based superconductors possess square lattice as the building blocks,

corners of which are occupied by the Fe2+ ions. The Pn/Ch are located at the apical sites of a tetra-

hedron (see Fig. 4.32). The nearest neighbor Fe-Fe distance is approximately 2.8 Å. These Fe-Pn and the

9 The �fth group elements in the periodic table are called as pnictides (Pn), which areN, P, As, Sb, Bi, etc. and the sixth group

elements are called as chalcogenides, which are O, S, Se, Te, Po, etc.
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FIG. 4.32
The crystal structure of 1111 LaFeAsO (from

Kamihara et al. (2008)).

Fe-Ch layers are arranged alternately with other interlayers,

thereby making a sandwich-type layered structure.

It is practically an uphill task to depict the crystal structures

of all the members of the family of Fe-based superconductors,

owing to a huge library of resources available. It is also an ardu-

ous task to enumerate the properties of all these materials and

hence, it is beyond the scope of this book. Interested readers

may consult the review in Stewart (2011). What we shall aim

in the following is to provide the readers with useful informa-

tion on only one class of Fe-based superconductors, namely,

the 1111 family, for which the crystal structure is shown here

(see Fig. 4.32). In the following, we shall focus on the depen-

dence ofTc on doping, pressure, and the externalmagnetic �eld.

We shall also include brief discussions on a couple of key ther-

modynamic and transport properties, such as the speci�c heat,

resistivity, and susceptibility.

Fe plays a key role in the superconducting properties of

Fe-based compounds as the parent undoped compounds pos-

sess �ve 3d orbitals at the Fermi surface. This scenario is in

contrast with the cuprates which have only one 3d orbital (due

toCu) at the Fermi level. Further, the Fermi surfaces of the Fe-basedmaterials contain several hole- and

electron-like cylinders, thereby forming quite a complex band structure. The transition temperature

Tc can be increased via oxygen de�ciency induced by doping with �uorine (F) as shown by Kamihara

in the 1111 Fe-Pn compounds. The transition temperature Tc can be increased via oxygen de�ciency

induced by doping with �uorine (F) as shown by Kamihara in the 1111 Fe-Pn compounds (Kamihara

et al., 2008). The usage of smaller Lanthanide elements in LnFeAsO (Ln= La, Dy, Tb, Gd, Sm, Nd,

etc) has been derived from the above discovery when 11% F doping was carried out at the oxygen sites

in LnFeAsO1−xFx that ramped up the Tc from 26 K to 43 K under pressure (Takahashi et al., 2008).

We show the temperature vs doping (by F) for CeFeAsO1−xFx in Fig. 4.33, where at low doping, an

antiferromagnetic metallic (AFM) phase is realized. A superconducting phase is obtained at about 5%

doping. The result was supplemented by Eisaki et al. (2008) where it was shown that Tc is independent

of the nature of the Lanthanide elements (Ln), but depends on the planar lattice parameter.

Furthermore, Tc was found to increase with pressure. In the F-doped LnFeAsO1−xFx,
dTc
dP = 2 K/GPa

for x = 0.05 (Takahashi et al., 2008) in the limit of zero pressure. However, for the optimally doped

compound (x ' 0.11), Tc goes up to 43 K at 4 GPa pressure with a slope dTc
dP = 3 K/GPa, and hence

steadily decreases to 9 K. Tc vs pressure phase diagram thus generated (Takahashi et al., 2008) seems

not so generic to other members of the family. For example, (Lorenz et al., 2008) measured the pres-

sure response of SmFeAsO1−xFx upto a pressure of 1.7 GPa and found a di�erent behaviour from its
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FIG. 4.33
The phase diagram of of 1111 CeFeAsO1−xFx vs F doping (from Zhao et al. (2008)) An antiferromagnetic metallic

(AFM) phase is realized at low doping. At about 5% doping the material becomes superconducting. The structural

phase transition is denoted by the red dots. For more details, see Zhao et al. (2008).

La counterpart in the sense that Tc increases with pressure for the undopedmaterial (SmFeAsO), how-

ever it decreases for the doped material in the overdosed regime. The 1111 family of superconductors

belong to the type-II variety and record very high upper critical magnetic �elds, Hc2 . Using dc �elds

up to 45 T, Hc2(T = 0) was reported to be 60T for an optimally doped LaFeAsO0.89F0.11 (Jarozynski

et al., 2008). Furthermore, there observed anisotropies have in the slope of
dHc2
dT |T=Tc along the planar

and out-of-plane directions.

To shed light on the transport properties of Fe-based compounds, Kamihara et al. (2008) in their pio-

neering discovery of LaFeAsO1−xFx found that the resistivity of the undoped compound (LaFeAsO)

has a temperature independent resistivity with a value 5 m�-cm at low temperature. However, it shows

an anomaly at ∼150 K with an upturn in its magnitude at 100 K. At optimal doping (x ' 0.11), the

resistivity is metallic at room temperature and falls steadily at lower temperatures. The same group

(Kamihara et al., 2008) has also reported data on the magnetic susceptibility. The undoped compound

reports a value 0.4 memu/mole and again independent of temperature below 300 K, except for an

anomaly at 150 K, and an upturn in its behavior below ∼25 K.
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Wehave cursorily talked about the thermodynamic properties earlier, where the behavior of the speci�c

heat at the transition point (Tc) was discussed. To remind ourselves of the context, in the study of solid

state physics,C/T is usually plotted vsT asT → 010 whereC/T is found to be temperature independent

and is represented by γ . γ depends on thematerial properties via the density of states at the Fermi level

(N(εF)), and the e�ective mass (m∗) of the carriers. Importantly, C/T shows a discontinuity at T = Tc,

signaling a second-order phase transition from a metal to a superconductor. In fact, the discontinuity

is often considered as the hallmark feature of the onset of superconductivity. However, for the 1111

family of materials, possibly owing to high values of Tc, C/T is not temperature independent, and

hence the value of γ cannot be ascertained. Although, γ is much better known for other families of

Fe-based superconductors. A general consensus is that1C/Tc behaves asT2
c inmost of thesematerials,

which is at least true in the underdoped regime, andmost probably are signatures of a non-Fermi liquid

metallic state11 at higher temperatures. Possibly the Fe-Pn/Ch superconductors are weak Fermi liquids

with strong pair breaking mechanism in place.

4.12.2 Pairing symmetry

The pairing symmetry of the superconducting state is not beyond doubt and has generated a lot of

debate for Fe-based superconductors. The electron-phonon interaction is the pairing glue, and is hence

a key element to conventional (BCS) superconductors. However, it is found to be insu�cient, and pos-

sibly cannot give rise to such high values of Tc found in experiments conducted on the pnictides or

the chalcogenides. Orbital or spin �uctuations may play a role in the pairing mechanism. Theoreti-

cal studies suggest an extended-s wave (cos kx + cos ky) pairing symmetry owing to the multi-orbital

nature (Kuroki et al., 2009). In addition, sx2−y2 symmetry has been predicted by Parish et al. (2008),

and d-wave in some 122 Fe-As compounds (Reid et al., 2012). Further, there are hints of the presence of

two superconducting gaps which are inferred from two di�erent values of 21/kBTc,
12 one with a larger

value 21
kBTc

' 7, and the other corresponds to a smaller gap, that is, 21
kBTc

< 3. Pairing correlations with

two di�erent gaps indeed indicates an unconventional origin of superconductivity.

Thus, to summarize various features that have made studies of the Fe-based superconductors exciting

across the last decade and a half, we enumerate some of them below.

i. There is a prejudice against Fe for it to be detrimental to superconducting pairing.

ii. The interplay of magnetism, superconductivity and orbital degrees of freedom is observed.

iii. The speci�c heat scales very di�erently with temperature compared to the conventional supercon-

ductors.

iv. The d-electrons of Fe have a complicated band structure that changes drastically upon doping.

v. There are two pairing gaps.

10 In the limit T → 0, the phonon contribution is suppressed, leaving only the electronic contribution to the speci�c heat.
11 A brief introduction to the main results of the Fermi liquid theory is presented in the appendix.
12 21

kBTc
= 3.52 for BCS superconductors.
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vi. There is an isotope e�ect of Fe, as opposed to the oxygen isotopes observed in conventional super-

conductors.Despite the observed isotope e�ect, electron-phonon coupling is not a dominant player

in the pairing phenomena.

With this collection of facts, we hope to have provided a platform for the beginners.

We next move on to the potential applications of superconductors, which have constantly enriched the

�eld of superconductivity throughout a period spanning over the last century.

4.13 APPLICATIONS OF SUPERCONDUCTORS

The chief applications of superconductivity lie in the large scale production of high intensity magnetic

�elds needed for the functioning of magnetic resonance imaging (MRI) and nuclear magnetic reso-

nance (NMR). Superconducting rails are used to the magnetic levitation principle, which capitalizes

on the lack of contact between the vehicle and the rails, and hence there will be no wear and friction,

besides aiding to attain far larger velocities compared to ordinary trains. The magnetic levitation tech-

nology is quite advanced, but at its core, it uses the phenomenon of the Meissner e�ect, that is, the

expulsion of the magnetic �ux from a superconducting sample, as we have seen before.

There is another application of superconductors that we should be concerned about in this text is

the Josephson e�ect. The Josephson e�ect is a manifestation of long-range quantum coherence in

superconductors. The e�ect is discovered by B.D. Josephson in 196213 when he was a PhD student

at Cambridge (UK). In mathematical terms, the e�ect describes the relationship between the cur-

rent and the voltage across a link in a superconductor-insulator-superconductor junction. Thus, a

Josephson junction (JJ) is formed by placing two superconducting materials with an intervening non-

superconducting material, where the Cooper pair can tunnel from one superconductor to another

through the barrier. Extensive reviews of the Josephson e�ects can be found in Makhlin et al. (2001)

and Golubov et al. (2004).

4.14 JOSEPHSON EFFECT

In the following, we show di�erent types of JJ with two bulk superconductors connected via a weak

link, that is, regions that allow the passage of electrons in a restricted sense (see Fig. 4.34).

To understand the physical phenomenon, consider two isolated superconductors with the supercon-

ducting order parameters ψ1 and ψ2 (ψ1 6= ψ2), which further can be expressed in terms of the

amplitudes (|ψ1,2|) and phases (φ1,2) as ψ1 = |ψ1|e
iφ1 and ψ2 = |ψ2|e

iφ2 . In the absence of any inter-

action between the superconductors, the phases φ1 and φ2 are in general di�erent. If these two regions

are strongly coupled, the two phases may be equal (φ1 = φ2), which demands that all the Cooper pairs

13 In 1973, Josephson was awarded Nobel prize for this work.
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FIG. 4.34
Different types of Josephson junctions, namely, (a) Tunnel junction, superconductor-insulator-superconductor (SIS)

junction, (b) Proximity junction, superconductor-normal-superconductor (SNS) junction, (c) Constriction (Microbridge),

(d) Point-contact junction.

are in the same state. However, in case of a weak coupling, the phases will di�er, and it is possible to

maintain this di�erence by passing a small current through the JJ. This is precisely the Josephson e�ect.

4.14.1 AC and DC Josephson effects

Josephson predicted that the current and voltage have dependencies given by

I = Ic sin1φ (4.182)

d

dt
1φ =

2eV

~
, (4.183)

where the 1φ is the phase di�erence 1φ = φ1 − φ2, φ1 is the phase of the order parameter for the

superconductor on the left, while φ2 is the phase of the order parameter for the one on the right,

and V is the voltage across the junction. Equation (4.182) implies the presence of a dissipationless

sinusoidal current with a phase di�erence 1φ. For a DC voltage V applied across the junction, the

current oscillates as [from Eq. (4.183)],

I(t) = Ic sin

(
2eVt

~

)
. (4.184)

This is called the AC Josephson e�ect.

Actually it is rather di�cult to generate a constant DC voltage across a junction, and thus a more

conventional situation is to talk about a constant current, namely,

I(t) = I = constant. (4.185)
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For I < Ic,

1φ = constant = sin−1

(
I

Ic

)

which yields from Eq. (4.183) for V = 0 (as d1φ
dt = 0). This is called the DC Josephson e�ect.

It is possible to discuss the Josephson e�ect and the related phenomena in terms of �ux quantization.

Consider a contour C as shown by dotted lines in Fig. 4.35. Assume that the self-inductance e�ect

of the ring is small, that is, LIc � 80, L is the self-inductance of the coil, Ic is the critical current, 80

is the �ux quantum (= h
2e ). For the magnetic �eld to be zero in the ring (de�ned by the contour C),

the thickness of the ring is required to be larger than the penetration depth of the superconducting

sample. The magnetic �eld should completely die out. Thus, no �ux can be present along the contour

C (see Fig. 4.35). From the equation of the electric current density (refer to London equation), namely,

j(r) ∝ ∇φ(r)−
2eA(r)

~
(4.186)

for j(r) = 0, which is true for superconductors,

∇φ(r) =
2eA(r)

~
. (4.187)

Now integrate both sides along the contour C,
∮

∇φ · dl =
2e

~

∮
A · dl =

2e

~

∫

s
B · ds =

2e8

~
= 2π

8

80
. (4.188)

A B

Tunnel
junction

C

FIG. 4.35
Schematic diagram of a typical tunnel junction is shown. C is

an imaginary contour in the superconducting region.

Thus, the phase di�erence is given by

1φ = 2π
8

80
, (4.189)

where 1φ denotes the di�erence between the

phases of the cooper pairs at the points A and B in

Fig. 4.35. This is a fundamental relationship for a

JJ. Now taking a derivative of Eq. (4.188) and using

Faraday’s law,

d

dt
1φ =

2eV(t)

~
(4.190)

The wavefunction at the superconducting elec-

trode is given by

ψ(r, t) = ψ0e−i Vt
~ , (4.191)

where V(t) is the emf developed around the ring,

which can be interpreted as a voltage drop across
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the junction. where θ(t) =
Vt
~

is the phase of the wavefunction. Since the current is continuous, it

must thread through the insulating barrier. This is not classically allowed, but the super-electrons can

tunnel through the insulating barrier with a zero voltage drops and resulting in a Josephson current.

Let us perform a simple analysis of the above scenario by assuming a rectangular potential barrier of

height V0 and width 2a for the insulating region of JJ [see the schematic diagram in Fig. 4.36(a)]. The

corresponding Schrödinger equation is written as

i~
∂

∂t
ψ(r, t) =

1

2m∗
(−i~∇ − e∗A(r, t))2ψ(r, t)+ e∗φ(r, t)ψ(r, t)+ V(x)ψ(r, t), (4.192)

where the energy of the super-electrons is ε0. Let us ignore the electromagnetic �eld for now,

~
2

2m∗
∇

2ψ = (ε0 − V0)ψ(r) for |x| ≤ a. (4.193)

Thus, in the insulating region, the solution can be written as

ψ(x) = C1 cosh

(
x

ξ

)
+ C2 sinh

(
x

ξ

)
(4.194)

where

ξ =

√
~2

2m∗(V0 − ε0)
. (4.195)

The scenario is depicted in Fig. 4.36(b). Now, let us recall the expression for the current,

Js =
2e∗

m∗
Re(ψ∗

~

i
∇ψ) =

e∗
~

m∗ξ
Im(C∗

1C2). (4.196)

At the boundaries, by matching the wavefunctions, one gets

ψ(−a) =
√

n1eiθ1

ψ(a) =
√

n2eiθ2 .
(4.197)

V(x)

−a −a+a

ξε
0

+a

V
0

ψ
2
 = n

2
eiθ2ψ

1
 = n

1
eiθ1

a b

FIG. 4.36
(a) Potential experienced by the super-electrons because of the presence of the insulating barrier. A particle of energy

ε0 approaches the barrier from the left. (b) Fall off of the wave functions inside the barrier. ξ denotes the distance over

which the wavefunction falls off by a factor 1
e
of the value at the surface.
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The coe�cients C1 and C2 can be computed as

C1 =

√
n1eiθ1 +

√
n2eiθ2

2 cosh
(

a
ξ

) ,

C2 =

√
n1eiθ1 −

√
n2eiθ2

2 sinh
(

a
ξ

) .

(4.198)

Using the de�nition of the super current density, Js,

Js = Jc sin(θ1 − θ2) = Jc sin(φ); φ = θ1 − θ2 (4.199)

where the critical Jc is given by

|Jc| =
e~

√
n1n2

mξ sinh(2a/ξ)
. (4.200)

Now, including the electromagnetic �eld, one gets

φ = θ1 − θ2 −
2π

80

∫ 2

1
A(r, t) · dl. (4.201)

The rate of change in this phase is

∂φ

∂t
=
∂θ1

∂t
−
∂θ2

∂t
−

2π

80

∂

∂t

∫ 2

1
A(r, t) · dl. (4.202)

The current and the voltage across an SIS junction can be represented as

Is = Ic sinφ

V =
80

2π

dφ

dt
.

(4.203)

The corresponding work done is given by

WJ =

∫ t0

0
IVdt =

∫ t0

0
Ic sinφ

′(t)
80

2π

dφ′(t)

dt
dt =

80Ic

2π

∫ φ

0
sinφ′(t)dφ′(t)

=
80Ic

2π
(1 − cosφ). (4.204)

Thus, the current and the work done lag in phase, which is shown in Fig. 4.37.

Let us discuss the alternating current (AC) Josephson e�ect with a DC voltage bias. Consider V = V0

(see Fig. 4.38), such that,

φ(t) = φ(0)+
2π

80
V0t

Is = Ic sin

(
2π

80
V0t + φ(0)

)

Is = Ic sin
(
2π fJt + φ(0)

)
.

(4.205)
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FIG. 4.37
Is − φ curve (Bold line) andWJ − φ curve (Dotted line).

V(t)
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V0
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~
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FIG. 4.38
(a) Schematic representation of the DC voltage bias setup. (b) Schematic representation of the AC voltage bias setup.

The Josephson frequency is given by

fJ =
V0

80
=

2e

h
V0 = 484 × 1012V0 (Hz). (4.206)

Thus, a DC voltage of 10 µV causes an oscillation of about 5 GHz. This is the principle behind the

Josephsonmicrowave oscillator. The oscillator delivers a small power of the order of 10 nW for a typical

Ic = 1 mA.

The rapid oscillations are due to quantum interference between the two junctions. The period is deter-

mined by the magnetic �eld that is required to generate one �ux quantum in the loop. So the critical

current maximum occurs at 8/80 = 0, ±1, ±2, . . . .. ±n. The observations of these oscillations are

analogous to the double slit experiment in optics.
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Let us look at the case of AC voltage bias. Consider an AC source (see Fig. 4.38),

V(t) = V0 + Vs cosωst

φ(t) = φ(0)+
2π

80
V0t +

2πVs

80ωs
sinωst.

(4.207)

The current is given by

Is = Ic sin

(
φ(0)+

2π

80
V0t +

2πVs

80ωs
sinωst

)
. (4.208)

Hence, a constant current will occur when

2π fJ = nωs (4.209)

which yields,

V0 = n

(
80

2π
ωs

)
. (4.210)

Thus, an AC voltage of 1 GHz frequency applied across the junction will provide a DC current at

V0 = 0, and at integral multiples of 2 µV.

4.15 SQUID

A superconducting quantum interference device (SQUID) measures the magnetic �ux and the output

voltage signal, which is a periodic function of the �ux threading the superconducting loop. The �ux

variation that SQUID can measure is 10−580 with 80 = 2.07 × 10−15 Wb. Interested readers may

consult the review article by Greenberg (1998).

The SQUID uses the Josephson e�ect phenomenon to measure extremely small variation of magnetic

�ux. Typically, a SQUID is a ring of superconductors interrupted by one or more Josephson junctions.

There are usually two kinds of SQUIDs that are used, namely, a one junction device called the RF

SQUID, and a device comprising two junctions which is called the DC SQUID.

A bias current Ib (for RF SQUID) or 2Ib (for DC SQUID) is applied, putting the operational point

midway between the superconducting and the resistive behaviors. Shunt resistors are used to prevent

hysteresis behavior in the I − V curve shown in Fig. 4.39(a). A schematic view of the SQUID set up is

shown in Fig. 4.39(b).

By �xing the current such that Ib > Ic, when an external magnetic �ux, 8ext = Bext · A, is threaded

through the Josephson loop, the voltage drop across the Josephson junctionwill change. As the external

�ux increases or decreases, the voltage will change in a periodic manner with a period in multiples of

�ux quantum80 (see Fig. 4.40). Monitoring the change in voltage allows us to determine themagnetic

�ux that has been coupled to the SQUID loop. By using an external circuit, it is possible to ”lock” the

SQUID at a particular point in the V − 80 curve (say at the point P in Fig. 4.40). The feedback current
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FIG. 4.39
(a) I − V characteristic curve. (b) A typical SQUID setup is shown with an input coil (left) and a feedback coil (right).
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Voltage
P

Bext

FIG. 4.40
V − Bext characteristic curve.

measured by the feedback loop [in Fig. 4.39(b)]

is a measure of the externally applied �ux. A

SQUID is normally operated at the steepest part

of the V − 80 curve to have
∂V
∂8

maximum. Thus,

SQUIDs have been a key factor in the devel-

opment and commercialization of ultrasensi-

tive electric and magnetic measurement systems.

In many cases, SQUIDs o�er the possibility

of measuring very small changes in magnetic

�ux, where no other methodology is available.

Hence, SQUIDs have a wide range of sensing

applications.

One disadvantage of using the SQUID is that the area of the detection coil is small (hence, it can

thread only a small �ux) and so is the associated self-inductance (≈10−10 H). Increasing the area of

the loop increases the self-inductance e�ects and hence introduces a hysteresis e�ect in the I − V

characteristics. Using a �ux transformer coil, as shown in Fig. 4.41 aids in threading larger �ux values.

Thus, measurement of larger �ux is also possible using a SQUID.

To complete our discussion, let us discuss the DC and RF SQUIDs. A DC SQUID di�ers from the RF

SQUID with regard to two key elements, namely, with regard to biasing the Josephson junction and

the number of Josephson junctions being two connected in parallel instead of one, as is the case for RF

SQUID.
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FIG. 4.41
(a) SQUID loop. (b) Flux transformer coil.
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Input
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FIG. 4.42
A schematic setup for DC SQUID is shown.

Since there are two junctions which need to be matched within a few percentages, a job achieved

by shunt resistors, it may be possible to operate a SQUID with mismatched junctions. But this per-

formance will be su�ciently degraded. Similar to the RF SQUID, the input, the feedback, and the

modulation coils are not wound around the SQUID loop, but inductively coupled to it (see Fig. 4.42).

It is biased with a DC current approximately twice that of Ic, and thus develops a DC voltage across the

junction and the shunt resistors. A change in magnetic �ux applied through the SQUID loop induces

a phase change of the condensate wave-function that enhances the current through one Josephson
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FIG. 4.43
DC SQUID setup with two junctions and a fux,

8 threading the device due to a magnetic field

B is shown.

junction (Inet = Ic + Ib), and reduces the current through

the other (Inet = Ic − Ib). As the external �ux increases or

decreases, the voltage will change periodically with a 80

period. The current in the feedback circuit is the direct mea-

sure of �ux change applied in the SQUID.

Commercially DC SQUIDs are mostly used. Besides sen-

sors, SQUIDs have large applications in magnetoencephalog-

raphy (MEG). Tumors or pathological tissues are detected

by the change in the magnetic �eld by the neurons.

For example, the magnetic �eld due to a single neuron

can be estimated using the familiar Biot-Savart law in

electromagnetics,

B =
µ0

4π

Q × r

r3
. (4.211)

Healthy tissues produce |B| about 20 PT at 10 µm, whereas

|B| ≈ 100 PT is produced by the pathological tissues (that are

a�ected by tumours). Thus, it involves a charge |Q| = 20 fA · m for the former and 100 fA · m for

the latter.

The DC SQUID setup is shown in Fig. 4.43. Let us assume for simplicity that the two junctions are

identical. Also, the condensates are considered same on both sides of the junction. The total current is

given by

I = I1 + I2 = Ic sinφ1 + Ic sinφ2 = 2Ic cos
φ1 − φ2

2
sin

φ1 + φ2

2
. (4.212)

The corresponding phase di�erence around the loop is
∮

∇θ · dl = (θB − θA)+ (θD − θC)+ (θC − θB)+ (θA − θD) = 2πn. (4.213)

From the de�nition, one may obtain the phases at the points A, B, C, and D (see Fig. 4.43) as

θB − θA = −φ1 −
2π

80

∫ B

A
A · dl. (4.214)

θD − θC = φ2 −
2π

80

∫ D

C
A · dl (4.215)

Introducing the supercurrent via the London equation, the phase di�erences may be written as

θC − θB =

∫ C

B
∇θ · dl = −λL

∫ C

B
Js · dl −

2π

80

∫ C

B
A · dl (4.216)

θA − θD =

∫ A

D
∇θ · dl = −λL

∫ A

D
Js · dl −

2π

80

∫ A

D
A · dl (4.217)
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where λL is the penetration depth given by λL =
m

ne2
. Adding Eqs. (4.214)–(4.217) and putting in

Eq. (4.213) one gets,

φ2 − φ1 = 2πn +
2π

80

∮
A · dl + λL

∫ C

B
Js · dl + λL

∫ A

D
Js · dl. (4.218)

Thus, the phase di�erence between the condensate wavefunction is given by

φ2 − φ1 = 2πn +
2π8

80
+ λL

∫

c
Js · dl. (4.219)

If the contour falls within the London penetration depth for a given superconducting sample, then the

last term will vanish. Hence,

φ2 − φ1 = 2πn + 2π
8

80
. (4.220)

So the total current is given by

I = 2Ic cos

(
π8

80

)
sin

(
φ1 +

π8

80

)
. (4.221)

The �ux piercing through the contour becomes

8 = 8ext + LIcir (4.222)

where, Icir is the circulating current =
I1−I2
2 and L is the self-inductance of the coil. The total �ux thus

can be written as

8 = 8ext + LIc sin

(
π8

80

)
cos

(
φ1 +

π8

80

)
. (4.223)

For a given external �ux, there is a range between I and8 that satis�es these equations. One needs to

know the maximum I that can be made to pass through the SQUID and still have zero voltage (critical

current). Figure 4.44(a) describes the variation of the �ux (8) in the circuit as a function of the external

�ux,8ext. Furthermore, the sinusoidal variation of the maximum current as a function of the external

�ux is depicted in Fig. 4.44(b).

Next, for simplicity, let us consider the self-inductance of the coil to be zero (L = 0). Hence,8 = 8ext,

which yields the following expression for the current,

I = 2Ic cos

(
π8ext

80

)
sin

(
φ1 +

π8ext

80

)
. (4.224)

The extremum occurs when dI
dφ1

= 0, that is, when

cos

(
φ1 +

π8ext

80

)
= 0 (4.225)

or,

sin

(
φ1 +

π8ext

80

)
= ±1. (4.226)

Superconductivity 4-81

 07 D
ecem

ber 2024 17:11:54



Principles

−1

1 2

2Ic

Imax
F

F0

−2

Fext

Fext

−3F0/2 −3F0/2−F0/2 −F0/2
F0

ba

FIG. 4.44
DC SQUID without self inductance. (a)8 vs8ext curve. (b) I vs8ext curve.

This yields the maximum current as

Imax = 2Ic

∣∣∣∣cos
(
π8ext

80

)∣∣∣∣ . (4.227)

The current has a maximum of 2Ic for8 = n80, with n being an integer. Also, a minimum value of 0

occurs for8 = (n + 1/2)80.

Next, generalize it for the case with self-inductance (L 6= 0, refer to Fig. 4.45). The two junctions

are connected in parallel on a superconducting loop of inductance L. In this SQUID one applies

R C C R V

I0

FIG. 4.45
DC SQUID with self inductance.

a constant bias current IB > 2I0. The voltage across

the SQUID oscillates with a period 80 as one alters

the external magnetic �ux,8. There are two conden-

sate pair wave functionswhich (weakly) interferewith

the junction. If a magnetic �ux passes through the

loop, it changes the relationship between the phase

di�erence across the junction. As a result, the criti-

cal current of the SQUID changes. The total current

has a sinusoidal variation with the external �ux in the

argument of the variation.

Finally, let us discuss the RF SQUID. The RF SQUID

utilizes a single Josephson junction and �ux is induc-

tively coupled into the SQUID loop via an input coil

which connects the SQUID to the experimental setup

and an “RF” coil that is part of a high-Q resonant tank

circuit, to note down the changes of the current in the

SQUID loop. See Fig. 4.46. The tank circuit is driven
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Resonant (tank
circuit)

SQUID loop

a b
IRF

LT C

Output

Detected
output F

Input
current/!ux

FIG. 4.46
(a) RF SQUID setup. (b) Output current vs input flux for RF SQUID (saw-tooth like pattern).

by an RF current, while the SQUID loop is inductively coupled to the inductance LT of the LC tank

circuit. The resulting RF voltage is periodic in the �ux applied to the SQUID with period 80. The

output vs the input current and the output �ux variations are shown in Fig. 4.46.

RF as a SQUID is actually a misnomer as no interference takes place. One could make a junction by

pressing together two pieces of oxidized niobium Nb wire at right angles to each other.

4.16 APPENDIX

4.16.1 Fermi liquid theory

One last thing we wish to pursue very brie�y is the essence of the Fermi liquid theory (FLT). The

subject demands more attention than what it gets here. Since the motivation is to provide the readers

with a bird’s eye view of the topic, we introduce the basic concepts here. The mathematical derivations

are beyond the purview of the presented discussion here.

The success of the single electron picture of metals rests on the FLT theory by Landau (1965).

In the FLT, the weakly interacting electrons in a metal form quasiparticles that follow the usual

fermionic properties. The FL theory is remarkably successful, despite a few failures, especially where

the interactions between electrons are quite strong and hence cannot be ignored.

In order to understand the conditions of applicability of FLT, we can de�ne the mean electronic

separation, rs and density ρe via

ρe ×
4

3
πr2s = 1.
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The average Coulomb interaction per electron is given by

〈PE〉 ∼
1

2

e2

4πε0rs
.

Furthermore, the mean kinetic energy is

〈KE〉 ∼
~
2

2m

1

r2s
〈PE〉

〈KE〉
∼

e2

8πε0rs
×

2mr2s
~2

=
me2

4πε0~2
rs =

rs

a0
. (4.228)

Thus, the ratio of the mean potential to the mean kinetic energies is of the order of electron-electron

separation, which further can be measured in units of the Bohr radius, a0. Some typical values are

rs/a0 = 1.9 for Be

= 5.6 for Cs.

Thus, the ratio rs/a0 is large, and for Wigner crystals, rs/a0 > 20. This means that the mean electronic

separation is larger than the Bohr radius, which in turn, advocates that FLTwill provide an appropriate

description of electronic systems.

The need for a Fermi liquid theory in the �rst place comes from the fact that the speci�c heat of elec-

trons, according to the classical (and non-interacting) theory, should be 3kB/2; however, one usually

gets a value much lower than this. Also, the susceptibility, χ of the free moments deviates signi�cantly

from the classical behavior, namely,χ ∼
1
T . Thus, the non-interacting theory is found to be insu�cient

in a variety of cases.

These puzzles are solved by the FLT, which says that only a small fraction of the electrons near the

Fermi surface takes part in contributing to the physical observable, such as the speci�c heat or the

susceptibility etc. These electrons are promoted from just inside the Fermi surface to just outside, and

such a phenomenon is known as particle-hole excitations. The same formalism as that of the non-

interacting systems will continue to be valid, except for the bare electronic mass, m is to be replaced

by the e�ective mass, m∗. Only the electrons within kBT of the Fermi energy contribute to the speci�c

heat so that the speci�c heat is proportional to T and is small. Also, the electrons within an energy slice

µBB of the Fermi surface can bemagnetized with a moment,µB leading to a temperature independent

Pauli susceptibility. These dependencies were matched with experiments on metals and were found to

have good support.

However, though FLT solved these riddles, there remain questions that are yet to be answered, such

as how does a non-interacting theory explain the behavior of systems where the interaction e�ects

are important. The answer provided by Landau rests on the concept of “adiabatic continuity.” The

adiabatic continuity indicates that the labels associated with eigenstates aremore robust against pertur-

bation than the eigenstates themselves. To have clarity in understanding, consider a one-dimensional

box whose eigenstates are given by sinusoidal functions. More importantly it is expressible in terms

of the number of nodes (that is the number of zeros), that is how many zeros it has (see left panel
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n = 3

n = 2

n = 0

n = 1

n = 2

n = 1

FIG. 4.47
The one-to-one correspondence between the states of a

particle in an infinite potential and a particle subjected to

a harmonic potential is shown. The arrows denote the corres-

ponding energy states for which the number of nodes

remains fixed.

of Fig. 4.47). The larger the energy, greater the

number of nodes. Now, if we perturb the system

by a small harmonic oscillation potential, V(x) =

1
2εx2 (ε is small). The new eigenstates of the sys-

tem will no longer remain simple sine waves, but

involve a mixing of all the eigenstates of the orig-

inal unperturbed problem. However, the number

of nodes remains a good indicator to describe

the eigenstates of this more complex (interacting)

problem. The correspondence is shown schemati-

cally in Fig. 4.47.

Landau applied this idea to the interacting gas

of electrons. He imagined that a turning on the

interaction e�ects slowly, and observed how the

eigenstates of the system behave. He postulated

that there will be a one-to-one mapping of the low

energy states of that of the interacting system with

that of the non-interacting Fermi gas. The assump-

tion is that the good quantum numbers associated

with the excitations of the non-interacting sys-

tems will remain valid, even after the interactions

are turned on. Just as Pauli’s exclusion principle

holds for the non-interacting electrons, this would

remain so even in the presence of interactions. We can therefore retain the picture of the excitation of

particles and holes, with them carrying the same quantum numbers as their electronic counterparts of

the free Fermi gas. These excitations are called quasiparticles, whose wavefunctions and the energies

are di�erent from those of the corresponding electrons in the non-interacting problem. These quasi-

particles are core to the understanding of FLT, and account for the observed temperature dependencies

of the speci�c heat and susceptibility, with the only requirement of having a Fermi surface.

The energies of the quasiparticles are not the same as those of the non-interacting electrons. In Lan-

dau’s theory, the modi�ed energy appears through two terms. Their origin can be understood as

follows.

i. First, when a quasiparticlemoves, there will be a back�ow in the �lled Fermi sea (due tomomentum

conservation), as the quasiparticles “push” the ground state out of the way. Thismodi�es the inertial

mass of the quasiparticles, m is replaced by m∗.

ii. Second, the quasiparticle energy must depend on the distribution of other quasiparticles, which

Landau had included via some “f ” function, where the total energy of the interacting system can be
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expanded as a functional of variation in density, namely,

E =

∑

k,σ

pF

m∗
(~k − pF)δnk,σ +

1

2

∑

k,k′,σ ,σ ′

fkσ ,k′σ ′δnk,σ δnk′,σ ′ ,

where pF denotes the Fermi momentum, and δnk,σ (δnk′,σ ′) denotes the change in the Fermi dis-

tribution function. We skip a detailed discussion of the above and encourage the readers to look at

more specialized articles (Kinza, 2018). Also, for a short review, see Neilson (1996).

Let us look at the additional constraints on the validity of Landau FLT. The quasiparticles must be long

lived in the vicinity of the Fermi sphere. In fact, the inverse of the QP lifetime, τ el can be evaluated by

using Fermi’s golden rule,

1

τel
=

2π

~

∑

f

|V�|
2δ(ε − εp). (4.229)

Assuming V� to be a constant and independent of the energy transfer ε, one can convert the above

sum into an integral, and hence, integrate over the �nal (continuum) states. This goes as

1

τel
∼ ε2.

Also, τ el is found to have the temperature dependence of the form,

1

τel
∼ T2.

This decay rate is important in transport properties of metals, as it yields a T2 resistivity.

Herewe present a few examples, which from a theoretical perspective generate non-Fermi liquid (NFL)

characteristics in interacting electronic systems. These are

i. metals close to the quantum critical point, where a phase transition occurs close to T = 0, the

quasiparticles scatter so strongly that they cease to follow the usual results of FLT.

ii. Metals in one dimension called Luttinger liquid. In 1D, electrons are unstable and decay into two

separate particles (spinons and holons) that carry the spin and charge, respectively.

iii. Disordered Kondo metals. Here, the scattering from the magnetic impurities is too strong to allow

for stable quasiparticles to form.

4.17 SUMMARY AND OUTLOOK

Let us include a brief recap of the topics discussed. First, and foremost, both the semiconductors and

the superconductors possess a spectral gap in their electronic band structure. The question is how

are these two gaps distinguished? Evidently, the values di�er by three orders of magnitude, that is, a

semiconducting gap is usually of the order of an eV, while the superconducting gap typically lies in the

regime of a fewmeV. There is amore important di�erence, where the ground state of a superconductor
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is a coherent state, and devoid of any unpaired electron, where all the (Cooper) pairs have amplitude

and phase coherence. The valence band of a semiconductor has no such feature and comprises energy

levels that disperse di�erently across the Brillouin zone.

By and large, we have con�ned ourselves to the study of conventional superconductors. We have high-

lighted several distinguishing properties of superconductors, such as the Meissner e�ect, the isotope

e�ect, distinction between perfect conductors and superconductors, �ux quantization, penetration

depth, and the coherence length, type-I and type-II superconductors, etc. Hence, we have discussed the

magnetic and thermodynamic properties of superconductors, where the former shows a phase diagram

as a function of the externalmagnetic �eld that encodes a phase transition, either directly from a super-

conductor to a metal, or the same intervened by a mixed phase that admits the magnetic �ux lines (in

unit of a constant �ux quantum) to penetrate the sample. Most of the well-known conventional super-

conductors are of the latter variety. The thermodynamic properties, such as the speci�c heat shows a

jump of �xed magnitude at the transition point and are a generic feature of a superconducting phase

transition.

Hence, we have embarked on the famous BCS theory, where we have discussed Cooper’s instability

that leads to the formation of bound pairs of electrons mediated via phonons and is known to provide

the microscopic origin of the pairing phenomena. This is followed by a detailed description which

yields an appropriate estimation of the temperature dependence of the spectral gap, and hence the

transition temperature, where the latter provides an enumeration of di�erent superconductors. Among

the crucial properties, we have outlined the calculation of the speci�c heat, computed the behavior of

the speci�c heat and the jump therein at the transition temperature and discussed the Meissner e�ect.

We have also included a brief recap of the Ginzburg-Landau (GL) theory, which is a phenomenolog-

ical theory of superconductivity proposed by Ginzburg and Landau in the early 1940s and is broadly

applicable to all second-order phase transitions. Apart from the discussion of the twoGL equations, we

have estimated two important length scales that characterize a superconductor, namely, the coherence

length and the penetration depth. By no means, the above discussion is complete and the readers are

encouraged to look up more detailed notes of the subject.

We have also described in brief a few experimentalmethods for estimating themagnitude of the energy

gap in superconductors. These are electromagnetic, ultrasound absorption experiments, and measur-

ing the tunneling spectra in junction systems, involving a normal metal and a superconductor (NS

junction), or a metal between two superconductors (SNS junction), etc.

To wind down our discussion on superconductors, we havementioned very brie�y the unconventional

superconductivity that has been discovered over the last two and a half decades. In particular, we have

touched upon the cuprate superconductors which have created enormous excitement owing to several

unconventional features. The lack of a well de�ned starting point for a microscopic theory to be devel-

oped, at least in the underdoped regime, eluded a conclusive understanding of the pairing phenomena
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and the superconducting state. About two decades later, Fe-based superconductors were discovered

with moderately high transition temperatures (although not as high as the cuprates), whose normal

phase again hinted toward a non-Fermi liquid state. Furthermore, their physical properties di�er from

conventional superconductors on a number of counts. Thus, there remained several issues that necessi-

tate going beyond the conventional (BCS) paradigm. Once again the readers are encouraged to look at

literature, including some excellent review articles on the subject of unconventional superconductivity

that transcends beyond the cuprates and Fe-based pnictides or chalcogenides.

For completeness, we discuss the applications of superconductivity. In this connection, di�erent types

of superconducting junctions are illustrated, which eventually leads us to the topic of the Josephson

e�ect. The AC and DC Josephson e�ects are described along with a derivation of the current voltage

relationships. Practical examples of the Josephson junctions are denoted by the SQUIDs. Di�erent

types of SQUIDs and a brief discussion is made on their utility in detecting extremely small values of

magnetic �ux.

Further, in the appendix, we have included a crisp introduction to the Fermi liquid theory. The

main inferences of the theory are clearly violated for the cases of both the Fe-based and cuprate

superconductors owing to strong electronic correlations.
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